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ABSTRACT OF THE DISSERTATION

REAL ESTATE RANKING: FROM BLACK MAGIC TO DATA SCIENCE

By YANJIE FU

Dissertation Director: Dr. Hui Xiong

With the advent of mobile, Internet, and sensing technologies, large-scale urban and

mobile data are available and are linked with locations near real properties. These

data can be a source of rich intelligence for classifying high-rated residential locations,

developing livable communities, and enhancing urban planning in big cities. In this

dissertation, we aim to address the unique challenges of real estate ranking, especially

(i) how to build an e↵ective ranking system by exploiting heterogeneous mobile data

and modeling geographic dependencies; (ii) what are the underlying drivers for livable

and sustainable communities.

Along these lines, I first introduced a method for ranking residential complexes

based on invest- ment ratings by mining users opinions about residential complexes

from online user reviews and o✏ine moving behaviors (e.g., taxi traces, smart card

transactions, check-ins). While a variety of features could be extracted from these

data, these features are intercorrelated and redundant. Thus, selecting good features

and integrating the feature selection into the fitting of a ranking model are essential.

To this end, I first strategically mined the fine-grained discriminative features from

user reviews and moving behaviors. Then, I proposed a Sparse Pairwise Ranking

method by combining a pairwise ranking objective and a sparsity regularization in a

unified probabilistic framework.
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In addition, with the development of new ways to collect estate-related mobile

data, there is a potential to leverage geographic dependencies of residential complexes

for enhancing real estate evaluation. Indeed, the geographic dependencies of the value

of a residential complex can be from the characteristics of its own neighborhood

(individual), the values of its nearby residential complexes (peer), and the prosperity

of the a�liated latent business area (zone). To this end, I proposed an enhanced

method, named ClusRanking, for real estate evaluation by leveraging the mutual

enforcement of ranking and clustering power. In ClusRanking, three influential factors

(i.e., geographic utility, neighborhood popularity, and influence of business areas) are

constructed and extracted for predicting real estate investment ratings. An estate-

specific ranking objective is also proposed to jointly model individual, peer and zone

dependencies.

Moreover, mixed land use refers to the e↵ort of putting residential, commercial

and recreational uses in close proximity to one another. This can contribute eco-

nomic benefits, support viable public transit, and enhance the perceived security of

an area. It is naturally promising to investigate how to rank residential complexes

from the viewpoint of diverse mixed land use, which can be reflected by the portfolio

of community functions in the observed area. To that end, I further developed a

geographical function ranking method, named FuncDivRank, by incorporating the

functional diversity of communities into real estate evaluation. In FunDivRank, a

mix-land use latent model is developed to learn latent community functions and the

corresponding portfolios. Also, a real estate ranking indicator is learned by simulta-

neously maximizing ranking consistency and functional diversity.
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Finally, we present experimental results to demonstrate the e↵ectiveness of our

methods.
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CHAPTER 1

INTRODUCTION

1.1 Background and Preliminaries

Today, things are more connected. There are new emerging trends in urban areas:

(i) more sensors are installed to sense the pulses of our cities and residents; (ii) Inter-

net and cloud technologies meet and rejuvenate traditional industries (e.g., logistics,

agriculture, finance) via the Internet Plus strategy; (iii) more transactions and events

happen on mobile devices. With the advent of mobile, Internet, and sensing tech-

nologies, large-scale urban and mobile data are available and are linked with locations

near real properties. These data can be a source of rich intelligence for classifying

high-rated residential locations, developing livable communities, and enhancing urban

planning in big cities. In this dissertation, we aim to address the unique challenges

of real estate ranking, especially (i) how to build an e↵ective ranking system by ex-

ploiting heterogeneous mobile data and modeling geographic dependencies; (ii) what

are the underlying drivers for livable and sustainable communities by exploring het-

erogeneous human mobility.
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1.2 Research Challenges and Contributions

However, it is not easy to achieve this goal. There are two major challenges. First,

prior literature in housing price appraisal regards each residential location as a prod-

uct. These methods mainly consider price information, coarse-grained location in-

formation, and basic building information. However, they might not consider fine-

grained urban geography data such as Point of Interests, public transportations, and

dynamic human mobility patterns. Therefore, we are the first to bring these fine-

grained urban geography data and dynamic human mobility patterns. Second, once

we bring in these heterogeneous urban and mobile data, these data make the model-

ing of ranking di�cult. In particular, we need to address three modeling questions:

(i) how to fuse heterogeneous information for ranking; (ii) how to model geographic

dependencies for ranking; (iii) how to explore mobility patterns for ranking. More

importantly, through the modeling of ranking, we uncover the underlying driver of

livable and sustainable communities: a balance mix of land uses.

1.3 Overview

Chapter 2 presents a sparse ranking method for fusing heterogeneous urban and

mobile data into a pairwise ranking indicator.

Chapter 3 presents a geographic ranking method by jointly modeling geographic

individual, peer, and zone dependencies via the mutual enhancement of ranking and

clustering.

Chapter 4 presents a mobility ranking method by exploring the impact of mixed

land use via learning optimal portfolios of community functions from heterogeneous
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mobility patterns.

Chapter 5 presents conclusion remarks and future work.
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CHAPTER 2

EXPLOITING HETEROGENEOUS INFORMATION FUSION FOR REAL

ESTATE RANKING

Ranking residential real estates based on investment values can provide decision mak-

ing support for home buyers and thus plays an important role in estate marketplace.

In this chapter, we aim to develop methods for ranking estates based on investment

values by mining users opinions about estates from online user reviews and o✏ine

moving behaviors (e.g., taxi traces, smart card transactions, check-ins). While a vari-

ety of features could be extracted from these data, these features are intercorrelated

and redundant. Thus, selecting good features and integrating the feature selection

into the fitting of a ranking model are essential. To this end, in this chapter, we

first strategically mine the fine-grained discriminative features from user reviews and

moving behaviors, and then propose a probabilistic sparse pairwise ranking method

for estates. Specifically, we first extract the explicit features from online user reviews

which express users opinions about point of interests (POIs) near an estate. We also

mine the implicit features from o✏ine moving behaviors from multiple perspectives

(e.g., direction, volume, velocity, heterogeneity, topic, popularity, etc.). Then we

learn an estate ranking predictor by combining a pairwise ranking objective and a

sparsity regularization in a unified probabilistic framework. And we develop an ef-

fective solution for the optimization problem. Finally, we conduct a comprehensive
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performance evaluation with real world estate related data, and the experimental

results demonstrate the competitive performance of both features and the proposed

model.

2.1 Introduction

There are several definitions of estate value according to International Valuation Stan-

dards 1 . For instance, market value is defined as the price at which an estate would

trade in a competitive Walrasian auction setting. Another example is investment

value, which is the value of an estate to one particular investor and may or may not

be higher than the market value of the estate. Di↵erence between the investment

value and the market value for a particular estate provides the motivation for buyers

or sellers to enter the estate marketplace. Thus, providing a ranking of estates based

on investment values will greatly help buyers make their purchase decisions.

Which estates have high investment values? While estate industry professionals

have used di↵erent housing indexes (e.g., price-rent ratio) to approximate the fun-

damental value of estates, researchers have also used financial time series analysis

to investigate the trend, periodicity and volatility of estate prices and assess estate

investment potentials (Downie & Robson, 2007; Chaitra H. Nagaraja & Zhao, 2009).

Recent studies have tried to correlate the estate value to the static statistics of urban

infrastructure (e.g., the numbers of POIs, the distances to bus stops), because they

explicitly reflect the physical facilities of a neighborhood (Taylor, 2003; Fu, Xiong,

et al., 2014). However, infrastructure statistics is not su�cient for evaluating invest-

1http://www.ivsc.org/
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ment values of estates. Considering the distance to public transit, while an estate

near public transit usually leads to high rent and sale price in many cities, there

is also possible negative e↵ect when living nearby public transit. For example, the

noise and pollution associated with train/bus systems can lower the value of an es-

tate as reported in (Landis, Guhathakurta, Huang, Zhang, & Fukuji, 1995; Bowes

& Ihlanfeldt, 2001; Lewis-Workman & Brod, 1997). Thus, there is some limitation

for using these infrastructure statistics. Moreover, these statistics are often lack of

dynamics and hardly reflect the changing pulses of a city.

On the contrary, there are more estate-related dynamic and information-rich data

which has been accumulated with the development of mobile, internet and sensor

technologies. For example, people may post comments and ratings for POIs (e.g.,

schools, restaurants and shopping centers, etc.) via mobile apps after their consump-

tions. Also, the mobility data, such as smart card transactions and taxi GPS traces,

comprise both trajectories and consumption records of residents’ daily commutes.

People’s check-ins may reflect the popularity of POIs. If properly analyzed, these

data (e.g., user reviews, location traces, smart card transactions, check-ins, etc.) can

be a rich source of intelligence for discovering estates of high investment-value.

Indeed, these estate-related dynamic data generated by users could better reflect

investment values of estates than urban infrastructure statistics. Generally speaking,

if people have better opinions for an estate, the demand for this estate is higher and

its investment value will be higher. The challenge is how to uncover people’s opinions

for an estate. In fact, the opinions of users for an estate can be mined from (1) online

user reviews and (2) o✏ine moving behaviors. Specifically, the online reviews (e.g.,
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Zagat/Yelp ratings) contain the explicit opinions for places surrounding an estate. For

example, the quality of neighborhood can be partially approximated by the ratings

of business venues, such as overall rating, service rating, environment rating, etc.

Meanwhile, the o✏ine moving behaviors near an estate not only encode the static

statistics of urban infrastructure, but also reflect the implicit “opinions” of residents

for a neighborhood. For example, the arriving, transition, and leaving volumes of

taxies and buses imply the mobility density of a neighborhood; the average velocity

of taxies and buses indicates the degree of tra�c congestion or accessibility; the daily

frequency of check-ins shows regional popularity and prosperity; the heterogeneity of

distributions of check-ins over categories reflects if the facility planning is balanced or

not. All these indications by the estate-related dynamic user-generated data comprise

the important facets of an estate that home buyers care very much and convey the

implicit “opinions” of users for a neighborhood. Therefore, we consider and mine

both the explicit opinions from user reviews and the implicit opinions from moving

behaviors to enhance the evaluation of estate investment value.

Although we may extract a lot of features from the variety of data sources, these

extracted estate-related features usually are correlated and redundant. The feature

redundancy results in poor generalization performance. In reality, a small number

of good features can determine the ranking of estates based on investment values.

Therefore, we explore the sparse learning technique for the ranking of estates. How-

ever, classic sparse learning methods use a two-step paradigm, which is basically to

first select a feature subset and then learn a ranking model based on the selected

features. But the selected feature subset may not be optimal for ranking because the
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two steps are modelled separately. In contrast, combining sparsity and ranking in a

unified model can help to identify the optimal feature subset for better learning an

estate ranker, and also have less computational cost in prediction.

Along this line, in this chapter, we propose to mine opinions of mobile users

and explore the learning-to-rank with sparsity for the investment value based estate

ranking. We consider and explore both explicit and implicit opinions that reflect

estate investment value by mining online user reviews and o✏ine moving behaviors.

Specifically, to capture the opinions of mobile users toward estates, we extract the

explicit features from user reviews to reveal user satisfaction of estate neighborhoods.

Besides, we measure the tra�c volumes with respect to di↵erent directions, tra�c

velocity, functionality heterogeneity, neighborhood popularity, topical profile of es-

tate neighborhoods by mining multi-type mobility data including taxi traces, smart

card transactions and check-ins. Moreover, we learn a linear ranking predictor by

combining pairwise ranking objective and sparsity regularization in a unified proba-

bilistic framework, which is greatly enhanced by simultaneously conducting feature

selection and maximizing estate ranking accuracy. Finally, we conduct comprehensive

performance evaluations for the feature sets and models with large-scale real world

data and the experimental results demonstrate the competitive performance of our

method with respect to di↵erent validation metrics.

2.2 Sparse Estate Ranking

In this section, we present the proposed system of sparse estate ranking, namely SEK.
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2.2.1 The Overview of Sparse Estate Ranking

As shown in Figure 2.1, our estate ranking system consists of two major components:

(1) estate feature extraction and (2) sparse estate ranking.
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Figure 2.1. The framework of the proposed system.

Estate Feature Extractions: As shown in Figure 2.1, we first collect historical

prices of each estate, compute the return rates 2 of estates and grade estates into

five bins/levels in terms of investment returns to prepare labels for training data. The

discretization of the estate returns is important because the small di↵erence between

estate values in the same value category might be noisy for the ranking model.

Specifically, we first calculate the average estate price of a city for each month.

For instance, Figure 4.4 shows the trend of the average estate prices in Beijing. We

can see an inflection point in the curve. The point is used to split the time period

into two phases, i.e., the rising phrase (from Feb. 2012 to Sept. 2012) and the falling

2http://financial-dictionary.thefreedictionary.com/rate+of+return
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Figure 2.2. The rising market period and the falling market period in Beijing.

phrase (from Apr. 2011 to Feb. 2012). We then sort estates in rising phase and

falling phrase according to their investment returns in the decreasing order as shown

in Figures 2.3 (a) and (d), where the horizontal axis is the order of an estate in the

sorted list and the vertical axis represents return rates. As can be seen, the prices

of a small number of estates significantly increase or decrease whereas many estates’

prices remain stable. In fact, these distributions indicate the power law distribution

for estate investment returns. After computing the second order derivatives of these

two curves, we find out four inflection points, which show the significant change of

return rates as shown in Figures 2.3 (b) and (e). As a result, we obtain five rating

levels for the rising and falling phrases as shown in Figures 2.3 (c) and (f).

Next we aim at extracting the features from online user reviews and o✏ine moving

behaviors such as taxi traces, smart card transactions, check-ins as shown in Table

4.2. The features from user reviews are summarized by spatial statistics and the fea-

tures from moving behaviors are derived from multiple angles (e.g., direction, volume,

velocity, heterogeneity, topic, contrast, popularity).

Sparse Estate Ranking: We learn a linear ranking predictor by combining a pair-

wise ranking objective and a sparsity regularization together. By optimizing the



- 11 -

Decending Order of Real Estates

0 500 1000 1500 2000 2500

R
ea

l 
E

st
at

e 
V

al
u

e

-1.0

-0.5

0.0

0.5

1.0

1.5

E
st

at
e 

R
et

u
rn

 R
at

e

(a)

Desceding Order of Real Estates

0 500 1000 1500 2000 2500 3000

S
ec

o
n

d
-O

rd
er

 D
er

ia
ti

v
e

-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

(b)

Decending Order of Real Estates

0 500 1000 1500 2000 2500

L
ev

el
 o

f 
R

ea
l 

E
st

at
es

0

1

2

3

4

5

6

(c)

Descending Order of Real Estate

0 500 1000 1500 2000 2500

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

R
ea

l 
E

st
at

e 
V

al
u
e

E
st

at
e 

R
et

u
rn

 R
at

e

(d)

Descending Order of Real Estates

0 500 1000 1500 2000 2500 3000

S
ec

o
n

d
-O

rd
er

 D
er

ia
ti

v
e

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

(e)

Descending Order of Real Estates

0 500 1000 1500 2000 2500

L
ev

el
 o

f 
R

ea
l 

E
st

at
es

0

1

2

3

4

5

6

(f)

Figure 2.3. The grading process of estates.
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Table 2.1. The extracted features.

Online User Reviews O✏ine Moving Behaviors

User Reviews Taxi Bus Check-in

Overall Salification Arriving Volume Arriving Volume Popularity

Service Quality Leaving Volume Leaving Volume Topic

Environment Class Transition Volume Transition Volume

Consumption Cost Driving Velocity Bus Stop Density

Functionality Planning Commute Distance Smart Card Balance

overall objective function, we learn the estate ranker by simultaneously conducting

feature selection and maximizing ranking accuracy. Two separated models are then

built to infer the value-adding and value-protecting ability of an estate in a rising and

a falling market respectively. Given a set of estates specified by a user, we extract the

features in the same way as we show in Figure 2.1. Since we do not know whether

the market will go up or down, the extracted features are fed into two ranking mod-

els respectively to produce the potential ranks of these estates at the current time.

Finally, we generate a final score for an estate by aggregating the ranking outputs of

these two models.

2.2.2 Estate Feature Extraction

Rather than simply considering the static statistics of urban infrastructure (e.g., the

numbers of POIs, the distances to bus stops), we introduce the fine-grained features

we have extracted from online users reviews and o✏ine moving behaviors for estate
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ranking.

Explicit Features from Online User Reviews

Both prosperity and users’ opinion of neighborhood are two important factors deter-

mining property investment value. Recent study (Wardrip, 2011) shows that a strong

regional economy usually indicates high housing demand. (b. Hj. Mar Iman al Mur-

shid, 2008) further points out the word-of-mouth reflects the satisfaction of people

toward the quality of a neighborhood. We thus consider to mine the online user re-

views of Beijing collected from www.dianping.com. More specifically, for each estate

ei, we measure (1) overall satisfaction, (2) service quality, (3) environment class, (4)

consumption level, and (5) functionality planning of the neighborhood ri by mining

the reviews of business venues located in ri, {p : p 2 P&p 2 ri} in which P is the set

of business venues in Beijing.

Overall Satisfaction: For each estate ei, we access the overall satisfaction of users

over the neighborhood ri. Since the overall rating of a business venue p represents

the satisfaction of users, we extract the average of overall ratings of all business venues

located in ri as a numeric score of overall satisfaction. Formally we have:

fOS
i =

P

p2P&p2r
i

OverallRatingp

|{p : p 2 P&p 2 ri}|
. (2.1)

Service Quality: Similarly, we compute the average of service rating of business venues

in ri and represent the service quality of the neighborhood of ei by

fSQ
i =

P

p2P&p2r
i

ServiceRatingp

|{p : p 2 P&p 2 ri}|
(2.2)

Environment Class: The environment class of business venues could reflect whether

the neighborhood is high-class or not. Therefore, we extract the average environment
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ratings as

fEC
i =

P

p2P&p2r
i

EnvironmentRatingp

|{p : p 2 P&p 2 ri}|
(2.3)

Consumption Cost: Average costs of consumption behaviors in business venues can

partially reflect the salary income and neighborhood class. We calculate the average

consumption cost of business venues of a targeted neighborhood as a feature.

fCC
i =

P

p2P&p2r
i

AverageCostp

|{p : p 2 P&p 2 ri}|
(2.4)

Functionality Planning: A competitive neighborhood usually provides convenient ac-

cess to diverse facilities, such as living demands (e.g., restaurants, supermarkets, and

hospitals), education demands (e.g., schools and libraries), safety demands (e.g., po-

lice and fire department) and entertainment demands (e.g., theaters and parks), so

that it meets various demands of residents. Shortage of diverse facility would reduce

estate investment value. High facility diversity of a neighborhood helps to enhance

the attractiveness of its estates. This e↵ect is called mixed/diverse land use which

plays an important role in metropolitan realty market. We therefore investigate the

distribution of POIs over categories in each neighborhood. A high-class neighborhood

is expected to provide balanced and heterogeneous categories of facilities. Hence, we

apply an entropy to measure the functionality heterogeneity of a neighborhood. Let

#(i, c) denotes the number of business venues of category c 2 C located in ri, #(i)

be the total number of business venues of all categories located in ri. The entropy is

defined as

fFP
i = �

X

c2C

#(i, c)

#(i)
⇥ log

#(i, c)

#(i)
(2.5)
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Implicit Features from O✏ine Moving Behaviors

Recent study (Wardrip, 2011) reports di↵erent types of transit systems (e.g., taxi,

bus) have di↵erent impacts on estate values due to their di↵erent fares, frequencies,

speeds, and scopes of service. Figure 2.4 (a), (b) and (c) show the density distribution

of three types of moving behaviors respectively (i.e., taxi, bus and check-in) in Beijing.

