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Advancements in aerospace technologies which rely on unsteady fluid dynamics 

are being hindered by a lack of easy to use, computationally efficient unsteady 

CFD software. Flapping in nature is ubiquitous, yet modern day micro air vehicles 

(MAVs) based on flapping are in their infancy. The most successful MAVs to date 
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are much less maneuverable and efficient than their natural counterparts, partly 

due to the fact that they are based on the relatively simple aerodynamics of 

propeller blades. Similarly, mainstream wind turbines are based on rotary blades 

and relatively simple aerodynamics. In fact, flapping wing energy harvesters have 

been increasingly investigated as a possible alternative to traditional wind and 

tidal turbines after several studies highlighted their unique capabilities and 

exceptional efficiencies. 

Flapping wing energy harvesting has been shown in recent years to be reaching 

efficiency levels “comparable to the best performances achievable with modern 

rotor blade turbines” [1]. Simultaneously, advancements in experimental and 

computational abilities are bringing a comprehensive understanding of the 

underlying mechanisms of flapping wing insect flight within reach. These 

mechanisms may hold the key to highly maneuverable and resilient MAVs [2], 

and some of them have been shown to enhance the performance of flapping foil 

power generators as well [3]. 

The major reason for the scarcity of flapping devices is the difficulty involved 

in the design of such devices. Existing CFD platforms are capable of handling 

unsteady flapping, but the time, money, and expertise required to run even a basic 

flapping simulation makes design iteration and optimization prohibitively 

expensive for the average researcher. For the design of a MAV capable of the 
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complex maneuvers observed by natural flyers, this lack of computational 

efficiency makes the successful implementation of a viable design nearly 

impossible. 

However, by utilizing a novel unsteady vortex method which has been 

designed specifically to handle the highly unsteady flapping wing problem, it has 

been shown [4] that the time to compute a solution is reduced by a factor of 20, 

and the level of skill to operate the software is reduced so much that an 

undergraduate engineering student can easily produce accurate results. 

Despite the success of the original vortex method from [4], especially for a 

small number of flapping cycles, the solution deteriorates as the number of 

flapping cycles increases due to the inherent lack of viscosity in the vortex method. 

This would make it challenging to couple the fluid solver to a rigid body solver, 

as the increasing moment would cause the MAV to tumble. In addition, the 

original vortex method from [4]  does not utilize parallel processing to increase the 

computational speed and wastes a large amount of computational time in the far 

field wake for simulations involving multiple flapping cycles. Finally, the original 

method assumed the motion of the MAV to be fully prescribed, whereas a more 

valuable tool for MAV designers would allow for the motion of the MAV body to 

be predicted concurrently with the fluid forces given a specified wing motion. 
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It is therefore the goal of the present study is to create a faster, suitably accurate 

fluid-rigid body interaction simulation for flapping wing MAV designers. This is 

accomplished by further improving the computational efficiency of the solver and 

by adding the capability for the simulation to solve for the flight trajectory and 

aerodynamic forces of a flapping wing MAV concurrently given only the flapping 

kinematics. This simulation thereby allows for testing virtual flight stability, 

maneuver flapping sequences, and performance testing.  

First, the code will be shown to run orders of magnitude faster by being 

modified to allow the GPU to compute vortex velocity contributions in a massively 

parallel configuration. 

In addition, a remedy which models the effect of viscosity is introduced into 

the original vortex method. The new approach proposed herein lumps far field 

vortices to simulate viscosity-induced vortex decay, which will be shown to 

improve the accuracy of the solution while maintaining the pitching moment 

amplitude. This is especially important for simulations involving many flapping 

cycles, which is the case when predicting the flight path of an MAV. In addition to 

improving the accuracy of the solution, the new method greatly reduces the 

computation time for simulations involving many flapping cycles. Several 

different incident flow velocity angles were tested and the moment amplitude is 

shown not to increase for all cases. 
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Moreover, a novel fluid-rigid body interaction simulation is shown to leverage 

the improvements to the fluid model to allow for the equations of motion of a two-

body flapping wing flyer to be solved. This new fluid-rigid body solver is then 

utilized to support the hypothesis that the position of a flapping wing insect’s 

abdomen is carefully adjusted in order to balance the pitching moment created by 

aerodynamic forces generated from flapping. Additionally, a basic control 

feedback loop is introduced to simulate an MAV’s on-board active flight 

stabilization control system. This simulated control system is shown to stabilize 

the MAV’s main body, thereby creating a stable platform for mounting sensors, 

such as a camera. Finally, the solution of the original vortex method from [4] and 

the solution of the present method are compared to published data from a full 

Navier Stokes simulation [5] and show good agreement. 
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Chapter 1 | Introduction 

 

1.1 Motivation 

Currently, the most popular CFD software packages do an excellent job solving 

and optimizing steady or quasi-steady problems, but solving highly unsteady flow 

problems with them is so difficult and time consuming that only a few highly 

qualified individuals with access to expensive computational resources are 

capable of doing so. This is due in part to the overly generalized, steady or quasi-

steady foundation which traditional Navier Stokes solvers are built upon. One 

example of an exciting field which could greatly benefit from an easy to use 

unsteady solver is the field of flapping wing aerodynamics. 

DARPA defined micro air vehicles as aircraft which are smaller than 15 cm in 

size. They began to fund research in 2000 with the goal of creating ultra-small 

surveillance planes for military use. One of the first designs was created by a 

company called AeroVironment. This MAV is known as the Black Widow, and 

comprises a fixed wing design with an onboard camera that can operate for over 

a half an hour on one charge.  
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The problem that designers ran into was that very small, low speed aircraft 

such as these were very difficult to stabilize in high winds. However, biological 

flyers exhibit excellent control of their position under dynamic conditions. Insects, 

in particular, accomplish this with responsive flexible wings, a full array of motion 

and pressure sensors, coordinated body motions, and exceptional vision [6]. The 

highly complex aerodynamics that result from the coordination of these features 

gives rise to interconnected nonlinearities between the insects control systems, 

wing deformation, and the surrounding fluid’s dynamics. 

They turned to fluid dynamicists and biologists for an alternative approach 

inspired by nature. It is thought that flapping wings of insects allow for much 

more stability when faced with a cross wind, as insects have been observed to have 

exceptional control and stability in such situations. This, coupled with the desire 

for insect-sized flying surveillance vehicles, prompted many researchers to turn 

their attention to the problem. 

Another example of a field which could benefit greatly from an easy to use 

unsteady fluids solver for flapping wings is flapping wing energy harvesting. 

There is an ever-expanding demand for energy on our planet today.  Factors 

include the exponentially growing population of over 7 billion people and the 

industrialization of many developing countries. Besides being the world’s largest 

market (~$6 trillion per year), energy is of great concern to humanity because the 
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current prevailing methods of producing it are amongst the most ecologically 

destructive human activities. 

A century ago, electrical power was just being introduced to the general 

population. Much like computers in the 1970’s, electricity at the time likely seemed 

like a curious novelty for scientists to use. Once people began to realize the 

potential uses for electricity, many electrical power plants began to emerge. Most 

of these power plants used coal as fuel, and for many decades systems and 

standards were developed around the idea that the byproducts of combustion 

would be so diluted in the vast atmosphere that humans would not be able to 

produce any noticeable effect on the environment. Now, in the 21st century, we 

have come to terms with the fact that not only are the products of combustion 

harmful to the environment, humans are producing them at such high and 

accelerating rates that we are beginning to see their effects in the form of global 

climate change. 

Disruptive renewable energy technology has the potential to free us from our 

dependence on these deleterious energy sources and prevent the mass destruction 

which would follow from climate change. 

There are many forms of renewable energy available today. Amongst them, the 

closest candidate for market disruption is wind power, which as of 2016 has a 

lower cost of energy than a coal fired plant. Hydroelectric dams are also out-
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competing coal, but almost every feasible geological site for one is already being 

utilized. Although not technically renewable, nuclear power is also slightly 

cheaper than coal, but it comes with hosts of its own environmental issues. 

The cost-competitive wind power system referred to earlier is typically a “wind 

farm” consisting several dozen or even hundreds of horizontal-axis wind turbines 

(HAWT). While it is the most cost competitive in most cases, the HAWT has many 

drawbacks. 

First, the blades are typically over 100 feet long, so even at moderate rotational 

speeds the tips reach tangential velocities approaching the speed of sound. This 

creates a loud humming noise which can be irritating and even harmful to local 

residents. This, combined with objections many have to their aesthetic appeal, 

forces wind farms to be constructed far from populated areas. As a result, long, 

high resistance power lines must be used thereby greatly reducing the overall 

system efficiency. 

Second, to maintain uniform stress along the blade, the shape of the blade must 

twist and taper simultaneously along its length. The twist is necessary to maintain 

a uniform effective angle of attack along the length of the blade (due to the linearly 

varying tangential velocity). The taper is required to reduce the aerodynamic 

forces along the blade as these forces typically scale with the square of the local 

tangential velocity (which varies linearly along the blade). This complex geometry 
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is achieved through the hand-layering of fiberglass. This imprecise manual 

manufacturing technique allows for small bubbles to form in the blade, which can 

cause high stress concentration and catastrophic blade failure up to 20% of the 

time [7]. 

Even with all of these drawbacks, the wind energy industry is the fastest 

growing of all of the renewables [8]. With plenty of room for improvement in wind 

harvesting designs and the encouraging growth of the industry, there is a unique 

opportunity for engineers to innovate and create novel wind energy harvesting 

systems.  

Flapping wing energy harvesting systems, such as the one presented here, have 

many advantages over traditional rotary designs. For one, the span (which is 

typically the longest dimension of the wing/blade) is not directed radially or 

subject to rotational motion. This prevents the common noise pollution problem 

found with HAWT designs. 

Next, for the same reason, the wing does not need to twist along its length, 

opening up the possibility of using the same manufacturing techniques used for 

commercial aircraft to construct the wing. Not only would this dramatically 

reduce the cost, it could virtually eliminate the high rate of catastrophic blade 

failure in HAWT designs. (e.g. When was the last time you heard of a 747’s wing 

falling off from stress concentration?) 
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In addition, flapping wing systems can offer the flexibility to operate in places 

rotary turbines can’t. A flapping wing system developed by Pulse Tidal is able to 

intercept the same cross-sectional area (and hence the same amount of available 

power) as a rotary design in shallower water. 

Last and most importantly, flapping wing energy harvesters have been shown 

to be as efficient if not more efficient than HAWT’s. For all of these reasons, the 

number of research papers in the field of flapping wing energy harvesters has 

grown almost exponentially over the past decade. 

These are just two examples of applications where an easy to use, 

computationally efficient unsteady CFD solver for the flapping wing problem 

could benefit society. In order to develop such software, the present work began 

by building on groundbreaking research [4], and by conducting a thorough 

literature review to gain a comprehensive understanding of the physical 

phenomena behind flapping wing flight. 

 

1.2 Flapping Wing Fundamentals 

The flapping wing problem has been studied extensively over the past two 

decades due to the rise in available computational power to the average 

researcher. The following section highlights the key findings from these studies 
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which pertain to the underlying physical phenomena responsible for efficient 

flapping wing designs. 

 

1.2.1 The Limited Role of the Reynolds Number 

The Reynolds number is a dimensionless number that compares inertial effects to 

viscous effects: 

 

 
𝑅𝑒 =

𝑈𝐿

𝜈
 , 

(1.1) 

 

where U is the velocity of the flow, L is a length scale, and ν is the kinematic 

viscosity of the fluid. A higher Reynolds number means the flow is dominated by 

inertia while a lower Reynolds number flow is dominated by viscosity. The vast 

majority of fluid dynamics problems rely on the Reynolds number for dynamic 

similarity. The study of flapping wings appears to be unusual in that the Reynolds 

does not play a significant role. 

“Flapping foil systems where the [leading edge vortex] is dominant are likely to 

be much less sensitive to Reynolds number effects than airfoils/hydrofoils in 

steady state flows, or other bluff bodies” – Young [9] 
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1.2.2 The Leading Edge Vortex 

By far the most important mechanism of force production in efficient flapping-

wing energy flight is the leading edge vortex. First suggested as a mechanism of 

enhanced force production for insect flight by Ellington [10], the leading edge 

vortex is also a phenomenon known by pilots of fixed wing aircraft. It occurs 

during rapid pitching of a wing above the stall angle. Once the wing is pitched 

upward, a large vortex forms on the leading edge of the wing, generating a high 

lift force momentarily before detaching from the wing’s surface and convecting 

downstream. The wake evolves (in time) into a highly turbulent state and the wing 

is said to be “stalled” (i.e. loses lift and gains drag). 

Ellington [10] purported that unlike in the fixed wing case, insects reduce the 

angle of attack of their wings just as the leading edge vortex detaches, allowing 

them to reattach the flow before the wing stalls. This hypothesis has been validated 

by numerous sources and has been shown to contribute the majority of the 

desirable unsteady aerodynamic force to the wing. 

Like insect wings, efficient flapping-wing MAVs will rely heavily on the 

leading edge vortex to generate the desired lift. As the vortex grows and sheds, 

the angle of attack is reduced such that the wing never stalls. Therefore, the 

amount of time the vortex remains attached to the leading edge will determine the 
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frequency of oscillation. This is why the reduced frequency is such an important 

dimensionless parameter in the flapping wing problem.  

