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Abstract 

 

The US military operate in complex and harsh environments with regular risks of 

succumbing to heat- or cold-related injuries that could have both negative mission and 

individual health consequences.  Objective and Methods: This effort collects human rest 

and exercise-based research data to compare and validate methods and mixed modeling 

approaches to provide a clear outline of predictive methods for determining physiological 

responses to hot and cold exposure (e.g., rise or fall in skin and core body temperatures) 

based on individual, environment, clothing, and activity.  Data: This study collects human 

and non-human (clothing biophysics) data.  Human research data used is from individuals 

during rest and exercise exposed to hot and cold environments (n = 51); while clothing 

data is a full range of clothing tested on sweating thermal manikins for measures of 

thermal and evaporative resistance (n = 93).  From this combined data, the goal is test 

equations or methods for predicting general risk of heat- and cold- related injuries based 

on individual inputs.  Two assessments are conducted, one to assess heat stress 

predictions (rise of core body temperature) and a second for assessing cold stress 

predictions (skin temperature fall).  Conclusions: Analyses in the heat stress assessment 

showed empirical methods are capable of predicting within acceptable accuracy rise in 

core body temperature from group mean data; while individual-based predictions have 

been shown to be accurate to within an acceptable bias of ± 0.27°C for both in hot and 

humid environments laboratory (-0.10 ± 0.36) and field conditions (0.23 ± 0.32).  Both 

rational and empirical methods were shown to acceptably predict skin temperatures to 

within the observed standard deviation (23.14 ± 9.35) (bias, -0.77 ± 3.69°C; MAE, 2.22 ± 

3.05°C; and RMSE, 1.49 ± 3.05°C). 
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I.  Introduction 

 

1.1 Statement of the Problem 

US Armed Service members operate in a wide array of areas, under many 

different environmental conditions, and conduct varied and dynamic activities.  Given 

these complex settings, the individuals within the Armed Forces constantly face the threat 

of succumbing to heat or cold related injuries [1-3].   

 

1.2 Background of the Problem 

Mitigating hot and cold injuries is a complex and has been shown to have 

significant links to a number of individualized factors, to include race, gender, job 

specialty, and geographical origin [1-2].  There are many other individualized elements 

(e.g., fitness, body composition, and genetics) that are intuitively linked to these health 

outcomes; however, there is a lack of data to scale that sufficiently addresses these issues.   

 

1.3 Hypotheses 

 H1: Thermoregulatory responses (e.g., skin and core temperature rise/fall) can be 

mathematically described and accurately predicted 

H2: Existing population-based models can acceptably predict group mean responses 

and can accurately predict individualized rise in core body temperature to within ± 0.27°C 

of observed data with the inclusion of individual characteristics 

H3: Existing rational models can be modified to accurately predict skin temperature 

to within observed SD of collected data.* (*SD of observed skin temperatures during cold 

exposure is typically high)  
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1.4 Objectives 

The purposes of this effort are to: 1) conduct broad literature review and report an 

aggregation of incidences of hot and cold related injuries among active duty US Army 

Soldiers, 2) evaluate existing methods for modeling human thermoregulatory responses 

to hot and cold related exposure, 3) collect human research data to validate and evaluate 

existing models / methods, and 4) apply machine learning techniques to collated datasets 

to develop or outline predictive methods to forecast thermoregulatory responses (e.g., rise 

and fall in skin and core body temperatures) based on individual, environment, clothing, 

and activity. 

 

Envisioned Functional Deliverables:  

 

1. A set of equations or methods for predicting situational risk of heat- and cold- 

related injuries based on predicted increases to core body temperature; including 

individualized inputs, environmental inputs, and contextual inputs (e.g., clothing, 

activity) 
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II.  Literature Review 

2.1 Incidences of Heat and Cold Related Injuries 

With climate changes alone, environmental extremes continue to be observed in 

both hotter and colder conditions [4] the impact on human health is significant and likely 

to be an enduring concern.  The Centers for Disease Control and Prevention (CDC) has 

published reports on the incidences of both cold- and heat-related deaths for the population 

within the United States.  An average of 688 heat-related deaths occurred in the U.S. 

between 1999 and 2003.  States with the highest rates (per 100,000) of hyperthermia-

related fatalities during this same period were Arizona (1.7), Nevada (0.8), and Missouri 

(0.6) [5].  A nearly identical annual average of 689 cold-related deaths occurred between 

1979 and 2002.  This national rate 0.2 per 100,000 was reported to be higher in states that 

experienced rapid temperature changes such as North and South Caroline (0.4 and 0.4) and 

in areas of higher elevation (e.g., Arizona (0.3) [6]. 

In a recent report from Berko et al., [7], an analysis of weather related deaths in the 

U.S. between 2006 and 2010 showed the incidences of weather related deaths to be 

approximately 2,000 annually (10,649 total for the period).  Interestingly, cold related 

deaths (e.g., hypothermia) were twice as prevalent (63%; n = 6,660) than that of heat related 

deaths (e.g., heat stroke) (31%; n = 3,332); while other weather events (floods, storms, 

lightning) accounted for the last six percent (n = 662). 

Exposure to natural weather events, such as extreme heat or cold, is a national and 

international concern.  However, this is even more of an acute issue for the U.S. military, 

as they routinely travel and conduct a range of physical activities around the world within 

the full spectrum of extreme environmental conditions.  Furthermore, the complexity of 
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military operations and activities within this range of environments is more dynamic than 

that of civilian exposure events.  

For the US military the incidences of heat- and cold-related injuries is a continued 

problem (Figure 1) that is often planned for with the assumption that they will happen 

rather than the assumption that they are all preventable. 

 

Figure 1. Hospitalized incidences of heat- and cold-related injuries US Military,  

2006-2016 

 

2.1.1 Clinical Definitions of Heat Injuries 

From a clinical perspective, heat related injuries are typically binned into four 

categories: heat stress, heat exhaustion, hyperthermia, and heat stroke.  Heat stress is 
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generally categorized as physiological strain and a perceived discomfort typically 

associated to physical activity during exposure to hot environmental conditions [8].   

 Clinical terminologies define heat injuries as events at varied levels of discomfort 

and physiological and neurological impairment along with specific levels of core body 

temperature.  Heat exhaustion is clinically defined as an illness, of mild to moderate 

severity, where core body temperature is abnormal, low or high (over 37°C (98.6°F) but 

below 40°C (104°F)).  Heat exhaustion typically presents as fatigue symptoms such as 

dizziness, fainting, discomfort, etc. [8].  Hyperthermia is seen when heat dissipating 

mechanisms are impaired with a rise in core body temperature above the hypothalamic set 

point, typically recognized as over approximately 40°C (104°F) [8-10].  Heat stroke is 

considered a severe illness event caused by exposure to heat and/or during physical 

activity; where core body temperature has exceeded 40°C (104°F) and noticeable impact 

on the central nervous system (e.g., delirious, convulsions) [8-10]. 

 

2.1.2 Military Incidences of Heat Related Injuries 

 The U.S. Army faces significant issues associated with heat illness and heat injuries 

during training.  During 2016, the Armed Forces Health Surveillance Center (AFHSC) 

estimated a total rate of 1.65 heat injuries per 1,000 individuals per year (total n = 2,536); 

heat strokes specifically being 0.31 per 1,000 per year (n = 401) [11].   

Over a 12 year period, from 2005 to 2016, using published reports from the Medical 

Surveillance Monthly Report (MSMR) Table 2 was created outlining incidences of heat-

related injuries for active duty members within the entire Armed Forces (U.S. Army, 

Marine Corps, Navy, and Air Force) [11-19].  From 2005 to 2016, the total reported 
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incidences of heat-related injuries was generally lumped into two categories, heat stroke 

and all others.  These instances are shown as the number of cases (n) and rate (per 1,000 

person-years); where heat stroke totaled 3,761 (2.7 p-yrs), other instances totaled 22,145 

(15.9 p-yrs), and collectively 25,906 (18.6 p-yrs).  The average annual incidences and rates 

were: heat stroke 342 (0.2 p-yrs), other 2,013 (1.4 p-yrs), and total 2,355 (1.7 p-yrs) (Table 

1, Figs 2-3)  

Table 1. Incidences of Heat Injuries for U.S. Armed Services, 2006-2016 

 

  

Year  

Heat Stroke Other Total 

Cases 

(n) 

Rate  

(p-yrs) 

Cases 

(n) 

Rate  

(p-yrs) 

Cases  

(n) 

Rate  

(p-yrs) 

2016 401 0.31 2135 1.65 2536 1.96 

2015 417 0.32 1933 1.49 2350 1.81 

2014 344 0.25 1683 1.22 2027 1.47 

2013 324 0.23 1701 1.21 2025 1.44 

2012 365 0.25 2257 1.57 2622 1.82 

2011 362 0.25 2652 1.82 3014 2.07 

2010 311 0.21 2572 1.77 2883 1.98 

2009 323 0.22 2038 1.41 2361 1.63 

2008 299 0.21 1467 1.04 1766 1.25 

2007 329 0.24 1853 1.38 2182 1.62 

2006 286 0.21 1854 1.36 2140 1.57 

Total 3,761 2.7 22,145 15.9 25,906 18.6 

Average 342 0.2 2,013 1.4 2,355 1.7 

Standard 

Deviation 
41.04 0.04 368.44 0.24 381.67 0.26 
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2.1.3 Clinical Definitions of Cold Injuries 

 

Characterizing cold related injuries is fairly complex, as the responses to cold have 

higher individual variability when compared to that of heat related injuries.  From a clinical 

perspective, cold related injuries can be broadly binned into three categories: frostbite, 
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nonfreezing cold injuries, and hypothermia.  In addition, each of these has varying levels 

of severity and subcategories associated to them. 

Frostbite is below the point at which skin tissue begins to freeze.  While 0°C (32°F) 

is traditionally considered the freezing point of water, the freezing point of skin is 

understood to be marginally less due to of electrolytes [20].  Observed freezing points range 

from as low as -4.8°C to as high as -0.6°C [20-21].   

Nonfreezing cold injuries include an array of injury events where tissue freezing 

has not occurred but damage occurs.  The level of severity of nonfreezing injuries is 

determined by the temperature, duration, and wetness of the exposure to the tissue.  Four 

of the more common specific types of nonfreezing injuries include immersion (trench) foot, 

chilblain, cold urticaria, and cold-induced bronchoconstriction [22]. 

Immersion foot is a nonfreezing injury where the foot becomes swollen, the skin is 

red initially but as severity increases the skin becomes lower in oxygen saturation and 

becomes cyanotic (purple, bluish discoloration) [20, 22].  Immersion foot is most often 

reported after tissue have been exposed for extended periods of time to non-freezing 

temperatures, between 0-15°C (32-60°F) [22].  The ‘immersion’ term refers to when the 

foot is actually immersed but more typically when the foot becomes immersed and wet 

within boots [20, 22]. 

Chilblains is considered a fairly common nonfreezing injury that appears as more 

superficial than immersion foot and occurs due to shorter term exposure (i.e., 1-5 hours) of 

temperatures below 16°C (60°F) [20].  Cold urticaria is expressed as a quick onset of 

redness, swelling and itchiness of the skin in response to short-term exposure (i.e., minutes) 

to cold environments [22].  Cold-induced bronchoconstriction is a physiological response 
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where an individual’s airways are narrowed during exercise in cold environments [20,22-

24].  

Hypothermia as a broad category of cold injury is clinically described to be the 

point at which core body temperature has dropped below 35°C (95°F) [25].  However, 

hypothermia is more specifically defined with four levels of severity; where normothermia 

(normal temperature level) is approximately 37°C (98.6°F), mild hypothermia is between 

91.4 – 95°C (33-35°F), moderate hypothermia being 85.2 – 89.6°C (29 – 32 °F), and severe 

hypothermia being 56.7 – 82.4°C (13.7 – 28°F) [20,25].  Table 2 outlines specific core 

temperature reference points associated with physiological changes / responses using work 

by Castellani et al., [20] and Pozos and Danzl [25].  

