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Abstract 

 

DEVELOPMENT AND EVALUATION OF A CLINICAL DECISION SUPPORT 

SYSTEM FOR THE PREDICTION OF METHICILLIN RESISTANT 

STAPHYLOCOCCUS AUREAUS SURGICAL SITE INFECTIONS IN PATIENTS 

UNDERGOING MAJOR SURGICAL PROCEDURES IN THE UNITED STATES. 

 

By 

 

Kevin Anthony Wilson 

 

 Methicillin-resistant Staphylococcus aureus (MRSA) is the leading cause of 

antibiotic resistance related mortality in surgical patients. Effective prediction of MRSA 

and MRSA-related SSI would facilitate the prophylactic use of appropriate antibiotics or 

application of other prevention techniques, which have been shown to improve clinical 

outcomes.  While there is a range of factors that have been shown to increase the risk of 

MRSA-related infections, research is less clear on the best approaches to developing 

predictive models for incorporation into a clinical decision support system. This study 

compared two common modeling approaches — logistic regression (LR) and artificial 

neural networks (ANN) — for the prediction of MRSA infection and MRSA-related SSI 

in patients undergoing major surgical procedures (MSPs) in the United States. 
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 The data source for analysis is the National Inpatient Sample, which contains 

approximately 7 million discharges each year. A descriptive analysis was performed to 

identify potential predictors for each of three research hypotheses and ANN and LR 

models were developed and evaluated for the prediction of: (1) MRSA infection in 

patients undergoing MSPs; (2) MRSA-related SSI in patients undergoing MSPs; and (3) 

MRSA-related SSI in patients with S. aureus infection. 

 The ANN model performed best for Hypothesis 1, with an AUC of 0.87, 

sensitivity of 0.86 and specificity of 0.74; the LR model achieved an AUC of 0.85, 

sensitivity of 0.79 and specificity of 0.75. For Hypothesis 2, the ANN model achieved an 

AUC of 0.86, sensitivity of 0.73 and specificity of 0.87; the LR model achieved an AUC 

of 0.85, sensitivity of 0.77 and specificity of 0.76. For Hypothesis 3, the ANN model 

achieved an AUC of 0.67, sensitivity of 0.57 and specificity of 0.67; the LR model 

achieved an AUC of 0.68, sensitivity of 0.61 and specificity of 0.64. 

 This study assessed the feasibility of LR and ANN for the prediction of MRSA-

related infections in surgical patients using a range of demographic, clinical, procedural, 

and hospital-related factors. The results showed that both algorithms are effective 

modeling approaches with reasonable sensitivity and specificity and suggest that a 

clinical decision support tool based on either model could be informative in clinical 

practice.   
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CHAPTER 1 

INTRODUCTION 

Hospital-acquired infections (HAI) are a major cause of morbidity and mortality and 

lead to prolonged hospital stays, with approximately 15% of all hospitalized patients 

worldwide experiencing a HAI.1-6 HAIs are defined as infections acquired during a 

hospital stay or within 30 days of discharge and are the most common complication in 

hospitalized patients.1,4,5,7,8 At any given time, over 1.4 million people experience HAIs, 

representing approximately 10% of all hospital admissions in high-income countries.1,5 

HAIs acquired in an acute care setting, which are known as nosocomial infections, are 

particularly prevalent in intensive care units and when invasive surgical procedures are 

performed.2,8  These infections are responsible for up to 100,000 deaths annually in the 

United Sates (US) and are the fifth leading cause of death in acute care hospitals.1,8,9   

The Centers for Disease Control and Prevention (CDC) estimates that of the 722,000 

hospital-acquired infections that occurred in US hospitals in 2011, around 75,000 resulted 

in death.6,10-12 At any given time, approximately 1 in 25 admitted hospital patients 

experiences at least one HAI and, in addition to increased morbidity and mortality, HAIs 

result in significantly increased costs for patient care.4,12 It is estimated that, when 

controlling for disease severity and ICU status, the cost of caring for a patient increases 

from $6767 to $15,275 when an HAI is present, and the overall cost of HAIs annually is 

$33 billion.7,13 Thus, it is important to identify and prevent infections as early as possible 
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in the patient’s care.3 Prevention and treatment of HAIs is dependent on both the 

pathogen causing the infection and the nature of the infection.11 

The majority of HAIs are caused by a small number of bacterial pathogens.1,6,7,14 

Common bacterial pathogens include Staphylococcus aureus, Escherichia coli, 

Vancomycin-resistant enterococci, Klebsiella pneumoniae, Pseudomonas aeruginosa, 

and Clostridium difficile.14 In addition, approximately 5% of HAIs are caused by viruses, 

such as Hepatitis B and C, influenza, HIV, rotavirus, and herpes-simplex, and an even 

smaller number are caused by fungal parasites, such as Aspergillus spp.1 In a study of 

pediatric HAIs, the most common pathogen was S. aureus, which accounted for 17% of 

all infections.6 These pathogens are associated with a range of infection sites and types.14 

The most common HAIs in the United States are urinary tract infections, surgical and 

soft tissue infections, bloodstream infections, pneumonia and gastrointestinal 

infections.11,12,14 Invasive devices and procedures, such as central line associated blood 

stream infections, catheter-associated urinary tract infections, and ventilator associated 

pneumonia are particularly prevalent.7,15 Bloodstream infections have been estimated to 

have a mortality rate of up to 25% and surgical site infections have been shown to result 

in prolonged hospitalization.1,15 A national study of 183 hospitals estimated that device 

associated infections collectively accounted for 47% of all HAIs, gastro-intestinal 

infections accounted for 9.2%, and pneumonia and surgical site infections (SSIs) 

accounted for 21.8% each.11 Surgical procedures were the single most common source of 

HAIs. 



3 

Worldwide over 234 million surgeries are performed annually.16 In the US alone, it is 

estimated that between 20 and 27 million surgical procedures are performed each 

year.16,17 Surgical episodes are the single most expensive hospital cost and approximately 

$400 billion per year is spent on surgical care.18 According to the Health Care Utilization 

Project (HCUP), each year there are 7.2 million inpatient surgeries and 9.9 million 

ambulatory surgeries, with over 17 million hospital visits that include invasive, 

therapeutic surgery.19 Patients undergoing surgical procedures are at an elevated risk of 

acquiring a HAI.7,15,20  

Despite progress in their prevention, SSIs are among the most common HAIs in the 

US.11,20-22 SSIs occur in approximately 5% of all surgical procedures and range in 

severity from easily management to serious and life threatening.20 Although estimates 

vary, studies have found that SSIs account for between 11 and 26% of all healthcare 

associated infections.21 The incidence of SSIs varies by operative procedure, with rates as 

high as 10.5% for cardiac surgery, 7% for vascular procedures, 2.4% for orthopedic 

procedures, and 4.8% for breast surgery.22 As with other HAIs, SSIs are known to 

increase, morbidity, mortality, length of stay, and treatment cost.23 

1.1 Background of the Problem 

SSIs are a leading cause of morbidity and mortality in the US.16,23,24 Formally, an SSI 

is defined as an infection that occurs within 30 days of surgery and SSIs are typically 

classified as deep incisional, superficial incisional, or organ space.23,24 The CDC 

classifies surgical wounds as clean, clean-contaminated, contaminated and dirty with 

overall risk of SSI ranging from 3% in a clean wound to over 27% in a dirty wound.23,25 
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In the US, SSIs occur in approximately 150,000 patients each year and cost the healthcare 

system $10 billion. It is estimated that up to 60% of SSIs are preventable.23 For 

prevention and treatment to be effective, it is important to identify the cause and type of 

the infection. 

SSIs are generally caused by one of a small number of pathogens, including 

Escherichia coli, Clostridium difficile and Staphylococcus aureus.1,6,11,14,15 SSI-causing 

pathogens differ based on the type of surgery, the location in the body, and whether a 

prosthesis is used.21 The most common pathogen that causes SSIs is S. aureus, which 

accounts for up to 22% of all SSIs.6 The S. aureus pathogen is endogenous to patients and 

resides on the skin and in nasal passages.23 Approximately 20% of patients are 

persistently colonized with S. aureus with a further 30% intermittently colonized.14 S. 

aureus is transmitted on the skin of hospital workers and patients, and enters the body 

through open wounds.1,26 S. aureus can be difficult to treat due to the development of 

antibiotic resistance. 

S. aureus is increasingly becoming resistant to standard antibiotic treatments.20,27,28 

Antibiotic resistance in S. aureus began almost immediately after the invention of 

Penicillin in the 1940s.29,30 In recent years, the continued development of resistance has 

been fueled by the overuse of broad spectrum antibiotics.30 Methicillin-resistant 

Staphylococcus aureus (MRSA) is the leading cause of antibiotic resistance related 

mortality in the US.31  Approximately 60% of all S. aureus infections are now caused by 

MRSA, which results in the pathogen being resistant to all Beta-lactam antibiotics.30,32 

The large proportion of SSIs caused by S. aureus and the associated risk of Methicillin 

resistance presents major challenges to the prevention and treatment of SSIs.33 
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MRSA is endemic in many hospital settings and an increasing number of S. aureus 

infections are becoming resistant.16,17,20,31 SSIs that are the result of a MRSA infection are 

not treatable by standard antibiotics, such as clarithromycin, cotrimoxazole, and 

gentamycin.20 While estimates vary, some studies estimate that S. aureus is responsible 

for up to 30% of SSIs, and between 50 and 60% of S. aureus infections are caused by 

MRSA.20,32 Other studies indicate that MRSA is responsible for between 26 and 31% of 

all SSIs.6 Despite discrepancies in these estimates, it is clear that MRSA is a prevalent 

cause of SSIs and is a significant cause of morbidity and mortality. 

MRSA-related SSI is associated with increased morbidity, mortality, length of 

hospitalization, antimicrobial resistance, and healthcare cost.1,7,16,23 The mortality rate of 

patients infected with MRSA is known to be at least double that of patients infected with 

Methicillin Sensitive Staphylococcus aureus (MSSA).28,34 One study estimated 90-day 

mortality to be 21% for MRSA SSI patients, in comparison to 7% for MSSA SSI 

patients.20 MRSA is also known to increase post-operative length of stay.8,22 There are 

also significant increases in treatment cost, with estimates ranging from a 10-20% 

increase to almost double.21,34 Thus, the prevention or treatment of MRSA-related SSIs 

has the potential to significantly reduce morbidity, mortality, length of stay and cost. 

There is limited evidence on the efficacy of standard treatments (e.g., Vancomycin 

and Linezolid) for MRSA-related SSIs, which makes the early identification of the 

infection critically important.35,36 In particular, while Vancomycin is the first-line 

treatment for MRSA, there is increasing evidence both of its difficulty in penetrating 

infections and of the development of resistance, resulting in Vancomycin-resistant 

Staphylococcus aureus (VRSA) infections.37 There is also conflicting evidence of the 
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efficacy of mupirocin ointment in the prevention of both MRSA and MSSA.38,39 Several 

researchers have asserted that it is critical to identify the resistance profile of the S. 

aureus pathogen prior to the prescription of preventive measures or treatment.22,40 In the 

case of an inappropriately treated MRSA infection, selective genomic pressure can result 

in subsequent severe MSSA infection. It is therefore important to identify the specific 

pathogen prior to the administration of preventive measures, which may include 

antibiotic prophylaxis.   

Prediction of MRSA SSI allows for the prophylactic use of appropriate antibiotics or 

application of other prevention techniques, which have been shown to improve clinical 

outcomes.3,21,41,42 Antibiotic prophylaxis is an important technique in the prevention of 

SSIs, however it is important to select an appropriate narrow-spectrum antibiotic based 

on the most likely pathogen.21 While preoperative screening for MRSA and subsequent 

eradication therapy is effective in reducing SSIs, PCR-based tests are often cost 

prohibitive and it is often not possible to wait for the results of slower, microbiological 

tests.28,42 In a study conducted in the UK, approximately 81% of MRSA infected patients 

received ineffective antimicrobial prophylaxis due to a delay in receiving screening 

results.42 To address these issues, the risk of MRSA infection could be estimated through 

consideration of key risk factors.3,28,41 

There is a range of patient, procedural and hospital level factors that increase the risk 

of a surgical patient contracting a MRSA infection.4,16,23,28,41-46 Risk factors such as 

transfer within hospital, presence of comorbidities, length of stay and time in surgery are 

known predictors of both MRSA-related SSI and MRSA colonization in general.41,42,45,47 

Demographic factors such as older age, black or American Indian race, and insurance 
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status are also predictors of MRSA-related SSI.16,47 In addition, hospital and procedural 

factors, such as time in surgery, adherence to safety procedures, hospital size, and 

hospital teaching status, have also been shown to increase risk.23 Many of these risk 

factors are available in routinely collected hospital administrative data, and as such, could 

be used to assess risk of MRSA-related SSI with minimal burden. 

1.2 Statement of the Problem 

The specific problem is that the need for, and type of, antibiotic prophylaxis for 

patients at risk of MRSA-related surgical site infection is difficult to determine because 

routine testing of patients for MRSA infection is not performed.20,21,47 While the 

perioperative administration of prophylactic antibiotics has been shown to significantly 

reduce the incidence of MRSA-related SSI, in practice administration is often sub-

optimal.39,47 Colonization at hospital admission is not a significant predictor of MRSA 

and many infections are acquired during or after surgery.39,47 There is also disagreement 

between researchers about the circumstances under which antibiotic prophylaxis should 

be administered, in particular around the cleanliness of the wound.20,21 Selection of the 

appropriate antibiotic should be based on the most likely organism, and as such it is 

necessary to identify effective predictors to inform this selection.20  

There is a range of patient and hospital level risk factors of MRSA-related SSI, 

including age, smoking status, obesity, type of surgery, use of prophylaxis, and nursing 

home residency, number of comorbidities, and hospitalization duration.16,17,21,27,41 Both 

hospital and individual level factors, such as the presence of an active MRSA 

surveillance process, are also predictive of risk.16,21 Although factors such as prior 
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antimicrobial use and other clinical factors also inform risk of MRSA-related SSI, the 

majority of significant factors can be obtained from routinely collected demographic, 

comorbidity, procedural, and hospital-level variables.16,21,41 For example, teaching 

hospitals and larger hospitals have been shown to be associated with reduced incidence of 

MRSA-related SSIs.16 These types of variables are routinely collected as part of national 

health care quality initiatives.16,19,34  

Studies to date disagree about whether MRSA is increasing or decreasing in the US 

and if MRSA colonization is a predictor of MRSA-related SSI; many studies to identify 

risk factors have been subject to small sample sizes.16,17,22,40,42,48 While preoperative 

screening in general has been shown to reduce risk of SSI, patients with a history of 

MRSA are still at increased risk.22,42,49 Although risk models for MRSA-related SSI exist, 

such models are rarely based on systematically-collected, national level data, due to in 

effective and inconsistent screening/reporting.16,42,48 In a study of MRSA surveillance 

systems, lack of consistent reporting has illustrated significant discrepancies in 

prevalence across different research settings.48 More reliable prevalence estimates and 

risk factors can be generated through the use of nationally representative data.16    

Although there has been significant research into the risk factors of MRSA-related 

SSIs, a predictive model that incorporates both hospital and patient level variables, based 

on a large, national database has not been developed.3,16,27 Limitations in the consistency 

and timeliness of screening for MRSA, can result in a significant number of patients 

receiving inappropriate prophylaxis or other preventive measures.42 Development of a 

predictive model reliable enough to inform clinical practice requires a large sample size 

based on nationally-representative data.16,27  While the majority of studies support the 
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feasibility of developing a model to predictive model to correctly distinguish between 

MRSA and MSSA infections, at least one study was unable to do so.50 However, one 

nationally representative study identified 13 statistically significant predictors of MRSA-

related SSI, including both hospital- and patient-level characteristics.16 These risk factors 

were not incorporated into a model, which could serve to predict MRSA-related SSIs. 

Therefore, the purpose of this quantitative research study is to develop and evaluate a 

model for the prediction of MRSA related SSIs in patients that underwent major surgical 

procedures in the United States between 2010 and 2014.3,41,51 This study will use several 

databases generated by the Health Care Utilization Project, including the National 

Inpatient Sample (NIS). The NIS contains a range of routinely collected patient and 

hospital level characteristics, including ICD-9-CM diagnosis and procedure codes, 

patient demographic characteristics, hospital characteristics, financial information, 

discharge status, and a range of severity and comorbidity measures.16,52 Statistical 

modeling methods will accommodate the potentially non-linear nature of the data and the 

model will be evaluated within a machine learning framework. The primary modeling 

approach will be regression-based to ensure that the effect of identified predictors can be 

explicitly quantified.53 

1.3 Objectives of the Study 

 The overarching objective of this study is to develop and evaluate a model to 

predict MRSA-related SSI based on a range of demographic, clinical, procedural, and 

hospital factors. The specific research objectives are: 
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1. To estimate the prevalence of MRSA, SSI, MRSA-related SSI, and MSSA-related 

SSI in patients undergoing major surgical procedures in the US; 

2. To identify and assess the significance of demographic, clinical, procedural and 

hospital-level risk factors for MRSA infection, SSI, MRSA-related SSI, and 

MSSA-related SSI; 

3. To determine the optimal modeling approach for the prediction of MRSA and 

MRSA-related SSI in patients undergoing major surgical procedures (i.e., 

Artificial Neural Network or Logistic Regression); 

4. To develop and evaluate a predictive model to identify patients at high risk of 

MRSA infection and MRSA-related SSI; 

5. To incorporate the predictive models into a Clinical Decision Support System. 

1.4 Significance of the Study 

This study aims to develop and evaluate a clinical decision support system for the 

prediction of MRSA and MRSA-related SSI in patients undergoing major surgical 

procedures in the United States. Development of this system will facilitate the early 

prediction of MRSA-related SSI and allow for appropriate prophylaxis or other 

preventive measures, and in doing so, could reduce mortality, morbidity, cost, and length 

of hospital stay for patients undergoing surgical site infections. There are approximately 

1.35 million SSIs in the US each year, of which 30% are caused by MRSA.16,17,20,32 The 

90-day mortality for MRSA-related SSI is 21%, which accounts for 81,000 deaths 

annually, compared to 66,100 for MSSA-related SSIs.16,20 Some studies estimate that up 

to 81% of patients receive inadequate prophylaxis due to delays in receiving test results.42 
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If all MRSA-related infections were prevented or treated successfully, this would account 

for reduction of 81,000 deaths annually. Similarly, prevention of all SSIs would save the 

US $10 billion per year, reduce the cost of individual treatment and length of stay by up 

to 50%.8,21,22,24,34 Although the model will not have perfect predictive accuracy and other 

factors will impact outcomes, given that 60% of SSIs are preventable, significant 

reductions in mortality, length of stay, and cost are likely.23 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Literature Search Strategy 

 The literature search strategy and associated search terms were generated directly 

from the domains identified in the purpose statement defined in Chapter 1. The purpose 

of this dissertation is to develop a clinical decision support system for the prediction of 

MRSA related SSIs in patients that underwent major surgical procedures in the United 

States. Key domains and search terms used were: 

• “Surgical Site Infection” or “SSI” 

• “MRSA” or “Methicillin Resistant Staphylococcus aureus” 

• (“MRSA” or “Methicillin Resistant Staphylococcus aureus”) AND (“Surgical Site 

Infection” or “SSI”) 

• “Clinical Decision Support System” or “CDSS” 

• (“Clinical Decision Support System” or “CDSS” AND (“MRSA” or “Methicillin 

Resistant Staphylococcus aureus”) 

• (“Clinical Decision Support System” or “CDSS” AND (“MRSA” or “Methicillin 

Resistant Staphylococcus aureus” AND “Surgical Site Infection” or “SSI”) 

All searches were performed using the Rutgers Library Web Portal and were filtered 

to include peer reviewed journal articles, refereed conference proceedings, text books, 

doctoral dissertations, and official reports. The Rutgers Library has access to a range of 

resources from a wide range of publishers, including Elsevier, EBSCO, PubMed and 

Medline.  The most relevant abstracts were reviewed and, if applicable to the dissertation, 
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were downloaded into an EndNote library. Papers were grouped into four categories, 

representing the four domains contained in the purpose statement: Surgical Site 

Infections (SSI), Methicillin Resistant Staphylococcus aureus (MRSA), MRSA-related 

SSI, and Clinical Decision Support Systems (CDSS). Final totals for each category were: 

• SSI – 46 papers, book chapters, conference proceedings or dissertations 

• MRSA – 50 papers, book chapters, conference proceedings or dissertations 

• MRSA-Related SSI – 31 papers, book chapters, conference proceedings or 

dissertations 

• CDSS – 46 papers, book chapters, conference proceedings or dissertations 

Additional searches were performed during the writing of the literature review as any 

gaps were defined and in cases where additional evidence or definitions were needed. 

Each of the domains above forms a section of this chapter, with the goal of identifying 

the complementary and overlapping research gaps in each area and thus justifying the 

conduct of this study. 

2.2 Surgical Site Infections 

2.2.1 Overview of SSI 

According to the Centers for Disease Control and Prevention (CDC), a surgical 

site infection (SSI) is defined as an infection that occurs as a result of a surgical incision 

within 30 days of an operative procedure.54-57 SSIs are often severe infections and among 

the most commonly reported hospital acquired infection (HAI).58,59 Many SSIs do not 

present until after the patient has been discharged from the hospital, which suggests a 

need for careful post-surgical surveillance.60 Diagnosis of SSIs occurs through culturing 



14 

of wound drainage and consideration of supporting signs and symptoms.56 SSIs can result 

in significantly increased morbidity and mortality.61 

 Although significant progress has been made in the prevention and treatment of 

SSIs, incidence continues to be high and SSIs remain a leading cause of nosocomial-

related morbidity and mortality.62,63 While advances in the use of antiseptics and 

antibiotics have revolutionized the prevention and treatment of SSIs, an increase in the 

frequency and invasiveness of surgery along with increasing general morbidity have 

resulted in increased incidence over time.58 Increases in the proportion and number of 

surgeries performed in an ambulatory setting combined with shorter hospital stays have 

also contributed to increasing incidence.64,65 It is estimated that approximately 1.4 million 

SSIs occur in the US each year, which accounts for between 2% and 5% of all surgeries 

and results in costs of over 1 billion dollars annually.63 By some estimates, SSIs are the 

most common type of hospital acquired infection.66 

 SSIs are the most common hospital acquired infections among surgical 

patients.61,67-69 Estimates of incidence vary based on the type of surgery but can be as 

high as 30% for invasive procedures such as lower gastrointestinal and colorectal 

surgeries.70,71 SSIs are routinely identified as the most common post-operative infection, 

with some estimates as high as 38%.67 Overall, SSIs are one of the most common 

nosocomial infections and although some researchers suggest they are the most prevalent 

HAI, estimates vary significantly.61,66,69 There is consensus that SSIs result in increased 

morbidity, increased cost, longer hospital stays, and a higher probability of readmission.68 

SSIs have routinely been shown to have a significant effect on morbidity and 

mortality.65,72-74 In addition to prolonged hospital stays and increased therapeutic costs, 
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SSIs result in significantly higher health care costs.60,62,73 SSIs are also associated with 

increased mortality and higher hospital readmission rates.54,56,58,64 Researchers estimate 

that surgical site infections cost the health care system up to $10 billion per year, increase 

time in hospital by between 7 and 11 days, and increase the risk of mortality by between 

2 and 11 times.54,66 Despite improvements in prevention and treatment protocols, the 

incidence of SSIs and HAIs in general remains high.43,72All surgical wounds are subject 

to some degree of contamination, which can significantly increase a patient’s risk of 

infection, depending on the type and location of the wound. 23,75 

Surgical wounds and SSIs are classified in various ways to facilitate prevention, 

treatment and analysis.60,65,70,72,76,77 Surgical wounds are assigned to one of four 

categories based on the degree of contamination.23,56,78 Standard surgical wound 

classification (SWC) categories are clean, clean-contaminated, contaminated, and dirty, 

with each category representing an increasing risk of SSI.17,23,65,79 In addition, SSIs are 

post-operatively classified into different types based on the nature and location of the 

infection.65,70 The CDC divides SSIs into three levels based on the anatomic level of the 

infection: superficial incisional, deep incisional, and organ space.54,60,70,76,77 Superficial 

incisional SSIs generally occur in skin and subcutaneous tissue, whereas deep incisional 

SSIs occur in the fascial and muscular layers of soft tissue.60,71,72 Organ space SSIs are 

the most invasive and serious infections and can have the most significant impact on 

outcomes.80 While SSIs are typically defined as infection that occur within 30 days of 

surgery, some researchers also classify them as early (within 3 months of surgery), 

delayed (between 3 months and 2 years from surgery) and late (greater than 2 years from 



16 

surgery).54-57,81 Regardless of the classification of the infection, most SSIs are caused by a 

small number of bacterial pathogens, most notably Staphylococcus aureus.55 

Staphylococcus aureus is a virulent and common pathogen and is currently the 

most common cause of SSIs.6,62,63,82 Treatment of SSIs is further complicated by the 

development of antimicrobial resistance to the Staphylococcus aureus bacterium, and in 

particular by the substantially increasing prevalence of Methicillin-resistant 

Staphylococcus aureus (MRSA).62,63 MRSA bacteria have acquired genetic mutations 

that encode resistance to Methicillin and other penicillin and Beta-lactam antibiotics.75 

The increasing prevalence of antibiotic resistance contributes to the morbidity and 

mortality of SSIs and complicates treatment regimens.55,75 By some estimates, MRSA 

now represents up to 63% of all Staphylococcus aureus infections, and thus treatment or 

prevention of SSIs requires knowledge about the resistance profile of the potential 

pathogen.55,62 Specifically, it is important to identify risk factors that facilitate the 

differentiation of MRSA and Methicillin-susceptible Staphylococcus aureus (MSSA) 

SSIs so that appropriate preventive therapy may be administered.3,21,41,42 

The identification of risk factors for SSI and the development of risk models that 

can accurately predict MRSA and MSSA SSI in surgical patients is critical in 

determining the appropriate prevention and treatment strategies.58,74,83 The probability of 

a patient experiencing an SSI is affected by a range of demographic, clinical, procedural, 

and hospital-related factors, and a number of risk scores have been developed using these 

factors.23,83,84 Under the auspices of the National Nosocomial Infections Surveillance 

(NNIS) System, the CDC developed an SSI risk index, which incorporates the American 

Society of Anesthesiologist (ASA) Score, wound classification (clean, clean-
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contaminated, contaminated, dirty) and procedure duration.85 Other researchers have 

developed methodology to screen patients for risk of SSI at admission.58,86 While 

predictive models can be developed using encounter data collected for the purposes of 

quality assessment, significant, subtle variations between MRSA and MSSA require large 

sample sizes and careful classification of predictors.64,73,86,87 Nevertheless, differentiating 

between MRSA and MSSA and determining risk of infection is critical in the prevention 

of SSIs.57 

Prevention of SSIs is a multifaceted process that requires consideration of a range 

of patient and hospital factors and the administration of multiple preventive measures, 

including use of antiseptics, preoperative antibiotic therapy, and clean surgical 

processes.71,88-90 Antibiotic prophylaxis is a key component of SSI prevention, however 

inconsistent implementation of screening protocols and lack of universal screening can 

hinder its success.23,65,66,75,87 There is a significant body of evidence to support antibiotic 

prophylaxis, however almost universally, researchers indicate the need for the targeting 

of the antibiotic to the specific pathogen.57,67,68 Specifically, the routine prophylactic use 

of vancomycin for the prevention of Staphylococcus aureus SSIs should be avoided 

unless the resistance profile of the pathogen is known.61,67  

2.2.2 Epidemiology of SSI in the United States 

SSIs are a significant cause of morbidity and mortality and place substantial burden 

on the healthcare system in the United States.59,77,84,91 Annually, of the 30 million 

operative procedures and 1.7 million HAIs that occur in the United States, over 500,000 

are SSIs.57,77,92,93 These infections affect approximately 157,000 patients per year, cost 

$20,000 per infection, and cost the healthcare system a total of $3.3 million annually.59,84 
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SSIs represent approximately 22% of all HAIs, result in over 8000 deaths annually, and 

have been shown to be increasing as a proportion of HAIs.89,92 Thus, SSIs occur in a 

significant proportion of surgical patients. 

SSIs occur in a significant proportion of all surgical patients, with rates of infection 

varying by type of surgery.23,66,74,82,84,85 Researchers generally agree that between 2% and 

5% of all surgical patients experience an SSI, however some estimates are as high as 

38%.23,63,81,82,85,92 While estimates vary regarding the overall proportion of HAIs that are 

SSIs, most researchers asserting that SSIs are the most common nosocomial infection, 

representing between 30% and 40% of all HAIs.23,55,60,64,74,76,92 Rates vary by surgical 

procedure with SSIs occurring in 2% to 5% of patients undergoing hip or knee 

arthroplasty, 15% of patients undergoing spinal surgery, 30% of patients undergoing 

colorectal surgery, 33% of patients undergoing abdominal surgery, and up to 45% in 

patients undergoing head or neck surgery.56,77,81,86,88,91 The majority of SSIs – up to 79% 

–  occur within 30 days of surgery, and because a substantial proportion of these occur 

after discharge, identifying key risk factors and taking preventative action is critically 

important.81 

Key risk factors for SSI include age, type of surgery, sex, SWC, use of prophylactic 

antibiotic therapy (PAT) and NNIS risk index.55,59,78,88,94 Incidence of SSI has been 

shown to be higher in females than males (78% vs 77.3%), and also higher in the 15-30 

years age group.55 In contrast, other researchers have found that incidence of SSI is 

higher in patients aged 70 or over.59 PAT was generally found to be an effective 

prevention strategy.87,94 For example, in a study of over 5000 patients undergoing surgery 

for lumbar disc problems, the risk of SSI for patients administered PAT was one third 
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that of those not administered PAT, with a number need to treat (NNT) of 43.94 Type of 

surgery is not only a risk factor for SSI, but also has a significant impact on SSI 

sequelae.84 

Patients with SSI experience a range of complications, both before and after 

diagnosis, which result in longer hospital stays, reduced quality of life, higher mortality, 

and abnormal wound symptoms.54,70,84,90 Mortality rates and costs differ by type of 

surgery: neurological SSIs are generally the most expensive, costing around $23,755 per 

SSI and SSIs in spinal surgery associated with significantly increased mortality.69 

Outcomes are also affected by the pathogen causing the SSI, the most prominent of 

which is Staphylococcus aureus, which is causative in up to 57% of SSIs.90 

Although Staphylococcus aureus is a major cause of SSI, estimates vary by type of 

surgery, with different studies reporting widely different results.55,60,63,93 While some 

researchers estimate that as few as 20% of SSIs are caused by Staphylococcus aureus, 

most estimate that this pathogen is present in over 50% of SSIs.55,60 Antibiotic resistance 

is a major issue with Staphylococcus aureus infections that complicates treatment and 

negatively impacts morbidity and mortality, due to the development of further resistance 

to limited treatment options, such as Vancomycin.61 Reducing the incidence of SSIs and 

slowing the development of antibiotic resistance requires an epidemiological study based 

on a large-scale nationally-representative sample of major surgical procedures in the 

United States.52 

For the purposes of epidemiological data analysis of SSIs, the National Inpatient 

Sample (NIS) provides a large, nationally-representative sample of hospital admissions, 
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collected over the course of several years.16,52,95 The NIS collects data from over 1000 

hospitals in the United states and contains data on over 8 million hospital discharges.95 

The NIS defines a major surgical procedure based on ICD-9 codes and includes both 

diagnostic and therapeutic procedures that occur in an operating room.16,52 Analysis of 

the NIS will facilitate the identification and validation of predictors of SSI along with the 

generation of epidemiological measures such as estimates of incidence and prevalence.16 

2.2.3 Modeling and Prediction of SSI 

 A range of statistical and machine learning models have been applied successfully 

to the prediction of SSI from patient demographic factors, clinical factors, microbial 

factors, and hospital factors.72,84,89,96 Hierarchical multivariate logistic regression can be 

used to differentiate SSI patients from non-SSI patients by incorporating variables 

relating to the surgical procedure, patient factors, and hospital factors, with comorbidities 

and surgical procedures identified by ICD-9 codes.77,80,96 Researchers determined that 

simpler models with fewer covariates were effective predictors of SSI, one group 

obtaining sensitivity of 72% and specificity of 64%.43,84,97 Key predictors identified 

include RACHS-1 Score (for cardiac surgery), ASA score greater than or equal to 3, 

concurrent infection, wound class, blood transfusion, BMI, MRSA colonization, duration 

of surgery longer than 3 hours, and most notably preoperative clinical severity and 

comorbidities.43,89,97 One study demonstrated a 9-fold increase in risk based on nasal 

colonization alone.89 It is likely that predictors of SSI differ due to both the underlying 

population and the existing risk profile of that population (i.e., the presence of 

comorbidities).80 
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 In addition to patient demographics, such as socioeconomic status, age, and 

BMI/obesity status, the presence and number of comorbidities is a significant predictor of 

SSI.67,68,80,92 Comorbidities shown to increase risk include, diabetes, chronic obstructive 

pulmonary disease (COPD), obesity, pre-operative hyperglycemia, anemia, inflammatory 

bowel disease.67,68,80,85,92 The American Association of Anesthesiologists (ASA) Score is 

another measure of the severity of illness of surgical patients.98 

2.2.4 Predictors of Surgical Site Infection 

 General Risk Factors. Researchers have identified a broad set of risk factors that 

are useful in the prediction of SSI, however many studies are subject to small sample 

sizes and non-representative samples and thus are not powered to detect statistically 

significant differences.71,77,88,90 Common preoperative clinical and demographic factors 

include age, surgery time, surgical duration, glucose level, length of stay, smoking status, 

and comorbid diabetes.77,89 Procedural factors, such as operating room condition, surgical 

hand preparation, antibiotic prophylaxis, and screening for Staphylococcus aureus, while 

amenable to intervention may be problematic from a modeling perspective due to their 

lack of inclusion in standardized data collection protocols.88,95 Other known risk factors 

include the skill of the surgeon, antibiotic administration, contamination status of the 

wound, temperature, results of microbiological culturing (e.g., results of biological 

testing for Staphylococcus aureus), and administration of blood transfusion.68,77,86,93,96 In 

addition to general risk factors, there are a range of specific risk factors that are related to 

specific surgical procedures.43 For example, risk factors in gastrointestinal surgery also 

include corticosteroid use and malnutrion.71 Risk factors common to most surgery types 

are identified from the literature and are described in more detail below.2 
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 Age. Researchers generally agree that extreme of age is a significant predictor of 

