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Abstract: We study adaptive policies that handle dynamic inventory and

price controls when the random demand for discrete nonperishable items is

unknown. Pure inventory control is achieved by targeting newsvendor

ordering quantities that correspond to empirical demand distributions learned

over time. On this basis we conduct the more complex joint inventory-price

control, where demand-affecting prices await to be evaluated as well. We

identify policies that strive to balance between exploration and exploitation,

and measure their performances via regrets, i.e., the prices to pay for not

knowing demand distributions a priori over a given horizon. Multiple bounds

are derived on regrets’ growth rates; they vary with how thoroughly unknown

the demand distributions are and whether nonperishability has indeed been

accounted for. A simulation study shows that our policies compare favorably

with other potential candidates.

ii



Contents

1 Introduction 1

2 Literature Survey 7

3 Pure Inventory Control 12

4 Bounds for Pure Control 17

5 Joint Inventory-price Control 24

6 Joint-control Bounds when Items are Perishable 31

7 Nonperishability with Restricted Demand Patterns 38

8 Nonperishability with Arbitrary Demand Patterns 46

9 Simulation Study 54

10 Concluding Remarks 62

11 Appendices 63

12 Supplementary Materials 99

13 References 114

iii



-1-

1 Introduction

For a given firm, inventory control is about dynamically adjusting ordering

quantities to minimize the total long-run expected cost stemming from mismatches

between inventory levels and random demand realizations. When unit prices

influence the random demand pattern that it faces, the firm can further exert joint

inventory-price control to attain the maximum total long-run expected profit.

Traditional models took the probabilistic distribution associated with the random

demand pattern as a known factor. In many real situations, however, even the

knowledge on demand distributions can be elusive. When the firm has just

introduced a new product or when its external environment has just transitioned to

a previously unfamiliar phase, e.g., a severe economic downturn, it will not be sure

of the random demand pattern to come. One way out is adopting the Bayesian

approach. In it, the firm possesses prior distributions on potential demand patterns.

Then, posterior understandings on demand are formed on the basis of new demand

realizations. Inventory management taking this approach can be found, for instance,

in Scarf [34] and Lariviere and Porteus [30].

Most other times, even prior distributions on demand patterns can be too much to

ask for. What meager information one possesses might just be a collection of

potential demand distributions. Now, the concerned firm has yet to make decisions

using its past observations. But its goal is no longer about catering to specific

demand distributions or even sequences of posterior demand distributions. Rather,

its history-dependent (henceforward called adaptive) control policy should better

yield results that are reasonably good under all potential demand distributions from

the given collection. A policy’s regret under a given demand pattern and over a

fixed time horizon measures the price paid for ambiguity; namely, the difference

between the policy’s performance and that of the best policy tailor-made for the

demand pattern were it known. A policy will be considered good when its worst
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regret over all demand patterns in a collection grows over time as slowly as possible.

We let items be discrete. Thus, the underlying firm can, for instance, be a car

manufacturer or a wholesaler of bulky items such as bags of grain. Often, the

granularity of items would not cause much difference to an inventory and price

control setting; besides, continuous- and discrete-item systems are often good

approximations of each other. By prohibiting the finest tuning of ordering decisions,

our discrete-item setup has the advantage of better reflecting many real firms’

inabilities to manage their inventories to exact precisions.

We start with pure inventory control, where the demand distribution f is only

known to have an expectation not exceeding some level m̄ > 0. We adopt a very

simple and natural policy that has also been considered by Besbes and

Muharremoglu [6]. Recall that the optimal ordering quantity for a newsvendor

problem involving an effective holding cost rate h̄, an effective backlogging cost rate

b̄, and a known demand distribution f is the β-quantile of f , where β = b̄/(h̄+ b̄). In

every period t, the heuristic policy without knowing the true f advocates ordering

up to the β-quantile of the empirical demand distribution f̂t−1 that is learned from

past demand levels in periods 1, 2, ..., t− 1. A minor modification comes in the form

of an artificial upper bound d̄ on the order-up-to level. We show that the policy’s

worst regret over all distributions will not grow faster than the rate T 1/2 · (lnT )3/2.

A bound linking to the nonperishability of items is one of our most technical

accomplishments. It will be repeatedly used in joint inventory-price control.

A good portion of the dissertation is then devoted to the more complex task of joint

inventory-price control. Here, the firm can choose from prices p̄1, p̄2, ..., p̄k̄. But the

demand distribution fk under each choice k = 1, 2, ..., k̄ is largely unknown. On top

of the common upper bound m̄ on the mean demand level, we additionally impose a

common upper bound s̄ on demands’ standard deviations. Now the empirical

distribution f̂kt−1 of demand under the price choice k by the beginning of period t
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depends on how many times k has been chosen in periods 1, 2, ..., t− 1, and is in

turn the product of both demand realizations and the policy adopted. We propose

learning while doing policies LwD(µ) that are parameterized by some constant µ. A

policy from this group ensures that every price is visited often enough; indeed, the

number of visits is in the order of tµ by period t. At the same time, it gives prices

with more promising historical performances more chances to be visited. Let V k
f be

the best average single-period profit the firm can achieve under the price choice k

and demand distribution f , if the latter were known. As the actual fk under choice

k is unknowable to the firm, the policy advocates that, as much as possible, the k

achieving the maximum Ṽ k
t−1, an approximation of the profit V k

f̂kt−1

produced by the

empirical distribution, be chosen in period t. The approximation is needed because

a cutoff has to be made on the potentially infinite revenue-side computation

involving an unbounded support.

As in pure inventory control, the analysis dealing with perishable items draws upon

established results in information theory and large deviation, such as Hoeffding’s

inequality. Basically, we take advantage of the fact that empirical distributions will

get ever closer to their generating distributions as increasingly more realizations are

observed. The issue of nonperishability necessitates more innovations on our part.

We take up the nonperishability-induced bound in pure control and for this to work

well, introduce virtual learning periods that accumulate at rates roughly

proportional to tµ. This trick allows us to establish that the dominant price, if there

ever is one, will be used in long sequences of periods; consequently, the sub-linear

bound from pure control will be patched up over various sequences to deliver a

reasonable bound for joint control.

The most challenging case is when demand is so utterly unknown that even the

existence of a price leading others by a tiny margin cannot be taken for granted.

Note distinctions between leaders and followers, whether they be in terms of
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distributions or average rewards, are often the enablers of adaptive control’s regret

analysis; see, e.g., Lai and Robins [29] and Auer, Cesa-Bianchi, and Fischer [2]. To

handle the more applicable case without such distinctions, we build on the

virtual-learning idea to obtain stickier modifications of the LwD(µ) policies. We

name them LwD′(µ, ν, ψ), which are parameterized by constants µ, ν, and ψ. These

policies are aware of built-in virtual learning periods that accumulate at rates

proportional to t1−ψ and in most periods, favor incumbent price choices at degrees

expressible in terms of the parameters and the times t. The extra lengths that single

prices linger on permit the pure-control bound to take its effect.

In addition to performance guarantees for particular policies, we also attempt to

identify lower bounds on regrets that no policy can ever beat. Now, let us detail our

main results.

Pure inventory control

∗ regrets caused by the newsvendor-based policy are of the form O(T 1/2 · (lnT )3/2)

(Theorem 1), while Proposition 2 on nonperishability will remain useful for joint

control;

Joint inventory-price control

when items are perishable:

when V k
fk

is uniquely maximized and the second best choice is at least δ > 0

behind:

∗ the LwD(µ) policy with the best known performance guarantee happens at

µ = 1/2, whence regrets are of the form O(T 1/2 · (lnT )1/2) (Proposition 6);

when the demand-distribution vector f ≡ (fk)k=1,2,...,k̄ can roam more freely:

∗ the LwD(µ) policy with the best known performance guarantee happens at

µ = 4/5, whence regrets are of the form O(T 4/5) (Proposition 7);

when items are nonperishable and V k
fk

is uniquely maximized with a δ margin:

∗ the LwD(µ) policy with the best known performance guarantee happens at
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µ = 4/7, whence regrets are of the form O(T 11/14 · (lnT )5/2) (Theorem 2);

when items are nonperishable and demand patterns are more arbitrary:

∗ it takes the LwD′(µ, ν, ψ) policies to achieve known performance guarantees;

the best one, also our ultimate result, is attained at µ = 2/3, an arbitrary ν, and

ψ = 1/3, whence regrets are of the form O(T 5/6 · (lnT )5/2) (Theorem 3);

∗ the tightest lower bound so far achievable is of the form Ω(T 1/2) (Theorem 4).

When demand distributions have finite supports, both Proposition 7 and Theorem 2

can be improved. However, Theorem 3 will remain intact.

We have conducted a simulation study. Its pure inventory control part demonstrates

the competitiveness of the newsvendor-based policy. The main part concerning joint

inventory-price control suggests that more work is probably needed on both the

upper-bounding Theorem 3 and lower-bounding Theorem 4. It is likely that T 3/5- or

T 2/3-sized bounds should prevail for joint inventory-price control just as T 1/2-sized

ones do for pure inventory control. It also indicates that nonperishability does not

contribute as much to regret bounds as suggested by our theoretical bounds, on

which we have spent major efforts. Therefore, new ideas, especially those that do

not rely on the pure-control bound, should be welcomed.

The remainder of the dissertation is organized as follows. We put our contribution

in the perspective of existing literature in Section 2. Then, Section 3 introduces

pure inventory control along with the newsvendor-based policy; whereas, Section 4

provides various upper bounds. For joint inventory-price control, we use Section 5

to introduce the problem and the LwD(µ) policies. We then spend the next three

sections on detailed analyses. Section 6 focuses on the case with perishable items;

then, Section 7 moves on to nonperishable items, however, with a slight restriction

on demand patterns. In Section 8, we achieve upper bounds for the modified policies

LwD′(µ, ν, ψ) under the most general conditions involving nonperishable items and

unrestricted demand patterns. A lower bound is also derived there. We present our
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simulation study in Section 9 and conclude the dissertation in Section 10.
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2 Literature Survey

Pioneering works on regret analysis started with adaptive allocation, where the

main concern is on dynamically selecting the most promising pool of samples to

draw so as to maximize their total sum; see, e.g., Robbins [32], Lai and Robbins

[29], Katehakis and Robbins [27], and Auer, Cesa-Bianchi, and Fischer [2]. Also,

Auer et al. [3] treated variants where each choice’s output is not necessarily an

independent sample from a predetermined though unknown distribution;

meanwhile, Burnetas, Kanavetas, and Katehakis [11] introduced constraints on the

total costs of sampling from various pools. The dynamic pricing portion of our work

is akin to picking a winning pool of samples. However, subsequent ordering

decisions and inventory carry-overs pose additional challenges.

Regret analysis was also conducted on adaptive Markov decision processes (MDPs)

that often involve unknown reward patterns and unknown random state transitions;

see, e.g., Burnetas and Katehakis [12], Auer and Ortner [4], Tewari and Bartlett

[35], and Jacksh, Ortner, and Auer [26]. Regret bounds derived in this body of

literature are often dependent on particular MDPs or to lesser degrees,

characteristics of MDPs such as their so-called diameters. So even inventory and

price controls are MDP by nature, we need new insights and techniques to achieve

regret bounds that countenance all or nearly all possible demand distributions that

underlie our particular Markov processes.

Adaptive policies for inventory control have been considered. Huh and

Rusmevichientong [24] focused on a gradient-based policy. It could also be thought

of as an extension of stochastic approximation (SA), which was started by Robbins

and Monro [33] and Kiefer and Wolfowitz [28]. Huh et al. [25] used the so-called

Kaplan-Meier estimator on the distribution function of demand when the latter is

censored. Moreover, Besbes and Muharremoglu [6] studied the implications of

demand censoring in pure inventory control involving unknown demand. They
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focused on the discrete-item case of the repeated newsvendor problem and proposed

policies with provably good performance guarantees. In a revenue management

setup, Besbes and Zeevi [7] studied the dynamic selection of prices while learning

demand on the fly. For the newsvendor problem and its multi-period version

involving nonperishable items, Levi, Roundy, and Shmoys [31] relied on randomly

generated demand samples to reach solutions with relatively good qualities at high

probabilities.

We study both pure inventory and joint inventory-price controls involving the

real-time learning of unknown demand patterns regarding discrete nonperishable

items, with more emphasis placed on the latter joint control. In pure inventory

control, Huh and Rusmevichientong [24] also dealt with items’ nonperishability in

their main continuous-item part. When items are discrete, their SA-based approach

was analyzed for perishable items only. We rely on a newsvendor-based policy

involving empirical demand distributions, which was considered by Besbes and

Muharremoglu [6] in their study of perishable items. Our contribution is rather on

the technical side, with an emphasis on bounding the policy’s

nonperishability-induced regrets. Proposition 2, especially, enables the analysis of

nonperishability-induced regrets in joint inventory-price control.

