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Cerebrovascular autoregulation (AR) is an important mechanism within the brain 

that aims to maintain adequate blood flow to all lobes thus promoting proper brain 

function. Brain injuries due to a traumatic (TBI) or non-TBI event can damage this 

internal feedback mechanism leading to an impaired response that can lead to secondary 

injury in the form of swelling or ischemia. This impaired response is reflected in the 

intracranial pressure (ICP) waveform in the form of varying peak heights, and enlarged 

valleys. The ICP waveform could be used as a predictive index of patient cerebrovascular 

autoregulation state, and outcome through the use of integral phase plane analysis and the 

phase area ration (PAR). PAR is a method of comparing phase plane areas to assign a 

numerical value to different waveform shapes, and can be calculated through the use of 

graphical techniques. To test PAR as a predictive index patients were chosen from a 

database of hemodynamic data and grouped by injury type (TBI or non-TBI), and 

outcome (rehab or deceased). PAR was able to determine waveform differences 
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representative of the patient’s physiological state not only in terms of injury type, but 

outcome as well. PAR can be used as a patient-specific predictor of cerebrovascular 

autoregulation state and patient outcome through the incorporation of the integral phase 

plane. PAR provides additional patient information that could aid in improving both 

patient care and management. To further validate these results and feasibility of the index 

additional testing is required with an increased patient sample size. 
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Introduction 
 

Clinical Problem 

 Brain injury from a blow to the head or underlying condition is very serious and 

its treatment requires careful monitoring and precise treatment protocols. Brain injuries 

are classified as either traumatic (TBI) or non-TBI. In the United States, TBI affects up to 

2 million people every year [1]. The traumatic force associated with a TBI can result in 

primary injuries such as hematomas, contusions, and diffuse injuries [2]. Non-TBI on the 

other hand is a brain injury that is usually caused by an underlying condition, examples of 

which include hemorrhage, encephalitis, or vasculitis [3]. Non-TBI injuries are typically 

researched individually by injury type, and as such there is a lack of information on the 

occurrence and recovery of this grouping of injuries as a whole. Both TBI and non-TBI 

injuries result in neuroinflammation of the brain, and can damage the underlying internal 

mechanisms of the brain including cerebrovascular autoregulation leading to secondary 

injury [4]. Secondary injury can come in the form of elevated intracranial pressure, or 

ischemia, which is a lack of oxygen due to impaired or absent blood flow. 

 Cerebrovascular autoregulation (AR) is the process in which the brain attempts to 

maintain adequate blood flow throughout all lobes of the brain to promote proper 

perfusion. AR is a complex process that involves control of blood flow through 

vasodilation and vasoconstriction, as well as the flow of cerebrospinal fluid (CSF), in an 

attempt to maintain cerebral perfusion pressure (CPP) and intracranial pressure (ICP) 

within adequate ranges [5]. Intracranial pressure is the pressure exerted inside the skull, 

and when elevated causes excess stress on the brain that can increase the severity and 

likelihood of secondary injury. As a result, most TBI and non-TBI patients are probed for 
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ICP monitoring during their stay in the hospital. This allows healthcare professionals to 

monitor the ICP level, and keep it within a safe range. This type of ICP monitoring and 

management has been associated with a significant decrease in patient mortality [6,7]. 

Not only is the value of the ICP signal important, but the shape of its waveform also 

provides key insight into the underlying mechanisms and symptoms of a patient.  

 Management of ICP in patients with TBI and non-TBI is critical to their recovery. 

As a result, many researchers are looking into developing a predictive index as a means 

of better understanding a patient’s AR competence through their ICP signal, or even 

predicting changes in ICP such as hypertensive spikes. This information would allow a 

physician to provide the best care for a patient, and potentially act prospectively to 

prevent damage by addressing the problem before it occurs. As a result, many researchers 

have taken to studying and analyzing clinical patient data as a means of developing a 

predictive index.  

The difficulty of this methodology is that ICP represents the pressure measured 

within a small volume of parenchyma inside the brain, and cannot be measured in a 

singular vessel. This results in the ICP being affected by a multitude of different factors 

and processes within the brain at every given moment. It is extremely difficult to 

determine an index that will be able to predict a future change in ICP or attempt to 

understand its meaning as slight alterations in ICP could be caused by a single factor or a 

combination of these various factors. Most approaches for a predictive index look into the 

numerical values of the ICP signal, while others look into the shape of the waveform. 

Some indices look at a comparison with a physiological signal such as arterial blood 

pressure (ABP) [8]. Others look at the correlation between the amplitude and mean of the 
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ICP signal [9]. Some have even looked into the differential of the ICP signal in 

combination with phase plane analysis [10]. 

There are numerous approaches to ICP analysis that could possibly provide 

clinically predictive indices of TBI, however none have yielded practical prognosticators 

of outcome in relation to treatments. There is thus an urgent need for an index that can 

guide ongoing interventions for maximum efficacy.  

 

Related Work 

Prx 

 Prx is the pressure reactivity index, and is calculated by finding the correlation 

between the ABP and ICP signals [8]. This index has been found to be somewhat 

predictive of patient outcome in patients with TBI [8,11]. Prx also creates a U-shaped 

distribution that can be used to determine the optimal cerebral perfusion pressure (CPP) 

of a patient. Although, this application is thought to be biased as it is driven to form a U-

shaped curve even when using a cross-correlated randomly generated ICP signal proving 

that it may not be as informative as previously thought [12]. Other studies have found 

that Prx may fall short of other indices, such as RAP in predicting ICP events [9]. 