SSI, with the very young and very old experiencing higher risk.55,59 

 Sex. There is no clear consensus on whether a patient’s sex increases risk of 

SSI.55,59,83 While a number of researchers have identified female sex as increasing risk, 

further research needs to be performed to explore this relationship in more detail.55,59 

  Weight. SSI has been shown to be significantly associated with increasing 

weight.69,70,73 Patients with higher than normal BMI has been shown to have significantly 

higher rates of superficial and deep/organ-space SSI.70 Incidence of SSI has been shown 

to be as high as 30% for severely obese patients.73 One recent study of patients 

undergoing cervical spine surgery identified BMI of greater than 35 kg/m2 as an 

independent risk factor for SSI.69 

ASA Score. The ASA score is a measure of a patient’s health prior to a surgical 

operation, and as such, broadly captures the impact of comorbidities and the patients 

general health and is a useful predictor of SSI.74,98 A number of researchers include the 

ASA score in the development of predictive models and risk indices.74,80,97 The ASA 

score is often combined with other covariates for the purpose of risk adjustment, the most 

common of which is SWC.74,80,97 For example, the National Nosocomial Infections 

Surveillance System (NNIS) risk index includes SWC, ASA score, and surgical 

duration.97 

 SWC. Surgical Wound Classification, in conjunction with ASA score and 

surgical duration, is used to identify patients at risk of SSI.69,76,78 SWC describes the 

overall degree of wound contamination and assigns a wound to one of four categories: 
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clean, clean-contaminated, contaminated, and dirty.74 For example, In colorectal surgery, 

rates of SSI in clean-contaminated wounds can exceed 20% and may be affected by the 

use of antibiotic prophylaxis.76,87 

 Staphylococcus aureus Colonization. Colonization with Staphylococcus aureus 

or Methicillin Resistant Staphylococcus aureus (MRSA) has been shown to increase risk 

of SSI.62,81,93 Nasal carriage of Staphylococcus aureus has been reported as a major risk 

factor for the development of SSI, and consistent with that finding, treatment with 

intranasal mupirocin and a chlorohexidine scrub have been shown to be protective 

factors.75,90,93 MRSA has been shown to be the leading cause of SSI in several different 

types of surgery, including vascular, orthopedic, and cardiac procedures.62 Predicting the 

causative agent of an SSI and understanding its antibiotic resistance profile is critical in 

applying appropriate preventive measures.61,67 

 One way of understanding the relative importance of each predictor is to consider 

the number of citations in the literature. Table 1 shows the number of citations for each of 

the top 20 predictors. 
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Table 1: Top 20 SSI Predictors 

Predictor Citation Count 
BSI 11 
ASA Score 8 
MRSA - Colonization 7 
Surgical Hand Preparation 6 
Colon Surgery 5 
Diabetes 5 
Sex 4 
Smoking 4 
Surgical Wound Class 4 
Blood Transfusion 3 
Nutritional Status 3 
Steroid Use 3 
Wound Class 3 
Anemia 2 
COPD 2 
Infection 2 
Surgery Type 2 
Absence of Splenic Function 1 
Alcoholism 1 
Antibiotic Administration/Use (Risk Factor) 1 

2.3 Methicillin Resistant Staphylococcus Aureus 

2.3.1 Background 

Hospital acquired infections (HAI), also known as nosocomial infections, are 

responsible for significant morbidity and mortality, prolonged hospitalization, and 

increased healthcare expenditures.5,6,15 Hospitalized patients, particularly those 

undergoing invasive procedures, are at a significantly higher risk of acquiring an 

infection, the most common of which are urinary tract infections (UTI), SSI, and 

bloodstream infections (BSI).15 Nosocomial infections are defined as infections for which 

there was no evidence at the time of admission that are acquired within 48 hours of 

admission hospital, or appear within 30 days if discharge, and manifest themselves as a 

clinical disease.5,15,99 The National Healthcare Safety Network (NHSN) classifies 

nosocomial infection based on 50 different body location and according to 13 types.14 
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Many nosocomial infections are caused by microorganisms (e.g., bacteria) that have 

developed resistance to common antimicrobial treatments.6 

The development of antimicrobial resistance to a range of bacterial pathogens, 

including Staphylococcus aureus, is an increasing public health issue.100-103 Use of 

antibiotics for the treatment of bacterial infections, and particularly the use of broad 

spectrum antibiotics, has led to increasing selective pressure in which susceptible 

pathogens are killed and resistant strains become more prevalent and thus, over all the 

pathogen develops further resistance.5,47,101,102,104,105 Antimicrobial resistance has been 

recognized as an inevitable consequence of antibiotic use as far back as 1945, when 

Alexander Fleming observed that inappropriate use of penicillin could lead to the 

development of mutant forms of the Staphylococcus aureus pathogen.29,32,105 Within 10 

years of the introduction of Penicillin, virtually all strains of Staphylococcus aureus 

exhibited resistance due to the spread of the Beta-lactam gene through the species.14,29,106 

Resistance to Beta-lactam antibiotics led, in the 1950s, to the introduction of Methicillin 

– a synthetic derivative of penicillin, however resistance quickly developed due to the 

acquisition of mecA and mecC genes, and was prevalent by the 1980s.107 By some 

estimates, global consumption of antibiotics has increased by up to 65% between 2000 

and 2015, which has accelerated the development of Methicillin Resistant 

Staphylococcus aureus (MRSA), particularly in the hospital setting and in 

immunocompromised patients.6,31 

MRSA is a bacterial pathogen that is resistant to Beta-lactam antibiotics, 

including methicillin, oxacillin, and cefoxitin and is a leading cause of HAIs in the 

United States and Europe.30-32,34,103,108 MRSA typically resides on the skin and in nasal 
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passages and can cause infections if it enters the body through a cut or wound, and so 

surgical patients are at particularly high risk.8,34,109 The first MRSA infections were 

reported in the UK as early as 1961, MRSA emerged as a major infection by the 1980s, 

and it became endemic in US and European hospitals in the last 20 years.2,8,29,30,32,35,106,108 

In contrast to Methicillin Susceptible Staphylococcus aureus (MSSA), MRSA infection is 

associated with greater severity of illness, poorer clinical outcomes and higher economic 

burden, and by some estimates is the leading cause of HAI-related mortality in the United 

States.31,109,110 The development of newer, community-based strains of MRSA, combined 

with increasing resistance to Vancomycin – the primary treatment for MRSA – has led to 

a critical need for more effective screening and prediction of MRSA infections so that 

appropriate prophylaxis and other preventive measures can be applied to minimize 

further resistance.32,50,111 

There is significant debate about the cost-effectiveness and efficacy of testing for 

MRSA at hospital admission.35,39,41,104,112 While there are no official recommendations 

for the most effective screening/testing strategies, most researchers agree that 

screening/testing protocols should target patients at the highest risk of 

infection.8,39,41,109,113 In addition, lack of cost-effective rapid tests that exhibit high 

sensitivity and specificity make universal screening infeasible and result in physicians 

administering antibiotics based on inconclusive diagnoses.46 Therefore, in order to reduce 

the number of unnecessary screening tests, many institutions have developed clinical 

prediction tools to identify patients at high risk of infection.112,114,115 These methods are 

important because, by some measures, lack of MRSA screening can result in 

approximately half of all carriers being missed.114 Developing more effective methods for 
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predicting MRSA infection has the potential to reduce incidence, facilitate the more 

effective use of screening tests, and improve outcomes.41,113 

Because of the need to target high-risk patients for more in-depth screening and 

testing protocols and to improve the timeliness of diagnosis, significant research has been 

conducted to develop predictive models for both MRSA colonization and subsequent risk 

of infection.3,27,50,113,114,116,117 Researchers have developed predictive algorithms for 

MRSA carriage at hospital admission and to differentiate between resistant and non-

resistant infections.40,45-47,114 Data used to develop these models, and any indicated 

preventive measures, should be based on local epidemiological information that reflects 

the population of interest.3,48,101,112 One successful example is a study of MRSA risk in 

pneumonia patients, in which patients were stratified into 3 risk groups based on a small 

number of clinical factors (age, prior IV antibiotics, cardiovascular disease, sex, diabetes, 

and nursing home or long term care residency).118 New machine learning techniques, the 

increasing availability of data, such as the MIMIC-III dataset, and standardized (ICD-9) 

coding of MRSA in healthcare data, have supported the development of effective clinical 

decision support systems (CDSS), which have been shown to reduce the reliance on 

laboratory testing.31,100,108,118,119 Machine learning techniques, because of their ability to 

model non-linear and other complex relationships, have the potential to differentiate 

between MRSA and MSSA, support the implementation of CDSS, and the rapid 

administration of appropriate therapy.3,40,108,115 Advanced modeling techniques, such as 

logistic regression, support vector machines, and random forest classifiers have been 

shown to be effective predictors of MRSA infection and outcomes.40,108 Effective 
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prediction methods facilitate the administration of appropriate prevention and treatment 

regimens, including the administration of prophylactic antibiotics.5 

Increasing resistance to standard treatments for both MSSA and MRSA (e.g., 

Vancomycin) due to overuse of broad spectrum antibiotics require that the pathogen’s 

resistance profile be determined prior to administration of prophylaxis.30,101,109,110,120 

Current prophylaxis protocols do not account for the resistance profile of the probably 

pathogen, is necessarily broad spectrum, and as a consequence does not explicitly target 

MRSA.82,115 However, the development of new antibiotics with improved activity against 

MRSA (e.g., daptomycin, linezolid, etc.) combined with more effective screening 

procedures, could facilitate a more targeted approach.1,48,107 The use of appropriate 

antibiotic prophylaxis is particularly important in the prevention of SSI.1,5,116 

2.3.2 MRSA Epidemiology 

MRSA infections have been shown to increase the duration of hospitalization, to 

significantly increase the risk of mortality, and to lead to long term disability.1,26,31,46 

Patients with MRSA infections are more likely to fail treatment within 1 week and stay 

an average of 6 times as long as patients admitted to an intensive care unit.26,50 MRSA is 

the leading cause of death attributed to antimicrobial resistance in the United States, with 

some studies estimating a 33% mortality rate for MRSA patients in comparison to 22% 

for non-MRSA patients.31,46 Patients infected with resistant organisms, such as MRSA, 

require substantially greater hospital care, which results in increased costs of up to 

$30,000 per infection due to increased medical complications.34,121 The incidence and 

prevalence of MRSA are likely underestimated due to the lack of universal testing and 

high probability of colonization in the general population.113 
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MRSA is one of the most common nosocomial infections in the United States and 

Europe and accounts for between 40 and 50% of all Staphylococcus aureus 

infections.1,27,103,122 It is a Gram-positive bacterium that resides on the skin of proportion 

of the population, these asymptomatic carriers acting as vectors, with estimates of 

prevalence ranging from 1% to 20% depending on region (infection rates are higher in 

the southern US)  and other factors.26,31,41A significant proportion of MRSA infections 

are categorized as skin and soft tissue infections, and of these infections, approximately 

50% are the result of community-acquired MRSA.50,117 Community-acquired MRSA 

(CA-MRSA) is an increasing public health problem and in many settings incidence 

exceeds that of hospital-acquired MRSA. There is also evidence that CA-MRSA is a 

leading cause of hospitalizations in the United States, due primarily to the high incidence 

of skin and soft tissue infections.31,111,117,123 

Although the number of MRSA-related hospitalizations has increased due to the 

presence of CA-MRSA, other types of MRSA infections, such as central line-associated 

blood stream infections have decreased.123 In general, researchers disagree regarding the 

prevalence of MRSA infections and MRSA related hospitalizations, suggesting the 

presence of confounding in the studies or underlying differences in the population being 

studied. For example, whereas a Veterans’ Administration study reported an 80% 

reduction in MRSA infections, over the same period, the NHSN reported no change.31,48 

It may also be the case that decreases in hospitalization rates for skin and soft tissue 

infections were offset by increases in invasive infections, such as sepsis and SSI. Thus, 

overall rates of MRSA remain high and the presence of multiple strains present 

significant challenges for prevention and treatment due to increasing resistance to 
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Vancomycin and other antibiotics and increasing reliance on broad spectrum 

antibiotics.103,107,122,124 Despite these challenges, use of a Clinical Decision Support 

System (CDSS) based on the identification of discriminatory predictors has been shown 

to improve appropriate antibiotic prescription.115 

2.3.3 Predictors of MRSA 

 General Risk Factors. Researchers have identified a broad range of clinical 

predictors of MRSA colonization, MRSA infection, and MRSA-associated 

outcomes.99,113,114,121 Demographic predictors include sex, age, and prior contact with the 

healthcare system, in particular prior hospitalization.113,114,117 Multiple studies have 

determined that vital signs and clinical measurements, including temperature, hematocrit 

value, white blood count, and c-reactive protein level are predictive of MRSA 

infection.40,110 Other predictors include prior antibiotic use, previous hospitalization, 

infection acquired during hospitalization (as opposed to in the community or other health 

care setting) and underlying severity of illness.26,113,117,121 No differences have been 

observed between males and females.117 

Antibiotic Exposure. Exposure to broad spectrum antibiotics prior to hospital 

admission is a significant predictor of MRSA infection.2,40,41,47,102,109,120 In one analysis, 

researchers found that 45% of patients with MRSA had documented antibiotic use at 

admission, versus 17% of patients with MSSA.40 Consistent with this result, other 

researchers found that patients with recent antibiotic exposure, when controlling for other 

factors (prior hospitalization, age>70) were over 4 times more likely to have MRSA 

carriage at admission than patients without antibiotic exposure.47 Other researchers 

obtained similar results in a range of multivariate analyses, suggesting that overuse and 
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misadministration of broad spectrum antibiotics is a major contributor to antimicrobial 

resistance generally, and to MRSA specifically.41,46,100,109 

 Prior Hospitalization. Prior hospitalization is a known risk factor for both 

MRSA colonization and MRSA infection.8,112,117,120 In a univariate analysis, 

hospitalization of more than one week in the previous 6 months was identified as a 

significant predictor of MRSA infection, and another study found that recent 

hospitalization doubled the risk of infection.41,117 Researchers also identified intra-

hospital transfer and hospitalized patients with compromised immune systems as major 

contributors to risk.14,112 

 Age. While estimates vary across studies, older age has been shown to be 

correlated with MRSA colonization and infection.11,26,99 Patients over the age of 75 are 

almost twice as likely as younger patients to be colonized with MRSA.47 Other studies 

find similar results with slightly different age cut-offs, including 70 years and 79 

years.41,118 While much of the research is focused on older patients, very young patients 

are also at higher risk, and because of the prevalence of MRSA in older patients, 

colonization and infection in younger patients is likely to be missed.27,112  

 Indwelling devices. Indwelling devices, such as percutaneous endoscopic 

gastrostomy (PEG) tubes, are colonized with a range of organisms, including 

Staphylococcus aureus, and are associated with higher rates of MRSA infection.2,104,122 

By some estimates, over 90% of external feeding tubes are colonized with harmful 

bacteria.104 A number of studies have identified mechanical ventilation (MV) tubes and 

central venous catheters (CVC) as strong risk factors for MRSA infection.2 
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 Clinical predictors. A number of studies have identified a broad range of clinical 

predictors of MRSA infection, including fever, loss of function, multifocality, total white 

blood cell count, neutrophil count, c-reactive protein level, and temperature.27,110,123 

However, results differ by study and the risk factors considered with some researchers 

unable to identify clinical factors that could effectively distinguish between MRSA and 

MSSA.41,50 In contrast, other studies were able to develop risk prediction models with 

strong performance characteristics.27,114,118,121 In a study of MRSA prediction in bone and 

join infections, a c-reactive protein value of greater than 13.9 mg/L was found to predict 

MRSA infection with 93% sensitivity and 79% specificity, with an area under the curve 

of 89%.27 Discrepancies between these results suggest a need for further research into 

demographic and clinical predictors that can effectively differentiate between MRSA and 

MSSA infections. Table 2 summarizes the 20 most cited MRSA predictors. 

Table 2: Top 20 MRSA Predictors 

Predictor Citation Count 
Hospitalization - Previous or Transfer 15 
Antibiotic Administration/Use (Risk Factor) 12 
Age 11 
Decubitus Ulcers 6 
Length of Hospitalization 5 
Sex 5 
Cerebrovascular Disease 4 
Colon Surgery 4 
Nursing Home 4 
Temperature 4 
Antibiotic - Broad Spectrum 3 
Hematocrit 3 
Urinary Catheter 3 
WBC Count 3 
Chronic Skin Disease 2 
Diabetes 2 
ICU 2 
Indwelling Devices 2 
Loss of Function 2 
MRSA - Colonization 2 
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2.4 MRSA-related Surgical Site Infections 

2.4.1 Overview of MRSA-related SSI 

 Despite significant medical advances in the last 20 years, including improvements 

in surgical techniques, infection control practices, and extensive use of antibiotic 

prophylaxis prior to surgery, surgical site infections (SSI) remain a major cause of 

morbidity, mortality, longer hospital stays, and higher healthcare costs.7,36,63,99,125 SSIs 

account for up to 26% of all healthcare-associated infections (HAI) and can increase 

costs by more than $61,000 per infection.21,126 Increasing antibiotics resistance due to the 

overuse of broad spectrum antibiotics has led to significant challenges in the 

administration of appropriate antibiotic prophylaxis, with a significant proportion of 

Staphylococcus aureus infections becoming resistant to common antibiotics.7,127,128 As a 

result, Methicillin-Resistant Staphylococcus aureus has become the predominant 

pathogen in SSI.63,128 

 MRSA is now the leading pathogenic cause of SSI in the United States.24,36,63,128 

Staphylococcus aureus is the single most common bacterial cause of SSI, with MRSA 

accounting for over 50% of these cases, and 20% of SSIs overall.36,128,129 In contrast, 

MSSA Staphylococcus aureus infections, MRSA-related infections also result in 

increased hospital costs, a higher number of 90-day readmissions, and poorer 

outcomes.128,129 Lack of information about MRSA-related SSI predictors and risk factors, 

makes treatment decisions difficult and suggests a need for further research.39,47,130 Early 

identification of MRSA or accurate prediction of MRSA-related SSI enables the 

administration of appropriate prophylactic antibiotics (i.e., vancomycin for MRSA 

infection or Beta-lactams for MSSA).131 Thus, development of a clinical prediction tool 
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to accurately predict MRSA-related SSI could significantly reduce morbidity, mortality, 

duration of stay, and healthcare costs.127 

 Antimicrobial prophylaxis is the administration of a course of antibiotics shortly 

before surgery with the aim of boosting the host defenses’ ability to fight any infection 

resulting from surgery.17,36,63 Identifying the infective agent is critical, and failure to do 

so can have a significant effect on the efficacy of the prophylaxis.63,129,132 Many 

healthcare systems are reluctant to administer Vancomycin prophylactically, even though 

it is the first line treatment for MRSA infections, because there is increasing evidence of 

resistance for Vancomycin due to inappropriate administration to patients with MSSA, 

administration of Vancomycin alone increases risk of MSSA-related infection, and 

Vancomycin is ineffective against MSSA.24,36,49,129 Unfortunately, because of these 

challenges many patients that are later determined to have MRSA-related infections, do 

not receive appropriate prophylaxis.39,42,133 Although there is significant debate about 

whether universal testing for MRSA should be performed, researchers agree that 

identifying the likeliest pathogen prior to inform appropriate prophylaxis is of critical 

importance.20,22,49,63,132,133 

2.4.2 Epidemiology of MRSA-related SSI 

MRSA-related SSI is a significant cause of morbidity and mortality in the United 

States.17,125,134 SSI increases morality risk by between 2 and 11 times, increases 

hospitalization time by 1 week per infection, and increase healthcare costs between 

$12,000 an $35,000 per infection.16,125,128,135,136 While estimates vary, the incidence of 

SSI is increasing and SSIs are generally considered as one of the top three nosocomial 

infections, accounting for 20% of all HAIs in the United States.17,24 Each year 
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approximately 234 million major surgical procedures are performed and of these, 

between 2 and 5% result in SSI.16,24,125,134 Limited epidemiological research has been 

performed with respect to MRSA-related SSI.16  Approximately 1% of all major surgical 

procures performed in the United States each year result in a MRSA-related SSI.16,22 

Furthermore, MRSA infection is an independent risk factor that significantly increases 

the risk of mortality compared with non-MRSA infections, with some estimates 

suggesting 12 times increase in risk compared to control patients.82,128,137 Increased 

mortality is particularly common in patients undergoing invasive surgeries, such as 

coronary artery bypass surgery and cardiac valve surgery.35 

MRSA and MSSA are the most common pathogens involved in SSI due to high 

levels of nasal colonization within the US population.20,125,126,128 Over 50% of 

Staphylococcus aureus infections are due to MRSA, which now represents the most 

common cause of SSI.28,36,138 Patients with MRSA-related SSI are 30 times more likely 

than non-infected patients to be readmitted to hospital, 7 times more likely to die within 3 

months of surgery, and on average, spend an extra 16 days in hospital.135 Compared to 

MSSA-related SSI patients, MRSA-related SSI patients were almost 3 times more likely 

to die within 3 months of surgery , and on average spend 3 more days in hospital.22,79,135 

Incidence of MRSA-related SSI differs by facility and surgery type, but can be up to 33% 

for invasive surgeries.35 Estimates of the proportion of SSIs attributed to MRSA differ 

and range from 15% to 35%.35,133,139 It is also possible that MRSA-related SSIs remain 

under reported by a significant proportion, by some estimates up to 60%, are suspected to 

present after discharge.20,21 Despite this limitation, researchers have demonstrated an 

association between MRSA, SSI and poor outcomes, however further research is 



36 

necessary to better understand the epidemiology of MRSA-related SSI and to identify 

clinical predictors that can be used to inform prevention and treatment regimens.16,35,42,47 

2.4.3 MRSI-related SSI Predictors 

 MRSA-related SSI predictors can be categorized broadly into patient-related 

factors, hospital/healthcare-related factors, and surgical factors.7,17,134 Patient-related 

factors include standard demographic characteristics, such as age, race, and sex, and also 

factors relating to previous hospitalization, severity of illness, and the presence of 

comorbidities.17,137,138 Hospital/healthcare related factors include the use of invasive 

devices, infection prevention methods, and antibiotic use policy.21,128,138 Surgical factors 

include type of surgery, duration of surgery, surgical wound classification, and blood 

loss/transfusion.22,47,136 Several studies have attempted to differentiate between MRSA-

related and MSSA-related SSI using multivariate logistic regression models, although the 

performance of the models varies widely.125,127,129,132,133 Patient-related factors, which can 

be broken down into immutable demographic characteristics, and modifiable risk factors 

are generally easy to measure, and thus are useful covariates in predictive models.17 

 Age. As with SSI and MRSA in general, older age is found to be a predictor of 

MRSA-related SSI in comparison to MSSA-related SSI.17,20,21,24,79,127,130-132,138 While the 

specific age cutoff varies between studies, most researchers suggest that patients over the 

age of 65 are more likely to experience a MRSA-related SSI in contrast to a MSSA-

related SSI, however it must be noted that some researchers do not identify age as a 

predictor or explicitly indicate a lack of association.7,125,136 It may be that age is 

confounded by other variables associated with MRSA-related SSI, such as an increased 

number of comorbidities or increased severity of illness.24 Other studies found that risk 
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was elevated in the very young and also those in middle age, which suggests that further 

research is needed to fully understand the relationship between age and MRSA-related 

SSI, and its utility in differentiating between MRSA-related SSI and MSSA-related 

SSI.17,20 

 Sex. There is limited evidence to support an association between sex and MRSA-

related SSI, however some researchers have found that males are between 35% and 70% 

more likely to experience a MRSA-related SSI compared with MSSA-related SSI.20,130  

 Race. While a literature search did not yield and studies that indicated race as is a 

predictor of MRSA-related SSI, one study did identify African American race as a 

predictor of MRSA-colonization.127 In this respect, further study of race as a possible 

differentiator between MRSA-related SSI and MSSA-related SSI is necessary, using a 

large, nationally-representative dataset, which has sufficient statistical power to uncover a 

possibly small effect.16,27 

 Smoking Status. Two studies identified smoking as a risk factor for MRSA-

related SSI.17,136 One additional study identified Chronic Obstructive Pulmonary Disease 

(COPD) as a significant predictor of MRSA-related SSI, suggesting that, as with other 

predictors that may have been evaluated with small sample sizes, further research into 

smoking status using a larger, nationally-representative sample, may yield valid 

associations.21 

 MRSA Colonization. Colonization with MRSA upon admission to hospital has 

been shown to be a significant predictor of MRSA-related SSI.28,42,49,126,132 Some 

researchers identify MRSA colonization as the most important predictor of MRSA-
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related SSI, and suggest the need for screening of high-risk patients, however studies 

disagree on whether the administration of pre-operative decolonization is an effective 

preventive technique.22,28,42,49,126 In one study, almost 7% of patients developed an SSI, 

despite the application of preoperative eradication therapy.49 And while decolonization 

has been shown to reduce the incidence of SSI in orthopedic surgery, risk of SSI still 

remains high in comparison to patients with no history of MRSA colonization.42 Other 

studies support this result in that they did not find significant correlation between MRSA 

carriage at admission and subsequent SSI.39,47,114 In practice, screening for MRSA in a 

timely manner is difficult because surgical patients are received from multiple 

preoperative areas, which suggests a need for a predictive algorithm based on easily 

measured clinical signs.128 

Prior Antibiotic Use. Prior antibiotic use has been consistently shown to be a 

predictor of MRSA-related SSI, due to the overuse of non-pathogen specific broad-

spectrum antibiotics.131,133,137,138 In contrast, a number of studies do not identify prior 

antibiotic use as a predictor of MRSA-related SSI, although some suggest that other 

concomitant medications, particularly immunosuppressants or steroids may play 

role.7,17,130,132 

 Prophylaxis. While the administration of Vancomycin has been shown to reduce 

the incidence of MRSA-related SSI, lack of screening leading to administration of 

inappropriate antibiotics has been shown to increase risk.21,127,138 Administration of 

appropriate antibiotics between 1 and 2 hours prior to surgery has been shown to reduce 

the incidence of SSI.128,130,138 In contrast, administration of inappropriate antibiotics (i.e., 

administration of antibiotics for which resistance is present) is associated with an 
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increased risk of SSI, prolonged hospital stay, and higher mortality.127,137 By some 

estimates, approximately 32% of MRSA infections are inappropriately treated, 

reinforcing the need for better, more timely screening protocols.137 

 Hospitalization Factors. As with the prediction of SSI and MRSA in general, 

MRSA-related SSI is also significantly associated with prior or prolonged 

hospitalization.7,132,134,137 In particular, the total duration of time in hospital, regardless of 

whether it is measured as total time, post-operative time, or duration of a previous 

hospitalization, is consistently associated with an increased risk of MRSA-related 

SSI.21,137,138 Researchers differ in estimates of the number of days stay that indicates 

increased risk. Manian, Meyer, Setzer, Senkel 138 indicate that a post-operative stay of 

greater than 3 days significantly increases risk, whereas Sganga, Tascini, Sozio, Carlini, 

Chirletti, Cortese, Gattuso, Granone, Pempinello, Sartelli, Colizza 21 suggest that a 

current stay of more than 16 days increases risk, and Stevens et al.137 find that a previous 

stay of greater than 8.4 days is a reliable predictor. Other researchers suggest that the 

number of previous visits is a predictor of MRSA-related SSI, with one study suggesting 

that patients with at least 5 previous hospital visits are at increased risk.132 

 Surgical Factors. There is a range of surgical factors that have been shown to 

increase risk of MRSA-related SSI, including timing of prophylaxis, type of surgery, and 

duration of surgery.22,24,47,129,133,134,136,138 Multiple studies have demonstrated that longer 

surgical duration is significantly associated with increased risk of MRSA-related 

SSI.47,129,133,134,136 Estimates differ based on the type of surgery, but surgical duration of 

longer than 137 minutes has been shown to increase risk by 3 times.136 Surgery type has 

also been shown to increase risk with cardiothoracic and other cardiac procedures 
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exhibiting significantly higher risk than other types of surgery.22,133 In addition, 

orthopedic surgeries that require placement of a prosthetic device also increased risk of 

SSI.138 in general, elective procedures reduced risk by 62%.16 Thus, severity of the 

condition being treated and the invasiveness of the procedure may be key predictors of 

MRSA-related SSI.7,125,129 

 Severity of Illness and Comorbidities. Severity of illness, number and type of 

comorbidities, and type of surgery are all strong predictors of MRSA-related 

SSI.7,20,79,127,129-133 Security of illness, as measured by the American Society of 

Anesthesiologists (ASA) physical status classification, is correlated with MRSA-related 

SSI.130,132 The ASA score is a qualitative assessment of a patient’s perioperative fitness, 

where patients are assigned a score from 1 (normal healthy patient) to 6 (brain-dead 

patient), based on their physical health.140 A one point increase of ASA score increases 

risk of SSI by a factor of two.130 Similarly, the presence of comorbidities, as measured by 

the Charlson comorbidity index, results in increased risk of MRSA-related SSI.21,24,129  

The Charlson comorbidity index is predictor of 10-year mortality calculated by assigning 

different conditions a score from 1 to 6 and then computing a weighted average based on 

the severity of each comorbidity.141 In one study researchers found that patients with a 

Charlson score of 1 or 2 were 4 times more likely to suffer a MRSA-related SSI 

compared to those with a Charlson score or 0 and patients with a Charlson score of 3 

exhibited 6 times the risk.129 In addition, the presence of specific comorbidities has been 

shown to increase risk of MRSA-related SSI. Examples include diabetes, cancer, and skin 

infections.17,127,131,136,137 
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 Other Predictors. A range of other, less common MRSA-related SSI predictors 

has been identified, however many of these predictors reflect the specific health 

condition, surgery, and population being studies, and thus are less useful for a broadly 

applicable predictive model.17,79,134 Examples include poor functional status, poor 

nutritional status, anemia, and lack of independence with activities of daily living 

(ADL).17,79,129 Table 3 summarizes the 20 most cited MRSA-related SSI predictors. 
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Table 3: Top 20 MRSA-related SSI Predictors 

Predictor Citation Count 
Age 12 
MRSA - Colonization 10 
Surgical Duration 9 
Colon Surgery 8 
ASA Score 7 
Antibiotic Prophylaxis (Protective) 6 
Sex 6 
Wound Class 6 
Antibiotic Administration/Use (Risk Factor) 4 
Charlson Score 4 
Immuno-compromised/Therapy 4 
Hospitalization - Previous or Transfer 3 
Laparoscopic Surgery - Protective 3 
Surgery Type 3 
Abdominal Surgery 2 
Activities of Daily Living (ADL) 2 
Antibiotic - Broad Spectrum 2 
Blood Loss 2 
BMI/Obesity 2 
Diabetes 2 

2.5 Clinical Decision Support Systems 

2.5.1 Overview of Clinical Decision Support Systems 

There has been a significant interest in the development of computational tools to 

support clinical diagnosis since the late 1950s.142-145 It is estimated that almost 100,000 

patients die each year in the United States as a result of preventable medical errors.143 

Despite the growing evidence base being generated by an ever increasing number of 

clinical trials, epidemiological studies and systematic reviews, non-adherence to 

guidelines in healthcare remains a significant problem in clinical practice.143,146 

Computational tools, such as clinical decision support systems (CDSS), are able to 

address deficiencies in clinical care and improve the timeliness and accuracy of diagnosis 

by providing specific recommendations based on patient-specific factors.143,147 
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Effective clinical decision making requires assessment of risk of possible treatment 

options. CDSS are able to provide evidence-based recommendations based on empirical 

data and individual patient characteristics and can easily be incorporated into a clinician’s 

workflow.143,148 CDSS incorporate computer-based rules or algorithms that provide 

clinical recommendations based on empirical knowledge gained from the scientific 

literature.149,150 Patient-specific information, such as demographics, results of lab tests 

and other clinical characteristics can be obtained from a patient’s electronic health record 

(EHR), is used to tailor the output of a CDSS to a specific patient’s needs.151-154  

It is important to recognize that the primary aim of a CDSS is to provide decision 

support, that is, to provide physicians with treatment recommendations based on the 

combination of information about the specific disease, known risk factors, and patient 

characteristics.155,156 CDSS are advantageous because they can distill empirical data and 

provide guidance to physicians in a timely manner.157 

Generally, CDSS comprise a knowledge base, a reasoning engine, and a user 

interface.142,155,158 The knowledge base contains detailed information about a range of 

medical conditions, signs and symptoms, and clinical guidelines, augmented with patient-

specific information from the EHR.156,159 The reasoning, or inference, engine applies 

either a series of decision rules or a computational algorithm to provide 

recommendations, and it is this feature that separates CDSS from medical reference 

programs.149,156,160,161 The user interface is of critical importance as it drives the 

collection of patient-specific information, such as current signs and symptoms – and in 

doing so ensures that the physician asks an appropriate and complete set of questions – 

and provides feedback to the physician in the form of context-sensitive alerts.158,159,161 
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While a CDSS can employ multiple algorithms for performing inference, it is important 

that a decision/recommendation is presented with an explanation of why the 

recommendation is optimal.162 Thus, usability and other factors relating to the user 

interface, such as the delivery of reminders and automated prompts, are critical factors in 

both system uptake and performance.155,157,160 

CDSS have been developed to address a range of clinical conditions and can be 

categorized into multiple types based on the level of information provided to the 

user.155,156,160 In the simplest case, CDSS can present relevant information to the user to 

enable them to make a decision, whereas more complex systems can analyze patient 

trends, generate recommendations, and even learn over time based on the collection of 

new data.155,156 It is the latter types of CDSS that provide the most utility to physicians by 

providing recommendations and alerts, such as the identification of drug-drug 

interactions, warnings of potential antimicrobial resistance, flagging of abnormal lab 

values, and recommendations for disease management.152,153,163 CDSS are currently used 

for multiple medical conditions in both general and specialty practice, including intensive 

care, pediatrics, and cancer.151 In many cases, CDSS are deployed as independent 

systems, outside of the EHR and in this way provide a tailored user interface that 

minimizes cognitive burden on the user that is ultimately more effective than embedding 

the CDSS within the EHR.153,163 

While research has shown that deployment of CDSS can reduce medical errors, 

improve adherence to clinical guidelines, improve prescribing practices and enhance 

antimicrobial stewardship, there exist a number of challenges to their successful 

implementation and adoption.143,148,149,160,164-166 Uptake of CDSS can be limited if 
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systems are not intuitive and easy to use and if the systems do not present clear 

recommendations in a way that is understandable to the user.149,163,166 Acceptance of 