Pure price control involving unknown demand patterns, as was treated in Besbes

and Zeevi [7], is a problem transient in nature. In it, prices are adjusted over time

for the firm to reap the highest profit from selling a given initial stock within a fixed

time horizon. This area is seeing rapid progress in recent years. For instance, Wang,

Deng, and Ye [37] proposed a policy that conducts learning and doing intermittently

and achieves very tight regret bounds. Besbes and Zeevi [8] demonstrated that a

firm could take its demand function as linear and still manage to avoid severe

regrets. Ferreira, Simchi-Levi and Wang [22] applied Thompson Sampling to a

network revenue management setting, where different products consume a given set



-9-

of resources. Also, Aviv and Pazgal [5], Araman and Caldentey [1], Farias and van

Roy [20], Broder and Rusmevichientong [10], and den Boer and Zwart [9] took

parametric approaches to such problems. Meanwhile, Cheung, Simchi-Levi, and

Wang [16] limited the number of price changes in a setting without inventory

constraints.

In contrast to the transient pure price control, joint inventory-price control is

recurrent in nature. It deals with the repeated use of pricing and ordering for the

attainment of the highest profit in the long run. Our counterpart with known

demand patterns and strict discounts over time is Federgruen and Heching [21].

Assuming unknown demand patterns, Burnetas and Smith [13] studied such a

problem where demand distributions are continuous and the only information

available is whether sales have exceeded ordering quantities. They developed an

SA-based method that reached consistency, i.e., asymptotic convergence in

time-average profit to the truly optimal; however, rates of convergence were left

untouched.

Like us, Chen, Chao, and Ahn [14] also dealt with joint inventory-price control

involving unknown demand patterns while providing bounds on regrets’ growth

rates. Whereas we allow a finite number of price choices and assume an arbitrary

price-demand relationship, they let prices come from a compact interval, adopted an

either additive or multiplicative demand pattern with average demand decreasing

over price, and also made other assumptions like the twice differentiability of the

demand-price relationship’s deterministic part, concavity of the average revenue

function, and strict positivity of average demand levels. They were able to achieve

T 1/2-sized regret bounds. Between the slightly earlier work and ours, we believe

there is some trade-off between model flexibility and solution quality. Our avoidance

of any assumption on the price-demand relationship reduces the risk of model

mis-specification to the minimum. On the flip side, this probably contributes to our
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less ideal, T 11/14- and T 5/6-sized bounds, as illustrated in Theorems 2 and 3,

respectively. Working with a setup similar to that of Chen, Chao, and Ahn [14],

recently Chen, Chao, and Shi [15] established a T 4/5-sized regret bound for the case

involving lost sales and censored demand observation.

Our results, especially those allowing demand patterns total freedom in their ranges,

such as Theorems 1 and 3, will offer guidance to production, inventory, and sales

managers at those critical junctures when for instance, new products have just been

rolled out or the economy has just entered a new phase. Besides effective uses of the

empirical distribution’s properties known in the theories of information and large

deviations, we contribute methodologically in the LwD(µ) policies that balance

between exploration and exploitation, their stickier variants the LwD′(µ, ν, ψ)

policies that favor incumbent prices to measured degrees, the virtual-learning trick

that regulate frequencies of learning in both directions, and various other

regret-analysis techniques. In both pure and joint controls, the nonperishability of

discrete items poses as one of the main challenges. Our treatments of

Propositions 12 and 16 to this effect might offer ideas to be lent to other

applications.

Due to presently unsurmountable difficulties, there is still a sizable gap between the

T 5/6-sized upper bound in Theorem 3 and the T 1/2-sized lower bound in Theorem 4.

Our simulation study adds to the credibility of a T 3/5- to T 2/3-sized bound. In

addition, it questions whether nonperishable items contribute as much to the final

bound as has been depicted in Propositions 12 and 16. We probably need a new

proof idea other than the current one focusing on long-lasting single dominant

prices. With major efforts so far devoted to the enhancement of the tolerable

ambiguity level for demand patterns and also the mitigation of difficulties caused by

items’ nonperishability, we have left little to show for demand censoring, admittedly

another major issue in real applications. Nevertheless, we might have laid some of
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the ground work that more realistic and inclusive models could build on. One

avenue that the latter could take is substituting the the empirical demand

distribution with the Kaplan-Meier estimator as was studied by Huh et al. [25].



-12-

3 Pure Inventory Control

Let N be the set of natural numbers and < the set of reals. Also, use F0 for the

collection of all random distributions with N as their support. A distribution

f ≡ (f(d))d∈N in F0 satisfies both f(d) ≥ 0 for every d ∈ N and
∑+∞

d=0 f(d) = 1. Use

Ff for the cumulative distribution function (cdf) of any given f ∈ F0. It satisfies

Ff (x) =
∑bxc

d=0 f(d) for x ∈ <. Now consider a multi-period inventory control

problem in which the demand Dt in every period t ∈ N is a random draw from a

collection F1(m̄) ⊂ F0 of distributions with a uniformly bounded mean m̄ > 0. A

distribution f ≡ (f(d))d∈N in F1(m̄) for a random demand D further satisfies

Ef [D] ≡
+∞∑
d=0

d · f(d) =
+∞∑
d=0

(1− Ff (d)) ≤ m̄. (1)

Suppose the firm starts with nothing at the beginning of period 1 over a T -period

horizon.

We primarily consider the case where items are nonperishable and unsatisfied

requests are backlogged. Suppose unit holding and backlogging cost rates are some

strictly positive h̄ and b̄, respectively. Also, in any period t = 1, 2, ..., T , denote the

order-up-to level by yt and the realized demand level by dt. Then, with

q(y, d) ≡ h̄ · (y − d)+ + b̄ · (d− y)+, (2)

the relevant total cost over the T -period horizon will come at
∑T

t=1 q(yt, dt). Indeed,

according to the discussion in Section 1 of Appendix 12 which serves as this

dissertation’s supplement, we can use the above to handle all four combinations

where unsatisfied demands are either backlogged or lost and where leftover items

are either perishable or nonperishable. When items are perishable, h̄ can be

understood as the difference c̄− s̄, where c̄ is the unit production cost and s̄ the
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unit salvage value. When unsatisfied requests are lost, b̄ can be treated as the

difference l̄− c̄, where l̄ is the cost for not satisfying a unit demand. When items are

nonperishable, we further require

yt ≥ yt−1 − dt−1, ∀t = 2, 3, ..., T. (3)

Later it will be clear that this could severely complicate our analysis.

For every f ∈ F1(m̄) and y ∈ N, let Qf (y) be the single-period average cost under

the demand pattern f and order-up-to level y:

Qf (y) ≡ Ef [q(y,D)] =
∑+∞

d=0 f(d) · [h̄ · (y − d)+ + b̄ · (d− y)+]

= h̄ ·
∑y−1

d=0 Ff (d) + b̄ ·
∑+∞

d=y(1− Ff (d)).
(4)

Also, let Q∗f = miny∈NQf (y) be the minimum cost in one period under f . Suppose

y∗f is an order-up-to level that achieves the one-period minimum. Then, when facing

a T -period horizon, an optimal policy with a known f will be to repeatedly order up

to this level. Thus, the minimum cost over T periods is Q∗f · T .

A salient feature of our current problem, though, is that f is not known beforehand.

So instead of any f -dependent policy, we seek a good f -independent policy which

takes advantage of demand levels observed in the past. A deterministic policy

y ≡ (yt)t=1,2,...,T is such that, for t = 1, 2, ..., T , each yt ∈ N is a function of the

historical demand vector d[1,t−1] ≡ (ds)s=1,2,...,t−1. Under it, the T -period total

average cost is

QT
f (y) ≡

T∑
t=1

Ef [h̄ · (yt(D[1,t−1])−Dt)
+ + b̄ · (Dt − yt(D[1,t−1]))

+], (5)

which, due to the independence between D[1,t−1] and Dt, is equal to∑T
t=1 Ef [Qf (yt(D[1,t−1]))]. Define the T -period regret RT

f (y) of using the policy y
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against the unknown distribution f :

RT
f (y) ≡ QT

f (y)−Q∗f · T =
T∑
t=1

Ef [Qf (yt(D[1,t−1]))]−Q∗f · T. (6)

Our goal is to prevent RT
f (y) from growing too fast in T under all f ’s within F1(m̄).

We concentrate on one policy inspired by an optimal y∗f when f is known. From (4),

we see that necessary and also sufficient conditions for optimality of any y are

Qf (y + 1)−Qf (y) = (h̄+ b̄) · Ff (y)− b̄ ≥ 0, (7)

and

Qf (y)−Qf (y − 1) = (h̄+ b̄) · Ff (y − 1)− b̄ ≤ 0, (8)

Let β = b̄/(h̄+ b̄) be the famous newsvendor parameter that lies in (0, 1). For

f ∈ F0, let y∗f be the associated newsvendor order-up-to level, such that

y∗f ≡ F −1
f (β) ≡ min{d ∈ N : Ff (d) ≥ β}. (9)

By definition, Ff (y
∗
f ) ≥ β and hence Qf (y

∗
f + 1)−Qf (y

∗
f ) ≥ 0 by (7); also,

Ff (y
∗
f − 1) < β and hence Qf (y

∗
f )−Qf (y

∗
f − 1) < 0 by (8). Therefore, Qf (y

∗
f ) = Q∗f ,

meaning that y∗f is an optimal order-up-to level for the one-period problem when f

is known.

Now with f unknown, we might adopt the newsvendor level y∗ft−1
for some good

estimate ft−1 of f . The primary candidate for ft−1 is the empirical distribution f̂t−1.

For t = 2, 3, ..., denote the empirical distribution f̂t−1 ∈ F0 by (f̂t−1(d))d∈N, where

f̂t−1(d) =

∑t−1
s=1 1(ds = d)

t− 1
, ∀d ∈ N. (10)
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Each f̂t−1 has its corresponding cdf F̂t−1 ≡ Ff̂t−1
. When f is truly arbitrary from

F0, the closeness between f and f̂t−1 would be hard to guage. This is why we

confine the f ’s to F1(m̄), where (1) is satisfied. Still, there is no guarantee for

f̂t−1 ∈ F0 to be in F1(m̄); yet, we need the resulting order-up-to level to be close to

y∗f when f ∈ F1(m̄). For this purpose, we introduce an artificial bound. From (1),

we have for any f ∈ F1(m̄) and y ∈ N\{0} that

y · (1− Ff (y − 1)) ≤
y−1∑
d=0

(1− Ff (d)) ≤
+∞∑
d=0

(1− Ff (d)) ≤ m̄. (11)

Meanwhile, (9) dictates that y∗f = 0 or Ff (y
∗
f − 1) < β. So in combination with (11),

y∗f ≤
m̄

1− Ff (y∗f − 1)
<

m̄

1− β
. (12)

Our heuristic lets the firm order nothing in period 1; that is, y1 = ŷ1 = 0. For any

t = 2, 3, ... and d̄ ≡ d2m̄/(1− β)e which is safely above the bound m̄/(1− β) in (12),

it lets

ŷt = y∗
f̂t−1
∧ d̄ = F̂ −1

t−1 (β)∧ d̄ = min

{
d = 0, 1, ..., d̄− 1 :

t−1∑
s=1

1(ds ≤ d) ≥ β · (t− 1)

}
,

(13)

where the last formula is understood as d̄ when none of the d = 0, 1, ..., d̄− 1

satisfies the inequality. Furthermore, the heuristic advises the firm to order up to

yt = ŷt in case items are perishable; otherwise, in order that (3) is satisfied, it

advises the firm to order up to

yt = ŷt ∨ (yt−1 − dt−1). (14)

Due to the hard bound d̄ used in (13), information gleaned from any ds exceeding

the d̄ level can be disregarded. Within any f̂t−1 ≡ (f̂t−1(d))d∈N defined at (10), the
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portion that is useful to the ordering decision comes from its first d̄ components:

f̂t−1(0), f̂t−1(1), ..., f̂t−1(d̄− 1).
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4 Bounds for Pure Control

We show that the newsvendor-based policy y described through (13) and (14) will

incur a regret RT
f (y) that is slow-growing in the horizon length T . By (6) and (14),

RT
f (y) = RT1

f (y) +RT2
f (y), (15)

where

RT1
f (y) =

T∑
t=1

Ef [Qf (ŷt)]−Q∗f · T, (16)

and since y1 = ŷ1 = 0 by design and hence y2 = ŷ2,

RT2
f (y) =

T∑
t=3

Ef [Qf (yt)−Qf (ŷt)]. (17)

In view of (4) and (17), over-payment in holding might be more than offset by

under-payment in backlogging. So RT2
f (y) for an arbitrary policy y might even be

strictly negative. Still, it can be said that RT1
f (y) represents the price paid for the

regrettable fact that the policy y was not designed with the particular distribution

f in mind; meanwhile, RT2
f (y) captures the additional “cost” due to the

nonperishability of items.

Our derivation will rely on the convergence of the empirical distribution f̂t−1 ∈ F0

to the true distribution f ∈ F1(m̄). Let

δV (f, g, d) ≡ d−1
max
d′=0
|Ff (d′)− Fg(d′)|, (18)

i.e., the maximum difference between the cdf’s of f and g up to the level d− 1. We
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have

Pf
[
δV (f, f̂t−1, d) ≥ ε

]
≤ 2d · exp

(
−2ε2 · (t− 1)

)
. (19)

Indeed, let X1, ..., Xn be independent random variables where each Xi is bounded

by the interval [ai, bi]. Then for any ε ≥ 0, Theorem 2 of Hoeffding [23] stated that

P
[
|
∑n

i=1Xi

n
− E[

∑n
i=1Xi

n
]| ≥ ε

]
≤ 2 · exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
. (20)

If we make the dependence on D[1,t−1] of the entity f̂t−1 defined through (10) and

hence that of F̂t−1 explicit, we have [F̂t−1(D[1,t−1])](d
′) =

∑t−1
s=1 1(Ds ≤ d′)/(t− 1)

for every d′ ∈ N. Note that every 1(Ds ≤ d′) is in the interval [0, 1] and

Ef
[
[F̂t−1(D[1,t−1])](d

′)
]

= Ef

[∑t−1
s=1 1(Ds ≤ d′)

t− 1

]
=

∑t−1
s=1 Pf [Ds ≤ d′]

t− 1
= Ff (d

′).

