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Abstract

Coarse Geometry of Out(A1 ∗ ... ∗An)

By Saikat Das

Dissertation Director: Lee Mosher

In this thesis we have examined Γn := Out(Gn) from the perspec-

tive of geometric group theory, where Gn = A1 ∗ ... ∗An, is a finite free

product and each Ai is a finite group. We wanted to inspect hyperbolic-

ity and relative hyperbolicity of such groups. We used the Out(Gn) ac-

tion on the Guirardel-Levitt deformation space, [GL07], to find a virtual

generating set and prove quasi isometric embedding of a large class of

subgroups. To prove non-distortion we used arguments similar to those

used in [HM13] and [Ali02]. We used these subgroups to prove that Γn

is thick for higher complexities. Thickness implies that the groups are

non relatively hyperbolic for higher complexities, [BDM09].
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1 Introduction

Our research has been motivated by trying to answer the following ques-

tions:

Problem 1. If each Ai is a finite group, then is Γn := Out(A1 ∗ A2 ∗ ... ∗ An)

hyperbolic? If the answer is no, then is it relatively hyperbolic?

Questions similar to these have been answered for Out(Fn) by Behrstock-

Druţu-Mosher[BDM09]. In case of mapping class groups, MCG(S), They

have been independently answered by Karlsson-Noskov [KN04], Bowditch

[Bow05]; Anderson-Aramayona-Shackelton[AAS07]; Behrstock-Druţu-Mosher

[BDM09]. These are two of the most studied groups in geometric group the-

ory.

1.1 Main theorem

The following theorem answers the original question.

Theorem 1.1. If each Ai is finite group, and Γn := Out(A1 ∗ ... ∗An), then for

1. n ≤ 2,Γn is finite.

2. n = 3,Γn is infinite hyperbolic.

3. n > 3, Γn is a thick group of order at most one. As a consequence, Γn is non

relatively hyperbolic when n > 3.

Remark 1.2. Hyperbolicity for n = 3 was proved by Collins, [Col88]. We

will give an independent proof of hyperbolicity in lower complexities (n ≤ 3)

using theorem 1.3 and the topology of the deformation space.
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1.2 Methodology

We have employed the following notable tools in our investigation -

1. Deformation space of G-trees, is a geodesic metric space on which Γn

acts by isometries such that the action is properly discontinuous. We follow

the work of Guirardel-Levitt [GL07], which is the most general theory of such

spaces. Culler-Vogtmann spaces, see [CV86], are examples of Guirardel-

Levitt deformation spaces. The outer automorphisms we have used for un-

derstanding the action resemble the symmetric outer automorphisms inves-

tigated by McCullough-Miller, see [MM96].

2. Algebraic thickness of groups introduced by Behrstock-Druţu-Mosher,

see [BDM09]. Thickness is sufficient to conclude non-relative-hyperbolicity,

see theorem 1.4.

Guirardel-Levitt showed:

Theorem 1.3. [GL07, Theorem 6.1] Deformation space,D(G,H), is contractible.

For n > 3, in addition to theorem 1.3 we use our understanding of Γn and its

action on D(G,H) to inspect its thickness. Behrstock-Druţu-Mosher showed:

Theorem 1.4. [BDM09, Corollary 7.9] If G is a finitely generated group which

is thick, then G is not relatively hyperbolic.

Out(Fn),MCG(S) and some other classes of geometrically interesting groups

are thick for all but finitely many cases and hence non relatively hyperbolic.

To prove thickness we have to find suitable undistorted, zero thick subgroups

of Γn. A subgroup is undistorted in Γn, if a Cayley graph of the subgroup
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can be quasi isometrically embedded in a Cayley graph of Γn. We use ideas

from Handel-Mosher [HM13] to find a coarse Lipschitz retract from the spine

of the deformation space to a sub-complex of the spine. Additionally we use

ideas from Alibegović [Ali02] to prove non-distortion of another class of sub-

groups. A full justice to these ideas cannot be done in this short introduction;

nonetheless, we would like to mention that one of the most innovative geo-

metric ideas in this work can be found in the definition of coarse Lipschitz-

retraction map, see definition 8.10. The author would like to express his

gratitude towards Lee Mosher for this idea and most of the other ideas in

this work.

Anthony Genevois has communicated that there is a nice argument for prov-

ing that Γn is NRH for n > 7 which depends on [GM].
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2 Organization

In this section we will give a brief summary of each section in this exposition.

Section 1 In the introductory section, we have stated the main question,

Problem 1. We have then stated our answer to the question in theorem 1.1.

We have also briefly discussed the methodologies, subsection 1.2, used to

investigate the question.

Section 3 In this section we have discussed some of the basic definitions and

results in geometric group theory, which are relevant to our research. The

reader can skip this section if the reader feels comfortable about the notions

of quasi isometry, Milnor-S̆varc lemma, hyperbolicity, relative hyperbolicity,

Bass-Serre theory, undistorted subgroups and first barycentric subdivision.

Section 4 In section 4, we have defined the deformation space, definition

4.4 and in section 4.2 we have described the topology and geometry of the

deformation space using collapse-expand moves (deformations). The con-

tractibility of the deformation space in this topology is due to the work of

Guirardel-Levitt, theorem 1.3. We conclude the section by proving that Γn

acts geometrically on the spine of the deformation space, SPD(G,H) (re-

mark 4.26). The homotopy equivalence of the deformation space and its

spine follows from lemma 3.24.

Section 5 In section 5.1, we have proved the finiteness of Γ2 using the trivi-

ality of SPD(G2,H). An important consequence of this section is the unique-

ness (up-to homeomorphism) of Ai ∗ Aj-minimal sub-tree, discussed in re-
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mark 5.3. This uniqueness has been exploited in various times in sections

6, 8, to prove the ideas circling the most important results. In section 5.2

we have proved that Γ3 is hyperbolic. This is the only result that uses the

full power of the contractibility of the deformation space, theorem 1.3; else-

where we have used path connectedness of deformation space. Guirardel-

Levitt has given credit to Max Forester [For02] for the proof of path connect-

edness of the deformation space. In section 5.3 we have inspected the orbits

of graphs of groups up-to homeomorphism of SPD(G4,H) under the action

of a finite index subgroup of Γ4, called Ω4.

Section 6 In section 6, we have considered a subgroup Γ′n ≤ Ωn ≤ Γn, where

Ωn is the subgroup that fixes conjugacy class of each element in Γn and Γ′n is

generated by the outer automorphisms that have a representative automor-

phism which acts by the identity on at least one of the factors. We showed

that Γ′n is finite index in Γn. The idea of the proof is to find a connected

sub-complex of SPD(Gn,H) on which Γ′n and Γn acts where the actions are

co-compact and properly discontinuous. The essential part of the proof is

to establish path connectedness of the sub-complex, which has been done in

corollary 6.25. A concrete example of the idea of this proof can be found for

the case of n = 4 in claim 6.7 contained inside the proof of the proposition

6.5.

Section 7 Careful inspection of the definition of Γ′n (definition 6.17), made

it clear that there is a substantial collection of subgroups, which are direct

products of infinite subgroups, when n ≥ 4. Once we observed the presence
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of these infinite subgroups, our motivation was to find a thickly connected

network, definition 7.6, of Γ′4. So, a reader could start from section 7, and see

that Γ′n has a thickly connected network, corollary 7.23 . To prove thickness

of Γn, definition 7.7, we had to prove that Γ′n is finite index in Γn (section 6)

and the subgroups in the network are undistorted in Γ′n (section 8).

Section 8 In section 8, we prove non distortion of certain classes of sub-

groups, corollaries 8.14, 8.28, 8.37. The idea of the proofs of corollaries

8.14, 8.37 are similar. We found a sub-complex of SPD which has a Lips-

chitz retraction from SPD and are quasi-isometric to these sub-groups. This

idea draws inspiration from Handel-Mosher’s paper [HM13]. The idea of the

proof of corollary 8.28 has been motivated by Alibegović’s work [Ali02].

Section 9 In this section we have organized the our conclusions to give a

complete overview of the proof of the theorem.



7

3 Definitions and Preliminaries

In this section, we will define and describe some of the fundamental concepts

of geometric group theory. In geometric group theory, often the object of

study is a geodesic metric space and a subgroup of its symmetry group. From

another point of view the object of study is a group and its action on a

geodesic metric space.

3.1 Fundamental observation in geometric group theory

The following fundamental observation in geometric group theory connects

a group with the geodesic metric space on which it is acting.

Lemma 3.1 (Milnor[Mil68]-S̆varc[S̆55] lemma). For any group G and any

proper geodesic metric space X, if there exists a properly discontinuous, co-

compact, isometric action G y X then G is finitely generated. Furthermore,

for any such action and any point x ∈ X, the orbit map g 7→ g · x is a quasi-

isometry O : G → X, where G is equipped with the word metric of any finite

generating set.

Definition 3.2 (Geodesic metric space). In a geodesic metric space we can

define and measure length of any path using a function called metric. Ad-

ditionally, any two points in the space can be connected by a shortest length

path called geodesic.

Definition 3.3. A metric space is proper if a closed ball is compact.
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Every finitely generated group act on its Cayley graphs by isometries. A ge-

ometry of a finitely generated group means the geometry of a Cayley graph

of the group. Equivalently, it means the geometry of any geodesic metric

space on which the group acts geometrically (properly and co-compactly).

Definition 3.4 (Properly discontinuous action). An action of a finitely gen-

erated group G on a geodesic metric space (X, d) is properly discontinuous

if ∀x ∈ X, there is a neighborhood Ux of x such that the set

{g ∈ G|g · Ux ∩ Ux 6= φ} is a finite set.

Definition 3.5 (Co-compact action). An action of a finitely generated group

G on a geodesic metric space (X, d) is co-compact if the quotient G/X is

compact.

Definition 3.6 (Cayley graph). The Cayley graph of a group with respect to

a finite generating set is a metric space on which the group acts geometri-

cally. Given a finitely generated group G and a finite generating set S, the

Cayley graph of G is a graph with vertex set labeled by group elements and

two vertices labeled by group elements g1 and g2 are connected by an edge

directed from the former vertex to the latter vertex if g−1
1 g2 is an element

of S. If we assign length 1 to each edge and define the distance between

any two vertices on the Cayley graph by the minimum number of edges re-

quired to connect the two vertices, then the Cayley graph can be realized as

a geodesic metric space. The metric on a Cayley graph is a word metric on

G with respect to the generating set S.
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An unlabeled Cayley graph of Z⊕ Z

One of the main objectives in geometric group theory is to classify geodesic

metric spaces up-to quasi isometry. Quasi isometry captures large scale geo-

metric behaviors of metric spaces.

Definition 3.7 (Quasi Isometry). A geodesic metric space (X, dX) is said to

be (K,C)-quasi isometrically embedded for k ≥ 1, C ≥ 0 in a geodesic metric

space (Y, dY ) if there is a function f : (X, dX) → (Y, dY ) which follows the

following inequality ∀x1, x2 ∈ X
1

K
dX(x1, x2) − C ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C. f is called a quasi

isometric embedding.

Additionally, f is a quasi isometry if there is aD ≥ 0 such that ∀y ∈ Y, ∃x ∈ X

with dY (f(x), y) ≤ D. In this case X and Y are said to be quasi isometric.

One of the most prominent quasi-isometry invariant is hyperbolicity. In other

words a non hyperbolic space cannot be quasi isometric to a hyperbolic

space.

Definition 3.8 (Hyperbolicity). A geodesic metric space is called hyperbolic

if all geodesic triangles are δ-thin for some fixed δ ≥ 0, i.e., any point on one
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side is within a distance δ of other two sides. A group is hyperbolic if one of

its Cayley graphs is hyperbolic.

A

BC ≤ δ
A δ−thin geodesic triangle

Example 3.9. A tree with length of each edge 1 is a 0-hyperbolic geodesic

metric space.

A valence 4 tree

Relative hyperbolicity serves as a quasi-isometry invariant for the groups which

fail to be hyperbolic. A group is relatively hyperbolic, if we can construct a

hyperbolic space which follows an additional technical condition by convert-

ing a collection of infinite diameter regions in a Cayley graph of the group to

finite diameter regions using a method called coning off.

Definition 3.10 (Relative hyperbolic groups). If G denotes a finitely gen-

erated group, H = {H1, ..., Hn} is a finite family of subgroups of G and

LH denotes the collection of left cosets of H1, ..., Hn in G. The group G is

weakly hyperbolic relative to H if collapsing the left cosets in LH to finite

diameter sets, in a Cayley graph of G, yields a δ-hyperbolic space. The sub-

groups H1, ..., Hn are called peripheral subgroups. The group G is (strongly)

hyperbolic relative to H if it is weakly hyperbolic relative to H and if it
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has the bounded coset penetration property (BCP). BCP property, roughly

speaking, requires that in a Cayley graph of G with the sets in LH collapsed

to bounded diameter sets, a pair of quasi-geodesics with the same endpoints

travels through the collapsed LH in approximately the same manner, see

[Far98, Osi06, Bow12]. When a group contains no collection of proper sub-

groups with respect to which it is relatively hyperbolic, we say the group is

non relatively hyperbolic, (NRH).

Example 3.11. Z ⊕ Z is weakly hyperbolic relative to Z but not relatively

hyperbolic. In fact Z ⊕ Z is NRH. If A and B are finitely generated groups,

A ∗B is hyperbolic relative to subgroups A and B.

A coned-off Cayley graph of Z⊕ Z

Remark 3.12.

If G is a finitely generated subgroup and H ≤ G is a finite index subgroup,

then H is quasi-isometric to G, where the quasi-isometry is given by the

inclusion map.
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3.2 Undistorted subgroups

The definition of algebraic thickness requires the existence of certain undis-

torted subgroups. In this section we will define an undistorted subgroup of a

finitely generated group and then discuss relevant properties of a subgroup

to prove non-distortion.

Definition 3.13. A finitely generated subgroup H of a finitely generated

group G is said to be undistorted if the inclusion map of H ↪−→ G induces a

quasi-isometric embedding of Cayley graphs.

To prove non-distortion we have to prove only one side of the inequality,

lemma 3.16. The relevant side of the inequality can also be stated as a

coarse Lipschitz map

Definition 3.14 (Coarse Lipschitz map). For constants K ≥ 1, C ≥ 0, a

function

f : (X, dX)→ (Y, dY ) is (K,C)−coarse Lipschitz if

dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C for all x1, x2 ∈ X.

The following results gives us a way of proving non-distortion using the ac-

tion.

Lemma 3.15. [HM13, Corollary 10] If G is a finitely generated group acting

properly discontinuously and co-compactly by isometries on a connected locally

finite simplicial complex X , if H < G is a subgroup, and if Y ⊂ X is a

nonempty connected sub-complex which is H−invariant and H−co-compact,

then:
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1. H is finitely generated.

2. H is undistorted in G if and only if the inclusion Y ↪−→ X is a quasi-isometric

embedding.

3. The following are equivalent:

(a) H is a Lipschitz retract of G.

(b) The 0−skeleton of Y is a Lipschitz retract of the 0−skeleton of X.

(c) The 1−skeleton of Y is a Lipschitz retract of the 1−skeleton of X.

(d) Y is a coarse Lipschitz retract of X.

Lemma 3.16. [HM13, Lemma 11] If X is a geodesic metric space and Y ⊂ X

is a rectifiable subspace, and if Y is a coarse Lipschitz retract of X, then the

inclusion Y → X is a quasi-isometric embedding.

3.3 G-trees and graphs of groups

Our understanding of Out(G) will be related to our understanding of a space

of G-trees, called deformation space [GL07]. Roughly a deformation space

is a space of G-equivariance classes of G-trees. The trees considered in this

exposition are simplicial trees with metrics. It may be convenient at times

only to consider the underlying simplicial structure.

Definition 3.17 (G-tree). A group action of G on a metric (resp., simplicial)

tree T via isometries (resp., simplicial homeomorphisms) is called minimal,

if there are no proper G-invariant subtrees of T . A metric (resp., simplicial)

tree on which G acts minimally is called a G-tree.
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Definition 3.18 (G-equivariant isometry). Consider metric G-trees T1 and

T2. T1 and T2 are G-equivariantly isometric if there is an isometry f : T1 7→

T2 such that g ∈ G =⇒ f(g.x) = g.f(x),∀x ∈ T1

A fundamental domain for a G-tree gives us much relevant information about

the action and the geometry and topology of the tree. In our research, a

fundamental domain gives all the necessary information about the G-tree

we are interested in.

Definition 3.19 (Fundamental domain of a G-tree). A subtree F of a given

G-tree is called a fundamental domain for the action G y T , if G · F ⊃ T

and no other proper subtree of F has this property.

This interplay between a G-tree and its fundamental domain is captured by

the Bass-Serre theory [Ser80].

Definition 3.20 (Fundamental group of a graph of groups). A graph of

groups over a graph X is an assignment

1. of a group Gx to each vertex x of X,

2. of a group Gy to each edge y of X, and

3. monomorphisms φy0 and φy1 mapping Gy into the groups assigned to the

vertices at its ends.

Denote this graph of groups by X. If X is a tree then define the fundamental

group of X is defined as Γ := 〈Gx|x ∈ vert(X), φy0(e) = φy1(e)∀e ∈ edge(X)〉
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Theorem 3.21. [Fundamental theorem of Bass-Serre theory] Let G be a group

acting on a tree T without inversions. Let X be the quotient graph of groups.

Then G is isomorphic to the fundamental group of X and there is an equiv-

ariant isomorphism between the tree T and the Bass-Serre covering tree TX

(definition 3.23). That is, there is a group isomorphism i : G→ Γ and a graph

isomorphism j : T → TX such that ∀g ∈ G, ∀ vertex x ∈ T and ∀ edge e ⊂ T

we have j(g · x) = g · j(x) and j(g · e) = g · j(e).

Remark 3.22. In general, Γ is defined for any graph X (not necessarily a

tree). However, assuming X to be a tree simplifies the definition and is

sufficient for this exposition. This will also simplify the definition of the

Bass-Serre covering tree.