CDSS by physicians varies considerably, with some physicians reporting increased 

patient confidence with others reluctant to use a CDSS in front of a patient.155 Other 

challenges include ensuring the validity of the underlying knowledge base and inference 

models, and incorporation of patient preferences into the guidance generated.148,149 It 

must also be noted that the financial benefit of implementing CDSS has not been clearly 

and consistently demonstrated because many studies focus only on effectiveness.164 

 CDSS have been shown to improve the performance of physicians and other 

medical providers, improve patient outcomes, and minimize errors.142,146,151,157,164 Some 

studies estimate that the implementation of CDSS can have up to a 20% magnitude of 

effect on patient morbidity and may also reduce mortality.167,168 Other researchers, in 

meta-analyses and systematic reviews of CDSS effectiveness, find that 70% of studies 

assessing CDSS report statistically significant improvements to patient outcomes.150,164 

Additional benefits of CDSS include the reduction in medical errors, and thus there is the 

potential for CDSS to reduce the occurrence of medical malpractice lawsuits.156,157 To 

maximize the utility of CDSS and improve the quality of care, researchers suggest a need 

to identify and monitor key performance indicators.54 

 Additional benefits of CDSS include their ability to enforce treatment and 

diagnosis guidelines, standardize approaches to patient care, and improve the consistency 

of clinical interventions.167-169 CDSS that generate alerts relating to patient safety have 

been shown to be particularly useful, especially when the content of the alerts is outside 

of the physician’s area of expertise.165,170-172 Alerts that identify potential medication 
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issues, such as the recommendation for administration of appropriate antibiotics, can 

reduce inappropriate medication user and potentially limit the inappropriate prescribing 

of broad spectrum antibiotics.161,173 

 The long term success of CDSS requires that the underlying algorithms are up-to-

date, complete, and reflect current clinical guidelines.156,165,174 While integration with 

EHR systems can be advantageous in maintaining the knowledgebase, portable, stand-

alone systems have also been shown to be effective.161 Other challenges to successful 

implementation include system complexity, which can occur if too many data elements 

are required to be entered into the system and results in poor compliance.150,168,175 

 Despite the potential advantages of CDSS, utilization for diagnostic purposes 

remains low.157 In addition to the system complexity and knowledgebase maintenance 

issues described above, a proportion of physicians question the ability of CDSS to 

accurately capture the complexity inherent in the medical diagnosis process, and further 

warn that over-reliance on an automated system may, in fact, lead to medical mistakes 

and poorer outcomes.176 However, despite these concerns, CDSS have potential to 

improve outcomes.142,146,164 

2.5.2 Applications of Clinical Decision Support Systems 

 Overuse and inappropriate administration of antibiotics in the clinical setting is 

one major public health issue that can be improved through the use of CDSS.53,54,100,175 

Antimicrobial resistance is a growing problem with over 2 million people becoming 

infected with resistant pathogens each year in the United States.53,100 Overuse of broad 

spectrum antibiotics and lack of uniformity in testing has resulted in increasing rates of 

antibiotic resistance, with some estimates indicating that half of all antibiotic prescribing 
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is inappropriate.54,146,154 One of the main reasons for overuse of broad spectrum 

antibiotics is the inability of clinicians to identify the infection causing pathogen in a 

timely manner, due to the time required to obtain lab test results.100,146 Up to 40% of all 

hospitalized patients diagnosed with infections are treated with antibiotics, despite the 

fact that the resistance profile of the pathogen is not considered and even that some of the 

infections are not bacterial.161,173,177,178  

In addition to being a major clinical issue that contributes to morbidity and 

mortality, inappropriate prescribing of antibiotics can have significant financial 

implications for a health care system.53,100,177 By some estimates, annual costs associated 

with antimicrobial resistance are up to $35 billion, and for these reasons, developing tools 

for enhanced antimicrobial stewardship that can ensure the administration of appropriate 

antibiotics when needed, could have a significant impact on morbidity, mortality, and 

healthcare costs.154 

 Use of CDSS in antimicrobial stewardship applications has been limited and 

where used has met with limited success.113,153,163 Lack of rapid screening tests for 

common pathogens, such as MRSA, in combination with the poorer outcomes observed 

when treatment is delayed, leads to clinicians prescribing inappropriate antibiotics.46,51 

One study found that guidelines for Vancomycin use – the first line treatment for MRSA 

infection – were not followed 68% of the time.175 Thus, there is a clear need for CDSS in 

the prediction of potential AMR infections and subsequent recommendation of 

appropriate treatment.54,163  

Several studies have attempted to use machine learning methods to identify 

resistant pathogens and subsequently recommend appropriate treatment.40,46,53,113 
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Researchers have adopted different approaches to providing clinical decision support in 

the context of AMR pathogens, such as MRSA.45,46,51,175 Successful CDSS 

implementation for the enforcement of Vancomycin guidelines requires the timely 

alerting of the physician at the time of potential antibiotic prescription.115,154 In addition, 

to address issues of timeliness, the CDSS knowledgebase should incorporate robust 

epidemiological data so that recommendations can be based on observable and 

measurable clinical signs and symptoms.40,46,47,113 In the case of MRSA infection, 

differentiating between resistant and non-resistant infection is a significant challenge, and 

thus developing an effective CDSS for MRSA infection remains an open problem.40,108 

Despite challenges in the development and adoption of CDSS for AMR 

applications, CDSS are used successfully in a broad range of medical 

domains.115,152,168,179 Examples include treatment of skin and soft tissue infections, IV 

drug administration, treatment and management of sepsis, diagnosis and treatment of 

chronic obstructive pulmonary disease, and treatment of acute respiratory distress 

syndrome.147,150,165,168,169 CDSS can result in increased adherence to clinical guidelines, to 

triage patients upon presentation to an emergency room, support early detection of 

disease, and inform treatment decisions.115,179  

Benefits of CDSS are emphasized when the condition being treated is complex 

and requires a detailed review of the patient’s medical chart, such as with the screening of 

cervical cancer – in this case the CDSS can more effectively, efficiently and consistently 

distill the necessary information and provide a recommendation consistent with 

guidelines.174 This benefit is also realized in the oncology domain, which requires 

integration of multiple types of data from the patient’s clinical record, including imaging, 
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pathology and clinical data.152 CDSS have also been shown to reduce prescribing errors 

and improve standardization of drug administration, including intravenous and oral 

rehydration solution administration.152,169,176 Thus, it can be seen that CDSS are most 

successful when applied to guideline adherence and application of standardized treatment 

protocols in situations where there is a significant cognitive burden.152,162,167,176 

2.5.3 Computational Approaches to Clinical Decision Support Systems 

 Architecturally, a CDSS consists of three components: a knowledgebase, an 

inference engine, and a user interface.142,155,158 The knowledgebase is the core of a CDSS 

system and contains key data that the inference engine uses to make diagnosis of 

treatment recommendations.177 The user interface (UI) facilitates the collection of a 

variety of patient data, which could include medical history and quality of life factors.147 

The UI also provides the primary output mechanism and presents diagnosis and treatment 

recommendations to the physician.142,147 In addition, when incorporated effectively into 

the physician’s workflow the UI can present medication and other alerts, which prevent 

medical errors and medication interactions, and ensure compliance with necessary 

guidelines.115,147,160,166 The HELP system was an early and successful example of a 

CDSS, and key to its success was the generation of automated alerts based on 

discrepancies in the patient’s medical record.142,180 CDSS differ in how the inference 

engine interacts with the knowledge base and generally use rule-based or machine-

learning approaches, although with the advent of data-driven approaches and integration 

with EHRs, the lines between these two approaches are blurred.142  

 Traditionally, CDSS contained an inference engine that applied computational 

logic to patient input based on a series of system-defined rules.142,181 The MYCIN system 
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is an early example of an expert-based CDSS, which uses predicate logic and the 

chaining of rules to generate recommendations.181 Expert-based approaches are able to 

request additional input to  narrow down potential diagnoses. The DXPlain system is a 

good example of an expert based system that generates a list of potential diagnoses based 

on input of clinical signs and symptoms.182 Modern approaches are typically data driven, 

with the rules automatically extracted from clinical trial data and a matching algorithm 

used to determine the applicability of different rules based on the input of patient 

characteristics.148,162,178 In some senses, these systems are almost full machine-learning 

systems, where the knowledgebase is essentially a broad dataset that incorporates a range 

of patient and hospital level data, and the inference engine is a statistical model trained on 

these data.174,178 While rule-based systems are effective, they can require significant 

maintenance and systems that automatically incorporate data based on an EHR or clinical 

data warehouse and generate recommendations based on machine-learning have become 

the preferred approach.142,158,174,178 

 Machine learning comprises a series of computational techniques for learning 

from data.53,147,178 A significant increase in the amount of data that is captured both 

during medical encounters and as part of hospital quality assurance procedures has led to 

the development of a range of machine learning algorithms that aim to learn models from 

data.53,178 These models can then be used to predict outcomes based on a set of predictors 

obtained from the patient and hospital, and have been shown to accommodate 

increasingly large datasets, such as those generated by large-scale genome wide 

association studies.100,147,176,179 The most prevalent machine learning approach used for 

CDSS is known as supervised learning or classification.147,183 In this learning approach, 
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data are provided about two or more classes of patients – for example, patients with 

MRSA and patients without MRSA – and the algorithm builds a model that is able to 

predict the outcome when new data are supplied. Thus, the learning process requires 

labeled training data in which the outcome for each patient is known.184  

A wide range of supervised learning algorithms have been used to develop CDSS, 

including logistic regression, artificial neural networks, decision trees, support vector 

machines, classification and regression trees, random forests, and Bayesian 

networks.51,158,183,185 While these algorithms differ significantly in their expressiveness, it 

is unclear which is better in a given situation.183,184 Although artificial neural networks 

and support vector machines have been popular in the development of CDSS due to their 

expressive modeling power they are considered “black box” algorithms because it is not 

clear to the user how the algorithm obtained its prediction.53 In contrast, there is a general 

preference for algorithms such as logistic regression and decision trees where the 

contribution of each predictor is easily assessed by the user.53 Thus, it is important to 

understand the strengths and limitations of each approach prior to developing a CDSS.184 

 Multiple logistic regression is a statistical modeling technique that estimates the 

probability that a certain set of predictors result in a given binary outcome.183,184,186 The 

dependent variable in a logistic regression model is estimated using a linear combination 

of predictors, with the result indicating the relative contribution of each predictor, 

presented as an odds ratio with p-value.184 Predictors can be added or removed from 

logistic regression model based on the significance of their contribution to the outcome, 

using automated learning techniques, including forward and backward stepwise variable 

selection.51,184 Enhancements to the typical algorithm include use of shrinkage 
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techniques, which allow for a greater number of predictors, and conditional logistic 

regression, in which positive and negative cases are matched based on a set of 

predictors.114,184  

A number of researchers have successfully used logistic regression methods for 

the prediction of MRSA-related illnesses.46,108,114,148 In a case-control study, Harbarth, 

Sax, Fankhauser-Rodriguez, Schrenzel, Agostinho, Pittet 114 used conditional logistic 

regression with 1:4 matching of cases to controls to predict MRSA carriage at hospital 

admission; In a study of MRSA-related pneumonia, Jung, Kang, Park, Park, Leem, Kim, 

Chung, Kim, Kim, Chang, Jung 46 found that patients with a previous history of MRSA 

were six times more likely to have pneumonia than those without such history; and, 

Goodman, Lessler, Cosgrove, Harris, Lautenbach, Han, Milstone, Massey, Tamma, 

Antibacterial Resistance Leadership 51 used multivariate logistic regression to predict 

extended-spectrum β-lactamase (ESBL) bacteremia. One additional advantage of logistic 

regression is the ability to determine the probability of class assignment, which can be 

used to develop risk scores.148  

Training of logistic regression models is generally computationally tractable and 

the results of the model are easily interpretable to clinicians, making the technique an 

ideal choice for CDSS.184,186 Potential disadvantages include an inability to model non-

linear relationships without explicitly including interaction and higher-order terms in the 

model specification, which is difficult to accomplish and can significantly increase 

complexity.184,186 Alternative approaches, such as artificial neural networks (ANNs), can 

address these issues through their inherent ability to model non-linear relationships.186  
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ANNs are non-parametric models that contain multiple layers of neurons that 

attempt to simulate the learning processes of the human brain.186-188 The combination of 

multiple hidden layers of neurons and the weighting of inputs as they propagate the 

network, enable the ANN to model complex, non-linear relationships.158,179 As with 

logistic regression models, ANNs are able to estimate a probability for class assignment 

and so can also be used as risk models, however because of the complex way the result is 

calculated, it is difficult to determine how the ANN generates a result and the impact of 

individual predictors on the result.158 It is also difficult to determine both the optimal 

number of hidden layers and the number of neurons in each layer, although it is possible 

to approach this systematically if a sufficient amount of training data is available.162 

Despite these limitations, ANNs are very powerful machine learning methods, and are 

commonly used in the development of CDSS.186 

ANNs have been used extensively in the development of CDSS.108,147,158,162,179 In 

a study of 5-year survival after surgery, Buzaev, Plechev, Nikolaeva, Galimova 162 used 

an ANN to predict survival based on whether patients underwent percutaneous coronary 

intervention or coronary artery bypass surgery; Anakal, Sandhya 147 used an ANN to 

predict disease severity in patients with chronic obstructive pulmonary disease; Pombo, 

Araujo, Viana 179, in a systematic review of knowledge discovery for pain management 

models, identified a large number of studies that used ANNs as the primary modeling 

approach; and, Hsu, Lin, Chen, Liu, Muder 189 used an ANN to predict MRSA 

colonization with 90% accuracy.  

Training of ANNs can be computationally challenging, however improvements in 

computing power have largely ameliorated this concern when clinical data are being used 
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to train the algorithm.184,186,187 The main advantage of ANNs is their expressiveness, i.e. 

their ability to model non-linear relationships between multiple predictors.184 

Disadvantages include the “black box” nature of the algorithm, in which decisions are 

hidden from the user, although this limitation may be offset by improved predictive 

ability.186 Although use of ANNs in MRSA-related models is limited, their 

expressiveness may be well suited to elucidate the subtle differences between MRSA-

related and MSSA-related SSI.16 

Tree-based methods, such as decision trees, random forests, and classification and 

regression trees are alternative machine learning methods based on the recursive 

partitioning of data based on cut-off values of predictors.51,108,190,191 Decision tree 

methods can be considered an extension of the risk prediction tools that many physicians 

use, and as such are an intuitive representation of quantitative data that supports clinical 

decision making.53,184 Challenges with decision trees are that they are sensitive to the 

order of variables and the defined cut-points and are prone to overfitting.184,190 These 

challenges are largely addressed through random forests, which consider multiple trees 

with each tree containing a random combination of predictors.108,179,184 

A number of researchers have successfully applied decision trees to clinical 

decision support problems.51,53,183 In study to determine whether patients were infected 

with ESBL-producing bacteria, Goodman, Lessler, Cosgrove, Harris, Lautenbach, Han, 

Milstone, Massey, Tamma, Antibacterial Resistance Leadership 51 developed a decision 

tree that contained five predictors, including history of colonization, presence of 

indwelling hardware, age, recent hospitalization, and antibiotic exposure; Gerald, Tang, 

Bruce, Redden, Kimerling, Brook, Dunlap, Bailey 192 used a decision tree to predict 
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whether contacts of tuberculosis patients were likely to have positive TB test results; and 

Rundensteiner, Kong, Teeple, Brownell, Sen, Hartvigsen 108 achieved excellent results 

(AUC > 0.95) using random forests to predict MRSA infection based on known risk 

factors. 

Other machine learning methods used in CDSS include support vector machines 

(SVM) and Bayesian networks (BN).108,179,185 SVMs aim to separate data into two 

distinct classes using a hyperplane that maximizes the distance between classes in high-

dimensional space.179,193,194 It is possible to use the “kernel trick” to map data into a 

higher dimensional space to enable data to be linearly separable, thus SVM is a good 

method to use when dealing with high dimensional or noisy data.184,193,194 As with ANNs, 

disadvantages of SVM include the computational complexity of the training process and 

the fact that it is a “black box” method.184 BNs are probabilistic graphical models that 

model the many-to-many relationships between variables using a conditional 

factorization of the joint probability distribution over all the variables.185,195,196 Thus, BNs 

can be used to model multiple outcomes and determine the impact of perturbations to 

variables on these outcomes.195 

Although less popular than other methods, a number of researchers have used 

SVM and BN for predictive modeling.185 In a study of sepsis patients, Gultepe, Green, 

Nguyen, Adams, Albertson, Tagkopoulos 185 used both SVM and BN to predict 

mortality; and Rundensteiner, Kong, Teeple, Brownell, Sen, Hartvigsen 108 used SVM for 

the early prediction of MRSA infection using data from EHR, although it must be noted 

that performance of SVM on this dataset was lower than that of logistic regression and 

random forests. Thus, while these results demonstrate the applicability of machine 
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learning algorithms to CDSS, it is important to choose an appropriate modeling technique 

and carefully evaluate the results.108,183 

Evaluation of a machine learning model usually occurs through the application of 

the trained algorithm to a held out test data set using a range of metrics, including the 

receiver operating characteristic (ROC) curve, sensitivity, specificity, positive and 

negative predictive value.158,184,197-199 A ROC curve is a plot of the true positive rate 

against the true negative rate for different cut-off values, both measured between 0 and 1, 

in which the area under the curve (also known as the c-statistic) is a measure of predictive 

performance.183,198 An area of 0.5 represents a chance result and an area of 1 represents a 

perfect predictor.158 Sensitivity, measured between 0 and 1 is the true positive rate, i.e. 

the number of positive cases that are correctly identified by the algorithm, whereas 

specificity is the opposite – the number of negative cases correctly identified by the 

algorithm.200 Positive predictive value and negative predictive value are the proportion of 

positive and negative cases identified by the algorithm respectively.158  

CDSS can achieve excellent diagnostic performance with ROC values of around 

0.9 and high levels of sensitivity and specificity.40,177,185 In a model that predicted the 

inappropriate administration of antibiotics, Beaudoin, Kabanza, Nault, Valiquette 178 

achieved a positive predictive value of 0.74 and sensitivity of 0.96; Ju, Zurakowski, 

Kocher 40, in a study of MRSA infection in children, achieved a c-statistic of 0.94; and, 

Rundensteiner, Kong, Teeple, Brownell, Sen, Hartvigsen 108 achieved a c-statistic of over 

0.9 when using several different algorithms for early prediction of MRSA infection. 

While CDSS have had a significant impact on the delivery of health care and contributed 
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to improved morbidity and mortality, further research is needed to identify the optimal 

algorithm that should be used in a given situation.143,146,163,173  

2.6 Summary of the Research Gap 

 Although a significant amount of research has been conducted looking 

independently at the causes of SSIs and MRSA, limited epidemiological research has 

looked at the causes of MRSA-related SSI. Estimates of MRSA incidence differ and 

researchers disagree about whether MRSA-related SSI is increasing or decreasing. 

Further, identifying clinical and hospital-level predictors that can effectively differentiate 

between MRSA-related SSI and MSSA-related SSI, requires a large-scale nationally 

representative database and the application of models that can adequately capture the 

subtle differences between these groups of patients. It is also unclear which models, 

whether artificial neural networks, logistic regression, or other modeling approaches, will 

perform the best within a CDSS. Thus, this research aims to build and evaluate a CDSS 

based on a large-scale, nationally-representative dataset of clinical and hospital-level 

predictors. In doing so, the work will also summarize the epidemiology and risk factors 

for MRSA-related SSI and identify and appropriate modeling approach.  
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

 This study uses a range of statistical analysis and machine learning methods to 

build and evaluate a series of predictive models to identify surgical patients at high-risk 

of Methicillin Resistant Staphylococcus aureus (MRSA) infections, specifically MRSA-

related Surgical Site Infections (SSIs). A descriptive analysis of prevalence and risk 

factors was performed using SAS 9.4 with a large, multi-year nationally-representative 

healthcare dataset. Artificial Neural Network (ANN) and Logistic Regression (LR) 

models were built and evaluated using R, and the models were used to develop a clinical 

decision support system (CDSS) using R Shiny.201 The sections that follow describe the 

characteristics of data source, data elements used, data processing and cleaning methods, 

configuration of the learning algorithms, evaluation methods, and design for the CDSS. 

3.2 Data Source 

 The primary data source for then analyses specified in this chapter is the National 

Inpatient Sample (NIS). The NIS is the largest all-payer (i.e., it includes Medicaid, 

Medicare, privately insured and uninsured patients) hospital discharge database in the 

United States. Collected annually as part of the Health Care Utilization Project (HCUP) 

and sponsored by the Agency for Healthcare Research Quality (AHRQ), the NIS is a 
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nationally-representative sample of discharges from participating community hospitals in 

the United States. The sample does not include rehabilitation hospitals or long term care 

hospitals. In 2012, the NIS sampling strategy was updated to select 20% of all discharges 

across participating hospitals across 46 participating states, which represents 

approximately 97% of the United States population. The NIS database contains data on 

approximately 7 million discharges for each year of data collection. 

 The NIS comprises approximately 100 variables, which include a range of 

demographic, clinical, procedural, and hospital-related factors. Patient factors collected 

include age, sex, race, type of admission (urgent or elective), reason for hospitalization, 

ICD-9-CM codes for up to 24 secondary diagnoses, ICD-9-CM codes for up to 15 

procedures, final disposition of the patient, indicator variables for 29 specific 

comorbidities, length of hospital stay, hospital charges for care, and mortality. Hospital 

characteristics include the teaching status of the hospital, a categorization of hospital size 

(small, medium or large) based on number of beds, urban or rural location, state, and 

ownership of hospital. 

 Analyses will use data from the 2010 - 2014 data collection years. The number 

and proportion of Major Surgical Procedures (MSP), SSI, MRSA infections, MRSA-

related SSI, and total number of discharges sampled is shown in Table 4 below. 

 

Table 4: Summary of NIS Sample for Years 2010-2014 

Year MSP SSI MRSA MRSA SSI 
2010 2,265,467 (31.04%) 24,761 (1.09%) 24,156 (1.07%) 2,483 (0.1%) 
2011 2,323,627 (31.83%) 26,163 (1.13%) 25,802 (1.11%) 2,615 (0.1%) 
2012 2,090,896 (28.65%) 21,613 (1.03%) 22,416 (1.07%) 2,111 (0.1%) 
2013 2,048,380 (28.77%) 20,735 (1.01%) 21,550 (1.05%) 1,960 (0.1%) 
2014 2,023,168 (28.61%) 20,130 (1.00%) 21,105 (1.04%) 1,888 (0.1%) 
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3.3 Data Elements 

 The table below lists the NIS data elements considered for inclusion in the model. 

The data element list includes a range of patient-level demographic factors, a range of 

ICD-9 codes representing diagnoses, procedures, chronic conditions and comorbidities, in 

addition to a set of hospital level variables. The variable ORPROC is used to define the 

study population — patients undergoing a major surgical procedure. In addition, a small 

number of analysis variables will be derived, including case/control, MRSA, MSSA, and 

SSI indicators. 

Table 5: NIS Variables Considered for Inclusion 

Variable Description 
 AGE Age in years at admission 
 APRDRG_Risk_Mortality All Patient Refined DRG: Risk of Mortality Subclass 
 APRDRG_Severity All Patient Refined DRG: Severity of Illness Subclass 
 CM_AIDS AHRQ comorbidity measure for ICD-9-CM codes: acquired immune 

deficiency syndrome 
 CM_ALCOHOL AHRQ comorbidity measure for ICD-9-CM codes: alcohol abuse 
 CM_ANEMDEF AHRQ comorbidity measure for ICD-9-CM codes: deficiency anemias 
 CM_ARTH AHRQ comorbidity measure for ICD-9-CM codes: rheumatoid 

arthritis/collagen vascular diseases 
 CM_BLDLOSS AHRQ comorbidity measure for ICD-9-CM codes: chronic blood loss 

anemia 
 CM_CHF AHRQ comorbidity measure for ICD-9-CM codes: congestive heart 

failure 
 CM_CHRNLUNG AHRQ comorbidity measure for ICD-9-CM codes: chronic pulmonary 

disease 
 CM_COAG AHRQ comorbidity measure for ICD-9-CM codes: coagulopathy 
 CM_DEPRESS AHRQ comorbidity measure for ICD-9-CM codes: depression 
 CM_DM AHRQ comorbidity measure for ICD-9-CM codes: diabetes, 

uncomplicated 
 CM_DMCX AHRQ comorbidity measure for ICD-9-CM codes: diabetes with 

chronic complications 
 CM_DRUG AHRQ comorbidity measure for ICD-9-CM codes: drug abuse 
 CM_HTN_C AHRQ comorbidity measure for ICD-9-CM codes: hypertension 

(combine uncomplicated and complicated) 
 CM_HYPOTHY AHRQ comorbidity measure for ICD-9-CM codes: hypothyroidism 
 CM_LIVER AHRQ comorbidity measure for ICD-9-CM codes: liver disease 
 CM_LYMPH AHRQ comorbidity measure for ICD-9-CM codes: lymphoma 
 CM_LYTES AHRQ comorbidity measure for ICD-9-CM codes: fluid and electrolyte 

disorders 
 CM_METS AHRQ comorbidity measure for ICD-9-CM codes: metastatic cancer 
 CM_NEURO AHRQ comorbidity measure for ICD-9-CM codes: other neurological 

disorders 
 CM_OBESE AHRQ comorbidity measure for ICD-9-CM codes: obesity 
 CM_PARA AHRQ comorbidity measure for ICD-9-CM codes: paralysis 
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 CM_PERIVASC AHRQ comorbidity measure for ICD-9-CM codes: peripheral vascular 
disorders 

 CM_PSYCH AHRQ comorbidity measure for ICD-9-CM codes: psychoses 
 CM_PULMCIRC AHRQ comorbidity measure for ICD-9-CM codes: pulmonary 

circulation disorders 
 CM_RENLFAIL AHRQ comorbidity measure for ICD-9-CM codes: renal failure 
 CM_TUMOR AHRQ comorbidity measure for ICD-9-CM codes: solid tumor without 

metastasis 
 CM_ULCER AHRQ comorbidity measure for ICD-9-CM codes: peptic ulcer disease 

excluding bleeding 
 CM_VALVE AHRQ comorbidity measure for ICD-9-CM codes: valvular disease 
 CM_WGHTLOSS AHRQ comorbidity measure for ICD-9-CM codes: weight loss 
 DXn ICD-9-CM Diagnosis 
 ELECTIVE Elective versus non-elective admission 
 HOSP_BEDSIZE Bed size of hospital 
 HOSP_LOCTEACH Location/teaching status of hospital 
 HOSP_REGION Region of hospital 
 HOSP_RNFTEAPD RN FTEs per 1000 adjusted inpatient days 
 HOSP_RNPCT Percentage of RNs among all nurses (RNs and LPNs) 
 HOSP_TEACH Teaching status of hospital 
 LOS Length of stay, cleaned 
 NCHRONIC ICD-9-CM Number of chronic conditions 
 NDX Number of ICD-9-CM diagnoses on this discharge 
 NPR Number of ICD-9-CM procedures on this discharge 
 ORPROC Major operating room ICD-9-CM procedure indicator 
 PAY1 Expected primary payer, uniform 
 RACE Race 
 SEX Sex of the patient 
 TRAN_IN Indicator of a transfer into the hospital 
 TRAN_OUT Transfer out of the hospital 
 YEAR Calendar year 
 ZIPINC Median household income for patient's ZIP Code (based on 1999 

demographics) 
  

 Derived variables are listed in Table 6. 

Variable Description and Derivation 
ANTIBX Long-term (current) antibiotic use: 

 
IF DX1 = 'V5862' OR DX2 = 'V5862' OR DX3 = 'V5862' OR DX4 = 'V5862' 
OR DX5 = 'V5862' OR DX6 = 'V5862' OR DX7 = 'V5862' OR DX8 = 
'V5862' OR DX9 = 'V5862' OR DX10 = 'V5862' OR DX11 = 'V5862' OR 
DX12 = 'V5862' OR DX13 = 'V5862' OR DX14 = 'V5862' OR DX15 = 
'V5862' OR DX16 = 'V5862' OR DX17 = 'V5862' OR DX18 = 'V5862' OR 
DX19 = 'V5862' OR DX20 = 'V5862' OR DX21 = 'V5862' OR DX22 = 
'V5862' OR DX23 = 'V5862' OR DX24 = 'V5862' OR DX25 = 'V5862' OR 
DX26 = 'V5862' OR DX27 = 'V5862' OR DX28 = 'V5862' OR DX29 = 
'V5862' OR DX30 = 'V5862' THEN ANTIBX = 1; ELSE ANTIBX = 0; 

COMORBIDITIES Number of comorbidities: 
 
Calculated as the total number of comorbidities present. 

MORTAL_SCORE Elixhauser comorbidity index — mortality score: 
 
Calculated using Elixhauser comorbidity software. 

MRSA Methicillin Resistant Staphylococcus aureus infection: 
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IF DX1 = '04112' OR DX2 = '04112' OR DX3 = '04112' OR DX4 = '04112' 
OR DX5 = '04112' OR DX6 = '04112' OR DX7 = '04112' OR DX8 = 
'04112' OR DX9 = '04112' OR DX10 = '04112' OR DX11 = '04112' OR 
DX12 = '04112' OR DX13 = '04112' OR DX14 = '04112' OR DX15 = 
'04112' OR DX16 = '04112' OR DX17 = '04112' OR DX18 = '04112' OR 
DX19 = '04112' OR DX20 = '04112' OR DX21 = '04112' OR DX22 = 
'04112' OR DX23 = '04112' OR DX24 = '04112' OR DX25 = '04112' OR 
DX26 = '04112' OR DX27 = '04112' OR DX28 = '04112' OR DX29 = 
'04112' OR DX30 = '04112' OR DX1 = '03812' OR DX2 = '03812' OR DX3 
= '03812' OR DX4 = '03812' OR DX5 = '03812' OR DX6 = '03812' OR 
DX7 = '03812' OR DX8 = '03812' OR DX9 = '03812' OR DX10 = '03812' 
OR DX11 = '03812' OR DX12 = '03812' OR DX13 = '03812' OR DX14 = 
'03812' OR DX15 = '03812' OR DX16 = '03812' OR DX17 = '03812' OR 
DX18 = '03812' OR DX19 = '03812' OR DX20 = '03812' OR DX21 = 
'03812' OR DX22 = '03812' OR DX23 = '03812' OR DX24 = '03812' OR 
DX25 = '03812' OR DX26 = '03812' OR DX27 = '03812' OR DX28 = 
'03812' OR DX29 = '03812' OR DX30 = '03812' OR DX1 = '48242' OR 
DX2 = '48242' OR DX3 = '48242' OR DX4 = '48242' OR DX5 = '48242' 
OR DX6 = '48242' OR DX7 = '48242' OR DX8 = '48242' OR DX9 = 
'48242' OR DX10 = '48242' OR DX11 = '48242' OR DX12 = '48242' OR 
DX13 = '48242' OR DX14 = '48242' OR DX15 = '48242' OR DX16 = 
'48242' OR DX17 = '48242' OR DX18 = '48242' OR DX19 = '48242' OR 
DX20 = '48242' OR DX21 = '48242' OR DX22 = '48242' OR DX23 = 
'48242' OR DX24 = '48242' OR DX25 = '48242' OR DX26 = '48242' OR 
DX27 = '48242' OR DX28 = '48242' OR DX29 = '48242' OR DX30 = 
'48242' THEN MRSA = 1; ELSE MRSA = 0; 

MRSA_SSI MRSA-related SSI: 
 
IF MRSA = ‘1’ AND SSI = ‘1’ THEN MRSA_SSI = ‘1’ ELSE MRSA_SSI = ‘0’; 

MRSAHX History of MRSA infection: 
 
IF DX1 = 'V1204' OR DX2 = 'V1204' OR DX3 = 'V1204' OR DX4 = 'V1204' 
OR DX5 = 'V1204' OR DX6 = 'V1204' OR DX7 = 'V1204' OR DX8 = 
'V1204' OR DX9 = 'V1204' OR DX10 = 'V1204' OR DX11 = 'V1204' OR 
DX12 = 'V1204' OR DX13 = 'V1204' OR DX14 = 'V1204' OR DX15 = 
'V1204' OR DX16 = 'V1204' OR DX17 = 'V1204' OR DX18 = 'V1204' OR 
DX19 = 'V1204' OR DX20 = 'V1204' OR DX21 = 'V1204' OR DX22 = 
'V1204' OR DX23 = 'V1204' OR DX24 = 'V1204' OR DX25 = 'V1204' OR 
DX26 = 'V1204' OR DX27 = 'V1204' OR DX28 = 'V1204' OR DX29 = 
'V1204' OR DX30 = 'V1204' THEN MRSAHX = 1; ELSE MRSAHX = 0; 

MSSA Methicillin-Susceptible Staphylococcus aureus: 
 
IF DX1 = '04111' OR DX2 = '04111' OR DX3 = '04111' OR DX4 = '04111' 
OR DX5 = '04111' OR DX6 = '04111' OR DX7 = '04111' OR DX8 = 
'04111' OR DX9 = '04111' OR DX10 = '04111' OR DX11 = '04111' OR 
DX12 = '04111' OR DX13 = '04111' OR DX14 = '04111' OR DX15 = 
'04111' OR DX16 = '04111' OR DX17 = '04111' OR DX18 = '04111' OR 
DX19 = '04111' OR DX20 = '04111' OR DX21 = '04111' OR DX22 = 
'04111' OR DX23 = '04111' OR DX24 = '04111' OR DX25 = '04111' OR 
DX26 = '04111' OR DX27 = '04111' OR DX28 = '04111' OR DX29 = 
'04111' OR DX30 = '04111' THEN MSSA = 1; ELSE MSSA = 0; 

MSSA_SSI MSSA-related SSI: 
 
IF MSSA = ‘1’ AND SSI = ‘1’ THEN MSSA_SSI = ‘1’ ELSE MSSA_SSI = ‘0’; 

READMIT_SCORE Elixhauser comorbidity index — readmission score: 
 
Calculated using Elixhauser comorbidity software. 
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SSI Surgical site infection: 
 
IF DX1 = '99859' OR DX2 = '99859' OR DX3 = '99859' OR DX4 = '99859' 
OR DX5 = '99859' OR DX6 = '99859' OR DX7 = '99859' OR DX8 = 
'99859' OR DX9 = '99859' OR DX10 = '99859' OR DX11 = '99859' OR 
DX12 = '99859' OR DX13 = '99859' OR DX14 = '99859' OR DX15 = 
'99859' OR DX16 = '99859' OR DX17 = '99859' OR DX18 = '99859' OR 
DX19 = '99859' OR DX20 = '99859' OR DX21 = '99859' OR DX22 = 
'99859' OR DX23 = '99859' OR DX24 = '99859' OR DX25 = '99859' OR 
DX26 = '99859' OR DX27 = '99859' OR DX28 = '99859' OR DX29 = 
'99859' OR DX30 = '99859' THEN SSI = 1; ELSE SSI = 0; 

SUSMRSA Suspected MRSA infection: 
 
IF DX1 = 'V0254' OR DX2 = 'V0254' OR DX3 = 'V0254' OR DX4 = 'V0254' 
OR DX5 = 'V0254' OR DX6 = 'V0254' OR DX7 = 'V0254' OR DX8 = 
'V0254' OR DX9 = 'V0254' OR DX10 = 'V0254' OR DX11 = 'V0254' OR 
DX12 = 'V0254' OR DX13 = 'V0254' OR DX14 = 'V0254' OR DX15 = 
'V0254' OR DX16 = 'V0254' OR DX17 = 'V0254' OR DX18 = 'V0254' OR 
DX19 = 'V0254' OR DX20 = 'V0254' OR DX21 = 'V0254' OR DX22 = 
'V0254' OR DX23 = 'V0254' OR DX24 = 'V0254' OR DX25 = 'V0254' OR 
DX26 = 'V0254' OR DX27 = 'V0254' OR DX28 = 'V0254' OR DX29 = 
'V0254' OR DX30 = 'V0254' THEN SUSMRSA = 1; ELSE SUSMRSA = 0; 

 

Table 6: Derived Variables 

3.4 Study Design, Sample and Hypotheses 

 The study will apply the case-control methodology to test three hypotheses 

relating to MRSA infection in surgical patients. The underlying population being studied 

is patients undergoing a Major Surgical Procedure (MSP) in the United States between 

2010 and 2014. These years were selected due to changes in the NIS database after 2014. 