(21)

Therefore, (20) will result in

Pf [|F̂t−1(d′)− Ff (d′)| ≥ ε] ≤ 2 · exp(−2ε2 · (t− 1)), ∀d′ ∈ N. (22)

The above will then lead to

Pf
[
d−1

max
d′=0
|F̂t−1(d′)− Ff (d′)| ≥ ε

]
≤

d−1∑
d′=0

Pf [|F̂t−1(d′)− F̂f (d′)| ≥ ε], (23)

which will yield (19). We also need y∗
f̂t−1

to not exceed d̄ too often. By (11),

Ff (d̄) ≥ 1− m̄

d̄+ 1
>

1 + β

2
. (24)
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In view of (9), this will lead to

Pf
[
y∗
f̂t−1
≥ d̄+ 1

]
= Pf

[
F̂t−1(d̄) < β

]
≤ Pf

[
Ff (d̄)− F̂t−1(d̄) >

1− β
2

]
, (25)

which, by (22), amounts to

Pf
[
y∗
f̂t−1
≥ d̄+ 1

]
≤ 2 · exp

(
−(1− β)2 · (t− 1)/2

)
. (26)

Without any prior knowledge on the f ∈ F1(m̄), we can manage to obtain a

T 1/2 · (lnT )1/2-sized bound on the RT1
f (y) defined in (16). Due to (13), the key is to

show that Qf (y
∗
f̂t−1
∧ d̄)−Qf (y

∗
f ) will converge to 0 quickly. This will be achievable

if we can show that Qf (y
∗
g ∧ d̄)−Qf (y

∗
f ) will be small when g and f are close by and

that y∗
f̂t−1

will not exceed d̄ too often. These are when (19), (26), and other

properties related to the inventory management problem such as the optimality of

y∗f to Qf (·), will be useful. The final form of the bound comes from the estimation

of certain summations through integrations.

Proposition 1 For any f ∈ F1(m̄) and g ∈ F0, as well as y
0 ≡ y∗g ∧ d̄,

Qf (y
0)−Qf (y

∗
f ) ≤ (h̄d̄+ b̄d̄) · [δV (f, g, d̄) + 1(y∗g ≥ d̄+ 1)].

Consequently, there are positive constants AProp1 and BProp1, such that

RT1
f (y) ≤ AProp1 +BProp1 · T 1/2 · (lnT )1/2.

All remaining proofs of this section have been relegated to Appendix 11. Next, we

obtain a bound in the same order of magnitude for RT2
f (y) as defined by (17). The
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process is much more involved than that for RT1
f (y). From (14), we see that

yt = ŷt ∨ (ŷt−1 − dt−1) ∨ (ŷt−2 − dt−2 − dt−1) ∨ · · · ∨ (ŷ1 − d1 − d2 − · · · − dt−1). (27)

There is a latest s so that

yt = ŷs − ds − ds+1 − · · · − dt−1, (28)

which occurs exactly when either s = t or s ≤ t− 1 and

ŷs−ds−ds+1−· · ·−dt−1−1 ≥ ŷt∨(ŷt−1−dt−1)∨· · ·∨(ŷs+1−ds+1−· · ·−dt−1), (29)

and regardless,

ŷs ≥ (ŷs−1 − ds−1) ∨ (ŷs−2 − ds−2 − ds−1) ∨ · · · ∨ (ŷ1 − d1 − d2 − · · · − ds−1). (30)

Inspired by the above, we define random variables I ≥ 1 and S1, S2, ..., SI , SI+1 in an

iterative fashion as follows. First, let S1 = 1. Now for some i = 1, 2, ..., suppose Si

has been settled. Then, let Si+1 be the first t after Si such that

ŷt ≥ ŷSi −DSi −DSi+1 − · · · −Dt−1, (31)

if such a t ≤ T can be identified. If not, mark the latest i as I and let SI+1 = T + 1.

For any t, let L(t) be the largest Si ≤ t. This L(t) can serve as the earlier s

satisfying (29) and (30) that corresponds to t. Note that L(t) along with

DL(t), DL(t)+1, ..., Dt−1 are independent of Dt. So by (17), as well as (28) to (31),

RT2
f (y) =

T∑
t=3

Ef
[
Qf (ŷL(t) −DL(t) − · · · −Dt−1)−Qf (ŷt)

]
. (32)
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Now we are in a position to derive the nonperishability-induced bound.

Proposition 2 There exist positive constants AProp2 and BProp2 such that

RT2
f (y) ≤ AProp2 +BProp2 · T 1/2 · (lnT )3/2.

This is one of our most demanding results. It is also a building block for the

analysis of the joint-control case involving nonperishable items. For its proof, we

exploit the observations made from (27) to (32), all the while understanding that

the actual order-up-to level yt will be ŷs −Ds − · · · −Dt−1 for some s ≤ t. We are

tasked to show that the term Qf (ŷs −Ds − · · · −Dt−1)−Qf (ŷt) can be bounded.

For γ = 1− f(0), we divide the proof into two cases, the one with γ ≥ (1− β)/2 and

the other with γ < (1− β)/2.

In the former large-γ case, demand will accumulate over time with a guaranteed

speed and ŷt ≥ ŷs −Ds − · · · −Dt−1 will occur ever more surely as t− s increases.

This is an effect similar to that achieved by Chen, Chao, and Ahn [14]’s assumption

on the strict positivity of average demand levels. Then, for the minority case where

t− s is small, by exploiting natures of the empirical distribution and the

newsvendor formula, we can come up with bounds related to

|Qf (ŷs −Ds − · · · −Dt−1)−Qf (ŷt)| · 1(ŷt ≤ ŷs −Ds − · · · −Dt−1 − 1). Especially

important is the observation that ŷt ≤ ŷs −Ds − · · · −Dt−1 − 1 only if

β ≤ F̂t−1(ŷt) ≤ F̂t−1(ŷs −Ds − · · · −Dt−1 − 1) < β +
t− s
s

. (33)

We will end up with a trade-off already encountered in the proof of Proposition 1.

This is the source of the T 1/2 · (lnT )3/2-sized growth rate. However, the constants

will grow as γ shrinks, because it takes ever longer for demand to accumulate.

Therefore, we seek a different approach for the latter small-γ case, when

γ < (1− β)/2 < 1− β. This is the time when y∗f = F̂ −1
f (β) = 0 because
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Ff (0) = f(0) = 1− γ > β. We utilize the fact that ŷs −Ds − · · · −Dt−1 ≥ 1 is the

bare minimum for ŷs −Ds − · · · −Dt−1 ≥ ŷt + 1. But the latter will be true only if

both ŷs ≥ 1 and for some d = 1, 2, ..., d̄, both ŷs ≥ d and Ds + · · ·+Dt−1 ≤ d− 1.

For all γ’s in the interval [0, (1− β)/2), we achieve a uniform bound in the order of

lnT , which is dominated by the one obtained in the first case.

Besides Hoeffding’s inequality, the proof also exploits Markov’s inequality in

bounding Pf [ŷs ≥ d], which, through (9) to (13), is the chance for the portion of

earlier demand levels at or exceeding d to be greater than 1− β. Our proof has not

been helped by the fact that the ŷt’s as defined through (13) can be time-varying.

Had it not been so, a simpler proof like that for Proposition 5 of Chen, Chao, and

Shi [15] might have been achievable.

Combining Propositions 1 and 2, we get a bound for the T -period regret RT
f (y).

Theorem 1 Let y be the newsvendor-based adaptive policy. Then, there are positive

constants AThem1 and BThem1 such that

sup
f∈F1(m̄)

RT
f (y) ≤ AThem1 +BThem1 · T 1/2 · (lnT )3/2.

The constants involved can depend on the problem’s parameters h̄, b̄, and m̄.

However, they are uniform across all f ’s in F1(m̄). For the repeated newsvendor

problem, Besbes and Muharremoglu [6] have already shown a T 1/2-sized lower bound

(Lemma 4, with ε replaced by 1/T 1/2 in its (C-8)). According to (14), the current

case merely adds the restriction yt(d[1,t−1]) ≥ yt−1(d[1,t−2])− dt−1 to the adaptive

policy considered. So the lower bound can be no better. In view of this, the above is

almost the best one can hope for. Huh and Rusmevichientong’s [24] SA-based policy

was shown to have a T 1/2-sized bound when items are continuous. Its modification

for the discrete-item case would achieve a similar bound in the repeated newsvendor

setting. Since we believe a bound involving nonperishable items would not be far off,
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our own Theorem 1 will not seem too surprising. This being said, our pure-control

study has set the stage for the more involved joint-control study to come. Especially

useful will be the nonperishability-related effect already captured by Proposition 2.
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5 Joint Inventory-price Control

We now combine pricing with inventory control. For some finite integer k̄ = 2, 3, ...,

suppose prices can be chosen from among the different levels p̄1, p̄2, ..., p̄k̄ that are

above the unit production cost c̄. Under any price p̄k, supose demand will be

randomly drawn from some fk ≡ (fk(d))d∈N in the collection F2(m̄, s̄) which, for

some s̄ ≥ 0, is a strict subset of F1(m̄). On top of the bound (1) on the mean, any

f ∈ F2(m̄, s̄) has the following additional bound:

Ef [D2] ≡
+∞∑
d=0

d2 · f(d) =
+∞∑
d=0

(2d+ 1) · (1− Ff (d)) ≤ m̄2 + s̄2. (34)

Basically, the standard deviation of any f ∈ F2(m̄, s̄) is bounded by s̄. The new

restriction is prompted by the joint control’s need on revenue-side considerations.

Let the firm immediately earn revenue p · d when it charges price p in any period in

which demand realization happens to be d. In the backlogging case, the total cost of

dealing with the demanded units is certainly captured by c̄ ·
∑T

t=1 dt +
∑T

t=1 q(yt, dt),

with q(y, d) defined at (2) posing as the total period-wise holding-backlogging cost.

This can also be true for a lost sales case slightly different from the setting studied

in Chen, Chao, and Shi [15]. Here, we assume that any demand unit not satisfied

within a period will cost the firm an extra l̄ − p = b̄+ c̄− p on top of the price not

earned. Basically, we are assuming a fixed total lost sales cost of l̄. In the other

setting, however, the extra cost on top of the lost revenue is assumed to be

independent of the price charged.

For either the backlogging or fixed-total lost sales case, the firm’s T -period profit is

T∑
t=1

pt · dt − c̄ ·
T∑
t=1

dt − h̄ ·
T∑
t=1

(yt − dt)+ − b̄ ·
T∑
t=1

(dt − yt)+. (35)
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That is, it equals
∑T

t=1 v(pt, yt, dt), where

v(p, y, d) ≡ (p− c̄) · d− q(y, d) = (p− c̄) · d− h̄ · (y − d)+ − b̄ · (d− y)+. (36)

Here, v(p, y, d) can be understood as the profit the firm can make in one single

period when it charges price p, orders y items, and faces a realized demand level of

d. As before, whether or not (35) reflects the profit for nonperishable items depends

on (i) whether the constant h̄ is treated merely as the holding cost rate or the

difference between the unit production cost c̄ and the unit salvage value s̄ and (ii)

whether or not (3) is enforced.

Now, let Vf (p, y) be the average of the profit v(p, y, d) defined at (36) that the firm

can make when it faces any demand distribution f . Note that

Vf (p, y) ≡ Ef [v(p, y,D)] = (p− c̄) · Ef [D]−Qf (y), (37)

where the average cost Qf (y) is defined at (4). Furthermore, for any price choice k,

let

V k
f ≡ max

y∈N
Vf (p̄

k, y) = Vf (p̄
k, y∗f ), (38)

i.e., the most that the firm can earn while charging price p̄k and facing demand

distribution f , where the optimal ordering level y∗f is given in (9). When each price

p̄k corresponds to some demand distribution fk, we can use the vector

f ≡ (fk)k=1,2,...,k̄ to reflect the current price-demand relationship. When given such a

vector f ∈ (F2(m̄, s̄))k̄, let

V ∗f ≡
k̄

max
k=1

V k
fk , (39)
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i.e., the maximum average profit that the firm can earn in one period. Suppose k∗f

solves (39); namely, V ∗f = V
k∗f

f
k∗
f
. Then, when facing a T -period horizon with a known

demand-distribution vector f , an optimal policy will be to repeatedly charge the

price p̄k
∗
f and order up to y∗

f
k∗
f
. Thus, the maximum profit over T periods will be

V ∗f · T = V
k∗f

f
k∗
f
· T = V

f
k∗
f

(
p̄k
∗
f , y∗

f
k∗
f

)
· T .

