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ABSTRACT OF THE DISSERTATION

Position Uncertainty, Clutter, and Performance

in Naturalistic Search Tasks

by YELDA SEMIZER

Dissertation Director:

Melchi M. Michel

Uncertainty regarding the position of target objects in natural scenes is a fun-

damental property of visual search tasks. As visual clutter in natural scenes in-

creases, extrinsic position uncertainty (i.e., set size) also increases. While studies

of visual search have repeatedly demonstrated that clutter impairs search per-

formance in natural scenes, these studies have not attempted to disentangle the

effects of search set size from those of clutter per se. Moreover, most of the clut-

ter models used in these studies do not take the properties of the search targets

into account. Thus, this dissertation has two main objectives: (1) to quantify

the effect of clutter on search performance for categorical targets when the set

size (i.e., extrinsic position uncertainty) is controlled and (2) to determine what

visual features of categorical search targets and backgrounds are important in
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measuring clutter. In Study I, we investigate the effect of natural image clutter

on performance in an overt search for categorical targets when the search set size

is controlled. Observers completed a search task that required detecting and lo-

calizing common objects in a set of natural images. The images were sorted into

high and low clutter conditions based on the clutter metric. The search set size

was varied independently, by fixing the number and positions of potential targets

across set size conditions within a block of trials. Within each fixed set size con-

dition, search times increased as a function of increasing clutter, suggesting that

clutter degrades overt search performance independently of set size. In Study II,

we propose new clutter metrics based on two types of target-background simi-

larity (i.e., exemplar level and category level) to predict the effect of clutter on

search performance. In a nutshell, our metrics measured the similarity between

target and background features (i.e., orientation subbands) in images while also

accounting for size of a search target. Our results demonstrated that both the

exemplar clutter metric and the category clutter metric predicted search perfor-

mance. Overall, these two studies suggest that intrinsic position uncertainty and

target-background similarity should be incorporated into models of visual search

and clutter in determining performance in natural search tasks.
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Chapter 1

Introduction and Objectives

1.1 Introduction

Visual search, scanning the visual environment to find an item, is a part of

everyday tasks. We constantly engage in visual searches as we complete daily

actions such as finding a set of keys in a bag or locating a cellphone in a living

room. There are also more crucial domains which require visual search tasks at

a professional level, such as radiology. Therefore, understanding the mechanisms

of visual search has significant implications. Performance in visual search tasks

could depend on a number of factors (see Eckstein, 2011, for a review), including

the amount of visual clutter within the environment.

Visual clutter is usually defined as “the state in which excess items, or their

representation or organization, lead to a degradation of performance at some

task” (Rosenholtz, Li, Mansfield, & Jin, 2005, p. 761). Visual clutter could affect

the visual search performance in a number of ways. First, clutter could increase

the likelihood of obscuring targets. In natural scenes, objects appear in various

positions and orientations, and they can occlude one another. As a scene gets

more cluttered, the possibility of occlusions could increase. As a result, visual

search in highly cluttered scenes would become more difficult (Bravo & Farid,

2008; Rosenholtz, Li, & Nakano, 2007).

Second, clutter could affect search by increasing the number of possible loca-

tions where targets can appear. There a number of studies which looked at the
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effect of clutter on search using various type of naturalistic stimuli (e.g., Bravo

& Farid, 2004, 2008; Henderson, Chanceaux, & Smith, 2009; Lohrenz, Trafton,

Beck, & Gendron, 2009; Neider & Zelinsky, 2011; Rosenholtz et al., 2007). Ac-

cording to these studies, as a scene becomes cluttered, the number of possible

target locations also increases. In fact, in natural scenes, clutter is usually used

as a stand-in for set size (Rosenholtz et al., 2007). These studies show that

performance decreases a function of clutter in natural scenes.

Third, clutter could also affect visual search performance by decreasing the

ability to exclude irrelevant information. To investigate this, in a recent study,

we designed an experimental technique that modulates the distribution of clutter

in synthetic noise displays (Semizer & Michel, 2017). For this study, we defined

the relevant clutter in terms of the overlap between the spatial frequency band

of the target, a sine-wave grating, and of the background, 1/f noise. In the

cluttered condition, the display was tiled uniformly with relevant feature clutter.

In the uncluttered condition, we removed the clutter at the irrelevant locations

and kept it only at the possible target locations. Additionally, we developed

a constrained ideal searcher model. This model was successful in accounting for

human performance in these displays, suggesting that clutter impairs performance

by forcing observers to consider irrelevant locations. By expanding upon these

findings, one of the goals of this dissertation is to investigate whether this effect

generalizes to search in natural images.

Defining what clutter is, quantifying the amount of visual clutter in natural

images, and using this measure to predict search performance is a difficult task.

A reliable measure of clutter is necessary to be able quantify and predict per-

formance in naturalistic tasks. The most known computational models of visual

clutter in psychophysics include the following:

• Feature Congestion metric (Rosenholtz et al., 2005) defines clutter in terms



3

of the saliency of features in a display. A display is considered highly clut-

tered if it is difficult to draw attention to a newly added item. Clutter is

quantified as the amount of local variability in features such as luminance

contrast, color or orientation with the display.

• Subband Entropy metric (Rosenholtz et al., 2007) defines clutter in terms

of the amount of “disorganization” in a display. If the display contains a lot

of redundant information, it would be considered highly cluttered. Clutter

is related to the number of bins required to code an image with a given

quality, which can be quantified as the entropy within image subbands.

• Edge Density metric (Mack & Oliva, 2004) defines clutter in terms of the

density of edges within a display. A display with a lot of edges would be

considered highly cluttered. Clutter is quantified by extracting edges from

an image and dividing it by the image size.

• Segmentation based clutter metric (Bravo & Farid, 2008), which is based

on a segmentation algorithm (Felzenszwalb & Huttenlocher, 2004) defines

clutter in terms of how the number of regions within a display changes as

the scale of regions does. Clutter is quantified by segmenting images at

multi-scales, fitting a power-law to the relationship between the number of

segments and the scales. The constant of proportionality is used as the

measure of clutter.

• Proto-object model (Yu, Samaras, & Zelinsky, 2014) defines clutter in terms

of the number of proto-objects in a display. Proto-objects are defined as

“similar” segments within a display and formed by superpixels which share

similar features using segmentation and clustering.

Although there can be many different ways to improve the current measures

of visual clutter, we are specifically interested in the fact that these measures do
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not take the properties of search targets into account. However, as we have shown

in our previous study (Semizer & Michel, 2017), performance differs depending

on the similarity between features of search targets and features of search back-

ground. In particular, when the search target and the background share similar

features such as spatial frequency content, search becomes more difficult (Semizer

& Michel, 2017).

Unlike aforementioned models, there are other models of clutter from the field

of image optics, which quantify clutter in terms of target-background similarity.

Some of these measures are purely mathematical while others incorporate prop-

erties of the visual system into their calculations. Most common measures in

engineering include the following:

• The statistical variance (SV, Schmieder & Weathersby, 1983) and Silk’s

statistical variance (SSV, Silk, 1995) metrics define clutter in terms of the

variance of intensities at the adjoining regions of a display. However, this

metric is too simple to apply to complex images and the only feature of

target that is taken into account is its size.

• The probability of edge (POE, Tidhar, Reiter, Avital, & Hadar, 1994) met-

ric defines clutter with the assumption that human visual system is sensitive

to edges in a display. However, the only feature of a target that is taken

into account is its size. Additionally, this metric requires a user defined

threshold.

• The target structure similarity (TSSIM, Chang & Zhang, 2006) metric de-

fines clutter in terms of the similarity between the features of a target and

a background, such as intensity, contrast, and structure. However, its per-

formance depends on user defined constants.

• The contrast sensitivity function (CSF, Chu, Yang, & Qian, 2012) based
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metric defines clutter in terms of the similarity between a target and a

background in the frequency domain after filtering out the non-visible fre-

quencies to human eye and adjusting remaining frequencies with appropriate

weights. However, it is subject to shift-variance.

• The masked target transform volume (MTTV, Moore, Camp, Moyer, &

Halford, 2010a, 2010c) metric defines clutter in terms of the shared spa-

tial frequencies between a target and a background. This metric assumes

that the frequency overlap between the background and the target impedes

search performance. It attempts to account for the human visual system by

using a contrast sensitivity function and a foveal mask to sub-window the

image.

Although these metrics measure clutter in terms of target-background simi-

larity, they focus only on a particular instance of a target in a given image rather

than a categorical target. As a result, these metrics cannot measure the effect of

clutter on search performance for categorical targets. Additionally, these metrics

cannot make predictions for search in target absent images. Moreover, although

some of these metrics attempt to account for human visual system (e.g., Chu’s

CSF or MTTV metrics), they do not explain the effect of similarity on clutter in

the periphery. This is an especially important point because clutter has a greater

effect on search in the periphery rather than in the fovea.

Unlike previous metrics, we define two types of target-background similarity:

exemplar similarity and category similarity. Exemplar similarity refers to the

overlap between the features of the actual target that is present in an image (at

the exemplar level) and the features of the actual background. Previous clutter

metrics focus on the exemplar similarity while ignoring the category similarity,

which refers to the overlap between the representation of the features of the target
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(at the category level) and the features of the actual background. Exemplar

similarity can simply be measured by comparing the features of an instance of

the target and the background in an image. Category similarity can be measured

by calculating the distribution of features of targets from a given category across

a number of images and comparing it to the features of the actual background.

One of the goals of this dissertation is to introduce a new method of quantifying

clutter based on these two aspects of target-background similarity in order to

predict the effect of clutter on search performance.

For example, think about an observer who is searching for a black squirrel

on a ground covered with brown leaves. Since the squirrel does not share a lot

of features with the background, the exemplar similarity would be low. Given

that most squirrels are brown; the distribution of squirrel colors would likely

have a sharp peak at the color brown. Since a “typical” squirrel shares features

with the background, the category similarity would be high. This scenario is

particularly interesting to separate the effects of exemplar and category similarity

on quantifying clutter. Additionally, the mere effect of category similarity on

clutter would be observed in a case where the target is absent in a scene.

Now, assume that the actual squirrel on the leaves is brown. It would easily

blend with the background, and both types of similarity would be high. Similarly,

if the brown squirrel was on the grass, rather than on the brown leaves, both types

of similarity would be low. Clutter would have the most impact on performance

when both types of similarity are high and the least impact on performance when

both types of similarity are low.

The features of a categorical search target and its background can be mea-

sured within natural images. Exemplar similarity can be quantified by measuring

the overlap of these features between the target and the background. The distri-

bution of features for a given target category can be used to measure category
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similarity. In target absent cases, the category level target features (e.g., average

of the distribution) can be used to represent features of a “typical” target. This

dissertation attempts quantifying these similarity metrics.

1.2 Objectives

The aim of this dissertation is to investigate how clutter affects search for

categorical targets by answering the following questions:

1. What is the effect of clutter on search performance for categorical targets

when the set size (i.e., the number of possible target locations) is controlled?

2. What visual features of categorical search targets and backgrounds are im-

portant in measuring clutter?

1.2.1 Study I: What is the effect of clutter on search per-

formance for categorical targets when the set size is

controlled?

In this study, we controlled for the number of possible target locations by

fixing the relevant set size. When the set size is fixed, clutter would have an effect

on search performance by forcing observers to consider irrelevant locations. Our

stimuli in this study was a set of natural images with minimal contextual effects.

This ensured that search targets were likely to appear anywhere in an image.

Most frequent objects were chosen as categorical search targets (cellphones, keys,

etc.), and their locations and sizes were measured. The amount of clutter in each

image were quantified using a version of an existing measure of clutter (Bravo &

Farid, 2008) which was based on a method of image segmentation (Felzenszwalb
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& Huttenlocher, 2004). Human overt search performance were investigated using

these stimuli.

1.2.2 Study II: What visual features of categorical search

targets and backgrounds are important in measuring

clutter?

The target-background similarity is an important factor in predicting search

performance in natural images. In this study, we defined two new clutter met-

rics (i.e., the exemplar clutter metric and the category clutter metric) which

account for target-background similarity. Then, we applied these metrics to a set

of natural images and measured existing clutter in these images. Additionally,

performance of these metrics were compared to performance of an existing clutter

metric to investigate how well they predict human search performance in these

images.



9

Chapter 2

Visual Search and Clutter

2.1 Visual Search

Visual search is used daily both in mundane tasks such as searching for keys in

a container or for a friend in a crowd and in high-stakes tasks such as searching for

a tumor in an X-ray image or screening for explosives in a baggage. Since visual

search tasks are highly prevalent and can have critical consequences, performing

these tasks efficiently is of utmost importance. Several factors which mediate the

search performance have been identified (for a review, see Eckstein, 2011). Some

of these factors limit the performance while others improve it.

