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ABSTRACT OF THE DISSERTATION 

Precision Networks and Information Retrieval for Designing and Analyzing Clinical 

Studies 

By ELLIE SMALL 

 

Dissertation Director: 

Javier Cabrera 

 

A Bayesian network is a probabilistic graphical model that represents a set of variables 

and their conditional dependencies via one directed acyclic graph. For example, a 

Bayesian network could represent the probabilistic relationships between diseases and 

symptoms. 

However, in some cases, the situation at hand does not lend itself to the single network 

model. Sometimes each observation represents a network, and so we are dealing with 

many networks rather than just one. We refer to these individual networks as precision 

networks. As an example, we may have a set of patients, each of which suffered multiple 

symptoms, conditions, and diseases referred to as events. These events may or may not 

be related to each other. A precision network, here called a precision disease network or 

PDN, may be created for each patient, and the total set of such PDNs can be stored and 

analyzed together. 

 In order to build such a PDN for each patient, we need to establish when events are 

related and when they are not. We developed a nonparametric algorithm that will 
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determine whether such a relationship likely exists for two events, based on a data set 

with patients who experienced both. If such a relationship appears likely, we can provide 

an estimate of the proportion of dependent observations based on the time period between 

the two events. With the help of medical professionals, we may then establish an interval 

of time differences between those events within which we consider the events related, 

and outside of which we consider the events to be independent. 

 

 

We note that medical researchers are often in need of finding new and interesting ideas 

for research within a topic. Those researchers will access the PubMed database and 

extract publications for the desired topic, usually resulting in a large amount of 

publications. They will then spend significant amounts of time perusing the abstracts of 

these publications in order to find an interesting idea that may be a candidate for a new 

clinical study. 

We have developed a new method and computer application that examines all abstracts 

that fulfill the general search terms from bibliographic databases such as PubMed, mines 

those extracts for non-trivial, frequently occurring words, and allows for clustering of the 

abstracts using those words. By clustering and repeatedly re-clustering interesting 

clusters, a researcher can find an interesting subject for a new clinical study in a fraction 

of the time they spent previously. 
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We have also developed a new method to extract principal phrases from large volumes of 

text. Using this method, we have created an extension to the mining of abstracts that 

allows the clustering of principal phrases rather than words. 
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PRECISION NETWORKS AND EVENT RELATIONSHIPS  

 

1. Introduction 

A precision network is a network in the form of a directed acyclic graph (DAG) that 

applies to one observation in a data set and is associated with an outcome for that 

observation. A collection of precision networks can be clustered, and the cluster an 

observation belongs to used as a predictor for the outcome. 

Each precision network consists of a set of nodes, which we refer to as events, with 

directed relationships between some of them. We are particularly interested in precision 

disease networks (PDNs), where our goal is to model medical/clinical outcomes as a 

function of patients’ information, comorbidities, and network features. 

Part of this dissertation deals with the task of determining whether a directed relationship 

exists between each pair of events for one observation. We developed a nonparametric 

algorithm that will analyze a data set consisting of observations (usually patients) for 

which two events occurred at specific moments in time and determines whether a 

relationship exists between the two events. Should such a relationship exist, it will 

determine, for each moment in time, an estimated proportion of observations that is likely 

to be dependent. Using this information, which we provide using a Shiny application, we 

can let medical experts determine at what interval in time between the two events we 

would consider there to be a relationship. We refer to this interval as the relation 

interval. 
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Alternatively, we have also established a method that will determine the relation interval 

automatically. A proportion would need to be specified indicating the dependent 

observations that need to be present at the time between the events in order to consider a 

relationship to be existing. This proportion will then be used for many events to 

determine the relation interval for each ordered pair of those events. 

Once those intervals have been determined for all possible events related to the disease 

progression, we can complete the PDNs for each patient by selecting a relationship if the 

time between two events falls within the relation interval. The relationship in that case 

will be directed from the first occurring event to the later occurring one. 

We present simulations providing proof of concept, and we demonstrate its application to 

real-world data obtained from the Cardiovascular Institute of New Jersey. 
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2. Precision Networks 

Bayesian networks (Koski & Noble, 2011), generally deal with single networks that 

model a complete data set. However, there are times when, instead of analyzing one 

network modeling a data set, we need to analyze multiple networks together, one for each 

observation in the data set. We refer to each of these individual networks as a precision 

network. 

A precision network consists of multiple nodes (events) with directed relationships 

between some of them and models just one observation in a data set. Each precision 

network is associated with a specific outcome. The data set is to be analyzed in its totality 

in order to discover similarities in the precision networks that would influence the 

outcome. The goal is to provide inference on the outcome for groups of precision 

networks with similar relationships, and ultimately to predict outcome with a reasonable 

degree of certainty when presented with a specific precision network. 
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2.1 Motivation 

2.1.1 Precision Brain Networks 

Precision networks naturally occur in the case of the human brain. A brain can be 

separated into a set of areas. Often it is divided into 68 of those areas, 34 in the left 

hemisphere and 34 in the right. Axons transmit information and follow very precise paths 

in the nervous system. Each person has axonal pathways between areas in the brain, but 

the locations of those pathways vary. These axonal pathways describe the relationships 

between the different brain areas. Use of electroencephalography (EEG) and functional 

Magnetic Resonance Imaging (fMRI) (among others) produces a spatial map of activity 

in the brain. In addition, Diffusion Tensor Imaging (DTI) technologies have made it 

possible to estimate the location of white matter fibers. These methods allow us to 

estimate axonal pathways, resulting in a set of data for each subject describing the 

relationships between the various brain regions. 

These brain areas and the axonal pathways between them result in a precision brain 

network for an individual. Studies (Durante & Dunson, 2018) relating these networks to 

the membership of these individuals to either a high or low creative reasoning group have 

shown a strong association between these networks and creativity, significantly more so 

than previous research linking creativity to region-specific activity in isolation. 

Note that precision brain networks are currently undirected. 
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2.1.2 Precision Disease networks 

In cardiology and more generally in medicine, researchers build graphs or pathways that 

summarize the evolution of disease in a patient (evolutionary disease pathway). A patient 

may suffer from a series of symptoms, diagnoses, medical interventions, procedures, and 

conditions (which we call events) that may or may not be related to each other. 

A precision disease network or PDN, created for an individual patient, would show 

events that occurred in the patient’s lifetime and the connections between them. See 

Figure 1 for examples of two such PDNs. 

 

a) Patient 1 b) Patient 2 

 
 

Figure 1: PDNs for Two Different Patients 

 

The first person started with hypertension (HTN) that caused coronary artery disease 

(CAD). These two then caused heart failure (HF), followed by renal failure (RENAL), 
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atrium fibrillation (AF), and finally, acute myocardial infarction (AMI), i.e. heart attack. 

This path indicates an extremely serious situation. 

The second person started with hypertension (HTN), dysentery (DYSR), and anemia 

(ANEMIA) causing atrial fibrillation (AF), which then in its turn caused heart failure 

(HF). This path is indicative of a much less serious situation. 

Aside from the heart attack, the events are similar. But the structure of these conditions 

makes the situation very different in each of these patients, so the structure has 

information that is not present in the raw data. 

For PDNs we would look for time to death, time to heart attack, or time to recurrence of 

disease as the outcome. We would like to see if specific paths of disease progression 

influence the outcome, and ideally, we would like to establish a reliable prediction of the 

outcome based on the relationships between the events as experienced by a patient. 
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2.2 Analysis 

In order to create a precision network for an observation, we need the events associated 

with the observation and the path between those events. The events themselves are 

usually readily available; however, the path between them usually is not. The data often 

consists of the events and the moment in time at which they occurred; see Table 1 as an 

example of a (partial) data set we would typically receive for a group of 10 patients for 

which PDNs need to be created. 

 

Table 1: Events Data for a Group of Patients 

MR CMTHY CHD HTN DM NEO COPD RENAL STROKE AMI 

8/23/06 10/4/11 8/29/95 8/30/95 2/27/98 NA 3/20/03 9/9/10 NA NA 

5/22/95 NA 5/22/95 1/13/95 NA NA 5/14/95 11/30/10 4/27/07 NA 

NA NA 9/25/07 9/18/99 2/12/07 NA 9/18/99 4/21/09 NA NA 

12/27/11 NA 10/14/97 10/19/01 8/3/07 3/8/03 1/22/02 10/14/97 10/19/01 4/30/03 

NA 8/14/08 12/19/00 10/18/01 12/19/00 11/18/10 12/15/01 11/5/08 NA NA 

NA NA 10/27/97 10/21/04 10/31/97 NA NA NA NA NA 

NA 4/3/95 4/3/95 4/3/95 10/16/95 NA 3/31/02 9/3/09 NA NA 

NA NA 11/22/96 11/22/96 NA 8/29/05 3/9/11 NA NA NA 

NA NA 5/2/95 2/25/98 NA 1/15/08 2/25/98 9/8/10 NA NA 

NA 11/18/07 6/2/06 3/26/02 3/26/02 NA NA 11/18/07 NA NA 

 

Note that sometimes, instead of a date of occurrence, we receive number of days since 
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birth. This is the number we need for our analysis, and if it is not available, we need the 

birthdate of each patient so we can calculate it. 

We see in this table that the fifth patient experienced hypertension (HTN) on or around 

October 18, 2001, and cardiomyopathy (CMTHY) on or around August 14, 2008. The 

PDN for this patient will include nodes for the events HTN and CMTHY; an important 

question we need to answer is whether we should include an arrow going from HTN to 

CMTHY. 

We provide two different methods that will allow us to answer this question; the first one 

is a supervised method described in section 2.2.1 which depends on the outcome, the 

second is an unsupervised method described in the next chapter of this dissertation 

(chapter 3). Using the latter method, we establish the proportion of related occurrences of 

CMTHY that occur 7 years after HTN versus all occurrences of CMTHY that occur 7 

years after HTN, related and unrelated. If this proportion is high, we will include a 

relationship represented by an arrow. If this proportion is low, we will not. 

Once the precision networks have been completed, the information can be summarized in 

one row per observation (patient), and the full set of precision networks may be 

represented by a matrix. Each row in this matrix contains a column for every ordered 

combination of each pair of events, with a 1 indicating a relationship exists, and a 0 

indicating such a relationship does not exist. See Table 2 for an example of this matrix 

for 15 patients showing a subset of the PDN for each of them. 
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Table 2: Matrix with PDNs for 15 Patients 

AF to HF HF to AF AF to MR MR to AF AF to CMTHY CMTHY to AF AF to CHD CHD to AF AF to HTN HTN to AF 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 1 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 1 1 0 1 1 0 

0 1 0 0 0 1 0 1 0 1 

0 1 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 1 1 0 1 0 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 1 0 1 0 1 

0 1 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

 

 We can tell from this matrix for example that the second patient experienced atrial 

fibrillation (AF), which was related and possibly caused by heart failure (HF), 

cardiomyopathy (CMTHY), coronary heart disease (CHD), and hypertension (HTN), 

each of which occurred prior to the occurrence of AF. 

The dimensionality of this matrix can be large, in which case we can reduce it via 

principal component analysis (PCA). Using the principal components, we may then 

cluster the precision networks, establishing an optimal number of clusters which may be 

visualized by representing the commonality of the relationships using different colors. 

See Figure 2 which represents one such a cluster; the red arrows represent relationships 

that are present most often in this cluster, the green arrows represent relationships that are 

present reasonably often, but not as often as the red ones, while the yellow arrows 
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represent relationships that are present in many patients in the cluster, but not as many as 

the red and green ones. 

 

Figure 2: A Clustered set of Precision Disease Networks 

 

For example, in this particular cluster, most people experienced hypertension which was 

usually followed and likely the cause of an occurrence of HF and COPD at a later time.  

Finally, which cluster an observation belongs to can be used as a predictor in addition to 

other predictors such as age, gender, and comorbidities, to be regressed on the outcome. 

The outcome usually consists of time to an event (such as death, or recurrence of 

disease), suggesting we should use the cox proportional hazard model to perform the 

regression. 
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The performance of this method was tested on a data set with multiple events obtained 

from the MIDAS database (see section 3.2.2), while determining the existence of a 

relationship between two events using the supervised method described in section 2.2.1, 

and using the cox proportional hazard model to perform the regression. The addition of 

the PDN in the regression appeared to significantly improve its R2. We intend to redo this 

and other tests using the unsupervised method for determining relationships as described 

in chapter 3. 

 

2.2.1 Supervised Method for Determining Event Relationships 

This is the current PDN method to determine whether a relationship between two events 

occurring in a patient’s lifetime are related. We define a relation interval as an interval of 

time differences between which we consider two events related, and outside which we do 

not consider them related. This routine establishes relation intervals for a collection of 

events. 

The procedure accepts a data set as in Table 1 as well as corresponding survival data for 

the same patients and determines the relation interval for every pair of events. For each 

such pair of events, say event A and event B, we select all datapoints in the data set with 

patients who experienced both, and extract the matching survival data for those patients, 

indicating for each patient the time until death (or any other major event), or censoring. 