The environmental conditions for onset of specific types of cold injuries is 

simplified in a chart shown in Figure 4 below [26] 
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Table 2. Levels of Hypothermia and Physiological Responses 

 

Stage 
Core Temperature 

Physiological Responses 
° F ° C 

Normothermia 98.6 37.0 Normal 

    

Mild Hypothermia 

95.0 35.0 
Maximal shivering; increased blood 

pressure 

93.2 34.0 
Amnesia; dysarthria; cognitive 

impairment 

91.4 33.0 Ataxia; apathy 

    

Moderate 

Hypothermia 

89.6 32.0 Stupor 

87.8 31.0 Shivering ceases; pupils dilate 

85.0 30.0 
Cardiac arrhythmias; decreased cardiac 

output 

85.2 29.0 Unconsciousness 

    

Severe Hypothermia 

82.4 28.0 
Ventricular fibrillation 

likely; hypoventilation 

80.6 27.0 
Loss of reflexes and 

voluntary motion 

78.8 26.0 
Acid-base disturbances; 

no response to pain 

77.0 25.0 Reduced cerebral blood flow 

75.2 24.0 
Hypotension; bradycardia; pulmonary 

edema 

73.4 23.0 No corneal reflexes; areflexia 

66.2 19.0 Electroencephalographic silence 

64.4 18.0 Asytole 

59.2 15.2 Lowest recorded infant survival 

56.7 13.7 Lowest recorded adult survival 
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Figure 4.  Onset conditions for Cold Injuries [26] 

2.1.4 Military Incidences of Cold Related Injuries 

 

Table 3 was created outlines the cold injury incidences for active duty members of 

the U.S. military using a collection of published reports from the Medical Surveillance 

Monthly Report (MSMR) over a 20 year period [27-44].  From 1997 to 2017, the total 

reported incidences of clinically reported cold injuries for the active duty U.S. military is 

broken out into four main areas: frostbite, immersion foot and hand, hypothermia, and 

unspecified.  The instances are shown as number of cases (n) and rate (per 100,000 person-

years (p-yrs)); where frostbite (n=3,323; 33.3 p-yrs), immersion foot (n=839; 8.4 p-yrs), 

hypothermia (n=648; 6.4 p-yrs), and unspecified (n=1,873; 18.9 p-yrs), totaling 6,683; 67.5 

p-yrs (Table 3, Figs 5-7). 



12 

 

TABLE 3. 1997-2017 Summarized Incidences of Cold Related Injuries for Active U.S. 

Military 

 

 



13 

 

 

 

0

100

200

300

400

500

600

700

800

2
0
1
6
–
2
0
1
7

2
0
1
5
–
2
0
1
6

2
0
1
4
–
2
0
1
5

2
0
1
3
–
2
0
1
4

2
0
1
2
–
2
0
1
3

2
0
1
1
–
2
0
1
2

2
0
1
0
–
2
0
1
1

2
0
0
9
–
2
0
1
0

2
0
0
8
-2

0
0
9

2
0
0
7
-2

0
0
8

2
0
0
6
-2

0
0
7

2
0
0
5
-2

0
0
6

2
0
0
4
-2

0
0
5

2
0
0
3
-2

0
0
4

2
0
0
2
-2

0
0
3

2
0
0
1
-2

0
0
2

2
0
0
0
-2

0
0
1

1
9
9
9
-2

0
0
0

1
9
9
8
-1

9
9
9

1
9
9
7
-1

9
9
8

Figure 5. Incidences of Cold Injuries, Active U.S. Armed 

Forces, 1997-2017

Total #

0

50

100

150

200

250

300

350

400

450

2
0
1
6
–
2
0
1
7

2
0
1
5
–
2
0
1
6

2
0
1
4
–
2
0
1
5

2
0
1
3
–
2
0
1
4

2
0
1
2
–
2
0
1
3

2
0
1
1
–

2
0
1
2

2
0
1
0
–

2
0
1
1

2
0
0
9
–
2
0
1
0

2
0
0
8
-2

0
0
9

2
0
0
7
-2

0
0
8

2
0
0
6
-2

0
0
7

2
0
0
5
-2

0
0
6

2
0
0
4
-2

0
0
5

2
0
0
3
-2

0
0
4

2
0
0
2
-2

0
0
3

2
0
0
1
-2

0
0
2

2
0
0
0
-2

0
0
1

1
9
9
9
-2

0
0
0

1
9
9
8
-1

9
9
9

1
9
9
7
-1

9
9
8

Figure 6. Incidences, by type, of Cold Injuries, Active 

U.S. Armed Forces, 1997-2017

Frostbite # Immersion Foot and Hand #

Hypothermia # Unspecified #



14 

 

 
 

 

2.2 Thermophysiology Basics 

 

The human body is capable of maintaining thermal balance while operating 

within a wide range of temperatures.  The human system generally maintains an internal 

core temperature (Tc) of approximately 37°C.  Due to natural circadian rhythm, Tc 

fluctuates ~0.5°C daily.  However, Tc can fluctuate based on physical activity or 

environmental conditions, and may range from 36.0 – 40.0°C.  The microenvironment 

created between human skin and clothing typically must remain within 28-30°C to 

maintain thermal homeostasis at rest [45]. This microenvironment changes significantly 

with physical activity due to metabolic heat production and air movement.   
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Fitness is a factor in coping with compensable heat stress, where 

thermoregulatory demands can be met by the body and the environment.  Uncompensable 

heat stress occurs when thermoregulatory demands cannot be met by the body and the 

environment and poses a higher injury risk.  Studies have shown that during activities or 

environments where uncompensable heat stress is imposed there is a 50% likelihood of 

injury at or around 39.5°C [46].  Most modeled endurance limits are set at 39°C for this 

reason.  It is also important to mention that because of the complexity and inherent risks 

associated to operating at these higher thermal limits there is little research data collected 

with core body temperatures beyond these.  

Humans have an internal control system, primarily the preoptic area of the 

anterior hypothalamus, responsible for maintaining healthy body temperature.  The 

hypothalamus uses feedback from two main sources, the skin and the blood.  When 

temperature changes (hot or cold) are identified by either of these two sources, impulses 

are sent to the hypothalamus which in turn directs physiological changes to compensate 

for these temperatures.  To protect from cold or heat injury, the human body attempts to 

either generate or dissipate heat to stay warm or cool off.  Heat production is a natural 

process for humans and is a function of metabolism, oxidation of foods, and muscular 

activity.  Heat transfer between the human and environment occurs via four pathways: 

conduction, convection, radiation, and evaporation.  This heat exchange process is 

typically referred to as heat or thermal energy balance, and can be described as in the 

below equation: 

 𝑆 =  𝑀 ± 𝑊 ± 𝑅 ± 𝐶 ± 𝐾 − 𝐸 [W/m2]   (Eq 1) 
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where S is heat storage; M is metabolic rate; W is work rate; R is radiation; C is 

convection; K is conduction; and E is evaporation.  Radiation is heat that is transferred 

via electromagnetic waves (e.g., solar radiation).  Conduction is heat transfer due to the 

body’s direct contact with a solid object (e.g., touching a cold surface).  Convection is 

heat transfer between the body and a fluid such as air or water.  Evaporation is heat loss 

to the environment due to the phase change from liquid to vapor, typically associated 

with evaporation from sweat or respiratory water loss.  Since evaporative heat is only lost 

to the environment, the sign is negative in Eq 1. 

 Looking at injuries for the two typical extremes of heat- (hyperthermia) and cold- 

related injuries (hypothermia), we can see that the general instances of these two events 

occur when the ability to maintain thermal balance is shifted in one direction.  The body 

becomes hyperthermic when it is unable to dissipate enough heat to compensate for the 

heat gain from the environmental exposure and activity and thus is above goes above a 

safe core body temperature; while it becomes hypothermic when it is unable to produce 

or maintain enough heat to compensate with the environment and thus drops below the 

safe core body temperature [47]. 

 Two key physiological responses include vasoconstriction and vasodilation [48-

49].  Vasoconstriction is the constriction of blood vessels and occurs in response to cold 

environments to reduce the amount of blood flow to the extremities.  Vasoconstriction 

protects the internal organs from cold exposure increases cold injury risk in the 

extremities due to lower blood flow and in-turn lower temperatures. Vasodilation is the 

essentially the opposite of vasoconstriction; where blood vessels are widened to allow 

increased blood flow across the body and out to the extremities to enable increased heat 
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dissipation [48-49].  During these responses, there are other associated physiological 

responses that help compensate for these demands (e.g., increased heart rate for increased 

blood flow, increased core temperature due to increased heart rate and blood flow).  

Figure 8 shows these responses graphically. 

Figure 8. Vasoconstriction and vasodilation in response to environmental conditions

 

When the human body begins to cool, blood flow is often reduced to the extremities 

(i.e., the hands and feet) decreasing the amount of warm blood flowing to these areas.  For 

this reason, the extremities are more affected by cold exposure than other parts of the body.  

Also compounding this is the fact that the hands and feet have little local metabolic heat 

production capabilities. This lack of metabolic heat production is due to their inherently 

small muscle mass and large surface area to mass ratio that increases heat transfer from the 

body to the environment. 
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2.3 Importance of Clothing  

 For humans, clothing has long provided protection from environmental elements 

(heat, cold, etc.) or physical or biological hazards (e.g., rocks, thorns).  Through changes 

in the human lifestyle and progression of civilizations, the aspects of protection have been 

less emphasized except for within harsher environments and activities.  These include 

protection from the climatic elements (e.g., heat, cold, sun, rain, snow) but also include 

activities where hazards are expected such as during contact sporting events (football, 

hockey, etc.) or during military, law enforcement, or first responder operations (e.g., body 

armor, flame resistant clothing). 

Performance needs vary widely among users and use cases.  Due to this specificity, 

clothing systems need to be optimized to meet defined demands.  Clothing can be 

optimized to account for several variables but is not likely, given current technologies, to 

be optimized for full spectrum of environmental hazards.  For example, a single clothing 

ensemble cannot protect an individual from the extremes of the temperature spectrum of 

earth, being approximately -89°C at its coldest and 58°C at its warmest.  However, optimal 

clothing for each end of this spectrum can be achieved; specifically from a thermal 

protection perspective, humans can survive in these environmental extremes given proper 

clothing [45].  Similarly, protections based on use cases should be designed with 

consideration for the specific end use.  For example, protective equipment for American 

football players (i.e., pads and helmet) is vastly different than protective equipment worn 

by soldiers (i.e., body armor, ballistic helmet).  Often added protection increases the 

thermal burden to wearers, and thus increases risk of heat injuries. 
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It is critical to understand the tradespace in order to predict and prepare for the 

impact clothing has on protecting or impairing human health.  That is to say, understanding 

the human (physiology, anthropology, etc.), anticipated human activities (i.e., work rate 

and metabolic heat production), work environments (temperature, humidity, etc.), and the 

biophysical properties of clothing worn (heat transfer performance) in each scenario.  An 

extreme example of this importance can be seen from healthcare responders working in 

West Africa during the Ebola response; where protective clothing is very effective at 

restricting viruses from infecting workers but at the same time reduces the individual’s 

ability to dissipate heat to the environment [50; Fig 9). 

Figure 9. Environmental Impact on the Human and Effects of Protective Clothing  

 

2.3.1 Biophysics of Clothing 

 Clothing protects the wearer from environmental threats and imposes a level of 

thermal burden.  Both the biophysical resistances (thermal and evaporative) and 

spectrophotometric (reflectance, absorptivity, and transmittance) properties of clothing 
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can have a significant influence on the impact of the environment on the wearer.  To 

model these impacts on human thermal sensation (e.g., thermal comfort) and 

thermoregulatory responses (e.g., heat strain, cold protection), measurements of the 

biophysical properties and the spectrophotometric measures need to be used in 

mathematical models to simulate responses based on environmental conditions and 

activities.  Critical measurements that are needed for modeling the impact of clothes on 

thermophysiological responses include thermal and evaporative resistances, wind effects, 

and spectrophotometric values. 

 

Thermal and Evaporative Resistance 

Sweating thermal manikins have long been used to provide biophysical measures 

of clothing and equipment worn by the human [51].  These measures can be used to 

estimate the level of imposed thermal stress (hot environment) or thermal protection (cold 

environment) provided by the ensemble.  While direct biophysical comparisons can be 

helpful, i.e., comparing one ensemble’s value to another [52], a more informative 

approach is to combine these measured values with thermoregulatory modeling.  Models 

enable the prediction of thermoregulatory responses based on different individuals, as 

well as varied environments, clothing, or activity levels. 

The current standard for testing using sweating thermal manikins calls for two 

fundamental measures: thermal resistance (Rt) [53] and evaporative resistance (Ret) [54].  

These two measures represent the dry heat exchange (Rt: convection, conduction, and 

radiation) and wet heat exchange (Ret: evaporation).  After converting both Rt and Ret into 
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units of clo and im [55, 56], a ratio can be used to describe an ensemble’s evaporative 

potential (im/clo) [57].  

Each ensemble should be tested using chamber conditions from the American 

Society for Testing and Materials (ASTM) standards for assessing Rt (ASTM F1291-10) 

and Ret (ASTM F2370-10) [53, 54] (Table 4).  