2.1.1 What Limits Search?

Perceptual and cognitive limitations on visual search include information loss

in the periphery, limited memory capacity and limited attentional processes. In

this section, I will describe the ways in which these three factors limit search by

providing empirical evidence from the field.

2.1.1.1 Information Loss in the Periphery

The human visual system has its highest acuity and spatial resolution at the

center of the retina, i.e., at the fovea (De Valois & De Valois, 1988; Levi, Klein,

& Aitsebaomo, 1985). Information starts to get lost as moved away from the

fovea, or as visual eccentricity increases, in the periphery. The sensitivity falloff
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in the peripheral vision compared to the foveal vision results from a number of

biological constraints. Firstly, there are less photoreceptors with larger receptive

fields in the periphery. Secondly, a larger number of photoreceptors gives rise to a

single ganglion cell in the periphery. Lastly, the fovea is favorably represented at

the visual cortex (De Valois & De Valois, 1988; R. O. Duncan & Boynton, 2003;

Fischer, 1973).

It is well established that as visual eccentricity increases, visual search per-

formance suffers, which is illustrated by lower accuracy or longer search times

(Carrasco, Evert, Chang, & Katz, 1995; Geisler & Chou, 1995). However, the

resolution degradation in the periphery is not the only factor that can account

for the performance drops in detecting and localizing peripheral targets. Another

factor which limits peripheral vision is its vulnerability to clutter. Clutter influ-

ences visual search by reducing accuracy and increasing search times; and it gives

rise to crowding, where the ability to recognize items in the periphery is impaired

by neighboring features (Bouma, 1970; Levi, 2008; Pelli, Palomares, & Majaj,

2004; Rosenholtz et al., 2007). Intrinsic position uncertainty has been proposed

as one of the mechanisms underlying the effect of clutter and crowding. Intrinsic

uncertainty refers to the uncertainty regarding the source of a perceived stimulus

and it limits visual search as a function of visual eccentricity (Michel & Geisler,

2011). Although there is not a consensus on how to define clutter, several com-

putational models have been developed to quantify clutter in naturalistic scenes

(e.g., Bravo & Farid, 2008; Neider & Zelinsky, 2011; Rosenholtz et al., 2005, 2007;

Yu et al., 2014).

There are ways to measure the information loss in the periphery. Visibil-

ity maps are used to measure observers’ sensitivity using psychophysical methods

(Najemnik & Geisler, 2005). Many computational models of visual search take ob-

servers’ visual sensitivity into account (e.g., Najemnik & Geisler, 2005; Zelinsky,
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2008). Despite its limitations, peripheral vision provides observers with useful

information in visual search tasks. Peripheral information can influence where

observers will shift their gaze next during search.

2.1.1.2 Limited Memory Capacity

Our memory capacity is limited (Brady, Konkle, & Alvarez, 2011; Luck &

Vogel, 1997; Miller, 1956). Earlier studies on memory capacity investigated the

number of items memory can simultaneously hold (e.g., Luck & Vogel, 1997) while

more recent studies focused on the nature of memory representations (e.g., Brady

et al., 2011). It is intuitive to expect that limited memory capacity constraints

visual search because observers need to remember the target features, and they

need to avoid revisiting the locations they already examined to search effectively.

However, whether visual memory plays a role in visual search is still open to

discussion (Hollingworth, 2006; Woodman & Chun, 2006). Although most studies

suggest that memory does not seem to limit search or scene representations (e.g.,

Horowitz & Wolfe, 1998), there is still evidence that memory guides search (e.g.,

Kristjánsson, 2000). For example, observers tend to fixate less on previously

visited locations while searching, suggesting that memory may play a role in

visual search (Klein, 1988; Klein & Macinnes, 1999).

2.1.1.3 Limited Attentional Processing

Attention helps us to filter out irrelevant information (i.e., noise). As a result,

we can process what is important for the purposes of the task at hand (i.e., signal)

more efficiently. However, attentional resources are limited; we can only attend

to a limited number of things at a time, either by dividing our attention among

stimuli or by selectively attending to particular set of stimuli. Limited attentional

processing is one of the constraints on visual search.
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Previous research has revealed three types of attention that are relevant for

visual search: spatial attention, feature-based attention, and object-based atten-

tion (Carrasco, 2011). Spatial attention refers to directing attention to specific

locations either overtly (with eye movements) or covertly (without eye move-

ments). Feature-based attention refers to covertly deploying attention to partic-

ular features while object-based attention refers to directing attention to partic-

ular objects. These attentional processes can guide visual search in various ways,

such as by directing eyes to certain spatial locations or to certain target fea-

tures (e.g., color or shape of the target). Additionally, attentional pre-cuing has

been shown to enhance performance while detecting and discriminating targets or

while searching for targets (Baldassi & Burr, 2000; Carrasco, Giordano, & McEl-

ree, 2004; Carrasco & Yeshurun, 1998). Although covert attention improves visual

search performance, the mechanisms through which this occurs is not clear. Some

of the proposed processes include: (a) attention enhances processing of the rele-

vant information (Cameron, Tai, & Carrasco, 2002; Lu & Dosher, 1998, 2000), (b)

attention helps to filter out irrelevant noise (Dosher & Lu, 2000a, 2000b), and (c)

attention reduces spatial uncertainty (Eckstein, Thomas, Palmer, & Shimozaki,

2000; Verghese, 2001). The effect of attention on visual search might result from

a combination of these processes (Carrasco, 2011). However, because the mecha-

nisms through which attention guides search is not well-defined, it is challenging

to quantify the effect of attention on visual search.

2.1.2 What Improves Search?

Although the aforementioned factors limit search, there are other mechanisms

through which performance can be improved. For example, perceptual learning

occurs through practice. Training improves perceptual and cognitive processes,

minimizes uncertainty about the location of targets, and improves performance
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in visual search. With training, observers develop a deeper understanding of

the properties of targets (e.g., their shape or size), possible locations of targets

within the search environment, or the frequency of encountering targets. This

prior information in turn guides observers’ search behavior. In this section, I will

describe how prior knowledge about the target properties, search environment,

and target prevalence influences visual search.

2.1.2.1 Target Properties

To effectively perform a visual search task, observers need to have a represen-

tation of what they are looking for. Observers use information regarding relevant

features of the target to guide their search behavior. For example, while trying

to locate a white car in the parking lot, the observer may search for specifi-

cally white targets. Prior information about target properties guides selection of

eye movements and perceptual judgments (Eckstein, Beutter, Pham, Shimozaki,

& Stone, 2007; Findlay, 1997; Murray, Beutter, Eckstein, & Stone, 2003; Ra-

jashekar, Bovik, & Cormack, 2006; Williams, 1967). However, because of the en-

vironment variability, such as occlusions or lighting conditions, actual appearance

of target features might dramatically deviate from observers’ prior expectations

or knowledge. Similarly, observers might have an inherent uncertainty regarding

the actual properties of the target (e.g., its shape or size). As a result, they might

search for a longer period of time and possibly leading to the failure to detect the

target.

Most psychophysical studies do not assume uncertainty regarding the target

parameters and they use the signal-known-exactly (SKE) paradigm in which ob-

servers know exactly what the target looks like (Brettle, Berry, & Smith, 2007;

Burgess, 1994). However, in real practice observers do not always have perfect

knowledge about the properties of the targets. Other more naturalistic methods
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were also developed such as signal-known-statistically (SKS) or signal-known-

exactly but variable (SKEV) paradigms (Castella et al., 2009; Y. Zhang, Pham,

& Eckstein, 2005), where observers have the knowledge about the distribution

of target features. Although, SKS and SKEV methods have higher external va-

lidity, they are not frequently used because they are more challenging to model.

Regardless of the specific method used, uncertainty about the target properties

impairs performance while detecting targets (Burgess & Ghandeharian, 1984a;

Cohn & Lasley, 1974; Cohn & Wardlaw, 1985; Eckstein & Whiting, 1996). Ad-

ditionally, there is strong evidence that uncertainty about the target properties

impairs search performance (e.g., Bravo & Farid, 2009; Vickery, King, & Jiang,

2005).

Low levels of uncertainty regarding the properties of search targets can im-

prove the performance in search tasks. For example, experts engaging in visual

search report prior information about the target parameters as one of the ma-

jor factors in a successful search (Eckstein, 2011). In radiology, experts’ deeper

knowledge regarding properties of perturbations enables them to mark potential

areas of abnormalities faster than novices, leading to a superior performance in

target detection (Drew, Evans, Võ, Jacobson, & Wolfe, 2013; Lesgold et al., 1988;

Reingold & Sheridan, 2011). Over years of practice, experts develop templates

for normal and abnormal structures. Additionally, they develop a better under-

standing of the anatomical structure. They learn about the typical locations of

abnormalities so they compare those locations to the “normal tissue” template

that they have in their minds (Donovan & Litchfield, 2013).

2.1.2.2 Search Environment

Search environment also guides visual search. For example, while searching

for a painting, observers would direct their gaze to walls. Their knowledge of
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where paintings are frequently placed decreases the number of locations they

need to search. In this sense, scene context reduces the amount of uncertainty

regarding the possible target locations (i.e., extrinsic uncertainty), and improves

search performance.

Scene context has been shown to guide eye movements to more probable target

locations during visual search tasks (Castelhano & Heaven, 2011; Henderson,

Weeks, & Hollingworth, 1999; Neider & Zelinsky, 2006; Oliva & Torralba, 2006;

Torralba, Oliva, Castelhano, & Henderson, 2006). Scene guidance benefits from

humans’ ability to extract the “gist” of scenes very quickly (Friedman, 1979;

Potter, 1976; Potter & Levy, 1969; Schyns & Oliva, 1994). Humans can rapidly

categorize real world scenes as urban or natural (Greene & Oliva, 2009), or as

indoor or outdoor (Fei-Fei, Iyer, Koch, & Perona, 2007).

While prior information about the search environment guides search, the un-

certainty about the environment impairs search performance. If distractors have

shared parameters with targets, errors are more probable and search would take a

longer time. Luckily, human observers seem to adapt to constraints for the search

environment to some extent. While searching in a noisy environment, observers

seem to adjust their search strategies or target templates to overcome the environ-

ment’s uncertainty (Burgess, Li, & Abbey, 1997; Y. Zhang, Abbey, & Eckstein,

2006).

2.1.2.3 Target Prevalence

Prior information regarding the prevalence of targets guides search behavior.

If observers know the probability of the targets’ occurrences, they then can adjust

their responses accordingly to optimize the performance. For example, if target

prevalence is low, reporting a target as absent would maximize performance be-

cause in most cases the target would be absent. Similarly, if target prevalence
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is high, the best strategy is to say “target-present” in most of the cases. Low

prevalence typically leads to a more conservative decision criterion (i.e., more

willingness to say target is absent) while high prevalence typically leads to a

more liberal decision criterion (i.e., more willingness to say target is present). Us-

ing signal detection theory, the optimal decision criterion can be calculated for a

particular level of target prevalence (Green & Swets, 1966).

There is strong evidence suggesting that low target prevalence leads to a

higher rate of false-negative errors and early termination of search (e.g., Fleck &

Mitroff, 2007; Kunar, Rich, & Wolfe, 2010; Rich et al., 2008; Wolfe, Horowitz, &

Kenner, 2005; Wolfe et al., 2007), even in well-trained observers (Wolfe, Brunelli,

Rubinstein, & Horowitz, 2013). The mechanisms behind the higher rate of false-

negatives in low prevalence conditions are explained through (a) a shift in decision

criterion without a decrease in sensitivity (Green & Swets, 1966; Wolfe et al.,

2007), (b) motor-response errors (Fleck & Mitroff, 2007), or (c) early termination

of search (Wolfe & Van Wert, 2010). Additionally, the task complexity is a factor

in determining the source of errors in low prevalence conditions (Rich et al., 2008).

2.2 Visual Clutter

Although everyone intuitively knows what clutter is, clutter is an ill-defined

concept that influences performance in a wide range of professions such as airport

security agents searching for prohibited items in luggages or pilots monitoring

flight decks. The harmful effects of clutter on performance are documented in

several areas of research such as psychology, engineering, computer science and

marketing, but there is still no agreement on how to define or measure clutter.

In this section, I will discuss the proposed definitions of clutter and the current

techniques in quantifying clutter, in the area of visual search in particular.
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2.2.1 How to Define Clutter?

How would you go about defining clutter? Is it the number of objects in a

scene? If so, how would you define an object? Or, is it the organization (or

disorganization) of items in a scene? Is the similarity of background features to

target features important in defining clutter? If so, how would you characterize

similarity? These questions are challenging and the definition of clutter depends

on the area of research.