 

RAP 

 One index that was able to predict hypertensive spikes in an ICP signal, and can 

be used monitor patient status is the compensatory reserve index, RAP [9]. RAP is a 

correlation between the ICP amplitude and mean. The integrity of this index has been 

called into question due its use of the mean ICP. This is because the mean ICP is 
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influenced by baseline effect errors. These baseline effect errors can come in the presence 

of spontaneous shifts in the baseline ICP, or a drift in the signal [13,14]. These baseline 

errors can cause opposing RAP values when monitoring at different locations within the 

brain thus bringing its accuracy and reliability into question [14]. As a result of the effect 

of these errors many people have begun to dismiss RAP, and its effectiveness as an ICP 

predictive index. 

 

PAR and the Differential Phase Plane 

Phase area ratio (PAR) has been proven an effective tool in assessing the 

smoothness of joint kinetics, and as such could be used compare waveforms through their 

smoothness in the phase plane [10,15]. This methodology provides a numerical 

representation of the differences between phase plane curves based on three areas. These 

three areas are the footprint area (AF), the hull area (AH), and the loop area (AL). AF is 

the area enclosed by the phase plane curve, AH is the area inside convex hull around the 

phase plane curve, and AL is the area of any self-intersecting loops [15]. This makes 

PAR sensitive to peak changes through the corresponding changes in the phase plane 

especially through changes in the AH and AL.  

This technique was paired with the differential phase plane, and found that 

simulated waveforms with altering amount of peaks (1-3) result in different PAR values 

[10]. This suggests that PAR could be used as a predictive index through its effectiveness 

in differentiating between ICP cycles. It was also found that although this method did 

demonstrate changes based on peak number it could not predict a future hypertensive 

event in an ICP signal [10]. 



	

	

5	

 

Predictive Indices 

These three predictive indices are just three of the many methodologies that have 

been attempted in finding a breakthrough index. Unfortunately, the variability and 

complexity of the physiological mechanisms at work during brain injury make it 

extremely difficult to find an index that works in most circumstances, and is not affected 

by baseline errors. The ICP waveform tells a story about these physiological mechanisms, 

and as such could be the key to developing a predictive index. The potential of this 

methodology was visited when PAR was able to differentiate between simulated ICP 

cycles of different peak number. 

 

ICP Waveform 

 The ICP waveform tells a story of the underlying condition of the brain in a 

patient, and as such should be further explored as the driving force behind a predictive 

index. A normal ICP waveform has three distinct descending peaks, known as P1, P2, 

and P3 (Fig. 1). P1 is the percussion wave that represents the arterial systolic pressure, P2 

is the tidal wave that represents the increase in ICP in response to the increase in volume, 

and P3 is the dicrotic wave that represents the aortic valve closure [16]. A more simplistic 

way of viewing the first two peaks is that P1 relates to the arterial pulse, and P2 can be 

thought of as the compliance of the brain [16-19]. These peaks can change in amplitude 

in response to different physiological conditions such as changes in ICP elevation, or 

impaired cerebrovascular autoregulation (Fig. 2) [18,20]. Comparing ICP waveforms 

could provide insight into patient outcome, injury severity, and internal mechanisms. 
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Figure 1: ICP Peaks – ICP curve with the three descending peaks of a normal ICP wave 

labeled. P1 is the percussion peak and is usually the tallest peak, P2 is the tidal peak, and 

P3 is the dicrotic peak. 

 

 
Figure 2: Change in ICP Waveform – Impaired cerebrovascular autoregulation or 

compliance causes an increase in intracranial volume leading to a spike in the P2 wave 

[18]. 
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PAR and the Integration Phase Plane 

The phase plane curve can be produced using different methodologies such as the 

signal differential as in the Qadri paper, or the integral phase plane [10]. The differential 

phase plane tends to emphasize small changes in the ICP shape that could be due to 

noise, patient movement, or other sources of error. These small changes in ICP result in 

large loops and jagged curves in the phase plane (Fig. 3C). The integral phase plane on 

the other hand provides a smoothed ICP curve that is less susceptible to noise, and results 

in a smoothed phase plane curve thus reducing the effect of error (Fig. 3B). This is due to 

the fact that the integration phase plane curve is driven more by the ICP waveform as a 

whole as compared to the small changes in ICP slope, and as such the integral phase 

plane is used to compare these waveforms. PAR calculated from the integral phase plane 

could be used as a predictive index to predict patient outcome and state of 

cerebrovascular autoregulation through the use of phase plane analysis of the ICP 

waveform. 

A) B) C) 

   

Figure 3: Phase Plane Curve Comparison – A) One cycle of ICP data used to generate the 

phase plane curves. B) The integration phase plane curve, which focuses more on the ICP 

waveform as a whole. C) The differential phase plane curve that focuses on the small 

changes in ICP slope. 
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Methods 

 
 
Patient Selection 
 
 Patients were selected by the clinical staff at Robert Wood Johnson University 

Hospital based on the diagnosis of a brain injury. The clinical staff also provided all the 

demographic information, such as patient age and diagnosis. The data and information 

collection procedure was approved by the Rutgers University Institutional Review Board 

(IRB), and follows all HIPAA guidelines. 

 

Signal Collection  

 This study is a post-acquisition data analysis study that drew from ICP signals in a 

database, of which the signal collection methodology is outlined in, ‘Trending 

autoregulatory indices during treatment for traumatic brain injury’, by Dr.Kim. This 

paper details that the ICP signals of the selected patients were continuously recorded at a 

sampling rate of 50Hz either through the use of a bolt or ventriculostomy (Camino Direct 

Pressure Monitor, Camino Laboratories, San Diego, CA) with both methods of data 

collection requiring a hole to be drilled through the skull of the patient [21]. A bolt also 

known as a subdural screw is implanted into the subdural space of the brain, while the 

ventriculostomy is inserted into the lateral ventricle, and can also be used to manage CSF 

volume through draining [22]. In this study about half the patients received the bolt and 

the other half the ventriculostomy, but over the past few years the ventriculostomy has 

become increasingly used as the preferred method of ICP monitoring due to its increased 

capabilities of CSF management.  
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The ICP signal along with other vital signals were sent to a clinical monitor that is 

traditionally used within the SICU, and then exported to a General Electric TRAM-rac 

4A [21]. This device is able to both isolate and filter the input vital signals, and output 

them to a data acquisition device (NI-USB 6210 DAQ, National Instruments Inc) from 

which they are directly sent to an on-site laptop [21]. The patient ICP signals were 

collected on an hourly basis so that each data file contains a total of one hour of ICP 

monitoring. All the patient signals were stored in an online database for future use. 