 

1.2.3 The Reduced Frequency: A Measure of Synchronicity 

The reduced frequency is defined as follows:  

 

 
𝑓∗ =

𝑓𝑐

𝑈
 , 

(1.2) 

 

where f is the frequency of oscillation of the airfoil, c is the chord length, and U is 

the oncoming flow velocity. Since the time required for a fluid particle to travel 

the length of the chord is 𝑡𝑐 =
𝑐

𝑈
, and the time to complete one oscillation of the 

wing is 𝑡𝑜𝑠𝑐 =
1

𝑓
, we have: 

 

 
𝑓∗ =

𝑓𝑐

𝑈
=

𝑡𝑐
𝑡𝑜𝑠𝑐

=
1

𝑟
 , 

(1.3) 

 

where r is the number of chord lengths that a fluid particle in the free stream 

travels during one complete oscillation of the wing. For example, if the reduced 

frequency is 0.1, the fluid in the free stream travels 10 chord lengths in one flapping 

cycle. Therefore, the reduced frequency is simply the inverse of the number of 
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chord lengths traveled by a fluid particle in the free stream during one flapping 

cycle. 

The implications of the cited importance of the reduced frequency are central 

to gaining a comprehensive understanding of the flapping wing problem. To gain 

a qualitative understanding of why the reduced frequency is significant, let us fist 

consider the step response of a wing whose pivot point is fixed. Imagine the wing 

pitching rapidly from a zero angle of attack to 50 degrees (Figure 1.1). The flow at 

the leading edge separates, and a leading edge vortex begins to form. What 

happens next is the key to understanding the underlying principles involved with 

effective flapping wing systems. The vortex is a low-pressure region, so all of the 

fluid at the boundary of the vortex will have a pressure force directed towards the 

center of the vortex. 
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Figure 1.1 - Dynamic stall (wing outlined in green)[11] 

 

First, let us focus on the fluid that was diverted downward by the leading edge 

at the boundary of the vortex in Figure 1.1a. The pressure force that acts on this 

fluid is towards the center of the vortex, but since it has momentum in the direction 

of the free stream, it follows a spiral path in towards the center of the vortex and 

becomes “entrained”. This feeds the vortex and as it grows (Figure 1.1b), and it 

becomes increasingly influential on its surroundings. By “increasingly 

a 

c d 

b 
Pivot Point 
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influential”, it is meant that the streamlines of the fluid which is proximal to the 

boundary of the vortex increasingly curve to match the curvature of the 

streamlines of the vortex.  

Now, let us focus on the fluid that was diverted upward by the leading edge. 

Notice that from Figure 1.1a to Figure 1.1d, this fluid (as it leaves the trailing edge 

of the wing) is pulled downward by the leading edge vortex more and more, such 

that at some critical moment, the momentum that was carrying it upwards and to 

the right is overcome by the growing pressure force created by the vortex. As can 

been seen in Figure 1.1c and Figure 1.1d, this fluid eventually creates a new vortex, 

indicating the onset of a vortex street. Subsequent vortices are observed to be 

smaller and weaker than the first vortex formed, and the wing loses lift and gains 

drag. 

The important thing to realize is that the fluid that was diverted upwards at 

the leading edge (the fluid travelling along the upper surface of the wing) had 

strong up-right momentum as the first vortex formed. If the experiment was 

repeated at a very high angle of attack, continuity would require the vortex to 

grow much larger and be shed much more rapidly. At lower angles of attack (but 

still large enough for flow separation to occur), the first vortex would form more 

gradually and would remain smaller as it shed, because the shallow angle would 

give less up-right momentum to the fluid on the upper surface of the wing, and 
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therefore this momentum would be easier for the vortex to influence, thereby 

causing the vortex to shed without growing significantly. 

Since the change in momentum is proportional to the force and the duration 

the force acts, there is an optimal angle of attack for which the vortex is sufficiently 

large and the duration which it remains attached is sufficiently long. At this angle 

of attack, the duration which the vortex remains attached defines the duration of 

the half-cycle for flapping. At higher free stream velocities, this duration would be 

reduced because the vortex would grow proportionally faster. For a wing with 

larger chord length, this duration would be increased, because the vortex would 

need to grow more before becoming close enough to on the fluid travelling along 

the upper surface of the wing to force it off of its trajectory and allow for vortex 

shedding to occur. Therefore, we find that the optimal duration (and hence 

optimal frequency) is affected by the flow velocity and the chord length, which 

could have been anticipated by the strong performance correlation that flapping 

wing systems have to the reduced frequency. 

For example, in the case of flapping wing energy harvesting the reduced 

frequency plays a significant role. It has been shown, using the Orr-Sommerfeld 

equation, that the power output of a flapping wing energy harvester is maximized 

when the frequency of flapping matches the most unstable frequency of the wake 

[12]. This “foil-wake resonance” occurs at a reduced frequency of 0.15, which is 
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(amazingly!) the same reduced frequency found to maximize efficiency using a 

DNS solver using a Monte Carlo Scheme in [3] 

 

1.2.4 Tip Vortex 

The tip vortex, typically associated with efficiency losses in fixed wing aircraft and 

mitigated by the use of winglets, has actually been shown to enhance some 

flapping wing insects’ flight performance. For low aspect ratio wings especially 

(i.e. where span-wise flow is more dominant), the tip vortex has been shown to 

“anchor” the leading edge vortex to the wing longer, thereby allowing the wing to 

benefit from its enhanced lift for a longer duration each stroke [13]. Moreover, it 

has been shown that biological flyers with low aspect ratios which operate at 

(relatively) high Reynolds numbers rely heavily on the tip vortex to generate the 

necessary aerodynamic forces for flight [13]. This is a three-dimensional 

phenomenon, so the present study does not simulate it, however, it could be the 

subject of a future study to artificially force the leading edge vortex to stay attached 

longer in order to simulate this effect. 
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1.2.5 Rapid Pitching 

Similar to the Magnus effect, the rapid pitching of the wing at the end of the stroke 

can enhance lift by generating additional vorticity [14]. The key to whether the 

pitching of the wing increases or decreases lift is the relative phase angle of the 

pitching motion to the stroke motion. If the pitch reversal begins slightly before 

the stroke reversal, the wing generates additional vorticity, thereby enhancing lift. 

If the wing pitches after the stroke reversal, however, the vorticity generated is of 

the opposite sense, thereby decreasing lift.  

 

1.2.6 Wake Capture 

As the wing begins to reverse its stroke, the wake from the previous stroke may 

increase the flow velocity around the wing, thereby increasing lift [14]. It has been 

shown using a dynamically scaled fruit fly wing in mineral oil that the effect of 

wake capture is dependent on when, where, and how great the vorticity 

magnitude is throughout the flapping cycle. 
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1.2.7 Clap and Fling 

The clap-and-fling mechanism relies on the interaction between wings to create 

additional suction. As the two wings approach each other, the air between them is 

forced out, generating thrust. Once the wings begin to separate and pitch about 

the leading edge, air rushes in to fill the gap, generating a vortex pair that produces 

the correct circulation around each wing to generate lift [14]. With regards to the 

current study, this effect is not observed, as it is a highly three-dimensional effect 

for low aspect ratio wings such as the butterfly. 
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Chapter 2 | Vortex Method 

An in house two-dimensional (2D) vortex method code [4]  is used to calculate the 

forces and moments on the wing at each time step. The wing is modeled by a line 

which is the projection of an infinitely long wing onto the plane of analysis. This 

wing can be descried in one of three coordinate systems. The first coordinate 

system is the global space-fixed system �̃� − 𝜉�̃�. In simulations where the ambient 

wind velocity is zero, this system is also the fluid-fixed system. The second system 

in which the wind can be described is the wing-fixed system 𝑂 − 𝜉𝜂. This system 

is attached to and aligned with the wing. The origin of this system is placed at the 

midpoint of the chord of the wing and the 𝜉-axis remains aligned with the chord 

as the wing pitches. The third coordinate system employed is the wing-translating 

system �̂� − 𝜉�̂� . This system has its origin at the center of rotation of the wing 

(which is a distance 𝑎 from the mid-chord) and it does not rotate with the wing. 

Instead the 𝜉-axis remains aligned with the global space fixed 𝜉-axis regardless of 

the pitch angle of the wing. These three coordinate systems are shown in Figure 

2.1. 
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Figure 2.1 – Wing described in space-fixed, wing-fixed, and wing-translating 

coordinate systems 

 

The wing of the MAV undergoes simultaneous pitching and heaving motions. 

The pitching motion is about the center of rotation (�̂�) and the heaving motion is 

along the stroke line of length 𝑑 which makes a specified angle 𝛽 with respect to 
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the 𝜉-axis. The angle is known as the stroke plane angle, which in three dimensions 

is defined as the angle of the plane to which the center of rotation of the wing is 

constrained makes with the ground plane. 

In Figure 2.1,  it can be seen that there ar two different ways of defining the 

oreintation of the wing. The first is denoted as 𝛼, which is the angle the wing 

makes with respect to the 𝜉-axis. The second is denoted as 𝛾, which is the angle 

the wing makes with respect to a line perpendicular to the stroke line (shown as a 

dashed line). 

 

Figure 2.2 – Smoothed step function used to define pitch motion. The solid line 

represents symmetric pitching, the dashed line represents advanced pitching, 

and the dotted line represents delayed pitching. 
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The heaving motion is prescribed as a sinusoidal motion, while the pitching 

motion is a prescribed as a smoothed step function. This smoothed step function, 

shown in Figure 2.2, is used to reflect the sudden rotation exhibited by natural 

fliers such as flapping wing insects. 

Figure 2.3 shows the view normal to the stroke plane. Φ𝑇 indicates the three-

dimensional angle that corresponds to the top-most heaving position of the wing, 

Φ𝐵  indicates the three-dimensional angle that corresponds to the bottom-most 

heaving position of the wing, and 𝑙 indicates the length of the wing. Therefore, the 

present 2D representation is actually a projection of the three-dimensional wing 

motion onto a vertical plane which is normal to the lateral direction of the body of 

the MAV.  

 

Figure 2.3 - View normal to stroke plane (from [4]) 
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Vortices are placed on the wing surface to model the circulation-generating 

effect of viscosity in the boundary layer as in thin airfoil theory. Collocation points 

are spaced at the midpoint of the chord segment connecting adjacent vortices. 

The complex potential of a line vortex is given as follows: 

 

 
𝑤(𝜁) = −

𝑖Γ

2𝜋
𝑙𝑜𝑔(𝜁 − 𝜁0)  , 

 

(2.1) 

where 𝜁  and 𝜁0  are global complex coordinates of the point of interest and the 

vortex, respectively. 

Therefore, the complex velocity at a point  𝜁𝑖 due to a vortex of circulation 𝛤𝑗 at 

position 𝜁0𝑗  is given by 

 

 
�̅�𝑖𝑗 = −

𝑖𝛤𝑗

2𝜋

1

𝜁𝑖 − 𝜁0𝑗

  . 

 

(2.2) 

 

The wing-normal component (indicated by superscript n) of the velocity at 

collocation point i due to a vortex  j is given by, 

 

 
𝑣𝑖𝑗

𝑛 =
𝛤𝑗

2𝜋𝑟𝑖
𝜃 ∙ �̂� = (

1

2𝜋𝑟𝑖
𝜃 ∙ �̂�) 𝛤𝑗 = 𝑎𝑖𝑗

𝑛 𝛤𝑗  , 

 

(2.3) 
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where 𝛤𝑗  is the circulation of vortex 𝑗,  𝑟𝑖  is the distance between the vortex and 

point 𝑖, 𝜃 is the unit vector perpendicular to line 𝑖𝑗, and �̂� is the unit normal to the 

wing at collocation point 𝑖 , and 𝑎𝑖𝑗
𝑛  is the influence coefficient of wing-normal 

component of the velocity at collocation point 𝑖 due to a vortex  𝑗. At each time 

step, vortices are shed from the leading and trailing edges and convected based on 

the local fluid velocity. 

In order to solve for the strength of the bound vortices (𝛤𝑗𝑏) at each time step, 

the non-penetration condition and Kelvin’s circulation theorem provide a set of 

linear equations, respectively, 

 

 
∑𝑎𝑖𝑗

𝑛 𝛤𝑗𝑏 + ∑ 𝑣𝑖𝑘
𝑛

𝑝

𝑘=1

= 𝑉𝑖
𝑛  ,

𝑚

𝑗=1

 

 

(2.4) 

 

 

 

 
∑𝛤𝑗𝑏 + ∑ 𝛤𝑘𝑤

𝑝

𝑘=1

= 0  

𝑚

𝑗=1

, 
(2.5) 

 
 

where, 𝑎𝑖𝑗
𝑛  and 𝑣𝑖𝑘

𝑛  are the influence coefficients of wing-normal component of the 

velocity at collocation point i induced by the bound vortex 𝛤𝑗𝑏  and the wing-

normal component of the velocity at collocation point i induced by the wake vortex 

𝑘, respectively. In addition,  𝑉𝑖
𝑛 is the normal velocity component of the wing at 
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collocation point i, m is the total number of bound vortices, 𝑝 is the total number 

of wake vortices, and 𝛤𝑘𝑤 is the circulation of wake vortex 𝑘. 