Taxi transits are fast, expensive and mainly distributed in central business district

(CBD) and financial areas. Bus transits are slow, cheap and mainly distributed in

information technology (IT) and education areas. Check-ins reflect a broad range of

mobility and are mainly distributed in areas full of attractions, entertainments, and

POIs. Since di↵erent moving behaviors reflect di↵erent geographic preferences and

social classes of mobile users, we exploit these three types of moving behaviors to

uncover the implicit preference of mobile users toward a neighborhood.

Taxi-Related Features. Recent study (Wardrip, 2011) suggests that the ability to

travel within a large metropolitan area in a short time, for example, by taxi, is highly

valued by residents. To extract the taxi related features, we measure the arriving

volume, leaving volume, transition volume, driving velocity and commute distance of

a neighborhood using taxi GPS traces. Let TT denote the set of all taxi trajectories

of Beijing, each of which represents a taxi trajectory, denoted by a tuple < p, d >

where p is a pickup point and d is a drop-o↵ point.

Taxi Arriving, Leaving and Transition Volume: According to (Wardrip, 2011), most

a✏uent homeowners expect time-saving commute to white-collar jobs downtown and

value faster taxies access.Therefore, the arriving, leaving, and transition volumes of
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(a) Taxi drop-o↵ points (b) Bus drop-o↵ points

(c) Check-ins

E

I

(d) Estate topic profiling

Figure 2.4. (a), (b), and (c) respectively show spatial distribution of taxi drop-o↵s,

bus drop-o↵s and check-ins; (d) illustrates the process of estate topic profiling using

the associated word-of-mouth from check-ins.
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taxi mobility reflect the income and social class of residents of the targeted neighbor-

hood. We define a feature as the counted taxi arriving volume of external passengers

toward the targeted neighborhood. Formally, the taxi arriving volume is given by

fTAV

i

= |{< p, d >2 TT : p 62 r
i

&d 2 r
i

}| (2.6)

Similarly, we define a feature as the counted taxi leaving volume from the targeted

neighborhood to external venues. Formally, the taxi leaving volume is defined as

fTLV
i = |{< p, d >2 TT : p 2 ri&d 62 ri}| (2.7)

We also define a feature as the taxi transition volume between di↵erent venues inside

the targeted neighborhood. Formally,

fTTV
i = |{< p, d >2 TT : p 2 ri&d 2 ri}| (2.8)

Taxi Driving Velocity: According to (Wardrip, 2011), the value of increased travel

velocity and reduced tra�c congestion should be reflected in home values. We in-

vestigate the average taxi velocity of the neighborhood of each estate, namely fTDV
i .

Usually, the taxi speed of a neighborhood indicates the accessibility of road network

and transportation e�ciency. Formally, fTDV
i is given by

fTDV
i =

P

p2r
i

&d2r
i

dist(p, d)/time(p, d)

|{< p, d >2 TT : p 2 ri&d 2 ri}|
(2.9)

Taxi Commute Distance: Taxi is a kind of expensive but fast transit. Normally,

passengers take taxi to the important places (e.g., work place, theater, hotel, etc.)

for business or urgent purposes. The shorter distance an estate neighbor is from im-

portant places, the more prosperous the neighborhood is, and the higher commute

convenience the neighborhood has. A huge part of motivations of trading an es-

tate comes from the incentive of convenient living environment. Formally, the taxi
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commute distance is defined by

fTCD
i =

P

p2r
i

||d2r
i

dist(p, d)

|{< p, d >2 TT : p 2 ri||d 2 ri}|
(2.10)

Bus-Related Features. Most of moderate-income residents choose buses which are

cheaper with acceptable speed rather than taxies which are expensive with faster

speed (Wardrip, 2011). Since most of the residents in a city are middle-class, bus

tra�c represents the majority of urban mobility. Besides, according to (Montanari &

Staniscia, 2012), there is a connection between a drop in estate prices and a decreased

flow of bus mobility. We thus measure the arriving, leaving and transition volumes

of buses in the neighborhood of each estate. Let BT denote the set of all the bus

trajectories of Beijing, each of which represents a bus trajectory, denoted by a tuple

< p, d > where p is a pickup bus stop and d is a drop-o↵ bus stop.

Bus Arriving, Leaving and Transition Volume: Similar to taxi mobility volume, we

also extract the arriving volume, leaving volume and transition volume of buses from

smart card transactions. Formally,

fBAV
i = |{< p, d >2 BT : p 62 ri&d 2 ri}|

fBLV
i = |{< p, d >2 BT : p 2 ri&d 62 ri}|

fBTV
i = |{< p, d >2 BT : p 2 ri&d 2 ri}|

(2.11)

Bus Stop Density: Recent work (Robert Cervero, 2011) reports that price premiums

of up to ten percents are estimated for estates within 300m of more bus stops. In

other words, the bus stop density is positively correlated to estate prices. Here, we

propose an alternative approach and strategically estimate bus stop density using

smart card transactions. In smart card transactions, the ticket fare of a trajectory
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indeed reflects the number of bus stops in this trajectory. This is because the Beijing

Public Transportation Group charges passengers according to the number of stops of

each trip. Given the pick-up stop p and the drop-o↵ stop d, the trip distance between

p and d is fixed in a designed bus route. Then, the ratio of trip distance to bus

stop number implicitly suggests in average distance between every two consecutive

bus stops. Since the bus stop number of a trip can be approximated by the fare,

we compute the ratio of distance to fare for estimating the density of bus stop in a

neighborhood. The smaller the distance-fare ratio is, the higher the bus stop density

is.

fBSD
i =

P

p2r
i

||d2r
i

dist(p, d)/fare(p, d)

|{< p, d >2 BT : p 2 ri||d 2 ri}|
(2.12)

Smart Card Balance: The smart card balances imply the patterns of the consump-

tion and recharge behaviors. If residences always maintain a higher balance in their

smart card, this suggests the card holders spend more money on bus travel. The large

expense of bus travel implies: (1) residences depend on buses more than other trans-

portation (e.g., subway, taxi), which may indicate that the a�liated neighborhood is

lack of subways and taxies; (2) residences travel a longer distance to work, shop and

pick up children, and thus need to maintain a high balance. In other words, this place

is remote and inconvenient. We thus consider to extract the smart card balance as a

feature. Formally,

fSCB
i =

P

p2r
i

||d2r
i

balance(p, d)

|{< p, d >2 BT : p 2 ri||d 2 ri}|
(2.13)

Check-in Related Features. Mobile users check in at online location-aware social

networks when they walk in an important place. These check-ins are a significant
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portion of urban mobility. Estate price is likely high in communities where there are

convenient transit stations with good access to retail stores and services (Wardrip,

2011). Therefore, check-in behaviors could partially reflect the access convenience

to these locations. In our data set, each check-in event can be denoted by a tuple,

< p, t, c >2 CI, where p, t, c and CI represent the POI of the check-in, the check-in

time stamp, the category of POI, and the set of check-in events, respectively.

Neighborhood Popularity: We count the total number of check-ins reported in the

neighborhood of each estate as popularity measurement. Formally,

fNP
i = |{< p, t, c >2 CI : p 2 ri}| (2.14)

Topic Profile: The goal of topic distillation is to learn the topic distribution of a

neighborhood based on the textual information of check-ins via a two-step approach.

STEP1: Propagating word-of-mouth from poi to neighborhood. In check-in data,

each POI is associated with textual reviews posted by users. This textual information

reflects opinion of users toward this POI. Since each neighborhood is associated with

a cluster of POIs, we therefore propose to propagate the word-of-mouth of mobile

users from poi to neighborhoods by spatio-textual aggregation using check-in data.

We get a cluster of textual posts denoted as de
i

for the neighborhood of each estate ei.

We then segment these sentences into words and extract the semantically significant

tags for each neighborhood. One reason for propagating word-of-mouth from poi

to neighborhood is that the terms associated with a single POI are usually short,

incomplete and ambiguous. Moreover, LDA is proven non-e↵ective for short texts.

The aggregation process can better learn thousands of mobile users’ opinions toward
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estates in terms of latent topic distributions.

STEP2: Textual profiling from words to topics. Next we exploit the LDA model for

estate topic profiling by treating each estate neighborhood as a document. In LDA,

each document is represented as a probability distribution over topics (document-

topic distribution) and each topic is represented as a probability distribution over a

number of words (topic-word distribution).In this way, we build an aggregated LDA

model as shown in Figure 2.4(d). Here, the topic distribution of each document

Pr(z | de
i

) is treated as topical features of estate, where z and de
i

are topic and

document respectively. The topic profiling process of the estates is as following:

1. For each topic z 2 {1, ..., K}, draw a multinomial distribution over terms,

�z ⇠ Dir(�).

2. For the document de
i

given an estate ei

(a) Draw a multinomial distribution over topics, ✓d
e

i

⇠ Dir(↵)

(b) For each word wd,n in document de
i

:

i. Draw a topic zd,n ⇠ Mult(✓d
e

i

)

ii. Draw a word wd,n ⇠ Mult(�z
d,n

)

So far, we have extracted two categories of estate features as shown in Table

4.2. We emphasize that the above features are defined in terms of the neighborhood

(ri) of each estate, which is parameterized by its radius d. Hence, we can extract

multiple groups of estate features with respect to di↵erent neighborhood radius (e.g.,

d=0.25,0.5,0.75,1,1.25,...,3km).
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2.2.3 Sparse Pairwise Ranking for Estate Appraisal

Here we present the sparse pairwise estate ranker.

Model Description: Since many existing learning-to-rank algorithms use linear

rankers, we learn a linear ranking predictor. Let xixixi denote the M-size vector repre-

sentation of estate ei with the above extracted features, fi denote the predicted estate

value, and yi denote the ground truth estate value, then we have fi(xixixi;www) = www>xixixi +

✏i =
PM

m=1 wmxim+ ✏i, where ✏i is a zero-mean Gaussian bias with variance �2, and www

is the weights of features. In other words, P (yi|xixixi) = N (yi|fi, �2) = N (yi|www>xixixi, �
2)

where N represents normal distribution.

Objective Function: While these features indeed capture residents’ opinions about

estates to be ranked, they usually are inter-correlated and redundant. Thus possible

confounders lead to poor generalization performance. To address this issue, we adopt

a strategy which simultaneously conducts feature selection while maximizing estate

ranking accuracy. Since pairwise ranking strategy is e↵ective with lower complexity

comparing with listwise ranking strategy, we combine a pairwise ranking objective

and a sparsity regularization term in a unified probabilistic modeling framework.

Next we introduce how to derive the mixture objective of sparse pairwise estate

ranking. Let us denote all parameters by  = {www,���2} which are the parameters of

estate ranker (we will introduce ���2 in the following), the hyperparamters by ⌦ =

{a, b, �2} which are the parameters of sparsity regularization, and the observed data

by D = {Y,⇧} where Y and ⇧ are the investment values and ranks of I estates

respectively. For simplicity, we assume the real estates in D are sorted and indexed
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in a descending order in terms of their investment values, which compiles a descending

ranks as well. In other words, i is both the index and the ranking order of the given

estate xi By Bayesian inference, we have the posterior probability as

Pr( ;D,⌦) = P (D| ,⌦)P ( |⌦) (2.15)

First, the term P (D| ,⌦) is the likelihood of the observed data collection D,

which can be explained as a joint probability of both estate investment values,

P (Y | ,⌦), and estate ranking consistency, P (⇧| ,⌦). Here we treat the ranked

list of estates as a directed graph, G =< V,E >, with nodes as estates and edges as

pairwise ranking orders. For instance, edge i ! h represents an estate i is ranked

higher than estate h. From a generative modeling angle, edge i ! h is generated

by our model through a likelihood function P (i ! h). The more valuable estate i is

than estate h, the larger P (i ! h) should be. On the contrary, the case, in which

i ! h but fi < fh, will punish P (i ! h). Therefore,

P (D| ,⌦) = P (Y | ,⌦)P (⇧| ,⌦)

=
I
Y

i=1

N (yi|fi, �2)
I�1
Y

i=1

I
Y

h=i+1

P (i ! h| ,⌦)
(2.16)

where the generative likelihood of each edge i ! h is defined as Sigmoid(fi � fh):

P (i ! h) = 1
1+exp(�(f

i

�f
h

)) .

Second, the term P ( |⌦) is the prior of the parameters  . Here, we introduce a

sparse weight prior distribution by modifying the commonly used Gaussian prior, such

that a di↵erent and separate variance parameter �2
m is assigned for each weight. Thus,

P (www|↵↵↵) =
QM

m=1 N (wm|0, �2
m), where �

2
m represents the variance of corresponding pa-

rameter wm and ���2 = (�2
1 , ..., �

2
M)>, each of which is treated as a random variable.
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Later, an Inverse Gamma prior distribution is further assigned on these hyperparam-

eters, P (���2|a, b) =
QM

m=1Inverse-Gamma(�2
m; a, b), where a and b are constants and

are usually set close to zero. By integrating over the hyperparameters, we can obtain

a student-t prior for each weight, which is known to enforce sparse representations

during learning by setting some feature weights to zero and avoiding overfitting.

P ( |⌦) = P (www|0,���2)P (���2|a, b)

=
M
Y

m=1

N (wm|0, �2
m)

M
Y

m=1

Inverse�Gamma(�2
m|a, b)

(2.17)

Parameter Estimation: With the formulated posterior probability, the learning

objective is to find the optimal estimation of the parameters  that maximize the

posterior. Hence, by inferring Equation 4.6, we can have the log of the posterior for

the proposed model.

L(www,���2|Y,⇧, a, b, �2) =

I
X

i=1



�1

2
ln �2 � (yi � fi)2

2�2

�

+
I�1
X

i=1

I
X

h=i+1

ln
1

1 + exp(�(fi � fh))

+
M
X

m=1



�1

2
ln �2

m � w2
m

2�2
m

�

+
M
X

m=1



�(a+ 1) ln �2
m � b

�2
m

�

(2.18)

We apply a gradient descent method to maximize the posterior by updating

wm, �
2
m through w

(t+1)
m = w

(t)
m � ✏@(�L)

@w
m

and �
2(t+1)
m = �

2(t)
m � ✏@(�L)

@�2
m

where

@(L)
@wm

=
I
X

i=1

1

�2
(yi �

M
X

m=1

wm · xim)xim+

I�1
X

i=1

I
X

h=i+1

exp(�(fi � fh))

1 + exp(�(fi � fh))
(xim � xhm) +

�wm

�2
m

(2.19)

@(L)
@�2

m

=
w2

m + b

�4
m

� 3 + 2a

2�2
m

(2.20)
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2.2.4 Ranking Inference

After parameters  are estimated via maximizing the posterior probability, we will

obtain the learned model for investment value of estate, i.e., E(yi|www,���) = xixixiwww given

a rising or falling market period. For a new coming estate k, we may predict its

investment value accordingly. The larger the E(yk|www,���) is, the higher investment

value it has.

For practical usage, we train two ranking models, g(x) and g
0
(x), for the rising

and falling markets respectively. Since we do not predict whether a market will go

up or go down, we feed the features of a real estate into two models respectively and

generate two value levels, which denote its value-adding and value-protecting abilities

in rising and falling markets. To provide a unified ranking to users, the output of

these two models can be aggregated as R = ↵ · g(x) + (1� ↵) · g0
(x).

2.3 Experimental Results

We provide an empirical evaluation of the performances of the proposed method on

real-world estate related data.

2.3.1 Experimental Data

Table 4.3 shows five data sources. The taxi GPS traces are collected from a Beijing

taxi company. Each trajectory contains trip id, distance(m), travel time(s), aver-

age speed(km/h), pick-up time and drop-o↵ time, pick-up point and drop-o↵ point.

Also, we extract features from the Beijing smart card transactions. Each bus trip has
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card id, time, expense, balance, route name, pick-up and drop-o↵ stops information

(names, longitudes and latitudes). Moreover, the check-in data of Beijing is crawled

from www.jiepang.com which is a Chinese version of Fourquare. Each check-in event

includes poi name, poi category, address, longitude and latitude, comments. Further-

more, we crawl the online business reviews of Beijing from www.dianping.com which

is a business review site in China. Each review contains shop ID, name, address,

latitude and longitude, consumption cost, star (from 1 to 5), poi category, city, envi-

ronment, service, and overall ratings. Finally, we crawl the Beijing estate data from

www.soufun.com which is the largest real-estate online system in China.

2.3.2 Baseline Algorithms

To show the e↵ectiveness of our method, we compare our method against the fol-

lowing algorithms. (1) MART (Friedman, 2001): it is a boosted tree model,

specifically, a linear combination of the outputs of a set of regression trees. (2)

RankBoost (Freund, Iyer, Schapire, & Singer, 2003): it is a boosted pairwise

ranking method, which trains multiple weak rankers and combines their outputs as

final ranking. (3) Coordinate Ascent (Metzler & Croft, 2007): it uses dom-

ination loss and applies coordinate descent for optimization. (4) LambdaMART

(Burges, 2010): it is the boosted tree version of LambdaRank, which is based

on RankNet. LambdaMART combines MART and LambdaRank. (5) FenchelRank

(Lai, Pan, Liu, Lin, & Wu, 2013) beyond traditional ranking methods, we further

compare with FenchelRank which is designed for solving the sparse learning-to-rank

(LTR) problem with a L1 constraint.
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Table 2.2. Statistics of the experimental data.

Data Sources Properties Statistics

Taxi Traces

Number of taxis 13,597

E↵ective days 92

Time period Apr. - Aug. 2012

Number of trips 8,202,012

Number of GPS points 111,602

Total distance(km) 61,269,029

Smart Card Transactions Number of bus stops 9,810

Time Period Aug 2012 to May 2013.

Number of car holders 300,250

Number of trips 1,730,000

Check-Ins
Number of check-in POIs 5,874

Number of check-in events 2,762,128

Number of POI categories 9

Time Period 01/2012-12/2012

Business Review
Number of business POIs 1472

Number of reviews 470846

Number of users 159820

Real Estates

Number of real estates 2,851

Size of bounding box (km) 40*40

Time period of transactions 04/2011 - 09/2012
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We utilize RTree 3 to index geographic items (i.e., taxi and bus trajectories,

checkins, etc.) and extract the defined features. We use Jieba 4 which is a Chine-

se/English text segmentation module to segment words and extract tags. For tradi-

tional LTR algorithms, we use RankLib 5 . We set the number of trees = 1000, the

number of leaves = 10, the number of threshold candidates = 256, and the learning

rate = 0.1 for MART. We set the number of iteration = 300, the number of threshold

candidates = 10 for RankBoost. We set step base = 0.05, step scale = 2.0, tolerance

= 0.001, and slack = 0.001 for Coordinate Ascent. We set number of trees = 100,

number of leaves = 10, number of threshold candidates = 256, learning rate = 0.1 for

LambdaMART. For FenchelRank, we use the source code6 provided by the author.