Prior to 2015, ICD-9-CM codes were used and during 2015 ICD-10 CM codes were 

introduced. In all cases, MSP is defined using the NIS ORPROC variable. Specific 

hypotheses and case/control definitions are described below. 

 

3.4.1 Hypothesis 1 — Prediction of MRSA in Surgical Patients 

 It is possible to develop a predictive model of MRSA infection in patients 

undergoing a Major Surgical Procedure in the United States. For this hypothesis, MRSA 
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infection is defined consistently with Allareddy, Das, Lee, Nalliah, Rampa, Allareddy, 

Rotta 16 as the union of three ICD-9-CM codes: Occurrence of MRSA infection (041.12), 

MRSA septicemia (038.12) and MRSA pneumonia (482.42). Cases are patients with 

MRSA infection per this definition (041.12 È 038.12 È 482.42) and controls are all other 

patients who underwent a MSP. 

 

 

 

Figure 1: Case and Control Definition for Hypothesis 1 

 

3.4.2 Hypothesis 2 — Prediction of MRSA-related SSI in Surgical Patients 

It is possible to develop a predictive model of MRSA infection in patients undergoing a 

MSP who also experience an SSI in the United States. For this hypothesis, MRSA is 

defined as the union of occurrence of MRSA infection (041.12), MRSA septicemia 

(038.12) and MRSA pneumonia (482.42). SSI is defined using the ICD-9-CM code, post-

operative wound infection (998.59). Cases are patients with MRSA infection per this 

definition [(041.12 È 038.12 È 482.42) Ç 998.59] and controls are all other patients who 

underwent a MSP. 

041.21

038.12
482.42

MSP

Cases

Controls
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Figure 2: Case and Control Definition for Hypothesis 2 

 

3.4.3 Hypothesis 3 — Prediction of MRSA Infection in S. aureus Patients 

 It is possible to develop a predictive model of MRSA-related SSI vs MSSA-

related SSI in patients undergoing a MSP in the United States. For this hypothesis, 

MRSA infection is defined as the union of occurrence of MRSA infection (041.12), 

MRSA septicemia (038.12) and MRSA pneumonia (482.42). SSI is defined using the 

ICD-9-CM code, post-operative wound infection (998.59). Cases are patients with 

MRSA infection and SSI [(041.12 È 038.12 È 482.42) Ç 998.59] and controls are all 

patients with MSSA-infection and SSI (041.11 Ç 998.59) who underwent a MSP. 

  

041.21
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998.59

MSP

Cases

Controls
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Figure 3: Case and Control Definition for Hypothesis 3 

3.5 Descriptive Analysis 

 A number of descriptive analyses, aligned with the above hypotheses, will be 

performed to describe the study population: 

1. Summary of basic characteristics of the NIS dataset, including frequency of 

MRSA, SSI, MRSA-related SSI, MSSA and MSSA-related SSI; 

2. Nationally-representative prevalence estimates of MRSA, SSI, MRSA-related 

SSI, MSSA and MSSA-related SSI; 

3. Univariate association of demographic, clinical and hospital-related factors for 

each research hypothesis. 

For all hypothesis the statistics will be calculated for each variable and p values generated 

for the difference between case and control groups. For normally distributed continuous 

variables, a t-test will be performed. For non-normally distributed continuous variables 

041.21

038.12
482.42

998.59

MSP

Cases

Controls

041.11
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the Mann Whitney test will be used. For categorical variables, a chi-square test will be 

used. The results of these tests, in addition to variables identified in the literature review, 

will inform the selection of variables for the logistic regression and artificial neural 

network models. 

3.6 Logistic Regression Model 

 Logistic regression is a statistical technique in which a linear combination of 

variables are used to predict a dichotomous outcome. 184,202-205 In contrast to linear 

regression, which generates a continuous outcome, logistic regression uses a sigmoid 

function, known as the logistic function, to bound its output between 0 and 1.  

Logistic regression is based on the calculation of odds, which can be defined as 

the probability of an event occurring divided by the probability of the event not 

occurring: 

𝑜𝑑𝑑𝑠 = 	
𝑝

1 − 𝑝 

 The logit function is defines the log of the odds ratio in terms of a linear 

combination of predictors: 

𝑙𝑜𝑔𝑖𝑡	(𝑜𝑑𝑑𝑠) = 𝛽0 + 𝛽2𝑋2 +	𝛽4𝑋4 + ⋯+	𝛽6𝑋6 

where X1, X2, …. Xn are independent variables in the dataset, 

𝛽0	is	the	intercept, and	𝛽2	to	𝛽6	 are the computed coefficients of each variable and 

represent the contribution each variable makes to the probability of the outcome. The 

probability of being a case is defined by the odds ratio: 

�̂� = 	
𝑜𝑑𝑑𝑠

1 + 	𝑜𝑑𝑑𝑠 
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Thus, the probability can be derived directly from the predictors of the logistic regression 

model: 

�̂� = 	
𝑒FGHFIJIH	FKJKH⋯H	FLJL

1 +	𝑒FGHFIJIH	FKJKH⋯H	FLJL
 

 This analysis will model the probability of MRSA infection in patients 

undergoing an MSP. The relationship between odds ratios and probabilities is also useful 

in determining the relative contribution of each predictor to the outcome. The statistical 

significance of each predictor can be assessed to determine which predictors should be 

included in the final model. The coefficient of each predictor represents the contribution 

each predictor makes to the outcome while holding all the other predictors constant. 

Thus, a logistic regression model with multiple predictors is an effective approach to 

controlling confounding. 

 There are multiple methods for determining which independent variables should 

be included in the model. With forward stepwise selection, all possible single predictor 

models are generated and the predictor with the lowest p value is kept. In each 

subsequent step, another predictor is added. If the predictor’s p value is below a certain 

threshold value, it is kept in the model, otherwise it is dropped. The process continues 

until all covariates with p values below the threshold are included in the model. During 

the process, it is possible for a covariate’s  p-value to change, and in this case, the 

covariate would be dropped from the model. In contrast, backwards stepwise selection 

beings with a model that contains all the predictors, and eliminates one by one those that 

do not meet the p-value threshold. In addition, both forwards and backwards selection 

methods can be used with global model scoring metrics, such as Akaike Information 
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Criterion (AIC), which has been shown to be particularly effective in reducing the 

likelihood of overfitting.206 

 Although efficient, care needs to be taken with forward and backward selection 

methods due to the use of multiple statistical tests (multiple comparisons) and the 

possibility of type 1 errors. Thus, it is important that selection of variables for the model 

be principled, i.e. care must be taken to ensure the model makes sense from a biomedical 

perspective. In addition, it is important to evaluate the performance of the model use a 

validation data set and a range of objective measures. Model evaluation is discussed in 

detail below. 

3.7 Artificial Neural Network Model 

 An artificial neural network (ANN) is biologically-inspired predictive modeling 

technique. Structurally, the model comprises a series of neurons that are connected 

together to form a network. Because the ANN can support multiple layers, typically an 

input layer, followed by one or more hidden layers, and an output layer, and because the 

number of neurons in each layer is arbitrary, the ANN is an effective technique for 

modeling non-linear relationships between the input variables and the output. In some 

respects, ANN can be seen as a generalization of regression models, and in fact, ANNs 

are built from individual binary classifiers, known as perceptrons. 

 A perceptron is a binary linear classifier that accepts a vector of values as input 

and learns a set of weights for each input that in combination map a set of input values to 

an output class. The goal of the training process is to learn the weight vector that 

maximizes performance of the classifier. Given an input vector, x containing d values, 
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and a weight vector, w also containing d values, the output, y, of a perceptron is defined 

as: 

𝑦 =N𝑤P𝑥P + 𝑤0

R

PS2

 

Where w0 is known as the bias unit. Thus, the perceptron is an example of a linear model, 

in which the input space is divided into two classes based on identification of the optimal 

hyperplane. Although perceptrons can, as a result, only model linear relationships, they 

can be combined together to form a multilayer perceptron, which facilitates the more 

complex modeling of non-linear relationships. 

The classic ANN is best described as a feed-forward multi-layer perceptron. In 

this type of network, there is an input layer that contains one neuron for each of the input 

values, one or more hidden layers each containing and arbitrary number of neurons, and 

in the case of a binary classifier, two output neurons. The network is known as a feed-

forward network because the weights for each connection are fed forward into the next 

layer, but not backwards. Figure 4 is an example of a feed-forward multi-layer perceptron 

used for binary classification. In this example,  there are n input variables, 1 hidden layer 

with m neurons, and an output layer with 2 neurons. The ANN is also able to model non-

linear relationships between the input variables and the output classes. 
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Figure 4: Artificial Neural Network Example 

 

 There is no principled way to determine the optimal number of neurons within the 

hidden layer, thus several models will be developed using cross-validation, and the final 

model will be validated using a held-out test data set. The algorithm for determining the 

optimal number of neurons in the hidden layer is illustrated in Figure 5. 
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Figure 5: Algorithm for Determining the Optimal Number of Neurons in the Hidden Layer of the ANN 

  

 The algorithm iterates through every possible number of nodes, beginning with 1 

and ending with 50. During each iteration, a model is trained and evaluated using the 

cross-validation method illustrated in Figure 6. After each sequence of cross-validation 

training, an error rate is calculated, and the configuration with the minimum error rate is 

used for the final mode. Once the final model configuration has been determined, the 

model is retrained with all of the training data and its performance is assessed using the 

held-out test set. 

 For prediction of a binary outcome, several different neuron activation functions 

could be used. In this case, a sigmoid function will be used: 
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𝑦(𝑘) = 𝑆 VN𝑤W(𝑘) ∙ 𝑥W(𝑘) + 𝑤0

R

PS2

Y 

where the sigmoid function is: 

𝑆(𝑡) = 	
1

1 + 𝑒Z 

 The configuration of the ANN will differ for each hypothesis, but in all cases will 

contain only one hidden layer, as ANNs with only one layer have been shown to be 

sufficient in modeling non-linear relationships.184 

3.8 Model Training 

 Data were preprocessed to create an analysis dataset that was used to train and 

evaluate the neural network. In order to ensure that the algorithms could be trained 

effectively, controls were under sampled due to the large difference between the numbers 

of cases and controls.207,208 The neural network was configured with 1 input layer, 1 

hidden layer, and 1 output layer. The input layer contained one node for each variable in 

the dataset, and the output layer contained two nodes, one for the Case variable and one 

for the Control variable. The number of hidden layers and the number of nodes within 

each layer was determined using cross-validation, as described in Figure 5.  

The neural network was trained using 10-fold cross-validation. Using this 

approach, the dataset was randomly split into 10 equally sized parts and the network was 

trained with 9 of these parts and evaluated with the 10th. This process was repeated 10 

times ensuring that all the data were used for training and evaluation without biasing the 

results. The output class (case or control) was determined using the higher value of the 
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two variables in the output layer. All analyses were performed using R version 3.1.3. The 

Caret package was used to assess the performance of the neural network, ROCR was 

used to generate the ROC curve, and NeuralNet was used to train the neural network.209-

211 The cross-validation process is illustrated in Figure 6. 

 

 

Figure 6: Cross-validation of the ANN Models 

3.9 Model Evaluation 

The performance of the neural network was assessed with a range of metrics 

including sensitivity, specificity, positive predictive value, and negative predictive value. 

The aim of a binary classifier is to predict a binary outcome with 100% accuracy, 

however, it is usually not possible for a test to be 100% accurate, and thus there are 

multiple possible outcomes:  
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• A true positive occurs when the classifier correctly identifies a person who has the 

outcome (e.g., MRSA-related SSI).  

• A false positive occurs when the test identifies a person as having the disease but 

they do not.  

• A true negative occurs when a test identifies a person as not having the disease 

and they do not have the outcome. 

• A false negative occurs when the test identifies the person has not having the 

disease but they do have the outcome.  

An effective test will maximize true positives and true negatives and minimize 

false positives and false negatives.  

Both logistic regression and ANN models are algorithms that aim to assign 

patients to one of two classes (in this case diseased or not diseased) and they are typically 

assessed using a range of metrics, including sensitivity and specificity. Sensitivity is the 

true positive rate (TPR): the proportion of people with the disease that are correctly 

classified as having the disease. Specificity is the true negative rate (TNR): the proportion 

of people without the disease that are correctly identified as not having the disease. The 

false positive rate (FPR) is calculated as 1 – specificity and the sum of the true positive 

rate and the false positive rate is 1. Thus, a classifier with a higher true positive rate will 

necessarily have a lower false positive rate and vice versa. These rates are controlled by a 

threshold value, above which it is assumed the test result is positive and below which it is 

assumed the classifier result is negative. This value can be adjusted to maximize the true 

positive rate and minimize the false positive rate.  
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Additional metrics include positive predictive value (PPV) and negative 

predictive value (NPV). These metrics are useful in helping the clinician and patient 

understand the implications of a positive or negative test result. PPV is the probability 

that the patient has the disease, given a positive test result and NPV is the probability that 

the patient does not have the disease, given a negative test results. Both of these metrics 

are affected by the underlying prevalence of the disease in the population which, in 

essence, is the pre-test probability when viewed within a Bayesian framework. In contrast 

to sensitivity and specificity, which are characteristics of the test (or model), PPV and 

NPV are related to the patient.212 Possible outcomes of a predictive model are illustrated 

in Table 7. 

Table 7: Possible Outcomes of a Predictive Model 
  

Actual  
 Positive Negative 

Pr
ed

ic
te

d Positive True Positive 
(TP) 

False Positive 
(FP) 

Negative False Negative 
(FN) 

True Negative 
(TN) 

 

Using these definitions, it is possible to derive sensitivity, specificity, PPV, and 

NPV: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

𝑃𝑃𝑉 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

𝑁𝑃𝑉 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑁 
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PPV and NPV can also be defined in terms of sensitivity, specificity and 

prevalence of the disease in the population: 

 

𝑃𝑃𝑉 = 	
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 × 	𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 × 	𝑃𝑟𝑒𝑣𝑎𝑙𝑎𝑛𝑐𝑒 + (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) ×	(1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) 

𝑁𝑃𝑉 = 	
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 ×	(1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑎𝑛𝑐𝑒)

(1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) × 	𝑃𝑟𝑒𝑣𝑎𝑙𝑎𝑛𝑐𝑒 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 ×	(1 − 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) 

 

Performance was also visualized using the receiver operating characteristic 

(ROC) curve method. A ROC curve is a plot of the true positive rate on the y-axis against 

the false positive rate on the x-axis. An example of a ROC curve for a neural network 

classifier of pediatric brain injury is shown below. 

 

Figure 7: Receiver Operating Characteristic (ROC) Curve Example 
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The red line on the ROC curve is a plot of the true positive rate vs false positive 

rate for each value of the classifier threshold. The ROC curve can be used to identify the 

optimal threshold value, i.e. the value to use as a cutoff to assign a positive and negative 

result such that the TPR is maximized and the FPR is minimized.  

The area under the curve (AUC) in a ROC curve is a measure of a model’s ability 

to correctly discriminate between patients with and without a disease. The better the 

model’s performance, the higher the curve will be above the diagonal line, and thus the 

greater the area under the curve. A perfect model would have an AUC of 1, indicating a 

100% TPR and a 0% FPR. The blue line represents an equal TPR and FPR, which results 

in an AUC of 0.5 and signifies that the model classifies people with the disease correctly 

50% of the time. This means that the performance of the model is no better than would be 

obtained by tossing a coin. Thus, this line effectively represents a model with no 

discriminatory power. In this example, the AUC is approximately 0.85 and the optimum 

sensitivity (TPR) is 0.7 meaning the model correct identifies patients with the disease 

70% of the time, which is significantly higher than chance. 

As discussed above, changing the threshold used to determine a positive result 

can impact the sensitivity and specificity of the model. In addition to their use in 

optimizing the threshold, these metrics also have significant clinical importance. A model 

with higher sensitivity will minimize the number of false negatives while increasing the 

number of false positives. This is advantageous when the disease is a serious one for 

which treatment is available: it is better to err on the side of identifying “too many” 

people who don’t have the disease rather than missing those who do have it.  In contrast, 
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a model with higher specificity would have the reverse effect – we would increase the 

number of false negatives and decrease the number of false positives. This is 

advantageous when the disease is not serious and treatment is expensive. Thus, sensitivity 

and specificity can be used to optimize the model in the clinical setting based on the 

seriousness of the disease and the cost of treatment.  

3.10 Clinical Decision Support System 

 The clinical decision support system will be based on the logistic regression and 

artificial neural network models described above. Because the underlying models will be 

developed using R, the CDSS will be developed in R Shiny – a web application platform 

based on the R language.201 In this way, the CDSS can access the information contained 

within the models. The application will be developed as an online application and users 

will be able to access it through a web browser on a laptop, tablet or phone. The 

application will employ responsive design principles in that it will adapt and present a 

user-friendly interface regardless of the device being uses. Users will be prompted to 

enter the key predictors needed to inform the model and a recommendation will be 

generated in real time.  
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CHAPTER 4 

RESULTS 

4.1 Introduction 

 This chapter presents the results of the three hypotheses defined in Chapter 3 

along with a descriptive analysis of the NIS dataset. Five years of data (2010-2014) are 

used for the descriptive analyses, with 15% of data held out as a testing dataset for the 

artificial neural network and logistic regression models. 

 The chapter begins with an overview of the demographic characteristics of the 

NIS dataset and characterizes patients undergoing surgical procedures in the United 

States between 2010 and 2014. Frequencies of outcome variables required to support the 

study hypotheses are described, including SSI, confirmed MRSA infection, confirmed 

MSSA infection, MRSA-related SSI, and MSSA-related SSI. Additional characteristics 

described include mean age, length of stay, number of chronic conditions, number of 

diagnoses, number of procedures performed, number of days to first procedure, number 

of comorbidities, gender, primary expected payer, race, surgery type, hospital region, 

hospital bed size, and hospital teaching status. 

 The chapter continues with one section for each hypothesis, with each section 

containing a detailed descriptive analysis, logistic regression model, artificial neural 

network model, model evaluation, and discussion. The descriptive analysis, which itself 

is informed by the literature review, is used to further refine the set of predictors used in 
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the models. Finally, the chapter concludes with a description of the design and 

implementation of the clinical decision support system, along with a discussion of its 

potential application in clinical practice. 

4.2 Demographic Characteristics of NIS Data 

 This section describes the characteristics of the NIS dataset for patients that have 

undergone a major surgical procedure in the years 2010 to 2014. The total number of 

admissions meeting these criteria is 10,751,538. Although this is a significant number, 

the proportion of patients meeting the addition criteria of MRSA infection, SSI, MSSA 

infection, and MRSA/MSSA-related infections, is significantly smaller. These proportion 

of patients meeting these criteria is summarized in Table 8. 

 

Table 8: Basic Characteristics of the NIS Data (Outcome Variables) 

Variable Proportion (%) Frequency % Missing 
Confirmed MRSA infection 1.07 115,029 0.00 
Surgical Site Infection 1.05 113,402 0.00 
Confirmed MSSA infection 0.66 71,099 0.00 
MRSA-related SSI 0.10 11,057 0.00 
MSSA-related SSI 0.08 9,032 0.00 

 

 Of the 10,751,538 admissions sampled in years 2010 to 2014, 115,029 or 1.07% 

had confirmed MRSA infection as defined by ICD-9 codes 041.12, 038.12 and 482.42; 

113,402, or 1.05%, had a confirmed SSI as defined by ICD-9 code 998.59; and 71,099, or 

0.66%, had a confirmed MSSA infection as defined by ICD-9 code 041.11. The 

proportion of admissions with both MRSA and SSI was much smaller at 11,057, or 

0.10%; and the proportion of admissions with both MSSA and SSI was similar at 9,032, 
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or 0.08%. Because these categories are assigned based on ICD-9 codes from the 

diagnosis fields, there are no missing data. 

 Characteristics of patients undergoing major surgical procedures in the United 

States between the years 2010 to 2014 are described in Table 9 (continuous variables) 

and Table 10 (categorical variables). 

 

Table 9: Basic Characteristics of the NIS Data (Continuous Variables) 

Variable Mean (Standard Deviation) N % Missing 
Age in years at admission (years) 48.20 (25.29) 10,744,926 0.06 
Length of stay (days) 5.07 (8.04) 10,751,278 0.00 
Number of chronic conditions 3.76 (3.38) 10,751,538 0.00 
Number of diagnoses 8.23 (5.76) 10,751,538 0.00 
Number of procedures 3.07 (2.58) 10,751,438 0.00 
Number of days to first procedure 1.16 (3.63) 10,152,388 5.57 
Number of comorbidities 1.74 (1.83) 10,751,538 0.00 

 

Table 10: Basic Characteristics of the NIS Data (Categorical Variables) 

Variable Proportion (%) Frequency % Missing 
Gender 
  Male 
  Female 

 
46.61 
53.39 

 
5,004,131 
5,732,628 

 
0.13 

Primary expected payer 
  Medicare 
  Medicaid 
  Private insurance 
  Self-pay 
  No charge 
  Other 

 
33.98 
17.37 
40.42 
3.95 
0.40 
3.88 

 
3,645,555 
1,863,893 
4,336,556 

423,368 
42,532 

415,984 

 
0.22 

Race 
  White 
  Black 
  Hispanic 
  Asian/Pacific Islander 
  Native American 
  Other 

 
69.82 
12.59 
10.89 
2.59 
0.61 
3.50 

 
6,869,218 
1,238,673 
1,710,074 

254,906 
59,964 

344,298 

 
8.50 

Surgery type 
  Non-elective 
  Elective 

 
52.36 
47.64 

 
5,610,245 
5,104,382 

 
0.34 

Hospital region 
  Northeast 
  Midwest 
  South 
  West 

 
18.36 
23.21 
38.73 
19.71 

 
1,973,788 
2,495,201 
4,163,933 
2,118,616 

 
0.00 

Hospital bed size 
  Small 
  Medium 
  Large 

 
13.12 
25.03 
61.85 

 
1,402,358 
2,674,446 
6,610,127 

 
0.60 

Hospital teaching status    
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  Rural 
  Urban non-teaching 
  Urban teaching 

8.65 
35.00 
56.35 

924,536 
3,739,944 
6,022,451 

0.60 

 

The average age of patients at admission was 48.20 years (SD 23.29), with the 

average length of stay being 5.07 days (SD 8.04). Patients, on average, had 3.76 chronic 

conditions (SD 3.38), 8.23 diagnoses (SD 5.76), and underwent 3.07 procedures (2.58). 

The number of days from admission until the first procedure was performed was 1.16 

(SD 3.63) and the average number of comorbidities was 1.74 (SD 1.83). The proportion 

of missing data is low for all variables, with the highest amount of missing data 5.57% 

for number of days to first procedure. 

 Approximately 46.51% of the sampled admissions were male and 53.30% were 

female. With respect to race, the majority of patients were white (69.82%), and 12.29% 

were black or African American, 10.89% were Hispanic, 2.59% were Asian/Pacific 

islander, and 3.88% were another race. The primary expected payer was Medicare in 

33.98% of cases, suggesting that surgical patients tend to be older, and of the remaining 

patients 17.37% were paid by Medicaid, 40.42% by private insurance, 3.92% by the 

patient themselves, and 3.88% by other means. In a very small percentage (0.40%) of 

admissions, no charge was levied for the surgical procedure. The majority of surgeries 

were non-elective (52.36%) and 47.64% were elective. 

 The majority of hospitals, representing 38.73% of admissions were in the South, 

with 18.36% in the Northeast, 23.21% in the Midwest, and 19.71% in the West. 

Approximately 25.03% of hospitals were of medium size, 13.12% were classified as 

small, and 61.85% were large. Over half of the hospitals were teaching hospitals located 
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in large urban centers (56.35%), 35% were non-teaching urban hospitals, and 8.65% were 

rurally located. 

 The proportion of missing data is low for most variables, with the exception of 

Race, for which approximately 8.5% is missing. 

4.3 National Prevalence Estimates 

 Because the NIS data is collected using a nationally-representative survey 

sampling scheme, national level estimates of prevalence can be extrapolated from the 

above sample-based estimates using SAS survey procedures. Table 11 summarizes 5-year 

and average annual prevalence for the key outcome variables being studied. 

 

Table 11: National-level 5-year Prevalence Estimates 

Variable Prevalence Average Annual Prevalence 
Surgical procedure 53,302,100 10,660,420 
Confirmed MRSA infection 570,907 114,181 
Surgical Site Infection 562,670 112,534 
Confirmed MSSA infection 353,901 70,780 
MRSA-related SSI 54,913 10,983 
MSSA-related SSI 44,811 8,962 

 

 Between 2010 and 2014, nationally 53,302,100 underwent a major surgical 

procedures, of which 570,907 had a confirmed MRSA infection, 562,670 had a SSI, 

353,901 had a confirmed MSSA infection, 54,913 had MRSA-related SSI and 44,811 had 

an MSSA-related infection. Average annual prevalence of surgical procedures was 

10,660,420, of which 114,181 experienced a MRSA infection, 112,534 had a SSI, 70,780 

had a confirmed MSSA infection, 10,983 had a MRSA-related SSI, and 8,962 had 

MSSA-related SSI. 
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 These results emphasis the scope and scale of the problem and support the need 

for models to predict MRSA, MSSA and SSI. 

4.4 Hypothesis 1 — Prediction of MRSA Infection in Surgical Patients 

 The first hypothesis aims to predict the incidence of MRSA infection in surgical 

patients using a range of known demographic, clinical, and hospital-related variables. To 

facilitate and initial selection of variables for incorporation in the models, a descriptive 

analysis was performed. Descriptive statistics and p-values were calculated for MRSA 

and non-MRSA patients. Case and control definitions are illustrated in Figure 1. 

 For continuous variables, the Wilcoxon Rank Sum test was used. The Wilcoxon 

Rank Sum test is a non-parametric hypothesis test that is appropriate for both normally-

distributed and non-normally-distributed data. The test compares the mean of data 

between the two groups and provides p-values that quantify the significance of the 

difference in means between the group. In all cases, a cut-off of p < 0.05 was used to 

assess statistical significance. 

 For categorical variables, the Chi-Square test of association was used to ascertain 

whether the difference in proportion in levels of a variable between MRSA and non-

MRSA patients are statistically significant. The chi-square test requires the two variables 

to be categorical, the groups defined by the variables to be independent, and the sample 

size to be large (i.e., 80 percent of expected frequencies must be greater than 5 and all 

expected frequencies must be greater than 1). 
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 Differences between the two groups are described using means (and standard 

deviations) for continuous variables and proportions (percentages) for categorical 

variables. Key demographic variables, for MRSA patients, are presented visually. 

 

4.4.1 Descriptive Analysis 

 Table 12 summarizes the means, standard deviations, and p-values for continuous 

demographic variables. The null hypothesis in each case is that there is no difference in 

means between MRSA and non-MRSA patients. Variables analyzed were age in years at 

admission, length of stay in days, number of chronic conditions, number of diagnoses, 

number of procedures performed, number of days after admission until the first procedure 

was performed, and number of comorbidities. 

 

Table 12: Demographic characteristics of NIS data stratified by MRSA status (continuous variables) 

Variable MRSA – Mean (SD) No MRSA – Mean (SD) P-Value 
Age in years at admission (years) 56.59 (20.14) 48.11 (25.63) < .0001 
Length of stay (days) 13.59 (17.16) 4.98 (7.83) < .0001 
Number of chronic conditions 6.34 (3.74) 3.73 (3.36) < .0001 
Number of diagnoses 14.93 (6.84) 8.16 (5.70) < .0001 
Number of procedures 4.49 (3.62) 3.06 (2.56) < .0001 
Number of days to first procedure 3.89 (7.51) 1.13 (3.56) < .0001 
Number of comorbidities 3.44 (2.21) 1.72 (1.82) < .0001 

 

 Patients with MRSA infection were generally older than those without MRSA, 

with a mean age of 56.59 (SD 20.14) compared to 48.11 (SD 25.63). Figure 8  illustrates 

the age distribution for MRSA and non-MRSA patients. Each bar represents the 

proportion of the given age group that has a MRSA infection. Thus, it can be seen that 

older patients tend to have a higher incidence of MRSA. 

The average length of stay for MRSA patients was 13.59 days (SD 17.16) and 

4.98 days (SD 7.83) for non-MRSA patients. Similarly, MRSA patients had a higher 
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number of chronic conditions, 6.34 (SD 3.74) compared with 3.73 (3.36); a larger number 

of diagnoses, 14.93 (SD 6.84) compared to 8.16 (SD 5.70); a larger number of 

procedures, 4.49 (SD 6.84) compared to 2.06 (SD 2.56); a longer time from admission 

until performance of the first procedure, 2.89 days (SD 7.51) compared to 1.13 (SD 

3.56); and, a higher number of comorbidities, 3.44 (SD 2.21) compared to 1.72 (SD 

1.82). In all cases, the differences between MRSA and non-MRSA patients were 

statistically significant, suggesting that these variables could be useful predictors of 

MRSA infection. 

 

 

 Figure 8: Age Distribution of MRSA Patients Compared with non-MRSA Patients 

 

Categorical variables analyzed were Gender, Primary Expected Payer, Race, 

Median income of patient zip code (quartile), Surgery Type, Hospital Region, Hospital 
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Bed Size, and Hospital Teaching Status. Frequencies and percentages of levels of these 

variables are presented in Table 13 for MRSA and non-MRSA patients.  

 

Table 13: Demographic Characteristics of the NIS Data Stratified by MRSA Status (Categorical 
Variables) 

Variable MRSA  
Frequency (%) 

No MRSA 
Frequency (%) 

P-Value 

Gender 
  Male 
  Female 

 
65,560 (57.01) 
49,446 (42.99) 

 
4,938,571 (46.49) 
5,683,182 (53.51) 

 
< .0001 

Primary expected payer 
  Medicare 
  Medicaid 
  Private insurance 
  Self-pay 
  No charge 
  Other 

 
57,502 (50.11) 
19,482 (16.98) 
25,297 (22.05) 

7,408 (6.46) 
895 (0.78) 

41,460 (3.63) 

 
3,588,053 (33.81) 
1,844,411 (17.38) 
4,311,259 (40.62) 

415,960 (3.92) 
41,637 (0.39) 

411,824 (3.88) 

 
< .0001 

Race 
  White 
  Black 
  Hispanic 
  Asian/Pacific Islander 
  Native American 
  Other 

 
75,101 (69.95) 
17,620 (16.41) 

9,752 (9.08) 
1,350 (1.26) 

981 (0.91) 
2,554 (2.38) 

 
6,794,117 (69.82) 
1,221,052 (12.55) 
1,061,322 (10.91) 

253,556 (2.61) 
58,983 (0.61) 

341,744 (3.51) 

 
< .0001 

Median income of national quartile 
or patient ZIP code 
  Quartile 1 
  Quartile 2 
  Quartile 3 
  Quartile 4 

 
 

38,769 (34.53) 
29,528 (26.30) 
25,483 (22.70) 
18,502 (16.48) 

 
 

2,746,107 (26.33) 
2,670,338 (25.61) 
2,630,590 (25,23) 
2,380,564 (22.83) 

 
 

< .0001 

Surgery type 
  Non-elective 
  Elective 

 
90,676 (79.09) 
23,968 (20.91) 

 
5,519,569 (52.07) 
5,080,414 (47.93) 

 
< .0001 

Hospital region 
  Northeast 
  Midwest 
  South 
  West 

 
18,095 (15.73) 
24,416 (21.23) 
52,002 (45.21) 
20,516 (17.84) 

 
1,955,693 (18.39) 
2,470,785 (23.23) 
4,111,931 (38.66) 
2,098,100 (19.73) 

 
< .0001 

Hospital bed size 
  Small 
  Medium 
  Large 

 
14,316 (12.52) 
28.313 (24.77) 
71,688 (62.71) 

 
1,388,042 (13.13) 
2,646,133 (25.03) 
6.528,439 (61.84) 

 
< .0001 

Hospital teaching status 
  Rural 
  Urban non-teaching 
  Urban teaching 

 
10,411 (9.11) 

41,397 (36.21) 
62,509 (54.68) 

 
914,125 (8.65) 

3,698,547 (34.98) 
5,959,942 (56.37) 

 
< .0001 

 

 As with the continuous variables, there were statistically significant differences 

between MRSA and non-MRSA patients. Figure 9 (below) illustrates the breakdown of 

gender for MRSA patients. A greater proportion of MRSA patients were male, 57.01% 
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compared to 46.49% of non-MRSA patients, and, as expected for an older population, a 

greater proportion utilized Medicare, 50.11% compared to 33.81%.  

