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Semantic reverse engineering has become the main approach to explore and under-

stand the big picture of the binary code for closed-source software packages. However,

semantic reverse engineering still has two unsolved challenges: (1) to recognize and

recover data structure instances from binary memory images without execution traces;

and (2) to locate the critical algorithm implementation and extract the high-level se-

mantic meaning for the associated memory addresses/registers. These capabilities have

many computer security and forensics applications, such as vulnerability discovery, sen-

sitive data protection and so on.

In this dissertation, I present new techniques to perform automatic semantic reverse

engineering to address the above-mentioned challenges. First, I present a systematic

framework, ReViver, for semantic reverse engineering of data structure instances from

live memory without execution trace. Using the discovered data structure instances

in live memory, I develop a new domain-specific semantic memory data attack against
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power grid controllers. What’s more, I propose a framework, Mismo, to analyze em-

bedded system binaries to extract semantic information about the control algorithms

that they implement. Finally, I build BinSec, a vulnerability assessment tool which

leverages deep learning and dynamic analysis to do cross-platform binary code simi-

larity detection to identify known vulnerabilities. I demonstrate how I integrate these

new techniques to explore semantic information for binary protection and exploitation.

I have obtained the following experimental results. ReViver achieved 98.1% average

accuracy in recovering memory data structure instances without execution traces for

real-world applications. Mismo’s accuracy for data discovery was an average of 89.82%,

and 84.96% for code and data semantics discovery, respectively. For BinSec, I evaluate

25 existing CVE vulnerability functions for the Google Pixel 2 smartphone and Android

Things IoT firmware images. The deep learning model identifies vulnerabilities with an

accuracy of over 93% and the dynamic analysis can help to identify the correct matches

among the top 3 ranked outcomes 100% of the time.
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Chapter 1

Introduction

Binary analysis is a challenging and recurring research area in computer security. In

many situations, binary analysis is the only possible way to prove or disclose the prop-

erties of the code for closed-source software packages. Access to source code is often

unavailable for third-party security analysis of commercial off-the-shelf (COTS) bina-

ries. As the compiler does not preserve a lot of language-level information, the lack

of high-level, semantic information about data structures and control constructs makes

the binary analysis harder to scale. Therefore reverse engineering is necessary to re-

cover the high-level information about the original source code from binaries. It can

help to improve the understanding of the underlying source code for the maintenance

and the improvement of the software. Relevant information can be extracted to make

a decision for software development and to detect and fix a software bug or software

vulnerability. What’s more, from the attack perspective, reverse engineering can help

the attacker to figure out the possible way to attack the system.

Binary analysis tasks can vary from reliable disassembly of instructions to recovery

of control-flow, data structures or full functional semantics. Advanced disassembler

and debugger tools such as IDA Pro Rescue (2006) and OllyDbg Yuschuk (2007) of-

fer a variety of techniques to help elevate low-level machine codes to more abstract

representations. However, such static binary analysis tools mainly extract syntactical

information which only reveals small part of the binary. The semantics of the original

program are not guaranteed to be preserved/extracted. However, developers put their

domain knowledge into exactly these parts of the source code. Without understanding

the semantics of the code, one cannot tell its meaning.

Semantic reverse engineering becomes the main approach to explore and understand
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the big picture of the binary code. For semantic reverse engineering, recovering critical

algorithms and data structures have become the main goal since software development

is essentially composed of data structures and algorithms. The data structure is a

particular way of storing and accessing data for programs. And it is composed of a

number of fields, and each field has a specific type. The algorithm is a procedure or

formula for solving a problem, based on conducting a sequence of specified actions.

There are two representations for data structures in reverse engineering: (1) ab-

stract representation: source code-level definition of the data structure during software

development; (2) concrete representation: the memory instance of the data structure

during program execution. The discovered data structures enable higher level opera-

tions such as algorithm reverse engineering in binaries that are used for specific do-

mains such as industrial control systems. Algorithm reverse engineering is to disclose

the domain-specific data- and control-flow to learn about the critical components that

if compromised in an attack would result in considerable failures, e.g., undesired indus-

trial control system incidents. This is because the implemented critical algorithms act

as functional guarantees for the entire system, such as cyber-physical control system.

More specifically, we aim to reverse engineer the data structure definitions and the data-

and control-flow of algorithms from binary code, as well as recognizing data structure

instances from a memory image. These semantic reverse engineering capabilities have

many computer security and forensics applications, such as vulnerability discovery, ex-

ploit generation, memory forensics, malware classification and sensitive data protection

and so on.

1.1 Contributions

Prior to this work, other researchers considered data structure definitions recovery

from an application binary based on static and dynamic analysis Song et al. (2008);

Brumley et al. (2011); Chikofsky et al. (1990); Saltaformaggio et al. (2015b). This,

however, was far from sufficient, as researchers were still unable to recognize and recover

data structure instances from a memory image, especially when the execution trace is

not available. Therefore, here are a number of new challenges in (1) recognizing and
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recovering data structure instances from a memory image without execution traces, and

(2) locating the critical algorithm implementation and extracting the semantic meaning

for the associated memory addresses/registers.

Given these challenges, this thesis will develop new techniques to perform automatic

semantic reverse engineering that recovers data structure instances from live memory

and extracts the critical algorithm implementation. First, we present a systematic

framework, ReViver, for semantic reverse engineering of data structure instances from

live memory without execution trace. Based on data structure instances in live mem-

ory, we implemented a new domain-specific semantic stealthiness/memory data attack

against power grid controllers. Further, we propose a framework, Mismo, to analyze em-

bedded system binaries to extract semantic information about the control algorithms

that they implement. What’s more, we explore the semantic information and inte-

grate deep learning and dynamic analysis to detect known vulnerability in mobile/IoT

firmware. Below we will briefly introduce these techniques, the technical contributions

made by each, and the unique challenges that they overcome.

1.1.1 Trace-Free Memory Data Structure Forensics

A yet-to-be-solved but very vital problem in forensics analysis is accurate memory dump

data type reverse engineering where the target process is not a priori specified and could

be any of the running processes within the system. We present ReViver, a lightweight

system-wide solution that extracts data type information from the memory dump with-

out its past execution traces. ReViver constructs the dump’s accurate data structure

layout through collection of statistical information about possible past traces, foren-

sics inspection of the present memory dump, and speculative investigation of potential

future executions of the suspended process. First, ReViver analyzes a heavily instru-

mented set of execution paths of the same executable that end in the same state of the

memory dump (the eip and call stack), and collects statistical information the potential

data structure instances on the captured dump. Second, ReViver uses the statistical

information and performs a word-by-word data type forensics inspection of the cap-

tured memory dump. Finally, ReViver revives the dump’s execution and explores
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its potential future execution paths symbolically. ReViver traces the executions in-

cluding library/system calls for their known argument/return data types, and performs

backward taint analysis to mark the dump bytes with relevant data type information.

ReViver’s experimental results on real-world applications are very promising (98.1%),

and show that ReViver improves the accuracy of the past trace-free memory foren-

sics solutions significantly while maintaining a negligible runtime performance overhead

(1.8%).

1.1.2 Case-study: Data Attacks against Power System Operations

We demonstrated our contributions in controller software that are widely used in critical

infrastructures. We use our solutions to reverse engineer the corresponding software

and leverage the extracted semantics to launch an attack vector.

Power grid operations rely on the trustworthy operation of critical control center

functionalities, including the so-called Economic Dispatch (ED) problem. The ED

problem is a large-scale optimization problem that is periodically solved by the sys-

tem operator to ensure the balance of supply and load while maintaining reliability

constraints. We propose a semantics-based attack generation and implementation ap-

proach to study the security of the ED problem. Firstly, we generate optimal attack

vectors to transmission line ratings to induce maximum congestion in the critical lines,

resulting in the violation of capacity limits. We formulate a bilevel optimization problem

in which the attacker chooses manipulations of line capacity ratings to maximinimize

the percentage line capacity violations under linear power flows. We reformulate the

bilevel problem as a mixed integer linear program that can be solved efficiently. Sec-

ondly, we describe how the optimal attack vectors can be implemented in commercial

energy management systems (EMSs). The attack explores the dynamic memory space

of the EMS, and replaces the true line capacity ratings stored in data regions with the

optimal attack vectors. In contrast to the well-known false data injection attacks to

control systems that require compromising distributed sensors, our approach directly

implements attacks to the control center server. Our experimental results on bench-

mark power systems and five widely utilized EMSs show the practical feasibility of our
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attack generation and implementation approach.

1.1.3 Reversing Semantics of Embedded IoT Software Binaries

The security of critical IoT devices and industrial control systems hinges on their em-

bedded software that implement control algorithms for monitoring and control of the

associated physical processes, e.g., robotics and drones. Reverse engineering of the cor-

responding embedded controller software binaries enable their security analysis by ex-

tracting high-level domain-specific semantic information from executables. We present

Mismo, a domain-specific reverse engineering framework for embedded binary code

in emerging IoT and cyber-physical control application domains. Mismo performs

semantic-matching at an algorithmic level that can help with the understanding of

any possible cyber-physical security flaws. The extracted semantic information can be

leveraged for fine-grained protection of sensitive data in embedded software. Mismo

compares low-level binary symbolic values and high-level algorithmic expressions to

extract domain-specific semantic information for the binary’s code and data. We evalu-

ated Mismo on popular firmware binaries by 10 commercial vendors from 6 application

domains including drones, self-driving cars, smart homes, robotics, 3D printers, and

the Linux kernel controllers. The results show that Mismo can accurately extract the

algorithm-level semantics of the embedded binary code and data regions. We discovered

a zero-day vulnerability. in the control algorithm implementation within Linux kernel

versions 3.13 and above.

1.1.4 Firmware Analysis via Deep Learning for Known Security Vul-

nerabilities

Because of the increasing security problems in mobile/IoT devices, one central pillar

of keeping these devices secure is providing regular patches. As such, it is critical

to ensure that patches are propagated to all affected software in a timely fashion.

However, several studies have shown that there is a significant hidden patch gap–where

several vendors are falsely reporting patches of vulnerabilities. Therefore, it is much

more critical to accurately ensure whether the vulnerability has indeed been patched.



6

Existing approaches rely on approximate graph-matching algorithms, which are slow

and inaccurate. Alternatively, deep learning approaches have been proposed which

are engineered for speed at the expense of accuracy. This is problematic for large

binaries that include a large number of functions. In this paper, we present BinSec, a

vulnerability assessment tool which leverages deep learning and dynamic analysis to do

cross-platform binary code similarity detection to identify known vulnerabilities with

high accuracy. In addition to identifying known vulnerabilities, BinSec also identifies

vulnerabilities that have been patched within the same target binary. BinSec does

not require access to the source code of vulnerability functions nor the target binary.

We evaluate BinSec on 25 existing CVE vulnerability functions for the Google Pixel

2 smartphone and Android Things IoT firmware images. Our deep learning model

identifies vulnerabilities with an accuracy of over 93%, i.e., higher than the state-of-

the-art. We then demonstrate how dynamic analysis of the vulnerability functions in

a controlled environment can be used to significantly reduce the number of candidate

functions and, thus, the number of false positives. BinSec identifies the correct matches

(candidate functions) among the top 3 ranked outcomes 100% of the time. Finally,

we evaluate BinSec’s differential engine that distinguishes between functions that are

vulnerable and functions that are patched on the same dataset with the same level of

accuracy.

1.2 Organization

This dissertation will present the evolution of this body of work. It highlights the

progression of semantic reverse engineering and how to use this semantic knowledge for

protection and exploitation. The outline of this dissertation is as follows:

• Chapter 1 explains the need for our semantic reverse engineering framework to

tackle a number of challenges to extract high-level properties of the binaries with-

out source code access. We present our framework with a specific focus on se-

mantic reverse engineering for data structure instances in live memory and critical

algorithm implementation in ICS/IoT domain.
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• Chapter 2 explains in detail the motivation, design, implementation, and evalu-

ation of ReViver. ReViver leverages static and dynamic analysis to resolve data

structure instances from live memory without execution traces requirement.

• Chapter 3 presents a case study attack, i.e., a new domain-specific semantic

stealthiness/memory data attack against power grid controllers. Since ReViver

has given us the memory data structure knowledge, we leverage this knowledge

to develop automated data attacks and modify sensitive parameters of the im-

plemented power system control algorithms. As the result, the underlying power

system enters an unsafe state.

• Chapter 4 details Mismo, a domain-specific reverse engineering solution to extract

high-level algorithmic control and data flow semantics from embedded binary

executables in various IoT and cyber-physical industrial control applications.

• Chapter 5 presents BinSec, a framework that integrates deep learning for binary

similarity-checking with dynamic analysis to discover known vulnerabilities as well

as to test for path presence without source code access. The framework works

cross-platform supporting ARM and X86 architectures. We have evaluate the

framework on 25 CVE vulnerabilities, 100 different Android firmware libraries

across 4 different architectures.

• Chapter 6 discusses possible future research directions along with the conclusion

of this proposal.
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Chapter 2

Trace-Free Memory Data Structure Forensics via Past

Inference and Future Speculations

2.1 Introduction

Software reverse engineering has been a challenging and recurring problem in com-

puter security that aims at recovery of high-level program abstractions Song et al.

(2008); Brumley et al. (2011); Chikofsky et al. (1990); Saltaformaggio et al. (2015b).

The results could potentially be used for various purposes such as memory forensics,

malware development and analysis, reversing cryptographic algorithms and network

protocols, digital right management, and auditing program binaries. Specifically, a

desirable capability in many of those security and forensics applications is automatic

reverse engineering of data structures given only the memory dump of a process and

without the execution trace information and hence the need for heavyweight runtime

instrumentation. Such capabilities can reveal semantic information about any execu-

tion point of a given program through investigation of its memory space for meaningful

data types, their interdependencies, sizes and runtime values. Such memory-level data

type information can be linked to higher level concepts, e.g., global configuration vari-

ables, confidential credentials and private keys, still-in-memory temporary data from

past sessions such as closed web browser tabs.

The existing data type reverse engineering solutions are categorized into three

groups. First, static binary executable analysis techniques extract data structures

defined within an executable through disassembly Lee et al. (2011) or symbolic exe-

cution Slowinska et al. (2011). Second, dynamic execution analysis solutions Lin et al.
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(2010); Lee et al. (2011) trace the execution to reverse engineer data types using type-

revealing instructions Lin et al. (2010). Third, static memory analysis techniques per-

form forensics directly on memory dumps for data structures. A past work by Cozzie et

al. Cozzie et al. (2008) sweeps the memory for pointers and assumes all pointers point

at other data structures.

The past work falls short for practical forensics analysis of applications’ memory

dumps: i) static executable analyses can reverse engineer executable-defined data struc-

ture definitions accurately; however, those approaches by themselves are of limited use

for memory forensics when the execution trace is not available; ii) dynamic execution

monitors cause a very high performance overhead ą 6𝑋 on the target process. Hence,

it is infeasible to trace all the running processes on a system as any of them may be

misbehaving and needing forensics analysis; and iii) the static memory analyses are not

sufficiently accurate in practice (e.g., 70% for Laika Cozzie et al. (2008)).

We present ReViver, a hybrid memory forensics solution that leverages the high

accuracy of static executable analyses (𝑖) and dynamic execution monitoring (𝑖𝑖) to pro-

vide a low overhead and precise static memory dump forensics (𝑖𝑖𝑖) when the execution

trace is not available. ReViver creates a comprehensive database of data structure

definitions automatically through a one-time effort. ReViver investigates potential

past histories that could have led to the captured dump state. This creates the statisti-

cal information about the possible data structure layout of the given dump. ReViver

investigates the present captured dump using the data structure definition database

and the collected statistical information. Finally, ReViver revives the dump’s execu-

tion and traverses through the potential future execution paths symbolically. ReViver

monitors each path closely for type-revealing instructions, and performs backward taint

analysis to backtrack the data type information ideally to a memory address on the cap-

tured dump. This helps to either confirm its former analysis results or correct a wrongly

inferred subset of memory-resident structures. Through combining results from various

analysis techniques, ReViver produces a highly accurate data structure layout of the

memory without the need heavyweight binary/execution instrumentation of running

processes.



10

Our contributions are thus the following:

• We introduce a trace-free memory data structure forensics solution with high reverse

engineering accuracy and negligible 1.8% runtime overhead.

• We present a probabilistic information fusion method to combine prior statistical

information about possible past traces, results from the present dump forensics and

speculative investigation of potential future executions of the suspended process.

• We evaluated a working prototype of ReViver on real-world settings (i.e., CoreUtils

suite, and five popular desktop and server applications). ReViver works on stripped

binary executable and generate memory data structure layout of a given capture mem-

ory dump.

It is noteworthy that ReViver’s symbolic execution often cannot fully exhaust

the executables in practice. However, this does not affect ReViver’s correctness, be-

cause ReViver needs just an empirical estimate of the statistical information for its

later forensics analysis. Even incomplete symbolic execution code coverage provides

ReViver with extra and useful information to improve its ultimate forensics accuracy.

Threat model. ReViver assumes the non-compromised root privilege on the target

system. ReViver’s TCB includes the analysis system where the memory forensics is

performed.

2.2 ReViver Overview

Figure 2.1 shows ReViver’s high-level architecture that contains a forensics analysis

framework to where the user uploads the target process’es memory image and the

application executable. The process starts by ReViver’s installation on the user’s

machine. Upon detection of a suspicious running process by the user or an intrusion

detector, ReViver’s client suspends the process and uploads its memory image for

forensics analysis.

To accelerate the runtime memory forensics (Section 2.4), ReViver hooks the dy-

namic memory allocation API (e.g., malloc). The hooked functions allocate the re-

quired memory, and additionally, adds a rare data pattern landmark signature as well
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as the allocation size at the end of allocated region. This causes a negligible runtime

overhead (1.8%) but improves the memory forensics significantly. All data structure

locations and sizes (not their type) on the memory can be inferred later through a quick

linear memory sweep for the incorporated signatures.

ReViver performs its forensics analysis through the following three stages: past,

present, and future.

Past. ReViver leverages offline analysis to maximize its runtime analyses’ efficiency

once a particular running process is picked for analysis. To create the data structure

definition database, ReViver leverages the past work Lin et al. (2010) to extract the

application executable-defined data structure definitions, and implements automated

static code analysis modules to investigate available library and kernel sources search-

ing for data structure definitions. There often exists different data structures with

identical names defined at different points across the system. ReViver maintains the

context where each data structures is defined. ReViver explores and analyzes the

memory dump (memdump)’s possible past execution trace. ReViver starts from the

executable’s entry point, and statically explores the call and control flow graphs for

possible paths to the captured dump’s execution state (the instruction pointer and the

call stack). Using symbolic execution, ReViver filters out the infeasible paths and

generates the corresponding test cases. Through an instrumented execution of the test

cases, ReViver logs the structure memory allocations and collects statistical informa-

tion about the potential structures on the captured dump. For instance, if a particular

data structure exists in almost all test case executions, it exists in the captured dump

with higher probability than a data structure that was never encountered during the

test case executions.

Present. ReViver performs a forensics analysis of the captured dump using the

created models (data structure definition database and statistical information). Re-

Viver sweeps the dump for landmark signatures (inserted by the hooked API), and

extracts every structure’s base address and size. ReViver marks every memory ad-

dress with possible data types using the memory value and ReViver’s forensics rules

(Section 2.4). ReViver uses its forensics results and the created models to calculates
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User	(run)me)	

ReViver	(forensics	analysis)	

Create	the	relevant	data	
structures	defini1on	database	

(Past)	enhance	the	structure	
database	given	execu1on	state	

(Present)	memory	scan	for	
structures	&	field-based	analysis	

(Future)	specula1ve	future	
execu1ons	for	memory	accesses	

mem-alloca1on	func1on	hooking	 process	memory	capture	

Figure 2.1: ReViver’s high-level architecture

a ranked list of the best matching data structures for each memory location.

Future. ReViver revives the captured dump’s execution, explores all feasible future

branches of the code symbolically to generate test-cases. ReViver runs the executable

with the test cases, while it reverse engineers data type revealing instructions and the

library/system calls with known return/argument data types. ReViver implements

backward data taint analysis on each test-case trace to backtrack the revealed data

types to a memory address of the captured dump.

2.2.1 A Running Case-Study Example

We illustrate ReViver on a real case-study application, i.e., groups Krumins (2012).

Figure 5.1 shows groups’ partial memory snapshot and how ReViver integrates find-

ings from past, present and future incidents to produce an accurate data structure

mapping of the captured memory. Figure 5.1 shows the rare data pattern landmark

signatures that the hooked API has stored in memory (four subsequent 0xEF bytes

and four subsequent 0xFE bytes). Using the landmarks, ReViver recognizes four

structures: at 0x09406CA8 with a size of 12 bytes, at 0x09407570 with a size of

8 bytes, at 0x09407588 with a size of 36 bytes; and at 0x094075C0 with the size

of 352 bytes. The identified data structures include many zero bytes as their fields

whose types are unrecognizable. Consequently, an accurate memory forensics based on
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Part of Heap Memory Snapshot

libname_list

service_library
service_library service_library service_library

known_function known_function known_function known_function

structure

int[]

structure

int[]
gid_t * gid_t *

structure structure _IO_FILE locked_FILE

exit:    realloc

ret:     0x09407588

enter: getgrouplist (0xbfdcc424, 

0x3e8, 0x9407588, 0xbfdcbcdc)

definition: getgrouplist (const

char *, gid_t, gid_t *, int *)

exit: malloc

ret: 0x094075c0

enter: 

fgetpos(0x094075c0, 

0xbfdcbbb4)

definition: 

fgetpos(_IO_FILE *, 

fpost_t *)

Size:

0x094075c0: 0x160

_IO_FILE:       0x94

locked_FILE:  0x160

Probability:

P(locked_FILE) > 

P(_IO_FILE)

Present Past Future Past
...

09406ca0 0000 0000 0021 0000 6004 0940 6d00 0940

09406cb0 0000 0000 efef efef fefe fefe 0018 0000

...

09407570 acfc b76f 0e7f af6f efef efef fefe fefe

09407580 0014 0000 0039 0000 0000 0000 0004 0000

09407590 0018 0000 001b 0000 001e 0000 002e 0000

094075a0 006d 0000 007c 0000 03e8 0000 efef efef

094075b0 fefe fefe 0030 0000 0000 0000 ea49 0001

094075c0 0000 0000 0000 0000 0000 0000 0000 0000

094075d0 0000 0000 0000 0000 0000 0000 0000 0000

094075e0 0000 0000 0000 0000 0000 0000 0000 0000

094075f0 0000 0000 a980 b76e ffff ffff 0041 0000

09407600 0000 0000 0000 0000 7658 0940 ffff ffff

09407610 ffff ffff 0000 0000 7664 0940 0000 0000

09407620 0000 0000 ffff ffff ffff ffff 0000 0000

09407630 0000 0000 0000 0000 0000 0000 0000 0000

09407640 0000 0000 0000 0000 0000 0000 0000 0000

09407650 0000 0000 9a20 b76e 0000 0000 ffff ffff

09407660 0000 0000 0000 0000 0000 0000 0000 0000

09407670 0000 0000 0000 0000 0000 0000 0000 0000

09407680 0000 0000 0000 0000 0000 0000 0000 0000

09407690 0000 0000 0000 0000 0000 0000 0000 0000

094076a0 0000 0000 0000 0000 0000 0000 0000 0000

094076b0 0000 0000 0000 0000 0000 0000 0000 0000

094076c0 0000 0000 0000 0000 0000 0000 0000 0000

094076d0 0000 0000 0000 0000 0000 0000 0000 0000

094076e0 0000 0000 98a0 b76e efef efef fefe fefe

094076f0 016c 0000 e911 0001 0000 0000 0000 0000

Figure 2.2: Memory snapshot of the groups application and the reverse engineered
data structures

only the current memory snapshot (present) turns out to be often infeasible in prac-

tice. ReViver leverages several information sources to minimize the above-mentioned

uncertainties. ReViver starts with collecting statistical information about the poten-

tial set of data structures resident within the captured dump. ReViver symbolically

executes the executable from its entry point to the captured dump’s execution state,

and generates test-cases. Concrete execution of each test-case results in a separate

memdump. ReViver traces all data structure allocations during individual test-case

paths and maintains a list of structures that survive (i.e., not overwritten) until the

captured dump state. ReViver uses the lists to create a probability distribution of

the structures (Section 2.3). Figure 2.3a shows the frequency of data structures within

the test-case memories. There have been totally 17 data structures allocated during at

least one of the test-case executions and not overwritten before the memory capture

point. For these data structures, ReViver obtains their definitions from its structure

definition database.

During the present phase, ReViver inspects individual non-zero fields within the

identified structures (Figure 5.1), and creates a superset of possible data types for

each field. The zero fields could be of any possible data type. ReViver then goes
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through the data structure definition database, and finds the potentially matching data

structures whose individual field types match one of ReViver’s inferred types for the

corresponding fields on the captured dump. The leftmost column (present) on Figure 5.1

shows the results for the four structures. For instance, ReViver has identified the

first memory-resident data structure (0x09406CA8) to be of either libname list

or service library type. In practice, although there are many zero regions, the

existing non-zero values are still very helpful to narrow down the possible candidates.

Figure 2.3c shows the data types for individual fields of the two data structures

from ReViver’s database. The first field type is the same for both the data structures

(char*) as identified by ReViver’s investigation of the memory (pointer-str). The sec-

ond field for service library is void*, i.e., could take almost any value, and would

not help ReViver much to distinguish between the structures. ReViver identifies the

second field of the data structure of the captured memory as a pointer that match the

second field of both libname list and service library. However, the third

field of the two structures are of different types (int vs. service library*) and

could potentially be helpful to determine the matching candidate. Unfortunately, the

corresponding field in the memory is zero and ReViver’s present static dump reverse

engineering could not conclude whether the zero corresponds to a structure pointer or

an integer.

ReViver’s next step is to enhance the possible structures set using the collected

prior statistical information (Figure 2.3a). Going through the shortlisted 17 structures,

ReViver calculates the prior distribution as 𝑃 pservice libraryq “ 0.015{p0.015`

0.0q “ 1 and 𝑃 plibname listq “ 0.0{p0.015 ` 0.0q “ 0, where 0.015 directly comes

from Figure 2.3a for service library; 0.0 denotes the probability of libname list

that did not appear in any of the test-case memdumps. In groups’ case, ReViver

covered all possible past execution traces during the symbolic execution; therefore, Re-

Viver could confidently exclude libname list from possible data structures in the

captured memory. However, ReViver cannot often cover all feasible paths in larger

applications during its symbolic execution because of the state explosion problems, and

hence its estimated empirical probability distribution of the data structures may not
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be absolutely accurate. In such cases, ReViver replaces 0.0 with a predefined small

number 𝜖 for the structures that did not appear in any of the test-case memdumps but

they were present in at least one of control flow paths during static graph-theoretic

traversal of the target application’s call graphs.

ReViver’s present and past investigations on 0x09406CA8 suffice for accurate

forensics outcome. However, determination of exact data structure type for 0x09407588

(like many other practical cases) is infeasible using only past and present information,

and leads to ambiguity because the address could represent either a data structure

or an array of integers. ReViver implements its speculative future inspection by re-

viving the suspended execution for a continued symbolic execution where ReViver

intercepts the type revealing instructions. Figure 2.3b shows the partial assembly code

snippet that ReViver symbolically executes. The call to realloc groupbuf (line

13) returns 0x09407588 (our target data structure; see Figure 5.1) and stores it in

register eax. This value is later moved to ebx and used as the third argument to the

getgrouplist function call (line 28) by getting pushed in stack on line 24.

ReViver determines the argument type information for the function getgrouplist

using its database1. The third argument is a gid t* pointer. Once the getgrouplist

function call is logged, ReViver performs backward taint analysis and marks mem-

ory addresses with relevant data type information, i.e., 0x09407588 is marked as

gid t*. ReViver’s taint analysis keeps track of overwritten memory during the test-

case executions. For instance, ReViver would not have reported the captured memory

0x09407588 as gid t* had 0x09407588 been written to between the memory cap-

ture point and the getgrouplist call.

Reverse engineering of the memory 0x094075C0 is even more motivating regarding

what ReViver’s hybrid approach can achieve. Initial past and present analyses give no

information about the allocated memory mainly because of its many zero bytes. During

the future speculative execution, ReViver intercepts a function fgetpos call that

uses 0x094075C0 indirectly (identified by ReViver’s taint analysis) as its argument.

1ReViver’s library function definition database includes both exported API and internal non-
exported library function definitions.
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(a) Statistical Information for groups

0804 c220 <mgetgroups>:
. . .
9 804 c233 : xor %eax ,%eax
10 804 c235 :mov $0xa ,%edx
11 804 c23a : movl $0xa , 0 x2c(%esp )
12 804 c241 :
13 804 c242 : c a l l 804 c1e0 <rea l loc groupbuf>
. . .
23 804 c271 :mov %ebp ,0 xc(%esp )
24 804 c275 :mov %ebx , 0 x8(%esp )
25 804 c279 :mov %edx , 0 x1c(%esp )
26 804 c27d :mov %eax , 0 x4(%esp )
27 804 c281 :mov %edi ,(% esp )
28 804 c284 : c a l l 8048db0 <ge tg roup l i s t@p l t>
. . .

(b) Partial groups Code Snippet (AT&T
Syntax)

Struct Name (size) libname list (12 bytes) service library (12 bytes) 0x9406CA8
First field const char* const char* Pointer-str

Second field struct libname list* void* Pointer-stru

Third field int struct service library* Zero

(c) Two Data Structure Candidates for Memory 0x9406CA8
Figure 2.3: Memory reverse engineering through statistical data structure information

ReViver infers the data type as IO FILE according to its library function definition

database; however, ReViver finds the allocated memory size (352 bytes) is larger than

IO FILE. ReViver’s investigation through statistical information (Figure 2.3a) does

not comply with ReViver’s speculative analysis outcome, because IO FILE does

not appear as any of the 17 data structures on Figure 2.3a. Finally, ReViver’s nested

data structure inspection finds out the 352-byte locked FILE from the statistical

information contains IO FILE as one of its fields. Consequently, ReViver marks

0x094075C0 as locked FILE.

For accurate outcomes, ReViver’s field-level type reverse engineering module had

to deal with pointer mangling occasionally that is a security feature which aims to in-

crease the difficulty of maliciously manipulating function pointers in structures. For in-

stance, without such consideration, ReViver would not determine the memory 0x09407570

to be of type known function, because the second field of known function defi-

nition is a pointer. However, its second field value on the captured memory cannot be

a pointer as it does not point to the acceptable memory address range. The reason for

such a mismatch is that the second field value is mangled by the program before getting

saved in memory. ReViver addresses pointer encryption through its initial decryption

pass over the memory (Section 2.4).
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2.3 Past: Statistical Information

ReViver creates statistical information about the executable’s use of data structures,

and leverages that information as prior knowledge about the structures ReViver may

be facing in the captured memory dump. This enables ReViver to compute and

report a probabilistic ranking of the structure candidates for every memory region.

Please note that ReViver’s objective is not to determine the exact execution path

that the process has gone through before the memory capture point (like Zamfir and

Candea (2010)). Instead, ReViver investigates all the past possible execution paths

and creates a probabilistic knowledge base for its later analyses.

2.3.1 Best-Effort Partial Symbolic Execution

ReViver profiles structure allocation of the executable by instrumented execution. To

maximize the use of the analysis time, ReViver implements a symbolic execution of the

binary to enumerate unique feasible execution paths, and generates concrete test-cases

for each path.

Typical binary symbolic execution goes through each path all the way from the

binary’s entry point to one of its exit points, e.g., main function return. However, such

a complete full-path investigation would be unnecessary for what ReViver tries to

achieve; it could even reduce ReViver’s forensics accuracy, because it may traverse

the code segments that the application’s captured memdump had not gotten to before

its execution suspension. Instead, ReViver only considers partial paths that start from

its entry point and ends at the eip register value and the call stack of the captured

memdump. ReViver’s partial symbolic execution reduces the number and complexity

of typical path condition satisfiability checks for the symbolic execution. This improves

the analysis time and ReViver’s ultimate accuracy significantly.

In addition to the partial-path symbolic execution, ReViver takes another step to

further optimize its analysis when collecting the executable’s data structure allocation

profile. A typical testing-oriented symbolic execution’s objective is to maximize its

code coverage and exhaust all the paths; however, that is not ReViver’s ideal goal.
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ReViver directs the symbolic execution towards only the execution paths that include

memory allocation function calls, and does not waste time on the remaining paths that

are irrelevant to ReViver’s forensics analyses. To that end, ReViver deploys LLVM

passes to obtain the call and control flow graphs for the application executable and its

libraries.

ReViver statically analyzes the graphs and enumerate possible paths that i) start

from the application’s entry point and ends at the captured memdump’s execution

state; and ii) include memory allocation function calls. Note that some of these paths

may be infeasible because of the static analysis. ReViver then implements directed

symbolic execution to further prune down the path set to include the feasible ones only,

and generates the corresponding test cases. The two above-mentioned optimizations

reduced ReViver’s search space and analysis time requirement by approximately an

order of magnitude in our experiments (Section 2.6.4). It is important to note that

ReViver’s correct functionality does not require symbolic execution of all the refined

paths, as ReViver uses the outcomes as statistical information to help with its later

forensics analysis routines.