We create a new data set with time between event B and A (time to event A minus time 

to event B). We call this data set the observed differences data set. We determine the 

smallest multiple of 100 larger than the largest value in the observed differences data set 
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and denote this by m. We then take steps of size 100 from 100 to m. For each step, we do 

the following: 

• Create a predictor variable that equals 1 for patients for whom the observed 

difference value lies between 0 and the step size, and 0 otherwise. 

• Run a cox proportional hazard model fit on the survival data for the patients using 

the newly created predictor variable. 

The step size that has the largest predictive value (largest z-score) obtained from the 

estimated cox proportional hazard model is the one we use to create the negative limit of 

the relation interval. We repeat the process reversing the events (i.e. time to event B 

minus time to event A) to obtain the positive limit of the relation interval. Note that for 

the interval, positive values indicate that A appeared first. 

This method is considered supervised since it uses patients’ survival data, which is the 

response variable, to determine the relation intervals. This makes the relationship 

between events dependent on the survival of the patients in the data set which is 

undesirable. 

The PDN cluster values obtained using this method appear to be useful for predicting 

patient survival rates. We intend to repeat the analysis using our new method for 

determining the relation intervals as described in chapter 3, in order to establish if the 

method is useful for prediction when the unsupervised method is used.  
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2.3 Future Direction 

We plan to improve the PDN project by comparing three different methods for 

determining the existence of a relationship between two events that occurred in a 

patient’s lifetime: 

• Via the relation interval obtained by the supervised method in section 2.2.1 

• Via the relation interval obtained by the unsupervised method in chapter 3 

• Via the cutoff interval obtained by the unsupervised method in chapter 3  

We also intend to improve on the results by incorporating cross validation to determine 

the predictive value of the PDN clusters.  

Furthermore, we plan to improve and expand an existing R package that performs the 

following functionality: 

• Construct the relation interval via one or more of the discussed methods  

• Construct PDNs from data such as presented in Table 1, and the relation intervals 

• Provide functions used to cluster and analyze the PDNs 

• Provide functions that allow visualization of individual PDNs as well as clustered 

groups of PDNs. 
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3. Event Relationships 

3.1 Introduction 

We developed an algorithm that provides information about the relationship between two 

events that may be used to determine whether two events occurring in a precision 

network are related. 

We assume we have a data set available that contains time of occurrence for two events 

in subjects that experienced both. We refer to these two events as event A and event B. 

Using this data set we determine if it is likely the two events are related. In many cases 

this means that event A may have caused event B. However, even though we can 

determine a potential directed relationship, we are not claiming causality; among other 

possibilities, causality could be indirect and event A may have resulted in measures taken 

that caused event B to occur.  

Should we find a likely relationship between the two events, we will determine an 

interval of time differences between the events during which we consider it likely that 

there is a relationship, and outside of which we are not confident of such a relationship 

existing. We refer to this interval as the cutoff interval. 

In addition, we provide a new data set like the original containing time of occurrence for 

the two events by subject, but with all observations (subjects) that we estimate as 

dependent during the process, removed. This data set may be used to visualize an 

estimate of the shape of the independent densities of time to each of the two events. In 



15 

 

addition, we use this data set to estimate the proportion of dependent observations for 

groups of time differences between the two events. 

We also developed a Shiny application that accepts a data set with time of occurrence for 

two events in subjects that experienced both, performs the algorithm, and presents the 

outcome of the algorithm in text as well as visually. Researchers may then inspect the 

information presented to determine the interval of time differences between the events 

within which we will create a directed link between the events for an observation/subject, 

and outside of which we will not. We refer to this interval as the relation interval. 

We also provide an automated process to determine these relation intervals for groups of 

events, which may be used when medical experts are not available to determine them.  In 

this case we expect as input a set of observations (subjects) with time of occurrence of all 

events of interest for each observation, with the value NA indicating the event did not 

occur for that subject. A specific proportion (set by default to one half) may be specified 

indicating the minimum proportion of dependent observations that need to be present for 

time differences to be included in the relation interval. The interval will then be 

calculated for each pair of events present in the data, provided enough data is available 

for such a pair. 

We note that there has been extensive research in bivariate survival analysis investigating 

nonparametric tests of association between two event times (Zhu & Wang, 2014) 

(Schemper, Kaider, Wakounig, & Heinze, 2013). However, these types of analyses aim to 

describe association between gap times, i.e. the relationship between the length of time 

between two events (the first gap) and the length of time between two other events (the 
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second gap), often dealing with a sample of patients where the gap times for the two 

different situations are ranked and the association is determined using a ranked statistic 

such as Kendall’s Tau. For example, they would attempt to determine if age at onset of 

HIV is indicative of the time between onset of HIV and development of AIDS. Our 

research differs from this since we aim to investigate the probability that a second event, 

which has already happened, occurred due to the occurrence of a first event. In the case 

of HIV and AIDS, our research would be unnecessary since AIDS never occurs 

independently from HIV. 
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3.2 Proposal and Examples 

Starting with a data set consisting of time to event A and time to event B in subjects that 

experienced both, we compare the time between the events as they occurred with the time 

between the events in the case that the events are independent. We estimate the latter by 

treating the data for the two events as separate and apply a correction in case a 

dependency exists. We use bootstrapping on the independent time differences to perform 

the comparison. 

This will allow us to determine if a relationship between the two is likely and allows us to 

obtain an estimate of the independent observations as well as an estimate of the shape of 

the independent densities. 

We will now discuss two examples that we will make extensive use of in order to explain 

the process more easily; one a simulation, the other a real-world situation. 

 

3.2.1 Example 1 (Simulation) 

We let 𝑋~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼 = 6, 𝜆 = 700) and 𝑌~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼 = 2, 𝜆 = 600) represent time to 

respectively event 𝐴 and event 𝐵. We took 2000 random and independent observations 

from each, matching each observation of 𝐴 with an observation of 𝐵, simulating subjects 

experiencing both events independently. This provided our independent data set for this 

example. 
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We found 656 observations where 𝐵 occurred after 𝐴, so we took another 656 

observations from 𝑋. We let 𝑊~exp (𝜆 =
1

20
). We matched each of these 656 

observations of 𝑋 as time to event 𝐴, with 𝑋 plus an observation of 𝑊|𝑊 ≤ 30 as time to 

event 𝐵, simulating subjects experiencing event 𝐵 from 1 to 30 days after event 𝐴, with 

more occurring close to 𝐴. We mixed this data set with the independent data set obtained 

before, giving a data set where 25% of the data is dependent with time differences 

between 0 and 30 days, with more dependent data shortly after the zero time difference 

and less dependent data closer towards the 30 days difference. This provided our 

dependent data set for this example. 

Figure 3a) shows the relative frequency distributions for the two independent data sets, 

which may be interpreted as an estimate of the probability densities of the independent 

distributions, while Figure 3b) shows the relative frequency distributions for the two data 

sets in the dependent example. For comparison we also show, in Figure 3c), the relative 

frequency distributions for the two data sets in the dependent example after our algorithm 

removed those observations it deemed dependent. It is clear from the picture that the 

latter strongly resembles the frequency distributions of the independent data sets in 

Figure 3a). 
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Figure 3: Frequency Distributions for Example 1 
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Our algorithm determined that for the independent data set we could not reject the null 

hypothesis of independence with a 𝑝-value of .50. For the dependent data set, it 

determined that the probability of the data sets being independent was 0% (p-value of 

.00), and thus the null hypothesis of independence was rejected. The algorithm 

determined that there was a significant likelihood that there were dependent observations 

when event B occurred between 0 and 23 days after event A. It estimated that about 26% 

of the data was dependent. 

 

3.2.2 Example 2 (Real-World) 

For our second example we consider patients who have experienced atrial fibrillation 

(AF) as well as heart failure (HF). See (Anter, Jessup, David, & Callans, 2009) who 

discuss the association between the two in detail. Atrial fibrillation is often caused by 

heart failure, but it can also be a precursor to HF. In addition, AF may occur independent 

from any heart failure the subject may or may not have experienced. When a patient 

experiences heart failure, and then experiences atrial fibrillation a few days later, the 

atrial fibrillation is almost certainly caused by the heart failure. But what if it occurs one 

year, or even 10 years after heart failure? At this point, can we still be as certain that its 

occurrence is related to the heart failure incident? The answer to this question is useful 

beyond its application to PDNs; (Kotecha & Piccini, 2015) explain how treatment for 

atrial fibrillation caused by heart failure should be different from treatment for 

independent atrial fibrillation. In order to establish appropriate treatment, we wish to 
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determine the likelihood of its independence based on the number of days between the 

occurrences of the events as experienced by the patient.  

We obtained data from the Myocardial Infarction Data Acquisition System (MIDAS) 

database, discussed in detail by (Kostis, Deng, Pantazopoulos, Moreyra, & Kostis, 2010). 

This database includes the hospital discharge records of patients with myocardial 

infarction and invasive cardiovascular procedures who were admitted to New Jersey (NJ) 

non-federal acute care hospitals since 1986, plus hospital discharge records for all 

admissions of patients with any cardiovascular diagnosis since 1994. It contains 

abstracted discharge data, including the primary reason for admission and up to eight 

additional diagnoses, derived from the NJ statewide hospital uniform billing system, of 

15 million hospitalizations for 5 million patients with cardiovascular diagnoses. We 

observed 93,162 patients with both heart failure and hypertension, and 55,323 patients 

that also experienced atrial fibrillation. Of these, 39,697 experienced AF before the onset 

of HF, 6,820 were recorded as having the events occurring the same day, and 8,806 were 

diagnosed with AF after they were diagnosed with HF. 

Figure 4 shows the relative frequency distributions for 𝒙 = time to heart failure (solid 

green) and 𝒚 = time to atrial fibrillation (dashed black) for patients in our data set with 

both. The data is depicted as relative frequency of the event versus days since birth of the 

patients experiencing the event, and is an estimate of the probability densities of the 

distributions for time to AF and time to HF. It displays the distributions before (a) and 

after (b) dependent observations were removed. 
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Figure 4: Frequency Distributions for Example 2 

 

We see here that generally AF occurs before, and at times well before HF. Removing the 

dependent observations does not appear to significantly change the graph for HF. 
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However, the graph for AF changes significantly, showing that after the removal, the 

independent data set for AF is close to uniform at least for patients between the ages of 

about 35 and 53 years old (note that we have no data for patients over 55). 

The algorithm determined that the probability of the data sets being independent was 0% 

(p-value .00). The cutoff interval, i.e. the interval beyond which we no longer have 

sufficient evidence to reject the null hypothesis of independence, was determined to be 

(−5,16) years where AF is event 𝐴, and 73% of the data was deemed dependent. This 

indicates that some observations of HF occurring within 16 years after AF likely have 

been caused by the occurrence of AF, and some observations of AF occurring within 5 

years after HF likely have been caused by the occurrence of HF. 

Note, that this does not indicate that at any time within that interval we have a high 

number of dependent observations; it could be that at certain times the percentage of 

dependent observations is so low it would not be considered relevant. Due to this, it is 

likely that the relation interval that determines whether to create a link between the two 

events for a precision network is significantly smaller.  

When we use the automated determination of the relation interval (see section 3.3.5.1) 

with the proportion set to the default of one half, we found the relation interval in this 

case to be equal to (−2,10) years, which is indeed significantly smaller than the cutoff 

interval. 
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3.3 Method 

We let 𝑋 and 𝑌 indicate the time (which may be measured continuously or in days) from 

some reference date to events 𝐴 and 𝐵 respectively. Often, in the case where the subjects 

are individuals and the events are medical conditions, a good reference date would be the 

subject's birth date. This reference date will allow us to compare data for different 

subjects.  

To determine the existence of a dependency between 𝑋 and 𝑌 we need to determine time 

between the two events in subjects for whom both events occurred, i.e. we are interested 

in the distribution of 𝑌 − 𝑋. We assume we have access to a data set that contains time to 

event 𝐴 and time to event 𝐵 for 𝑛 subjects. 

Let vector 𝒙 consist of all data points for 𝑋, i.e. 𝑥𝑖 contains the time to event 𝐴 for subject 

𝑖, where 𝑖 = 1, ⋯ , 𝑛. Let vector 𝒚 consist of all data points for 𝑌, i.e. 𝑦𝑖 contains the time 

to event 𝐵 for subject 𝑖, where 𝑖 = 1, ⋯ , 𝑛. 

 

3.3.1 The ODD 

The random variable 𝑂 = 𝑌 − 𝑋 gives us the time differences between event 𝐴 and event 

𝐵 for subjects who experienced both events. We create a data set for this random variable 

as follows. 

𝑜𝑖 = 𝑦𝑖 − 𝑥𝑖, 𝑖 = 1, ⋯ , 𝑛, 𝒐 = [

𝑜1

⋮
𝑜𝑛

] 
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At this point 𝒐 contains a set of observed data points from the distribution of 𝑂, which we 

shall refer to as the observed differences distribution, or ODD. 