 

 

Figure 9: Gender of MRSA Patients Compared with non-MRSA Patients. 

 

 The racial breakdown across both groups is broadly similar, however MRSA 

patients are more likely to be black than non-MRSA patients, 16.1% compared to 

12.55%. While there is a similar proportion of white patients across both groups, MRSA 

patients are also less likely to be Asian/Pacific Islander and Hispanic. Figure 10 

summarizes the distribution of race for MRSA patients. 
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Figure 10: Distribution of Race for MRSA Patients 

 

 MRSA patients were more likely to be poorer than non-MRSA patients: 34.35% 

of MRSA patients were in the lowest quartile of income for their zip code compared with 

26.33% of non-MRSA patients. The proportion of patients whose income was in the third 

or fourth quartile for their zip code was commensurately lower: 22.70% of MRSA-

patients had income in the third quartile compared with 25.23% of non-MRSA patients, 

and 16.48% of MRSA-patients had income in the fourth quartile compared with 22.83% 

of non-MRSA patients. 

 A number of hospital and surgery related factors were also compared. For MRSA 

patients, 79.09% of surgeries were non-elective compared to 52.07% for non-MRSA 

patients. MRSA was more prevalent in hospitals in the South: 45.21% of MRSA patients 
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were treated in hospitals in the South compared with 28.66% of non-MRSA patients. 

Proportions of MRSA and non-MRSA patients were broadly similar across different 

hospital sizes, however despite these similarities, the differences remain statistically 

significant. Finally, a greater proportion of MRSA patients, 9.11%, were more likely to 

be treated in rural hospitals, compared with 8.65% of non-MRSA patients. 

 As with the continuous variables described above, these categorical factors all 

exhibit statistically significant differences between MRSA and non-MRSA patients, and 

thus, should be considered for inclusion into the logistic regression and artificial neural 

network models. 

 Finally, a number of additional risk factors were considered, including long-term 

antibiotic use, risk of mortality (APRDRG calculated score), severity (APRDRG 

calculated score), a broad range of comorbidities, history of MRSA infection, and 

transfer in or out of the hospital. These risk factors are described in Table 14. 

 

Table 14: Additional Risk Factors Stratified by MRSA Status 

Variable MRSA (%) No MRSA (%) P-Value 
Long-term (current antibiotic use) 
  Yes 
  No 

 
670 (0.58) 

114,359 (99.42) 

 
10,755 (0.10) 

10,625,754 (99.90) 

 
< .0001 

Risk of mortality (APRDRG) 
  No class specified 
  Minor likelihood of dying 
  Moderate likelihood of dying 
  Major likelihood of dying 
  Extreme likelihood of dying 

 
15 (0.00) 

34,271 (29.79) 
31,021 (26.97) 
28,657 (24.91) 
21,065 (18.31) 

 
6,379 (0.06) 

7,351,856 (69.12) 
1,830,972 (17.21) 

961,362 (9.04) 
485,940 (4.57) 

 
< .0001 

Severity (APRDRG) 
  No class specified 
  Minor loss of function 
  Moderate loss of function 
  Major loss of function 
  Extreme loss of function 

 
15 (0.01) 

10,857 (9.44) 
30,022 (26.10) 
42,139 (36.63) 
31,997 (16.07) 

 
79 (0.06) 

4,611,076 (43.35) 
3,668,364 (34.49) 
1,708,781 (16.07) 

31,966 (27.82) 

 
< .0001 

Comorbidity: AIDS 
  Yes 
  No 

 
500 (0.43) 

114,529 (99.57) 

 
11,157 (0.10) 

10,625,352 (99.90) 

 
< .0001 

Comorbidity: Alcohol 
  Yes 
  No 

 
4,832 (4.20) 

110,197 (95.80) 

 
208,610 (1.96) 

10,427,899 (98.04) 

 
< .0001 
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Comorbidity: Deficiency anemias 
  Yes 
  No 

 
35,299 (30.69) 
79,730 (69.31) 

 
1,271,368 (11.95) 
9,365,141 (88.05) 

 
< .0001 

Comorbidity: Rheumatoid 
arthritis/collagen vascular diseases 
  Yes 
  No 

 
 

4,334 (3.77) 
110,695 (96.23) 

 
 

224,567 (2.11) 
10,411,942 (97.89) 

 
 
 

< .0001 
Comorbidity: Chronic blood loss 
anemia 
  Yes 
  No 

 
 

1,993 (1.73) 
113,036 (98.27) 

 
 

327,616 (3.08) 
10.308,893 (96.92) 

 
 

< .0001 

Comorbidity: Congestive heart 
failure 
  Yes 
  No 

 
 

15,093 (13.12) 
99,936 (86.88) 

 
 

389,519 (3.66) 
10,246,990 (96.34) 

 
 

< .0001 

Comorbidity: Chronic pulmonary 
disease 
  Yes 
  No 

 
 

23.806 (20.70) 
91,223 (79.30) 

 
 

1,379,809 (12.97) 
9,256,700 (87.03) 

 
 

< .0001 

Comorbidity: Coagulopathy 
  Yes 
  No 

 
8,077 (7.02) 

106,952 (92.98) 

 
380,542 (3.58) 

10,255,967 (96.42) 

 
< .0001 

Comorbidity: Depression 
  Yes 
  No 

 
15,069 (13.10) 
99,960 (86.90) 

 
856,355 (8.05) 

9,780,154 (91.95) 

 
< .0001 

Comorbidity: Diabetes 
(uncomplicated) 
  Yes 
  No 

 
 

21,824 (18.97) 
93,205 (81.03) 

 
 

1,475,743 (13.87) 
9,160,766 (86.13) 

 
 

< .0001 

Comorbidity: Diabetes with chronic 
complications 
  Yes 
  No 

 
20,835 (18.11) 
94,194 (81.89) 

 
346,378 (3.26) 

10,290,131 (96.74) 

 
< .0001 

Comorbidity: Drug abuse 
  Yes 
  No 

 
7,556 (6.57) 

107,473 (93.43) 

 
167,735 (1.58) 

10,468,774 (98.42) 

 
< .0001 

Comorbidity: Hypertension 
  Yes 
  No 

 
64,637 (56.19) 
50,392 (43.41) 

 
4,347,782 (40.88) 
6,288,727 (59.12) 

 
< .0001 

Comorbidity: Hypothyroidism 
  Yes 
  No 

 
12,043 (10.47) 

102,986 (89.53) 

 
916,788 (8.62) 

9,719,721 (91.38) 

 
< .0001 

Comorbidity: Liver disease 
  Yes 
  No 

 
4,770 (4.15) 

110,259 (95.85) 

 
184,130 (1.73) 

10,452,379 (98.27) 

 
< .0001 

Comorbidity: Lymphoma 
  Yes 
  No 

 
942 (0.82) 

114,087 (99.18) 

 
42,213 (0.40) 

10,594,296 (99.60) 

 
< .0001 

Comorbidity: Fluid and electrolyte 
disorders 
  Yes 
  No 

 
 

39,342 (34.20) 
75,687 (65.80) 

 
 

1,370,310 (12.88) 
9,266,199 (87.12) 

 
 

< .0001 

Comorbidity: Metastatic cancer 
  Yes 
  No 

 
2,071 (1,80) 

112,958 (98.20) 

 
217,682 (2.05) 

10,418,827 (97.95) 

 
< .0001 

Comorbidity: Other neurological 
disorders 
  Yes 
  No 

 
10,285 (8.94) 

104,744 (91.06) 

 
410,663 (3.86) 

10,225,846 (96.14) 

 
< .0001 

Comorbidity: Obesity 
  Yes 

 
19,177 (16.67) 

 
1,229,468 (11.56) 

 
< .0001 
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  No 95,852 (83.33) 9,407.041 (88.44) 
Comorbidity: Paralysis 
  Yes 
  No 

 
7,532 (6.55) 

107,497 (93.45) 

 
165,218 (1.55) 

10,471,291 (98.45) 

 
< .0001 

Comorbidity: Peripheral vascular 
disorders 
  Yes 
  No 

 
 

17,158 (14.92) 
97,871 (85.08) 

 
 

561,508 (5.28) 
10,075,001 (94.72) 

 
 

< .0001 

Comorbidity: Psychoses 
  Yes 
  No 

 
6,817 (5.93) 

108,212 (94.07) 

 
239,687 (2.25) 

10,396,822 (97.75) 

 
< .0001 

Comorbidity: Pulmonary circulation 
disorders 
  Yes 
  No 

 
 

4,881 (4.24) 
110,148 (95.76) 

 
 

136,194 (1.28) 
10,500,315 (98.72) 

 
 

< .0001 

Comorbidity: Renal failure 
  Yes 
  No 

 
24,456 (21.26) 
90,573 (78.74) 

 
738,224 (6.94) 

9,898,285 (93.06) 

 
< .0001 

Comorbidity: Solid tumor without 
metastasis 
  Yes 
  No 

 
 

2,030 (1.76) 
112,999 (98.24) 

 
 

136,170 (1.28) 
10,500,339 (98.72) 

 
 

< .0001 

Comorbidity: Peptic ulcer disease 
excluding bleeding 
  Yes 
  No 

 
 

39 (0.03) 
114,990 (99.97) 

 
 

2,626 (0.02) 
10,633,883 (99.98) 

 
 

< .0001 

Comorbidity: Valvular disease 
  Yes 
  No 

 
5,051 (4.39) 

109,978 (95.61) 

 
249,967 (2.35) 

10,386,542 (97.65) 

 
< .0001 

Comorbidity: Weight loss 
  Yes 
  No 

 
15,679 (13.63) 
99,350 (86.37) 

 
329,088 (3.09) 

10,307,421 (96.91) 

 
< .0001 

History of MRSA infection 
  Yes 
  No 

 
2,862 (2.49) 

112,167 (97.51) 

 
44,031 (0.41) 

10,592,478 (99.59) 

 
< .0001 

Transfer in to hospital 
  Not transferred in 
  Transferred in from a different 
acute care hospital 
  Transferred in from another type of 
health facility 

 
4,896 (4.28) 

100,073 (87.44) 

 
146,11 (1.38) 

10,024,890 (94.66) 

 
< .0001 

Transfer out of hospital 
  Not transferred out 
  Transferred out to a different acute 
care hospital 
  Transferred out to another type of 
health facility 

 
41.642 (36.23) 
70,621 (61.45) 

 
1,464,186 (13.77) 
9,086,318 (85.47) 

 
< .0001 

Elixhauser Comorbidity Score 
(Readmission) 

7,970,294.49 5,347,710.89 < .0001 

Elixhauser Comorbidity Score 
(Mortality) 

0.68 0.50 < .0001 

 

 All the listed comorbidities exhibited statistically-significant differences between 

MRSA and non-MRSA patients, suggesting that, in general, sicker patients are more 

likely to contract MRSA infection while in hospital. There may be some overlap or 
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collinearity between these predictors and it is likely that some of these will be selected 

out of the final models through the stepwise variable selection process. This hypothesis is 

supported by the Elixhauser comorbidity scores: both the readmission score and the 

mortality score are significantly higher for MRSA patients. This is also true for the 

APRDRG risk of mortality and severity measures. In essence all of these variables 

attempt to capture the same concept: the severity of illness and comorbidity burden. In 

the predictive models it will be important to include the best and most efficient measure 

of severity, and minimize the number of individual comorbidities. Similarly, patients 

transferring in to the hospital and patients that transferred out of the hospital are also at 

increased risk of MRSA infection. Both of these variables also address a component of 

severity of illness, although the transfer out variable cannot be used to predict the 

infection as, by definition, it occurs at the end of the hospitalization after the infection has 

been diagnosed. Finally, although previous history of antibiotic use is not included in the 

dataset, there is an ICD-9 code for long-term, current antibiotic use, which may be an 

appropriate proxy. Patients with long-term antibiotic use are over 5 times more likely to 

contract a MRSA infection, suggesting that this variable may also be a useful predictor. 

 The above descriptive analysis and comparisons between MRSA and non-MRSA 

patients clearly indicate that there are significant differences across these groups of 

patients with respect to a range of demographic, clinical and hospital related variables. 

The goal of the models presented in the following sections is to develop the best 

performing model using the most parsimonious set of predictors that are known to the 

clinician close to the time of admission. Thus, variables that are not available until later 
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in the hospital visit, or those that require complex calculations based on information from 

the medical record will be excluded. 

 

4.4.2 Logistic Regression Model 

As described in Chapter 3, a logistic regression model was developed to predict 

MRSA infection. Initially, all variables that were univariately significant according to 

Table 14 were included in the model and forwards-backwards stepwise variable selection 

was used to identify the optimal model. The model was optimized by minimizing Akaike 

Information Criterion (AIC) – a global comparative metric of model performance. The 

final logistic regression model for hypothesis 1 is shown in Figure 11.  

MRSA ~ AGE + ELECTIVE + FEMALE + LOS + NCHRONIC + NDX + NPR +  
    PAY1 + RACE + TRAN_IN + ZIPINC_QRTL + MRSAHX + ANTIBX + SUSMRSA +  
    HOSP_BEDSIZE + HOSP_LOCTEACH + HOSP_REGION + APRDRG_Risk_Mortality +  
    APRDRG_Severity + CM_AIDS + CM_ALCOHOL + CM_ANEMDEF + CM_ARTH +  
    CM_BLDLOSS + CM_CHF + CM_CHRNLUNG + CM_COAG + CM_DEPRESS +  
    CM_DM + CM_DMCX + CM_DRUG + CM_HTN_C + CM_LIVER + CM_LYMPH +  
    CM_LYTES + CM_METS + CM_NEURO + CM_OBESE + CM_PARA + CM_PERIVASC +  CM_PSYCH     
    CM_PULMCIRC + CM_RENLFAIL + CM_TUMOR + CM_VALVE +  
    CM_WGHTLOSS 
 

Figure 11: Logistic Regression Model Specification for Hypothesis 1 

 

The final model includes a substantial number of predictors and achieves very 

strong predictive performance. The relative contribution of each predictor, while 

adjusting for all others, is presented below in Table 15. Odds ratios quantify the effect of 

each predictor on the outcome, 95% confidence intervals provide an estimate of 

variability, and p-values indicate statistical significance, with p = 0.05 used as the 

threshold value for significance. 
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Table 15: Odds ratios, Confidence Intervals, and p-values for Logistic Regression Model (Hypothesis 
1) 

Predictor OR 2.5% CI 97.5% CI P-Value 
(Intercept) 0.08 0.04 0.17 < .0001 
Age 1.01 1.01 1.01 < .0001 
Surgery type (ref: Non-elective) 
  Elective 

 
0.45 

 
0.44 

 
0.46 

 
< .0001 

Gender (ref: Male) 
  Female 

 
0.65 

 
0.63 

 
0.67 

 
< .0001 

Length of stay 1.00 1.00 1.00 < .0001 
Number of chronic conditions 0.80 0.79 0.80 < .0001 
Number of diagnoses 1.18 1.18 1.19 < .0001 
Number of procedures performed 0.97 0.97 0.98 < .0001 
Primary expected payer (ref: Medicare) 
  Medicaid 
  Private insurance 
  Self-pay 
  No charge 
  Other 

 
1.31 
0.95 
2.36 
2.30 
1.34 

 
1.25 
0.92 
2.22 
1.97 
1.25 

 
1.36 
0.99 
2.50 
2.68 
1.43 

 
< .0001 

0.007 
< .0001 
< .0001 
< .0001 

Race (ref: White)  
  Black 
  Hispanic 
  Asian/Pacific Islander 
  Native American 
  Other 

 
1.02 
0.82 
0.55 
1.23 
0.71 

 
0.99 
0.78 
0.50 
1.06 
0.66 

 
1.06 
0.85 
0.61 
1.42 
0.76 

 
0.217 

< .0001 
< .0001 

0.006 
< .0001 

Transfer in to hospital (ref: Not transferred in) 
  Transferred in from a different acute care hospital 
  Transferred in from another type of health facility 

 
1.11 
1.69 

 
1.05 
1.57 

 
1.16 
1.83 

 
< .0001 
< .0001 

Median income of quartile of patient ZIP code (ref: Quartile 1) 
  Quartile 2 
  Quartile 3 
  Quartile 4 

 
0.86 
0.83 
0.71 

 
0.84 
0.80 
0.68 

 
0.89 
0.86 
0.73 

 
< .0001 
< .0001 
< .0001 

History of MRSA infection (ref: No history) 3.31 2.92 3.74 < .0001 
Long-term (current) antibiotic use (ref: No) 5.02 3.80 6.62 < .0001 
Suspected MRSA infection (ref: No) 9.31 7.82 11.09 < .0001 
Hospital bed size(ref: Small) 
  Medium 
  Large 

 
0.88 
0.82 

 
0.84 
0.79 

 
0.92 
0.85 

 
< .0001 
< .0001 

Hospital teaching status (ref: Rural) 
  Urban non-teaching 
  Urban teaching 

 
0.86 
0.71 

 
0.82 
0.68 

 
0.90 
0.74 

 
< .0001 
< .0001 

Hospital region (ref: Northeast) 
  Midwest 
  South 
  West  

 
0.86 
1.11 
0.84 

 
0.83 
1.07 
0.81 

 
0.90 
1.15 
0.87 

 
< .0001 
< .0001 
< .0001 

Risk of mortality (APRDRG) (ref:  No class specified) 
  Minor likelihood of dying 
  Moderate likelihood of dying 
  Major likelihood of dying 
  Extreme likelihood of dying 

 
11.98 
13.02 

9.76 
7.61 

 
5.99 
6.51 
4.88 
3.81 

 
23.99 
26.06 
19.53 
15.22 

 
< .0001 
< .0001 
< .0001 
< .0001 

Severity (APRDRG) (ref:  No class specified) 
  Minor loss of function 
  Moderate loss of function 
  Major loss of function 

 
0.16 
0.34 
0.55 

 
0.15 
0.31 
0.52 

 
0.17 
0.36 
0.59 

 
< .0001 
< .0001 
< .0001 

Comorbidity: AIDS (ref: No) 1.88 1.45 2.45 < .0001 
Comorbidity: Alcohol (ref: No) 0.92 0.85 0.99 0.019 
Comorbidity: Deficiency anemias (ref: No) 1.33 1.29 1.38 < .0001 
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Comorbidity: Rheumatoid arthritis/collagen vascular diseases 
(ref: No) 

1.56 1.45 1.67 < .0001 

Comorbidity: Chronic blood loss anemia (ref: No) 0.41 0.38 0.44 < .0001 
Comorbidity: Congestive heart failure (ref: No) 1.30 1.24 1.37 < .0001 
Comorbidity: Chronic pulmonary disease (ref: No) 1.14 1.10 1.18 < .0001 
Comorbidity: Coagulopathy (ref: No) 0.71 0.67 0.75 < .0001 
Comorbidity: Depression (ref: No) 1.48 1.42 1.55 < .0001 
Comorbidity: Diabetes (uncomplicated) (ref: No) 1.26 1.21 1.30 < .0001 
Comorbidity: Diabetes with chronic complications (ref: No) 3.12 2.96 3.29 < .0001 
Comorbidity: Drug abuse (ref: No) 2.70 2.52 2.89 < .0001 
Comorbidity: Hypertension (ref: No) 1.04 1.01 1.08 0.007 
Comorbidity: Liver disease (ref: No) 1.16 1.08 1.25 < .0001 
Comorbidity: Lymphoma (ref: No) 1.17 1.01 1.37 0.041 
Comorbidity: Fluid and electrolyte disorders (ref: No) 0.81 0.79 0.84 < .0001 
Comorbidity: Metastatic cancer (ref: No) 0.50 0.46 0.54 < .0001 
Comorbidity: Other neurological disorders (ref: No) 1.21 1.15 1.28 < .0001 
Comorbidity: Obesity (ref: No) 1.09 1.06 1.13 < .0001 
Comorbidity: Paralysis (ref: No) 2.18 2.03 2.34 < .0001 
Comorbidity: Peripheral vascular disorders (ref: No) 1.32 1.26 1.38 < .0001 
Comorbidity: Psychoses (ref: No) 1.91 1.79 2.04 < .0001 
Comorbidity: Pulmonary circulation disorders (ref: No) 1.07 0.99 1.16 0.106 
Comorbidity: Renal failure (ref: No) 1.19 1.14 1.24 < .0001 
Comorbidity: Solid tumor without metastasis (ref: No) 0.89 0.81 0.98 0.014 
Comorbidity: Valvular disease (ref: No) 0.95 0.89 1.02 0.156 
Comorbidity: Weight loss (ref: No) 1.40 1.33 1.48 < .0001 

 

 Demographic variables most associated with MRSA infection include gender, 

primary payer, race, and income. Females were much less likely to suffer from MRSA 

infection than males (OR: 0.65; 95% CI: 0.63 to 0.67). In comparison to Medicare 

patients, Medicaid patients are more likely to be diagnosed with MRSA (OR: 1.31; 95% 

CI: 1.25 to 1.36), as are self-pay patients (OR: 2.36; 95% CI: 2.22 to 2.50) and those who 

were not charged for services (OR: 2.30; 95% CI: 1.97 to 2.68). In contrast, patients with 

private insurance were slightly less likely to be diagnosed with MRSA infection (OR: 

0.95; 95% CI: 9.92 to 0.99). There was no meaningful difference in MRSA infection 

between white and black patients, however Hispanics (OR:0.82; 95% CI: 0.78 to 0.85), 

Asian/Pacific Islanders (OR: 0.55; 95% CI: 0.50 to 0.61), and Others (OR: 0.71; 95% CI: 

0.66 to 0.76) were significantly less likely to be diagnosed with MRSA infection. In 

contrast, Native Americans exhibited higher risk (OR: 1.23; 95% CI: 1.06 to 1.42). 
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Income is also shown to affect the odds of MRSA infection, with patients in the lowest 

quartile being most susceptible. Patients in quartile 2 (OR: 0.86; 95% CI: 0.84 to 0.89), 

quartile 3 (OR: 0.83; 95% CI: 0.80 to 0.86), and quartile 4 (OR: 0.71; 95% CI: 0.68 to 

0.73) exhibited progressively lower risk.  

 Hospital-related predictors included bed size, teaching status and region. Patients 

in medium (OR: 0.88; 95% CI: 0.84 to 0.92) and large (OR: 0.82; 0.79 to 0.95) hospitals 

were less likely to contract a MRSA infection compared to patients in small hospitals. In 

contrast to patients in rural hospitals, patients in urban, non-teaching hospitals (OR: 0.86; 

95% CI: 0.83 to 0.90) and patients in urban teaching hospitals (OR: 0.71; 95% CI: 0.68 to 

0.74) exhibited reduced risk. Patients in the South (OR: 1.11; 95% CI: 1.07 to 1.11) were 

more likely to be infected than those in the Northeast, in contrast to patients in the 

Midwest (OR: 0.86; 95% CI: 0.83 to 0.90) and West (OR: 0.84; 95% CI: 0.81 to 0.87) 

who were less likely to be infected. Finally, patients who transferred in from either a 

different acute care hospital (OR: 1.11; 95% CI: 1.05 to 1.16) or another type of health 

facility (OR: 1.69; 95% CI: 1.57 to 1.83) were at higher risk. 

Procedure-related variables most predictive of MRSA infection include surgery 

type, with patients undergoing elective surgery substantially less likely to suffer MRSA 

infection compared with those undergoing urgent surgery (OR: 0.45; 95% CI: 0.44 to 

0.46). In addition, both of the APRDRG severity measures were significant predictors of 

infection with the risk of mortality levels Minor likelihood of dying (OR: 11.98; 95% CI: 

5.99 to 23.99) and Moderate likelihood of dying (OR: 13.02; 95% CI: 6.51 to 26.06) 

having the strongest impact, with Major likelihood of dying (OR: 9.76; 95% CI: 4.88 to 

19.53) and Extreme likelihood of dying (OR: 7.61; 95% CI: 3.81 to 15.22) still having a 
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major impact. The Severity index, in contrast, is protective, with patients experiencing 

reduced risk. Patients with Minor loss of function (OR: 0.16; 95% CI: 0.15 to 0.17), 

Moderate loss of function (OR: 0.34; 95% CI: 0.31 to 0.36), and Major loss of function 

(OR: 0.55; 95% CI: 0.52 to 0.59) were all much less likely to contract MRSA. This 

contrast is likely explained through the amelioration of effect due to confounding as 

other, more specific comorbidities were added to the model. 

Patients with history of MRSA infection (OR:3.31; 95% CI: 2.92 to 3.74), current 

antibiotic use (OR: 5.02; 95% CI: 3.80 to 6.62), and suspected MRSA infection on 

admission (OR: 9.31; 95% CI: 7.82 to 11.09) were all more likely to have the infection. 

In addition, several comorbidities were associated with increased risk of MRSA 

infection. These were AIDS (OR: 1.88; 95% CI: 1.45 to 2.45), deficiency anemias (OR: 

1.33; 95% CI: 1.29 to 1.38), rheumatoid arthritis (OR: 1.56; 95% CI: 1.45 to 1.67), 

congestive heart failure (OR: 1.30; 95% CI: 1.24 to 1.37), chronic pulmonary disease 

(OR: 1.14; 95% CI: 1.10 to 1.18), depression (OR: 1.48; 95% CI; 1.42 to 1.55), 

uncomplicated diabetes (OR: 1.26; 95% CI: 1.21 to 1.30), diabetes with chronic 

complications (OR: 3.12; 95% CI: 2.96 to 3.29), drug abuse (OR: 2.70; 95% CI: 2.52 to 

2.89), hypertension (OR: 1.04; 95% CI: 1.01 to 1.08), liver disease (OR: 1.16; 95% CI: 

1.08 to 1.25), lymphoma (OR: 1.17; 95% CI: 1.01 to 1.37), other neurological disorders 

(OR: 1.21; 95% CI: 1.15 to 1.28), obesity (OR: 1.09; 95% CI: 1.06 to 1.13), paralysis 

(OR: 2.18; 95% CI: 2.03 to 2.34), peripheral vascular disorders (OR: 1.32; 95% CI: 1.26 

to 1.38), psychoses (OR: 1.91; 95% CI: 1.79 to 2.04), renal failure (OR: 1.19; 95% CI: 

1.14 to 1.24), and weight loss (OR: 1.40; 95% CI: 1.33 to 1.48). In contrast, alcohol (OR: 

0.92; 95% CI: 0.85 to 0.99), chronic blood loss anemia (OR: 0.41; 95% CI: 0.38 to 044), 
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coagulopathy (OR: 0.71; 95% CI: 0.67 to 0.75), fluid and electrolyte disorders (OR: 0.81; 

95% CI: 0.79 to 0.84), metastatic cancer (OR: 0.50; 95% CI: 0.46 to 0.54), solid tumor 

without metastasis (OR: 0.89; 95% CI: 0.81 to 0.98), and valvular disease (OR: 95; 95% 

CI: 0.81 to 0.98) were all significantly associated with reduced risk. While the model 

contains a relatively large number of predictors and the contribution of some predictors is 

small, the model performs very well.  

As described in Chapter 3, the dataset was split into training and test sets, with 

85% of the data used for training and 15% of the data used to evaluate the final model. 

The total sample size was 204,312, which was broken down into training/test and 

MRSA/Non-MRSA cases as shown in Table 16. 

 

Table 16: Training Size for Hypothesis 1 Logistic Regression Model 
 

 Training size Test size 

Cl
as

s Non-MRSA 86,258 15,105 

MRSA 87,407 15,542 

 

 Performance on the logistic regression model is summarized in Table 17 and 

Table 18 below. There were 13,325 true positives, 11,409 true negatives, 3,696 false 

positives, and 3,217 false negatives.  

 

Table 17: Confusion Matrix for Hypothesis 1 Logistic Regression Model 
  

Actual  
 MRSA Non-MRSA 

Pr
ed

ic
te

d  MRSA 12,325 3,696 

Non-MRSA 3,217 11,409 
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Assuming a cutoff of 0.5, sensitivity was calculated as 0.79 and specificity as 

0.75. Figure 12 illustrates the overall performance of the model at different cutoff values.  

 

Table 18: Performance of Hypothesis 1 Logistic Regression Model 
 

 Performance 

St
at

is
tic

 Sensitivity 0.79 

Specificity 0.75 

AUC 0.85 

 

The area under the curve was 0.85 which represents strong predictive 

performance. 

 

Figure 12: ROC Curve for Hypothesis 1 Logistic Regression Model 
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 In order to assess the overall fit of the model and whether it is over or under fit, a 

learning curve was plotted. The learning curve is a plot of training and test error for 

increasing sample sizes. The goal of the learning curve is to qualitatively assess the bias 

and variance of the model. Bias is a measure of the difference between the model’s 

outcome and the true value. A model with high bias would exhibit high training error. 

Variance is a measure of generalizability. Thus, a model with low variance would exhibit 

low training error but high test error. Thus by plotting both of these measures, it is 

possible to assess the bias/variance tradeoff.  

 

 

Figure 13: Learning Curve for Hypothesis 1 Logistic Regression Model 

 

 For this logistic regression model, training error and test error converge at a 

relatively small sample size and stay constant as the sample size increases. Adding more 
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training data neither has a positive nor negative effect as both training and test error 

remain low. Thus, it can be seen that the model has low bias (i.e., it reflects the true 

model) and high variance meaning it generalizes well to new data. 

 

4.4.3 Artificial Neural Network Model 

Predictors for the neural network were the same as those used in the logistic regression 

model. Similarly, the dataset was split into training and test sets, with 85% of the data 

used for training and 15% of the data used to evaluate the final model. The total sample 

size was 204,312, which was broken down into training/test and MRSA/Non-MRSA 

cases as shown in Table 16. Within the training set, 10-fold cross validation was used to 

determine the optimal number of nodes in the neural network’s hidden layer. The neural 

network model specification is shown in Figure 14.  

 

MRSA ~ AGE + ELECTIVE + FEMALE + LOS + NCHRONIC + NDX + NPR +  
    PAY1 + RACE + TRAN_IN + ZIPINC_QRTL + MRSAHX + ANTIBX + SUSMRSA +  
    HOSP_BEDSIZE + HOSP_LOCTEACH + HOSP_REGION + APRDRG_Risk_Mortality +  
    APRDRG_Severity + CM_AIDS + CM_ALCOHOL + CM_ANEMDEF + CM_ARTH +  
    CM_BLDLOSS + CM_CHF + CM_CHRNLUNG + CM_COAG + CM_DEPRESS +  
    CM_DM + CM_DMCX + CM_DRUG + CM_HTN_C + CM_LIVER + CM_LYMPH +  
    CM_LYTES + CM_METS + CM_NEURO + CM_OBESE + CM_PARA + CM_PERIVASC +   
    CM_PSYCH  +  CM_PULMCIRC + CM_RENLFAIL + CM_TUMOR + CM_VALVE +  
    CM_WGHTLOSS 

 

Figure 14: Neural Network Model Specification for Hypothesis 1 

 

 The overall sample size and breakdown of training/test data and MRSA/non-

MRSA cases is shown in Table 19. 
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Table 19: Training Size for Hypothesis 1 Neural Network Model 
 

 Training size Test size 

Cl
as

s Non-MRSA 86,258 15,105 

MRSA 87,407 15,542 

 

Performance on the neural network model is summarized in Table 20. There were 

13,368 true positives, 11,173 true negatives, 3,932 false positives, and 2,174 false 

negatives.  

 
Table 20: Confusion Matrix for Hypothesis 1 Neural Network Model 

 
  

Actual  
 MRSA Non-MRSA 

Pr
ed

ic
te

d MRSA 13,368 3,932 

Non-MRSA 2,174 11,173 

 

Assuming a cutoff of 0.5, sensitivity was calculated as 0.86 and specificity as 

0.74. Figure 12 illustrates the overall performance of the model at different cutoff values. 

The area under the curve was 0.87 which represents strong predictive performance. The 

optimal number of hidden nodes is 46 and the overall error rate is 0.20. 
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Table 21: Performance of Hypothesis 1 Neural Network Model 
 

 Performance 

St
at

is
tic

 
Sensitivity 0.86 

Specificity 0.74 

AUC 0.87 

Hidden Nodes 46 

Error Rate 0.20 

 

 As with the logistic regression model, a ROC curve was plotted to measure 

performance of the neural network model and a learning curve was plotted to understand 

the bias/variance tradeoff. These graphs are shown in Figure 15 and  

 respectively. 

 

 

Figure 15: ROC Curve for Hypothesis 1 Neural Network Model 
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Figure 16: Learning Curve for Hypothesis 1 Neural Network Model 

 

For this neural network model, training error and test error converge at a 

relatively small sample size and stay constant as the sample size increases. Adding more 

training data neither has a positive nor negative effect as both training and test error 

remain low. Thus, it can be seen that the model has low bias (i.e., it reflects the true 

model) and high variance, meaning it generalizes well to new data. 
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Figure 17: Optimal Number of Hidden Nodes for Hypothesis 1 Neural Network Model 

 

 One final tuning parameter for the neural network is the number of nodes in the 

hidden layer. As indicated above, the optimal number for the hypothesis 1 model is 46. 

Figure 27 illustrates the error rate for an increasing number of hidden layer nodes. As can 

be seen, after about 30 nodes the impact of additional nodes is minimal. Although 

computational power is not an issue and there is no reason to restrict the number of nodes 

in the hidden layer, this option could be considered if it were needed. 
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4.4.4 Comparative Performance of the Logistic Regression and Neural Network Models 

for Hypothesis 1 

 

Table 22 summarizes the relative performance of the logistic regression and 

neural network models for the prediction of MRSA infection in surgical patients. 

 

Table 22: Comparative Performance of Logistic Regression and Neural Network Models for 
Hypothesis 1 

  Model 
 

 Logistic 
Regression 

Neural 
Network 

St
at

is
tic

 Sensitivity 0.79 0.86 

Specificity 0.75 0.74 

AUC 0.85 0.87 

 

 Both models perform very well with an AUC of 0.85 or higher and high levels of 

sensitivity and specificity. On balance, the neural network model exhibits superior 

performance. 