According to the most common definition, clutter is related to the number

of objects in a display. This approach to clutter is similar to traditional set-size

effects (Palmer, 1994, 1995), which state that search time increases as the num-

ber of distractors increases (Wolfe, 1994). Similarly, based on this definition, in

natural scenes, the density of items in a display correlates with the amount of

clutter in the display (van den Berg, Cornelissen, & Roerdink, 2009). Although

this definition of clutter is intuitive, it may not be easy, or even possible, to enu-

merate the number of items or to estimate the density of items in natural scenes.

Additionally, in natural scenes, contextual information effectively reduces the set

size (Castelhano & Heaven, 2011; Neider & Zelinsky, 2006; Oliva & Torralba,

2006; Torralba et al., 2006).

Another common definition of clutter focuses on the layout of items in a dis-

play. This account considers the arrangement or structure of items in a scene in

addition to their density (Bravo & Farid, 2008; Rosenholtz et al., 2005; van den

Berg et al., 2009). For example, high variability of luminance, contrast, orien-

tation, and color in a display (Rosenholtz et al., 2005), high density of edges in

a scene (Mack & Oliva, 2004), or large number of regions in a display (Bravo &

Farid, 2008) are associated with clutter. Eliminating variability of such features

(e.g., losing color information) might help to decrease effects of clutter but in turn
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might increase the task difficulty.

Clutter can also be defined in terms of the target-background (or target-

distractor) similarity in a display. The similarity between features of search tar-

gets and features of search background has already been shown to impair perfor-

mance in search tasks (J. Duncan & Humphrey, 1989; Wolfe, Oliva, Horowitz,

Butcher, & Bompas, 2002). There are other measures of clutter in the field of

image optics, which quantify clutter using features within a scene that are similar

to features of a search target (Camp, Moyer, & Moore, 2010; Chu et al., 2012; He,

Zhang, Liu, & Chang, 2008). However, these measures consider only a limited

range of features such as target size.

The aforementioned definitions view clutter primarily as a scene property.

Another common definition evaluates clutter using task performance while taking

different aspects of clutter into account. According to this perspective, clutter is

defined as “the state in which excess items, or their representation or organization,

lead to a degradation of performance at some task” (Rosenholtz et al., 2005, p.

761). This account also links clutter to density or structure of items in a display.

The choice of how to define clutter somewhat determines how to measure

clutter in a display. There are several measures of clutter which takes different

approaches in quantifying existing clutter in natural images to predict search

performance. Next, I will discuss the most common of these methods.

2.2.2 How to Measure Clutter?

Clutter is measured using various approaches, such as developing objective

clutter metrics, directly manipulating clutter in a display and measuring task per-

formance, or collecting subjective judgments by asking observers to rank displays

based perceived clutter. Here I will primarily focus on objective clutter metrics

that have been used in two distinct areas of research, psychophysics and image



19

optics, to examine performance in search tasks. The measures in psychophysics

can predict search performance as a function of clutter but they do not account

for the similarity between features of search targets and features of search back-

ground. The measures in image optics account for some target features but they

are limited and mostly not for categorical targets.

2.2.2.1 Clutter Measures in Psychophysics

The existing clutter measures in visual psychophysics have shown that as the

amount clutter in a scene increases, search performance decreases (Bravo & Farid,

2008; Henderson et al., 2009; Mack & Oliva, 2004; Rosenholtz et al., 2007; Neider

& Zelinsky, 2011). I will describe the most common of these clutter measures

below.

2.2.2.1.1 The Edge Density Metric

The Edge Density (Mack & Oliva, 2004) metric quantifies clutter as a function

of the number of edges in a display, with an assumption that more edgy displays

would be more cluttered. Clutter is estimated by first filtering the image to extract

the edge information and then calculating the density of edges. The Edge Density

metric of clutter has been shown to predict visual search performance despite its

simplicity (e.g., Henderson et al., 2009; Neider & Zelinsky, 2011; Rosenholtz et

al., 2007).

2.2.2.1.2 The Feature Congestion Metric

The Feature Congestion (Rosenholtz et al., 2005, 2007) metric computes clut-

ter as a function of the local variability in features such as color, orientation, and

luminance contrast within an image. As the variability of features in an image in-

creases, so does its level of clutter. This metric is based on the Statistical Saliency
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Model (Rosenholtz, 1999; Rosenholtz et al., 2007), which quantifies saliency of

features using their local variability. The saliency is computed as

∆ =
√

(T − µD)′ Σ−1D (T − µD) (2.1)

where T is a vector representing a particular feature, and µD and ΣD are the

mean and the covariance of a set of feature vectors, respectively. As the saliency

of a target increases, search performance is expected to increase as well.

The Feature Congestion metric is implemented by creating a Gaussian pyra-

mid of an image at multiple scales, computing local variability of features (color,

orientation, and luminance contrast) at each scale, combining variability across

scales and features, and averaging over the entire image. This metric is one of

most commonly used measures of clutter in visual search studies (e.g., Henderson

et al., 2009; Neider & Zelinsky, 2011; Rosenholtz et al., 2005, 2007).

2.2.2.1.3 The Subband Entropy Metric

The Subband Entropy (Rosenholtz et al., 2007) metric quantifies clutter in

relation to the number of bits necessary for encoding an image. It is based on the

idea that if an image has a lot of redundancies, then it would be easily encoded

requiring less number of bits; therefore it would be considered less cluttered.

The Subband Entropy metric is computed by decomposing an image into wavelet

subbands using Steerable Pyramids (Simoncelli & Freeman, 1995), binning coeffi-

cients within each subband, and computing entropy using the Shannon’s formula

H =
∑
i

−pi log(pi) (2.2)

where pi is the probability distribution of binned wavelet coefficients in bin i.

Finally, clutter is estimated by summing entropies across subbands and channels
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while imposing certain weights.

2.2.2.1.4 The Segmentation Based Clutter Metric

The segmentation based clutter metric (Bravo & Farid, 2008) quantifies clut-

ter using a segmentation algorithm (Felzenszwalb & Huttenlocher, 2004) which

counts the number of regions in an image. This metric is computed as follows:

First, images are segmented at a range of different scales using the segmentation

algorithm. The relationship between the number of segments and the scale of

segmentation can be described using a power-law given by

y = αkβ (2.3)

where y is the number of segments, k is the scale of segmentation. These fits

yield two parameters, an exponent (β), and a constant of proportionality (α).

The fitted exponent is more or less constant across images, whereas the constant

of proportionality varies dramatically across images. This constant of proportion-

ality is used as the measure of clutter.

2.2.2.1.5 The Proto-Object Model

The proto-object model (Yu et al., 2014) quantifies clutter as the number

of regions composed of coherent features (i.e., proto-objects) in an image. This

model is implemented as follows: First, an image is segmented into regions that

share similar color features (i.e., superpixels). Then, neighboring regions which

share similar color features are clustered together to form proto-objects. The

number of proto-objects is used as the measure of clutter. The proto-object

model has been shown to correlate well with behavioral ranking of a set of images

based on clutter.
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2.2.2.2 Clutter Measures in Image Optics

The existing clutter measures in the area of image optics typically quantify

clutter based on the similarity between the target and the background. Similarity

is measured using different techniques, some of which are purely mathematical

while others attempt to represent properties of the human visual system. I will

describe the most common clutter measures in optical imaging below.

2.2.2.2.1 The Statistical Variance Metric

The statistical variance (SV) metric (Schmieder & Weathersby, 1983) quan-

tifies clutter as a function of the luminance variance within an image. First, the

image is divided into a grid composed of cells. Each cell has a size twice the size

of the target in any dimension. Then, clutter is estimated by computing the root

mean square of grayscale variance of these cells using the formula

SV =

√√√√ 1

N

N∑
i=1

σ2
i , (2.4)

where N is the number of cells and σ2
i is the variance of cell i.

Although the calculation of the SV metric is straightforward, it has some

disadvantages. For example, this metric uses non-overlapping sections which are

subject to shift-variance, which might result in drastically different estimates. Silk

(1995) modified this metric so that the shifts in the image do not lead to changes

in the measure (i.e., shift-invariance). However, both SV metric and Silk’s version

are too simple to apply to complex images and the only feature of target that is

taken into account is its size.
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2.2.2.2.2 The Probability of Edge Detection Metric

The probability of edge detection (POE) metric (Tidhar et al., 1994) estimates

clutter as a function of the number of edges that exceeds a chosen threshold in

an image. This metric is implemented as follows: First, the image is divided into

different sections. Similar to SV metric (Schmieder & Weathersby, 1983), each

section has a size twice the size of the target in each dimension. Second, a filtering

process is applied to enhance the edges in the image. Finally, the number of edge

points above a pre-defined threshold in each section are computed and averaged

across sections given by

POE =

√√√√ 1

N

N∑
i=1

POE2
i,T , (2.5)

where N is the number of sections, POEi,T is the number of points that exceeds

the threshold T in section i.

The POE metric is different than the SV metric (Schmieder & Weathersby,

1983) in the sense that it is sensitive to the number of edge points rather than

the magnitude of these points and it outperforms the SV metric in accounting for

human detection performance (Tidhar et al., 1994). However, the POE metric

uses a user-dependent threshold which might lead to unstable estimates. More

importantly, both of these metrics consider only the target size as relevant target

feature.

2.2.2.2.3 The Target Structure Similarity Metric

The target structure similarity (TSSIM) metric (Chang & Zhang, 2006) quan-

tifies clutter by comparing intensity, statistical variance, and structure between

target and background areas in an image. TSSIM metric is implemented in the
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following steps: First, the image is divided into several sections. Each section has

a size twice the size of the target in each dimension. Second, TSSIM is measured

for each section by computing similarity of luminance (mean), contrast (standard

deviation) and structure (covariance) between the target and the particular sec-

tion and multiplying them using some constants. In its simplest form, this can

be expressed as

TSSIM(T,Bi) =
4µTµBi

σTBi + C

(µ2
T + µ2

Bi
)(σ2

T + σ2
Bi

) + C
, (2.6)

where µT , µBi
and σ2

T , σ2
Bi

, and σTBi are mean, variance and covariance of the

target section and the background section i, respectively, while C is a user-defined

constant. Finally, TSSIM for the whole image is computed by taking the mean

square root of the TSSIM across sections given by

TSSIMrms =

√√√√ 1

N

N∑
i=1

TSSIM(T,Bi)2. (2.7)

This metric was originally developed to measure clutter in grayscale images

and later it has been extended to color images (Chang, Zhang, Liu, Yang, &

Li, 2010). In this adaptation (CTSSIM), each color image is first converted to

CIELAB color space. Then, TSSIM metric is measured in each dimension and

combined using weighted means. Both TSSIM and CTSSIM were reported to

correlate well with human detection performance; however, their performance

depends on user-defined constants.

2.2.2.2.4 The Contrast Sensitivity Function Based Metric

Contrast sensitivity function (CSF) based metric (Chu et al., 2012) measures

clutter in the frequency domain after filtering out the frequency content that is
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not perceived by the human visual system. The CSF-based metric is computed as

follows: First, the luminance image is divided into several sections. Each section

is twice the size of the target in each dimension. Fourier transform is applied to

each section followed by a filtering process using a CSF. This was done for each

pair of background and target section using the formula

MS CMi =

√∑
u,v

|Bi(u, v)− T (u, v)|2/(w × h), (2.8)

where T (u, v) and Bi(u, v) represent filtered Fourier transform of the target sec-

tion and the background section i at a particular frequency (u, v), respectively;

and (w × h) is the size of the section. Finally, the CSFCMS is computed by

averaging the MS CMs over the entire image given by

CSFCMS =
1

N

N∑
i=1

MS CMi, (2.9)

where N is the number of sections. One of the disadvantages of CSF-based metric

is that it uses frequency content of non-overlapping sections and the magnitude

information of target section is prone to edge effects resulting in shift-variance.

2.2.2.2.5 The Masked Target Transform Volume Metric

The masked target transform volume (MTTV) metric (Moore et al., 2010a,

2010c) quantifies clutter in terms of the similarity of the spatial frequency content

between the target and the background in image. The MTTV metric is computed

as follows: First, the luminance image is divided into subwindows. Each window

is weighted with a Gaussian foveal mask. Then, a function to represent contrast

sensitivity (Barten, 1990) is applied to each window. The similarity of spatial

frequency content of each background window to the target window is computed



26

using Fourier transforms and then averaged, resulting a single clutter measure for

the entire image given by

MTTV =
1

N

N∑
i=1

∑
fm,fn

CSF(fm, fn)min{|F [t(m,n)]|, |F [bi(m,n)f(m,n)]|}
CSF(fm, fn)|F [t(m,n)]|

,

(2.10)

where N is the number of subwindows, CSF is the contrast sensitivity function

(Barten, 1990), t(m,n) is the target section, b(m,n) is the background section,

and f(m,n) is the Gaussian foveal mask.