We developedReViver’s partial symbolic execution as a module on top of KLEE Cadar

et al. (2008a). ReViver disassembles the given application’s binary executable and

extracts the corresponding LLVM intermediate level code that KLEE can execute sym-

bolically. ReViver’s static analysis modules enumerate the relevant execution paths,

and produce a list of binary vectors in a file. Each binary vector represents an execution

path, where the subsequent 0s and 1s in the binary vector indicate whether the corre-

sponding branch instruction during the execution should be taken. ReViver feeds the

generated list of vectors to the extended KLEE for partial and directed symbolic execu-

tion. We have developed customized searcher Cadar et al. (2008a) functions for KLEE

to direct its symbolic executions. Upon every branch instruction, ReViver’s searcher

function reads the next bit within the currently active binary vector, and mandates

whether KLEE should take the branch. Once the last bit in the vector is consumed,

ReViver generates the corresponding test case and terminates the symbolic execution

of that particular path. To improve ReViver’s performance, our implementations do
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not go through the binary vectors one by one sequentially. Instead ReViver maxi-

mizes the use of KLEE’s SMT solver cache through processing the binary vectors in

parallel. ReViver maintains the bit pointers on the individual binary vectors until all

the corresponding test cases are generated.

2.3.2 Prior Knowledge Collection

ReViver implements an instrumented execution of the binary executable using the

generated test-cases to i) create its data structure definition database; and ii) collect

statistical information about the application’s memory allocation for different data

structure types.

ReViver extracts the data structure definitions for individual applications. Re-

Viver leverages the past work Lin et al. (2010) that implements extended PIN tools

to reverse engineer data types for the test cases. The solution requires full execution

trace to complete the reverse engineering. Note that we can use the solution for Re-

Viver’s past analysis step here, because the test cases and hence their execution traces

are available. However, ReViver cannot deploy the past solution to reverse engineer

the captured memdump directly because ReViver does not have access to the traces

before the memory capture point.

Given the extracted structure definitions, ReViver runs the generated test cases

on a debugger and dynamically logs the memory allocation calls and their correspond-

ing data types. The set of data structure types during the test-case executions are

collected and rendered into a probability distribution regarding how likely it is to see a

data structure of a particular type within the application’s memory while its instruction

pointer and call stack match those of the captured memory. ReViver assumes equal

probabilities for individual execution paths unless the corresponding probability distri-

bution is available.Note that only the data structures that survive all the way through

each execution to the corresponding final memory. For instance, ReViver is not inter-

ested in a data structure that is always allocated and released during the initial phases

of the execution and never makes it to the execution stage of the captured memory. To

address this problem, ReViver implements backward taint analysis using Lin et al.
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(2010) during the test-case executions. Consequently, ReViver’s ultimate statistical

information about the memdump data structures include only those that are allocated

during at least one of the test-case executions and make to the final suspended memory.

2.4 Present: Static Memory Analysis

The captured memdump is the only information provided to ReViver’s forensics anal-

ysis engine. The exact execution path before the capture point is not available, because

to minimize the performance overhead by ReViver’s local agent on the user’s ma-

chine, it does not trace the instruction-level executions of running processes before a

specific one is suspended and marked for analysis. However, as shown by the past re-

search Cozzie et al. (2008), the mere identification of data structure locations (not their

types) on a bare memdump without the execution trace is the initial and practically

a challenging step in memory reverse engineering. For instance, running Laika Cozzie

et al. (2008) on groups’ memory (Figure 5.1) wrongly results in four data structures

at addresses four data structures which base address are 0x09406004, 0x09406D00,

0x09407658 and 0x09407664. To address the problem, ReViver’s local agent hooks

the system’s memory allocation API2 via library LD PRELOAD and modifies them such

that every allocated memory is followed by a fixed rare data pattern signature (8 bytes)

along with the size of the allocation (4 bytes3). This causes a negligible overhead (1.8%

on average), and allows ReViver to identify the data structure locations and their sizes

on the memory accurately later with a single linear sweep over the memory. Note that

in case any of the application’s memory content ever matches the landmark’s rare data

pattern, this could at most result in a single misrecognition only if the following number

on the memdump matches one of the data structure sizes in ReViver’s structure def-

inition database. We did not experience a single match in our experiments. ReViver

distinguishes various memory allocation call sites within the application executable and

2Specifically, malloc, calloc, and realloc. ReViver ignores specific call-sites whose allocated
regions do not survive the initial execution stages, e.g., the dl-minimal allocator.

3The maximum size of an allocated data structure could be MMAP THRESHOLD that is set to 128
KB by default.
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its libraries recursively. Therefore, to improve the overall reverse engineering accuracy,

ReViver stores different rare data landmark signatures for different memory allocation

API functions.

2.4.1 Trace-Free Reverse Engineering

To reverse engineer the captured memory, ReViver first locates the allocated memory

regions via a quick pass through the captured dump looking for its signature landmarks.

ReViver’s next objective is to identify the type of the allocated memory regions. Given

only the memdump, it is often infeasible to determine the exact type of every allocated

region because of limited available information, e.g., lack of access to the binary’s past

execution trace before the capture point. For ultimate accuracy, ReViver comes up

with a superset of possible types for each memory region, and excludes irrelevant types

during the later analyses to determine the most likely single type for individual regions.

ReViver marks each allocated memory as one of the following four types: i) a string of

characters; ii) a pointer-to-pointer (e.g., struct link map **p) represented as an

array of pointers on the memory; iii) a data structure including various field variables of

primitive data types (e.g., an integer); or iv) a str-zero for allocated regions filled only

with zeros. The str-zero regions could in fact represent one of the former types that

cannot be recognized because of insufficient information from the captured memory

(due to the zero memory bytes).

ReViver labels every allocated memory region with a four-entry confidence vector.

Each vector entry indicates the confidence level that the allocated region is of one of

the above-mentioned types. To that end, ReViver employs the forensics rules 𝑟 P 𝑅

for each type that we have developed based on our experience and investigation of

application executable and library data structures. Each rule has a confidence weight

𝜔 P tlow (L),medium (M), high (H)u, where 𝐿{𝑀{𝐻 are mapped to numerical values

0.25{0.5{0.75. ReViver calculates the confidence vectors for each allocated memory

region using the average of the forensics rules’ that hold true for that memory region:

𝐶𝑡p𝑚q “

ř

𝑟P𝑅𝑡
𝜔𝑟 ¨ 𝐼𝑚 satisfies 𝑟
ř

𝑟P𝑅𝑡
𝜔𝑟

, (2.1)
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where 𝐶𝑡p𝑚q is the confidence that the memory address 𝑚 is of type 𝑡. 𝐼 is the indicator

function, and 𝑅𝑡 represents the forensics rules for the data type 𝑡. In the following,

we review the major forensics rules only (for space limitations). The rules have high

weights except explicitly mentioned otherwise.

Strings. ReViver analyzes the captured memory mostly at the machine word granu-

larity except for character strings. ReViver traverses the memory byte by byte looking

for strings of ASCII characters (0x00-0x7F) that include both control (0x00-0x1F)

and printable (0x20-0x7F) characters. Most strings in real-world applications contain

printable characters only, hence ReViver marks a memory region as control character

strings with forensics confidence of 𝐿. The first byte of a string could be either its ini-

tial character (0x01-0x7F) or zero (0x00) that indicates a null string. The remaining

bytes follow similarly. If the first byte is printable, the memory stores a printable string

and hence the remaining bytes are also between 0x20-0x7F (forensics confidence: 𝑀).

ReViver assumes big endian byte ordering for allocated strings, and little endian for

pointers and other data (e.g., int, float, long and enum).

Pointer-to-pointers. ReViver extracts the address space layout of the captured

memdump, and looks for the pointer-typed memory addresses based on whether they

point to one of the acceptable address ranges such as the heap and the memory-mapped

segment for dynamic libraries and mapped files, e.g., frequently used local-archive.

If ReViver detects an allocated memory of five or more subsequent pointers, that

memory most likely stores a pointer-to-pointer data type; fewer number of subsequent

pointers are likely the initial fields of an allocated data structure (forensics confidence:

𝑀). If the allocated memory is a sequence of four-byte zeros and pointer (memory

address) values, ReViver marks the memory as pointer-to-pointer and data structure

with forensics confidences of 𝑀 and 𝐻 respectively. ReViver will further refine the

results to more accurately distinguish pointer-to-pointer and data structure types. In

particular, ReViver leverages the fact that pointer-to-pointer regions (e.g., struct

link map **p) contain pointers with identical types. Once ReViver determines the

type of individual pointers in its later analysis stages, the pointer-to-pointer label will

be removed from the allocated regions that contain different pointer types.
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Data structures. Data structures store a set of one or more fields with possibly

different data types (such as int, long, long long, enum, char, char[], floating point,

void *ptr, nested data struct, union). ReViver marks an allocated memory as a data

structure if it cannot be recognized as a string of characters, str-zero, or pointer-to-

pointer. Note that the allocated data types such as integer arrays are also labeled

as data structures at this analysis phase. ReViver will remove their label later if it

does not match any data structure definition in ReViver’s database. Once a memory

region is marked as data structure, ReViver starts reverse engineering its individual

field’s data types. ReViver labels the data fields as the following types: pointer-

stru: a pointer that points to another allocated memory region. ReViver knows

about all of the allocated memory addresses based on the memory landmarks, and

checks whether a given data structure field points to an allocated region; pointer-str :

a pointer field that points to a character string. ReViver checks this for a given

field value given its former string forensics results (discussed above); pointer-usr : a

pointer field that points to a non-heap memory segment. ReViver marks a field as

pointer-usr using the information it obtains from the captured dump regarding the

various memory segments; data: primitive data types such as int, floating point, and

long. ReViver marks the fields, with no pointer labels already, that have byte values

between 0x7F-0xFF, or between 0x01-0x7F without and ending null character, as

data. If the byte values are between 0x00-0x20, it may be data or control character

strings. ReViver marks them as data with forensics confidence of 𝑀 ; and array-char :

a character array. ReViver marks a field as an array-char using its string forensics

rules.

Str-zeros. ReViver marks a memory region that is filled with only subsequent zeros

for the allocated memory space as the str-zero type (forensics confidence: 𝐻).

During the field-level forensics, ReViver’s initial implementation identified some

of the pointer types as data due to the pointer protection (PTR MANGLE) to XOR the

pointer value with a random number that is generated during the application’s launch

time (see the listing below). We extended ReViver to extract the random number from

the captured memdump and implement PTR DEMANGLE before reverse engineering the
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memory.

typedef struct known_function{
const char *fct_name;
void *fct_ptr;

}

known_function *k = malloc(sizeof*k);
k->fct_ptr = result;
PTR_MANGLE(k->fct_ptr);

It is noteworthy that because ReViver bases its investigation mostly on four-byte

memory words, it misses shorter sized types, such as two-byte integers (short), char

or Boolean variables. Every variables of those types takes up four bytes in memory

because of the compiler-enforced alignments, and ReViver marks them as integers

initially. To minimize the affect on the ultimate result accuracy, ReViver considers

the integer type inclusive of a single or multiple adjacent (up to four bytes) instance(s)

of the above-mentioned types during its later analyses (Section 2.4.2).

There are often many zero bytes in a memory-resident data structure that makes

the type reverse engineering of the fields much more challenging. To address the zero-

byte problem, ReViver leverages an observation that often occurs in practice. On a

suspended memory dump, there often exist more than one instance of a data structure

where a particular field in some of those instances is filled with zeros while the same field

on other instances store a non-zero value whose type ReViver can reverse engineer.

ReViver picks any pair of allocated equally-sized data structures on the memory and

verifies whether the instances could represent the same data structure, i.e., whether

there is a non-zero field in both instances with different reverse engineered data types.

If the instances could represent the same structure, ReViver labels the zero fields in

each instance with the revered engineered type information of the same field on the other

instance if it is non-zero. ReViver marks those type information with the forensics

confidence of 𝑀 because the above-mentioned verification outcome could possibly be

incorrect, e.g., two different data structures having identical non-zero field data types.
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2.4.2 Pruning Candidate Data Structures

Given the field-level type information for allocated data structures, ReViver will in-

vestigate its data structure definition database to find the best matching candidates.

However, this would result in many false positives because of the large number of data

structures, e.g., 815 structures per application on average in our experiments (Sec-

tion 4.6). ReViver will prune the set of candidate data structures before its data

structure match-making analysis (Section 2.4.3).

In practice, most of the application’s memory-resident data structures are defined

and allocated by the application binary executable or by the libraries’ exported and

other internal functions. ReViver performs a static (offline) recursive traversal of the

call graphs of the executable and its loaded libraries, and looks for memory allocation

call sites. ReViver marks each corresponding data structure type as a relevant candi-

date in the captured memory. Note that ReViver considers only the paths from the

executable’s entry point to the execution state of the memory capture point. This opti-

mizes ReViver’s search space and performance significantly. For instance, ReViver’s

graph-theoretic analysis prunes the groups application function list down by 5𝑋 to

the list of only relevant functions that allocate memory space. Consequently, ReViver

narrows down the possible data structures on groups captured memory from 815 down

to 69 possible candidates, i.e., 92% improvement. Additionally, to improve forensics

accuracy, ReViver distinguishes between different memory allocation functions, e.g.,

through different memory landmark signature values for each allocation API (discussed

earlier in this section). Therefore, ReViver labels each candidate structure with its

corresponding memory allocation function. ReViver uses this information later to

avoid, for instance, matching a memory-resident malloc-allocated data structure with

a candidate data structure that is allocated using only the calloc function.

2.4.3 Dump-Database Structure Matching

At this analysis stage, ReViver has the memory data structure reverse engineered type

information and the narrowed down candidate data structure definitions. ReViver will
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determine the best matching candidate for each memory-resident structure.

ReViver cannot base its matching analysis on the size equality between the data

structure definitions and the allocated memory regions, because the allocated memory

is sometimes larger than the corresponding data structure size due to reasons such as

variable-length arrays with dynamically determined sizes. The C language does not

support variable-length arrays, so they are often implemented using a zero-length array

field where the array’s content follows the former fields of the data structure on the

memory (see the following snippet from glibc networking module).

struct binding{
struct binding *next;
char *dirname;
char *codeset;
char domain_name[0];

};
// for a domain_name with size len
struct binding *n = malloc(sizeof(struct binding) + len);

For each data structure on the capture memory, ReViver uses its landmark sig-

nature to determine the API function used to allocated the memory region. ReViver

then goes through the pruned list of candidate data structures (Section 2.4.2) and se-

lects the structures that i) are allocated with the same API function; and ii) have sizes

smaller than the allocation memory region. ReViver uses the following equation to

determine the likelihood that a memdump region represents a specific data type.

𝑆p𝑀,𝐿q “
ź

𝑙P𝐿

𝐶𝑡p𝑙qp𝑀𝑙q
ř

𝑡P𝑇 𝐶𝑡p𝑀𝑙q
, (2.2)

where 𝑆p𝑀,𝐿q represents the similarity measure between the data structure on the

capture memory 𝑀 and the candidate data structure 𝐿 that contains various fields

𝑙 P 𝐿. 𝑇 represents possible data types, and the function 𝑡p𝑙q returns the type of the

field 𝑙 within the candidate data structure 𝐿. Intuitively, Equation 2.2 calculates how

closely the types of each field on the captured memory and candidate data structure

match and computers the product across all of the fields. The similarity measure is a real

number 0 ď 𝑆 ď 1. A high similarity measure indicates that the memory-resident data

structure 𝑀 matches with the candidate structure 𝐿 very closely and it is very distinct
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from other candidate data structures. Consequently, ReViver creates a ranked list of

candidate data structures for each memory-resident structure based on the calculate

similarity measures. The ranked quantified list of data structures for the memdump

enables flexible use cases for ReViver in practical real-world forensics scenarios. As

its ultimate fully-automated outcome, ReViver can pick the most likely candidate for

each memdump region and deliver the whole memory with labeled semantic information

about the data structures and their field data types. Alternatively, ReViver can

be used for human-assisted forensics analysis, where the security admin is provided

with the ranked structure lists and ReViver’s automated justification for why each

memory region is identified by the corresponding structure type rankings. The admin

could possibly decide to take it as is, or update the final rankings and tune ReViver’s

internal forensics rulesets accordingly.

2.5 Future: Speculative Forensics

The past research Lin et al. (2010); Slowinska et al. (2011); Lee et al. (2011) has shown

that execution traces play an invaluable role in accurate memory forensics. ReViver

does not have access to the binary’s past trace before the memory capture point. How-

ever, ReViver produces traces for the paths that would have been executed potentially

if the execution had not been suspended. ReViver analyzes those traces to either con-

firm or correct its former memdump’s reverse engineered data types (the previous two

sections) using backward taint analysis. To produce the traces, ReViver loads the cap-

tured dump on memory and symbolically explores all feasible future branches of the

code from the suspended point. ReViver monitors the speculative executions closely

and logs important incidents, such as memory accesses, of each execution path for its

later backward taint analysis and type reverse engineering.

2.5.1 Revived Speculative Execution

ReViver’s first step is to suspend and store a running suspicious process on the user’s

machine for ReViver’s forensics analysis. A mere static memory forensics analysis
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(Section 2.4) would only require a simple memory dump transfer. However, ReViver’s

speculative symbolic execution necessitates to capture more detailed information that

are needed for restoring the execution in ReViver. ReViver leverages DMTCP Ansel

et al. (2009) to implement the process migration (checkpoint and restore). On the user-

side, ReViver captures the process’es internal content such as its virtual memory map-

pings, and its external system-wide dependencies. The external dependencies include

process IDs, its process tree relations, open file handles, network sockets, inter-process

buffers (and the corresponding processes recursively).

ReViver looks for type-revealing instructions within the executable during the

speculative execution. A simple restored concrete execution would continue a single

path starting from the memory capture point. To maximize the analysis gain, Re-

Viver instead loads the revived execution on a symbolic execution engine so that all

feasible future paths, including the type revealing instructions, are explored. During

the execution restoration, ReViver marks the process inputs as symbolic using the

functions from the symbolic execution engine. These inputs include any external data

that come from calls made during the forward execution. However, ReViver first has

to load the necessary libraries on the target executable’s address space. Our imple-

mentations inject dlopen to the restored execution and consequently load the shared

library needed to enable symbolic execution. The loaded shared library overrides the

corresponding library functions, e.g., read(), so any data processed by the overrid-

den library functions are marked as a symbolic input. During the symbolic execution,

ReViver generates the corresponding test-cases, and uses them for an instrumented

concrete execution of the process. Note that ReViver restores the execution from

the captured dump for every concrete test-case execution. ReViver instruments the

test-case executions to intercept type revealing instructions and backward data taint

analysis (see below).

2.5.2 Type Propagation for Type Forensics

During the speculative executions, ReViver looks for hints to help with its data type

forensics result accuracy. Two great sources of data type information are the calls



29

to i) type-revealing x86 instructions such as string instructions MOVS/B/D/W and

STOS/B/D/W; and ii) system call and library functions with their well documented

return and argument types. For instance, a call to fread(..., FILE *) would

reveal a file pointer on memory. During a one-time offline analysis, ReViver auto-

matically investigates the libraries and the kernel to extract the library functions and

system call definitions automatically (using techniques discussed in Section 2.3). Note

that ReViver has already created the data structure definition database for function

arguments/returns of data structure pointer types.

ReViver intercepts the type-revealing instructions, and library and system calls

during the symbolic executions, and logs the revealed data types, and their argument

and return values, respectively. Memory data type exposure by the instructions, and

library and system calls could be either direct (e.g., when a function argument points

to a user memory address) or transitive (e.g., when the argument points to the kernel

memory address whose value originates from the captured user memory). ReViver

extract the direct type sources by a simple post-execution log parsing. For the transitive

type sources, ReViver implements backward data taint analysis to possibly back-trace

the transitive data flows to the captured memdump. At the stripped binary level,

type source variables exist in either memory locations or registers. At type revealing

call sites, ReViver labels memory addresses or registers with their type information.

ReViver create and maintain constraint sets Lin et al. (2010) during the executions.

Each constraint set includes a set of other memory addresses that should have the same

type according the previous data flow up to this point. The constraint set information

refers to the memory at the current execution point that is most likely different from

the captured dump because of overwritten memory regions since the revived execution.

ReViver is interested only in the data structure type information in the constraint set

that are present in the captured dump. ReViver keeps track of the memory writes

during each symbolic execution path, and does not report the type information results

about the overwritten regions as its ultimate results. It is noteworthy that ReViver

still uses that information for its internal backward taint analysis for potential indirect

type information about the captured memory content.
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Index.Application

1.base64 2.basename 3.cat 4.chcon 5.chgrp 6.chmod
7.chown 8.chroot 9.cksum 10.comm 11.cp 12.csplit
13.cut 14.date 15.dd 16.df 17.dir 18.dircolors
19.dirname 20.du 21.echo 22.env 23.expand 24.expr
25.factor 26.false 27.fmt 28.fold 29.ginstall 30.groups
31.head 32.hostid 33.id 34.join 35.link 36.ln
37.logname 38.ls 39.md5sum 40.mkdir 41.mkfifo 42.mknod
43.mktemp 44.mv 45.nice 46.nl 47.nohup 48.od
49.paste 50.pathchk 51.pinky 52.pr 53.printenv 54.printf
55.ptx 56.pwd 57.readlink 58.rm 59.rmdir 60.runcon
61.seq 62.sha1sum 63.sha224sum 64.sha256sum 65.sha384sum 66.sha512sum
67.shred 68.shuf 69.sleep 70.sort 71.split 72.stat
73.stty 74.sum 75.sync 76.tac 77.tail 78.tee
79.test 80.touch 81.tr 82.true 83.tsort 84.tty
85.uname 86.unexpand 87.uniq 88.unlink 89.uptime 90.users
91.vdir 92.wc 93.who 94.whoami 95.arch 96.nproc
97.numfmt 98.realpath 99.stdbuf 100.timeout 101.truncate 102.yes

Table 2.1: Applications’ Name-Index Mappings

2.6 Evaluations

We evaluated ReViver on CoreUtils v8.22, and 5 large and medium-size popular desk-

top and server applications (Table 2.1 shows the mappings between the applications

and their indices that we used for presentation clarity). We suspended each process

at a random execution point, i.e., half way through its finish time. The user desktop

ran Linux kernel v3.11. We implemented a plugin for KLEE Cadar et al. (2008a) for

mid-point and selective symbolic execution. We developed and employed an application

in Intel PIN Luk et al. (2005) for backward taint analysis using techniques introduced

in Lin et al. (2010). We designed a set of experiments to verify whether ReViver can

be useful in real-world practical scenarios by answering the following questions empiri-

cally: How accurately does ReViver reverse engineer the memory data types without

the access to execution traces? How efficiently does ReViver complete the memdump

reverse engineering for real-world applications? How well does ReViver scale up for

data structures from complex widely-used applications?

2.6.1 Case-Study: The Groups Application

We ran groups without a commandline option. ReViver initially shrunk the number

of relevant functions from 60 to 12, and the data structures from 815 to 69 relevant

candidates (Section 2.4.2). ReViver was able to match and recognize several instances

of same structures correctly despite existing zero bytes (Section 2.4.1). The following
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shows three partial snapshots of groups memory along with ReViver reverse en-

gineered data types. All the memory portions represent node t structure instances

(determined using gdb). Although ReViver cannot confirm this confidently because

of several zero fields, ReViver keeps node t as one of the options for these allocated

regions. ReViver later marks node t as the most likely candidate for these memory

regions using its collected statistical information (Section 2.3).

address content reversed type/size
---------------------------------------------
0x09405e58 09 40 5e 78 Pointer-stru 4
0x09405e5c 00 00 00 00 Zero 4
0x09405e60 00 00 00 00 Zero 4
0x09405e64 00 00 00 01 Data 4
...
0x09406018 09 40 60 38 Pointer-stru 4
0x0940601c 00 00 00 00 Zero 4
0x09406020 00 00 00 00 Zero 4
0x09406024 00 00 00 00 Zero 4
...
0x094074a8 09 40 74 c8 Pointer-stru 4
0x094074ac 09 40 75 18 Pointer-stru 4
0x094074b0 09 40 60 18 Pointer-stru 4
0x094074b4 00 00 00 00 Zero 4

data structure definition (16 bytes)
------------------------------------
struct node_t{

const void* 4
struct node_t* 4
struct node_t* 4
unsigned int 4

};

2.6.2 Accuracy

We measured the accuracy of ReViver’s ultimate data type forensics. Figure 2.4

shows the results for strings and other data structures of each application separately.

ReViver correctly recognized 99.2% of the strings and 96.7% of the memdump data

structures correctly. ReViver’s overall accuracy level 98.1% is very promising even

though ReViver did not have access to the execution traces before the memory capture

point.

We investigated the relatively low accuracy for four applications (#12.csplit,

#30.groups, #55.ptx, #81.tr). ReViver recognized some of the data structures as
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Figure 2.5: Speedup via directed symbolic execution

(more likely) strings due to lack of any helpful information (all zero bytes). Regarding

the accuracy of #14.date, there were three instances of 3-field tzstring l struc-

tures. The last fields of those instances on the memdump were all zero. Consequently,

ReViver marked those regions as key call private that also has three fields, and

its first two field types are identical to tzstring l.

We also evaluated ReViver’s speculative execution (Section 2.5) that ReViver

uses to improve the forensics accuracy. Table 2.2 shows some of the cases in our ex-

periments that the speculative execution helped ReViver to either confirm its former

forensics results about a particular memory region or correct the region’s data type

(the last column). The table shows the library/syscall function names and instructions

that revealed a data type along with the argument and data type details. The data

type information about a specific memory address by ReViver’s speculative execution

replaces its former analysis results in case of a mismatch. Because, unlike ReViver’s

former analyses, the results from speculative execution come from instruction syntax

and library/syscall function definitions and are always correct.

ReViver shrinks its analysis search space through static executable analysis (Sec-

tion 2.4.2). On CoreUtils, each application may call 67 functions on average. ReViver
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Figure 2.6: Forensics accuracy and time requirement

shrunk this number to 26 functions per application based on the captured memory’s ex-

ecution state. Consequently, ReViver excluded 63% of functions for each application

from its later analyses. ReViver parses through the remaining 37% of the functions

recursively, and determine the data structures that may have been allocated before the

memory capture point. ReViver filters out 92% of the total data structures as irrel-

evant, and uses only the remaining 8% for its forensics analyses. This is a significant

search space reduction in order to improve ReViver’s overall performance.

2.6.3 Performance

From the usability viewpoint, upon the user’s request to analyze a particular local

process, ReViver needs to efficiently capture the memory dump locally and revive the

process for ReViver’s forensics analysis (Section 2.5.1). ReViver requires 24.9 ms on

average to suspend each application and 26.6 ms to restore its execution. We measured

how much data needs to be transferred to ReViver upon every user request. ReViver

transfer 2.62MB per application on average. The captured data includes the process’es

internal memory and external dependencies.

ReViver does not require the prior execution trace due to its high overhead, and

instead overrides memory allocation API to store landmark signatures in memory to

maximize its information-gain/overhead (Section 2.4). We measured the time it takes

for each application to finish a predefined fixed workload before and after ReViver’s

instrumentation. ReViver’s average runtime overhead is negligible (1.8% on average

over 1000 runs), and reasonably low for practical deployments. We measured the time
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it takes for ReViver to complete the major steps of its memory forensics. ReViver’s

static memory analysis (Section 2.4.1) takes 0.53 seconds on average. ReViver then

takes 523 seconds to extract the data structure definitions and match each one with

every allocation memory structure.

2.6.4 Fine-Grained Measurements

For better accuracy, ReViver puts different landmarks for different memory alloca-

tion API (Section 2.4). We measured the call frequency of the allocation API across

different applications. The frequencies of realloc (0.26 calls/application on average)

and calloc (0.59) are significantly lower than malloc (21.7). ReViver was able to

correctly recognize all the structures that were allocated using realloc and calloc

functions.

ReViver use statistical information to improve its forensics accuracy. We mea-

sured how informative (helpful) the collected prior knowledge (Section 2.3.2) is for

memory forensics analyses. We used information theoretic entropy measure 𝐻p𝐷q “

´
ř

𝑑P𝐷 𝑃 p𝑑q ¨ log𝑃 p𝑑q, where 𝑃 p𝑑q is the empirical probability of the data structure

𝑑 P 𝐷 by ReViver. Based on our experiments, the entropy level of the statistical

information varies across different applications. Higher entropy indicates higher sim-

ilarity between the calculated data structure frequency distribution and the uniform

distribution, and hence conveys less information. Lower entropy measures allow Re-

Viver to better rank structures during its later forensics analysis, and hence improve

its accuracy.

ReViver generates its statistical information through its best-effort partial sym-

bolic execution given a fixed 10-minute deadline for each application. Due to the state

space explosion problem, ReViver’s symbolic execution often cannot fully exhaust the

executable. However, this does not affect ReViver’s correctness, because ReViver

needs just an empirical estimate of the statistical information for its later forensics

analysis. Incomplete code coverage will still provide ReViver with a decent estimate

of the probability distribution over the allocated data structures.

General symbolic execution techniques suffer from state space explosion problem.
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To address this concern, ReViver implements a partial best-effort (directed) symbolic

execution of only relevant paths, where data structures get allocated or used through

type-revealing instructions and function calls. Figure 2.5a shows how ReViver’s static

path pruning shrinks its symbolic execution search space significantly (please note the

logarithmic vertical axis scale). The results are shown for five applications including

a web server corehttp. The figure reports four numbers for each application: i) the

total number of static execution paths; ii) the number of feasible paths for native sym-

bolic execution by KLEE; iii) ReViver’s calculated pruned number of static paths

that traverse from the application’s entry point to the memory dump’s suspended

execution state and include data structure allocation or type-revealing instructions;

and iv) the feasible subset of pruned paths that ReViver’s directed symbolic exe-

cution goes through for test-case generation purposes. ReViver’s directed symbolic

execution results in approximately 5𝑋 search space size reduction compared to the

native KLEE (Figure 2.5a). The native KLEE-based symbolic execution goes through

many irrelevant useless execution paths that do not contain any relevant function calls.

The demonstrated remarkable search space refinement results in a significant perfor-

mance speedup that reduces the time ReViver takes to complete its past analysis

step. Figure 2.5b shows the results for the same set of applications. ReViver’s of-

fline executable analysis and directed symbolic execution reduces the overall analysis

time requirement by approximately an order of magnitude (10𝑋) on average. Despite

ReViver’s reduced-time symbolic analysis, it is noteworthy that ReViver’s correct

functionality does not definitely require complete symbolic execution (100% exhaus-

tion of relevant paths), because ReViver treats the past analysis step outcomes as

statistical information that may include inaccurate entries. Rather than an exhaustive

directed symbolic execution, ReViver’s partial best effort analysis searches through

the relevant paths until a predefined deadline is met.

Finally, we implemented ReViver to reverse engineer data structures on memory

dumps of five popular applications (Figure 4.15): a web browser (Lynx), an email

client (Mutt), an instant messaging application (Bitlbee), a web server application

(Corehttp), and a text editor (Nano). Figure 2.6a shows the ultimate data structure



36

App Structure Lib-func/Syscall Resolved Fields Result

stat char* memcpy() char *dest Conf.
passwd* getpwuid() struct passwd *pw ent Corr.
group* getgrgid() struct group *gw ent Corr.

who utmp* strncat() pid t ut pid Corr.
stzncpy() char ut line[] Conf.
stzncpy() char ut host[] Conf.
localtime() int32 t tv sec Conf.

char* sprintf() char *x exitstr Conf.
groups gid t* getgrouplist() gid t *g Corr.

passwd* getpwuid() struct passed *pwd Corr.
group* getgrgid() struct group *grp Corr.

shred randread fread() FILE *source Corr.
source* memcpy() unsigned char b[] Conf.

char* strlen() char *qdir Conf.
char* sprintf() void *fill pattern mem Conf.

csplit char* strcpy() char *filename space Conf.
buffer read() size t bytes alloc Corr.
record* read() char *buffer Corr.

char* memcpy() char *buffer Conf.
tsort item* strcmp() const char *str Conf.

wc argv iterator* getc unlocked() FILE *fp Corr.
fstatus* fstat() struct stat st Corr.

chmod FTS* fstatat() int fts cwd fd Conf.

cp char* memcpy() char *p concat Conf.
char* read() char *buf alloc Corr.

ptx char* fopen() char *input file name Corr.
re dfa t* strncpy() char *re str Corr.

pthread mutex init() pthread mutex *lock Corr.

Table 2.2: Results Improvement via speculative execution

reverse engineering accuracy for the above-mentioned five applications. Figure 2.6b

shows how long ReViver takes to complete its analyses. Among the applications,

ReViver needed more time to reverse engineer the data structures of the Lynxmemory

dump due to its larger memory footprint. Both the accuracy and time requirement for

real desktop and server applications are very promising and motivating for ReViver’s

potential real-world deployability.