Definition 3.23 (Bass-Serre covering tree). For a given graph of groups X

with fundamental group Γ and its underlying tree X (we are considering the

special case where X is a tree), let Gx represents vertex group of a vertex

x of X and Ge represents edge group of an edge e of X. Then define the

Bass-Serre covering tree of X, TX, as follows:

1. The vertex set of TX is a disjoint union of points labeled by the cosets:

vert(TX) :=
⊔

x∈vert(X)

Γ/Gx

2. The edge set of TX is a disjoint union of edges labeled by the cosets:

edge(TX) :=
⊔

e∈edge(X)

Γ/Ge

3. An inclusion of groups Ge ↪−→ Gx induces a natural surjection map at the

level of cosets Γ/Ge � Γ/Gx. An edge is incident on a vertex if the edge

label maps to the vertex label under this surjection.
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3.4 Simplicial complex

Deformation space has an invariant spine on which Out(G) acts geometri-

cally. The following theorem implies that the sub-complex spanned by the

barycentric coordinates (spine) is ‘good enough’substitute if the property of

interest is a homotopy invariant.

Lemma 3.24. Let, S be a connected subset of a finite dimensional simplicial

complex, ∆, such that S is the complement of a sub-complex of ∆, then S

deformation retracts onto SB; where SB is the sub-complex of the 1st barycentric

subdivision of ∆ consisting of all simplices that lie entirely inside S.

Proof. Let us denote the 1st barycentric subdivision of ∆ by ∆B. Let us as-

sume that S intersects a k-dimensional simplex of ∆ denoted by σ, such

that the 0-simplices of σ are denoted by {α0, ..., αk}. Let, σB ⊂ σ be a k-

dimensional simplex of ∆B whose vertices are denoted by {β0, ..., βk} such

that βi =
i∑

j=0

αj
i+ 1

. Without loss of generality, assume that some of the

vertices of σB are not in S. As S is the complement of a sub-complex of

∆, so βi /∈ S for some i implies α0 = β0 /∈ S. Additionally, assume that -

βi /∈ S, when i ∈ {0, ..., l} and βi ∈ S, when i ∈ {l + 1, ..., k}.

βi /∈ S =⇒ σ|{α0,...,αi} ∩ S = φ =⇒ σB|{β0,...,βi} ∩ S = φ

Now, we will define a projection map rσB

rσB : S ∩ σB → SB ∩ σB

a0β0 + a1β1 + ...+ akβk 7→
al+1

1−
∑l

j=0 aj
βl+1 + ...+

ak

1−
∑l

j=0 aj
βk
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If σ′B is another simplex of ∆B such that σB ∩σ′B 6= φ, then we will show that

the map rσB |σB∩σ′B = rσ′B |σB∩σ′B .

Assume that the 0-simplices of σ′B ∩ σB are given by {βp, ..., βs}, where

βi ∈ S ⇐⇒ i ∈ {r + 1, ..., s− 1, s}

With these notations,

rσB |σB∩σ′B(apβp + ...+ asβs)

=
ar+1

1−
∑r

j=p aj
βr+1 + ...+

as
1−

∑r
j=p aj

βs

= rσ′B |σB∩σ′B(apβp + ...+ asβs)

Hence, rσB can be continuously extended to a map r : S → SB. By, definition

r|SB is the identity map. So, this map is a continuous deformation retract.
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4 Out(A1 ∗ ... ∗ An) and A Geometric Action

4.1 Ωn - a finite index subgroup of Out(A1 ∗ ... ∗ An)

We want to understand the coarse geometric structure of Out(A1 ∗ ... ∗ An).

It will be convenient to consider the maximal subgroup of the outer auto-

morphism group that preserves the conjugacy class of every element of each

Ai, i ∈ {1, ..., n}. In lemma 4.2 we will prove that this subgroup is a finite

index subgroup of Out(A1 ∗ ... ∗An). As a consequence, Out(A1 ∗ ... ∗An) will

be quasi isometric to this subgroup.

Definition 4.1. Let, Sn be the symmetry group on first n natural numbers.

Consider φ ∈ Γn. If φ([Ai]) = [Aj], where i, j ∈ {1, ..., n}, then sφ ∈ Sn is the

element such that sφ(i) = j, here i, j ∈ {1, ..., n}.

Lemma 4.2. Consider the following map from Γn to the symmetry group on

first n natural numbers, Sn:

P : Γn → Sn

φ 7→ sφ

P is a homomorphism of groups and the kernel of the map is a subgroup of Γn

which preserves conjugacy classes of the free factors Ai.

Proof. Let φ1, φ2 ∈ Γn be such that φ1([Ai]) = [Aj] and φ2([Aj]) = [Ak], then

φ2φ1([Ai]) = [Ak] =⇒ P (φ2φ1) = sφ2sφ1. If φ([Ai]) = [Aj], then φ−1([Aj]) =

[Ai] =⇒ P (φ−1) = s−1
φ . Now we will show that the kernel of the map P
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is the subgroup of Γn which preserves the conjugacy classes of free factors.

φ ∈ ker(P ) ⇐⇒ sφ = idSn ⇐⇒ sφ(i) = i,∀i ⇐⇒ φ([Ai]) = [Ai],∀i.

Definition 4.3. Ωn := ker(P ), is a finite index subgroup of Out(A1 ∗ ... ∗An)

that preserves the conjugacy classes of the free factors.

4.2 Deformation Space

We will study the algebra and geometry of Ωn by studying an action of Ωn

on a complete geodesic metric space, which is a subspace of the deformation

space. The deformation space is a metric space with the following parame-

ters - a group, (in our case the group is A1∗ ...∗An), and a class of subgroups.

As a set, the deformation space is the set of equivalence classes of G-trees

with an additional condition on the vertex stabilizers, where two trees are

equivalent if they areG-equivariantly isometric. In this section we will define

the deformation space.

4.2.1 D(G,H) as a set of G-trees

Deformation space has been defined in [GL07] more generally. In contrast,

we will consider the following definition of deformation space (as a set).

This definition will result in a space on which Out(A1 ∗ ... ∗ An) will act

isometrically, and properly discontinuously.

Definition 4.4 (Deformation space as a set of G-trees). Consider a group G,

which is a free product of finite number of finitely generated indecomposable

subgroups. The deformation space D(G,H) of G with respect to a collection
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of finitely generated subgroups H is the set of equivalence classes of minimal,

metric G-trees with the following properties:

1. Equivalence relation: Two trees, T1 and T2 are equivalent in D(G,H) if

T1 is G-equivariantly isometric to T2.

2. H is the set of vertex stabilizers : If T is a G-tree from the equivalence

class [T ] ∈ D(G,H), and v ∈ T is a vertex of T , then Stab(v) ∈ H. Con-

versely, given a H ∈ H,∃ a vertex, v ∈ T , with Stab(v) = H. Moreover,

valence of a vertex with trivial vertex stabilizer must be greater than 2.

3. Trivial edge stabilizer: If T is a G-tree from the equivalence class [T ] ∈

D(G,H), and e is an edge of T ; then Stab(e) = {id}.

Remark 4.5. The deformation space that we have studied in this exposition

is a special case of the deformation space discussed in [GL07]. Here, the

maximal elliptic subgroups of the group under the group action on a G-tree

are conjugates of the free factors of G, which are also vertex stabilizers.

Additionally, the edge groups are trivial.

4.2.2 D(G,H) as a set of graph of groups

The goal of this subsection is to describe the deformation space as a set of

equivalence classes of graphs of groups, such that each graph of groups has

fundamental group G. Consider a point of D(G,H), corresponding to a G-

tree T ∈ D(G,H). This point also corresponds to a graph of groups X, where

T is G-equivariantly isometric to the Bass-Serre tree of X.
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Consider a G-tree T ∈ D(G,H), X := T/G is a finite graph. The finiteness

is a result of the minimal action of the finitely generated group G on T . If

we choose a fundamental domain for the action of G on T we can associate

a graph of groups, X, to T .

Lemma 4.6. Consider a G-tree T such that the edge stabilizers are trivial and

X := T/G is a finite tree, then any fundamental domain of T under the action

of G is isometric to X.

Proof. We will prove that any fundamental domain is isomorphic to the quo-

tient X := T/G.

Fix a fundamental domain of T under the action of G and name it Y . As the

quotient is a tree, so no two points in Y are in the same orbit. Hence, we

can define a unique bijective map f from X to Y .

f : X → Y.

x 7→ the unique pre image of x

f is an isometry as G acts on T by isometries.

Remark 4.7. [GL07, Page 147] If T1, T2 ∈ D(G,H) are trees in a deformation

space then, then the rank of the quotient graphs T1/G and T2/G are the

same. Hence, the underlying graph of every quotient graph of groups in our

case is a tree.

Corollary 4.8. Consider a G-tree T such that the edge stabilizers are trivial

and X := T/G is a finite tree. Fix a fundamental domain Y of T , then G is

equal to the internal free product of vertex stabilizer subgroups of vertices in Y .
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Proof. Consider a graph of groups X whose underlying tree is isometric to

X and the vertex group associated to a vertex of X under this isometry is

the vertex stabilizer group of the corresponding vertex of X. Then, the Bass-

Serre tree of X is equivariantly isometric to T . Hence, G is isomorphic to

internal the free product of vertex groups of X.

4.2.3 A dictionary between two points of view of D(G,H)

Consider a tree T ∈ D(G,H). We will now describe the graph of groups,

X, corresponding to T . The underlying graph of X is isomorphic to X =

T/G. If X is a tree then, X is isomorphic to a fundamental domain of T

under the action of G. The vertex group associated to a vertex of X under

this homeomorphism is the vertex stabilizer subgroup of the corresponding

vertex of X. The valence of a vertex with trivial vertex group is at least 3.

The edge groups of X are trivial as the edge stabilizers of T are trivial.

Hence, a point of the deformation space can be represented by a graph of

groups. Two graph of groups X1 and X2 represent the same point ofD(G,H)

if their Bass-Serre trees are G equivariantly isometric.

Remark 4.9. We will use the following dictionary to change our viewpoint

of D(G,H) from a set of trees to a set of graph of groups and vice versa.

1. Consider a tree T ∈ D(G,H), a graph of groups XT ∈ D(G,H) repre-

senting the point T can be constructed once we fix a fundamental domain F

of T . XT is isometric to F as a graph and the vertex group associated to a

vertex of XT is the vertex stabilizer group of the corresponding vertex of F .
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2. Consider a graph of groups, X, with fundamental group G. The Bass-

Serre tree, TX, of X represents X ∈ D(G,H).

4.3 Geometry of Deformation Space

4.3.1 OT - open cone of deformation space

Consider an equivalence class, [T ] ∈ D(G,H). Let, us choose a tree T ∈ [T ].

If T has k + 1 orbits of edges then every tree in [T ] has k + 1 orbits of edges.

In terms of the graph of groups, if X is a graph of groups corresponding to

T ; then X has k + 1 edges. For the rest of our exposition, we will abuse

notation and denote an equivalence class in D(G,H) by a tree (or a graph

of groups) belonging to the equivalence class. Consider the set, OT := {S ∈

D(G,H)|S is G-equivariantly homeomorphic to T}.OT is naturally bijective

to the positive orthant of Rk+1 which induces a topology on OT . If the edge

lengths of distinct edge orbits of a tree S ∈ OT is given by e0, e1, ..., ek, then

the bijection is described as follows:

OT → Rk+1

S 7→ (e0, e1, ..., ek).

Hence, OT can be realized geometrically as a metric space isometric to the

positive orthant of Rk+1.
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4.3.2 Admissible collapse and expand moves in D(G,H)

A tree, T ∈ D(G,H) admits a collapse move if collapsing some edge orbits

G-equivariantly, produces a tree T ′ ∈ D(G,H). Admissible collapse move

is a relation (T, T ′) on D(G,H). The inverse of an admissible collapse move

is an admissible expand move.

Admissible expand move can be defined independently. For a given fun-

damental domain F of T , and the set of vertices {vi|vi is a vertex of F}; T

admits an expand move at a vertex vi, if vi satisfies one of the following two

conditions:

1. stab(vi) = id with valence of vi|F > 3.

2. stab(vi) 6= id with valence of vi|F > 1.

The following construction describes the tree obtained from T by expanding

the vertex vi. Let F ′ be a finite tree obtained by attaching the vertices of a

tree(F c) to the connected components of F \ {vi} and vi, at the extremities

marked by vi. Such that, all the vertices of valence 1 and 2 in F c is attached

to at least one of the connected components. F ′ can be realized as a funda-

mental domain of a tree T ′ under the action of G which has been expanded

G-equivariantly at the vertex vi.

If we apply an admissible collapse move on a tree T , then the resulting tree,

T ′, may not be in OT . In that case T ′ may be associated to a point on the

boundary of the positive orthant, with one or more 0 coordinate, i.e., a point

in one of the bounding hyperplanes of OT .



25

Remark 4.10. We have to administer our collapse moves cautiously, so that

we do not produce a tree whose vertex stabilizer is not in the collection H.

Hence, the name admissible collapse move. Similarly, we have to exercise

caution while applying expand moves to make sure that the resulting tree

does not have a vertex of valence ≤ 2 with trivial vertex stabilizer.

4.3.3 Boundary of OT

After realizing D(G,H) as a collection of disjoint open orthants, our next

goal is to give identification maps to the collection of open orthants.

Let, OT ′ be a k′ dimensional open simplex and OT be a k dimensional open

simplex, where k′ ≤ k. OT ′ is a boundary of OT if and only if T ′ is isomorphic

to a tree obtained by applying collapse move on T .

4.3.4 PD(G,H) - projectivized deformation space

R \ {0} acts on a k+ 1 dimensional open cone and the quotient of the action

can be identified with σk = {(e0, e1, ..., ek)|Σk
i=0ei = 1}, the k-dimensional

open simplex in Rk+1.

4.3.5 Topology of PD(G,H)

A set in this space is closed if and only if the intersection of the set with any

simplex is a closed subset of the simplex.
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4.3.6 SPD(G,H) - spine of PD(G,H)

The spine of the projectivized deformation space is a subspace of the pro-

jectivized deformation space. SPD(G,H) is the flag complex spanned by

the barycenters of PD(G,H). That is a 0 simplex of SPD(G,H) is a point

of PD(G,H) having equal value on every coordinate. For example, the

0-simplex corresponding to a k−dimensional open simplex of the projec-

tivized deformation space is given by {(e0, e1, ..., ek)|ei =
1

k
,∀i}. Observe that

PD(G,H) deformation retract onto SPD(G,H) (lemma 3.24).

Remark 4.11. Contractibility ofD(G,H),PD(G,H),SPD(G,H) follows from

theorem 1.3.

4.4 Action of Out(G) on SPD(G,H)

The goal of this section is to establish a geometric connection between Out(G)

and SPD(G,H). We will show that Out(G) y SPD(G,H) properly discon-

tinuously and co-compactly.

Remark 4.12. For the rest of our exposition we will inspect the spaceD(G,H)

for

G = Gn = A1 ∗ ... ∗ An, where each Ai is finite, and

H = {H ≤ G|H is indecomposable, vertex stabilizer subgroup of a G− tree}.

We may drop the subscript n from Gn, if it is clear from the context.
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4.4.1 Structure of graph of groups in D(Gn,H)

Lemma 4.13. If a graph of groups has following properties:

1. There are exactly n non trivial vertex groups, n ≥ 2.

2. The vertices having trivial vertex groups have valence greater than 2.

3. The edge groups are trivial.

4. The underlying graph is a finite tree.

Then n ≤ V ≤ 2(n− 1), and , (n− 1) ≤ E ≤ 2n− 3, where V , E represent the

number of vertices, edges of the underlying tree, respectively.

Proof. The second set of inequalities follow from the first set of inequalities

because in a finite tree the number of vertices is 1 more than the number of

edges.

n ≤ V follows from the fact that there are n non trivial vertex groups. Addi-

tionally, the lower bound is attained by a tree isometric to [0, n− 1] with the

integer points of the interval realized as the vertices.

We will prove the second half of the first inequality by induction. Let us

inspect a finite tree of groups having two vertex groups. Such a tree has at

most 2 vertices of valence 1. The underlying space is homeomorphic to the

interval [0, 1], as we do not allow vertices of valence less than 3 for trivial

vertex groups. So, the only possible configuration is a tree with 2 vertices

and 1 edge. Now, let us assume this statement is true is for n = k. That is,

a graph of groups with k non trivial vertex groups and satisfying conditions

2, 3, and 4 from above has at most 2(k − 1) vertices; and a tree achieves this
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upper bound. Using this tree we will construct a tree with 2k vertices having

k + 1 vertices of valence ≤ 2. Take this tree and choose an interior point

of an edge. Attach the interval [0, 1] to this point by a quotient map where

only the point 0 from the interval gets identified to the chosen point. In the

quotient space, define the image of 0 and 1 as vertices. This way the quotient

space formed can be realized as a tree with exactly 2(k− 1) + 2 = 2k vertices

having k + 1 vertices of valence 1.

Now, if there exists a tree T , with k + 1 vertices of valence ≤ 2 satisfying

conditions 2, 3, and, 4 and e is an edge containing a terminal vertex (a vertex

of valence 1); then the larger connected component of T \ {interior of e} is

homeomorphic to a tree with k vertices of valence ≤ 2. From the previous

paragraph it follows that such a tree can have at most 2(k − 1) vertices. So,

T can have at most 2k vertices.

4.4.2 Out(G) action on D(G,H)

We will take the help of the following proposition to define an action of

φ ∈ Out(G) on the deformation space.

Definition 4.14. If Φ ∈ Aut(G) is an automorphism and T is a G-tree, then

define Φ(T ) to be a G-tree which is isometric to T with a twisted action of G

on T . The action is denoted by ·Φ and is defined as-

g ·Φ x := Φ(g) · x,∀x ∈ T, g ∈ G.

here the action(·) on the right denotes the original action.
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Proposition 4.15. If Φ1,Φ2 ∈ Aut(G) are two automorphisms representing the

same outer automorphism class φ ∈ Out(G) and T ∈ D(G,H) is a G-tree, then

Φ1(T ) is G-equivariantly isometric to Φ2(T ).