Table 4. American Society for Testing and Materials standard chamber and manikin 

conditions for testing thermal (Rt) and evaporative (Ret) resistance  
 

Variable 

(unit) 

Skin / surface 

temperature 

(Ts, °C) 

Ambient 

temperature 

(Ta, °C) 

Relative 

humidity 

(RH, %) 

Wind 

velocity   

(V, ms-1) 

Saturation 

(%) 

Rt  

(m2K/W) 
35 20 50 0.4 0 

Ret (m2Pa/W) 35 35 40 0.4 100 

Thermal resistance (Rt) is the dry heat transfer from the surface of the manikin 

through the clothing and into the environment, mainly from convection, described as: 

𝑅𝑡 =
(𝑇𝑠−𝑇𝑎)

𝑄 𝐴⁄
[m2K/W]  (Eq 3) 

 

where Ts is surface temperature and Ta is the air temperature, both in °C or °K.  Q is 

power input (W) to maintain the surface (skin) temperature (Ts) of the manikin at a given 

set point; A is the surface area of the measurement in m2.   These measures of Rt can then 

be converted to units of clo: 

1 𝑐𝑙𝑜 =  6.45(𝐼𝑇)   (Eq 4) 

where IT is the total insulation including boundary air layers. Evaporative resistance (Ret) 

is heat loss from the body in isothermal conditions (Ts  Ta), described as: 

𝑅𝑒𝑡 =
(𝑃𝑠𝑎𝑡−𝑃𝑎)

𝑄 𝐴⁄
[m2Pa/W] (Eq 5) 
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where Psat is vapor pressure in Pascal at the surface of the manikin (assumed to be fully 

saturated), and Pa is vapor pressure, in Pascal, of the chamber environment.  Measures of 

Ret can then be converted to a vapor permeability index (im), a non-dimensional measure 

of water vapor resistance of materials defined as: 

𝑖𝑚 =
60.6515 

𝑃𝑎

°𝐶
 𝑅𝑐𝑡

𝑅𝑒𝑡
 (Eq 6) 

 

Wind Effects on Thermal and Evaporative Resistance 

In order to use the biophysical measures i.e., measures of Rt (clo) and Ret (im) for 

thermoregulatory modeling there is typically a need to first estimate the effects of wind 

velocity on the ensemble’s biophysical characteristics (i.e., how changes in wind affect 

clo and im values).  These effects are typically referred to as wind velocity coefficients or 

gamma values (g) [58].  Historically, obtaining these coefficients consisted of collecting 

measurements of both Rt and Ret at multiple wind velocities, above the ASTM standard 

of 0.4 m/s.  However, recent work suggests estimating these coefficient values can be 

estimated from single wind velocity tests [58-59]. 

Clothing properties and wind coefficients are critical inputs to predictive 

mathematical models such as the Heat Strain Decision Aid (HSDA) [60-62], or 

SCENARIO [63-64].  Additionally, a number of models use biophysical elements to 

describe wind-related effects using values such as as they use these values to describe 

wind-related effects, such as intrinsic insulation (Icl) and intrinsic permeability index (icl) 

for either the whole body or segements of the body, as seen with: 
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𝐼𝑐𝑙 = 𝐼𝑡 − (
𝐼𝑎

𝑓𝑐𝑙
) (Eq 7) 

where Ia is insulation measured on a nude thermal manikin, It is total insulation, and (fcl) 

is clothing area factor, calculated by: 

𝑓𝑐𝑙 =
𝐴

𝐴𝑐𝑙
  (Eq 8) 

where A (m2) is surface area of the nude manikin, and Acl (m
2) is surface area the clothed 

manikin.   

While true measures of Acl require a three-dimensional scan; methods for 

estimating Acl have been derived by McCullough et al., [65-66].  Simplified or estimated 

Acl and fcl is often used where a value of 1 is assumed for warm-weather or indoor 

clothing.  For cold-weather clothing a value would be calculated from: 

𝑓𝑐𝑙 = 1.0 + .3 ∙ 𝐼𝑐𝑙  (Eq 9) 

While these estimation methods have been studied and produce acceptable 

variance between estimated and direct measured results [67], there are questions whether 

estimates remain acceptable for clothing insulation outside typical cold weather clothing 

insulation ranges, e.g., 0.2-1.7 clo [68].  These models, by design, predict human 

thermoregulatory responses to various environmental conditions and therefore require 

quantitative insights into the change in clothing properties with changes in wind velocity.  

Furthermore, elements of wind can significantly influence physiological responses and 

injury outcomes in cold environments due to wind chill effects [20, 69-70].  There has 
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been work to determine a chart with points of predicted injury (e.g., frostbite) that will 

likely occur due to temperature and levels of wind speed exposure [69; Figure 10]. 

Figure 10. Wind chill temperature chart [69] modified to include levels of risk 

[20] 

 

Spectrophotometry  

Thermal effects from solar load (i.e., net radiant load) are dependent on the 

intensity of that load (i.e., radiant flux), clothing properties (i.e., emissivity, absorptivity, 

transmissivity) and the total area exposed to that given load [71].  The radiant balance can 

be used to describe the net solar effect; where the net solar balance (𝐺𝜆) is a function of 

reflection (𝐺𝜆𝜌), absorption (𝐺𝜆𝛼), and transmission (𝐺𝜆𝜏):  
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𝐺𝜆 = 𝐺𝜆𝜌 + 𝐺𝜆𝛼 + 𝐺𝜆𝜏  (Eq 10) 

 Reflection (𝐺𝜆𝜌) is radiation redirected back into the environment, absorption 

(𝐺𝜆𝛼) is absorbed into the material or surface, and transmission (𝐺𝜆𝜏) is passed through 

the material (Figure 11).  

 

Figure 11. Spectrophotometric measures of a material 

 

 
Key equations for these spectrophotometric measurements include: 

 

𝐺𝜆𝜌 =
𝐼𝜆(𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑)

𝐼𝜆(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)
  (Eq 11) 

𝐺𝜆𝛼 =
𝐼𝜆(𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑)

𝐼𝜆(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)
  (Eq 12) 

𝐺𝜆𝜏 =
𝐼𝜆(𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑)

𝐼𝜆(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)
  (Eq 13) 

where 𝐼𝜆 is the monochromatic intensity of radiation given as a unit of time. 
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Whole-human and components  

An additional element for consideration is the difference between use and 

measurement of whole-human ensembles versus component pieces (e.g., gloves, boots).  

The same principles of testing can be applied to whole ensembles or individual 

components.  However, it is important to understand that the collection of items cannot 

be simply summed to make the value of a total ensemble or added layers [72].  This is 

mainly due to the difference in air space within layers or across surfaces.  The 

biophysical properties of clothing include the air gap (Rgap), clothing textile (Rcl), and 

boundary layer (Rbl); where the total resistance is: 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑅𝑔𝑎𝑝 + 𝑅𝑐𝑙 + 𝑅𝑏𝑙. The 

air gap factor is influential as a role in determining the overall value; therefore the 

amount of space between the head and material can change the overall thermal properties.   

All this said, component items can be tested individually using the above 

principles outlined in equations 3 and 5.  However, if these tests were to be used with the 

intent of being included into modeling of a full ensemble we must account for sections of 

the full manikin using the below set of equations. 

𝑄𝑖 =
𝐴𝑖∙(𝑇−𝑇𝑎)

𝑅𝑖
   (Eq. 14) 

𝑄𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑄𝑖 =𝑛
𝑖

𝐴𝑡𝑜𝑡𝑎𝑙∙(𝑇−𝑇𝑎)

𝑅𝑡𝑜𝑡𝑎𝑙
 (Eq. 15) 

𝐴𝑡𝑜𝑡𝑎𝑙

𝑅𝑡𝑜𝑡𝑎𝑙
= ∑

𝐴𝑖

𝑅𝑖

𝑛
𝑖    (Eq. 16) 

𝑅𝑡𝑜𝑡𝑎𝑙 =
𝐴𝑡𝑜𝑡𝑎𝑙

∑
𝐴𝑖
𝑅𝑖

𝑛
𝑖

   (Eq. 17) 
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where Q is heat loss (W); A is the surface area of the section (m2); R is thermal resistance 

(m2°C/W); T is surface temperature of the manikin (°C); i is the section number; and n is 

the total number of sections. 

 This approach may be useful when specifically modeling the effect one item has 

on a human’s response.  For example, if the materials are changed for a set of gloves or 

head worn item, a mathematical replacing of data could be done to a whole ensemble to 

provide an estimate of the change in total biophysical properties of an ensemble as a 

result of that item.  However, it is often difficult to see meaningful differences in the total 

values, as component items generally cover relatively small surface areas in comparison 

to the overall human.  An example of this can be found in the application of this approach 

by Potter et al., [73], where values of two different head worn covers were tested an 

‘swapped’ into a full ensemble and then modeled.  While if there are differences in the 

component item properties they will be reflected in the modeled outcomes; these 

differences may be in effect negligible (Figure 12).  As the head and neck account for ~ 

8% (0.14 m2) of a total surface area of a full human or test manikin (1.81 m2), the total 

uncovered face and neck account for the majority of this space leaving only 1-2 % 

surface area coverage from a military cover.  Weighting these values has a proportionate 

effect.  Figure 13 shows a surface area breakdown of a 20 zone manikin (Newton model, 

Thermetrics, Seattle, WA; www.Thermetrics.com). 

 

 

 

 

 

 

http://www.thermetrics.com/
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Figure 12. Predicted core body temperature response during moderate walking – a 

comparison of two different head-worn covers [73] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Surface area of the manikin 

  
Section 

Descriptio

n 

Surface 

covere

d (m2) 

Percen

t of the 

total 

Sectio

n # 

 

Newton 20 

zone 

Manikin 

1.812 100% 1-20 

Face 0.046 3% 1 

Head 0.097 5% 2 

r. upper 

arm 
0.084 5% 9 

l. upper arm 0.084 5% 10 

r. forearm 0.065 4% 11 

l. forearm 0.065 4% 12 

r. hand 0.046 3% 13 

l. hand 0.046 3% 14 

chest 0.121 7% 3 

shoulders 0.101 6% 4 

stomach 0.119 7% 5 

back 0.094 5% 6 

r. hip 0.076 4% 7 

l. hip 0.076 4% 8 

r. thigh 0.152 8% 15 

l. thigh 0.152 8% 16 

r. calf 0.135 7% 17 

l. calf 0.135 7% 18 

r. foot 0.060 3% 19 

l. foot 0.060 3% 20 

 

Zoomed scale (0.1 °C) over 10 minutes 
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III.  Methods 

3.1 Overall Study Design 

This study uses a model-test-model paradigm [74] and advocates for stepwise 

order of testing to ensure efficient use of resources and effective use of human research.  

Figure 14 outlines the ideal stages of testing related to studying the properties of clothing 

as they relate to their influence on humans.  The basics include testing of the physical 

clothing and properties and then progressing to more elaborate and typically resource 

costly human studies.  

Figure 14. Levels of clothing system testing [69] 

 

The general steps of the model-test-model design for this study are: 

 Conduct broad literature review and evaluation, as well as re- and reverse-

engineering of existing published modeling methods (Model) 
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 Collate, collect, and evaluate human research data to investigate the 

individualized relationship to clothing, thermoregulation, and environment (Test) 

 Develop rational, empirical, and machine learning methods for predicting 

thermoregulatory responses and/or injury risks based on individual, clothing, 

activity, and environment (Model) 

Data collected for this work are summarized in Table 5.  For this study a combination of 

human data and non-human (clothing) data will be used to conduct two broad 

assessments; one assessment will specifically look at the predictability of heat stress 

response (i.e., core body temperature changes) and the second will look at cold stress 

responses (i.e., skin temperature changes). 

Table 5. Summary of Study Data 

Type  Human Non-human (clothing) 

Data Sample Size N = 51 N = 93 

Population Adult Males / Females Thermal Sweating Manikin 

Ages Ages 18-48 N/A 

Setting Laboratory and Field Controlled climate chamber - 

Laboratory 

Measures, 

Variables, etc. 

ECG/HR, Tc, Tsk, VO
2
, 

accelerometry 

Chamber / Environmental 

conditions (Ta, RH, wind 

velocity, Tmr) 

Thermal Resistance (R
t
) 

Evaporative Resistance (R
et
) 

Vapor permeability (i
m

) 

Evaporative potential (i
m

/clo) 

Chamber conditions (Ta, RH, 

wind velocity, Tmr) 
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3.2 Human Research Study Design 

This study is divided into two distinct test assessments: Assessment 1 relates to 

heat stress responses to hot environmental conditions and Assessment 2 relates to cold 

stress response to cold environmental conditions.  Previously collected and proactively 

collected experimental data from human physiological studies will be used to refine and 

develop models to predict thermal injuries (via changes in skin and core body 

temperature).  Targeted study data and descriptions are included in the sections below.  

Modeling approaches seek to develop rational and empirically-based equations and 

methods that will be combined for hybrid or multi-model designed solutions.  

Algorithms and more complex mathematical models offer useful ways to organize 

scientific knowledge and to predict human performance.  However, as part of a model-

test-model process [74], it is important for continued research specific to populations and 

scenarios to ensure optimal estimations.  For cost effectiveness, a continued approach to 

simulations and modeling methods should be sought rather than moving directly into 

human research and user field evaluations.   

3.2.1 Assessment 1 – Heat Stress 

For Assessment 1, the accuracy of the HSDA [60] was assessed for predicting Tc 

changes during a laboratory and a field experiment. This modeling method for both the 

laboratory and field experiments assessed healthy individuals wearing chemical 

protective clothing ensembles during activities.  The laboratory study volunteers (n=8) 

conducted intermittent treadmill marching in a hot and humid environmental chamber; 

while the field experiment monitoring individuals (n=20) during a prolonged road march 

in hot and humid outdoor conditions.   The volunteer descriptive data are included in 

Table 6. 
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The volunteers for the field study wore different chemical protective clothing 

ensembles during four field tests scheduled every other day. During each test, volunteers 

marched for 120 min at a set pace of 1.10 m·s-1 on a 0% grade paved road. The combined 

weight of clothing and external loading was 15.6 ± 1.1 kg. Core body temperature was 

measured minute-by-minute using a rectal thermometer (Respironics Mini Mitter, Inc., 

Bend, OR). 