For m bound vortices with unknown circulations 𝛤𝑗 , there will be (m-1) 

collocation points and thus (m-1) equations from Eqn. (2.4). Therefore Eqn. (2.5) 

allows for a unique solution to be determined for the 𝛤𝑗 ’s by defining the 𝑚𝑡ℎ 

equation. Impulse-momentum theory is then used to calculate forces and 

moments on the wing in terms of the time derivatives of the linear and angular 

impulses.  

The force and moment acting on the wing are determined by taking the time 

derivative of the linear and angular momenta,  

 

 𝐿 = −𝑖𝜌𝛤𝑧  , (2.6) 

 
 

𝐻 = −
1

2
𝜌𝛤|𝑧|2  , 

(2.7) 

 

 

where L is the linear momentum of the fluid due to the vortex, 𝑖 is the imaginary 

unit, 𝜌 is the fluid density, 𝛤 is the circulation of the vortex, z is the position of the 

wake vortex in the complex plane, and H is the angular momentum of the fluid 

due to the vortex.  

Impulse-momentum theory is then used to calculate forces and moments on 

the wing. The sum of the linear momentum contributions and the sum of the 
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angular momentum contributions of all of the bound and wake vortices are stored 

at each time step. A central difference scheme is then employed to calculate the 

linear and angular impulse. Dividing the impulse at each time step by the time 

step determines the force and moment on the fluid at each time step. 

In order to produce the desired moment (about the center of rotation of the 

wing), the moment calculated from the time derivative of the sum of the angular 

momenta contributions from Eqn. (2.7) is adjusted using the standard formula for 

calculating the angular momentum about a non-stationary reference frame: 

 

 𝐻𝐴
⃑⃑ ⃑⃑  = �⃑⃑� + �⃑� 𝐴 × �⃑�   , (2.8) 

where 𝐻𝐴
⃑⃑ ⃑⃑   is the angular momentum with respect to point A (the center of rotation 

of the wing), �⃑⃑�  is the angular momentum with respect to the fluid frame, and �⃑� 𝐴 

is the velocity of point A. 

In complex notation, Eqn. (2.8) becomes 

 

 𝐻𝐴 = 𝐻 + 𝐼𝑚(𝑉𝐴
̅̅ ̅ ∗ 𝐿) , (2.9) 

 
where Im() is “the imaginary component of” and the overbar indicates the 

complex conjugate. It is important to note that the resulting force and moment are 

by the wing and acting on the fluid. Therefore, the signs of the force and moment 

are reversed to obtain the force acting on the wing by the fluid. 
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The authors of [4] demonstrate good agreement between this discrete vortex 

method solver and the open source full Navier Stokes solver OpenFOAM over a 

wide range of kinematic parameters. Figure 2.4 shows an example of the wake 

developed by an oscillating flat plate wing after several cycles. The thin black line 

on the left is the wing (translating down), the fluid velocity is from left to right, 

and the black and grey circles represent vortices shed from the leading and trailing 

edges of the wing, respectively. The starting vortex can be seen at the far right of 

the figure, and the von Kármán vortex street can be clearly identified. Denda et al. 

[4] demonstrate good agreement between this vortex method solver and the open 

source full Navier Stokes solver OpenFOAM over a wide range of kinematic 

parameters.  

wing 

𝑈∞ 
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2.1 Flow Separation Points 

First, the thin line wing model in 2D allows for the assumption that separation 

occurs at the leading and trailing edges of the wing. This eliminates the need for 

computationally expensive high resolution boundary layer modeling to determine 

the separation point, such as the method described in [15]. 

 

2.2 Force Calculation 

Next, an impulse-momentum is used to calculate the total force and moment on 

the wing. This method solves in much less time than traditional velocity-pressure 

based force calculation methods, at the expense of sacrificing knowledge of the 

local pressure distribution on the surface of the wing. However, for the flapping 

wing device designer looking for viable kinematics and power requirements, this 

pressure distribution would likely be integrated to obtain the net forces and 

moments anyway, so the reduction in computation time is preferred. 

 

 

 

Figure 2.4 - Wake vortex plot of a flapping wing after several oscillation cycles. 
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To calculate the force and moment acting on the fluid, a first order central 

difference scheme is employed as follows: 

 

 
𝐹 𝑛 =

�⃑� 𝑛+1 − �⃑� 𝑛−1

2 ∗ 𝑑𝑡
  , 

(2.10) 

 

 

 

 
�⃑⃑� 𝑛 =

�⃑⃑� 𝑛+1 − �⃑⃑� 𝑛−1

2 ∗ 𝑑𝑡
+ �⃑� 𝑛 × �⃑� 𝑛  , 

(2.11) 

 

 

where F is the force acting on the fluid, P is the linear momentum of the fluid, dt 

is the time step, M is the moment acting on the fluid, H is the angular momentum, 

V is the wing velocity, and n is the current time step. 

 

2.3 Limitations of the Vortex Method 

Despite the impressive performance of the vortex method presented in [4], there 

are several limitations. The first limitation is that the software does not utilize 

advanced computing techniques such as parallel processing. The Vortex Method 

produces hundreds or even thousands of point vortices, all which have to be 

tracked and included in the convection calculation at every other vortex location. 
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Given that velocity contributions can be calculated independently of one another, 

this computationally heavy step in the simulation is a prime candidate for parallel 

processing.  

In addition, when simulating multiple oscillation cycles, one may find that the 

amplitude of the calculated pitching moment on the wing tends to slowly increase 

over time (Figure 2.5). This increasing pitching moment amplitude would make it 

challenging to couple the fluid solver to a rigid body solver, as the increasing 

moment would cause the MAV to tumble. 

Therefore, it will be the goal of the present study to remedy these limitations 

in order to allow for a fluid-rigid body solver to be developed from the resulting 

fluid simulation software. First, the code will be analyzed for optimization using 

parallel processing. Next, the parallel processing algorithm will be tested against 

to serial algorithm to demonstrate the increase in computational efficiency. 

Finally, the root cause of the increasing pitching moment will be investigated and 

pin pointed so that a new approach can be implemented that does not include an 

increasing pitching moment. 
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Figure 2.5 - Increasing pitching moment 
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Chapter 3 | Massively Parallel Implementation 

The vortex method’s speedup of 20X over traditional solvers is impressive, but one 

of the goals of the present study was to further improve the computational 

efficiency. One way this was achieved was by utilizing parallel processing. Parallel 

processing can be defined as the distribution of several repetitive mutually 

independent tasks to multiple processing compute cores. Each core effectively 

divides the time to complete the parallel task, producing dramatic improvements 

in computational efficiency in certain situations. 

 

3.1 Hardware Selection 

There are several different hardware options to implement parallel processing. 

Three examples are using multi-core CPU’s, using a high-performance cluster, and 

using graphics processing units. Most consumer-end CPU’s have only 4 cores (8 

with hyperthreading) which run at a frequency on the order of 1 GHz. This 

number of cores does add some benefit, but for 1000’s of operations per time step 

the vortex method could definitely utilize more cores. Rutgers does have a high-

performance cluster with plenty of high frequency CPU cores, but access is 
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limited, which makes rapid development difficult. Recently there has been a rise 

in the use of consumer grade graphics processing units (GPUs) for scientific 

computations. 

Given that today’s graphics cards are priced at less than $100 and have 

hundreds or even thousands of cores which each run at around 800MHz, it is easy 

to see why it was decided that the vortex method code would be modified to be 

implemented on a GPU. Even though each core of the GPU takes about 4 times 

longer to compute a given operation than a core on the CPU, the large number of 

them more than makes up for it. 

To make the decision even easier, the code was already written in MATLAB, 

which has built-in functions that take advantage of NVIDIA’s CUDA 

programming language to allow for the programmer to interface directly with the 

GPU using these built-in functions by simply reorganizing the computations into 

a GPU-friendly format. 

 

3.2 Software Analysis 

The vortex method code was analyzed to determine whether or not it could benefit 

from the highly parallel processing enabled by the GPU. Some of the functions did 

not take more time to run as the simulation progressed (i.e. with more wake 

vortices). Others only increased approximately linearly with the number of wake 
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vortices (∝ 𝑁). However, one function in particular, the velocity calculation at 

each wake vortex point (for convection), increased with the square of the number 

of wake vortices (∝ 𝑁2), which greatly reduced the efficiency of the solver after 

more than three cycles. Since the calculation of each velocity contribution is 

independent of the others, this function is a prime candidate for parallel 

implementation on the GPU. First, a pre-processor creates three 1 × 𝑁2 arrays; it 

creates one for the location of the contributing vortex, one for the circulation of the 

contributing vortex, and one for the vortex location at which the velocity is to be 

determined. Therefore, the array indices represent one of the 𝑁2  permutations 

required to calculate the velocity contribution from every vortex at every vortex 

point. Finally, once the computations have been performed on the GPU, a 

decoding function takes the output arrays and distributes them back to the 

individual velocity contribution arrays for each target location so that they can be 

summed. 
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Figure 3.2 - Ratio of CPU to GPU Run Time vs. Number of Cycles Simulated 

Figure 3.1 - Comparison of CPU vs. GPU Implementation 
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3.3 Results 

The results of the GPU implementation were very encouraging. For simulations 

over 3 oscillation cycles the same output from the GPU runs over 80 times faster 

than on the CPU. Figure 3.1 shows the results of a simulation of only 1 cycle (55 

times), because for larger numbers of cycles the time plot for the GPU is difficult 

to see. For example, the largest number of cycles tested on the GPU was 16.5 cycles, 

which took 1 hour and 15 minutes to run. By comparison, the same simulation 

would have taken just over 5 days on the CPU! Figure 3.2 illustrates the 

relationship between the number of cycles simulated and the ratio of the CPU time 

to the GPU time. Based on a regression analysis of the run time 

data (𝑅2~0.99999916), the ratio seems to asymptotically approach 101.07. 
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Chapter 4 | Reduced Order Analytical Solution 

 

When simulating multiple oscillation cycles, one may find that the amplitude of 

the calculated pitching moment on the wing tends to slowly increase over time 

(Figure 2.5). In order to determine the root cause of the increasing moment, we 

first need to determine if the increase comes from the bound vortices or the wake 

vortices. Figure 4.1 shows the moment broken down into wake and bound 

Figure 4.1 - Bound (dashed line) and wake (solid line) contributions to total 

moment 
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components. It is clear from this plot that the increase is coming from the wake 

vortices. 

Next, a simplified series representation of the wake will show why the wake 

component of the moment calculation gives us this increasing amplitude, and how 

it might be attenuated in a real fluid. If we look at the diagram in Figure 4.2 and 

angular momentum contribution and location made by a single vortex in Eqn. (4.2) 

and Eqn. (4.2), respectively, 

 

 

 

it may seem that the increasing distance from the wing in the x-direction is causing 

the increasing moment.  

 

(4.2) 

(4.2)  

Figure 4.2 - Single wake vortex diagram 
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4.1 Reduced Order Model 1 

In order to test this hypothesis, a reduced order model called Model 1 is 

constructed where the shed vortices move with the free stream but are constrained 

to the x-axis (Fig. 6). Note that the x-axis (parallel to the wind direction) was chosen 

out of convenience, and that any inclined wind direction would also produce valid 

results with the corresponding wake vortices distributing in the parallel direction. 

 

 

 

 

 

Figure 4.3 – Model 1 
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If the hypothesis is correct, the moment should increase due to the increasing 

x-distances of the wake vortices However, we find that even with the same 

circulation values as before, the moment doesn’t increase despite the increasing x-

distance of the far field vortices (Figure 4.4).  

Time step 

Figure 4.4 - Bound (dashed line) and wake (solid line) contributions to total 

moment for Model 1 
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It therefore appears that the periodic nature of the circulation allows 

neighboring vortices’ angular momentum contributions to effectively cancel each 

other out when the wake is confined to the x-axis (Figure 4.5).  

 

However, confining vortices to the x-axis is not physical. Therefore, the 

resulting constant moment amplitude (Figure 4.4) only goes to disprove the theory 

that the increasing distance of the average vortex is the root cause of the increasing 

moment. 

Time step when vortex is shed 

Figure 4.5 - Circulation values of wake vortices shed from the leading 

(dashed line) and trailing (solid line) edges 
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4.2 Reduced Order Model 2 

 Consider a second simplified model called Model 2 of the vortex shedding 

procedure which adds a sinusoidal y-position to the wake vortices where once a 

given vortex is shed, it is fixed and not convected by the local fluid velocity (Figure 

4.6). 

 

 

Surprisingly, this seemingly small change from the previous case (adding a 

sinusoidal y-position to the wake vortices) produces increasing moment 

Figure 4.6 – Model 2 
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amplitude, such as in Figure 2.5. Functional forms of the moment for Model 2 

(Figure 4.6) can be derived as follows. The moment about the center of rotation of 

the wing is calculated as follows:  

 

 
�⃑⃑� =

𝑑

𝑑𝑡
(𝐻0
⃑⃑ ⃑⃑  ) + 𝑣 × �⃑�   , 

(4.3) 

 

 

where 𝐻0
⃑⃑ ⃑⃑   is the angular momentum of the fluid with respect to the center of 

rotation of the wing, 𝑣  is the linear velocity of the center of rotation of the wing 

and �⃑�  is the linear momentum of the fluid with respect to the space fixed frame. 

