HAND-GESTURE SENSING LEVERAGING RADIO AND VIBRATION SIGNALS

BY SONG YANG

A thesis submitted to the
School of Graduate Studies
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Master of Engineering
Graduate Program in Electrical and Computer Engineering

Written under the direction of
Yingying Chen
And approved by

New Brunswick, New Jersey
May, 2019
ABSTRACT OF THE THESIS

Hand-gesture Sensing Leveraging Radio and Vibration Signals

by Song Yang

Thesis Director:
Yingying Chen

Gesture recognition that enriches human-computer interaction (HCI) has gained considerable attention recently. Existing solutions such as computer-vision-based approaches recognize and track human hand/body gestures using cameras or visible light. However, they all require line-of-sight and are susceptible to interference from light sources. In this thesis, an innovative approach using ambient radio and vibration signals is implemented to achieve fine-grained hand/finger gesture recognition. By sensing the influence of hand/finger gestures on the transmitted radio signals (e.g., millimeter wave signals) and physical vibrations on a solid surface (e.g., tables, glass boards, acrylic boards), the position of the hand/finger can be precisely estimated through similarity and threshold-based techniques. Particularly, we implemented two types of solutions that work separately: (1) a mmWave-based strategy, where we leverage frequency-modulated continuous-wave (FMCW) radar to track hand movements and recognize various hand gestures, and (2) a vibration-based strategy, where we capture the tiny disturbance in the surface vibrations caused by a user’s finger touches to distinguish between different finger inputs on the surface. Extensive experiments demonstrate that our proposed approaches can accurately track and recognize users’ hand gestures with high accuracy.
List of Figures

1.1. Illustrations of hand-gesture sensing systems. 2

3.1. Feasibility experiment swiping right tracing. 6

3.2. Chirp and intermediate frequency signal in FMCW. 7

3.3. Received 17kHz to 19kHz chirp signal. .. 9

4.1. System architecture for radio-signal-based gesture recognition. 11

4.2. Views of antennas. ... 12

4.3. Illustration of radio-signal-based gestures. 13

4.4. System architecture for vibration-based gesture recognition system. 13

4.5. Illustration of target gestures. .. 16

4.6. The similarity definitions. .. 16

5.1. The experimental setups .. 19

5.2. Selected piezoelectric sensor. ... 20

5.3. Preliminary traces of gestures. ... 21

5.4. Similarity between 'push and pull' gesture and 'swipe right' gesture. 22

5.5. Gestures confusion matrix. ... 23

5.6. Similarity among drawing two line2 gesture samples. 24

5.7. Similarity among three gestures including drawing two lines, drawing a circle and drawing a triangle. .. 24
Acknowledgements

First of all, I am very grateful to my advisor Prof. Yingying Chen for her insightful feedback and kind guidance, which shaped the direction of my research. I also appreciate Prof. Richard Howard’s helpful critique of my research. I would like to express thanks to my mentors, Jian Liu and Chen Wang. Their experience and keen observations helped me develop my skills as an academic. I also like to thank Xin Yang, my research partner who helped accelerate the progress of my research work through our collaborations. Last but not least, I’d like to thank my family for their encouragement and support.
Table of Contents

Abstract ... ii

List of Figures ... iii
Acknowledgements .. iv

1. Introduction ... 1

2. Related Work ... 4

3. Background and Feasibility 5
 3.1. Millimeter Wave Object Detection 5
 3.2. Physical Vibration Propagation and Attenuation on Common Boards . 8

4. System Design .. 10
 4.1. Radio-signal-based System 10
 4.1.1. Radio-signal-based System Design 10
 4.1.2. mmWave Radar Sensor 10
 4.1.3. Gesture Design 12
 4.2. Vibration-based System 12
 4.2.1. Vibration-based System Overview 13
 4.2.2. Sensors Selection 14
 4.2.3. Design of Transmitting Signal 14
 4.2.4. Gesture Design 15
 4.3. Profiling .. 15
 4.3.1. Similarity Definitions 15
 4.3.2. Profiling .. 17
5. Performance Evaluation .. 18
 5.1. Prototyping and Experimental Setup 18
 5.2. Data Collection .. 19
 5.3. Evaluation of Radio-signal-based System 20
 5.4. Evaluation of Vibration-based System 22

6. Discussion .. 25
 6.1. The Influence Factors in Vibration-based Gesture System 25
 6.2. Authentication and The Sweeping Speed of Chirp Signal 25
 6.3. Limitations ... 26

7. Conclusion .. 27
References ... 28
Chapter 1

Introduction

Gesture recognition, which recognizes meaningful expressions of human motion [1], has gained considerable attention recently. It can greatly extend the way of human-computer interaction (HCI) through interpreting meaningful body language (e.g., arm movements, hand movements) to facilitate various smart applications (e.g., smart appliance control, mobile device input, and gaming). Due to the mobility and flexibility of human hands/fingers, a great number of hand gestures can be defined to provide a broad range of gesture commands. Thus, a low-cost solution that can perform hand-gesture sensing to assist people with their daily tasks is highly desirable.