 

Patient Exclusion 

The database comprised of a total of 33 patients with brain injuries ranging from 

subarachnoid hematoma to pituitary tumor. Patients were excluded from this study if 

there were less than ten recorded ICP signals (less than 10 hours of ICP data), there 

wasn’t enough demographic information on the patients to group them, or there was a 

problem with their ICP signal or it’s recording. An ICP recording problem included 

signals that were all or a majority noise (Fig.4A). Other patients were excluded based on 

the shape of their recorded signal, in which the signals had a consistent pulse pressure 

greater than 10mmHg during each cycle (Fig. 4B). This was removed on the basis that 

the average pulse pressure of an ICP wave is only 6.1mmHg, and as such these excluded 

signals did not mimic an ICP signal in terms of shape or value [23]. From the original set 

of 33 patients, 6 were rejected due to having fewer than ten data files, 2 were rejected for 

not having enough information to break them into groups, 2 were rejected because the 

signal was all noise, and 2 were rejected due to having a consistent amplitude difference 
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greater than 10mmHg. After exclusions 21 patients were left with usable ICP data to be 

included in this study. 

 

A) B) 

  
Figure 4: Examples of Excluded ICP Signals – A) Example of an excluded patient ICP 

signal that was a majority or all noise. B) Example of an excluded patient ICP signal due 

to having a consistent pulse pressure greater than 10mmHg, which does not mimic the 

typical ICP behavior. 

 
 
Patient Grouping 

To determine if phase plane analysis can be a predictor of patient outcome and 

cerebral hemodynamic regulation patient groupings were compared. Patients were 

grouped by type of injury, and then further by outcome. From the database of patient ICP 

data two injury type groupings, and two outcome subcategories were created (Fig. 5). The 

patients were first split into injury categories based on if they had a TBI or a non-TBI. 

The difference between these two groupings is that the TBI grouping received their 

injuries due to some sort of traumatic force such as a fall, while the non-TBI group injury 
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is typically due to an underlying condition that affects the integrity or pressure within the 

brain.  

After this initial split there were 15 patients in the TBI group, and 6 patients in the 

non-TBI group. These two groups were then further divided by patient outcome. Based 

on reported patient outcome during their stay in the hospital patients were either grouped 

into the rehab group or the deceased group. This grouping method resulted in a total of 

six patient groups: T-group, Tr-group, Td-group, N-group, Nr-group, and Nd-group 

(Table 1). The T-group consists of all 15 TBI patients, which was then further divided 

into the Tr-group and Td-group. The Tr-group consists of the 9 TBI patients that went to 

rehab after their stay in the hospital, and the Td-group consists of the remaining 6 TBI 

patients that died while in the hospital. The N-group is made up of the 6 non-TBI 

patients, which then gets further divided into the Nr-group consisting of 5 rehab non-TBI 

patients, and the Nd-group that only has 1 deceased non-TBI patient (Table 1). Since the 

Nd-group has only one patient it cannot be compared on its own, and as such is only used 

as part of the N-group. These five patient categories are used to compare the initial PAR 

values of patients based not only upon their injury type, but also their outcome.  
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Figure 5: Patient Group Flowchart – A Flowchart demonstrating how the patients were 

broken into the six patient groups. 

 

Table 1: Patient Groups 
Group Description Group Name Number of Patients 

   
TBI patients T-Group 15 

TBI patients that went to rehab Tr-Group 9 
TBI patients that are deceased Td-Group 6 

   
Non-TBI patients N-Group 6 

Non-TBI patients that went to rehab Nr-Group 5 
Non-TBI patients that are deceased Nd-Group 1 

   
 
 
Signal Exclusion 

From the database of patient ICP data the first clean signal closest to the 

admittance of the patient to the hospital was chosen. This was done as a means of 

determining the initial classification of a patient before the influence of days to weeks of 
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treatment. Each patient folder contains their ICP signal data file per hour, and starting 

with the hour of admittance each data file was examined for a clean signal [21]. A clean 

signal is characterized by a recognizable ICP signal with limited segments of noise alone. 

After removal of signals it was found that out of the 21 patients, 14 of them had usable 

signals at admittance, and the other 7 had usable signals within the first 24 hours of being 

admitted.  

 

Signal Processing  

To obtain the most accurate data without the influence of noise the patient ICP 

signals were filtered. This was done through the use of a Butterworth filter in MATLAB. 

A Butterworth filter creates an nth order low-pass filter using the desired cutoff frequency 

and sampling frequency. The Butterworth filter uses a normalized cutoff frequency wn 

that corresponds to the cutoff frequency and sampling frequency through Equation 1 [24].   

 

Equation 1:                                         [24]  (1) 

This equation determines the normalized cutoff frequency wn, through the division of the 

cutoff frequency fc with half the sampling frequency fs. This creates an nth order low-pass 

filter with the desired cutoff frequency. 

 

 The sampling frequency fs used for ICP data collection was 50 Hz making it a 

constant in Equation 1. As a result, to determine the filter for the ICP data two key 

parameters needed to be tested. These two parameters were the cutoff frequency and the 

€ 

wn =
fc
1
2
f s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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order of the filter. First, to determine the cutoff frequency the order was held constant at 

5, while the cutoff frequency was adjusted and compared to the original unfiltered signal. 