When 𝑌 and 𝑋 are measured in days, it is likely that the difference will have many 

repeated values. We will build an empirical probability density function for 𝑂 as follows: 

𝑓𝑛(𝑡) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 𝑖𝑛 𝒐 

𝑛
, 𝑡 ∈ 𝑜1, ⋯ , 𝑜𝑛 

When 𝑛 is large, we can interpolate to obtain an estimate of the density of 𝑂, since: 

𝑓𝑂(𝑡) = lim
𝑛→∞

𝑓𝑛(𝑡) , min(𝑜1, ⋯ , 𝑜𝑛) ≤ 𝑡 ≤ max(𝑜1, ⋯ , 𝑜𝑛) 

where 𝑡 indicates the time between the two events. 

 

3.3.2 The IDD 

We let the independent differences distribution, or IDD, be the distribution of 𝑇 = 𝑌 − 𝑋 

for the case where 𝑋 ⫫ 𝑌. We need to estimate the IDD. 

Note that if subject 𝑖 experienced event 𝐴 at time 𝑡𝑋, i.e. 𝑋 = 𝑡𝑋, then under the 

assumption of independence, 𝑃(𝑌 = 𝑡𝑌|𝑋 = 𝑡𝑋) = 𝑃(𝑌 = 𝑡𝑌). Thus we define 

𝑇0 = [

𝑡11 ⋯ 𝑡𝑛1

⋮ ⋱ ⋮
𝑡1𝑛 ⋯ 𝑡𝑛𝑛

] 𝑤ℎ𝑒𝑟𝑒 𝑡𝑖𝑗 = 𝑦𝑗 − 𝑥𝑖 , 𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑛 

𝑎𝑛𝑑 𝒕 = [

𝑡1

⋮
𝑡𝑛2

] = 𝑣𝑒𝑐(𝑇0) 
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where 𝑣𝑒𝑐(𝑇0) combines the columns of the matrix 𝑇0 to form the vector 𝒕. At this point 

vector 𝒕 contains observed data points for the distribution of 𝑇 = 𝑌 − 𝑋 under the 

assumption that 𝑋 ⫫ 𝑌. 

We build the empirical probability density for the IDD from the vector 𝒕 as follows: 

𝑓𝑛(𝑡) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 𝑖𝑛 𝒕 

𝑛𝑔
, 𝑡 ∈ 𝑡1, ⋯ , 𝑡𝑛2 

When 𝑛 is large, we can interpolate to obtain an estimate of the probability distribution of 

the IDD since: 

𝑓𝑇(𝑡) = lim
𝑛→∞

𝑓𝑛(𝑡) , min(𝑡1, ⋯ , 𝑡𝑛2) ≤ 𝑡 ≤ max(𝑡1, ⋯ , 𝑡𝑛2) 

where 𝑡 once again indicates the time between the two events. 

As an example, if subject 𝑖 experiences event 𝐴 at time 1600 days, then the probability 

that this subject experiences event 𝐵 independently a day later is given by the probability 

that any subject experiences event 𝐵 at time 1601 days, i.e. 𝑃(𝑌 = 1601). This 

probability is estimated by the data set contained in 𝒚. Furthermore, the probability of 𝐴 

occurring one day before 𝐵 is estimated by the number of ways we can combine an 

observation 𝑥 in 𝒙 with an observation 𝑦 in 𝒚 so that 𝑦 = 𝑥 + 1 divided by the number of 

ways we can combine an observation in 𝒙 with an observation in 𝒚. 

However, the IDD we have so constructed would be a true independent differences 

distribution only if 𝒙 and 𝒚 are, in fact, independent. In other words, if the data set in 𝒚 

would consist of random observations of 𝑌. But if there is a relationship between 𝒙 and 

𝒚, 𝒚 would instead be a set of observations of 𝑌|𝑋! 
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For example, say that 𝐴 occurs mostly uniformly between days 50 and 80, whereas 

independent 𝐵 occurs uniformly between day 10 and 80. Now if 𝐵 depends on 𝐴 such 

that 𝐵 occurs close to 𝐴, eg. within 1 unit of 𝐴 50% of the time, then 𝑃(50 < 𝐵 < 80) ≥

0.5, i.e. we will have more of 𝐵 between day 50 and 80, and 𝐵 is no longer uniform. In 

this case, the probability of 𝐵 occurring between 50 and 80 would be overstated when 

calculating the IDD. 

Due to this issue, when we do find a dependency, we will use the IDD thus constructed 

only as a first-pass estimate of the true IDD. When a dependency exists, there will be 

many more observations around the peak (of zero) than expected from the IDD. We 

remove random observations with time differences in the section where the probability of 

observations in the ODD exceeds the probability of the observations in the IDD. We then 

have a new set of observations, the original minus the removed, and recreate the IDD 

from this. We compare the two again and, if necessary, remove more observations. We 

repeat this until we no longer find a dependency between the two events. 

This process is illustrated using the dependent data set of example 1. Figure 5 shows the 

relative frequency distributions of 𝒚 − 𝒙 (the ODD) versus the original IDD constructed 

on our simulated dependent data set. 
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Figure 5: y-x with First Pass IDD 

 

It is clear from this picture that the ODD does not follow the IDD, and so there is a 

dependency. Approximately, the section between the solid line and the dashed line where 

the dashed line lies above the solid one indicates observations that should not be there if 

the data was independent. We therefore remove random observations with time 

differences that fall between these lines, resulting in a new data set of 𝑥s and 𝑦s that is 

likely to be more independent than the original, and create a new IDD from this data set. 

Note, that the observations to be removed are chosen randomly, so if two observations 

are very close with respect to the time difference between the occurrences of the two 

events, one may be removed whereas the other one may not. For interpretation purposes, 
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what matters is the resulting distribution, not the individual observations, as there is no 

way to tell exactly which observations are dependent and which ones are not. 

We repeat this process until the "cleaned" data set no longer contains enough evidence of 

dependence to reject the null hypothesis of independence. Figure 6 shows the final 

estimated probability density of the IDD with the (original) ODD. 

 

Figure 6: y-x with Final IDD 

 

In addition, we end up with a new data set with all suspected dependent observations 

removed, which we may use to determine the proportion of likely dependent observations 

as well as create a visualization as to what the individual distributions may look like had 

they been independent. 
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3.3.3 Comparison 

In order to obtain a quantitative result, we determine the probability that the ODD is a 

sample from the IDD. For this, we use the bootstrap method which was originally 

introduced by (Efron, 1979). 

First, we take the absolute value of the difference between the areas under the curve of 

the two estimated density functions: 

𝐷 = ∫ |𝑓𝑇(𝑡) − 𝑓𝑂(𝑡)|
∞

−∞

𝑑𝑡 

We define 

ℎ(𝑡) = |𝑓𝑇(𝑡) − 𝑓𝑂(𝑡)|, 𝑎 = min(𝑡), 𝑏 = max(𝑡) 

We split the distance between 𝑎 and 𝑏 into 𝑛 equally sized steps, where 𝑛 is even:  

𝑎 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 < 𝑡𝑛+1 = 𝑏 

We then use Simpson's Rule (Larson & Edwards, 2010) to estimate the absolute 

difference in area 𝐷 between the two distributions 

𝐷 = ∫ ℎ(𝑡)
𝑏

𝑎

𝑑𝑡 ≈
𝑏 − 𝑎

3𝑛
[1 4 2 4 2 ⋯ 4 2 4 1] [

ℎ(𝑡1)
⋮

ℎ(𝑡𝑛+1)
] 

this will give us the absolute difference in area between the ODD and the IDD.  

We then compare this difference to the expected absolute difference in area: we obtain a 

number (= 𝑏𝑠) of bootstraps on the IDD, of the same size as the ODD. Each bootstrap 𝑏𝑖 
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results in an estimated density function for the bootstrap, 𝑓𝑏𝑖
(𝑡). We calculate 𝐷𝑖

∗, 𝑖 =

1, ⋯ , 𝑏𝑠 for each in the same manner (using Simpson's Rule) as before:  

𝐷𝑖
∗ = ∫ |𝑓𝑇(𝑡) − 𝑓𝑏𝑖

(𝑡)|
∞

−∞

𝑑𝑡 

The 𝐷𝑖
∗ so obtained will give us a distribution of expected differences in area for samples 

from the IDD. 

Finally, we obtain a nonparametric 𝑝-value for the likelihood that the ODD is a sample 

from the IDD 

𝑝-value  =
#(𝐷𝑖

∗≥𝐷)

𝑏𝑠
 

If it is likely (judging by the p-value, which will be relatively large) that the ODD is a 

sample from the IDD, then we do not have enough evidence that event 𝐴 is related to 

event 𝐵, the null hypothesis of independence cannot be rejected, and the analysis is 

complete. 

If it is unlikely (low p-value) that the ODD is a sample from the IDD, then there appears 

to be a relationship between the two events. The nature of this relationship, however, still 

needs to be investigated further, so further analysis will be required. 
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3.3.4 Further Analysis 

At this point we know that there is a relationship between events 𝐴 and 𝐵. In order to find 

the most common time difference between the events, we simply determine the peak at 

which the difference between the probability of the ODD and the probability of the IDD 

is the largest. In many cases this will be zero, i.e. when there is a relationship, event 𝐵 

will most often appear right before or after event 𝐴. For the remaining analysis we will 

concentrate our attention on a peak of zero; further analysis with respect to different 

peaks is referred to a later time (see Section 3.8). 

With event 𝐵 likely occurring close to the occurrence of event 𝐴 (peak = 0), we wish to 

find the cutoff interval, i.e. the interval outside of which we no longer have enough 

evidence that two events are related. We refer to the limits of a cutoff interval as the 

cutoff points. Since we have a peak equal to about 0, we should have a nonnegative 

cutoff point as well as a nonpositive one. For the nonnegative one, event 𝐴 occurs first, 

while for the nonpositive one, event 𝐵 occurs first. 

To start with, we attempt to find the nonnegative cutoff point. We repeat our initial 

analysis, but only use data for 𝐵 that occurred more than a specific number of days (𝑡) 

after 𝐴 occurred, and once again compare the distribution of differences to the (equally 

restricted) IDD. We compare the estimated probability densities for 𝑂|𝑂 ≥ 𝑡 and 𝑇|𝑇 ≥ 𝑡 

for some 𝑡 ≥ 0.  

We run the analysis with several different time differences 𝑡, spaced out over the range of 

time differences between the events starting with 𝑡 = 0, and register the 𝑝-value for each. 
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When the 𝑝-value exceeds 2.5% (half of 5% since we have two directions), we have 

reached the desired cutoff point since beyond that we no longer have sufficient evidence 

of a relationship between the two events. 

We repeat the same process for the nonpositive cutoff point but reversing the positions of 

𝐴 and 𝐵. 

We will illustrate this using example 2. In Figure 7a) we see that there is a relationship 

between AF and HF. In Figure 7b) we let 𝑡 = 0, and graphed the estimated probability 

densities for 𝑂|𝑂 ≥ 0 (ODD) and 𝑇|𝑇 ≥ 0 (IDD). For these restricted densities it also 

appears highly unlikely that the ODD data set is a sample from the IDD, shown again by 

the fact that the dashed red line is very different from the solid black one. To find the 

(nonnegative) cutoff point, we need to find a 𝑡 such that this is no longer the case, i.e. 

where the ODD is likely to be a sample from the IDD. 
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Figure 7: HF-AF in Full vs. Restricted 

 

Figure 8 shows the graphs of the 𝑝-values we obtained when running the analysis with 

several different time differences 𝑡, where the dashed red line is drawn at a 𝑝-value of 

0.025. Figure 8a) shows the 𝑝-values when AF occurs first, giving us the nonnegative 
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cutoff point, whereas Figure 8b) shows the 𝑝-values when HF occurs first giving us the 

nonpositive cutoff point. 

 

Figure 8: p-Value Charts 

 

In a), after approximately 5,800 days it starts to become less likely that the two events are 

related. The cutoff point would be the point of intersection between the graph and the 

dashed line. In this case, we found it to be 5,784 days, or about 16 years. 
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In b), the cutoff point is determined to be 1,885 days, or just over 5 years. This means 

that some occurrences of AF that happened within 5 years after HF are likely related. 

Combined, we say that the cutoff interval is (-1885, 5784), containing the HF-AF 

differences between which we are reasonably confident (at least 95%) that there is a 

relationship. 

It is important to understand that the cutoff interval gives us the interval outside of which 

we no longer have sufficient evidence of a relationship between the two events; however, 

this does NOT mean that at any time within that interval, a large number of observations 

are dependent. 

In example 2 the nonnegative cutoff point is 5,784. However, based on the dependent 

observations that the process removed when creating the IDD, only about 15% of 

observations in which HF occurred more than 5000 days after AF, are dependent. 

When determining whether a relationship exists based on this process, both the cutoff 

interval and the proportion of dependent data should be considered. This is why we will 

use the relation interval. 
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3.3.5 The Relation Interval 

We wish to find a more reasonable interval for determining whether we would consider 

there to be a relationship between two events, which we denote as the relation interval, 

limited by two relation points. 