When f ∈ (F2(m̄, s̄))k̄ is unknown, we again seek a good adaptive policy. Such a

policy (k,y) ≡ (kt, yt)t=1,2,...,T satisfies that, for t = 1, 2, ..., T , each price choice

kt = 1, 2, ..., k̄ is a function of the historical demand vector d[1,t−1], and so is each

order-up-to level yt. Under it, the T -period total average profit will be

V T
f (k,y) ≡

T∑
t=1

Ef

[
Vfkt

(
p̄kt , yt

)]
. (40)

Note the average profit Vfkt (p̄
kt , yt) as defined in (37) can be used for each period t

because, given a price choice kt, the demand in that period is independent of earlier

demands which determine the pricing and ordering decisions kt and yt. Now define

the T -period regret RT
f (k,y) of using the adaptive policy (k,y) under a

demand-distribution vector f :

RT
f (k,y) ≡ V ∗f · T − V T

f (k,y). (41)

We aim to identify adaptive policies (k,y) that prevent RT
f (k,y) from growing too

fast in T for “most” or even all f ’s within (F2(m̄, s̄))k̄.

A good policy should test each price p̄k often enough to learn the corresponding

distribution fk well; yet, it should not dwell on the price for too long if V k
fk

is

strictly below V ∗f . As the fk’s are unknown, substitutes that are acquirable from

past experiences can be used in their stead. Since inventory-related errors already

amount to the order of t1/2, we can use a term roughly proportional to tµ at some

µ ∈ [1/2, 1) as the guaranteed number that any price p̄k will have been visited by
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time t. At the same time, we should limit the visits to p̄k when V k
fk

, as

approximated from its surrogate, does not seem promising. These inspire our policy.

It keeps track of the number of times price p̄k is charged in periods 1 through t:

N k
t ≡

t∑
s=1

1(ps = p̄k). (42)

The policy also designates the mode of each period t as either learning, with mt = 0

or doing, with mt = 1. It is certainly true that

N k
t = N k

t,0 +N k
t,1, (43)

with

N k
t,m ≡

t∑
s=1

1(ms = m and ps = p̄k), ∀m = 0, 1. (44)

As in pure inventory control, the policy uses empirical demand distributions

f̂kt−1 ≡ (f̂kt−1(d))d∈N as surrogates of the acutal distributions. The newsvendor

formula (13) effectively introduces a fixed cutoff point d̄ for the pure control—any

data collected about demand levels beyond d̄ are not used. Here for joint

inventory-price control, we will also use a cutoff point. However, due to the current

need to estimate the revenue side as well, the new cutoff point will be higher and

will also grow with the number of observations. In particular, when N k
t−1 ≥ 1, let

f̃kt−1 ∈ F0 stand for the empirical distribution of the demand under the price p̄k

observed over the past t− 1 periods; however, with a cutoff

d̃kt−1 ≡ (N k
t−1)1/4 ∨ d̄. (45)
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With d̃kt−1 given by (45), we let

f̃kt−1(d) = f̂kt−1(d) =

∑t−1
s=1 1(ps = p̄k and ds = d)

N k
t−1

, ∀d = 0, 1, ..., d̃kt−1 − 1,

(46)

f̃kt−1(d̃kt−1) = 1−
∑d̃kt−1−1

d=0 f̃kt−1(d), and f̃kt−1(d) = 0 for d = d̃kt−1 + 1, d̃kt−1 + 2, .... This

f̃kt−1 ≡ (f̃kt−1(d))d∈N is the surrogate demand distribution under the price p̄k. For any

price choice k = 1, 2, ...k̄, let Ṽ k
t−1 ≡ Vf̃kt−1

(
p̄k, y∗

f̃kt−1

∧ d̄
)

, which by (37) further

equals

Ef̃kt−1

[
v
(
p̄k, y∗

f̃kt−1
∧ d̄, D

)]
≡ (p̄k − c̄) · Ef̃kt−1

[D]−Qf̃kt−1

(
y∗
f̃kt−1
∧ d̄
)
. (47)

These will be the approximate price-k profits on which we base pricing decisions.

Their approximation powers can be seen by comparing (37) with (47). In the latter,

while the cutoff point d̃kt−1 for demand learning grows with N k
t−1 in the fashion

of (45), the bound d̄ for ordering is still fixed at d2m̄/(1− β)e.

Here comes a detailed description of our LwD(µ) (learning while doing) policy at a

parameter µ ∈ [1/2, 1). Initially, the policy lets N k
0,0 = N k

0,1 = N k
0 = 0 for

k = 1, 2, ..., k̄. Then, in every period t = 1, 2, ..., suppose κt−1(1) is a k that

minimizes the number N k
t−1. Subsequently, if N κt−1(1)

t−1 < (t/k̄)µ, the policy will

recommend the following:

0.1. set the mode of period t as learning, with mt = 0;

0.2. also, let the price choice kt = κt−1(1);

0.3. next, conduct bookkeeping in the fashion of

N kt
t,0 = N kt

t−1,0 + 1, N kt
t,1 = N kt

t−1,1, N kt
t = N kt

t−1 + 1. (48)

Otherwise, with N κt−1(1)
t−1 ≥ (t/k̄)µ which necessitates that N k

t−1 ≥ 1 at every

k = 1, 2, ..., k̄, the policy will recommend the following:
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1.1. set the mode of period t as doing, with mt = 1;

1.2. also, let the price choice kt be a maximizer of the profit estimate Ṽ k
t−1 as

defined at (47) from among k = 1, 2, ..., k̄;

1.3. next, conduct bookkeeping in the fashion of

N kt
t,0 = N kt

t−1,0, N kt
t,1 = N kt

t−1,1 + 1, N kt
t = N kt

t−1 + 1. (49)

Finally, for those k’s unequal to kt, we keep

N k
t,0 = N k

t−1,0, N k
t,1 = N k

t−1,1, N k
t = N k

t−1. (50)

After the price choice kt has been settled, the policy lets the firm charge the price

p̄kt . When t = 1, the policy has ordering facilitated through y1 = ŷ1 = 0. For

t = 2, 3, ..., it advises

ŷt = y∗
f̃kt−1
∧ d̄ = min

{
d = 0, 1, ..., d̄− 1 :

t−1∑
s=1

1(p̄s = p̄k and ds ≤ d) ≥ β · N k
t−1

}
,

(51)

when N k
t−1 ≥ 1 and ŷt = 0 when N k

t−1 = 0, which is again followed by (14). Just as

for (13), the last formula in (51) is understood as d̄ when none of the

d = 0, 1, ..., d̄− 1 satisfies the inequality. Because d̃kt−1 ≥ d̄, we have from (13) that

y∗
f̃kt−1
∧ d̄ = y∗

f̂kt−1
∧ d̄. (52)

In the policy, it is easy to see that the updatings (48) to (50) will ensure the

satisfaction of (42) to (44) by the N k
t,0’s, N k

t,1’s, N k
t ’s, and mt in every period

t = 1, 2, .... In that exploration is done at controlled paces and exploitation is

intended for the maximization of profit per period, the current LwD(µ) bears some

resemblance to the pricing policy proposed in Section 4 of Burnetas and Smith [13].
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However, our pacing using the (t/k̄)µ-function is different; it leads to Propositions 3

and 4 which are essential for our regret analysis. In addition, while we compare the

potential profits under observed empirical distributions Ṽ k
t−1 in the exploitation step

1.2, the earlier work compared the average profits truly experienced:

V̂ k
t−1 ≡

∑t−1
s=1 1(ps = p̄k) · v(p̄k, ys, ds)

N k
t−1

, (53)

where v(p, y, d) is defined at (36). Our choice is realizable in the current

discrete-item setting and being less affected by earlier errors, could encourage faster

convergence.

Because µ < 1, there exists the smallest j = 2, 3, ... such that j ≥ (j + 1/k̄)µ. Also,

it will happen that N k
nk̄

= n for n = 1, ..., j and k = 1, ..., k̄. Basically, there are

initially a j number of k̄-long cycles in each of which all prices are tried once in the

learning mode.
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6 Joint-control Bounds when Items are

Perishable

For implementation and analysis purposes, it is actually beneficial to keep track of

not only a minimizer of N k
t for t = 0, 1, ..., but also an entire sequence in the

ascending order. Thus, let κt ≡ (κt(k))k=1,2,...,k̄ be a permutation of the numbers

1, 2, ..., k̄ such that

N κt(1)
t ≤ N κt(2)

t ≤ · · · ≤ N κt(k̄)
t . (54)

Each κt(k) is the index of the price that has been visited the k-th fewest times by

the end of period t. The policy can maintain such a κt for t = 0, 1, .... Details are

left to Section 2 of Appendix 12. We now make two important observations about

LwD(µ).

Proposition 3 For any period t = 1, 2, ..., it is true that that LwD(µ) will ensure

N k
t,0 <

(
t

k̄

)µ
+ 1, ∀k = 1, 2, ..., k̄.

Proposition 4 For any period t = 1, 2, ..., it is true that LwD(µ) will ensure

N k
t−1 ≥

(
t

k̄

)µ
− 1, ∀k = 1, 2, ..., k̄.

Since (t/k̄)µ is not necessarily an integer, being strictly less than (t/k̄)µ + 1 is

different, albeit inconsequentially, from being less than (t/k̄)µ. All proofs of this

section have been relegated to Appendix 11. While Proposition 3 gives an upper

bound on the time spent on pure learning, Proposition 4 gives a guarantee on the

amount of time each price choice k will be visisted. We already have (19) as an

expression on how close f and the empirical distribution f̂t−1 based on it can be as t
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grows to +∞. For the current joint control, it can be convenient to have another

expression. For

δW (f, g, d) ≡ |
d−1∑
d′=0

[Ff (d
′)− Fg(d′)]|, (55)

the time-(t− 1) empirical distribution f̂t−1 defined through (10) would satisfy

Pf
[
δW (f, f̂t−1, d) ≥ ε

]
≤ 2 · exp

(
−2ε2 · (t− 1)/d2

)
. (56)

Indeed, note that
∑d−1

d′=0(1− Ff (d′)) = Ef [D ∧ d]; meanwhile,

∑d−1
d′=0(1− F̂t−1(d′)) =

∑d−1
d′=0

∑t−1
s=1 1(Ds ≥ d′ + 1)/(t− 1)

=
∑t−1

s=1

∑d
d′=1 1(Ds ≥ d′)/(t− 1) =

∑t−1
s=1(Ds ∧ d)/(t− 1),

(57)

where the first equality is due to (10) and F̂t−1(d′)’s definition as the cdf for f̂t−1.

Moreover, note the Ds ∧ d’s are independent random variables bounded in the range

of [0, d]; also, Ef [D ∧ d] = Ef [
∑t−1

s=1(Ds ∧ d)/(t− 1)]. Thus, by Hoeffding’s (20),

Pf
[
δW (f, f̂t−1, d) ≥ ε

]
= Pf

[
|
∑d−1

d′=0(1− Ff (d′))−
∑d−1

d′=0(1− F̂t−1(d′))| ≥ ε
]

= Pf
[
|Ef [

∑t−1
s=1(Ds ∧ d)/(t− 1)]−

∑t−1
s=1(Ds ∧ d)/(t− 1)| ≥ ε

]
,

(58)

and hence (56). Another useful bound is that, from (34), any y ∈ N would satisfy

(2y+1)·
+∞∑
d=y

(1−Ff (d)) ≤
+∞∑
d=y

(2d+1)·(1−Ff (d)) ≤
+∞∑
d=0

(2d+1)·(1−Ff (d)) ≤ m̄2 + s̄2.

(59)

Recall that Ṽ k
t−1 defined at (47) provides a time-(t− 1) estimate on the per-period

average profit of the price p̄k. Using (19), (26), (56), and (59), as well as

Propositions 1 and 4, we can show the probabilistic convergence of the estimate Ṽ k
t−1

to the true per-period profit V k
fk
≡ Vfk(p̄

k, y∗
fk

) as defined through (37) and (38).
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Proposition 5 There exist positive constants AProp5, BProp5, CProp5, DProp5, and

EProp5, such that for any k = 1, 2, ..., k̄ and ε > 0, the probability Pf
[
|Ṽ k
t−1 − V k

fk
| ≥ ε

]
will be below

AProp5 · exp
(
−BProp5 · ε2 · tµ/2

)
+ 2 · exp

(
−CProp5 · tµ

)
,

when t is greater than DProp5 +EProp5/ε4/µ. The upper bound can be further written

as AProp5 · exp
(
−BProp5 · (ε2 ∧ 1) · tµ/2

)
.