For the laboratory testing, volunteers wore a different chemical clothing 

ensembles for the three tests in a controlled environmental chamber. During each trial, 

volunteers walked for 60 min on a treadmill at 0.84 m·s-1 on a 0% grade, rested for 10 

min, and then walked for 30 min at 1.68 m·s-1 on a 3% grade. Core body temperature was 

measured minute-by-minute using a rectal thermometer (Edale Instruments Ltd, U.K.) 

intent of this data has been previously published [75-76]. 

Table 6. Assessment 1 – Heat Stress.  Human Data Descriptive Statistics 

Conditions Sample Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

Body 

surface 

area (m2) 

Laboratory –  

Ta 29.3 ± 0.3°C; RH 56 ± 7%; 

wind speed 0.4 ± 0.1 m·s-1) 

 

N = 8 

(males) 

24 ± 6 178 ± 5 76.6 ± 8.4 1.94 ± 0.1 

Field –  

Ta 26.0 ± 0.5°C; RH 55 ± 3%; 

wind speed 4.3 ± 0.7 m·s-1 

N = 20 

(1 female) 

26 ± 5 175 ± 8 80.2 ± 12.1 2.0 ± 0.2 

 

Assessment 2 – Cold Stress 

For assessment 2, four different studies were combined for a total of 23 healthy 

human research volunteer individual datasets. All data used for this work have been 

collected from published datasets [77-82] and is summarized in Table 7.   
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Volunteers for the laboratory study by Santee et al., [77-79] were assessed during 

treadmill walking (120 minutes) and sitting (125 minutes) in cold climate chamber (-6.7 

and 0°C).  During testing temperatures measures were obtained for core body and fingers, 

along with continuous heart rate (HR) [77-79].  Volunteers from the laboratory study by 

Gonzalez et al., [80] sat at rest and conducted treadmill walking in three cold chamber 

conditions (0, -20, and -30°C) for a maximum of 120 minutes per test.  Continuous 

temperature measures of core body, middle finger, and mean weighted skin were 

collected, along with periodic measures of heart rate and VO2 [80].  Volunteer 

information from Hickey et al., [81] is not reported. During this study, subjects were 

monitored in extreme cold climate chamber conditions (-40°C) for trials in 120 minute 

and 240 minute exposures, where they sat and conducted treadmill walking.  Measures of 

core body and skin temperature were collected during study activities [81].  Volunteers 

from the laboratory study by Castellani et al., [82] were monitored while sitting in cold 

climate conditions (0.48°C).  During trials skin temperature and heat flux was measured 

at 13 points of the body [82]. 
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Table 7. Assessment 2 – Cold Stress.  Human Data Descriptive Statistics 

Conditions Sample Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

Body 

surface 

area (m2) 

Laboratory –  

Ta 0 and -6.7°C;  wind 

speed 1.1 m·s-1) 

 

N = 5 22 ± 3 172 ± 5 71.6  ± 

7 

1.85 ± 0.1 

Laboratory –  

Ta 0, -20, -30°C; RH 20%; 

wind speed 1.34 m·s-1 

 

N = 6 24 ± 5 175 ± 4 68.8  ± 

11.1 

1.83 ± 0.2 

Laboratory –  

Ta -40°C 

 

N = 4 UNK UNK UNK UNK 

Laboratory –  

Ta 0.47°C ± 0.5°C; RH 51 ± 

3%; wind speed 1.34 m·s-1 

N = 8 

(2 females) 

26 ± 9 170 ± 6 77.6  ± 

16.2 

1.89 ± 0.2 

 

3.3.  Non-Human Research Design 

Standard testing were conducted to assess the biophysical properties for 93 different 

types of clothing ensembles using a thermal sweating manikin (Newton model, 

Thermetrics, Seattle, WA; www.Thermetrics.com). The thermal and evaporative 

resistances (Rt and Ret) were assessed according to American Society for Testing and 

Materials (ASTM) standard (ASTM F1291-16 & ASTM F2370-16) [53-54].  Tested 

ensembles included various levels of clothing to include: simple exercise clothing (n=5), 

general clothing (e.g., long sleeve shirt and pants) (n=8), military combat clothing (e.g., 

general clothing with body armor and equipment) (n=22), chemical protective clothing 

(e.g., hazmat suits) (n=26), explosive ordnance disposal suits (n=4), and various cold 

weather clothing ensembles (n=28).  A summary of this clothing is shown in Table 8 and 

biophysical values are outlined in the results section of this report.  Full descriptions and 

http://www.thermetrics.com/
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pictures of many of these ensembles can be found in various papers and government 

technical reports [50, 52, 71, 83-87]. 

 

Table 8. Summary of Non-human (clothing) data 

 

 

3.4 Modeling Risk and Predicting Heat and Cold Related Injuries 

Human thermal response (e.g., metabolic heat production, core body temperature 

(Tc), endurance time) resulting from activity, environment, and clothing can be predicted 

through mathematical modeling.  Mathematical models are typically binned into one of 

three categories, rational, empirical, and hybrid.  Rational (mechanistic) models 

mathematically represent phenomena based on understanding of physics and physiology 

(biology, chemistry, physics).  In contrast, empirical (functional) models mathematical 

reflect the observed relationship among experimental data. While both methods, rational 
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and empirical, are scientifically valid approaches, perhaps the most effective approach is 

the hybrid or mixed model method that uses a combination of the two.    

3.4.1 Rational Models  

Rational modeling incorporates equations that describe heat balance and 

thermoregulatory processes [88].  Two fundamental equations are used to describe 

internal heat balance and for heat exchange between skin and environment.  One equation 

outlines the temperature gradient change from core to skin and can be seen as:  

ρc ∙  
∂T

∂t
= qm +  λ ∙  ∇2T + ωbl ∙ ρblcbl ∙ (Tbl − T)       [W ∙ m−3] (Eq 18) 

where ρ is tissue mass (kg ∙ m-3), c is the specific heat of the tissue (kJ ∙ kg-1 ∙ °C-1), T is 

the tissue temperature (°C), t is time (sec), qm is metabolic heat production rate (W ∙ m-3), 

λ is the tissue heat conductivity (W∙ m-1 ∙ °C-1), ∇2 is a Laplace transform for  heat 

conduction based on the tissue temperature gradient, ωbl is blood flow rate (m3 ∙ s-1 ∙ m-3 

tissue), ρbl is blood flow mass (kg ∙ m-3), cbl is the blood specific heat (kJ ∙ kg-1 ∙ °C-1), 

and Tbl is the blood temperature (°C). 

The second equation needed for rationally modeling heat exchange from the skin 

surface to the environment is:  

−λ ∙   
∂T

∂n
= R + C + K + E       [W ∙ m−2] (Eq 19) 

where λ is the tissue heat conductivity (W∙ m-1 ∙ °C-1), T is tissue temperature (°C), 𝑛 is 

the tissue coordinate normal to the skin surface; while the balance is the array of avenues 

of heat exchange (W∙ m-3): R is radiative, C is convective, K is conductive, and E is 

evaporative. 

 Rational models of thermoregulatory processes usually include equations for the 

controlling signals of the thermoregulation system and equations for thermoregulatory 
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actions such as sweating, vasodilation, vasoconstriction, and shivering.  Examples of 

rational models are the 2-node model [89], the SCENARIO one cylinder model [63-64] 

and the Six Cylinder Thermoregulatory Model (SCTM) [90].   

Understanding the interplay between each of the different layers of the human 

(grossly consisting of core, muscle, fat, and skin) along with clothing and air layers 

within clothing is only the first step to modeling the human’s response in a given 

environment.  Figure 15 shows the rational basis behind the SCENARIO model where 

the human is mathematically represented as one cylinder, based on the relationship of the 

layers of the human, their respective physiological responses, and clothing [64]. 

Figure 15.  SCENARIO Model fundamental rational basis [64] 

 

 

Contrary to the one cylinder approach of the SCENARIO model [64], the model 

from Xu and Werner [90] pays particular attention to cold exposure thermoregulatory 

responses, sectioning the human model into six sections (head, torso, arms, hands, legs, 

and feet) to represent the complex responses of the human extremities within cold 

environments (Figure 16).   
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Figure 16. Comparison of one- and six-cylinder thermoregulatory models 

 

A simplification of these key factors is shown in Figure 17, in a recreated figure 

from Xu and Werner [90]; where heat transfer within these layers is considered, along 

with environmental conditions and thermoregulatory responses (metabolism, vasomotor 

control, sweat production, and blood pooling).  

 Figure 17.  Dynamic model of human thermoregulation Xu and Werner [90]  
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3.4.2 Empirical Models 

Empirical models are mathematical representations of data, often using statistical 

methods such as regression or correlational analysis.  The Heat Strain Decision Aid 

(HSDA) is an empirical model derived from an extensive database of human studies that 

incorporates the biophysics of heat exchange developed by the U.S. Army Research 

Institute of Environmental Medicine (USARIEM) [60-62].  HSDA predicts core 

temperature, maximum work times, sustainable work-rest cycles, water requirements, and 

the estimated likelihood of heat casualties.  This model has been used to support the 

development of guidance and doctrine for military [91] and fluid intake guidance for the 

public [92].  The basis of HSDA includes both principles of heat exchange along with 

empirical predictions of physiological responses.  Collectively 16 inputs from four 

elements (individual characteristics, physical activity, clothing biophysics, and 

environmental conditions) are used to mathematically predict rise in core body 

temperature over time [60].  Table 9 and 10 below outline the published equations that 

make up the required inputs (Table 9) and the fundamental equations of this heat strain 

specific model (Table 10); while the modeling methods are drawn in the schematic 

shown in Figure 18 [60]. 

 

 

 

 

 

 

 



40 

 

Table 9. Required inputs to HSDA model 

Element Symbol Description units 

Anthropometrics 

/ Health State 

Ht Height cm 

Wt Weight kg 

DIH Days in heat; days of heat acclimation days 

dhyd Dehydration status % 

iTsk Initial skin temperature °C 

iTc Initial core body temperature °C 

Environmental 

Conditions 

V Wind velocity m/s 

RH Relative humidity  % 

Ta Ambient temperature °C 

Tmr Mean radiant temperature °C 

Clothing 

Biophysical 

Characteristics 

IT Total thermal resistance clo 

ITVg 
Thermal resistance wind velocity 

coefficient / gamma 
N.D. 

im/clo Evaporative potential  N.D. 

im/cloVg 
Evaporative potential wind velocity 

coefficient / gamma 
N.D. 

Physical Activity 

/ Work Rate 

𝑀̇ 
Metabolic heat production / metabolic 

rate 
W 

Wex External work rate W 

 

Table 10. HSDA Fundamental Equations 

Measure  / Component Equation units 
Eq # this 

paper 

Body Surface Area (AD) 𝐴𝐷 = 0.007184 ⋅ 𝐻𝑡0.725 ⋅ 𝑊𝑡0.425 m2 20 

Effective wind velocity 

(Veff) 

𝑉𝑒𝑓𝑓  =  𝑉 +  0.004 ⋅ (𝑀 –  105) 

𝑉𝑒𝑓𝑓  =  0.11 + 𝑉 + 𝛽 ⋅ 𝑉𝑤𝑎𝑙𝑘 (𝛽 =  0.67 𝑓𝑜𝑟 𝑤𝑎𝑙𝑘𝑖𝑛𝑔) 
m/s 21 

Air Vapor Pressure (Pa) 𝑃𝑎 = 10(8.1076−(
1750.286
𝑇𝑎+235

)) ⋅ (
𝑅𝐻

100
) Torr 22 

Effective total thermal 

resistance (ITeff) 
𝐼𝑇𝑒𝑓𝑓 = 𝐼𝑇 ⋅  𝑉𝑒𝑓𝑓𝐼𝑇𝑉𝑔

 Clo 23 

Effective clothing 

evaporation (Cevap) 
𝐶𝑒𝑣𝑎𝑝 =

𝑖𝑚

𝑐𝑙𝑜
⋅   𝑉𝑒𝑓𝑓𝑖𝑚/𝑐𝑙𝑜𝑉𝑔

 im/clo 24 

Radiative and Convective 

heat transfer (Hrc) 
𝐻𝑟𝑐 = 6.45 ⋅ 𝐴𝐷 ⋅

𝑇𝑎 − 𝑇𝑠𝑘

𝐼𝑇𝑒𝑓𝑓

 W 25 

Insulation efficiency (U) 𝑈 = (
0.41

𝐼𝑇

) ⋅ 𝑉𝑒𝑓𝑓(−(0.43+𝑐𝑙𝑜𝑉𝑔)) N.D. 26 

Solar load (Rload) 
𝑅𝑙𝑜𝑎𝑑 =  (−0.071 ⋅  (𝑇𝑚𝑟 – 𝑇𝑎)2  +  10.432 ⋅  (𝑇𝑚𝑟 – 𝑇𝑎)) 