There are some existing gesture recognition solutions based on vision-based sensors. For instance, several studies utilize time-of-flight (ToF) cameras to measure the distances from the camera to the user’s face and hands separately, deriving the hand gesture by comparing and classifying the measured space [5]. Additionally, by collecting the real-time depth data using a ToF camera, researchers can track the hand location in 3-dimensions. Okuli [6] introduces a system that is built on the theory of light propagation and reflection model. It uses several two light sensors to locate the users finger in the workspace which means the users are required to input the touch points or gestures on a certain surface. Another alternative for tracking hand-gestures in 3D is to generate a 3D hand model by using multi stereo camera systems. This strategy estimates the hand spatial position and finger joints using a 3D model calibrated by an Iterative Closest Point (ICP) algorithm and Genetic Algorithms (GA) [4]. Some researchers may opt for conventional cameras, however, with various associated sensors as a complement to perform hand gesture recognition [2, 3]. However, all of the aforementioned systems can be greatly impacted by frequently changing environmental conditions. An unexpected
strong light or a dark environment can make it hard to build a robust system. This thesis presents two systems utilizing vibration and radio signals to achieve the gesture detection goal stepping forward to the a better gesture recognition. Vibration and radio signals are desirable for their resistance to light changes. Furthermore, when considering hardware costs, the transmitters and receivers that signal-based systems require are considerably less expensive compared to optical equipment needed for camera-based solutions.

The proposed gesture recognition systems are built to provide interaction between people and the environment. In the first radio-signal-based system, the user performs hand gestures in the air, detected by nearby radar antennas as shown in Figure 1.1(a). The system uses the radar sensors to measure the distance to each part of the human’s hand and identifies the gesture with a threshold classifier.

The second system is a vibration-based gesture recognition system. The overall idea is that, when the user performs a gesture on a solid surface, the transmitted signal on the solid surface could sense the finger by detecting vibration anomalies created by the presence of the finger. The theory is similar to previous work conducted by Prof. Yingying Chen’s team [8]. The illustration in Figure 1.1(b) shows the gesture performing process. By comparing the received and original signals, the software can learn the fluctuation pattern of each gesture. Finally, we use a threshold based classification to distinguish gestures. The similarity among the time series is quantifiable. We define the sdsimilarity as the combination of two existing distance indicators, dynamic time wrapping (DTW) and earth mover’s distance (EMD).
To summarize, the objective of this thesis is to achieve gesture recognition leveraging radio signal and vibration. These systems are for in-the-air hand-gestures and touch-based gesture recognition, respectively. Profiling and threshold classifiers are built into each system. From our evaluations, we observe 96.3% accuracy for the radio-signal-based system when differentiating between two hand-gestures and 91.2% accuracy in the vibration-based system when differentiating between three different gestures.
Chapter 2
Related Work

The radio signal is a form of electromagnetic waves, originally used for object detection such as through radar. Research shows that it has the ability to sense more fine-grained objects such as human hands comparing to Wi-Fi signal [12]. For gesture recognition, there are already several technical works that indicate that millimeter waves (mmWave) are capable of detecting human activity and have advantages compared detection methods using Wi-Fi channel state information (CSI) [11]. Some studies use customizable testbeds [12] or mmWave beamforming to recognize gestures [13]. In the beamforming approach, they introduce a 94 GHz radar transceiver with on-chip antennas. The transceiver provides phase, amplitude, and time-of-flight (ToF) information on echo pulses. The previous work contributes more on the antenna and circuit design. Another work utilizes a 60 GHz millimeter wave (mmWave) to achieve real time gesture recognition in motor vehicles using random forest (RT) classifiers. This technique has been demonstrated to be sensitive enough to successfully detect minute motions such as wiggling fingers as well as discern the number of fingers wiggling.

Vibration-based gesture recognition is also a potential application of high-frequency signals. High-frequency signals are widely used for carrying information or information transferring [16] [17]. Since these signals rarely fluctuate, the carried data can be communicated with little interference. Some gesture recognition system use visible light [18] for such purposes. By utilizing the features of radio and vibration signals, we can consider the signal as a feature. Beside, the signal will also hint some information about how the fluctuation is performed.
Chapter 3
Background and Feasibility

In this section, we investigate the feasibility of gesture recognition using radio signals and vibration. Specifically, we evaluate the validity of the following ideas. For the radio-signal-based system, we try to differentiate the reflected signal spectrograms. For vibration-based gesture recognition, we examine use of physical vibration propagation features. The following subsections will present the fundamental theory of millimeter wave object detection, vibration attenuation, and how a human’s finger can affect this process.