We set a=0.01, b=0.01, and �2 = 1000 for our model.

All the codes are implemented in R (modeling), Python (feature extraction) and

Matlab (visualization). And all the evaluations are performed on a x64 machine

with i7 3.40GHz Intel CPU (with 4 cores) and 24GB RAM. The operation system is

Microsoft Windows 7.

2.3.3 Evaluation Metrics

Normalized Discounted Cumulative Gain. The discounted cumulative gain

(DCG@N) is given by DCG[n] =

8

>

>

<

>

>

:

rel1 if n = 1

DCG[n� 1] + rel
n

log2n
, if n >= 2

Later, given

the ideal discounted cumulative gain DCG
0
, NDCG at the n-th position can be com-

3https://pypi.python.org/pypi/Rtree/
4https://github.com/fxsjy/jieba
5http://sourceforge.net/p/lemur/wiki/RankLib/
6http://ss.sysu.edu.cn/ py/fenchelcode.rar
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puted as NDCG[n]= DCG[n]

DCG0 [n]
. The larger NDCG@N is, the higher top-N ranking

accuracy is.

Precision and Recall. Since we use a five-level rating system (4 > 3 > 2 > 1 > 0)

instead of binary rating, we treat the rating � 3 as “high-value” and the rating <

3 as “low-value”. Given a top-N estate list EN sorted in a descending order of the

prediction values, the precision and recall are defined as Precision@N =
|E

N

T
E�3|

N

and Recall@N =
|E

N

T
E�3|

|E�3|
, where E�3 are the estates whose ratings are greater or

equal to three (3).

Kendall’s Tau Coe�cient. Kendall’s Tau Coe�cient (or Tau for short) measures

the overall ranking accuracy. Let us assume that each estate i is associated with

a benchmark score yi and a predicted score fi. Then, for an estate pair < i, j >,

< i, j > is said to be concordant, if both yi > yj and fi > fj or if both yi < yj and

fi < fj. Also, < i, j > is said to be discordant, if both yi < yj and fi > fj or if both

yi < yj and fi > fj. Tau is given by Tau = #
conc

�#
disc

#
conc

+#
disc

.

2.3.4 Correlation Analysis

We provide a visualization analysis to validate the correlation between the extracted

features and estate investment values. We use scatter-plot matrix for correlation

analysis. Each non-diagonal chart in a scatter plot matrix shows the correlation

between a pair of features whose feature names are listed in the corresponding diagonal

charts. Given a set of N features, there are N-choose-2 pairs of features, and thus

the same numbers of scatter plots. The dots represent the estates and their colors

represent the grades of investment value. For readability, we use R5 > R4 > R3 >
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Figure 2.5. Feature correlation analysis of business reviews, taxi traces, bus traces,

and mobile check-ins.
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R2 > R1 (symbol ) to represent 4 > 3 > 2 > 1 > 0 (number) in Figure 2.5.

In Figure 2.5(a), we present the correlation between business review features (over-

all satisfaction, service quality, environment class, consumption cost) and estate in-

vestment value. As can be seen, the R5 estates tend to appear at the top right corner

of all the non-diagonal charts. This implies that if mobile users have higher ratings

for estate neighborhoods, estate investment values are the higher. Remind that we

mean the heterogenesis of poi planning by the entropy of frequency of categorized

POIs. Interestingly, we observe if the heterogenesis of functionality planning is too

high or too low, these estates are usually low-value. This can be intuitively explained

by the fact that people are willing to live in a community that can meet and balance

the needs of their life.

In Figure 2.5(b), we show the positive correlation between the taxi leaving, arriving

and transition volumes of estate neighborhoods and estate investment value. However,

the commute distance of taxies has negative correlation with estate investment value.

In other words, the shorter the commute distance of taxies is, the higher is the estate

investment value. A potential interpretation of this observation is that since taxies

are valued by white-collar and business people, the destinations of taxi trajectories

usually are important places (e.g., conference centers, business hotels, companies

and government organizations, etc). If the commute distance of taxies is short, the

targeted neighborhood is close to these important places.

In Figure 2.5(c), we show the positive correlation between estate investment value

and bus related features, such as the leaving, arriving, and transition volumes of

buses, bus stop density. Figure 2.5(d) illustrates that Topic 4 has positive correlation
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with estate investment value whereas Topic 1,2,3,5 have negative correlation. This

validates topic profiling of checkin posts can help discriminate estate values.

The visualization results show the collectiveness of our intuitions for defining and

extracting discriminative features

2.3.5 Feature Evaluation

We evaluate the performances of di↵erent features segmented from two perspectives.

Evaluation on features of di↵erent data sources. We segment the extracted

features in terms of di↵erent data sources and investigate which source is more e↵ec-

tive for ranking estates. Figure 2.6 and Figure 2.7 shows the Tau, NDCG, Precision,

and Recall of four feature sets (business reviews, taxi traces, smart card transactions

and check-ins) in rising market and falling market respectively. In all cases, we ob-

serve the extracted features achieve good performances, yet there are features which

are substantially better than others.

Specifically, the check-in features perform best with Tau 0.1046198, NDCGs >

0.75, Precisions > 0.85, and Recalls > 0.24 in rising market, and consistently achieve

the best ranking results in falling market. The features of business reviews hold

the second place of overall and top-k rankings in rising and falling markets. In

sum, business reviews and check-ins performs better than taxi and bus traces. One

possible reason is that people’s outdoor activities consist (1) moving phrase and (2)

attending phrase. Although moving phrase (taxi and bus trajectories) help realize

activity attending (check-ins and business reviews), the drop-o↵ points of taxi and

bus trajectories are not always the destinations of outdoor activities. Whereas, the
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Figure 2.6. Feature performances of di↵erent sources on the rising market dataset.

locations of check-ins and business reviews usually are the final destinations of people’s

visits. They reflect direct interaction between users and activities via locations, and

thus have semantically richer information than public transits. Besides, a comparison

between Figure 2.6 and Figure 2.7 shows that bus features perform better than taxi

features in rising market, whereas taxi features perform better than bus ones in

falling market. We note that bus traces stand for the mobility of mediate classes

while taxi traces stand for the mobility of white-collar and business people. This

observation implies that in falling market, despite economic recession, since the high-

income groups still have strong purchasing power of estates, their preferences have

more influence on estate prices than middle class.
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Figure 2.7. Feature performances of di↵erent sources on the falling market dataset.
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Evaluation on features of di↵erent radius distances. We segment the features

in terms of di↵erent neighborhood radiuses and investigate the proper radiuses of

neighborhoods for estate ranking. In Figure 2.8 and Figure 2.9, we report the per-

formance comparison of feature sets of di↵erent radius distances (i.e., 0.25, 0.5, 1,

1.5, and 3km) in both rising and falling markets. We observe that the radius dis-

tance of neighborhood can a↵ect the ranking performance. Some radius distances

substantially outperform others. Figure 2.8 illustrates the radiuses of 0.5km, 0.75km,

1km outperform other radiuses with a significant margin with respect to both overall

and top-k ranking in rising market. The setting of 0.25, 1.5 or 2km in rising market

lead to lower ranking accuracy. In falling market, 0.75km performs best. Besides,

0.25, 1.5 and 2km consistently perform worst as they do in rising market. Therefore,

we recommend to set the radius of neighborhood to 0.75 ± 0.25km, rather than too

short(<0.25km) or too long(>2km). This might be because 0.75km is not only a

comfortable walking distance for bus and taxi stops, but also su�cient to capture the

outdoor activities of estate neighborhoods.

The results justify the mining and fusion methods of feature extraction (e.g.,

direction, volume, velocity, heterogeneity, density, popularity, etc.).

2.3.6 Model Evaluation

We report the performance comparison of our method comparing to five baseline

algorithms on rising market and falling market in terms of Tau and NDCG.

Rising Market Data. In Table 2.3, we present the performance comparison of

NDCG and Tau in rising market. Our method achieves 0.75 NDCG@1, 0.6900469
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Figure 2.8. Feature performances of di↵erent radius on the rising market dataset.
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Figure 2.9. Feature performances of di↵erent radius on the falling market dataset.
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NDCG@3, 0.6915216 NDCG@5, 0.6861585 NDCG@7, and 0.7016248 NDCG@10,

which obviously outperform the baseline algorithms with a significant margin. Our

method fuses sparsity regularization and pairwise ranking objective, and o↵ers an

increase in comparison to FenchelRank (Lai et al., 2013) which is a newly pro-

posed sparse ranking algorithm. Specifically, our method achieves 15.9% increase

in NDCG@3 and 24.2% increase in NDCG@5 comparing to FechelRank. This obser-

vation validates the superiority of our method when considering many intercorrelative

features with confounders. Meanwhile, we also observe FenchelRank achieve the sec-

ond best ranking accuracy comparing traditional ranking algorithms. This justifies

the benefits of considering both sparsity regularization and ranking accuracy. With

respect to overall ranking, our method achieves the highest Tau (0.3493753). In

the comparison between tau and NDCG, an observation stands out is that although

FenchelRank holds the second place in top-k ranking, it surprisingly achieve the low-

est tau value. However, our method achieves a balance performance in both top-k

and overall ranking.

Table 2.3. performance comparison of our approach and baselines in rising market.

Metric MART RankBst CoordAsc LamMART FenRank SEK

NDCG@3 0.50089 0.46493 0.55995 0.46493 0.59502 0.69005

NDCG@5 0.58295 0.52506 0.628623 0.48887 0.55679 0.69152

NDCG@7 0.59649 0.59105 0.63199 0.51548 0.61837 0.68616

NDCG@10 0.62377 0.56735 0.65563 0.50471 0.65999 0.70162

Tau -0.01755 0.08892 -0.13704 0.07150 0.12243 0.34938
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Falling Market Data. Table 2.4 shows the performance comparison of NDCG and

Tau in falling market. We first compare all the six methods in terms of NDCG. Our

method and RankBoost outperform the other algorithms with a significant margin.

Regarding Tau, our method achieves the highest accuracy with 0.3347548. Although

RankBoost obtains impressive NDCGs in falling market, it fails to consistently achieve

good NDCGs in rising market. Whereas, our method consistently reports high and

balanced performances in both rising and falling markets.

Table 2.4. performance comparison of our approach and baselines in falling market.

Metric MART RankBst CoordAsc LamMART FenRank SEK

NDCG@3 0.46493 0.75 0.59502 0.36991 0.44005 0.69005

NDCG@5 0.57712 0.77008 0.5725 0.46968 0.55746 0.68514

NDCG@7 0.61288 0.80305 0.53820 0.52281 0.59603 0.68249

NDCG@10 0.65570 0.81719 0.55537 0.54510 0.64049 0.69719

Tau 0.09481 0.12978 0.22331 0.23113 -0.12477 0.33475

The results validate the advantages of considering both ranking accuracy and

sparsity regularization with the extracted intercorrealative features from heterogenous

sources.

2.4 Related Work

Related work can be grouped into two categories. The first one includes the work on

estate appraisal. In the second category, we present the ranking related methods.

Real estate appraisal is the process of valuing the property’s market value. Tra-
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ditional research on estate appraisal is based on financial real estate theory, typically

constructing an explicit index of estate value (Krainer & Wei, 2004), such as price-

rent ratio, price to income ratio. More studies rely on financial time series analysis by

inspecting the trend, periodicity and volatility of estate prices (Chaitra H. Nagaraja

& Zhao, 2009). Work (Downie & Robson, 2007) checks the volatility of estate price

and concludes that low investment-valued estate values relatively volatile. More clas-

sic works are based on repeat sales methods and hedonic methods. The repeat sales

methods (Shiller, 1991a) construct a predefined price index based on properties sold

more than once during the given period. The hedonic methods (Taylor, 2003) assume

the price of a property depends on its characteristics and location. Work (Downie &

Robson, 2007) studies the automated valuation models which aggregate and analyze

physical characteristics and sales prices of comparable properties to provide property

valuations. More recent works (Kontrimas & Verikas, 2011; Fu, Xiong, et al., 2014)

apply general additive mode, support vector machine regression, multilayer percep-

tron, ranking and clustering ensemble method to computational estate appraisal. In

our earlier work (Fu, Xiong, et al., 2014), we focus on exploiting the mutual enhance-

ment between ranking and clustering to model geographic utility, popularity and

influence of latent business area for estimating estate value. Besides, in (Fu, Xiong,

et al., 2014), we identify and jointly capture the geographical individual, peer, and

zone dependencies as an estate-specific ranking objective for enhancing prediction

of estate value. However, in this chapter, we details comprehensive feature designs

that cover most of aspects that have an impact on estate value. Also, we integrate

sparsity regularization into pairwise ranking strategy because the extracted features
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are usually correlated and redundant.

Also, our work can be categorized into Learning-To-Rank (LTR) which includes

pointwise, pairwise, and listwise approaches (Hang, 2011). The point-wise methods

(Hang, 2011) reduce the LTR task to a regression problem: given a single query-

document pair, predict its score. The pair-wise methods approximate the LTR task to

a classification problem. The goal of the pairwise ranking is to learn a binary classifier

to identify the better document in a given document pair by minimize average number

of inversions in ranking (Burges et al., 2005; Freund et al., 2003; Quoc & Le, 2007;

Fürnkranz & Hüllermeier, 2003). The list-wise methods, optimize a ranking loss

metric over lists instead of document pairs (Xia, Liu, Wang, Zhang, & Li, 2008). For

instance, H. Li et al. propose AdaRank (Xu & Li, 2007) and ListNet (Cao, Qin, Liu,

Tsai, & Li, 2007) and Burges et al. propose LambdaMART (Burges, 2010). More

recent work (Lai et al., 2013) further learn the ranking model which is constrained

to be with only a few nonzero coe�cients using L1 constraint and propose a learning

algorithm from the primal dual perspective.

Urban computing (Zheng, Capra, Wolfson, & Yang, 2014) is a process of acquisi-

tion, integration, and analysis of urban data (e.g., sensors, devices, vehicles, buildings,

human) to tackle the major issues that cities face. Our work also has a connection

with mining mobile, geography and mobility data to tackle issues in urban space.

Work (Ceci, Appice, & Malerba, 2007) identifies emerging patterns with multirela-

tional approach from spatial data. Liu et al. detects spatio-temporal causality of

outliers in tra�c data (W. Liu, Zheng, Chawla, Yuan, & Xing, 2011). Yuan et al.

discovers regional functions of a city using POIs and taxi traces (Yuan, Zheng, & Xie,
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2012a) . Heierman et al. mines the device usage patterns of homeowners for smart

houses (Heierman III & Cook, 2003) . Paper (Karamshuk, Noulas, Scellato, Nicosia,

& Mascolo, 2013) selects the optimal sites for retail stores by mining Foursquare data.

(Zheng et al., 2014) mines the driving route for end users by considering physical fea-

ture of a route, tra�c flow, and driving behavior.

2.5 Conclusions

In this chapter, we aimed to assess estate investment value by mining a variety of user-

generated data. We collected a large scale of online user reviews and o✏ine moving

behaviors (taxi traces, smart card transactions, and checkins) of mobile users. We

index, filter, propagate, distill, aggregate mobile data, and extract the fine-grained

features from multiple perspectives (e.g., direction, volume, velocity, heterogeneity,

popularity, topic, etc.) for evaluating estate values. However, since the extracted

estate features usually are intercorrelated and redundant, we proposed to learn a

sparse pairwise ranker, which is mutually enhanced by simultaneously conducting

feature selection and maximizing estate ranking accuracy. Finally, the experimental

results with real world estate-related data demonstrates the competitive e↵ectiveness

of both extracted features and learning models.
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CHAPTER 3

MODELING GEOGRAPHIC DEPENDENCIES FOR REAL ESTATE RANKING

It is traditionally a challenge for home buyers to understand, compare and contrast

the investment values of real estates. While a number of estate appraisal methods

have been developed to value real property, the performances of these methods have

been limited by the traditional data sources for estate appraisal. However, with the

development of new ways of collecting estate-related mobile data, there is a potential

to leverage geographic dependencies of estates for enhancing estate appraisal. Indeed,

the geographic dependencies of the value of an estate can be from the characteristics

of its own neighborhood (individual), the values of its nearby estates (peer), and the

prosperity of the a�liated latent business area (zone). To this end, in this chapter, we

propose a geographic method, named ClusRanking, for estate appraisal by leveraging

the mutual enforcement of ranking and clustering power. ClusRanking is able to

exploit geographic individual, peer, and zone dependencies in a probabilistic ranking

model. Specifically, we first extract the geographic utility of estates from geography

data, estimate the neighborhood popularity of estates by mining taxicab trajectory

data, and model the influence of latent business areas via ClusRanking. Also, we

use a linear model to fuse these three influential factors and predict estate investment

values. Moreover, we simultaneously consider individual, peer and zone dependencies,

and derive an estate-specific ranking likelihood as the objective function. Finally,
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we conduct a comprehensive evaluation with real-world estate related data, and the

experimental results demonstrate the e↵ectiveness of our method.

3.1 Introduction

There are a number of online estate information systems, such as Yahoo! Homes,

Zillow.com, and Realtor.com, which provide functions to help people to search estate-

related information. In these systems, home buyers can also rank estates based on

some criteria, such as prices, the number of bedrooms, and the home size. However,

the decision process of buying a house is di↵erent from that of buying a regular

product. Home buyers not only aim to gain utility from a house, but also seek resale

values and long-term capital growth. Therefore, home buyers often need the tool to

rank estates based on their investment values. Indeed, the investment value is more

related to the potential capital growth in the future. The return rate1 is often

used to quantify the investment values of estates instead of using the price. In fact,

a high price does not necessarily mean a high investment value, and vice versa.

Traditionally, estate appraisal methods can help for the estimation of the values of

estates, but the performances of these methods have been limited by the traditional

data sources for estate appraisal. For instance, traditional estate price modeling meth-

ods exploit the trend, periodicity and volatility of price time series. However, both

rigid and speculative demands have a big impact on the prices of estates. It is di�cult

to identify the true estate values only with the current prices. Also, the compara-

tive estate analysis, e.g. automated valuation models (AVMs), typically aggregates

1http://en.wikipedia.org/wiki/Rate of return
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and analyzes the physical characteristics and sales prices of comparable properties to

provide property evaluations. However, AVMs could fail to appraise new or planned

estates due to the lack of comparable property data.

Indeed, with the development of new ways of collecting estate-related mobile data,

there is a potential to exploit geographic dependencies of estates for enhancing estate

appraisal. In fact, a large amount of estate-related mobile data, such as urban geo-

graphic data and human mobility information near estates, have been accumulated. If

properly analyzed, these data could be a source of rich intelligence for finding estates

with high investment values.

Specifically, in this chapter, we study three types of geographic dependencies,

which categorize estate values from three perspectives: (1) the geographic charac-

teristics of its own neighborhood (individual), (2) the values of its nearby estates

(estate-estate peer), and (3) the values of its a�liated latent business area (estate-

business zone). First, the investment value of an estate is largely determined by the

geographic characteristics of its own neighborhood. This is called individual de-

pendency. For example, people are usually willing to pay higher prices for estates

close to the best public schools. The individual dependency can be captured by cor-

relating the estate investment values with urban geography (e.g. bus stops, subway

stations, road network entries, and point of interests (POIs)) as well as human mo-

bility patterns. Second, the estate investment value can be reflected by its nearby

estates. This is called peer dependency. The peer dependency can be captured by

the comparative estate analysis which is a popular method in estate appraisal and

evaluates estates based on peer estate comparison. An intuitive understanding along
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this line is, if the surrounding estates are of high investment values, the targeted

estate will usually have a high value as well.