4.5 Hypothesis 2 — Prediction of MRSA-related SSI in Surgical Patients 

The second hypothesis aims to predict the incidence of MRSA-related SSI in 

surgical patients using a range of known demographic, clinical, and hospital-related 

variables. To facilitate and initial selection of variables for incorporation in the models, a 

descriptive analysis was performed. Descriptive statistics and p-values were calculated 

for MRSA and non-MRSA patients. Case and control definitions are illustrated in Figure 

2. 
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For continuous variables, the Wilcoxon Rank Sum test was used. The Wilcoxon 

Rank Sum test is a non-parametric hypothesis test that is appropriate for both normally-

distributed and non-normally-distributed data. The test compares the mean of data 

between the two groups and provides p-values that quantify the significance of the 

difference in means between the group. In all cases, a cut-off of p < 0.05 was used to 

assess statistical significance. 

 For categorical variables, the Chi-Square test of association was used to ascertain 

whether the difference in proportion in levels of a variable between MRSA and non-

MRSA patients are statistically significant. The chi-square test requires the two variables 

to be categorical, the groups defined by the variables to be independent, and the sample 

size to be large (i.e., 80 percent of expected frequencies must be greater than 5 and all 

expected frequencies must be greater than 1.) 

 Differences between the two groups are described using means (and standard 

deviations) for continuous variables and proportions (percentages) for categorical 

variables. Key demographic variables, for MRSA-related SSI patients, are presented 

visually. 

 

4.5.1 Descriptive Analysis 

 Table 23 summarizes the means, standard deviations, and p-values for continuous 

demographic variables. The null hypothesis in each case is that there is no difference in 

means between MRSA and non-MRSA-related SSI patients. Variables analyzed were age 

in years at admission, length of stay in days, number of chronic conditions, number of 
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diagnoses, number of procedures performed, number of days after admission until the 

first procedure was performed, and number of comorbidities. 

 

Table 23: Demographic Characteristics of the NIS Data Stratified by MRSA-related SSI Status 
(Continuous Variables) 

Variable MRSA-related SSI Mean 
(SD) 

No MRSA-related SSI 
Mean (SD) 

P-Value 

Age in years at admission (years) 58.56 (17.85) 48.19 (25.60) < .0001 
Length of stay (days) 14.75 (18.17) 5.06 (8.02) < .0001 
Number of chronic conditions 5.70 (3.32) 3.76 (3.38) < .0001 
Number of diagnoses 14.74 (6.61) 8.22 (5.76) < .0001 
Number of procedures 4.77 (3.83) 3.07 (2.57) < .0001 
Number of days to first procedure 3.11 (6.30) 1.16 (3.63) < .0001 
Number of comorbidities 3.25 (2.08) 1.74 (1.83) < .0001 

 

 Patients with a MRSA-related SSI were generally older than those without a 

MRSA-related SSI, with a mean age of 58.56 (SD 17.85) compared to 48.19 (SD 25.60). 

Figure 18 illustrates the age distribution for MRSA-related SSI in comparison to non 

MRSA-related SSI patients. 

The average length of stay for MRSA patients was 15.75 days (SD 18.17) and 

5.06 days (8.02) for non-MRSA patients. Similarly, MRSA-related SSI patients had a 

higher number of chronic conditions, 5.70 (SD 3.32) compared with 3.76 (SD 3.38); a 

larger number of diagnoses, 14.74 (SD 6.61) compared to 8.22 (SD 5.76); a larger 

number of procedures, 4.77 (SD 3.83) compared to 3.07 (SD 2.57); a longer time from 

admission until performance of the first procedure, 3.11 days (SD 6.30) compared to 1.16 

(SD 3.63); and, a higher number of comorbidities, 3.25 (SD 2.08) compared to 1.74 (SD 

1.83). In all cases, the differences between MRSA-related SSI and non MRSA-related 

SSI patients were statistically significant, suggesting that these variables could be useful 

predictors of MRSA-related SSI infection. 
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 Figure 18: Age Distribution of MRSA-related SSI Compared with Non MRSA-related SSI 
Patients 

 

Categorical variables analyzed were Gender, Primary Expected Payer, Race, 

Median income of patient zip code (quartile), Surgery Type, Hospital Region, Hospital 

Bed Size, and Hospital Teaching Status. Frequencies and percentages of levels of these 

variables are presented in Table 24 for MRSA and non-MRSA patients.  

 

Table 24: Demographic Characteristics of the NIS data Stratified by MRSA-related SSI Status 
(Categorical Variables) 

Variable MRSA-related SSI 
Frequency (%) 

No MRSA-related SSI 
Frequency (%) 

P-Value 

Gender 
  Male 
  Female 

 
5,431 (49.13) 
5,623 (50.87) 

 
4,998,700 (46.60) 
5,727,005 (53.40) 

 
< .0001 

Primary expected payer 
  Medicare 

 
5,579 (50.54) 

 
3,639,976 (33.96) 

 
< .0001 
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  Medicaid 
  Private insurance 
  Self-pay 
  No charge 
  Other 

1,569 (14.21) 
2,936 (26.60) 

389 (3.52) 
51 (0.46) 

515 (4.67) 

1,862,324 (17.38) 
4,333,620 (40.44) 

422,979 (3.95) 
42,481 (0.40) 

415,469 (3.88) 
Race 
  White 
  Black 
  Hispanic 
  Asian/Pacific Islander 
  Native American 
  Other 

 
7,859 (76.34) 
1,299 (12.62) 

751 (7.29) 
101 (0.98) 

67 (0.65) 
218 (2.12) 

 
6,861,359 (69.82) 
1,237,374 (12.59) 
1,070,323 (10.89) 

254,805 (2.59) 
59,897 (0.61) 

344,080 (3.50) 

 
< .0001 

Median income of national quartile or 
patient ZIP code 
  Quartile 1 
  Quartile 2 
  Quartile 3 
  Quartile 4 

 
 

2,288 (31.33) 
2,882 (26.65) 
2,542 (23.50) 
2,003 (18.52) 

 
 

2,781,488 (26.42) 
2,696,984 (25.61) 
2,653,531 (25.20) 
2,397,063 (22.77) 

 
 

< .0001 

Surgery type 
  Non-elective 
  Elective 

 
7,675 (69.66) 
3,343 (30.34) 

 
5,602,570 (52.34) 
5,101,039 (47.66) 

 
< .0001 

Hospital region 
  Northeast 
  Midwest 
  South 
  West 

 
1,765 (15.96) 
2,325 (21.03) 
5,000 (45.22) 
1,967 (17.79) 

 
1,972,023 (18.36) 
2,492,876 (23.21) 
4,158,933 (38.72) 
2,116,649 (19.71) 

 
< .0001 

Hospital bed size 
  Small 
  Medium 
  Large 

 
1,283 (11.68) 
2,622 (23.87) 
7,078 (64.45) 

 
1,401,075 (13.12) 
2,671,824 (25.03) 
6,603,049 (61.85) 

 
< .0001 

Hospital teaching status 
  Rural 
  Urban non-teaching 
  Urban teaching 

 
710 (6.46) 

3,584 (32.63) 
6,689 (60.90) 

 
923,826 (8.65) 

3,736,360 (35.00) 
6,015,762 (56.35) 

 
< .0001 

 

 As with the continuous variables, there were statistically significant differences 

between MRSA-related SSI and non MRS-related SSI patients. Figure 19illustrates the 

breakdown of gender for MRSA patients. A greater proportion of MRSA patients were 

male, 49.13% compared to 46.60%, and, as expected for an older population, a greater 

proportion utilized Medicare, 50.54% compared to 33.96%.  
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Figure 19: Gender of MRSA-related SSI Patients 

  

The racial breakdown across both groups is broadly similar, however MRSA-related SSI 

patients are more likely to be white than non MRSA-related SSI patients, 76.34% 

compared to 69.82%. While there is a similar proportion of black patients across both 

groups, MRSA patients are also less likely to be Asian/Pacific Islander and Hispanic.  

Figure 20 summarizes the distribution of race for MRSA-related SSI patients. 
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Figure 20: Distribution of Race for MRSA-related SSI Patients and Non MRSA-related SSI Patients  

 

MRSA-related SSI patients were more likely to be poorer than non MRSA-related 

SSI patients: 31.33 % of MRSA-related SSI patients were in the lowest quartile of 

income for their zip code compared with 26.42% of non-MRSA patients. The proportion 

of patients whose income was in the third or fourth quartile for their zip code was 

commensurately lower: 23.50% of MRSA-related SSI patients had income in the third 

quartile compared with 25.20% of non MRSA-related SSI patients, and 18.52% of 

MRSA-related SSI patients had income in the fourth quartile compared with 22.77% of 

non MRSA-related SSI patients. 



115 

 A number of hospital and surgery related factors were also compared. For MRSA-

related SSI patients, 69.66% of surgeries were non-elective compared to 52.34% for non 

MRSA-related SSI patients. MRSA-related SSI was more prevalent in hospitals in the 

South: 45.22% of MRSA-related SSI patients were treated in hospitals in the South 

compared with 38.72% of non MRSA-related SSI patients. Proportions of MRSA-related 

SSI and non MRSA-related SSI patients were broadly similar across different hospital 

sizes, with a slightly higher proportion of surgeries taking place in large hospitals 

(64.45%) for MRSA-related SSI patients. Finally, a smaller proportion of MRSA-related 

SSI patients, 6.46%, were more likely to be treated in rural hospitals, compared with 

8.65% of non MRSA-related SSI patients. 

 As with the continuous variables described above, these categorical factors all 

exhibit statistically significant differences between MRSA-related SSI and non MRSA-

related SSI patients, and thus, should be considered for inclusion into the logistic 

regression and artificial neural network models. 

 Finally, a number of additional risk factors were considered, including long-term 

antibiotic use, risk of mortality (APRDRG calculated score), severity (APRDRG 

calculated score), a broad range of comorbidities, history of MRSA infection, and 

transfer in or out of the hospital. These risk factors are described in Table 25 (below). 

 

Table 25: Additional Risk Factors Stratified by MRSA-related SSI Status 

Variable MRSA-related SSI 
Frequency (%) 

No MRSA-related SSI 
Frequency (%) 

P-Value 

Long-term (current antibiotic use) 
  Yes 
  No 

 
70 (0.63) 

10,987 (99.37) 

 
11,355 (0.11) 

10,729,126 (99.89) 

 
< .0001 

Risk of mortality (APRDRG) 
  No class specified 
  Minor likelihood of dying 
  Moderate likelihood of dying 

 
0 (0.00) 

3,627 (32.80) 
3,282 (29.68) 

 
6,394 (0.06) 

7,382,500 (68.74) 
1,858,711 (17.31) 

 
< .0001 
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  Major likelihood of dying 
  Extreme likelihood of dying 

2,472 (22.36) 
1,667 (15.16) 

987,547 (9.19) 
505,329 (4.70) 

Severity (APRDRG) 
  No class specified 
  Minor loss of function 
  Moderate loss of function 
  Major loss of function 
  Extreme loss of function 

 
0 (0.00) 

899 (8.13) 
3,497 (31.63) 

4,075 (0.23) 
2,586 (23.39) 

 
6,394 (0.06) 

4,621,034 (43.02) 
3,694,889 (34.40) 
1,746,845 (16.26) 

671,319 (6.25) 

 
< .0001 

Comorbidity: AIDS 
  Yes 
  No 

 
30 (0.27) 

11,027 (99.73) 

 
11,627 (0.11) 

10,728,854 (99.89) 

 
< .0001 

Comorbidity: Alcohol 
  Yes 
  No 

 
408 (3.69) 

10,649 (96.31) 

 
213,034 (1.98) 

10,527,447 (98.02) 

 
< .0001 

Comorbidity: Deficiency anemias 
  Yes 
  No 

 
3,040 (27.49) 
8,017 (72.51) 

 

 
1,303,627 (12.14) 
9,436,854 (87.86) 

 
< .0001 

Comorbidity: Rheumatoid 
arthritis/collagen vascular diseases 
  Yes 
  No 

 
 
 

468 (4.23) 
10,589 (95.77) 

 
 
 

228,433 (2.13) 
10,512,048 (97.87) 

 
 
 

< .0001 

Comorbidity: Chronic blood loss anemia 
  Yes 
  No 

 
 

221 (2.00) 
10,836 (98.00) 

 
 

329,388 (3.07) 
10,411,093 (96.93) 

 
 

< .0001 

Comorbidity: Congestive heart failure 
  Yes 
  No 

 
1,205 (10.90) 
9,852 (89.10) 

 
403,407 (3.76) 

10,337,074 (96.24) 

 
 

< .0001 
Comorbidity: Chronic pulmonary 
disease 
  Yes 
  No 

 
 

2,468 (22.32) 
8,589 (77.68) 

 
 

1,401,147 (13.05) 
9,339,334 (86.95) 

 
 

< .0001 

Comorbidity: Coagulopathy 
  Yes 
  No 

 
591 (5.35) 

10,466 (94.65) 

 
388,028 (3.61) 

10,352,453 (96.39) 

 
< .0001 

Comorbidity: Depression 
  Yes 
  No 

 
1,746 (15.79) 
9.311 (64.21) 

 
869,678 (8.10) 

9,870,803 (91.90) 

 
< .0001 

Comorbidity: Diabetes (uncomplicated) 
  Yes 
  No 

 
2,483 (22.46) 
8.574 (77.54) 

 
1,495,084 (13.92) 
9,245,397 (86.08) 

 
< .0001 

Comorbidity: Diabetes with chronic 
complications 
  Yes 
  No 

 
 

1,081 (9.78) 
9,976 (90.22) 

 
 

366,132 (3.41) 
10,374,349 (96.59) 

 
 

< .0001 

Comorbidity: Drug abuse 
  Yes 
  No 

 
415 (3.75) 

10,642 (96.25) 

 
174,876 (1.63) 

10,565,605 (98.37) 

 
< .0001 

Comorbidity: Hypertension 
  Yes 
  No 

 
6,509 (58.87) 
4,548 (41.13) 

 
4,405,910 (41.02) 
6,334,571 (58.98) 

 
< .0001 

Comorbidity: Hypothyroidism 
  Yes 
  No 

 
1,361 (12.31) 
9,696 (87.69) 

 
927,470 (8.64) 

9,813,011 (91.36) 

 
< .0001 

Comorbidity: Liver disease 
  Yes 

 
385 (3.48) 

 
188,515 (1.76) 

 
< .0001 



117 

  No 10,672 (96.52) 10,551,966 (98.24) 
Comorbidity: Lymphoma 
  Yes 
  No 

 
94 (0.85) 

10,963 (99.15) 

 
43,061 (0.40) 

10,697,420 (99.60) 

 
< .0001 

Comorbidity: Fluid and electrolyte 
disorders 
  Yes 
  No 

 
 

3,322 (30.04) 
7,735 (69.96) 

 
 

1,406,330 (13.09) 
9,334,151 (86.91) 

 
 

< .0001 

Comorbidity: Metastatic cancer 
  Yes 
  No 

 
335 (3.03) 

10,722 (96.97) 

 
219,418 (2.04) 

10,521,063 (97.96) 

 
< .0001 

Comorbidity: Other neurological 
disorders 
  Yes 
  No 

 
 

966 (8.74) 
10,091 (91.26) 

 
 

419,982 (3.91) 
10,320,499 (96.09) 

 
< .0001 

Comorbidity: Obesity 
  Yes 
  No 

 
2,209 (19.98) 
8,848 (80.02) 

 
1,246,436 (11.61) 
9,494,045 (88.39) 

 
< .0001 

Comorbidity: Paralysis 
  Yes 
  No 

 
477 (4.31) 

10,580 (95.69) 

 
172,273 (1.60) 

10,568,208 (98.40) 

 
< .0001 

Comorbidity: Peripheral vascular 
disorders 
  Yes 
  No 

 
 

1,206 (10.91) 
9,851 (89.09) 

 
 

577,460 (5.38) 
10,163,021 (94.62) 

 
 

< .0001 

Comorbidity: Psychoses 
  Yes 
  No 

 
706 (6.39) 

10,351 (93.61) 

 
245,798 (2.29) 

10,494,683 (97.71) 

 
< .0001 

Comorbidity: Pulmonary circulation 
disorders 
  Yes 
  No 

 
 

341 (3.08) 
10,716 (96.92) 

 
 

140,734 (1.31) 
10,599,747 (98.69) 

 
 

< .0001 

Comorbidity: Renal failure 
  Yes 
  No 

 
1,486 (13.44) 
9,571 (86.56) 

 
761,194 (7.09) 

9,979,287 (92.91) 

 
< .0001 

Comorbidity: Solid tumor without 
metastasis 
  Yes 
  No 

 
 

348 (3.15) 
10,709 (96.85) 

 
 

137,852 (1.28) 
10,602,629 (98.72) 

 
 

< .0001 

Comorbidity: Peptic ulcer disease 
excluding bleeding 
  Yes 
  No 

 
 

3 (0.03) 
11,054 (99.97) 

 
 

2,662 (0.02) 
10,737,819 (99.98) 

 
 

0.8755 

Comorbidity: Valvular disease 
  Yes 
  No 

 
516 (4.67) 

10,541 (95.33) 

 
254,502 (2.37) 

10,485,979 (97.63) 

 
< .0001 

Comorbidity: Weight loss 
  Yes 
  No 

 
1,540 (13.93) 
9,517 (86.07) 

 
343,227 (3.20) 

10,397,254 (96.80) 

 
< .0001 

History of MRSA infection 
  Yes 
  No 

 
234 (2.12) 

10,823 (97.88) 

 
46,659 (0.43) 

10,693,822 (99.57) 

 
< .0001 

Transfer in to hospital 
  Not transferred in 
  Transferred in from a different acute 
care hospital 
  Transferred in from another type of 
health facility 

 
9,607 (87.35) 

906 (8.24) 
 

485 (4.41) 

 
10,115,356 (94.59) 

428,177 (4.00) 
 

150,522 (1.41) 

 
< .0001 
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Transfer out of hospital 
  Not transferred out 
  Transferred out to a different acute 
care hospital 
  Transferred out to another type of 
health facility 

 
6,780 (61.38) 

267 (2.42) 
 

3,999 (36.20) 

 
9,150,159 (85.24) 

83,199 (0.78) 
 

1,501,829 (13.99) 

 
< .0001 

Elixhauser Comorbidity Score 
(Readmission) 

7,582,286.40 5,373,497.96 < .0001 

Elixhauser Comorbidity Score 
(Mortality) 

6,380,866.09 5,374,734.78 
 

< .0001 

 

 All the listed comorbidities, with the exception of Peptic Ulcer Disease, exhibited 

statistically-significant differences between MRSA-related SSI and non MRSA-related 

SSI patients, suggesting that, in general, sicker patients are more likely to contract 

MRSA-related SSI infection while in hospital. There may be some overlap or collinearity 

between these predictors and it is likely that some of these will be selected out of the final 

models through the stepwise variable selection process. This hypothesis is supported by 

the Elixhauser comorbidity scores: both the readmission score and the mortality score are 

significantly higher for MRSA-related SSI patients. This is also true for the APRDRG 

risk of mortality and severity measures. In essence all of these variables attempt to 

capture the same concept: the severity of illness and comorbidity burden. In the 

predictive models it will be important to include the best and most efficient measure of 

severity, and minimize the number if individual comorbidities included. Similarly, 

patients transferring in to the hospital and patients that transferred out of the hospital are 

also at increased risk of MRSA-related SSI infection. Both of these variables also address 

a component of severity of illness, although the transfer out variable cannot be used to 

predict the infection as, by definition, it occurs at the end of the hospitalization after the 

infection has been diagnosed. Finally, although previous history of antibiotic use is not 

included in the dataset, there is an ICD-9 code for long-term, current antibiotic use, 
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which may be an appropriate proxy. Patients with long-term antibiotic use are over 5 

times more likely to contract a MRSA-related SSI infection, suggesting that this variable 

may also be a useful predictor. 

 The above descriptive analysis and comparisons between MRSA-related SSI and 

non MRSA-related SSI patients clearly indicate that there are significant differences 

across these groups of patients with respect to a range of demographic, clinical and 

hospital related variables. The goal of the models presented in the following sections is to 

develop the best performing model using the most parsimonious set of predictors that are 

known to the clinician close to the time of admission. Thus, variables that are not 

available until later in the hospital visit, or those that require complex calculations based 

on information from the medical record will be excluded. 

 

4.5.2 Logistic Regression Model 

A logistic regression model was developed to predict MRSA-SSI. Initially, all 

variables that were univariately significant according to Table 5 were included in the 

model and forwards-backwards stepwise variable selection was used to identify the 

optimal model. The model was optimized by minimizing Akaike Information Criterion 

(AIC) – a global comparative metric of model performance. The final logistic regression 

model for hypothesis 2 is shown in Figure 21.  

MRSA_SSI ~ AGE + ELECTIVE + FEMALE + LOS + NCHRONIC + NDX + PAY1 +  
     RACE + TRAN_IN + ZIPINC_QRTL + MRSAHX + ANTIBX + SUSMRSA +  
     HOSP_LOCTEACH + HOSP_REGION + CM_AIDS + CM_ALCOHOL + CM_ANEMDEF + CM_ARTH +        
     CM_BLDLOSS +  CM_CHF + CM_CHRNLUNG + CM_COAG + CM_DEPRESS + CM_DM + CM_DMCX           
     CM_DRUG + CM_HTN_C + CM_HYPOTHY + CM_LIVER + CM_LYTES + CM_NEURO +  
     CM_OBESE + CM_PARA + CM_PERIVASC + CM_PSYCH + CM_TUMOR + CM_VALVE +  
     CM_WGHTLOSS 
 

Figure 21: Logistic Regression Model Specification for Hypothesis 2 
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The final model includes a substantial number of predictors and achieves very 

strong predictive performance. The relative contribution of each predictor, while 

adjusting for all others, is presented below in Table 26. Odds ratios quantify the effect of 

each predictor on the outcome, 95% confidence intervals provide an estimate of 

variability, and p-values indicate statistical significance, with p = 0.05 used as the 

threshold value for significance. 

 

Table 26: Odds Ratios, Confidence Intervals, and p-values for Logistic Regression Model 
(Hypothesis 2) 

Predictor OR 2.5% CI 97.5% 
CI 

P-
Value 

(Intercept) 0.06 0.04 0.07 < .0001 
Age 1.02 1.01 1.02 < .0001 
Surgery type (ref: Non-elective) 
  Elective 

 
0.66 

 
0.61 

 
0.71 

 
< .0001 

Gender (ref: Male) 
  Female 

 
0.75 

 
0.69 

 
0.81 

 
< .0001 

Length of stay 1.00 1.00 1.00 < .0001 
Number of chronic conditions 0.61 0.69 0.81 < .0001 
Number of diagnoses 1.34 1.32 1.36 < .0001 
Primary expected payer (ref: Medicare) 
  Medicaid 
  Private insurance 
  Self-pay 
  No charge 
  Other 

 
1.07 
1.04 
1.21 
1.09 
1.69 

 
0.93 
0.94 
0.98 
0.60 
1.39 

 
1.23 
1.15 
1.50 
1.98 
2.07 

 
0.321 
0.469 
0.075 
0.777 

< .0001 
Race (ref: White)  
  Black 
  Hispanic 
  Asian/Pacific Islander 
  Native American 
  Other 

 
0.77 
0.63 
0.42 
1.04 
0.49 

 
0.68 
0.55 
0.30 
0.60 
0.39 

 
0.86 
0.73 
0.58 
1.79 
0.63 

 
< .0001 
< .0001 
< .0001 

0.889 
< .0001 

Transfer in to hospital (ref: Not transferred in) 
  Transferred in from a different acute care hospital 
  Transferred in from another type of health facility 

 
1.23 
2.40 

 
1.04 
1.85 

 
1.46 
3.11 

 
0.018 

< .0001 
Median income of quartile of patient ZIP code (ref: Quartile 1) 
  Quartile 2 
  Quartile 3 
  Quartile 4 

 
0.89 
0.78 
0.74 

 
0.80 
0.70 
0.66 

 
0.98 
0.87 
0.83 

 
0.020 

< .0001 
< .0001 

History of MRSA infection (ref: No history) 1.80 1.23 2.64 0.003 
Long-term (current) antibiotic use (ref: No) 1.99 0.99 3.98 0.053 
Suspected MRSA infection (ref: No) 5.10 3.10 8.41 < .0001 
Hospital teaching status (ref: Rural) 
  Urban non-teaching 
  Urban teaching 

 
1.17 
1.35 

 
1.00 
1.16 

 
1.37 
1.58 

 
0.053 

< .0001 
Hospital region (ref: Northeast)     
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  Midwest 
  South 
  West  

0.83 
1.14 
0.85 

0.73 
1.02 
0.75 

0.94 
1.27 
0.97 

0.004 
0.017 
0.014 

Comorbidity: AIDS (ref: No) 2.62 1.06 6.45 0.037 
Comorbidity: Alcohol (ref: No) 1.21 0.96 1.53 0.113 
Comorbidity: Deficiency anemias (ref: No) 1.31 1.18 1.45 < .0001 
Comorbidity: Rheumatoid arthritis/collagen vascular diseases (ref: No) 1.90 1.52 2.36 < .0001 
Comorbidity: Chronic blood loss anemia (ref: No) 0.43 0.34 0.55 < .0001 
Comorbidity: Congestive heart failure (ref: No) 1.26 1.08 1.49 0.005 
Comorbidity: Chronic pulmonary disease (ref: No) 1.61 1.45 1.79 < .0001 
Comorbidity: Coagulopathy (ref: No) 0.49 0.41 0.59 < .0001 
Comorbidity: Depression (ref: No) 1.96 1.73 2.22 < .0001 
Comorbidity: Diabetes (uncomplicated) (ref: No) 1.63 1.47 1.81 < .0001 
Comorbidity: Diabetes with chronic complications (ref: No) 2.37 1.99 2.82 < .0001 
Comorbidity: Drug abuse (ref: No) 1.82 1.41 2.36 < .0001 
Comorbidity: Hypertension (ref: No) 1.45 1.31 1.59 < .0001 
Comorbidity: Liver disease (ref: No) 1.36 1.07 1.74 0.012 
Comorbidity: Fluid and electrolyte disorders (ref: No) 0.62 0.56 0.69 < .0001 
Comorbidity: Other neurological disorders (ref: No) 1.45 1.23 1.71 < .0001 
Comorbidity: Obesity (ref: No) 1.50 1.34 1.68 < .0001 
Comorbidity: Paralysis (ref: No) 1.93 1.52 2.45 < .0001 
Comorbidity: Peripheral vascular disorders (ref: No) 1.25 1.07 1.45 0.004 
Comorbidity: Psychoses (ref: No) 3.58 2.88 4.47 < .0001 
Comorbidity: Solid tumor without metastasis (ref: No) 1.90 1.46 2.46 < .0001 
Comorbidity: Valvular disease (ref: No) 1.67 1.34 2.09 < .0001 
Comorbidity: Weight loss (ref: No) 1.76 1.49 2.08 < .0001 

 

Demographic variables most associated with MRSA infection include age, 

gender, primary payer, race, and income. Females were much less likely to suffer from 

MRSA-SSI than males (OR: 0.785; 95% CI: 0.69 to 0.81). In comparison to Medicare 

patients, other patients (OR: 1.69; 95% CI: 1.39 to 2.07) were the only group that reached 

statistical significance. There was a statistically significant difference in MRSA-SSI 

between White and Black patients (OR: 0.77; 95% CI: 0.68 to 0.86), Hispanics (OR:0.63; 

95% CI: 0.55 to 0.73), and Asian/Pacific Islanders (OR: 0.42; 95% CI: 0.30 to 0.58), all 

of whom were less likely to experience MRSA-SSI. In contrast, Others (OR: 1.69; 95% 

CI: 1.39 to 2.07) exhibited higher risk. Income is also shown to affect the odds of MRSA 

infection, with patients in the lowest quartile being most susceptible. Patients in Quartile 

2 (OR: 0.89; 95% CI: 0.80 to 0.98), Quartile 3 (OR: 0.78; 95% CI: 0.70 to 0.87), and 
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Quartile 4 (OR: 0.74; 95% CI: 0.66 to 0.83) exhibited progressively lower risk. Although 

the effect is small, age is also a significant predictor (OR: 1.02; 95% CI: 1.01 to 1.02). 

 Hospital-related predictors included teaching status and region. In contrast to 

patients in rural hospitals, patients in urban, non-teaching hospitals (OR: 1.17; 95% CI: 

1.00 to 1.37) and patients in urban teaching hospitals (OR: 1.35; 95% CI: 1.16 to 1.58) 

exhibited higher risk. Patients in the South (OR: 1.14; 95% CI: 1.02 to 1.27) were more 

likely to be infected than those in the Northeast, in contrast to patients in the Midwest 

(OR: 0.83; 95% CI: 0.73 to 0.94) and West (OR: 0.85; 95% CI: 0.75 to 0.97) who were 

less likely to be infected. Finally, patients who transferred in from either a different acute 

care hospital (OR: 1.23; 95% CI: 1.04 to 1.46) or another type of health facility (OR: 

2.40; 95% CI: 1.85 to 3.11) were at higher risk. 

Procedure-related variables most predictive of MRSA-SS include surgery type, 

with patients undergoing elective surgery substantially less likely to suffer MRSA-SSI 

compared with those undergoing urgent surgery (OR: 0.66; 95% CI: 0.61 to 0.71). 

Number of diagnoses was associated with increased risk (OR: 1.34; 95% CI: 1.32 to 

1.36) whereas number of chronic conditions was associated with reduced risk (OR: 0.61; 

95% CI: 0.69 to 0.81). 

Patients with history of MRSA infection (OR: 1.80; 95% CI: 1.23 to 1.64) and 

suspected MRSA infection on admission (OR: 5.10; 95% CI: 3.10 to 8.41) were all more 

likely to have the infection. In addition, several comorbidities were associated with 

increased risk of MRSA-SSI. These were AIDS (OR: 2.62; 95% CI: 1.06 to 6.45), 

deficiency anemias (OR: 1.31; 95% CI: 1.18 to 1.45), rheumatoid arthritis (OR: 1.90; 

95% CI: 1.52 to 2.36), congestive heart failure (OR: 1.26; 95% CI: 1.08 to 1.49), chronic 
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pulmonary disease (OR: 1.61; 95% CI: 1.45 to 1.79), depression (OR: 1.96; 95% CI; 1.73 

to 2.22), uncomplicated diabetes (OR: 1.63; 95% CI: 1.47 to 1.81), diabetes with chronic 

complications (OR: 2.37; 95% CI: 1.99 to 2.82), drug abuse (OR: 1.82; 95% CI: 1.41 to 

2.36), hypertension (OR: 1.41; 95% CI: 1.31 to 1.59), liver disease (OR: 1.36; 95% CI: 

1.07 to 1.74), other neurological disorders (OR: 1.45; 95% CI: 1.23 to 1.71), obesity (OR: 

1.50; 95% CI: 1.34 to 1.68), paralysis (OR: 1.93; 95% CI: 1.52 to 2.45), peripheral 

vascular disorders (OR: 1.25; 95% CI: 1.07 to 1.45), psychoses (OR: 3.58; 95% CI: 2.88 

to 4.47), valvular disease (OR: 1.67; 95% CI: 1.34 to 2.09), and weight loss (OR: 1.76; 

95% CI: 1.49 to 2.08).  

In contrast, chronic blood loss anemia (OR: 0.43; 95% CI: 0.34 to 0.55), 

coagulopathy (OR: 0.49; 95% CI: 0.41 to 0.59) and fluid and electrolyte disorders (OR: 

0.62; 95% CI: 0.56 to 0.69) were significantly associated with reduced risk. While the 

model contains a relatively large number of predictors and the contribution of some 

predictors is small, the model performs very well.  

As described in Chapter 3, the dataset was split into training and test sets, with 

85% of the data used for training and 15% of the data used to evaluate the final model. 

The total sample size was 204,312, which was broken down into training/test and 

MRSA/Non-MRSA cases as shown in Table 27. 

 

Table 27: Training Size for Hypothesis 2 Logistic Regression Model 
 

 Training size Test size 

Cl
as

s Non MRSA-SSI 8,228 1,507 

MRSA-SSI 8,454 1,438 
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Performance on the logistic regression model is summarized in Table 17 and 

Table 18 below. There were 1,110 true positives, 1,152 true negatives, 355 false 

positives, and 328 false negatives. 

 

Table 28: Confusion Matrix for Hypothesis 2 Logistic Regression Model 

 
  

Actual  
 MRSA-SSI Non MRSA-SSI 

Pr
ed

ic
te

d MRSA-SSI 1,110 355 

Non MRSA-SSI 328 1,152 

 

Assuming a cutoff of 0.5, sensitivity was calculated as 0.77 and specificity as 

0.76. Figure 22 illustrates the overall performance of the model at different cutoff values.  

 

Figure 22: ROC Curve for Hypothesis 2 Logistic Regression Model 
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The area under the curve was 0.85 which represents strong predictive 

performance. 

Table 29: Performance of Hypothesis 2 Logistic Regression Model 
 

 Performance 

St
at

is
tic

 Sensitivity 0.77 

Specificity 0.76 

AUC 0.85 

 

As with Hypothesis 1, a learning curve was plotted to determine the bias/variance 

tradeoff.  

 

 

Figure 23: Learning Curve for Hypothesis 2 Logistic Regression Model 
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For this logistic regression model, training error and test error converge at a 

relatively small sample size and stay constant as the sample size increases. Adding more 

training data neither has a positive nor negative effect as both training and test error 

remain low. Thus, it can be seen that the model has low bias (i.e., it reflects the true 

model) and high variance meaning it generalizes well to new data. 

 

4.5.3 Artificial Neural Network Model 

Predictors for the neural network were the same as those used in the logistic 

regression model. Similarly, the dataset was split into training and test sets, with 85% of 

the data used for training and 15% of the data used to evaluate the final model. The total 

sample size was 19,627, which was broken down into training/test and MRSA/Non-

MRSA cases as shown in Table 27.  