3.1 Millimeter Wave Object Detection

A millimeter wave (mmWave) is a signal encompassing the spectrum band between 30 gigahertz (GHz) and 300 GHz. The mmWave signal is easily blocked or absorbed by solid surfaces because of its high-frequency nature. A study [23] on a mmWave ranging from 75-110 GHz investigated the signal absorbing performance on frequency selective surfaces. Their findings suggested that the mmWave has an advantage compared with the visible, ultrasound and Wi-Fi signals.

"Millimeter" means that the wavelength of the wave is at the millimeter level. A 30 GHz millimeter’s wavelength is about 9.99 mm. Normally, the thickness of the human’s hand is 2-3 cm. Therefore, tracing a hand-sized object in distance, angle, and velocity is fairly plausible using mmWaves. Figure 3.1 shows the 1D trace of the swiping right gesture. The mmWave utilizes a frequency-modulated continuous wave (FMCW) to detect the object. In FMCW, the transmitted signal is a linear frequency modulated chirp signal with a short duration for each chirp signal. By calculating the frequency and phase differences between the original and reflected chirp signals, even the radar
can detect objects.

The basic algorithm of detecting the distance, angle, and velocity of the object relies on the chirp slope and phase difference. The chirp slope is the increasing speed of the frequency. The fundamental concept is that the antenna array sends the chirp signal and receives the reflected signal wave from the object. The difference between the overlapping part of the transmitted and received single chirp signal is defined as the intermediate frequency (IF) signal as we can see the solid part in Figure 3.1. The IF signal is computed by the hardware circuit. The initial phase (ϕ_0 in Figure 3.1) of the IF signal is the difference between the phase of the transmitted and received chirp, which is known. The time delay for the received signal is normally hard to measure for hardware in the real world situations since the travel time is normally 2 ns for measuring an object across 30 cm. However, the slope follows the formula $slope = \frac{\phi_0}{\tau}$ where τ is the time delay. Furthermore, the time delay τ can be derived from Formula 3.1 where f_c is the start frequency of the chirp signal.

$$\phi_0 = 2\pi f_c \tau$$ (3.1)

With this formula, the distance and velocity can be calculated, after which the time delay (τ) can be derived. Distance can be estimated by simply measuring the
frequency difference between the transmitted and received signals. With the distance to the object, we calculate the time delay (τ) between transmitted and received signal using Formula 3.2 where c is the speed of the light [19].

$$\tau = \frac{2d}{c}$$ \hspace{1cm} (3.2)

The angle measurements are based on the phase difference of multiple antenna arrays. According to the Doppler Shift, an object moving to the wave source would cause a change in the frequency or the wavelength of a wave. The frequency and phase difference is caused by the movement of the object. When there are two chirps in transmission to a moving object, the tiny phase difference ($\Delta \Phi$) in each chirp can be calculated. Since the absolute distance can be estimated through range measurement,
using two distances and intermediate transmitting time difference, the velocity \((v) \) of the object can also be calculated with Formula 3.3 where \(T_c \) is the length in time of a single chirp and \(\lambda \) is the wavelength of the radar signal [19].

\[
v = \frac{\lambda \Delta \Phi}{4\pi T_c}
\]

(3.3)

In Formula 3.3, the velocity resolution is closely related to the difference among transmitted times. This formula actually computes the average speed of two points based on range detection, assuming that the target object is moving along the central line of the mmWave radar. The actual resolution is blurred but still capable of determining the direction given the range and velocity measurement.

To summarize, the mmWave has the ability to detect fine-grained hand and finger gestures. However, the limitation is that the vertical field-of-view (FOV) is just about 5 degrees. Thus it limits our gesture pattern design.

3.2 Physical Vibration Propagation and Attenuation on Common Boards

As we discussed in Section 3.1, object detection is based on the frequency change of each chirp signal transmission process. The vibration propagation approach is different, instead transmitting as a radio signal wave in the air. By transmitting the signal into a solid board, the solid board works as a low pass filter in this situation. By choosing a proper method to combine the surface and the signal transmitter sensor, it is possible to revert the frequency peaks.

However, the signal quality may change after transmitting through the board. Based on the texture and material of the board, the amplitude of the vibration wave may degrade over time, a phenomenon known as signal attenuation. Figure 3.3 is the received 17kHz to 19kHz chirp signal. The frequency peaks in the Figure show up at the same frequency points as long as the transmitter signal is fixed, no matter how we touch the transmitting media. The only change is the amplitude on each frequency point. Thus it is possible to measure the amplitude differences in each frame along with time for gesture recording. Because the signal is not directly carrying information in our
configuration, losing parts of amplitude or frequency band is permissible. In theory, a lighter board is easier to vibrate. We should comprehensively consider all aspects to performance a better result.