Proof. We will prove that if Φ is a non-identity automorphism representing

the identity outer automorphism class, then Φ(T ) is G-equivariantly isomet-

ric to T .

Let, Φ represent the trivial outer automorphism then ∃h ∈ G, such that

Φ(g) = hgh−1, ∀g ∈ G. This motivates the definition of an isometry, f ,

between T and Φ(T )

f : T →Φ(T )

x 7→h · x

Next, we will verify the G-equivariance of the map f .

In T we have, f(g · x) = h · (g · x),∀g ∈ G.

In Φ(T ) we have, g ·Φ f(x) = hgh−1 · (h · x) = (hg) · x,∀g ∈ G.

Hence, f is a G-equivariant isometry.

Definition 4.16 (Definition of the action). Consider a G-tree T ∈ D(G,H)

and φ ∈ Out(G). φ(T ) is the equivalence class of G-equivariant trees repre-

sented by Φ(T ), where Φ is an automorphism from the class of outer auto-

morphism φ.

Remark 4.17. If v is a vertex of T , then stabΦ(T )(v) = Φ−1(stabT (v)), where

Φ ∈ Aut(G). If F is a fundamental domain of T with vertices v1, v2, ..., vd

and vertex stabilizers Gv1 , Gv2 , ..., Gvd, respectively; then F is a fundamental
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domain in Φ(T ) and the vertex stabilizers of the vertices v1, v2, ..., vd are given

by Φ−1(Gv1),Φ
−1(Gv2), ...,Φ

−1(Gvd), respectively.

Following remarks 4.9 and 4.17, we can give a simpler description of the

action Out(Fn) y D(G,H), when the latter is considered as a space of graph

of groups.

Definition 4.18. Let X ∈ D(G,H) be a graph of groups whose underlying

graph is denoted by X; and Φ ∈ Out(G) be an automorphism. Define Φ(X)

(denoted by X′) to be a graph of groups whose underlying graph, X ′, is

related to X by an isometry i : X → X ′, such that if v is a vertex of X

having Gv as the vertex group; then the vertex group corresponding to i(v)

is Φ−1(Gv).

G1 G2

G3 G4

X

Φ−1(G1) Φ−1(G2)

Φ−1(G3) Φ−1(G4)

X′

Proposition 4.19. Let Φ ∈ Aut(G) and X ∈ D(G,H) be a graph of groups

whose Bass-Serre tree is denoted by TX, then the Bass-Serre tree of Φ(X) is

Φ(TX).

Proof. Let the vertices and the vertex groups of X be labeled as v1, v2, ..., vd,

andGv1 , Gv2 , ..., Gvd, respectively. We can use the same vertex labeling for the

vertices of Φ(X) and the associated vertex groups are Φ−1(Gv1),Φ
−1(Gv2), ...,

Φ−1(Gvd), respectively.
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So, there is a fundamental domain of TX and TΦ(X)(Bass-Serre tree of Φ(X))

with vertex stabilizers of the vertices given by {Gv1 , Gv2 , ..., Gvd} and

{Φ−1(Gv1),Φ
−1(Gv2), ...,Φ

−1(Gvd)}, respectively. On the other hand, Φ(TX)

has a fundamental domain with vertex stabilizer group given by

{Φ−1(Gv1),Φ
−1(Gv2), ...,Φ

−1(Gvd)}.

From the bijective correspondence between the fundamental domain and

the Bass-Serre tree in D(G,H) we conclude that Φ(TX) is G-equivariantly

isometric to TΦ(X).

Corollary 4.20. If Φ1,Φ2 ∈ Aut(G) are two automorphisms representing the

same outer automorphism class φ ∈ Out(G) and X ∈ D(G,H) is a graph of

groups, then Φ1(X) is G-equivariantly isometric to Φ2(X).

Definition 4.21 (Out(G) action on a graph of groups). If φ ∈ Out(G) and

X ∈ D(G,H), then φ · X := Φ(X), where Φ is an automorphism from the

outer automorphism class φ.

4.5 Properties of the action

D(G,H) is locally finite when the the elements of H are finite subgroups.

Later, we will prove proper discontinuity and co-compactness (when re-

stricted to the spine of PD(G,H)) of the action.

Lemma 4.22. D(G,H) is a locally finite topological space when |H| <∞,∀H ∈

H.

Proof. Consider a tree T ∈ D(G,H). This point is on the boundary of other

open simplices if we can equivariantly expand some edge-orbits of T . The
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number of edge orbits of T is bounded above by 2n − 3 and the number of

vertex orbits are bounded above by 2n−2. Since, the vertex groups are finite,

each vertex has a finite valence. Hence, the number of fundamental domains

containing a vertex is bounded above. So, the number of G-equivariant

vertex expansions is bounded above for the tree T .

Therefore, the relative open simplex containing T can be a boundary to at

most finitely many relative open simplices. As a result D(G,H) is locally

finite.

Lemma 4.23. Stabilizer of any point of D(G,H) under the action of

Out(G) is finite.

Proof. Consider a tree T ∈ D(G,H). φ is a stabilizer of the point T , if φ(T )

is G-equivariantly isometric to T . Let us fix a fundamental domain of T and

name it F . As φ ∈ stab(T ), φ(T ) contains a fundamental domain identical to

F (isometric and same vertex stabilizers under the action of G).

Now, let us fix a vertex v ∈ F and choose a representative automorphism Φ

from the outer class φ such that stab(v)|Φ(T ) = stab(v)|T . So, Φ permutes the

fundamental domains isomorphic to F based at v ∈ T . However, there are

only finitely many such fundamental domains at a given vertex and finitely

many vertices v of F . So, the vertex stabilizer subgroup is finite.

A corollary of the two previous results is proper discontinuity of the action-

Corollary 4.24. The action of Out(G) on D(G,H) is properly discontinuous.

D(G,H) and PD(G,H) are not simplicial complexes. The spine of PD(G,H)

is a simplicial complex and is denoted by SPD(G,H). PD(G,H) deforma-
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tion retracts onto SPD(G,H). The advantage of working with SPD(G,H)

is that the quotient of the action Out(G) y SPD(G,H) is compact, which is

not true for the action on PD(G,H).

Proposition 4.25. The action of Out(G) on SPD(G,H) is co-compact.

Proof. Consider a graph of groups X ∈ D(G,H). Each vertex group is either

trivial or a conjugate of exactly one of the Ai, i ∈ {1, ..., n} such that the

fundamental group of the graph of groups is G. Hence, the internal free

product of the vertex groups is G and we can define a G automorphism Φ

which maps each Ai, i ∈ {1, ..., n} to the vertex group of X conjugate to Ai.

If φ is the outer automorphism [Φ], then φ ·X is a graph of groups with the

set of vertex groups {A1, ..., An}.

So, under the action of Out(G) on D(G,H) every graph of groups is in the

orbit of a graph of groups with the set of vertex groups {A1, ..., An}.

The underlying graph of any graph of groups from SPD(G,H) is a tree with

at most 2n− 3 edges and at least n− 1 edges. Hence, up-to homeomorphism

there are only finitely many graphs of groups with the set of vertex groups

{A1, ..., An}.

Out(G) acts by isometries on SPD(G,H), which is a simplicial complex. The

quotient is a finite dimensional locally finite simplicial complex such that

there are only finitely many vertices. Hence, the quotient is compact.

Remark 4.26. Out(G) action on SPD(G,H) is properly discontinuous and

co-compact. Hence, by Milnor-S̆varc lemma Out(G) is quasi isometric to

SPD(G,H). We will exploit this fact to answer the original question in lower

complexities and also to find a virtual generating set of Out(G) in general.
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5 Structure of Deformation Space in Lower Com-

plexities

Recall that Γn := Out(A1 ∗ ... ∗ An), where each Ai is a finite group. Ωn

is the finite index subgroup of Out(A1 ∗ ... ∗ An) which preserves conjugacy

class of each free factor. In this section we will prove that Ω2 is finite and

Ω3 is a hyperbolic group (virtually free). We will also inspect a finite index

subgroup of Ω4 and denote it by Γ′4. This will lay the ground work for a

similar inspection for Ωn, (n ≥ 5).

5.1 Finiteness of Γ2

Lemma 5.1. SPD(G2,H) is a point.

Proof. Consider the graph of groups:

A2A1

The Bass-Serre tree of this graph of groups is a G-tree whose vertex sta-

bilizers are conjugates of Ai, i ∈ {1, 2}. There is only one edge orbit. If

we collapse an edge equivariantly in this tree, we will get a point. So,

no G-equivariant collapses are possible. Contractibility of the deformation

space due to theorem 1.3 implies that if there is a different tree non G-

equivariantly homeomorphic to the given tree, then they can be connected

in the deformation space by a collapse expand path. However, a collapse or

expand move is not permissible due to the constraint on the vertex stabiliz-

ers. So, we arrive at a contradiction.
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Corollary 5.2. Ω2 and Γ2 are finite.

Remark 5.3. As a consequence of lemma 5.1, any two G-trees in D(G,H)

have G-equivariantly homeomorphic (H ∗ K)-minimal subtrees; where H

and K are finite subgroups of G such that G = H ∗K ∗F for some F ≤ G.

5.2 Hyperbolicity of Γ3

Proposition 5.4. SPD(G3,H) is a 1 dimensional simplicial complex.

Proof. If T ∈ SPD(G3,H) is a G-tree then the number of edge orbits of T

is at most 3 and at least 2. Hence, we can apply only 1-edge orbit collapse

move on T . So, SPD(G3,H) does not have any 2 dimensional simplex and

is a 1 dimensional simplicial complex.

Corollary 5.5. Ω3 and Γ3 hyperbolic groups.

Proof. By Guirardel-Levitt’s work (theorem 1.3) SPD(G3,H) is contractible.

Also, SPD(G3,H) is a 1 dimensional simplicial complex. So, SPD(G,H) is

a tree.

Ω3 and Γ3 act geometrically on SPD(G3,H). Using lemma 3.1 we can say

that Ω3 and Γ3 are hyperbolic.

5.3 Orbit of SPD(G4,H) under the action of Ω4

Let us recall the definition of Ωn (definition 4.3).

Lemma 5.6. The following graphs of groups are representatives of a complete

list of distinct orbits of graphs of groups (up to homeomorphism of graphs of
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groups) in SPD(G4,H) under the action of Ω4. The vertices of the graphs have

been color coded to represent vertex groups. The following table associates the

colors to the vertex groups-

Vertex Color Vertex group

Blue A1

Red A2

Green A3

Yellow A4

1. Three graphs of groups with 6 vertices and 5 edges. 4 of those vertices have

a non trivial vertex group and have valence 1. The other 2 vertices have trivial

vertex groups and the valence is 3. The open simplex containing these graphs of

groups are 4-dimensional in PD(G4,H).

2. One graph of groups with 5 vertices and 4 edges. 4 of those vertices have a

non trivial vertex group and have valence 1. 1 vertex has a trivial vertex group

and has valence 4. The open simplex containing these graphs of groups are

3-dimensional in PD(G4,H).
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3. Twelve graphs of groups with 5 vertices and 4 edges. 4 of those vertices have

non trivial vertex groups. 3 of the vertices having non trivial vertex groups have

valence 1; 1 vertex with non trivial vertex group has valence 2. 1 vertex has

trivial vertex group and valence 3. Open simplices containing these graphs of

groups are 3-dimensional in PD(G4,H).

4. Four graphs of groups with 4 vertices and 3 edges. 3 of those vertices have

valence 1. 1 vertex has valence 3. Open simplices containing these graphs of

groups are 2-dimensional in PD(G4,H).

5. Twelve graphs of groups with 4 vertices and 3 edges. 2 of those vertices have

valence 2; The other 2 vertices have valence 1. Open simplices containing these

graphs of groups are 2-dimensional in PD(G4,H).

Proof. We will use lemma 4.13 to prove this lemma. Let, Z ∈ D(G4,H) be a

graph of groups. Z has 4 non trivial vertex groups. So, the underlying graph

Z has one of the following structures:
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1. 4 vertices, 3 edges If a finite tree has 3 edges then the sum of all the

valences over all vertices is 2× 3 = 6

(a) 2 terminal vertices: If a finite tree has two terminal vertices then it is

homeomorphic to a closed interval. So, the only possible configuration is:

(b) 3 terminal vertices: Then the non terminal vertex will have valence 3.

So, the possible configuration is:

2. 5 vertices, 4 edges If a finite tree has 4 edges then the sum of all the

valences over all vertices is 2× 4 = 8

(a) 3 terminal vertices: Then the sum of the valences of the non terminal

vertices is 8 − 3 = 5. So, one vertex will have valence 2 and the other one

will have valence 3.
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(b) 4 terminal vertices: Then the sum of the valences of the non terminal

vertices is 8− 4 = 4. So, the non terminal vertex will have valence 4.

3. 6 vertices, 5 edges: If a finite tree has 5 edges then the sum of all the

valences over all vertices is 2× 5 = 10. In this case the tree cannot have less

than 4 terminal vertices. So, 4 terminal vertices will force 2 non terminal

vertices to have valence 3 each. The only possible configuration is
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6 A finite index subgroup of Ωn

In this section we will investigate a subgroup generated by some elements of

Ωn (definition 4.3) and prove that the subgroup is finite index.

In the first part we will prove this result for Ω4 and later generalize to all n.

6.1 A finite index subgroup of Ω4

We will use the following notations to better communicate the ideas.

Notation 6.1. We will use the following notation in this subsection:

1. Denote the finite groups by A,B,C, and D instead of A1, A2, A3, and A4,

respectively.

2. We will use X to represent the the following graph of groups.

A B

C D

X

3. We will denote the open simplex of PD containing the graph of groups Y by

σY. TY will represent the Bass-Serre tree of Y.

Definition 6.2. Consider the subgroup Γ′4 ≤ Ω4, generated by outer auto-

morphisms which are represented by automorphisms of the form fwH , defined

by:
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fwH(u) :=


w−1uw if u ∈ H

u else

Here H ∈ {A,B,C,D}, u ∈ A∪B ∪C ∪D, and w ∈ A∪B ∪C ∪D−H. We

will abuse notation to denote the outer automorphism by fwH as well.

Lemma 6.3. If X′ ∈ SPD is a graph of groups whose underlying graph is

isomorphic to the underlying graph of X, such that the tree produced by an

equivariant 1-edge orbit collapse of TX is G-equivariantly homeomorphic to the

tree produced by an equivariant 1-edge orbit collapse of TX′; then X′ can be

represented by a graph of groups such that the vertex groups have one of the

following forms

1. A, aiBa−1
i , ajCa

−1
j , akDa

−1
k , (where ai, aj, ak ∈ A)

2. biAb−1
i , B, bjCb

−1
j , bkDb

−1
k , (where bi, bj, bk ∈ B)

3. ciAc−1
i , cjBc

−1
j , C, ckDc

−1
k , (where ci, cj, ck ∈ C)

4. diAd−1
i , djBd

−1
j , dkCd

−1
k , D, (where di, dj, dk ∈ D)

Proof. Let,

A = {a0, ..., aα},

B = {b0, ..., bβ},

C = {c0, ..., cγ},
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D = {d0, ..., dδ}

The local structure of TX around the vertices having vertex stabilizersA,B,C,

and D is given by the following diagram. In the diagram each vertex is la-

beled by the corresponding vertex stabilizer

A B

C D

a1Da
−1
1a1Ba

−1
1

a1Ca
−1
1

aαDa
−1
α aαBa

−1
α

aαCa
−1
α

c1Bc
−1
1c1Dc

−1
1

c1Ac
−1
1

cγBc
−1
γ cγDc

−1
γ

cγAc
−1
γ

b1Cb
−1
1 b1Ab

−1
1

b1Db
−1
1

bβCb
−1
βbβAb

−1
β

bβDb
−1
β

d1Dd
−1
1 d1Bd

−1
1

d1Cd
−1
1

dδDd
−1
δdδBd

−1
δ

dδCd
−1
δ

Let us equivariantly collapse a single edge orbit of TX. Without loss of gen-

erality, let us collapse the edges attached to the vertices having conjugates

of the subgroup A as their stabilizers, i.e., collapse the edges incident on

the blue vertices. Let, us call this tree T (A) and the corresponding graph of

groups X(A).

If X′ ∈ SPD is a graph of groups whose underlying graph is isomorphic to

the underlying graph of X, such that T (A) is G-equivariantly homeomorphic

to the tree produced by an equivariant 1-edge orbit collapse of TX′, then TX′

is the result of a single edge orbit expand move applied on the vertices of T (A)
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whose stabilizers are conjugates of A. In other words, equivariantly collaps-

ing the edges of TX′ attached to the vertices having conjugates of subgroup

A as their stabilizers will produce a tree G-equivariantly homeomorphic to

T (A). In T (A) the vertices labeled by conjugates of B (and of C, D) are

connected to the vertex labeled by A by a single edge, and the conjugating

elements belong to A.

In the following diagram we can see the local picture around the vertex la-

beled by A of two G-equivariantly homeomorphic trees representing T (A).

The tree on the left represents a tree obtained by applying the single edge

orbit collapse move on TX, mentioned above. The vertices {A, wcCw−1
c ,

wbBw
−1
b , and wdDw

−1
d } of the tree on the right represent a choice of funda-

mental domain for applying the single edge orbit expand move, mentioned

above to get TX′.

Two G-equivariantly homeomorphic trees representing T (A)

A

C

D

B

aαCa
−1
α

aαBa
−1
α

aαDa
−1
α

a1Ca
−1
1

a1Ba
−1
1a1Da

−1
1

A

wcCw
−1
c

wdDw
−1
d

wbBw
−1
b

C
B

D

So, there is a representation of X′ in which the non-trivial vertex groups

will be given by A, wcCw−1
c , wbBw−1

b , and wdDw
−1
d (where, wb, wc, wd ∈ A).

Note: if wb = wc = wd, then TX′ is G-equivariantly homeomorphic to the
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original tree TX.

A wbBw
−1
b

wcCw
−1
c wdDw

−1
d

A representation of X′

Corollary 6.4. If

1. X is the graph of groups from the previous lemma (lemma 6.3) and X′ is a

graph of groups whose underlying graph is isomorphic to the underlying graph

of X.