ReViver’s overall average accuracy is 98.1% without the need to access the exe-

cution traces unlike other previous related work. Rewards Lin et al. (2010) achieves

an average of 97% accuracy with execution traces. TIE’s Lee et al. (2011) accuracy is

conservative 90% on structural types. Rewards implements Intel Pin tools for dynamic

execution and heavyweight execution trace logging that causes over 6X performance

overhead. Howard Slowinska et al. (2011) implements all dynamic analysis techniques

based on Qemu. In a target system with hundreds of processes and initially unknown

bugs/vulnerabilities, runtime instrumentation and execution trace logging of individual
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08352000 0000 0000 00a9 0000 f039 574e 0010 0000

08352010 0001 0000 694c 756e 0078 0000 0000 0000

08352020 0000 0000 0000 0000 0000 0000 0000 0000

08352030 0000 0000 0000 0000 0000 0000 0000 0000

08352040 0000 0000 0000 0000 0000 0000 0000 0000

08352050 0000 0000 0000 0000 a870 bfb3 0050 0000

08352060 0118 0837 0138 0837 0158 0837 01b0 0837

08352070 0208 0837 0260 0837 0280 0837 02a0 0837

08352080 0308 0837 0000 0000 0036 0000 ace8 0804

08352090 af04 0804 2158 0837 22c8 0837 efef efef

083520a0 fefe fefe 00a0 0000 0000 0000 c409 0001

...

typedef struct {

time_t now; f039 574e

socklen_t salen; 0010 0000

unsigned int proc_num; 0001 0000

char sysname[SYS_NMLN]; 694c 756e +

const char *configfile; a870 bfb3

CONFIG_t config;

typedef struct {

uint16_t port; 0050 0000

const char *user; 0118 0837

const char *host; 0138 0837

const char *basedir; 0158 0837

const char *vhostbase; 01b0 0837

const char *errmsgpath; 0208 0837

const char *indexfile; 0260 0837

const char *userdir; 0280 0837

const char *accesslog; 02a0 0837

const char *errorlog; 0308 0837

const char *passfile; 0000 0000

unsigned int options; 0036 0000

} CONFIG_t

HTTP_STATE_t (*write)(CONN_t *); ace8 0804

void (*log)(LOG_TYPE_t, const char *); af04 0804

FILE *access_log; 2158 0837

FILE *error_log; 22c8 0837

} SERVER_t;

Figure 2.7: Orzhttpd memory snapshot and reversed data structure

applications (processes) within the system is impractical due to unacceptable perfor-

mance overhead. ReViver does not need to record any execution traces, and hence

can be used in such scenarios to protect any of the running processes within the target

system.

2.6.5 Applications: Non-Control-Data Attacks

Due to practical mitigations against control flow attacks (e.g., ROP), recent attacks

locate and corrupt memory variables to achieve their objectives. We demonstrate an

example use-case for memory forensics to assist with detecting some types of such

non-control data attacks Chen et al. (2005); Hu et al. (2015); Hu et al.. As a case

in point, the semantic memory dump data structure layout provided by ReViver
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can be used to determine if a sensitive global variable value has changed by the at-

tackers. We demonstrate ReViver against data attacks on orzhttpd Hu et al.

(2015) web server with a format string vulnerability (bugtraq ID: 41956). The at-

tacker can exploit the vulnerable point to gain control over the program memory

and modify the web root directory string on the heap. This attack changes the

configuration information - root directory of the orzhttpd server to “/”. The origi-

nal root directory is ”/home/orzhttpd/orzhttpd-read-only/www/data” specified in file

”/home/orzhttpd/orzhttpd-read-only/config.xml”. Upon the attack’s success, the in-

truder can access any system file, e.g., “/etc/passwd”.

Figure 2.7 shows the web server’s partial memory snapshot and ReViver’s foren-

sics results of data types. ReViver identified the memory region as the SERVER t

data structure type and marks its individual data fields. In SERVER t, there is one

nested data structure CONFIG t that contains the memory addresses for the memory

addresses, where all the configuration information is stored. Through pointer value

tracking, ReViver located the root directory in address 0x08352068, i.e., *basedir.

*basedir stores 0x08370158 as the address of the target string.

Figure 3.8b shows orzhttpd’s post-attack partial memory snapshot, where the

root directory has been modified. The red dashed box on the figure shows the string

value of root directory (address 0x08370158). ReViver knows the type of basedir,

i.e., const char *. The second byte is 00 (null), so when orzhttpd accesses the

root directory strings, only the first four bytes (null-terminated) are read. ReViver

was able to reverse engineer the root directory name, and a simple comparison between

the extracted string and the configuration file value indicates a anomalous discrepancy.

Such indicators can help the forensics analysts with detecting non-control data overflow

exploitations.
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2.7 Related Work

Static memory image analysis. Past research in memory image forensics analysis

has mainly concentrated on reverse engineering data structure instances using signature-

based brute force scanning Saltaformaggio et al. (2014a, 2015a). Generally, those tech-

niques can be categorized into value-invariant based Betz (2015); Bugcheck (2006);

Dolan-Gavitt et al. (2009); Petroni et al. (2006); Schuster (2006); Walters (2007); Walls

et al. (2011) and structural-invariant based Carbone et al. (2009); Lin et al. (2012,

2011). Value-invariant signatures seek to classify data structures by the expected num-

ber and value of their fields. As a case in point, Decode Walls et al. (2011) makes use

of value-based signatures with probabilistic finite state machines to recover evidence

from smartphones. Structural-invariant based signatures are derived by mapping in-

terconnected data structures. For instance, SigGraph Lin et al. (2011) employs similar

signatures for target memory image scanning. DIMSUM Lin et al. (2012) attempts

to probabilistically locate data structure instances in un-mappable memory. Further,

numerous forensic tools and reverse engineering systems Case et al. (2008); Lee et al.

(2011); Lin et al. (2010); Movall et al. (2005); Zeng et al. (2013) make use of data

structure traversal. Compared with these techniques, ReViver does not stop its foren-

sics procedures at the static memory analysis phase, and further improves its results

through speculative future execution monitoring of the target process. ReViver’s pro-

vided techniques may also be used to investigate the execution and the usage history

of the target application Arasteh and Debbabi (2007).

Static binary analysis. Binary reverse engineering techniques Lee et al. (2011); Lin

et al. (2010); Slowinska et al. (2011) can reverse engineer data types from binaries

accurately. They can also reverse engineer semantic information to a certain extent.

As such, they can be used in forensic analysis. These techniques, however, only can

reverse engineer the executable-defined data structure definitions and their field data

types through offline binary analysis techniques; they cannot directly reverse engineer

data structures resident on an application memory dump when the execution trace is

not available. ReViver relies on the past work to partially fill in its relevant data
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08370110 0000 0000 0021 0000 7777 2d77 6164 6174

08370120 ef00 efef feef fefe 15fe 0000 0000 0000

08370130 0000 0000 0021 0000 726f 2e7a 7962 6873

08370140 6e65 6e2e 7465 ef00 efef feef fefe 1bfe

08370150 0000 0000 0059 0000 682f 6d6f 2f65 6f64

08370160 2f70 6c66 776f 7473 7469 6863 612d 7474

08370170 6361 736b 6f2f 7a72 7468 7074 2f64 726f

08370180 687a 7474 6470 722d 6165 2d64 6e6f 796c

08370190 772f 7777 642f 7461 0061 efef efef fefe

083701a0 fefe 004e 0000 0000 0000 0000 0059 0000

083701b0 682f 6d6f 2f65 6f64 2f70 6c66 776f 7473

083701c0 7469 6863 612d 7474 6361 736b 6f2f 7a72

083701d0 7468 7074 2f64 726f 687a 7474 6470 722d

08370110 0000 0000 0021 0000 7777 2d77 6164 6174

08370120 ef00 efef feef fefe 15fe 0000 0000 0000

08370130 0000 0000 0021 0000 726f 2e7a 7962 6873

08370140 6e65 6e2e 7465 ef00 efef feef fefe 1bfe

08370150 0000 0000 0059 0000 0100 0000 2f65 6f64

08370160 2f70 6c66 776f 7473 7469 6863 612d 7474

08370170 6361 736b 6f2f 7a72 7468 7074 2f64 726f

08370180 687a 7474 6470 722d 6165 2d64 6e6f 796c

08370190 772f 7777 642f 7461 0061 efef efef fefe

083701a0 fefe 004e 0000 0000 0000 0000 0059 0000

083701b0 682f 6d6f 2f65 6f64 2f70 6c66 776f 7473

083701c0 7469 6863 612d 7474 6361 736b 6f2f 7a72

083701d0 7468 7074 2f64 726f 687a 7474 6470 722d

Figure 2.8: Orzhttpd’s post-attack modified root directory

structure definition database. ReViver go beyond current techniques with its present

and future analyses to map the memory dump-resident structures completely through

memdump forensics and speculative symbolic inspection.

Dynamic execution analysis. Rewards Lin et al. (2010) and Polishchuk et al.

(2007) require execution traces and monitor the application’s execution in depth. Sig-

Path Urbina et al. (2014) requires access to the execution snapshots prior to the

memory-dump’s capture point. Rewards builds on a technique originally pioneered

by aggregate structure identification Ramalingam et al. (1999). Whenever the pro-

gram makes a call to a well-known function (like a system call), the authors label the

corresponding argument and return value memory locations according to the function

definition. Due to its runtime extensive execution monitoring, Rewards slows down the

system’s throughput over 6X. More recently, Dscrete Saltaformaggio et al. (2014a) pro-

vides memory rendering through reuse of application logic to reverse engineer a memory

image for more semantic information. Dscrete heavily relies on exact identification of

the so-called 𝑃 function within the binary that takes as input the target data structure

instance and produce the human readable application output.

2.8 Discussions and Limitations

We review some of ReViver’s current limitations and how they could be addressed:

i) Data allocation functions. Can ReViver reverse engineer data structures allocated

using other API? ReViver’s current implementation only supports memory allocations
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through malloc, calloc and realloc. ReViver could possibly be extended to

support other memory allocators like TCMalloc and jemalloc.

ii) Deterministic replay. ReViver does not pursue a deterministic replay, and instead,

revives and analyzes the continued execution inReViver even though it may be slightly

different from its potential trace if the process continued executing on the user’s local

machine.

iii) Memory modification attacks. What if the attacker modifies ReViver’s landmarks

on the memory, e.g., through buffer overflows? To prevent against such attacks one

could update ReViver’s implementation to make the preloaded memory allocation

function store the landmark information in a randomly selected memory region (like

Kuznetsov et al. (2014)) or to an external read-only space such as another process

memory or a log file.

iv) Data-based type forensics uncertainty. Unlike some recent work Lee et al. (2011);

Slowinska et al. (2011), ReViver does not have access to the past execution trace and

type-revealing instructions, and hence has to perform forensics mostly based on the

memory data values. One challenge in practice is the allocated memory regions with

unpopulated fields filled with zero values. This reduces the analysis accuracy. To that

end, we developed two solutions: ReViver’s prior knowledge collection module narrows

down the search space; and its future speculative forensics makes use of type-revealing

future instructions to infer memory data types.

v) Symbolic analysis limitations. ReViver’s future speculative analysis extends and is

based on the existing symbolic execution technologies. Hence, ReViver’s practical de-

ployment inherits their limitations for complex path conditions, such as finding a string

𝑚 for which the one-way hash value is SHA-2(m)=0xdeca3ed7f8eb4d. Additionally,

the current symbolic execution solutions do not perform efficiently for applications with

intensive graphical user interfaces. Consequently, ReViver can extract data types for

those applications by past and present analyses only.

vi) Obfuscated application executables. ReViver’s prior knowledge collection module

develops executable static analysis techniques to extract control flow graphs and search

for memory allocation functions. ReViver’s current implementations assumes the
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executable does not include anti-disassembly and is not obfuscated. More advanced

solutions Kruegel et al. (2004) may be used to handle obfuscated binaries. We consider

this as a potential future work.

2.9 Conclusions

We presented ReViver, a hybrid data structure reverse engineering solution that takes

the memory image for a selected running process on the user’s machine, and determines

its semantic data structure layout without the need for execution traces before the

memory capture point. ReViver performs a static forensics analysis of the captured

memory dump, and its potential past and future execution traces. ReViver correctly

reverse engineers 98.1% of the data structures in real-world application dumps with

1.8% runtime performance overhead.
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Chapter 3

Compromising Security of Economic Dispatch in Power

System Operations

3.1 Introduction

Critical national infrastructure has become increasingly complex. The power grid exem-

plifies a cyber-physical infrastructure, with data collected from its physical components

and processed by control algorithms running on computers to provide for accurate and

safe monitoring and control. Such a large-scale trusted computing base introduces a

hard-to-protect attack surface. Events such as proliferation of the Stuxnet worm Falliere

et al. (2010), the coordinated attack on the Ukranian power grid Assante (2016), and

the emergence of new threats that leverage existing weaknesses in these systems Rashid

(2013) demonstrate that cyber-physical infrastructures are unprepared to maintain their

safe and secure operation in the face of malicious adversaries.

Despite the failures, the past intrusions had two features: i) they mostly required

full ownership of the target controllers (e.g., Siemens Step7 server compromise by

Stuxnet Falliere et al. (2010)) to perform the attacks; and ii) they did not fully optimize

their adversarial impact via utilization of the underlying physical model. A semantics-

based attack can do a lot more using much less resources. For instance, an attacker

with access to only few power system parameters can leverage its dynamical model to

calculate the malicious replacing parameter values such that the ultimate damage to

the power system is maximized.

In the literature, there has been an extensive body of work on false data injection

attacks Liu et al. (2011), where the compromised sensors send corrupted measurements

to mislead the operators regarding the power system state. Such attacks assume the

attacker can compromise a large number of geographically and logically distributed set
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of sensors remotely. In addition to the scalability barrier, remote malicious access to

(analog) sensors with serial connections may not be feasible in practice. Additionally,

by design, false data injection attacks target sensors or actuators only, and cannot

manipulate core system parameters such as the network topology and line parameters

(e.g., capacities). This information often resides within the control center servers and

are used for power system operations such as state estimation and operational con-

trol. However, almost all the past real attacks (e.g., Falliere et al. (2010); Assante

(2016)) against critical infrastructures have targeted control center assets (as opposed

to individual sensors or actuators).

3.1.1 Our focus

This article presents a semantics-aware attack against a widely used power grid network

control functionality, and demonstrates its practical feasibility on well-known Energy

Management System (EMS) softwares. Specifically, we conduct a vulnerability assess-

ment of an important functionality provided by all EMSs – the so-called Economic

Dispatch (ED) problem. In critical infrastructures, ED is routinely solved to set the

generator output levels over a control area of a regional transmission grid. We show

that software security vulnerabilities in power system controllers can be exploited by an

attacker (an external hacker or a strategic market participant) to gain a backdoor entry

into power grid operations.1 By utilizing the knowledge of an approximate power flow

model – specifically, DC approximation – the attacker can launch a semantic memory

attack to change the critical parameters such as transmission line ratings (capacities).

A transmission line’s rating reflects the maximum amount of power that it can carry

without violating safety codes or damaging the line. We design experiments using ED

implementation on real-world EMS software packages to demonstrate the economic and

safety risks posed by use of manipulated line ratings.

The core of our attack generation approach against the power grid infrastructure is

a bilevel optimization problem that encodes the attacker’s partial knowledge of power

1Throughout the chapter, we use the term controller as the ED implementation software packages
that solve economic dispatch problem.
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system operations to compute the target malicious power system parameters. This

physics-aware attack generation approach enables us to identify key features of power

system data and software operations whose exposure can significantly increase security

risks. The implementation of our optimal attack against power system operation in-

volves targeted manipulation of specific power system parameters that reside within the

EMS’s dynamic memory space. The exploit performs an online memory data search us-

ing lightweight pattern matching to locate the sensitive power system parameters used

by the ED software to calculate the generation output levels. The use of manipulated

parameter values makes the EMS issue incorrect dispatch (generation and power flow)

commands, and consequently drive the power system towards unsafe states. The merit

of our overall approach lies in the combination of the semantics-based optimal attack

generation and a generic implementation procedure for EMS’s memory data corruption.

The bilevel problem for attack generation can be viewed as a sequential game be-

tween the attacker (leader) and the follower (grid operator). In the first stage, the

attacker chooses power system parameter manipulations with the objective of maxi-

mizing the violation of capacity limits; in the second stage, the operator solves the ED

to determine generator output levels while facing the manipulated parameters chosen

by the attacker in the first stage. We show that the optimal power injections and

nodal voltages computed using the manipulated parameters yield suboptimal and un-

safe power flow allocations. This significantly increases the possibility of cascading

failures and the risk of subsequent emergency actions.

Thus, the main contributions of this chapter are as follows:

• We introduce a new domain-specific semantic data attack against power grid

controllers. The attack leverages an approximate model of power system to ma-

nipulate the controller runtime memory such that the execution of the legitimate

controller software, using partially corrupted values, drives the physical plant

towards unsafe states.

• We formulate the problem using a game-theoretic framework to optimize the

attack strategy in terms of which available data regions in the controller memory
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Figure 3.1: Physics-aware memory attack on control systems.

space should be modified. The adversary-optimal values are calculated using fast

bilevel optimization procedures.

• We implemented working prototypes of the proposed controller attack against

real-world large-scale and widely-used energy management systems. Our imple-

mentations leverage logical memory invariants to locate the sensitive power system

parameters in the controller’s memory space. The evaluation results prove the

feasibility of domain-specific data corruption attacks to optimize for the physical

damage.

In the remaining of this section, we present an overview of our proposed attack.

Section 3.2 and Section 3.3 present the attack model and optimization algorithm to cal-

culate the parameter manipulations that will maximize the ultimate adversarial impact

of resulting power flows. Section 4.6 and Section 3.6 present our empirical experiments

with real-world commercial power grid monitoring and control software solutions. Sec-

tion 3.7 discusses the potential mitigation strategies, and Section 3.8 reviews the related

work.
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3.1.2 Solution Overview

Our contribution builds on two perspectives that have evolved in the emerging field of

cybersecurity of networked control systems. The first perspective involves the analysis

of state estimation and control algorithms under a class of attacks to sensor measure-

ments or actuator outputs Sandberg et al. (2015). These attack models reflect the

loss of availability (resp. integrity) of measurements/outputs when the communication

network linking the physical system and remote devices is compromised. Recent work

has studied how the physical system’s performance and stability can be compromised

by such attacks Liu et al. (2011). Typically the attacker is assumed to be a resource-

constrained adversary with only partial (or possibly full) knowledge of system, and a

resilient control design problem is to ensure a reliable and safe performance against

arbitrary actions that can be performed by the attacker. These results are grounded

in the theory of robust and intrusion tolerant control, which provides a quantitative

framework to study the tradeoffs between efficiency in nominal conditions and robust-

ness during non-nominal ones including the attacker-induced failures. In contrast, as

illustrated in Figure 3.1, our attack model considers direct data corruption (specifically,

manipulation of power system critical parameters) in the live memory of EMS software,

where all distributed sensor measurements are received and processed, i.e., single point

of compromise. Hence, individual infections of distributed sensors are not required un-

like previous work on false data injection attacks Lu and Zhang (2007). This allows us

to study how the vulnerabilities in control software implementations and in their links

to external data sources can be exploited by the attackers.

A second perspective has emerged in the vulnerability assessment of large-scale

power grids against physical attacks Bienstock (2016). Here the objective is to find

worst-case disturbance or an adversary-optimal attack to physical components that can

maximize the impact on grid functionality, even under perfect observability and best

response by the operator (defender). Various classes of failures have been considered,

for e.g., line failures, sudden loss of generation, and load disconnects. Typically, these
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problems are formulated as bilevel optimization problems, and involve explicit consid-

eration of both physical constraints (e.g., power flows, generation constraints, and line

capability limits) as well as resource constraints of the attacker. Examples of physical

security problems that have been considered using this framework include 𝑁 ´ 𝑘 con-

tingency analysis problem Davis and Overbye (2011), network interdiction under line

failures, and modeling of cascading failures that originate due to local component fail-

ures in one sub-network and progressively propagate to other sub-networks of the grid.

However, existing work on adversary-optimal attack does not consider how such an at-

tack can be executed in controller software. In our work, we combine the computation

of adversary-optimal attack with analysis of EMS software to execute the attack.

Threat model. Our adversary model is concerned with stealthy memory data corrup-

tion of EMS (that typically sits within the control center); thus, we require a compro-

mised controller process within the EMS server. This is a realistic assumption, because

it requires lesser privileges compared to the past real incidents such as Stuxnet Falliere

et al. (2010) and BlackEnergy Assante (2016) that took complete control of the servers.

With the access to EMS dynamic memory, the exploit targets the true memory-resident

power system critical parameters, and implements calculated adversary-optimal incor-

rect values in EMS memory.

We emphasize two aspects of our model: Firstly, our attack generation and imple-

mentation approach is generalizable. However, to concretely illustrate our approach

and to evaluate its feasibility, we assume that the attacker is concerned with generating

“optimal” dynamic line ratings (DLRs) to maximize capacity violations. Indeed, other

variations of attack generation are possible, for e.g. manipulation of other parameters

such as generator/loads/voltage bounds, etc. Secondly, our implementation approach

is motivated by server-side attacks to EMS software and emphasizes the stealthiness

of the attack. Specifically, the in-memory parameter manipulations are still within ac-

ceptable limits and hence pass the typical out-of-bound checks for false data injections.

Thus, they can remain dormant in controller’s memory and can produce the intended

consequences (e.g. thermal overloading, or even physical damage) before the last line
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of defense (i.e., physical fail-safe mechanisms) are triggered. Again, other ways of im-

plementing our attack are possible, for e.g. intercepting network communication and

injecting false data.

Implementations. We perform off-line binary analysis to locate the power system

parameters in the controller’s memory space. We use this information to extract logic-

based structural pattern signatures (invariants) about the memory around power system

parameter value addresses. The signature predicates are checked during attack-time

to identify the real parameters on the victim controller memory space. Such pattern-

based search (as opposed to absolute memory address-based search) is required because

analysis-time (offline) and attack-time (online) parameter value addresses in memory

often differ. This is because of unpredictable execution paths (due to potentially dif-

ferent workloads) across different runs that result in different heap memory allocation

function call/return sequences, and hence different allocated memory addresses. Fi-

nally, the attack achieves a certain level of stealthiness by ensuring that the incorrect

parameters reflect similar general trends as the true ones.

3.2 Optimal Attacks to Economic Dispatch

In this section, we describe how the attacker generates a semantic attack that utilizes the

knowledge of an approximate model of power flow to manipulate the model parameters

used by the ED software. We choose DC model as the approximate model known by

the attacker, and line capacities as the targeted model parameters.

We show that under our adversary model, the allocation generated by the ED im-

plementation under the manipulated capacity ratings, causes the power flows on the

transmission lines to exceed the actual line capacity ratings. Specifically, its implemen-

tation on the power system will lead to the violation of safe thermal limits of the lines.

This can cause the lines to rapidly deteriorate or degrade, increasing their likelihood of

tripping. The sudden disconnection of power lines can cause an outage. It may cause

a short circuit between two lines that can ignite a fire. Coming in contact with a line

that is live, can also kill people, seriously injure them. Thus, such a semantic attack
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increases both reliability and safety risks in power system operations to a significant

degree.

In our attack model, the attacker chooses the DLR manipulations in a way such

that his actions are not obvious to the System Operator (SO). If the effect of the attack

is not visible to the SO (for e.g., via line flow measurements or emergency signals), the

SO will not invoke generation curtailment and/or line disconnect operations. In fact,

under partial network observability, the operator may not be able to implement the

necessary preventive actions in a timely manner. As a result, the SO will implement

the false ED solution that will violate the line limits.

3.2.1 Attacker Knowledge

We first describe the attacker’s system knowledge which consists of DC-approximation

of the actual nonlinear AC power flow equations. The topology of a transmission

network can be described as a connected graph with the set of nodes 𝒱 and the set of

edges ℰ . In power systems terminology, each node refers to a bus and each edge refers

to a transmission line. We let 𝑛 “ |𝒱|. Let t𝑖, 𝑗u denote the line joining the nodes 𝑖 and

𝑗, and its susceptance (inverse of reactance) be denoted as 𝛽𝑖𝑗 . The set of generators at

a bus 𝑖 is denoted as 𝒢𝑖. The set of all generators is denoted by 𝒢 :“ 𝒢𝑖. For each 𝑖 P 𝒢,

𝑝𝑚𝑖𝑛
𝑖 and 𝑝𝑚𝑎𝑥

𝑖 are the lower and upper generation bounds that are specific to the 𝑖´th

generator. The generation bounds can be expressed as constraints on individual 𝑝𝑖:

𝑝𝑚𝑖𝑛
𝑖 ď 𝑝𝑖 ď 𝑝𝑚𝑎𝑥

𝑖 . (3.1)

Following the standard formulation of economic dispatch, the cost of power genera-

tion for the 𝑖´th generator is modeled as a convex quadratic function 𝐶𝑖p𝑝𝑖q in 𝑝𝑖. Let

𝑝 P R𝒢 and 𝑑 P R𝒱 denote the generation and demand vectors, respectively. The total

cost of generating 𝑝 is:

𝐶p𝑝q “
ÿ

𝑖P𝒢
𝐶𝑖p𝑝𝑖q, (3.2)

where

𝐶𝑖p𝑝𝑖q “ 𝑎𝑖𝑝𝑖
2 ` 𝑏𝑖𝑝𝑖 ` 𝑐𝑖. (3.3)
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𝑎𝑖, 𝑏𝑖, 𝑐𝑖 P R` @ 𝑖 P 𝒢. 𝑎𝑖 and 𝑏𝑖 are not simultaneously zero, i.e., the cost of generation

is an increasing function of power (MWs) supplied.

The power flow 𝑓𝑖𝑗 from node 𝑖 to node 𝑗 can be expressed as a linear function of

the difference between the voltage phase angles at nodes 𝑖 and 𝑗 Bienstock (2016):

𝑓𝑖𝑗 “ 𝛽𝑖𝑗p𝜃𝑖 ´ 𝜃𝑗q, (3.4)

where 𝜃 P R𝒱 is the vector of voltage phase angles.

The conservation law for the power flows is:

ÿ

𝑗:t𝑖,𝑗uPℰ
𝑓𝑖𝑗 “

ÿ

𝑘P𝒢𝑖

𝑝𝑘 ´ 𝑑𝑖, (3.5)

which states that the net generation at a node 𝑖 is equal to the sum of outflows from

node 𝑖 to its neighbors. The DC power flow (3.4)-(3.5) is said to be feasible if and only

if total supply is equal to total demand (see Bienstock (2016)), i.e.,

ÿ

𝑖P𝒢
𝑝𝑖 ´

ÿ

𝑗P𝒱
𝑑𝑗 “ 0. (3.6)

The power flows satisfy the capacity line constraints, i.e.,

|𝑓𝑖𝑗 | ď 𝑢𝑖𝑗 . (3.7)

Thus the DC-optimal power flow problem faced by the SO can be posed as follows:

min
𝑝,𝜃

𝐶p𝑝q s.t. (3.1)´ (3.6), (3.7). (3.8)

3.2.2 Attacker Resources

The true capacities of the transmission lines dynamically vary over time due to weather

conditions (ambient temperature, wind, etc.) Department of Energy (2016a), and are,

in fact, greater than the static line ratings assumed by the SO for economic dispatch

problem (fig. 3.2). Dynamic Line Rating (DLR) lines are the transmission lines with
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DLR sensors that report the true line capacities to the system operator.

Figure 3.2: Static vs dynamic line rating

Let ℰ𝐷 Ă ℰ denote the set of lines that are equipped with DLR devices. The

complementary set ℰ𝑆 “ ℰzℰ𝐷 denotes the set of lines that are not equipped with DLR

technology, and hence their rating will be fixed to the respective static line capacity

values. Given that DLR deployments are done as part of government sponsored smart

grid projects Department of Energy (2016a,b), the set of lines ℰ𝐷 equipped with DLR

technology is public knowledge. These lines will be the ones that are routinely prone

to congestion and hence receive priority DLR implementation by the operator.

For a line t𝑖, 𝑗u P ℰ𝐷, we denote 𝑢𝑑𝑖𝑗 as the actual line rating computed by the

DLR software using measurements collected from the Supervisory Control and Data

Acquisition (SCADA) system.

𝑢𝑖𝑗 “

$

’

’

&

’

’

%

𝑢𝑠𝑖𝑗 if t𝑖, 𝑗u P ℰ𝑆

𝑢𝑑𝑖𝑗 if t𝑖, 𝑗u P ℰ𝐷,
(3.9)

where

@ t𝑖, 𝑗u P ℰ𝐷 𝑢𝑚𝑖𝑛
𝑖𝑗 ď 𝑢𝑑𝑖𝑗 ď 𝑢𝑚𝑎𝑥

𝑖𝑗 (3.10)
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i.e. the DLRs can only take values between a certain range.

Thus the DC-optimal power flow problem faced by the SO can be posed as follows:

min
𝑝,𝜃

𝐶p𝑝q s.t. (3.1)´ (3.6), (3.7), (3.9). (3.11)

We assume an informed attacker. Specifically, the attacker’s knowledge includes

the network topology, line susceptances, set of generators, and their corresponding

generation limits, and the cost of generation. The attacker also knows the nominal

demand 𝑑𝑗 at each node 𝑗 and the nominal generator output 𝑝𝑖 for each 𝑖 P 𝒢. In

power systems terminology, with this knowledge, the attacker can solve for an DC ED

solution which is an approximation of AC ED solution that the EMS implements on

the power system. Note that our assumption on attacker’s knowledge is not unrealistic

given that all major ISOs publicly disclose historical generation and demand patterns

and the locational marginal prices in day ahead and hourly power markets.

Since the SO knows the static line ratings and these are fixed in ED software im-

plementations, we assume that the attacker cannot compromise them in ED implemen-

tation’s memory. Any compromise to static line ratings can be overridden by simple

built-in checks in power flow implementations. Also, since the static ratings are typi-

cally calculated for constant (worst-case) weather conditions over an extended period

of time (few months to years), we assume that the attacker knows their values. This

assumption can be justified by the fact that the manufacturers of transmission line

conductors supply static line ratings in their product specifications. Thus, under the

aforementioned constraints, the set of lines ℰ𝐷 constitutes the attacker’s constraint

since the attacker only targets DLR ratings and not the static ones.

3.2.3 Attack Objective

Now, we present the constraints faced by the attacker so that the attack remains

stealthy, and the SO’s ED software admits the DLR ratings manipulated by the at-

tacker. Then, we formulate the attack policy of the attacker as a bilevel optimization

problem.
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Under our attack model, the attacker accesses the actual DLR values 𝑢𝑑𝑖𝑗 for lines

t𝑖, 𝑗u P ℰ𝐷 in ED’s dynamic memory and replaces them with incorrect values 𝑢𝑎𝑖𝑗 (Sec-

tion 3.6). The attacker knows 𝑢𝑑𝑖𝑗 and computes 𝑢𝑎𝑖𝑗 in order to maximize the violation

of line ratings by the resulting power flows. To avoid detection by in-built checks, each

𝑢𝑎𝑖𝑗 is constrained by minimum and maximum permissible limits of line ratings, denoted

as 𝑢𝑚𝑖𝑛
𝑖𝑗 and 𝑢𝑚𝑎𝑥

𝑖𝑗 , respectively. These limits are also known by the attacker. For ease of

presentation, we introduce an auxiliary variable p𝑢𝑖𝑗 to denote the manipulated dynamic

line rating for the line t𝑖, 𝑗u P ℰ𝐷. The attacker is subject to following constraints:

@ t𝑖, 𝑗u P ℰ𝐷

$

’

’

&

’

’

%

p𝑢𝑖𝑗 “ 𝑢𝑎𝑖𝑗

𝑢𝑚𝑖𝑛
𝑖𝑗 ď p𝑢𝑖𝑗 ď 𝑢𝑚𝑎𝑥

𝑖𝑗 ,

(3.12)

because, the attacker wants to maintain a level of stealthiness, so he does not choose

an out-of-bound DLR value, that may set off an alarm.

If the DLR value of a line t𝑖, 𝑗u P ℰ𝐷 is manipulated by the attacker, then the EMS

software will obey the following constraint for the power flow on the line:

@ t𝑖, 𝑗u P ℰ |𝑓𝑖𝑗 | ď p𝑢𝑖𝑗 . (3.13)

We pose the problem of optimal attack generation – from the attacker’s viewpoint

– as the following bilevel optimization problem:

max
𝑢𝑎

𝑈𝑐𝑎𝑝p𝑓;𝑢
𝑑q “ max

t𝑖,𝑗uPℰ𝐷
100

˜

|𝑓𝑖𝑗 |
𝑢𝑑𝑖𝑗

´ 1

¸

`

(3.14a)

min
𝑝,𝜃

𝐶p𝑝q s.t. (3.1)´ (3.6), (3.12), (3.13), (3.14b)

where 𝑎` :“ maxp𝑎, 0q. This problem is equivalent to a 2-stage sequential (Stackelberg)

game, in which the attacker (leader) chooses his strategy assuming a best response

from the defender (follower). Specifically, in the first stage, the attacker chooses the

incorrect DLR ratings 𝑢𝑎 (or equivalently p𝑢𝑖𝑗) that are subsequently implemented in

runtime by localizing and corrupting true DLR values in the nonlinear ED controller’s
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memory (Section 3.6). The attacker’s objective is to maximize the maximum percentage

capacity bound violation of the power flows 𝑓𝑖𝑗 on lines t𝑖, 𝑗u P ℰ𝐷 over the true DLR

values 𝑢𝑑𝑖𝑗 after the defender responds optimally in the second stage. This objective

can be expressed as 𝑈𝑐𝑎𝑝p𝑓;𝑢
𝑑q in (3.14a). In the second stage, the defender chooses

the generator outputs 𝑝 and voltage phase angles 𝜃 that achieves min-cost solution

to DC-ED, i.e., minimize the generation costs (3.2) subject to the constraints (3.1)-

(3.6),(3.12),(3.13). The attacker ensures that under the manipulated DLR ratings p𝑢𝑖𝑗

for lines t𝑖, 𝑗u P ℰ𝐷 and given static ratings 𝑢𝑠𝑖𝑗 for lines t𝑖, 𝑗u P ℰ𝑆 , there exists a

feasible flow allocation that minimizes the generation cost (3.2), otherwise the SO will

be require to setting off an alarm causing the SO to initiate other actions such as load

curtailment.

Note that the actual generation cost faced by the operator when incorrect 𝑢𝑎 are

used in the SO’s nonlinear ED formulation will be different than the defender cost

obtained in the stage 2 subgame. In fact, the nonlinear ED is likely to be infeasible in

the sense that the power flows on certain lines can exceed the permissible line ratings.