The relation interval may be determined manually via the Shiny application, which 

allows the user to try out different relation points and see the accompanying estimated 

proportion of dependent observations. A medical expert would be able to augment their 

own knowledge of the various events and their effects with the information obtained from 

the data and should be able to make an informed decision as to where the relation points 

should lie for each pair of events. 

Alternatively, if such experts are not available, we may set a specific proportion of 

dependent observations needed for a time difference to be part of the relation interval, 

and we use that proportion to automatically calculate those intervals for all pairs of events 

from a data set where each observation contains all events and the time they took place 

(or NA if they never took place for that observation). 

 

3.3.5.1 Automatic Determination of the Relation Interval 

For each pair of events in the data set, we select all observations for which a time is 

available for both events. We determine if there is a relationship using the method 

described previously. If there is no relationship, the relation points are both zero. 
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If there IS a relationship between the two events, we perform the process as described 

before to obtain the true IDD and remove the observations that are estimated to be 

dependent. This will give us two data sets; one with all the observations, and one with 

only the independent observations. 

We then produce estimates for the proportion of dependent observations at various time 

differences. We do this by calculating running proportions for blocks of data that overlap 

significantly and calculate those at a reasonably large number of points. 

Using interpolation, we can then determine at what point in time the proportion of 

dependent observations becomes too small as compared to a user-selected proportion. 

We used the dependent data set from example 1 and set the required proportion to one 

half. Figure 9 shows a histogram where the full data set is shown with the independent 

data colored red.  

 

Figure 9: All Data vs. Independent Data for Example 1 
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We used 76 data points spread over the set of time differences and created a proportion 

for each of them using the data between the data point and the next 32 independent 

observations. We found the relation interval in this case to be (0, 27).  

We also performed the same analysis on example 2. Figure 10 shows the histogram for 

that data set. 

 

Figure 10: All Data vs. Independent Data for Example 2 

 

We set the proportion once again to one half, used 76 datapoints spread over the range of 

time differences, and used all data from each data point to the next 607 independent 

observations to calculate the proportion of dependent observations. We found the relation 

interval for this case to be approximately (-800, 3800). 

In other words, if a patient experienced AF within about 2 years after experiencing HF, 

we would add a connection from AF to HF in the patient’s PDN. If the patient 
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experienced HF within about 10 years after experiencing AF, we would add a connection 

from HF to AF in the patient’s PDN. If the time difference was longer than that, we 

would not include a connection between the two. 

 

3.3.6 Method Summary 

We start with two data sets 𝒙 and 𝒚 that indicate time to two separate events in subjects 

who experienced both. We perform the following tasks: 

• Create the ODD data set 𝒚 − 𝒙 

• Create the first pass IDD by permuting 𝒙 and 𝒚 

• Compare the ODD with bootstraps of the IDD; if it appears the ODD could be a 

sample of the IDD, the process is complete and the null hypothesis of 

independence is not rejected. 

• If it appears unlikely that the ODD is a sample of the IDD, the null hypothesis of 

independence is rejected. In addition, we note that the IDD was built with 

dependent data and as such does not consist of truly independent differences. A 

correction is necessary. 

• The IDD is corrected and new, independent, data sets are created for 𝒙 and 𝒚 

based on the originals with estimated dependent observations removed. 

• Using the corrected IDD and the original ODD, the cutoff interval is established. 

• The relation interval is determined by either of the following two methods: 

- Experts using the Shiny application  
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- Providing a proportion of dependent data that should be present at any 

point inside the relation interval which is then used by our automated 

system to provide the relation interval  

Any subject who experienced both events, for whom the difference between the two 

events lies within the relation interval, is estimated to have experienced two related 

events rather than two independent events. 

Note that the user-supplied proportion of dependent observations needed within the 

relation interval is by default set to .5, suggesting that at any point within the interval at 

least half of the observations are dependent. Another good proportion would be .8, which 

would ensure that at any point within the interval most observations are dependent. The 

appropriate choice for this proportion should be made by experts in the field. 
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3.4 Simulations (Proof of Concept) 

Using example 1 as a starting point we created several simulations. Recall that the 

independent data is drawn from 𝑋~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼 = 6, 𝜆 = 700) and 𝑌~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼 =

2, 𝜆 = 600). Figure 11 shows the ODD and the IDD. Since the dashed red line is very 

close to the solid black line, it is clearly likely that the ODD is indeed a sample from the 

IDD. The p-value equaled .50, indicating it is likely that the ODD is a sample of the IDD. 

 

Figure 11: Time Differences for the Independent Case of Example 1 

 

When analyzing the dependent data set the application removed 694 observations, close 

to the number of dependent observations that we added (we added 656). We saw that the 

"cleaned" data looked very similar to the independent data set we started with (see Figure 
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3). In Figure 6 we saw a comparison of the IDD with the ODD for this case. Figure 12 

shows the estimated densities of the IDD and the ODD 23 days out (𝑡 = 23). It is clear 

that beyond 23 days the ODD could indeed be a sample of the IDD. 

 

Figure 12: Restricted Time Differences for Example 1 

 

We then added another 656 dependent observations where 𝐵 preceded 𝐴 between 0 and 

30 days (more towards 0) to the dependent data set, for a total of 1312 dependent 

observations and 2000 independent ones. We again rejected the null hypothesis and 

obtained a cutoff interval of (-22, 23) days. 

Next, we started from the independent data set and added 656 dependent observations, 

but this time we drew from 𝑊|𝑊 ≤ 150 where 𝑊~exp (𝜆 =
1

100
), thus creating a data 
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set with a dependency that goes further out. We once again found a dependency, this time 

with a cutoff interval of (0,115) days. 

To simulate a situation with a great many dependent observations even further out, we 

once again started with the independent data set and added 5248 dependent observations, 

eight times the number of independent observations with differences greater than zero. 

We drew from 𝑊|𝑊 ≤ 400 where 𝑊~exp (𝜆 =
1

200
). We found a dependency and a 

cutoff interval equal to (0, 384) days. 5193 observations were removed, which is 72%, 

and slightly less than the 5248 dependent observations we added. 

In order to determine how well the process works, we created the independent data set 

1000 times, analyzed each of them and recorded their 𝑝-values; Figure 13 shows those 𝑝-

values in two separate plots. 
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Figure 13: p-values for 1000 Independent Events 

 

The dashed red line is drawn at a 𝑝-value of 5%. Figure 13a) plots every 𝑝-value, while 

Figure 13b) shows the relative frequency distribution for the 𝑝-values. We found that 2 𝑝-

values, or .2%, were less than 5%. In other words, there is about a .2% chance of a type I 
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error, i.e. there is a .2% chance that our method will falsely reject the null hypothesis of 

independence. 

Note that the 𝑝-value indicates the probability that a sample taken from the independent 

time differences between the two events is as different or more different than the 

observed time differences between the events. 

We also analyzed 100,000 independent observations from the two Weibull distributions 

to get an excellent estimate of the true IDD for independent differences between them. 

We then analyzed the independent data set versus this IDD 1000 times. We again 

recorded the 𝑝-value for each; Figure 14 shows those 𝑝-values in the same two separate 

plots. 
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Figure 14: p-values Calculated from the True IDD 

 

In this case we found that 43 𝑝-values, or 4.3%, were less than 5%. This is when we have 

access to the true IDD, instead of an estimate obtained from the observed differences. 

There is a bias towards independence due to the IDD being an estimate constructed from 

the observed data rather than the true IDD. Note that generally the true IDD is unknown. 
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We also created a situation where we started with the independent data set and added 200 

dependent observations where 𝑥 was simulated from 𝑋 and 𝑦 = 𝑥 ± 𝑤, where 𝑤 was 

simulated from 𝑊|𝑊 ≤ 150 and 𝑊~exp (𝜆 =
1

100
), resulting in about 9% of the data 

being dependent with time differences between the events being between -150 and 150 

days. We did this 100 times and found that in 92% of the tests the dependency was 

discovered. This situation is shown in Figure 15. 

 

Figure 15: 100 Data Sets with a 9% Dependency 

 

Figure 16 shows the density for the p-values in the same situation. 
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Figure 16: p-value Density for 100 Data Sets with a 9% Dependency 

 

When we increased the number of dependent observations to 300 so that 13% of the data 

was dependent, 100% of the tests found the dependency.  
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3.5 Shiny Implementation 

The Shiny application takes a text file with two columns, the first with time to the first 

event, the second with time to the second event. The header of the file (first line) should 

have (short) names for the two events. Processing will then proceed on the data according 

to the previously described method. It will be determined whether there is enough 

evidence of a relationship between the two events, and if so, the cutoff points will be 

calculated and a data set with estimated independent observations created. Note that this 

is a somewhat time-consuming process; the bottom right corner will display a progress 

bar and will also show the task being performed. The tasks are: 

• Getting the IDD 

• Getting Steps (determine the 𝑝-value for different values of 𝑡) 

• Determine Cutoff Points 

When this process is complete, the file ae.RData is created. This file may be entered into 

the application at a later time in order to access the results immediately. It is 

recommended, however, to rename this file in order to prevent it from being overwritten 

during a subsequent analysis. 

 

3.5.1 The Main Tab 

The application will then display the results of the analysis on the Main tab of the 

program: the number of observations in the file, the 𝑝-value indicating the probability 
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that the two events are independent, and the cutoff interval. It will also show a graph 

displaying the two estimated densities of time to the events and a graph displaying the 

ODD and the IDD. Finally, if a relationship is found, a graph of the two estimated 

densities of time to the events after dependent observations have been removed. The 

number and percentage of observations determined to be dependent and thus removed is 

also displayed. Figure 17 shows this information for example 2. 

 

Figure 17: Shiny Main Tab for Example 2 



52 

 

3.5.2 The Details Tab 

Additional information is available on the “Details” tab. The "Details" tab will split the 

information into two parts, one where 𝐵 occurs first, and one where 𝐴 occurs first. In 

Figure 18 we see this information displayed for the data in example 2.  

 

Figure 18: Shiny Details Tab for Example 2 
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The user may enter a time in either or both of the "From Time" fields and in either or 

both of the "To Time" fields. The first graphs as well as the information underneath them 

is dependent on these fields which we explain using example 2 in Figure 19. 

 

Figure 19: Shiny Details Tab with Different Times 
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The first graph on the left displays the time differences when AF occurs at least 1000 (the 

number in "From Time") days after HF. As before, the dashed red line gives the time 

differences as observed in the file, while the solid black line indicates the time 

differences when the two events are independent (the IDD). 

The information underneath the graph tells us there were 1803 observations where AF 

occurred at least 1000 days after HF, and the 𝑝-value, i.e. the probability that the ODD 

(red line) is a sample of the IDD (black line), is 0% (rounded). We see that the red line is 

not close to the black line. It also tells us that the probability that an observation with AF 

occurring 1000 days or more after HF has a probability of approximately 25.9% of being 

dependent.  

Under the "To Time" field we note that an observation with time between events from 

1000 to 1500 (the number in the "To Time" field) days has a 40.2% probability of being 

dependent. Note that this number is an estimate obtained from the data; it will be most 

reliable for large sets of time differences, and unreliable for small ones.  

Finally, the 𝑝-value chart is displayed; the black line gives the 𝑝-value indicating the 

probability that the data is dependent when considering only data equal or larger than the 

Time in Days on the 𝑥-axis. We see here that, for example, this 𝑝-value equals about 0% 

for the data when AF occurs 1000 or more days after HF, and it equals about 35% when 

AF occurs 2500 or more days after HF; at this latter point there is not enough evidence of 

a dependency. The green line gives the probability that an observation with AF occurring 

the number of days in "Time in Days" or more after HF is dependent. We see here, for 

example, that an observation with AF occurring 1000 days or more after HF has a 

probability of about 30% of being dependent, while at 2500 days that probability equals 
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about 0%. The red line is drawn at the significance level of 2.5% (5% split into two for 

the two directions). 

The first graph on the right-hand side displays the observed differences (red line) for 

those observations where HF occurs 6000 ("From Time") days or more after AF. We see 

that there are 1299 such observations, and the 𝑝-value, i.e. the probability that the red line 

is a sample of the black line, is 59%. This is clear from the picture, since the red line is 

very close to the black line. An observation with HF occurring 6000 days or more after 

AF has a probability of approximately 1% of being dependent. However, since the 𝑝-

value is as high as it is (59%), we assume that there are no dependent observations with 

HF occurring 6000 days or more after AF. 

We also see that the probability that an observation with HF occurring between 6000 and 

6500 days after HF is dependent can be estimated to be about 2.6%. Again, in this case, 

since the 𝑝-value is high, this probability can be ignored; we assume they are all 

independent. 

From the 𝑝-value chart on the right we see that for data where HF occurs, for example, 

7000 or more days after AF, the 𝑝-value, i.e. the probability that the ODD is a sample of 

the IDD, is about 90% (black line), while the probability that an observation with HF 

occurring 5000 or more days after AF has a probability of being dependent of about 20% 

(green line).  
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3.6 Additional Examples 

Another interesting example compares hypertension (HTN) with heart failure (HF). 

Figure 20 shows the frequency distributions of the two data sets, with a) showing the 

originals, and b) showing the data sets after estimated dependent observations were 

removed. Figure 21 shows the ODD vs. the IDD for this data set. 