2. The tree produced by an equivariant single edge orbit collapse of TX is G-

equivariantly homeomorphic to the tree produced by an equivariant single edge

collapse of TX′.

Then ∃f ∈ Γ′4 such that f(σX) = σX′

Proof. Without loss of generality, assume X′ is the same graph of groups

that we obtained in the proof of the previous lemma. Let φ be the outer

automorphism represented by Φ ∈ Aut(G) given by,

Φ(x) :=



x if x ∈ A

w−1
b xwb if x ∈ B

w−1
c xwc if x ∈ C

w−1
d xwd if x ∈ D
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f := φ = fwbB fwcC fwdD =⇒ f ∈ Γ′4

Proposition 6.5. Under the action Γ′4 y SPD(G4,H) there is exactly one

orbit of graph of groups whose underlying graph is isomorphic to the underlying

graph of X.

Proof. We will use the following notations to prove this lemma

Notation 6.6. 1. The following picture gives us all the different isomorphism

types of graphs occurring as graphs of groups in SPD. These isomorphism

classes have been explained in lemma 5.6. From left to right we will denote

them by U1, U2, U3, U4, and U5, respectively. A tree which is G-equivariantly

homeomorphic to the Bass-Serre tree of the corresponding graph of groups will

have a similar nomenclature; that is, tree of type U1, U2, U3, U4, U5, respectively.

U1 U2 U3 U4 U5

2. Consider a finite edge path in SPD starting in Xi0; if the path crosses the

vertices Xi0 , ...,Xik (in that order) we will code that information by a finite

sequence Ui0 , ..., Uik , where Uij ∈ {U1, ..., U5}, and the underlying graph of Xij

is isomorphic to graph of type Uij .
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3. For a given tree T and a vertex with vertex stabilizer group H, we will denote

the vertex by vH .

We will use permissible collapse and expand moves on the Bass-Serre tree of

the given graphs of groups to navigate through an edge-path in SPD. The

following graph gives a graphic representation of the possible collapse and

expand moves between different types of trees in SPD representing different

vertices of SPD. The arrows represent possible collapses:
U2 U4

U3U1 U5

The idea of the proof is to show that the 1 skeleton of the sub-complex of

SPD(G4,H) consisting of trees of type U2 and U4 is connected.

Claim 6.7. Using these notations, we will show that any two vertices repre-

sented by graphs of groups of type U2 in SPD can be joined by an edge path

consisting only of vertices of type U2 and U4.

Proof of the claim. Guirardel-Levitt showed that PD(and SPD) is contractible,

see theorem 1.3. Hence, the 1-skeleton of SPD is path connected. So, any

two vertices represented by graphs of groups of type U2 can be connected by

a collapse-expand edge path. Given any edge path connecting two graphs of

groups of type U2, we will construct an alternative edge path connecting the

original vertices consisting of only graphs of groups of type U2 and U4.

We will breakdown the construction of the alternative path in three steps.
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1. We will create an alternative path that does not contain any graph of

groups of type U5.

2. We will take the resulting path from step 1 and create an alternative path

without any graph of groups of type U3 (and U5).

3. We will take the path obtained from step 2 and create an alternative path

without any graph of groups of type U1 (and U3, U5).

Collapse-Expand move on graphs of groups: We will be using the collapse-

expand terminology for graphs of groups. In practice it means that we are

looking at a fundamental domain of the Bass-Serre tree of the graph of

groups and collapsing or expanding edges equivariantly in the Bass-Serre

tree and observing a conveniently chosen fundamental domain.

Step 1 An edge path beginning and ending in graphs of groups of type U2

containing a graph of groups of type U5 must contain a subpath U3U5U3 as

shown below. In this SPD edge path we apply a collapse move on a graph

of groups of type U3 and collapse the edge labeled by H to get a graph of

groups of type U5. In the second step we choose a new fundamental domain

where the vertices labeled by K, H and W have been replaced by conjugates

of respective elements (namely, K ′, H ′ and W ′). Later, we expand vertex

labeled by Z to move from a graph of group of type U5 to U3.

K H

Z

W

U3
Collapse

K

H

Z

W

U5
Z ∗W -min. subt.
Z ∗H-min. subt.
H′ ∗W -min. subt.

K′

H′

Z

W ′

U5
Expand

Z W ′

H′

K′

U3
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The replacement edge subpath containing graphs of groups of type U2 and

U4, instead of graphs of groups of type U5, has been given in the following

diagram. The choice of a fundamental domain containing vertices labeled by

{K ′, H ′, Z,W ′} was possible for the U4 because of the uniqueness (remark

5.3) of Z ∗H- minimal subtree, Z ∗W -minimal subtree and H ′ ∗K-minimal

subtree in the trees of the original edge path in SPD and the replacement

edge path.

K H

Z

W

U3
Collapse

K H

Z

W

U4
Z ∗H-min. subt.
Z ∗W -min. subt.

K H′

Z

W ′

U4
Expand

K H′

Z W ′

U2C
ol.K Z

H′

W ′

U4
K ∗H′-min. subt.

K′ Z

H′

W ′

U4
Expand

Z W ′

H′

K′

U3

Step 2 A path beginning and ending in graphs of groups of type U2 contain-

ing at least one graph of groups of type U3; and not containing graphs of

groups of type U5 must have all the type U3 graphs of groups contained in

one following subpaths: U4U3U4, U1U3U1, U1U3U4, and U4U3U1.

Subpath 1 U4U3U4: Without loss of generality let us assume that the expand

move expands the edge containing the vertex labeled by Z along the vertex

labeled by W . To return to a graph of type U4 there is only one possible

collapse.
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K H

Z

W

U4
Expand

K H

Z

W

U3
Collapse

K H

Z

W

U4

Replacement subpath U4. This is a trivial subpath.

K H

Z

W

U4

Subpath 2 U1U3U1: Without loss of generality, we choose the edge adjacent

to the vertex labeled by subgroup Z for collapse. In the second step we

choose a new fundamental domain where the vertices labeled by K, H and

W have been replaced by conjugates of respective elements (namely, K ′, H ′

and W ′). In the last step, we expand the vertex labeled by Z to get back a

graph of type U1.

K H

Z W

U1
Collapse

K H

Z

W

U3

Z ∗K min. subt.
Z ∗H min. subt.
Z ∗W min. subt.

K′ H′

Z

W ′

U3
Expand

K′ H′

Z W ′

U1

We will replace such paths by a subpath U1U2U4U2U1. As with the first case,

the flow of the diagrams is from top left to top right and then from bottom

right to bottom left. The crucial step is choosing a different fundamental

domain for the graph U4.
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K H

Z W

U1
Collapse

K H

Z W

U2
Collapse

K H

Z

W

U4
Z ∗K min. subt.
Z ∗H min. subt.

Z ∗W min. subt.

K′ H′

Z

W ′

U4Exp.K′ H′

Z W ′

U2
Expand

K′ H′

Z W ′

U1

Subpath 3 U1U3U4: Without loss of generality, let us assume that the edge

adjacent to the vertex labeled by Z is collapsed. The next step is a choice of

fundamental domain and replacement of vertices labeledK,H, and W by K ′,

H ′ and W ′, respectively.

K H

Z W

U1
Collapse

K H

Z

W

U3
Z ∗W min. subt.
Z ∗H min. subt.
Z ∗K min. subt.

K′ H′

Z

W ′

U3
Collapse

K′ H′

Z

W ′

U4

We will replace such paths by subpaths of type U1U2U4. The crucial step is

the last step, where we choose a different fundamental domain to achieve

the necessary graph of groups picture.

K H

Z W

U1
Collapse

K H

Z W

U2
Collapse

K H

Z

W

U4

K′ H′

Z

W ′

U4
Z ∗H min. subt.
Z ∗K min. subt.

Z ∗W min. subt.
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Subpath 4 U4U3U1: This is the previous subpath in the opposite direction.

However, the vertex stabilizer in the fundamental domain of the final type

U1 graph of groups is forced to come from a fundamental domain of the

initial type U4 graph of groups. (In contrast to the previous case, where the

vertex groups in a fundamental domain of the initial U1 graph might not

have been present in the final U4 graph.)

K H

Z

W

U4
Expand

K H

Z

W

U3
Expand

K H

Z W

U1

Replacement subpath U4U2U1

K H

Z

W

U4
Expand

K H

Z W

U2
Expand

K H

Z W

U1

Step 3 A path beginning and ending in graphs of groups of type U2 con-

taining at least one graph of groups of type U1; and not containing graphs

of groups of type U3, and U5 must have all the type U1 graphs of groups

contained in a subpath of the form U2U1U2.

K H

Z W

U2
Expand

K H

Z W

U1
Collapse

K H

Z W

U2
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We will replace every such U2U1U2 path by U2. This is again the trivial path.

K H

Z W

U2

So, we have proved our claim that any two graphs of groups of type U2 can

be connected in SPD by a path consisting of graphs of groups of type U2 and

U4.

As a consequence of the claim and corollary 6.4, if X′ ∈ PD(G4,H) is a

graph of groups whose underlying graph is isomorphic to the underlying

graph of X, then there exists an element g ∈ Γ′4 such that g(σX) = σX′. g

depends on the choice of the path from X′ to X lying inside the (U2−U4)-sub-

complex of the SPD. Hence, there is exactly one orbit of graphs of groups

whose underlying graph is isomorphic to X.

Corollary 6.8. Γ′4 is finite index in Ω4

Proof. The sub-complex of the 1-skeleton of SPD(G4,H) consisting of graphs

of type U2 and U4 is connected and locally finite. The action of Ω4 and Γ′4

on this sub-complex is co-compact (1 orbit of trees of type U2 and 4 orbits of

trees of type U4) and properly discontinuous.

6.2 D(G,H) and a finite index subgroup of Ωn

In notation 6.9 we have described some graphs of groups that we will refer

frequently in our subsequent discussions.
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Notation 6.9. 1. Let, X ∈ SPD(G,H) be the vertex of SPD given by the

following graph of groups.

Ai−1

A1

A2

Ai

Ai+1

An

2. Any graph of groups whose underlying graph is isomorphic (simplicially) to

the underlying graph of X will be called a graph of groups of type X. Similarly,

any tree G-equivariantly homeomorphic to the the Bass-Serre tree of a type X

graph of groups will be called a tree of type X.

3. Let, Yi ∈ SPD(G,H) be the vertex of SPD given by the following graph of

groups. The subscript i signifies that the vertex associated to the vertex group

Ai has valence n− 1 and the rest of the vertices have valence 1.

Ai−1

A1

A2

Ai

Ai+1

An
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4. Any graph of groups whose underlying graph is isomorphic to the underlying

graph of Yi will be called a graph of groups of type Y . In other words, a graph

of groups with 1 vertex of valence n−1 and n−1 vertices of valence 1 is a graph

of groups of type Y . Similarly, any tree G-equivariantly homeomorphic to the

the Bass-Serre tree of a type Y graph of groups will be called a tree of type Y .

6.2.1 Properties of some subgroups of Out(G)

Definition 6.10. Given w ∈
n⊔
j=1

Aj and a fixed integer, i ∈ {1, ..., n}, define a

map Fw
Ai

:
n⊔
j=1

Aj →
n∗
j=1

Aj as follows:

Fw
Ai

(a) =


w−1aw , if a ∈ Ai

a , otherwise

By the universal property, this map can uniquely be extended to an auto-

morphism Fw
Ai

:
n∗
j=1

Aj →
n∗
j=1

Aj. In general, for w ∈
n∗
j=1

Ai we define Fw
Ai

inductively as follows. If w = uv, then define Fw
Ai

:= F u
Ai
F v
Ai

.

Definition 6.11. Define fwH to be the outer automorphism represented by the

automorphism Fw
H , where H ∈ {A1, ..., An} and w ∈

n∗
j=1

Aj.

Lemma 6.12. If k,m ∈ {1, ..., n} are distinct integers, then for any u, v ∈
n∗

i 6=k,m
i=1

Ai, fuAk commutes with f vAm.

Proof. Definition 6.10 implies F u
Ak
F v
Am

= F v
Am
F u
Ak

, when m and k are distinct

integers and u, v ∈
n∗

i 6=k,m
i=1

Ai. So, fuAkf
v
Am

= f vAmf
u
Ak

, when m and k are distinct
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integers and u, v ∈
n∗

i 6=k,m
i=1

Ai.

Definition 6.13. For a fixed i ∈ {1, ..., n}, define the following subgroups

Hj
i :={Fw

Ai
|w ∈ Aj} < Aut(

n∗
j=1

Aj)

Hj
i :={fwAi |w ∈ Aj} < Out(

n∗
j=1

Aj)

Proposition 6.14. For a fixed i ∈ {1, ..., n}, we have the following isomor-

phisms

〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
=

n∗
j 6=i
j=1

Hj
i

〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
=

n∗
j 6=i
j=1

Hj
i

∗
j 6=i
j=1

Hj
i
∼= ∗

j 6=i
j=1

Hj
i
∼=

n∗
j 6=i
j=1

Aj

Proof. Let Φ ∈
〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
. Then Φ can be expressed as a com-
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position of Fw
Ai

s. That is, Φ = F u1
Ai
◦ ... ◦ F uk

Ai
, where each ul ∈

n⊔
j 6=i
j=1

Aj. Then

Φ|At =


id|At if t 6= i

xi 7→ (u1...uk)
−1xi(u1...uk), if xi ∈ Ai, and t = i

Hence,

Φ = id (in
〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
) ⇐⇒ u1...uk = id (in

n∗
j 6=i
j=1

Aj)

⇐⇒ F u1
Ai
...F uk

Ai
= id (in

n∗
j 6=i
j=1

Hj
i )

So, the following maps are well defined isomorphisms

〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
→

n∗
j 6=i
j=1

Hj
i →

n∗
j 6=i
j=1

Aj

Φ 7→ F u1
Ai
...F uk

Ai
7→ u1...uk

Similarly, let φ ∈
〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
be an element such that it can

be expressed as a product of fwAis. That is, φ = f v1Ai ...f
vr
Ai

, where each vl ∈
n⊔

j=1,j 6=i

Aj. Consider the graph of groups X ∈ SPD(G,H) (notation 6.9).

Then the underlying graph of φ(X) is isomorphic to the underlying graph of

X and the corresponding vertex groups are
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{A1, ..., Ai−1, (v1...vr)Ai(v1...vr)
−1, Ai+1, ..., An}. If φ(X) isG-equivariantly iso-

metric to X (denoted by φ(X) ∼=G X), then Φ|Ai = id,∀i.

φ = id(in
〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
) ⇐⇒ φ(X) ∼=G X

⇐⇒ φ(TX) ∼=G TX

⇐⇒ the vertices labeled by

Ai, wAiw
−1(w ∈ Aj, j 6= i) are

adjacent to Aj(j ∈ {1, ..., n} \ {i})

in φ(TX)

⇐⇒ v1...vr ∈
n⋂
j 6=i
j=1

Aj

⇐⇒ v1...vr = id (in
n∗
j 6=i
j=1

Aj)

⇐⇒ f v1Ai ...f
vr
Ai

= id (in
n∗
j 6=i
j=1

Hj
i )
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So, the following maps are well defined isomorphisms

〈
Hj
i |j ∈ {1, ..., n} \ {i}

〉
→

n∗
j 6=i
j=1

Hj
i →

n∗
j 6=i
j=1

Aj

φ 7→f v1Ai ...f
vr
Ai
7→ v1...vr

Proposition 6.15. Consider two distinct, fixed integers j1, j2 ∈ {1, ..., n}, then

〈Hj1
i , H

j2
i |i ∈ {1, ..., n} \ {j1, j2}〉 =

n⊕
i 6=j1,j2
i=1

Hj1
i ∗Hj2

i
∼=

n⊕
i 6=j1,j2
i=1

Aj1∗Aj2
Proof. Let k, l ∈ {1, ..., n} \ {j1, j2} be distinct integers, then 〈Hj1

k , H
j2
k 〉 com-

mutes with 〈Hj1
l , H

j2
l 〉. Hence, 〈Hj1

k , H
j2
k 〉 commutes with 〈Hj1

l , H
j2
l 〉.

Consider φ ∈ 〈Hj1
i , H

j2
i |i ∈ {1, ..., n} \ {j1, j2}〉. Due to the commutativity

stated previously φ can be expressed as a product, φ = f
wi1
Ai1
...f

wis
Ais

, where

i1, ..., is ∈ {1, ..., n} \ {j1, j2} are distinct integers and wi1 , ..., wis ∈ Aj1 ∗Aj2.

We want to show that φ is the identity outer automorphism if and only if

w1, ..., ws are all identity elements. To prove this we will consider the action

of φ on the Bass-Serre tree (TX) of the graph of groups X ∈ SPD(G,H)

(notation 6.9). The underlying graph of X has n vertices of valence 1 and

1 vertex of valence n. The non-trivial vertex groups of X are {A1, ..., An}

(the groups assigned to the valence 1 vertices). Then the underlying graph

of φ(X) is isomorphic to the underlying graph of X and the corresponding

vertex groups are

{w1A1w
−1
1 , ..., wj1−1Aj1−1w

−1
j1−1, Aj1 , wj1+1Aj1+1w

−1
j1+1, ...,
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wj2−1Aj2−1w
−1
j2−1, Aj2 , wj2+1Aj2+1w

−1
j2+1, ..., wnAnw

−1
n }. Without loss of gener-

ality, we have assumed 1 6= j1 < j2 6= n.