The MTTV metric has some advantages over other metrics. It is shift-

invariant and independent of arbitrary thresholds, and it considers some char-

acteristics of human visual system. The original metric was developed for single

targets. Later, it was generalized to generic targets (Camp, Moyer, & Moore,

2013). However, the generic targets were created by superimposing single tar-

gets, which does not necessarily reflect target properties at categorical level.
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Chapter 3

Study I

3.1 Introduction

Interacting with the world involves, as frequent and ubiquitous subtasks,

the detection and localization of objects in our visual environment. These sub-

tasks are called visual searches. One fundamental property common to all visual

searches is uncertainty regarding the positions of target objects. This study ex-

amines the properties of the visual environment and of the visual system that

contribute to this position uncertainty. In particular, our goal is to investigate

how visual clutter affects performance when observers search natural images for

categorical targets.

Position uncertainty can be due to either extrinsic or intrinsic sources. For

example, an observer searching an unfamiliar bookshelf for a particular book will

probably have some uncertainty about the location of the book. In this case, (i.e.,

when the observer does not know the book’s location a priori) the uncertainty is a

result of imprecise specification of the likely target location. This type of position

uncertainty increases with the number of potential target locations and is called

extrinsic position uncertainty. However, even when the observer is familiar with

the bookshelf and knows the order of its books, she might still have a hard time

localizing the book in the visual periphery. This uncertainty is a result of the

limitations intrinsic to the visual system, such as the limitations of peripheral

This chapter is in press for publication in the Journal of Vision.
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vision and visual memory, and it is called intrinsic position uncertainty.

Regardless of whether it is extrinsic or intrinsic, position uncertainty impairs

performance for detecting, discriminating, and localizing stimuli. This is indi-

cated by decreases in detection and localization accuracy (Burgess & Ghande-

harian, 1984b; Eckstein et al., 2000), by increases in detection thresholds (Cohn

& Wardlaw, 1985; Palmer, Verghese, & Pavel, 2000), and by increases in search

times (Egeth, Atkinson, Gilmore, & Marcus, 1973; Treisman & Gelade, 1980).

While research on the effects of position uncertainty has typically focused on ex-

trinsic sources of uncertainty (e.g., Bochud, Abbey, & Eckstein, 2004; Burgess &

Ghandeharian, 1984b; Swensson & Judy, 1981), a few studies have explicitly fo-

cused on intrinsic sources (e.g., Michel & Geisler, 2011; Pelli, 1985; Tanner, 1961).

Evidence from these studies, and from studies of visual crowding (e.g., Bouma,

1970; Levi, 2008; Pelli et al., 2004, 2007) suggests that the ability to identify

and localize features declines systematically in the periphery. Indeed, position

uncertainty has been repeatedly implicated as a primary contributor to crowding

(Krumhansl & Thomas, 1977; Popple & Levi, 2005; Wolford, 1975). For example,

similar to crowding (Bouma, 1970; Levi, 2008; Levi, Hariharan, & Klein, 2002),

intrinsic position uncertainty also increases approximately linearly with eccen-

tricity (Michel & Geisler, 2011). Moreover, the eccentricity-dependent effects of

position uncertainty seem to persist in search tasks requiring eye movements, i.e.,

overt search tasks (Semizer & Michel, 2017).

As an inherent property of the observer’s visual system, intrinsic position un-

certainty cannot be experimentally controlled. However, its effect on performance

can be observed by manipulating the visual environment. In a recent study,

Semizer and Michel (2017) introduced an experimental technique that modu-

lates the effects of intrinsic uncertainty independently of extrinsic uncertainty by

manipulating the distribution of clutter in synthetic noise displays. Using this
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technique, the authors showed that intrinsic position uncertainty substantially

limits overt search performance and that its effects are especially evident when

the amount of extrinsic uncertainty is controlled. Does this result generalize to

real-world searches?

In many ways, synthetic visual stimuli have been incredibly useful for vision

research. Synthetic stimuli provide researchers with a great deal of flexibility

and control, enabling them to manipulate individual stimulus features and to

determine how these contribute to performance in a variety of tasks. In visual

search, for example, measuring performance in synthetic search displays has al-

lowed researchers to discover how observers use information about peripheral

target visibility to select fixations (Geisler, Perry, & Najemnik, 2006; Najem-

nik & Geisler, 2005, 2008; Michel & Geisler, 2009; Verghese, 2012; S. Zhang &

Eckstein, 2010), how intrinsic position uncertainty and clutter in the periphery

degrade performance (Michel & Geisler, 2011; Rosenholtz, Huang, Raj, Balas, &

Ilie, 2012; Semizer & Michel, 2017), how the template for known search targets

is structured (Eckstein et al., 2007), and how observers integrate information

about the target across fixations (Caspi, Beutter, & Eckstein, 2004; Kleene &

Michel, 2018), all while controlling extraneous properties of the search display

(e.g., spectral spatial frequency statistics, environmental contingencies, target

location probabilities, etc.) in ways that would be difficult or impossible with

natural scenes. However, their highly controlled nature means that synthetic dis-

plays may provide only limited insight into how observers search in naturalistic

settings.

For example, the search targets used in synthetic displays typically exhibit

very little variability across trials, and observers are therefore assumed to rep-

resent them with little uncertainty. In contrast, the targets of natural searches

typically exhibit many sources of variability. Objects in natural scenes appear



30

in various positions and orientations, occlude one another, and change appear-

ance depending on the lighting conditions. Moreover, individual exemplars may

vary considerably within a natural object category. These sources of variability

introduce additional uncertainty that might overwhelm any effects of intrinsic un-

certainty on search performance. Thus, it is important to verify that the factors

that explain search performance in synthetic displays generalize to account for

searches in more naturalistic displays.

One of the major challenges associated with naturalistic tasks in the context

of visual search is to quantify the amount of clutter in natural images. Unlike

in artificial displays, clutter cannot be directly manipulated in natural images.

However, a variety of models have been proposed to quantify scene clutter. These

include edge density (Mack & Oliva, 2004), feature congestion (Rosenholtz et

al., 2005, 2007), subband entropy (Rosenholtz et al., 2007), the scale invariant

clutter measure (Bravo & Farid, 2008), the color-clustering clutter (C3) model

(Lohrenz et al., 2009), and the proto-object model (Yu et al., 2014). Using these

measures, several studies have shown that clutter degrades performance for search

in various types of naturalistic displays including geographic maps (Rosenholtz et

al., 2007; Lohrenz et al., 2009), quasi-realistic scenes (Neider & Zelinsky, 2011),

natural scenes (Henderson et al., 2009, but also see Asher, Tolhurst, Troscianko,

& Gilchrist, 2013), images displaying contents of bags (Bravo & Farid, 2008), and

photo-collages of objects (Bravo & Farid, 2004, 2008).

However, these findings confound different potential sources of position uncer-

tainty. As a scene becomes increasingly cluttered, the number of possible target

locations (i.e., set size) also increases. This increase in set size augments the

position uncertainty due to extrinsic sources. At the same time, due to intrin-

sic sources of position uncertainty, the ability to exclude irrelevant signals in the

periphery decreases in highly cluttered scenes (Michel & Geisler, 2011; Semizer
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& Michel, 2017). These two concurrent effects of clutter make it challenging to

separate the contributions of extrinsic versus intrinsic uncertainty on performance

in highly cluttered images.

The goal of the current study was to separate out the contributions of intrinsic

versus extrinsic sources of position uncertainty and to characterize them in a nat-

uralistic search task that requires searching natural images for categorical targets.

We approached this goal by controlling and manipulating set size independently

of clutter, as in Semizer and Michel (2017). Instead of imposing synthetic clut-

ter, we used an existing clutter measure (Bravo & Farid, 2008), chosen for its

efficiency and its demonstrated correlation with search performance, to quantify

the existing clutter in a set of natural images. The images were sorted into high

and low clutter conditions based on this clutter measure. The “relevant set size”

(Palmer, 1994, 1995), which governed the extrinsic position uncertainty was var-

ied independently by manipulating the number and positions of cues indicating

potential target locations. Within each fixed set size condition, search times in-

creased as a function of increasing clutter, suggesting that clutter degrades overt

search performance independently of set size.

3.2 Methods

3.2.1 Observers

A total of twenty-five observers participated in the study. One of the ob-

servers was an author; the remaining observers were näıve to the purpose of the

experiment and received compensation for their participation. All observers had

normal or corrected-to-normal vision.
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3.2.2 Apparatus

Stimuli were presented on a 22-in Philips 202P4 CRT monitor at 100 Hz.

The resolution was set to 1280× 1024 pixels. Observers were seated 70 cm away

from the display so that the display subtended 15.8◦ × 21.1◦ of visual angle. The

stimuli displays were programmed using MATLAB software (Mathworks) and the

Psychophysics Toolbox extensions (Brainard, 1997). Observers’ eye movement

signals were monitored and recorded using an Eyelink 1000 infrared eye tracker

(SR Research, Kanata, Ontario, Canada) at 1000 Hz. Head position was stabilized

using a forehead and chin rest.

3.2.3 Stimuli

Images of natural scenes often contain contextual information that effectively

reduces the search set size (Castelhano & Heaven, 2011; Neider & Zelinsky, 2006;

Oliva & Torralba, 2006; Torralba et al., 2006). To minimize this contextual

information, we chose a set of images displaying the contents of bags in arbitrary

arrangements (see Figure 3.1). These images were retrieved from the “What’s

in your bag?” group on Flickr1. We selected five of the most common objects

in the image set (cellphones, glasses, iPods, keys, and pens/pencils) to serve as

the categorical search targets. If a target object was present in the image, it was

either present as a single instance or, in the case of collective objects, as a single

group of instances in close proximity (e.g., keys attached to a keychain). There

was never more than one instance or group of the target object present in the

image.

1A subset of images from this group were also used in a search task by Bravo and Farid (2008).

https://www.flickr.com
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Figure 3.1: Example displays for the low clutter (on the left) and the high clutter
(on the right) conditions with keys as the search target. Keys are located near the
center in both images. Images are retrieved from “What’s in your bag?” group
on https://www.flickr.com.

3.2.3.1 Creating the Image Data Set

The image data set was created by processing raw images in four separate

stages: initial filtering, transformation, labelling, and selection. Each stage was

described in detail next.

3.2.3.1.1 Initial Filtering Stage

Images were downloaded and subsequently checked for duplicates and quality

(e.g., blurs, artifacts, etc.). We avoided scaling the size of small images up to

preserve image quality. Therefore, images whose maximum dimension smaller

than the height of the stimulus window (1024 pixels) were excluded.

3.2.3.1.2 Transformation Stage

The clutter measure used in our experiment is sensitive to the image size (see the

Measuring Clutter section). To control for any potential effects of image size on

quantifying clutter, we resized the minimum dimension to 1024 pixels.

Next, we considered the variability in color across images. In order to control

for the effects of color on performance, colored images were converted to grayscale

https://www.flickr.com
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intensity images by removing the hue and saturation information while keeping

the luminance information. RGB values were converted to grayscale values by

computing a weighted sum of the channels using the intensity transformation

I = 0.299R + 0.587G+ 0.114B, (3.1)

where I represents the grayscale intensity, and R, G, and B corresponds to red,

blue, and green channels, respectively.2 Also, to control the variability in lumi-

nance and contrast levels across images, the average luminance of each image was

set to 40 cd/m2 and its contrast level (root-mean-square, RMS) was adjusted to

0.4. Then, the clutter was computed for each image (see the Measuring Clutter

section). The distribution of clutter was similar across search images containing

different target object categories (see Figure 3.2, left panel).

3.2.3.1.3 Labelling Stage

Images were annotated by labeling the type of potential target objects present in

them. Then, target locations were marked by drawing circumscribing polygons

around the target objects. The vertices of these polygons were recorded. At

the end of this stage, each image was associated with an annotation consisting

of: a list of target objects within the image, a list of vertices describing the

circumscribing polygon for each target object, and the clutter value for the image.

3.2.3.1.4 Selection Stage

For each of five target categories, 800 test images were selected. The target object

was present only in half of these images. Test images were chosen based on the

following criteria.

2The weights used in conversion of RGB values to grayscale values were based on ITU-R Rec-
ommendation BT.601-7 standard for color video encoding.
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First, to label images as high and low clutter, we computed the median of

the clutter distribution. Images with clutter values higher than the median were

marked as high clutter while images with clutter values lower than the median

were marked as low clutter.

Next, we expected that target size might impact search performance in target

present images. To control for any size effects, we first measured the size of

each target object by computing the area of its circumscribing polygon. Target

size varied depending on the target category (see Figure 3.2, right panel). For

example, on average, cellphones were larger than keys. To limit the effects of

unusually-sized objects, we restricted the variability in target size by including

images only if t ∈ [
1

4
m, 4m], where t is the target size and m is the median target

size.