In the current joint control, all constants can be functions of the parameters k̄,

p̄1, p̄2, ..., p̄k̄, c̄, h̄, b̄, m̄, and s̄. For the regret of any joint-control policy (k,y)

defined at (41), note that

RT
f (k,y) = V ∗f · T − V T

f (k,y) =
∑T

t=1

(
V
k∗f

f
k∗
f
− Ef [Vfkt (p̄

kt , yt)]
)

=
∑T

t=1 Ef

[
V
k∗f

f
k∗
f
− V kt

fkt

]
+
∑T

t=1 Ef

[
V kt
fkt
− Vfkt (p̄kt , yt)

]
,

(60)

where the first equality is from (41), the second equality is from (38) to (40), as well

as the V k
fk

-maximizing nature of k∗f , and the third equality is just an identity. In the

second line, the first term can be attributed to sub-optimal prices, while the second

term can be attributed to sub-optimal order-up-to levels. Suppose furthermore that,

the policy (k,y) represents LwD(µ). Then, due to (37), we can rewrite (60) as

something similar to (15):

RT
f (k,y) = RT1

f (k,y) +RT2
f (k,y), (61)

where

RT1
f (k,y) =

T∑
t=1

Ef

[
V
k∗f

f
k∗
f
− V kt

fkt

]
+

T∑
t=1

Ef

[
V kt
fkt
− Vfkt

(
p̄kt , ŷt

)]
, (62)
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RT2
f (k,y) =

k̄∑
k=1

T∑
t=1

Ef

[
1(kt = k) · (Qfk(yt)−Qfk(ŷt))

]
, (63)

with all the yt’s and ŷt’s iteratively provided by (14) and (51). In (61), the first

term RT1
f (k,y) stands for the regret that an LwD(µ) policy will accrue if items are

allowed to perish at the end of each period; the second term RT2
f (k,y) captures the

additional regret due to inventory carry-overs. In the remainder of this section, we

focus on bounding the first term RT1
f (k,y) given in (62). To this end, define

δV k
f ≡ V ∗f − V k

fk = V
k∗f

f
k∗
f
− V k

fk ≥ 0. (64)

It measures the difference in average single-period profit between using the price

choice k and making the best choice k∗f . Due to the nature of the LwD(µ)

policy, (62) will become

RT1
f (k,y) = T1 + T2 + T3, (65)

with

T1 =
∑
k 6=k∗f

δV k
f · Ef [N k

T,0], (66)

T2 =
∑
k 6=k∗f

δV k
f ·

T∑
t=1

Pf

[
mt = 1 and max

k′ 6=k
Ṽ k′

t−1 ≤ Ṽ k
t−1

]
, (67)

where mt = 0 or 1 stands for learning or doing while δV k
f has been defined at (64),

and

T3 =
k̄∑
k=1

T∑
t=1

Ef

[
1(kt = k) ·

(
V k
fk − Vfk

(
p̄k, ŷt

))]
. (68)

The terms in (65) blame the perishable-item regret on three sources: time that is
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spent on learning, errors caused by inaccuracies of the Ṽ k
t−1’s in representing the

actual V k
fk

’s—the k that maximizes the former is not necessarily the V k
fk

-maximizing

k∗f , and the non-optimality of the ŷt’s under the actual demand distributions fk. It

is quite clear that Proposition 3 is tailor-made for bounding the first term (66). For

the second term (67), note mt = 1 is not always true in period t; also, for Ṽ k
t−1

defined in (47) to achieve the maximum among k = 1, 2, ..., k̄, it must happen that

Ṽ
k∗f
t−1 ≤ Ṽ k

t−1. So in view of (67), we can obtain

T2 ≤
∑
k 6=k∗f

δV k
f ·

T∑
t=1

Pf

[
Ṽ
k∗f
t−1 ≤ Ṽ k

t−1

]
. (69)

Going forward, the inequalities (56) and (59), as well as Proposition 5 will be useful.

Meanwhile, the bounding of the third term (68) can resort to Proposition 1.

The situation where one price clearly dominates all other prices by a guaranteed

margin is easier to tackle. Let us deal with this first. Now let

δV ∗f ≡ min
k 6=k∗f

δV k
f , (70)

i.e., the minimum gap in single-period profits between optimal and non-optimal

price choices. For any δ > 0, we use F k̄2 (m̄, s̄, δ) to denote the subset of f ’s in

(F2(m̄, s̄))k̄ that have one price leading other choices by at least a δ-margin:

F k̄2 (m̄, s̄, δ) ≡
{
f ∈ (F2(m̄, s̄))k̄ : k∗f is unique and δV ∗f ≥ δ

}
⊂ (F2(m̄, s̄))k̄. (71)

The performance of LwD(µ) can be well bounded when f is known to come from

F k̄2 (m̄, s̄, δ).

Proposition 6 Let (k,y) be the adaptive policy generated from following LwD(µ) for

some µ ∈ [1/2, 1). Then,

T1 ≤ A′′ +B′′ · T µ, (72)
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for some positive constants A′′ and B′′. Also,

T∑
t=1

Pf

[
Ṽ
k∗f
t−1 ≤ Ṽ k

t−1

]
≤ C ′′ +

D′′

(δV k
f )4/µ

, (73)

for some positive constants C ′′ and D′′; this then leads to

T2 ≤ E ′′ + (k̄ − 1) · F ′′

δ 4/µ−1
, (74)

for some positive constants E ′′ and F ′′. In addition,

T3 ≤ G′′ +H ′′ · T 1/2 · (lnT )1/2, (75)

for some positive constants G′′ and H ′′. Consequently, for any δ > 0, there are

constants AProp6δ, B
Prop6, and CProp6, such that

RT1
f (y,k) ≤ AProp6δ +BProp6 · T µ + CProp6 · T 1/2 · (lnT )1/2,

for any f ∈ F k̄2 (m̄, s̄, δ); however, limδ→0+ AProp6δ = +∞. Also, µ = 1/2 is the

choice with the tightest guarantee among the LwD(µ) policies. It will achieve an

O(T 1/2 · (lnT )1/2)-bound.

The task of bounding will be more demanding when f is truly free to roam in

(F2(m̄, s̄))k̄. Analysis relying on the inequalities stated in Proposition 6 will result

in the following.

Proposition 7 Let (k,y) be the adaptive policy generated from following LwD(µ) for

some µ ∈ [1/2, 1). Then, there are positive constants AProp7 and BProp7 such that

sup
f∈(F2(m̄,s̄))k̄

RT1
f (k,y) ≤ AProp7 +BProp7 · T µ∨(1−µ/4).
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The choice µ = 4/5 will achieve an O(T 4/5)-bound.

Comparing Propositions 6 and 7, one might say that those incidences f residing in

(F2(m̄, s̄))k̄ \F k̄2 (m̄, s̄, δ) for ever smaller δ’s are “trouble makers” that render the

optimal price illusory to catch. On the other hand, the nonperishability of items

seems to present an even more challenging problem for the current joint

inventory-price control. We will spend the next two sections on it. In Section 7, we

first suppose that the demand-distribution vector f is restricted to F k̄2 (m̄, s̄, δ) for

some δ > 0. Then in Section 8, we move on to the general case where f can come

from anywhere in (F2(m̄, s̄))k̄.
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7 Nonperishability with Restricted Demand

Patterns

This section is devoted to the bounding of RT2
f (k,y) as given in (63) for

f ∈ F k̄2 (m̄, s̄, δ) where δ > 0. Our plan is to show that the dominant price say p̄1 will

be used uninterruptedly for long sequences of periods; meanwhile, the sub-linear

growth of nonperishability-induced regrets in sequences’ lengths, as evidenced in

Proposition 2, will help to bound the T -period regret overall. Another idea involves

the use of virtual learning periods.

To this end, let rtf (x1) be almost the same nonperishability-induced pure-control

regret under demand distribution f as the RT2
f (y)-term defined at (17). But now,

we let it be from period 1 to a variable period t, and let the starting inventory level

be some arbitrary integer x1 ≤ d̄. Due to (51), the order-up-to levels used by a

LwD(µ) policy in the current joint-control case are also bounded by d̄, and hence

the resultant starting inventory levels under it are below d̄ as well. Proposition 2

can be understood as a bound for rTf (0). But a close scrutiny would reveal that a

bound of the same form works for rtf (x1) regardless of the valuation of x1. Actually,

the only changes needed in the proof would be to replace “t = 3” with “t = 1” and

“T − 2” with “T”. Hence, for the positive constants AProp2 and BProp2,

rtf (x1) ≤ AProp2 +BProp2 · t1/2 · (ln t)3/2, (76)

for any t ∈ N, f ∈ F1(m̄), and integer x1 ≤ d̄.

We also find it convenient to condition on when learning has happened. For any

t ∈ N, let M(t) ⊆ {0, 1}t be the set of all potential learning/doing-mode sequences

m ≡ (ms)s=1,2,...,t over the first t periods. Given any m ≡ (ms)s=1,2,...,t ∈M(t), we

can use Nt,0(m) =
∑t

s=1(1−ms) to denote the total number of learning periods
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under the mode sequence m of the first t periods. Due to Proposition 3,

Nt,0(m) ≤ k̄ ·
[(

t

k̄

)µ
+ 1

]
= k̄1−µ · tµ + k̄, ∀m ∈M(t). (77)

Let s1(m), s2(m), ..., sNt,0(m)(m) be the periods in which learning takes place.

Certainly,

si(m) = min

{
s = 1, ..., t :

s∑
τ=1

(1−mτ ) ≥ i

}
, ∀i = 1, ..,Nt,0(m), (78)

and hence

Nt,0(m) = max{i = 1, 2, ... : si(m) ≤ t}. (79)

For convenience, use M(t) for the random mode sequence that has actually

happened. Note that
∑

m∈M(t) Pf [M(t) = m] = 1. Without loss of generality,

designate the choice 1 as k∗f . Conditioned on M(t) = m, the chance for Ṽ 1
t−1 to be

greater than any other Ṽ k
t−1 plus a margin say δV ∗f /2 can be shown to be ever closer

to one as t increases. Recall that the Ṽ l
t−1’s defined at (47) are used in the learning

mode for the selection of the winning price, and δV ∗f defined at (70) registers the

profit gap between the best and second best prices.

Proposition 8 There exist positive constants AProp8, BProp8, CProp8, and DProp8

such that for any mode sequence m ∈M(t) realized for M(t), whenever t ≥ AProp8 +

BProp8/(δV ∗f )4/µ,

Pf

[
Ṽ 1
t−1 >

k̄
max
k=2

Ṽ k
t−1 +

δV ∗f
2
|M(t) = m

]
≥ 1−CProp8·exp

(
−DProp8 · (δV ∗f ∧ 1)2 · tµ/2

)
.

Proofs of this section can be found in Appendix 11. Furthermore, given that

Ṽ 1
t−1 > maxk̄k=2 Ṽ

k
t−1 + δV ∗f /2 has already occurred, we can show that the status of
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Ṽ 1
t+τ−1 ≥ Ṽ k

t+τ−1 will be maintainable for quite large τ ’s. We first present an

intermediate result.

Proposition 9 For any price choice k = 1, 2, ..., k̄ and periods t and t′,

|Ṽ k
t′−1 − Ṽ k

t−1| ≤ (h̄d̄+ b̄d̄) · δV (f̃kt−1, f̃
k
t′−1, d̄)

+(p̄k − c̄+ b̄) · (m̄2 + s̄2)/(2d̃kt−1 + 1) + (p̄k − c̄+ b̄) · δW (f̃kt−1, f̂
k
t′−1, d̃

k
t−1).

In addition, for any integer τ ≥ 0 and d = 0, 1, ..., d̃kt−1 − 1, whenever N k
t+τ−1 =

N k
t−1 + τ ,

|F̃ k
t−1(d)− F̃ k

t+τ−1(d)| ≤ τ

N 1
t−1

.

The cutoff level d̃kt−1 is defined at (45), the distribution f̃kt−1 is defined at (46), and

the distance δW is defined at (55). We can now reach the longevity of one dominant

price.

Proposition 10 There are positive constants AProp10, BProp10, and CProp10 such that

whenever t ≥ AProp10+BProp10/(δV ∗f )4/µ and Ṽ 1
t−1 > maxk̄k=2 Ṽ

k
t−1+δV ∗f /2, the LwD(µ)

policy will ensure that kt = kt+1 = · · · = kt+t′−1 = 1 for t′ as large as CProp10 · δV ∗f ·(
(t/k̄)µ − 1

)3/4
, as long as no learning is to emerge in the periods t, t+1, ..., t+ t′−1.

Without loss of generality, we can suppose that AProp8 ≤ AProp10 and

BProp8 ≤ BProp10. Let period t ≥ AProp10 +BProp10/(δV ∗f )4/µ. Proposition 8 predicts

that going forward, the future profit indicator of price choice k∗f = 1 will lead those

of the other prices by a comfortable margin with a probability that converges to 1

quickly as t grows; also, Proposition 10 predicts that once leading by a comfortable

margin, the price choice 1 will be maintained for a long time unless it is interrupted

by learning. So far we have upper bounds on learning frequencies in the forms of

Proposition 3 and (77). To utilize Propositions 8 and 10, it will help to have lower

bounds as well.
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To this end, we introduce virtual learning periods that will allow the frequencies of

learning, be it actual or virtual, to be regulated on both sides. Let Gµ,δ be a

constant strictly above (4 · k̄3µ/4)/(CProp10 · δ), where CProp10 is the constant in

Proposition 10 and δ is the margin that appeared in (71); for instance,

Gµ,δ =
4 · k̄3µ/4

CProp10 · δ
+ 1. (80)

Also, let Iµ,δ ≥ k̄ be large enough so that both d(1 + Iµ,δ)
1/µ/G

1/µ
µ,δ e ≥ 1 and

d(2 + Iµ,δ)
1/µ/G

1/µ
µ,δ e − d(1 + Iµ,δ)

1/µ/G
1/µ
µ,δ e ≥ 2. Note that both Gµ,δ and Iµ,δ will

grow to +∞ when δ approaches 0+. Now define s′i = d(i+ Iµ,δ)
1/µ/G

1/µ
µ,δ e for

i = 1, 2, ... as virtual learning periods. We have omitted expressing the dependence

of the s′i’s on (µ, δ) for simplicity. The size of Iµ,δ will guarantee that

1 ≤ s′1 < s′2 < · · · . Similarly to (79), let

N ′t,0 = max{i = 1, 2, ... : s′i ≤ t}. (81)

It stands for the number of virtual learning periods by time t. Let

L′(t) = {s′1, s′2, ..., s′N ′t,0} be the set of virtual learning periods up to t.