φ = id ⇐⇒ TX is G-equivariantly isometric to φ(TX)

⇐⇒ wi ∈ Aj1 ∩ Aj2 ,∀i ∈ {1, ..., n} \ {j1, j2}

⇐⇒ wi = id, ∀i ∈ {1, ..., n} \ {j1, j2}

⇐⇒ fwiAi = id, ∀i ∈ {1, ..., n} \ {j1, j2}

⇐⇒ 〈Hj1
k , H

j2
k 〉 ∩ 〈H

j1
l , H

j2
l 〉 = {id},∀k 6= l ∈ {1, ..., n} \ {j1, j2}

If we combine this with the commutativity of the subgroups 〈Hj1
k , H

j2
k 〉 and

〈Hj1
l , H

j2
l 〉 for distinct k, l ∈ {1, ..., n} \ {j1, j2}, then we get decomposition

into direct products as follows -

〈Hj1
i , H

j2
i |i ∈ {1, ..., n} \ {j1, j2}〉 =

n⊕
i 6=j1,j2,i=1

〈Hj1
i , H

j2
i 〉

(proposition 6.14) =
n⊕

i 6=j1,j2,i=1

Hj1
i ∗Hj2

i

(proposition 6.14) ∼=
n⊕

i 6=j1,j2,i=1

Aj1∗Aj2

Corollary 6.16. Out(
n∗
i=1

Ai) is not hyperbolic, when n ≥ 4.

Proof. When n ≥ 4, the cardinality of the set {1, ..., n}\{j1, j2} is greater than
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1. Hence,
n⊕

i 6=j1,j2
i=1

Hj1
i ∗Hj2

i is a direct sum of more than one infinite groups,

which violates the hyperbolicity of
n⊕

i 6=j1,j2
i=1

Hj1
i ∗Hj2

i . As a result, Out(
n∗
i=1

Ai)

is not hyperbolic.

6.2.2 Γ′n - a finite index subgroup of Ωn

Definition 6.17. Consider the subgroup Γ′n ≤ Ωn, generated by outer auto-

morphisms of the form fwH (definition 6.11), where w ∈
n⋃
i=1

Ai −H.

Remark 6.18. From definitions 6.13 and 6.17 we get,

Γ′n =
〈
Hj
i |i, j ∈ {1, ..., n}, i 6= j

〉
. We will prove that Γ′n is a finite index sub-

group of Ωn. We will refer to graph of groups X,Yi, graph of groups (and

G-trees) of type X and type Y from notation 6.9 for our discussion in this

section.

Remark 6.19. The strategy to prove that Γ′n is finite index in Ωn is described

below. Our approach will be a generalization of our approach of the proof

Γ′4 ≤ Ω4.

1. In lemma 6.20 we will give a relation between the vertex stabilizers of

two vertices of a G-tree which are in the same G-orbit and are part of two

fundamental domains with non trivial intersection(s).

2. Corollary 6.21 will follow from lemma 6.20. In corollary 6.21 we will

establish a relation between the vertex stabilizer subgroups in a selected

fundamental domain of two different trees when the trees differ by single

edge orbit expansion.
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3. In lemma 6.22 we will construct a path between two trees of type X using

trees of type X and Y , when the trees have fundamental domains whose

vertex stabilizer subgroups share a relation similar to the one described in

corollary 6.21.

4. In lemma 6.23 we will prove that any two trees that have the same

non trivial vertex stabilizer subgroups in a fundamental domain can be con-

nected.

5. In lemma 6.24 we will connect any two trees of type X by trees of type

X and Y under certain restrictions.

6. Corollary 6.25 will follow from lemma 6.24, where we will prove that

the sub-complex of SPD spanned by trees of type X and Y is connected in

SPD.

7. In lemma 6.26 we will prove that two trees of type X which are distance

2 apart are in the same Γ′n orbit.

Lemma 6.20. Consider T ∈ SPD0(G,H) and two fundamental domains

F1, F2 of T such that the vertex stabilizer groups of F1 are given by W1, ...,Wn

and the vertex stabilizer groups of F2 are given by V1, ..., Vn where Vk is conju-

gate to Wk,∀k ∈ {1, ..., n}. Assume that Vi = Wi for a fixed i and for j 6= i

the vertices with non trivial vertex stabilizers in the shortest path between Wi,

and Wj (excluding Wi and Wj) are labeled as Wj1 , ...,Wjnj
in increasing order

of distance from Wi, then the conjugacy relations are given by -

Vjp = (wiwj1 ...wjp−1)Wjp(wiwj1 ...wjp−1)
−1 (6.1)
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where, wr ∈ Wr, for r ∈ {i, j1, ..., jp, .., jnj}

Proof. The choice of vertices in the respective conjugacy classes of subgroups

for the fundamental domain based at the vertex Wi is outlined below:

Wj1 In the Wi ∗Wj1 minimal subtree of T1 we choose the vertex labeled by

wiWj1w
−1
i (for the conjugacy class of Wj1 in the fundamental domain).

Wj2 In the wiWj1w
−1
i ∗wiWj2w

−1
i minimal subtree of T1 we choose the vertex

labeled by wiwj1Wj2w
−1
j1
w−1
i (for the conjugacy class of Wj2 in the fundamen-

tal domain).
...

Wjp In the (wiwj1 ...wjp−2)Wjp−1(wiwj1 ...wjp−2)
−1∗(wiwj1 ...wjp−2)Wjp(wiwj1 ...wjp−2)

−1

minimal subtree of T1 we choose the vertex labeled by

(wiwj1 ...wjp−1)Wjp(wiwj1 ...wjp−1)
−1 (in the conjugacy class of Wjp for the fun-

damental domain).

Corollary 6.21. Consider T1 ∈ SPD0(G,H) and fix a fundamental domain

of T1 whose nontrivial vertex stabilizers are given by W1, ...,Wn. Let T2 ∈

SPD0(G,H) be obtained from T1 by equivariantly expanding the vertex labeled

by Wi. Then there exists a fundamental domain of T2 whose non trivial vertex

stabilizers are labeled by V1, ..., Vn, where each Wk is conjugate to Vk for k ∈

{1, ..., n}, and the conjugacy relations are given by-

1. Vi = Wi
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2. If j 6= i and the vertices with non trivial vertex stabilizers in the shortest

path between Wi, and Wj (excluding Wi and Wj) are labeled as Wj1 , ...,Wjnj

in increasing order of distance from Wi, then

Vjp = (wiwj1 ...wjp−1)Wjp(wiwj1 ...wjp−1)
−1 (6.2)

where, wr ∈ Wr, for r ∈ {i, j1, ..., jp, .., jnj}

Proof. As the vertex labeled by Wi is expanded, we get Vi = Wi. This in turn

implies that T2 has two fundamental domains which satisfies the conditions

of lemma 6.20. Hence, we have the result.

Lemma 6.22. Consider two trees of type X, T1 and T2, satisfying the following

properties

1. T1 ∈ SPD0(G,H) has a fundamental domain whose non trivial vertex sta-

bilizers are labeled by W1, ...,Wn.

2. T2 ∈ SPD0(G,H) has a fundamental domain whose non trivial vertex sta-

bilizers are labeled by V1, ..., Vn.

3. For each k ∈ {1, ..., n},Wk, is related to Vk by equation 6.1 given in corollary

6.21. That is

(a) Vi = Wi, for a fixed i ∈ {1, ..., n}

(b) If j 6= i, then Vjp = (wiwj1 ...wjp−1)Wjp(wiwj1 ...wjp−1)
−1 where, wr ∈ Wr

for r ∈ {i, j1, ..., jp, .., jnj}
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Then we can connect T1 and T2 by a path in SPD1(G,H) using trees of type X

and Y .

Proof. We will import the notations from corollary 6.21 and construct a

collapse-expand path consisting only of trees of type X and Y from T1 to

T2 leveraging the following conditions

• Vi = Wi

• Vj1 = wiWj1w
−1
i

• Vj2 = wiwj1Wj2w
−1
i w−1

j1

...

• Vjp = (wiwj1 ...wjp−1)Wjp(wiwj1 ...wjp−1)
−1

The steps of the expand and collapse moves are underlined below:

• On T1 apply the following moves:

1. Collapse (equivariantly) the edges of T1 adjacent to the vertex la-

beled by Wi, equivariantly. The resulting tree is of type Y .

2. Choose a fundamental domain replacing each Wr by wiWrw
−1
i , ∀

r ∈ {j1, ..., jp}.

3. Expand (equivariantly) the vertex labeled by Wi. This tree is of type

X.

• On the resulting tree we apply the following moves:

1. Collapse (equivariantly) the edges adjacent to the vertex labeled by

wiWj1w
−1
i , equivariantly. The resulting tree is of type Y .
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2. Choose a fundamental domain replacing wiWrw
−1
i by wiwj1Wrw

−1
j1
w−1
i ,

∀ r ∈ {j2, ..., jp}.

3. Expand (equivariantly) the vertex labeled by wiWj1wi
−1. This tree

is of type X.

...

• This is the final step:

1. Collapse (equivariantly) the edges adjacent to the vertex labeled by

(wiwj1 ...wjp−2)Wjp−1(wiwj1 ...wjp−2)
−1, equivariantly. The resulting tree

is of type Y .

2. Choose a fundamental domain replacing

(wiwj1 ...wjp−2)Wjr(wiwj1 ...wjp−2)
−1 by (wiwj1 ...wjp−1)Wjr(wiwj1 ...wjp−1)

−1,

for r = jp.

3. Expand (equivariantly) the vertex labeled by

(wiwj1 ...wjp−2)Wjp−1(wiwj1 ...wjp−2)
−1. This tree is of type X.

Lemma 6.23. Consider T ∈ SPD(G,H) with a fundamental domain having

non-trivial vertex stabilizer subgroups labeled byW1, ...,Wn. If T ′ ∈ SPD(G,H)

has a fundamental domain with the non trivial vertex stabilizer subgroups la-

beled by W1, ...,Wn, then T and T ′ are connected by a expand-collapse path in

SPD(G,H) such that every intermediate tree in that path has a fundamental

domain with the non trivial vertex stabilizer subgroups labeled by W1, ...,Wn.

Proof. We will show the existence of such a path in a few steps.
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1. T is connected to a tree with maximum number of edge orbits having a

fundamental domain such that the non trivial vertex stabilizers are labeled

by W1, ...,Wn.

2. Any two trees with maximum number of edge orbits having a fundamen-

tal domain with non trivial vertex stabilizer subgroups labels W1, ...,Wn are

connected. This is because both of them are connected to the tree of type X

with a fundamental domain labeled by W1, ...,Wn via collapse moves.

So, T and T ′ are connected to the same tree of type X.

Lemma 6.24. Consider T, T ′ ∈ SPD0(G,H) such that the distance between

them is 1 in SPD. If S, S ′ ∈ SPD0(G,H) are trees of type X whose nontrivial

vertex stabilizer subgroups in a fundamental domain are same as that of in a

fundamental domain of T, T ′, respectively. Then S and S ′ can be connected by

a path in SPD consisting only of trees of type X and Y .

Proof. Since T and T ′ are at a distance of 1. So, without loss of generality

let us assume T ′ is obtained by expanding p edge orbits of T , equivariantly.

We can find trees T = T0, T1, ..., Tp−1, Tp = T ′ such that Ti+1 is obtained from

Ti by one edge orbit expansion. That is, we find trees so that the p-edge orbit

expansions are factored into p singe edge orbit expansions.

For each Ti let Si denote the tree of type X with a fundamental domain

whose non trivial vertex stabilizer subgroups are same as that of a funda-

mental domain of Ti.

From lemma 6.22 of this subsection we know that Si and Si+1 can be con-

nected by an expand-collapse path consisting only of trees of type X and



67

Y .

Corollary 6.25. The sub-complex of the 1-skeleton of SPD(G,H) spanned by

vertices corresponding to graph of groups of type X and Y is connected.

Proof. If S, S ′ ∈ SPD0(G,H) are trees of type X. Consider a path of length

q connecting them. Starting from S let the trees in this path be given by

T0 = S, T1, ..., Tq−1, Tq = S ′.

For a given Ti, let Si represent the tree of type X having a fundamental

domain with non trivial vertex stabilizer subgroups identical to that of a

fundamental domain of Ti.

Following the previous lemma, lemma 6.24, we see that Si and Si+1 can

be connected by a path containing only of trees of type X and Y . So the

alternative path would consist of trees S0 = S, S1, ..., Sq−1, Sq = S ′ and all

the trees between each Si and Si+1.

Lemma 6.26. If S, S ′ ∈ SPD(G,H) are two trees of type X which are distance

2 apart, such that the non trivial vertex stabilizer subgroups in a fundamental

domain of the tree S are A1, ..., An. Then there is an outer automorphism

φ ∈ Γ′n such that φ(S) = S ′

Proof. If the distance between S and S ′ is 2, then there is a tree T such that

distance of T from S and S ′ is 1. We will prove that T must be a tree of

type Y . We will show that a path of length 2 S, T, S ′ must be traveled by

collapsing an orbit of edge G-equivariantly of S and then expanding an orbit

of vertex G-equivariantly of T .
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Complete list of vertex stabilizer subgroups in a fundamental domain uniquely

(up to equivariant homeomorphism) determines a tree of type X. So, S and

S ′ do not have a fundamental domain whose non trivial vertex stabilizer

subgroup match. To move to a different tree in SPD from S we must apply

either a collapse move or an expand move.

Expand move must be applied to the orbit of vertices with trivial vertex sta-

bilizer subgroup, as the other orbits of vertices have valence 2. The vertex

groups of any fundamental domain for a tree of type X is at the extremity

of the fundamental domain. Every tree obtained from applying only expand

move to a tree of type X must also have a fundamental domain that has all

the non trivial vertex groups in the extremities of the fundamental domain.

Any tree with a fundamental domain that has all the vertex groups at the

extremities of the fundamental domain does not have edge overlap from

two distinct fundamental domains. As a result, one expand move followed

by one collapse move on a tree of type X (to get to a tree of type X) does not

give rise to a different tree due to inability to choose a different fundamental

domain. So, to get to a different tree of type X, we need to apply collapse

move first (instead of expand move we have considered in this case) and

then an expand move.

Only single edge orbit collapse move is possible. Let the edge adjacent to

the vertex group labeled by Ai be collapsed, equivariantly. Let us denote this

tree by Ti. Then we have to apply expand move on the vertex labeled by Ai

of the tree Ti to get S ′.

The choices of vertices for a fundamental domain of T are as follows:
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• In theA1∗Ai minimal subtree we can choose vertex labeled by ai1A1a
−1
i1 .

• In theA2∗Ai minimal subtree we can choose vertex labeled by ai2A2a
−1
i2 .

...

• In the Ai−1 ∗ Ai minimal subtree we can choose vertex labeled by

aii−1Ai−1a
−1
ii−1.

• Ai.

• In the Ai+1 ∗ Ai minimal subtree we can choose vertex labeled by

aii+1Ai+1a
−1
ii+1.

...

• In theAn∗Ai minimal subtree we can choose vertex labeled by ainAna−1
in

Here, aik ∈ Ai, for k ∈ {1, ..., n}.

For such a choice, the vertex stabilizer subgroup of a fundamental domain of

S ′ are given by

ai1A1a
−1
i1 , ai2A2a

−1
i2 , . . . , aii−1Ai−1a

−1
ii−1, Ai, aii+1Ai+1a

−1
ii+1, . . . , ainAna

−1
in .

In this case, φ := (fainAn
)−1 . . . (f

aii+1

Ai+1
)−1(f

aii−1

Ai−1
)−1 . . . (fai1A1

)−1.

Corollary 6.27. Γ′n is a finite index subgroup of Ωn

Proof. Consider the 1-skeleton of the sub-complex of SPD(G,H) spanned

by trees of type X and Y . By corollary 6.25, it is connected. By lemma 6.26,

any two trees of type X which are distance 2 apart are in the same Γ′n orbit.

Hence, all trees of type X corresponding to a vertex of SPD are in the same

Γ′n orbit.
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Γ′n acts co-compactly as there is only 1 orbit of trees of type X (upto G-

equivariant homeomorphism). The action is properly discontinuous as Γ′n ≤

Ωn.

So, by Milnor-S̆varc lemma, lemma 3.1, Γ′n is finite index in Ωn.

Remark 6.28. The elements considered by McCullough-Miller, see [MM96],

were of the form fwH , as well. A key difference is we are restricting further

by requiring w /∈ H. So, Γ′n is a proper subgroup of the symmetric outer

automorphisms considered by them.
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7 Algebraically Thick Groups

A major tool used in the investigation of the original question (relative hy-

perbolicity of Out(A1 ∗ ... ∗ An)) for higher complexities is algebraic thick-

ness. Theorem 1.4 by Behrstock-Druţu-Mosher underscores the relevance

of the study of algebraic thickness. According to theorem 1.4, thickness of

a finitely generated group implies non-relative hyperbolicity of the group.

Thickness has been developed in full generality by Behrstock-Dr, utu-Mosher

in [BDM09].

In section 7.1, we will briefly describe the terms related to the definition of

algebraic thickness. Our exposition closely follow the exposition in [BDM09].

We will start by defining a non-principal ultrafilter in definition 7.1. Then,

we will define ultralimit in definition 7.2. Using the concept of ultralimit

of a family of metric spaces we will define the asymptotic cone of a metric

space (X,dist) in definition 7.4. We will use the concepts of ultrafilter and

asymptotic cone to define an unconstricted metric space in definition 7.5. Al-

gebraic thickness of a group is an inductive property, where the base case or

algebraically thick group of order at most zero are groups which are uncon-

stricted. We will use the notion of algebraic network of subgroups, definition

7.6, to define algebraic thickness in higher order, definition 7.7.

7.1 Definition

Definition 7.1. A non-principal ultrafilter on the positive integers, denoted

by ω, is a non-empty collection of sets of positive integers with the following
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properties:

1. If S1 ∈ ω, and S2 ∈ ω, then S1 ∩ S2 ∈ ω.

2. If S1 ⊂ S2 and S1 ∈ ω, then S2 ∈ ω.

3. For each S ⊂ N exactly one of the following must occur: S ∈ ω or N−S ∈

ω.

4. ω does not contain any finite set.

Definition 7.2. For a non-principal ultrafilter ω, a topological space X, and a

sequence of points (xi)i∈N inX, we define x to be the ultralimit of (xi)i∈N with

respect to ω, and we write x = limωxi, if and only if for any neighborhood

N of x in X the set {i ∈ N : xi ∈ N} is in ω.

Remark 7.3. 1. When X is compact any sequence in X has an ultralimit.

2. If moreover X is Hausdorff then the ultralimit of any sequence is unique.

Fix a non-principal ultrafilter ω and a family of based metric spaces (Xi, xi,disti).