The total angular momentum, 𝐻0
⃑⃑ ⃑⃑  , is the sum of the individual contributions of 

the wake and bound vortices. The contribution of the wake at time step j is defined 

as follows: 

 
𝐻𝑗 = ∑−

1

2
𝜌𝛤𝑖|𝑧𝑖

𝑗
|
2

𝑗

𝑖=1

  , 
(4.4) 

 

 

where 𝛤𝑖 is the circulation of vortex 𝑖, 𝜌 is the density of the fluid, and |𝑧𝑖
𝑗
| is the 

distance from the center of rotation of the wing and vortex 𝑖 at time step 𝑗. For 

simplicity, let us assume a flapping frequency and wing tip amplitude of :  f =
1

2𝜋
 

Hz and 𝐴𝑥 = 1, respectively. For the case where vortices are not convected and 

remain where they were shed as in Figure 4.6 we have:  
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 𝑧𝑖
𝑗
= (

𝑥
𝑦)  , (4.5) 

 

 

where x is the distance traveled by the wing since vortex i was shed and y is the 

difference between the y-coordinate of the vortex and the y-coordinate of the 

center of rotation of the wing at time step j. This gives (by the Pythagorean 

theorem), 

 

 |𝑧𝑖
𝑗
|
2
= (𝑈∞∆𝑡(𝑗 − 𝑖))

2
+ (sin(𝑖∆𝑡) − sin(𝑗∆𝑡))2  . (4.6) 

 

 

      In addition, the circulation of a given wake vortex can be approximated as 

follows:  

 

 𝛤𝑖~𝐴 sin(𝑖∆𝑡)  . (4.7) 

 

 

In general, the periodic circulation function would be a Fourier series, but as 

long as the Fourier coefficients are constant, each term of the Fourier series will 

produce the same functional form as the sine function will when multiplied by the 
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magnitude of the distance. Therefore, the total angular momentum can be 

approximated by the following relations: 

 

 
𝐻𝑗 = ∑−

1

2
𝜌𝛤𝑖|𝑧𝑖

𝑗
|
2

𝑗

𝑖=1

  , 
(4.8) 

 

 

 
𝐻𝑗 = −

1

2
𝜌∑𝐴sin(𝑖∆𝑡) [

𝑗

𝑖=1

(𝑈∞∆𝑡(𝑗 − 𝑖))
2

+ (sin(𝑖∆𝑡) − sin(𝑗∆𝑡))2]  . 

(4.9) 

 

 

      Note that the current time is simply 𝑗∆𝑡 and that the time at which a given 

vortex 𝑖 was shed is 𝑖∆𝑡. Figure 4.7 shows a plot of the angular momentum of 

Model 2 given by Eqn. (4.9).       
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𝐻𝑗  

Figure 4.8 - Typical angular momentum from vortex method 

Figure 4.7- Angular momentum vs. time step (Model 2) 
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Note the striking resemblance between the plot of Eqn. (4.9) (Figure 4.7) and a 

typical angular momentum plot of a fully convected wake from the original non-

simplified code (Figure 4.8). Therefore, by comparing the wake of original code 

(Figure 2.4) and Model 2 (Figure 4.6) and by also comparing the angular 

momentum plots of Figure 4.7 and Figure 4.8, one may conclude that the Model 2 

model provides an adequate first order representation of the physics of the 

problem. Moreover, Model 2 allows one to obtain an approximate continuous 

analytical solution for the pitching moment, instead of the nonlinear 

representation from the actual code. Therefore, we can examine the mathematics 

of this second model to understand more about the root cause of the increasing 

moment and how to mitigate it. 

The 𝐴 sin(𝑖∆𝑡) ∗ (sin(𝑖∆𝑡) − sin(𝑗∆𝑡))2  term from Eqn. (4.9), when summed, 

behaves like 𝑡𝑠𝑖𝑛(𝑡), where 𝑡 = 𝑗∆𝑡. 

This can be seen in the approximate functional form: 

 

 
∫ 𝐴𝑠𝑖𝑛(𝜏)(sin(𝑡) − sin(𝜏))2 𝑑𝜏

𝑡2

𝑡1

=
1

12
𝐴(6sin (𝑡)(2𝑡1 − 2𝑡2 − sin(2𝑡1) + sin (2𝑡2)

+ (15 − 6 cos(2𝑡)) cos(𝑡1)

+ 3(2 cos(2𝑡) − 5) cos(𝑡2) − cos(3𝑡1) + cos(3𝑡2)) . 

(4.10) 
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Upon the expansion of Eqn. (4.10), we see that part of the results includes the 

following terms: 

 

 1

12
𝐴(6 sin(𝑡) (2𝑡1 − 2𝑡2) . 

(4.11) 

 

 

In the original code, 𝑡1 = 0  and 𝑡2 = 𝑗Δ𝑡  (where j = current time step). 

Therefore, this produces the term that behaves like 𝑡 ∗ sin (𝑡) which causes the 

increasing moment amplitude, even in this simplified case. 

By eliminating the far field wake vortices, we effectively prevent the (t*sin(t)) 

term from growing in amplitude, by limiting the time t over which the sum is 

taken. For example, in Eqn. (4.11), 𝑡1 − 𝑡2 = 𝑐𝑜𝑛𝑠𝑡. (e.g. the threshold time). In the 

discrete analog of Model 2 (Eqn. (4.9)), the removal of vortices would cause 𝑖 to 

increment each time step, such that 𝑗 − 𝑖 = 𝑐𝑜𝑛𝑠𝑡. Physically, this represents the 

decay of old vortices due to viscosity. However, one issue with simply removing 

vortices is that it introduces spurious high frequency perturbations to the flow 

field. This tends to cause instability in the solution of the bound vortex circulation 

(Eqns. (2.4) and (2.5)). 
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Chapter 5 | The Lumped Wake Vortex Method 

 

5.1 Vortex Lumping 

In order to overcome this issue of solution instability, two lumped vortices are 

generated, one for removed vortices which were originally shed from the leading 

edge of the wing and one for those shed from the trailing edge. These lumped far 

field vortices approximate the effect that the removed point vortices have on the 

solution to Eqns. (2.4) and (2.5) by taking on the average position and circulation 

of their respective aggregated point vortices. In essence, instead of removing some 

wake vortices to mimic the vortex decay, we replace them by a pair of lumped 

wake vortices such that the lumped vortices take the place of the removed vortices 

in the linear and angular momentum calculations. 
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The positions and circulation magnitudes of the two lumped vortices are given by: 

 

 
𝐿𝐸𝑍𝑙𝑢𝑚𝑝𝑒𝑑

𝑗
=

1

𝑗
∑𝑧𝑖

𝑗

𝑗−𝑘

𝑖=1

  , 
(5.1) 

 

 

 
𝐿𝐸Γ𝑙𝑢𝑚𝑝𝑒𝑑

𝑗
=

1

𝑗
∑Γ𝑖

𝑗

𝑗−𝑘

𝑖=1

  , 
(5.2) 

 

 

 

 
𝑇𝐸𝑍𝑙𝑢𝑚𝑝𝑒𝑑

𝑗
=

1

𝑗
∑𝑧𝑙

𝑗

𝑗−𝑘

𝑙=1

  , 
(5.3) 

 

 

 

 
𝑇𝐸Γ𝑙𝑢𝑚𝑝𝑒𝑑

𝑗
=

1

𝑗
∑Γ𝑙

𝑗

𝑗−𝑘

𝑙=1

  , 
(5.4) 

 

 

 

where k is the index corresponding to the time step when lumping begins, LE 

indicates the lumped leading edge vortex, TE indicates the lumped trailing edge 

vortex, 𝑖 indicates that the vortex was shed from the leading edge, and 𝑙 indicates 

that the vortex was shed from the trailing edge. 
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Another approach that was tested was to use the sum of the circulations of the 

removed vortices for the circulation of the lumped vortex instead of the average. 

Due to the periodicity of the circulation values of the shed vortices, the amplitude 

of the sum of the circulation values of the removed vortices remains a small 

constant over time. The solutions using each of the two approaches show no 

appreciable differences due to the fact that the removed vortices have a negligible 

effect on the solution just before they are removed. Therefore, it is better to use the 

sum to be consistent with the conservation of circulation (Kelvin’s Theorem). The 

total linear and angular momenta due to the wakes vortices then becomes, 

 

 
𝐿𝑡𝑜𝑡𝑎𝑙
𝑗

= 𝐿𝐿𝐸
𝑗

+ 𝐿𝑇𝐸
𝑗

+ ∑ 𝐿𝑖
𝑗

𝑗

𝑖=𝑗−𝑘−1

+ ∑ 𝐿𝑙
𝑗

𝑗

𝑙=𝑗−𝑘−1

    , 
(5.5) 

 
 

 

 
𝐻𝑡𝑜𝑡𝑎𝑙

𝑗
= 𝐻𝐿𝐸

𝑗
+ 𝐻𝑇𝐸

𝑗
+ ∑ 𝐻𝑖

𝑗

𝑗

𝑖=𝑗−𝑘−1

+ ∑ 𝐻𝑙
𝑗

𝑗

𝑙=𝑗−𝑘−1

   , 
(5.6) 

 
 

where 𝐿𝐿𝐸
𝑗

 and 𝐿𝑇𝐸
𝑗

 are the linear momentum contribution of the lumped leading 

and trailing edge vortices, respectively. Furthermore,  𝐿𝑖
𝑗

 and 𝐿𝑙
𝑗

 are linear 

momentum contributions of the leading (𝑖) and trailing (𝑙) edge vortices. The 
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notation for the angular momentum contributions are similarly defined. In 

addition, the superscript 𝑗 refers to the time step index 𝑗. 

In order to simulate wake vortex decay, one could simply remove the oldest 

point vortices after a predetermined critical threshold time like in the initially 

attempted wake vortex removal model. This method of vortex removal also has 

the added benefit of reducing the number of calculations in the far field wake, 

where the additional computational effort would provide little value. However, 

since the present method of force calculation relies upon impulse momentum 

theory, the forces and moments are calculated as the differential of the momentum. 

Therefore, simply removing vortices will result in large spikes in the force and 

moment plots, as the removal process represents a step change in momentum. 

 

5.2 Force and Moment Calculation 

In performing the central difference calculation to get the derivatives of the 

momenta at step n, we use the momenta at time steps n+1 and n-1. The additional 

issue arises here since the removed vortices at n+1 and n-1 differ, i.e., more vortices 

have been removed at n+1 than at n-1. In order to overcome this issue, only the 

linear and angular momenta contributions of the point vortices remaining at time 

step n+1 are used in the calculation of the moment at time step n. In other words, 



51 

 

 

the momentum contributions of the vortices which will be removed by time step 

n+1 are subtracted from the total momentum at time step n-1 before calculating 

the differentials (Eqns. (2.10) and (2.11)). 

 Physically, this adjustment to the momentum at time step n-1 can be explained 

as follows. Non-lumped vortices are closer to the wing than the lumped vortices 

and therefore have a stronger influence on the force acting on the wing. Therefore, 

if the adjustment was not made, the differential in the momentum calculation 

would be unbalanced, as it would be comparing two different sets of vortices. The 

large spike in the force amplitude one would obtain as a result of not making the 

adjustment would be due to the comparison of two dissimilar representations of 

the flow field. 

To illustrate this process, Figure 5.1 shows example wake plots at time steps   

n-1 and n+1. The white vortices at time step n-1 will be eliminated by time step 

n+1, so they are excluded from the calculation of the moment at time step n. 
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n-1 
n-2 

n-5 
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n-1 
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n-5 

Time Step n-1 

Time Step n+1 

Figure 5.1 - Vortex wake plots for time steps n-1 (top) and n+1 (bottom). Black 

vortices are used for the moment calculation at n, since the grey vortices will be 

removed at time step n+1, white vortices (present in step n-1) are not included in 

the moment calculation at n. 

 



53 

 

 

The moment at time step n for this example (Figure 5.1) would be calculated as 

follows: 

 

 
�⃑⃑� 𝑛 =

�⃑⃑� 𝑛+1 − �⃑⃑� 𝑛−1 − ℎ⃑ 𝑛−4
𝑛−1 − ℎ⃑ 𝑛−5

𝑛−1

2 ∗ 𝑑𝑡
+ �⃑� 𝑛 × �⃑� 𝑛  , 

(5.7) 

 

 

and similarly, for the force, 

 

 
𝐹 𝑛 =

�⃑� 𝑛+1 − �⃑� 𝑛−1 − 𝑙𝑛−4
𝑛−1 − 𝑙 𝑛−5

𝑛−1

2 ∗ 𝑑𝑡
 , 

(5.8) 

 

 

where ℎ⃑ 𝑛−4
𝑛−1  and  ℎ⃑ 𝑛−5

𝑛−1 are the angular momentum contributions of wake vortices 

n-4 and n-5 at time step n-1, and 𝑙𝑛−4
𝑛−1

  and  𝑙 𝑛−5
𝑛−1

 are the linear momentum 

contributions of wake vortices n-4 and n-5 at time step n-1. The momenta from 

these vortices are only subtracted for the moment calculation at time step n. All 

subsequent time steps still include their momenta. 
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5.3 Comparative Example 

In order to further examine the physical implications of removing the 

momentum contributions of to-be-removed vortices at time step n-1, one may 

compare the results of a simulation which includes these contributions to one that 

does not. 