Third, the estate value can also be influenced by the values of its a�liated latent

business area. This is called zone dependency. A business area is a self-organized

region with many estates. The formation of business areas are driven by the long-

term commercial activities under two mutually-enhanced e↵ects: (1) estates tend to

co-locate in multiple centers, and thus bring human activities to those business areas;

(2) prosperous business areas in return lead to more estate constructions. Hence, a

prosperous business area represents a high density cluster of human activities, com-

mercial activities, and estates. Here, we assume that each estate is a�liated with a

latent business area and each business area is endowed with a value function of estate

investment preferences, which measures the prosperity of the estate industry in this

business area. The more prosperous the business area is, the easier we can identify a

high investment-value estate from this business area.

In summary, the individual dependency shows that the estate investment value

can be reflected by urban geography information and human mobility data. This

allows us to value real property when we lack of comparable estates. Also, the peer

dependency allows to exploit spatial autocorrelation of investment values through

the comparison between the targeted estate and its peer estates. Moreover, the zone

dependency allows to explore the influence of the associated latent business area of an

estate. Based on the above, in this chapter, we propose a geographic method, named

ClusRanking, for estate appraisal by leveraging the mutual enforcement of ranking

and clustering power. ClusRanking is able to exploit geographic individual, peer and
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zone dependencies into a unified probabilistic ranking model.

Specifically, we first extract the geographic utility from urban geography data.

Then, we estimate the neighborhood popularity through spatial propagation and

aggregation of passenger visit probabilities by mining taxicab trajectory data. More-

over, we model the influence of latent business areas via ClusRanking. In particular,

since we assume there are multiple latent business areas in a city, we embed a dy-

namic spatial-clustering approach into the ranking process. Here, each business area

is treated as a spatial hidden state. A business area not only shows the locations of

its estates, but also reflects the influence on estate investment values in terms of geo-

graphic proximity between estate and the centroids of the business area. Our method

is iteratively updated by mutual enhancement between spatial-clustering and rank-

ing until the boundaries of latent business areas are learned. After this, we fuse the

three factors and learn estate investment values for estate ranking. In addition, we

derive a mixture likelihood objective, which simultaneously considers the geographic

individual, peer and zone dependencies. Here, individual dependency describes the

prediction accuracy of estate investment values and locations. Peer dependency cap-

tures the ranking consistency of intra-business-area estate pairs. Zone dependency

models the ranking consistency of inter-business-area estate pairs. Finally, we con-

duct a comprehensive performance evaluation on real world estate related data and

the experimental results demonstrate the e↵ectiveness of our method.

3.2 Real Estate Ranking

In this section, we introduce a geographic ClusRanking method for estate appraisal.
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3.2.1 Problem Statement

In estate industry, two concepts are often used for an estate: value-adding capabil-

ity and value-protecting capability, which are quantified by the investment value of

estates in rising and falling markets respectively. In this chapter, we focus on estimat-

ing the investment value of estates and ranking all estates accordingly during these

two markets. Ranking estates is very similar to the traditional information retrieval

problem, where documents are ranked according to a defined relevance. Here, each es-

tate is treated as a document and the value-adding capability or the value-protecting

capability is considered as the relevance.

Formally, let E = {e1, e2, ..., eI} be a set of I estates, each of which is represented

by all associated geographic features denoted as ei as shown in Table 3.1, where more

notation are listed. Our goal is to rank the estates in descending order according to

the investment value in two markets. In fact, the essential task of this problem is

how to estimate the investment value (denoted as yi) of each estate i by modeling

all associated relevant information of estates in a unified way. In this chapter, we

consider a group of heterogenous information associated with estates, which include

the public transportation information (e.g., bus stop, subway, road network), point

of interest (e.g., restaurant and shopping mall), neighborhood popularity, and the

influence among estate geographic zone.

3.2.2 The Overview of ClusRanking

Assume that each estate i is endowed with an investment value function yi. We first

build a model to predict yi with the geographic information. Specifically, the estate
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Symbol Size Description

EEE I ⇥N
estate geographic feature vector, ei is the

ith estate

YYY 1⇥ I benchmark values, yi is the benchmark value of ei

FFF 1⇥ I predicted values, fi is the predicted value of ei

⇧⇧⇧ 1⇥ I ranks, ⇡i is the rank of ei, smaller is better

⇧⇧⇧ 1⇥ I
indexes, ⇡i is the index of i-th ranked estate,

inverse of ⇧

��� 1⇥ I geographic utility

��� 1⇥ I neighborhood popularity

⇢⇢⇢ 1⇥ I influence of business area

N I
neighborhood set, ni is the neighborhood of the i-th

estate

D - drop-o↵ point set

C J POI category set

R 1⇥ I business area assignments I estates

R K latent business area set

⌘⌘⌘ 1⇥K business area level prosperity distribution

Table 3.1. Mathematical Notations
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value is a↵ected by three factors: yi / �i + ⇢i + �i, in which (1) �i: the geographic

utility extracted from urban geography data Fgeo; (2) ⇢i: the influence of latent busi-

ness area Farea; (3) �i: the neighborhood popularity estimated from human mobility

data Fmobi. Then, we will be able to get a ranked list of estates based on their pre-

dicted investment values, and thus each estate i is associated with an inferred rank

⇡i. With the ranked list of estates, we formulate a likelihood function, which simul-

taneously captures the geographic individual (Likid), peer (Likpd) and zone (Likzd)

dependencies. This likelihood function unifies both the prediction accuracy based

on geographic data of estates and the ranking consistency of the estate ranked list.

By maximizing this likelihood function, we could optimize the prediction accuracy

of estate investment value and the ranking list of estates at the same time. Finally,

we solve the optimization problem using a Expectation Maximization (EM) method.

Figure 3.1 shows the framework of our method.

3.2.3 Modeling Estate Investment Value

Before introducing the overall objective function which captures the three dependen-

cies altogether, let us first introduce how to model the investment value of estates

with geographic information. Specifically, we will first introduce the modellings of �i,

⇢i and �i separately, and then state how they are combined together.

Geographic Utility: �

Estate values are largely determined by its geographic location. Therefore, we nat-

urally relate the geographic utility of estate to its location characteristics. More

specifically, we first extract geographic features from estate neighborhoods (refer to
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Figure 3.1. The framework of ClusRanking. (The black plates represent the latent

e↵ects.)

Data Feature Design

Transportation

Number of bus stop

Distance to bus stop

Number of subway station

Distance to subway station

Number of road network entries

Distance to road network entries

Point of interest
Number of POIs of di↵erent POI categories

(Shopping, Sports, Education, etc.)

Table 3.2. Neighbourhood Profiling (a neighborhood is defined as a cell area with a

radius of 1km. )
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Table 4.2) and treat the raw representations of estates as a vector E. The raw repre-

sentations of estates E are then learned and transformed to the meta representations

WE using a single-layer perceptron, where W 2 M⇥N is indeed a coe�cient matrix.

Finally, we parameterize geographic utility by a linear aggregation over transferred

features in meta representation: � = qWE>, where q 2 1⇥M are the weights of the

transferred features.

According to estate financial theory (Krainer & Wei, 2004), the estate investment

value can be partially approximated by rent-interest ratio from market performances

explicitly. We incorporate the rent-interest ratio into � = rent
interest

+ qWE> as side

information to strengthen the robustness of our method.

Influence of Latent Business Area: ⇢

Since we assume each estate is associated with a latent business area, the estate

investment value also depends on the value of the associated business area. Suppose

there are K latent business areas, we first choose the business area for each estate.

We apply a multinominal distribution over latent business area r ⇠ p(r|⌘⌘⌘), where

⌘⌘⌘ 2 1 ⇥ K denotes the values (prosperity of estate industry or estate investment

preference) of K business areas respectively. Later, each estate location li is drawn

from a multivariate normal distribution: li ⇠ N (µr,⌃r), where µr 2 1 ⇥ 2 and

⌃r 2 2 ⇥ 2 is the center and covariance of business area r, respectively. Finally, to

model the influence of business area, we treat all the K business areas as K latent

spatial states. The K latent spatial states together show the influence on each estate.

Assume the influence is inversely proportional to the distance between the estate
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location and the business area center: d(i, r) =
p

kµr � lik2, the influence of K

business areas over estate i is defined by an aggregate power-law weighted parametric

term ⇢i =
PK

k=1

⇣

d0
d0+d(i,r

k

)

⌘e
⌘
kP

K

k=1 ⌘k
where d0 as a parameter and e is a mathematical

constant.

Neighborhood Popularity: �

Neighborhood popularity can a↵ect the investment value of an estate to a certain

extent. In general, people are willing to live in a popular neighborhood. A popular

neighborhood usually has lots of notable POIs, which can be measured from two

perspectives: (1) POI numbers, representing the quantitative measurement; (2) POI

visit probability, representing the quality of those POIs. We propose to estimate the

neighborhood popularity of a targeted estate by strategically combining POI numbers

and POI visit probabilities using the taxicab GPS traces via a three-stage algorithm.

Propagating visit probability. In the first stage, given the drop-o↵ point of a

taxi trace d , we model the probability of a POI p visited by the passenger as a

parametric function, whose input x is the road network distance between d and p:

P (x) = �1

�2
· x · exp(1 � x

�2
), where �1 = max

x
(P (x)) and �2 = argmax

x
(P (x)). The

reasons why we adopt this function are as follows. First, when x = 0, P (x) = 0. Since

a taxi could not send passengers into a POI directly, the drop-o↵ point usually is not

the same with the destination. A passenger often walks a short distance to reach the

destination. Second, the drop-o↵ point usually is close to the destination. Hence,

when the distance exceeds a threshold �2, the probability keeps decreasing with an

exponential heavy tail. With this function, we can propagate the visit probability of
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a passenger from the drop-o↵ point to its surrounding POIs.

Aggregating POI-level visit probability. Given a POI p, the visit probability

of p is measured by summarizing all the visit probabilities propagated from all the

drop-o↵ points in taxicab trace data via (p) =
P

d2D P (dist(d, p)).

Aggregating POI-category-level visit probability. In the third stage, we first

identify the POIs located in the neighborhood ni of the i-th estate. Then, we summa-

rize the visit probability of those POIs per category cj and obtain the category-level

aggregated visit probability as �ij =
P

p2c
j

^p2n
i

(p). In this way, we reconstruct the

representation of neighborhood popularity as an aggregated visit probability vector

�i�i�i =< �i1, · · · ,�iJ > over di↵erent POI categories for the i-th estate. Finally, we

aggregate and normalize the popularity score as �i =
1
J

PJ
j=1

�
ij

max
i2r

{�
ij

} .

Finally, we combine all modellings of �i, ⇢i and �i together and get the overall

generative process of estate investment value as shown in Table 3.3. Specifically,

we first assume there are K latent business areas in a city. Each business area is

a cluster of estates. We treat K latent business areas as K spatial hidden states,

each of which is endowed with a latent value ⌘k, which represents estate investment

preference (or prosperity of estate industry) in the k-th business area. For each es-

tate i, we draw a business area r from all K business areas following a multinomial

distribution: Multi(⌘⌘⌘). The location of estate li is drawn from the sampled busi-

ness area r. Later, given the estate location li is drawn, we are able to identify

the neighborhood area and represent estate by a geographic feature vector ei via

neighborhood profiling. We then extract geographic utility �i from ei. Moreover, we

estimate the neighborhood popularity �i by strategically mining the taxicab trajec-
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1 For each estate i:

1.1 Draw a business area r ⇠ Multinomial(⌘).

1.2 Draw a location li ⇠ N (li;µ, �2)

1.3 Generate geographic utility

1.3.1 Draw coe�cient matrix of meta representation

wmn ⇠ N (wmn|µw, �
2
w)

1.3.2 Draw coe�cient vector of geography utility

qm ⇠ N (qm|µq, �
2
q )

1.3.3 Estate geographic utility �i =
rent

i

interest
+ qWe>i

1.4 Compute influence given by latent business areas

⇢i =
PK

k=1

⇣

d0
d0+d(i,r

k

)

⌘e
⌘
kP

K

k=1 ⌘k

1.5 Compute neighborhood popularity �i =
1
J

PJ
j=1

�
ij

max
i2r

{�
ij

}

1.6 Generate the estate investment value yi ⇠ N (yi|fi, �2) where

fi = �i + �i + ⇢i

2 Compile the ranked list ⇧ of estates in terms of all yi

Table 3.3. The generative process of ClusRanking
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tory traces. Since the estate investment value depends on the value of the associated

latent business area, the K business areas together show the value influence on the

estate: ⇢i =
PK

k=1

⇣

d0
d0+d(i,r

k

)

⌘e
⌘
kP

K

k=1 ⌘k
, which is penalized by the distance between

area centroid and estate location. After incorporating the three factors, we generate

the investment value yi of real estate i. With all the estate investment values, we

compile a ranked list of estates denoted as ⇧.

3.2.4 Modeling Three Dependencies

Here, we introduce how to model the geographic individual, peer and zone de-

pendencies of estates together in a unified objective function, as shown in Figure

3.1. Let us denote all parameters by  = {q,W, ⌘,µµµ,⌃⌃⌃}, the hyperparamters ⌦ =

{µq, �
2
q , µw, �

2
w, �

2}, and the observed data collection D = {Y,⇧, L} where Y , ⇧ and L

are the investment value, ranks and locations of I estates respectively. For simplicity,

we first assume that i = ⇡i = ⇡i. In other words, the real estates in D are sorted and

indexed in a descending order in terms of their investment values, which compiles a

descending ranks as well.

By Bayesian inference, we have the posterior probability as

Pr( ;D,⌦) = P (D| ,⌦)P ( |⌦) (3.1)

The term P (D| ,⌦) is the likelihood of the observed data collection D as

P (D| ,⌦) = P ({Y,⇧, L} | ,⌦)

= P ({Y, L} | ,⌦)⇥ P (⇧| ,⌦),
(3.2)

where P ({Y, L} | ,⌦) denotes the likelihood of the observed investment values and

locations of estates given the parameters. P ({Y, L} | ,⌦) can be explained as to be
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proportional to the individual dependency Likid. P (⇧| ,⌦) denotes the likelihood

of the ranking of estates given the parameter, which we argue is proportional to the

product of peer dependency Likpd and zone dependency Likzd. Next, we introduce

the modeling of each dependency in detail.

Individual Dependency. The smaller loss, the higher Likid. Specifically we model

Likid as a joint probability of the estate investment values, the estate locations, and

the business areas to learn the geographic interinfluence between estate investment

values and locations. As shown in Table 3.3, we assume each location of estate is

drawn from a business area and all business areas are drawn from a Multinomial

distribution. Along this line, Likid is formulated by

Likid =
I
Y

i

P ({yi, li}| ,⌦) =
I
Y

i

P ({yi, li, ri}| ,⌦)

=
I
Y

i=1

N (yi|fi, �)
I
Y

i=1

N (li|µr
i

,⌃r
i

)
I
Y

i=1

Mult(ri|⌘⌘⌘)

=
I
Y

i=1

1

�
exp

 

�(yi � fi)
2

2�2

!

I
Y

i=1

1

⌃r
i

exp

 

�(li � µr
i

)2

2⌃2
r
i

!

I
Y

i=1

Mult(ri|⌘⌘⌘)

(3.3)

where we introduce a latent variable R 2 1⇥ I, each of which ri represents the latent

business area assignment of estate i.

Peer and Zone Dependencies.

While directly modeling likelihood of the ranking list of estates cannot compre-

hensively capture the spatial correlation of estate-estate and estate-business area, we

model the ranking consistency by Likpd and Likzd instead. In fact, the ranked list

of all the estates indeed can be encoded into a directed graph, G = {V,E}, with the

node set V as estates and the edge set E as pairwise ranking orders. For instance,

edge i ! h represents an estate i is ranked higher than estate h. From a generative



- 58 -

modeling angle, edge i ! h is generated by our model through a likelihood function

P (i ! h). The more valuable estate i is than estate h, the larger P (i ! h) should

be. Since an estate pair < i, h > can be located inside one business area or cross two

di↵erent business areas, the edges of G then can be categorized into two sets: (1)

edges intra business area which corresponds to peer dependency and (2) edges inter

business area which corresponds to zone dependency.

Specifically, Likpd is defined as the ranking consistencies of estate pairs within the

same business area. In other words, peer dependency captures the likelihood of the

edges intra business area. Here the generative likelihood of each edge i ! h is defined

as Sigmoid(fi � fh): P (i ! h) = 1
1+exp(�(f

i

�f
h

)) . Therefore, Likpd is defined by

Likpd =
I�1
Y

i=1

I
Y

h=i+1

P (i ! h| ,⌦)I(ri=r
h

)

=
I�1
Y

i=1

I
Y

h=i+1

✓

1

1 + exp(�(fi � fh))

◆I(r
i

=r
h

)
(3.4)

where I(ri = rh) is the indicator function with I(ri = rh) = 1 when estate i and estate

h are in the same business area (or ri = rh), and I(ri = rh) = 0 otherwise.

While the peer dependency considers the estate pairs which are within the same

business area, zone dependency yet targets the estate pairs, each of which are within

two di↵erent business areas. We use the generative likelihood of edges inter business

area as the zone dependency. There is investment value conformity between estate

and business area. That is, the higher prosperity of estate industry in the associated

business area, the higher possibility we can draw a high-value estate from it. Thus,

when the estate pair < i, h > is drawn from two di↵erent business areas < ri, rh >, we

compare the values of the two associated business areas (ri ! rh) instead of the values
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of estates (i ! h). Therefore, the generative likelihood of an inter-business-area edge

is define as Sigmoid(⌘r
i

� ⌘r
h

): P (i ! h) = 1
1+exp(�(⌘

r

i

�⌘
r

h

)) , where the values of ri

and rh are represented by ⌘r
i

and ⌘r
h

respectively (refer to Section 3.2.3). In this way,

we capture the spatial dependency between estate and business area. Likzd is then

given by

Likzd =
I�1
Y

i=1

I
Y

h=i+1

P (ri ! rh| ,⌦)I(ri 6=r
h

)

=
I�1
Y

i=1

I
Y

h=i+1

✓

1

1 + exp(�(⌘r
i

� ⌘r
h

))

◆I(r
i

6=r
h

)

,

(3.5)

Second, term P ( |⌦) is the prior of the parameters  

P ( |⌦) = P (q|µq, �
2
q )P (W |µw, �

2
w)

=
M
Y
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2
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2

2�2
w

!

(3.6)

3.2.5 Parameter Estimation

With the formulated posterior probability, the learning objective is to find the op-

timal estimation of the parameters  that maximize the posterior. Specifically, we

use EM mixed with a sampling algorithm. The algorithm iteratively updates the pa-

rameters by mutually enhancement between Geo-clustering and estate ranking. The

Geo-clustering updates the latent business areas based on locations and the three ge-

ographic dependencies; estate ranking learns the estate scores and generate a ranked

list.