For m ∈M(t), let L(m, t) = {s1(m), s2(m), ..., sNt,0(m)(m)} be the set of actual

learning periods up to t. A virtual learning period can be either an actual learning

or actual doing period. Now consider the combined set L′′(m, t) = L(m, t) ∪ L′(t).

We can write L′′(m, t) as {s′′1(m), s′′2(m), ..., s′′N ′′t,0(m)(m)} with

1 ≤ s′′1(m) < s′′2(m) < · · · < s′′N ′′t,0(m)(m) ≤ t and each s′′i (m) being either some sj(m)

or some s′l or both. Certainly,

N ′′t,0(m) ≤ Nt,0(m) +N ′t,0, (82)

The frequencies at which the combined learning periods s′′i (m) arise can be



-42-

constrained in both directions.

Proposition 11 We have the following useful inequalities:

N ′′t,0(m) ≤ Hµ,δ · tµ, (83)

for some constant Hµ,δ which is above Gµ,δ and hence in satisfaction of limδ→0+ Hµ,δ =

+∞;

s′′i (m) ≥

(
1

H
1/µ

µ,δ

)
· i1/µ; (84)

s′′i (m) ≤

(
1

G
1/µ
µ,δ

)
· (i+ Iµ,δ)

1/µ + 1; (85)

s′′i+1(m)− s′′i (m) ≤
[(

4

Gµ,δ

)
· (s′′i (m))

1−µ
+ 1

]
∨

⌈
(1 + Iµ,δ)

1/µ

G
1/µ
µ,δ

⌉
. (86)

Note that (83) and (84) bound the combined learning frequencies from above,

while (85) and (86) bound them from below.

We now utilize (76) and Propositions 8 to 11 to bound RT2
f (k,y) when (k,y) comes

from the LwD(µ) policy and f ∈ F k̄2 (m̄, s̄, δ). For convenience, let

s′′N ′′T,0(m)+1(m) = T + 1. Now for any i = 1, 2, ...,N ′′T,0(m), let Ni(m) be the random

number of consecutive same-price doing sequences from period s′′i (m) + 1 to period

s′′i+1(m)− 1. We do allow Ni(m) = 0 when s′′i+1(m) = s′′i (m) + 1; otherwise, Ni(m) is

integer-valued between 1 and s′′i+1(m)− s′′i (m)− 1. Suppose, for instance, that

s′′i (m) = 10, s′′i+1(m) = 16, the price choice 1 is used in periods 11 and 12, the price

choice 2 is used in periods 13 and 14, and the price choice 1 is used again in period

15. Then, Ni(m) would be 3 because there have been three same-price consecutive

sequences in periods 11 to 15. Define Ui,1(m), ..., Ui,Ni(m)+1(m) so that

s′′i (m) + 1 = Ui,1(m) < Ui,2(m) < · · · < Ui,Ni(m)(m) < Ui,Ni(m)+1(m) = s′′i+1(m), (87)
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and for each j = 1, ..., Ni(m), periods Ui,j(m), Ui,j(m) + 1, ..., Ui,j+1(m)− 1 form the

(i, j)-segment, i.e., a consecutive same-price doing sequence. For the segment,

denote the price choice by Ki,j(m) ≡ kUi,j(m) = kUi,j(m)+1 = · · · = kUi,j+1(m)−1 and the

starting inventory level by Xi,j(m). For the previous example, Ui.1(m) = 11,

Ui,2(m) = 13, Ui,3(m) = 15, and Ui,4(m) = 16; also, Ki,1(m) = 1, Ki,2(m) = 2, and

Ki,3(m) = 1.

Now (63) can be rewritten as

RT2
f (k,y) = T1 + T2, (88)

where

T1 =
∑

m∈M(T )

Pf [M(T ) = m] · Ef

N ′′T,0(m)∑
i=1

r1

f
K
s′′
i

(m)

(
Xs′′i (m)

)
|M(T ) = m

 , (89)

T2 =
∑

m∈M(T )

Pf [M(T ) = m] · θ2(m), (90)

and

θ2(m) = Ef

N ′′T,0(m)∑
i=1

Ni(m)∑
j=1

r
Ui,j+1(m)−Ui,j(m)

fKi,j(m) (Xi.j(m)) |M(T ) = m

 . (91)

In (88), the nonperishability-induced regret is partitioned into two parts, the part

T1 that is accrued over combined-learning periods and the part T2 that is accrued

over doing periods that are not even virtual learning ones. In both (89) and (90), we

sum over all potential m ∈M(t) that could be realized for the random M(t); recall

that rtf (x1) is defined around (76). The way the term θ2(m) is expressed in (91)

keeps track of price-switching epochs.

A T µ-sized bound can be easily identified for T1 due to (83). From (91), we also
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have θ2(m) = η2(m) + ζ2(m), where

η2(m) =
∑N ′′T,0(m)

i=1 Pf

[
Ṽ 1
s′′i (m)+1 ≤ maxk̄k=2 Ṽ

k
s′′i (m)+1 + δV ∗f /2|M(T ) = m

]
×

×Ef [
∑Ni(m)

j=1 r
Ui,j+1(m)−Ui,j(m)

fKi,j(m) (Xi.j(m))|

|M(T ) = m and Ṽ 1
s′′i (m)+1 ≤ maxk̄k=2 Ṽ

k
s′′i (m)+1 + δV ∗f /2],

(92)

and

ζ2(m) =
∑N ′′T,0(m)

i=1 Pf

[
Ṽ 1
s′′i (m)+1 > maxk̄k=2 Ṽ

k
s′′i (m)+1 + δV ∗f /2|M(T ) = m

]
×

×Ef [
∑Ni(m)

j=1 r
Ui,j+1(m)−Ui,j(m)

fKi,j(m) (Xi.j(m))|

|M(T ) = m and Ṽ 1
s′′i (m)+1 > maxk̄k=2 Ṽ

k
s′′i (m)+1 + δV ∗f /2].

(93)

For every mode sequence m, the terms η2(m) and ξ2(m) capture two different types

of cases for the total regret over the i-th inter-learning interval lasting from

s′′i (m) + 1 to s′′i+1(m)− 1 for all the i’s equaling 1, 2, ...,N ′′T,0(m). They take

advantage of the interchangeability between expectation and summation. The first

term is dedicated to the cases where the price-1 profit estimates Ṽ 1
s′′i (m)+1 fail to lead

other estimates by the margin δV ∗f /2 in the starting periods s′′i (m) + 1, and the

second term ξ2(m) is devoted to the opposite cases. By Proposition 8, the

probabilities within (92) are small. This point will eventually lead to a constant

bound for η2(m). Due to Proposition 10 and some bounds in Proposition 11, the

number Ni(m) can be shown to be 1 under an m specified in (93). We can then

utilize (76) and other bounds in Proposition 11 to bound ζ2(m) by a T (1+µ)/2-sized

term.

Proposition 12 When µ ∈ [4/7, 1), it is true that T1 of (89) has a T µ-sized bound

and T2 of (90) has a T (1+µ)/2-sized bound. Overall, there are positive constants

AProp12
µ,δ, B

Prop12
µ,δ, and CProp12

µ,δ, such that for the LwD(µ) policy (k,y) and any
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f ∈ F k̄2 (m̄, s̄, δ),

RT2
f (k,y) ≤ AProp12

µ,δ +BProp12
µ,δ · T

µ + CProp12
µ,δ · T

(1+µ)/2 · (lnT )5/2;

however, limδ→0+ BProp12
µ,δ = +∞ while it can happen that limδ→0+ CProp12

µ,δ = 0.

Even though the third term on the right-hand side of Proposition 12’s signature

inequality dominates the second term, the limiting behaviors of the coefficients have

prompted us to keep the dominated term. They also give us some hope that a

bound somewhere between the orders of T µ and T (1+µ)/2 might be achievable for the

limiting case where δ = 0. In addition, the requirement that µ ≥ 4/7 is newly added

to ensure the analysis.

For the time being, by putting Propositions 6 and 12 together, we can obtain a

bound for the LwD(µ) policy that accounts for the nonperishability of items.

Theorem 2 Let (k,y) be the policy generated from following LwD(µ) for µ ∈ [4/7, 1).

Then, for any δ > 0, there are constants AThem2
µ,δ, B

Them2
µ,δ, and C

Them2
µ,δ, such that

sup
f∈F k̄2 (m̄,s̄,δ)

RT
f (y,k) ≤ AThem2

µ,δ +BThem2
µ,δ · T µ + CThem2

µ,δ · T (1+µ)/2 · (lnT )5/2.

Also, the choice µ = 4/7 will achieve an O(T 11/14 · (lnT )5/2)-bound.

The restriction on δ > 0 is the last barrier for us to overcome.
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8 Nonperishability with Arbitrary Demand

Patterns

We now come around to bound the general case involving both nonperishable items

and more arbitrary demand patterns. For the LwD(µ) policies, there is now no

guarantee that any single price choice would be kept long enough. While still

utilizing (76), our remedy is to consider stickier variants that allow longer reigns of

incumbent price choices.

Fix some ν > 2k̄µ/4 · (m̄2 + s̄2) ·maxk̄k=1(p̄k − c̄+ b̄) and ψ ∈ [µ/2, 3µ/4). Our sticky

policy associated with parameters µ, ν, and ψ will ensure that, once

Ṽ kt
t−1 ≥ maxk 6=kt Ṽ

k
t−1 for some kt = 1, 2, ..., k̄ has happened, kt will keep on being

chosen for periods t, t+ 1, ..., t+ t′ − 1 as long as there is no interruption from

learning and Ṽ kt
t+τ−1 ≥ maxk 6=kt Ṽ

k
t+τ−1 − ν/(t+ τ − 1)3µ/4−ψ for τ = 1, 2, ..., t′. Before

spelling out any other details about these policies, the following would already

verify that t′ can be quite large just because of this one common sticky property.

Proposition 13 Suppose t is large enough so that

((
t

k̄

)µ
− 1

)1/4

≥
[
2 · k̄

max
k=1

(p̄k − c̄+ b̄) · (m̄2 + s̄2) · t
3µ/4−ψ

ν

]
∨ d̄.

Then, for t′ as large as some CProp13 · ν ·
(
(t/k̄)µ − 1

)3/4
/t3µ/4−ψ where CProp13 is a

positive constant, any sticky policy would ensure that kt = kt+1 = · · · = kt+t′−1 for

any kt = 1, 2, ..., k̄ as long as Ṽ kt
t−1 ≥ maxk 6=kt Ṽ

k
t−1 and there is no learning in periods

t, t+ 1, ..., t+ t′ − 1.

Proofs of this section, except that for Theorem 4, have been put into Appendix 11.

We now supply more details about our stickier variant LwD′(µ, ν, ψ) of LwD(µ).
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First, a redefinition of virtual learning periods is needed. Let

Gµ,ν =
4 · k̄3µ/4

CProp13 · ν
+ 1, (94)

where CProp13 is a constant that fits Proposition 13. Also, let Iµ,ν,ψ ≥ k̄ be the

smallest integer such that both d(1 + Iµ,ν,ψ)1/(1−ψ)/G
1/(1−ψ)
µ,ν e ≥ 1 and

d(2 + Iµ,ν,ψ)1/(1−ψ)/G
1/(1−ψ)
µ,ν e − d(1 + Iµ,ν,ψ)1/(1−ψ)/G

1/(1−ψ)
µ,ν e ≥ 2. Now redefine

s′i = d(i+ Iµ,ν,ψ)1/(1−ψ)/G
1/(1−ψ)
µ,ν e for i = 1, 2, ... as virtual learning periods. We have

omitted expressing the dependence of the s′i’s on (µ, ν, ψ) for simplicity. Again,

define N ′t,0 through (81), as the number of virtual learning episodes by time t. The

policy LwD′(µ, ν, ψ) favors incumbent price choices in most of the doing periods. In

particular, this new stickier policy shares the same learning periods as LwD(µ).

Also, it behaves the same as the original one except in doing periods t satisfying

neither mt−1 = 0 nor t− 1 = s′i for some i. (95)

For such a period, the only difference lies in replacing the original step 1.2 with the

following:

1.2′. let price choice k∗ be a maximizer of Ṽ k
t−1 from k = 1, 2, ..., k̄. If

Ṽ k∗

t−1 ≥ Ṽ
kt−1

t−1 +
ν

t3µ/4−ψ
,

let kt = k∗; otherwise, let kt = kt−1.

Certainly, we will have kt = kt−1 when the incumbent choice kt−1 happens to be k∗.