Figure 5.2 and Figure 5.3 show the (incorrectly) calculated forces on the wing 

in the x and y directions, respectively, of a simulation that includes the momentum 

contributions of to-be-removed vortices at n-1. Compare these plots to Figure 5.4 

and Figure 5.5, which show the (correctly) calculated forces on the wing in the x 

and y directions, respectively, of a simulation that removes the momentum 

contributions of to-be-removed vortices at n-1. Notice how the forces are much 

higher in the case where the momentum contributions at n-1 are included.  

Physically, this is because the change in fluid momentum in this case is 

calculated using two dissimilar sets of vortices. Therefore, in order to correctly 

determine the forces on the wing while excluding the sum of the viscous forces, 

one must remove the momentum contributions of vortices which are removed by 

step n+1 at step n-1 when calculating the forces via impulse-momentum theory. 
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Figure 5.2 - Incorrectly calculated force on wing in x-direction 

 
Figure 5.3 - Incorrectly calculated force on wing in y-direction 
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Figure 5.4 - Correctly calculated force on wing in x-direction 

 
Figure 5.5- Correctly calculated force on wing in y-direction 
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Figure 5.7 - Constant amplitude pitching moment 

Figure 5.6 - Comparison of results with published data 
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5.4 Key Results 

 

5.4.1 Constant Moment Amplitude 

The resulting constant amplitude moment plot is shown in Figure 5.7. It can be 

seen in this figure that the moment amplitude remains very nearly constant at the 

value of the amplitude for the first flapping cycle from the original vortex method 

(Figure 2.5). 

 

5.4.2 Comparison with 2D Navier Stokes Simulation 

In order to further verify the moment coefficient results, the original method and 

the new lumped wake vortex method were compared to published results [5] of a 

full Navier Stokes solution of a flapping wing (Figure 5.6). As can be seen from the 

figure, the new model slightly over predicts the pitching moment while the 

original model slightly under predicts. Qualitatively, the models both agree well 

and would provide sufficient accuracy given the radically lower computation 

time. 



59 

 

 

5.4.3 Further Reduction in Computation Time from Vortex Removal 

One major advantage of this strategy is that it not only better represents the 

physical system being modelled; it also reduces the number of calculations in the 

far field wake, where the additional computational effort would provide little 

value. Figure 5.8 shows how much computation time is saved using the lumped 

wake vortex method over the original parallel implementation without the viscous 

decay model.  

Figure 5.8 - Comparison of computation time with and without vortex removal 
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Since the computation time of the original method goes as 𝑁2 (where N is the 

number of time steps) and the computation time for the lumped wake vortex 

method goes as 𝑁, the difference in computation time is striking, especially for 

simulations which involve several flapping cycles or high temporal resolution. 

 

5.4.4 Vortex Lumping Threshold 

It was found that after point vortices convect past a certain distance, the choice of 

when to lump them has very little impact on the results. Therefore, the time 

threshold is determined as the duration required to convect a vortex moving at the 

free stream velocity to the point where its induced velocity at the center of the 

wing is less than 0.5% of the free stream velocity. 

 

5.4.5 Varying Incident Flow Angles 

In order to verify that the method of maintaining constant moment amplitude was 

sufficiently general, simulations were carried out for several different incident 

flow velocity angles. Figure 5.9 shows the wake vortex plots and corresponding 

moment plots for incident flow velocities of 0°, 45°, and 60°. It can be seen that the 

moment does in fact maintain a constant amplitude despite the changing incident 

flow angle. It is interesting to examine the effect changing flow angles, as the 
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designer of a flapping wing device in an outdoor environment would have to plan 

for sudden gusts of wind which would rapidly change the flow angle.   
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Figure 5.9a 

   
Figure 5.9b 

0° 
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Figure 5.9c 

  
Figure 5.9d 

 

45° 
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Figure 5.9e 

  

Figure 5.9f  

Figure 5.9 – Effect of varying incident flow velocity angle on pitching moment 

amplitude 

60° 
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5.5 Conclusions 

Fast, specialized CFD sovlers will be required to usher in a new age in aerospace 

technologies. Unsteady flow problems such as that of flapping wings require vast 

computational resources which make their solutions inacessible to the average 

designer. 

A novel, highly efficeint impulse-momentum vortex method sovler has been 

developed and optimized using a massively parallel computing approach on an 

affordable workstation GPU. The solver has proven to be very accurate for short 

simulations, but the pitching moment tends to increase for simulations involving 

several flapping cycles. 

In order to more accurately model the flow physics and maintain a constant 

moment amplitude for long simulations, a novel approach involving the lumping 

of far field point vortices allows for the inviscid solver to simulate viscous wake 

vortex decay. 

In order to maintian solution accuracy, it was found that careful adjusting 

calculations had to be made to correct the linear and angular momenta. In 

addition, a lumped far field vortex model was adopted to eliminate unphysical 

high frequencies associated with the lumping process, thereby maintaining the 

circulation solution’s stability. 



66 

 

 

The lumped vortex model was shown to successfully maintain a constant 

moment, and was compared to the previous method as well as published data 

from a full unsteady Navier Stokes simulation for a flapping wing. 

As an added benefit, the new method greatly reduced the computation time by 

reducing the proportionality of computation time from  𝑁2 to 𝑁. Finally, the time 

threshold for lumping was determined to be when a given vortex had convected 

so far from the wing that its influence is less than 0.5% of the free stream velocity.  

Several flow angles were tested to ensure the new method was sufficiently 

consistent in its ability to maintain a constant moment amplitude. The new method 

did in fact maintain the moment amplitude despite changing incident flow angles. 
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Chapter 6 | Fluid-Rigid Body Interaction 

The preceding chapters demonstrate how the lumped wake vortex method 

produces a constant pitching moment amplitude and that the massively parallel 

implementation along with this novel method have increased the computational 

efficiency by several orders of magnitude. In light of these developments, the fluid 

solver will now be coupled to a rigid body solver in order to attain the ultimate 

goal of predicting the flight trajectory of a flapping wing MAV given a specific 

flapping motion. It is important to note that the heaving direction angle (stroke 

plane angle from [4]) remains fixed with respect to the ground regardless of the 

orientation of the MAV. In a real MAV, this could be accomplished using an on-

board gyroscope. 

 

6.1 Single Unconstrained Rigid Body Equations of Motion 

At first, for simplicity, it was assumed that the MAV would comprise of a single 

unconstrained rigid body with the wings attached at the center of mass. In 2D, the 

rigid body equations of motion are independent of one another, as there is only 

one direction of rotation (i.e. the equations are not coupled as in Euler’s Equations 

of Motion).  
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The 2D equations of motion are stated as follows: 

 

 𝐹𝑥(𝑡) = 𝑚𝑎𝑥 , (6.1) 

 

 

 𝐹𝑦(𝑡) = 𝑚𝑎𝑦 , (6.2) 

 

 

 𝑀𝑧(𝑡) = 𝐼𝑧𝑧𝛼𝑧 , (6.3) 

 

where 𝐹𝑥(𝑡) is the time-dependent forcing function in the x-direction found in the 

fluid solver, 𝑚 is the mass of the MAV, 𝑎𝑥 is the acceleration of the MAV in the x-

direction, 𝐹𝑦(𝑡) is the time-dependent forcing function in the y-direction found in 

the fluid solver, 𝑎𝑦 is the acceleration of the MAV in the y-direction,  𝑀𝑧(𝑡) is the 

time-dependent pitching moment function about the z-axis found in the fluid 

solver, 𝐼𝑧𝑧 is the mass moment of inertia of the MAV about the principal axis z, and 

𝛼𝑧 is the angular acceleration of the MAV about the z-axis. 

 

6.2 Concurrent Solution Dilemma 

In order to solve the governing equations of motion for a rigid body and to 

determine the position of the MAV as a function of time, the forces must be known 

a priori. However, the lumped vortex method utilizes the central difference 
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method via the impulse-momentum equations for calculating the force and 

moment produced from flapping at each instant (Eqns. (2.10) and (2.11)). Since the 

central difference method requires future information to determine the present 

finite difference, the force and moment calculation used in the lumped vortex 

method requires the position of the MAV to be known a priori as well. This creates 

a chicken or the egg problem when one wants to create a time-marching solution 

which solves for the forces and position concurrently. 

At first the solution to this dilemma seemed simple enough. The problem is 

that at the present time step, the equations of motion are solved using the forces 

found by the central difference method, but the information about the future value 

of the fluid momentum is unknown. Therefore, it seemed logical to switch to a 

backwards difference scheme for the force and moment calculation so that one 

would only need to know the past positions of the MAV in order to determine the 

force and moment acting on the MAV at the present time. 

However, no matter which order backwards difference scheme was used (up 

to 4th order), the solution of the force and moment varied greatly from the central 

difference solution. To make matters worse, even if the force at the current time 

step could be determined, one would not know how the force changed as the solid 

body equations of motion solver progressed from step n to n+1. This would be 
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equivalent to a constant acceleration model, which would require relatively small 

time steps to produce a sufficiently accurate solution. 

Consequently, the backwards difference method was abandoned in search of a 

different way to remedy the problem. Several new strategies involving the central 

difference method and the equations of motion were attempted, albeit 

unsuccessfully. 

 

6.3 The Kinetic Predictor-Fluid Corrector Algorithm 

Finally, it was realized that the solution of the fluid forces had much more 

substantial high frequency components than the solutions to the position and 

velocity of the MAV would have. This means that any extrapolation of the fluid 

forces would likely be very inaccurate while extrapolations of the position and 

velocity of the MAV would be likely to be much more accurate. This realization 

led to the Kinetic Predictor-Fluid Corrector Algorithm, where the fluid forces are 

only solved for up until step n-1, but the position and velocities are extrapolated 

up until time step n+1. Of all of the methods tested, this one gave the fastest 

convergence and the largest acceptable fluid time step (i.e. without the solution 

diverging). When the solution converges, this means that the position, velocity, 

fluid force, and fluid moment remain sufficiently unchanged from one 

convergence cycle to the next, and the solution to the rigid body equations of 
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motion are such that the resulting fluid momenta is predicted with less than 

0.0001% error. The converge-detecting while loop contains a counter to report any 

divergent time steps, which are defined as time steps with over 100 convergence 

cycles. If a divergent time step is detected, it breaks out of the loop and begins 

solving the next time step, so that one doesn’t lose the results of the entire 

simulation for only one or two divergent time steps. Fully convergent solutions 

are those for which no divergent time steps have been detected, and these are the 

only solutions used in the present work. 
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The solution procedure is shown in the flowchart in Figure 6.1:  

 

  

Step 2 Generate the 
best fit polynomials 
using the force as a 

function of time and 
moment as a function 

of time for the tethered 
MAV up to time step 2.

Step 3 Solve the rigid 
body equations of 

motion from time step 1 
to time step 2 using the 
forcing functions found 
in solution procedure 

step 2.

Step 4 Generate best fit 
polynomials of MAV 

position as a function of 
time and MAV velocity as 

a function of time and 
extrapolate to step 3.

Step 5 Recalculate total 
fluid momentum at 

step 2 and 3 using the 
newly found position 
and velocity values.

Step 6 Use the 
updated fluid 

momentum in Eqns. 
(2.10) and (2.11) to 

recalculate the forces 
and moments at time 

step 2.

Step 7 Repeat 
steps 2-6 until 

residuals of total 
fluid momenta 

converge to 
(Res<1E-6).

Step 1 Obtain the fluid forces for first 
half cycle of flapping by fixing the 

MAV body in space. Fixing the MAV 
allows the initial force peak 
associated with the sudden 

acceleration of the wing from rest to 
settle. For explanatory purposes, let 
the first step of the second half cycle 
be time step 3. It is important to note 

that the heaving direction angle 
(stroke plane angle from [4]) remains 

fixed with respect to the ground 
regardless of the orientation of the 

MAV.
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Step 8 Generate best 
fit polynomials of 

positions and 
velocities and 

extrapolate to time 
step 4.

Step 9
Calculate the 
impulses at 
time step 4.

Step 10 Calculate 
forces and moments 
at time step 4, then 

increment to time step 
5 (n=n+1=5).

Convergence Cycle 
(Steps 11-16, next 

page)

Step 17 Repeat 
steps 11-12 to solve 
for the converged 

positions and 
velocities at time 

step n-1. 

Step 18 Generate 
best fit 

polynomials of 
positions and 
velocities and 

extrapolate to step 
n+1.

Step 19 Calculate 
the impulses at step 

n+1.

Step 20 Calculate 
forces and 

moments at time 
step n+1, then 
increment n.