⋅  (𝐴𝐷/1.8) 
W 27 



41 

 

Evaporation required (Ereq) 𝐸𝑟𝑒𝑞 = 𝐻𝑟𝑐 + 𝑀 − 𝑊𝑒𝑥 + 𝑈 ⋅ 𝑅𝑙𝑜𝑎𝑑 W 28 

Saturated Vapor Pressure 

at skin (SVPTsk) 
SVPT𝑠𝑘 =  10(8.1076−(

1750.286
𝑇𝑠𝑘+235

))
 Torr 29 

Maximum evaporative 

capacity (Emax) 
𝐸𝑚𝑎𝑥 = 14.21 ⋅ 𝐴𝐷 ⋅ 𝐶𝑒𝑣𝑎𝑝 ⋅ (𝑆𝑉𝑃𝑇𝑠𝑘 − 𝑃𝑎) W 30 

Maximum evaporative 

capacity at altitude (EmaxA) 

𝑃𝑎𝑡𝑚 = (1 − 2.5577 ⋅ 10−5 ⋅ 𝑍)5.2559 

𝐼𝑇𝐴 = 𝐼𝑇 ⋅ (𝑃𝑎𝑡𝑚 ⋅ 𝑉𝑒𝑓𝑓)𝐼𝑇𝑉𝑔
 

𝐸𝑚𝑎𝑥𝐴 = 𝑃𝑎𝑡𝑚−0.45 ⋅ 𝐿𝑅 ⋅ 6.45 ⋅ 𝐴𝐷 ⋅ 𝐶𝑒𝑣𝑎𝑝 ⋅ (𝑆𝑉𝑃𝑡𝑠𝑘 − 𝑃𝑎) 

W 31 

Final equilibrium core 

temperature (Tcf) 

𝑇𝑐𝑓 = (36.75 + 0.004 ⋅ 𝑀 + 0.0025 ⋅ 𝑈 ⋅ 𝑅𝑙𝑜𝑎𝑑 + 0.0011 ⋅

𝐻𝑟𝑐 + 0.8 ⋅ exp (0.0047 ⋅ (𝐸𝑟𝑒𝑞 − 𝐸max )) 
°C 32 

Heat acclimation effect on 

Tc (Aeff) 

𝐴𝑒𝑓𝑓 =  (0.5 + 1.2 ⋅ (1 − 𝐸𝑋𝑃 (
37.15 − 𝑇𝑐𝑓

2
))) ⋅ (1

− 𝐸𝑋𝑃(−0.005 ⋅ 𝐸𝑚𝑎𝑥)) ⋅ (𝐸𝑋𝑃(−0.3

⋅ 𝐷𝐼𝐻)) 

N.D. 33 

Adjusted Tcf from 

acclimatization (Tcf_a) 
𝑇𝑐𝑓_𝑎 = 𝑇𝑐𝑓 + 𝐴𝑒𝑓𝑓 °C 34 

Adjusted Tc based on work 

(Dtc_W) 
𝐷𝑡𝑐_𝑊 = 𝑇𝑐𝑓_𝑎 − 𝑇𝑐_𝑖 °C 35 

Sweat rate (Swt) 𝑆𝑤𝑡 = 27.9 ⋅ 𝐴𝐷 ⋅ (
𝐸𝑟𝑒𝑞

𝐴𝐷

) ⋅ (
𝐸𝑚𝑎𝑥

𝐴𝐷

)(−0.455) g/hr 36 

Improved piecewise (PW) 

Swt 
𝑃𝑊 = 147 + (1.527 ⋅ 𝐸𝑟𝑒𝑞) − (0.87 ⋅ 𝐸𝑚𝑎𝑥) g/hr 37 

Time delay for work 

(TDWK) 
𝑇𝐷𝑊𝐾 =

3480

𝑀
 °C/min 38 

Time constant for work 

(KWK) 
𝐾𝑊𝐾 =

[1 + 3 ⋅ 𝐸𝑋𝑃(0.3 ⋅ (𝑇𝑐𝑖
− 𝑇𝑐𝑓𝑎

)]

225
 N.D. 39 

Work adjusted by hydration 

(KWKd) 
𝐾𝑊𝐾𝑑 = 𝐾𝑊𝐾 ⋅ (1 + 0.1 ⋅ 𝑑ℎ𝑦𝑑) N.D. 40 

Cooling power (CP) 𝐶𝑃 = 0.015 ⋅ (𝐸𝑚𝑎𝑥 − 𝐸𝑟𝑒𝑞) W 41 

Time delay for rest and 

recovery (TDRY) 

𝐼𝑓 𝐶𝑃 < 0, 𝑡ℎ𝑒𝑛 𝑇𝐷𝑅𝑌 = 15 

𝐸𝑙𝑠𝑒 (𝑇𝐷𝑅𝑌 =  15 ⋅ 𝐸𝑋𝑃(−0.5 ⋅ 𝐶𝑃)) 
Min 42 

Time constant for rest and 

recovery (KRY) 
𝐾𝑅𝑌 =

1 − 𝐸𝑋𝑃(−1.5 ⋅ 𝑎𝑏𝑠(𝐶𝑃))

40
 N.D. 43 

Hydration adjusted for rest 

and recovery (KRYd) 
𝐾𝑅𝑌𝑑 = 𝐾𝑅𝑌 ⋅ (𝐸𝑋𝑃(−0.07 ⋅ 𝑑ℎ𝑦𝑑) N.D. 44 

Core temperature by time 

point (Tc_t) 

𝐼𝐹(𝑀 ≤ (58.2 ∗ 𝐴𝐷), 𝑡ℎ𝑒𝑛 = 0, 
𝐸𝑙𝑠𝑒 𝑇𝑐𝑖

+ 𝐷𝑡𝑐 ∙ (1 − 𝐸𝑋𝑃(−𝐾𝑊𝑘𝑑 ∙  𝐼𝐹((𝐸𝑡 − 𝑇𝐷𝑊𝐾) < 0,  

0.5 ∙ (𝐸𝑡 − 𝑇𝐷𝑊𝐾) ∙ (
𝐸𝑡

𝑇𝐷𝑊𝐾
), 𝐸𝑡 − 𝑇𝐷𝑊𝐾)))) 

°C 45 
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Figure 18.  Schematic of the heat strain decision aid (HSDA) [60] 

 

Mixed models 

The majority of usable models (to include those mentioned above), are actually in 

essence hybrid models.  That is to say, they use both rational principles (e.g., heat 

balance) as well as some empirically derived elements in order to make their predictions 

work.  Along with this concept there are several models that exist and are widely used 

because of their practical method for implementation or availability of code or pseudo 

code.  Two of these widely used methods include the Predicted Heat Strain (PHS) model 

[93-95] and the Insulation Required Model (IREQ) [96-97].  Both of these modeling 

methods rely on the basic principles of maintaining a heat balance within a given 

environment based on the activity, clothing, and physiologic state of the individual.  Due 
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to the availability of the code, principles, and practical nature both of these methods have 

been incorporated into International Organization Standardization (ISO) standards (ISO 

7933 and 11079) [95, 98]. 

While the main principle remains, there are several ways of interpreting the 

thermal balance (Eq 1), to include expansions of terms, such as the parsing of heat loss 

from respiration into an evaporative (Eres) and convective (Cres) elements. This is the case 

for the IREQ method as it describes the basis of the heat balance as: 

𝑀 − 𝑊 = 𝐸𝑟𝑒𝑠 + 𝐶𝑟𝑒𝑠 + 𝐸 + 𝐾 + 𝑅 + 𝐶 + 𝑆 (Eq 46) 

where M is metabolic heat produced, W is effective mechanical work and collectively M-

W represents the heat produced within the human; while the opposite side of this balance, 

Eres and Cres represent the respiratory heat exchange (evaporative and convective), and E, 

K, R, and C represent the conventional heat exchange methods (evaporative, conductive, 

radiative, and convective) and S is heat storage.   

These elements can also be combined for practical applications, as demonstrated 

by Santee [77] where dry and wet heat losses are inclusive terms that combine M, R, C, 

and K into a dry heat loss term, H, and all avenues of E are combined to represent a 

single wet heat loss term, E.  This simplified thermal balance or metabolic equilibrium 

state (Me) seen as: 

𝑀𝑒  =  𝐻 + 𝐸 [W ∙ m−2] (Eq 47) 

The IREQ equation outlines the rational balance of these methods to include a 

thermal insulation via clothing elements needed to maintain this balance.  The simplest 

form of the IREQ equation is shown as the difference between mean skin temperature 

(𝑡𝑠̅𝑘), clothing surface temperature (𝑡𝑐𝑙), divided by the heat balance, seen as: 
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𝐼𝑅𝐸𝑄 =  
𝑡̅𝑠𝑘− 𝑡𝑐𝑙

𝑅+𝐶
    (Eq 48) 

more formally as: 

𝐼𝑅𝐸𝑄 =  
𝑡̅𝑠𝑘− 𝑡𝑐𝑙

𝑀−𝑊−𝐸𝑟𝑒𝑠−𝐶𝑟𝑒𝑠−𝐸
   (Eq 49) 

where tsk is mean skin temperature, tcl clothing surface temperature, and 𝑀 − 𝑊 − 𝐸𝑟𝑒𝑠 −

𝐶𝑟𝑒𝑠 − 𝐸 = 𝑅 + 𝐶 

Predictions can be made using this method to describe the insulation required 

minimum and neutral (IREQmin and IREQneutral) to calculate the minimal and ideal 

insulation needed to maintain thermal balance (minimum) and to maintain an equilibrium 

balance (neutral) [98].  These values are also used to calculate a duration limited 

exposure (DLE) for maximal safe exposure time.  This DLE is the balance of the limits of 

body heat content (Qlim) divided by S: 

𝐷𝐿𝐸 =
𝑄𝑙𝑖𝑚

𝑆
     (Eq 50) 

There are several simplified models that have been used to model cold protection 

(IREQ) or thermal limits based on the human heat balance equation (PHS) that have been 

turned into standards as well as usable several iterations of computer applications [99-

100].  Recently there have been efforts by the US Army to develop usable decision aids 

to guide clothing selection and predict whole body and extremity responses to cold 

exposure [101].  The cold weather ensemble decision aid (CoWEDA), is a usable 

computer program that is founded on a rationally based six cylinder thermoregulatory 

model (SCTM) [90].       
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3.4.3 Statistical Methods and Software  

Statistical analysis conducted using a combination of Microsoft Excel 2013, SAS 

9.4 (SAS Institute Inc., Cary, NC, USA), SPSS 24 (IBM Corporation), and MATLAB 

(Version 9.5.0; MathWorks, Inc., Natick, MA, USA).   

3.5 Methods for Model Verification  

To demonstrate the relevant and appropriate uses of each modeling method, data 

will be modeled for given scenarios and compared to the actual responses obtained from 

human data; data will be obtained from laboratory studies, or field studies, from 

published data, or from real-world data.   

There are many methods to assess the accuracy of estimation modeling methods.  

The specific methods planned include using an acceptable bias, root mean square error 

(RMSE), and mean absolute error (MAE), for comparing predictions to measured data.  

The equations for RMSE and MAE: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑑𝑖

2𝑛
𝑖=1     (Eq 51) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|𝑛

𝑖=1 =  
1

𝑛
∑ |𝑒𝑖|𝑛

𝑖=1   (Eq 52) 

where di is the difference between observed and predicted im/clo for each ensemble, and n 

is the number of data points. The MAE being the average of the absolute errors within the 

predictions, in the equation: where fi is the predicted value, yi is the actual value, and ei is 

the absolute error. 

The Bland-Altman method [102-103] can be used to compare methods and 

outline the limits of agreement (LoA) along with an associated measure of bias and 
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random error (i.e., precision) [104].  The Bland-Altman method is a way of simply 

plotting and comparing bias between mean differences and agreement intervals.  An 

example use is shown in Figure 19 below [105]. 

Figure 19. Notional use of Bland-Altman for comparing two methods [105] 
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IV.  Results 

4.1.  Assessment 1 Heat Stress Analysis [chemical protective clothing]  

For assessment 1, the predictive accuracy was measured using three pieces of 

data, these included measurement of clothing biophysical properties, collation of human 

research data, and measurement of environmental conditions and modeling for the 

predicted core body temperature.  For this assessment two datasets were used and 

evaluated for both population based predictions (sample mean values) as well as 

individual predictability.  All of the tested clothing properties are listed in Appendix 

Table A1.  Ensembles used for this assessment are additionally reported in [106-107] 

The laboratory data study design is summarized in Figure 20.  This data was used 

to first make predictions of metabolic heat produced and then to make predictions of core 

body temperature rise based on the mean of subject values.  Metabolic costs were 

estimated [108-109] based on average values for each subject, shown in Table 11 and 

calculated in Table 12.  For the second analyses focused on individuals, individual 

predictions of metabolic cost were calculated.   