Various cutoff frequencies were examined ranging from 4 Hz to 20Hz (Fig. 6A). It can 

be seen that the lower frequencies over filter the signal leading to the filtered signal not 

maintaining the general shape of the original unfiltered signal. The higher frequencies on 

the other hand had a tendency to under filter the data leading to a filtered signal almost 

identical to the unfiltered data. Previous studies have used a frequency cutoff of 16Hz or 

20Hz, but through the comparison of filtered signals with the unfiltered signal it was 

determined that a cutoff frequency of 16 Hz was better for data analysis as it did not over 

filter the signal as with the 20Hz cutoff [25,26]. This cutoff frequency allows for the 

filtered signal to maintain the same shape as the unfiltered signal as to not compromise 

the signal analysis, while still removing some noise effects.  

A) B) 

  
Figure 6: Butterworth Parameters – A) Testing different cutoff frequencies - One cycle of 

patient ICP data shown as the original signal in black, and the color lines depicting the 

application of different cutoff frequencies. B) Testing different filter orders – One cycle 

of patient ICP data shown in black, and the colored lines demonstrating increasing filter 

orders.  
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 The second filter parameter was the order of the low-pass filter, which determines 

the roll-off rate [27]. In other words the order determines how quickly the signal is 

dissipated after the cutoff frequency is reached. Multiple studies have used a 5th order 

low-pass or Butterworth filter to remove noise from ICP data, but different orders were 

tested to validate this choice [28-30]. Different orders were tested by keeping the cutoff 

frequency constant at 16 Hz, and plugging in various orders ranging from 2 to 6. All five 

orders produced very similar results, but it was visually determined that an order of 5 was 

able to maintain the dynamical features of the ICP wave (Fig. 6B). This is due to the fact 

that orders lower than 4 and higher than 5 produced peaks with slightly exaggerated 

slopes with an order of 5 producing the closest resemblance to the original signal slopes. 

 

 

Figure 7: Chosen Filter – The original ICP signal is shown in black compared with the 

chosen Butterworth filter with fc=16Hz and n = 5 shown in blue.  
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 Through these two tests it was determined that the best filter for data analysis was 

a 5th order Butterworth filter with a cutoff frequency of 16 Hz (Fig. 7). This filter 

produces a filtered signal similar in both shape and value to the original unfiltered signal, 

while still removing the effect of noise. This filter produces the magnitude bode plot as 

seen in Figure 8, which depicts both the cutoff frequency and rate of roll-off. This 

Butterworth filter was used to filter the ICP signals of all the patients. 

 

 

Figure 8: Filter Magnitude Properties – Bode plots showing the magnitude properties of 

the selected Butterworth filter. The cutoff is set at 16Hz, which appears as 0.64π when 

converted to a normalized frequency, wn. 
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Technical Approach 

 

Integration 

 Phase plane analysis is used to determine the state of a system, and this was 

achieved through plotting the integral of the ICP signal against the original ICP signal. 

The integral phase plane was chosen as the integral of the ICP signal results in a filtered 

ICP signal. Integration of the ICP signal is the area under the curve of the ICP signal, 

which results in a smoother ICP signal making it less susceptible to noise, while still 

maintaining the shape of the ICP signal (Fig. 9A & 9B) [31]. Derivation on the other 

hand emphasizes all the little peaks and valleys within the ICP signal as it represents the 

slope of the signal. This method is susceptible to noise and small changes within the ICP 

signal (Fig. 9A & 9C). As to obtain a more accurate phase plane depiction of the shape of 

the ICP waveform integration was chosen as the preferred method.  
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A) 

 
B) 

 

C) 

 
Figure 9: Integration vs. Differentiation – A) One cycle of collected ICP data from a 

patient B) The integral of the ICP data seen in part A, and can be seen as a smoothed 

copy of the original ICP data. C) This is the derivative of the original ICP data in part A, 

and emphasizes even the small peaks and valleys seen in this signal. 

 

Since the integration phase plane was the chosen state of the system the 

trapezoidal rule was used to obtain the ICP integral (Equations 2 and 3). The trapezoidal 
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rule uses the input of a signal or function, and is able to generate the integral by creating 

various small trapezoids under the curve that represent the area [32]. The equation then 

calculates and sums the area of these trapezoids to determine the integral of the curve. In 

the case of the ICP signal the trapezoidal rule takes the input of the ICP curve and 

integrates it over time. 

 

Trapezoidal rule 

Equation 2:              

€ 

Δxi = xi − xi−1                                             [32]  (2) 

Equation 3:                 

€ 

f (x)dx
a

b
∫ =

Δxi
2

f (xi−1) + f (xi)
i=1

N

∑                           [32]  (3) 

In these two equations x is replaced by the time t, f(x) is replaced by the value of the ICP 

signal, i is a sub-interval that determines what time and ICP point is utilized, and N is the 

highest required value of i. Equation 2 determines the width of the trapezoid by 

determining the difference between two time points, which is then input into Equation 3. 

Equation 3 finds the area of the trapezoid by taking the width and multiplying it by the 

height, or difference in ICP points.  

 

 To obtain the most accurate integration of the signal adjacent time and ICP points 

were used. This means that every trapezoid has a width of 0.02 seconds, and each ICP 

cycle contains anywhere from twenty to forty trapezoids. These trapezoidal rule 

equations were implemented into MATLAB code to automatically generate the integrated 

ICP signal (Fig. 10). The results of this code can be seen in Figure 9B.  
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Figure 10: Trapezoidal Rule MATLAB Code - In this code, velocityb represents the 

integral of one ICP waveform, or one cycle of the input ICP signal, which is represented 

by the variable cycleb. 