Step 21 Repeat steps 11 
through 20 for desired 
number of fluid time 

steps N.
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Convergence Cycle 

  
Step 11 Generate 

the best fit 
polynomials of the 
force as a function 

of time and 
moment as a 

function of time up 
to n-1.

Step 12 Solve the 
rigid body 

equations of 
motion from time 
step n-2 to time 

step n-1 using the 
forcing functions 
found in step 11.

Step 13 Generate best 
fit polynomials of 
MAV position as a 

function of time and 
MAV velocity as a 

function of time and 
extrapolate to step n.

Step 14 Recalculate 
total fluid 

momentum at step 
n-1 and n.

Step 15 Use the 
updated fluid 
momentum in 

Eqns. (2.10) and 
(2.11) to recalculate 

the forces and 
moments at time 

step n-1.

Step 16 Repeat 

steps 11-15 until 

residuals of total 

fluid momenta 

converge to 

(Res<1E-6). 

 

Figure 6.1 - Flow chart of single rigid body solution procedure 
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Figure 6.2a – End of second cycle 

 

Figure 6.2b – End of fourth stroke 
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Figure 6.2c – Middle of sixth stroke 

 
Figure 6.2d – Middle of seventh stroke 

 

Figure 6.2 – Fluid-Single Body Interaction Wake: Black and red circles indicate 

vortices shed from leading and trailing edges, respectively, dotted line indicates 

flight path, blue circle indicates MAV position, arrow indicates MAV orientation 
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6.4 Results 

An example of the time evolution of the wake vortex output plot of The Kinetic 

Predictor-Fluid Corrector Algorithm is shown in Figure 6.2. The black and red 

circles indicate vortices shed from leading and trailing edges, respectively, the 

black dotted line indicates the MAV’s calculated flight path, the large blue circle 

indicates the current MAV position, the blue arrow indicates the current calculated 

MAV orientation. As can be seen from the figure, the MAV body moves in a slight 

zig-zag path due to the cyclical flapping forces as expected. 

The fluid-rigid body solution converges based on total fluid momentum for 

time steps under a certain threshold which is dependent on the input flapping 

kinematic parameters. As expected, the solution converges more quickly for 

smaller time steps than for larger ones. For example, a simulation with a 

nondimensional time step of 0.0325 periods converges in about 8 convergence 

cycles and a simulation with a nondimensional time step of 0.0163 periods 

converges in about 3 convergence cycles. Given that the solution procedure for the 

equations of motion of a single a 2D planar rigid body is relatively straightforward 

and well established, the solution can be assumed to be correct. However, in the 
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future and for more complex 3D or multibody simulations, it would be prudent to 

check the solution for energy and momentum conservation. 

The convergence cycle shown in Figure 6.1 is carried out at each time step and 

consists of a while loop whose exit criteria is defined as when the total fluid 

momentum remains constant from one cycle to the next and has thus converged. 

The residuals of the total fluid momenta, which define how much fluid momenta 

have changed from the previous iteration of the convergence cycle to the present 

one, are calculated as follows: 

 

 
𝑅𝑒𝑠𝐿 =

|𝐿𝑡𝑜𝑡𝑎𝑙
𝑚−1 − 𝐿𝑡𝑜𝑡𝑎𝑙

𝑚 |

|𝐿𝑡𝑜𝑡𝑎𝑙
𝑚−1 |

  , 

, 

, 

(6.4) 

 

 

 

 
𝑅𝑒𝑠𝐻 =

|𝐻𝑡𝑜𝑡𝑎𝑙
𝑚−1 − 𝐻𝑡𝑜𝑡𝑎𝑙

𝑚 |

|𝐻𝑡𝑜𝑡𝑎𝑙
𝑚−1 |

  , 
(6.5) 

 

 

where 𝑅𝑒𝑠𝐿  and 𝑅𝑒𝑠𝐻  are the residuals of the total linear and angular fluid 

momenta, respectively, 𝐿𝑡𝑜𝑡𝑎𝑙
𝑚  and 𝐻𝑡𝑜𝑡𝑎𝑙

𝑚  are the total linear and angular fluid 

momenta calculated for iteration 𝑚 of the convergence loop, respectively. 

Depending on the input parameters, the residuals of the solution of the total 

fluid momenta at a given time step will usually converge after less than eight 
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predictor-corrector iterations down to levels as low as 1E-6. The time increment 

was determined by conducting a time step size convergence study which 

examined the accuracy of the solution as the time step was reduced. The 

nondimensional time step which solved sufficiently fast and with sufficient 

accuracy was determined to be 0.0325 periods (which corresponds to m=25 from 

[4]). 

By observing the orientation of the MAV (represented by the arrow) from 

Figure 6.2a to Figure 6.2d, one may note that the body of the MAV tends to rotate 

clockwise, which must be due to an unbalanced nose-down moment. Upon 

observation of the plot of the moment vs. time (Figure 6.3), one may indeed 

confirm that on average the moment acting on the body of the MAV is clockwise. 

Since the MAV will likely have sensing equipment (e.g. a camera), this nose down 

rotation is undesirable, as it would make achieving simple tasks such as locating 

and avoiding an obstacle very difficult. 
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Figure 6.3 - Pitching moment vs. time 

 

In order to balance this nose down moment, one may simply move the center 

of mass towards the rear of the MAV with respect to the wings, such that the lift 

force produced by the wing in combination with gravity acting at this center of ass 

would produce a force couple in forward flight which is exactly equal and 

opposite to the unbalanced moment generated from flapping, thereby balancing 

the MAV body. 
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However, this would not be sufficient for all flight conditions as it is further 

purported the average value of this unbalanced moment would change based on 

any variation in fight speed, flapping kinematics, or environmental conditions. 

Referring to Figure 5.9, one may note that changes in wind direction (or 

equivalently, the MAV’s flight direction) would indeed change the average 

pitching moment. 

For a solution to this control issue, one may turn to natural fliers for inspiration. 

It is well known that most, if not all, natural flapping wing animals and insects do 

not simply have a single rigid body, but a number of bodies which can be oriented 

with respect to one another using muscles. A simple example is a two-body 

flapping wing insect, whose body consists of a thorax, which contains the head 

and is where the wing attaches, and an abdomen. In natural flight, one may 

observe the insect changing the angle between the thorax and abdomen. It is 

thought that by adjusting the angle between the thorax and abdomen, the insect is 

carefully balancing the pitching moment created from flapping in order to keep 

the thorax (and consequently the head and eyes) steady during flight. 

Therefore, in the next chapter the solver will be expanded to allow for the 

solution of two rigid bodies connected by a pin joint and actuated with respect to 

one another by a rotary actuator. Subsequently, the control of this actuator and the 

effect of the additional body will be studied. The results are used to test the 
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hypothesis that the abdomen of a two-body flapping wing insect is used to actively 

stabilize the thorax in order to allow the insect to more easily identify obstacles 

and targets (e.g. food). 
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Chapter 7 | The Two-Body Problem 

In the previous chapter the Kinetic Predictor-Fluid Corrector Algorithm was 

introduced and applied to a single 2D rigid body MAV model. During upward-

forward flight, the MAV model tended to pitch nose down due to an unbalanced 

clockwise moment. Taking inspiration from nature, it was suggested that this 

unbalanced moment could be counteracted and the first rigid body be stabilized 

by introducing a second movable body attached to the first. 

Now that the fluid-rigid body solution procedure has been successfully 

implemented for the basic single-body case and the problematic and unpredictable 

pitching moment is causing an undesirable rotation, the focus of the present study 

is shifted toward solving the equations of motion for a two-body system whose 

bodies are connected by a pin joint and adjusted with respect to one another using 

a rotary actuator. 
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7.1 Coordinate Systems 

The coordinate systems and fluid force (F) and moment (M) are illustrated in 

Figure 7.1. 

 

 

Figure 7.1 - Coordinate systems and free body diagram of two-body MAV 
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7.2 The Lagrange Multiplier Formulation 

There are several well established solution methods for solving a multi-body 

dynamics problems [16]. One method would be to eliminate the reaction forces 

from the equations of motion which in the case of two bodies connected by a pin 

joint would produce four variables and four equations. However, these equations 

would be nonlinear and thus the solution method would become fairly complex 

and convergence would be slow. Therefore, the first approach to be demonstrated 

is the Lagrange Multiplier formulation. 

Referring to Figure 7.1, the following constraint equations are defined: 

 

 Φ⃑⃑⃑ = 𝑟 1+𝑂𝑨1 𝑠 𝑝
[1]

− 𝑟 2−𝑂𝑨2 𝑠 𝑝
[2]

= 0⃑   , 

 

(7.1) 

 

 

where 𝑟 1 and 𝑟 2 are the position vectors of bodies 1 and 2 in the space fixed frame, 

respectively, 𝑂𝑨1 and 𝑂𝑨2 are the transformation matrices from the space fixed 

system to systems 1 and 2, respectively, and 𝑠 𝑝
[1]

 and 𝑠 𝑝
[2]

 are the positions of the 

pin joint in systems 1 and 2, respectively. These equations are the x and y loop 

equations which are to be satisfied at all instants in order to ensure that the bodies 

remain attached at the pin joint. 
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Next, the coordinates of the two bodies are defined by the following vector: 

 

 

𝑞 =

[
 
 
 
 
 
𝑥1

𝑦1

𝜃1
𝑥2

𝑦2

𝜃2]
 
 
 
 
 

 . 

 

(7.2) 

 

 

The derivate of the constraint equations with respect to the coordinates can 

then be found to be 

 

 
Φ⃑⃑⃑ 𝑞 = [

1 0 −𝑦𝑝/1
[𝑂]

−1 0 𝑦𝑝/2
[𝑂]

0 1       𝑥𝑝/2
[𝑂]

0 −1 −𝑥𝑝/2
[𝑂]

]  , 
(7.3) 

 

 

 

where 𝑥𝑝/2
[𝑂]

 is read as “the x-value of the vector from the origin of system 2 to point 

P in the expressed in the space fixed coordinate frame”. 

Next, the mass matrix is defined by the following diagonal matrix: 

 

 

𝑴 =

[
 
 
 
 
 
𝑚1 0 0
0 𝑚1 0
0 0 𝐼1

0     0    0
0     0    0
0     0    0

0  0  0
0  0  0
0  0  0

𝑚2 0 0
0 𝑚2 0
0 0 𝐼2]

 
 
 
 
 

  , 

 

 

(7.4) 
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where 𝑚1 and 𝑚2 are the masses of the first and second body, respectively, and 𝐼1 

and 𝐼2 are the mass moments of inertia of the first and second body, respectively. 

The first and second bodies are defined as the abdomen and thorax, respectively. 

The corresponding acceleration vector is as follows: 

 

 

𝑞 ̈ =

[
 
 
 
 
 
 
𝑥1̈

𝑦1̈

𝜃1̈

𝑥2̈

𝑦2̈

𝜃2̈]
 
 
 
 
 
 

 

 

 

(7.5) 

 

where 𝑥�̈�, 𝑦�̈�, and 𝜃�̈� are the linear accelerations in the x and y directions and the 

angular acceleration in the 𝜃-direction, respectively, for the i-th body (i = 1,2). 

The force vector is defined as follows: 

 

 

𝑔 =

[
 
 
 
 
 
𝐹𝑥1

𝐹𝑦1

𝑀𝑧1

𝐹𝑥2

𝐹𝑦2

𝑀𝑧2]
 
 
 
 
 

 , 

 

 

(7.6) 

 

where 𝐹𝑥𝑖, 𝐹𝑦𝑖, and 𝑀𝑧𝑖 are the sum of the forces in the x and y-directions and the 

sum of the moments about z, respectively, for the i-th body (i = 1,2). 
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Next, the pseudo-forces derived from the quadratic angular velocity terms of 

the equations of motion are defined as follows: 

 

 
𝛾 = [

𝑥𝑝/1
[𝑂]

 �̇�1
2 − 𝑥𝑝/2

[𝑂]
  �̇�2

2

𝑦𝑝/1
[𝑂]

 �̇�1
2 − 𝑦𝑝/2

[𝑂]
  �̇�2

2
]   , 

(7.7) 

 

 

and the Lagrange multipliers which represent the coefficients used to express the 

constraint reaction forces as a linear combination of the derivative of the constraint 

equations with respect to the coordinate vector are defined as follows: 

 

 

 𝑔 𝐶 = Φ⃑⃑⃑ 𝑞
𝑇 𝜆   , (7.8) 

 

where 𝑔 𝐶 is the reaction force vector and superscript T indicates the transpose of a 

vector. 