Figure 20. Human Research Study Design – Assessment 1
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Table 11. Inputs for metabolic cost estimations – Assessment 1 

 
Element Input Value 

Weight By subject (76.6 ± 8.4 kg) 
Load By clothing (10.5, 11, and 11 kg) 

Speed 0, 3, and 6 km/h 
Grade 0 and 3% 
Terrain Treadmill (value 1.0) 

 

 

 

Table 12. Estimated metabolic costs for each activity – Assessment 1 

 
Clothing Exercise Stage 1 Rest Exercise Stage 2 

A 210 ± 21 W 114 ± 13 W 488 ± 48 W 
B 211 ± 21 W 114 ± 13 W 491 ± 48 W 
C 212 ± 21 W 114 ± 13 W 493 ± 48 W 
    

Model Inputs  211 W 114 W 490 W  

 

Group Mean Analyses 

The collection of measured core body temperatures are shown in Figure 21. As 

can be seen in Figure 21, one set of data (Subject 1 A) was an obvious error in recorded 

data and was removed from the average values generated.  The averages of these 

measured core temperatures are shown in Figure 22 for the three separate clothing trials.   
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Figure 21. Measured rectal core body temperature (°C) – Assessment 1 

 
 

Figure 22. Aggregate of measured core temperature across trials 
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Modeled comparisons to the overall observed data are shown in Figure 23; while 

specific trial predictions to observations are shown in Figures 24-26. 

Figure 23. Overall comparison of model predictions and observed data 

 
Figure 24. Comparison of observed and modeled for ensemble A 

 
*error bars show observed standard deviation 
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Figure 25. Comparison of observed and modeled for ensemble B 

 
*error bars show observed standard deviation 

 

Figure 26. Comparison of observed and modeled for ensemble C 

 
*error bars show observed standard deviation 
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The calculated RMSE was relatively low for each ensemble; 0.70°C for A, 0.37°C 

for B, and 0.25°C for C. The above figures (24-26) show that the model predictions were 

all within approximate 1.25 standard deviations of the observed data, indicating an 

acceptable level of reliability. Cadarette et al., [110], used a threshold of two times the 

standard deviation to provide an indication that the predictions fall within 95% of an 

average population’s response. 

Individual Predictions 

A second analysis was conducted for assessment 1 that focused on individual 

predictions of core body temperature using individual subject inputs and calculations 

[107].  These inputs specifically include: height, weight, initial physiological states (i.e., 

hydration status, core and skin temperatures) as well as calculated metabolic rates [108-

109]. This analysis used the two datasets outlined in Table 6, to show a laboratory and 

field based assessment.  To provide context for an acceptable level of individual 

accuracy, this analysis set out to use a few statistical criteria, including comparison of 

predicted to the observed SD, assessment of MAE, RMSE, and well as a pre-established 

limit of bias ± 0.27°C.  This bias has been previously used to compare direct 

measurement accuracy of body temperatures devices [111]. 

 Table 13 provides calculated results of the modeled bias, MAE, RMSE, as well as 

the observed SD for both the laboratory and field studies assessed. As can be seen in 

Table 13, the predictions of core body temperature during both the laboratory (Bias -0.10 

± 0.36°C; MAE 0.28 ± 0.24°C; RMSE 0.37 ± 0.24°C) and field trials (Bias 0.23 ± 

0.32°C; MAE 0.30 ± 0.25°C; RMSE 0.40 ± 0.25°C) for each chemical protective 
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clothing ensemble were within acceptable limits for bias, MAE, and RMSE.  

Additionally, the total collated average from both studies had a relatively low positive 

weighted bias (0.16 ± 0.36°C) well within the pre-established criterion.   

Table 13. Accuracy of HSDA model when predicting Tc (°C) in individuals wearing 

different chemical protective clothing ensembles during exercise in hot and humid 

conditions. 

Environment Clothing Observed Tc Bias MAE RMSE 

Laboratory 

L1 37.64 ± 0.55 -0.15 ± 0.26 0.23 ± 0.20 0.30 ± 0.13 

L2 37.75 ± 0.64 -0.14 ± 0.34 0.29 ± 0.24 0.38 ± 0.20 

L3 37.88 ± 0.70 0.03 ± 0.42 0.31 ± 0.28 0.42 ± 0.33 

Total 37.76 ± 0.64 -0.10 ± 0.36 0.28 ± 0.24 0.37 ± 0.24 

Field 

F1 37.69 ± 0.35 0.22 ± 0.30 0.29 ± 0.24 0.37 ± 0.21 

F2 37.67 ± 0.36 0.21 ± 0.32 0.30 ± 0.24 0.39 ± 0.21 

F3 37.55 ± 0.35 0.36 ± 0.30 0.37 ± 0.28 0.47 ± 0.27 

F4 37.79 ± 0.43 0.13 ± 0.32 0.27 ± 0.23 0.35 ± 0.20 

 Total 37.68 ± 0.38 0.23 ± 0.32 0.30 ± 0.25 0.40 ± 0.25 

Collective 

Total 

L1-L3 

F1-F4 
37.69 ± 0.45 0.16 ± 0.36 0.30 ± 0.25 0.39 ± 0.23 

 

An assessment of the overall accuracy of the predictions in comparison to the SD 

of the observed measures showed 72% of all predictions were within one standard 

deviation of the observed data including 92% of predictions for the laboratory experiment 

(SD ± 0.64°C) and 67% for the field experiment (SD ± 0.38°C).  Figure 27 highlights the 

percentage of the modeled data that fell within ranges of the observations.  As can be 

seen in this figure, individual-based predictions showed modest errors outside the SD 

range with 98% of predictions falling < 1°C of the observed data. 
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Figure 27. Accuracy of predicted core temperature to observed SD

 

A visual inspection in Figure 28 shows a side-by-side comparison of the 

individual predictions and the observed measures of core body temperature from the 

laboratory study.  We can see that the general trend remains the same; while we can also 

see more clearly the outlying data. 
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Figure 28. Side-by-side comparison of the individual predictions and observed 

measures of core body temperature from the laboratory study 

 

 

Figure 29 shows individual points and Figure 30 shows the mean and standard 

deviation prediction errors by observed Tc by elapsed time point.  Figure 31 shows the 

comparison of observed measured to modeled predictions by core temperature.   
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Figure 29. Individual prediction errors by elapsed time points (minutes) 

 

 

Figure 30. Mean error by elapsed time points (minutes) 
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Figure 31. Observed to modeled core body temperatures for both laboratory and field 

studies 

 

 

From this analysis we outlined a case where the HSDA method provides an 

acceptable level of accuracy for predicting core body temperature for individuals wearing 

chemical protective clothing during exercise in hot and humid environmental conditions.  

The overall predictive accuracy within an acceptable bias criteria used in direct measure 

methods (± 0.27°C) establishes a case for the use of this method in these conditions as a 

means of accurately predicting heat stress risk specific to body temperature rise. 
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4.2.  Assessment 2 Cold Stress Analysis [cold conditions wearing cold weather clothing]   

Biophysical assessments of all of the various clothing ensembles are described in 

the Appendix Table A1.  For this assessment, these are also described specifically and 

given unique identifiers.  Ensembles assessed included cold weather clothing for the US 

Army (US#), Canadian Defence (CA#), Norwegian military (N#), and US Marine Corps 

(MC#).  Each of these clothing ensembles were assessed using the IREQ method to 

calculate a DLE range (minutes) (range values are calculated as the average between 

IREQmin and IREQneutral); assessments were conducted for resting (1 MET; 58 Wm2) 

and 2 MET (116 Wm2) (Figure 32; Table 14). 

Figure 32. Modeled DLErange (minutes) using the IREQ method for each 

clothing ensemble for both rest and light work (1MET, 58 Wm2; 2MET, 116 Wm2) in -

15°C and -25°C 
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Table 14. Measured biophysical properties and predicted DLE for select cold weather 

clothing 

Ensemble 

Thermal 

Insulation 

(clo) 

DLErange 

(mins) 

-15°C, Rest 

DLErange 

(mins) 

-15°C, 2MET 

DLErange 

(mins) 

-25°C, Rest 

DLErange 

(mins) 

-25°C, 2MET 

US 1 1.296 18 27 12 18 

US 2 1.548 21 36 18 24 

US 3 1.729 24 48 18 27 

US 4 2.806 45 480 33 102 

US 5 1.490 21 36 18 21 

US 6 1.825 24 51 18 33 

US 7 1.342 18 27 12 21 

US 8 1.316 18 27 12 18 

US 9 1.554 21 36 18 24 

CA 1 1.812 24 51 18 33 

CA 2 2.103 30 84 24 42 

CA 3 2.445 39 195 27 63 

CA 4 2.328 33 135 24 54 

CA 5 2.657 42 333 30 81 

CA 6 3.109 57 480 39 195 

CA 7 2.638 42 330 30 81 

CA 8 2.509 39 306 27 66 

N 1 1.812 24 51 18 33 

N 2 1.638 24 42 18 27 

N 3 1.671 24 42 18 27 

N 4 2.199 33 99 24 48 

N 5 2.406 36 171 27 57 

MC 1 1.484 18 33 15 21 

MC 2 1.742 24 48 18 27 

MC 3 1.806 24 51 18 33 

MC 4 2.516 39 306 27 66 

MC 5 2.516 39 306 27 66 

MC 6 2.000 27 69 21 39 

 

From data collected and reported by Santee [77] fourth order polynomial fits were 

made to the data (Figure 33), as well as a surface plot of survival time, in minutes, was 

created as a function of Ta (°C) and clothing insulation (clo) at rest (1MET) (Figure 34).  
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From this empirically derived plot, we can expand out predicted survival at rest for 

decreasing levels of clo (Figure 34).  Additionally, Figure 35 shows the fit for using the 

IREQ predictions for a standard individual (body surface area 1.8m2) in different cold 

temperatures at rest (1MET) compared to the surface plot derived from Santee [77].   

Figure 33. Survival at rest as a function of air temperature (°C) and clothing insulation 

(clo) 

 

3 clo poly4th: y = 3E-05x4 + 0.0041x3 + 0.1839x2 + 4.6765x + 138.87 (Eq 53) 

3.5 clo poly4th: y = 4E-05x4 + 0.0059x3 + 0.3212x2 + 9.3872x + 221.7 (Eq 54) 

4 clo poly4th: y = 5E-05x4 + 0.0086x3 + 0.5409x2 + 17.424x + 361.66 (Eq 55) 

4.5 clo poly4th: y = 6E-05x4 + 0.0119x3 + 0.8553x2 + 30.517x + 597.83 (Eq 56) 

5 clo poly4th: y = 1E-04x4 + 0.0189x3 + 1.4554x2 + 54.758x + 1021 (Eq 57) 
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Figure 34. Surface plot of survival at rest as a function of air temperature (°C) and 

clothing insulation (clo) 

Figure 35. Expanded survival plot to include lower and higher clothing insulation (clo) 

values 

 
 

Comparisons of the IREQ calculated data (Table 14) and the empirically-derived 

surface plot are shown in Figure 36.  From this we see a conservative underestimate 

(acceptable / anticipated) from the IREQ predictions. 
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Figure 36. Comparison of IREQ calculated DLE and empirical survival surface plot 
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Comparisons of published data with predictions made using CoWEDA [101], 

enabled by the SCTM [90], are shown in Figures 37-39.  Figure 37 shows the observed 

skin temperatures by location after a 90 minute resting exposure in Ta 0.47°C ± 0.5°C; 

RH 51 ± 3%; wind speed 1.34 m·s-1; this is a comparison of the published data from 

Castellani et al., [82] to predictions from CoWEDA.  Data from Gonzalez et al., [80] 

were modeled to produce Figures 38-41.  Figures 38 and 39 outline the comparison 

between observed and predicted finger temperatures for three different gloves (A, B, and 

C) during rest (1MET) (Figure 38) and exercise (~2.4MET) (Figure 39) in cold chamber 

conditions (0, -20, and -30°C). Figures 40 and 41 outline the comparison between 

observed and predicted mean skin temperatures for three different glove conditions (A, B, 

and C) during rest (1MET) (Figure 40) and exercise (~2.4MET) (Figure 41) in cold 

chamber conditions (0, -20, and -30°C).  Data from Hickey et al., [81] was used to 

compare observed and predicted finger, toe, and back skin temperatures in extreme cold 

conditions (-40°C) (Figure 42). 