A final inclusion criterion considered the variants of targets. If we suspected

that observers might not be familiar with a particular variant of target object,

images displaying that variant were not selected. For example, in the case of

cellphones, images did not include any flip-phones. Similarly, in the case of iPods,

only images with iPods with a particular shape, a rectangular screen at the top

and a circular area at the bottom, were included. Further, images with objects

that looked highly similar to targets were also excluded. For example, images

containing an iPod touch (which might look like an iPhone to the observer) were

excluded. Similarly, in the case of pens, we excluded images that included makeup

pencils.

At the end of this process, 800 images were selected for each target category.

400 test images were selected for the target present trials by prioritizing the

amount of clutter and checking for the criteria listed above, and another 400

images without the target object were selected for the target absent trials.
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Figure 3.2: The distribution of clutter values (left panel) and target size (right
panel) for each target category.

3.2.3.2 Preparing the Search Stimuli

For their presentation in the search task, individual images in each of the

two clutter conditions were randomly assigned to either the low (5 locations) or

high (13 locations) set size conditions. Potential target locations were marked

by small circular cues overlaid on the image. To minimize uncertainty about cue

locations, we used large cues (0.25◦ in diameter) that were red on a grayscale

image, placed the cues on a regular hexagonal grid, with spacings of 8.0◦ and 5.9◦

for set sizes 5 and 13, respectively, and made them continuously visible on the

screen across each block. The average distance of the cue locations from the origin

was set to be two thirds of the radius of the stimulus circle. Images were shifted

and rotated so that only one of these cues appeared within the circumscribing

polygon associated with the correct target location. Images were presented in a

circular region, 24◦ in diameter. This region was chosen with the constraint that

it contained the target object. Finally, the area around the circular region was

set to uniform gray. The final form of images used as stimuli in the search task

is shown in Figure 3.3.



37

Figure 3.3: Search task sequence for a trial with keys as the search target. The
small red cue markers, which were continuously visible, represent the potential
target locations (N = 13). The keys are located within the top left quadrant of
the image.

3.2.3.3 Measuring Clutter

We quantified image clutter using a modified version of the clutter measure

described in Bravo and Farid (2008). We chose this clutter measure because

it has been shown to successfully predict search times in a similar set of images.

Additionally, this measure is computationally efficient and scale invariant. Briefly,

this measure estimates the amount of clutter in an image as a function of the

relationship between the number of “segments” in an image and the scale of

segmentation. The details of the segmentation procedure and our implementation

of the clutter measure are described below.

3.2.3.3.1 Segmentation Algorithm

To count the number segments in each image, we used the graph-based seg-

mentation algorithm introduced by Felzenszwalb and Huttenlocher (2004). This

algorithm segments the image by considering the variability of nearby regions. In
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particular, it draws boundaries between regions based on pairwise comparisons of

the intensities within and across regions. The threshold for drawing these bound-

aries is controlled by a scale parameter k. Larger k leads the algorithm to favor

larger regions and results in smaller number of segments. The algorithm produces

perceptually reasonable segments (e.g., see Figure 3.4) and it runs at a high speed

in practice.

Figure 3.4: Example segmented images of a low clutter (top) and high clut-
ter (bottom) image at 5 of the 12 possible values of the scale parameter (k ∈
[90, 4096]). Color is used only to show segmented regions in the image. Plot on
the right shows the number of segments as a function of the scale parameter for
each image. Points represent the raw number of segments while the lines represent
the log-linear fits.

Our search stimuli consisted of different cropped sections of the images for

different target categories. We wanted the clutter estimates to be robust to minor

changes of the position in the image. To get more stable estimates of clutter, we

created random sections from the images, counted segments for each section at

multiple scales, and then computed the geometric mean of segment counts across

sections at each scale. At the end of this process, each image was associated with

a segment count for each scale.

3.2.3.3.2 Clutter Measure

We measured the clutter in each image by characterizing the relationship between

the scale of segmentation k and the number of segments for that scale y(k). We

determined this relationship empirically by varying the scale parameter across a
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range of values, applying the segmentation algorithm, and counting the resulting

number of segments. Figure 3.4 shows examples of segmented images and the

number of segments at several scales of segmentation. For any given image, the

number of segments is log-linearly related to the scale of segmentation, such that

ln y(k) = α + β ln k, (3.2)

where ln represents the natural logarithm.

The slope of this relationship is approximately constant (β ≈ −0.69), but the

intercept α varies across images. In particular, for any setting of the scale pa-

rameter, highly cluttered images tend to have more segments than the minimally

cluttered images. Therefore, we used the intercept of each image to quantify its

clutter.

To get robust estimates of these log-linear relationships for each image, we (1)

randomly sampled 10 1024×1024 sections of the image, (2) computed the segment

counts for each of these sections across a range of scales (k ∈ {90, 128, 181, 256, 362,

512, 724, 1024, 1448, 2048, 2896, 4096}), and (3) computed the intercept of the log-

linear fit using a least-squares procedure. The slope was computed as the average

least-squares slope for all of the images in the data set (N = 4, 953), and the

intercepts for individual images were fitted with this average slope held constant.

Our implementation of this clutter metric differed from the clutter metric on

which it is based (Bravo & Farid, 2008) in two ways: First, we evaluated the least-

squares fit in log units, where the power law functions are linear. This was done to

make the model residuals more homoscedastic and thereby make the fitting more

robust to outliers. Second, we sampled multiple sections from each image before

segmenting them and computed the fit using the set of segment counts obtained

for all of these sections. This resulted in fits that were robust to the small changes
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in cropping boundaries that occurred when the images were repositioned to align

the target location with the grid of cue positions.

In order to evaluate the generalizability/robustness of our clutter measure-

ments, we also quantified clutter using alternative clutter measures including

edge density (Mack & Oliva, 2004), feature congestion (Rosenholtz et al., 2005,

2007), and subband entropy (Rosenholtz et al., 2007) for the images used in our

experiment. The clutter measures were all significantly correlated (see Table 3.1),

suggesting that the particular choice of clutter metric is not important.

The code for implementation of the segmentation algorithm is made publicly

available by its authors. A MATLAB implementation of the clutter measure using

this algorithm as described above can be downloaded from our lab Github page

(https://github.com/mmmlab/clutter metric code).

Table 3.1: Pearson correlation coefficients among clutter measures.

Segmentation Edge density Feature congestion Subband entropy

Segmentation -
Edge density 0.67 -
Feature congestion 0.64 0.65 -
Subband entropy 0.57 0.70 0.60 -

Note: All p < 0.001.

3.2.4 Procedure

The design of the experiment was 5 (target object category: cellphones,

glasses, iPods, keys, or pens/pencils) × 2 (relevant set size: 5 or 13) × 2 (clutter

level: low or high) × 2 (target presence: target present or target absent), with

one between-subjects variable (target object category) and three within-subjects

variables (relevant set size, clutter level, and target presence). At the start of

the search experiment, observers were randomly assigned to one of five search

target categories (cellphones, glasses, iPods, keys, or pens/pencils). Observers

https://github.com/mmmlab/clutter_metric_code
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were instructed to detect and locate the target object within an image as quickly

and accurately as possible. Additionally, they were told that if the search target

was present in an image, there was only one single item or a group of items in

close proximity from the search category, and the item was visible.

Before the start of each trial, observers fixated a point at the center of the

display while a set of circular cues indicated the potential target locations (see

Figure 3.3). Observers began the trial by pressing a start key. After the trial

was initiated, the search display appeared and observers freely searched for the

target. Observers were allowed three seconds to search. After either three seconds

had elapsed or the observer pressed a key to complete the search early, the search

image disappeared while the set of circular cues indicating the potential target lo-

cations remained on the screen. An additional cue appeared at a random location

1◦ outside the search region. Observers were instructed to make a localization

decision. They fixated either the cue corresponding to the perceived location of

the target (if target was present) or the additional cue (if target was absent). The

cue corresponding to the current fixation was highlighted in real time to ensure

that observers knew which locations they were selecting. Observers could correct

their gaze if the wrong location was highlighted. When they were satisfied with

their selections, observers logged their responses with a keypress.

The amount of time spent inspecting each image was recorded as the search

time, and was the primary measure of performance. In target present trials, a

response was registered as “correct” only if the selected cue corresponded to the

target location. In the target absent trials, a response was registered as “correct”

only if the absent cue location was selected. All other responses were registered

as errors. Observers received auditory feedback indicating the accuracy of their

responses.
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Trials were blocked by the relevant set size. Each block consisted of 50 ex-

perimental trials. At the start of each block, observers completed a 13-point

calibration routine covering the central 22◦ of gaze angle. The calibration was re-

peated until the average test-retest calibration error across gaze points fell below

0.25◦. The calibration routine could be repeated if necessary during a block. If

a blink was detected during the search phase of the trial (when the image was

present on the screen), the trial was aborted, and the observer was notified. Data

from aborted trials were discarded, but the image from the discarded trial was

repeated later in the experiment. Observers very rarely broke fixation so that

fewer than 1% of trials were aborted.

Observers completed the study in two one-hour sessions on separate days.

Each session contained 8 blocks, resulting in a total of 800 trials. The block order

was randomized across sessions and observers.

Observers were trained and refamiliarized with the task by completing 8 prac-

tice trials at the start of the experiment and a single practice trial at the start of

each block. Data from the practice trials were excluded from the analysis.

3.3 Results

3.3.1 Search Times

Figure 3.5 shows average search times in the target present and target absent

trials. Each faint line represents data from five observers searching for one type

of target (shapes) in either high clutter (red lines) or low clutter (blue lines)

condition as a function of relevant set size. Each heavy line represents average

search times across target categories. Two main trends are evident: (a) search

times tend to increase as the relevant set size increases, and (b) search times tend

to increase as the amount of clutter increases.
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Search times were analyzed by conducting a 5 (target object category: cell-

phones, glasses, iPods, keys, or pens/pencils) × 2 (relevant set size: 5 or 13)

× 2 (clutter level: low or high) × 2 (target presence: target present or target

absent) mixed design ANOVA, with one between-subjects variable (target object

category) and three within-subjects variables (relevant set size, clutter level, and

target presence).

The ANOVA revealed main effects of clutter level, F (1, 20) = 260.37, p <

0.001, of relevant set size, F (1, 20) = 48.69, p < 0.001, and of target presence,

F (1, 20) = 173.69, p < 0.001. In particular, average search times were longer in

the high clutter condition (M = 1.37, SE = 0.01) than in the low clutter condition

(M = 1.18, SE = 0.01), suggesting that clutter degrades search performance.

Search times were also longer in the set size 13 condition (M = 1.37, SE =

0.01) than in the set size 5 condition (M = 1.19, SE = 0.01), confirming our

manipulation of set size. Finally, target absent trials resulted in longer search

times (M = 1.55, SE = 0.01) than the target present trials (M = 1.00, SE =

0.01). The main effect of target category did not reach significance, F < 1, n.s.

Our analysis also revealed several significant interaction effects. There was a

significant clutter level × relevant set size interaction, F (1, 20) = 4.93, p = 0.036,

which suggests that the effect of clutter tends to be larger for larger set size.

The clutter level × target category interaction was also significant, F (4, 20) =

5.29, p = 0.005, suggesting that the effect of clutter was larger for some target

categories than others. Additionally, clutter level × target presence interaction

reached significance, F (1, 20) = 48.65, p < 0.001, suggesting larger effects of

clutter in the target absent trials compared to the target present trials. Moreover,

set size × target presence interaction was significant, F (1, 20) = 11.01, p = 0.003,

which suggests larger set size effects in the target absent trials compared to the

target present trials.
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Figure 3.5: Average search times as a function of relevant set size in the target
present trials (left panel) and in the target absent trials (right panel). Each
combination of line and symbols represents data from five observers searching for
one type of target (shapes) in either high clutter (red lines) or low clutter (blue
lines) condition. Average search times across target categories are represented by
the heavy lines.

3.3.2 Fixation Distributions

As a further check on our manipulation of set size, we examined observers’

fixation distributions during search. If observers make use of the target location

information provided by the cues when planning their fixations, they should be

more likely to fixate the cued locations than other locations in the display. Figure

3.6 shows the fixation distributions for each of the set size conditions, aggregated

across all observers and trials, with the first and last fixations excluded. We

excluded the first fixation from the analysis because observers always started the

search by fixating at the center of the screen, and we excluded the last fixation

from the analysis to avoid biasing the fixation distributions towards the target

locations (i.e., since observers typically completed the search by fixating the target

location). Our analysis of fixation distributions shows that observers indeed use
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cue location information when selecting their fixation locations, confirming the

effectiveness of our set size manipulation.