 

Figure 20: Frequency Distributions for HTN vs. HF 



57 

 

 

Figure 21: ODD vs. IDD for HTN before HF 

  

We found the cutoff interval to be (-2326, 8128) days, or (-6, 22) years, indicating that 

for some observations such that HF-HTN lies in that interval, the events are likely 

related. See also (Drazner, 2011) for more information about the connection between 

HTN and HF. 

Of the 93,162 observations, 72,707 were deemed dependent and removed from the data 

sets. This amounts to 78% of the data. 

Automatic calculation of the relation interval with a dependent observations proportion of 

one half estimated the relation interval to be approximately (−400, 6100) days, or 

(−1, 17) years. 
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We also analyzed the combination of cancer and HF. Figure 22 shows the frequency 

distributions of the two data sets. While Figure 23 shows the ODD vs. the IDD. 

 

Figure 22: Frequency Distributions for Cancer vs. HF 
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Figure 23: ODD vs. IDD for Cancer before HF 

 

We found the cutoff interval for HF−cancer equal to (-1593, 4774) days, or (-4, 13) 

years.  It should be noted that this indicates that, after a HF diagnosis, the probability of 

obtaining a cancer diagnosis within the next 4 years is increased. This perhaps somewhat 

unexpected result confirms studies by (Swerdel, et al., 2014) that discovered increased 

risk of cancer-related death following rapid decreases in blood pressure such as seen 

when elderly cardiovascular patients are treated with medication to reduce hypertension. 

Note, that in this case HF did not cause those occurrences of cancer; there is a 

relationship, but not a causal one. The likely explanation is that HF caused patients to be 

treated with medication to reduce blood pressure and the reduced blood pressure 

increased blood flow that in turn activated dormant cancer cells. 
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With a dependent observations proportion of one half, the automated calculation of the 

relation interval estimated it to be approximately (−600, 1200) days, or (−2, 3) years. 
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3.7 Additional Considerations 

For the medical examples it is important to bear in mind that this data comes from the 

MIDAS database, which currently contains hospital discharge records for cardiovascular 

events only. As such, non-cardiovascular events may be recorded on the same day as a 

cardiovascular event, while they could have existed well before that. This may also be the 

case for many cardiovascular events, since they do not always result in hospitalization. A 

good example is hypertension, since this is likely to first happen not only well before 

hospitalization, but even before it's discovered. As such, many of these events are left-

censored and should be treated as such. We aim to allow for that as an option per event in 

future iterations of the process. 

Out of 21,135 patients with cancer in this data set, 1,321 are recorded on the same day as 

their HF diagnosis, which is more than 6%. This supports the above statement; a cancer 

diagnosis that existed before hospitalization due to heart failure will be entered into 

MIDAS on the same date as the date of heart failure, since hospitalizations for cancer 

alone are not recorded in the MIDAS database. 

The algorithm described in this paper will be useful in medicine as well as many other 

fields. For example, one could envisage a system of purchase orders where the purchase 

of one item may regularly be followed by the purchase of another. One could build a 

network for each person who authorizes purchases in a company where the events are the 

purchases, connecting those that are related, determining the relationships using the 

methods described in this paper. The findings could then help the company predict future 

purchases.  
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Note that we now have three methods to establish a relation interval, i.e. the interval of 

time differences within which we consider two events to be related, and outside of which 

we consider them to be independent. The three methods are: 

• The supervised method as described within the precision network section of this 

dissertation in section 2.2.1. 

• The unsupervised method described in the current section of the dissertation 

where an expert determines the interval using the Shiny application. 

• The unsupervised method described in the current section of the dissertation 

where several relation intervals are determined at the same time by supplying a 

proportion of dependent observations that need to be present at any point within 

the relation interval. 
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3.8 Future Direction 

In order to implement these results into building PDNs (Precision Disease Networks, see 

Section 2.1.2) cardiology experts may use the Shiny application to determine the relation 

interval, based on the obtained cutoff interval as well as the proportion of dependent data. 

We found it impossible to try to get these timings from the experts previously because 

there are too many variables for them to decide on, and because different experts may not 

agree. However, if we provide them with our estimates it will be much easier for them to 

reach a consensus. Then when creating PDNs for patients, we will determine that a link 

exists between two events if the second event occurred within the relation interval set by 

the experts. If the experts are not available to do this for a large number of pairs of 

events, we may use our automated process to determine these relation intervals as 

described in section 3.3.5.1. 

Ultimately, the goal of building these relationships is also to predict the occurrence or 

absence of clinical outcomes such as heart attack, stroke, and/or death. We may also wish 

to expand to other diseases at some point in time. 

We plan to devise an R package that will allow for the calculation of event relationships 

as described in this section of the dissertation. 

At this point, in calculating the IDD, we have only included subjects who experienced 

both events. Calculation of the IDD could be improved if we were to include all subjects 

who experienced either of the events. We wish to include this in future iterations of the 

process, in which case we will need to utilize survival analysis methods. This is necessary 
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since subjects who experienced one event may not have experienced a second event yet 

due to age (i.e. they are right-censored). 

As described previously, an option to left-censor a particular event would improve the 

interpretation of the results obtained from this process. 

As mentioned before, it could be of interest to determine an additional procedure dealing 

with situations where the "peak" of the ODD compared to the IDD is not equal to zero. 

For example, it may be the case that approximately one year after starting a certain 

medication, many people experience a certain side effect. In that case, if the secondary 

condition occurs shortly after the first, it may be unrelated, whereas if it occurs close to 

that one-year mark, it likely is related. 

Finally, the process may benefit from the introduction of covariates in order to make it 

more precise. 
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INFORMATION RETRIEVAL FOR DESIGNING AND 

ANALYZING CLINICAL STUDIES 

4. Abstract Mining 

Medical researchers use PubMed and other bibliographic databases extensively to search 

for publications that could help them in their research. In addition, they also search these 

vast databases for publications that would suggest new research ideas.  In the latter case 

they do not have specific search terms; instead, they use general search terms and look 

for publications that seem to indicate an unusual link between the subjects of the general 

search terms and other subjects that could potentially be of interest.  However, those 

general searches usually result in very large numbers of publications, often in the 

thousands or more. To select the unusual or unexpected ones by reading the abstracts in 

that case is an extremely time-consuming, at times close to impossible task. 

We have developed a solution where we will allow a researcher to obtain the abstracts for 

the publications that fulfill their desired search terms from those bibliographic databases. 

We then take those abstracts and perform text mining on them to obtain the most 

common, non-trivial words in those abstracts. Clustering the abstracts by those words 

will allow a researcher to immediately identify groups of publications whose abstracts 

contain words that are of interest to them. Repeated clustering will narrow down the 

number of interesting publications further so the researcher can identify new and 

interesting ideas for research in a fraction of the time taken previously for the same 

purpose. 
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4.1 Motivation 

“We are not students of some subject matter, but students of problems. And problems 

may cut right across the borders of any subject matter or discipline.” 

- Karl Popper (Popper, 1963) 

Complex scientific problems and socially relevant issues are challenging scientists to find 

new ways to integrate knowledge from multiple and disparate fields (Adams, 2007). The 

current explosion of information in the bibliographic databases has resulted in a total of 

more than 90 million records for the Web of Science and more than 160 million for 

Google Scholar.  The citations of the medical field have become subspecialized as if they 

belong to different disciplines and new developments will occur at the interaction of the 

subspecialized fields. 

Medical researchers use PubMed (PubMed, 1996) (29 million citations) and the other 

databases to search for publications that could help them in their research. In addition, 

they also search these databases for publications that would suggest new research ideas, 

often at those interactions of different subject matter.  In the latter case they do not search 

for specific terms; instead, they use general search terms to identify publications that 

could potentially lead to new ideas for research.  However, these general searches usually 

result in very large numbers of publications, often in the thousands or more.  To select the 

unusual or unexpected articles that may lead to new ideas for research is extremely time-

consuming, and at times nearly impossible. A researcher may spend days, weeks, and 

sometimes even months searching and reading through abstracts in order to find an 

interesting subject that is worthwhile investigating to see if it warrants a clinical trial. 
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4.2 Proposal 

We present a method to aid the researcher in getting to those publications of interest 

without the need to search each individual abstract that fulfills the general search terms. 

The method is implemented by a computer application that will ameliorate the problem 

by examining all the abstracts for those publications that fulfill the general search terms 

and uses text mining algorithms on those abstracts to extract all non-trivial words. 

The researcher may then repeatedly cluster the publications by commonality of the words 

in the abstracts to find unusual or unexpected combinations of words.  Once a particularly 

interesting word or combination of words has been identified, the researcher can choose 

to read all published abstracts in the cluster of interest containing the selected unexpected 

combination of words, and if worthwhile, can devise a new clinical trial with the 

information so obtained. 

The method is implemented via a Shiny application (Shiny, 1996) and uses the 

MEDLINE output of the PubMed database for medical publications. Extensions to other 

bibliographical databases can be made at a later point in time. 
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4.3 Method 

We read in a file with publications obtained from a bibliographical database in response 

to some general search terms, and extract for each publication the date, title, abstract, and 

PMID. For those publications without an abstract, we use the title in place of the abstract.  

We perform text mining on the abstracts using the R text mining package “tm” (Feinerer, 

Introduction to the tm Package. Text Mining in R, 2017) (Feinerer, An Introduction to 

Text Mining in R, 2008) (Feinerer, Hornik, & Meyer, Text Mining Infrastructure in R, 

2008). We perform the following tasks: 

- Build a Corpus 

- Clean the Corpus 

- Build a TermDocumentMatrix object 

- Create the Term/Document Matrix  

- Cluster the Documents (columns) via the Term/Document Matrix 

- Re-Cluster one of the Clusters (if desired) 

 

4.3.1 Build a Corpus 

We use the text in the abstracts to build a corpus with a document for each publication. A 

corpus is the main structure for managing documents in the tm package and represents a 

collection of text documents. See (Feinerer, An Introduction to Text Mining in R, 2008) 

for a more detailed description. 
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4.3.2 Clean the Corpus 

We transform all text in the corpus to lower case, remove URLs, remove anything other 

than English letters and spaces, remove punctuation, and remove so-called “stop words”. 

Stop words are trivial words that are not useful in a clustering of words. It is possible to 

add words to these stop words that a user might not find useful and wishes to exclude. 

Finally, we remove all superfluous white space. 

 

4.3.3 Build a TermDocumentMatrix Object 

The TermDocumentMatrix is a construct central to the tm package. The function with the 

same name takes as input a corpus with documents, inspects the contents and finally 

outputs a TermDocumentMatrix object. For each document, the function records every 

term (word) it encounters and records it. It keeps track of which term occurs in which 

document and how many times it occurs in that document. The object contains several 

fields, see Table 3. 
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Table 3: Fields of the TermDocumentMatrix Object 

i An integer vector with indices of the terms as they appear in 

dimnames$Terms  

j An integer vector containing document numbers for the corresponding 

terms 

v An integer vector containing the number of times the corresponding term in 

i appears in the corresponding document in j 

nrow Unique number of terms found 

ncol Number of documents in the corpus 

dimnames Terms A character vector with all the unique terms found in the 

corpus 

Docs A character vector with the document numbers 
 

 

Note that the fields i, j, and v all have the same length; they indicate that term i[k] 

appears in document j[k], v[k] times. 

Note also that the TermDocumentMatrix is secondarily a simple_triplet_matrix. 

 

4.3.4 Create the Term/Document Matrix  

The TermDocumentMatrix object can be transformed into a matrix using the as.matrix 

function for a simple_triplet_matrix. This matrix has a column for each document and a 

row for each term. Each element of the matrix has the number of instances of the term in 

the row for the document in the column. Many elements in this matrix will be zero, 

making the matrix sparse. 



71 

 

4.3.5 Cluster the Documents via the Term/Document Matrix 

The prior tasks are performed using functions in the tm package, and we end up with a 

sparse matrix with non-trivial words (terms) vs. the documents as they appear in the 

corpus. 

We then cluster the columns of this matrix using k-means clustering; columns (i.e. 

documents) that are most similar will be put in the same cluster.  The number of clusters 

can be varied by the user. Each cluster will contain a subset of the documents in the 

corpus, and a set of terms associated with those documents. The most frequent terms in 

each cluster will provide useful information about the documents in that cluster. 

 

4.3.5.1 k-Means Clustering of a Matrix 

To perform k-means clustering on our sparse matrix, we first randomly assign one 

document (i.e. column) to each cluster.  Then for each other document not assigned to a 

cluster, we determine its distance to each cluster. For that, we consider the columns 

representing the documents as vectors and determine the (Euclidean) distance between 

the vectors. Documents are assigned to the cluster that is nearest in distance to them. 

Once all document column vectors have been assigned to a cluster, we perform the 

following iterations: 

a) Calculate the centroid of each cluster. The cluster centroid is obtained by 

taking the average of the document vectors in the cluster. 
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b) For each document, determine its distance to each of the cluster centroids, and 

assign it to the cluster whose centroid is closest, using Euclidean distance. 