Using the ultrafilter, a pseudo distance on
∏
i∈N

Xi is provided by:

distω((ai), (bi)) = limωdisti(ai, bi) ∈ [0,∞].

One can eliminate the possibility of the previous pseudo-distance taking the

value ∞ by restricting to sequences y = (yi) such that distω(y, x) < ∞,

where x = (xi). A metric space can be then defined, called the ultralimit of
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(Xi, xi,disti), by:

limω(Xi, xi,disti) =

{
y ∈

∏
i∈N

Xi : distω(y, x) <∞

}
/ ∼,

where two points y, z ∈
∏
i∈N

Xi we define y ∼ z if and only if distω(y, z) = 0.

The pseudo-distance on
∏
i∈N

Xi induces a complete metric on limω(Xi, xi,disti).

Definition 7.4. For a metric space (X,dist), consider x = (xn) a sequence of

points in X, called observation points, and d = (dn) a sequence of positive

numbers such that limωdn = ∞, called scaling constants. The asymptotic

cone of (X,dist) relative to the non-principal ultrafilter ω and the sequences x

and d is given by: Coneω(X, x, d) = limω

(
X, xn,

1

dn
dist
)
.

Definition 7.5. [Definition 3.1 (Unconstricted space/ group)][BDM09] A

path connected metric space B is unconstricted if the following two proper-

ties hold:

1. there exists a non-principal ultrafilter ω and a sequence d such that for

every sequence of observation points b, Coneω(B, b, d) does not have cut-

points;

2. for some constant c, every point in B is at distance at most c from a bi-

infinite geodesic in B.

An infinite finitely generated group is unconstricted if at least one of its

asymptotic cones does not have cut-points.
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Definition 7.6. [Definition 5.2(Algebraic network of subgroups)][BDM09]

Let G be a finitely generated group with a given generating set, let H be

a finite collection of subgroups of G and let M > 0. The group G is an

M−algebraic network with respect to H if:

AN0 All subgroups in H are finitely generated and undistorted in G.

AN1 There is a finite index subgroup G1 of G such that G ⊂ NM(G1), such

that a finite generating set of G1 is contained in
⋃
H∈H

H.

AN2 Any two subgroups H,H ′ in H can be thickly connected in H: there

exists a finite sequence H = H1, ..., Hn = H ′ of subgroups in H such that for

all 1 ≤ i < n,Hi ∩Hi+1 is infinite.

Definition 7.7. [Definition 7.3(Algebraic thickness)][BDM09] Consider a

finitely generated group G.

A1 G is called algebraically thick of order zero or 0-thick if it is unconstricted.

A2 G is called M -algebraically thick of order at most n+ 1 with respect to H,

where H is a finite collection of subgroups of G and M > 0, if:

- G is an M -algebraic network with respect to H;

- all subgroups in H are algebraically thick of order at most n.

G is said to be algebraically thick of order at most n + 1 with respect to H

if there is a M > 0, such that G is M -algebraically thick of order at most

n+ 1 with respect to H. G is said to be algebraically thick of order n+ 1 with

respect to H, when G is algebraically thick of order at most n + 1 and G is

not algebraically thick of order at most n.
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Remark 7.8. The algebraic thickness property does not depend on the word

metric on G, moreover it holds for any metric quasi-isometric to a word

metric.

Remark 7.9. We will show that Γ′n is algebraically thick of order at most 1

in higher complexities. More specifically, we will find and prove the exis-

tence of an algebraic network of undistorted, 0-thick subgroups. Examples

inspired by the following classes of unconstricted spaces will be our base

0-thick subgroups.

Example 7.10. [BDM09, Definition 3.4] A cartesian product of two geodesic

metric spaces of infinite diameter is an example of an unconstricted space.

Remark 7.11. A Cayley graph of a direct product of groups which have

infinite diameter is an example of an unconstricted space.

7.2 In search for thickly connected subgroups

In this section we will work with subgroups generated by carefully selected

elements from the set of generators defined in section 6.2. Hj
i from defini-

tion 6.13 will serve as the building blocks for a potential thickly connected

network of 0-thick subgroups.

7.2.1 Some thickly connected subgroups of Γ′4

We will consider two separate cases to investigate thickly connected sub-

groups of Γ4
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Case 7.12. Each Ai is abelian. We choose to portray this separately as the

subgroups used for this case are similar to the subgroups used for Γ′n, (n > 4).

Case 7.13. In general we will not assume that Ais are abelian and investigate

thickly connected subgroups Ω4 (Definition 4.3).

Case 7.12: In this case we will consider Hj
i from definition 6.13, such that

i 6= j. We will organize the generating subgroups, Hj
i , of Γ′4 (definition

6.17) into the following table. A subgroup generated by any two subgroups

in a row is a direct product of those two subgroups by proposition 6.15. A

subgroup generated by any two subgroups in a column is a free product of

those two subgroups by proposition 6.14.

H1
2 H1

3 H1
4

H2
1 H2

3 H2
4

H3
1 H3

2 H3
4

H4
1 H4

2 H4
3

Lemma 7.14. If each Ai is an abelian group, then the subgroups in the shaded

region of the table generate Γ′4
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Proof. Fix a1 ∈ A1, then

fa1A2
fa1A3

fa1A4
(a) =


a−1

1 aa1,when a ∈ A2 ∪ A3 ∪ A4

a,when a ∈ A1

A1 is abelian =⇒ a = a−1
1 aa1,∀a ∈ A1

Hence, fa1A2
fa1A3

fa1A4
= id, (Conjugation by a1)

=⇒ fa1A2
=
(
fa1A3

)−1 (
fa1A4

)−1
=⇒ H1

2 ⊂
〈
H1

3 , H
1
4

〉
Similarly, H2

1 ⊂
〈
H2

3 , H
2
4

〉
, H3

4 ⊂
〈
H3

1 , H
3
2

〉
and H4

3 ⊂
〈
H4

1 , H
4
2

〉

Now we will define some 0-thick subgroups of Γ′4 such that together they can

be potential candidates for proving at most 1-thickness of Γ′4.

Definition 7.15 (H3 := 〈N12, N34〉). Fix non identity elements ai ∈ Ai.

g12 := fa1A3
fa2A3

fa1A4
fa2A4
∈
(
H1

3 ∗H2
3

)
⊕
(
H1

4 ∗H2
4

)
g34 := fa3A1

fa4A1
fa3A2

fa4A2
∈
(
H3

1 ∗H4
1

)
⊕
(
H3

2 ∗H4
2

)
In subsection 8.2 we will define the subgroups N ij more generally. N12, N34

are special cases of that and will be used in this section .

N12 := 〈g12〉 ∼= Z

N34 := 〈g34〉 ∼= Z

Define a subgroup H3 as follows. The last equality will be proved in corollary 8.20

H3 := 〈g12, g34〉 =
〈
N12, N34

〉 ∼= Z⊕ Z
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Notation 7.16. The subgroups H12, H34. H12, H34, H3 (notations explained

below) are potential candidates for 0-thick subgroups of Γ′n. These notations

will be generalized and used in sections 8, 8.2 for further discussions.

1. H12 := (H1
3 ∗H2

3 )⊕ (H1
4 ∗H2

4 )

2. H34 := (H3
1 ∗H4

1 )⊕ (H3
2 ∗H4

2 )

If we combine all the information from this section. We get

〈
H12, H34, H3

〉
= Γ′4

H12 ∩H3
∼= H34 ∩H3

∼= Z

H12 ∼= (A1 ∗ A2)⊕ (A1 ∗ A2)

H34 ∼= (A3 ∗ A4)⊕ (A3 ∗ A4)

H3
∼= Z⊕ Z

Hence, in the case when each Ai is abelian algebraic thickness of order at

most 1 of Γ′4 will follow, if we can prove that H12, H34 and H3 are undistorted

subgroups in Γ′4. We will do this in sections 8, 8.2.

Case 7.13: Now we will not assume that Ais are abelian. Here, we will

investigate a finitely generated subgroup M4 ≤ Ω4 (definition 4.3) for thickly

connected subgroups. The definition will imply Γ′4 ≤ M4 ≤ Ω4. So, M4 will

be a finite index subgroup of Γ4(= Out(A1 ∗ A2 ∗ A3 ∗ A4)).

Definition 7.17. M4 :=
〈
Hj
i |i, j ∈ {1, 2, 3, 4}

〉
. Recall the definition of Hj

i

from definition 6.13.
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With the notations described in definition 7.17, subgroups Hj
i ≤ M4 can be

organized in a table similar to the previous case -

H1
1 H1

2 H1
3 H1

4

H2
1 H2

2 H2
3 H2

4

H3
1 H3

2 H3
3 H3

4

H4
1 H4

2 H4
3 H4

4

In addition to the subgroups H12, H34 (see notation 7.16) considered in the

previous case, we have to consider the following subgroups for a thickly

connected network of M4.

Definition 7.18. M12 := 〈H1
1 , H

1
2 , H

2
1 , H

2
2 〉 ;M34 := 〈H3

3 , H
3
4 , H

4
3 , H

4
4 〉

Lemma 7.19. 〈M12,M34〉 = M12 ⊕M34

Proof. 1. The generating subgroups of M12 commute with the generating

subgroups of M34. Hence, M12,M34 E 〈M12,M34〉

2. Now we will show that M12 ∩M34 = {id}. We will show this by consider-

ing the action of a generic element of M12 and a generic element of M34 on

the graph of groups X described below

A1 A2

A3 A4

X

Let, m12 ∈M12 and m34 ∈M34. Then, m12m34(X) =
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uA1u−1 uA2u−1

vA3v−1 vA4v−1

Here, u ∈ A1 ∗A2; v ∈ A3 ∗A4

M12 ∩M34 6= {id} =⇒ ∃m12,m34

such that m12m34(X) = X

⇐⇒ m12m34(TX) = TX

By uniqueness of A1 ∗ A2-minimal subtree and A3 ∗ A4-minimal subtree in

every tree of SPD, m12m34(X) = X =⇒ u = v =⇒ u = v = id

Hence, 〈M12,M34〉 = M12 ⊕M34.

Remark 7.20. 1. Fix ai ∈ Ai \ {idAi}(i ∈ {1, 2, 3, 4}), then observe that

(fa1A1
fa1A2

fa2A1
fa2A2

)k(X) =

(a1a2)kA1(a1a2)−k (a1a2)kA2(a1a2)−k

A3 A4

Here, a1 ∈ A1; a2 ∈ A2

Hence, fa1A1
fa1A2

fa2A1
fa2A2
∈ M12 is an element of infinite order. Similarly, the

order of fa3A3
fa3A4

fa4A3
fa4A4
∈M34 is also infinite.

2. fa1A1
fa1A2

fa1A3
fa1A4

= idΓ4 =⇒ fa1A1
fa1A2

=
(
fa1A4

)−1 (
fa1A3

)−1 ∈ 〈H1
3 , H

1
4 〉. Similarly,
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fa2A1
fa2A2

=
(
fa2A4

)−1 (
fa2A3

)−1 ∈ 〈H2
3 , H

2
4 〉 =⇒ fa1A1

fa1A2
fa2A1

fa2A2
∈ 〈H3

1 , H
4
1 , H

3
2 , H

4
2 〉 =

H34.

3. Similarly, fa3A3
fa3A4

fa4A3
fa4A4
∈ 〈H1

3 , H
2
3 , H

1
4 , H

2
4 〉 = H12.

(M12 ⊕M34) ∩ H12, (M12 ⊕M34) ∩ H34 is infinite. Hence the thickly con-

nected subgroups of M4 are H12, H34, (M12 ⊕M34). To prove thickness of

M4 we will show in section 8.3 that all of the above subgroups are undis-

torted.

7.3 Some thickly connected subgroups of Γ′n, when n ≥ 5

In this subsection we will generalize the study of Γ′4 (done in case 7.12) to

Γ′n, n ≥ 5. A major difference when n ≥ 5 is that potential algebraic networks

can be found in Γ′n without any assumption on the free factors, Ai (in case

7.12, we assumed each Ai is abelian).

We have organized the subgroups Hj
i (i 6= j, and i, j ∈ {1, ..., n}), in the

following table. Hj
i (i 6= j, and i, j ∈ {1, ..., n}), will be the building blocks

for the 0-thick subgroups, which can form algebraic network if the 0-thick

subgroups are quasi isometrically embedded in Γ′n. In contrast to the case

7.13, the diagonal groups, H i
is, have not been considered.
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H1
2 . . . H1

n−1 H1
n

H2
1 . . . H2

n−1 H2
n

...
... . . . ...

...

Hn−1
1 Hn−1

2 . . . Hn−1
n

Hn
1 Hn

2 . . . Hn
n−1

The notation for the two different classes of subgroups that we will consider

are H ij(i 6= j ∈ {1, ..., n}) and 〈N i1i2 , N i3i4〉 (i1, i2, i3, i4 are distinct integers

from the set {1, ..., n}).

Definition 7.21. H ij :=
k=n⊕
k 6=i,j
k=1

H i
k ∗H

j
k

We observe that, Γ′n ⊂

〈
n⋃
i 6=j

H ij

〉
. Now we will define an infinite order

element of H ij, and call the group generated by that element as N ij

Definition 7.22. Fix distinct integers i, j ∈ {1, ..., n} and xi ∈ Ai\{idAi}, xj ∈

Aj \ {idAj}. Define an outer automorphism, f ij :=
n∏

k 6=i,j
k=1

(
fxiAkf

xj
Ak

)
∈ H ij and a

subgroup of Γ′n ≥ N ij := 〈f ij〉 .

In section 8.2 we will prove the following results

1. N ij ∼= Z

2. 〈N i1i2 , N i3i4〉 ∼= Z⊕ Z, where i1, i2, i3, i4 are all different integers.

3. 〈N i1i2 , N i3i4〉 is undistorted in Γ′n
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The following corollary follows from definition of H ij and N ij

Corollary 7.23. If i1, i2, i3, i4 are distinct integers from the set {1, ..., n}, then

the collection of subgroups of the form {H i1i2 , 〈N i1i2 , N i3i4〉 , H i3i4} constitute a

thickly connected collection of subgroups of Γ′n, where n > 4.
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8 Some Undistorted Subgroups of Γ′n

In this section we will prove that the subgroups H ij, N ij and M12 ⊕ M34

(discussed in section 7) are quasi isometrically embedded in Γ′n. The idea of

the proof of non-distortion of H ij (and of M12 ⊕M34) is inspired by work of

Handel-Mosher [HM13]. Proof of non-distortion of N ij is inspired by work

of Alibegović [Ali02].

8.1 An important class of undistorted subgroups of Γ′n

In this section we will prove that H ij is quasi isometrically embedded in Γ′n.

The strategy of the proof is to find a sub-complex, Kij of SPD, on which H ij

acts geometrically and define a Lipschitz retraction map from SPD to Kij.

This will imply quasi isometric embedding of Kij into SPD.

Definition 8.1. Kij is the flag sub-complex of SPD(G,H) spanned by those

vertices of SPD which satisfy the following properties-

1. A tree in Kij0 has a fundamental domain containing vertices stabilized by

Ai and Aj.

2. The other vertices in this fundamental domain are stabilized by conju-

gates of Ak, k 6= i, j and the conjugating elements are from the subgroup

Ai ∗ Aj.

Example 8.2. A graph of groups representing an element of Kij from defi-

nition 8.1 is given below:
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wj−1Aj−1w
−1
j−1

Ai

wi+1Ai+1w
−1
i+1

Aj

wj+1Aj+1w
−1
j+1

wi−1Ai−1w
−1
i−1

where, wk ∈ Ai∗Aj for all k. Recall that, a graph of groups whose underlying

graph is isomorphic to the underlying graph of this graph of groups is called

a graph of groups of type X (in accordance with notation 6.9).

Lemma 8.3. Let X ∈ Kij0 denote a graph of groups of type X with non trivial

vertex groups A1, ..., An. Consider a graph of groups X′ ∈ Kij of type X, then

X and X′ can be connected by a path in Kij.

Proof. The proof will be broken down into two parts: In part 1. We will

assume that X and X′ only differ at one vertex (The vertex labeled by the

conjugate of the group Ap, for a fixed p ∈ {1, .., n} \ {i, j}). In the second

part we will consider more general X′.

1. Consider, graph of groups X1,X2 ∈ Kij0 of type X. Assume that X1

and X2 are identical except for the vertex corresponding to vertex group

congruent to Ap, where p ∈ {1, .., n} \ {i, j} is an arbitrary fixed integer. The

vertex group congruent to Ap in X1 is Ap; whereas in X2 the vertex group

congruent to Ap is wApw−1 (where, w ∈ Ai ∗ Aj). In this proof we will show

that in such a situation X1 and X2 can be connected by a path in Kij.
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First, let us assume that w = vu is a word of length 2, such that u ∈ Ai

and v ∈ Aj. So, X2 = fwAp(X1) (refer to definition 6.11 for fwAp ∈ Γn). In

fwAp(X1)(= X2), the non-trivial vertex group conjugate to Ap is uvApv−1u−1.

We will give a collapse-expand route from X1 to fp(X2) lying in Kij. Ob-

serve that our argument is inductive and we have started with the base case

where w is a word of length 2 (instead of 1). However, the description of the

collapse-expand path when w has word length 1 is contained in part a of the

base case.

(a) i. Collapse: Starting from TX1 we collapse the edges adjacent to the

vertex labeled by Aj, equivariantly.

ii. Expand: Apply an expand move on the resulting tree to expand vertex

Aj after choosing the fundamental domain containing the vertex labeled by

vApv
−1 in the Aj ∗Ap minimal subtree (instead of the vertex labeled by Ap).

(b) Starting from this tree we follow a similar procedure as described above

to obtain fwAp(X1).

i. Collapse: This time we collapse the edges adjacent to the vertex labeled

by Ai, equivariantly,

ii. Expand: Apply an expand move on the resulting tree to expand vertex

Ai after choosing the fundamental domain containing the vertex labeled by

uvApv
−1u−1 in the Ai ∗ vApv−1 (instead of vApv−1). The resulting tree is

equivariantly homeomorphic to fwAp(X1).