Figure 3.3: Received 17kHz to 19kHz chirp signal.
Chapter 4
System Design

4.1 Radio-signal-based System

4.1.1 Radio-signal-based System Design

In this section, we describe the development of the mmWave system built for testing the radio-signal-based hand gesture recognition. We utilize an off-the-shelf millimeter wave product from Texas Instrument (TI) [24] to detect the hand gestures. As we discussed in Section 3.1, the mmWave is theoretically capable of detecting hand gestures. Figure 4.1 illustrates our system design. In the data collection phase, the mmWave radar is triggered to begin recording. The user performs a hand gesture in front of the radar antennas. The data capture card will record the signal and transfer the recorded signal to the data handling block. By the fundamental knowledge of FMCW, we can extract range, velocity, and angle estimation from the recorded raw signal data. Furthermore, we can plot the 1D trace with this data. Most importantly, this data can be utilized to build profiles for gestures. In profile building, existing indicators are used to calculate the similarity between hand gestures in time sequences. The final decision is made by a majority vote algorithm. With the similarity definitions, we distinguish hand gestures by with a threshold-based classifier.

4.1.2 mmWave Radar Sensor

We choose the mmWave Radar board AWR1642 to achieve our requirements for transmitting the signal. The board can produce the signal starting from 76GHz to 81 GHz and covers 4 GHz available bandwidth. The transmitter transmits with the power of 12.5 dBm.
Figure 4.1: System architecture for radio-signal-based gesture recognition.

The antenna arrays on the mmWave board are aligned as shown in Figure 4.2(a), which depicts the front view of the antenna setup. A mmWave is set in front of the user. As discussed above in Section 3.1, the FOV is limited in the vertical direction, shown in Figure 4.2(b). By connecting the Ethernet cable of the mmWave to the computer, the capture mode of the mmWave allow us to stream data directly from the radar sensor.

TI also provides a series of radar control programs. These programs can customize the radar in different configurations. We capture data in complex and real formats. After extracting the five-second long data stream from the radar sensor, we isolate and perform offsite analysis on the features in Matlab. We build gesture profiles from these features, track the moving trace of the object in 1 dimension, and determine the difference among gestures.
4.1.3 Gesture Design

As shown in Figure 4.3, we define 3 gestures. The ability of our system to distinguish between these gestures will be the focus of our evaluations. These gestures are performed in front of the mmWave radar sensor. The swiping right are not performed since we could easily differentiate them with the moving direction in the same profile. Hand gestures, like clenching a fist, are preferred rather than finger gestures as the radar sensor is more likely to detect reflected signals produced by the palm due to its larger size. The circle gesture is chosen because this gesture has a moving range in all directions. We'd like to find the FOV in the vertical plane. We also perform the gesture not exceeding the FOV along the horizontal surface. The other two gestures are derived from common actions performed in daily life.

4.2 Vibration-based System

This section describes the theoretical system overview and practical system design in detail. The structure and functions of the prototype will be explained, including material and method selection, approach trade-offs, and other considerations that may affect
4.2.1 Vibration-based System Overview

The prototype contains the following steps to achieve gesture recognition as shown by the system diagram in Figure 4.4. Generally, the specified signal through sensor transmits on the surface and is detected by another sensor which works as a receiver. When a finger touches the surface, due to the physical change of the material, the receiver receives a significantly different signal. All kinds of the signal from all directions will be collected by a smartphone through the headphone jack. Then we process collected data and compare with other gestures. By quantifying the similarity using EMD and DTW, the smartphone can sense the touched position and output the predicted result. Furthermore, because of the different strength and size of the fingertip in different gestures, the smartphone can differentiate gestures. A separate introduction of all hardware components, along with findings from our experiments, is provided in the following subsections.
4.2.2 Sensors Selection

In this prototype, sensors are required for both the transmitter and receiver sides. The piezoelectric sensor is an ideal choice since the principle of the piezoelectric effect is the ability of certain materials to generate an electric charge in response to applied mechanical stress. The stress can make vibration on the solid surface. To ensure that a majority of the signal wave produced by the sensor is transmitted into the physical surface rather than in the air, sensors are firmly attached to the board. When transmitting the signal, the sensor converts the signal wave to physical vibration. Our ideal piezoelectric sensor possesses a resonant frequency near 20 kHz. However, we utilize 18 kHz sensors for our current implementation. 18kHz is also used as the central frequency of the sweep signal.

4.2.3 Design of Transmitting Signal

As mentioned previously, the source signal must not only transmit in 20-centimeter’s range but also within the scope of the microphone frequency response range. In addition, the receiver expects to receive a clear and relatively stable signal with significant frequency peaks. The frequency peaks are short Fourier transforms of the received signal as shown in Figure 3.3. To get the ideal signal, solutions are provided below.