 

Phase Area Ratio (PAR) 

 The phase plane curve in this experiment is one ICP cycle plotted against the 

integral of that same ICP cycle (Fig. 11A). Another way to think of this is the ICP curve 

plotted against the area under the ICP curve, and is a visual representation of changes 

within the shape of the ICP waveform. The phase plane depicts the state of a function 

over a period of time, and the phase area ratio is the numerical representation of the phase 

plane areas.  These areas are the phase footprint area (AF), which is the area comprised 

within the phase plane curve (Fig. 11B). The second area is the loop area (AL), which is 

the area of any loops created by the phase plane curve (Fig. 11C). The final area is the 

hull area (AH) that is the area enclosed by the tightest-fit convex hull around the phase 

plane curve (Fig. 11D). An example of a phase plane curve, and the corresponding 

regions that each of these areas encloses can be seen in Figure 11. To obtain the elliptical 

phase plane curves and a more accurate PAR value the first integral and ICP cycle point 

of each signal were removed as outliers.  
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A) 
 

 
Phase Plane Curve 

 

 
B) 
 

Footprint Area 
(AF) – 

 Area enclosed by 
the phase plane 

curve 

 

 
C) 
 
Loop Area (AL) –  
Area enclosed by 
the loops created 

by the phase plane 
curve 

 

 
D) 
 
Hull Area (AH) – 
Area enclosed by 

the tightest fit 
convex hull to the 
phase plane curve 

 

  
Figure 11: PAR Parameters – A) The phase plane curve created by plotting the ICP curve 

against its integral. B) The footprint area is the area enclosed within the phase plane 

curve including any loops. C) The loop area is the area of any loops and nested loops 

created by the phase plane curve. The nested loop areas are counted multiple times, 

according to their order (i.e., first loop, second loop, etc.) D) The hull area is the area 

enclosed by the tightest fit convex polygon to the phase plane curve. The phase plane 

curve outline can be seen in black, and the enclosed region by a phase plane area is in 

cyan.  
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 Using these areas the phase area ratio can be calculated through the use of 

Equation 4 [15]. ICP curves that do not follow a typical waveform will result in a higher 

PAR as they will have an increase in both hull and loop area. A sine wave results in a 

perfect PAR of zero, and as such the more similar in structure the ICP curve is to a sine 

wave the lower the PAR value.  This means that ICP waveforms that have distinctive 

peaks and valleys with large amplitude differences will result in a higher PAR, and tend 

to be associated with a worse state of cerebrovascular autoregulation and compliance.  

 

Equation 4:                                     

€ 

PAR =1− AF
AL + AH

                                         [15]  (4) 

PAR is the ratio of area within the phase plane curve (AF) to the sum of the area of the 

loops (AL) with the area of the convex hull (AH).  

 

To get a more accurate PAR value for each patient three PAR values were 

computed at different time points for the ICP signal. These time points are at the 

beginning, middle, and end of the signal. Since ICP signals are collected and stored on an 

hourly basis these time points correspond to their position within an hour. So the 

beginning PAR value is calculated within the first few minutes, while the end PAR value 

is calculated in the final few minutes of that hour. These three PAR values were then 

averaged to obtain the final PAR value for each patient. 
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Footprint Area (AF) and Hull Area (AH) Calculation 

From Equation 4 it can be seen that PAR is dimensionless and as such a graphical 

solution can be used to calculate the value of PAR without finding the numerical value of 

each region. This can be done in MATLAB by plotting the phase plane curve, and then 

determining the number of pixels located within each region. Finding the ratio of pixels 

per region is equivalent to determining the ratio between the actual areas of each region. 

This method allows for the use of MATLAB image processing tools to convert the phase 

plane graph into a black and white binary image from which the number of black pixels 

filling the area of a specified region can be determined (Figs. 12 & 13). This method 

allows for a simplistic calculation of areas of any shape, size, and location in pixels. 

MATLAB imaging techniques shown in Figure 12 for the hull area were also used to 

determine the areas of the footprint and loops. 

 

Figure 12: MATLAB Hull Area Calculation – Piece of MATLAB code that utilizes 

MATLAB image processing tools to determine the number of pixels captured within an 

area. 



	

	

24	

AH Binary Image 

 

Figure 13: Binary Hull Area – Binary image of the hull area of a phase plane curve. 

 

 The MATLAB code used to determine the number of pixels in an area is done by 

first filling the plot of the desired area of the phase plane curve, or convex hull. Next, is 

to save the filled in plot as an image without the axes as to avoid their influence on the 

number of pixels. MATLAB then has a function im2bw that converts an image into a 

black and white binary image so that everything that was filled in appears in a matrix as a 

0, and the rest of the open space appears as a 1 (Fig.13). So in this case the black 0 pixels 

are representative of the area that needs to be calculated. To determine the number of 

black pixels, the number of white pixels was subtracted from the total number of pixels 

leaving the area of the region in question. This process was done for each of the three 

PAR regions to determine the space they fill in terms of pixels that was then plugged into 

the PAR equation (Equation 4). 
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Loop Area (AL) Calculation 

 The code and process for determining the area of the loops and nested loops 

involved additional processes as compared to the AF and AH calculations. For these two 

areas the phase plane curve or the convex hull could be filled in to determine its area. 

This could not be done for the loops using a simple MATLAB built in tool as it did not 

permit the nested loops to be calculated individually thus causing the AL to be 

underestimated. To solve this problem a series of code was used that ran through the 

phase plane curve point by point looking for an intersection point [33]. This intersection 

point is the first point at which the curve intersects with itself thus creating a loop. The 

developed code then removes all the points outside the loop, and determines the area of 

the first loop in the same manner as AF and AH by converting it to a binary image and 

counting the black pixels. Once this is complete the code removes the loop points from 

the curve thus generating a new phase plane curve minus the first loop, and begins to 

look for the next intersection point. This process continues until all the loops are 

accounted for.  

 

Normal ICP Curve Simulation 

 As a method of visually and numerically comparing the patient groups to a 

normal healthy ICP curve a simulated normal ICP curve was generated. This curve was 

simulated through a combination of Gaussian curves, as discussed in the paper, ‘Phase 

Plane Analysis & Morphological Simulation of Intracranial Pressure Variability for 

Physiological Monitoring of Acute Severe Brain Injury’ by Dr.Qadri.  
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Equation 5:                           [10] (5) 

This equation adds three Gaussian curves together to create one wave with three peaks. 