Notice - w is a word of length 2. More generally, for any word w ∈ Ai ∗ Aj

this proof can be extended by induction on the length of the word w, when
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w is expressed as an alternating product of elements of Ai and Aj. So, that

concludes the proof of the part 1, where X and X′ only differ at the vertex

labeled by conjugate of Ap.

2. X′ can be expressed as f(X), where f =

p1∏
wp∈Ai∗Aj
p 6=i,j
p=pl

f
wp
Ap

(definition 6.11),

such that pi ∈ {1, .., n} \ {i, j}. Hence, we can connect

• X to fwp1Ap1
(X) via a path in Kij.

• fwp1Ap1
(X) to fwp2Ap2

f
wp1
Ap1

(X) via a path in Kij.
...

•
p1∏

wp∈Ai∗Aj
p6=i,j
p=pl−1

f
wp
Ap

(X) to
p1∏

wp∈Ai∗Aj
p6=i,j
p=pl

f
wp
Ap

(X) = X′ via a path in Kij.

Remark 8.4. We will use lemma 6.23 in our following discussion. The

lemma states that two different graphs of groups having same vertex groups

can be connected by a path consisting of graphs of groups having same ver-

tex groups in SPD.

Corollary 8.5. Kij is connected.

Proof. 1. By lemma 6.23, we can connect any graph of groups in Kij to a

graph of groups of type X via a path contained inside Kij.

2. By lemma 8.3 we can connect any graph of groups of type X via a path

contained inside Kij to a graph of group of type X whose non trivial vertex

groups are A1, ..., and An.
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Remark 8.6. Recall definition 7.21 from section 7, H ij :=
n⊕

k 6=i,j
k=1

H i
k ∗H

j
k.

Lemma 8.7. Kij is invariant under the action of the subgroup H ij.

Proof. Let, T ∈ Kij and φ ∈ H ij. Assume, that Φ ∈ Aut(Gn) be such that

φ = [Φ] and

Φ(a) = a, when a ∈ Ai ∪ Aj;

Φ(a) = u−1
k auk(when a ∈ Ak, k 6= i, j and uk ∈ Ai ∗ Aj)

There is a fundamental domain of T , such that the non-trivial vertex stabi-

lizers are given by Ai, Aj, and wkAkw−1
k (where k 6= i, j and wk ∈ Ai ∗ Aj).

Φ(Ai) = Ai; Φ(Aj) = Aj; and

Φ(wkAkw
−1
k ) = Φ(wk)Φ(Ak)Φ(w−1

k ) = wkΦ(Ak)w
−1
k = wku

−1
k Akukw

−1
k

So, φ(T ) ∈ Kij. If e is any edge of length 1 connecting two vertices of Kij,

then φ(e) is also an edge of length 1 as the Γn action is isometric. Hence, it

is in Kij.

Lemma 8.8. H ij y Kij is properly discontinuous and co-compact.

Proof. There are only finitely many graphs of groups in Kij (up-to homeo-

morphism) such that the non trivial vertex groups are {A1, A2, ..., An}. We

will prove co-compactness by showing that any other graph of groups in Kij

is in the H ij-orbit of a graph of groups described in the first line.
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Let, T ∈ Kij be a tree such that the corresponding graph of groups is rep-

resented by XT and the non trivial vertex groups are given by Ai, Aj and

wkAkw
−1
k (where k ∈ {1, ..., n} \ {i, j} and wk ∈ Ai ∗ Aj). Consider fwkAk ∈ Γ′n

(definition 6.11), then
∏
k 6=i,j

(fwkAk )(XT ) is the desired graph of groups. So,

there are finitely many orbits (up-to homeomorphism) of graphs of groups

in Kij under the action of H ij. Kij is locally finite. The Bass-Serre tree of

any graph of groups have finitely many fundamental domains containing the

vertices labeled by Ai and Aj. So, point stabilizer is finite. Hence, the action

is properly discontinuous.

Lemma 8.9. Fix distinct integers i, j ∈ {1, ..., n} and wk ∈ Ai ∗ Aj, where

k ∈ {1, ..., n} \ {i, j}, then the fundamental group of a graph of groups having

non trivial vertex groups {Ai, Aj, wkAkw−1
k |k ∈ {1, ..., n} \ {i, j}} is

n∗
l=1

Al.

Proof. Consider the map

A :
n⋃
l=1

Al →
n∗
l=1

Al

a 7→


a, if a ∈ Ai ∪ Aj

w−1
k awk, if a ∈

n⋃
l 6=i,j
l=1

Al

By the universal property of free products, this map can be uniquely ex-

tended to a homomorphism denoted by A :
n∗
l=1

Al →
n∗
l=1

Al (abusing nota-
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tion). The homomorphism defined by the map

A′ :
n⋃
l=1

Al →
n∗
l=1

Al

a 7→


a, if a ∈ Ai ∪ Aj

wkaw
−1
k , if a ∈

n⋃
l 6=i,j
l=1

Al

can be uniquely extended to a homomorphism denoted by A′ :
n∗
l=1

Al →
n∗
l=1

Al (abusing notation) and satisfies A ◦ A′ = A′ ◦ A = id. Hence, A is an

automorphism and the fundamental group of a graph of groups having non

trivial vertex groups {Ai, Aj, wkAkw−1
k |k ∈ {1, ..., n} \ {i, j}} is

n∗
l=1

Al.

The goal of our next definition is to assign a tree in Kij for a given tree in

SPD(G,H), eventually leading to a Lipschitz retraction of SPD(G,H) onto

Kij.

Definition 8.10. Consider a tree T ∈ SPD and fix two distinct integers

i, j ∈ {1, ..., n}. We will build a metric tree, T
ij

, using T as follows:

1. Start with the Ai ∗ Aj-minimal subtree in T and call it T ij.

2. If the nearest point projection to T ij of the vertex stabilized by Ak, k 6= i, j

is contained in the fundamental domain of Ai ∗ Aj y T ij whose extremi-

ties are stabilized by the subgroups wkAiw−1
k and wkAjw−1

k , then the nearest

point projection of the vertex labeled by the subgroup w−1
k Akwk to T ij is con-

tained in the fundamental domain labeled by the subgroups Ai and Aj. If the
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nearest point projection of Ak, k 6= i, j is part of more than one fundamental

domains of Ai ∗ Aj y T ij, then choose the fundamental domain closest to

the fundamental domain whose vertices are labeled by Ai and Aj.

3. Construct a graph of groups, such that the geometry of the underlying

graph is isometric to the geometry of the smallest subtree of T containing the

vertices labeled by the groups from the following set - {Ai, Aj, w−1
k Akwk|k ∈

{1, ..., n} \ {i, j}} and the corresponding non trivial vertex groups are

{Ai, Aj, w−1
k Akwk|k ∈ {1, ..., n} \ {i, j}}. X

ij

PD is the graph of groups homo-

thetic to the above graph of groups such that the sum of edge lengths is 1.

By lemma 8.9 it follows that X
ij

PD is an element of PD. Define X
ij

to be the

image of X
ij

PD in SPD under the retraction stated in lemma 3.24 and T
ij

is

the Bass-Serre tree of X
ij

.

Our next goal is to define a map which can be extended to a Lipschitz retrac-

tion.

Definition 8.11. Define a map

Lij : SPD0(G,H)→ Kij

T 7→ T
ij

Lemma 8.12. If T1, T2 ∈ SPD0(G,H) satisfies dSPD(T1, T2) = 1, then

dKij(Lij(T1), Lij(T2)) ≤ 4.

Proof. dSPD(T1, T2) = 1 =⇒ that the two trees are related by a collapse

move. Without loss of generality, let us assume that T2 is obtained by ap-
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plying collapse moves on edge orbits of T1. Fix an arbitrary k 6= i, j. Let,

wk1, wk2 ∈ Ai ∗ Aj be such that the vertex groups conjugate to Ak in a rep-

resentation of X
ij

1 and X
ij

2 are w−1
k1 Akwk1 and w−1

k2 Akwk2, respectively. By

the uniqueness of Ai ∗ Aj-minimal subtrees in T1 and T2, we have w−1
k2 wk1 ∈

Ai ∪ Aj (in the example shown below w−1
k2 wk1 ∈ Aj).

wk1Aiw
−1
k1

w
k
1
A
j
w
k
1
−

1

=
w
k
2
A
j
w
−
1

k
2

wk2Aiw
−1
k2

ajAia
−1
j Aj = ajAja

−1
j Ai

Ak a−1
j Akaj w−1

k2 Akwk2 w−1
k1 Akwk1

. . . . . .

. . . . . .
wk1Aiw

−1
k1

wk2Ajwk2−1

wk2Aiw
−1
k2

ajAia
−1
j Aj Ai

Ak a−1
j Akaj w−1

k2 Akwk2 w−1
k1 Akwk1

T1

T2

Hence, the dKij(T
ij

1 , T
ij

2 ) is at most 4. The explanation of distance 4 is as

follows -

1. Starting with T
ij

1 , we apply maximum number of expand move possible.

2. On the resulting tree we collapse all the edge orbits which are not adja-

cent to a vertex with non-trivial stabilizer along with the edge orbit adjacent

to either the vertex stabilized by Ai or Aj (a tree of type Y , i.e. a tree whose

quotient graph of groups has n − 1 vertices of valence 1 and 1 vertex of va-

lence n − 1). Now, we choose a different fundamental domain in this tree

of type Y , replacing vertex stabilized by w−1
k1 Akwk1 with vertex stabilized
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by w−1
k2 Akwk2. Such a choice of fundamental domain is possible due to the

uniqueness of the Ai ∗ Aj minimal subtree in T1, T
ij

1 , T2 and T
ij

2 .

3. On the tree of type Y from the previous step we apply a maximal expand

move such that a collapse move will lead us to T
ij

2 .

4. On the resulting tree we apply a collapse move to get T
ij

2 .

Corollary 8.13. The map Lij from definition 8.11 can be extended to a contin-

uous Lipschitz retraction Lij : SPD1(G,H)→ Kij

Proof. We will extend the map linearly on each edge of SPD1. Lemma 8.12

implies the map is 4-Lipschitz. Definition 8.11 implies the map is a retract.

Corollary 8.14. H ij is an undistorted subgroup of Γn

8.2 A second class of undistorted subgroups of Γ′n

In this section we will find a class of subgroups N ij (here, i 6= j ∈ {1, ..., n})

of Γ′n which satisfy the following properties:

1. N ij < H ij.

2. N ij ∼= Z.

3. 〈N i1i2 , N i3i4〉 ∼= Z ⊕ Z, where i1, i2, i3, i4 are distinct integers from the set

{1, ..., n}.
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4. 〈N i1i2 , N i3i4〉 is undistorted in Γ′n.

We will define N ij next.

Definition 8.15. Fix two distinct integers i, j ∈ {1, ..., n}. For q ∈ {i, j} fix

xq ∈ Aq \ {idAq}.

f ij :=
n∏

p 6=i,j
p=1

fxiApf
xj
Ap

=
n∏

p6=i,j
p=1

f
xixj
Ap
∈ H ij, N ij :=

〈
f ij
〉

Lemma 8.16. Consider distinct integers i, j ∈ {1, ..., n}, then N ij ∼= Z.

Proof. We will prove that (f ij)
m

= id =⇒ m = 0. Consider a graph of

groups X such that the underlying graph has 1 vertex of valence n and n

vertices of valence 1; and the non trivial vertex groups are {A1, A2, ..., An}.

By definition of f ij, there is a representation of (f ij)m(X), such that the

vertex groups are given by {Ai, Aj, (xixj)mAk(xixj)−m|k 6= i, j}.

Let us fix a k 6= i, j. In the Bass-Serre tree of X, the distance between

the vertex labeled by Ai and Ak is 2. However, in the Bass-Serre tree of

(f ij)m(X) the distance between the vertex labeled by Ai and Ak is 4m + 2.

So, m 6= 0 =⇒ (f ij)m 6= id. Hence, 〈f ij〉 = N ij = Z.

Lemma 8.17. If i1, i2, i3, i4 ∈ {1, ..., n} are distinct integers, then f i1i2 com-

mutes with f i3i4 .

Proof. If an automorphism conjugates every element of the group Gn by a

fixed element, then the automorphism represents the outer class of the iden-
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tity automorphism. So,

n∏
k=1

fxiAk = idΓn =⇒
n∏

k 6=i,j
k=1

fxiAk =
(
fxiAi
)−1
(
fxiAj

)−1

=⇒ f ij =
n∏

k 6=i,j
k=1

fxiAkf
xj
Ak

=

 n∏
k 6=i,j
k=1

fxiAk


 n∏
k 6=i,j
k=1

f
xj
Ak


=
(
fxiAi
)−1
(
fxiAj

)−1 (
f
xj
Ai

)−1
(
f
xj
Aj

)−1

If i1, i2, i3, and i4 are all distinct numbers, then using an argument similar to

the one used in proving lemma 6.12 we see that, f i1i2 and f i3i4 commute.

Notation 8.18. Consider the graph of groups, X, from notation 6.9, then

(f i1i2)
m

(f i3i4)
l
(X) can be represented by the following graph of groups:

Ai1−1

(xi1xi2 )mAi1 (xi1xi2 )−m

Ai1+1

Ai3−1

(xi3xi4 )lAi3 (xi3xi4 )−l

Ai3+1

Ai2−1

(xi1xi2 )mAi2 (xi1xi2 )−m

Ai2+1

Ai4−1

(xi3xi4 )lAi4 (xi3xi4 )−l

Ai4+1

Lemma 8.19. If i1, i2, i3, i4 ∈ {1, ..., n} are distinct numbers and (f i1i2)
m

=

(f i3i4)
l, then m = l = 0.
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Proof. Recall that we have denoted a graph of groups with underlying graph

having 1 vertex of valence n and n vertices of valence 1 as a graph of groups

of type X. Let, X be a graph of groups of type X such that the non trivial

vertex groups are {A1, ..., An}. Since, i1, i2, i3, i4 ∈ {1, ..., n} are distinct num-

bers, without loss of generality assume that 1 < i1 < i2 < i3 < i4 < n. So,

xi1 , xi2 , xi3 , and xi4 are all distinct elements of the group Gn. Also, recall the

identity f ij =
(
fxiAi
)−1
(
fxiAj

)−1 (
f
xj
Ai

)−1
(
f
xj
Aj

)−1

.

Then

1. (f i1i2)m(X) is a graph of groups of type X with vertex groups

{A1, ..., Ai1−1, (xi1xi2)
−mAi1(xi1xi2)

m, Ai1+1, ..., Ai2−1,

(xi1xi2)
−mAi2(xi1xi2)

m, Ai2+1, ..., An}

2. (f i3i4)l(X) is a graph of groups of type X with vertex groups

{A1, ..., Ai3−1, (xi3xi4)
−lAi3(xi3xi4)

l, Ai3+1, ..., Ai4−1,

(xi3xi4)
−lAi4(xi3xi4)

l, Ai4+1, ..., An}

We will show that (f i1i2)m 6= (f i3i4)l in Γn by showing that (f i1i2)m(TX) 6=

(f i3i4)l(TX) in SPD, where TX is the Bass-Serre tree of X.

The vertex labeled by Ai1 is at a distance of 2 from the vertex labeled by

A1 in (f i3i4)l(TX); whereas the vertex labeled by (xi1xi2)
−mAi1(xi1xi2)

m is

at a distance 2 from the vertex labeled by A1 in (f i1i2)m(TX). By unique-

ness of Ai1 ∗ Ai2-minimal subtree the vertex labeled by Ai1 cannot be at a

distance 2 from the vertex labeled by A1 in (f i1i2)l(TX). Hence, (f i1i2)m =

(f i3i4)l =⇒ m = 0. Similarly, The vertex labeled by Ai3 is at a distance of

2 from the vertex labeled by A3 in (f i1i2)m(TX); whereas the vertex labeled
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by (xi3xi4)
−lAi3(xi3xi4)

l is at a distance 2 from the vertex labeled by A3 in

(f i3i4)l(TX). By uniqueness of Ai3 ∗ Ai4-minimal subtree the vertex labeled

by Ai3 cannot be at a distance 2 from the vertex labeled by A3 in (f i3i4)l(TX).

Hence, (f i1i2)m = (f i3i4)l =⇒ l = 0

Corollary 8.20. 〈N i1i2 , N i3i4〉 ∼= Z⊕ Z, where i1, i2, i3, i4 are all different inte-

gers.

Our next goal is to prove that the distance between X and (f i1i2)
m

(f i3i4)
l
(X)

is at least 2(m+ l) in SPD.

Consider a non trivial vertex stabilizer subgroup H ∈ H. We will define a

function gi1i2H from the 0-skeleton of SPD to the real numbers. For a given

tree T ∈ SPD, the function will count the number of vertices labeled by

conjugates of Ai1 and Ai2 on the xi1xi2-axis between two points on T as

described in the following definition.

Definition 8.21. Consider T ∈ SPD. For H ∈ H let gi1i2H (T ) be the number

of vertices labeled by subgroups of Ai1 ∗Ai2 which are conjugates of Ai1 and

Ai2 on the xi1xi2-axis of T between the following two points.

1. The closest point to the xi1xi2-axis in T from a vertex labeled by the sub-

group H.

2. The vertex labeled by (xi2xi1)
mAi2(xi2xi1)

−m on T .

gi1i2H : SPD0(G,H)→ R

T 7→ gi1i2H (T )
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Lemma 8.22. If dSPD(T1, T2) = 1 and k 6= i1, i2, then |gi1i2Ak
(T1)−gi1i2Ak

(T2)| ≤ 1.

Proof. The idea of the proof is derived from the knowledge of uniqueness

(up to Ai1 ∗ Ai2 equivariant homeomorphism) of Ai1 ∗ Ai2-minimal subtree

inside every tree of SPD (lemma 5.1).

Without loss of generality, let us assume that

1. T2 is obtained from T1 by applying a series of collapse moves on its edge

orbits.

2. vTj is the vertex on the xi1xi2-axis of Tj closest to the vertex labeled by

Ak, where j ∈ {1, 2}.

3. The vertex whose stabilizer subgroup is a conjugate of Aij and is closest to

vT1 on the xi1xi2-axis of T1 is labeled by (xi2xi1)
sAij(xi2xi1)

−s (or (xi1xi2)
sAij(xi1xi2)

−s).