Finally, putting it all together the equations of motion for the two-body pin-

connected system are expressed as follows: 

 

 
[
𝑴 Φ⃑⃑⃑ 𝑞

𝑇

Φ⃑⃑⃑ 𝑞 𝟎
] [

𝑞 ̈

−𝜆 
] = [

𝑔 

𝛾 
] 

(7.9) 
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Each time the ODE subroutine is called, this linear system is solved for the 

accelerations and Lagrange multipliers and the accelerations are used as part of 

the system of 12 first order ODEs defined as follows: 

 

 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
 
 
 
 
𝑥1

𝑦1

𝜃1

𝑥2
𝑦2

𝜃2
𝑢1

𝑣1
𝜔1

𝑢2
𝑣2

𝜔2]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝑢1

𝑣1
𝜔1

𝑢2
𝑣2

𝜔2

𝑥1̈

𝑦1̈

𝜃1̈

𝑥2̈

𝑦2̈

𝜃2̈ ]
 
 
 
 
 
 
 
 
 
 
 

  , 

 

 

 

 

(7.10) 

 

 

where 𝑢𝑖, 𝑣𝑖, and 𝜔𝑖 are the 𝑥 and 𝑦-direction linear accelerations and 𝜃-direction 

angular acceleration, respectively, for the i-th body (i = 1,2). 
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7.3 The Two-Body Solution Procedure 

The solution procedure is shown in the flowchart in Figure 7.2:  

 

 

  

Step 2 Generate the 
best fit polynomials of 
the force as a function 
of time and moment as 
a function of time for 

the tethered MAV up to 
time step 2. Step 3 Solve the two-

body equations of 
motion from time step 
1 to time step 2 using 
the forcing functions 

found in solution 
procedure step 2 as the 
input to the two-body 
solution sub-routine.

Step 4 Generate best fit 
polynomials of MAV 

position as a function of 
time and MAV velocity as 

a function of time and 
extrapolate to step 3.

Step 5 Recalculate total 
fluid momentum at 

step 2 and 3 using the 
newly found position 
and velocity values.

Step 6 Use the 
updated fluid 

momentum in Eqns. 
(2.10) and (2.11) to 

recalculate the forces 
and moments at time 

step 2.

Step 7 Repeat 
steps 2-6 until 

residuals of total 
fluid momenta 

converge to 
(Res<1E-6).

Step 1 Obtain the fluid forces for first half cycle of flapping by fixing the MAV 
body in space. Fixing the MAV allows the initial force peak associated with the 
sudden acceleration of the wing from rest to settle. For explanatory purposes, 
let the first step of the second half cycle be time step 3. It is important to note 
that the heaving direction angle (stroke plane angle from [4]) remains fixed 

with respect to the ground regardless of the orientation of the MAV.
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Step 8 Generate best 
fit polynomials of 

positions and 
velocities and 

extrapolate to time 
step 4.

Step 9
Calculate the 
impulses at 
time step 4.

Step 10 Calculate 
forces and moments 
at time step 4, then 

increment to time step 
5 (n=n+1=5).

Convergence Cycle 
(Steps 11-16, next 

page)

Step 17 Repeat 
steps 11-12 to solve 
for the converged 

positions and 
velocities at time 

step n-1. 

Step 18 Generate 
best fit 

polynomials of 
positions and 
velocities and 

extrapolate to step 
n+1.

Step 19 Calculate 
the impulses at step 

n+1.

Step 20 Calculate 
forces and 

moments at time 
step n+1, then 
increment n.

Step 21 Repeat steps 11 
through 20 for desired 
number of fluid time 

steps N.
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Convergence Cycle 

 

 

  

Step 11 Generate 
the best fit 

polynomials of the 
force as a function 

of time and 
moment as a 

function of time up 
to n-1. Step 12 Solve the 

two-body equations 
of motion from time 
step n-2 to time step 
n-1 using the forcing 
functions found in 

step 11 and the two-
body equations of 

motion sub-routine.

Step 13 Generate best 
fit polynomials of 
MAV position as a 

function of time and 
MAV velocity as a 

function of time and 
extrapolate to step n.

Step 14 Recalculate 
total fluid 

momentum at step 
n-1 and n.

Step 15 Use the 
updated fluid 
momentum in 

Eqns. (2.10) and 
(2.11) to recalculate 

the forces and 
moments at time 

step n-1.

Step 16 Repeat 

steps 11-15 until 

residuals of total 

fluid momenta 

converge to 

(Res<1E-6). 
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Two-Body Equations of Motion Sub-Routine 

 

Step A Use previous time 
step's values to obtain OA1,

OA2, Φ, Φq, and γ

Step B Enter 4th order 
Runge Kutta procedure

Step C Solve

Step D Use accelerations 
found in Step C to update 

vector on the RHS of             

(7.10) 

(7.9) 

Figure 7.2 -- Flow chart of solution procedure for two-body problem 
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Figure 7.3a 

 

Figure 7.3b 
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Figure 7.3c 

 

Figure 7.3d 

Figure 7.3 – Two-body Lagrange multiplier formulation wake 
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7.3 Lagrange Multiplier Formulation Results 

Figure 7.3 illustrates an example of the flight path and wake evolution output of 

the fluid-rigid body interaction simulation for two pin-connected bodies solved 

using the Lagrange multiplier formulation. As can be seen from the figure, the 

abdomen causes the thorax to rotate counterclockwise. 

This result is due to the approximate angle and supporting torque applied at 

the pin joint to maintain the angle. However, this result is encouraging because 

the nose-down pitching has been eliminated and thus a method for stabilizing the 

MAV using the torque applied between the two bodies should be possible. 

Upon further examination, however, one may note that the two bodies in 

Figure 7.3 separate as the solution progresses, thereby indicating that the 

constraint loop equations (7.1) have been violated. This is a common problem with 

the Lagrange multiplier formulation of multi-body dynamics. Therefore, despite 

the advantage of solving the system of equations of motion with a constant mass 

matrix, the violation of the constraint equations is unacceptable, since this cannot 

be an accurate physical representation of the problem. 
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There are several commonly used methods which can alleviate this issue, 

several of which are described in [16]. The first attempt was to implement the 

“Constraint Violation Stabilization Method”. This method uses tuning variables 𝛼 

and 𝛽 to attempt to adjust 𝜸 using the following system of equations: 

 

 
[
𝑴 Φ⃑⃑⃑ 𝑞

𝑇

Φ⃑⃑⃑ 𝑞 𝟎
] [

𝑞 ̈

−𝜆 
] = [

𝑔 

𝛾 − 2𝛼Φ⃑⃑⃑ ̇ − 𝛽2Φ⃑⃑⃑ 
]  . 

(7.11) 

 

While this method did improve the solution considerably, the two bodies still 

tended to separate given certain input parameters. Several combinations of values 

for 𝛼  and 𝛽  were used but none of them adequately remedied the problem. 

Therefore, it was decided that the full nonlinear set of the equations of motion 

would be solved using MATLAB’s built-in nonlinear system solver “fsolve”, 

which is based on the Levenberg-Marquardt trust-region method from [17]. 
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7.4 Nonlinear Solution Method 

In order to improve the accuracy of the solution method, the equations of motion 

were re-derived such that the reaction forces at the pin joint were eliminated, 

thereby creating a set of four variables and four equations to be solved. The four 

dependent variables chosen were 𝑥1, 𝑦1, 𝜃1,  and 𝜃2 . The free-body diagrams of 

body 1 and 2 are shown in Figure 7.4. 

 

 

 

 

 

 

 

 

 

In Figure 7.4, the reaction forces are indicated by 𝑅𝑥 and 𝑅𝑦, the fluid forces 

and moment acting on the wing by 𝐹𝑥, 𝐹𝑦, and 𝑀𝑧, and the torque applied between 

the bodies to keep balance the MAV by  𝑇𝑎𝑝𝑝𝑙. 

 

 

Figure 7.4 - Free body diagram of two-body system 

𝑅𝑥 

𝑅𝑦 𝑚1𝑔 

𝑚2𝑔 

𝑅𝑦 

𝑅𝑥 

𝐹𝑦 

𝐹𝑥 

𝑇𝑎𝑝𝑝𝑙 

𝑇𝑎𝑝𝑝𝑙 𝑀𝑧 

𝑃𝑖𝑛 𝐽𝑜𝑖𝑛𝑡 
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The six equations of motion were found to be as follows: 

𝐵𝑜𝑑𝑦 1: 

 

 𝑥: 𝑅𝑥 = 𝑚1𝑥1̈ , (7.12a) 

 

 𝑦: 𝑅𝑦 − 𝑚1𝑔 = 𝑚1𝑦1̈ , 

 

(7.12b) 

 

 𝜃: 𝑇𝑎𝑝𝑝𝑙 = 𝑅𝑦𝐿1𝑐𝑜𝑠𝜃1 − 𝑅𝑥𝐿1𝑠𝑖𝑛𝜃1 − 𝐼1𝜃1̈ , (7.12c) 

 

𝐵𝑜𝑑𝑦 2: 

 

 𝑥: − 𝑅𝑥 + 𝐹𝑥 = 𝑚2𝑥2̈ , (7.12d) 

 

 𝑦: − 𝑅𝑦 + 𝐹𝑦 − 𝑚2𝑔 = 𝑚2𝑦2̈ , 

 

(7.12e) 

 

 𝜃: 𝑇𝑎𝑝𝑝𝑙 + 𝑀 − 𝑅𝑥𝐿2𝑠𝑖𝑛𝜃2 + 𝑅𝑦𝐿2𝑐𝑜𝑠𝜃2 = 𝐼2𝜃2̈ , (7.12f) 

where 𝐿1 and 𝐿2 are the distances from the center of mass of body one to the pin 

joint and from the center of mass of body 2 to the pin joint, respectively. 
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By eliminating the reaction forces, one may arrive at the following four 

equations: 

 

 (𝑚1 + 𝑚2)𝑥1̈ − 𝐹𝑥 + 𝑚2𝐴 = 0 , ((7.13a) 

 

 𝑦1̈(𝑚1 + 𝑚2) − 𝐹𝑦 + (𝑚1 + 𝑚2)𝑔 + 𝑚2𝐵 = 0 , ((7.13b) 

 

 𝐼1𝜃1̈ − 𝑚1(𝑔 + 𝑦1̈)𝐿1cos𝜃1 + 𝑚1𝑥1̈𝐿1𝑠𝑖𝑛𝜃1 + 𝑇𝑎𝑝𝑝𝑙 = 0 , ((7.13c) 

 

 𝐼2𝜃2̈ − 𝑇𝑎𝑝𝑝𝑙 − 𝑀 + 𝑚1𝑥1̈𝐿2𝑠𝑖𝑛𝜃2 − 𝑚1(𝑔 + 𝑦1̈)𝐿2𝑐𝑜𝑠𝜃2 = 0 , (7.13d) 

 

where, 

 

𝐴 = −𝐿1𝜃1̇
2
𝑐𝑜𝑠𝜃1 − 𝐿1𝜃1̈ sin 𝜃1 − 𝐿2𝜃2̇

2
𝑐𝑜𝑠𝜃2 − 𝐿2𝜃2̈𝑠𝑖𝑛𝜃2  , 

 

𝐵 = −𝐿1�̇�1
2
𝑠𝑖𝑛𝜃1 + 𝐿1𝜃1̈ cos 𝜃1 − 𝐿2𝜃2̇

2
𝑠𝑖𝑛𝜃2 + 𝐿2𝜃2̈𝑐𝑜𝑠𝜃2  . 
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In order to use the Runge-Kutta method, this system of second order ODEs was 

then converted into a system of eight first order ODEs as follows: 

 

 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
𝑥1

𝑦1

𝜃1

𝜃2
𝑢1
𝑣1
𝜔1

𝜔2]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑢1

𝑣1
𝜔1

𝜔2

𝑥1̈

𝑦1̈

𝜃1̈

𝜃2̈ ]
 
 
 
 
 
 
 

  , 

 

(7.14) 

 

 

where the nonlinear system solver from [17] was used to find the accelerations 

within the Runge-Kutta subroutine. 
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7.5 Selection of Initial Body Angles and Balancing Torque 

In order to create a stable two-body system, one must first find the correct angle 

of body 2 in order to begin near the balancing point for the MAV. In addition, the 

frictionless pin joint would allow the two bodies to swing wildly without an 

applied torque to hold the angle between the bodies constant. Therefore, it will 

also be the goal of this calculation to find the applied torque (𝑇𝑎𝑝𝑝𝑙). First, the 

following assumptions will be made: 

 

 𝑥1̈ = 𝑥2̈  , 7.15a 

 
 

 𝑦1̈ = 𝑦2̈  , 7.15b 

 
 

 𝜃1̇ = 𝜃1̈ = 𝜃2̇ = 𝜃2̈ = 0 . 7.15c 

 

These assumptions effectively describe the state where the bodies move 

together without rotation. While this may not be possible at every instant, this is 

generally the goal on average in order to stabilize the MAV and prevent 

unbalanced rotations. 
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These six assumptions simplify Eqns. (7.12a)-(7.12f) into the following six 

equations: 

 

 𝑅𝑥 − 𝑚1𝑥1̈ = 0  , 7.16a 

 

 𝑅𝑦 − 𝑚1(𝑔 + 𝑦1̈) = 0  , 7.16b 

 

 𝑅𝑦𝐿1cos𝜃1 − 𝑅𝑥𝐿1𝑠𝑖𝑛𝜃1 − 𝑇𝑎𝑝𝑝𝑙 = 0  , 7.16c 

 

 𝐹�̅� − 𝑅𝑥 − 𝑚2𝑥1̈ = 0  , 7.16d 

 

 𝐹�̅� − 𝑅𝑦 − 𝑚2𝑔 − 𝑚2𝑦1̈ = 0  , 7.16e 

 

 𝑇𝑎𝑝𝑝𝑙 + �̅� − 𝑅𝑥𝐿2𝑠𝑖𝑛𝜃2 + 𝑅𝑦𝐿2𝑐𝑜𝑠𝜃2 = 0  , 7.16f 

 

 

where the overbar indicates the time averaged value over the second flapping 

cycle. The second cycle was chosen because the solution of the forces and moment 

is very close to the solution after many cycles. 
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These six equations can then be solved using the nonlinear solution method 

from [17] for the six unknowns within them. These unknowns are 𝑅𝑥,  𝑅𝑦,

𝑇𝑎𝑝𝑝𝑙, 𝑥1̈, 𝑦1̈, and 𝜃1. Note that we are not interested in the solution of the linear 

positions or velocities and that the assumptions from Eqns. 7.15a-7.15c allow for 

the elimination of the time derivatives of the angular positions. Therefore, the 

system is solved algebraically without the need for an ODE solver. 