 

Table 30: Training Size for Hypothesis 2 Neural Network Model 
 

 Training size Test size 

Cl
as

s  Non MRSA-SSI 8,228 1,507 

MRSA-SSI 8,454 1,438 

 

Within the training set, 10-fold cross validation was used to determine the optimal 

number of nodes in the neural network’s hidden layer. The neural network model 

specification is shown in  Figure 24 and the overall sample size and breakdown of 

training/test data and MRSA/non-MRSA cases is shown in Table 30. 
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MRSA_SSI ~  AGE + ELECTIVE + FEMALE + LOS + NCHRONIC + NDX + PAY1 +  
     RACE + TRAN_IN + ZIPINC_QRTL + MRSAHX + ANTIBX + SUSMRSA +  
     HOSP_LOCTEACH + HOSP_REGION + CM_AIDS + CM_ALCOHOL + CM_ANEMDEF + CM_ARTH +        
     CM_BLDLOSS +  CM_CHF + CM_CHRNLUNG + CM_COAG + CM_DEPRESS + CM_DM +  
     CM_DMCX +   CM_DRUG + CM_HTN_C + CM_HYPOTHY + CM_LIVER + CM_LYTES +  
     CM_NEURO  + CM_OBESE + CM_PARA + CM_PERIVASC + CM_PSYCH + CM_TUMOR +     
     CM_VALVE + CM_WGHTLOSS 
 

Figure 24: Neural Network Model Specification for Hypothesis 2 

 

Performance on the neural network model is summarized in Table 31. There were 

1,122 true positives, 1,236 true negatives, 385 false positives, and 202 false negatives.  

 

Table 31: Confusion Matrix for Hypothesis 2 Neural Network Model 
  

Actual  
 MRSA-SSI Non MRSA-SSI 

Pr
ed

ic
te

d MRSA-SSI 1,236 385 

Non MRSA-SSI 202 1,122 

 

Assuming a cutoff of 0.5, sensitivity was calculated as 0.73 and specificity as 

0.87. Figure 12 illustrates the overall performance of the model at different cutoff values. 

The optimal number of hidden nodes is 24 and the overall error rate is 0.20. 

 

Table 32: Performance of Hypothesis 2 Neural Network Model 
 

 Performance 

St
at

is
tic

 

Sensitivity 0.73 

Specificity 0.87 

AUC 0.86 

Hidden Nodes 24 

Error Rate 0.20 
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The area under the curve was 0.86 which represents strong predictive 

performance.  

 

Figure 25: ROC Curve for Hypothesis 2 Neural Network Model 

 

 As with the logistic regression model, a learning curve was plotted to determine 

the bias/variance tradeoff. 
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Figure 26: Learning Curve for Hypothesis 2 Neural Network Model 
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Figure 27: Optimal Number of Hidden Nodes for Hypothesis 2 Neural Network Model 

 

One final tuning parameter for the neural network is the number of nodes in the 

hidden layer. As indicated above, the optimal number for the hypothesis 2 model is 24. 

Figure 27 illustrates the error rate for an increasing number of hidden layer nodes. As can 

be seen, after approximately 24 nodes the impact of additional nodes is minimal. 

Although computational power is not an issue and there is no reason to restrict the 

number of nodes in the hidden layer, this option could be considered if it were needed. 
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4.5.4 Comparative Performance of the Logistic Regression and Neural Network Models 

for Hypothesis 2 

Table 33 summarizes the relative performance of the logistic regression and 

neural network models for the prediction of MRSA-SSI infection in surgical patients. 

 

Table 33: Comparative Performance of Logistic Regression and Neural Network Models for 
Hypothesis 2 

  Model 
 

 Logistic 
Regression 

Neural 
Network 

St
at

is
tic

 Sensitivity 0.77 0.73 

Specificity 0.76 0.87 

AUC 0.85 0.86 

 

 Both models perform very well with an AUC of 0.85 or higher and good levels of 

sensitivity and specificity. On balance, the neural network model exhibits superior 

performance. 

4.6 Hypothesis 3 — Prediction of MRSA Infection in S. aureus Patients 

The first hypothesis aims to predict the incidence of MRSA infection in surgical 

patients using a range of known demographic, clinical, and hospital-related variables. To 

facilitate and initial selection of variables for incorporation in the models, a descriptive 

analysis was performed. Descriptive statistics and p-values were calculated for MRSA 

and non-MRSA patients. Case and control definitions are illustrated in Figure 3.  

 For continuous variables, the Wilcoxon Rank Sum test was used. The Wilcoxon 

Rank Sum test is a non-parametric hypothesis test that is appropriate for both normally-
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distributed and non-normally-distributed data. The test compares the mean of data 

between the two groups and provides p-values that quantify the significance of the 

difference in means between the group. In all cases, a cut-off of p < 0.05 was used to 

assess statistical significance. 

 For categorical variables, the Chi-Square test of association was used to ascertain 

whether the difference in proportion in levels of a variable between MRSA and non-

MRSA patients are statistically significant. The chi-square test requires the two variables 

to be categorical, the groups defined by the variables to be independent, and the sample 

size to be large (i.e., 80 percent of expected frequencies must be greater than 5 and all 

expected frequencies must be greater than 1.) 

 Differences between the two groups are described using means (and standard 

deviations) for continuous variables and proportions (percentages) for categorical 

variables. Key demographic variables, for MRSA patients, are presented visually. 

 

4.6.1 Descriptive Analysis 

 Table 34 summarizes the means, standard deviations, and p-values for continuous 

demographic variables. The null hypothesis in each case is that there is no difference in 

means between MRSA and non-MRSA patients. Variables analyzed were age in years at 

admission, length of stay in days, number of chronic conditions, number of diagnoses, 

number of procedures performed, number of days after admission until the first procedure 

was performed, and number of comorbidities. 
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Table 34: Demographic Characteristics of the NIS Data Stratified by MRSA Status (Continuous 
Variables) 

Variable MRSA-SSI 
Mean (SD) 

MSSA-SSI 
Mean (SD) 

P-Value 

Age in years at admission (years) 58.56 (17.85) 52.66 (19.03) < .0001 
Length of stay (days) 14.75 (18.17) 10.02 (12.86) < .0001 
Number of chronic conditions 5.70 (3.33) 4.54 (3.17) < .0001 
Number of diagnoses 14.74 (6.61) 11.91 (6.13) < .0001 
Number of procedures 4.77 (3.83) 3.83 (2.90) < .0001 
Number of days to first procedure 3.11 (6.30) 2.13 (5.05) < .0001 
Number of comorbidities 3.25 (2.08) 2.43 (1.93) < .0001 

 

 Patients with MRSA-SSI were generally older than those with MSSA-SSI, with a 

mean age of 58.56 (SD 17.85) compared to 52.66 (SD 19.03). Figure 28 illustrates the 

difference in age distribution for MRSA-SSI and MSSA-SSI patients. 

 

 

Figure 28: Age Distribution of MRSA-SSI and MSSA-SSI Patients 

 



134 

The average length of stay for MRSA-SSI patients was 14.75 days (SD 18.17) 

and 10.02 days (SD 12.86) for MSSA-SSI patients. Similarly, MRSA-SSI patients had a 

higher number of chronic conditions, 5.70 (SD 3.33) compared with 4.54 (3.17); a larger 

number of diagnoses, 14.74 (SD 6.61) compared to 11.91 (SD 6.13); a larger number of 

procedures, 4.77 (SD 3.83) compared to 3.83 (SD 2.90); a longer time from admission 

until performance of the first procedure, 3.11 days (SD 6.30) compared to 2.13 (SD 

5.05); and, a higher number of comorbidities, 3.25 (SD 2.08) compared to 2.43 (SD 

1.93). In all cases, the differences between MRSA-SSI and MSSA-SSI patients were 

statistically significant, suggesting that these variables could be useful in differentiating 

these infections. 

 Categorical variables analyzed were Gender, Primary Expected Payer, Race, 

Median income of patient zip code (quartile), Surgery Type, Hospital Region, Hospital 

Bed Size, and Hospital Teaching Status. Frequencies and percentages of levels of these 

variables are presented in Table 35 for MRSA and non-MRSA patients.  

 

Table 35: Demographic Characteristics of the NIS Data Stratified by MRSA Status (Categorical 
Variables) 

Variable MRSA-SSI 
Frequency (%) 

MSSA-SSI 
Frequency (%) 

P-Value 

Gender 
  Male 
  Female 

 
5,431 (49.13) 
5,623 (50.87) 

 
4,918 (55.07) 
4,012 (44.93) 

 
< .0001 

Primary expected payer 
  Medicare 
  Medicaid 
  Private insurance 
  Self-pay 
  No charge 
  Other 

 
5,579 (50.54) 
1,569 (14.21) 
2,936 (26.60) 

389 (3.52) 
51 (0.46) 

515 (4.67) 

 
3,156 (35.57) 
1,330 (14.91) 
3,452 (38.69) 

364 (4.08) 
45 (0.50) 

575 (6.44) 

 
< .0001 

Race 
  White 
  Black 
  Hispanic 
  Asian/Pacific Islander 
  Native American 

 
7,859 (76.34) 
1,299 (12.62) 

751 (7.29) 
101 (0.98) 

67 (0.65) 

 
6,414 (78.85) 

729 (8.96) 
609 (7.49) 
112 (1.38) 

56 (0.69) 

 
< .0001 
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  Other 218 (2.12) 214 (2.63) 
Median income of national 
quartile or patient ZIP code 
  Quartile 1 
  Quartile 2 
  Quartile 3 
  Quartile 4 

 
 

3,388 (31.33) 
2,882 (26.65) 
2,542 (23.50) 
2,003 (18.52) 

 
 

2,172 (24.87) 
2,376 (27.21) 
2,226 (25.49) 
1,959 (22.43) 

 
 

< .0001 

Surgery type 
  Non-elective 
  Elective 

 
7,675 (69.66) 
3,343 (30.34) 

 
6,307 (70.86) 
2,594 (29.14) 

 
0.0660 

Hospital region 
  Northeast 
  Midwest 
  South 
  West 

 
1,765 (15.96) 
2,325 (21.03) 
5,000 (45.22) 
1,967 (17.79) 

 
1,689 (18.91) 
2,212 (24.76) 
3,212 (35.95) 
1,821 (20.38) 

 
< .0001 

Hospital bed size 
  Small 
  Medium 
  Large 

 
1,283 (11.68) 
2,622 (23.87) 
7,078 (64.45) 

 
1,077 (12.14) 
2,098 (23.65) 
5,695 (64.21) 

 
0.6008 

Hospital teaching status 
  Rural 
  Urban non-teaching 
  Urban teaching 

 
710 (6.46) 

3,584 (32.63) 
6,689 (60.90) 

 
505 (5.69) 

2,546 (28.70) 
5,819 (65.60) 

 
< .0001 

  

As with the continuous variables, there were statistically significant differences 

between MRSA-SSI and MSSA-SSI patients. Figure 29 illustrates the breakdown of 

gender for MRSA patients. In contrast to hypotheses 1 and 2, a greater proportion of 

MRSA-SSI patients were female, 50.87% compared to 44.93% of MSSA-SSI patients, 

and, as expected for an older population, a greater proportion utilized Medicare, 50.87% 

compared to 35.57%.  
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Figure 29: Gender of MRSA-SSI and MSSA-SSI Patients 

 

The racial breakdown across both groups is broadly similar, however MRSA-SSI 

patients are more likely to be black than MSSA-SSI patients, 12.62% compared to 

8.96%. Figure 30 summarizes the distribution of race for MRSA-SSI and MSSA-SSI 

patients. 
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 Figure 30: Distribution of Race for MRSA-SSI and MSSA-SSI Patients 

 

MRSA-SSI patients were more likely to be poorer than non MSSA-SSI patients: 

31.33% of MRSA-SSI patients were in the lowest quartile of income for their zip code 

compared with 24.87% of MSSA-SSI patients. The proportion of patients whose income 

was in the third or fourth quartile for their zip code was commensurately lower: 23.50% 

of MRSA-SSI patients had income in the third quartile compared with 25.49 of MSSA-

SSI patients, and 18.52% of MSSA-SSI patients had income in the fourth quartile 

compared with 22.43% of non-MRSA patients. 

 A number of hospital and surgery related factors were also compared. There were 

no meaningful differences between MRSA-SSI and MSSA-SSI patients based on whether 
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surgery was elective or non-elective. As with previous hypotheses, MRSA-SSI was more 

prevalent in hospitals in the South: 45.22% of MRSA-SSI patients were treated in 

hospitals in the South compared with 35.95% of MSSA-SSI patients. Proportions of 

MRSA-SSI and MSSA-SSI  patients were broadly similar across different hospital sizes 

and these differences were not statistically significant. Finally, a slightly greater 

proportion of MRSA-SSI patients, 6.46%, were more likely to be treated in rural 

hospitals, compared with 85.69% of MSSA-SSI patients. 

 As with the continuous variables described above, most categorical factors exhibit 

statistically significant differences between MRSA-SSI and MSSA-SSI patients, and 

thus, should be considered for inclusion into the logistic regression and artificial neural 

network models. 

 Finally, a number of additional risk factors were considered, including long-term 

antibiotic use, risk of mortality (APRDRG calculated score), severity (APRDRG 

calculated score), a broad range of comorbidities, history of MRSA infection, and 

transfer in or out of the hospital. These risk factors are described in Table 36. 

 

Table 36: Additional Risk Factors Stratified by MRSA Status 

Variable MRSA-SSI 
Frequency (%) 

MSSA-SSI 
Frequency (%) 

P-Value 

Long-term (current antibiotic use) 
  Yes 
  No 

 
70 (0.63) 

10,987 (99.37) 

 
65 (0.73) 

8,869 (99.27) 

 
0.4174 

Risk of mortality (APRDRG) 
  No class specified 
  Minor likelihood of dying 
  Moderate likelihood of dying 
  Major likelihood of dying 
  Extreme likelihood of dying 

 
0 (0.00) 

3,627 (32.80) 
3,282 (29.68) 
2,472 (22.36) 
1,676 (15.16) 

 
1 (0.01) 

4,588 (51.35) 
2,592 (29.01) 
1,278 (14.30) 

475 (5.32) 

 
< .0001 

Severity (APRDRG) 
  No class specified 
  Minor loss of function 
  Moderate loss of function 
  Major loss of function 

 
0 (0.00) 

899 (8.13) 
3,497 (31.63) 
4,075 (36.85) 

 
1 (0.01) 

1,347 (15.08) 
3,872 (43.34) 
2,832 (31.70) 

 
< .0001 
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  Extreme loss of function 2,586 (23.39) 882 (9.87) 
Comorbidity: AIDS 
  Yes 
  No 

 
30 (0.27) 

11,027 (99.73) 

 
23 (0.26) 

8,911 (99.74) 

 
0.8495 

Comorbidity: Alcohol 
  Yes 
  No 

 
408 (3.69) 

10,649 (96.31) 

 
294 (3.29) 

8,640 (96.71) 

 
0.1274 

Comorbidity: Deficiency anemias 
  Yes 
  No 

 
3,040 (27.49) 
8,017 (52.77) 

 
1,760 (19.70) 
7,174 (80.30) 

 
< .0001 

Comorbidity: Rheumatoid 
arthritis/collagen vascular diseases 
  Yes 
  No 

 
 

468 (4.23) 
10,589 (95.77) 

 
 

379 (4.24) 
8,555 (95.76) 

 
 

0.9733 

Comorbidity: Chronic blood loss anemia 
  Yes 
  No 

 
 

221 (2.00) 
10,836 (98.00) 

 
 

122 (1.37) 
8,812 (98.63) 

 
 

0.0006 

Comorbidity: Congestive heart failure 
  Yes 
  No 

 
1,205 (10.90) 
9,852 (89.10) 

 
453 (5.07) 

8,481 (94.93) 

 
< .0001 

Comorbidity: Chronic pulmonary 
disease 
  Yes 
  No 

 
 

2,468 (22.32) 
8,589 (77.68) 

 
 

1,483 (16.60) 
7,451 (83.40) 

 
 

< .0001 

Comorbidity: Coagulopathy 
  Yes 
  No 

 
591 (5.35) 

10,466 (94.65) 

 
283 (3.17) 

8,651 (45.25) 

 
< .0001 

Comorbidity: Depression 
  Yes 
  No 

 
1,746 (15.79) 
9,311 (84.21) 

 
1,318 (14.75) 
7,616 (85.25) 

 
0.0428 

Comorbidity: Diabetes (uncomplicated) 
  Yes 
  No 

 
 

2,283 (22.46) 
8,574 (77.54) 

 
 

1,646 (18.42) 
7,288 (81.58) 

 
 

< .0001 

Comorbidity: Diabetes with chronic 
complications 
  Yes 
  No 

 
 

1,081 (9.78) 
9,976 (90.22) 

 
 

587 (6.57) 
8,347 (93.43) 

 
 

< .0001 

Comorbidity: Drug abuse 
  Yes 
  No 

 
415 (3.75) 

10,642 (96.25) 

 
326 (3.65) 

8,608 (96.35) 

 
0.6980 

Comorbidity: Hypertension 
  Yes 
  No 

 
6,509 (58.97) 
4,548 (41.13) 

 
4,463 (49.96) 
4,471 (50.04) 

 
< .0001 

Comorbidity: Hypothyroidism 
  Yes 
  No 

 
1,361 (12.31) 
9,696 (87.69) 

 
909 (10.17) 

8,025 (89.83) 

 
< .0001 

Comorbidity: Liver disease 
  Yes 
  No 

 
385 (3.48) 

10,672 (96.52) 

 
221 (2.47) 

8,713 (97.53) 

 
< .0001 

Comorbidity: Lymphoma 
  Yes 
  No 

 
94 (0.85) 

10,963 (99.15) 

 
64 (0.72) 

8,870 (99.28) 

 
0.2882 

Comorbidity: Fluid and electrolyte 
disorders 
  Yes 
  No 

 
 

3,322 (30.04) 
7,735 (69.96) 

 
 

1,724 (19.30) 
7,210 (80.70) 

 
 

< .0001 
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Comorbidity: Metastatic cancer 
  Yes 
  No 

 
335 (3.03) 

10,722 (96.97) 

 
236 (2.64) 

8,698 (97.36) 

 
0.1014 

Comorbidity: Other neurological 
disorders 
  Yes 
  No 

 
 

966 (8.74) 
10,091 (91.26) 

 
 

638 (7.14) 
8,296 (92.86) 

 
 

< .0001 

Comorbidity: Obesity 
  Yes 
  No 

 
2,209 (19.98) 
8,848 (80.02) 

 
1,543 (17.27) 
7,391 (82.73) 

 
< .0001 

Comorbidity: Paralysis 
  Yes 
  No 

 
477 (4.31) 

10,580 (95.69) 

 
277 (3.10) 

8,657 (96.90) 

 
< .0001 

Comorbidity: Peripheral vascular 
disorders 
  Yes 
  No 

 
 

1,206 (10.91) 
9,851 (89.09) 

 
 

637 (7.13) 
8,297 (92.87) 

 
 

< .0001 

Comorbidity: Psychoses 
  Yes 
  No 

 
706 (6.39) 

10,351 (93.61) 

 
419 (4.69) 

8,515 (95.31) 

 
< .0001 

Comorbidity: Pulmonary circulation 
disorders 
  Yes 
  No 

 
 

341 (3.08) 
10,716 (96.92) 

 
 

158 (1.77) 
8,776 (98.23) 

 
 

< .0001 

Comorbidity: Renal failure 
  Yes 
  No 

 
1,486 (13.44) 
9,571 (86.56) 

 
646 (7.23) 

8,288 (92.77) 

 
< .0001 

Comorbidity: Solid tumor without 
metastasis 
  Yes 
  No 

 
 

348 (3.15) 
10,709 (96.85) 

 
 

282 (3.16) 
8,652 (96.84) 

 
 

0.9706 

Comorbidity: Peptic ulcer disease 
excluding bleeding 
  Yes 
  No 

 
 

3 (0.02) 
11,054 (99.97) 

 
 

1 (0.01) 
8,933 (99.99) 

 
 

0.4283 

Comorbidity: Valvular disease 
  Yes 
  No 

 
516 (4.67) 

10,541 (95.33) 

 
322 (3.60) 

8,612 (96.40) 

 
0.0002 

Comorbidity: Weight loss 
  Yes 
  No 

 
1,540 (13.93) 
9,517 (86.07) 

 
554 (6.20) 

8,380 (93.80) 

 
< .0001 

History of MRSA infection 
  Yes 
  No 

 
234 (2.12) 

10,823 (97.88) 

 
135 (1.51) 

8,799 (98.49) 

 
0.0016 

Transfer in to hospital 
  Not transferred in 
  Transferred in from a different acute 
care hospital 
  Transferred in from another type of 
health facility 

 
9,607 (87.35) 

906 (8.24) 
 

485 (4.41) 

 
8,026 (90.34) 

628 (7.07) 
 

230 (2.59) 

 
< .0001 

Transfer out of hospital 
  Not transferred out 
  Transferred out to a different acute 
care hospital 
  Transferred out to another type of 
health facility 

 
6,780 (61.38) 

267 (2.42) 
 

3,999 (36.20) 

 
6,918 (77.46) 

143 (1.60) 
 

1,870 (20.94) 

 
< .0001 

Elixhauser Comorbidity Score 
(Readmission) 

110009.5956 8741.5422 < .0001 
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Elixhauser Comorbidity Score 
(Mortality) 

10696.1256 9129.5025 < .0001 

 

 In contrast to hypotheses 1 and 2, not all the listed comorbidities exhibited 

statistically-significant differences between MSRA-SSI and MSSA-SSI patients. In 

particular, AIDS, alcohol abuse,  rheumatoid arthritis, drug abuse, lymphoma, metastatic 

cancer, solid tumor, and peptic ulcer disease do not exhibit statistically-significant 

differences between the groups. There may be some overlap or collinearity between these 

predictors and it is likely that some of these will be selected out of the final models 

through the stepwise variable selection process. This hypothesis is supported by the 

Elixhauser comorbidity scores: both the readmission score and the mortality score are 

significantly higher for MRSA patients. This is also true for the APRDRG risk of 

mortality and severity measures. In essence all of these variables attempt to capture the 

same concept: the severity of illness and comorbidity burden. In the predictive models it 

will be important to include the best and most efficient measure of severity, and minimize 

the number if individual comorbidities included. Similarly, patients transferring in to the 

hospital and patients that transferred out of the hospital are also at increased risk of 

MRSA infection. Both of these variables also address a component of severity of illness, 

although the transfer out variable cannot be used to predict the infection as, by definition, 

it occurs at the end of the hospitalization after the infection has been diagnosed. Finally, 

current antibiotic use is not statistically-significant between the groups. Patients with 

long-term antibiotic use are over 5 times more likely to contract a MRSA infection, 

suggesting that this variable may also be a useful predictor. 

 The above descriptive analysis and comparisons between MRSA-SSI and MSSA-

SSI patients clearly indicate that there are significant differences across these groups of 
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patients with respect to a range of demographic, clinical and hospital related variables. 

The goal of the models presented in the following sections is to develop the best 

performing model using the most parsimonious set of predictors that are known to the 

clinician close to the time of admission. Thus, variables that are not available until later 

in the hospital visit, or those that require complex calculations based on information from 

the medical record will be excluded. 

 

4.6.2 Logistic Regression Model 

A logistic regression model was developed to predict MRSA-SSI for patients with 

S. aureus infections. Initially, all variables that were univariately significant according to 

Table 5 were included in the model and forwards-backwards stepwise variable selection 

was used to identify the optimal model. The model was optimized by minimizing Akaike 

Information Criterion (AIC) – a global comparative metric of model performance. The 

final logistic regression model for hypothesis 3 is shown in Figure 31.  

 

MRSA_SSI ~ AGE + ELECTIVE + FEMALE + LOS + NCHRONIC + NDX + NPR +  
    PAY1 + RACE + TRAN_IN + ZIPINC_QRTL + MRSAHX + SUSMRSA +  
    HOSP_BEDSIZE + HOSP_LOCTEACH + HOSP_REGION + APRDRG_Risk_Mortality +  
    APRDRG_Severity + CM_ANEMDEF + CM_CHF + CM_CHRNLUNG + CM_DEPRESS +  
    CM_DMCX + CM_LIVER + CM_METS + CM_NEURO + CM_PARA + CM_PSYCH +  
    CM_RENLFAIL + CM_VALVE + CM_WGHTLOSS 
 

Figure 31: Logistic Regression Model Specification for Hypothesis 3 

 

The final model includes a substantial number of predictors and achieves very 

strong predictive performance. The relative contribution of each predictor, while 

adjusting for all others, is presented below in Table 37. Odds ratios quantify the effect of 
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each predictor on the outcome, 95% confidence intervals provide an estimate of 

variability, and p-values indicate statistical significance, with p = 0.05 used as the 

threshold value for significance. 

 

Table 37: Odds Ratios, Confidence Intervals, and p-values for Logistic Regression Model 
(Hypothesis 3) 

Predictor OR 2.5% CI 97.5% CI P-
Value 

(Intercept) 0.37 0.28 0.49 < .0001 
Age 1.01 1.01 1.01 < .0001 
Surgery type (ref: Non-elective) 
  Elective 

 
1.16 

 
1.08 

 
1.25 

 
< .0001 

Gender (ref: Male) 
  Female 

 
1.23 

 
1.15 

 
1.31 

 
< .0001 

Length of stay 1.00 1.00 1.00 < .0001 
Number of chronic conditions 0.97 0.95 0.99 0.004 
Number of diagnoses 1.02 1.00 1.03 0.005 
Number of procedures 1.03 1.02 1.04 < .0001 
Primary expected payer (ref: Medicare) 
  Medicaid 
  Private insurance 
  Self-pay 
  No charge 
  Other 

 
0.84 
0.69 
0.75 
0.97 
0.73 

 
0.74 
0.64 
0.62 
0.61 
0.62 

 
0.94 
0.76 
0.90 
1.53 
0.85 

 
0.002 

< .0001 
0.002 
0.894 

< .0001 
Race (ref: White)  
  Black 
  Hispanic 
  Asian/Pacific Islander 
  Native American 
  Other 

 
1.44 
1.01 
0.79 
1.33 
0.85 

 
1.29 
0.89 
0.58 
0.86 
0.68 

 
1.61 
1.15 
1.07 
2.05 
1.05 

 
< .0001 

0.875 
0.130 
0.204 
0.124 

Transfer in to hospital (ref: Not transferred in) 
  Transferred in from a different acute care hospital 
  Transferred in from another type of health facility 

 
0.90 
1.28 

 
0.79 
1.07 

 
1.01 
1.53 

 
0.083 
0.008 

Median income of quartile of patient ZIP code (ref: Quartile 1) 
  Quartile 2 
  Quartile 3 
  Quartile 4 

 
0.85 
0.81 
0.73 

 
0.78 
0.74 
0.66 

 
0.93 
0.89 
0.81 

 
< .0001 
< .0001 
< .0001 

History of MRSA infection (ref: No history) 1.42 1.11 1.80 0.005 
Suspected MRSA infection (ref: No) 6.14 4.18 9.01 < .0001 
Hospital bed size(ref: Small) 
  Medium 
  Large 

 
1.15 
1.10 

 
1.02 
0.99 

 
1.20 
1.22 

 
0.-18 
0.074 

Hospital teaching status (ref: Rural) 
  Urban non-teaching 
  Urban teaching 

 
1.00 
0.84 

 
0.86 
0.73 

 
1.16 
0.97 

 
0.992 
0.019 

Hospital region (ref: Northeast) 
  Midwest 
  South 
  West  

 
0.86 
1.29 
0.98 

 
0.77 
1.18 
0.88 

 
0.96 
1.42 
1.09 

 
0.009 

< .0001 
0.709 

Risk of mortality (APRDRG) (ref:  No class specified) 
  Minor likelihood of dying 

 
1.00 

 
0.91 

 
1.10 

 
0.936 
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  Moderate likelihood of dying 
  Major likelihood of dying  

1.17 
1.39 

1.03 
1.14 

1.34 
1.70 

0.019 
0.001 

Severity (APRDRG) (ref:  No class specified) 
  Minor loss of function 
  Moderate loss of function 
  Major loss of function 

 
1.14 
1.34 
1.18 

 
1.01 
1.16 
1.47 

 
1.28 
1.54 
2.22 

 
0.001 
0.030 

< .0001 
Comorbidity: Deficiency anemias (ref: No) 1.15 1.07 1.25 < .0001 
Comorbidity: Congestive heart failure (ref: No) 1.21 1.06 1.38 0.004 
Comorbidity: Chronic pulmonary disease (ref: No) 1.16 1.07 1.25 < .0001 
Comorbidity: Depression (ref: No) 1.08 0.98 1.19 0.108 
Comorbidity: Diabetes with chronic complications (ref: No) 1.17 1.03 1.33 0.018 
Comorbidity: Liver disease (ref: No) 1.30 1.07 1.57 0.007 
Comorbidity: Metastatic cancer (ref: No) 0.80 0.66 0.98 0.027 
Comorbidity: Other neurological disorders (ref: No) 1.10 0.98 1.25 0.112 
Comorbidity: Paralysis (ref: No) 1.14 0.95 1.36 0.157 
Comorbidity: Psychoses (ref: No) 1.36 1.18 1.58 < .0001 
Comorbidity: Renal failure (ref: No) 1.19 1.05 1.34 0.005 
Comorbidity: Valvular disease (ref: No) 0.88 0.75 1.04 0.139 
Comorbidity: Weight loss (ref: No) 1.18 1.04 1.33 0.009 

 

Demographic variables most associated with MRSA infection include age, 

gender, primary payer, race, and income. Females were much more likely to suffer from 

MRSA-SSI than males (OR: 1.23; 95% CI: 1.15 to 1.31). In comparison to Medicare 

patients, Medicaid patients (OR: 0.84; 95% CI: 0.74 to 0.94), Private insurance patients 

(OR: 0.69; 95% CI: 0.64 to 0.76), self-pay patients (OR: 0.75; 95% CI: 0.62 to 0.90), and 

other patients (OR: 0.73; 95% CI: 0.62 to 0.85) all exhibited reduced risk of MRSA-SSI 

infection. There was a statistically significant difference in MRSA-SSI between White 

and Black patients (OR: 1.44; 95% CI: 0.1.29 to 1.61) but no differences between other 

groups. Income is also shown to affect the odds of MRSA-SSI, with patients in the lowest 

quartile being most susceptible. Patients in Quartile 2 (OR: 0.85; 95% CI: 0.78 to 0.93), 

Quartile 3 (OR: 0.81; 95% CI: 0.74 to 0.89), and Quartile 4 (OR: 0.73; 95% CI: 0.66 to 

0.81) exhibited progressively lower risk. Although the effect is small, age is also a 

significant predictor (OR: 1.01; 95% CI: 1.01 to 1.01). 

 Hospital-related predictors included bed size, teaching status and region. Patients 

in Medium sized hospitals (OR: 1.15; 95% CI: 1.02 to 1.20) and Large hospitals (OR: 
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1.10; 95% CI: 0.99 to 1.22) were more likely to contract MRSA-SSI than patients in 

Small hospitals. In contrast to patients in rural hospitals, patients in urban teaching 

hospitals (OR: 0.84; 95% CI: 0.73 to 0.97) exhibited reduced risk. Patients in the South 

(OR: 1.29; 95% CI: 1.18 to 1.42) were more likely to be infected than those in the 

Northeast, in contrast to patients in the Midwest (OR: 0.86; 95% CI: 0.77 to 0.96) who 

were less likely to be infected. Patients who transferred in from another type of health 

facility (OR: 1.28; 95% CI: 1.07 to 1.53) were at higher risk. 

Procedure-related variables most predictive of MRSA-SSI include surgery type, 

with patients undergoing elective surgery substantially more likely to suffer MRSA-SSI 

compared with those undergoing urgent surgery (OR: 1.66; 95% CI: 1.08 to 1.25). 

Number of diagnoses was associated with slightly increased risk (OR: 1.02; 95% CI: 1.00 

to 1.03) whereas number of chronic conditions was associated with reduced risk (OR: 

0.97; 95% CI: 0.95 to 0.99). Number of procedures was also associated with increased 

risk (OR: 1.03; 95% CI: 1.02 to 1.04). In addition, both of the APRDRG severity 

measures were significant predictors of infection with the risk of mortality class 

Moderate likelihood of dying (OR: 1.17; 95% CI: 1.03 to 1.43) and Major likelihood of 

dying (OR: 1.39; 95% CI: 1.14 to 1.70) having a significant impact. The Severity index, 

similarly, indicates increased risk. Patients with Minor loss of function (OR: 1.14; 95% 

CI: 1.01 to 1.28), Moderate loss of function (OR: 1.34; 95% CI: 1.16 to 1.54), and Major 

loss of function (OR: 1.18; 95% CI: 1.47 to 2.22) were all more likely to contract MRSA-

SSI. 

Patients with history of MRSA infection (OR: 1.42; 95% CI: 1.11 to 1.80) and 

suspected MRSA infection on admission (OR: 6.14; 95% CI: 4.18 to 9.01) were all more 
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likely to have the infection. In addition, several comorbidities were associated with 

increased risk of MRSA-SSI. These were: deficiency anemias (OR: 1.15; 95% CI: 1.07 to 

1.25), congestive heart failure (OR: 1.21; 95% CI: 1.06 to 1.38), chronic pulmonary 

disease (OR: 1.16; 95% CI: 107 to 1.25), diabetes with chronic complications (OR: 1.17; 

95% CI: 1.03 to 1.33), liver disease (OR: 1.30; 95% CI: 1.07 to 1.57), psychoses 

(OR:1.36; 95% CI: 1.18 to 1.58), renal failure (OR: 1.19; 95% CI: 1.05 to 1.34), and 

weight loss (OR: 1.18; 95% CI: 1.04 to 1.33).  

In contrast, metastatic cancer (OR: 0.80; 95% CI: 0.66 to 0.98) was significantly 

associated with reduced risk. While the model contains a relatively large number of 

predictors and the contribution of some predictors is small, the model performs very well.  

As described in Chapter 3, the dataset was split into training and test sets, with 

85% of the data used for training and 15% of the data used to evaluate the final model. 

The total sample size was 19,615, which was broken down into training/test and MRSA-

SSI/MSSA-SSI cases as shown in Table 38. 