Figure 3.6: Aggregated fixation distributions across all of the observers, for set
size 5 (left panel) and for set size 13 (right panel). The first and final fixations
were excluded from the analysis.

3.3.3 Search Target Sizes

We also examined how search time changed a function of target size. Although

we restricted the size of the targets to a limited range, there was still some degree

of variability. Each target’s size was quantified using either the area of its circum-

scribing polygon or the length of the longest axis of this polygon. To remedy the

curvilinear relationship observed between the target area and the search times,

the areas were transformed by taking their square root, which resulted in a more

linear relationship. Figure 3.7 shows that (a) search times tend to decrease as the

search target gets larger in size, and (b) some targets are larger, on average, than

others. The analysis showed that search times decrease significantly as target size

increases, both when the size was measured as the area (r = −0.29, p < 0.001)

and when it was measured as the length of longest axis (r = −0.35, p < 0.001).

These results suggest that target size may be one of the factors driving differences

in search performance among target categories.
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Figure 3.7: Search times as a function of target size represented by the square
root of the area (left panel) or the longest axis (right panel) of its bounding
polygon. Each gray dot represents the average search time across five observers
for a particular target in an image. Shaped markers represent the average size for
each target category. Blue lines represent the least-squares linear fits.

3.3.4 Search Target Categories

Our stimulus set contained some common images across different target cat-

egories. That is, in some cases, different observers searched for different targets

in the same image. These cases gave us the ability to dissociate effects of the

search image from those of the search target and to directly examine the effect

of target category on search performance. Figure 3.8 shows the average search

times while searching for different targets in the same image. For example, the

first plot shows the search time while looking for a cellphone compared to the

search time while looking for the other targets in the same image. If the search

performance was only determined by the amount of clutter or the relevant set size,

then all points would line up on the diagonal. However, these results show that

some targets were more difficult to find than others. For example, on average,

observers seem to be faster at locating cellphones than other targets. We discuss

potential implications of these results in the Discussion section.
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Figure 3.8: Average search times for different targets in common images. Each
panel compares search time for a particular target category (on the x-axis) to
search time for other targets (on the y-axis) in the same image. Each point
represents average search times across all images that contained the indicated
pair of targets. Error bars indicate standard error.

3.3.5 Error Rates

Error rates were defined as the proportion of trials where observers did not

fixate the correct cue location (see the Procedure section). The probability of

choosing any location other than the correct location (i.e., the baseline error rate)

was computed as 0.83 and 0.93 for set sizes of 5 and 13, respectively. Table 3.2

shows error rates across conditions. In general, error rates were well below baseline

rates, suggesting that observers were extremely accurate in their judgments.



48

Table 3.2: Error rates across conditions.

Clutter Relevant Target category
level set size cellphone glasses iPod key pen average

Low 5 0.04 0.03 0.09 0.03 0.06 0.05
13 0.05 0.06 0.11 0.04 0.09 0.07

High 5 0.03 0.05 0.09 0.06 0.09 0.06
13 0.05 0.07 0.12 0.09 0.11 0.09

3.4 Discussion

The purpose of the current study was to determine how clutter affects search

for categorical targets in real-world scenes. In particular, we sought to disentangle

the effects of extrinsic position uncertainty (i.e., search set size) from those due,

through the modulating effect of clutter, to intrinsic position uncertainty (Semizer

& Michel, 2017). Our results exhibited several trends:

First, search times increased significantly as a function of increasing clutter.

This pattern was evident across target categories, but the effect was larger for

some targets than others. Second, search times increased significantly as the

number of possible target locations increased, revealing the classic set size effect.

This finding provided evidence that our manipulation of extrinsic uncertainty, via

the relevant set size, was successful. Third, when all other manipulated factors

(i.e., clutter level and set size) were fixed, search times changed as a function

of target category. Finally, search times decreased significantly as a function of

target size, both when the size was measured as the area of the circumscribing

polygon and when it was measured as the length of the longest axis of this polygon.

We discuss potential implications of these findings below.
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3.4.1 Clutter-Specific Effects

Several studies have shown that clutter degrades search performance in nat-

uralistic stimuli (e.g., Bravo & Farid, 2004, 2008; Henderson et al., 2009; Neider

& Zelinsky, 2011; Rosenholtz et al., 2007). However, there are various ways in

which clutter can lead to the observed performance impairments. For example,

clutter has been used as a proxy for set size in natural scenes because, as scene

clutter increases, the (implicit) number of potential target locations also tends to

increase (Rosenholtz et al., 2005, 2007). Additionally, clutter can force observers

to consider features at irrelevant locations during search, exacerbating the effects

of intrinsic position uncertainty (Michel & Geisler, 2011; Semizer & Michel, 2017).

As a result, localizing the source of peripherally perceived stimuli becomes more

difficult, which degrades search performance. Finally, clutter can make search

more difficult by obscuring search targets. Adding clutter to real-world scenes

increases the probability that objects will partially or completely occlude one an-

other. In the current study, we controlled for set size and for occlusions of the

search target to isolate those effects of clutter that are due to intrinsic position

uncertainty.

The results of the current study, obtained using real-world images, are in

broad agreement with those of a related study that showed how clutter degrades

search performance in synthetic noise displays (Semizer & Michel, 2017). How-

ever, the results of the current study differ in one notable respect. Semizer and

Michel (2017) reported that the effect of extrinsic position uncertainty diminished

at larger set sizes when the searcher was limited by intrinsic position uncertainty.

As a result, search performance was similar across cluttered and uncluttered con-

ditions when the relevant set size was large. However, our results showed that

search performance was worse in the high clutter condition than in the low clutter



50

condition regardless of the relevant set size. This difference might be due to either

of two reasons: First, the images in our experiment were far less cluttered than

the synthetic displays created in the lab. When measured using the same clut-

ter metric, the synthetic stimuli from Semizer and Michel (2017) yielded clutter

values of around α = 4× 108, which was several orders of magnitude larger than

the clutter values measured for our images (see Figure 3.2). Second, the relevant

set sizes used in our study were much smaller than those in Semizer and Michel

(2017). In the current study, the set sizes consisted of either 5 or 13, while the set

sizes of Semizer and Michel (2017) ranged from a minimum of 37 to a maximum

of 817 potential target locations. Indeed, our results are completely consistent

with those of Semizer and Michel (2017) when we consider only the smaller set

sizes used in that study.

3.4.2 Characterizing Set Size

In many traditional search experiments, set size is defined as the number

of items in a search display (see Wolfe, 1998, for a review). This type of set

size is also called the “display set size”. A task-relevant subset of these items

form the “relevant set size”, which can be manipulated independently of the

display set size by cuing only the locations that might contain the target (Palmer,

1994, 1995). Palmer (1994) introduced this distinction to characterize searches

of displays comprising a small number of elements on a uniform background.

However, the notion of relevant set size is especially critical in searches for which

the number of elements is either very large or undefined. For example, researchers

have used this method to define and manipulate set sizes for searches in synthetic

noise displays (Burgess & Ghandeharian, 1984b; Eckstein et al., 2007; Manjeshwar

& Wilson, 2001; Najemnik & Geisler, 2005; Semizer & Michel, 2017; Swensson &

Judy, 1981) and in structured medical images (Bochud et al., 2004; Eckstein &



51

Whiting, 1996). In the current study, we likewise used Palmer’s (1994) method,

cueing potential target locations to define the relevant set size in natural scenes.

In the context of natural scenes, there are several ways in which the effective

set size might be made functionally smaller than the (nominal) relevant set size.

First, if observers only consider the locations that contain “stuff” (i.e., objects,

items, or feature elements) and preferentially fixate only cues that fall on these

locations, this would reduce the relevant set size. However, in the context of

natural scenes, characterizing what “stuff” entails is problematic because labeling

or counting every single item in a scene is an ill-defined problem. In particular,

identifying what constitutes an object or a background is not clear (Neider &

Zelinsky, 2008, 2011; Rosenholtz et al., 2007; Wolfe, Võ, Evans, & Greene, 2011),

especially when texture elements are involved. For example, in a kitchen scene,

if objects are placed on a table covered with a patterned cloth or if objects were

placed on other objects, it is not clear how to segment the scene into object or

background. Similarly, if a scene contains a textbook (with text or illustrations

on its cover), or a patch work quilt, or an articulated figure, it is ambiguous at

what level objects should be segmented (should individual letters be considered

objects?, individual patches?, individual parts?).

In the current study, if observers preferentially fixated cues that fall on objects,

we would expect this to reduce the effective set size similarly for both clutter

conditions. Since both set sizes would be reduced, this should not systematically

influence the set size and clutter effects observed in our experiment. To test this

relationship empirically (and based on a reviewer’s suggestion), we characterized

the “effective” set size by counting the number of object cues (cues that fall on

objects) in each trial of our experiment. The proportion of object cues were similar

across low and high clutter conditions, 0.72 and 0.79, respectively; suggesting no

substantial differences between the clutter conditions. Therefore, if having cues
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land on the “background” reduced the effective set size, then it did so similarly for

both clutter conditions. Figure 3.9 shows search times as a function of the number

of object cues, suggesting that the proportion of object cues is independent of

clutter in this set of stimuli.

Figure 3.9: Search times as a function of the object-cue count (i.e., the number
of cues that fall on objects) in the search image. The area of each marker is pro-
portional to the number of trials exhibiting the corresponding object-cue count.
Solid and dashed lines represent the least-squares linear fits for set sizes 5 and 13,
respectively.

Set size might also be effectively reduced when targets are not distributed

uniformly across cued locations. If the appearance of the target at a subset of the

cued locations were much more probable than at other locations, then observers

might restrict their searches to those locations within the probable subset, ef-

fectively reducing the set size. To investigate this possibility, we measured the

likelihood that each cue location contained a target in our stimulus set. Target

locations were well distributed across possible locations (Figure 3.10), with the

exception of the center location, which was somewhat underrepresented.

To quantify the effect of this non-uniformity of the target location distributions

in reducing the relevant set size, we computed the information entropy (Shannon,
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1948) for each set size, given by

H = −
n∑
i

pi log2 pi, (3.3)

where p is the probability that a cue location contains a target and n is the

relevant set size. If the search targets were uniformly distributed across the cued

locations, then the entropies associated with set sizes 5 and 13 would be 2.32 and

3.70 bits, respectively. The corresponding entropies computed for the empirical

distributions measured in our experiment (Figure 3.10) were 2.21 and 3.59 bits,

respectively. This reduction in entropy was small for both set sizes (approximately

5% for set size 5 and 3% for set size 13) suggesting that any reduction in effective

set size caused by the non-uniformity of the target distributions should have a

negligible effect on search performance.

Figure 3.10: Distribution of target locations for set size 5 (left) and set size
13 (right) conditions. The area of each location marker is proportional to the
empirical target probability for the corresponding location. The probabilities are
also printed above each cue location marker.
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3.4.3 Target-Specific Effects

We used different types of target categories in the search experiment and this

allowed us to examine how a particular target category contributes to the effect

of clutter on search performance. Our analysis of search times suggest that target

category interacts with clutter. But what makes a target category more or less

susceptible to clutter? Intuitively, it seems obvious that certain features of the

target (e.g., target size, color, shape, etc.) might interact with features of clutter

to determine search performance. Imagine, for example, a peripheral search task

that requires the localization of a target object among green distractors. If the

target object is red, then green objects will not provide effective clutter because

their features are not confusable with features of the target. However, if the target

is green, then the distractors should provide effective clutter.

More generally, the similarity of the target to features of the background might

affect the susceptibility to clutter. Search times are longer when targets are similar

to distractors or when distractors are dissimilar to other distractors (J. Duncan

& Humphrey, 1989). Also, the similarity of targets to the search background

affects search performance (Neider & Zelinsky, 2006). For example, when the

search target and the background share a common spatial frequency band, search

becomes more difficult (Semizer & Michel, 2017). Thus, when investigating the

effects of clutter on search performance, it makes sense to expect performance

differences depending on the similarity of target features to background features.

For example, imagine a scene of leaves. The traditional models of clutter would

consider this scene “highly cluttered” and predict poor search performance in this

scene regardless of the type of the search target. However, if the search target,

such as a cellphone, does not share a lot of similar features with the background,

then the search should be pretty easy. In fact, there are models of clutter from
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the field of image optics, which quantify clutter in electro-optical images in terms

of the target-background similarity (e.g., Chang & Zhang, 2006; Chu et al., 2012;

Moore, Camp, Moyer, & Halford, 2010b; Schmieder & Weathersby, 1983; Silk,

1995; Tidhar et al., 1994).