The signal needs to balance several aspects. The commonly stated range of human hearing is between 20 Hz to 20 kHz. Considering the inaudible goal and the maximum frequency that the smartphone can handle with, the upper bound of the frequency is 22 kHz. Since the recognition mechanism is based on features, the number of valid samples or features is a dominant factor when predicting the result. In contrast to a signal with a single frequency peak, multiple frequency peaks contain more valid features. Signal sweeping and linear superimposition are two methods to achieve this multi-features goal. The linearly superimposed signal is too stable compared to the sweeping signal and leads to over-fitting complications in our test. An over-fitting model makes the same gesture difficult to pass recognition. From our tests, the signal sweep is an ideal choice. A higher amplitude can resist background noise while traveling through the surface, therefore we
position a 5W amplifier at the very front of the system configuration. To produce a robust signal, the amplifier is set at a high but stable point. Another way to amplify the signal is to use the signal around the resonant frequency since the sensor will produce the strongest vibration feedback at the resonant frequency. The resonant frequency of the selected sensors is 18 kHz which fairly meets the requirements. Wide bandwidth is not necessary for this application. Thus a signal sweeping from 17kHz-19kHz is sufficient for feature extraction and similarity calculation. The sample rate is set at the upper bound of smartphone limitations, which is 192kHz. As a result, 17k-19kHz frequency range is selected to be used in other tests as well.

For the sweeping time, we observed from works such as Vibwrite [8] that the chirp signal with a 0.004 sweep period performs well on the PIN Pad authentication scenario. However, reducing differences between users is necessary in the recognition system. We reduce the sweep time to 0.003 and get a better result in the vibration-base gesture recognition.

4.2.4 Gesture Design

The gesture is expected to work as a switch with more flexible and reliable features. We designed three patterns in Figure 4.5. Previous works have demonstrated that vibration-based sensing techniques can authenticate users by tapping a PIN number on a given surface [8]. The two-line and triangle gestures evaluate the system in multi-points features. The circle gesture is a closed graphic. Detection of such a gesture suggests potential for continuous input recognition, which is a possible future work. Because the triangle gesture can be clearly split into three steps which are easier to distinguish, the triangle is also selected as the tested gesture.

4.3 Profiling

4.3.1 Similarity Definitions

Once a series of data is collected we need to build a profile for each gesture. Profile samples are classified based on similarity between each other. We define three categories
of similarity, including similarity between gestures, similarity between a gesture and a profile, and the similarity between profiles, illustrated in Figure 4.6.

Similarity between gestures. We selected the Earth Movers Distance (EMD). EMD is a measure of the distance between two probability distributions. Assuming that we have two gestures \(P = \{(P_1, w_{P_1}), (P_2, w_{P_2}), (P_3, w_{P_3}), ..., (P_M, w_{P_M})\} \) and \(Q = \{(Q_1, w_{Q_1}), (Q_2, w_{Q_2}), (Q_3, w_{Q_3}), ..., (Q_N, w_{Q_N})\} \). \(P_i/Q_j \) is the certain feature of \(P/Q \) which is each frame of the time sequence. We define \(D \) as a matrix describing the distance between each pair of features. Thus the dimension of \(D \) will be \(M \times N \). We are looking for a matrix flow \(F \) that can minimize the cost function \(\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i,j} d_{i,j} \) which is a dynamic programming problem. The EMD is calculated with following formula.

\[
EMD(P, Q) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i,j} d_{i,j}}{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{i,j}} \quad (4.1)
\]

Additionally, we also need an indicator to calculate \(D \) in EMD calculation. This indicator should match the spectrogram pattern in each frame. Dynamic time warping (DTW) is selected to achieve this. As we can see in the received signal in Figure 3.3,
frequency peaks are fixed. As a result, DTW will only calculate the Euclidean distances of peaks. For other parts in the spectrogram, in case of some certain frequency have a usual fluctuation, DTW is necessary. We use the DTW similarity sequence as the weight of EMD and calculate the similarity between two gestures. Thus, the EMD weighted using DTW in each frame is regarded as the similarity between gestures.

Similarity between a gesture and a profile. This similarity is used when validating a gesture to a profile. There are two steps to compute the similarity between a gesture and a profile. First, calculate the similarity between the test gesture and each profile gesture. We will get a distance matrix after that. Second, we validate the decision if we can at least achieve a 60% majority vote. The definition of threshold is

\[
threshold = \text{MEAN}(\text{Profile Sim Matrix}) + \text{STDEV}(\text{Profile Sim Matrix}).
\]

Similarity between profiles. This similarity is used to evaluate the profile building result. We simply define it as the average similarity of the training data in each profile.