E-Step. In the E-step, we iteratively draw latent business area assignments for

all real estates. For each estate i, we treat its latent business area r as a latent
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variable, which is drawn from the posterior of r in terms of the complete likelihood:

r ⇠ P
�

r|D, R(t), (t)
�

. More specifically,

r ⇠ P
�

li|r, (t)
�

P
�

{Y,⇧}|r, (t)
�

P
�

r|⌘⌘⌘(t)
�

(3.7)

where

P
�

li|r, (t)
�

= N
�

li|µ(t)
r ,⌃(t)

r

�

(3.8)

P
�

{Y,⇧}|r, (t)
�

= P (yi|fi, �2)
I
Y

h=i+1

P (i ! h|r, (t))I(ri=r
h

)

I
Y

h=i+1

P (ri ! rh|r, (t))I(ri 6=r
h

)

(3.9)

Here the latent business area assignment of real estate ei is updated by three e↵ects:

(1) P (r|⌘⌘⌘(t)) updates business area assignment in terms of the prosperity distribution

of multiple business areas ; (2) P
�

li|r, (t)
�

is the location emission probability given

the latent business area as a hidden spatial state. (3) P
�

{Y,⇧}|r, (t)
�

updates

business area assignment by both prediction accuracy and ranking consistency.

When the latent business area assignment of each estate is updated, we further up-

date the neighborhood popularity �i =
1
J

PJ
j=1

�
ij

max
i2r

{�
ij

} , because the normalization

term is conditional on the updated business area ri.

M-Step. In the M-step, we maximize the log likelihood of the model given the

business area assignments R are fixed in the E-step. Since business area assignments
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are known, we can update µµµr,⌃⌃⌃r,⌘⌘⌘ directly from the samples.

µµµr =
1

#(i, r)

I
X

i=1

I(ri = r)li

⌃⌃⌃r =
1

#(i, r)� 1

I
X

i=1

I(ri = r)
�

(li � µr)
>(li � µr)

�

(3.10)

where #(i, r) is the number of real states assigned to region r. Through imposing a

conjugate Dirichlet prior Dir(���), we update ⌘⌘⌘(t+1) by

⌘⌘⌘(t+1)
r =

C
(t+1)
r + �

C(t+1) + |R|� (3.11)

where Cr =
P

i2r yi , C =
P

yi and � = 1
K
.

Note that the centers (µµµ) and estate investment values (⌘⌘⌘) of latent business areas

are updated, so updated is the influence of latent business areas ⇢i =
PK

k=1

⇣

d0
d0+d(i,r

k

)

⌘e
⌘
kP

K

k=1 ⌘k
.

After updating the parameters {⌘⌘⌘,µµµ,⌃⌃⌃} and latent business area assignments R,

we update  (t+1) that maximizes the log of posterior

L(q,W |R(t+1),D) =

I
X

i=1



�1

2
ln�2 � (yi � fi)2

2�2

�

+
I�1
X

i=1

I
X

h=i+1

ln
1

1 + exp(�(fi � fh))
I(ri = rh)

+
M
X

m=1



�1

2
ln�2

q �
(qm � µq)2

2�2
q

�

+
M
X

m=1

N
X

n=1



�1

2
ln�2

w � (wmn � µw)2

2�2
w

�

(3.12)

We apply a gradient descent method to update q,W through qt+1
m = qtm � ✏@(�L)

@q
m

and wt+1
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(3.13)
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3.2.6 Ranking Inference

After parameters  are estimated via maximizing the posterior probability, which es-

sentially captures both prediction accuracy of estate investment value and the ranking

consistence of estates, we will obtain the learned model for investment value of estate,

i.e., E(yi|q, ei) = �i+ �i+⇢i given a rising or falling market period. For a new coming

estate k, we may predict its investment value accordingly. The larger the E(yk|q, ek)

is, the higher investment value it has. With the predicted investment values for all

new estates, we are able to compile a ranking list of those estate.

3.3 Experimental Results

In this section, we provide an empirical evaluation of the performances of the proposed

ClusRanking method on real-world estate data.

3.3.1 Experimental Data

Table 4.3 shows four data sources. The transportation data set includes the data

about the bus system, the subway system, and the road network in Beijing, China.

Also, we extract POI features from the Beijing POI dataset. Moreover, mobility

patterns are extracted from the taxi GPS traces. In Beijing, taxi tra�c contributes

more than 12 percent of the total tra�c, and thus reflects a significant portion of

human mobility (Yuan, Zheng, & Xie, 2012b). Finally, we crawl the Beijing estate
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Data Sources Properties Statistics

Real estates

Number of real estates 2,851

Size of bounding box (km) 40*40

Time period of transactions 04/2011 - 09/2012

Bus stop(2011) Number of bus stop 9,810

Subway(2011) Number of subway station 215

Road networks

(2011)

Number of road segments 162,246

Total length(km) 20,022

Percentage of major roads 7.5%

POIs
Number 0f POIs 300,811

Number of categories 13

Taxi Trajectories

Number of taxis 13,597

E↵ective days 92

Time period Apr. - Aug. 2012

Number of trips 8,202,012

Number of GPS points 111,602

Total distance(km) 61,269,029

Table 3.4. Statistics of the experimental data.

data from www.soufun.com, which is the largest real-estate online system in China.

In estate industry, the estate return rate is used to measure the investment value

of an estate. The estate return rate is the ratio of the price increase relative to the

start price of a market period as r = P
f

�P
i

P
i

, where Pf and Pi denote the final price
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Figure 3.2. The rising market period and the falling market period in Beijing.

and the initial price, respectively.

To prepare the benchmark investment values of estates (Y) for training data, we

first calculate the return rate of each estate during a given market period. We then

sort the return rates of all the estates in a descending order. Finally, we cluster them

into five clusters using variance based top-down hierarchical clustering. In this way,

we segment the estates into five ordered value categories (i.e., 4 > 3 > 2 > 1 > 0, the

higher the better).

By discretizing estate return rates into five categories, we can understand estate

investment potentials and reduce the noise led by the small fluctuations in return

rates.

Finally, a list of estates, each of which with the extracted features and investment

values, are split into two data sets in terms of the falling market period (from Jul.

2011 to Feb. 2012) and the rising market period (from Feb. 2012 to Sep. 2012) as

shown in Figure 4.4.

3.3.2 Evaluation Metrics

To show the e↵ectiveness of the proposed model, we use the following metrics for

evaluation.

Normalized Discounted Cumulative Gain. The discounted cumulative gain
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(DCG@N) is given by

DCG[n] =

8
>><

>>:

rel1 if n = 1

DCG[n� 1] + reln
log2n

, if n >= 2

(3.15)

Later, given the ideal discounted cumulative gain DCG
0
, NDCG at the n-th position

can be computed as NDCG[n]= DCG[n]

DCG0 [n]
. The larger NDCG@N is, the higher top-N

ranking accuracy is.

Precision and Recall. Since we use a five-level rating system (4 > 3 > 2 > 1 > 0)

instead of binary rating, we treat the rating � 3 as “high-value” and the rating <

3 as “low-value”. Given a top-N estate list EN sorted in a descending order of the

prediction values, precision and recall are defined as Precision@N =
|E

N

T
E�3|

N
and

Recall@N =
|E

N

T
E�3|

|E�3|
, where E�3 are the estates whose ratings are greater or equal

to 3.

Kendall’s Tau Coe�cient. Kendall’s Tau Coe�cient (or Tau for short) measures

the overall ranking accuracy. Let us assume that each estate i is associated with

a benchmark score yi and a predicted score fi. Then, for an estate pair < i, j >,

< i, j > is said to be concordant, if both yi > yj and fi > fj or if both yi < yj and

fi < fj. Also, < i, j > is said to be discordant, if both yi < yj and fi > fj or if both

yi < yj and fi > fj. Tau is given by Tau = #
conc

�#
disc

#
conc

+#
disc

.

3.3.3 Baseline Algorithms

To show the e↵ectiveness of the proposed method, we compare the ranking accuracy of

our methods against following baseline algorithms. (1) MART (Friedman, 2001):

it is a boosted tree model, specifically, a linear combination of the outputs of a

set of regression trees. (2) RankBoost (Freund et al., 2003): it is a boosted
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Figure 3.3. The overall performances on the rising market dataset.

pairwise ranking method, which trains multiple weak rankers and combines their

outputs as final ranking. (3) Coordinate Ascent (Metzler & Croft, 2007): it

uses domination loss and applies coordinate descent for optimization. (4) ListNet

(Cao et al., 2007): it is a listwise ranking model with permutation top-k ranking

likelihood as the objective function.

For the baseline algorithms, we use RankLib2 . We set the number of trees =

1000, the number of leaves = 10, the number of threshold candidates = 256, and

the learning rate = 0.1 for MART. For RankBoost, we set the number of iteration

= 300, the number of threshold candidates = 10. Regarding Coordinate Ascent, we

2http://sourceforge.net/p/lemur/wiki/RankLib/
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Figure 3.4. The overall performances on the falling market dataset.

set step base = 0.05, step scale = 2.0, tolerance = 0.001, and slack = 0.001. For our

model, we set �1=0.8 and �2=25m. We set d0 = 1 and d(i, rk) is computed based on

degree (�) instead of mile or km for simplicity. We set latent business areas K=10 and

initialize the mean and covariance of the locations of each business area by Kmeans

clustering. Finally, we set ⌘ = 1
K
, µq = µw = 0, �q = �w = � = 35 and M=3 for

hyperparameters.

The codes are implemented in R (modeling), Python (preprocessing), and Matlab

(visualization). The experiments were performed on a x64 machine with Intel i5

2.60GHz dual-core CPU and 16GB RAM. The operation system is Microsoft Windows

7 Professional.
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3.3.4 Overall Performances

We provide the performance comparison on the rising market dataset and the falling

market dataset in terms of Tau, NDCG, Precision and Recall.

Rising Market Data. Figure 3.3(a) shows the comparison of Kendall’s Tau Coe�-

cient. Our method achieves 0.3428617 and outperforms the baselines. Figure 3.3(b)

shows the NDCG comparison. Our method achieves 0.75 NDCG@1, 0.81 NDCG@3,

0.78 NDCG@5, 0.82 NDCG@7, and 0.85 NDCG@10 whereas the NDCGs of the four

baselines only range from 0.2 to 0.61. Figure 3.3(c) and Figure 3.3(d) respectively

show the precision@N and recall@N. In Precision, ClusRanking ¿ ListNet ¿ MART,

RankBoost, Coordinate Ascent. In Recall, ClusRanking achieves 0.0088 recall@3,

0.017 recall@5, 0.026 recall@7, and 0.035 recall@10, which in overall outperforms

ListNet, MART, RankBoost, Coordinate Ascent with a significant margin.

Falling Market Data. Figure 3.4 shows the comparison in terms of Kendall’s Tau.

Our method achieves a higher accuracy at 0.2363498 than four baselines. We also

compare all the five methods in terms of NDCG, Precision and Recall. Our method

achieves around 0.65 NDCG@3, 0.63 NDCG@5, 0.68 NDCG@7, and 0.64 NDCG@10

whereas the NDCGs of the four baselines are lower than 0.6111. Moreover, the Preci-

sion@3,5,7 of our method are relatively higher than the baselines in overall. Finally,

our method achieves 0.012 recall@3, 0.024 recall@5, and 0.037 recall@7, which are

generally better than RankBoost but significantly outperforms MART, Coordinate

Ascent and ListNet.

The above overall performances validate the e↵ectiveness of our ClusRanking
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method.

3.3.5 The Study on Geographic Dependencies

Here, we study the impact of three geographic dependencies. Specifically, we de-

signed three internal competing methods in terms of variants of posterior likelihood

Pr( ;D,⌦) = P (D| ,⌦)P ( |⌦): (1) Individual Dependency (ID), in which we

only consider the individual dependency as the objective function. In other words,

P (D| ,⌦) = Likid. (2) Peer Dependency (PD), in which we only consider the

peer dependency as the objective function. (3) Peer Dependency + Zone De-

pendency (PD+ZD), in which we consider the combination of peer and zone de-

pendencies as the objective function. (4) Combination (ClusRanking), in which

we consider individual, peer, and zone dependencies simultaneously. This is exactly

our method: P (D| ,⌦) = Likid ⇥ Likpd ⇥ Likzd.

Rising Market Data. Table 3.5 shows the performance comparison on the rising

market data in terms of Tau and NDCG. It is clear that our method achieves around

0.81 NDCG@3, 0.78 NDCG@5, 0.82 NDCG@7 and 0.85@10 on the rising market

data, which outperforms PD+ZD, PD, and ID. In the Tau comparison, the results

lead to: ClusRanking ¿ PD ¿ ID ¿ PD+ZD. From Table 3.5, we conclude that (1)

the strategy of capturing three dependencies helps ClusRanking to achieve the high-

est Tau and NDCG; (2) considering both peer and zone dependencies enhances the

top-k accuracy but degrades the overall ranking comparing to individual dependency

only. This might be because the peer and zone dependencies better capture the rank-

ing consistency of estates than the individual dependency, as individual dependency
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Metric @N ID PD PD+ZD ClusRanking

NDCG

3 0.5599531 0.6549766 0.6900469 0.8166009

5 0.5771226 0.6024622 0.6101556 0.7867076

7 0.587992 0.6048394 0.641282 0.8208795

10 0.6518163 0.6723095 0.694175 0.8513267

Tau - 0.2494531 0.2535907 0.2203712 0.3428617

Table 3.5. Performance comparison of di↵erent geographic dependencies on the rising

market data.

indeed models the prediction accuracy of the observed data collection {Y, L}.

Falling Market Data. Table 3.6 shows the performance comparison of di↵erent

geographic dependencies on the falling market data. It is clear that our method out-

performs ID, PD and PD+ZD. PD+ZD achieves the second highest NDCG. Moreover,

ClusRanking > PD+ZD > PD > ID in terms of Kendall’s Tau.

Metric @N ID PD PD+ZD ClusRanking

NDCG

3 0.570193 0.5950234 0.6250234 0.6549766

5 0.6144799 0.6004235 0.6144799 0.633635

7 0.6196808 0.654487 0.6196808 0.6845354

10 0.6415102 0.6252658 0.6307051 0.6482665

Tau - 0.1186736 0.1313437 0.1433408 0.2363498

Table 3.6. Performance comparison of di↵erent geographic dependencies on the falling

market data.

This experiment not only justifies the spatial autocorrelation of estate investment
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values (e.g., individual, estate-estate peer, estate-business area), but also shows the

advantages of considering three geographical dependencies .

3.3.6 The Study on Geographic Features

We compare the performances of ClusRanking with di↵erent geographic feature sets

( i.e., subway, bus stop, POI, and road network) over rising and falling markets.

Rising Market Data. First, Figure 3.5(a) shows the performance comparison of

the five feature sets in terms of Tau: combination ¿ road network ¿ bus stop, subway

and poi. Next, Figure 3.5(b) shows the NDCG@N of di↵erent feature sets (N=3, 5, 7,

10 respectively). As can be seen, the combination of all the four feature sets achieves

0.81 NDCG@3, 0.78 NDCG@5, 0.82 NDCG@7, 0.85 NDCG@10, and outperforms the

other four individual feature sets. Moreover, the NDCGs of the bus stop and road

network feature sets are lower than combination but higher than the POI and subway

feature sets. Finally, we can conclude that, in rising market, the combination of all

geographic information is the best. Road network outperforms bus stop, subway and

POI. Bus stop is more suitable for top-k ranking than road network whereas road

network performs better than bus stop in overall ranking.

Falling Market Data. Figure 3.6(a) shows a comparison of the five feature sets on

Tau: combination ¿ road network ¿ bus stop, subway and poi. This result is consistent

with that of rising market data. Regarding top-k ranking, Figure 3.6(b) shows the

NDCG@N (N=3, 5, 7 respectively) of di↵erent feature sets in terms of ClusRanking.

First, the POI feature set achieves the worst performance in NDCG@5,7. Second,

the road network feature set achieves the second highest NDCGs@3,5,7. Finally, the
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Figure 3.5. Performance comparison of di↵erent geographic features on rising market

data.
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Figure 3.6. Performance comparison of di↵erent geographic features on falling market

data.

combination of all the four feature sets outperforms all the individual feature sets.

In summary, in falling market, combination ¿ bus stop ¿ subway, road network, and

POI.

The results validate the e↵ectiveness of using multiple information fusion (subway,

bus stop, POI and road network).
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(a) Kmeans (b) ClusRanking

Figure 3.7. A comparison of the learned business areas within the Beijing Fifth Ring

(K=10).

3.3.7 Implication of Latent Business Areas

Our model also provides a unique understanding of the latent business areas of Bei-

jing from an estate perspective. Figure 3.7 clearly shows our method, learned from

geography, mobility and estate data, is more reasonable than K-means, which sim-

ply cluster the estates by location information. For instance, in Figure 3.7(b), NO.4

area, named Zhongguancun, is the Chinese Silicon Valley and is famous for high-tech

companies. This area is a high density cluster of human mobility, estates and POIs.

However, in Figure 3.7(a), the Zhongguancun area is improperly separated into NO.3

and NO.4 area by K-means. Another example is the NO.2 and NO.8 areas, namely

Wangjing and CBD respectively, in Figure 3.7(b). Wangjing is a quick-growing resi-

dential sub-center with easy-access transportation and luxury apartments. Currently,

about 203,000 young people, including company executives, white-collar workers, ex-

patriates and returnees, are living in Wangjing. CBD is the Center Business District
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with numerous financial business o�ces, culture media companies and high-end en-

terprise information services. However, in Figure 3.7(a), Wangjing and CBD are

improperly united into NO.2 area by K-means. The visualization results show the

e↵ectiveness of ClusRanking learned from multi-source estate related data and the

e↵ectiveness of capturing the three geographic dependencies as the objective function.

3.3.8 Hierarchy of Needs for Human Life

We show how our ranking results can be used to understand the hierarchy of human

needs from a POI aspect. Figure 3.8 shows the estate-POI density spectrum. From

left to right, x-axis represents the estate rankings in the descending order. From

up to down, y-axis represents POI categories in the descending order in terms of

POI numbers. Several interesting findings can be drawn from Figure 3.8. First,

the upper half are darker than the lower half. This indicates POI categories in the

upper half are more important than those in the lower half. In other words, people

prefer their homes near schools, malls, o�ces, restaurants, and transits. Whereas,

hotels, hospitals, sports and scene spots are not must-have POIs to be located close

to living places. Second, along x-axis, the POI density spectrum of the left-side high-

ranked estates is evenly distributed for smooth whereas the POI density spectrum of

the right-side low-ranked estates are non-smooth. This illustrates high-value estates

usually balance the needs of human beings. Third, we calculate the average POI

density of each POI category based on the top 2000 estates. We then sort all POI

categories in terms of POI densities, show the smoothed POI density curve and find

three inflection points. Later, we segment those POI categories into four clusters
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Figure 3.8. The POI density spectral of estates over multiple poi categories

using the three inflection points. Finally, we present a triangle structure of needs of

Beijing citizens as shown in Figure 3.9. The higher, the more fundamental and urgent

in human needs.

Shopping, Business, 
Catering, Living Service

Residence, 
Transportation, Public 

Facilities, Education

Business Corporates, Government 
Agencies, Community Organizations, 

Banking 

Sports, Hospitals, Scene Spots, 
Hotels

More urgent and 
fundamental needs

Figure 3.9. The triangle need hierarchy of Beijing

3.3.9 A Case Study

Here, we present a case study. First, we select one high-ranked estate called “Red

Hill Family” (RHF) and one low-ranked estate called “Jiuxianqiao Road No. 11”
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(JR11) from our ranking results. Then, we compare RHF with JR11 from historical

transaction prices. As can be seen in Figure 3.10, during the past 43 months, the

prices of RHF increase in both rising and falling markets. However, for the past 15

months, the overall prices of JR11 continuously fall even in the rising market.