We iterate until the cluster assignments stop changing, at which point we display the 

clusters together with their most common terms. 

Example: 

Let’s assume we have a matrix as in Table 4 and we wish to create 2 clusters. 

Table 4: Cluster Example 

 1 2 3 4 

A 0 0 0 1 

B 1 1 1 2 

C 0 0 1 0 

D 0 1 3 2 

 

We see here that the word “A” occurs only once in document 4, “B” occurs in all 4 

documents, once in 1, 2, and 3, and twice in document 4. “C” only occurs once in cluster 

3, while “D” appears once in document 2, 3 times in document 3, and twice in document 

4. 

We first assign two documents randomly to the clusters; here we will assign document 1 

to cluster 1 and document 2 to cluster 2. The squared distance from document 3 to cluster 

1 is 10, and to cluster 2 it is 5, so we assign document 3 to cluster 2. Document 4 also has 

a greater distance to cluster 1, so it is also assigned to cluster 2. 
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Now the centroids are calculated. For cluster 1, it is (0,1,0,0)′, while for cluster 2 it is 

(
1

3
,

4

3
,

1

3
, 2)

′

. Calculating the squared distance of document 2 to cluster 1 we get 1, while 

we get 
4

3
 for cluster 2, so document 2 gets moved to cluster 1. Both documents 3 and 4 are 

closer to cluster 2, so they stay as they are. 

At the next iteration the centroids for clusters 1 and 2 are respectively (0,1,0,
1

2
)

′

 and 

(
1

2
,

3

2
,

1

2
,

5

2
)

′

, and all documents stay where they are. 

In the end documents 1 and 2 are clustered together in cluster 1, while documents 3 and 4 

are clustered together in cluster 2. 

The most common word in cluster 1 is “B”, followed by “D”, while the most common 

word in cluster 2 is “D” followed by “B”. 

 

4.3.6 Re-Cluster one of the Clusters (if desired) 

When clustering is completed, the clusters may be inspected. If desired, one of the 

clusters may be selected and re-clustered. Abstracts for the publications in the selected 

cluster will be mined and processed as described in section 4.3.1 through section 4.3.5, 

i.e. we will build another corpus, but this time only with publications present in the 

selected cluster. We will clean the corpus, build the TermDocumentMatrix object, create 

the Term/Document matrix, and cluster its columns as before. 
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Once the re-clustering has completed, it may be inspected again, and if desired, one of the 

clusters in the re-clustering may be selected and re-clustered. This process may be 

repeated until one or more publications of interest are found in one of the clustered or re-

clustered collections of publications. 
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4.4 Shiny Application 

Upon entering the Shiny application, the user will arrive at a screen that will show three 

tabs: “Main”, “Abstracts”, and “Titles”, with the Main tab being current. See Figure 24. 

 

4.4.1 The Main Tab 

 

Figure 24: The Abstract Mining Application 

 

The application at this point will require input from PubMed; the user may enter PubMed 

on their own accord, or they could use the link provided in the application (“Go to 

PubMed”). Once there, they can enter their search terms after which they must create a 

MEDLINE file. The field “Send to” should be clicked, the radio button “File” should be 

selected under “Choose Destination”, and “Format” should be set to “MEDLINE”. A file 

can then be created by pressing the “Create File” button. See Figure 25, where the search 

terms “takotsubo catecholamines” are selected. 
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Figure 25: PubMed MEDLINE File Creation 

 

Back in the Abstract Mining application, the MEDLINE file created by the PubMed site 

may be uploaded via the “Browse” button by selecting the location of the file in the 

user’s file system (usually the downloads directory). Before uploading the file, a number 

of clusters may be selected, or the user may leave the default of 6 clusters in place. 

Once the MEDLINE file has been uploaded, the application uses our method to select all 

non-trivial words from all abstracts in the file, and clusters the publications using those 

words and the desired number of clusters as selected. See Figure 26 where a MEDLINE 

file created using the “takotsubo” search term in PubMed, has been uploaded. 
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Figure 26: Clustering of the Takotsubo PubMed File 

 

We see that the total number of publications in the file is displayed as well as the clusters. 

For each cluster, the number of publications in the cluster is shown in parentheses after 

the cluster number, followed by the most frequent words in the cluster. The field 

“Cluster” is by default set to 1 but can be changed. Underneath this field, the PMID and 

the date of all publications in this cluster are displayed (here cluster 1). 

The “Re-cluster” button may be pressed to re-cluster all publications for the cluster in the 

“Cluster” field (here cluster 1). The “Back” button can be used to return to a previous 

clustering. 

At this point, the user has several options for investigating the 3748 publications returned 

by PubMed in response to the “takotsubo” search term. We sat down with a team of 

cardiovascular surgeons and let them do the investigation which resulted in new and 
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interesting ideas for research within about 30 minutes. We will describe the options and 

their implementation in the takotsubo case. 

 

4.4.1.1 Change the Number of Clusters 

The number of clusters may be changed using the applicable input field. To change the 

number of clusters it is also necessary to press the "Update" button afterwards. See 

Figure 27 where the number of clusters for the Takotsubo file from PubMed is changed 

from 6 to 15. 

 

Figure 27: Changing the Number of Clusters 
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4.4.1.2 Select a Cluster 

The user may change the "Cluster" field in order to see the PMIDs and dates for that 

cluster. The tab "Abstracts" may then be selected to see the abstracts for the publications 

in the selected cluster, and the tab "Titles" to see its titles. See Figure 28 where cluster 11 

is selected. 

 

4.4.1.3 Exclude Publications with Certain Words 

The user may enter words (separated by spaces) in the "Exclude publications with these 

words" field. Like for the Number of Clusters, the "Update" button should then be 

selected, which will update the presentation of the clusters underneath it. If words are 

selected in the "Exclude Documents containing these words" field, all publications with 

abstracts that contain any of those words will be removed. 

 

4.4.1.4 Ignore Words 

The user may enter words (separated by spaces) in the "Ignore these words" field. Like 

for the Number of Clusters, the "Update" button should then be selected, which will 

update the presentation of the clusters underneath it. If words are selected in the "Ignore 

these words" field, those words will be removed from the clustering. Unlike when 

publications are excluded based on words, this will not affect the number of publications 

under selection. 
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4.4.1.5 Re-Cluster 

Once the initial clustering is completed, a user may select one of the clusters (which will 

automatically update the list of PMIDs and dates as described previously) and select "Re-

cluster". This will take all the publications in the selected cluster and cluster them 

according to the number of clusters requested, taking into account the excluded 

documents and ignored words. A new cluster presentation will be created that will 

replace the existing cluster presentation. See Figure 28, where cluster 10 of the 

Takotsubo file is re-clustered, after which cluster 11 is selected. 

 

This process may be repeated indefinitely. If at any time the user wishes to return to a 

previous state, the "Back" button may be selected. Repeated use of the "Back" button will 

eventually return to the original set of publications from the MEDLINE file, minus any 

excluded publications with words in the "Exclude Documents containing these words" 

field. 
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Figure 28: Re-Clustering the Takotsubo File 

 

4.4.2 The Abstracts Tab 

The "Abstracts" tab will display the PMID, date, title and Abstract of the first publication 

for the cluster selected on the "Main" tab. The user can scroll through all the publications 

in the cluster using the "Previous" and "Next" buttons underneath the abstract. In 

addition, the "Download Cluster" button may be selected which will create a html file 

with all PMIDs, dates, titles, and abstracts in the current cluster. See Figure 29 where 

PMID 25851549 is selected from cluster 11 of Figure 28.  
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Figure 29: The Abstracts Tab 

 

4.4.3 The Titles Tab 

The "Titles" tab will display the PMID, date, and title for all publications in the selected 

cluster. See Figure 30 where we display the titles for cluster 11 of Figure 28. 

 

Figure 30: The Titles Tab 
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4.4.4 Running the Shiny Application 

This Shiny application is available at https://ellie.shinyapps.io/shiny/. Note, that the 

application needs a MEDLINE file from PubMed; PubMed maybe accessed either via the 

application or independently to create a MEDLINE file to be loaded into the application. 

After that, clustering can commence. 
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4.5 Results 

We include four examples showing how to use the application to perform a search for 

interesting publications. We started each example searching the PubMed database for 

publications containing the search criteria stated; the cursive words in the clusters were 

the ones that drew attention. The searches were performed by a team of cardiovascular 

surgeons. 

(1) Search Criteria: "embolic stroke", excluding "atrial fibrillation", 10,443 

publications. 

Number of Clusters 1: 23 clusters 

Cluster Selected 1: 8 (576 pubs), "cerebral stroke brain blood artery ischemic".  

Number of Clusters 2: 23 clusters 

Cluster Selected 2: 12 (1 pub), "progranulin ischaemia ischaemic expression 

cerebral demonstrated". 

Publications Selected: PMID 25838514, "Multiple Therapeutic Effects of 

Progranulin on Experimental Acute Ischaemic Stroke" (Kanazawa, et al., 2015).  

Proposed Research: Upon checking the abstract for the selected publication, the 

researcher determined that the link between embolic stroke and progranulin would 

provide a worthwhile subject for further research. 

 

(2) Search Criteria: "impedance", "mismatch", 368 publications. 

Number of Clusters: 20 clusters 

Cluster Selected: 9 (20 pubs), "pressure pulmonary arterial wave impedance 
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ventricular" 

Publications Selected: PMID 21996190, "Systemic Vascular Hemodynamics and 

Transplanted Kidney Survival" (Wystrychowski, et al., 2011), PMID 11281995, 

"Low Compliance Rather than High Reflection of Arterial System Decreases 

Stroke Volume in Arteriosclerosis: A Simulation" (Sugimachi, Shishido, & 

Sunagawa, 2001), PMID 9709398, "Pulmonary Impedance and Right Ventricular-

Vascular Coupling in Endotoxin Shock" (D'Orio, et al., 1998), PMID 2273555, 

"Aortic and Pulmonary Input Impedance in Patients with Cor Pulmonale". (Chen, 

et al., 1990) 

Proposed Research: 21996190 relates to kidneys, 11281995 to sepsis, and the 

remaining two relate to the lungs. 

 

(3) Search Criteria: "aortic", "stenosis", 157 publications. 

Number of Clusters: 15 clusters 

Cluster Selected: 4 (2 pubs), "pacing leads ventricular atrial left chamber" 

Publications Selected: PMID 23078085, "Long-Term Follow-Up Impact of Dual-

Chamber Pacing on Patients with Hypertrophic Obstructive Cardiomyopathy" 

(Yue-Cheng, et al., 2013), PMID 9121966, "Chronic Steroid-Eluting Lead 

Performance: A Comparison of Atrial and Ventricular Pacing" (Hua, Mond, & 

Strathmore, 1997). 

 

(4) Search Criteria: "takotsubo", 3,748 publications. 

Number of Clusters 1: 15 clusters 
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Cluster Selected 1: 10 (429 pubs), "cardiomyopathy takotsubo acute case stress 

cardiac" (see Figure 27).  

Number of Clusters 2: 15 clusters 

Cluster Selected 2: 11 (4 pubs), "lv ms scorpion acute months ts" (see Figure 28). 

Publications Selected: PMID 25851549, "Scorpion-Related Cardiomyopathy: 

Clinical Characteristics, Pathophysiology, and Treatment" (Abroug, et al., 2015) 

(see Figure 29 and Figure 30). 

 

  



87 

 

4.6 Conclusion 

We describe a new method to identify new research ideas based on text mining.  This 

may assist investigators in the health sciences. This method allows researchers to start 

with general search terms and find publications with unusual, unexpected findings of 

interest for further investigation and potential clinical studies. For example, using this 

method we found a link between takotsubo and scorpion and envenomation, a 

relationship of stroke to progranulin, and effects of impedance mismatch in kidneys, 

sepsis and lungs, as well as a relationship between pacing effectiveness between steroid 

eluting stents and non-steroid eluting stents.  

This abstract mining application is helpful for creating a clustering structure of words in 

abstracts in order to identify interesting publications in a very short time, especially when 

the search criteria result in large numbers of publications.  The method can be expanded 

to other research-oriented websites like Google Scholar, ResearchGate, etc. 

The application is qualitatively different from other text mining applications since instead 

of describing and analyzing existing information or structures it leads to the development 

of new research ideas.  
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4.7 Limitations and Strengths 

The abstract mining algorithm is operator dependent in the choice of the search criteria, 

the number of clusters, re-clustering and other details.  Also, PubMed is dynamic with 

publications added daily.  As a result, the findings may not always be reproducible.   

However, this method has significant strengths since it provides fast access to 

information across many abstracts and may lead to identification of new ideas for 

research. 

A further, important limitation is that words on their own are not always descriptive 

enough of the content of an abstract; replacing words with phrases would make the 

process more useful. We address that concern in the next chapter. 
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5. Abstract Phrase Mining 

5.1 Introduction 

A drawback to the abstract mining application is that single words at times are not 

descriptive enough to identify truly unique and unexpected ideas for potential new 

research. In order to resolve that issue, we need a method that extracts common phrases 

rather than words from those abstracts, after which we can perform the clustering on 

those phrases instead. 