4.3.2 Profiling

In either system, the gesture profiles must be distinct from other gestures. The profile of a gesture is primarily dependent on the 'distance' among samples. The distance is defined by the summation of DTW weighted EMD. The processing is described below. Starting with the profiling samples, any new input gesture whose distance to the profile is less than than a threshold is regarded to be a member of such profile. The final prediction decision is made by the majority vote algorithm. The database of a gesture can be dynamically updated to fit a variety of gesture inputs.
Chapter 5

Performance Evaluation

The performance of the prototype is given in the following sections. The prototype is tested in different scenarios to evaluate its performance in real situations. In addition, the motivation for all experiments will also be presented.

5.1 Prototyping and Experimental Setup

The experiment setup is shown in Figure 5.1. Note that in Figure 5.1(a), an acrylic board is tested in addition to a wooden board. There are two sensors on each side of the board. They can be either transmitter or receiver depending on the transmitted signal and wire connection to the smartphones. The transmitter transmits the signal produced by a headphone jack of a smartphone. The receiver sensor’s wires go to the headphone jack of another smartphone for data collection and similarity computations. The smartphone on the receiver and transmitter side can either be split or combined in the same phone since the transceivers utilize different channels of the headphone jack. The user is expected to perform the same gesture in the same position. The dimension of the sensor is shown in Figure 5.2. With 18kHz resonant frequency, the receiver can receive a clean and stable signal.

In the evaluation of the radio-signal-based gesture recognition, the mmWave is set 50 centimeters away from the user. As we already know, the gesture is performed in the range of 1 meter, we manually cut and drop the data out of the range of 1 meter. Thus we do not need to worry about the size of the room during the experiments. The background of the test environment is clear and stable in order to block the multi-path noise of the radar.

For touch-based input gestures, the texture and material of the surface influence
the transmission efficiency. Our experiments indicate that the vibration travels faster along the texture of the wood, which leads to low sensitivity when the user touches regions that are perpendicular to the texture lines. The majority of signals received by the sensor are transmitted by the central texture line. This finding guides us to choose materials that have a uniform density, which is an integral design factor. As a result, the experiments are designed on both 1” × 6” × 12” wood boards and 12” × 12” × 1/4” acrylic boards. Note that since we use 17kHz to 19kHz signal in vibration-based gesture recognition, the environment is confirmed to be without any noise lower than 20kHz.

5.2 Data Collection

For the vibration-based gesture detection, the selected transmitting signal is a sweep signal in the frequency range from 17kHz to 19kHz in a 0.003 seconds period. We collect signals from the headphone jack and restrict the signal to such frequency range to decrease the influence of noise outside this frequency band. There are about 8 frequency peaks shown in the frequency domain graph of Figure 3.3. These peaks are the key features to predict the position of the finger. The user is required to perform the gesture on the board in 5 seconds. The Android application will capture these data...
sampled with a 200ms sliding window which means the program samples the data with
5 frames per second. As a result, a series of points for each frame are captured. For
each gesture, there is a data matrix including frames and signal points in each frame.

In the evaluation experiments, for the radio-signal-based system, we perform each
gesture 10 times and calculate the accuracy for each gesture in all 30 gesture samples.
We repeat the experiment 10 times to get the overall accuracy. For the vibration based
system, the user performs each gesture 10 times, after which we calculate the true
positive and false positive accuracy for each gesture in all 30 gesture samples. We again
repeat the experiment 10 times to get the overall average accuracy. We collect the real
and complex data on the mmWave by a data capture card produced by TI company.
These data points are processed and converted to temporal sequences.

5.3 Evaluation of Radio-signal-based System

As we can observe from the moving traces of 3 gestures in Figure 5.3, the mmWave
radar can trace the moving trend by using only 1 transmitter and receiver. We can pro-
file these gestures with more data and differentiate with others. The scattered points
are grouped in a frame and we can track the moving trace with the group of each frame.
21

(a) Push and pull

(b) Swipe right

(c) Circle

Figure 5.3: Preliminary traces of gestures.

The trace of the right-swiping gesture is shown in the previous preliminary experiment result in Figure 3.1. For the comparison between pushing/pulling and swiping right, the results of our numerical similarity computations are shown in 5.4. Gesture 1 indicates pushing/pulling and gesture 2 indicates swiping right. Pushing/pulling is a more complex gesture comparing to swiping right. The mean value of profiling similarity of pushing/pulling is 0.059 which is higher than the mean value of profiling similarity of swiping right which is 0.03. It is normally harder for a complex gesture to build a profile. However, the similarity between different gesture is still above the mean of pushing/pulling profiling similarity.