As stated earlier, the goal of this calculation is to find 𝜃1 and 𝑇𝑎𝑝𝑝𝑙. The values 

found are used as the initial values. After the first time step, an active control 

system feedback loop will be used to adjust the torque as necessary in order to 

stabilize the rotation of the MAV. 
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7.6 Active Stabilization Control 

The selected control system is a proportional control closed loop system from [18] 

which uses the angle of body 2 (the controlled variable) to manipulate the torque 

applied at the pin joint (equal and opposite to each body).  The block diagram for 

this control system is shown in Figure 7.5. 

 

 

 

 

 

 

In Figure 7.5, 𝐹(𝑠) is the set point, 𝐸(𝑠) is the signal error, 𝐾𝑃 is the 

proportional gain, 𝑈(𝑠) is the controller input, 𝐺(𝑠) is the controller transfer 

function, and 𝑋(𝑠) is the controller output. 

 

 

 

 

 

𝐾𝑃 𝐺(𝑠) 
+ 

- 

𝐹(𝑠) 𝐸(𝑠) 𝑈(𝑠) 𝑋(𝑠) 

Figure 7.5 - Block diagram of proportional controller 
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The resulting discrete controller output is as follows: 

 

 𝑇𝑎𝑝𝑝𝑙
𝑛 = 𝑇𝑎𝑝𝑝𝑙

0 − 𝐾𝑃𝑇𝑎𝑝𝑝𝑙
0 (𝜃2

𝑛−1 − 𝜃2
0) , (7.17) 

 
 

where  𝑇𝑎𝑝𝑝𝑙
𝑛 = 𝑥(𝑡) is the updated applied torque used for time step n, 𝑇𝑎𝑝𝑝𝑙

0  is the 

approximate applied torque value found in Section 7.5, 𝜃2
𝑛−1 is the measured value 

of the angle of body 2 at the previous time step, and 𝜃2
0 is the desired value of the 

angle of body 2. In a real MAV, the measured value 𝜃2
𝑛−1 could be obtained using 

a gyroscope. 

 The gain of the proportional control feedback loop was tuned in order to 

achieve the desired result. It was found that the ideal gain to stabilize the MAV 

was 400
𝑁𝑒𝑤𝑡𝑜𝑛−𝑚𝑒𝑡𝑒𝑟𝑠

𝑟𝑎𝑑𝑖𝑎𝑛
. 
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7.7 Nonlinear Two-Body Solution Procedure with Control 

The full two-body solution procedure, including the nonlinear differential 

equation solver and active stabilization control is shown in the flowchart in Figure 

7.6: 

 

  Step 1 Obtain the fluid forces for first two cycles of flapping by 
fixing the MAV body in space. Fixing the MAV allows the initial 

force peak associated with the sudden acceleration of the wing from 
rest to settle. For explanatory purposes, let the first step of the third 

cycle be time step 3. It is important to note that the heaving 
direction angle (stroke plane angle from [4]) remains fixed with 
respect to the ground regardless of the orientation of the MAV.

Step 2 Find 𝐹𝑥 , 𝐹𝑦 , and 𝑀𝑧 for the second flapping cycle.

Step 3 Solve for approximate balancing 𝑇𝑎𝑝𝑝𝑙 and 𝜃1 using 

Eqns. 7.16 
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Step 5 Generate the 
best fit polynomials of 
the force as a function 
of time and moment as 
a function of time for 

the tethered MAV up to 
time step 2. Step 6 Solve the two-

body equations of 
motion from time step 
1 to time step 2 using 
the forcing functions 

found in solution 
procedure step 5 as the 
input to the nonlinear 
solution sub-routine.

Step 7 Generate best fit 
polynomials of MAV 

position as a function of 
time and MAV velocity as 

a function of time and 
extrapolate to time step 3.

Step 8 Recalculate total 
fluid momentum at 
time steps 2 and 3 

using the newly found 
position and velocity 

values.

Step 9 Use the 
updated fluid 

momentum in Eqns. 
(2.10) and (2.11) to 

recalculate the forces 
and moments at time 

step 2.

Step 10 Repeat 
steps 5-9 until 

residuals of total 
fluid momenta 

converge to 
(Res<1E-6).

Step 4 Set 𝜃1 and 
manipulated variable 𝑇𝑎𝑝𝑝𝑙 to 
initial values found in Step 3.
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Step 11 Generate best 
fit polynomials of 

positions and 
velocities and 

extrapolate to time 
step 4.

Step 12
Calculate the 
impulses at 
time step 4.

Step 13 Calculate 
forces and moments 
at time step 4, then 

increment to time step 
5 (n=n+1=5).

Convergence 
Cycle (Steps 14-
19, next page)

Step 20 Update 
𝑇𝑎𝑝𝑝𝑙 using       

Eqn. 

Step 20 Repeat 
steps 14-15 to 
solve for the 
converged 

positions and 
velocities at time 

step n-1. 
Step 21 Generate 

best fit 
polynomials of 
positions and 
velocities and 

extrapolate to step 
n+1.

Step 22
Calculate the 

impulses at step 
n+1.

Step 23 Calculate 
forces and 

moments at time 
step n+1, then 
increment n.

Step 24 Repeat steps 14 
through 21 for desired 
number of fluid time 

steps N.

(7.17) 
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Convergence Cycle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Step 14 Generate 
the best fit 

polynomials of 
the force as a 

function of time 
and moment as a 
function of time 

up to n-1.
Step 15 Solve the 

two-body equations 
of motion from 
time step n-2 to 

time step n-1 using 
the forcing 

functions found in 
step 14 and the 

nonlinear solution 
sub-routine.

Step 16 Generate 
best fit polynomials 
of MAV position as 
a function of time 
and MAV velocity 

as a function of 
time and 

extrapolate to step 
n.

Step 17 
Recalculate total 
fluid momentum 
at step n-1 and n.

Step 18 Use the 
updated fluid 
momentum in 

Eqns. (2.10) and 
(2.11) to 

recalculate the 
forces and 

moments at time 
step n-1.

Step 19 Repeat 

steps 14-18 until 

residuals of total 

fluid momenta 

converge to 

(Res<1E-6). 
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Two-Body Nonlinear Equations of Motion Sub-Routine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 - Updated Solution Procedure Flowchart  

Step A Enter 4th order Runge Kutta 
procedure

Step B Solve Eqn. (7.13) 

Step C Use accelerations found 

in Step B to update vector on the 

RHS of Eqn. (7.14) 
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7.8 Nonlinear Solution Method Results 

Figure 7.7 illustrates the resulting wake plot of the nonlinear equation solver 

with the active control system. Note that the MAV is now balancing such that the 

rotation of bodies 1 and 2 has ceased. In Figure 7.8, one can note that the control 

system has effectively reversed the increasing angle of body 1, indicating that the 

system is beginning to respond to the control and effectively reversing the 

undesirable rotation. 
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Figure 7.7a 

 

Figure 7.7b 
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Figure 7.7c 

 

Figure 7.7d 

Figure 7.7 - Two-body wake plot with control 
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Figure 7.8a 

 

Figure 7.8b 

Figure 7.8 - Body 2 angle with (b) and without (a) active control system 

𝜃1 

𝜃1 

Time Step Index 

Time Step Index 
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Chapter 8 | Conclusions 

Fast, specialized CFD solvers will be required to usher in a new age in aerospace 

technologies. Unsteady flow problems such as that of flapping wings require vast 

computational resources which make their solutions inaccessible to the average 

designer. 

In addition, the growing energy demand and concerns about its production 

warrants the investigation of innovative renewable energy technologies. Wind 

energy is the fastest growing renewable energy market, and the industry standard 

HAWT has many drawbacks. Flapping wing systems may eliminate many of these 

drawbacks while maintaining similar aerodynamic efficiencies. 

Flapping systems are generally characterized by a weak dependence on 

Reynolds number and a strong dependence on reduced frequency. The forces are 

primarily generated by a vortex at the leading edge, which derives its strength 

from the momentum of the fluid on both the top and bottom surfaces of the wing. 

The duration which this vortex remains attached defines the optimal flapping 

frequency and is dependent on the chord length of the wing as well as the free 

stream velocity of the fluid. 
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Although flapping wing flight has been studied much more thoroughly than 

flapping wing energy harvesting, it already appears that many of the same 

principles are involved in optimizing efficiency apply in both cases. The leading 

edge vortex is one mechanism that seems to be vital to the viability of both 

systems, as both operate almost constantly in a highly separated dynamic stall 

regime. 

Rapid pitching is similar to the Magnus effect in that the rotating surface in a 

cross flow generates lift. It has been shown to enhance lift in both systems a 

considerable amount. 

Wake capture, although carried out with a single wing in insect flight and dual 

wings in energy harvesting, has been shown to enhance performance in both 

systems as well. 

It also appears that the clap and fling mechanism may apply to both systems. 

The vortex pair in both cases creates an imaginary wall, compressing the oncoming 

flow and increasing velocity, thereby lowering the pressure between the wings 

and increasing the lift force. 

This leaves one to wonder whether the tip vortex mechanism may also apply 

to flapping wing energy harvesters. A further study could include a rotary 

flapping wing energy harvester that more closely matches the kinematics of the 

flapping wing insect to examine the plausibility of such a claim. 
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A novel, highly efficient impulse-momentum vortex method solver has been 

developed and optimized using a massively parallel computing approach on an 

affordable workstation GPU. The solver has proven to be very accurate for short 

simulations, but the pitching moment tends to increase for simulations involving 

several flapping cycles. 

In order to more accurately model the flow physics and maintain a constant 

moment amplitude for long simulations, a novel approach involving the lumping 

of far field point vortices allows for the inviscid solver to simulate viscous wake 

vortex decay. 

In order to maintain solution accuracy, it was found that careful adjusting 

calculations had to be made to correct the linear and angular momenta. In 

addition, a lumped far field vortex model was adopted to eliminate unphysical 

high frequencies associated with the removal process, thereby maintaining the 

circulation solution’s stability. 

The lumped vortex model was shown to successfully maintain a constant 

moment, and was compared to the previous method as well as published data 

from a full unsteady Navier Stokes simulation for a flapping wing. 

As an added benefit, the new method greatly reduced the computation time by 

reducing the proportionality of computation time from N^2 to N. Finally, the time 
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threshold for lumping was determined to be when a given vortex had convected 

so far from the wing that its influence is less than 0.5% of the free stream velocity.  

Several flow angles were tested to ensure the new method was sufficiently 

consistent in its ability to maintain a constant moment amplitude. The new method 

did in fact maintain the moment amplitude despite changing incident flow angles. 

The Lumped Wake Vortex Method was then coupled successfully to a rigid 

body solver by the use of a an iterative Kinetic-Predictor Fluid-Corrector algorithm 

which had been shown to converge to residuals based on the total fluid momenta 

down to 1E-6. 

The fluid-rigid body simulation was then expanded to a two-body pin-

connected system in order to test the hypothesis that the abdomen of a flapping 

wing insect is used to stabilize the thorax. The results of this simulation seem to 

verify this hypothesis by predicting a reversal of the undesired nose down 

pitching observed in the single body case. 

The initial rigid body solution method was the Lagrange multiplier method. 

While this method produced reasonably accurate results, the constraint equation 

was violated, and a better solution method was therefore pursued. 

The equations of motion were reduced to a set of four equations and four 

variables by eliminating the reaction forces between the two bodies. This forced 

the constraint to be satisfied at the expense of increased solution procedure 
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complexity. A nonlinear equation solver was used within the 4th order Runge 

Kutta solver to successfully integrate the nonlinear system of ODEs. 

An active control system was then implemented successfully, giving promise 

to the suggested control strategy. The results with and without the active control 

system indeed provide evidence that the increasing angle observed in the case 

without control has been successfully reversed. 

Future work involving the fluid-rigid body method described herein would 

include the adaptation of the solver to handle a three-dimensional MAV 

simulation. Also, the designer would most likely be interested in the motor torque 

required to drive the flapping mechanism. Therefore, future work could include 

modifying the simulation to take the motor constants as inputs to determine the 

flapping motion based on the motor torque rather than prescribing the wing 

motion. In addition, further work needs to be done to examine the various 

strategies for control and methods of tuning the active control system. Finally, 

further work to produce a working prototype of a biomimetic flapping wing MAV 

could allow for further verification of the simulation as well as the control strategy. 
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