Another feature of the target that might affect its susceptibility to clutter

is its size. Target size has been identified as one of the fundamental attributes

in guiding attention (Wolfe & Horowitz, 2004). As one of the target-specific

features, we measured size of the search targets in our stimuli and examined how

search performance changes as a function of target size. The analysis suggests

that larger targets are associated with shorter search times. This means that,

within the context our study, larger targets are easier to find. Similarly, target

size within a category might affect susceptibility to clutter, and the strength of

the relationship between clutter and search performance might depend on details

particular to different search targets. Revealing the nature of these specific target

features remains an open question, and one that we plan to pursue in future work.

3.5 Conclusion

Overall, our results demonstrate that increased clutter reduces performance in

searches of real-world scenes, and does so independently of set size. When consid-

ered in the context of previous studies, Michel and Geisler (2011) and Semizer and

Michel (2017), that explicitly modeled intrinsic position uncertainty, this study

suggests that the intrinsic position uncertainty of peripheral vision significantly

limits searches of real world scenes in the same way it limits searches of synthetic

scenes. Therefore, it is important to account for these effects of intrinsic position

uncertainty when evaluating and modeling performance in search tasks.
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Chapter 4

Study II

4.1 Introduction

Visual search becomes more difficult when the visual environment in which

we perform the search is cluttered (Bravo & Farid, 2004, 2008; Henderson et al.,

2009; Lohrenz et al., 2009; Neider & Zelinsky, 2011; Rosenholtz et al., 2007).

The effects of clutter on performance has been investigated in various tasks by

several research domains, such as psychology, engineering, and computer science;

therefore, there are various ways defining and measuring clutter. The most näıve

way of defining clutter is related to the number of objects in a display. This

definition of clutter is similar to the notion of set-size (Palmer, 1994, 1995).

In traditional visual search studies, as the number of distractors in a display

increases, search performance decreases (Wolfe, 1994). Similarly, the density of

items in naturalistic scenes correlates with the amount of clutter in the display

(van den Berg et al., 2009). Although this definition of clutter is intuitive, it

may not be easy, or even possible, to estimate the number or density of items

in natural scenes, where identifying clearly defined objects is difficult (Neider &

Zelinsky, 2008, 2011; Rosenholtz et al., 2007; Wolfe et al., 2011).

Clutter can also be defined in terms of the layout of items in a display. Accord-

ing to this account, clutter is related to the arrangement, structure, or density of

items in a scene (Bravo & Farid, 2008; Rosenholtz et al., 2005; van den Berg et

al., 2009). For example, clutter is associated with high variability of luminance,



57

contrast, orientation, and color in a display (Rosenholtz et al., 2005), large num-

ber of regions in a display (Bravo & Farid, 2008), or high density of edges in a

display (Mack & Oliva, 2004).

Another way of defining clutter is related to the target-background (or target-

distractor) similarity in a display. Performance in visual search tasks using struc-

tured stimuli decreases as target-background similarity increases (J. Duncan &

Humphrey, 1989; Wolfe et al., 2002). Models from the field of image optics define

clutter in terms of the similarity between target and background features (Camp

et al., 2010; Chu et al., 2012; He et al., 2008).

These accounts of clutter view clutter primarily as a property of the display.

Clutter is also defined in terms of task performance. According to this perspec-

tive, clutter refers to “the state in which excess items, or their representation or

organization, lead to a degradation of performance at some task” (Rosenholtz et

al., 2005, p. 761). The structure or density of items in a display is also accounted

for by this view of clutter.

The particular choice of clutter definition motivates the approach in measuring

clutter in a display. Approaches to measuring clutter include developing objective

clutter metrics, manipulating the amount of clutter in a display and measuring

performance, and collecting subjective judgments based perceived clutter. The

most common objective clutter measures in psychophysics include edge density

(Mack & Oliva, 2004), the scale invariant clutter measure (Bravo & Farid, 2008),

feature congestion (Rosenholtz et al., 2005, 2007), subband entropy (Rosenholtz

et al., 2007), the proto-object model (Yu et al., 2014), and the color-clustering

clutter (C3) model (Lohrenz et al., 2009). These measures suggest that as the

amount clutter in a scene increases, search performance decreases (Bravo & Farid,

2008; Henderson et al., 2009; Mack & Oliva, 2004; Rosenholtz et al., 2007; Neider
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& Zelinsky, 2011). Although these measures successfully predict search perfor-

mance, they do not account for the properties of search targets. In particular, they

do not consider target-background similarity in quantifying the effect of clutter on

search performance. However, when search targets and background share similar

features (e.g., spatial frequency content), search performance declines (Semizer &

Michel, 2017).

There are other clutter measures, in the field of image optics, which quantify

clutter using the target-background similarity. These measures include the sta-

tistical variance (SV) metrics (Schmieder & Weathersby, 1983; Silk, 1995), the

probability of edge detection (POE) metric (Tidhar et al., 1994), the target struc-

ture similarity (TSSIM) metric (Chang & Zhang, 2006), the contrast sensitivity

function (CSF) based metric (Chu et al., 2012), and the masked target transform

volume (MTTV) metric (Moore et al., 2010a, 2010c). Most of these metrics ac-

count for target-background similarity but only at the exemplar level. They can

not predict search performance for categorical targets or for target absent cases.

In this study, we propose two new clutter metrics based on two types of

target-background similarity (i.e., exemplar level and category level) to predict

the effect of clutter on search performance. The exemplar clutter metric quantifies

the overlap between features of a search target that is present in an image (at

the exemplar level) and features of a search background. The category clutter

metric quantifies the overlap between features of a search target category (at

the categorical level) and features of a search background. The category clutter

metric is used to predict search performance in target absent images while both

the category clutter metric and the exemplar clutter metric are used to predict

search performance in target present images. We test the predictive performance

of these metrics using a set of search data and compare their performance to an

existing target-agnostic clutter metric.
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4.2 Methods

To quantify the effect of target-background similarity on search performance,

we propose two new metrics. In a nutshell, our metrics measure similarity with

respect to features (i.e., the orientation subbands) of an image while also account-

ing for the size of a search target. The first metric, the exemplar clutter metric,

operates at the exemplar level. This metric quantifies similarity as a function of

features shared between a search target that is present in an image and the search

background. Since this metric requires presence of a target object in an image, it

can be used to predict search performance only in target present images.

While searching for categorical targets, we would expect to see an effect of

target category even if the particular search image does not contain an instance

of the target category. Thus, we propose a second metric, the category clutter

metric, to measure target-background similarity at the categorical level. This

metric quantifies similarity as a function of features shared between a search target

category and the search background. Since this metric does not require presence

of a target object in an image, it can be used to predict search performance in

target absent images as well as in target present images.

To test whether representing the target-background similarity meaningfully

contributes to predicting search performance, we compared performance of these

two metrics to an existing metric which is agnostic to the target-background

similarity. In particular, we used the clutter measure developed by Bravo and

Farid (2008) as the target-agnostic clutter metric. We chose this metric because

it has been shown to predict search performance using a similar set of images, it

is computationally efficient, and scale-invariant.

Below, we describe the exemplar clutter metric, the category clutter metric,

and the target-agnostic clutter metric in more detail.
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4.2.1 The Exemplar Clutter Metric

The exemplar clutter metric measures the overlap between search target and

search background features at the exemplar level. It requires an instance of search

target object to be present in an image. Below, we describe our approach in

representing a search target and search background followed by the method of

quantifying similarity.

4.2.1.1 Representing the Search Target

We represented a search target object in an image in the following steps: First,

we created a patch with the target object centered at the patch. The size of the

patch was set to the longest dimension of the bounding box enclosing the tar-

get object. Then, we constructed a steerable pyramid representation of the target

patch using 3 different scales and 4 different orientations, and extracted the orien-

tation subbands. A steerable pyramid is an image decomposition method which

creates a linear decomposition of an image into multiple scale and orientation

subbands (Simoncelli & Freeman, 1995). Using steerable pyramids with certain

number of orientations is computationally less expensive than computing Fourier

transform at all orientations.

Next, to minimize any effects of the remaining background information in the

target patch, we windowed the patch responses using a 2D raised cosine window

(Hanning window). At the end of this process, each target patch was associated

with a single normalized feature vector.

4.2.1.2 Representing the Search Background

Similar to the search target, we processed the search background in the follow-

ing steps: First, we constructed a steerable pyramid representation of the entire
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image using 3 different scales and 4 different orientations. Then, using patches

with the same size as the target object, we computed subband responses at the

patch centered at each pixel in the image. At the end of this process, each patch

in the image was associated with a normalized feature vector.

4.2.1.3 Measuring Similarity

After computing feature vectors associated with the search target and the

search background, we measured the similarity between these features. We used

the Mahalanobis distance (Mahalanobis, 1936) as a measure of similarity, which

can be expressed as

DM =
√

(t− µ)TΣ−1(t− µ) (4.1)

where t is the normalized target feature vector, and µ and Σ are the mean and

covariance of the normalized background feature vectors. Larger values of DM

indicate lower similarity. Finally, the exemplar clutter metric is defined as

CE =
1√
DM

, (4.2)

where larger values of CE indicate higher clutter.

4.2.2 The Category Clutter Metric

The category similarity metric measures the overlap between search target

and background features at the categorical level. It does not require an instance

of search target object to be present in an image; thus, it can be used to pre-

dict search performance for categorical targets in target absent images. Below,

we describe our approach in representing a categorical search target and search

background followed by the method of quantifying similarity.
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4.2.2.1 Representing the Categorical Search Target

In the exemplar similarity metric, search targets were represented using fea-

tures of targets present in images. Forming a categorical representation of search

targets is not trivial, especially since we do not have a single target object repre-

sentative of a category. One possible solution involves taking the average across

features of instances present in images. However, this method would result in a

loss of information which would probably lead to a poor representation of a target

category.

Therefore, we represented a categorical search target using a distribution of

feature vectors. We constructed these distributions using the search target objects

present in the images. Since sizes of each search target object varied, we had to

come up with a measure to represent the typical size of targets belonging to a

category. We computed the median size of the targets per category. The median

size served as the patch size to which each target patch was resized. Then, we

extracted the feature vectors by building pyramids, and approximated the joint

distribution of these feature vectors as a Gaussian distribution.

4.2.2.2 Representing the Search Background

We represented the search background in a similar way as in the exemplar

clutter metric; however, this time we used the median size of targets per category

as the patch size while windowing the background. We processed the background

image as described in Section 4.2.1.2. Then, we approximated the joint distribu-

tion of feature vectors as a Gaussian distribution.
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4.2.2.3 Measuring Similarity

We compared the categorical search target distribution and the background

distribution by measuring the Kullback-Leibler (KL) divergence (Kullback &

Leibler, 1951) between two multivariate Gaussian distributions, given by

DKL =

∫ ∞
−∞

log

(
p

q

)
p, (4.3)

where p and q are categorical search target distribution and the background dis-

tribution of feature vectors, respectively. Larger values of DKL indicate lower

similarity. To avoid overestimation while measuring similarity in a given image,

feature vectors corresponding to the particular target object present in the cur-

rent image are left out of the target distribution. Finally, the category clutter

metric is defined as

CC =
1√
DKL

, (4.4)

where larger values of CC indicate higher clutter.

4.2.3 The Target-Agnostic Metric

To assess the performance of our new metrics, we used a target agnostic metric;

i.e., a version of the clutter metric developed by Bravo and Farid (2008). In brief,

this metric is based on an algorithm (Felzenszwalb & Huttenlocher, 2004) which

segments images at multiple scales. Clutter is measured using a least-squares

procedure describing the relationship between the number of segments and the

scale of segmentation. Larger values of this metric indicate higher clutter. Details

of the particular implementation of this metric can be seen in Chapter 3.
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4.3 Results

We computed the exemplar clutter metric, the category clutter metric, and

the target-agnostic metric for images used in Study I. To investigate the perfor-

mance of the clutter metrics in predicting search performance, we used the search

time data from Study I, and compared the performance of clutter metrics to the

performance of the target-agnostic clutter metric. Details of the search task and

images can be seen in Chapter 3. Some of these images had targets that were too

small to build a steerable pyramid with 3 levels. These images corresponded to

less than 1% trials and we excluded these trials from the analysis.

To examine the performance of these metrics in predicting search performance,

we fitted Generalized Linear Models (GLMs) to the data using a Gamma(α, β) dis-

tribution, suggested by the distribution of search times. To evaluate the goodness-

of-fit, we calculated the Akaike information criterion, AIC (Akaike, 1973), as well

as a pseudo R2 (McFadden, 1974), given by

R2 = 1− lnL(MFull)

lnL(MIntercept)
, (4.5)

where L is the likelihood, MFull is the model with predictors, and MIntercept is the

model without predictors.

4.3.1 The Exemplar Clutter Metric

The exemplar clutter metric was computed only for target present images be-

cause it requires a target object to be present in an image. Figure 4.1 shows search

times as a function of the exemplar clutter metric and the target agnostic metric.