The attack model can be summarized as follows. The physical system consists of

the physical components, e.g., generators, transmission network, and the loads. Each

of these components send data to the EMS via means of SCADA, which is part of the

attacker knowledge. The generators submit the cost functions, the transmission network

submits the topology and the line ratings, and the loads submit the demand. The

attacker uses this data to compute a DLR manipulation based on his attack policy, and

then compromises the DLR values utilized by the EMS while solving the ED problem.

Finally, the EMS implements the false ED solution by dispatching the new generation

set-points to the individual generators.

Next, we present our computational approach to compute the optimal maximin

attack.
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3.3 Characteristics of Optimal Attack

The optimal attack generation problem posed in (3.14) is a linear-quadratic bilevel

(LQBP) that is, in general, computationally hard to solve. One of the standard ap-

proaches to solve a LQBP is to reformulated it as a Mixed Integer Linear Program

(MILP), which can be implemented using commonly available optimization solvers.

Our approach for solving the bilevel optimization problem (3.14) is as follows. First,

we divide the main problem as 2 |ℰ𝐷| parallel optimization problems where the attacker’s

objective is to just maximize the capacity violation of one DLR line, in either flow

direction. This converts the attacker’s objective function from nonlinear to an affine

function. This subproblem can be represented as follows:

max
𝑥P𝑋

𝑔1
𝑇𝑥` 𝑔2

𝑇 𝑦‹

s.t. 𝐴1𝑥`𝐵1𝑦
‹ ď 𝑘1

𝑦‹ P min
𝑦

1

2
𝑦𝑇𝐻𝑦 ` ℎ1

𝑇 𝑦 ` ℎ2

s.t. 𝐴2𝑥`𝐵2𝑦 ď 𝑘2,

(3.15)

where 𝑥 denotes the attacker actions; 𝑋 denotes the non-negativity and/or integrality

constraints. In the subproblem of (3.14), 𝑥 “ 𝑢𝑎, 𝑦 “ p𝑝, 𝜃q, 𝑋 “ t𝑢 P Rℰ𝐷 : 𝑢𝑚𝑖𝑛 ď

𝑢 ď 𝑢𝑚𝑎𝑥u. Also, 𝑔1, 𝐵1 are zero vector and zero matrix, respectively.

Second, we note that, for fixed attacker action 𝑥, the inner problem is a convex

minimization problem, and therefore strong duality applies. Applying the Karush-

Kuhn-Tucker (KKT) conditions for the optimal solution of the inner problem, we can

pose the overall bilevel problem as a MILP Zeng and An (2014). Let, for fixed attacker

action 𝑥, p𝑦‹, 𝜆‹q denote the optimal primal-dual pair for the inner problem. Then the
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KKT optimality conditions are as follows.

𝐴2𝑥`𝐵2𝑦
‹ ď 𝑘2 (3.16a)

𝜆‹ ě 0 (3.16b)

𝐻𝑦‹ `𝐵2
𝑇𝜆‹ ` ℎ1 “ 0 (3.16c)

𝜆‹ ď𝑀p1𝑛 ´ 𝜇q

𝐴2𝑥`𝐵2𝑦
‹ ´ 𝑘2 ď𝑀𝜇 (3.16d)

@ 𝑖 P t1, 2, ¨ ¨ ¨ ,𝑚u, 𝜇𝑖 P t0, 1u,

where 𝑚 “ 𝑙𝑒𝑛𝑔𝑡ℎp𝑘2q, 𝑀 is infinity (chosen as a significantly large number). (3.16a),

(3.16b), (3.16c) and (3.16d) are primal feasibility, dual feasibility, stationarity and

complementary slackness conditions. Note that the complementary slackness conditions

are reformulated into integrality constraints.

Thus, the bilevel subproblem can be restated as a single-level mixed-integer linear

program (MILP).

max
𝑥P𝑋

𝑔1
𝑇𝑥` 𝑔2

𝑇 𝑦‹

s.t. 𝐴1𝑥`𝐵1𝑦
‹ ď 𝑘1, and (3.16).

(3.17)

Third, we solve for 2 |ℰ𝐷| copies of the above MILP (3.17), and choose the maximum

over all DLR lines, the non-negative percentage capacity bound violation, in either flow

direction.

Our approach is summarized in algorithm 1. The procedure GetOptimalAt-

tack() initializes the optimal attacker strategy and optimal attacker gain to zero. It

constructs the MILP model with the KKT conditions for the inner problem and the

feasibility constraints for the outer decision variables, by calling the procedure Get-

MILPModel(). Then, for each DLR line and each flow direction, GetEdgeAttack

sets the objective function as the percentage capacity violation for that line. During

each iteration, if the attacker’s gain computed is larger than the previously computed
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Algorithm 1 Optimal security strategy

1: p𝑈‹
𝑐𝑎𝑝, 𝑢

𝑎‹
q Ð GetOptimalAttack()

2: procedure GetOptimalAttack()
3: 𝑈‹

𝑐𝑎𝑝 Ð 0, 𝑢𝑎‹
Ð 0

4: m “ GetMILPModel() using (3.17)
5: for t𝑖, 𝑗u P ℰ𝐷 do Ź for each DLR line
6: for 𝑑𝑖𝑟 P t´1, 1u do Ź for each flow direction
7: SetObjective(m, 100

`

p𝑑𝑖𝑟 ˆ 𝑓𝑖𝑗q{𝑢
𝑑
𝑖𝑗 ´ 1

˘

)
8: solve(m)
9: 𝑈𝑐𝑎𝑝 ÐgetObjectiveValue(m)

10: 𝑢𝑎 Ð getValue(m,𝑢𝑎)
11: if 𝑈𝑐𝑎𝑝 ą 𝑈‹

𝑐𝑎𝑝 then
12: p𝑈‹

𝑐𝑎𝑝, 𝑢
𝑎‹
q Ð p𝑈𝑐𝑎𝑝, 𝑢

𝑎q Ź update values
13: end if
14: end for
15: end for
16: return 𝑈‹

𝑐𝑎𝑝, 𝑢
𝑎‹

17: end procedure

value, then the values for the optimal attacker’s gain and the corresponding optimal at-

tack strategy are updated. As we will see in Section 3.4.2, this computational approach

is indeed scalable to larger networks.

3.4 Computational Results

We discuss the structure of optimal attacks on benchmark power networks with DLRs,

and discuss its implications on line capacity violations and increased generation costs.

3.4.1 3-node Example

We now illustrate the optimal attacker strategy with the help of a benchmark example.

We consider a 3-node network as shown in Figure 3.3. It consists of 2 generators 𝐺1,

𝐺2 at bus 1 and 2, respectively, and a load 𝐿 on bus 3.

The following assumptions enable the computation of optimal attack in closed form.

The nominal voltage magnitude is 𝑉 nom “ 230 𝑘𝑉 and the upper and lower voltage

bounds are given by 𝑉 “ 1.1𝑉 nom, 𝑉 “ 0.9𝑉 nom, respectively. The three lines are

identical, each with impedance 𝑧 “ 0.002` 0.05j in per unit system. Thus, the suscep-

tance of each line is the inverse of reactance given by 𝛽 “ 1
0.05 . Assume that for the

given instance, the active DLR for each of the three lines is 160 MW. The generation



59

G1 G2

L

f12

f13 f23

β23β13
β12

p2p1
u12

u13 u23

Figure 3.3: Three-bus power system.

(a) Possible DLR and demand
pattern over 24 hour horizon.

(b) Time of attack. The
actual DLR ratings 𝑢𝑑 are
shown as lightly dashed lines
in the background for com-
parison.

(c) Attacker’s gain and SO’s cost
of generation as predicted by the
bilevel model (3.14), and as com-
puted by MATPOWER.

Figure 3.4: Results for three-node power grid.

output of the two generators must satisfy the bounds 0 ď 𝑝1, 𝑝2 ď 300 MW. Bus 3 has

a constant power load having demand 𝑑 “ 300 MW.

Consider, for simplicity, a linear power flow model (3.4)-(3.5), and the linear cost of

generation given by

𝐶p𝑝q “ 𝑏1𝑝1 ` 𝑏2𝑝2, (3.18)

where we choose 𝑏1 “ 2𝑏2 “ 2𝑏 ą 0. Simplifying further, we get, 𝐶p𝑝q “ 𝑏1𝑝1 ` 𝑏2p𝑑 ´

𝑝1q “ 𝑏𝑝1 ` 𝑏𝑑.

In the “no attack” case, the optimal generation turns out to be p𝑝1, 𝑝2q “ p120, 180q.

The power flows at this point are 𝑓12 “ ´20, 𝑓13 “ 140, and 𝑓23 “ 160, respectively. As

a result, the most congested line among all the three lines is line t2, 3u. This is expected



60

𝑢𝑑
13 𝑢𝑑

23 𝑢𝑎
13 𝑢𝑎

23 𝑓13 𝑓23 𝑈𝑐𝑎𝑝 (in 105$)

130 120 100 200 100 200 80
130 150 200 100 200 100 70
160 150 100 200 100 200 50
160 180 200 100 200 100 40

Table 3.1: Optimal attacker strategy for three-bus test case.

as the 𝐺2 has lower cost of production, so it generates more causing the congestion in

line t2, 3u.

Assume for the sake of illustration that only the DLRs of lines t1, 3u and t2, 3u

can be manipulated. The attacker’s strategy will be either to maximize the capacity

violation on line t2, 3u (strategy A) or that on line t1, 3u (strategy B). The attacker’s

optimal strategy is the one which leads to larger of these two violations. Assuming

that the demand is fixed at 300, under strategy A (resp. strategy B), the optimal

manipulated DLRs will be 𝑢𝑎13, 𝑢
𝑎
23 “ p100, 200q (resp. p200, 100q). Table 3.1 lists some

possible combinations for the actual DLR values of lines t1, 3u and t2, 3u, and the

corresponding optimal attacker strategies. For example, if p𝑢𝑑13, 𝑢
𝑑
23q “ p120, 120q, then

the optimal attacker strategy is strategy A, i.e. p𝑢𝑎13, 𝑢
𝑎
23q “ p100, 200q, which yields

attacker objective value as 𝑈𝑐𝑎𝑝 “ 80.

Now let us use the aforementioned approach to generate optimal DLR manipula-

tions when the demand and DLRs vary over time, and OPF calculations account for

manipulated line ratings to generate power flow allocations. For the 3-node network

(Figure 3.3), consider the demand pattern at node 3 and the representative DLR for

two lines t1, 3u and t2, 3u as shown in fig. 3.4a. We instantiate the OPF models at ev-

ery 15 minutes using this demand pattern. The aggregate demand curve has two peaks

corresponding to the morning and evening peak periods. We chose the lower and upper

bounds for the DLR values to be 100 and 200 MW. Then we varied DLRs between these

bounds to generate patterns for 24 hour period. For the sake of illustration, we consider

the two DLR curves to have sinusoidal patterns with certain offset between the two.

The pattern also models the increased capacity due to favorable conditions (e.g. wind)

during certain parts of the day. For these DLR and demand patterns, we determine

how the attacker strategy and the attacker’s gain varies over time with respect to the
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true DLRs and the demand.

fig. 3.4b shows the non-linear power flows along the DLR lines when the attacker’s

DLR ratings are in effect. We observe that the non-linear power flows are greater than

the attacker’s DLR ratings because of the presence of the reactive power which is not

accounted by the linear power flow model assumed by the attacker in generating the

optimal attack.

We also note that if the attacker targets line t2, 3u (strategy A), then the optimal

attack can reach to maximum DLR rating, i.e., 𝑢𝑎23 can assume the value 𝑢𝑚𝑎𝑥
23 for

certain time periods. Recall that the bilevel formulation is constrained by the supply-

demand balance in the defender’s response. This constraint becomes tight for a range

of time-periods during which the optimal attack 𝑢𝑎13 tracks the power flow 𝑓13 on line

t1, 3u. If the true DLRs are such that 𝑢𝑑23 ą 𝑢𝑑13, then the attacker chooses 𝑢𝑎23 “ 𝑢𝑚𝑎𝑥
23 .

To ensure that the supply = demand constraint is met 𝑢𝑎23 is just equal to the power

flow required to flow on line t1, 3u. On the other hand if 𝑢𝑑23 ă 𝑢𝑑13, then the optimal

attacker strategy is to violate the capacity of line t1, 3u (strategy B).

We evaluated the attacker’s gain (𝑈𝑐𝑎𝑝) and the defender’s cost of generation both

estimated by the bilevel formulation (3.14) and by the nonlinear computations using

MATPOWER (see fig. 3.4c). The respective curves closely follow each other. The ac-

tual cost of generation under nonlinear power flows is slightly larger than the cost of

generation estimated under linear power flows. The same is also true for the attacker’s

gain 𝑈𝑐𝑎𝑝. Comparing the demand and DLR variations in fig. 3.4a and the objective

functions in fig. 3.4c, we can see that the optimal attacker gain is not achieved when

the network experiences heavy demand. Rather, the optimal gain is achieved when the

network is heavily congested, i.e., relative to the network’s capacity, the aggregate de-

mand is high. This gives an important insight into the optimal time for the attack. For

e.g., during the hot summers and low windy conditions, the lines have lower capacities

than during the winters. Also, the high temperatures lead to more aggregate demand

during the summers. Hence, the attacker is better off manipulating the DLRs in high

temperature conditions.
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(a) Time of attack for 118-node power net-
work. (b) Loss functions for 118-node network.

Figure 3.5: Results for 118-node network

3.4.2 Scalability of attack

To demonstrate the scalability of our approach, we implemented algorithm 1 on an

118-node network. We choose the DLR and demand patterns for the 118-node network

similar to the ones in 3-node network, but in contrast to the linear generation cost

(3.18), we adopt the more realistic convex quadratic cost function (3.3). In this chapter,

we have used Gurobi which is a state-of-the-art optimization toolbox and has built-

in support for solving MILP problems. figs. 3.5a and 3.5b show the corresponding

computational results for an 118 node network. Due to the fact that actual power flows

also consist of reactive power flows in addition to real power flows, there are higher line

losses, resulting in more total power generation that increases the cost of generation.

However, we see that the actual attacker’s gain is lower than the estimate obtained

by solving (3.14) (fig. 3.4c). This can be explained as follows. The generators have

different quadratic curves for the cost of generation. As a result for lower network load,

one set of generators may be more contributing to the generation, but for higher loads,

other set of generators may be the more contributing ones. This results in lower power

flows along the DLR lines during high demand conditions. Hence, in the case of low

aggregate demand, the DLR lines are violated to a larger extent than in the case of

high demand. Another important observation is that the attacker’s gain can be high

even if the demand is low, because the actual DLRs may be even lower.

In the next section, we describe how an attacker can implement the optimal attack
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Figure 3.6: Flowchart for attack implementation.

Intra-Class Pattern (type) Code Pointer Pattern (content) Data Pointer Pattern (relation)

 class A size(20): 
    +--- 
0   | {vfptr}  // virtual fn table* 
4   | line-rating  // target parameter 
8   | mem-var2 
12 | mem-var3 
16 | line-name  // char* string 
    +--- 

12
	b
yt
es
	

 class B size(8): 
    +--- 
0  | {vfptr}   // virtual fn table* 
4  | line-rating  // target parameter      
    +--- 

 B's vftable: 
     0  | &A::A_virt1 
     4  | &A::A_virt2 

53   |  push ebx 
56   |  push esi 
8B F2  |  mov esi, edx 

 class C size(16): 
0  | {vfptr}    
4  | linked_list_prev   // previous node 
8   | linked_list_next  // next node      
12 | lr   // target parameter      

 class C size(16): 
0  | {vfptr}    
4  | linked_list_prev   // previous node 
8   | linked_list_next  // next node      
12 | lr   // target parameter      

type(&line-rating + 0x0C) ““ string *(*(&line-rating-0x04)+0x04) ““ 0x53568BF2 *(*(&lr - 0x08) + 0x04) ““ (&lr - 0x10)

Table 3.2: Logical memory structure signatures for critical parameters.

as computed by the bilevel formulation (3.14), as a cyberattack targeting the EMS

softwares. Specifically, we will show how an EMS software (e.g., PowerWorld2) be

targeted such that the values of the DLRs in the memory of the software will change

during run-time. This will cause the ED implementation in the EMS to yield a false

ED solution.

3.5 Implementations

We implemented our proposed attack in real controller software packages. Figure 3.6

shows the stages of the implemented attack. Initially, we assume a controller executable

file (vulnerable point) and sensitive data sources (e.g., inputs such as DLRs originating

from an external source) are given. Next, through memory taint analysis, we narrow

down our search space to identify the the memory regions where the sensitive parameters

2We have taken the necessary responsible disclosure steps and have informed the vendors about our
research findings. It is noteworthy that we are not reporting a security software vulnerability in this
chapter. Instead, assuming there is a potential exploit, we demonstrate how the adversaries can perform
domain-specific data corruption in memory to impact the produced control actuation commands. The
steps are not specific to any commercial software package.
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0x06410810 
0x06410820
0x06410830
0x06410840
...

0x06410870
0x06410880
…

0x06410940
0x06410950
…

30 5A A4 02 00 00 00 00  00 00 00 00 00 00 00 00
80 0E 3F 11 00 00 00 00   00 00 00 00 00 00 00 00
00 00 00 00 00 A5 35 01  10 A5 35 01 20 A5 35 01
01 00 00 00 A0 64 49 09  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 C0 3F  E1 FA C7 42 E1 FA C7 42
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
95 BF D6 33 CD CC 4C 3D 00 00 00 00 00 00 00 00

.text:02A459D8 30 5A A4 02 dd offset off_2A45A30 

.text:02A459DC 00 00 00 00 dd 0

…

.text:02A45A18 8C 5A 37 01      dd offset sub_1375A8C

.text:02A45A1C A8 AA 40 00      dd offset sub_40AAA8

.text:02A45A20 9C AA 40 00      dd offset nullsub_105

.text:02A45A24 80 A5 40 00      dd offset sub_40A580

.text:02A45A28 9C A5 40 00      dd offset sub_40A59C

.text:02A45A2C 10 2E AD 02      dd offset loc_2AD2E10

.text:02A45A30 08 29 37 01      dd offset sub_1372908 

…

.text:02A45A44 24 FE AD 02      dd offset sub_2ADFE24

.text:02A45A48 5C 3C A6 02     dd offset sub_2A63C5C

…

.text:01375A8C 53                             push    ebx

.text:01375A8D 56                             push    esi

.text:01375A8E 57                             push    edi

.text:01375A8F 8B D8                       mov ebx, eax

…

TTRLine Instance TTRLine VMT

TTRLine Function Code (fixed)

(a) Code pointer-instruction pattern.

.bss:02E7FD24    00 00 F5 
04

0x04F50000 00 00 E5 05 24 FD E7 02

…
0x050532C0
…
0x05053380
0x05053390
0x050533A0
0x050533B0
0x050533C0
0x050533D0
…
0x05053450
0x05053460
0x05053470

…
1C DE A3 02 00 00 00 00 00 00 00 00 00 00 00 00 
…
A0 6C 03 05 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 17 B7 D1 38 00 00 00 00 00 00 80 3F 
00 00 00 00 00 00 C0 40 00 00 00 00 00 00 00 00 
00 00 00 00 00 01 00 00 5C FF 79 44 00 00 C6 C2 
00 00 C0 3F 00 00 00 40 00 00 80 BF 00 00 00 00 
00 00 00 00 66 66 6F 43 C3 F5 F8 40 17 B7 D1 3A
…
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 C0 3F 00 00 C0 3F 
00 00 C0 3F 00 00 00 00 00 00 00 00 00 00 00 00

0x05E50000 00 00 32 06 00 00 F5 04

… …

0x06320000 00 00 46 06 00 00 E5 05

...
0x06410810 
0x06410820
0x06410830
0x06410840
...

0x06410870
0x06410880
…

0x06410940
0x06410950
…

...
30 5A A4 02 00 00 00 00  00 00 00 00 00 00 00 00
80 0E 3F 11 00 00 00 00   00 00 00 00 00 00 00 00
00 00 00 00 00 A5 35 01  10 A5 35 01 20 A5 35 01
01 00 00 00 A0 64 49 09  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 D3 3F  E1 FA C7 42 E1 FA C7 42
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
95 BF D6 33 CD CC 4C 3D 00 00 00 00 00 00 00 00

(b) Linked-list as data pointer-based pattern.

Figure 3.7: Code and data pointer-based structural memory patterns in PowerWorld
used for graphical predicate generation.

may reside in memory during the controller execution. Accordingly, all the memory

regions affected by the target input are marked (tainted). The tainted areas are then

searched for the values of interest (e.g., target DLRs), and candidates are shortlisted.

To identify the correct candidate from the set of candidates, we generate structural

memory pattern signatures around the correct candidates during the offline binary

analysis phase. We use our past work Sun et al. (2016) to extract binary-level data type

and code, and data pointers and their interdependencies (discussed below). Given the

reverse engineered logical memory layout, we create structural patterns of the memory

regarding where the target parameters reside. Those patterns are then used to generate

the exploit binary. During the attack phase the exploit searches the dynamic memory

address space to locate the target parameters using the patterns. Finally, it changes

the identified parameter values to the optimal attack values, as discussed in Section 3.3.

Every control algorithm implementation by controller software executables involve

code and data. The code instructions encode the algorithm logic (e.g., iterative opti-

mization loops), whereas the data stores the controller parameters such as the OPF

constraints and DLRs. Modification of the code instructions are often infeasible due to

𝑊 ‘𝑋 protections. However, the data regions should be (and are set as) writable, be-

cause the EMS operators often update their values dynamically according to the most

recent power system configuration.

Maintenance of control-sensitive variable values such as DLRs by the controller

software provides an attack surface to modify them in memory space during the attack.

Our investigations of EMS software binaries showed heavy use of data structures and
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class objects to store those values that are used directly by OPF. During the offline

phase, we analyzed the EMS software binary to determine its memory’s structural

layout. We are interested in structural information such as the allocated class instances

(objects), the class hierarchy, and the logical interdependencies between the instantiated

objects within the memory, e.g., cross-object code and data pointers. We are not

interested in exact object memory addresses, because the addresses will likely differ

during the attack due to unpredictable (inputs and hence) dynamic execution paths.

Instead, by capturing the logical interconnections among the instantiated memory-

resident objects, we extracted invariants about their interdependencies that remain the

same across different runs. The attacker later uses the invariants during the attack to

locate (and corrupt) the DLR values.

Search for a specific DLR value during the attack results in several memory-resident

candidates that are mostly (except one) false positives. To identify the correct can-

didate, our implementation uses the invariants, expressed as propositional logic predi-

cates, that capture the logical memory structural patterns around the target DLR para-

meters. We use three kinds of memory patterns: address-relative intra-class type pat-

terns, code pointer-instruction patterns, and data pointer-based patterns (Table 3.2).

Address-relative intra-class type patterns. The attack extracts execution-agnostic

memory structural patterns around the target DLR values in memory. We concentrate

on intra-class patterns that capture fixed offset relations among members of the same

class as the target DLR parameter, and their types and/or values. If the DLR para-

meter is stored as a member of a class that also contains other variable(s), whose type

is (are) easy to identify, we use that information as a local signature for the target

parameter. In memory forensics, types such as character strings, pointers Lin et al.

(2010), and fixed-value member fields can be identified simply. We investigate the

vicinity of the target parameter within the same object looking for addresses that store

easy-to-identify data types. If one or more of such samples are found, their type/-

value and corresponding offset from the target parameter address is used to produce

the signature. The attack creates simple-to-check logical predicates for each candidate

(e.g., “candidate addr + 0𝑥08 stores 0𝑥00000001”). Our implementation aggregates



66

the produced predicates into a single conjunctive logic signature.

Code pointer-instruction patterns. We leverage the code pointer relations within

the memory regions to extract invariants (logical predicates) about the structural mem-

ory layout around the target DLR parameters. We extract such invariants given the

reverse engineered class object pointers, and their logical interdependencies with the

corresponding member and virtual functions. We use the fact that code segments (e.g.,

instructions of member and virtual functions) within the controller software binary are

typically set as read-only with fixed content. Table 3.2 shows a sample code pointer-

based predicate for the illustrated pattern. The signature checks whether the first four

byte content of the target parameter’s object’s second virtual function is equal to the

corresponding function prologue. As denoted, the signature does not depend on the

absolute address values given the target parameter candidate’s location. The attack

can automatically generate the code pointer patterns for the object’s individual mem-

ber and virtual functions. Finally, the generated predicates are combined into a single

conjunctive logical predicate to check against all the identified candidates within the

EMS memory space attack time.

Data pointer-based patterns. The data pointer-based patterns do not often assume

fixed data values in memory, and is purely based on memory structure and the relations

between various objects. We perform a recursive pointer traversal among the recog-

nized objects on the controller’s memory space following its earlier forensics analyses of

the allocated objects and the stored pointer values within them (member fields). The

algorithm implements a depth-first search starting from individual recognized pointers

within the memory space. For each pointer under the consideration, we determine if

its destination is an memory-resident object. If so, the attack recursively traverses all

the member pointer fields within the destination object. During its recursive search,

our implementation generates the corresponding directed graph, where nodes represent

allocated objects, and the outgoing edges indicate the member pointer fields within

the source object. The generated directed graph represents the inter-object dependen-

cies within the memory space. Once the generation of the graph in completed, our

implementation searches for cycles. Such cycles are very popular in widely used data
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Param. values #Hits #Relevant #Recognized Accuracy

0x3FC00000 143 3 3 100%

0x02A45A30 2038 4 4 100%

0x06410570 30 1 1 100%

0x06410810 30 1 1 100%

0x06410810 28 1 1 100%

Table 3.3: The target parameter value recognition accuracy.

structures such as linked lists (the rightmost entry on Table 3.2). The attack turns each

cycle within the graph into a logical predicate that corresponds to a data pointer-based

signature.

3.6 Empirical Attack Deployment Results

To assess the proposed attack feasibility in practice, we implemented it against widely-

used commercial and open-source industrial controller software packages. The imple-

mented attack involves the following steps: i) during the offline phase, we reverse

engineer the EMS software binary to locate DLR parameters within the controller and

create the corresponding invariants that hold true regardless of their absolute memory

addresses; ii) during the online phase (attack time), the exploit searches the controller

memory for the known legitimate DLR values and collects the candidates; iii) the at-

tack recognizes the only true candidate by applying the invariants on the collected set

of candidates; and iv) our implementation modifies the value maliciously according to

the optimal attack generation algorithms discussed in the previous section. We now

explain the results for our empirical validation.

3.6.1 EMS Software Attack

We validated the proposed attack on real-world widely-used industrial controller soft-

ware packages. We first present the detailed results on PowerWorld, and later compare

the attack’s performance for other controllers (NEPLAN, PowerFactory, PowerTools,

and SmartGridToolbox).
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Figure 3.7a shows a generated code pointer-based memory signature in Power-

World. The corresponding pattern predicate for runtime memory search was “*(*(can-

didate addr - 0x54) - 0x24) == 0x5356578B”, where 0x5356578B is the hex rep-

resentation of the sub 1375A8C function’s first four instruction bytes. The rating

of every transmission line is stored in offset 0x24 of the corresponding TTRLine ob-

ject. The information about the transmission lines of the power system is stored as a

doubly linked list of TTRLine objects in PowerWorld memory space. The attack used

“*(*(candidate addr - 0x24) + 0x04) == (candidate addr - 0x24)” as the pattern

predicate for line ratings. Let us call the linked list node that stores the target line

rating 𝐴. The pattern predicate above essentially verifies the following linked list in-

variant: whether 𝐴’s previous node’s next pointer points to 𝐴. More complex patterns

can be extracted if needed; however, our empirical studies on PowerWorld shows simple

patterns always suffice to identify and isolate the exact candidate uniquely.

Figure 3.7b shows another PowerWorld data pointer pattern for line ratings. Power-

World allocates linked list nodes (0x13FFF0 sizes each) allocated by VirtualAlloc

for objects instances of different classes (e.g., TGen, TBus and TTRLine). Only three

nodes are shown. If our objective is to look for line rating 0x3FC00000, its corre-

sponding pattern predicate will encode the offset to get the node’s initial member value

0x05E50000 that points to the next node shown (summarized) on the top of the figure.

The second element of each node (0x04F50000 in the top node) points to the previ-

ous node. A relatively more complex second-degree predicate would be “*(*(*(*(can-

didate addr - 0x1033C0)) + 0x04)+ 0x04) == candidate addr - 0x1033C0”, i.e.,

𝐴 Ñ 𝑛𝑒𝑥𝑡 Ñ 𝑛𝑒𝑥𝑡 Ñ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 Ñ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ““ 𝐴, where 𝐴 represents the data

structure that stores the line rating 0x3FC00000.

The attack payload checks for patterns on the identified candidates before corrupt-

ing their values. The code searches for the specific value in memory, and modifies

the identified candidate. Table 3.3 shows how many hits our implementation finds for

individual target power system parameter values on PowerWorld memory space. The

number empirically proves the infeasibility of memory corruption attacks without the

use of signature predicates. The next column shows how well the signatures dismiss the
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EMS Software vfTable Line Bus Gen. Accuracy

PowerWorld 8527 3 3 2 100%

NEPLAN 6549 51 30 5 100%

PowerFactory 110 34 39 10 100%

Powertools 3 185 118 53 100%

SmartGridToolbox 194 79 57 4 100%

Table 3.4: Memory layout (object) forensics accuracy. The instances were correctly
marked with their types.

irrelevant candidates and identify the true target values. Table 3.4 shows the forensics

analysis accuracy for five different EMS software packages. Through the use of the

code pointer signatures and its extracted knowledge about the class hierarchies, our

implementation was able to correctly recognize the class types of all object instances

within the EMS memory. The payload initializes the OPF algorithm in its correspond-

ing thread. Once it changes the identified memory addresses, it restarts the control loop

through the call to CreateThread function within kernel32.dll that is loaded by

almost all windows processes.

3.6.2 Case-study Demonstration

As a concrete example, we show how the state of underlying power system (the same

model used in Section 4.6) gets affected once the memory corruption is completed (Fig-

ure 3.83). Before the corruption (Figure 3.8a), the EMS GUI visualizes the safe state

of power system operation, where the transmission lines are mostly fully utilized; how-

ever, no line rating (capacity constraints) are violated. The optimal attack generation

algorithm computes the adversary-optimal values for the line ratings, and chooses to i)

modify the 𝐵1´𝐵3 transmission line to 120𝑀𝑊 from 150𝑀𝑊 ; and ii) modify the line

rating for the 𝐵2´𝐵3 transmission line to 240𝑀𝑊 from 150𝑀𝑊 . While implement-

ing the optimal attacker strategies that we obtain from the maximin solution, we need

to translate the line rating values to higher values using basic power flow calculations.

For example, for the implementation of optimal attack, we use p𝑢13 “ 120 𝑀𝑉𝐴 and

p𝑢23 “ 240 𝑀𝑉𝐴. These values are higher than the values p𝑢13 “ 100 and p𝑢23 “ 200

3The pie charts on the transmission lines represent the used percentages of the line power flow
capacities in that particular state.
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06410AE0 0001 0000 65C0 0949 0000 0000 0000 0000
06410AF0 0000 0000 0000 0000 0000 0000 FE00 0000
06410B00 0000 0000 0000 0000 0001 0000 0000 0000
06410B10 0000 0000 0000 3FC0 FAE1 42C7 FAE1 42C7

06410840 0001 0000 64A0 0949 0000 0000 0000 0000
06410850 0000 0000 0000 0000 0000 0000 FE00 0000
06410860 0000 0000 0000 0000 0001 0000 0000 0000
06410870 0000 0000 0000 3FC0 FAE1 42C7 FAE1 42C7

(a) PowerWorld pre-attack power system state (safe).

06410AE0 0001 0000 65C0 0949 0000 0000 0000 0000
06410AF0 0000 0000 0000 0000 0000 0000 FE00 0000
06410B00 0000 0000 0000 0000 0001 0000 0000 0000
06410B10 0000 0000 999A 4019 FAE1 42C7 FAE1 42C7

06410840 0001 0000 64A0 0949 0000 0000 0000 0000
06410850 0000 0000 0000 0000 0000 0000 FE00 0000
06410860 0000 0000 0000 0000 0001 0000 0000 0000
06410870 0000 0000 999A 3F99 FAE1 42C7 FAE1 42C7

(b) PowerWorld post-attack power system state (unsafe).

fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax

1 3 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

1 2 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

2 3 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

016B2AE0 0001 0000 0000 0000 2AC8 016B 0000 0000 
016B2AF0 0000 0000 0000 3FF8 0000 0000 0000 0000 
016B2B00 0000 0000 0000 3FF0 0000 0000 0000 0000 
016B2B10 0000 0000 0000 0000 999A 9999 9999 3FA9 
016B2B20 0000 0000 0000 0000 FFFF FFFF FFFF C033 
016B2B30 0000 0000 0000 3FF0 0000 0000 0000 0000

016C0500 0003 0000 0000 0000 95B8 016B 0000 0000 
016C0510 0000 0000 0000 3FF8 0000 0000 0000 0000 
016C0520 0000 0000 0000 3FF0 0000 0000 0000 0000 
016C0530 0000 0000 0000 0000 999A 9999 9999 3FA9 
016C0540 0000 0000 0000 0000 FFFF FFFF FFFF C033 
016C0550 0000 0000 0000 3FF0 0000 0000 0000 0000

(c) Powertools memory image of the sensitive parameters.

Figure 3.8: PowerWorld and Powertools controller software attack results as the result
of targeted adversary-optimal line rating manipulation.
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calculated by the bilevel optimization.