Phrase mining, however, comes with challenges that are not present with word mining. It 

is not difficult to expand the search from words to so-called "n-grams". An n-gram is any 

combination of n words that exists in the abstracts. We could cluster these n-grams based 

on frequency just like we clustered words based on frequency. 

However, this would result in multiple problems. For example, the phrase “cats and 

dogs” would turn into the meaningless phrase “cats dogs”, due to the fact that we exclude 

trivial words. So, in order to solve this issue, we would need to include all trivial words 

when we mine for phrases rather than words. This, however, could result in other 

meaningless phrases such as “and this disease” and “attack of”. Furthermore, some 

phrases are inherently meaningless to researchers such as the phrase “here we are”, which 

may still occur frequently. Selecting n-grams that cross punctuation marks also generally 

results in meaningless phrases.  

We would also have an issue with double-counting, where one word or group of words 

may be counted in multiple phrases. This would result in meaningless subsets of phrases 
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being presented as frequent phrases together with their meaningful super phrases since 

they would occur with the same frequency. If we were to cluster the results this would 

likely cause these phrases to be clustered together, and the meaningless sub phrase would 

provide no useful additional information to the cluster that wasn’t already provided by its 

super phrase. As an example, consider the phrases “severe cardiovascular disease” and 

“severe cardiovascular”, the former meaningful, the latter meaningless. Since the latter 

always occurs with the former, its frequency would be the same, and even if the phrase 

“severe cardiovascular” never occurred on its own, it would still be presented as a phrase 

as frequent as “severe cardiovascular disease”. If the phrase “severe cardiovascular 

disease” were present in a cluster, then the phrase “severe cardiovascular” would appear 

right next to it since its commonality would be the same. Similarly, the meaningful 

phrase “support vector machine” would result in the meaningless phrase “vector 

machine” having the same frequency.  

Due to these issues, when we mine for phrases, we wish to restrict our search to 

meaningful phrases only. We refer to those meaningful phrases as principal phrases. 

However, meaningful, but generally less common phrases such as “support vector” 

would have their frequency exaggerated since the frequencies of “support vector 

machine” would be added to its stand-alone occurrences. This would cause any principal 

sub phrase such as “support vector” to appear to be more common than its super phrase, 

like the phrase “support vector machine”. 

We developed a text mining method that avoids these problems, extracts principal 

phrases only from large texts, and avoids all double-counting. 
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In addition, we created another Shiny application that uses that method to mine and 

cluster abstracts using principal phrases instead of words. 
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5.2 Principal Phrase Mining 

Here we present a new method for mining principal phrases of variable length from a 

vector of texts. 

To start with, we no longer exclude trivial words. Then, instead of mining for words, we 

mine for n-grams. Recall that an n-gram is any combination of n words that exists in a 

text. In addition, we select only those n-grams that appear between certain punctuation 

marks, i.e. we never select an n-gram that crosses over a punctuation mark such as a 

period, comma, semicolon, etc. This ensures that the text “Dealing with disease; how to 

cope” does not result in n-grams such as “disease how to cope” or “dealing with disease 

how”.  

However, when doing this, it is inevitable that words and phrases appearing in the 

abstracts are counted multiple times, on their own as well as inside other phrases. This is 

undesirable, as it leads to duplication of information and the appearance of phrases that 

do not make sense. For example, should the phrase "abstract phrase mining" be a frequent 

one, then so will "abstract phrase", and "phrase mining”. The phrase "abstract phrase" is 

not a meaningful one and as such will rarely occur by itself. But when mining n-grams, it 

is a frequent occurring phrase since its super-phrase "abstract phrase mining" is frequent. 

The phrase “phrase mining” on the other hand, is a meaningful phrase and may also occur 

by itself. However, its frequency would be exaggerated since all occurrences of the 

phrase “abstract phrase mining” would be added to the frequency of the stand-alone 

phrase. 
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We therefore should avoid all double-counting. For example, should "abstract phrase 

mining papers" be contained in a document and due to this we assign one additional 

frequency to "abstract phrase mining", we do not then also assign an additional frequency 

to "abstract phrase" and "phrase mining". In addition, we also do not assign an additional 

frequency to "phrase mining papers", since if we were to do that, "phrase mining" would 

be counted twice (in different phrases) while it only occurred once. 

Finally, not all frequent phrases we discover within the publications may be useful; any 

phrases that start or end with stop words such as "and" and "or" are removed, and we also 

allow for the removal of complete phrases that are not informative to specific users.  

 

5.2.1 Proposal 

The challenges related to mining phrases rather than words are described by (Liu, Shang, 

& Han, 2017). We adopt some of their terminology, but we will employ a method 

different from their suggested method of phrasal segmentation. Their quality phrases are 

selected using different criteria than our principal phrases; the quality of a phrase is 

calculated based on user-supplied sets of quality phrases and non-quality phrases. When 

segmenting a block of text, they use the quality of the phrases to determine the best 

possible segmentation. In addition, the objective of their paper is to extract meaning from 

large amounts of text, while we use principal phrases as features used for clustering. 

A principal phrase has three properties: it needs to be popular, complete, and 

informative. A phrase is popular if it is frequent. It is complete if it is a complete 
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semantic unit, which is obtained by avoiding the double counting explained previously, 

and a phrase is informative if it is meaningful to the user. 

Our method by design only selects frequent phrases. It employs a rectification process 

that ensures the phrases are complete. Non-informative phrases are excluded using a 

user-defined selection of start-stop-words and end-stop-words, where phrases are 

excluded if they respectively start or end with those words. 

Finally, a selection of user-defined phrases that should always be excluded since they are 

not considered informative, may also be supplied. 

 

5.2.2 Method 

The method usually employed using text mining of words involves processing each 

document word for word and keeping track of the number of times each word appears in 

each document, excluding so-called "stop-words". See section 4.3, the section on abstract 

mining, which describes the process using the “tm” package in R (Feinerer, An 

Introduction to Text Mining in R, 2008). A similar method can be used for n-grams; we 

can run through each document and keep track of the number of times each n-gram 

appears in each document. 

Unfortunately, for our current problem, n-grams will not do; we would like to obtain 

principal phrases instead. In order to obtain these, we wish to have access to the positions 

of the n-grams in the various documents. Since position information is not available 
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through the functions supplied in the "tm" package, we have developed our own. Using 

these functions, we can obtain all principal phrases from a collection of texts. 

Instead of the TermDocumentMatrix construct, we created a phraseDoc construct, with a 

function of the same name that creates a phraseDoc object from a vector of texts.   

We no longer create a corpus, and cleaning it is also no longer necessary as cleaning is a 

part of the phraseDoc function. A function to create a (sparse) matrix with phrases 

(terms) as rows and document numbers (indices to the vector of texts) is provided to aid 

applications such as our Shiny application that will need the information in this form in 

order to cluster the documents. Furthermore, the function removePhrases is provided 

which will remove a set of phrases from a phraseDoc object. 

 

5.2.2.1 The phraseDoc Object 

The phraseDoc is a construct central to the selection of principal phrases. The function 

with the same name takes as input a vector with texts, inspects the contents and outputs a 

phraseDoc object. The object contains several fields, see Table 5. 
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Table 5: Fields of a phraseDoc Object 

phrase An integer vector with indices of the phrases as they appear in 

phrases$phrase  

doc An integer vector containing document numbers for the corresponding 

phrase 

block An integer vector containing the block number within the document where 

the corresponding phrase appears 

pos An integer vector containing the position within the block where the 

corresponding phrase appears 

phrases phrase A character vector with unique principal phrases found in 

the collection of texts 

pwrds An integer vector containing the number of words in the 

corresponding phrase  

freq An integer vector containing the number of times the 

corresponding phrase occurs in the collection of texts 
 

 

Note that the fields phrase, doc, block, and pos all have the same length; they indicate 

that the phrase indicated by the index in phrase[k] appears in document doc[k], block 

block[k], at position pos[k]. 

Also, the fields phrases$phrase, phrases$pwrds, and phrases$freq all have the same 

length; they indicate that the phrase in phrases$phrase[i] has phrases$pwrds[i] words and 

appears in the entire collection of texts/documents phrases$freq[i] times. 
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5.2.2.2 Selecting Principal Phrases 

The process performed by the phraseDoc function allows for a variety of user input in 

addition to the vector of texts, all of which have default values. See Table 6 for a 

description of the input fields and their default settings. 

Table 6: Parameters of the phraseDoc Function 

Input Field Default Description 

mn 2 Minimum number of words per phrase 

mx 8 Maximum number of words per phrase 

ssw Output of the function 

stopStartWords() 

A character vector containing all words 

a phrase should not start with 

sew Output of the function 

stopEndWords() 

A character vector containing all words 

a phrase should not end with 

sp Output of the function 

stopPhrases() 

A character vector containing all 

phrases that should be excluded 

min.freq 2 The minimum number of times a phrase 

should appear in the collection of texts 

in order to be included 

qp A function that returns FALSE 

if the parameter freq is less than 

min.freq, and TRUE otherwise 

A function with 2 parameters, phrase 

and frequency, that returns TRUE when 

the phrase is considered principal, and 

FALSE if it is not. 

max.phrases 1500 The maximum number of principal 

phrases to be collected from the 

collection of texts 

shiny FALSE Should be set to TRUE if called from a 

shiny application, FALSE otherwise. If 

TRUE, the function will output progress 

information to the Shiny application. 
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We process each text by breaking it into blocks, which are identified by any of the 

following punctuation marks: []. ! (), : ; ? |{} . For each block, we transform its text to 

lower case, then we inspect it and identify within it all suitable n-grams of length between 

the minimum and maximum supplied. An n-gram is suitable if it does not start with a 

word in the supplied list of stop-start-words, it does not end with a word in the supplied 

list of stop-end-words, and also does not appear in the list of stop-phrases. Then we 

record the block and the position within the block as well as the document for each of 

these suitable n-gram phrases we encounter. 

When all suitable n-gram phrases and their positions have been obtained, we determine 

frequencies for each n-gram phrase, the so-called raw frequencies. We check to see if the 

total number of n-gram phrases exceeds the maximum supplied. if it does, we note the 

minimum frequency of the set of most frequent phrases of size equal to the supplied 

maximum. If this minimum exceeds the supplied minimum frequency, it will replace it. 

We then remove all phrases with frequencies less than the minimum. Each phrase 

removed will also have its positions removed. 

For example, if the minimum frequency equals 2, and the maximum number of n-gram 

phrases equals 1500 and the number of n-grams is greater than that, we select the 1500 

most frequent phrases and inspect the lowest frequency. If this equals 5, then the 

minimum frequency will be set to 5 and all n-gram phrases with a frequency equal to 1, 

2, 3, or 4 will be deleted together with their positions. This will result in somewhat more 

than 1500 n-gram phrases remaining. 
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We choose this method rather than to cut the number of phrases at the supplied maximum 

to make the choice of those phrases less arbitrary; also, this way we initially start with 

more than the maximum number of phrases, which is desirable since the rectifying 

process will remove many phrases, which could then possibly lead to a very small 

selection of phrases left. Note that the maximum number of phrases only indicates an 

approximate; it is possible (although unlikely) that more than that number of phrases will 

be supplied in the end. 

At this point we are left with a reasonably small selection of frequent n-gram phrases 

(depending on the maximum), on which we will perform the rectification process. Once 

the rectification process is complete, we have a selection of principal phrases with their 

positions in the vector of texts, which will be provided as a phraseDoc object. 

Note, that the creation of the phraseDoc object is a standalone process that can be used in 

circumstances other than our Shiny abstract phrase mining application. 

 

5.2.2.2.1 Rectification Process 

The rectification process will run through each phrase, starting with the most frequent n-

gram phrases of the greatest length, continuing until the least frequent n-gram phrase of 

the shortest length has been processed.  

For each n-gram phrase we find all its positions. We check to see if the phrase is a 

principal phrase using the supplied function. The default of this function designates the 

phrase as a principal phrase only when it has more positions than the minimum frequency 
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allows. If the phrase is not a principal phrase, it will be removed together with all its 

positions. If it is a principal phrase, any position for another phrase that starts or ends 

within the positions of this one, will be removed. 

For example, say that our minimum frequency is 3, and that block 10 of document 5 

equals "The authors wrote abstract phrase mining papers". We assume that "the" and 

"wrote" are in both the stop-start-words and the stop-end-words. See Table 7 for the 

frequencies assigned to the phrases for this example. 

Table 7: Rectification Example 

n-grams n frequencies 

Raw After 

removing 

infrequent 

n-grams 

After 

processing 

Doc.5, 

Block 10 

Rectified 

authors wrote abstract 3 3 3 2 - 

authors wrote abstract phrase 4 1 - - - 

authors wrote abstract phrase 

mining 

5 1 - - - 

authors wrote abstract phrase 

mining papers 

6 1 - - - 

abstract phrase 2 10 10 9 - 

abstract phrase mining 3 10 10 10 10 

abstract phrase mining papers 4 1 - - - 

phrase mining 2 20 20 19 6 

phrase mining papers 3 5 5 4 4 

mining papers 2 5 5 4 - 
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After removing infrequent n-grams (those with a raw frequency less than or equal to 3), 

we see that the largest phrases still under consideration consist of 3 words; we have 

“authors wrote abstract”, “abstract phrase mining” and “phrase mining papers”. In this 

case, "abstract phrase mining" would be processed before the other phrases since it is the 

most frequent 3-gram and 3-grams are processed before 2-grams. We will process all its 

positions in any of the documents/blocks where it occurs. 