Otherwise, now there is a ν/t3µ/4−ψ-sized threshold for the profit estimate to cross

before the price choice switches from the incumbent kt−1 to the new k∗. Note that

LwD(µ) could somehow be understood as LwD′(µ, 0, ψ′) for any ψ′ ∈ [µ/2, 3µ/4),

though Proposition 13 would not necessarily apply in view of its requirement on ν’s
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range. On the flip side, Propositions 3 and 4 are hinged on the schedule of learning

epochs and not affected by the change in some other periods. So they will remain

applicable to the new policy LwD′(µ, ν, ψ).

Let L′(t) = {s′1, s′2, ..., s′N ′t,0} be the set of virtual learning periods up to t. For

m ∈M(t), consider the combined set L′′(m, t) = L(m, t) ∪ L′(t), where L(m, t) is

still the set of actual learning periods as specified by LwD(µ) under m. We can

write L′′(m, t) as {s′′1(m), s′′2(m), ..., s′′N ′′t,0(m)(m)} with

1 ≤ s′′1(m) < s′′2(m) < · · · < s′′N ′′t,0(m)(m) ≤ t and each s′′i (m) being either some sj(m)

or some s′l or both. We still have (82) for the new combined learning periods. Now

the condition (95) for step 1.2′ to be executed in a doing period t is that it not be

some s′′i (m) + 1 under the sequence m.

For RT1
f (k,y) defined at (62), the decomposition at (65) can be kept intact without

any change on T1 of (66) or T3 of (68). On the other hand, we can replace (67) with

T2 =
∑
k 6=k∗f

T∑
t=1

δV k
f · Pf

[
mt = 1 and max

k′ 6=k
Ṽ k′

t−1 ≤ Ṽ k
t−1 +

ν

t3µ/4−ψ

]
. (96)

The extra term ν/t3µ/4−ψ comes from the fact that sometimes a price choice can

have its estimate worse off by as much as this amount and yet still keep its place.

Without keeping track of the incumbent prices, the above is an overestimate. But

that is allowed for an upper bound. Indeed, in the same vein of (69),

T2 ≤
∑
k 6=k∗f

T∑
t=1

δV k
f · Pf

[
Ṽ
k∗f
t−1 ≤ Ṽ k

t−1 +
ν

t3µ/4−ψ

]
. (97)

We have the following adaptation of Proposition 7.

Proposition 14 Let (k,y) be the policy generated from LwD′(µ, ν, ψ). Then, there
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are positive constants AProp14
µ,ν,ψ and BProp14

µ,ν,ψ such that

sup
f∈(F2(m̄,s̄))k̄

RT1
f (k,y) ≤ AProp14

µ,ν,ψ +BProp14
µ,ν,ψ · T

µ∨(1−3µ/4+ψ).

Any choice with µ = 4/5 and ψ = 2/5 will achieve an O(T 4/5)-bound.

Propositions 7 and 14 both have T 4/5-sized bounds. So the LwD′(µ, ν, ψ) policies do

not give much away in terms of performances when items are perishable.

We now bound RT2(k,y) defined at (63), the task for which the new policies are

designed. As in Proposition 11, the frequencies at which the new combined learning

periods s′′i (m) arise are also constrained in both directions.

Proposition 15 We have the following useful inequalities:

N ′′t,0(m) ≤ Hµ,ν · tµ∨(1−ψ), (98)

for some constant Hµ,ν which is above Gµ,ν;

s′′i (m) ≤

(
1

G
1/(1−ψ)

µ,ν

)
· (i+ Iµ,ν,ψ)1/(1−ψ) + 1; (99)

s′′i+1(m)− s′′i (m) ≤
[(

4

Gµ,ν

)
· (s′′i (m))

ψ
+ 1

]
∨

⌈
(1 + Iµ,ν,ψ)1/(1−ψ)

G
1/(1−ψ)
µ,ν

⌉
. (100)

In Proposition 15, (98), (99), and (100) correspond, respectively, to (83), (85),

and (86) in Proposition 11. However, the counterpart to the earlier (84) is not

needed presently. We can still decompose RT2(k,y) in the fashion of (88) to (91).

Then, by leveraging the fact that Ṽ kt
t−1 ≥ maxk 6=kt Ṽ

k
t−1 for a doing period t which

happens to be some s′′i (m) + 1, as well as Propositions 13 and 15 in similar manners

in which we used Propositions 8 to 11 in the proof of Proposition 12, we can come

to the following counterpart to the latter result.
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Proposition 16 There are positive constants AProp16
µ,ν,ψ, B

Prop16
µ,ν,ψ, and C

Prop16
µ,ν,ψ,

such that the LwD′(µ, ν, ψ) policy (k,y) would satisfy, for any f ∈ (F2(m̄, s̄))k̄,

RT2
f (k,y) ≤ AProp16

µ,ν,ψ+BProp16
µ,ν,ψ·T

µ∨(1−ψ)+CProp16
µ,ν,ψ·T

(2−ψ)·(µ∨(1−ψ))/(2−2ψ)·(lnT )5/2.

When combining Propositions 14 and 16, we obtain a complete bound.

Theorem 3 Let (k,y) be the policy generated from following LwD′(µ, ν, ψ). Then,

there are constants AThem3
µ,ν,ψ, B

Them3
µ,ν,ψ, and C

Them3
µ,ν,ψ, such that supf∈(F2(m̄,s̄))k̄ R

T
f (y,k)

is below

AThem3
µ,ν,ψ+BThem3

µ,ν,ψ ·T µ∨(1−ψ)∨(1−3µ/4+ψ) +CThem3
µ,ν,ψ ·T (2−ψ)·(µ∨(1−ψ))/(2−2ψ) ·(lnT )5/2.

Also, the choice µ = 2/3 and ψ = 1/3 will achieve an O(T 5/6 · (lnT )5/2)-bound.

Our analyses in Sections 6 through 8 have now culminated at Theorem 3’s T 5/6-sized

upper bound for the T -period regret in joint inventory-price control. It provides a

performance guarantee to the LwD′(µ, ν, ψ) policies, stickier variants of the LwD(µ)

ones that use profit estimates Ṽ k
t−1 for pricing decisions and newsvendor-induced

levels y∗
f̃kt−1

∧ d̄ for ordering decisions. The need to handle items’ nonperishability

seems to us to have contributed the most to the difficulty of the entire undertaking.

This is more so in joint control than pure control, because now the underlying

demand pattern switches from time to time. We have designed the stickier variants

just to ensure that prices can keep being adopted over sufficiently long sequences of

periods for the pure-control nonperishability-related bound (76) to be useful.

A slightly less thornier issue is the unboundedness of the demand support. Even

though F2(m̄, s̄) has restricted on the mean and standard deviation of the potential

random demand under any price p̄k, and has thus induced the bound m̄/(1− β), as

shown in (12), on the newsvendor ordering level, it has nevertheless allowed the
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actual demand level to have all natural-number realizations. Major effort has been

spent on the task to accommodate this justifiable generality. On the flip side,

though, some of our intermediate bounds could be improved if the demand level

were known beforehand to never exceed a level, say still d̄. Let

F∞(d̄) ≡

{
f ≡ (f(d))d∈N ∈ F0 :

d̄∑
d=0

f(d) = 1

}
. (101)

Clearly, F∞(d̄) ⊂ F2(d̄, d̄) ⊂ F1(d̄) ⊂ F0. When the demand-distribution vector

f ≡ (fk)k=1,2,...,k̄ is known to come from some (F∞(d̄))k̄ rather than merely some

(F2(m̄, s̄))k̄, we would be able to improve the perishability-only bounds in both

Proposition 7 for LwD(µ) and Proposition 14 for LwD′(µ, ν, ψ) from T 4/5- to

T 2/3-sized, and the combined bound in Theorem 2 when one price leads the pack by

a clear margin from T 11/14- to T 3/4-sized. Interestingly, Theorem 3’s ultimate

T 5/6-sized bound has so far resisted improvements. Due to space limitations, we

refrain from going into the details about the aforementioned performance

improvements made at the expense of model generalities.

Finally, we touch lightly on the issue of lower bound, that about how fast the regret

must grow when using even the best available adaptive policy. Without loss of

generality, we suppose that p̄1 < p̄2 < · · · < p̄k̄. Our best effort so far has achieved a

result of Ω(T 1/2) when, either because b̄+ c̄− p̄k̄ ≤ 0 or because b̄+ c̄− p̄k̄ > 0 but d̄

is large enough,

(p̄k̄ − c̄) · (d̄− 1) > (b̄+ c̄− p̄k̄) · (1− β). (102)

Theorem 4 Under (102), there is a constant AThem4 such that for any adaptive

policy (k,y),

sup
f∈(F∞(d̄))k̄

RT
f (k,y) ≥ AThem4 · T 1/2.
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Also, this is true even if we relax the requirement (3).

This bound has not taken advantage of “more adverse” demand distributions, say

those from F2(d̄, d̄) \ F∞(d̄); moreover, it is no tighter than what Besbes and

Muharremoglu [6] could achieve for pure inventory control. Nevertheless, in the

hope that our current derivation can be improved upon to reach a tighter bound, we

have presented details in Section 3 of Appendix 12. There remains a sizable gap

between Theorem 3’s T 5/6-sized upper bound and the current T 1/2-sized lower

bound. Besides working to tighten Theorem 4, future research might also look

beyond the techniques involving (76) for clues to improve Proposition 16 and then

Theorem 3 concerning nonperishable items.

Theorems 2 and 3, as well as to a lesser degree, Propositions 6, 7, and 14 for the

perishable-item special case, are complementary to the upper bounds achieved by

Chen, Chao, and Ahn [14]. Dealing with continuous demands that enjoy specific

relations with prices, the earlier work obtained T 1/2-sized bounds. We, on the other

hand, have treated the discrete-item case where the finest tuning of ordering

decisions are impossible. In addition, we have allowed the unknown

demand-distribution vector f to come from virtually anywhere in (F2(m̄, s̄))k̄ in case

of the T 11/14-sized bounds and literally everywhere in case of the T 5/6-sized bounds.

This helps us to largely shrug off the perils of model mis-specification.

The current bounds involving discrete items are also compatible with known results.

When items are perishable, ours could indeed be understood as a multi-armed

bandit problem with each bandit (k, y) for k = 1, 2, ..., k̄ and y = 0, 1, ..., d̄ earning,

on average, Vfk(p̄
k, y) as defined in (37). For this classical problem, certain upper

confidence bound (UCB) policies were shown by Auer, Cesa-Bianchi, and Fischer [2]

to enjoy (lnT )-sized bounds. However, these bounds have coefficients that grow to

+∞ as the gaps δVfk(p̄
k, y) ≡ V ∗f − Vfk(p̄k, y) between non-optimal choices (k, y)

and the optimal ones tend to 0+. In the simulation study to be presented in
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Section 9, we will test UCB-inspired policies along with others including our own,

while these gaps have no predetermined bounds and items might be nonperishable.
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9 Simulation Study

We use a simulation study to gain more insights on regret growth trends. For pure

inventory control, we test both our newsvendor-based policy defined through (13)

and (14) and the SA-based one proposed by Huh and Rusmevichientong [24]. Both

policies are known to have regret growth rates of the t1/2-size. Our policy appears to

have an edge in terms of smaller coefficients. This is most likely attributable to its

more thorough utilization of the historical demand information. Since all we need

here is confirmation on the dependability of the newsvendor-based ordering, we omit

presenting details of this simulation study here.

In the study concerning joint inventory-price control, we therefore use the

newsvendor-based policy as a default choice when it comes to ordering. Our main

purpose here is to determine where the growth rate of the optimal regret stands

against the backdrops of the T 5/6-sized upper bound of Theorem 3 and the

T 1/2-sized lower bound of Theorem 4. In addition, we want to identify competitive

policies. Recall that each LwD(µ) could be understood as an LwD′(µ, 0, ψ) one.

Besides the general LwD′(µ, ν, ψ) policies, we also test random policies which we

call rLwD(υ, ω), where υ and ω are positive constants. In every period t, a

particular rLwD(υ, ω) adopts the price choice k that maximizes

Ṽ k
t−1 + υ · |Z|

(N k
t−1 + 1)ω

, (103)

where Ṽ k
t−1 as defined through (47) is an estimate about the price p̄k’s profitability

based primarily on the empirical distribution under it, Z is sampled from the

standard Normal distribution. This policy also strives to balance between

exploration and exploitation, albeit in a fashion different than that employed by any

LwD′(µ, ν, ψ).