This increase in optimal line rating manipulations is necessary to account for the fact

that the AC OPF implementation is constrained by the line rating bounds on apparent

power flows (with both real and reactive power components) while the optimal attack

generation procedure calculates manipulated line rating assuming that only real power

flows are subject to line ratings. As the consequence, the power system enters an

unsafe state after the OPF control algorithm uses the corrupted line ratings and hence

produces wrong control outputs to the power generators; see Figure 3.8b. Optimal and

physics-aware corruption of the sensitive values through a controller attack allows the

intruders to maximize the physical impact on the power system operations without

having to compromise a large number of sensors as required in false data injection

attacks. We also performed the same memory data corruption attack on Powertools pow

(2017) package. In this scenario, the attacker changed the line rating for two of the

branches as shown in Figure 3.8c. Similar to the PowerWorld case, the exploit locates

the sensitive parameters (line ratings) and modifies them during the program execution.

As the result, the memory corruption impacted the power flow iterations of DC-OPF

performed by the Powertools software that consumed the modified memory regions,

and made it converge to a different wrong value. In terms of the attack implementation

approach, the attacks against PowerWorld and powertools were identical.

3.7 Discussions and Potential Mitigation

Our attack and similar domain-specific memory data corruption attacks can be miti-

gated through several potential solutions: i) Protection of sensitive data: fine-grained

data isolation mechanisms such as hardware supported Intel SGX can be leveraged to

store and process sensitive data such as power system parameters within protection

enclave regions. This protects sensitive data against access requests by other irrel-

evant instructions in the same memory space. A more fine-grained version of such

memory-based data protection can distinguish between data that are often fixed dur-

ing the operation (e.g., power system topological information) vs. regularly updated

data regions (e.g., sensor measurements) to facilitate lower-overhead protection such as



72

read-only memory pages for the fixed data once they are loaded on memory initially.

ii) Control command verification: controller output verification mechanisms such as an

extended version of TSV McLaughlin et al. (2014) can be used to ensure the safety

of the (maliciously) issued control commands by an infected control system software

before they are allowed to reach the actuators. Monitoring of the control channel, how-

ever, does not ensure the correct functionality of the control system software. Instead

it just ensures its outputs (even though corrupted) are within the safety margins of

the physical plant. iii) Intrusion-tolerant replication: a more traditional approach is

to use redundancy such as N-version programming by maintaining a redundant con-

troller software that is different from the main one used. The replica controller can

monitor the dynamic behavior of the physical plant (e.g., power system) as well as

the main controller’s output to the actuators. The replica can rerun the control algo-

rithm to calculate and compare its calculated control outputs with those of the main

controller. Hence, the main controller infection (misbehavior) can be identified if a mis-

match is detected; iv) Algorithmic redundancy: Carefully designed algorithmic tools

(e.g., attack-aware optimal dispatch) can provide safe operating regimes to limit the

impact of successful attacks. Indeed, this is a topic of future research.

3.8 Related Work

We review the most related recent work on control system security. The existing so-

lutions to protect the control networks’ trusted computing base (TCB) are insufficient

as software patches are often applied only months after release Pollet (2010), and new

vulnerabilities are discovered on a regular basis Peterson (2012); Szekeres et al. (2013).

The traditional perimeter-security tries to keep adversaries out of the protected con-

trol system entirely. Attempts include regulatory compliance approaches such as the

NERC CIP requirements U.S. Department of Energy Office of Electricity Delivery and

Energy Reliability (2015) and access control Formby et al. (2016). Despite the promise

of information-security approaches, thirty years of precedence have shown the near im-

possibility of keeping adversaries out of critical systems Igure et al. (2006) and less

than promising results for the prospect of addressing the security problem from the
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perimeter Lewis (2006); Kuz’min and Sokolov (2012); Morris et al. (2009). Embedded

controller software from most major vendors Kuz’min and Sokolov (2012); Valentine

(2013) and popular human machine interfaces Morris et al. (2009) have been shown to

have fundamental security flaws. Offline control verification solutions McLaughlin et al.

(2014) implement formal methods using symbolic execution of the controller program

to verify the safety of the code before it is let execute on the controller device. Not

surprisingly, those methods face scalability problem, caused by state-space explosion.

One specific related line of research is proposed false data injection (FDI) attacks Liu

et al. (2011); Tan et al. (2016); Wang et al. (2014) that have been explored over the

past few years. FDI assumes compromised set of sensors and make them send cor-

rupted measurements to electricity grid control centers to mislead the state estimation

procedures. The authors propose a system observability Liu et al. (2011) analysis to

determine the required minimal subset of compromised sensors to evade the electricity

grid’s bad data detection algorithms Lu and Zhang (2007). The power system stability

has also been studied under corrupted real-time pricing signals Tan et al. (2013). As

a fundamental domain-specific monitoring tool for cyber-physical platforms, state esti-

mation is to fit sensor data to a system model and determine the current state Abur

and Expósito (2004); Alsac et al. (1998). Existing real-world solutions to analyze power

system stability Glover et al. (2011) run every few minutes Singh and Alvarado (1995).

These solution do not consider the cyber-side controllers and/or adversarial settings Ar-

rillaga and Smith (1998); Wood and Wollenberg (2012); hence they may miss malicious

incidents such as the controller code execution attacks. Risk assessment techniques,

e.g., contingency what-if analyses Sun and Overbye (2004) investigate potential power

system failures speculatively. However, enumeration of all possible incidents is a com-

binatorial problem and does not scale up efficiently in practical settings Davis and

Overbye (2011).

3.9 Concluding Remarks

We presented a domain-specific attack against the popular and widely-used power grid

economic dispatch control algorithm. The attack searches the controller’s live memory
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for sensitive power grid parameters and modifies them maliciously. It replaces the

legitimate values with the adversary-optimal values that are calculated considering the

physical system dynamics. As validated on real-world controller implementations, the

attack maximizes the physical damage to the power system.
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Chapter 4

Tell Me More Than Just Assembly! Reversing Semantics

of Embedded IoT and Industrial Control Software

Binaries

4.1 Introduction

Cyber-physical systems (CPS) interconnect, control and monitor critical environments

such as electrical power generation, transmission and distribution, chemical production,

oil and gas refining and transport, and water treatment and distribution. In recent

years, cyber-physical Internet-of-things (IoT) have received considerable attention due

to security concerns originated by the trend to connect those critical platforms to the

Internet Network and (ENISA). Critical infrastructures connected to and controlled

by CPS substantiate these security concerns. Nevertheless, the number of CPS/IoT

devices is projected to reach 20.4 billion in 2020, forming a global market valued $3

trillion TechNavio (2014). Nation-state CPS malware such as Stuxnet Falliere et al.

(2010) against Iranian nuclear uranium enrichment facilities and BlackEnergy F-Secure

Labs (2016) against the Ukranian train railway and electricity industries show that tar-

geted attacks on critical infrastructures can evade traditional cybersecurity detection

and cause catastrophic failures with substantive impact. The discoveries of Duqu Chien

et al. (2011) and Havex Rrushi et al. (2015) show that such attacks are not isolated

cases as they infected critical infrastructures in more than eight countries. Additionally,

IoT devices have been attacked over the years Angrishi (2017). The Mirai botnet An-

tonakakis et al. (2017), composed primarily of embedded and IoT devices, took the

Internet by storm in late 2016 when it overwhelmed several high-profile safety-critical

targets with massive distributed denial-of-service (DDoS) attacks.

Control algorithms in cyber-physical IoT platforms act as functional guarantees for
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the entire cyber-physical system Cardenas et al. (2008); Kwon et al. (2013); Mo et al.

(2010). As indicated by the past attacks Falliere et al. (2010); F-Secure Labs (2016),

adversaries are often attracted to vulnerabilities that directly affect the core embedded

controller algorithm implementations. For instance, Stuxnet modified the set-points for

feed-back control mechanisms within the variable frequency drives controlling the mo-

tors for uranium enrichment centrifuges Falliere et al. (2010); Hinkkanen (2013). This

was implemented by compromising the programmable logic controllers (PLCs) commu-

nicating with the variable frequency drives. BlackEnergy F-Secure Labs (2016) modified

the Ukraine’s power system parameters in control algorithm implementations to cause a

blackout. Similarly, Harvey Garcia and Zonouz (2017) implemented a firmware rootkit

in which the malicious control algorithm code issues disruptive feedback-control actua-

tion to the physical system. At a higher level of abstraction, another work Shelar et al.

(2017) showed how the optimization control algorithm parameters in energy manage-

ment systems can be exploited to dispatch malicious control commands to damage the

electric power grid.

The recent exponential growth of major cyber-physical IoT attacks indicate the in-

sufficiency of existing security analysis solutions to protect controller software in afore-

mentioned cyber-physical platforms. A common feature in most of the past attacks has

been the adversaries’ focus on affecting the controller software behavior. As a result,

the control algorithm implementations within the critical controller software binaries,

e.g., the proportional-integral-derivative (PID) controller in drone firmware, have be-

come the main battlefield for cyber-physical security. Attackers try to hijack the control

flow and/or corrupt sensitive parameters within those algorithms to make the controller

issue malicious actuation commands and cause large-scale physical damage.

On the protection side, however, the state-of-the-art reverse engineering and vul-

nerability assessment tools are unable to extract and leverage precise, domain-specific

of low-level embedded binary modules. Therefore, they fail to reason about the impact

of a particular vulnerability to the overall system, e.g., the drone’s flight operation.

Choi, et al. used system identification of a drone to generate control invariants based
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on a control general control system template Choi et al. (2018). They then instru-

mented the controller binary to incorporate monitors at the end of the control loop to

ensure the system is abiding to these invariants. However, this was a coarse-grained

approach could only detect extreme deviations from the expected behavior and cannot

pinpoint which areas of the binary need to be protected. A prerequisite for developing

effective protection solutions would be a rich understanding of the low-level controller

software segments that implement the core theoretical control algorithms. Such knowl-

edge about the high-level algorithmic semantics of the controller software binary could

then be used to identify and protect sensitive code and data segments of an algorithm

in the binary, e.g., using CFI or Intel SGX. Development of the protection mechanisms

or attacks based on the discovered control algorithm details in the software binaries

is outside the scope of this paper. Our objective is to extract the high-level algorith-

mic semantic knowledge from closed-source (commercial) controller software binaries

in cyber-physical IoT platforms.

Access to source code is often unavailable for third-party security analysis of com-

mercial off-the-shelf (COTS) embedded software in cyber-physical control domains.

This remarkably limits the use of existing source code-based solutions cla; Cadar et al.

(2008b); dat. For binary executables, automatic reverse engineering of their seman-

tics provides intuitions about the program’s functionality and expedites security anal-

ysis with respect to discovering commonly known software bugs and vulnerabilities.

Advanced disassembler and debugger tools such as IDA Pro Rescue (2006) and Olly-

Dbg Yuschuk (2007) offer a variety of techniques to help elevate low-level machine codes

to more abstract representations (e.g., assembly instructions), increasing the readability

of a program for a user. For instance, such tools can identify any known library functions

in the disassembled program and translate such function calls to their corresponding

descriptive symbolic names. However, such static binary analysis tools mainly extract

syntactical information and are not guaranteed to preserve/extract the semantics of the

original program Schwartz et al. (2013).

Contributions. We presentMismo, a reverse engineering framework to extract algorithm-

level semantics from stripped embedded software binary implementations of IoT and
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cyber-physical control algorithms. Mismo utilizes dynamic binary analysis and com-

parison of mathematical expressions to recover a particular algorithm implementation’s

. Mismo performs dynamic binary analysis to locate the target subroutines of the exe-

cutable that implements the control algorithm. The arithmetic operations of the execu-

tion paths are analyzed symbolically to build a binary-level abstract syntax tree (AST)

for the corresponding output values. The generated AST subtrees are recursively com-

pared to and matched with the algorithm-level AST subtrees of the control theoretic

expressions. Consequently, our solution fills the semantic gap between the low-level

binary executables and high-level algorithmic descriptions with regards to control and

data flows. Mismo’s ultimate output is to provide the security analysts with domain-

specific information about the IoT/CPS binary by annotating individual disassembled

instructions and memory addresses with the corresponding algorithm-level operation

and mathematical parameters, respectively.

Our contributions are summarized as follows:

• We propose a domain-specific reverse engineering solution to extract high-level

algorithmic control- and data-flow semantics from embedded binary executables

in various cyber-physical IoT control applications.

• We introduce a semantic mapping using dynamic binary analysis and symbolic

comparison of the mathematical and binary expressions to fill the semantic gap

between high-level algorithm descriptions and low-level stripped binary segments.

• We implemented the proposed framework (Mismo) as an IDA Pro plug-in and

evaluated it on 2,263 commercial embedded firmware from 6 various cyber-physical

application domains. The plug-in transfers the collected semantics to enrich the

disassembled code and data segments in order to expedite the reverse engineering

process. We validated Mismo for various use-cases, and discovered a previously

unknown Linux kernel bug that exists in all kernel versions since 3.13.

We evaluated Mismo on a wide-ranging set of real-world applications including

drones, self-driving cars, smart homes, robotics, 3D printers, as well as the Linux kernel.
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Potential use-cases. Mismo provides an enhanced reverse engineering solution with

more informative extracted semantics about the IoT firmware executables. Hence, its

use-cases include well-known software security analysis scenarios that involve binary

reverse engineering. For instance, the extracted algorithm-level semantics of the ex-

ecutable code and data segments by Mismo can be used for i) binary vulnerability

assessment (e.g., to determine whether any of the important control algorithm para-

meters in memory - identified by Mismo- can be corrupted by a buffer-overflow exploit

as shown in Kim et al. (2018) against a drone firmware); ii) memory forensics anal-

ysis (e.g., black-box analysis after a plane crash - to leverage the reverse-engineered

binary semantics by Mismo to discover controller state information such as sensor/ac-

tuation and detailed parameter values from the crash-time dumped controller memory

files similar to Saltaformaggio et al. (2014b)); iii) sensitive code and data segment pro-

tection (e.g., to protect sensitive memory areas - identified by Mismo- where impor-

tant control algorithm logic and parameters reside to prevent targeted attacks against

controllers Garcia and Zonouz (2017). The protection can be possibly deployed via

software-based encryption, dynamic memory value vetting or hardware-assisted solu-

tions such as Intel SGX).

iv) correct algorithm implementation verification (e.g., to determine whether the

controller firmware binary indeed implements the target control algorithm correctly -

possible mismatches - bugs - can potentially enable attackers to drive the controller

into unsafe states Starbuck and Farjoun (2009)); and v) binary-level software similarity

measures (e.g., to detect possibly unauthorized reuse of commercial binary implemen-

tation of control algorithms that are protected by intellectual property regulations.

The information extracted by Mismo about each executable would help for a better

semantic comparison of binaries as opposed to purely-syntactical comparisons Xu et al.

(2017)).

It is noteworthy that our focus in this paper is mainly to propose a solution (Mismo)

that extracts knowledge from a given firmware binary file. In this paper, we explain

Mismo’s design and implementation in details, and evaluate its performance by compar-

ing its outcomes (extracted semantics) on real-world firmware binaries with the ground
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truth. However, individual development and demonstration of the aforementioned use-

cases and how Mismo’s outcomes can be leveraged for each one of them (e.g., memory

dump forensics analysis using Mismo’s outputs) involve research challenges that remain

outside the scope of this paper.

The remainder of the paper is structured as follows. We provide an overview of

the Mismo’s threat model and architecture in Section 4.3. In Section 4.4, we discuss

the design details for each component of the Mismo framework. We discuss the im-

plementation of Mismo in Section 4.5 on a wide-range of applications. We present

the evaluation of Mismo on multiple case studies in Section 4.6 followed by a review of

related reverse engineering works in Section 4.7. We conclude the paper in Section 4.8.

4.2 Threat Model

In our threat model, the binary executable is not assumed to be malicious. It may,

however, include vulnerabilities. We utilize Mismo in the context of IoT and industrial

control applications to reverse engineer control algorithm implementations. We leverage

the fact that IoT and ICS embedded control software developers rarely design a new

theoretical control algorithm from scratch (see Section 4.6 for our empirical validation

on 2,263 commercial binaries). Instead, they almost always pick and implement one

(or more) out of a set of commonly used and known control algorithms that have been

extensively analyzed theoretically and for practical deployments.

As examples, proportional-integral-derivate (PID) controllers are used in programmable

logic controller (PLC) programs Sangeetha et al. (2012), Kalman-Filters for guidance,

navigation and control of drones Gowda et al. (2016), and Pulse-width modulation

(PWM) is used for robotics and 3D printer extruder motor control Raj et al. (2017).

Hence, we assume that Mismo has access to a predefined set of popular control algo-

rithms widely used in embedded cyber-physical systems (CPS) applications. This set is

used to reverse engineer the semantics of a given stripped embedded binary executable.

This is intuitively similar to existing signature databases used by disassemblers for

library API identification, e.g., IDA Pro’s FLIRT technology Eagle (2011).



81

ICS/IoT Device Controller Code
(binary executable)

Control 
Algorithm’s
Subroutine 

Identification

ICS/IoT
Control 

Algorithms

Control Flow Graph

High-Level Algorithmic Block Diagram (Simulink)
Algorithmic Mathematical 

Abstract Syntax Trees

Formal Symbolic 
Equivalence Check

Annotated 
Disassembly

Figure 4.1: Overview of Mismo framework.

4.3 System Overview

Recent years have witnessed the rapid progress of IoT and embedded control systems

technologies, with many of them already seeing wide adoption. The booming of IoT

and embedded control ecosystem inevitably attracts cyber criminals, who aim at com-

promising IoT/ICS devices. The loose protection of these devices and pervasiveness of

vulnerabilities Constantin (2016); Emm et al. (2015); Chen et al. (2018); Muench et al.

(2018) in them actually present to the miscreants low-hanging fruits.

Towards securing these devices, reverse engineering of the semantics of the target

embedded binaries is a crucial step in their vulnerability assessment and patching.

Mismo focuses on reversing COTS embedded IoT/ICS stripped binaries, i.e., executa-

bles without any relocation information or symbols–except those necessary for dynamic

linking.

The IoT and ICS devices execute embedded controller binaries in periodic scan

cycles. In each scan cycle, the firmware processes the input values that consist of

measurements from the sensors in the environment, e.g., accelerometer readings on a

drone. The firmware implements a control algorithm and determines the next control

commands based on the most recent sensor readings. It sends the calculated output

values to the actuators that manipulate the environment, e.g., rotation speed of the

motors on a drone. Then, the next scan cycle starts by reading the updated sensor

measurements going through identical aforementioned procedures.
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Subsequent scan cycles implement the control algorithms and are deployed as loops

within the firmware binaries. The recent IoT/ICS attacks have shown that the control

algorithm implementation submodules of the firmware binaries are often the most at-

tractive target for adversaries Falliere et al. (2010); F-Secure Labs (2016), because their

infection result in system-wide damages, e.g., a drone crash.

According to our experimentation with 2,263 commercial embedded firmware bi-

naries, the embedded control algorithm submodules are often not branch-heavy, and

hence can be analyzed using exhaustive static/dynamic analysis techniques. Conse-

quently, the control algorithm is implemented using only a few arithmetic-heavy exe-

cution paths (deterministic algorithm logic). The execution paths across subsequent

scan cycles that go through a predictable pattern covering all the paths during a short

operation of the system, e.g., a short few seconds of drone flight. However, input data

values from sensors differ significantly over time. Furthermore, in our experimentation

with the control algorithm submodules, we never faced indirect call-sites, and were

able to leverage existing tools to extract the binaries’ syntactical information such as

functions and control flow graphs.

Figure 5.1 shows Mismo’s architecture. To reverse engineer the semantics of a

given binary executable for a particular controller, Mismo tries to match the binary

to each control algorithm in its database of popular commonly-used embedded control

algorithms. Mismo finally picks the algorithm with the highest matching score and

uses its description to annotate the binary’s disassembled code/data regions with high-

level algorithmic semantics and help the analysts to better understand the binary’s

functionalities.

Mismo starts with the control algorithm’s high-level description flowchart. The

high-level description can be either in pseudo-code or block-diagram format, e.g., a

MATLAB Simulink diagram. Each possible operation flow of the algorithm is exercised

parametrically. As a result, the mathematical expressions of the output values as a

function of input parameters are calculated.

Mismo then analyzes the given stripped binary dynamically through inspection of

its execution traces when used in practice, e.g., an execution trace of the firmware
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controller during the drone’s flight. Through examining the memory values and arith-

metic instructions, the part of the execution trace (i.e., responsible subroutines) that

implements the control algorithm is identified for further analysis.

Mismo implements a symbolic semantic-matching algorithm to map the high-level

operations from the algorithmic flowcharts to low-level instructions and memory ad-

dresses in the executable’s code and data segments. This mapping provides semantic

meaning for each assembly instruction, e.g., the impact of each instruction with respect

to the overall system as well as the critical memory associated with the control algo-

rithm. Such semantic information can enable a finer-grained white-box analysis of the

binary.

The first step of Mismo entails locating the function in the firmware that corre-

sponds to the core controller algorithm implementation. It uses dynamic data flow

analysis to locate such a function. The second step is traditional disassembly of the

function and the recovery of its control flow graph (CFG). The framework analyzes the

CFG given the control algorithm’s high-level flowchart, and ranks the CFG’s control

flows based on how similar they “look” to the algorithm’s operations. The third step

involves the symbolic expression generation for the selected control-flow path’s output

variables (actuation commands) via symbolic execution. The fourth step compares the

generated binary-level symbolic expression to the abstract syntax tree (AST) of the

associated high-level algorithm operations. The final step is the semantic refinement of

the previous results. The previous steps may not resolve all of the mappings between

binary- and algorithm-level operations. Mismo uses a satisfiability modulo theories

(SMT) solver to improve the ultimate mapping accuracy. The acquired semantic infor-

mation will then be used to annotate the binary’s disassembled code/data segments for

more informed binary analyses.

4.4 Mismo Design

In this section, we will detail the aforementioned sequential components of the Mismo

framework.
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4.4.1 Locating the controller subroutines

A high-level control algorithm’s expression cannot be directly compared to a particular

embedded firmware implementation in assembly format automatically as there will

most likely be a high level of variability in both the algorithm expression as well as

the implementation. To start its analysis, Mismo first locates the binary subroutines

that implement the core control algorithm. A stripped COTS binary for an embedded

controller may include thousands of functions. Locating a particular algorithm function

implementation without debugging information is not trivial.

Mismo utilizes dynamic data flow tracking within individual scan cycles to locate

the control algorithm functions. Although Mismo does not have access to debugging

information, domain-specific knowledge can provide some hints about input arguments

that are directly related to the target control algorithm. Specifically, we mark the input

variables that are populated by the sensor measurements as the data taint sources. The

sinks are the output variables whose values are sent out to the actuators (i.e., the output

module on the embedded controller device).

Assuming that the inputs to the embedded firmware binary are known, dynamic

taint analysis can be used to establish which registers and areas of memory related to

the program are affected by each sensor input value. Given the execution traces of

the firmware, we also have access to all functions calls during each scan cycle. Mismo

keeps track of the tainted data propagation from source to sink during the embed-

ded controller execution. Out of the whole trace, Mismo identifies the subroutine(s)

that implements the control algorithm and performs value-changing arithmetic (floating

point) operations on the tainted data. As the result, irrelevant functions will be ex-

cluded from further analysis. For instance, Mismo ignores a function call that does not

perform any arithmetic operations (value modifications) and only moves data around in

the memory such as fetching data from the controller’s sensor/actuation GPIO ports.

Such a function may be required for low-level execution of the software, but does not

contribute to high-level control algorithmic parameter value manipulation operations.
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4.4.2 Control flow graph refinement

Once Mismo has established a candidate set of functions for the control algorithm, it

focuses the following analyses on the identified few functions only. Mismo performs

symbolic execution of the function binary code to generate concrete input test cases for

each feasible execution path. However, generating test cases for all paths for each can-

didate function may be infeasible due to the well-known scalability issues with symbolic

execution. Furthermore, some paths may not be relevant to the core of the associated

control algorithm. For instance, in our experiments with commercial firmware samples,

we observed a large portion of paths perform input validation or exception handling.

These paths include almost no value-changing arithmetic instructions, which are used

heavily by the relevant paths that implement the core control algorithm. We utilize the

aforementioned feature (arithmetic operation density) to distinguish and prune such

irrelevant paths.

To further narrow down symbolic execution’s search space to relevant execution

paths only, we obtain the control flow graphs of the identified candidate functions.

Mismo performs static analysis of the CFG’s execution paths and measures how likely

each particular CFG path represents a control flow (sequence of operations) within the

high-level control algorithm description. This similarity checking has to consider the

semantic gap between the low-level binary execution paths and the high-level control

algorithm descriptions. Mismo does so by utilizing the density and types of arithmetic

operations as the core metrics. The ultimate identified set of relevant execution paths

are represented as a smaller CFG, where the set of vertices and edges is a subset of

those in the original function CFG.

Intuitively, the number of branches in the high-level control algorithm flowchart

(also referred to as CFG in this chapter) has to be equal to the number of branches

in the low-level function binary’s pruned CFG. In reality, however, a CFG of a control

algorithm implementation typically has a greater number of branches than the high-level

CFG (flowchart) of the associated algorithm expression due to modifications unique to

the environment in which the algorithm was implemented. For instance, there may
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be more comparison instructions in the binary if there are limitations on the values or

different variable assignments for different contexts. That being said, if the two CFG’s

do indeed have the same number of branches, it will be an indication of high similarity.

However, a comparison solely based on the number of branches is clearly not sufficient

in most cases.

Mismo leverages domain-specific features particular to embedded IoT/ICS firmware

implementations. During the design process, we noticed that control algorithm imple-

mentations typically use floating point operations as the sensor readings are noisy nu-

meric values. Additionally, the implementations often have a significant amount of error

checking on the input parameter values without performing arithmetic value-changing

operations. The common comparison instructions include ’VCMP.F32’, ’VCMP.F64’,

’VCMPE.F32’, and ’VCMPE.F64’. This leads to several CFG paths that bypass the

algorithm’s core set of instructions and directly jump to the final returning basic block.

Mismo uses a lower bound threshold of the number of arithmetic instructions that are

required to implement the control algorithm. Any CFG path that contains a smaller

number of arithmetic operations is excluded from Mismo’s following analyses.

The aforementioned threshold varies significantly for different control algorithms

based on their size and level of complexity. We calculate the threshold value for each

control algorithm by generating a parametric expression of the control algorithm’s out-

put based on its inputs. As a trivial example, if the control algorithm involves calcu-

lating a weighted average of the two sensor readings 𝑠1 and 𝑠2, the calculated paramet-

ric expression would be 2˚𝑠1`𝑠2
3 . However, an algorithm may calculate the output as

𝑠1`𝑠1`𝑠2
3 , i.e., without multiplication. Hence, we use a SMT solver to simplify all arith-

metic operations down to a canonical minimum-sized form, i.e., 2˚𝑠1`𝑠2
3 in the example

above. The threshold is calculated as the number of the arithmetic operations in the

simplified expression. Using the threshold, Mismo guarantees that a CFG path that

bypasses the core set of arithmetic operations will not be considered.
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4.4.3 Symbolic controller abstraction

Once the candidate function CFG is pruned, we can perform more exhaustive analyses

on the resulting (much smaller) refined CFG. Mismo implements symbolic execution

to compute symbolic expressions for the function’s output variables that would be sent

to the actuators during the firmware normal execution. Typically, the output values

calculated by the control algorithm function are written to the controller’s actuator-

connected (often GPIO) ports by other subroutines in the firmware.

Mismo needs to first locate the control algorithm function’s output variable to

calculate and report its symbolic value. This is needed, because we use the symbolic

value of the controller function output variable to compare and match with the high-

level control algorithm flowchart’s parametric output. The outcomes of this analysis

will enable us to map low-level controller function code/data segments to high-level

control algorithm logic/parameters (discussed later in Section 4.4.4).

Identifying the relevant output variables of the controller function is not straight-

forward as a function may return the output value in a variety of ways, e.g., the output

variable may be a reference parameter, a global variable, or a value that is directly re-

turned by the function. We utilize Mismo’s dynamic data flow analysis (Section 4.4.1)

of the controller firmware’s execution trace to identify the controller function’s output

variable. Specifically, Mismo focuses on the controller algorithm function execution

trace. It determines the memory address or register that stores the function’s calcu-

lated values right after the last value-changing arithmetic instruction. Mismo marks

the determined memory address or register as the function’s output.

Mismo’s objective is to perform symbolic execution of the refined function CFG

and calculate the symbolic value of the output variable. The value should represent

the symbolic value of the actuation command (output) based on the symbolic sensor

readings (inputs). Mismo needs to identify relevant inputs to the controller function.

This is needed to enable symbolic execution, which requires to identify a set of input

variables to be associated with symbols.

Trivial solutions such as marking the function arguments as inputs would not work
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in IoT/ICS binaries for the following three reasons. First, the controller functions

sometimes leverage other sources as inputs such as global variables. Second, some of

the function inputs, even though necessary for the binary’s execution, are not relevant

to the core control algorithm. Hence, our objective is to identify only the input variables

that affect the values of our identified output variables. Third, function arguments may

be data types or structures that do not have a fixed size, which is needed for scalable

generation of symbolic values. Finally, controller function arguments often leverage

pointers to sensor reading data blocks (implemented as structures or objects in the

firmware) that cannot be marked as symbolic input directly for symbolic execution;

instead the corresponding pointed memory regions should be labeled symbolic.

To identify the relevant inputs to the controller function, we use a slightly mod-

ified backward slicing analysis. In our experiments, conventional backward dynamic

taint analysis led to over-tainting and was not helpful for accurate identification of the

function inputs. More specifically, dynamic backward taint analysis of the binary of-

ten resulted in many additional unnecessary memory variables, as tainted, that were

irrelevant to the core mathematical embedded ICS/IoT control algorithm, e.g., a file

descriptor pointer used for event logging.

We want to identify the the relevant numeric inputs to the controller function that

correspond to the input parameters in the control algorithm’s high-level mathematical

flowchart. Mismo uses a slightly modified backward slicing that exploits a domain-

specific fact the IoT/ICS control algorithms mainly deal with numerical sensor inputs

and variables (e.g., double or float data types as opposed to strings and characters).

Mismo’s backward analysis considers memory taints coupled with their data values.

Starting from the output variable, Mismo discovers all associated inputs that contribute

to the output value numerically through arithmetic instructions, e.g., VADD.F64 and

VMUL.F64. In other words, the inputs whose values have been used arithmetically to

calculate the output values are selected only and marked as symbolic. The remaining

controller function inputs are represented with the concrete values in the Mismo’s

symbolic execution of the function.

Mismo executes the controller function symbolically, and calculates the symbolic
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expressions of the identified controller function output variables. By design, all the

non-concrete entries of the expression originate from sensor readings and the control

algorithm parameters.

The calculated symbolic expression may ’look’ different across different implemen-

tations (IoT devices) of the same theoretical control algorithm (e.g., implemented as

cntrlrp𝑖qtreturn 2 ˆ 𝑖; u or without multiplication as cntrlrp𝑖qtreturn 𝑖 ` 𝑖; u).

Mismo utilizes SMT solvers to simplify and turn the calculated symbolic expression into

its minimal and unique canonical form that is mathematically equivalent to the original

expression. This canonical symbolic expression is essentially the arithmetic summary

of the controller function in the IoT/ICS device firmware. The next subsection will use

this expression to map its operations with the control algorithm’s high-level flowchart

logic.

4.4.4 Abstract syntax tree mapping

To map the low-level firmware binary’s code/data segments with the high-level control

algorithm semantics, we compare and match their abstract syntax tree (AST) represen-

tations. Mismo computes the AST representations of the high-level control algorithm

(referred to as the high-level AST ) as well as the aforementioned canonical symbolic

expression of the controller function (referred to as the low-level AST ).

Mismo’s objective is to map the individual nodes of the low-level AST to their

counterparts in the high-level AST. Mismo accomplishes this in two steps. During

the first step (which is more lightweight), it tries to map the nodes/subtrees of two

ASTs based on the tree structure and using a recursive graph-theoretic isomorphism

check. Consequently, some nodes from the low-level AST may each be mapped to more

than one node in the high-level AST. To resolve such cases, Mismo utilizes formal

satisfiability checking to precisely find the unique maps via comparing the subtree

contents and their arithmetic representations from the two ASTs.

Mismo first checks whether the two AST roots have the same arithmetic opcode. If

the root opcode is the same, the roots’ degree (the number of children nodes) is com-

pared. If both have the same degree, every child pair from the two ASTs is investigated.
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For each given pair of children nodes, the following cases may arise: i) if they store

the same arithmetic opcodes, their corresponding subtrees are compared recursively;

ii) if they store different opcodes, their subtrees are not investigated further; iii) if one

node stores an arithmetic opcode, while the other node stores a symbol or a concrete

value, the case is discarded; iv) if they store equal concrete values, their subtrees are

compared recursively; v) if they store different concrete values, the case is discarded; vi)

if they store two symbols, or a symbol and concrete value, the subtrees are compared

recursively.

The aforementioned comparison mainly exploits the structure of the AST trees and

compares the ASTs based on individual node contents. If the recursive procedure above

can uniquely map the two ASTs, Mismo reports the node-node mappings. Otherwise,

it performs a more in-depth analysis to resolve the one-to-many node mappings. The

analysis uses formal SMT satisfiability checks and compares ASTs based on the whole

subtree contents recursively. We will see an example of the one-to-many mapping in

Section 4.5.