The phrase "abstract phrase mining" takes up positions 4, 5, and 6 in block 10 document 

5. When we process document 5, block 10, position 4, we will remove all positions for 

document 5, block 10, that either start or end in positions 4, 5, or 6. The phrase "authors 

wrote abstract" ends in position 4, so this position will be removed. The phrases "abstract 

phrase", "phrase mining", "phrase mining papers", and "mining papers" start respectively 

in positions 4, 5, 5, and 6, and so their positions here will also be removed. 

When all positions for "abstract phrase mining" have been processed, "authors wrote 

abstract" will have less than 3 positions left, while "abstract phrase" will have no 

positions left. When the phrase "authors wrote abstract" is being processed later, it will be 

removed together with its remaining positions since it no longer fulfills the frequency 

requirement. The same fate belies "abstract phrase" since it has no positions left; thus, 

neither of these two n-gram phrases makes it as a principal phrase. 

We see that after rectification, only the phrases "abstract phrase mining", "phrase 

mining", and "phrase mining papers" are left and thus they are the only ones identified as 

principal phrases. 
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Note that we give priority to phrases consisting of many words; the reason for this is that 

these long phrases are less likely than smaller ones to be frequent, so if they DO make the 

minimum frequency, they are more likely to be principal phrases. Of course, there may 

be some of these passing this requirement that are not actually meaningful; some errors 

are to be expected. Note, however, that phrases that should be excluded can always be 

added to the sp parameter. Should one wish to use the original stop-phrases from the 

function in addition to a user-defined set, the code: 

 sp=c(<vector with phrases to be excluded>,stopPhrases()) 

 can be added when calling the phraseDoc function. Note that the phrases in the vector 

with phrases to be excluded should be in all lower case. 

 

5.2.2.3 Create a Matrix from a phraseDoc Object 

A phraseDoc object may be converted to a matrix that provides frequency information 

per document for each phrase using the as.matrix.phraseDoc function, to be 

called as as.matrix(pd) where pd is a phraseDoc object. This function creates the 

matrix by converting the phraseDoc object to a simple_triplet_matrix object first, which 

has a column for each document and a row for each phrase. Each element of the matrix 

has the number of instances of the phrase in the row for the document in the column. 

Many elements in this matrix will be zero, making the matrix sparse. 

 



103 

 

5.2.2.4 Remove a Collection of Phrases from a phraseDoc Object 

A collection of phrases may be removed from a phraseDoc object using the 

removePhrases.phraseDoc function, to be called as 

removePhrases(pd,phrs) where pd is a phraseDoc object and phrs a character 

vector containing the phrases to be removed. This function will remove all references to 

any of the phrases in phrs from the phraseDoc while keeping its structure intact. 

 

5.2.3 Performance 

The functions for this process have been written in R. As such, performance of these 

functions can be improved by creating them in a compiled programming language 

instead, to be called by an R function. 

We executed the process on 10 different sized output files from PubMed. The results are 

displayed in Table 8. 
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Table 8: File Size and Number of Publications vs. Processing Time 

Size (in 

KB) 

Time (in seconds) 
# 

Publications Read file Create Raw 

Frequencies 

Remove 

Infrequent 

Rectify Total 

46 0 0 0 0 1 11 

368 0 4 0 5 9 157 

562 1 6 2 11 20 368 

1838 1 7 3 5 16 419 

9024 4 31 12 11 54 3748 

18524 6 69 28 19 122 3513 

31804 17 188 68 54 327 10443 

34582 17 204 80 60 361 9523 

79830 40 505 217 118 880 23830 

97873 51 640 243 187 1121 29298 

 

Note that these times are dependent on the power of the computer the process is run on 

and will vary significantly dependent on which computer is used. As such, the times in 

this table should be read only for their relative values between the different input files. 

We plotted the total time versus the size of the file and ran a linear model on the data. See 

Figure 31. 

The adjusted R-square for linearity is .9929, indicating it is likely that the relationship 

between total processing time and size is linear. 
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We also found that for the 6 largest file sizes, creating the n-grams took 57% of the total 

time, while the rectification took around 16% of the total time. 

 

Figure 31: File Size vs. Processing Time 
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5.3 Cluster the Phrase/Document Matrix 

Once the sparse phrase/document matrix has been created from the PhraseDoc object, we 

can cluster the documents (texts). We have a sparse matrix with principal phrases as 

rows, documents as columns, and the number of instances of a phrase within a document 

at the intersection of the rows and columns. 

We then cluster the columns of this matrix using k-means clustering; columns that are 

most similar will be put in the same cluster. The number of clusters can be varied by the 

user. See section 4.3.5.1 for a description on how to perform k-means clustering for such 

a matrix. Each cluster will contain a subset of the total set of texts/documents, and a set 

of principal phrases associated with those texts. The most frequent principal phrases in 

each cluster will provide useful information about the texts in that cluster. 
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5.4 Shiny Application 

Upon entering the Shiny application, the user will arrive at a screen hat will show three 

tabs: “Main”, “Abstracts”, and “Titles”, with the Main tab being current. See Figure 32. 

 

5.4.1 The Main Tab 

 

Figure 32: The Abstract Phrase Mining Application 

 

The application at this point will require a MEDLINE input from PubMed, which may be 

obtained as described in section 4.4.1. Once this file is uploaded to the Abstract Phrase 

Mining Shiny application, a phraseDoc object is created using the process described in 

section 5.2.2.2. After that, the information from the phraseDoc object is transformed to a 

sparse matrix containing phrase/document frequencies, and clustered using k-means as 

described in section 5.3. This clustering is then presented on the screen as in Figure 33 

where we have once again selected the takotsubo file, but this time chosen 20 clusters. 
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Figure 33: Abstract Phrase Mining on the Takotsubo File 

 

Note that mining for principal phrases is more time consuming than mining for words; a 

progress bar in the bottom right corner displays the progress of the process. 

The total number of publications in the file is displayed as well as the clusters. For each 

cluster, the number of publications in the cluster is shown in parentheses after the cluster 

number, followed by the most frequent principal phrases in the cluster.  The user may 

select the number of clusters or may leave the default of 6 clusters in place. The field 

“Cluster” is by default set to 1 but can be changed. Underneath this field, the PMID and 

the date of all publications in this cluster are displayed (here cluster 1). 

To change the number of clusters or to change the ignored phrases, the user should press 

the "Update" button.  The “Re-cluster” button may be pressed to re-cluster all 
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publications for the cluster in the “Cluster” field (here cluster 1). The “Back” button can 

be used to return to a previous clustering. 

Specific phrases can be removed from the clustering. For example, in the takotsubo 

example, the search term for the PubMed file was “takotsubo”, so the phrases “takotsubo 

cardiomyopathy” and “takotsubo syndrome” are too frequent to be useful. To remove 

them, they should be entered in the “Ignore these phrases (separate with commas) field. 

Commas should be placed between every two phrases in this field. They may be 

accompanied by spaces (but don’t need to be). See Figure 34 where these two fields have 

been removed. 

 

Figure 34: Ignoring Phrases 

 

 The cluster output can be examined in order to identify the cluster with a list of common 

principal phrases that have somewhat unexpected associations. In the above example, the 

phrase “left anterior descending coronary artery” is considered of interest. The cluster of 
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interest, which is in this case number 5, should be entered in the “Cluster” field. The user 

may then select the "Abstracts" tab to examine the abstracts for the publications in the 

selected cluster, or the "Titles" tab to see the titles.   

After the initial clustering is completed, the user may select a specific cluster (which will 

automatically update the list of PMIDs and dates as described above), and then select 

"Re-cluster".  This will extract all publications in the selected cluster and re-cluster them 

according to the number of clusters requested.  A new set of clusters will then be created 

that will replace the existing ones. 

This process may be repeated indefinitely. If at any time the user wishes to return to a 

previous state, the "Back" button may be selected. Repeated use of the "Back" button will 

eventually return to the original set of publications from the MEDLINE file. 

 

5.4.2 The Abstracts Tab 

The "Abstracts" tab will display the PMID, date, title and Abstract of the first publication 

for the cluster selected on the "Main" tab. The user can scroll through all the publications 

in the cluster using the "Previous" and "Next" buttons underneath the abstract. In 

addition, the "Download Cluster" button may be selected which will create a html file 

with all PMIDs, dates, titles, and abstracts in the current cluster. See Figure 35 where 

PMID 19365274 is selected from cluster 5 of Figure 34. The phrase of interest that 

resulted in the investigation of this cluster and this publication, “left anterior descending 

coronary artery”, has been highlighted. We see that it appears twice in this abstract. 
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Figure 35: The Abstracts Tab 

 

5.4.3 The Titles Tab 

The "Titles" tab will display the PMID, date, and title for all publications in the selected 

cluster. See Figure 36 where we display the titles for cluster 5 of Figure 34. It appears 

that our phrase of interest, “left anterior descending coronary artery”, is present in one of 

the titles of the publications. 

 

Figure 36: The Titles Tab 
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5.5 Discussion 

We described a new method and a set of R-functions to select principal phrases from a 

vector of texts, as well as determine frequencies of those principal phrases in each of the 

provided texts. This is a new approach to text mining for which the objective is to 

provide principal phrases as features for modeling/clustering rather than to provide 

meaning to large volumes of text. 

In addition, we describe a new method to identify new research ideas based on mining 

principal phrases from bibliographic databases such as PubMed.  This may assist 

investigators in the health sciences. This method allows researchers to start with general 

search terms and find publications with unusual, unexpected findings of interest for 

further investigation and potential inclusion in new clinical trials. 

This abstract mining application is helpful for creating a clustering structure of principal 

phrases in abstracts in order to identify interesting publications in a very short time, 

especially when the search criteria result in a fairly large number of publications.  The 

method can be expanded to other research-oriented websites like Google Scholar, 

ResearchGate, etc. 

Other text mining applications were reported by (Loughran & McDonald, 2011) in 

finance using text mining to study liabilities, and by (Dalianis, 2018) who used text 

mining of electronic medical records. More popular is the usage of text mining for 

analyzing tweets for the purpose of market research and for detecting social network 

sentiments about a topic such as politics, the economy etc. (Gupta & Bhathal, 2018).  The 
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application reported in this paper is qualitatively different from other text mining 

applications since instead of describing and analyzing existing information or structures it 

leads to the development of new research ideas.  
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5.6 Limitations and Strengths 

Like for the abstract mining algorithm, the abstract phrase mining algorithm is also 

operator dependent in the choice of the search criteria, the number of clusters, re-

clustering and other details. 

Also, since PubMed is dynamic with publications added daily, findings may not always 

be reproducible.  This issue may be alleviated by keeping (and preferably renaming) the 

file obtained from PubMed. 

This method has significant strengths since it provides fast access to information across 

many abstracts and may lead to identification of new ideas for research. 
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5.7 Future Direction 

We plan to provide an R package with the functionality described in this dissertation, that 

provides the capability to extract principal phrases and their frequencies from bodies of 

texts while removing all double counting of those frequencies. 

We aim to install our Shiny application on the Shiny platform in order to provide access 

to it to the public. 

The principal phrase mining process has the potential to be useful for many other 

applications. This should be investigated and, if shown to be desirable, implemented. It 

could, for example, be used to perform principal phrase mining on tweets, source code, 

and many other collections of texts. 

The abstract phrase mining process can be expanded to obtain abstracts from other 

sources, in particular other bibliographical databases.  

It may also be worthwhile to investigate methods that will allow us to obtain information 

directly from the bibliographical databases without an individual having to save a 

MEDLINE file and load it into the Shiny application manually. 

We will sit down with medical experts in order to determine an appropriate list of stop-

start words, stop-end words, and stop-phrases. These lists are passed to the principal 

phrase mining procedure as described in section 5.2.2.2. 

 Should we find that too many meaningless phrases are included in the clustering, we 

may utilize the qp() function such as described in section 5.2.2.2, to be passed to the 
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principal phrase mining procedure. This function determines whether a given phrase is 

principal or not. By default, it will determine this based on frequency alone, but we have 

the option to replace the default function. We could, for example, add functionality in 

addition to the frequency requirement. When a phrase passes the frequency requirement, 

we could calculate features on the phrase and compare those to corresponding features 

calculated on the list of excluded phrases. If they are comparable, we would exclude the 

phrase, whereas if the features are not comparable, we would designate the phrase as a 

principal phrase and include it in the clustering. Alternatively, we could ask our medical 

experts for a specific list of principal phrases so we can cluster new phrases either with 

the principal phrases or excluded phrases in order to determine whether to designate a 

phrase as a principal phrase or not.  
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