 

Table 38: Training Size for Hypothesis 3 Logistic Regression Model 

 
 

 Training size Test size 

Cl
as

s  MSSA-SSI 8,161 1,467 

MRSA-SSI 8,511 1,476 

 

Performance on the logistic regression model is summarized in  

Table 39. There were 902 true positives, 952 true negatives,  515 false positives, 

and 574 false negatives. 
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Table 39: Confusion Matrix for Hypothesis 3 Logistic Regression Model 

 
  

Actual  
 MRSA-SSI MSSA-SSI 

Pr
ed

ic
te

d MRSA-SSI 902 515 

MSSA-SSI 574 952 

 

Assuming a cutoff of 0.5, sensitivity was calculated as 0.61 and specificity as 

0.64. Figure 22 illustrates the overall performance of the model at different cutoff values.  

 

Table 40: Performance of Hypothesis 3 Logistic Regression Model 
 

 Performance 

St
at

is
tic

 Sensitivity 0.61 

Specificity 0.64 

AUC 0.68 

 

The area under the curve was 0.68 which represents reasonable predictive 

performance. 
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Figure 32: ROC Curve for Hypothesis 3 Logistic Regression Model 

 

In order to assess the overall fit of the model and whether it is over or under fit, a 

learning curve was plotted.  
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Figure 33: Learning Curve for Hypothesis 3 Logistic Regression Model 

 

For this logistic regression model, training error and test error converge at a 

relatively small sample size and stay constant as the sample size increases. Adding more 

training data neither has a positive nor negative effect as both training and test error 

remain low. Thus, it can be seen that the model has low bias (i.e., it reflects the true 

model) and high variance meaning it generalizes well to new data. 

 

4.6.3 Artificial Neural Network Model 

Predictors for the neural network were the same as those used in the logistic 

regression model. Similarly, the dataset was split into training and test sets, with 85% of 

the data used for training and 15% of the data used to evaluate the final model. The 
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neural network model specification is shown in Figure 34 and the overall sample size and 

breakdown of training/test data and MRSA/non-MRSA cases is shown in Table 41. 

 

MRSA_SSI ~ AGE + ELECTIVE + FEMALE + LOS + NCHRONIC + NDX + NPR +  
    PAY1 + RACE + TRAN_IN + ZIPINC_QRTL + MRSAHX + SUSMRSA +  
    HOSP_BEDSIZE + HOSP_LOCTEACH + HOSP_REGION + APRDRG_Risk_Mortality +  
    APRDRG_Severity + CM_ANEMDEF + CM_CHF + CM_CHRNLUNG + CM_DEPRESS +  
    CM_DMCX + CM_LIVER + CM_METS + CM_NEURO + CM_PARA + CM_PSYCH +  
    CM_RENLFAIL + CM_VALVE + CM_WGHTLOSS 
 

Figure 34: Neural Network Model Specification for Hypothesis 3 

 

The total sample size was 19,615, which was broken down into training/test and 

MRSA-SSI/MSSA-SSI cases as shown in Table 41. Within the training set, 10-fold cross 

validation was used to determine the optimal number of nodes in the neural network’s 

hidden layer. 

 

Table 41: Training Size for Hypothesis 3 Neural Network Model 

 
 

 Training size Test size 

Cl
as

s MSSA-SSI 8,161 1,467 

MRSA-SSI 8,511 1,476 

 

Performance on the neural network model is summarized in Table 42. There were 

847 true positives, 977 true negatives, 490 false positives, and 629 false negatives.  
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Table 42: Confusion Matrix for Hypothesis 3 Neural Network Model 
  

Actual  
 MRSA-SSI MSSA-SSI 

Pr
ed

ic
te

d MRSA-SSI 847 490 

MSSA-SSI 629 977 

 

Assuming a cutoff of 0.5, sensitivity was calculated as 0.66 and specificity as 

0.57. 

Table 43: Performance of Hypothesis 3 Neural Network Model 
 

 Performance 

St
at

is
tic

 

Sensitivity 0.57 

Specificity 0.66 

AUC 0.67 

Hidden Nodes 26 

Error Rate 0.37 

 

 Figure 35 illustrates the overall performance of the model at different cutoff 

values.  
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Figure 35: ROC Curve for Hypothesis 3 Neural Network Model 

 

The area under the curve was 0.86 which represents strong predictive 

performance. The optimal number of hidden nodes is 24 and the overall error rate is 0.20 

 

In order to assess the overall fit of the model and whether it is over or under fit, a 

learning curve was plotted.  
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Figure 36: Learning Curve for Hypothesis 3 Neural Network Model 
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Figure 37: Optimal Number of Hidden Nodes for Hypothesis 3 Neural Network Model 

 

One final tuning parameter for the neural network is the number of nodes in the 

hidden layer. As indicated above, the optimal number for the hypothesis 3 model is 26. 

Figure 27 illustrates the error rate for an increasing number of hidden layer nodes. As can 

be seen, after about 26 nodes the impact of additional nodes is minimal. Although 

computational power is not an issue and there is no reason to restrict the number of nodes 

in the hidden layer, this option could be considered if it were needed. 
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4.6.4 Comparative Performance of the Logistic Regression and Neural Network Models 

for Hypothesis 3 

Table 44 summarizes the relative performance of the logistic regression and 

neural network models for the prediction of MRSA infection in surgical patients. 

 

Table 44: Comparative Performance of Logistic Regression and Neural Network Models for 
Hypothesis 3 

 

  Model 
 

 Logistic 
Regression 

Neural 
Network 

St
at

is
tic

 Sensitivity 0.61 0.57 

Specificity 0.64 0.66 

AUC 0.68 0.67 

 

 Both models perform very well with an AUC of 0.67 or over and good levels of 

sensitivity and specificity. The logistic regression model exhibits superior performance. 

4.7 Clinical Decision Support System 

 As described in Chapter 3, R Shiny was used to develop a clinical decision 

support system based on the logistic regression and artificial neural network models 

developed and evaluated for Hypothesis 1, 2 and 3. The CDSS provides a web-based 

interface for clinicians to enter the appropriate values for the required risk factors. The 

CDSS then calculates the probability of infection and makes a treatment 

recommendation. The application, which works equally well on mobile devices, is 

illustrated in Figure 38 and is available online.213 
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Figure 38: Clinical Decision Support System 
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CHAPTER 5 

DISCUSSION  

5.1 Overview 

The overarching goal of this research was to develop and evaluate models for the 

prediction of MRSA and MRSA-related SSI in patients undergoing major surgical 

procedures in the United States. Additionally, the study aimed to develop a predictive 

model of MRSA-related SSI that is effectively able to differentiate between resistant and 

non-resistant strains of Staphylococcus aureus. In all cases, the goal was to identify high-

risk patients a priori based on easily available demographic, clinical and hospital-level 

predictors so that appropriate prophylaxis may be given with the hope of preventing 

infection.  

This goal was addressed through a series of research questions, which aimed to: 

(1) estimate the prevalence of MRSA, SSI, MRSA-related SSI, and MSSA-related SSI in 

patients undergoing a major surgical procedure in the United States; (2) identify 

demographic, clinical, and hospital-level risk factors for these infections; (3) develop and 

evaluate predictive models for these infections; (4) determine whether neural network or 

logistic regression approaches are more effective; and (5) incorporate the models into a 

CDSS that could be used by clinicians.  
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This chapter discusses the results obtained in comparison to the reviewed 

literature, summarizes key predictors, and provides recommendations for the 

development and use of CDSSs for the prediction of MRSA-related infections.  

5.2 Prevalence 

 Prevalence was calculated from the NIS dataset using SAS survey procedures. 

These procedures correctly accounted for sample weights and thus produced nationally-

representative estimates.  

An average of 10,660,420 major surgical procedures (MSPs) took place annually 

between 2010 and 2014, and of these procedures, 112,534 resulted in an SSI, 

representing approximately 1%. Estimates of SSI in the literature are typically based on 

all surgical procedures, rather than only MSPs, and occur in between 1% and 5% of 

surgeries.63,82,84,94 More recent estimates suggest that approximately 157,000 patients 

acquire an SSI annually in the United States across all surgery types, suggesting that the 

112,534 infections estimated may disproportionately reflect major procedures.59 Thus, 

patients undergoing major surgical procedures may be at higher risk of SSI than the 

general surgical population.  

With respect to MRSA infection, estimates based on the NIS data suggest that an 

average of 114,181 patients undergoing a major surgical procedure contract MRSA, 

which represents approximately 1% and is consistent with previous studies.16 A subset of 

these patients, approximately 10,983 annually, also suffer from an SSI and a further 

8,962 experience an MSSA-related SSI. Although small, these numbers are consistent 
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with the literature which suggests that MRSA accounts for over 50% of S. aureus 

infections.27  

Because the number of cases of MRSA- and MSSA-related SSI are relatively 

small, there may not be enough statistical power to differentiate between these infections, 

based on the available broad clinical predictors, however prediction of MRSA infection 

in general is likely to be more reliable. Prophylactic treatment of MRSA and MRSA-

related SSI would be the same, thus prediction of MRSA infection alone is sufficient to 

potentially improve surgical outcomes.3,108 

5.3 Risk Factors for MRSA, MRSA-related SSI, and MRSA-related SSI in  S. 

aureus Patients 

As described above, a descriptive analysis was performed prior to the 

development of predictive models for each of the three research hypotheses. Risk factors 

identified as part of these descriptive analyses were used as a starting point for 

determining, which predictors should be included in each of the models. 

For Hypothesis 1, the study aimed to develop predictive models of MRSA 

infection. According to the descriptive analysis, there are several significant risk factors 

associated with MRSA infection in surgical patients. Consistent with the literature, the 

descriptive analysis found that patients who contract MRSA infection are typically 

older26,41,47,118, spend more time in hospital38,79,134, and are generally sicker, as measured 

by the number of chronic health conditions, number of diagnoses, number of procedures 

performed, and number of comorbidities.26,113,117,121 Other risk factors identified include 

gender, with males significantly more likely to be infected than females; race, with black 
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patients at significantly higher risk than white patients; and socioeconomic-related 

factors, such as primary payer and income.  There is conflicting information about the 

relationship between gender and MRSA infection.113,114,117 There is also limited data 

available on the association between race and MRSA, with only one study having 

suggested a potential relationship between race and MRSA-related SSI.16,27Patients in the 

lowest income quartile are significantly more likely to be infected with MRSA, as are 

patients on Medicare. It is unclear from the univariate analysis whether primary payer is 

an independent predictor or if it is confounded by age.  

Other identified risk factors include surgery type, with patients undergoing non-

elective procedures being subject to significantly higher risk; region, with patients in the 

south of the United States experiencing higher risk; and hospital teaching status, with 

patients being treated in rural hospitals experiencing higher risk. As with age and primary 

payer, it is unclear from the univariate analysis whether the relationship between hospital 

region and MRSA infection is confounded by other sociodemographic variables. History 

of MRSA infection, transfer in to the hospital, and long-term antibiotic use are also 

associated with MRSA infection. As discussed above, patients that get a MRSA infection 

are invariably sicker than those that do not. This relationship is demonstrated by the 

significant association between the NIS-measured comorbidities and MRSA infection. 

These comorbidities are listed in Table 14 and in all cases, patients with the comorbidity 

are more likely to contract a MRSA infection than those who do not. These relationships 

are reinforced by significant differences in the Elixhauser comorbidity score and 

APRDRG severity scores. Previous studies support these associations, including 

exposure to antibiotics2,40,41,47,102,109,120 and prior hospitalization.8,112,117,120 
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Identified risk factors for Hypothesis 2 were similar to those for Hypothesis 1. 

Patients with MRSA-related SSI were again found to be older, stayed in hospital longer, 

had a higher number of comorbidities and chronic conditions, had a higher number of 

procedures, and importantly were in hospital longer prior to their first procedure. 

Additional risk factors associated with SSI include smoking status17,136, MRSA 

colonization,28,42,49,126,132 and prior antibiotic use.131,133,137,138 Although these variables are 

not represented in the NIS dataset, long-term antibiotic use is used as a proxy for prior 

antibiotic use, and history of MRSA and suspected MRSA infection are used as proxies 

for MRSA colonization.  

As might be expected, for Hypothesis 3, differences between MRSA-related SSI 

patients and MSSA-related SSI patients were much less pronounced. Although these 

differences were similar to those for the first two hypotheses, the magnitude of effect was 

significantly reduced, although most predictors remained statistically significant. Thus, 

age, length of stay, number of chronic conditions and comorbidities, and number of days 

to first procedure, all remained risk factors for MRSA related-SSI. This funding supports 

the existing research, which asserts that MRSA and MSSA are difficult to distinguish 

clinically.40 

 Based on the results of the descriptive analysis, it seems likely that predictive 

models will be able to differentiate effectively between MRSA and non-MRSA patients, 

and indeed, this was the case. In addition, the availability of further risk factors suggests 

that prediction of MRSA-related SSI is also viable along with the differentiation of 

MRSA and MSSA in SSI patients. The final selection of variables for each model is 

discussed explicitly below. 
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 In addition to demographic, hospital and comorbidity factors, a number of clinical 

and surgical factors have been shown to be associated with MRSA infection. Examples 

include the use of indwelling devices2,104,122, surgical wound classification69,76,78 and 

clinical factors, such as fever, white blood cell count, and other lab-based test 

results.27,110,123 In general these factors are all measures of severity and risk and thus, NIS 

variables such as the APRDRG risk scores may serve as useful proxies for these factors. 

5.4 Comparative Performance of Modeling Approaches 

Despite there being a low prevalence of MRSA in the population and therefore 

proportionally lower prevalence of MRSA-related SSI and MSSA-related SSI, both the 

Logistic Regression (LR) models and the Artificial Neural Network (ANN) models 

produced reliable results. In addition, there is no evidence of overfitting, even with the 

Hypothesis 1 model which contains a relatively large number of predictors. This result is 

due, in large part, to the large sample size available in the NIS dataset and the use of 5 

years’ data to train the models.  

Results of the three LR models and three ANN models along with their respective 

sample sizes is shown in Table 45. The performance of the models ranges from good to 

very good, with the Hypothesis 1 (MRSA) and Hypothesis 2 (MRSA-SSI) models 

performing very well. The Hypothesis 3 model, which aims to differentiate between 

MRSA-SSI and MRSA-SS is the weakest model but performance remains well above 

0.50 AUC, which suggests that the model may still be useful in practice. The reason for 

the lower performance of this model is likely a combination of lower sample size and the 

need to differentiate conditions that are much closer clinically than with Hypothesis 1 or 
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2. It is reasonable to assume that the general predictors used to differentiate between the 

two types of S. aureus infections would not have as much discriminatory power as those 

used to differentiate between patients with no condition and MRSA or MRSA-related SSI 

as in Hypotheses 1 and 2. 

 

Table 45: Comparative Performance of Models 

  MRSA MRSA-SSI MRSA-SSI vs MSSA-SSI 
 

 Logistic 
Regression 

Neural 
Network 

Logistic 
Regression 

Neural 
Network 

Logistic 
Regression 

Neural 
Network 

St
at

is
tic

 

Sensitivity 0.79 0.86 0.77 0.73 0.61 0.57 

Specificity 0.75 0.74 0.76 0.87 0.64 0.66 

AUC 0.85 0.87 0.85 0.86 0.68 0.67 

Sample size 173,665 16,682 16,672 

Prevalence 0.010 0.001 0.551 

PPV 0.031 0.032 0.003 0.006 0.675 0.673 

NPV 0.997 0.998 1.000 1.000 0.572 0.556 

LR 3.16 3.31 3.17 5.62 1.69 1.68 

 

 The AUC scores across all models are very good to excellent, as are sensitivity 

and specificity scores. Within each hypothesis, relative scores for the logistic regression 

and artificial neural network approaches are very similar. For Hypothesis 1 — MRSA 

prediction — both models achieve almost identical performance with the neural network 

achieving slightly lower specificity and significantly higher sensitivity than the logistic 

regression model. For Hypothesis 2 — MRSA-SSI prediction — the logistic regression 

achieves significantly higher sensitivity and significantly lower specificity than the neural 

network model. For Hypothesis 3 — MRSA-SSI vs MSSA-SSI — sensitivity is slightly 
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higher with the logistic regression model and specificity is slightly lower than the neural 

network model. Given the importance of not missing positive cases for each hypothesis, 

it is therefore important to optimize for sensitivity, and in this respect, the LR models 

offer stronger performance for Hypothesis 1 and the ANN offers stronger performance 

for Hypotheses 2 and 3.  

 

Figure 39: Comparative Performance of Models (AUC) 

  

Overall performance of the models, as measured by AUC, is displayed in Figure 

39. As can be seen from the superimposed ROC curves, Hypotheses 1 and 2 perform very 

similarly with only minor differences in sensitivity and specificity across the range of the 

ROC curve. With each Hypothesis, the comparative performance of the LR models and 

the ANN models is similar. As discussed above, differentiation between MRSA-SSI and 
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MSSA-SSI is more challenging and thus, the models do not perform as well, although the 

expressive power of logistic regression and the artificial neural network technique remain 

similar in this case. 

5.5 Model Complexity and Predictors 

For Hypothesis 1, the forwards-backwards stepwise selection method utilized in 

development of the LR model yielded a final model with 46 predictors. However, despite 

the large number of predictors, there was no evidence of overfitting when assessed using 

a bias/variance learning curve.  

A number of predictors were protective, as assessed by odds ratios. Patients 

undergoing elective surgery, those with private insurance, those who were of Hispanic, 

Asian, or other race, those who were treated in urban, medium or large size hospitals, and 

those in the mid-west or west were all less likely to have MRSA. In contrast to the 

literature, females were also less likely to have MRSA infection.117 

A range of predictors also increased risk, including age, number of diagnoses, 

patients with Medicaid, self-pay or those for whom services were not charged, patients of 

Black or Native American race, and most critically, patients with a history of MRSA, 

long-term antibiotic use, suspected MRSA infection, and those transferred into the 

hospital for treatment all exhibited higher risk. 

Risk was also affected by a range of comorbidities, the most impactful of which 

were AIDS, rheumatoid arthritis, diabetes with complications, drug abuse and paralysis. 

As with the demographic and clinical variables, comorbidities ranged in effect with some 

being protective. 
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Variables included in the final LR model were also used for the ANN model and 

measure several key concepts, such as patient socioeconomics (demographic and 

financial information), hospital facilities (hospital factors, such as teaching status and bed 

size), and general severity of disease (comorbidities). Within the set of variables selected 

by the algorithm were a small number of contradictory findings. For example, number of 

chronic conditions and number of procedures performed were both found to be protective 

whereas number of diagnoses was found to increase risk. The most likely explanation for 

this seemingly discrepant finding is the amelioration of effect due to confounding. The 

use of AIC to optimize variable selection is known to not necessarily select the most 

parsimonious set of predictors.214 Thus, it may be possible to reduce the number of 

predictors in the model while maintaining or improving performance.  The exploration of 

other model optimization metrics and the development of more parsimonious models is a 

useful area for further research. 

The final models included 8 of the top 20 cited predictors of MRSA infection 

(refer to Table 2), including prior antibiotic use, loss of function, and MRSA colonization 

(proxied by suspected MRSA infection/history of MRSA). As expected, some known 

clinical and surgical predictors could not be included in the model due to their absence 

from the NIS database. In spite of this the model yielded good performance, thus 

supporting the hypothesis that MRSA infection can be effectively predicted by 

demographic, limited clinical (including comorbidity) and hospital-related factors.  

For Hypothesis 2, the variable selection algorithm yielded a slightly less complex 

model with only 34 predictors. As with Hypothesis 1, a number of these factors were 

protective, such as elective surgery, being female, number of chronic conditions, income 
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and location. Others, such as age, number of diagnoses, transfer into the hospital from 

another facility, history of MRSA, long-term (current) antibiotics use and suspected 

MRSA infection, were shown to increase risk.  

In contrast to Hypothesis 1, a smaller number of comorbidities were shown to 

impact risk of MRSA-SSI. The strongest predictors were AIDS, rheumatoid arthritis, 

diabetes (both complicated and uncomplicated), presence of a solid tumor, and paralysis. 

As with Hypothesis 1, the overall performance of the model supports the hypothesis. 

Hypothesis 3 yielded the least complex model with only 31 predictors. In contrast 

to Hypotheses 1 and 2, there was a different set of protective factors. For example, urgent 

surgery and being male were both protective. In addition, patients who transferred in 

from another acute care hospital were at reduced risk. Taken together, these results 

suggest that patients with a S. aureus infection are, in general, a sicker, higher-risk 

population, and one in which urgent hospital treatment is more critical. Demographically, 

this population is older, and risk of MRSA-SSI increases with higher disease severity and 

mortality risk. 

In contrast to Hypotheses 1 and 2, only 13 comorbidities were included in the 

final models for hypothesis 3, suggesting that there is a different disease/comorbidity 

profile in this population. Odds ratios for these predictors were generally lower than in 

the other models, suggesting a lower impact of individual comorbidities, although it may 

be the case that the limited sample size available for this analysis is preventing the 

discovery of other risk factors. The impact of the lower sample size can be assessed 

easily using the bias/variance curves (Figure 33 and Figure 36), which although they 
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show convergence as the sample size increases, clearly indicates that the performance of 

the model is relatively unstable.  

The relative contribution of each comorbidities to each hypothesis is illustrated in 

Figure 40. The groupings of rows and columns represent relative similarity between the 

rows and columns. For example, Hypotheses 1 and 3 are more similar in terms of 

comorbidities than Hypotheses 1 and 2. Similarly, individual comorbidities are sorted and 

grouped based on similarity of impact. The colors in the diagram signify the odds ratios 

of each comorbidity’s contribution to the given hypothesis. 

 

Figure 40: Relative Contribution of Comorbidities to Hypotheses 
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It can be seen from the heatmap that different comorbidities contribute to the 

outcome in different degrees based on the specific hypothesis. For example, psychoses 

has a relatively large contribution to Hypothesis 2 but is less predictive in Hypothesis 1 

and 3. In general, for Hypothesis 3, which aims to separate MRSA-related SSI and 

MSSA-related SSI, there are fewer contributing comorbidities and their impact is 

generally lower than for Hypotheses 1 and 2. In general, the most significant 

comorbidities are AIDS, psychoses, diabetes with chronic complications, and paralysis. 

This is likely because MRSA-related SSI and MSSA-related SSI are very similar and 

difficult to differentiate clinically, whereas for Hypotheses 1 and 2, clinical differences 

are more pronounced, and thus the odds ratios of comorbidities are generally higher. This 

assertion is consistent with the performance of the predictive models, which exhibit 

relatively strong performance for Hypotheses 1 and 2 and significantly lower 

performance for Hypothesis 3.  

While overall performance of the models is good it is important to understand 

whether they are good enough to be used in the clinical setting, however, to make this 

determination it is necessary to understand the pre-test probability in the population. 

Understanding the positive predictive value and negative predictive value of all these 

models is necessary to determine their utility when applied to a real clinical population. 

5.6 Predictive Value and Clinical Validation 

 It is essential that a screening test or predictive model have excellent performance 

characteristics in order to be useful in clinical practice, however it is important to 

understand that performance metrics, such as sensitivity and specificity are characteristics 
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of the test itself, and the overall performance of the test is affected by the prevalence of 

the disease in the population.212,215 Sensitivity measures the ability of the test (or model) 

to correctly identify positive cases and is formally defined as “…the proportion of 

individuals with the disease that have a positive test result..”.215 In contrast, specificity is 

the ability of the test (or model) to correctly identify negative cases and is formally 

defined as “…the proportion of individuals without the disease that have a negative test 

result”.215 In practice, the most critical question facing a clinician when administering a 

screening test or CDSS is, in the case whether the test/CDSS reports a positive result, 

what is the probability that the patient actually has the disease? Similarly, in the case 

where the test/CDSS reports a negative result, what is the probability that the patient 

actually does not have the disease? These concepts can be assessed by two further 

metrics: positive predictive value (PPV) and negative predictive value (NPV), both of 

which are substantially affected by the pre-test probability, which is equivalent to the 

prevalence of the disease.212 

 PPV, which is also known as the predictive value of a positive test result, is the 

probability of a patient having the disease given a positive test result. This is a Bayesian 

construct in which the pre-test probability, or prevalence impacts the final result. NPV, 

which is also known as the predictive value of a negative test results, is the probability of 

a patient not having the disease, given a negative test result. PPV and NPV are impacted 

by the a priori prevalence of the disease in the population. In the case of a rare disease, 

such as MRSA or MRSA-related SSI, PPV will invariably be very low while NPV will 

likely be very high. PPV and NPV are functions of sensitivity, specificity and 
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prevalence.212,215 Prevalence, PPV and NPV for Hypothesis 1-3 are summarized in Table 

45. 

 For Hypotheses 1 and 2, the population is defined as all patients undergoing an 

MSP, prevalence of MRSA in this population is approximately 1%, and prevalence of 

MRSA-related SSI is an order of magnitude lower, at 0.1%. In contrast, the population 

defined for Hypothesis 3 is those surgical patients with a S. aureus infection. The PPVs 

for Hypothesis 1 are 3.1% and 3.2% for the logistic regression and ANN models, 

respectively, while the NPVs are 99.7% and 99.8%. As would be expected, the PPVs for 

Hypothesis 2 are 0.3% and 0.6%, with the NPVs in both cases, 100%. For Hypothesis 3, 

the PPVs are 67.5% and 67.3% and the NPVs are 57.2% and 55.6%. 

 The low PPVs for Hypotheses 1 and 2 mean that it is likely not feasible to use the 

models for diagnostic purposes, however they may be useful indicators that further 

testing needs to be done. This assertion is supported by the high NPVs, which give an 

extremely high probability that if a test result is negative, the patient does not have the 

disease. Thus, the models are extremely effective at ruling out patients that do not have 

the disease, providing the opportunity for clinicians to perform more targeted testing on 

those identified as having the disease. Given the lack of routine testing for MRSA 

colonization or infection upon hospital admission, this approach may have high value for 

clinicians and could serve to reduce incidence and improve outcomes.46,8,39,41,109,113 The 

higher PPV and lower NPV for Hypothesis 3 are due to the higher prevalence of MRSA-

related SSI in patients with S. aureus infection. Despite generally lower performing 

models, the probability of the model prediction being correct are commensurately higher. 

This phenomenon suggests that one approach to maximizing the utility of a predictive 
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model for a low prevalence disease is to apply the model only to patients determined to 

be at high risk. Another approach is to use the high NPV of the models to exclude 

patients from consideration for further testing. 

 An alternative measure of model performance, which is independent of 

prevalence and also defined in terms of sensitivity and specificity, is the likelihood ratio. 

The likelihood ratio defines how much more likely it is that a person for which the model 

predicts the disease has the disease in comparison to a person that does not. Likelihood 

ratios for Hypotheses 1 to 3 are provided in Table 45. By this measure, it can be seen that 

the models for Hypotheses 1 and 2 perform well while the models for Hypothesis 3 

relatively do not. Taken together, these results suggest that different metrics can be used 

to assess different aspects of a model’s performance and thus form more a complete 

picture, however, it would be ideal to validate the model in a clinical setting. 

 Validation using a real clinical cohort would provide the opportunity to assess and 

understand the performance of the models in a realistic setting. Model parameters, such 

as the cut-off value used to determine whether the model predicts whether a patient has 

the disease can be adjusted to better reflect the true population. By validating the models 

in a real-world setting it will be possible to better understand their performance 

characteristics. 

5.7 Clinical Decision Support System 

 The CDSS, illustrated in Figure 38, provides a wizard-like interface, which allows 

the clinical to select the outcome and modeling approach. Based on this selection, the 

user is presented with the appropriate predictors. Once the user has selected values for the 



173 

appropriate predictors, the system calculates the probability of the outcome and presents 

an appropriate message to the user. Predictors are grouped into demographics (age, sex, 

primary payer, race, income quartile), medical history (history of MRSA, long-term 

antibiotic use, suspected MRSA infection), hospital and procedural factors (length of 

stay, surgery type, number of chronic conditions, number of diagnoses, number of 

procedures performed, patient transferred in to hospital, hospital bed size, 

location/teaching status, region) and comorbidities (see discussion above). The user 

interface automatically adjusts to reflect the predictors required for each model. 

Numerical variables are presented as sliders and categorical variables are presented as 

dropdown lists. The user can navigate back and forth in the system to view the effect of 

changing the values of the predictors or the modeling approach. 

 While the CDSS is easy to use, in practice it would be important to limit the 

amount of data entry to the absolute minimum. This could easily be achieved through the 

presetting of hospital-level variables in the CDSS configuration, as these variables do not 

change for each patient — rather they are constant for the setting. Similarly, it may also 

be possible to connect the CDSS directly to the EHR system, and in this way 

automatically set the values of the key clinical variables, such as history of MRSA. If 

incorporated into the clinician’s work flow in this way, CDSSs in general have been 

shown to reduce medical errors and increase compliance with guidelines.115,147,160,166 

 If integrated in this way, the CDSS would be able easily to identify patients 

without MRSA or MRSA-SSI and exclude these patients from further testing. In contrast, 

patients with a positive result from the CDSS could be referred for further testing. This 

approach addresses challenges with current MRSA and SSI treatment, including 
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inappropriate administration of antibiotics53,54,100,175 and lack of uniformity in 

testing.54,146,154 If integrated, validated, and used appropriately, the CDSS could have a 

significant impact on patients at high risk of MRSA and MRSA-related SSI. As an 

example, effective treatment of all MRSA infections could result in a reduction of up to 

81,000 deaths annually and prevention of all SSIs would save the United States $10 

billion per year and reduce the cost of individual treatment and length of stay by up to 

50%.8,21,22,24,34 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary 

 Methicillin-resistant Staphylococcus aureus (MRSA) is the leading cause of 

antibiotic resistance related mortality in surgical patients, and MRSA-related surgical site 

infections (SSIs) remain a critical medical issue. Effective prediction of MRSA and 

MRSA-related SSI would facilitate the prophylactic use of appropriate antibiotics or 

application of other prevention techniques, which have been shown to improve clinical 

outcomes.  While there is a range of patient, procedural and hospital level factors that 

have been shown to increase the risk of a surgical patient contracting a MRSA infection, 

research is less clear on the best approaches to developing predictive models for 

incorporation into a clinical decision support system. This study compared two common 

modeling approaches — logistic regression (LR) and artificial neural networks (ANN) —

for the prediction of MRSA infection in patients undergoing major surgical procedures 

(MSPs) in the United States. Other research questions aimed to identify the prevalence of 

MRSA, SSI, MRSA-related SSI, and MSSA-related SSI in patients undergoing major 

surgical procedures in the US, and to identify and assess the significance of risk factors 

for these diseases. 
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Of the 10,660,420 surgical procedures that occur on average each year in the US, 114,181 

(1.07%) had a confirmed MRSA infection, 112,534 had an SSI (1.07%), 10,983 had 

MRSA-related SSI (0.10%) and 8,962 on average had an MSSA-related SSI (0.10%). 

 Both the LR and ANN models performed well for the prediction of MRSA. The 

sensitivity of the LR model was 0.79, the specificity was 0.75, and the area under the 

curve (AUC) was 0.85. The sensitivity of the ANN model was 0.86, the specificity was 

0.74, and the AUC was 0.87. Given the need to correctly identify positive patients, the 

ANN model is the optimal model in this case. Because of low prevalence, the positive 

predictive values (PPV) of these models were low, however the negative predictive 

values (NPV) were high, which suggests that the models should be used to exclude 

negative patients from further testing, thereby supporting the efficient use of resources, 

and supporting the testing of only high-risk patients. 

 Similar results were obtained for the prediction of MRSA-related SSI. The 

sensitivity of the LR model was 0.77, the specificity was 0.76, and the AUC was 0.85. 

The sensitivity of the ANN model was 0.73, the specificity was 0.87, and the AUC was 

0.86. Given the need to correctly identify positive patients, the LR model is the optimal 

model in this case. Similar to MRSA models, because of low prevalence, the positive 

predictive values (PPV) of the MRSA-related SSI models were low, however the 

negative predictive values (NPV) were high, which suggests that the models should be 

used to exclude negative patients from further testing, thereby supporting the efficient use 

of resources, and supporting the testing of only high-risk patients. 

 Finally, results for the prediction of MRSA-related SSI in the population of 

patients with S. aureus infections were not as good as the MRSA and MRSA-related SSI 
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models. The sensitivity of the LR model was 0.61, the specificity was 0.57, and the AUC 

was 0.68. The sensitivity of the ANN model was 0.57, the specificity was 0.66, and the 

AUC was 0.67. Given the need to correctly identify positive patients, the LR model is the 

optimal model in this case. In contrast to the other models, the PPV was higher due to the 

higher prevalence of MRSA in the S. aureus infected surgical population. This advantage 

is offset somewhat by lower sensitivity and specificity, which are predominantly due to a 

lower sample size. 

  All the models were incorporated into a web-based CDSS, which is available for 

review.213 

6.2 Limitations of Research 

 This research study had a number of limitations primarily due to the relatively 

low prevalence of MRSA and MRSA-related SSI in patients undergoing a major surgical 

procedure. Although the NIS sample size was very large, when filtered for the outcomes 

being studied, the sample sizes were significantly smaller. This was particularly 

problematic for the prediction of MRSA-SSI in patients with S. aureus infections. These 

models were generally unstable and had lower performance than the larger models. 

Similarly, the low prevalence of the diseases resulted in low positive predictive values for 

the MRSA and MRSA-related SSI, which limited the utility of the models to ruling out 

patients without the disease. 

 Another limitation is that the NIS dataset, although fairly rich, is lacking in 

detailed clinical information and thus some key risk factors for MRSA and MRSA-

related SSI were unable to be included in the analysis. Specific examples include lab 
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values, such as hematocrit, confirmation of MRSA colonization, and white blood cell 

count. In addition, the availability of surgical factors to the extent that they were known 

ahead of the procedure (e.g., anticipated duration), would also be useful predictors. 

6.3 Recommendations for Future Research 

 
 There are a number of recommendations for future research, the most important 

of which is the performance of a validation study. In any CDSS model it is important to 

validate and tune the model in a real clinical cohort. In this way, it is possible to 

determine how best to implement the model and how the information obtained from the 

CDSS should inform clinical practice. 

 A second recommendation, particularly for the S. aureus model, is to develop a 

new model using a larger sample size, for example, with additional years’ data from the 

NIS. This is important in order to determine whether an increased sample size would 

result in more stable models that exhibit better performance or if the expressive power of 

the model is inherently limited due to the similarity of MRSA- and MSSA-related SSI 

patients. Related to this recommendation is the need to assess further modeling 

approaches, such as Support Vector Machines or Random Forests, which have the 

potential to yield further performance improvements. 

 A final recommendation is to further study the predictors included in the models 

to determine if smaller, more parsimonious models could be developed. These models 

would be easier to administer and likely exhibit stable performance; however it is 

important to understand whether smaller models could achieve comparable levels of 

performance with the larger models.   
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