Figure 37. Observed to modeled skin temperature responses; CoWEDA and 

Castellani et al., [82] 
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Figure 38. Observed to modeled finger temperatures; CoWEDA and Gonzalez et al., [80] 

during rest at 0, -20, and -30°C 

 

Note: Glove C was not worn in -30°C 

Figure 39. Observed to modeled finger temperatures; CoWEDA and Gonzalez et al., [80] 

during exercise [~2.4MET] at 0, -20, and -30°C 

 

Note: Glove A was not worn in -30°C 
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Figure 40. Observed to modeled mean skin temperatures; CoWEDA and Gonzalez et al., 

[80] during rest at 0, -20, and -30°C 

 

Note: Glove C was not worn in -30°C 

 

Figure 41. Observed to modeled mean skin temperatures; CoWEDA and Gonzalez et al., 

[80] during exercise [~2.4MET] at 0, -20, and -30°C 

 

Note: Glove A was not worn in -30°C 
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Figure 42. Observed to modeled mean skin temperatures; CoWEDA and Hickey et al., 

[81] for 100 minute exposure to extreme cold conditions -40°C 

 

 

When combining all of the three datasets above [80-82] and assessing the 

CoWEDA predictions to all of the observed skin temperatures, and given the variability 

in cold responses, we find relatively acceptable accuracy.  The total aggregated data 

found a bias, MAE, and RMSE, of: bias, -0.77 ± 3.69°C; MAE, 2.22 ± 3.05°C; and 

RMSE, 1.49 ± 3.05°C.  Table 15, shows grouped body segments and predictive 

accuracies, specific to fingers and mean skin temperatures.  Figures 43-45 shows the 

plotted observed to CoWEDA modeled for all data [80-82] (Figure 43), only fingers 

(Figure 44), and only reported mean skin (Figure 45) temperatures.  
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Table 15. Cold exposure skin temperature predictions to observations grouped regions 

Region Observed 

mean (°C) 

Predicted 

mean (°C) 

Bias MAE RMSE Ref# 

All 

N = 38 

23.14 ± 

9.35 

22.37 ± 

9.43 

-0.77 ± 

3.69 

2.22 ± 

3.05 

1.49 ± 

3.05 [80-82] 

       

Fingers 

N = 17 

16.24 ± 

8.99 

15.83 ± 

6.30 

-0.41 ± 

3.37 

2.68 ± 

2.09 

1.64 ± 

2.09 [80-82] 

       

Mean Tsk 

N = 16 

30.27 ± 

1.56 

30.24 ± 

2.51 

-0.03 ± 

1.25 

1.06 ± 

0.65 

1.03 ± 

0.65 [80 & 82] 

 

 Figure 43. Observed to modeled temperatures; CoWEDA and published data [80-82] 

 

 



68 

 

Figure 44. Observed to modeled finger temperatures; CoWEDA and published data [80-

82] 
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Figure 45. Observed to modeled mean skin temperatures; CoWEDA and published data 

[80, 82] 

 

As the clothing insulation (clo) values were reported specific to the data, 

comparisons of Gonzalez et al., [80] data was made using IREQ predictions [98].  These 

predictions are shown in Table 16.  As shown in Table 16, from these predictions using 

the IREQ method, there is less risk of cold injury due to exposure during the activity 

phases than resting, as each predicts a safe exposure time of greater than eight hours.  

However, during the resting conditions, it becomes significantly less safe as total 

insulation (clo) and temperature is reduced; where none of these clothing configurations 

provide safe protection for up to an hour in -30°C conditions.  Comparisons of endurance 
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time reported are made to the resting predictions in Table 17.  The calculated total 

insulation values were done based on individual glove values, exchanged with the total 

insulation reported (3.6 clo).  While there is relatively little change to the overall total 

ensemble insulation value due to the weighted impact of the small surface area of the 

hands (~6% for both), the accuracy of the predictions is fairly close for the -20 and -30°C 

conditions.  

Table 16. Cold exposure IREQ and DLE predictions to Gonzalez et al., [80] data 

Ensemble 

Total 

Insulation 

(clo) 

Rest (71Wm2) Exercise (171Wm2) 

0°C 

IREQmin 

/DLE 

-20°C 

IREQmin 

/DLE 

-30°C 

IREQmin 

/DLE 

0°C 

IREQmin 

/DLE 

-20°C 

IREQmin 

/DLE 

-30°C 

IREQmin 

/DLE 

ECWC 

with 

Glove A 

 

3.59 

 

3 clo 

> 8 hours 

 

5.2 clo 

~1.1 hours 

 

6.3 clo 

< 1 hour 

 

0.9 clo 

> 8 hours 

 

1.8 clo 

>8 hours 

 

2.3 clo 

>8 hours 
ECWC 

with 

Glove C 

 

3.60 

 

3 clo 

> 8 hours 

 

5.2 clo 

~1.2 hours 

 

6.3 clo 

< 1 hour 

 

0.9 clo 

> 8 hours 

 

1.8 clo 

>8 hours 

 

2.3 clo 

>8 hours 
ECWC 

with 

Glove C 

 

 

3.62 

 

3 clo 

> 8 hours 

 

5.2 clo 

~1.2 hours 

 

6.3 clo 

< 1 hour 

 

0.9 clo 

> 8 hours 

 

1.8 clo 

>8 hours 

 

2.3 clo 

>8 hours 

Note: ECWC, US Army Extreme Cold Weather Clothing 

 

Table 17. Cold exposure reported resting endurance time (minutes) to DLE predictions to 

Gonzalez et al., [80] data 

Ensemble 

Glove 

Insulation 

(clo) 

Reported Mean  

Endurance Time (minutes) 

IREQ – DLEminimum  

(minutes) 

0°C 

(minutes) 

-20°C 

(minutes) 

-30°C 

(minutes) 

0°C 

(minutes) 

-20°C 

(minutes) 

-30°C 

(minutes) 

Glove A 0.86 116 ± 9.7   62 ± 37   25.5 ± 3   >480 min 66 min 42 min 

Glove B 1.05 108 ± 16.7   62 ± 31   46 ± 43   >480 min 72 min 42 min 

Glove C 1.46 120 ± 0   81 ± 25   N/A >480 min 72 min 48 min 
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V.  Discussion 

These assessments and can help improve the current military and public health-

state awareness, specifically information from this study can enable improved 

understanding of the rates of injuries service members as well as predictive methods that 

can prove useful for defining mitigation strategies.  This study also seeks to outline the 

knowledge products in the form of algorithms and models that provide insight and 

potential for mitigation of risks where individuals are more susceptible to hot or cold 

related injuries.  While the majority of this information was collected on a military 

populations, the outcomes can likely be generalized to directly translate into meaningful 

insights for public society [112]; as information on susceptibility to hot or cold injuries 

has global relevance.  This global influence also has larger future implications specific to 

climate changes and the increased likelihood of hot or cold related injuries [4, 113-115] 

or specific to semi-isolated incidences such as heat waves [116]. 

5.1 Limitations 

A limitation to each of these models, specifically from the data reported, are the 

models’ inability to maintain accuracy during activity transition periods.  This is 

specifically shown in the HSDA analysis seen in Figure 31, where the majority of the 

data up to 38.5°C is fairly symmetrical around the zero line, but were the observed data is 

higher than the modeled predictions when Tc exceeded 38.5°C.  An easy explanation for 

this issue is that HSDA was initially designed using data from steady-state continued 

exercise conditions and therefore there is a current accuracy drift that occurs when 

exercise is interrupted with rest periods.  Future improvements to account for dynamic 

activities is needed to improve the modeling robustness. 
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There are a number of limitations to each of the models described in this work 

that currently reduce the applicability to the broader general public.  Some of these 

important limitations are the lack of resolution to account age-, gender-, and fitness-

related differences in heat loss responses.  However, recent work has been conducted 

specifically outlining the heat loss profile differences related to age [117-118], gender 

[119-120], as well as a combination of both [121-122].  Additionally research has shown 

a path for developing modeling improvements related to body composition [123] and 

fitness differences [124-126] specifically with respect changes blood flow and sweating 

responses.     

There are also inherent limitations to both the use of complex models as well as 

simple models and indices.  However, a great deal of these limitations can be overcome 

by the use of computer implemented methods that enable mixed or multi-model 

approaches, allowing for computation of multiple methods on single scenario data 

entries.  Implementation of a computer- or application- based approach like those 

included in this work can lead to improved health-state awareness as well as provide 

guidance to help injury prevention.  Broad use of models and decision aids also enables a 

feedback loop of quantitative data to be used for improved methods and understanding of 

individualized factors that increase susceptibility of hot and/or cold related injuries (e.g., 

fitness, body composition).   

Given the complexity of obtaining clinical or real-world data from active duty 

service members, and the time and resources required for regulatory compliance, data 

management, and data analysis, studies to this scale are not likely to occur outside this 

work.  However, an example model to emulate is the Probability of Survival Decision 
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Aid (PSDA), a computer model used to predict hypothermia and dehydration impact on 

functional time (i.e., duration of ability for useful work), and survival time while exposed 

to marine environments [127].  The PSDA model is underpinned by the rational SCTM 

model [90] with a customized graphical user interface for use by Search and Rescue 

(SaR) personnel.  The SCTM continues to be refined and verified based on real-world 

feedback and data collected [128]. 

5.2 Other Modeling Methods to Consider 

While often difficult to implement in time series and complex physiological 

modeling; a variety of predictive modeling methods could also provide unique benefits to 

outlining risk and potential outcomes of heat- and cold-related injuries.  Some of these 

methods include: k-nearest neighbor (KNN) [129-130], random decision forests (RDF) 

[131], and generalized linear models (GLM) [132-133] and generalized additive models 

(GAM) [134-135]. 

K-nearest neighbor (KNN) uses the principle that by using data points (neighbors) 

you can determine mathematically a prediction and with the idea that the more the data 

points (neighbors) the better the predictive outcome.  In this KNN method we would first 

classify the samples and determine distances of the ‘neighbors’; we do this using 

Euclidean Distance (d) [130], seen as:  

d(xi + xj) = √∑ (ar(xi) − ar(xj))2
n

r−1
  (Eq 58) 
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Following this determination of distances we would arrange the ‘neighbors’ in 

non-decreasing order and assume k is a positive integer and accept a sorted list based on 

distance (e.g., k = 1). 

Random decision forests (RDF) [131] can useful by providing predictive 

outcomes that are outside that of the normal expected (contrary to regression methods).  

This means we would take our original dataset and select random data within it to extract 

features.  These features with the data would then be paired together with split points 

continuously to form a prediction tree of potential chain of events ([136]; example Figure 

46). 

Figure 46. Graphical example of random decision forests method [136] 

 

Generalized linear models (GLM) [132-133] (not to be confused with term 

general linear model; considered standard regression and statistical models) refers to a 

broader class of models (including these standard models) that seek to make predictions.  

The class of GLM include a set of models including regression models (linear, logistic, 

and Poisson regression) as well as mixed models (ANCOVA, Multinomial response), and 



75 

 

categorical models (ANOVA, Loglinear) [137].  In GLM there is a focus on three key 

elements, a random component (probability distribution; i.e., normal, binomial, Poisson, 

multinomial), a systematic component (explanatory variables of the model; i.e., 

continuous, categorical, mixed), and a link function between the two, random and 

systematic components (i.e., identity, logit, log, generalized logit). 

Generalized additive models (GAM) [134-135] take the methods of linear models 

and combines them with an ‘additive’ component; where GAM consist of a random 

component, an additive component, and a function that links the two together.  These 

GAM methods are useful for analyzing nonparametric, semiparametric additive modeling 

methods, and is helpful for using multidimensional data.  This method is helpful as an 

easy way of extending linear models and is easy to use in combination with data 

smoothing methods. 

Other modeling method that should be considered are machine learning methods 

such as artificial neural network (ANN or NN) methods [138].  The ANN concept is 

founded on mathematical constructs that meant to be of similar design to that of 

biological brain functioning [139].  Neural network modeling has been shown useful in a 

number of medical predictive use cases [140-142] or even in financial outcome 

predictions [143].  These modeling methods generally include a three piece structure that 

includes an input layer (i.e., data inputs), a hidden layer (mathematical methods; 

‘learning’), and an output layer (i.e., the prediction) (Figure 47).   
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Figure 47.  Notional example of neural network method for injury prediction 

 

Within the hidden layer the model typically uses forward and back propagation to 

calibrate the weight of each input and modeling method.  Forward propagation calculates 

an output based on randomly selected weights; while back propagation measures error 

margin and makes adjustments to the selected weights to reduce the level of error in the 

output prediction.  Typically within the hidden layer a number of activation functions are 

used (linear, sigmoid (logistic), or hyperbolic tangent); where these functions would be: 

   

 

Linear 

 

𝑦 = 𝑥 
 

 

 

 

Sigmoid – logistic 
𝑦 =

1

1 + 𝑒−𝑥
 

 

 

 

 

Hyperbolic tangent 
𝑦 =

1 − 𝑒−2𝑥

1 + 𝑒2𝑥
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5.2 Future Directions 

Future improvements and advancements to these predictive methods are currently 

being broached by a number of researchers in the field.  However, some key areas that 

require specific attention include: 1) improvement of model confidence during transition 

points, 2) improved resolution to account for individual variabilities, 3) implementation 

into usable and accessible platforms (e.g., mobile apps, smart devices, web-based), and 4) 

inclusion of improving methods in machine learning.  To address these issues directly, 

the below set of initial hypothesis can be used for establishing the basis for future work: 

 Future work Hypothesis 1: Accuracy in the predictions during transition states 

(e.g., rest-activity) can be improved by adding individualized factors for 

temperature rates of change. 

 

 Future work Hypothesis 2: Improvements to the modeling resolution can be done 

by weighting factors based on individual features or by using a scaled approach. 

 

 Future work Hypothesis 3: Targeted adjustments to sweating response 

calculations (specifically Ereq and Emax (Eqs. 28 and 30 respectably)) can 

significantly improve model predictions.  