To show why, we first check the neighborhood profiles (individual dependency) of

two estates. Specifically, we extract geographic and mobility features of the neighbor-

hoods of RHF and JR11, respectively. Table 3.7 shows RHF has higher road network

density, larger amount of POIs (especially schools), bus stops and subway stations,

and higher neighborhood popularity than JR11. It thus is reasonable that people

are willing to a↵ord higher prices to RHF than JR11. This validates the individual

dependency. Besides, RHF is located in the prosperous area of MuXiDi (inside No. 7

area in Figure 3.7(b)) near the 2nd ring road whereas JR11 is located in the area of

DongFengXiang (inside No.2 area in Figure 3.7(b)) outside the fifth ring road. The

average rating of estates in MuXiDi is round to 3, which is higher than that (round

to 1) of estates in DongFengXiang. This justifies the zone dependency.

Traditional learning to ranking (LTR) methods feed document feature vectors

into predictive models (such as regression, tree based models, neural network) and

optimize the model over objective functions, which describe the ranking accuracy

in a point-wise, pair-wise or list-wise manner. In real estate ranking, LTR simply

represents estates as feature vectors, optimizes a general ranking accuracy metric,

and thus fails to achieve higher performance. However, our method extracts the

geographic utility and neighborhood popularity by strategically mining geography

and mobility data. Besides, our method model the implicit influence of latent business
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(a) Red Hill Family (b) Jiuxianqiao Road No. 11

Figure 3.10. Price Trend Comparison.

area via ClusRanking. Moreover, ClusRanking simultaneously captures geographic

individual, peer and zone dependencies as objective function. Hence, we can observe

significant improvements against baselines.

3.4 Related Work

Related work can be grouped into two categories. The first one includes the work on

estate appraisal. In the second category, we present the ranking related methods.

Traditional research on estate appraisal are based on financial estate theory, typ-

ically constructing an explicit index of estate value (Krainer & Wei, 2004). More

studies rely on financial time series analysis by inspecting the trend, periodicity

and volatility of estate prices. Work (Downie & Robson, 2007) checks the volatil-

ity of estate price and concludes that low investment-valued estate values relatively

volatile. Work (Chaitra H. Nagaraja & Zhao, 2009) applies an autoregression method

to learn the trend and periodicity of price and predicts estate value. More studies

are conducted from an econometric angle, for example, hedonic methods and repeat
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Type Name RHF JR11

transportation

bus stop(1km) 12 3

subway(3km) 9 0

shortest distance to subway 1061 3597

road network level-2 entry(3km)102 46

POI

number

(1km)

catering 146 17

shopping 127 18

living 201 16

sports 27 3

healthcare 44 2

education 67 13

finance 55 1

public facility 79 10

popularity
average accumulated

visit probability

1.64e+71.36e+6

Table 3.7. A comparison of transportation, POI and mobility of RHF and JR11

sales methods. The hedonic methods (Taylor, 2003; Assil, 2012) assume the price

of a property depends on its characteristics and location. The repeat sales methods

(Assil, 2012; Bailey, Muth, & Nourse, 1963; Shiller, 1991b) construct a predefined

price index based on properties sold more than once during the given period. Recent

works (Downie & Robson, 2007; Mitropoulos, Wu, & Kohansky, 2007) study the au-

tomated valuation models, which aggregate and analyze physical characteristics and
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sales prices of comparable properties to provide property valuations. More recent

studies (Pace, 1998; Kontrimas & Verikas, 2011; Lam, 1996; Bailey et al., 1963) shift

to computational estate appraisal and apply general additive mode, support vector

machine regression, multilayer perceptron and ensemble method to evaluate estate

value.

Also, our work can be categorized into Learning-To-Rank (LTR). The LTR meth-

ods are threefold: point-wise, pair-wise and list-wise. The point-wise methods (Fuhr,

1989; Cooper, Gey, & Dabney, 1992) reduce the LTR task to a regression prob-

lem: given a single query-document pair, predict its score. The pair-wise methods,

such as RankBoost (Freund et al., 2003), RankSVM (Herbrich, Graepel, & Ober-

mayer, 1999) and LambdaRank (Quoc & Le, 2007), approximate the LTR task as a

classification problem and learn a binary classifier that can tell which document is

better in a given document pair. The list-wise methods, such as AdaRank (Xu &

Li, 2007), LambdaMART (Burges, 2010) and ListNet (Cao et al., 2007), optimize

a ranking loss metric over lists instead of document pairs. Works (Weng & Lin,

2011; Rendle, Freudenthaler, Gantner, & Schmidt-Thieme, 2009; Gantner, Drumond,

Freudenthaler, & Schmidt-Thieme, 2012) provide full Bayesian explanations and op-

timize the posterior of point-wise, pair-wise and list-wise ranking models. Study

(Shi, Larson, & Hanjalic, 2012) further unifies both rating error and ranking error as

objective function to enhance Top-K recommendation. There are also studies that

improve ranking performance by semi-supervised learning through exploiting the dis-

agreement between two learners (Zhou, Chen, & Dai, 2006) or combining supervised

and unsupervised ranking models (Li, Li, & Zhou, 2009).
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Furthermore, our work has a connection with recent studies of exploring the geo-

graphic influence for POI recommendation. Works (Cheng, Yang, King, & Lyu, 2012;

Fu, Liu, Ge, Yao, & Xiong, 2014) consider the multi-center of user check-in patterns

and apply a static pre-clustering method to extract the influence of geographic prox-

imity in choosing a POI. Work (B. Liu, Fu, Yao, & Xiong, 2013) exploits multi-center

user mobility and embeds a POI clustering method into matrix factorization. Finally,

our work is related to studies of city region function via geographic topic modeling

using POI and mobility (Zheng et al., 2014).

3.5 Conclusion

In this chapter, we proposed a ClusRanking method for ranking estates based on

their investment values. Specifically, this method has the ability in capturing the

geographic individual, peer, and zone dependencies via ClusRanking by exploiting

various estate related data. Also, our method has two advantages. First, for predictive

modeling, we establish a hierarchical generative structure to capture both explicit

factors (i.g., geographic utility and neighborhood popularity) and latent influences

(e.g., the influence of latent business area) based on the estate data. This generative

structure profiles, filters, aggregates and fuses multi-source information to predict

estate investment values. It helps to take advantage of rich estate-related data sources.

Second, in the learning framework, we leverage the mutual enforcement of ranking

and clustering power. In addition, we simultaneously consider three dependencies and

construct an estate-specific ranking likelihood as the objective function for enhancing

model learning. Finally, the experimental study demonstrates the e↵ectiveness of our
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method on real-world estate-related data over several alternative methods.
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CHAPTER 4

EXPLORING MIXED LAND USE FOR REAL ESTATE RANKING

Mixed land use refers to the e↵ort of putting residential, commercial and recreational

uses in close proximity to one another. This can contribute economic benefits, support

viable public transit, and enhance the perceived security of an area. It is naturally

promising to investigate how to rank real estate from the viewpoint of diverse mixed

land use, which can be reflected by the portfolio of community functions in the ob-

served area. To that end, in this chapter, we develop a geographical function ranking

method, named FuncDivRank, by incorporating the functional diversity of commu-

nities into real estate appraisal. Specifically, we first design a geographic function

learning model to jointly capture the correlations among estate neighborhoods, ur-

ban functions, temporal e↵ects, and user mobility patterns. In this way we can learn

latent community functions and the corresponding portfolios of estates from human

mobility data and Point of Interest (POI) data. Then, we learn the estate ranking in-

dicator by simultaneously maximizing ranking consistency and functional diversity, in

a unified probabilistic optimization framework. Finally, we conduct a comprehensive

evaluation with real-world data. The experimental results demonstrate the enhanced

performance of the proposed method for real estate appraisal.
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Figure 4.1. The POI density spectrum of estates over multiple POI categories.

4.1 Introduction

Mixed land use is increasingly popular in the real estate development of big cities.

Mixed land use is the combination of multiple compatible land uses, including residen-

tial, commercial, and recreational uses within a certain area (Song & Knaap, 2004).

Mixed land use can: (i) contribute economic benefits, e.g., commercial areas in close

proximity to residential areas can increase property values; (ii) support viable public

transit; and (iii) enhance the perceived security, e.g., by helping increase activity and

hence the presence of people on the street. More importantly, a balanced mix of

land uses leads to the co-location of socio-economic functions, and thus yields livable,

sustainable, and viable neighborhoods.

Research literature has developed empirical evidence for the value of mixed land

use. Many studies have shown that, in big cities, people value a balanced mix of

land uses more than other key indicators of real estate value (Song & Knaap, 2004;

Koster & Rouwendal, 2012; Loehr, 2013). A recent study reported that people are
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willing to pay almost 25% more for a house in an area with appropriate mixed land

use, and one standard deviation increase in diversity increases real estate prices by

1.00%–4.25% (Koster & Rouwendal, 2012). Indeed, Figure 4.1 shows the point of

interest (POI) density spectrum of real estate over multiple POI categories. As can

be seen, the spectrum of high-ranked estates (left) is more evenly balanced than that

of low-ranked estates (right). The evidence illustrates that investment value of real

estate with a balanced mix of neighborhood functions is usually higher than otherwise

comparable real estate in mono-functional areas.

All the above evidence suggests it is highly appealing to investigate how to rank real

estate values based on the functional diversity of land uses. Two unique challenges

arise in achieving this goal. First, the community functions and the corresponding

portfolios that a↵ect value need to be e↵ectively identified. Second, the relationship

between these portfolios and real estate value ranking needs to be modeled. We

outline how we tackle these two main challenges next.

First, the impact of mixed use on property values largely depends on the specific

composition of land uses. Some functions can increase real estate values, while others

may not have significant impact. For instance, manufacturing usually degrades prop-

erty values. In contrast, more commercial land use, such as entertainment and retail

stores, can lead to higher property values. People are generally willing to pay more

for uses that are compatible with residential values and less for uses that negatively

impact house prices. Therefore, compatible functions should be carefully selected

for mixed land use. However, identifying these functions is a nontrivial task. For
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example, some studies (Loehr, 2013) revealed that, within a certain range, proximity

to commercial uses has a negative e↵ect on real estate value. Therefore, the first

question arises: how to identify functions that are compatible with real estate values

and learn the portfolio of these identified functions in the target community? Tradi-

tionally, real estate professionals use regression analysis to determine the significance

and the direction of the relationship between real estate value and functions.

Unlike traditional approaches, we treat these unknown functions as latent factors

and learn the portfolio of functions from human mobility data. During di↵erent time

periods, there are di↵erent perceived functions in a community, and thus di↵erent

patterns can be observed in the human mobility data of the community, which include

taxi GPS traces, bus GPS traces, and user check-in data. The human mobility

patterns in a community jointly reflect the diverse mixtures of neighborhood functions

(Yuan et al., 2012a). For example, on workdays, people generally leave a residential

area in the morning and return in the evening. Also, people usually check into

entertainment places on workday evenings or during the entire day over weekends.

Therefore, we exploit human mobility patterns for identifying the latent compatible

functions and for learning the portfolio of community functions.

Second, after we learn the portfolio of community functions, we naturally come up

with another question: how to evaluate the impact of the distribution of community

functions on real estate value? Traditionally, real estate professionals use a two-step

paradigm, which first defines entropy-like indexes, such as the Hirschmann-Herfindahl

index, to measure the diversity of community functions, and then includes these

indexes into regression models as independent variables (Koster & Rouwendal, 2012;
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Fu, Ge, et al., 2014). However, this paradigm may not be optimal for ranking, because

these two steps are independently modeled. Instead, we treat the learned portfolio as

the functional spectrum of the estate ranked list overK functions in a listwise manner.

For each function k, we calculate the relevance score of the whole estate ranked list

conditioned on k. Then, we aggregate the weighted sum of K relevance scores as a

measure of functional diversity. Finally, we can jointly model both functional diversity

and ranking consistency as a unified estate ranking objective for optimization.

Specifically, we first develop a geographic functional learning model to jointly

model the interrelationship among estate neighborhoods, urban functions, temporal

e↵ects, and mobility patterns for learning the portfolio of functions for each estate’s

neighborhood. In particular, we assume there are K latent functions and treat them

as a latent categorical variable. At di↵erent time periods, an estate neighborhood

exhibits di↵erent functions due to its particular mix of land uses. Given a specific

function and a time period, an estate neighborhood has specific mobility patterns

of taxi rides, bus trips, and check-ins. Here, we treat these patterns as three types

of words in three di↵erent vocabularies (i.e., three di↵erent latent spaces). Hence,

given a time period, a neighborhood has three clusters of words. We treat each word

cluster as a mobility document. By fitting our geographic functional learning model

to mobility data, we derive the portfolio of K neighborhood functions for each estate.

Next, we incorporate functional diversity to learn an estate ranking indicator. In

particular, we extract raw features from urban geography data and human mobility

data, learn meta features by decision trees, and linearly regress these features to

predict estate investment values. Moreover, we design a weighted sum function to
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capture the diversity of neighborhood functions in an estate ranked list. Along these

lines, we train an estate ranking indicator by simultaneously maximizing ranking

consistency and functional diversity in a unified probabilistic framework. Finally, we

have conducted a comprehensive performance evaluation on real world data. The

experimental results demonstrate the enhanced performance of the proposed method

for real estate evaluation.

4.2 The Geographic Functional Ranking Framework

In this section, we first formally introduce the problem of geographic functional rank-

ing, and then provide an overview of our ranking framework.

4.2.1 Problem Statement

Real estate investment value, di↵erent from market value (i.e., price), reflects the

growth potential of resale value that can be higher or lower than market value to a

particular investor. The unique characteristic of investment value motivates investors

to enter the real estate marketplace, seek estates with high investment value, and

maximize their investment returns. Therefore, the capability to rank estates based

on investment ranking is necessary. Essentially, ranking estates is similar to ranking

documents with a defined relevance, where an estate is analogized as a document and

its investment value is considered as the relevance.

Formally, given a set of of M estates E = {e1, e2, ..., eM}, the goal of our prob-

lem is to rank them in a descending order according to their investment values

Y = {y1, y2, ..., yM}. In this study, we assume each estate m has a location (i.e.,

latitude and longitude) and a neighborhood area (e.g., a circle with radius of 1 km),
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which we call an estate community in this chapter. According to the theory of mixed

land use, in urban areas of super cities, an estate’s investment value largely depends

on the functional portfolio of its community. In other words, a diverse mixture of

community functions usually leads to high investment value of an estate. Indeed,

the rankings of estates according to their investment value could be estimated by

incorporating functional diversity of estate communities, using urban geography and

human mobility data. Essentially, there are two major tasks: (1) learning the func-

tional portfolios of estate communities from heterogeneous human mobility, and (2)

predicting estate ranking by incorporating the impact of functional diversity.

4.2.2 Framework Overview
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Figure 4.2. The framework overview of geographical functional ranking for estates.

Figure 4.2 shows the framework of our geographic functional ranking. This frame-

work consists of two major stages.
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(1) Functional Portfolio Learning. As shown in Figure 4.2, we propose to learn

the functional portfolio by mining three types of mobility patterns (i.e., mobile check-

ins, taxi trajectories, and bus trajectories), defined next.

Definition 1 (Checkin Pattern): Given a checkin event, the checkin pattern is a

triple including information about (1) checkin day, (2) checkin hour, and (3) POI

category of the checkin place.

Definition 2 (Taxi Mobility Pattern): Given a taxi trajectory, we extract the leav-

ing (i.e., pick-up) and arriving (i.e., drop-o↵) patterns as two tuples, each of which

contains information about (1) weekday or weekend, (2) hour, and (3) leaving or

arriving.

Definition 3 (Bus Mobility Pattern): Given a bus trajectory, we extract the leav-

ing (i.e., pick-up) and arriving (i.e., drop-o↵) patterns as two tuples, each of which

contains information about (1) weekday or weekend, (2) hour, and (3) leaving or

arriving.

We then associate all these mobility patterns to a nearby estate community once

their checkin, pickup or dropo↵ points are located within the circle area of the estate

with a radius of 1 km. Besides, we argue that the heterogeneous mobility patterns

around an estate collectively reflect the mixed functions of its community. To this

end, we assume there are multiple latent functions within the community of an estate.

Moreover, an estate community shows di↵erent functions during di↵erent time peri-

ods. Therefore, given an estate and a time period, we can identify a unique mobility

segmentation, which is defined as follows.
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Definition 4 (Mobility Segment): A mobility segment is a six-item tuple including

an estate, a time period, a latent function of the estate community in this time period,

checkin pattern cluster, taxi pattern cluster, and bus pattern cluster.

According to the above definition, in each mobility segment, the estate has three

clusters of mobility patterns generated by the functional portfolio of its community.

To learn the functional portfolio of each estate community, here we adapt the idea

of topic modeling and develop a novel generative model, where the mobility patterns

and clusters are analogized as words and documents, respectively.

(2) Estate ranking with functional diversity. After learning the functional port-

folios of estate communities, we extract the raw features from urban geography and

human mobility. Furthermore, the raw features are then fed into ensemble decision

trees (in our experiments, random forests) for generating meta features, and the out-

put of each individual tree is treated as a meta feature. Here, we treat the investment

value of an estate as a linear combination of both raw and meta features. Based on

the above, we can learn an estate ranking predictor by jointly maximizing prediction

accuracy, ranking consistency, and functional diversity. Finally, we infer the rankings

of estates with the learned parameters. Next, Section 4.3 addresses the first problem

of portfolio learning, and Section 4.4 of estate ranking.

4.3 Learning the Portfolio of Community Functionalities

Here we propose a topic modeling approach for learning the functional portfolios of

estate communities with a collection of heterogeneous mobility patterns.
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Figure 4.3. The graphical representation of the proposed geographic functional learn-

ing model.

4.3.1 Model Intuition

There are correlations among estate communities, urban functions, temporal e↵ects,

and mobility patterns. Therefore, in our approach, we model the generative process

of checkin, taxi, and bus mobility for each estate community, based on the following

intuition.

Intuition 1: A mixed estate community is represented as a mixture of urban

functions in terms of its mixed land uses, and thus forms a portfolio of a fixed set of

functions.
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Intuition 2: The urban functions of a mixed community change over time. For

example, people may visit an area for work on workday mornings, but visit the same

area for entertainment during nights and weekends.

Intuition 3: Mobility patterns reflect the functions of a community. For example,

the residential function of a place can be indicated by massive leaving patterns in the

early morning (e.g., people take public transit to work) and massive arriving patterns

around 6PM (e.g., people go home after work). Therefore, over a certain time period, a

community shows specific mobility patterns which reflect a particular urban function.

Intuition 4: Given a time period, an estate community has three clusters of mo-

bility patterns. By treating mobility patterns and clusters as words and documents,

respectively, we can model the corresponding generative processes and uncover the

latent urban function through topic modeling.