The amplitude of these peaks is determined by A, the width by B, the location relative to 

zero by C, and the baseline ICP by D [10]. The time vector was represented by t, and was 

a vector of 100 points from 0 to 1 second. The parameters listed in Table 2 are similar to 

that of the Qadri paper, and were used to create this normal ICP wave simulation. The 

combination of these parameters results in the ICP curve and phase plane curve depicted 

in Figure 14. 

 

Table 2: Normal ICP Simulation Gaussian Parameters [10] 

Parameter Value  

A1 4.6 

B1 75 

C1 0.3 

A2 3.5 

B2 90 

C2 0.5 

A3 3 

B3 60 

C3 0.7 

D 5 

 

Statistical Testing 

 A two-tailed student’s t-test with an alpha value of 0.05 was performed when 

comparing patient groups as a method to determine if the group PAR results were 

statistically significantly different from one another.  

€ 

ICPSIM = A1e
−B1 (t−C1 )

2

+ A2e
−B2 (t−C2 )

2

+ A3e
−B3 (t−C3 )

2

+D
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Results 

 

Simulated ICP 

   An ICP curve was simulated to establish a baseline PAR value that would 

represent an ideal by which to quantify the impaired groups. The control ICP waveform 

contained three distinct peaks in descending order starting from the first peak or 

percussion wave (Fig. 14A). The height and widths of these peaks in a normal ICP curve 

can vary, but the waveform maintains the same general shape. As expected, the phase 

plane that resulted from the control-simulated signal was a smooth ellipse with two small 

inner loops (Fig. 14B). The smoothness of the ellipse causes the AL and AH values to be 

almost identical leaving the PAR value to rely mostly on the small AL value. Since, AL 

is a small number compared to that of AF and AH this causes the PAR to be very small 

coming in at 0.039 for this simulated normal signal. 

 

A) B) 

  
Figure 14: Normal ICP Curve – A) A simulated normal ICP waveform generated from 

the addition of three Gaussian curves. B) The phase plane curve generated from the 

simulated normal ICP curve. 
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Visual Findings 

The three main groups are the Tr-group, Td-group, and the Nr-group. This is due 

to the fact that the Tr-group and Td-group comparison compares ICP curves and phase 

plane curves based on patient outcome. The Nr-group makes up a grand majority of the 

N-group, and as such is a good representation of that group. Through the plotting of the 

ICP curves and phase plane curves of these three groups visual differences can be seen.  

The general trend of the Tr-group (TBI patients that went to rehab) seen in a 

majority of patients, but not all is an ICP curve that has three or more small peaks across 

the top (Fig. 15A). This tends to mimic the ICP curve of a healthy individual that 

typically has a curve with three small descending peaks (Fig. 14A & 15A). The phase 

plane curve generated from this data results in an elliptical curve with no loops to a few 

small loops (Fig. 15B). 

 

A) B) 

  
Figure 15: Tr-Group Representation – A) Three ICP cycles taken from a patient in the Tr-

group as a representation of a majority of the ICP signals within this group. B) The phase 

plane generated by a single cycle of the ICP signal from the same patient used in part A. 
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The general trend of the Td-group (deceased TBI patients) is the presence of a 

large notch between the percussion and tidal peaks (Fig. 16A). The large valleys 

generated between the three peaks, especially between the percussion and tidal peaks 

causes a phase plane curve with an increased number of loops. The loops in the Td-group 

vary in both shape and size, and can lead to indents in the elliptical shape of the phase 

plane curve (Fig. 16B). 

 

A) B) 

  

Figure 16: Td-Group Representation – A) Three cycles of ICP data taken from a patient 

in the Td-group that is representative of the majority of ICP signals in this group. B) The 

phase plane curve that originates from integrating one cycle of ICP data from this same 

patient and plotting it against the ICP. 

 
 
 The Nr-group (non-TBI rehab patients) has an ICP waveform with an enlarged 

tidal peak, which typically signifies poor intracranial compliance and increased 

intracranial volume (Fig.17A) [18]. This heightened tidal peak is followed by a cascade 

of smaller peaks leading to most of the waveforms having greater than three peaks similar 
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to that of the Td-group. The large tidal peak results in a large loop in the phase plane 

curve, which may be accompanied by a few smaller loops (Fig.17B).  

 

A) B) 

  
Figure 17: Nr-Group Representation – A) Three cycles of ICP data taken from a patient 

in the Nr-group that is representative of some patients in the Nr-group. B) The 

corresponding phase plane curve generated from one cycle of ICP data taken from this 

same patient in the Nr-group. 

 

 For all three groups the ICP waveform shape varied from patient to patient, but 

the repeated trends seen in multiple patients in a single group are depicted as the group 

representations above. 

 
Numerical Findings 
 
 The phase planes of these three groups, and their corresponding PAR values (Tr, 

Td, and Nr) reflected their ICP curves as expected; corresponding PAR values are seen in 

Table 3. The smooth quality of the ellipse of the phase plane curve accompanied by the 

few small loops leads to the Tr-group having the smallest PAR value at an average value 

of 0.16. The large notch and valleys in the Td-group causes a multitude of loops of 
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varying shapes and sizes, which explains the fact that this group has a higher average 

PAR value at 0.23. Combining the Tr-group and Td-group into the T-group that 

represents all the TBI patients leads to a mean PAR value of 0.19. This value is smaller 

than the mean PAR of the six non-TBI patients that was 0.25. This can be explained by 

the fact that the non-TBI patients have a shorter period with a greater amplitude 

difference between smaller peaks as compared to the larger period with a smaller 

amplitude difference between peaks as seen in the TBI patients. Finally, the Nr-group had 

a mean PAR of 0.26, which made up a grand majority of the N-group data.  