We also collect data to distinguish all three different gestures. We perform 10 times for each gesture to test the error rate. The result is shows in Figure 5.5. The labels 1, 2 and 3 in the figure correspond to our 'push and pull', 'swipe right', and 'draw a circle' gestures, respectively. Label 4 indicates 'unknown gesture'. It is hard to recognize
the circle as a gesture since the pattern of the signal is complicated. On the other hand, the poor profile result did not influence the recognition of other profiles. The pushing/pulling and swiping right gestures are distinguished with high accuracy. For the first two gestures, we can get 96.3% true-positive accuracy and 5% false-positive accuracy. This can be increased to 100% with an adjusted threshold/fault tolerance.

The circle gesture performs poorly in terms of accuracy, as we learn from Figure 5.3. In theory, when performing the circle gesture for a 1D trace, the distance should remain the same. However, in the trace, we see clear trace breaks, which indicates the radar lost the reflected signal. During the breaks, the hand is actually out of the FOV.

5.4 Evaluation of Vibration-based System

By performing the different gesture 10 times by the same person, we learn the similarity between gestures. Starting from this preliminary result, we evaluated the average similarity of the profile for the 2-line gesture, as seen in Figure 5.6. We take 5 samples in 10 in this Figure. However, DTW results depend on segment accuracy. The heavy calculating cost also makes it unsuitable for real-time reorganization. Thus both EMD and DTW should be utilized to reduce error.
Figure 5.5: Gestures confusion matrix.

Figure 5.7 shows a similar trend when using DTW weighted EMD. The DTW weighted EMD evaluation method is presented in Section 4.3.1. There is a significant difference gap between user 1 and user 2. For our 2-line gesture pattern, the mean value of the EMD among same gesture samples for user 1 and user 2 are 0.0688 and 0.0570 separately. For the 2-line gesture, the true-positive accuracy is 93% and the false-positive accuracy is 2%. For the circle and triangle gestures, since they are similar, the overall accuracy is 89% and 90% for true-positive accuracy for each gesture and 8% and 4% false-positive accuracy separately. By setting an adjusted threshold, higher accuracy is possible.
Figure 5.6: Similarity among drawing two line gesture samples.

<table>
<thead>
<tr>
<th>Sample Index</th>
<th>Gesture1-1</th>
<th>Gesture2-1</th>
<th>Gesture3-1</th>
<th>Gesture4-1</th>
<th>Gesture5-1</th>
<th>Gesture6-1</th>
<th>Gesture7-1</th>
<th>Gesture8-1</th>
<th>Gesture9-1</th>
<th>Gesture10-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesture1-1</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Gesture1-2</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Gesture1-3</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.05</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Gesture1-4</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Gesture1-5</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Gesture1-6</td>
<td>0.04</td>
<td>0.06</td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Gesture1-7</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Gesture1-8</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Gesture1-9</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Gesture1-10</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Figure 5.7: Similarity among three gestures including drawing two lines, drawing a circle and drawing a triangle.