More specifically, to resolve the potential non-unique mappings, we perform a formal

symbolic equivalence check between subtrees of the two ASTs. Given the two ASTs for

high-level algorithm expression (ASThigh-level) and low-level binary symbolic output

expression (ASTlow-level), we construct a conjunctive logical predicate for each candi-

date mapping. The predicate is in the form 𝑃 :“ rpASThigh-level “ ASTlow-levelq ^

pAST1high-level “ AST1low-levelq ^ ¨ ¨ ¨ ^ pAST
𝑛
high-level “ AST𝑛low-level)], in the form,

where AST𝑖high-level and AST𝑖low-level represent subtrees of the two abstract syntax

trees for high-level algorithm and binary implementation, respectively. If the predi-

cate is proved to be infeasible by the SMT solver, Mismo rejects the mapping and

investigates the remaining candidate mappings until the correct one is identified.

4.5 Implementation and Case-Study

This section describes the implementation details of our prototype solution. Mismo

utilizes the QEMU emulator Bellard (2005) and S2E Chipounov et al. (2011) for its
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Figure 4.2: High-level block diagram of a sample embedded CPS control algorithm
(Kalman filter). Mismo will map algorithmic logic and parameters of the diagram to
their corresponding binary-level control flows and memory variables, respectively.

dynamic analysis and symbolic execution procedures, respectively. The ultimate proto-

type is implemented as an IDA Pro plugin that integrates Mismo’s results (extracted

high-level algorithmic semantics) into the IDA Pro user interface.

To facilitate the understanding of our implementation details, we will provide an on-

going simple application on a popular widely-used algorithm in industrial control: the

Kalman filter Chen et al. (2017). The Kalman filter is an optimal estimation algorithm

commonly used in embedded control systems to estimate unknown variables of various

physical processes kal. For instance, drones typically use Kalman filters for the run-

time location state estimation based on the sensor measurements. For this case-study,

we used the stripped binary executable of the commercial 3DR Solo drone controller

that utilizes a Kalman filter. See Figure 4.2 for a high-level Simulink Simulink (2005)

block diagram of the algorithm. The first step of the algorithmic semantic-matching

reverse engineering process will be to analyze the binary file in order to determine which
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subroutine corresponds to the concrete implementation of the Kalman filter. Mismo

performs dynamic taint analysis to determine the number of arithmetic instructions

that are used by each subroutine in the binary program. The results are presented

in Figure 4.3. There are three functions (sub 10288, sub 94F8, and sub 8EC4)

that have been tainted by Mismo’s dynamic analysis of the firmware execution paths.

Therefore, these three functions will be considered as our candidate functions for the

implementation of the control algorithm.

We further refine the candidates using IDA Pro’s binary call-site analysis. The anal-

ysis shows that the subroutines sub 10288 and sub 94F8 both call the subroutine

sub 8EC4. If the three functions have the same number of arithmetic/logic instruc-

tions, Mismo will prune the calling functions. Therefore, Mismo considers sub 8EC4

as the main implementation of the Kalman filter algorithm. Mismo assumes that there

is only one implementation for a particular algorithm for an execution path. This

assumption will be reinforced in Section 4.6.

If we had chosen to use traditional dynamic taint analysis–without integrating the

domain knowledge with respect to the arithmetic instructions–17 functions would have

been identified as candidate implementations for the Kalman filter algorithm. Even

after removing the repeated function calls from the candidate set and using a similar

binary call-site analysis, the analysis would still result in 6 candidate functions for the

Kalman filter implementation. Although this is a simple example, this demonstrates

the usefulness of Mismo’s taint analysis in the context of embedded control system

algorithms.

As mentioned previously, even though we have identified the candidate function

for the Kalman filter algorithm implementation, we still cannot directly compare the

associated assembly code to the high-level algorithm expressions. We first need to

generate the symbolic expression for the function implementation in order to compare

it to the associated symbolic AST of the high-level embedded CPS control algorithm.

The first step in the generating the symbolic expression is to choose a single candidate

execution path in the function’s CFG. Mismo obtains the binary program’s CFG using

a Python plugin script for IDA Pro. We then implement the aforementioned CFG
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Figure 4.3: The (correctly) identified controller functions within the popular Kalman
filter implementation. The remaining subroutines (with zero value-changing floating
point operations) are not considered for later analyses.

selector to choose the most fruitful control flow path based on the lower bound of the

number of the algorithm’s arithmetic operations.

Figure 4.4 provides an example of a selected path. The blocks with gray background

compose one control flow path, which will be used for further analysis. In the first

branch, Mismo selects the true branch as the false branch overwrites the value

[R7], which is the location where the the final arithmetic result is stored and compared

with zero. Put in other words, the selection of the false branch would result in a

path where the number of the arithmetic operations fall below those of the high-level

control algorithm. Once Mismo selects one control flow path, it will use dynamic

symbolic execution to generate the final symbolic expression for the algorithm. To

identify the output value of the function implementation, Mismo needs to locate the

memory addresses or registers associated with the program that stores the output value

of the function. To that end, Mismo first identifies the final arithmetic instruction to

be the final instruction that updates the function’s output value.

Starting from the output values that are sent to the actuators by the firmware,

Mismo traverses the its execution trace backward, and locates the last arithmetic in-

struction within the candidate control algorithm subroutine that produces the target

output value. Figure 4.6 shows the last set of instructions as well as the analysis of the

candidate subroutine’s instructions, including the last arithmetic operation. Mismo

marks the first memory address or register after the identified arithmetic instruction
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sub_8EC4:
...
VSTR D7, [R7,#0x3C+var_3C]
VLDR D7, [R7,#0x3C+var_3C]
VCMPE.F64 D7, #0.0
VMRS APSR_nzcv, FPSCR
BPL loc_8F9C

MOV.W R2, #0
MOV R3, #0x3FF00000
STRD.W
R2, R3, [R7]

LDR R3, =(off_1B0B8 - 0x1B000)
LDR R3, [R4,R3]
MOV R1, R3
LDRD.W R2, R3, [R7]
...
VSTR D7, [R7,#0x3C+var_14]
VLDR D6, [R7,#0x3C+var_14]
VLDR D7, =100.0
VCMPE.F64 D6, D7
VMRS APSR_nzcv, FPSCR
BPL loc_908E

LDRD.W R2, R3, [R7,#0x28]
STRD.W R2, R3, [R7,#8]
B loc_909E

MOV.W R2, #0
MOV R3, #0x3FF00000
STRD.W R2, R3, [R7,#8]

...
VLDR D7, [R7,#0x3C+var_3C]
VCMP.F64 D6, D7
VMRS APSR_nzcv, FPSCR
BEQ loc_90C6

MOV.W R2, #0
MOV R3, #0x3FF00000
STRD.W R2, R3, [R7]
B loc_90D6

VLDR D6, [R7,#0x3C+var_3C]
VLDR D7, [R7,#0x3C+var_34]
VSUB.F64 D7, D6, D7
VSTR D7, [R7,#0x3C+var_3C]

VLDR D6, [R7,#0x3C+var_1C]
VLDR D7, [R7,#0x3C+var_3C]
VMUL.F64 D6, D6, D7
...

false

true

false

false

true

true

Figure 4.4: The CFG of function sub 8EC4 and the top candidate of paths selected
by Mismo selector.
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(a) Abstract syntax tree for the symbolic output value of the binary executable subroutine (w/o
semantics, e.g., parameter names).
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(b) Abstract syntax tree for the symbolic output value of the Kalman filter mathematical
algorithm (w/ semantics).

Figure 4.5: Mapping executable- to algorithm-derived ASTs to enrich the disassembled
code/data views with semantic information.
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Symbolic Sym 0 Sym 1 Sym 12 Sym 13

A 3 3

x k 1 3 3

A1 gain 3 3

P m 1 3 3

Table 4.1: Result of Comparing Two ASTs (from algorithm-level block diagram and
implemented binary executable)

that stores the output value as the candidate output variable.

For our example, the output value of the binary program was 6.162498634045976.

For the instruction 0x90E6: VADD.F64 D7, D6, D7, register D7 holds the value

0x4018a6660abb7d12, which is corresponding to the aforementioned output result

6.162498634045976. Mismo concludes that the instruction 0x90E6: VADD.F64

D7, D6, D7 is the last instruction to generate the final output value and register D7

holds the final output result. Mismo can now generate the symbolic expression for

register D7 when executing the instruction 0x90E6: VADD.F64 D7, D6, D7.

We already know that the register D7 will hold the final symbolic output. To gener-

ate the symbolic expression for the entire algorithm implementation, Mismo needs to

also symbolize the the associated input values. It is not sufficient–or even necessarily

correct–to symbolize just the function’s parameters. Therefore, we implemented back-

ward slicing to backtrace all related input variables. In the case of the Kalman filter

implementation, the symbolic inputs are generated from global variables since there are

no function parameters.

Mismo found four pointers with different offsets that are used as inputs to the

function. For a more accurate location of the associated input values, we performed

dynamic backward slicing to determine all relevant inputs for the isolated control flow

path specifically. For the Kalman filter application, we found 20 relevant input variables

that are all offset values from four pointers: unk 1B258, unk 1B5E8, unk 1B640

and unk 1B620.

Once the output value and the associated input variables are located and marked

as symbolic, Mismo uses symbolic execution to generate the symbolic output expres-

sion for the algorithm implementation. The symbolic expression for the Kalman fil-

ter candidate function is as follows: ppppSym 15 ˚ pppSym 12 ˚ Sym 11q ˚ Sym 13q `
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Sym 14qq{ppSym 19˚pSym 15˚pppSym 12˚Sym 11q˚Sym 13q`Sym 14qqq`Sym 16qq˚

ppp
a

pSym 7q ˚ Sym 8q ` ppSym 5 ˚ pp
a

p𝑆𝑦𝑚 3q ˚ Sym 4q ` ppSym 0 ˚ Sym 1q `

pSym 18 ˚ Sym 2qqqq ` pSym 18 ˚ Sym 6qqq ´ ppSym 19 ˚ ppSym 18 ˚ Sym 10q `

pSym 11 ˚ Sym 9qqq ` pSym 17 ˚ Sym 18qqqq ` ppSym 18 ˚ Sym 10q ` pSym 11 ˚

Sym 9qqq.

Before comparing the symbolic expression of the low-level binary implementation

with the associated algorithm’s symbolic expression, Mismo will further simplify the

symbolic expression using the Z3 SMT solver Subramanian et al. (2017). Once Z3

has simplified the symbolic expression, Mismo then uses SymPy Certik et al. (2008) to

generate the AST for the implementation’s symbolic expression as well as the associated

algorithm. Figure 4.5 shows the symbolic expression AST for the binary’s candidate

subroutine as well as the AST for the associated high-level control algorithm expression

that was generated using the block diagram of the Kalman filter.

Once both ASTs are generated, Mismo compares the two ASTs and determines if

there is a mapping between the variables of the implementation’s symbolic expression

and the algorithm’s symbolic expression. Table 4.1 shows the results of comparing both

ASTs of the Kalman filter. Out of the 20 candidate symbolic input variables, Mismo’s

initial filters cannot conclude a one-to-one mapping for 4 of them. The symbols Sym 0,

Sym 1, SymVar 12, and SymVar 13 have two candidates each. So, further refine-

ment is necessary to recover the semantic algorithm-level meaning for these symbolic

variables.

We use Z3 satisfiability checking to improve the one-to-one node mapping between

the ASTs. For the drone’s Kalman filter subroutine, Mismo was able to correctly

narrow down the candidates of the symbols to their exact corresponding mappings.

Mismo finally ensures a one-to-one mapping between symbolic variables of the binary

executable and semantic variables (mathematical parameters of the algorithm). It then

uses static analysis to propagate the symbolic variable’s semantic meaning through-

out the binary code and data segments using an IDA Pro plugin. Mismo adds the

discovered semantic information to the IDA Pro view of the subroutine using our cus-

tom plugin. This allows an analyst to incorporate Mismo’s analysis into the binary’s
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…
0x90DE: VMUL.F64 D6, D6, D7

-> 0xc0175999f54482ee
0x90E2: VLDR D7, [R7,#0x3C+var_2C]

-> 0x4028000000000000
0x90E6: VADD.F64 D7, D6, D7 

-> 0x4018a6660abb7d12
0x90EA: LDR R3, =(off_1B0B8 - 0x1B000) 

-> 0xb8
0x90EC: LDR R3, [R4,R3] 

-> 0x1b620
0x90EE: VSTR D7, [R3,#0x10]

-> 0x4018a6660abb7d12 
…
0x9102: LDR R3, [R4,R3]

-> 0x1b258
0x9104: VLDR D6, [R3,#0x28]

-> 0x3ff0000000000000
0x9108: VLDR D7, [R7,#0x3C+var_24]

-> 0x4020000000000000
0x910C: VMUL.F64 D6, D6, D7

-> 0x4020000000000000
0x9110: VLDR D7, [R7,#0x3C+var_1C]

-> 0x3fe5555555555555
0x9114: VMUL.F64 D7, D6, D7

-> 0x4015555555555555
0x9118: VLDR D6, [R7,#0x3C+var_24]

-> 0x4020000000000000
0x911C: VSUB.F64 D7, D6, D7

-> 0x4005555555555556
…
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Figure 4.6: Last set of instructions, including the last arithmetic instructions, for the
Kalman filter candidate function as well as the associated data flow analysis.

reverse engineering project and can display critical information that is relevant for

security analyses and applications, e.g., fine-grained sensitive data protection.

Figure 4.7 shows the IDA Pro view of the Kalman filter binary annotated with

the extracted semantic information. The left side of the figure shows the standard

IDA Pro view, while the right section displays the extracted semantic information.

This expedites the reverse engineering process by providing semantic meaning to every

instruction, register, and area of memory of the program. Furthermore, we can develop

intuitions about the associated global information of the program. For example, in the

case of the Kalman filter, Mismo discovered that there are at least four data structures.

4.6 Evaluations

For the experiments, our main focus is to validate Mismo’s main functionality (extract-

ing semantic information from embedded firmware binaries). To that end, we evaluated

Mismo on a set of real-world embedded applications, including drones, self-driving au-

tomobiles, smart home devices, robotics, 3D printers, as well as the embedded kernel
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IDA Pro disassembly result

Mismo's extracted semantic information

Figure 4.7: Mismo provides semantically rich information for the Kalman filter binary
program within the IDA Pro view.
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Category Vendor
Control Algorithm

#firmwares Data Accuracy (%) Code Accuracy (%)
BB KF PF PID PWM

Drone

Bitcraze 3 3 3 38 100.00 96.40
Ardupilot 3 3 3 168 78.57 86.96
DJI 3 3 3 66 100.00 93.69
3D Robotics 3 3 3 327 78.57 86.96
Cleanflight 3 48 71.43 50.26
Fluoreon 3 1 77.78 48.70
Eachine 3 1 77.78 48.70
Paparazzi 3 53 77.78 86.14
Cheerson 3 3 3 169 84.29 91.56

Automotive

Baidu 3 3 2 100.00 93.67
PolySync 3 3 100.00 97.01
Microsoft 3 1 100.00 100.00
Tier IV 3 3 11 100.00 89.47
Udaticy 3 3 3 2 100.00 97.14

3D
Printer

LulzBot 3 22 90.91 92.86
Makerbot 3 19 88.89 63.81
Repetie 3 3 3 6 100.00 82.96
Printrbot 3 3 22 90.91 92.86
BCN3D 3 3 15 81.82 50.26
Robo3D 3 1 90.91 92.86
Teacup 3 3 3 1 100.00 93.24
Solidoodle 3 2 90.91 92.86

Robotics

ROS 3 3 3 3 62 88.89 94.20
Robotiq 3 1 100.00 98.64
LinuxCNC 3 145 53.85 43.34
Drake 3 3 8 85.71 87.38

Smart
Home

SmartPID 3 2 100.00 100.00
Particle 3 87 100.00 96.81
MBED 3 3 147 100.00 100.00

Linux Kernel Linux Kernel 3 833 100.00 100.00

Total/Average 30 2,263 89.82 84.96

Table 4.2: Embedded IoT/CPS firmware vendors and the corresponding identified
control algorithms (BB: Bang-Bang, KF: Kalman Filter, PF: Particle Filter, PID:
Proportional-Integral-Derivative, PWM: Pulse Width Modulation)

controller (see Section 4.6.1).

To the best of our knowledge, Mismo is the first solution to provide high-level

semantic information about IoT controller binaries, hence we cannot compare Mismo’s

core capability with any prior work. However, one potential use-case enabled by Mismo

is semantic comparison of the embedded controller software binaries. Prior work has

developed solutions to calculate the similarities between any pair of functions based on

their syntactical features (e.g., number of basic blocks, instructions, etc.). Mismo can

perform more in-depth semantic similarity calculations in a specific application domain,

i.e., embedded IoT controllers. As a part of our evaluation (see Section 4.6.2), we

compare how accurately Mismo distinguish similar function binaries with the solutions

by the prior work, namely BinDiff Dullien and Rolles (2005), BinJuice Lakhotia

et al. (2013) and Blex Egele et al. (2014).

Additionally, we briefly demonstrate Mismo’s capabilities in a few use-cases in the

contexts of data type recovery, binary decompilation, as well fine-grained sensitive data
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protection (see Section 4.6.3).

Mismo assumes the application’s source is unavailable (as in third-party commercial

software analysis settings). However, for our accuracy results, we use the source code

as the ground truth to evaluate the correctness of Mismo’s outputs (as discussed in

details later).

4.6.1 Real-world Embedded/IoT Firmware

We first evaluated Mismo on ten representative real-world applications listed in Ta-

ble 4.3. For evaluation, we collect the ground truth by compiling binaries with de-

bugging information to validate Mismo’s findings after it finishes its analyses. It is

important to note that Mismo does not utilize the ground truth during its analysis - it

is only used for evaluation purposes. In each case, our goal was to locate the control al-

gorithm implementation function and extract the corresponding high-level algorithmic

semantics from the function’s binary code and data.

Individual application binaries consisted of several control flows that did not pertain

to the core of the target control algorithm. These control flows typically correspond

to input validation, error checking, etc. as discussed in Section 4.5. Mismo chose the

control flow paths that represented the candidate function for each case. Although

some of the applications’ CFGs were immediately pruned to a single path, a few of

the applications still had multiple candidates left, e.g., PX4fmu (drone controller) had

four possible candidates. PX4fmu was found to have four different control modes, each

having a slightly different algorithm implementation.

Figure 4.8 shows the number of symbolic input variables for each application’s target

function as well as the source type of each symbolic input variable. For example, there

are 14 total symbolic inputs for 3DRsolo. 12 out of the 14 symbolic inputs stem

from global variables, while the other 2 are from function parameters. In that case,

the function parameters were trivial to resolve as they were not pointer data types.

Similarly, PolySync has 8 symbolic inputs, all of which stem from function parameters:

3 non-pointer values and 5 pointer values. Such data type recovery provides useful

information to help with the reverse engineering and binary analysis procedures.
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Classification Application Details

Drone

Crazyflie Crazyflie Nano Quadcopter Firmware
Ardupilot Ardupilot is the most advanced autopilot software
Px4fmu PX4 Pro Drone Autopilot Firmware
3DRsolo 3drobotics Ardupilot Solo

Automotive
WoDCar Microsoft The Self Driving RC Car
PolySync The Car Control Project for an autonomous driving vehicle.

Smart Home SmartPID Smart temperature and process controller: heating or cooling

Linux kernel Tmon A Monitoring and Testing Tool for Linux kernel thermal subsystem

Robotics ROS Ros arduino bridge is a ROS driver and base controller for Arduino microcontrollers

3D Printer Marlin Marlin 3D Printer Firmware for RepRap 3D printers

Table 4.3: Embedded applications with control algorithm implementations.

The accuracy of Mismo is defined as the portion of the inputs that has been se-

mantically explained correctly, i.e., the inputs have been mapped to their correspond-

ing mathematical algorithm-level parameters. There are cases during the semantic-

matching process where two binary-level variable’s arithmetic result match one seman-

tic (algorithm-level) parameter. In these cases, Mismo associates the values in program

memory with the semantic parameter’s tag.

Of course, there are also cases where the symbolized inputs cannot be resolved

(mapped to their algorithm-level counterparts). For example, Mismo was not able to

associate two of the algorithm’s semantic variables with any of the symbolized inputs of

the 3DRsolo. This is due to the fact that there are too many symbolized variables that

confuses Mismo’s automated semantic discovery process. For instance, to compute a

derivative value, the implementation introduces three extra auxiliary variables.

Figure 4.9 shows Mismo’s accuracy for the applications from the data and code

semantics discovery, respectively. Once Mismo adds the semantic information for the

binary-level input variables, Mismo will propagate the semantics for each instruction–

as was previously shown in Figure 4.7. The accuracy is then calculated based on the

portion of the instructions that has been resolved and correctly annotated in the chosen

execution path.

Figure 4.10 shows the relative runtime of Mismo for individual applications. On

average, the total time required by Mismo to complete its reverse engineering took

less than 2s for each application. Most of the time was due to the symbolic expression

generation through symbolic execution of the candidate execution paths.

To ensure Mismo is generalizable, we further evaluated Mismo on 2,263 firmware
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Kalman Filter Particle Filter Proportional-Integral-Derivative Pulse-Width Modulation

BD BL BJ Mismo G BD BL BJ Mismo G BD BL BJ Mismo G BD BL BJ Mismo G

Crazyflie 3 3 3 3 3 3

Ardupilot 3 3 3 3 3 3

Px4fmu 3 3 3 3 3 3

3DRsolo 3 3 3 3 3 3

WoDCar 3 3

PolySync 3 3

SmartPID 3 3

Tmon 3 3

ROS 3 3 3 3 3 3 3 3

Marlin 3 3

Table 4.4: Comparison among BinDiff (BD), Blex (BL), BinJuice (BJ) and Mismo.
G indicates the ground truth.

binaries from over 30 different vendors. The results of our analyses are shown in Ta-

ble 4.2. The 2,263 firmware images consisted of several different control algorithms,

the most popular being PID, Kalman filter, and pulse-width modulation (PWM) im-

plementations. Mismo’s accuracy for data discovery was an average of 89.82%, and

84.96% for code semantics discovery. The average false positive rate was 2.86% that is

promising for real-world use-cases.

4.6.2 Comparison with Prior Work

As discussed earlier, other existing solutions, by design, cannot achieve Mismo’s main

objective, i.e., to extract high-level algorithmic semantics from the low-level binary

implementations. Instead, they mainly focus on similarity checking between two low-

level binary implementations. However, we compare Mismo with current state-of-

the-art binary similarity checking solutions (BinDiff Dullien and Rolles (2005), Bin-

Juice Lakhotia et al. (2013) and Blex Egele et al. (2014)) on several commercial

embedded controllers. We used Mismo to identify the control algorithms used in those

binaries. For BinDiff, BinJuice and Blex, we used binary implementations of the

full set of popular control algorithms. We compared them against individual commer-

cial executables. The tool utilized the associated binary implementations to perform

pattern-matching.

The results of the comparisons are shown in Table 4.4. Existing solutions for binary

comparison of the complied binary set could not find any matching function for any

of the applications. In contrast, Mismo was able to provide accurate semantic reverse

engineering for all 10 commercial controller firmware packages.
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4.6.3 Selected Mismo Use-Cases

Data Type Recovery and Decompilation

Snowman sno is a well-known machine code to C/C++ decompiler. We show how

Mismo can recover more precise semantics such as data type information and high-

level semantics for a control algorithm implementation. In Table 4.5, there is one data

structure PID which has been used by the function implementation of PolySync.

Snowman does not reverse engineer any data structures other than int and double

data types. However, as shown in the source code, there should be one data structure

whose members are of type double. Mismo extracts one data structure and the data

type of each field. Mismo failed to recover the last field due to the fact that it was

never used by the function.

Source Code Snowman Reversed Result Mismo Reversed Result

typede f s t r u c t
{
double windup guard ;
double proport iona l ga in ;
double i n t eg ra l ga in ;
double de r i va t i ve ga in ;
double prev input ;
double in t e r ro r ;
double c on t r o l ;
double prev steer angle ;
} PID ;

s igned i n t v6 ;
double v19 ;
double v20 ;
i n t v21 ;

s t r u c t
{
0x00 : double SymVar ;
0x08 : double Kp;
0x10 : double Ki ;
0x18 : double Kd;
0x20 : double prev md ;
0x28 : double i n t e g r a l ;
0x30 : double output ;
}

d i f f = ( ( input ´ pid >́
prev input ) /dt ) ;

R3 = v21 ;
asm

{
VLDR D7, [R3,#0x20 ]
VLDR D6, [R7,#0x4C+v44 ]
VSUB. F64 D6 , D6 , D7
VLDR D7, [R7,#0x4C+v4C ]
VDIV. F64 D7 , D6 , D7
VSTR D7, [R7,#0x4C+v24 ]
}

reg D6 = md value
´ previous md ;

reg D7 = reg D6/dt ;

Table 4.5: Comparing the reverse engineering results between Snowman and Mismo.

Furthermore, the decompilation precision of both tools was evaluated on a binary

translation of a single line of source code. As shown in the Table 4.5, Snowman does

not provide much of useful semantic information that can simplify the binary reverse

engineering process. Mismo recovers much more semantic information that is very

similar to the semantic level source code.
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Bug Discovery

The semantic information recovered by Mismo can be useful for finding bugs in a

closed-source binary file. We present our exciting finding of a concrete case in which

we found a bug in the PID algorithm implementation of the Linux kernel from version

3.13 to the present by analyzing the semantic information recovered by Mismo. We

found a similar bug in the controller implementation of the Android Things kernel for

IoT devices by Google. The bug lies in the computation of the values of i term

and d term parameters in the PID control algorithm. Mismo reported a mismatch

between the kernel’s PID implementation and the high-level PID algorithm. Upon our

investigation, we identified the incorrect implementation and buggy code statement

within Linux kernel.

Figure 4.11 shows the part of program code1 of PID implementation and adopted

algorithm expression that is the PID Type-C algorithm. With source code’s help, it

will be easy to figure out the inconsistency between and algorithm and code implemen-

tation. However, for Mismo’s context, we only have the stripped binary code and PID

algorithm candidates. Mismo was able to discover the above-mentioned inconsistency.

Initially, Mismo located the control algorithm implementation function out of the

44 functions in the Linux kernel tmon module, which implements different control al-

gorithms. Mismo refined the control flow graph by pruning the irrelevant basic blocs.

Mismo symbolicly executed the remaining execution path in the CFG and generated

the corresponding symbolic expression in the form of an abstract syntax tree (see Figure

4.12). Finally, Mismo compared Figure 4.12 with abstract syntax tree of different types

of known PID algorithms (see Figure 4.13). The inconsistency occurs in Figure 4.12,

where there are three nodes with Sym 2 label under the three subtrees each rooted at

a Mul node. However, based on the algorithm graphs (Figure 4.13), there should be no

same variable under the three Mul subtrees. As the result Mismo’s constraint satisfac-

tion returns no possible concretization of the symbolic values for a match between the

1Our discussion is at the source code level for readability, whereas our design and implementation
assume only the binary.
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…
/*	compute	intermediate	PID	terms	*/
p_term =	-p_param.kp *	(xk - xk_1);
i_term =	p_param.kp *	p_param.ki *	p_param.ts *	ek;
d_term =	-p_param.kp *	p_param.kd *	(xk - 2	*	xk_1

+xk_2)	/	p_param.ts;

/*	compute	output	 */
*yk +=	p_term +	i_term +	d_term;
…

Mismo

𝑦" = 𝑦"$% − 𝐾( ∗ 𝑥" 	− 𝑥"$% + 𝐾- ∗ 𝑇/ ∗ 𝑒"	
−𝐾1 ∗ (𝑥" 	− 2 ∗ 𝑥"$% + 𝑥"$4)/𝑇/

Algorithm

Program Code

Figure 4.11: Mismo detects the bug in Linux Kernel.

Figure 4.12: Abstract syntax tree for the symbolic output value of the Linux kernel
PID implementation (w/o semantics, e.g., parameter names).

graph in Figure 4.12 and any of the graphs in Figure 4.13. Upon our manual inspection

as the result, we discovered the bug in the PID algorithm implementation of the Linux

kernel in Android Things framework for IoT devices.

The associated expression was found to have a different expression than the actual

Type-C control algorithm. The i term and d term values were found to have an ex-

tra 𝐾𝑝 value. Figure 4.14 conveys the difference between the correct Type-C algorithm

and the implementation that contains this bug. This bug could be crucial consider-

ing that the Linux kernel is widely used in many real-time embedded cyber-physical

systems.

Fine-Grained Sensitive Data Protection

The semantic information provided by Mismo can also be used for fine-grained sen-

sitive data protection. The first step is to determine which data is sensitive enough
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Add

C Mul Mul Mul

Kp Add

setpoint Mul Mul

-1 measured_value -1 previous_error

Kd Pow Add

T -1 setpoint Mul Mul Mul

-1 measured_value -1 pre_previous_error -2 previous_error

Ki T Add

setpoint Mul

-1 measured_value

(a) Abstract syntax tree for the PID type A algorithm (w/ semantics)
Add

C Mul Mul Mul

Kp Add

setpoint Mul Mul

-1 measured_value -1 previous_error

Ki T Add

setpoint Mul

-1 measured_value

-1 Kd Pow Add

T -1 measured_value Mul Mul

-1 pre_previous_measured_value -2 previous_measured_value

(b) Abstract syntax tree for the PID type B algorithm (w/ semantics)
Add

C Mul Mul Mul

-1 Kp Add

measured_value Mul

-1 previous_error

Ki T Add

setpoint Mul

-1 measured_value

-1 Kd Pow Add

T -1 measured_value Mul Mul

-1 pre_previous_measured_value -2 previous_measured_value

(c) Abstract syntax tree for the PID type C algorithm (w/ semantics)

Figure 4.13: Abstract syntax tree for PID algorithm
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to require extra security protection. Traditionally, sensitive data has referred to sensi-

tive information, e.g., passwords, credit card numbers, and health records. Mismo can

identify sensitive data in the controller’s live memory that is important for securing

safety-critical cyber-physical systems.

To demonstrate such fine-grained data protection, we use one example to show how

Mismo can identify a control algorithm’s sensitive data, as well as the implications of

compromising such sensitive data.

For an autonomous car steering, the parameters’ value integrity is crucial for se-

cure operation of the underlying control algorithm and ensuring stable control of the

vehicle’s actuators. As a case in point, the values of the different control gains (𝐾𝑝 for

proportional, 𝐾𝑖 for integration, and 𝐾𝑑 for derivative) as well as the associated code

are statically defined and do not change throughout the car’s operation.

Assume an attacker has access to the binary associated with the controller (e.g.,

the firmware downloaded from an online repository used for firmware updates). The

attacker may modify the parameter value offline or during its execution at runtime

(e.g., using a data corrupting return-oriented programming exploit) in order to induce

an unsafe state such as a car crash. The commercial autonomous controller example

in our experiments limits the controller output (normalized steering wheel degree) to

the range [-1, 1]. One possible attack vector would be to modify and expand the value

range to also include unsafe values. Additionally, an attacker can utilize Mismo to

figure out the location of 𝐾𝑝 and modify its value. We implemented the latter attack.

(a) Car crash visualization using the au-
tonomous controller.
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Figure 4.15: Car crash through sensitive controller parameter identification and cor-
ruption.
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We developed an exploit to target the control parameter (steering wheel degree)

value in order to keep the controller computation output out of range. Figure 4.15a

shows the consequence of the attack. After a few seconds, the car keeps traveling in a

circle. The figure shows that the car proceeds to veer off the road. We also traced the

change of cross track error (CTE) value, which is the lateral distance between the car

and the reference trajectory (see Figure 4.15b).

To protect the controller software against such targeted memory data attacks,

Mismo determines the low-level binary variables, register or memory address, rep-

resents the critical high-level control gains in the binary code. To prevent the attacker

from modifying these critical control gains, one can take one or more of the several pos-

sible countermeasures such as dynamic monitoring the value on these memory location,

or isolation of these critical control gains by memory isolation Kim et al. (2018) and

binary rewriting Kim et al. (2017).

4.7 Related Work

Binary reverse engineering.

The existing advanced tools, e.g., IDA Pro Hex-Rays, Boomerang Emmerik andWadding-

ton (2004) and OllyDbg oll offer a variety of techniques to help elevate low-level ma-

chine code to higher level assembly instructions. Snowman sno can provide native code

to C/C++ decompilation. However, these tools do not provide an automated means

of deriving the high-level algorithmic semantics, leaving the analyst with the respon-

sibility of finding semantic and domain-specific information. Phoenix Schwartz et al.

(2013) provides semantic-preserving structural decompilation analysis. TOP Zeng et al.

(2013) reconstructs program source code from execution traces. Unlike decompilation

that statically transforms a piece of binary code, TOP dynamically translates it with

more runtime information and generates reusable software components. However, TOP

cannot ensure semantic recovery for controller algorithms as it cannot fill the seman-

tic gap between the recovered source code and the corresponding abstract algorithmic

concepts, i.e., parameters and mathematical operations. Binary reverse engineering
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techniques Cozzie et al. (2008); Lin et al. (2010); Lee et al. (2011); Slowinska et al.

(2011); Sun et al. (2016) can extract data types from binaries accurately. The recent

work Lin et al. (2010); Sun et al. (2016) recover only the information that comes from

the semantics of system call parameters. Although type information is useful in binary

reverse engineering, it still does not provide high-level algorithm-level semantics about

the binary code and data segments.

Low-level similarity checking.

A plethora of CFG-based code similarity algorithms have been previously proposed Kruegel

et al. (2005); Sokolsky et al. (2006); Vujošević-Janičić et al. (2013), but there has been

no work on comparing low-level binary instructions to high-level mathematical algorith-

mic expressions. Differential testing introduces an effective way of discovering low-level

differences between independent implementations with similar intended functionality.