 

Table 3: Group Results 

Group N Mean PAR Standard Deviation 

T 15 0.19 0.066 

Tr 9 0.16 0.049 

Td 6 0.23 0.066 

N 6 0.25 0.018 

Nr 5 0.26 0.018 

Legend: T – all TBI patients, Tr – TBI patients that went to rehab, Td – TBI patients that 

are deceased, N – all non-TBI patients, Nr – non-TBI patients that went to rehab 

 
 
 To determine if there are differences between these patient groupings a two-tailed 

Student’s t-test was performed. This test was performed comparing two groups at a time. 

To compare the phase plane curves of patients based upon their outcome the Tr-group 

and Td-group were selected, and it was determined that these two groups are statistically 

significantly different (Table 4). Then moving to the category of injury type the Tr-group 
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was compared to the Nr-group, and the T-group was compared to the N-group. Both of 

these tests found a p-value of less than 0.05 with an alpha value of 0.05 demonstrating 

that they are significantly statistically different as well (Table 4).  

 

Table 4: Group Comparison 

Group Comparison Group p-value 

Tr Td 0.030 

 Nr 0.023 

T N 0.028 
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Discussion 

 The results of this study demonstrate that there are differences in ICP waveforms 

and their corresponding integral phase plane between patients based upon their type of 

injury and outcome. The differences in patient ICP waveform cause different phenomena 

in the phase plane, such as a heightened tidal peak leading to a large loop in the phase 

plane (Fig. 17B). PAR is a means of taking these physiological differences in ICP (Figs. 

15A, 16A & 17A), and assigning it a numerical value.  

 The ICP signal of the Tr-group (Fig.15A) held the closest resemblance to that of a 

normal ICP signal (Fig. 14A). This visual finding is mimicked by the fact that a normal 

ICP signal produces a similar phase plane curve (Fig. 14B & 15B) with a nice elliptical 

shape, and small inner loops. The ICP simulation also produced a PAR of 0.039, and it 

should be noted that an ICP curve would never produce a perfect PAR value of zero, as 

this can only be done by a sinusoidal wave due to its absence of peaks. The presence of 

the peaks is what defines an ICP curve, and what will always lead to a PAR value greater 

than zero. As such, the ideal PAR value for a patient is around 0.039.  

  The Tr-group having the smallest PAR value of the groups at an average value of 

0.16, and can be explained by its similarity to the normal ICP curve. The ICP curve of the 

Tr-group is similar to that of the normal ICP curve with a few small descending peaks 

near the top signifying that their systems are running close to normal, and that there are 

no concerns of poor compliance or hypertensive events. The Tr-group in the phase plane 

typically has a pretty smooth ellipse like the normal ICP curve, but with a slightly greater 

indent meaning that the AF and AH pixel numbers are very similar leading to a greater 
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influence of AL on PAR. The combination of the slight difference between AF and AH 

paired with the small AL leads to a lower PAR value.  

 The Td-group on the other hand has an average PAR value of 0.23, and is due to 

its more erratic shape, and increased number of loops. The increased number of loops for 

this group tends to cause the elliptical shape of the phase plane curve to have sudden 

bulges and indents leading to more space between the perimeter of the phase plane and 

the convex hull, leading to a larger difference between AF and AH (Fig. 16B). The 

increased amount of loops also causes an increase in AL, and paired with the smaller 

ratio of AF to AH results in a higher PAR value. The Nr-group has an average PAR of 

0.26, and can be explained by its similarities to the Td-group in having a larger AL, and 

smaller ratio of AF to AH (Fig. 17B).  

The large tidal peak seen in both the Td-group and Nr-group signifies that the 

compliance of the brain has decreased as the volume has increased, and the 

cerebrovascular autoregulatory system has failed to make the proper adjustments to 

account for these changes. These adjustments include changing the resistance, and the 

displacement of both CSF and venous blood from the affected area [18]. The decrease in 

compliance forces the percussion peak to decrease, while the tidal peak increases, as does 

the volume of blood (Fig. 2).  

Since the PAR value of the rehab patients is greater than that of the normal ICP 

simulation it demonstrates that these patients have impaired cerebrovascular 

autoregulation or decreased compliance as a result of their condition. Functional 

cerebrovascular autoregulation and proper compliance within the brain would result in 

proper blood flow and pressure throughout the brain resulting in a normal ICP waveform. 
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As a patient recovers their compliance and cerebrovascular autoregulation should begin 

to return to normal thus causing their ICP waveform to alter in shape beginning to more 

closely resemble that of the normal ICP waveform. This means that the higher the PAR 

value the more abnormal the ICP shape, and the worse the condition and outlook for the 

patient.   

The Td-group and Nr-group tend to have an ICP curve with an increased number 

of peaks, and large valleys in between these peaks (Fig. 16A & 17A). This trend results 

in a higher PAR value as it causes an increased number of loops and size of these loops 

within the phase plane. The similarities between the ICP waveforms and their phase plane 

curves demonstrate that type and severity of injury are very important factors that affect 

the ICP of a patient. The Td-group had a TBI accompanied by a poor outcome, but still 

had a lower PAR value than the Nr-group patients that had a non-TBI accompanied by a 

better outcome. A non-TBI injury can affect the brain differently than a TBI injury 

explaining this finding.  

The fact that non-TBI patients have a higher PAR value corresponds with a study 

conducted in 2008 on 172 patients comparing TBI and non-TBI patients based on injury 

type and severity that found that TBI patients had a lower disability rating, and higher 

scores on both motor and cognitive tests as compared to the non-TBI group [3]. These 

findings demonstrate that TBI patients tend to have a better recovery than non-TBI 

patients upon hospital discharge. This means that when comparing patients of similar age 

and injury severity the non-TBI tends to have a more negative impact on the brain and 

body than a TBI. This observation is also reflected in the PAR values found in this study, 

as non-TBI patients have a PAR greater than both TBI patient groupings. Since a higher 



	

	

36	

PAR correlates with an ICP waveform that is increasingly abnormal as compared to a 

normal ICP curve this means that non-TBI patients tend to have a more abnormal ICP 

waveform that corresponds to their condition. Non-TBI patients also had a small standard 

deviation of only 0.018 signifying that their PAR values are all very similar even though 

they have different diagnoses.  