4.3.2 Model Specification

Figure 4.3 shows the graphical representation of our geographic functional learning

model. Specifically, we use a multinomial distribution ⌘m over K latent functions to

model the functional portfolio of the estate m (Intuition 1). Based on Intuition

2, the functions of an estate community may vary over time. We thus segment

historical mobility patterns of checkin, taxi, and bus into multiple segments in terms

of N defined time periods. For example, if we define seven time periods (i.e., Monday

to Sunday), we first segment mobility patterns day by day, and then group these

segments into seven clusters, each of which corresponds to a day of the week. We

denote a mobility segment by a tuple {m,n, f, cccm,n, tttm,n, bbbm,n} introduced in Definition
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Table 4.1. The generative process of the geographic functional learning model.

For each function f = k 2 {1, ..., K}:

Draw a multinomial distribution ✏k ⇠ P (✏k|µ)

Draw a multinomial distribution �k ⇠ P (�k|⌫)

Draw a multinomial distribution ⌧k ⇠ P (⌧k|⇣)

For checkin latent topic z = q 2 {1, ..., Q}:

Draw a multinomial distribution ↵q ⇠ P (↵q|)

For taxi latent topic u = r 2 {1, ..., R}:

Draw a multinomial distribution �r ⇠ P (�r|$)

For bus latent topic v = w 2 {1, ...,W}:

Draw a multinomial distribution �w ⇠ P (�w|&)

For each estate m 2 {1, ...,M}:

Draw a multinomial distribution ⌘m ⇠ P (⌘m|⇢);

For each time period n 2 {1, ..., N}:

Draw a community function f ⇠ P (f |⌘m);

For each checkin mobility pattern c 2 cccm,n:

Draw a latent topic of checkin document z ⇠ P (z|✏f );

Draw a checkin mobility pattern c ⇠ P (c|↵z).

For each taxi mobility pattern t 2 tttm,n:

Draw a latent topic of taxi document u ⇠ P (u|�f );

Draw a taxi mobility pattern t ⇠ P (t|�u).

For each bus mobility pattern b 2 bbbm,n:

Draw a latent topic of taxi document v ⇠ P (v|⌧f );

Draw a bus mobility pattern b ⇠ P (b|�v).
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4, which is generated as follows. For each time period n, an estate m shows a specific

urban function f drawn from ⌘m. Note that each function f has: (1) a multinomial

distribution ✏f over checkin latent topics, which represents the relevance of checkin

latent topics to the urban function f ; (2) a multinomial distribution �f over taxi latent

topics, which represents the relevance of taxi latent topics to the urban function f ;

and (3) a multinomial distribution ⌧f over bus latent topics, which represents the

relevance of bus latent topics to the urban function f (Intuition 3). We iteratively

draw: (1) a checkin latent topic z for each checkin pattern c 2 cccm,n in checkin mobility

document cccm,n; (2) a taxi latent topic u for each taxi pattern t 2 tttm,n in taxi mobility

document tttm,n; and (3) a bus latent topic v for each bus pattern b 2 bbbm,n in bus

mobility document bbbm,n (Intuition 4). In summary, Table 4.1 shows the generative

process.

4.3.3 Model Inference

Let us denote all parameters by  = {⌘⌘⌘, ✏✏✏,���,⌧⌧⌧ ,↵↵↵,���,���} where ⌘⌘⌘ = {⌘m}Mm=1, ✏✏✏ =

{✏k}Kk=1, ��� = {�k}Kk=1, ⌧⌧⌧ = {⌧k}Kk=1, ↵↵↵ = {↵q}Qq=1, ��� = {�r}Rr=1, ��� = {�w}Ww=1, the

hyperparameters ⌦ = {⇢, µ, ⌫, ⇣,,$, &}, the latent assignments of functions and

topics ⌥ = {FFF ,ZZZ,UUU,VVV }, and the observed mobility collection D = {CCC,TTT ,BBB} where

CCC = {cccm,n}M,N
m=1,n=1, TTT = {tttm,n}M,N

m=1,n=1, and BBB = {bbbm,n}M,N
m=1,n=1 are the checkin, taxi,

and bus mobility documents of M estates for N time periods, respectively. Also, we

use PPP c, PPP t, PPP b to denote the vocabularies of checkin, taxi, and bus mobility patterns,

respectively.

Following the generative process in Table 4.1, the joint distribution can be factored
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as

P (D,⌥, |⌦) = P (D,⌥| )P ( |⌦)

= P (CCC|↵↵↵)P (↵↵↵|)P (TTT |���)P (���|$)P (BBB|�)P (���|&)P (ZZZ|✏✏✏)⇥

P (✏✏✏|µ)P (UUU |���)P (���|⌫)P (VVV |⌧⌧⌧)P (⌧⌧⌧ |⇣)P (FFF |⌘⌘⌘)P (⌘⌘⌘|⇢).

(4.1)

We use Collapsed Gibbs sampling for training the model. Specifically, we derive

the full conditional posteriors and obtain the update rules of both the latent assign-

ments and the parameters. Let Cz,⇤ = {Cz,c}|PPP c

|
c=1 where Cz,c denotes the number of

checkin pattern c generated by checkin latent topic z; Tu,⇤ = {Tu,t}|PPP t

|
t=1 where Tu,t de-

notes the number of taxi pattern t generated by latent topic u; Bv,⇤ = {Bv,b}|PPP b

|
b=1 where

Bv,b denotes the number of bus pattern b generated by latent topic v; Zf,⇤ = {Zf,z}Qz=1

where Zf,z denotes the number of checkin latent topic z generated by function f ;

Uf,⇤ = {Uf,u}Ru=1 where Uf,u denotes the number of taxi latent topic u generated by

function f ; Vf,⇤ = {Vf,v}Wv=1 where Vf,v denotes the number of bus latent topic v gen-

erated by function f ; Fm,⇤ = {Fm,f}Kf=1 where Fm,f denotes the number of mobility

segments whose urban function is f in an estate community m; X�(⇤) represent the

count of X excluding the component (⇤) (e.g., F�(m,n)
m,k represents the count of Fm,k

excluding mobility segment (m,n)); � denote the gamma function.

For the n-th mobility segment in estate m , the conditional posterior probability
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for its latent function assignment f is computed by

P (fm,n = k|D,⌥� fm,n) =
F�(m,n)
m,k + ⇢k

PK
f=1 F

�(m,n)
m,f + ⇢f

⇥
QQ

z=1 �(Zk,z + µz)�(
PQ

z=1 Z
�(m,n)
k,z + µz)

QQ
z=1 �(Z

�(m,n)
k,z + µz)�(

PQ
z=1 Zk,z + µz)

⇥
QR

u=1 �(Uk,u + ⌫u)�(
PR

u=1 U
�(m,n)
k,u + ⌫u)

QR
u=1 �(U

�(m,n)
k,u + ⌫u)�(

PR
u=1 Uk,u + ⌫u)

⇥
QW

v=1 �(Vk,v + ⇣v)�(
PW

v=1 V
�(m,n)
k,v + ⇣v)

QW
v=1 �(V

�(m,n)
k,v + ⇣v)�(

PW
v=1 Vk,v + ⇣v)

.

(4.2)

For the i-th checkin pattern cm,n,i 2 cccm,n, the conditional posterior for its latent

checkin topic is computed by

P (zm,n,i = q|D,⌥� zm,n,i)

=
C�(m,n,i)

q,c
m,n,i

+ c
m,n,i

P|PPP
c

|
c=1 C

�(m,n,i)
q,c + c

Z�(m,n,i)
f
m,n

,q + µq

PQ
z=1 Z

�(m,n,i)
f
m,n

,z + µz)
.

(4.3)

For the i-th taxi pattern tm,n,i 2 tttm,n, the conditional posterior for its latent taxi

topic is computed by

P (um,n,i = r|D,⌥� um,n,i)

=
T�(m,n,i)

r,t
m,n,i

+$t
m,n,i

P|PPP
t

|
t=1 T

�(m,n,i)
r,t +$t

U�(m,n,i)
f
m,n

,r + ⌫r
PR

u=1 U
�(m,n,i)
f
m,n

,u + ⌫u
.

(4.4)

For the i-th bus pattern bm,n,i 2 bbbm,n, the conditional posterior for its latent bus

topic is computed by

P (vm,n,i = w|D,⌥� vm,n,i)

=
B�(m,n,i)
w,b

m,n,i

+ &b
m,n,i

P|PPP
b

|
b=1 B

�(m,n,i)
w,b + &b

V�(m,n,i)
f
m,n

,w + ⇣w
PW

v=1 V
�(m,n,i)
f
m,n

,v + ⇣v
.

(4.5)

After all the latent assignments are learned, we obtain the update rules of the
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model parameters as ⌘m,f = F
m,f

+⇢
fP

K

k=1 Fm,k

+⇢
k

, ✏f,z = Z
f,z

+µ
zP

Q

q=1 Zf,q

+µ
q

, �f,u = U
f,u

+⌫
uP

R

r=1 Uf,r

+⌫
r

,

⌧f,v =
V
f,v

+⇣
vP

W

w=1 Vf,w

+⇣
w

, ↵z,c =
C
z,c

+
cP|PPP

c

|
p=1 C

z,p

+
p

, �u,t =
T
u,t

+$
t

P|PPP
t

|
p=1 T

u,p

+$
p

, �v,b =
B
v,b

+&
b

P|PPP
b

|
p=1 B

v,p

+&
p

.

So far, we have learned the portfolios of M estate communities over K functions,

i.e., ⌘⌘⌘ 2 RM⇥K . Also, we can obtain the global portfolio of the entire city over K

functions denoted by ✓ = {✓f}Kf=1 where ✓f =
P

M

m=1 ⌘m,f

M
.

4.4 Enhancing Estate Ranking with Functional Diversity

Next, we introduce the proposed estate ranker by incorporating the impact of func-

tional diversity.

4.4.1 Modeling Estate Investment Value

Before introducing the overall objective function, let us first introduce how to model

the investment value of estates.

Raw Features. Table 4.2 shows the raw features we have extracted from urban

geography (e.g., bus stops, subway stations, road networks, POIs, etc.), human mo-

bility (e.g., taxi trajectories, bus smart card transactions, checkins, etc.) and social

media (e.g., online business reviews, etc.).

Meta Features. We exploit a random forest based method to learn meta fea-

tures via supervised non-linear transformation. Indeed, the work in (He et al., 2014)

proved that decision trees can help improve the accuracy of predicting clicks on online

advertisements . Therefore, we feed raw features and ground-truth real estate invest-

ment values into random forest, and learn a set of decision trees (weak classifiers).

We then treat each individual tree as a categorical feature which is represented by a

binary-valued vector. The elements of vectors correspond to tree leaves and the val-
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ues indicate whether an estate falls into the corresponding leaf. For example, [1,0,0]

indicates the tree has three leaves and the estate falls into the first leaf.

Finally, we linearly combine both raw and meta features to formulate estate

investment value. Formally, let xmxmxm denote the I-size vector representation of estate

m with the above extracted features, www denote the weights of features, gm denote the

predicted estate value of estate m, ym denote the ground-truth investment value of

estate m, and N represent the normal distribution. The generative process of our

linear model is

• Draw feature weights wi ⇠ N (wi; 0, �2
w).

• For each estate m, generate estate value ym ⇠ N (ym; gm, �2) where gm =

www>xmxmxm =
PI

i=1 wixmi.

4.4.2 Incorporating Functional Diversity

Here, we introduce how to jointly model prediction accuracy, ranking consistency,

and functional diversity in a unified objective function of posterior probability. Let

us denote all the parameters by � = {www}, the hyperparameters ⇤ = {�2
w, �

2
f}. Indeed,

the estate ranked list contains three-component information of its ranking structure,

denoted by � = {Y,⇧,⌅} where Y , ⇧, ⌅ are the investment values, rankings, and

functional diversity of M estates respectively. Let ⇧ represent the inverse of ⇧ and

⇡m be the index of the m-th ranked estate. For simplicity, we first assume that

m = ⇡m = ⇡m. In other words, the estates in� are sorted and indexed in a descending

order in terms of their investment values (which coincides with descending rating

rank). Therefore, the objective is to learn the parameters � that maximize the

posterior probability P (�;�,⇤) given the observed data and hyperparameters. By
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Table 4.2. The raw features extracted by neighborhood profiling.

Category Source Feature Design

Urban

Geography

Transportation

Number of bus stop

Distance to nearest bus stop

Number of subway station

Distance to nearest subway station

Number of road network entries

Distance to nearest road network entry

POIs
Number of POIs of

di↵erent POI categories

Human

Mobility

Taxi

Taxi Arriving Volume

Taxi Leaving Volume

Taxi Transition Volume

Taxi Driving Velocity

Taxi Commute Distance

Bus

Bus Arriving Volume

Bus Leaving Volume

Bus Transition Volume

Bus Stop Density

Checkin
Checkin Count

Topical Profile

Social

Media

Online

User

Reviews

Overall Rating

Service Rating

Environment Rating

Consumption Cost
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Bayesian inference, the posterior probability is

P (�;�,⇤) = P (�|�,⇤)P (�|⇤) . (4.6)

We follow the commonly-used “bag of words” assumption (Blei, Ng, & Jordan,

2003), which in our setting corresponds to conditional independence of the investment

value, ranking, and functional diversity of an estate, given parameters � and ⇤. Then,

the term P (�|�,⇤) is the likelihood of the observed data collection � as

P (�|�,⇤) = P ({Y,⇧,⌅} |�,⇤)

= P (Y |�,⇤)
| {z }

Prediction Accuracy

⇥ P (⇧|�,⇤)
| {z }

Ranking Consistency

⇥ P (⌅|�,⇤)
| {z }

Functional Diversity

,
(4.7)

where P (Y |�,⇤) denotes the likelihood of the observed investment values of estates

given the parameters, which corresponds to prediction accuracy. P (⇧|�,⇤) denotes

the likelihood of the rankings of estates given the parameters, which captures rank-

ing consistency. P (⌅|�,⇤) denotes the likelihood of the functional diversity of the

estate ranking list. Next, we introduce the modeling of prediction accuracy, ranking

consistency, and functional diversity in detail.

Prediction Accuracy. The smaller loss, the higher prediction accuracy for estate

investment value.

P (Y |�,⇤) =
M
Y

m=1

N (ym|gm, �) =
M
Y

m=1

1

�
exp

 

�(ym � gm)
2

2�2

!

. (4.8)

Ranking Consistency. The ranked list of estates indeed can be encoded into a

directed acyclic graph (DAG), G = {V,E}, with the node set V as estates and the

edge set E as pairwise ranking orders. For instance, edge m ! h represents that
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estate m is ranked higher than estate h. From a generative modeling angle, edge

m ! h is generated by our model through a likelihood function P (m ! h). The

more valuable an estate m is compared to estate h, the larger P (m ! h) should be.

P (⇧|�,⇤) =
M�1
Y

m=1

M
Y

h=m+1

P (m ! h|�,⇤), (4.9)

where the generative likelihood of each edge m ! h is defined as Sigmoid(gm � gh):

P (m ! h) = 1
1+exp(�(g

m

�g
h

)) .

Functional Diversity. So far, each estate is associated with a vector ofK-dimensional

distribution of functions. An estate with diverse functions is likely to have higher in-

vestment value and appears earlier in the estate ranked list. Therefore, one goal of

our estate ranker is to find a list of estate such that high-ranked estates maximally

cover the K functions. Specifically, for each function k, we calculate the relevance

score of the entire estate ranked list conditioned on the function k. We then aggregate

the weighted sum of K relevance scores as a measurement of functional diversity.

P (⌅|�,⇤) =
K
X

f=1

P (f)P (⌅|f,�,⇤)

=
K
X

f=1

✓f

1 + exp(�(
PM

m=1 gm
P

m

h=1 ⌘h,f
m

�
PM

m=1 gm⌘m,f ))
.

(4.10)

Second, the term P (�|⇤) is the prior of the parameters �. Since we have extracted

many features, we impose a zero-mean Gaussian distribution with variance �2 for

each weight. This is known to enforce weak sparse representations during learning,

by setting some feature weights to zero for automatic feature selection, P (�|⇤) =

QI
i=1 N (wi|0, �2

w).



- 102 -

4.4.3 Parameter Estimation

With the formulated posterior probability, the learning objective is to find the optimal

estimate of the parameters � that maximizes the posterior. Hence, by inferring

Equation 4.6, we can obtain the log of the posterior for the proposed model.

L(www|Y,⇧,⌅, �2, �2
w) =

M
X

m=1



�1

2
ln �2 � (ym � fm)2

2�2

�

+
M�1
X

m=1

M
X

h=m+1

ln
1

1 + exp(�(gm � gh))
+

I
X

i=1



�1

2
ln �2

w � w2
i

2�2
w

�

+ ln
K
X

f=1

✓f
1

1 + exp(�(
PM

m=1 gm
P

m

h=1 ⌘h,f
m

�
PM

m=1 gm⌘m,f ))

(4.11)

We apply a gradient descent method to maximize the posterior, by updating wi

through w
(t+1)
i = w

(t)
i � ✏@(�L)

@w
i

, where ✏ is the learning rate.

4.4.4 Ranking Inference

After obtaining the parameters, we can construct the ranking function for predicting

the investment value of estates, i.e., E(ym|�) = xmxmxm
>www. For a new estate k (lacking

historical transaction information), we may predict its investment value accordingly.

The larger the E(yk|�) is, the higher investment value it has.

4.5 Experimental Results

This section details our empirical evaluation of the proposed method on real-world

data.
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4.5.1 Data Description

Table 4.3 shows the detailed statistics of our real-world data sets. The transporta-

tion data covers the bus system, the subway system, and the road networks of Bei-

jing. We also extracted POI features from the Beijing POI data set. The taxi GPS

traces were collected from a Beijing taxi company. Each trajectory contains trip ID,

distance (m), travel time (s), average speed d(km/h), pick-up time, drop-o↵ time,

pick-up point, and drop-o↵ point. In addition, we crawled the smart card transac-

tions from the o�cial website of Beijing Public Transportation Group. Each bus trip

has card ID, time, expense, balance, route name, pick-up and drop-o↵ stop infor-

mation (name, longitude, and latitude). Moreover, the Beijing check-in data were

crawled from www.jiepang.com, which is a Chinese version of Foursquare. Each

check-in event includes checkin time, POI name, POI category, address, longitude,

latitude, and comments. Furthermore, we crawled Beijing online business reviews

from www.dianping.com, which is a business review site in China. Each review con-

tains shop ID, name, address, latitude, longitude, consumption cost, star rating (1–5),

POI category, environment, service, and overall rating. Finally, we crawled Beijing

second-hand real estate data from www.soufun.com, which is the largest online real-

estate system in China.

In the real estate industry, investment value of a property is measured by return

rate. This is the ratio of the price increase relative to the starting price of a market

period , i.e., r = P
f

�P
i

P
i

, where Pf and Pi denote the final and initial prices, respec-

tively. To prepare the benchmark investment values of estates (Y ) for training data,
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Table 4.3. Statistics of the experiment data.

Data Sources Properties Statistics

Bus stop(2011) Number of bus stop 9,810

Subway(2011) Number of subway station 215

Road networks

(2011)

Number of road segments 162,246

Total length(km) 20,022

Percentage of major roads 7.5%

POIs
Number 0f POIs 300,811

Number of categories 13

Taxi Traces

Number of taxis 13,597

E↵ective days 92

Time period Apr. - Aug. 2012

Number of trips 8,202,012

Number of GPS points 111,602

Total distance(km) 61,269,029

Smart Card

Transactions

Number of bus stops 9,810

Time Period Aug 2012 to May 2013.