BinDiff Dullien and Rolles (2005); Flake (2004) has been widely used and has estab-

lished a reputation of being the industry standard for binary diffing. BinDiff starts

by recovering the control flow graphs (CFGs) of two binaries and uses heuristic to nor-

malize and match the vertices from the two graphs. BinJuice Lakhotia et al. (2013)

extracts syntactic equations from basic blocks to measure similarity between two basic

blocks. Blex Egele et al. (2014) uses a dynamic approach for binary code search. The

search depends on the two similar codes having syntactically similar low-level execu-

tion behavior. Xu , et al. Xu et al. (2017) leverage neural networks to find similarities

among executables based on graph-theoretic analysis of their control flow graphs.

For our problem, one major issue with the aforementioned solutions is that most

controller software have custom implementations of the associated algorithms. Hence,

directly comparing a compiled implementation of an algorithm with a separate imple-

mentation will be fruitless across different implementations.

Embedded firmware analysis.

Avatar Zaddach et al. (2014); Muench et al. (2018) provides a framework to support

firmware dynamic analysis. It integrates target hardware and an emulator based on
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the selective symbolic execution to provide reverse engineering and vulnerability detec-

tion. FIE Davidson et al. (2013) presents a platform to detect memory safety issues

in firmware on the MSP430 family of micro-controllers. FIE implements a symbolic

execution engine based on KLEE Cadar et al. (2008b) and requires source code access.

Costin , et al. Costin et al. (2014) propose large-scale firmware analysis and mainly

focus on simple static analysis techniques only. Firmalice Shoshitaishvili et al. (2015)

develops a static binary analysis framework for firmware analysis. It requires manual

annotations, and hence its use for complex control algorithm implementations may be

limited in practice. The aforementioned solutions aim at vulnerability assessment of the

firmware binaries through low-level binary analysis without the knowledge about the

high-level algorithmic semantics. Therefore, they miss potential algorithmic weaknesses

in the implemented controllers.

4.8 Conclusions

We presented Mismo, a general framework to extract semantic information of an em-

bedded firmware binaries with respect to its associated high-level control algorithm. We

evaluated Mismo on 2,263 commercial firmware binaries by 30 industry vendors from

6 real-world IoT/ICS application domains. We were able to extract their semantic in-

formation with respect to the algorithm. We utilized Mismo to discover a zero-day

vulnerability in the most recent Linux Kernel, and provided fine-grained protection of

sensitive data on a self-driving automobile application.
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Chapter 5

I Know What You Didn’t Do Last Vulnerability!

Firmware Analysis via Deep Learning for Known Security

Vulnerabilities

5.1 Introduction

Every year a new record is set for the number of known vulnerabilities. The number

of vulnerabilities registered in the Common Vulnerabilities and Exposures (CVE) was

approximately 4,600 in 2010, grew to approximately 6,500 in 2016, and more than

doubled in 2017 with over 14700 vulnerabilities Mell et al. (2006). The vendors of the

associated vulnerable software are responsible for issuing a patch for each vulnerability

in a timely fashion. However, it has been shown in the past that vendors may not be

honest when it comes to reporting whether a vulnerability has been patched or not,

especially in the context of mobile and IoT devices.

Because of the increasing ubiquity of mobile and IoT devices in our daily lives, associ-

ated vulnerabilities raise concerns of privacy, security, and even safety. Gartner forecasts

that 20.4 billion IoT devices will be in use worldwide by 2020 ?. Currently, patch man-

agement for both IoT and mobile devices is a challenge for heterogeneous ecosystems.

A 2018 Federal Trade Commission report COMMISSION mentioned that although an

ecosystems diversity provides extensive consumer choice, it also contributes to security

update complexity and inconsistency. For instance, if Android releases a patch for a

vulnerability, all variants of Android need to be updated accordingly. However, vendors

often release new versions of software with hidden patch gaps–vulnerabilities that were

supposed to have been previously patched.

A study showed that 80.4% of vendor-issued firmware is released with multiple
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known vulnerabilities, and many recently released firmware updates contain vulnerabil-

ities in third-party libraries that have been known for over eight years Cui et al. (2013).

Duo labs found that only 25 percent of mobile devices operated on a recent patch level

in 2016 Labs (a). A large study of Android phones Labs (b) found that some Android

vendors regularly miss patches, leaving parts of the ecosystem exposed to the under-

lying risks. As such, a means of identifying vulnerabilities for a given binary image is

critical for identifying hidden patch gaps.

Known vulnerability discovery via deep learning. In this paper, we first focus

on known vulnerability detection to address the hidden patch gap for heterogeneous

mobile and IoT devices. Recently, researchers have started to tackle the cross-platform

binary similarity checking to detect known vulnerabilities Pewny et al. (2015); Feng

et al. (2016); Eschweiler et al. (2016); Xu et al. (2017). These efforts propose to extract

various robust, platform-independent features directly from binary code for each node

in the control flow graph that represents a function. Other approaches have focused on

binary similarity detection where a graph matching algorithm is used to check whether

two functions’ control flow graph representations are similar Pewny et al. (2015); Feng

et al. (2016); Eschweiler et al. (2016). However, deep learning approaches have proven

to be the most promising for known vulnerability detection.

Prior works have shown that deep learning approaches can be used for binary anal-

ysis to detect vulnerabilitiesShin et al. (2015); Xu et al. (2017); Chua et al. (2017).

The most recent approach Chua et al. (2017) has a performance of 0.971 Area Under

the Curve (AUC). However, despite this performance, assuming the target binary has

around 3000+ functions, we found that we would narrow down the set of candidate

vulnerable functions to about 90 candidate functions (89 of which represent false pos-

itives) for the binary. In this work, they assume access to the symbol tables and, as

such, are able to further narrow down the candidate functions. However, for stripped

commercial-off-the-shelf (COTS) binaries, their solution could only provide a very large

(mostly false positives) set of candidate functions. As such, further measures are nec-

essary to prune the candidate functions to identify and report only the true positives

(the functions with actual vulnerabilities).



114

Pruning Candidate functions via dynamic analysis. In order to prune the set of

candidate functions, we integrate deep learning-based approaches with dynamic analysis

to incorporate dynamic features of candidate functions. The dynamic analysis provides

a much richer feature space than prior works that focused only on heuristic or static

features of basic blocks and functions Feng et al. (2016); Xu et al. (2017). Due to

scalability concerns, these works engineered their solutions for speed at the expense of

accuracy. However, we show that integration of dynamic features can not only speed up

the vulnerability function matching process, but can also provide high accuracy while

removing false positives.

This initial framework allows us to develop a new training and dataset generation

method that uses a default policy to pretrain a task-independent graph embedding net-

work. We then use this method to generate a large-scale dataset using binary functions

compiled from the same source code but for different platforms and compiler optimiza-

tion levels. We then built a vulnerability database that includes 1382 vulnerabilities

for mobile/IoT firmware.

However, the ultimate goal of our solution is not to only find similar vulnerability

functions. The final goal is to ensure whether the vulnerability is still in the target

firmware, or it has been patched.

Missing patch detection. Prior work has already developed precise patch presence

tests Zhang and Qian (2018). However, this solution only works with access to the

source code for both the vulnerable and patched function source code. Also, because

this solution relies on binary similarity-based approaches to locate target functions, it

suffers from the aforementioned high false positive rate for candidate functions. Our

solution works directly with stripped COTS binary and does not require access to the

source code while significantly pruning false positives.

In this paper, we present BinSec: a framework that integrates deep-learning for

binary similarity-checking with dynamic analysis to discover known vulnerabilities as

well as to test for patch presence. Our evaluations demonstrates that BinSec outper-

forms the state-of-the-art approaches by large margins with respect to both accuracy
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and efficiency. Our deep learning model can achieve 96% accuracy for vulnerability de-

tection. Our dynamic analysis engine can further reduce the false positive and can rank

the correct matches among the top 3 results 100% of the time. For vulnerability and

patch differential analysis, BinSec can correctly distinguish whether a vulnerability

has been patched. Finally, BinSec can achieve an average 96% accuracy to locate the

function and distinguish whether the function has been patched. There was only one

wrong detection out of 25 CVE evaluation (the vulnerability was correctly discovered

but it was reported as unpatched while being patched indeed).

Contributions. We summarize our contributions as follows:

• We propose an efficient firmware vulnerability assessment framework that lever-

ages deep learning and dynamic binary analysis techniques to achieve high ac-

curacy and performance in known vulnerability discoveries in stripped firmware

binaries without source code access.

• We propose a fine-grained binary comparison algorithm to distinguish accurately

between patched and unpatched versions of the same functions binaries. Our

solution works cross-platform currently supporting ARM and X86 architectures.

The selected relevant features for the comparison enables our solution to pinpoint

the unpatched functions with very low false positive rates.

• We evaluate BinSec on 25 CVE vulnerabilities, 100 different Android firmware

libraries across 4 different architectures. Our results are very promising for prac-

tical deployment in real settings. With most of BinSec’s prototype being fully

automated, its dynamic analysis module correctly identified and threw away the

false positives from the deep learning classification outcomes. The results were

later processed, and the unpatched functions were separated from the functions

with already-patched vulnerabilities.

5.2 Overview

We first introduce the vulnerability function similarity problem and challenges in 5.2.1

and then present an overview of our solution in 5.2.2.
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5.2.1 Problem Setting and Challenges

In this paper we consider the problem of searching for known vulnerabilities in stripped

COTS mobile/IoT binaries. We assume that we do not have access to the source code.

We also assume that the binary is not packed or obfuscated and that the binary is

compiled from a high-level procedural programming language, i.e., a language that has

the notion of functions. While handling packed code is important, it poses unique

challenges which are out of scope for this paper. Considering these assumptions, we

identify the following challenges that arise in the domain of mobile/IoT platforms.

Heterogeneous binary compilation. Mobile/IoT platforms typically consist of het-

erogeneous distributions of hardware that may share common software vulnerabilities.

As such, we explicitly consider cases where different cross-platform compilations with

different levels of optimization produce different binary programs from identical source

code. This way, we can develop a query function may come from different hardware

architectures (e.g., x86 and ARM) and software platforms (e.g., Windows, Linux and

MacOS).

Copious amount of candidate vulnerable functions. To illustrate the scale of

the number of candidate vulnerable functions, we analyzed the firmware of Android

Things 1.0 and IOS 12.0.1. For Android Things 1.0, we found 379 different libraries

which included 440,532 functions, while IOS 12.0.1 contained 198 different libraries with

93,714 functions. Although prior works have shown that deep learning-based methods

can be used to identify a set of vulnerable candidate functions with high precision Xu

et al. (2017), these techniques rely on symbol tables–which are not available on stripped

COTS binaries–to prune candidate functions. As such, there remains a challenge to

prune candidate vulnerable functions for stripped COTS binaries.

Differentiating between patched or vulnerable code. Vulnerable functions may

not be very distinguishable from their patched versions as a patch may be as little

as changing a single line of code. Prior works have also used deep learning to detect

whether or not vulnerable code has been patched Zhang and Qian (2018). However,

this solution relies on access to the source code for both the vulnerable code as well as
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the patched code. In practice, we often do not have access to the source code of binary

functions.

Given these motivating challenges, we now present an overview of the BinSec frame-

work.

5.2.2 Overview

An overview of the BinSec framework is presented in Figure 5.1. Our solution is im-

plemented in four steps: (1) deep learning is used to train the vulnerability detector;

(2) the vulnerability detector is used to analyze the target mobile/IoT firmware; (3)

the identified vulnerable components are run for verification of the existence of a vul-

nerability; and (4) based on extracted static and dynamic features of vulnerable and

patched functions, we identify whether the candidate vulnerability function has been

patched.

CFGs Firmware Analysis 
and Feature Extraction

Vulnerable Code DB
(e.g., CVEs and Patch)

features Deep Learning Neural 
Network Model Training

Preprocessing
(one-time)

binary
Feature Vector 

Calculation for All the 
Functions

Target Mobile/IoT 
Firmware Image Binary

vectors Classification 
(whether vulnerable?)

Firmware
Static Analysis

traces Dynamic Analysis of the 
Execution Traces vectors

Trace-to-Trace 
Similarity Analysis to 

Discard False Positives

On-Device | Emulator-
Based Execution of 

Reported Vulnerabilities

Dynamic 
Analysis &
Reporting

Compare the difference between patched and unpatched 
vulnerability to check whether the CVE has been patched

Figure 5.1: BinSec vulnerability and patch search workflow.

BinSec’s objective is to compare the functions within firmware binaries to the set of

known CVE vulnerabilities as well as any associated patches. BinSec outputs the vul-

nerable points (functions) within the target firmware image and the corresponding CVE

numbers. To compare two binary functions at runtime, BinSec combines static and

dynamic programming language analysis techniques along with deep learning methods

from AI and machine learning.

BinSec starts with lightweight static analysis to convert each function within a

binary to a machine learning feature vector. BinSec then leverages a previously trained
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deep neural network model to determine if the two functions (one from the firmware

binary and the other one from the CVE database) are similar, i.e., coming from the

same source code with possibly different compilation flags. If the two functions are

detected to be similar, BinSec performs a more in-depth dynamic analysis to ensure

the report by the static analysis is not a false positive and indeed indicates a matching

function pair.

To perform dynamic analysis, BinSec leverages runtime DLL binary injection and

remote debugging solutions to run the CVE vulnerable function binary as well as the

target firmware function binary on identical input values (e.g., function arguments

or global variables) within the corresponding mobile/IoT embedded system platform.

BinSec captures the execution traces of the two function binary executions and extracts

dynamic features such as number/type of executed instructions, number/type of user-

defined and library function calls, amount of stack/heap data read/writes, etc for each

execution trace.

Using the extracted features, BinSec calculates a similarity measure between the

two functions and determines whether the report by the static analysis was indeed

correct. If so, the target function within the firmware is reported to be vulnerable

along with the corresponding CVE number. It is noteworthy that BinSec’s analysis is

performed without any source code access and hence its deployment does not rely on

cooperation of the firmware vendors.

Since we don’t really know whether the reported function is patched, BinSec will

first compare the difference based on their static features and restart the whole process

based on the patched version of the vulnerable function. BinSec then uses the differ-

ential engine to analyze the static/dynamic features as well as the similarity score to

decide whether the function has been patched.

5.3 Design

In this section we present the design of the BinSec framework that explores any given

mobile/IoT firmware binary executable and discovers and reports vulnerable points
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Feature Name Feature Description

no c number of constants value

no s number of strings

no inst number of instruction of the function

l size of local variables in bytes

f function flags

no i number of import functions

no ox number of code references from this function

no cx number of function calls from this function

z the size of function

min i b the minimal number of instruction for basic block

max i b the maximal number of instruction for basic block

avg i b the average number of instruction for basic block

std i b the standard deviation of number of instruction for basic block

min s b the minimal size of basic block

max s b the maximal size of basic block

avg s b the average size of basic block

std s b the standard deviation of size of basic block

num bb the number of basic block for each function

num edge the number of edge of among basic blocks for each function

cyclomatic complexity the complexity of the function

fcb normal normal block

fcb indjump block ends with indirect jump

fcb ret return block

fcb cndret conditional return block

fcb noret noreturn block

fcb enoret external noreturn block (does not belong to the function)

fcb extern external normal block

fcb error block passes execution past the function end

min call b the minimal number of call instruction of each basic block

max call b the maximal number of call instruction of each basic block

avg call b the average number of call instruction of each basic block

std call b the standard deviation of call instruction of basic block

sum call b the total number of call instruction of the function

min arith b the minimal number of arithmetic instruction of each basic block

max arith b the maximal number of arithmetic instruction of each basic block

avg arith b the average number of arithmetic instruction of each basic block

std arith b the standard deviation of arithmetic instruction of each basic block

sum arith b the total number of arithmetic instruction of the function

min arith fp b the minimal number of arithmetic FP instruction of each basic block

max arith fp b the maximal number of arithmetic FP instruction of each basic block

avg arith fp b the average number of arithmetic FP instruction of each basic block

std arith fp b the standard deviation number of arithmetic FP instruction of each basic block

sum arith fp b the total number of arithmetic FP instruction of the function

min betweeness cent the minimal number of betweeness centrality

max betweeness cent the maximal number of betweeness centrality

avg betweeness cent the average number of betweeness centrality

std betweeness cent the standard deviation number of betweeness centrality

betweeness cent zero how many node the betweeness centrality is zero

Table 5.1: Function features used in BinSec.

in the binary code/data segments of the firmware without access to its source code.

Beyond the similar vulnerable code discovery, BinSec can also accurately test the

security patch presence in the target firmware binary.

5.3.1 Known Vulnerability Discovery via Deep Learning

Comparing with the previous bipartite graph matching bin and dynamic similarity

testing Egele et al. (2014), deep learning approaches Xu et al. (2017) can achieve

significantly better accuracy and efficiency for known vulnerability discovery. This is

due to the fact that deep learning approaches can evaluate graphical representations
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Figure 5.2: Detailed BinSec Architecture for static analysis of mobile/IoT firmware.

of binaries as a whole and also can automatically learn relationships without manually

defined rules. BinSec uses a deep learning approach as a first step to generate a

list of candidate vulnerable functions on the order of seconds. However, in order to

accommodate our prior assumptions, we need to first need to build a training dataset

that extracts function features to train a deep learning model.

Feature extractor. In order to extract function features, BinSec first analyzes func-

tions in assembly format. Marking the correct boundary, scope and range of each

assembly routine is usually the first problem to solve. Also, distinguishing between

code and data is equally important. The input for BinSec’s neural network model is

the function feature vector that is extracted from the disassembled binary code of the

target function. To obtain this feature vector, the first step is to identify the function

boundaries. Function boundary identification with minimal reliance of instruction set

semantics is an independent problem of interest. Previous approaches range from tra-

ditional machine learning techniques Bao et al. (2014) to neural networks Shin et al.

(2015) to applying function interface verification Qiao and Sekar (2016). In this work,

we assume that these steps are handled by the disassembler using a robust heuristic

technique. A disassembler can provide the control flow graph (CFG) of a binary–a

common feature used in vulnerability detection.

Figure 5.2 shows the procedure for BinSec’s function feature extraction. BinSec

utilizes the CFG with different basic block-level attributes as the features to model the
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Figure 5.3: Training the neural networks for automated firmware vulnerability assess-
ment of mobile/IoT firmware.

function in our problem. For each function, BinSec can extract function-level, basic

block-level and inter-block-level information. Table 5.1 shows the extracted interesting

48 features from each function for generating a feature vector. Feature extraction is

one very important step for later building neural network model. It is very important

to design flexible and efficient architectures for data collection because of how much it

can speed up the process of building the deep learning model. BinSec keeps the fea-

ture extraction rich (48 features), efficient (automated feature extraction) and scalable

(multi-architecture support).

Training the deep learning model. For BinSec’s deep learning model, we adapt a

sequential model that is composed of linear stack of layers. For our case, we adapt the

sequential model with 6 layers. Figure 5.3 depicts an actual example process of training

the model with a 6-layer network. We first specify the input for each layer. The first

layer in our sequential model needs to receive information about its input shape. The

model is training using the extracted function features in our dataset built from 2,108

binaries with different architectures. The training took approximately 15 hours and

resulted in a model with 96% accuracy.

5.3.2 Pruning candidate functions via dynamic analysis

We now discuss how we can use dynamic analysis to further prune the candidates

produced from the previous deep learning stage. The goal is to determine whether
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Figure 5.4: Concrete execution of potentially vulnerable code segments on embedded
devices for BinSec’s detailed dynamic analysis.

the reported pair of matching functions from the previous stage are indeed a match.

Using dynamic analysis, we can execute functions of the two binaries functions with the

same inputs and compare observed behaviors and features for similarity. Obviously, two

functions may be compiled with different flags and, hence, the execution traces of the

two functions on the same input data may differ drastically if investigated syntactically

only. Hence, our analysis will consider the semantic similarity of the execution traces in

terms of the ultimate effect on the memory after the two functions finish their execution

on the identical input values.

As such, we extract features of the execution traces and compare the feature vectors

of the two traces as the result of two function executions on the same input values. If the

observed features are similar across different generated inputs, we gain confidence that

they are semantically similar. We are essentially implementing a dynamic equivalence

testing system to evaluate the two potential similar functions. Our current system

observes different features from an execution.

There are a few challenges to apply the dynamic analysis for actual execution.

The key challenges reside in the preparation of the execution environment as well as

the simultaneous monitoring of the execution. Furthermore, because we are working

in a heterogeneous mobile/IoT ecosystem, concretely running binary code to obtain

execution traces is not trivial, especially since ”valid” values are required for correct
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function execution. We first discuss the preparation of the inputs that feed into the

dynamic analysis engine.

Inputs to the dynamic analysis engine. A key challenge to designing BinSec’s

dynamic analysis engine is preparing the associated inputs. The dynamic analysis

engine takes in two inputs: the program binary, F, and the execution environment

of F. The program binary contains the target function, f. In order to concretely

execute the target function for dynamic analysis, we need to figure outhow to execute

the target function. For instance, we need to provide concrete and valid input values.

Furthermore, actually running the function typically requires loading and executing the

entire program binary. However, given a program binary, one cannot just instruct the

operating system to start execution at a particular address. As such, we need a means

of providing an execution environment that can efficiently encapsulate the required

execution state.

BinSec uses fuzzing to generate different inputs for target functions to boost cov-

erage of the associated CFG. For each execution of a target function, BinSec exports a

compact representation of a function-level executable, i.e., a compact binary represen-

tation of the file that can be executed dynamically using runtime DLL binary injection,

as well as the associated inputs that triggered that execution. This allows the dynamic

analysis execution engine to efficiently execute the target function. This implies that

BinSec will use a fixed execution environment.

Execution environment selection. Before BinSec begins to instrument the target

function execution, BinSec uses one fixed execution environment to perform execution

on a large number of candidate functions. Once an execution environment is chosen,

there are several possible outcomes after we start to run a target function, f. For

example, the candidate f may terminate, the candidate f may trigger a system ex-

ception, or the candidate f may go into an infinite loop. If the candidate f triggers a

system exception, we will remove the candidate function from candidate set. Once this

execution environment is selected, the target function execution can be instrumented.

Target function instrumentation. The output of the dynamic analysis engine for

a function f in a fixed execution environment is a feature vector v(f, env) of length 𝑁 .
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Index Feature Name Feature Description

1 binary defined fun call num number of binary-defined function calls during execution

2 min stack depth the minimal stack depth during execution

3 max stack depth the maximal stack depth during execution

4 avg stack depth the average stack depth during execution

5 std stack depth the standard deviation stack depth during execution

6 instruction num number of executed instruction

7 unique instruction num number of executed unique instruction

8 call instruction num number of call instruction

9 arithmetic instruction num number of arithmetic instruction

10 branch instruction num number of branch instruction

11 load instruction num number of load instruction

12 store instruction num number of store instruction

13 max branch frequency the maximal number of frequency of the executed same branch instruction

14 max arith frequency the maximal number of frequency of the executed same arithmetic instruction

15 mem heap access number of accessing heap memory space

16 mem stack access number of accessing stack memory space

17 mem lib access number of accessing library memory space

18 mem anon access number of accessing anonymous mapping memory space

19 mem others access number of accessing others part memory space

20 library call num number of library function calls during execution

21 syscall num number of system calls during execution

22 time exe the time of execution

Table 5.2: Dynamic features used in BinSec.

In order to generate the feature vector, BinSec traces the function execution. For the

actual dynamic analysis, a wealth of systems are available such as debuggers, emulators,

and virtual machines. However, because of the heterogeneity of mobile/IoT firmware

architectures and platforms, BinSec utilizes an instrumentation tool that supports a

variety of architectures and platforms accordingly.

Once BinSec can instrument individual functions and record trace information dur-

ing execution, we can extract particular features that capture a variety of instruction

information (e.g., number of instructions), system level information (e.g., memory ac-

cesses), as well as higher level attributes such as function and system calls. Table 5.2

shows the initial set of features we initially considered and eventually proved to be

useful for establishing function binary similarity. However, this feature list is not com-

prehensive and can easily be extended.

For each execution, the dynamic engine will generate a set of observations for each

feature, e.g., in the above case there will be 22 sets of observations. Once all instruc-

tions for a function f have been covered, BinSec combines the observations into a

single vector, e.g., (finput 1). The same process is repeated for different inputs for the

same function to produce (finput 2),(finput 3)),...,(finput N). Now that we have the

capability of extracting both static and dynamic features of a target function, we need

to design an algorithm for calculating function similarity for a given pair of functions
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Figure 5.5: Detailed BinSec architecture for dynamic analysis of the mobile/IoT
firmware that produces the true positive report and discards false positives.

and their extracted feature sets.

5.3.3 Calculating Function Similarity

For each function pair, (f,g), BinSec computes a similarity measure based on the

distance between the two functions. Distance has been used in data mining contexts

with dimensions representing features of the objects. In particular, BinSec uses the

Euclidean distance, Manhattan distance, and Minkowski distances as our similarity

measures based on each functions feature vector. Different behaviors result in slightly

different values of the corresponding coordinates in the feature vectors. We now explore

each distance measure in detail.

The Euclidean distance metric is a distance measure between two points or vec-

tors in a two-dimensional or multidimensional (Euclidean) space based on Pythagoras’

theorem. The distance is calculated by taking the square root of the sum of the squared

pair-wise distances of every dimension, i.e.,

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 “

g

f

f

e

𝑛
ÿ

𝑖“1

p𝑥𝑖 ´ 𝑦𝑖q2. (5.1)

The Manhattan distance (sometimes referred to as the Taxicab distance) metric

is similar to the Euclidean distance, but instead of calculating the shortest diagonal
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path between two points, it calculates the distance based on gridlines. The Manhat-

tan distance was named after the block-like layout of the streets in Manhattan. The

equation is as follows,

𝑑𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 “

𝑛
ÿ

𝑖“1

|𝑥𝑖 ´ 𝑦𝑖|. (5.2)

The Minkowski distance is a generalized form of the Euclidean distance (if p=2)

and ofthe Manhattan distance (if p=1), i.e.,
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We feed the feature vector of each function into all three metrics and use these as

our similarity measures. This is the final component for the identification of known

vulnerabilities. We now design the final component that allows us to perform patch

presence detection.

5.3.4 Patch Detection

We noticed that a patch typically introduces few changes to a vulnerable function.

However, these minor changes can still have a significant impact to make the pre-

and post-patch functions dissimilar1. Based on this notion, BinSec uses a differential

engine to collect both static and dynamic similarity measures in order to determine if

a vulnerable function has been patched.

Given a vulnerable function 𝑓𝑣, a patched function 𝑓𝑝, and a target function 𝑓𝑡,

the differential engine will first generate three values: the semantic static features of

𝑓𝑣, 𝑓𝑝, and 𝑓𝑡, and the dynamic similarity scores of 𝑓𝑣 vs. 𝑓𝑡 and 𝑓𝑝 vs. 𝑓𝑡, as well

as the differential signature between 𝑓𝑣 and 𝑓𝑝,. The semantic static features are the

same aforementioned 48 different quantified features and the dynamic similarity scores

are the aforementioned function similarity metrics. The differential signatures are an

additional metric that compares the CFG structures, i.e., the CFG topology, of two

1This intuition is confirmed in Section 5.5.
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functions as well as semantic information, e.g., function parameters, local variables,

and library function calls. We now detail the implementation of BinSec’s design.

5.4 Implementation and Case-Study

We implemented the BinSec framework on Ubuntu 18.04 in its AMD64 flavor. Our

experiments are conducted on a server equipped with one Intel Xeon E51650v4 CPU

running at 128 GB memory, 2TB SSD, and 4 NVIDIA 1080 Ti GPU. During both

training and evaluation, 4 GPU cards were used. As in the design, BinSec consists of

four main components: a feature extractor, a deep learning model, a dynamic analysis

engine, and a differential analysis engine for patch detection.

5.4.1 Feature Extractor

The input for the feature extractor is the disassembled binary code of the target func-

tion. We assume the availability and the correctness of function boundaries by building

on top of IDA Pro Hex-Rays, a commercial disassembler tools used for extracting bi-

nary program features. As such, we implemented the feature extractor as a plugin for

IDA Pro. We developed two versions of the plugin: a GUI-version and command line-

version (for automation). Since BinSec works on cross-platform binaries, the plugin

can support different architectures (x86, amd64, ARM 32/64 bit and MIPS) for feature

extraction.

5.4.2 Deep Learning Model

We implement the neural network model based on Keras Chollet et al. (2015) and

TensorFlow Abadi et al. (2016). We use TensorBoard ten to visualize the whole training

procedure.

5.4.3 Dynamic Analysis Engine

As was mentioned in the design section, the key challenges for dynamic analysis are

the preparation of the inputs for the engine as well as the instrumentation of target
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functions for tracing dynamic information.

Input preparation. As was mentioned in Section 5.3.2, BinSec needs to efficiently

prepare the execution environment. To perform dynamic analysis without having to

load the entire binary, we utilize DLL injection to execute compact execution binaries

that correspond to a single target function. In particular, we use the Linux function

dlopen() to load the dynamic shared object binary file which returns an opaque ”handle”

for the loaded object. This handle is employed with other useful functions in the dlopen

API, such as dlsym. Using dlsym, we can directly find the exported functions based on

the exported function’s name. We can then execute the targeted function.

Of course, a library binary will contain a large amount of different functions, some

of which are non-exported functions. As such, we must find a way to export these

functions for further analysis. BinSec uses the LIEF Quarkslab (2017-2018) project

to export functions into executable binaries. Such a transformation allows BinSec to

instrument a candidate function that was found at a given address by using dlopen/dl-

sym. Thus, any candidate function can be exported and executed without running the

whole binary. This approach has excellent reliability and efficiency since we can focus

on targeted function without having to spawn the entire binary. Furthermore, we use

LibFuzzer Infrastructure (2017) to fuzz candidate functions and generate different input

sets for the execution environment.

Instrumentation. Because we are targeting heterogeneous mobile/IoT ecosystems,

we choose to implement the same instrumentation of BinSec on two dynamic instru-

mentation frameworks: IDA Pro and GDB. For example, we implement a plugin based

on GDB and GDBServer for Android and Android Things platforms, and we implement

a plugin based on IDA Pro and debugserver for IOS platforms.

5.4.4 Case Study

To facilitate the understanding of our implementation details, we will provide an on-

going example to show how we can locate a known CVE vulnerability and how we can

ensure whether the vulnerability has been patched or not patched in one IoT device

firmware (Android Things). Android Things is an Android-based embedded operating
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void ID3::removeUnsynchronization() {
- for (size_t i = 0; i + 1 < mSize; ++i) {
- if (mData[i] == 0xff && mData[i + 1] == 0x00) {
- memmove(&mData[i + 1], &mData[i + 2], mSize - i - 2);
- --mSize;
+
+ size_t writeOffset = 1;
+ for (size_t readOffset = 1; readOffset < mSize; ++readOffset) {
+ if (mData[readOffset - 1] == 0xff && mData[readOffset] == 0x00)
+       {
+ continue;

}
+ mData[writeOffset++] = mData[readOffset];

}
+
+ if (writeOffset < mSize) {
+ mSize = writeOffset;
+ }
+
}

Vulnerable ASM Code Vulnerable Source Code with Patch Patched ASM Code

Figure 5.6: Vulnerable code with the associated patch of CVE-2018-9412.

system platform by Google.

Known CVE vulnerability function discovery. We chose one CVE vulnerability,

CVE-2018-9412, from Android Security Bulletins Project. This is a DoS vulnerability

in the function removeUnsynchronization of the library libstagefright. In

order to simplify the case study, we generated these binaries directly from the source

codes of both the vulnerable and patched libstagefright libraries. We compiled

both versions using Clang with optimization level O0.Although BinSec never uses the

source code for it’s analysis, Figure 5.6 shows the source code and assembly code of

the patched CVE-2018-9412 for illustration. We elaborate on the components of this

figure in the following subsection.

Generating a training dataset. We compiled 100 Android libraries from their source

code using Clang. The compiler is set to emit code in x86, amd64, ARM 32bit and

ARM 64bit with optimization levels O0, O1, O2, O3, Oz, Ofast. In total, we obtain

21082 library binary files. We provide more details in Section 5.5.

Feature Extraction. We use our feature extraction plugin to extract the features

2Some compiler opitimization levels didn’t work for certain instances.
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on top of IDA Pro. Once we get the raw features, BinSec will refine the raw fea-

tures to generate the feature vector. BinSec extracted all function features from

libstagefright.so and identified a total of 5,646 functions and generated 5,646

function feature vectors.

Detection by deep learning. Once the features are extracted, we use the training

model for detection. We also use the vulnerable and patched functions as a baseline.

Our model identified 252 candidate functions which are based on vulnerable function’s

feature vector while generating 971 candidate functions based on the patched function’s

feature vector. We also compared the feature vectors of the vulnerable and patched

functions to check whether they are similar and found them to be dissimilar–meaning

the patched version has significantly different features than the vulnerable version.

Looking at the source code in Figure 5.6, one can intuit that the patched version is sig-

nificantly different. For instance, the patch removed the memmove function and added

one more if condition for value checking. Similarly, one can observe the difference in

the number of basic blocks at the assembly level.

Dynamic analysis engine. Not only are the numbers of candidate vulnerable func-

tions (252) and patched functions (971) from the last step very large, but the candidate

functions are also very similar. As such, it would be difficult to locate the target vul-

nerability function by manual inspection. We therefore use the dynamic analysis engine

to generate dynamic information for each function. We first use libfuzzer to gener-

ate the different inputs for the vulnerability function removeUnsynchronization.

We tested that these inputs worked witfor both the vulnerable and patched functions.