Here j ∈ {1, 2}.

If vT1 is part of two different fundamental domains of the xi1xi2-axis, then

we choose the fundamental domain closer to (xi2xi1)
mAi2(xi2xi1)

−m and its

vertex labeling.

Label the vertex whose stabilizer subgroup is a conjugate of Aij and is closest

to vT2 on the xi1xi2-axis of T2 by (xi2xi1)
rAij(xi2xi1)

−r. Here j ∈ {1, 2}.

If we get T2 by equivariantly collapsing edges of T1, then |r − s| ≤ 1

Ak Ak

collapse

T1 T2

Hence, |gi1i2Ak
(T1)− gi1i2Ak

(T2)| ≤ 1.
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Corollary 8.23. gi1i2Ak
can be continuously extended to a Lipschitz map on all of

SPD.

Proof. This is a result of the definition of a simplicial complex. Any point

in a simplicial complex, which is not in the 0-skeleton, is in the interior of

a unique simplex. Any point in SPD, which is not in the 0-skeleton can be

expressed as a linear combination of the points in the 0-skeleton of the sim-

plex containing them. Hence, we can extend gi1i2Ak
linearly, and the resulting

extension is Lipschitz.

Definition 8.24. We will abuse notation to denote the extension of gi1i2H to

all of SPD by gi1i2H : SPD(G,H)→ R.

Lemma 8.25. gi1i2Ak
(TX) = 2m and gi1i2Ak

((f i1i2)
m

(TX)) = 0.

Proof. When k /∈ {i1, i2}, the vertices labeled by conjugates of Ai1 and Ai2 on

the xi1xi2-axis in TX between the vertex labeled byAk and (xi2xi1)
mAi2(xi2xi1)

−m

are listed below in order of increasing distance:

(1) A2

(2) x2A1x
−1
2 (= (x2x1)A1(x2x1)−1)

(3) (x2x1)A2(x2x1)−1(= (x2x1)A2(x2x1)−1)

...

(2m) (x2x1)mA1(x2x1)−m

So, gi1i2Ak
(TX) = 2m. When k /∈ {i1, i2}, there are no vertices on the tree

((f i1i2)
m

(TX)), with non trivial stabilizer between the vertex labeled by Ak

and (xi2xi1)
mAi2(xi2xi1)

−m . So, ((f i1i2)
m

(TX)) = 0.
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Lemma 8.26. dSPD(TX, (f
i1i2)

m
(TX)) ≥ 2m.

Proof. By intermediate value theorem for metric spaces, the image of the

path from TX to (f i1i2)
m

(TX) under the 1-Lipschitz map gi1i2Ak
contains the

interval [0, 2m]. Hence, dSPD(TX, (f
i1i2)

m
(TX)) ≥ 2m.

Next we want to prove a similar result about dSPD(TX, (f
i1i2)

m
(f i3i4)

l
(TX)).

Lemma 8.27. dSPD(TX, (f
i1i2)

m
(f i3i4)

l
(TX)) ≥ 2 max(m, l) ≥ m+ l.

Proof. Consider k /∈ {i1, i2, i3, i4}. Then,

gi1i2Ak
(TX) = 0

gi1i2Ak
(
(
f i1i2

)m (
f i3i4

)l
(TX)) = m

=⇒ dSPD(TX,
(
f i1i2

)m (
f i3i4

)l
(TX)) ≥ 2m.

Similarly, we can show that

dSPD(TX,
(
f i1i2

)m (
f i3i4

)l
(TX)) ≥ 2l.

dSPD(TX,
(
f i1i2

)m (
f i3i4

)l
(TX)) ≥ 2 max(m, l).

Corollary 8.28. 〈N i1i2 , N i3i4〉 := 〈f i1i2 , f i3i4〉 is quasi isometrically embedded

in Γ′n, when i1, i2, i3, i4 ∈ {1, ..., n} are distinct integers.

Proof. 〈N i1i2 , N i3i4〉 ∼= Z⊕ Z, is generated by f i1i2 , and f i3i4.

Consider, g := (f i1i2)
m

(f i3i4)
l ∈ 〈N i1i2 , N i3i4〉. As SPD acts geometrically

on Γ′n, we have, ‖g‖Γ′n ≈ dSPD(TX, g(TX)) ≥ m + l = ‖g‖〈N i1i2 ,N i3i4 〉.So,

〈N i1i2 , N i3i4〉 := 〈f i1i2 , f i3i4〉 is quasi isometrically embedded in Γ′n
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8.3 An undistorted subgroup of Out(A1 ∗ A2 ∗ A3 ∗ A4)

Let us recall the subgroup M12 ⊕M34 ≤ Ω4 (definitions 7.18, 4.3), where

M12 := 〈H1
1 , H

1
2 , H

2
1 , H

2
2 〉 ;M34 := 〈H3

3 , H
3
4 , H

4
3 , H

4
4 〉. To show that M12 ⊕M34

is undistorted in Out(A1 ∗ A2 ∗ A3 ∗ A4) we will

1. define , M4, anM12⊕M34 invariant, connected sub-complex of SPD(G4,H)

such M12 ⊕M34 y M4 is co-compact; and

2. show that there is a Lipschitz retraction from SPD(G4,H) 7→M4.

Definition 8.29. M4 is the flag sub-complex of SPD(G4,H) spanned by 0-

simplices (G4-trees) of following type- T ∈ (M4)0 ⇐⇒ ∃ a fundamental

domain, F , of T such that the stabilizer of each point of F is either a sub-

group of A1 ∗ A2 or A3 ∗ A4.

Example 8.30. An example of a graph of groups corresponding to a vertex

of M4 is:

uA1u−1 uA2u−1

vA3v−1 vA4v−1

Here, u ∈ A1 ∗A2; v ∈ A3 ∗A4

Lemma 8.31. M4 is an M12 ⊕M34 invariant sub-complex of SPD(G4,H).

Proof. Let X′ ∈M4 be a graph of groups. Without loss of generality, assume

that X′ is given by -
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uA1u−1 uA2u−1

vA3v−1 vA4v−1

Here, u ∈ A1 ∗A2; v ∈ A3 ∗A4

So, the vertex group-

1. conjugate to A1 is given by uA1u
−1

2. conjugate to A2 is given by uA2u
−1

3. conjugate to A3 is given by vA3v
−1

4. conjugate to A4 is given by vA4v
−1

Here, u ∈ A1 ∗ A2 and v ∈ A3 ∗ A4. If f ∈ M12 ⊕M34, then f(u) ∈ A1 ∗

A2; f(v) ∈ A3 ∗ A4. So, f maps the A1 ∗ A2-minimal subtree of TX′ to the

A1 ∗ A2-minimal subtree of f(TX′). Similarly, f maps the A3 ∗ A4-minimal

subtree of TX′ to the A3 ∗ A4-minimal subtree of f(TX′). By, uniqueness of

A1 ∗ A2-minimal subtree and A3 ∗ A4-minimal subtree inside f(TX′), we can

represent f(X′) by the following graph of groups -

u′A1u′−1 u′A2u′−1

v′A3v′−1 v′A4v′−1

Here, u′ ∈ A1 ∗A2; v′ ∈ A3 ∗A4

Hence, f(X′) ∈ M4 and M4 is an M12 ⊕ M34 invariant sub-complex of

SPD(G4,H).

Lemma 8.32. M4 is a connected sub-complex of SPD(G4,H).
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Proof. We will prove this by induction. Let, X′ ∈M4 be given by -

uA1u−1 uA2u−1

vA3v−1 vA4v−1

Here, u ∈ A1 ∗A2; v ∈ A3 ∗A4

We will show that X′ is connected in M4 to the graph of groups, X′′, given

by -

(uai)A1(uai)
−1 (uai)A2(uai)

−1

(vaj)A3(vaj)
−1 (vaj)A4(vaj)

−1

Here, ai ∈ A1 tA2; aj ∈ A3 tA4

Without loss of generality assume that ai = a1 ∈ A1. Hence, X′′ can be given

by -

(u)A1(u)−1 (ua1)A2(ua1)−1

(vaj)A3(vaj)
−1 (vaj)A4(vaj)

−1

Here, a1 ∈ A1 tA2; aj ∈ A3 tA4

Now we will give a collapse-expand path from TX′′ to TX′ contained inside

M4.

1. Collapse the edge adjacent to the vertex labeled by uA1u
−1 of TX′′, G4-

equivariantly.

2. In the resulting tree choose the vertex labeled by uA2u
−1 (instead of

the vertex labeled by (ua1)A2(ua1)−1) from the (u)A1(u)−1 ∗ (ua1)A2(ua1)−1-
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minimal subtree to observe a fundamental domain where the non-trivial ver-

tices are labeled by {uA1u
−1, uA2u

−1, (vaj)A3(vaj)
−1, (vaj)A4(vaj)

−1}. Ob-

serve that this is a tree in M4.

3. Expand the vertex labeled by uA1u
−1, so that in the resulting tree there

is a fundamental domain containing the vertices labeled by

{uA1u
−1, uA2u

−1, (vaj)A3(vaj)
−1, (vaj)A4(vaj)

−1}.

4. Starting from the above tree we will follow similar collapse-expand path

(described above) to connect it to a tree containing a fundamental domain

in which the vertices are labeled by {uA1u
−1, uA2u

−1, vA3v
−1, vA4v

−1}. This

tree is G4-equivariantly isometric to TX′.

Now consider the graph of groups X given by -
A1 A2

A3 A4

Graph of groups: X

By an induction on the word length of u ∈ A1 ∗ A2 and w ∈ A3 ∗ A4, and

repeatedly following the collapse-expand moves described above, we can

connect X′ to X in M4.

If Z ∈ M4 is a graph of groups, then we can find a collapse-expand path in

M4 from Z to a graph of groups with same non trivial vertex groups as that

of Z, whose underlying graph is isomorphic to the underlying graph of X

(using lemma 6.23). Hence, there is a collapse-expand path in M4 from Z to

X.
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Lemma 8.33. The action M12 ⊕M34 y M4 is co-compact.

Proof. We will define an outer automorphism in M12 ⊕M34, which maps a

graph of groups whose non-trivial vertex groups are given by {A1, A2, A3, A4}

to any Z ∈M4, where underlying graph of both graphs of groups are isomor-

phic.

Assume that the vertex groups of Z are {uA1u
−1, uA2u

−1, vA3v
−1, vA4v

−1},

where u ∈ A1 ∗ A2 and v ∈ A3 ∗ A4 are reduced words given by

u = aε11i1a2i1a1i2a2i2 ....a1ika
ε2
2ik

; v = aε33i1a4i1a3i2a4i2 ....a3ila
ε4
4il
. Here, ajpm ∈ Aj

and εn ∈ {0, 1}. Then the outer automorphism represented by the following

automorphism is the required outer automorphism

(f
a1ik
A1

)ε1(f
a2ik
A2

)...(f
a1i1
A1

)(f
a2i1
A2

)ε2(f
a3il
A3

)ε3(f
a4il
A4

)...(f
a3i1
A3

)(f
a4i1
A4

)ε4 ∈M12⊕M34.

Lemma 8.34. Let T ∈ SPD be a tree and T ij denote the Ai ∗ Aj-minimal

subtree of T . If i1, i2, i3, i4 ∈ {1, ..., n} are distinct integers, then T i1i2 ∩ T i3i4 is

homeomorphic to a line segment.

Proof. We will prove this by contradiction. Let, i1, i2, i3, i4 ∈ {1, ..., n} be

distinct integers such that I := T i1i2 ∩ T i3i4 6= φ. Let, v ∈ I be a vertex of

valence greater than 2.

1. Since, v is a part of T i1i2, the uniqueness of the minimal subtree T i1i2

forces the stabilizer subgroup of v to be either a conjugate of Ai1 or a conju-

gate of Ai2, where the conjugating element belongs to the Ai1 ∗ Ai2.

2. Similarly, v is a part of T i3i4. So, the stabilizer subgroup of v is either

a conjugate of Ai3 or a conjugate of Ai4, where the conjugating element

belongs to the Ai3 ∗ Ai4.
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We arrive at a contradiction. The intersection, I, cannot have a vertex of

valence greater than 2.

Now we will construct a map from SPD(G4,H) to M4.

Definition 8.35. We will define a map L4, where T is described as follows:

L4 : SPD0(G4,H)→M4

T 7→ T ,

1. Consider the smallest subtree of T containing two distinct points whose

non-trivial vertex stabilizer subgroups are subgroups of A1 ∗A2 and two dis-

tinct points whose non-trivial vertex stabilizer subgroups are subgroups of

A3 ∗ A4. In case of an ambiguity, choose the subtree which is closer to the

fundamental domain of A1 ∗ A2-minimal subtree (and A3 ∗ A4 minimal sub-

tree) whose extremities are labeled by the groups A1, A2 (and A3, A4).

2. Let XPD be the graph of groups homothetic to the subtree described above

and the non-trivial vertex groups are the subgroups of A1 ∗ A2 and A3 ∗ A4

described above, such that the sum of edge length of the underlying graph

of XPD is 1. So, XPD is an element of PD. Define X to be the image of XPD

in SPD under the retraction stated in lemma 3.24 and T is the Bass-Serre

tree of X.

Lemma 8.36. L4 can be extended to a continuous, Lipschitz map -

L4 : SPD(G4,H)→M4
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Proof. The proof is similar to the proof of the lemma 8.12. If T1, T2 ∈ SPD0

are two trees such that dSPD(T1, T2) = 1, then the two trees are related by a

collapse move. Without loss of generality, let us assume that T2 is obtained

by applying collapse moves on edge orbits of T1. If the vertex groups of

T 1 are {uA1u
−1, uA2u

−1, vA3v
−1, vA1v

−1} and the vertex groups of T 2 are

{u′A1u
′−1, u′A2u

′−1, v′A3v
′−1, v′A1v

′−1}, then by the uniqueness of A1 ∗ A2-

minimal subtree we have u′u−1 ∈ A1 ∪ A2. Similarly, by the uniqueness of

A3 ∗ A4-minimal subtree we have v′v−1 ∈ A3 ∪ A4.

Hence, the dM4(T 1, T 2) is at most 6. The explanation of distance 6 is as

follows -

1. Starting with T 1, we apply maximum number of expand move possible.

2. On the resulting tree we collapse all the edge orbits which are not adja-

cent to a vertex with non-trivial stabilizer along with the edge orbit adjacent

to either the vertex stabilized by A1 or A2 (a tree of type Y , i.e. a tree whose

quotient graph of groups has 3 vertices of valence 1 and 1 vertex of valence

3). Now, we choose a different fundamental domain in this tree of type

Y , replacing vertex stabilized by uAiu−1, (i ∈ {1, 2}) with vertex stabilized

by u′Aiu
′−1. Such a choice of fundamental domain is possible due to the

uniqueness of the A1 ∗ A2 minimal subtree in T1, T 1, T2 and T 2.

3. On the tree of type Y from the previous step we expand one vertex orbit

to get a tree with quotient graph of groups having 1 vertex of valence 4 and

4 vertices of valence 1.

4. On the resulting tree we collapse the edge orbit adjacent to either the
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vertex stabilized by A3 or A4 (a tree of type Y ). Now, we choose a differ-

ent fundamental domain in this tree of type Y , replacing vertex stabilized

by vAjv−1, (j ∈ {3, 4}) with vertex stabilized by v′Aiv′−1. Such a choice of

fundamental domain is possible due to the uniqueness of the A3∗A4 minimal

subtree in T1, T 1, T2 and T 2.

5. On the tree of type Y from the previous step we apply a maximal expand

move such that a collapse move will lead us to T 2.

6. On the resulting tree we apply a collapse move to get T 2.

Hence, the map L4 can be linearly extended to M4 such that

dSPD(T1, T2) = 1 =⇒ dM(L4(T1), L4(T2)) ≤ 6.

Corollary 8.37. M4 is a quasi isometrically embedded sub-complex of SPD(G4,H).

Hence, M12 ⊕M34 is undistorted in Out(A1 ∗ A2 ∗ A3 ∗ A4).
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9 Summary

We will summarize our work together to give a summary of the proof of

theorem 1.1 in this section.

Proof of theorem 1.1. 1. Finiteness of Γ2 follows from corollary 5.2

2. Hyperbolicity of Γ3 follows from corollary 5.5

3. Γ4 is thick of order at most 1, when each Ai is finite. The subgroups rele-

vant to our discussion are H12, H34 (definition 7.21); M12 ⊕M34 (definition

7.18) . For a tabular representation refer to table 7.2.1. We will list the

reasons whose combination make Γ′4 thick of order at most 1.

(a) 〈H12, H34,M12 ⊕M34〉 ≥ Γ′4.

(b) H12, H34 are undistorted in Γ′4 (corollary 8.14). M12⊕M34 is undistorted

in Γ4 (corollary 8.37).

(c) Proposition 6.15 proves H12, H34 is 0-thick. Corollaries 7.19, 8.37 prove

M12 ⊕M34 is 0-thick.

(d) Remark 7.20 proves H12, H34,M12 ⊕M34 are thickly connected.

4. For n > 4, Γn is thick of order at most 1, when each Ai is finite. For

notations refer to definitions 7.21, 8.15. For a tabular representation refer

to table 7.3. We will list the reasons whose combination make Γ′n ≤ Γn thick

of order at most 1.

(a) When, i 6= j and i, j ∈ {1, ..., n}, then H ij generate Γ′n
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(b) When i1, i2, i3, i4 are all distinct integers, then H i1i2 is undistorted in Γ′n

(corollary 8.14). 〈N i1i2 , N i3i4〉 is undistorted in Γ′n (corollary 8.28).

(c) When i1, i2, i3, i4 are all distinct integers, then, proposition 6.15, corol-

lary 8.20 proves H i1i2 , H i3i4 , 〈N i1i2 , N i3i4〉 are zero thick.

(d) When i1, i2, i3, i4 are all distinct integers, then corollary 7.23 proves

H i1i2 , H i3i4 , 〈N i1i2 , N i3i4〉 are thickly connected.
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