GLM results showed that while both metrics significantly predicted search per-

formance, the exemplar clutter metric outperformed the target-agnostic metric,
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indicated by smaller AIC and larger R2 (see Table 4.1).

Figure 4.1: Search times as a function of the exemplar clutter metric (on the
left) and the target-agnostic metric (on the right) in target present images. Lines
represent GLM fits.

Table 4.1: Parameter estimates, AICs, and pseudo R2s for target present images.

Metric α β0 β1 AIC R2

Exemplar clutter 9.77 0.74 37.28 959.51 0.13

Category clutter 9.64 0.81 0.74 985.30 0.11

Target-agnostic clutter 9.42 -1.05 0.12 1033.06 0.06

Note: All p < 0.001. α is the shape parameter and βs are the regression coefficients.

4.3.2 The Category Clutter Metric

The category clutter metric was computed both for target present and target

absent images. Below, we discuss results for target present images followed by

the results for target absent images.
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4.3.2.1 Target Present Images

Figure 4.2 shows search times as a function of the category clutter metric in

target present images. GLM results showed that the category clutter metric sig-

nificantly predicted search performance. When compared with the target-agnostic

metric, the category clutter metric resulted in a smaller AIC and larger R2, sug-

gesting a better performance for the category clutter metric in predicting search

performance (see Table 4.1).

Figure 4.2: Search times as a function of the category clutter metric in target
present images. Lines represent GLM fits.

4.3.2.2 Target Absent Images

Figure 4.3 shows search times as a function of the category clutter metric

and the target-agnostic metric for target absent images. GLM results showed

that both metrics significantly predicted search performance. The target-agnostic

clutter metric resulted in a smaller AIC and larger R2 than the category clutter

metric, suggesting a better performance for the target agnostic metric in predict-

ing search performance (see Table 4.2).
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Figure 4.3: Search times as a function of the category clutter metric (on the
left) and the target-agnostic metric (on the right) in target absent images. Lines
represent GLM fits.

Table 4.2: Parameter estimates, AICs, and pseudo R2s for target absent images.

Metric α β0 β1 AIC R2

Category clutter 16.77 1.24 1.29 1709.78 0.12

Target-agnostic clutter 16.99 -3.21 0.46 1683.08 0.14

Note: All p < 0.001. α is the shape parameter and βs are the regression coefficients.

4.3.3 Contributions of Clutter Metrics

To directly investigate the contributions of clutter metrics in explaining search

performance, we fitted nested models and compared the performance of these

models using the Likelihood Ratio Test, separately for target present images (see

Tables 4.1) and for target absent images (see Tables 4.2).

For target present images, we started with a model that includes the target-

agnostic metric as the only predictor, and iteratively added the other clutter

metrics. Adding the exemplar clutter metric to this model significantly improved

the model fit (χ2 = 12.89, p < 0.001). Then, adding the category clutter metric

to the model led to further improvement of model fit (χ2 = 2.27, p < 0.001).
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Similarly, for target absent images, we started with a model that includes the

target-agnostic metric as the only predictor. Adding the category clutter metric

to the model significantly improved the model fit (χ2 = 7.15, p < 0.001).

Table 4.3: Parameter estimates, AICs, and pseudo R2s in target present images
for nested models.

Predictors α β0 β1 β2 β3 AIC R2

Target-agnostic 9.42 -1.05 0.12 1033.06 0.06

Target-agnostic +
Exemplar 10.02 2.97 -0.168 -32.92 909.86 0.18

Target-agnostic +
Exemplar + Category 10.13 2.62 -0.13 -27.78 -0.33 889.04 0.20

Note: All p < 0.001. α is the shape parameter and βs are the regression coefficients.

Table 4.4: Parameter estimates, AICs, and pseudo R2s in target absent images
for nested models.

Predictors α β0 β1 β2 AIC R2

Target-agnostic 16.99 -3.21 0.46 1683.08 0.14

Target-agnostic + Category 18.07 -2.30 0.35 0.95 1559.85 0.20

Note: All p < 0.001. α is the shape parameter and βs are the regression coefficients.

4.4 Discussion

The purpose of the current study was to develop new clutter metrics which

account for the target-background similarity in predicting search performance.

The target-background similarity was defined both at the exemplar and at the

categorical level. The exemplar clutter metric measured similarity by quantifying

shared features between a search target that is present in an image and the search

background while the category clutter metric measured similarity by quantifying

shared features between a categorical search target and the search background.
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Using the data from the search experiment reported in Chapter 3, we compared

the performance of these clutter metrics to a target-agnostic clutter metric in

predicting search behavior.

Our results showed that both the exemplar clutter metric and the category

clutter metric predicted search performance. In particular, in target present im-

ages, both metrics outperformed the target-agnostic metric. Our analysis using

joint models suggested a significant contribution of the new clutter metrics be-

yond the target agnostic metric. Additionally, in target absent images, although

the target-agnostic metric performed relatively better than the category clutter

metric, adding the category clutter metric as a predictor to the model significantly

improved its category clutter performance.

Most common objective clutter measures in psychophysics successfully predict

performance in search tasks as a function of clutter (Bravo & Farid, 2008; Lohrenz

et al., 2009; Mack & Oliva, 2004; Rosenholtz et al., 2005, 2007; Yu et al., 2014).

However, these measures are agnostic to search targets and do not account for

the target-background similarity in quantifying performance. Clutter measures

in image optics consider the target-background similarity (Chang & Zhang, 2006;

Chu et al., 2012; Moore et al., 2010a, 2010c; Schmieder & Weathersby, 1983; Silk,

1995; Tidhar et al., 1994); however, most measures do so at the exemplar level.

As a result, these metrics can not determine performance in target absent cases.

Few models which account for the target-background similarity also attempted

to measure similarity for generic targets. Camp et al. (2013) constructed generic

targets by segmenting instances of targets and superimposing these in the pixel

space based on their physical dimensions. However, this definition of a generic

target results in a broad frequency spectrum for a target representation leading

to a loss of information. In our implementation of the category clutter metric, we

represented categorical targets using a distribution of feature vectors, which led
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to a richer representation of the target category.

A strong metric which accounts for similarity at the categorical level should

be orientation and scale invariant. For a human observer, two instances of an

object category that are positioned at two different orientations or captured at

two different scales would be categorized in the same object category. There-

fore, a good measure of similarity should consider these instances as similar to

each other. For example, a set of keys which were oriented diagonally should be

marked as similar to a set of keys which were oriented horizontally. Similarly,

estimates of similarity should not vary as a function of different sizes or scales of

the keys. Our categorical clutter metric used the actual orientation of objects as

they are positioned in images and a single object size (i.e., median object size for a

category). Therefore, implementing orientation and scale invariance can improve

the performance of these metrics.

Additionally, a good measure of similarity should be independent of contrast.

Two images of a set of keys with two different contrast levels would probably be

considered as similar to each other by a human observer. The exemplar clutter

metric uses a normalization procedure to eliminate the effect of contrast while

measuring similarity while the category clutter metric does not use a normaliza-

tion procedure.

Moreover, our metrics only use the information provided by the orientation

subbands as the relevant feature to quantify similarity. Other features can also

be considered. HOG feature detectors can be implemented to extract relevant

features. We aim to remedy these issues in the future work.
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4.5 Conclusion

We propose two new clutter metrics which account for the target-background

similarity, both at the exemplar and category level, in predicting search perfor-

mance. Our results demonstrate that both metrics predict search performance,

suggesting that the target-background similarity should be incorporated into mod-

els of visual search and clutter in determining performance in natural search

tasks.
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Chapter 5

General Conclusions

Visual search is an essential part of everyday tasks. We constantly scan the

visual environment to locate items or to navigate through it. While carrying out

such tasks, our visual system has to account for uncertainty and variability within

the environment. Performance in visual search tasks depends on several factors

(see Eckstein, 2011, for a review).

Visual clutter is a significant factor which determines performance in visual

search tasks. As the amount of clutter increases, search performance decreases

(Bravo & Farid, 2004, 2008; Lohrenz et al., 2009; Rosenholtz et al., 2005, 2007;

Yu et al., 2014). The first goal of this dissertation was to examine the effects of

clutter on search performance while considering different sources of uncertainty.

A particular type of uncertainty that is fundamental to visual search is the

position uncertainty which can arise from various sources. The extrinsic sources of

position uncertainty relate to properties of the task (i.e., possible target locations

or set size) while the intrinsic sources of position uncertainty relate to properties

of the observer (i.e., limitations of the human visual system).

While studies on position uncertainty has commonly examined extrinsic sources

(e.g., Bochud et al., 2004; Burgess & Ghandeharian, 1984b; Swensson & Judy,

1981), a few studies have particularly examined intrinsic sources (e.g., Michel &

Geisler, 2011; Pelli, 1985; Tanner, 1961). In the context of visual searches, the

detrimental effects of intrinsic position uncertainty can be investigated by ma-

nipulating the visual clutter in the search environment. Using an experimental
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technique to manipulate synthetic clutter in visual displays, we showed that in-

trinsic position uncertainty impairs overt search performance in synthetic noise

displays (Semizer & Michel, 2017). Whether these effects of intrinsic uncertainty

generalize to searches in more naturalistic contexts is an open question, which we

attempted to answer in this dissertation.

Target-background similarity is also a significant factor which determines per-

formance in visual search tasks. Targets that share similar features to the back-

ground or to other items in the display impair the search performance (J. Duncan

& Humphrey, 1989; Wolfe et al., 2002). However, most of the existing clutter

measures in psychophysics do not account for features of search targets (Bravo &

Farid, 2008; Lohrenz et al., 2009; Mack & Oliva, 2004; Rosenholtz et al., 2005,

2007; Yu et al., 2014) while the existing clutter measures in image optics account

for some target features but they are limited and mostly not for categorical targets

(Chang & Zhang, 2006; Chu et al., 2012; Moore et al., 2010a, 2010c; Schmieder

& Weathersby, 1983; Silk, 1995; Tidhar et al., 1994). Thus, the second goal of

this dissertation was to develop a clutter metric which takes features of search

targets into account while predicting effects of clutter on search performance.

We designed two studies to investigate these questions and to achieve the

aforementioned goals. In Study I, we examined the effect of clutter on search per-

formance independently of set size. We quantified the existing clutter in natural

scenes and measured the search performance when controlling the set size. Our

results demonstrate that clutter impairs search performance, and does so inde-

pendently of set size. These findings suggest that intrinsic position uncertainty

limits search in natural scenes in the similar way it limits search in synthetic

displays.
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In Study II, we proposed two new clutter metrics which measure target-

background similarity at the exemplar and categorical levels. The exemplar clut-

ter metric made use of target features present in images and quantified similarity

by comparing these features to background features. The category clutter metric

made use of categorical target features and quantified similarity by comparing

distribution of these features to background features. Both metrics used the ori-

entation subbands as the relevant feature while also accounting for target size.

Both clutter metrics predicted search performance, suggesting that the target-

background similarity should be incorporated into models of visual search and

clutter in determining performance in natural search tasks.

Among the significant contributions of this dissertation, effects of clutter on

search performance in natural scenes were disambiguated from the effects of set

size, intrinsic position uncertainty was proposed as a limiting factor in naturalistic

searches, two new clutter metrics which account for target-background similar-

ity were developed, and a new method of predicting search performance in the

absence of a search target was introduced.

When combined, these two studies have implications for models of search and

clutter. First, intrinsic position uncertainty should be incorporated into models

which account for search performance. Previously, intrinsic position uncertainty

was identified as a major limiting factor for detection and localization performance

in single fixation search tasks (Michel & Geisler, 2011) as well as in multiple

fixation search tasks (Semizer & Michel, 2017). Here we presented evidence that

these detrimental effects of intrinsic position uncertainty persist even in more

naturalistic searches.

Second, models of search and clutter incorporate measures of target-background
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similarity while explaining search performance. We presented evidence that fea-

tures of search targets and their interaction with the search background are impor-

tant factors in quantifying performance in search tasks. In particular, accounting

for the similarity between a search image and a search target category can improve

the predictive power of search models.

This work contributed to the knowledge on position uncertainty, visual search,

and clutter. Nonetheless, there are still open questions that need to be investi-

gated in the context of visual search and clutter. In particular, potential imple-

mentations of the methods developed and presented in this dissertation require

future work. The proposed clutter metrics can be improved by adding methods

to achieve orientation and scale invariance. It would be interesting to incorporate

other similarity features to proposed clutter metrics. Additionally, testing these

clutter metrics with different set of images or target categories would help eval-

uate their performance. Moreover, other distance measures can be implemented

to quantify similarity. Finally, performance of these metrics can be compared to

other existing metrics from image-optics which also account for target-background

similarity.
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