Number of car holders 300,250

Number of trips 1,730,000

Check-Ins
Number of check-in POIs 5,874

Number of check-in events 2,762,128

Number of POI categories 9

Time Period 01/2012-12/2012

Business Review
Number of reviews 470846

Number of users 159820

Real Estates

Number of estates 2,851

Size of bounding box (km) 40*40

Time period of transactions 04/2011 - 09/2012

we first calculated the return rate of each estate during a given market period. We

then sorted the return rates of all the estates in descending order. Finally, we par-

tition them into five clusters using variance-based top-down hierarchical clustering
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Figure 4.4. The rising and falling market periods in Beijing.

(Fu, Ge, et al., 2014). In this way, we segmented the estates into five ordered value

categories (i.e., 4>3>2>1>0, the higher the better). Estate grading is a way to eval-

uate the investment potential and reduce the impact of fluctuations in return rates

that do not provide meaningful information about di↵erences in real estate value.

Finally, a list of estates, together with the extracted features and investment value

of each, were split into two data sets, corresponding to the falling market period (from

July 2011 to February 2012) and the rising market period (from February 2012 to

September 2012), as shown in Figure 4.4. Here we follow the norms of real estate

research, which typically studies rising and falling markets separately (Pace, 1998;

Case & Shiller, 1988).

4.5.2 Baseline Algorithms

Since our work is related to Learning-To-Rank (LTR), we compared our method

against the following algorithms. (1) Coordinate Ascent (Metzler & Croft,

2007): uses domination loss and coordinate descent optimization. (2) LambdaMART

(Burges, 2010): the boosted tree version of LambdaRank. (3) FenchelRank (Lai

et al., 2013): designed for solving sparse learning-to-rank with an L1 constraint.
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(4) ListNet (Cao et al., 2007): a listwise ranking model with permutation top-k

ranking likelihood as the objective function.

Beyond traditional ranking models, we further compare with two methods specif-

ically designed for real estate ranking. (5) SEK (Fu, Ge, et al., 2014): exploits

regression modeling, pairwise ranking objective, and sparsity regularization, to solve

the real estate ranking problem. Also, its feature design includes the entropy of POI

distribution, which is an summary index of functional diversity. (6) ClusRanking

(Fu, Xiong, et al., 2014): solves the estate ranking problem by capturing individ-

ual, peer, and zone dependencies.

In our experiments, we used RTree to index geographic items (e.g., POIs, tra-

jectories, checkins, etc.) and extracted the defined features. For traditional LTR

algorithms, we used RankLib 1 . For Coordinate Ascent, we set step base = 0.05,

step scale = 2.0, tolerance = 0.001, and slack = 0.001. For LambdaMART, we set

number of trees = 100, number of leaves = 10, number of threshold candidates =

256, learning rate = 0.1. For FenchelRank, we use the source code2 provided by

the author. For SEK, we set a = 0.01, b = 0.01, and �2 = 1000. For ClusRank-

ing, we set �1=0.8, �2=25m, latent business areas K = 10, ⌘ = 1
K
, µq = µw = 0,

�q = �w = � = 35 and M = 3 for hyperparameters. For our method,we implemented

the geo-functional learning model in C and DivFuncRanking model in Python with

the Scipy optimization package. We used a KNN-based method to impute the values

of missing features. To learn the meta features, we leveraged the scikit-learn random

1
http://sourceforge.net/p/lemur/wiki/RankLib/

2
http://ss.sysu.edu.cn/ py/fenchelcode.rar
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forest package, where the number of trees is set to 100. We randomly divided the data

into 70% for training and 30% for testing, and used Matlab for result visualization.

4.5.3 Evaluation Metrics

Normalized Discounted Cumulative Gain. The discounted cumulative gain

(DCG) metric is evaluated over top N estates on the ranked estate list by assum-

ing that high-value estates should appear earlier in the ranked list. DCG [n] =
(

rel1 if n = 1

DCG[n� 1] + reln
log2n

, if n >= 2
Later, given the ideal discounted cumulative gain DCG

0
,

NDCG at the n-th position can be computed as NDCG [n] = DCG[n]

DCG
0
[n]
, where refn refers

to the investment rating of estate n.

Precision. We binarize our five-level rating system (4 > 3 > 2 > 1 > 0) by treating

the ratings � 3 as “high-value” and ratings < 3 as “low-value”. Given a top-N estate

list EN sorted in descending order of prediction values, the precision is defined as

Precision@N =
|E

N

T
E�3|

N
, where E�3 are the estates whose ratings are greater or

equal to 3.

Kendall’s Tau Coe�cient. Kendall’s Tau Coe�cient (or Tau for short) measures

the overall ranking accuracy. Let us assume that each estate i is associated with a

benchmark score yi and a predicted score fi. Then, an estate pair hi, ji is said to be

concordant, if both yi > yj and fi > fj or if both yi < yj and fi < fj. Conversely,

hi, ji is said to be discordant, if both yi < yj and fi > fj or if both yi < yj and fi > fj.

Tau is given by Tau = #
conc

�#
disc

#
conc

+#
disc
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The larger diversity, the better.

Perplexity and Diversity. Perplexity and diversity are used to study param-
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4.5.4 Evaluation of Geographical Functional Portfolio Learning

Next, we study our geographic functional learning model in terms of parameter sen-

sitivity, temporal popular topics and patterns, and community functional portfolios.

(1) Study of Parameter Sensitivity.

Here, we investigate the sensitivity of di↵erent parameter settings in terms of three

metrics: likelihood, perplexity, and diversity. Figure 4.5(a) plots the likelihood

against the number of iterations. The likelihoods in all settings converge after 100

iterations. To ensure convergence, we retrieve all the results after 200 iterations. Fig-

ure 4.5(b) shows that the perplexity decreases as the number of functions decreases,

in terms of di↵erent prior (⇢) settings. Since the trends of perplexity for di↵erent

numbers of latent topics are similar, we only show the plots where Q = R = W = 10.

Meanwhile, we notice that a smaller ⇢ results in a larger perplexity when K is small,

and the perplexity gaps between di↵erent settings become small with the increase of

K. Hence, we make a trade-o↵ and set ⇢ to 7 in the following experiments. In addi-

tion, when K increases from 5 to 20, the perplexity decreases smoothly. Figure 4.5(c)

shows that the di↵erences among the diversities in all settings are not significant,

and the number of latent topics is less related with diversity. Therefore, to avoid

overfitting, we set K = 5, Q = R = W = 7, because the number of time periods

for mobility segments is small (i.e., N = 7, one day per segment), and the sizes of

vocabularies of checkin, taxi, and bus patterns are also small.
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(a) Checkin latent topics.

(b) Taxi latent topics.

(c) Bus latent topics.

Figure 4.6. Heatmaps of temporal popularity of checkin, taxi and bus latent topics

during weekdays.
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Table 4.4. Examples of temporal topics and their patterns of check-in mobility.

Weekday Topics Weekend Topics

Topic 7 Topic 6 Topic 5 Topic 7 Topic 6 Topic 5

R@6PM E@9PM S@4PM R@6PM E@9PM S@4PM

R@7PM E@6PM S@7PM R@8PM E@10PM S@4PM

R@8PM E@10PM S@4PM R@7PM S@10PM S@7PM

R@12 E@10PM S@12 R@1PM E@6PM S@11PM

R@1PM E@8PM S@11PM R@12 E@8PM S@12

Note: R, E, and S denote restaurant, entertainment, and shopping.

Table 4.5. Examples of temporal topics and their patterns of taxi mobility.

Weekday Topics Weekend Topics

Topic 6 Topic 7 Topic 3 Topic 4 Topic 6 Topic 7

L@6PM A@6PM L@5PM A@8AM L@6PM A@6PM

A@8AM A@8AM A@8AM L@5PM A@8AM A@8AM

A@5PM L@8AM L@7AM L@6PM A@5PM L@8AM

A@6PM L@5PM L@6PM L@8AM A@6PM L@5PM

Note: L and A denote leaving and arriving patterns respectively.

Table 4.6. Examples of temporal topics and their patterns of bus mobility.

Weekday Topics Weekend Topics

Topic 7 Topic 6 Topic 5 Topic 7 Topic 6 Topic 4

L@6PM A@8AM A@8AM L@6PM A@8AM L@10PM

A@8AM L@6PM L@5PM A@8AM L@6PM A@5PM

A@5PM A@5PM A@6PM A@5PM A@5PM A@7PM

A@6PM L@7AM A@2PM A@6PM L@7AM A@6PM

A@5PM A@6PM A@7AM A@5PM A@6PM L@9PM

Note: L and A denote leaving and arriving patterns respectively.

(2) Study of temporal popularity of checkin, taxi, and bus latent topics.

We compute the topic distributions of checkin, taxi, and bus with respect to di↵erent

week days. Figure 4.6 presents the topic distributions over seven days, with values

represented by color darkness. We also list the representative words for these popular

topics in Tables 4.4, 4.5, and 4.6, respectively. Figure 4.6 validates that the topic

distribution of mobility has a temporal pattern. First, Figure 4.6(a) shows that
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checkin latent topics 1, 3, and 4 are popular during both weekdays and weekends. This

is because topics 5, 6, 7 respectively represent shopping, entertainment, and catering

activities at noon or at night, as shown in Table 4.4. Next, Figure 4.6(b) shows that

taxi latent topics 3 and 4 are popular only during weekdays, while topics 4 and 6 are

popular during both weekdays and weekends. From Table 4.5, we can see topics 3

and 4 generally include arriving patterns in the morning (i.e., go to work) and leaving

patterns at night (i.e., leave after work), and thus mainly happen in weekdays. Topics

6 and 7 are combinations of both working activities (i.e., arriving early in the morning

and leaving after 5PM) and catering, entertainment, and commercial activities (i.e.,

arriving after 5PM and leaving at night), and thus are popular during both weekdays

and weekends. In addition, Table 4.6 shows that bus latent topics 6 and 7 include both

working activities as well as catering, entertainment, and commercial activities, and

thus cover both weekdays and weekends. On the other hand, bus latent topic 5 with

only working activities is popular on weekdays. Bus latent topic 4 is mostly about

recreation activities at night and is thus popular on weekends. The above analysis

demonstrates that the geographic functional learning model can capture temporal

patterns of checkin, taxi, and bus mobility.

(3) Study of functional distribution of high-ranked and low-ranked estates.

Here, we visualize the functional distribution of high-ranked and low-ranked estates,

and study the correlation between real estate value and functional diversity. Figure 4.7

compares the functional distributions of high-ranked (i.e., top 1–25) and low-ranked

(i.e., top 2505–2530) estates. High ranked estates generally show diverse and balanced
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Figure 4.7. Comparison of functional distributions of high-ranked and low-ranked

estates.

distributions among di↵erent functions, Whereas low ranked estates show unbalanced

distributions with low heterogeneity. This observation validates the assumption that

a good functional portfolio can increase investment value.

4.5.5 Evaluation on Real Estate Ranking

Here, we report the evaluation results of our method, compared to baseline algorithms,

on the rising and falling markets, in terms of NDCG, Precision, and Tau.

Rising Market. Figure 4.8 shows our method performs better than the baselines

over top-k ranking in rising market. For example, our method o↵ers 21%, 32.4%,

47.2% improvement in terms of NDCG@3 compared to SEK, FenchelRank, and Rank-

Boost, respectively. Figure 4.8(b) shows that the top-K results (K = 3, 5, 7, 10) of

our method consist almost exclusively of estates with rating � 3. For example, all our

top-10 results are high-value, compared to just 2 for random or CoordAsc ranking,

and 7–8 for the best competitor.
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Falling Market. As can be seen in Figure 4.9, our method outperforms the base-

lines over top-K ranking by a significant margin in falling market. Specifically, our

method achieves 27.5%, 17.3%, and 99% improvement in terms of NDCG@3 com-

pared to SEK, RankBoost, and FenchelRank, respectively. Unfortunately, we observe

the overall ranking accuracy of our method decreases and is lower than ClusRanking

and SEK. Finally, although our goal is to identify top investment opportunities, for

completeness we also evaluate the total ranking of all estates, showing Tau scores in

Table 4.7.

Next, we discuss how our work di↵ers from previous work on real estate ranking.

First, while ClusRanking (Fu, Xiong, et al., 2014) considers proximity and zone de-

pendencies to capture pairwise ranking consistency, our method takes into account

not only prediction accuracy and ranking consistency, but also the impact of mixed

land use (i.e., functional diversity). As a result, we can better capture the ranking of

the list of estates. Indeed, we observe a significant improvement in top-K ranking over

classic LTR methods. Second, we exploit random forests to generate meta features

from raw features. Third, although SEK (Fu, Ge, et al., 2014) includes the entropy

of POI distribution as one of the features, its predictive power may be diluted by the

large number of other extracted features. In contrast, our method can emphasize the

functional diversity directly in the ranking objective.

Table 4.7. The Tau values of di↵erent algorithms in rising and falling markets.

Period CoordAsc LambdaMART FenchelRank SEK ListNet ClusRanking FuncDivRank

Rising Market -0.1370415 0.07150473 0.1224318 0.3493753 0.1722723 0.3428617 0.350517

Falling Market 0.223312 0.2311301 -0.124769 0.3347548 0.0538088 0.2363498 -0.09250678
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Figure 4.8. Performance comparison, rising market.
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Figure 4.9. Performance comparison, falling market.

4.6 Related Work

Real Estate Appraisal and Ranking. Traditional research on estate appraisal is

based on financial real estate theory, typically constructing an explicit index of estate

value (Krainer & Wei, 2004), for example, price to income ratio. Some studies rely

on financial time series analysis by inspecting the trend, periodicity and volatility of

estate prices (Chaitra H. Nagaraja & Zhao, 2009; Downie & Robson, 2007). More

classic works are based on repeat sales methods and hedonic methods (Bailey et al.,

1963; Shiller, 1991a; Knight & Sirmans, 1992; Taylor, 2003). The work in (Downie &

Robson, 2007) studies the automated valuation models which aggregate and analyze
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physical characteristics and sales prices of comparable properties, to provide property

valuations. The work in (Fu, Ge, et al., 2014) extracts features from user reviews and

mobility behaviors and integrates sparsity regularization into pairwise estate ranking.

The work in (Fu, Xiong, et al., 2014) jointly models the geographical individual,

peer, and zone dependencies for enhancing prediction of estate investment value.

More recent works (Kontrimas & Verikas, 2011) apply general additive mode, support

vector machine regression, and multilayer perceptron ensembles for computational

estate appraisal.

Learning To Rank with Diversity. Also, our work is related to LTR. The pair-wise

methods, such as RankNet (Burges et al., 2005), RankBoost (Freund et al., 2003),

RankSVM (Herbrich et al., 1999), and LambdaRank (Quoc & Le, 2007), reduce the

LTR task to a classification problem. The goal of the pairwise ranking is to learn a

binary classifier to identify the better document in a given document pair by mini-

mizing the average number of rank inversions. Works (Weng & Lin, 2011; Rendle et

al., 2009) provide full Bayesian explanations and optimize the posterior of point-wise

and pair-wise ranking models, respectively. Study (Shi et al., 2012) unifies both rat-

ing error and ranking error as objective function to enhance Top-K recommendation.

More recent works (Zhu, Goldberg, Van Gael, & Andrzejewski, 2007; Su, Tang, &

Hong, 2012; Qin & Zhu, 2013) study diversified learning to rank. For example, (Zhu

et al., 2007) ranks items by random walks in an absorbing Markov chain and achieves

both diversity and centrality. The work in (Su et al., 2012) proposes a diversified

ranking objective by incorporating subtopics into MAP (Mean Average Precision) for
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expert finding.

Urban Computing and Site Selection. Our work also has a connection with

mining of mobile, geographical, and mobility data, to tackle issues in the urban space.

Yuan et al. discover regional functions of a city using POIs and taxi traces (Yuan

et al., 2012a) . Work (Karamshuk et al., 2013) selects the optimal sites for retail

stores by mining Foursquare data. Also, our work is related to measuring similarity

for ranking (Chang, Qi, et al., 2014; Chang, Aggarwal, & Huang, 2014).

4.7 Concluding Remarks

Summary. We investigated how to rank real estate investment values by considering

the impact of mixed land use, which can be reflected by diverse community functions.

Since human mobility patterns provide a reasonable estimation of diverse functions

present in the community of an estate, we developed a latent factor model to learn the

portfolio of community functions for real estate from human mobility data. Then, we

designed a unified probabilistic framework which allows simultaneous maximization

of ranking consistency and of functional diversity for real estate ranking. Finally,

we conducted extensive experiments on real-world human mobility data, urban geo-

graphical data, and user check-in data collected from location based social networks.

As revealed in the experimental results, a diverse view of mixed land use can help to

better capture real estate values and the performance improvement of our proposed

method is substantial compared to benchmark methods.

Discussion.This paper focused on assessing the investment ratings of residential

complexes in urban areas of big cities, whose developing strategy is mixed land using,
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for business site selection. In di↵erent cities, buyers may have personalized expecta-

tions on functional diversity, the method of incorporating functional diversity can be

further enhanced for personalized real estate recommendation.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, we address the unique challenges of building a geographic ranking

system by e↵ectively modeling and e�ciently computing with various mobile data.

Along these lines, I first introduced a method for ranking residential complexes

based on investment ratings by mining users opinions about residential complexes

from online user reviews and o✏ine moving behaviors (e.g., taxi traces, smart card

transactions, check-ins). While a variety of features could be extracted from these

data, these features are intercorrelated and redundant. Thus, selecting good features

and integrating the feature selection into the fitting of a ranking model are essential.

To this end, I first strategically mined the fine-grained discriminative features from

user reviews and moving behaviors. Then, I proposed a Sparse Pairwise Ranking

method by combining a pairwise ranking objective and a sparsity regularization in a

unified probabilistic framework.

Also, with the development of new ways to collect estate-related mobile data,

there is a potential to leverage geographic dependencies of residential complexes for

enhancing real estate evaluation. Indeed, the geographic dependencies of the value

of a residential complex can be from the characteristics of its own neighborhood

(individual), the values of its nearby residential complexes (peer), and the prosperity

of the a�liated latent business area (zone). To this end, I proposed an enhanced
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method, named ClusRanking, for real estate evaluation by leveraging the mutual

enforcement of ranking and clustering power. In ClusRanking, three influential factors

(i.e., geographic utility, neighborhood popularity, and influence of business areas) are

constructed and extracted for predicting real estate investment ratings. An estate-

specific ranking objective is also proposed to jointly model individual, peer and zone

dependencies.

Finally, mixed land use refers to the e↵ort of putting residential, commercial and

recreational uses in close proximity to one another. This can contribute economic ben-

efits, support viable public transit, and enhance the perceived security of an area. It

is naturally promising to investigate how to rank residential complexes from the view-

point of diverse mixed land use, which can be reflected by the portfolio of community

functions in the observed area. To that end, I further developed a geographical func-

tion ranking method, named FuncDivRank, by incorporating the functional diversity

of communities into real estate evaluation. In FunDivRank, a mix-land use latent

model is developed to learn latent community functions and the corresponding port-

folios. Also, a real estate ranking indicator is learned by simultaneously maximizing

ranking consistency and functional diversity.
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