The fact that there is a statistically significant PAR difference (Table 4) based on 

patient outcome is a very important finding as it supports the use of PAR as a predictive 

index in the case of TBI. Having a predictive index that can be assessed upon patient 

admission, and give an idea of patient outcome allows for the healthcare professionals to 

prepare and respond accordingly. As can be seen in Table 3 the higher PAR values of 

TBI patients corresponds to an outcome of death, and the lower PAR values are seen in a 

patient being sent to rehab upon discharge. So higher PAR values could correspond to a 

higher severity of injury, while the lower PAR values represent less severe injuries.  PAR 

could be combined with other assessment tools such as the Glasgow Outcome Scale 

(GOS) to obtain a better understanding of patient injury. This would allow patients to not 

only be assessed by their physical symptoms, but by the state of their ICP waveform as 

well. Combining this type of internal and external physiological parameters would help to 

obtain a larger picture of the state of the patient’s health, and the likelihood of their 

recovery.  

Having this information could be beneficial to providing adequate care to a 

patient. A healthcare professional can find the PAR value of a patient upon admission, 

and use this metric to help determine the type of care this patient needs. This could help 

to answer questions such as: Does the patient require more surveillance or additional 
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resources? Should they be placed in a different unit or department? These are important 

questions when managing the care of a patient, and can help the department to distribute 

their resources in the best possible fashion.  

Injury difference is also an important criterion to determine as it helps to further 

explain and divide the range of PAR values. If PAR were to be used as a predictive index 

there would need to be a cutoff that separates patient outcome. This value would be 

somewhere in between the PAR values of the Tr-group and the Td-group, and might fall 

around the average PAR of the T-group as a whole. This cutoff may be functional for the 

TBI patients, but not for the non-TBI patients knowing that the non-TBI patients 

demonstrate a higher PAR. This can be seen when comparing the average PAR of the Tr-

group of 0.16 and the average PAR of the Nr-group at 0.26. Both groups have the same 

outcome, but the different type of injury caused the Nr-group to have an elevated PAR 

value. The difference between injury types can also be seen in the comparison between 

the T-group with a PAR of 0.19 and N-group with a PAR of 0.25. This further iterates the 

fact that TBI and non-TBI injuries affect the brain and its ICP signal in different ways. 
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Future Work 

 This methodology needs to be perfected and validated using a larger sample size 

as currently the sensitivity and specificity are not at clinical standards. Both the 

sensitivity and specificity are 0.67 when the T-group average is used as the threshold 

between patient outcomes. When the threshold value is changed to 0.21 upon observation 

the sensitivity holds at 0.67, but the specificity rises to 0.89. A larger data pool will have 

more accurate sensitivity and specificity values, and may even result in different values. 

 This study was conducted using the ICP signals from 21 patients, which was the 

amount of usable patients from our database, but ultimately was only a small sample size. 

The next step of this study would be to obtain the ICP signals on or about admission into 

the hospital of many more patients. It is hard to confirm or deny the use of PAR as a 

predictive index with such a small pool as outliers tend to skew the results. A larger data 

pool would allow for adequate representation of the abilities, usability, specificity, and 

sensitivity of PAR as a predictive index. This would also allow PAR ranges to be 

specified for each patient grouping that would be used to predict the outcomes of new 

patients.  

 Other than additional patients, additional information would also be useful to 

obtain better patient groupings. The information used in this study was patient outcome 

upon discharge from the hospital. The outcome of these patients once they entered rehab 

is unknown, and would provide important information that could explain patients in the 

rehab group that had PAR values higher than the average. Having the GOS score of these 

patients while in the hospital and rehab would allow for better division of patients into 

groups, and provide better insight into PAR values. This additional information and an 
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enlarged sample size could also allow the study to account for patient age and injury 

severity, which could both, affect PAR values. 

The final consideration for any future work would be to assess different indices 

that look into waveform shape, or phase planes. PAR does a good job of finding a 

numerical representation of the ICP shape. With this in consideration the ICP waveform 

of the Tr-group varies greatly from that of the Td-group yet their average PAR values are 

only different by 1.45 times, which doesn’t leave much room for error. Finding a wider 

gap between group averages would allow for a better range, and generate less overlap and 

outliers. Ultimately, this would produce more accurate results, and lead to an enhanced 

predictive index with a higher sensitivity and specificity.  
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Conclusion 

 This study looked to explore the use of phase plane analysis as a predictive index 

to assess patient outcome and physiological condition. The integral phase plane was 

determined as the most effective as it was susceptible to the least amount of noise and 

smoothed the ICP curve. The phase plane curve obtained by plotting this ICP integral 

against the original ICP curve allowed for the application of the phase area ratio (PAR) 

calculation. PAR provided a numerical value for differences in ICP waveform shape in 

different patient groupings characterized by both outcome (rehab or deceased) and injury 

type (TBI or non-TBI).  

 PAR was able to effectively demonstrate these waveform abnormalities with a 

higher value, and as such found statistically significant differences between various 

groups. It is notable that the Tr-group was different than the Td-group demonstrating the 

ICP and PAR differences associated with patient outcome. The Tr-group average was 

also different than the Nr-group average, and the T-group was different than the N-group 

showing that non-TBI and TBI injuries don’t affect ICP in the same manner. PAR has 

been shown to be a possible predictive index for clinical application, but to prove its 

effectiveness additional testing with an increased sample size must first be conducted.  
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