<table>
<thead>
<tr>
<th>Sample Index</th>
<th>Gesture1-1</th>
<th>Gesture2-1</th>
<th>Gesture3-1</th>
<th>Gesture4-1</th>
<th>Gesture5-1</th>
<th>Gesture6-1</th>
<th>Gesture7-1</th>
<th>Gesture8-1</th>
<th>Gesture9-1</th>
<th>Gesture10-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesture1-1</td>
<td>0.1</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.19</td>
<td>0.21</td>
<td>0.25</td>
<td>0.27</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>Gesture1-2</td>
<td>0.13</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.22</td>
<td>0.24</td>
<td>0.28</td>
<td>0.26</td>
<td>0.29</td>
<td>0.39</td>
</tr>
<tr>
<td>Gesture1-3</td>
<td>0.08</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.17</td>
<td>0.25</td>
<td>0.26</td>
<td>0.24</td>
<td>0.3</td>
<td>0.45</td>
</tr>
<tr>
<td>Gesture1-4</td>
<td>0.12</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.22</td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
<td>0.36</td>
<td>0.47</td>
</tr>
<tr>
<td>Gesture1-5</td>
<td>0.1</td>
<td>0.19</td>
<td>0.22</td>
<td>0.17</td>
<td>0.2</td>
<td>0.07</td>
<td>0.18</td>
<td>0.15</td>
<td>0.15</td>
<td>0.41</td>
</tr>
<tr>
<td>Gesture2-1</td>
<td>0.13</td>
<td>0.21</td>
<td>0.24</td>
<td>0.2</td>
<td>0.22</td>
<td>0.07</td>
<td>0.15</td>
<td>0.12</td>
<td>0.13</td>
<td>0.44</td>
</tr>
<tr>
<td>Gesture2-2</td>
<td>0.18</td>
<td>0.25</td>
<td>0.28</td>
<td>0.25</td>
<td>0.26</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>0.22</td>
<td>0.49</td>
</tr>
<tr>
<td>Gesture2-3</td>
<td>0.2</td>
<td>0.27</td>
<td>0.3</td>
<td>0.26</td>
<td>0.28</td>
<td>0.15</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.37</td>
</tr>
<tr>
<td>Gesture2-4</td>
<td>0.16</td>
<td>0.26</td>
<td>0.29</td>
<td>0.24</td>
<td>0.28</td>
<td>0.15</td>
<td>0.13</td>
<td>0.22</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>Gesture2-5</td>
<td>0.19</td>
<td>0.33</td>
<td>0.37</td>
<td>0.3</td>
<td>0.36</td>
<td>0.41</td>
<td>0.44</td>
<td>0.49</td>
<td>0.37</td>
<td>0.12</td>
</tr>
<tr>
<td>Gesture3-1</td>
<td>0.23</td>
<td>0.36</td>
<td>0.39</td>
<td>0.34</td>
<td>0.38</td>
<td>0.36</td>
<td>0.39</td>
<td>0.42</td>
<td>0.52</td>
<td>0.34</td>
</tr>
<tr>
<td>Gesture3-2</td>
<td>0.34</td>
<td>0.44</td>
<td>0.48</td>
<td>0.45</td>
<td>0.47</td>
<td>0.33</td>
<td>0.39</td>
<td>0.44</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>Gesture3-3</td>
<td>0.33</td>
<td>0.45</td>
<td>0.49</td>
<td>0.44</td>
<td>0.48</td>
<td>0.33</td>
<td>0.41</td>
<td>0.43</td>
<td>0.49</td>
<td>0.52</td>
</tr>
<tr>
<td>Gesture3-4</td>
<td>0.3</td>
<td>0.46</td>
<td>0.49</td>
<td>0.42</td>
<td>0.48</td>
<td>0.32</td>
<td>0.4</td>
<td>0.45</td>
<td>0.46</td>
<td>0.21</td>
</tr>
<tr>
<td>Gesture3-5</td>
<td>0.3</td>
<td>0.46</td>
<td>0.49</td>
<td>0.42</td>
<td>0.48</td>
<td>0.32</td>
<td>0.4</td>
<td>0.45</td>
<td>0.46</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Chapter 6
Discussion

Along with the goal-oriented experiments, we also find out some interesting facts and features that may guide us to some inspiration in research. Some of these discoveries accelerated and changed our original plans.

6.1 The Influence Factors in Vibration-based Gesture System

The original selected signal is 17k-19kHz chirp in 0.003 seconds as explained in Section 4.2.3. The rationale for this selection is to optimize detection of PIN number inputs rather than gesture detection. Thus, lower performance was observed when utilizing the chirp signal with 0.003s duration in gesture segmentation. Relatively slower sweeping speeds for the chirp signal could yield fewer peak features in the spectrogram. The more peak features transmitted to the receiver side, the better the system can recover the signal. Furthermore, the signal is more sensitive to the physical change of the medium. Since the user’s finger is unstable when drawing a gesture, the system should keep the peak features and resist the instability at the same time.

6.2 Authentication and The Sweeping Speed of Chirp Signal

For the vibration-based system, according to our previous experiments, a sweeping chirp signal in 0.004 seconds per chirp yields considerably higher performance in PIN Pad authentication. The 16 point authentication result is also acceptable. Intuitively, shorter sweep time brings fewer peak features in the receiver plot. The number of features is directly related to the sensitivity to the features of input. With noticeable sweeping time, such as 1 second, any tiny fluctuation by mistake will be recognized as an important feature. As a result, we choose 0.003 as the sweeping speed, which results
in approximately four frequency peaks on the plot and allows for the differentiation of different gestures.

6.3 Limitations

There are some limitations to this project. First, more fine-grained hand gesture should also be tested to see the potential of mmWave. Second, there is an alternative method to combat the limited FOV in the vertical plane. We can simply put the mmWave 10 degrees angled down to get a 3-D like detection field. However, this scenario was not evaluated in our experiments. These considerations can be incorporated into future works. The full potential of mmWave is still under investigation.
Chapter 7

Conclusion

We proposed and developed two gesture recognition systems in this thesis. For the physical touch-based input gesture recognition, the ability to accurately classify different gestures is dependent on signal peak fluctuation, therefore the gestures are not sensitive to the complexity of the signal. However, in the radio-signal-based gesture recognition detection, because the mmWave radar sensor tracks the moving object by sensing through a limited FOV, it is hard to develop profiles for complex gestures like the circle input.

Although numerous experiments have already done for investigating the possibility of gesture recognition, there is still more potential abilities that the mmWave may have. Future work could include counting people or performing fine-grained gesture recognition. We would like to do more experiments using our setups. Thus, our ultimate goal is to find a quantified standard that demonstrates how mmWave can perform in the gesture recognition field.
References