 

 Future work Hypothesis 4: Simple to use software (web- or app-based) can 

significantly improve transferability of these methods into public use. 
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 Future work Hypothesis 5: Significant improvements to predictive accuracy can 

be obtained using a multi-model approach with machine learning techniques to 

help shape data upper and lower limits and provide probabilistic estimates. 

 Future work Hypothesis 6: A multi-model platform could increase confidence 

and accuracy of model predictions. 

While each of the above hypotheses are fairly broad, they allow for a narrowing of 

the score for future model improvements.  These improvements will surely add to the 

resolution, accessibility, and quality of these predictive methods.  However, an era of 

improved computational power and technology miniaturization, each of these or similar 

models are likely headed for use in near- or actual real-time [144-145].  There have been 

several attempts to make real-time predictions [146-148] or forecasts [149-150] of human 

responses based on human measures alone with some success.  These include key human 

elements of heat production based on movement and energy expenditure [151-153].   

To ensure accuracy within varied environments, individuals, and activities, there is a 

requirement for more inclusive sets of inputs (e.g., weather, individualized inputs).  For 

example, body temperatures alone provide a single element that is often very useful but 

without the proper context can lose some influence (e.g., an elevated core temperature 

during exercise is expected; while an elevated temperature at rest could indicate other 

serious issues).  Similarly, if an individual has an elevated core body temperature while 

exercising in a dry environment (low humidity) they may be relatively safe; while if this 

same individual was in a humid environment they would be at significant risk due to the 

restricted ability to dissipate evaporative heat.  Additionally, individualized elements 
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such as health status, hydration status, or confounding comorbidities can be used to put 

reasonable bounds on individual limits.    

These are just a few examples that outline the significant need for inclusion of more 

context into the modeling predictions, both initially and periodically.  A helpful approach 

to emulate can be found in weather forecasting, where multiple predictions are made 

from various models and given updates they are re-run to improve and narrow 

predictions.  This method is often displayed graphically using spaghetti plots for a given 

forecast [154-155].  While meteorology forecasts are typically very complex and larger 

scaled, similar approaches could be used for the predictions of less complex elements 

such as an individual’s physiological response given the real-time information of their 

state, clothing, environment, and activity.  Using multi-model approaches as well as the 

inclusion of bounds based on probability and uncertainty analyses, similar to those used 

in other fields of study [156-158], provide a key methods for expansions and improved 

model robustness. 
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V.  Conclusions 

The analyses from this work prove the initial hypotheses and provide an initial 

justification in the case for the accuracy of predictive methods for use in mitigation of hot 

and cold related injuries. Each of the initial hypotheses are restated and justified below: 

 H1: Thermoregulatory responses (e.g., skin and core temperature rise/fall) can be 

mathematically described and accurately predicted (TRUE).  Based on the work 

outlined for both empirical and rational modeling methods, the physiological 

responses to hot and cold exposures, at rest and during exercise can accurately 

describe and predict skin and core temperature rise and fall. 

 H2: Existing population-based models can acceptably predict group mean responses 

and can accurately predict individualized rise in core body temperature to within ± 

0.27°C of observed data with the inclusion of individual characteristics (TRUE).  An 

assessment using group mean data showed relatively accurate predictions can be 

made in hot laboratory conditions (within 2*SD of observed).  Additionally, by 

correcting for individual characteristics and more accurate predictions of metabolic 

cost, this empirical approach has shown initially successful at predicting core body 

temperature rise to within an acceptable bias of ± 0.27°C for individual responses 

(0.16°C). 

 H3: Existing rational models can be modified to accurately predict skin temperature to 

within observed SD of collected data. (TRUE).  From the assessments related to cold 

exposure, this analysis showed that rational modeling can predict skin temperature 

fall in cold environments during both rest and exercise with MAE and RMSE rates 

within the SD of the observed values.  
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Appendix Table A1. Tested clothing biophysical values 
Type 1: Physical fitness clothing (PT#) (shorts, t-shirt, sneakers) 

Type 2: Regular clothing (RC#) (Long-sleeve shirt, undershirt, underwear, pants, boots/sneakers) 

Type 3: Combat clothing with body armor (CC#) (Type 2 plus equipment and body armor) 

Type 4: Chemical protective clothing (CB#; with body armor (BA) (e.g., hazmat suits, face masks, 

respirators) 

Type 5: Explosive ordnance disposal suits (EOD#) (full armor protection suits with equipment) 

Type 6: Cold weather clothing (CWC#) (full body clothing coverage) 

 

Ensemble 

0.4 ms-1 Standard test 

values 

1ms-1 (values used in HSDA) 
Type 

 
clo im im/clo clo cloVg im/clo im/cloVg 

PT-1 0.877 0.467 0.536 0.646 -0.334 0.742 0.354 1 

PT-2 0.910 0.462 0.507 0.652 -0.364 0.730 0.397 1 

PT-3 0.909 0.473 0.528 0.652 -0.363 0.738 0.366 1 

PT-4 0.919 0.464 0.522 0.655 -0.370 0.727 0.362 1 

PT-5 0.891 0.461 0.518 0.653 -0.340 0.728 0.371 1 

RC-1 1.368 0.410 0.276 1.092 -0.246 0.377 0.340 2 

RC-2 1.405 0.422 0.300 1.118 -0.249 0.439 0.438 2 

RC-3 1.354 0.451 0.333 1.085 -0.242 0.470 0.348 2 

RC-4 1.323 0.475 0.359 1.052 -0.250 0.513 0.345 2 

RC-5 1.302 0.468 0.360 1.040 -0.245 0.510 0.344 2 

RC-6 1.373 0.483 0.352 1.086 -0.255 0.481 0.316 2 

RC-7 1.290 0.421 0.327 1.035 -0.240 0.468 0.245 2 

CC-1 1.566 0.401 0.246 1.230 -0.264 0.327 0.307 3 

CC-2 1.586 0.391 0.246 1.247 -0.263 0.316 0.274 3 

CC-3 1.619 0.396 0.245 1.290 -0.248 0.308 0.251 3 

CC-4 1.578 0.385 0.238 1.243 -0.260 0.311 0.292 3 

CC-5 1.574 0.382 0.237 1.248 -0.253 0.306 0.280 3 

CC-6 1.577 0.383 0.236 1.251 -0.253 0.306 0.282 3 

CC-7 1.583 0.363 0.217 1.261 -0.248 0.283 0.288 3 

CC-8 1.603 0.358 0.223 1.290 -0.237 0.278 0.244 3 

CC-9 1.632 0.350 0.217 1.283 -0.263 0.270 0.238 3 

CC-10 1.529 0.374 0.223 1.202 -0.263 0.311 0.362 3 

CC-11 1.466 0.437 0.298 1.184 -0.234 0.413 0.327 3 

CC-12 1.675 0.440 0.262 1.344 -0.240 0.356 0.308 3 

CC-13 1.423 0.537 0.377 1.116 -0.265 0.457 0.296 3 

CC-14 0.882 0.350 0.396 1.652 -0.177 0.238 0.185 3 

CC-15 1.524 0.400 0.263 1.240 -0.225 0.364 0.262 3 

CC-16 1.648 0.422 0.256 1.338 -0.228 0.330 0.251 3 

CC-17 1.603 0.433 0.270 1.286 -0.241 0.360 0.279 3 

CC-18 1.641 0.453 0.276 1.307 -0.249 0.365 0.281 3 

CC-19 1.614 0.416 0.258 1.298 -0.238 0.332 0.255 3 

CC-20 1.510 0.373 0.250 1.251 -0.206 0.304 0.227 3 

CC-21 1.510 0.418 0.280 1.258 -0.198 0.340 0.221 3 

CC-22 1.900 0.448 0.240 1.533 -0.232 0.337 0.385 3 
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CB-BA-1 1.832 0.280 0.152 1.504 -0.215 0.196 0.276 4 

CB-BA-2 1.976 0.310 0.157 1.657 -0.192 0.205 0.292 4 

CB-BA-3 2.002 0.304 0.152 1.697 -0.180 0.188 0.233 4 

CB-BA-4 1.894 0.148 0.079 1.577 -0.200 0.105 0.314 4 

CB-BA-5 2.016 0.301 0.149 1.722 -0.172 0.185 0.240 4 

CB-BA-6 2.033 0.294 0.145 1.733 -0.174 0.182 0.252 4 

CB-BA-7 1.740 0.264 0.151 1.436 -0.210 0.192 0.263 4 

CB-BA-8 2.231 0.284 0.128 1.925 -0.161 0.154 0.207 4 

CB-1 1.729 0.293 0.172 1.416 -0.218 0.223 0.281 4 

CB-2 1.864 0.330 0.178 1.577 -0.182 0.226 0.261 4 

CB-3 1.868 0.320 0.171 1.616 -0.158 0.210 0.225 4 

CB-4 1.773 0.157 0.088 1.467 -0.207 0.119 0.324 4 

CB-5 1.934 0.301 0.156 1.609 -0.201 0.204 0.294 4 

CB-6 1.945 0.301 0.155 1.632 -0.192 0.199 0.270 4 

CB-7 1.716 0.261 0.152 1.447 -0.186 0.190 0.242 4 

CB-8 1.685 0.250 0.149 1.449 -0.165 0.176 0.178 4 

CB-9 1.777 0.262 0.148 1.507 -0.180 0.188 0.259 4 

CB-10 1.782 0.251 0.140 1.531 -0.166 0.166 0.186 4 

CB-11 1.849 0.266 0.149 1.558 -0.187 0.188 0.258 4 

CB-12 1.796 0.255 0.142 1.545 -0.164 0.168 0.184 4 

CB-13 1.393 0.430 0.309 1.097 -0.260 0.440 0.286 4 

CB-14 1.651 0.429 0.260 1.351 -0.219 0.326 0.279 4 

CB-15 1.926 0.411 0.213 1.517 -0.261 0.298 0.332 4 

CB-16 2.079 0.402 0.193 1.712 -0.212 0.253 0.282 4 

CB-17 2.530 0.394 0.156 2.203 -0.151 0.183 0.240 4 

CB-18 2.392 0.360 0.151 1.939 -0.229 0.218 0.289 4 

CB-19 2.582 0.349 0.135 2.248 -0.151 0.172 0.265 4 

EOD-1 3.031 0 0 2.360 N/A 2.118 N/A 5 

EOD-2 3.209 0 0 2.766 N/A 1.808 N/A 5 

EOD-3 3.039 0 0 2.502 N/A 1.998 N/A 5 

EOD-4 3.501 0 0 3.063 N/A 1.633 N/A 5 

CWC-1 1.296 0.518 0.400 0.918 -0.347 0.552 0.370 6 

CWC-2 1.548 0.548 0.354 1.090 -0.343 0.485 0.366 6 

CWC-3 1.729 0.361 0.209 1.386 -0.232 0.269 0.267 6 

CWC-4 2.806 0.390 0.139 2.205 -0.161 0.165 0.207 6 

CWC-5 1.490 0.325 0.218 1.230 -0.232 0.282 0.266 6 

CWC-6 1.825 0.367 0.201 1.457 -0.227 0.258 0.263 6 

CWC-7 1.342 0.313 0.233 1.124 -0.237 0.305 0.270 6 

CWC-8 1.316 0.368 0.280 1.058 -0.268 0.374 0.298 6 

CWC-9 1.554 0.382 0.246 1.233 -0.256 0.324 0.288 6 

CWC-10 1.812 0.399 0.220 1.420 -0.245 0.286 0.279 6 

CWC-11 2.103 0.449 0.214 1.606 -0.248 0.276 0.282 6 

CWC-12 2.445 0.415 0.170 1.901 -0.203 0.211 0.243 6 

CWC-13 2.328 0.458 0.197 1.775 -0.234 0.251 0.271 6 

CWC-14 2.657 0.434 0.163 2.052 -0.196 0.202 0.238 6 
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CWC-15 3.109 0.460 0.148 2.384 -0.174 0.179 0.220 6 

CWC-16 2.638 0.494 0.187 1.988 -0.228 0.237 0.267 6 

CWC-17 2.509 0.438 0.175 1.933 -0.210 0.218 0.250 6 

CWC-18 1.812 0.361 0.199 1.452 -0.225 0.255 0.261 6 

CWC-19 1.638 0.358 0.218 1.318 -0.237 0.283 0.271 6 

CWC-20 1.671 0.408 0.244 1.302 -0.260 0.321 0.292 6 

CWC-21 2.199 0.360 0.163 1.756 -0.194 0.202 0.234 6 

CWC-22 2.406 0.354 0.147 1.922 -0.175 0.178 0.217 6 

CWC-23 1.484 0.361 0.244 1.195 -0.251 0.321 0.283 6 

CWC-24 1.742 0.386 0.222 1.376 -0.244 0.289 0.277 6 

CWC-25 1.806 0.394 0.218 1.420 -0.243 0.283 0.277 6 

CWC-26 2.516 0.416 0.165 1.957 -0.198 0.204 0.239 6 

CWC-27 2.516 0.454 0.180 1.925 -0.218 0.226 0.257 6 

CWC-28 2.000 0.419 0.209 1.551 -0.240 0.269 0.275 6 

 
 