As before, we use the input to test each candidate function and remove any functions

that crashed. Using the input-function validation, we obtain 38 candidate functions

for the vulnerable function and 327 candidate functions for the patched function. For

these candidate functions, BinSec’s dynamic analysis engine will generate the dynamic

information. For instrumentation in Android Things, we use gdbserver to collect the

dynamic features on the Android Things devcie. Table 5.3 shows the final dynamic

feature vector of a candidate vulnerable function. In the next subsection, analyze why

candidate 29 is the vulnerable function.
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Candidate F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F 14 F 15 F 16 F 17 F 18 F 19 F 20 F 21 F 22

candidate 1 1 2 2 2 0 12 12 0 0 0 4 0 0 0 0 0 0 3 0 0 0 4.25E-05

candidate 2 2 2 3 2 0 12 12 1 1 0 2 1 0 1 0 0 1 2 0 0 0 4.93E-05

candidate 3 1 1 2 1 0 29 24 1 5 2 8 2 1 2 0 4 2 2 2 0 0 4.20E-06

candidate 4 1 2 2 2 0 8 8 0 0 0 1 2 0 0 0 0 0 3 0 0 0 4.70E-06

candidate 5 1 2 2 2 0 10 9 1 1 0 2 2 0 1 0 0 0 0 0 0 0 4.10E-05

candidate 6 2 2 3 2 0 12 12 1 2 0 1 0 0 1 0 0 1 0 0 0 0 6.80E-06

candidate 7 2 2 3 2 0 27 25 1 5 1 9 1 1 2 0 1 3 4 1 0 0 4.53E-05

candidate 8 1 2 2 2 0 5 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3.96E-05

candidate 9 1 1 2 1 0 27 25 1 6 2 9 2 1 1 0 7 1 1 2 0 0 4.70E-06

candidate 10 1 2 2 2 0 5 5 1 0 0 1 0 0 0 0 0 0 0 0 0 0 4.28E-05

candidate 11 1 2 2 2 0 8 8 0 0 0 1 1 0 0 0 0 0 2 0 0 0 4.40E-06

candidate 12 1 2 2 2 0 31 31 4 8 6 3 1 1 1 0 3 0 0 0 0 0 4.21E-05

candidate 13 1 2 2 2 0 7 6 1 1 0 2 2 0 1 0 0 0 0 0 0 0 4.09E-05

candidate 14 1 2 2 2 0 11 11 1 2 0 2 1 0 1 0 3 0 0 0 0 0 4.15E-05

candidate 15 1 2 2 2 0 8 7 0 0 0 1 1 0 0 0 0 0 2 0 0 0 4.40E-06

candidate 16 1 2 2 2 0 6 5 1 0 0 1 2 0 0 0 0 0 0 0 0 0 4.25E-05

candidate 17 1 2 2 2 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4.19E-05

candidate 18 1 2 2 2 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4.20E-05

candidate 19 1 2 2 2 0 8 8 0 0 0 2 0 0 0 0 0 0 2 0 0 0 4.01E-05

candidate 20 1 2 6 4 2 6 5 1 1 1 0 0 1 1 0 0 0 0 0 0 0 4.40E-05

candidate 21 1 2 2 2 0 12 12 0 1 1 1 1 1 1 0 0 0 2 0 0 0 4.20E-06

candidate 22 1 2 2 2 0 30 28 1 8 1 10 1 1 1 0 2 1 4 4 0 0 5.40E-06

candidate 23 1 2 2 2 0 5 5 0 0 1 0 0 1 0 0 0 0 0 0 0 0 4.00E-06

candidate 24 1 1 2 1 0 30 26 1 6 2 9 2 1 2 0 5 2 2 2 0 0 4.40E-06

candidate 25 1 2 2 2 0 23 21 0 6 3 8 1 1 1 0 2 2 2 2 0 0 5.70E-06

candidate 26 1 2 2 2 0 368 28 0 100 66 33 0 32 32 0 0 0 0 33 0 0 5.10E-06

candidate 27 5 2 3 2 0 100 88 3 22 14 29 6 1 5 0 4 6 11 1 0 0 7.60E-06

candidate 28 1 2 6 2 1 16 16 0 3 0 1 0 0 1 0 0 0 1 0 0 0 6.00E-06

candidate 29 1 2 2 2 0 89 17 0 27 19 19 0 9 9 0 0 0 10 0 1 0 4.33E-05

candidate 30 1 2 2 2 0 3 3 1 0 1 0 0 1 0 0 0 0 0 0 0 0 4.32E-05

candidate 31 1 2 2 2 0 13 13 0 0 1 1 4 1 0 0 0 0 5 0 0 0 6.10E-06

candidate 32 1 2 2 2 0 5 5 0 0 0 1 0 0 0 0 0 0 1 0 0 0 4.30E-06

candidate 33 1 2 2 2 0 12 12 0 3 1 2 1 1 1 0 2 0 0 0 0 0 4.30E-06

candidate 34 1 2 2 2 0 238 17 44 48 0 0 4 0 40 0 0 0 0 4 0 0 1.08E-05

candidate 35 1 2 2 2 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4.46E-05

candidate 36 1 2 2 2 0 11 11 0 0 0 4 0 0 0 0 0 0 4 0 0 0 4.14E-05

candidate 37 1 2 2 2 0 11 11 1 2 0 2 1 0 1 0 3 0 0 0 0 0 4.26E-05

candidate 38 2 2 2 2 0 15 15 0 3 1 5 1 1 1 0 1 2 2 1 0 0 4.40E-05

Vulnerable function 1 2 2 2 0 122 21 0 9 18 19 0 9 9 0 0 0 10 0 1 0 4.13E-05

Table 5.3: The dynamic feature vector profiling for candidate functions of the vulner-
able version of removeUnsynchronization in the library libstagefright.so.
F 1,...,F 21 represents different dynamic features 1 to 21 showed in Table 5.2. In the
last row, the vulnerable function is from our vulnerability database.

Calculating Function Similarity. We use the three aforementioned three similarity

metrics to calculate the function similarity. The results for the vulnerable function

are listed in Table 5.4 and the results for the patched functions are listed Table 5.5.

For the vulnerable function results, we see that candidate 29 is the top ranked

candidate across all three metrics, i.e., according to the rule of Euclidean distance (as

well as the other two distances), if this distance is small, there will be a high degree

of similarity. We can also see a significant difference between the top candidate and

second candidate (candidate 27). As such, we conclude that candidate 29 is

the vulnerable function.

Diving deeper into the results in Table 5.3, we can observe why the distance between

the dynamic features is so small. The two highlighted rows indicate candidate 29

and the ground truth vulnerable function. Referring back to Table 5.2, we know that

F 13 represents the max frequency for the same branch instruction and F 14 repre-

sents the max frequency for the same arithmetic instruction. We can that candidate 29

is the only candidate function that has the same frequency numbers as the vulnerable

function. It is important to note that this analysis was only enabled by dynamic

analysis–static analysis would not have been able to identify these dynamic features.
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For the patched case, Table 5.5 only shows the results for the top 40 candidate

functions due to page limitations. In this case candidate 102 on average is the

top ranked candidate despite being the incorrect function. However, we can see that

candidate 29 is ranked in a very close second, while there is a significant difference

with the third candidate. Intuitively, we can narrow down the candidate functions to the

top two and can assume that candidate 29 is likely to be the associated candidate

vulnerable function. However, at this point we cannot tell whether the function is

patched.

Candidate EUD MAD MID Ground truth

candidate 29 37.8 56.0 34.7 ZN7android3ID323removeUnsynchronizationEv

candidate 27 73.9 154.0 68.1 safe malloc mul 2op p

candidate 12 95.1 164.0 91.4 ScaleOffset

candidate 22 95.2 157.0 92.3 ZNK9mkvparser7Segment11DoneParsingEv

candidate 24 95.2 163.0 92.3 ZN9mkvparser15UnserializeUIntEPNS 10IMkvReaderExx

candidate 3 96.2 163.0 93.3 ZN9mkvparser6ReadIDEPNS 10IMkvReaderExRl

candidate 7 98.0 160.0 95.3 ZN7android8RSFilterD2Ev

candidate 9 98.4 168.0 95.3 ZN9mkvparser14UnserializeIntEPNS 10IMkvReaderExxRx

candidate 25 101.8 159.0 99.2 ZNK9mkvparser5Block11GetTimeCodeEPKNS 7ClusterE

candidate 28 110.4 184.0 106.4 ZN9mkvparser10EBMLHeader4InitEv

candidate 38 110.5 180.0 107.3 ZN22ScriptC saturationARGBD2Ev

candidate 31 113.2 187.0 109.4 FLAC bitreader free

candidate 1 114.1 186.0 110.3 ZN7android8RSFilter5resetEv

candidate 33 114.1 188.0 110.4 ZNK9mkvparser7Segment11FindClusterEx

candidate 21 114.2 187.0 110.4 ZN7android13MPEG2TSWriter10SourceInfo26incrementContinuityCounterEv

candidate 2 114.3 192.0 110.4 ZN7android3ID3D2Ev

candidate 6 114.6 193.0 110.4 ZN7android11SampleTable22CompositionDeltaLookupC2Ev

candidate 36 115.1 187.0 111.3 ZN7android19IntrinsicBlurFilter5resetEv

candidate 14 115.5 195.0 111.4 UYVYToI422

candidate 37 115.5 195.0 111.4 YUY2ToI422

candidate 5 116.7 197.0 112.4 ARGB4444ToARGBRow C

candidate 19 118.7 197.0 114.4 ZN9mkvparser8SeekHeadD2Ev

candidate 4 118.8 199.0 114.4 ZN7android15MPEG4DataSource10clearCacheEv

candidate 11 118.8 199.0 114.4 ZN7android4ESDSD2Ev

candidate 15 118.9 200.0 114.4 ZN7android10MidiEngine14releaseBuffersEv

candidate 13 119.9 203.0 115.4 ARGBToRGB24Row C

candidate 20 121.2 211.0 116.5 ScaleRowDown4 C

candidate 16 121.3 208.0 116.5 J400ToARGBRow C

candidate 32 122.1 205.0 117.5 ZN7android9OMXClient10disconnectEv

candidate 8 122.2 206.0 117.5 ZN7android19VideoFrameScheduler7releaseEv

candidate 23 122.2 205.0 117.5 FLAC fixed restore signal

candidate 10 122.2 207.0 117.5 UYVYToUVRow C

candidate 18 123.5 210.0 118.5 RAWToRGB24Row C

candidate 17 123.5 210.0 118.5 UYVYToUV422Row C

candidate 35 123.5 210.0 118.5 YUY2ToUV422Row C

candidate 30 124.3 210.0 119.5 ARGBSetRow C

candidate 34 137.1 298.0 120.5 ZN7android13MPEG2TSWriter12initCrcTableEv

candidate 26 271.3 495.0 251.0 FLAC fixedpoint log2

Table 5.4: Calculating Function Similarity in BinSec for CVE-2018-9412 in Android
Things based on vulnerable function (EUD: Euclidean distance, MAD: Manhattan
distance, MID: Minkowski distance)

Differential Analysis Engine. According the previous steps, we can consider can-

didate 29 is the target function. But it is still not clear whether it is patched. We

collect the differential signatures (j aeabi memmove, if condition), semantic

static features (j aeabi memmove), and dynamic similarity scores (37.8 V.S.

69.8). Based on these metrics, the differential analysis engine concludes the target

function is still vulnerable and not patched.
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Candidate EUD MAD MID Ground truth

candidate 102 44.7 133.0 32.8 CanonicalFourCC

candidate 29 68.9 113.0 65.6 ZN7android3ID323removeUnsynchronizationEv

candidate 52 95.8 191.0 91.4 ZN7android11MPEG4Writer13writeLatitudeEi

candidate 76 96.8 192.0 92.4 ZN7android11MPEG4Writer14writeLongitudeEi

candidate 85 105.6 218.0 96.7 ZN7android21ElementaryStreamQueueC2ENS0 4ModeEj

candidate 93 110.7 277.0 86.8 divdf3

candidate 101 114.8 234.0 106.3 ZN7android10MediaMuxerC2EiNS0 12OutputFormatE

candidate 40 118.6 241.0 109.5 ARGBToARGB4444Row C

candidate 66 121.8 249.0 113.2 CopyPlane

candidate 111 126.3 255.0 116.7 ZN7android10WebmWriter16estimateCuesSizeEi

candidate 92 127.3 240.0 119.3 ZN7android10WebmWriter9numTracksEv

candidate 106 128.2 246.0 119.6 floatdidf

candidate 54 129.6 229.0 123.0 ZN9mkvparser10VideoTrackC2EPNS 7SegmentExx

candidate 116 130.5 230.0 124.0 ZN9mkvparser10AudioTrackC2EPNS 7SegmentExx

candidate 95 130.6 250.0 123.0 ZN7android23StagefrightMediaScanner15extractAlbumArtEi

candidate 65 135.3 254.0 127.2 ScaleRowDown34 Any NEON

candidate 78 135.5 253.0 127.3 ScaleRowDown34 0 Box Any NEON

candidate 105 136.0 256.0 127.4 ZN7android19SampleConverterBase10targetSizeEj

candidate 49 136.9 255.0 129.1 InitCpuFlags

candidate 83 139.1 263.0 129.7 ARGBSepiaRow NEON

candidate 88 139.5 254.0 132.8 ZN7android12CameraSource19stopCameraRecordingEv

candidate 60 141.1 260.0 133.9 ZN7android9AMRWriter5resetEv

candidate 70 141.2 260.0 132.5 aeabi dadd

candidate 41 141.4 262.0 133.2 ZN7android10WebmWriter5pauseEv

candidate 48 141.5 256.0 133.3 floatdisf

candidate 103 142.9 263.0 135.9 ZN7android6ACodec13FlushingState28changeStateIfWeOwnAllBuffersEv

candidate 87 143.5 266.0 136.0 FLAC bitreader skip byte block aligned no crc

candidate 108 143.9 265.0 136.1 ZN7android6ACodec10BufferInfo14checkReadFenceEPKc

candidate 47 144.1 272.0 135.3 CopyPlane 16

candidate 84 146.2 269.0 138.1 ARGBGrayRow C

candidate 38 147.8 271.0 140.0 ZN22ScriptC saturationARGBD2Ev

candidate 57 148.4 272.0 140.2 ZNK7android17MyVorbisExtractor13approxBitrateEv

candidate 75 148.7 274.0 141.0 ARGBUnattenuateRow C

candidate 89 148.8 275.0 140.3 ZN7android19SampleConverterBase10sourceSizeEj

candidate 55 148.9 274.0 140.3 aeabi fadd

candidate 115 149.7 276.0 141.2 ZN9mkvparser8Chapters4Atom5ClearEv

candidate 53 150.5 285.0 141.4 ARGBComputeCumulativeSum

candidate 114 151.6 280.0 143.2 ZN7android11AudioSource31waitOutstandingEncodingFrames lEv

candidate 99 151.9 281.0 143.2 ZN7android14MPEG4Extractor11countTracksEv

candidate 42 152.3 286.0 143.3 ARGBSepia

Table 5.5: Calculating Function Similarity in BinSec for CVE-2018-9412 in Android
Things based on patched function
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5.5 Evaluation

In this section, we evaluate BinSec with respect to its search accuracy and computation

efficiency. In particular, we evaluate the accuracy of our deep learning model, dynamic

analysis engine and differential analysis engine using a dataset containing ground truth.

5.5.1 Data preparation

In our evaluation, we collected three datasets: 1) Dataset I for training the deep learning

model and evaluating the accuracy of the deep learning model; 2) Dataset II for col-

lecting known CVE vulnerabilities and to build our vulnerability database. 3) Dataset

III for evaluating the accuracy and performance of the deep learning model, dynamic

analysis engine and differential analysis engine for real world mobile/IoT firmware;

Dataset I: This dataset is used for neural network training and baseline comparison.

It consists of binaries compiled from source code, providing us with the ground truth.

We consider two functions compiled from the same source code function are similar, and

dissimilar if they are from different functions. In particular, we compile 100 Android

libraries from their source code (version android-8.1.0 r36) using Clang. We exported

24 different binaries for each Android library by setting the compiler to emit code in

x86, AMD64, ARM 32bit, and ARM 64bit ISA with optimization levels O0, O1, O2,

O3, Oz, Ofast. However, not every library could be compiled with the six optimization

levels, e.g., libbrillo, libbacktrace, libtextclassifier, and libmediaplayerservice. In total,

we obtain 2108 library binary files containing 2,037,772 function feature samples. For

this Dataset, we compiled all binaries with a debug flag to establish ground truth based

on the symbol names. For our problem setting, we strip all binaries before processing

them with BinSec.

Dataset II: Since we perform vulnerability assessement, we generated a vulnerability

database which includes the static feature vectors and dynamic feature vectors for

vulnerable versions and patched versions of functions. The vulnerable function dataset

comes from Android Security Bulletins Project. We collect the vulnerabilities from

07/2016 to 11/2018. In total, there are 2,076 vulnerabilities, including 1,351 high
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vulnerabilities and 381 critical vulnerabilities.

Dataset III: To evaluate BinSec, we collected different firmware images which in-

cluded different versions of Android, Android Things, and IOS. In particular, we select

two firmware images from Android Things 1.0 and Google Pixel 2 XL (Android 8.0)

as our targets. For vulnerability detection, we considered the vulnerabilities which

were patched in 2018 and focus on version 8.0 and 8.1. Finally, we choose 25 different

CVE vulnerabilities from our database to evaluate our solution on Android Things and

Google Pixel 2 XL.

5.5.2 Training details

Our deep learning model is first trained using Dataset I. We adapt the sequential model

with 6 layers. We first specify the inputs for each layer. The first layer in our sequential

model needs to receive information about its input shape. In our case, it is 96. We split

Dataset I into three disjoint subsets of functions for training (1,222,663), validation

(407,554), and testing (407,555), respectively.

5.5.3 Testing devices

We evaluate BinSec in two different devices: Android Things and Google Pixel 2 XL.

For Android Things, we use Android Things 1.0–which includes a 05/2018 security

patch as well as a previous security patch. For Google Pixel 2 XL, its system version

is Android 8.0 and it includes a 07/2017 security patch as well as a previous security

patch.

5.5.4 Accuracy

In this section, we evaluate the accuracy of BinSec’s deep learning model, dynamic

analysis engine, as well as its patch detection.

Deep learning model. Figure 5.7a and Figure 5.7b show the accuracy and loss when

we train our deep learning model for ˜15 hours. The accuracy can reach 96%.
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Figure 5.7: Deep learning training result.
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Figure 5.8: False positive rate on Android Things and Google Pixel 2 XL with vulner-
able and patched versions.

Since Zhang and Qian (2018) needs the previous similarity checking solutions to lo-

cate the target function when the symbol table is not available, the target function may

be missed if the vulnerable version and patched version are not similar. To validate this

notion, we use our deep learning model to check the similarity between the vulnerable

and patched version of the same function for 25 CVEs. We found that there are four

CVEs (CVE-2018-9345, CVE-2017-13209, CVE-2018-9499 and CVE-2018-9412) whose

vulnerable and patch versions are not similar based on the deep learning model. For

example, if CVE-2018-9345 had been patched, the solution in Zhang and Qian (2018)

will miss the target function based on vulnerable function features and, thus, may use

the wrong function to detect whether it is patched.

We use the training model to detect 25 CVEs in Android Things and Google Pixel
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2 XL. The average detection accuracy is more than 93%. Figure 5.8 shows the false

positive rate when we test vulnerable and patched versions in the two devices’ firmware

images. It is interesting that the false positive rate of the vulnerable and patched

versions of CVE-2017-13209 and CVE-2018-9412 on the two devices are obviously dif-

ferent, which is reflective of their dissimilar result. Furthermore, we notice that because

CVE-2017-13209 has been patched, the false positive rate of patched version is lower

than vulnerable version. Similarly, CVE-2018-9412 has not been patched and Figure 5.8

shows false positive rate of patched version is higher than vulnerable version. However,

Table 5.6 shows the vulnerable version function gets 0 true positives and 1 false negative

in Android Things for CVE-2017-13209. This is due to the fact that CVE-2017-13209

has been patched in Android Things. Therefore, when BinSec uses the vulnerable func-

tion, the deep learning may miss the correct target function. Intuitively, it makes sense

that a known vulnerability discovery may miss a patched function as a vulnerability.

Dynamic analysis engine. The goal of the dynamic analysis engine is to prune

the set of candidate functions. In Table 5.6 and Table 5.7, the results for the dy-

namic analysis engine includes only the Execution and Ranking metrics. Because

we do not want to reduce the number of functions we perform dynamic feature pro-

filing for, we use the concrete input of vulnerable functions to validate the candidate

functions. As long as the candidate functions can survive the input validation, BinSec

will do dynamic feature profiling for the final candidate function. For example, after

deep learning, CVE-2018-9412 still has 252 candidate functions. For dynamic analy-

sis, BinSec arranges different inputs of vulnerable function to validate the candidate

functions. After validation, only 38 candidate functions remain that require dynamic

feature profiling–which is a much more reasonable number. Finally, BinSec calculates

the function similarity score. Table 5.6 and Table 5.7 show that BinSec can rank the

target function in the top 3 candidates 100% of the time. The target function is only

missed for CVE-2017-13209 since the deep learning model already misses the target

function.

Patch detection. According to the differential signature, semantic static features,

and the results from Table 5.6 and Table 5.7, BinSec generates the final results in
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CVE
Deep Learning Classification Dynamic Analysis Engine Time(s)

TP TN FP FN Total FP(%) Execution Ranking DP DA

CVE-2018-9451 1 1155 27 0 1183 2.28% 5 1 2.26 187.97

CVE-2018-9340 1 1113 69 0 1183 5.83% 6 1 2.14 197.56

CVE-2017-13232 1 951 35 0 987 3.55% 5 2 3.13 147.97

CVE-2018-9345 1 354 2 0 357 0.56% 1 1 2.72 41.13

CVE-2018-9420 1 107 8 0 116 6.90% 1 1 1.53 39.59

CVE-2017-13210 1 105 10 0 116 8.62% 2 1 1.57 73.18

CVE-2018-9470 1 1421 11 0 1433 0.77% 4 1 6.85 148.37

CVE-2017-13209 0 867 152 1 1020 14.90% 9 N/A 5.25 286.34

CVE-2018-9411 1 894 125 0 1020 12.25% 8 1 5.23 256.58

CVE-2017-13252 1 609 7 0 617 1.13% 7 2 3.35 227.15

CVE-2017-13253 1 609 7 0 617 1.13% 5 2 3.39 167.97

CVE-2018-9499 1 541 75 0 617 12.16% 6 1 2.56 210.35

CVE-2018-9424 1 561 55 0 617 8.91% 7 1 3.02 219.45

CVE-2018-9491 1 421 45 0 467 9.64% 3 1 1.19 108.78

CVE-2017-13278 1 2164 373 0 2538 14.70% 20 2 1.93 602.35

CVE-2018-9410 1 595 57 0 653 8.73% 22 1 2.76 671.46

CVE-2017-13208 1 178 1 0 180 0.56% 1 1 1.23 39.32

CVE-2018-9498 1 13598 130 0 13729 0.95% 7 1 5.90 227.15

CVE-2017-13279 1 723 11 0 735 1.50% 6 1 3.40 224.56

CVE-2018-9440 1 725 9 0 735 1.22% 4 1 2.06 156.52

CVE-2018-9427 1 1060 120 0 1181 10.16% 9 1 4.61 296.31

CVE-2017-13178 1 540 53 0 594 8.92% 15 1 2.01 473.89

CVE-2017-13180 1 571 22 0 594 3.70% 5 2 1.23 157.97

CVE-2018-9412 1 5393 252 0 5646 4.46% 38 1 3.54 1124.53

CVE-2017-13182 1 5050 595 0 5646 10.54% 72 3 3.16 2128.16

Average 6.16% 3.04 336.5844

Table 5.6: The accuracy for deep learning and dynamic execution for Android Things
based on vulnerable function. Dp: Deep learning; DA: Dynanmic analysis

CVE
Deep Learning Classification Dynamic Analysis Engine Time(s)

TP TN FP FN Total FP(%) Execution Ranking DP DA

CVE-2018-9451 1 1148 34 0 1183 2.87% 8 2 2.29 246.25

CVE-2018-9340 1 1113 69 0 1183 5.83% 6 1 2.07 197.56

CVE-2017-13232 1 961 25 0 987 2.53% 5 1 3.20 177.97

CVE-2018-9345 1 349 7 0 357 1.96% 4 3 1.66 148.37

CVE-2018-9420 1 111 4 0 116 3.45% 1 1 1.50 59.59

CVE-2017-13210 1 110 5 0 116 4.31% 2 1 1.63 91.19

CVE-2018-9470 1 1420 12 0 1433 0.84% 4 1 5.93 160.46

CVE-2017-13209 1 947 72 0 1020 7.06% 7 1 4.07 207.15

CVE-2018-9411 1 858 161 0 1020 15.78% 10 2 4.24 301.23

CVE-2017-13252 1 611 5 0 617 0.81% 6 1 2.33 230.56

CVE-2017-13253 1 608 8 0 617 1.30% 5 2 2.67 165.51

CVE-2018-9499 1 531 85 0 617 13.78% 9 3 2.57 287.65

CVE-2018-9424 1 570 46 0 617 7.46% 5 1 2.01 156.32

CVE-2018-9491 1 443 23 0 467 4.93% 1 1 2.20 45.93

CVE-2017-13278 1 2159 378 0 2538 14.89% 19 1 1.90 587.86

CVE-2018-9410 1 601 51 0 653 7.81% 21 1 2.83 651.45

CVE-2017-13208 1 178 1 0 180 0.56% 1 1 1.08 35.53

CVE-2018-9498 1 13647 81 0 13729 0.59% 6 1 4.89 243.3

CVE-2017-13279 1 722 12 0 735 1.63% 6 1 3.48 236.78

CVE-2018-9440 1 722 12 0 735 1.63% 5 2 4.84 175.52

CVE-2018-9427 1 1110 70 0 1181 5.93% 2 2 4.74 99.18

CVE-2017-13178 1 551 42 0 594 7.07% 13 1 2.86 390.89

CVE-2017-13180 1 581 12 0 594 2.02% 2 1 2.17 71.48

CVE-2018-9412 1 4391 971 0 5646 17.20% 327 2 3.52 8676.91

CVE-2017-13182 1 5103 542 0 5646 9.60% 42 1 3.15 1249.96

Average 5.67% 2.95 595.784

Table 5.7: The accuracy for deep learning and dynamic execution for Android Things
based on patched function. Dp: Deep learning; DA: Dyanmic analysis
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CVE BinSec Result Patched (?) Ground Truth Patched (?)

CVE-2018-9451 0 0

CVE-2018-9340 0 0

CVE-2017-13232 X X
CVE-2018-9345 0 0

CVE-2018-9420 0 0

CVE-2017-13210 X X
CVE-2018-9470 X 0

CVE-2017-13209 X X
CVE-2018-9411 0 0

CVE-2017-13252 X X
CVE-2017-13253 X X
CVE-2018-9499 0 0

CVE-2018-9424 0 0

CVE-2018-9491 0 0

CVE-2017-13278 X X
CVE-2018-9410 0 0

CVE-2017-13208 X X
CVE-2018-9498 0 0

CVE-2017-13279 X X
CVE-2018-9440 0 0

CVE-2018-9427 0 0

CVE-2017-13178 0 0

CVE-2017-13180 X X
CVE-2018-9412 0 0

CVE-2017-13182 X X

Table 5.8: The final patch detection results for BinSec in Android Things

Table 5.8. There is only one missed classification for the patched version of CVE-2018-

9470. The reason this classification was missed was due to the fact that that the only

difference between vulnerable and patched version is one integer–which is a very minute

and difficult patch to detect.

5.5.5 Efficiency

We evaluate the efficiency of BinSec for deep learning and dynamic analysis. For

deep learning, it took around 15 hours to train the deep learning model and uses

on average 3 seconds to finish the detection according to Table 5.6 and Table 5.7. For

dynamic analysis, the costly time comes from two sources: the candidate function input

validation and the dynamic feature profiling–which requires heavy instrumentation of

the execution for each function. Based on our evaluation, the average time cost is

around 466 seconds.
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5.6 Related Work

In this section, we briefly survey the related work. We focus on approaches using code

similarity for known vulnerability without source code. Other approaches for finding

unknown vulnerability Avgerinos et al. (2011); Cha et al. (2015); Stephens et al. (2016);

Chen et al. (2016) and source code based Kamiya et al. (2002); Jiang et al. (2007); Huo

et al. (2016); Huo and Li (2017); Li et al. (2018) will not be discussed in this section.

We divide the related work to traditional and machine learning based solutions.

The problem of testing whether two pieces of syntactically-different code are se-

mantically identical has received much attention by previous researchers. A lot of

traditional approaches based on the matching algorithm for the CFGs of functions

have been proposed. Bindiff bin is based on the syntax of code for node matching. At

a high-level, BinDiff starts by recovering the control flow graphs of the two binaries

and then attempts to use a heuristic to normalize and match the vertices from the

graphs. For Pewny et al. (2014), each vertex of a CFG is represented with an expres-

sion tree. Similarity among vertices is computed by using the edit distance between

the corresponding expression trees. Regarding the literature of cross-platform binary

similarity. Eschweiler et al. (2016) proposes a graph-based methodology. It used a

matching algorithm on the CFGs of functions. The idea is to transform the binary

code in an intermediate representation. For such a representation, the semantics of

each CFG vertex is computed by using a sampling of the code executions using random

inputs. Feng et al. (2016); Xu et al. (2017) extract feature representations from the

control flow graphs and encodes them into graph embeddings to speed up the matching

process. Ng and Prakash (2013); Khoo et al. (2013) are both based on static analysis

techniques.

Comparing with static analyses, dynamic analysis is another approach to detect

function similarity. Egele et al. (2014) proposed a dynamic equivalence testing primitive

that achieves complete coverage by overriding the intended program logic. It collects the

side effects of functions during execution under a controlled randomized environment.

Two functions can be similar if their side effects are similar. However, it needs to
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execute each function with many different inputs. Under such a huge search space, it

will take a long time to finish the similarity checking.

Deep learning-based graph embedding approaches have also been used to do binary

similarity checking. Xu et al. (2017) are currently the state-of-the-art work on cross-

platform vulnerability search. Their approach looks for the same affected functions in

the complete collection of functions in a target binary. However, when the search space

is huge, it still leaves a large set of candidate functions. BinSec can integrate dynamic

analysis to prune the candidate functions and reduce the false positives.

Zhang and Qian (2018) proposed a unique position that leverages the source-level

information to answer a more specific question: whether the specific affected function is

patched in the target binary. However, it needs the source code support as well as the

aforementioned similarity checking solutions to help it to locate the target function.

BinSec uses deep learning and dynamic analysis to locate the target function and

perform accurate patch detection.

5.7 Discussion and Conclusion

In this paper, we presented BinSec, a vulnerability assessment tool which leverages

deep learning and dynamic analysis to do cross-platform binary code similarity detection

to identify known vulnerabilities with high accuracy. BinSec then uses a differential

engine to distinguish between vulnerable functions and patched functions. We evaluated

BinSec on 25 existing CVE vulnerability functions for the Google Pixel 2 smartphone

and Android Things IoT firmware images while emulating a heterogeneous ecosystem,

i.e., we compiled the firmware images for multiple architectures and platforms with

different compiler optimization levels. Our deep learning model identifies vulnerabilities

with an accuracy of over 93%, i.e., higher than the state-of-the-art.

We also demonstrated how dynamic analysis of the vulnerability functions in a

controlled environment can be used to significantly reduce the number of candidate

functions and, thus, the number of false positives. BinSec identifies the correct matches

(candidate functions) among the top 3 ranked outcomes 100% of the time. Finally,
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we evaluate BinSec’s differential engine that distinguishes between functions that are

vulnerable and functions that are patched on the same dataset with the same level of

accuracy.
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Chapter 6

Conclusion

The promising results motivate scalable and robust solutions for exploring semantic

reverse engineering as well as how to use the semantic reverse engineering results to

provide better protection for systems. This dissertation narrowed the gap between

practical and theoretical approaches in semantic reverse engineering of stripped off-the-

shelf software binaries.

To explore data structures in a dynamic memory space, the dissertation presented

ReViver, a hybrid data structure reverse engineering solution that took the memory

image for a selected running process on the user’s machine, and determined its semantic

data structure layout without the need for execution traces before the memory capture

point. The dissertation provided the design of how ReViver performed the forensics

analysis of the captured memory dump, in order to finally generate the exact memory

data structure layout.

According to data structure instances in live memory, the dissertation showed and

evaluated a domain-specific attack against the popular and widely-used power grid

economic dispatch control algorithm. The presented attack searched the controller’s live

memory for sensitive power grid parameters and modified them maliciously. In the end,

the dissertation clearly showed how to replace the legitimate values with the adversary-

optimal values that were calculated considering the physical system dynamics.

As control system has been used widely, it has been one urgent topic to understand

the control algorithm in control system. The dissertation presented Mismo, a general

framework to extract semantic information of an embedded firmware binaries with

respect to its associated high-level control algorithm. The work had been evaluated on

2,263 commercial firmware binaries by 30 industry vendors from 6 real-world IoT/ICS
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application domains. The dissertation also showed how to use Mismo to discover a zero-

day vulnerability in the most recent Linux Kernel, and provided fine-grained protection

of sensitive data on a self-driving automobile application.

Finally, this dissertation presented BinSec to provide a more practical approach

to integrate semantic information for vulnerability detection. BinSec leveraged deep

learning and dynamic analysis to do cross-platform binary code similarity detection to

identify known vulnerabilities with high accuracy. Then it used a differential engine

to distinguish between vulnerable functions and patched functions. In the end, the

dissertation showed that BinSec had been evaluated on 25 existing CVE vulnerability

functions for the Google Pixel 2 smart phone and Android Things IoT firmware images

while emulating a heterogeneous ecosystem. The accuracy of identifying vulnerabilities

is much higher than the state-of-the-art.
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