We also test policies that are inspired by the UCB ones for the multi-armed bandit
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problem; see Auer, Cesa-Bianchi, and Fischer [2]. Depending on whether each

(k, y)-combination or each k is viewed as a bandit, we consider two versions. Let

N k,y
t−1 be the number of times that price choice k and intended order-up-to level y

have been chosen by the end of period t− 1. Also, let V̂ k,y
t be the average profit

actually experienced under the (k, y)-choice:

V̂ k,y
t−1 =

∑t−1
s=1 1(ps = p̄k and ŷs = y) · v(ps, ys, ds)

N k,y
t−1

, (104)

where each ys may be greater than the intended ŷs due to items’ nonperishability,

each ds is the period-s realized demand, and v(ps, ys, ds) is defined at (36). Our

UCB1 policy just chooses in each period t the (k, y)-pair that maximizes

V̂ k,y
t−1 +

√
2 · ln(t− 1)

N k,y
t−1

. (105)

Our UCB2 policy treats each price as an arm, all the while using the

newsvendor-based policy for ordering. Recall that N k
t−1 is the number of times the

price index k has been chosen by time t− 1 and V̂ k
t−1 as defined through (53) is the

average profit actually experienced under the choice. In every period t, the UCB2

policy will choice k that maximizes

V̂ k
t−1 +

√
2 · ln(t− 1)

N k
t−1

. (106)

Although our theoretical study has allowed demand-distribution vectors

f ≡ (fk)k=1,2,...,k̄ to come from some (F2(m̄, s̄))k̄, the current simulation study has to

restrict the vectors to some (F∞(d̄))k̄ due to computers’ limitations. To compare

policies, we randomly generate some M number of demand-distribution vectors f in

(F∞(d̄))k̄ uniformly, and at each selected vector f , randomly generate some L

number of demand-vector sample paths. Let kat be the price choice and yat the
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order-up-to level in period t under a given policy a for a particular demand-vector

sample path. Due to (37), (40), and (41), we use the following as an approximation

to the policy’s regret on demand-distribution vector f by time t:

ra,tf = V ∗f · t− AVG

{
t∑

s=1

[
(p̄k

a
s − c̄) · ds − h̄ · (yas − ds)+ − b̄ · (ds − yas )+

]}
, (107)

where V ∗f is defined at (39) and AVG stands for an average over the L

demand-vector paths.

For any α ∈ (0, 1), we let Ra,t
α be the conditional value at risk at the α-quantile of

the M regrets ra,tf . When M = 1, 000, Ra,t
95% would stand for the average of the top

50 highest ra,tf values, where each is the regret of policy a by time t, out of the 1,000

randomly generated f ’s. Also, Ra,t
0% would be the average of all the ra,tf ’s of f ’s

sampled from all over (F∞(d̄))k̄. When M and L both approach +∞ and α

approaches 100%, Ra,t
α will approach the worst regret of policy a over

demand-distribution vectors in (F∞(d̄))k̄. Since L is finite, each ra,tf is merely an

approximation of the true regret at f . Moreover, the finiteness of M means that the

f in (F∞(d̄))k̄ generating the worst regret will most likely be missed. Nevertheless,

the Ra,t
α values with α close to 100% will yield insights about regrets.

At this stage, we fix M = 1, 000 and L = 200. Using the Ra,t
α=99% values for

t = 1, 2, ..., T = 5, 000 under various combinations of the other parameters d̄, k̄,

(p̄k)k=1,2,...,k̄, c̄, h̄, and b̄, we examine various policies a where each a represents

either some LwD′(µ, ν, ψ), some rLwD(υ, ω), UCB1, or UCB2. For the

LwD′(µ, ν, ψ) policies, we have tried µ = 1/2, 2/3, 4/5, ν = 0, 10, 100, and ψ = µ/2,

3µ/4; also, for the rLwD(υ, ω) policies, we have tried υ =100, 500, 1000, 2000 and

ω =1/2, 2/3, 1, and 3/2. Although having offered help to our theoretical

development in Section 8, we find the general LwD′(µ, ν, ψ) policies with ν > 0 do

not provide substantial improvements over the corresponding LwD(µ) ones. Hence,
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we can just as well revert back to the simpler LwD(µ) policies. Besides, the

performance of LwD(4/5) is not particularly impressive. Among the rLwD(υ, ω)

policies, on the other hand, we find the one with (υ, ω) = (2000, 1) to be

particularly competitive. On the other hand, UCB2 fares far worse than UCB1.

From now on, let us narrow down to four policies: LwD(1/2), LwD(2/3),

rLwD(2000, 1), and UCB1. For either of the first two policies, we have also tested

the variants inspired by Burnetas and Smith [13], in which the Ṽ k
t−1 defined at (47)

is replaced in step 1.2 by V̂ k
t−1 defined at (53). However, the changes do not much

improve performances.

To focus our study, we fix d̄ = 20, k̄ = 2, p̄1 = 80, p̄2 = 100, c̄ = 50, h̄ = 1, and b̄ = 2

for the time being. At various t points up to T = 20, 000, we compare the Ra,t
α=99%

values among the different policies. With M = 1, 000, each Ra,t
99% captures the

average of the 10 worst regrets ra,tf as computed in (107). An α even closer to 100%

would certainly produce results that reflect the true worst regret more faithfully.

However, we observe that average of a sufficient number of demand-distribution

vectors is needed for our regret trend to be smooth. In addition, constraints on

computational resources have prevented us from pursuing even larger M values.

Thus, we settle with M = 1, 000 and α = 99%.

Now in Figures 1 to 3, we present results on Ra,t
99% for the four policies at various

time points with, respectively, the horizontal axis being scaled at t5/6, t1/2, and t2/3.

In Figure 1 where t5/6 serves as the horizontal axis, the growth rates of regrets of all

policies are downward-sloping, and in Figure 2 where t1/2 serves as the same, those

rates are all upward-sloping. Meanwhile, in Figure 3 where t2/3 serves as the

horizontal axis, all regrets grow almost linearly. These suggest that the growth rate

of the regret of any “reasonable policy” is in the vicinity of T 2/3. So far, after much

effort, we have not found a policy whose regret growth rate can be significantly

slower than the T 2/3-pace. In the long run, LwD(1/2) performs the best among the
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Figure 1: Ra,t
99% Values when Horizontal Scale is t5/6

policies that we can analyze. It is slightly outperformed by UCB1 which is in turn

outperformed by rLwD(2000, 1).

For the most promising policy rLwD(2000, 1), we choose M = 10, 000 and continue

to simulate the regrets R2,t
99.8% (20 out of 10,000 is 0.2%) up to t = 20, 000. We then

conduct a linear regression analysis in the form of

ln
(
R2,t

99.8%

)
= a+ b · ln t, (108)

for t = 2, 001 to 20,000. With the R-square at 99.6% and the p-value practically

zero, the least-squares estimate for the slope b turns out to be 0.662, which is very

close to 2/3. Hence, neither Theorem 3 nor Theorem 4 seems to have had the final
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Figure 2: Ra,t
99% Values when Horizontal Scale is t1/2

say yet. Since being worse than 99.8% of distributions is not the worst yet, the

regret growth of rLwD(2000, 1) could well be T 2/3-sized. On the other hand, there

still might be more competitive policies. We tend to conjecture that the signature

regret growth rate for joint inventory-price control is somewhere between T 3/5- and

T 2/3-sized; this sets it apart from pure inventory control, whose signature rate is

T 1/2-sized.

Finally, we focus on the case where T is in the hundreds rather than tens of

thousands. Instead of better understandings of regret growth trends, the objective

here is more about assessments of practical performances. After all, policies are

most likely given tens or at the best hundreds of periods in real applications.

At T = 200, and still M = 2, 000, L = 200, and d̄ = 20, we can afford to go beyond



-60-

Figure 3: Ra,t
99% Values when Horizontal Scale is t2/3

k̄ ≥ 2. Let there be k̄ = 5 price choices. We now generate the p̄k’s uniformly from

[50, 100], c̄ uniformly from [30,mink̄k=1 p̄
k], h̄ uniformly from [0, 2], and b̄ uniformly

from [0, 5]. For C = 100 cases of the these randomly generated instances

((p̄k)k=1,2,...,k̄, c̄, h̄, b̄), we compute for each policy a the value Ra,T=200
α=99% . When the

cases are ordered according to the performances of LwD(1/2) on the horizontal axis,

we obtain Figure 4.

For the current case involving 5 price choices and a terminal time T that is set at the

more practical value of 200, Figure 4 tells us that the analyzable policy LwD(1/2)

actually stands out as the best-performing one. On the other hand, UCB1 is the

least impressive here even though its large-T performance was outstanding. With

each (k, y)-pair treated as an arm, it has 105 arms to try in barely 200 periods.
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Figure 4: Ra,200
99% Values at Various Instances

There is no way that the policy can learn every arm well enough in such a short

period of time. In contrast, the three other policies appear to have learned faster.
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10 Concluding Remarks

We have worked on both pure inventory and joint inventory-price controls involving

discrete nonperishable items and unknown demand. For the former, we contribute

in the case where demand is completely unknown. For the latter joint control case,

we have proposed LwD(µ) policies and their variants that build on the

newsvendor-based ordering policy and a balance between learning/exploration and

doing/exploitation. The nonperishability issue here is dealt with using a bound

developed for pure control. Our emphasis on the case with completely thorough

ambiguity in demand can help users to avoid model mis-specification. This,

however, may have come at the expense of potentially less desirable bounds.

Certainly, more await to be done. The newsvendor-based policy requires higher

observability of historical demand levels than other policies, say the SA-based one.

This has compromised its suitability for situations involving demand censoring. We

speculate that the latter’s advent to our setting might propel the use of the

Kaplan-Meier estimators over empirical demand distributions. When pricing is

involved, the gap between upper and lower bounds need to be narrowed.

Furthermore, the complete removal of any relation between price and demand might

have overshot. For instance, it is utterly reasonable that the demand distribution,

though otherwise unknown, be decreasing in price in the stochastic sense. It will

thus be interesting to know how such knowledge will help to tighten the regret

bounds.
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11 Appendices

Proofs of Section 4

Proof of Proposition 1: For any demand distributions f ∈ F1(m̄) and g ∈ F0, as

well as order-up-to level y0 ≡ y∗g ∧ d̄, note that Qf (y
0)−Qf (y

∗
f ) is equal to

[Qf (y
0)−Qg(y

0)]+[Qg(y
0)−Qg(y

∗
g)]+[Qg(y

∗
g)−Qg(y

∗
f )]+[Qg(y

∗
f )−Qf (y

∗
f )]. (11.109)

The first and fourth terms can be made small when f and g are close, the second

term can be made small when y0 and y∗g are close, and the third term is always

negative due to y∗g ’s optimality when the underlying demand distribution is g. Let

us investigate how small the first and fourth terms can be. For the first and fourth

terms, we have from (4) that

[Qf (y
0)−Qg(y

0)] + [Qg(y
∗
f )−Qf (y

∗
f )]

= h̄ ·
∑y0−1

d=0 [Ff (d)− Fg(d)] + b̄ ·
∑+∞

d=y0 [Fg(d)− Ff (d)]

+h̄ ·
∑y∗f−1

d=0 [Fg(d)− Ff (d)] + b̄ ·
∑+∞

d=y∗f
[Ff (d)− Fg(d)]

≤ (h̄+ b̄) ·
∑y0∨y∗f−1

d=y0∧y∗f
|Ff (d)− Fg(d)| ≤ (h̄d̄+ b̄d̄) ·maxd̄−1

d=0 |Ff (d)− Fg(d)|,
(11.110)

where the second inequality is due to the fact that both y0 and y∗f are in the range

of 0, 1, ..., d̄. The sum will be small when f and g are close enough and d̄ is small

enough so that maxd̄−1
d=0 |Ff (d)− Fg(d)| is small. The second term will be 0 when d̄ is

large enough so that y∗g ≤ d̄. Regardless of whether maxd̄−1
d=0 |Ff (d)− Fg(d)| is small,

we still have

Qf (y
0)−Qf (y

∗
f ) = h̄ ·

y0−1∑
d=0

Ff (d)+ b̄ ·
+∞∑
d=y0

(1−Ff (d))− h̄ ·
y∗f−1∑
d=0

Ff (d)− b̄ ·
+∞∑
d=y∗f

(1−Ff (d)),

(11.111)
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which is below h̄d̄+ b̄d̄ for a similar reason pertinent to the range of both y0 and y∗f .

Summarizing (11.110) and (11.111), we obtain the first conclusion of the proposition.

Consider RT1
f (y) defined at (16). By (13), we have

RT1
f (y) =

T∑
t=1

{
Ef [Qf (y

∗
f̂t−1
∧ d̄)]−Qf (y

∗
f )
}
. (11.112)

Let εt be a sequence of positive constants. We then see that RT1
f (y) is below

∑T
t=1{Pf [maxd̄−1

d=0 |Ff (d)− F̂t−1(d)| < εt and y∗
f̂t−1
≤ d̄]×

×Ef [Qf (y
∗
f̂t−1
∧ d̄)−Qf (y

∗
f )|maxd̄−1

d=0 |Ff (d)− F̂t−1(d)| < εt and y∗
f̂t−1
≤ d̄]

+Pf [maxd̄−1
d=0 |Ff (d)− F̂t−1(d)| ≥ εt or y∗

f̂t−1
≥ d̄+ 1]×

×Ef [Qf (y
∗
f̂t−1
∧ d̄)−Qf (y

∗
f )|maxd̄−1

d=0 |Ff (d)− F̂t−1(d)| ≥ εt or y∗
f̂t−1
≥ d̄+ 1]}

≤ (h̄d̄+ b̄d̄) ·
∑T

t=1[εt + 2d̄ · exp(−2ε 2
t · (t− 1)) + 2 · exp(−(1− β)2 · (t− 1)/2)],

(11.113)

where the inequality comes from (19), (26), (11.110), and (11.111). Suppose ε1 = 0

and εt = (ln t/(t− 1))1/2 for t = 2, 3, ..., T . Then, after plugging this into (11.113),

we get

RT1
f (y) ≤ (h̄d̄+ b̄d̄) · [T1 + (2d̄+ 2) · T2 + 2T3], (11.114)

where

T1 =
T−1∑
t=1

(ln(t+ 1))1/2

t1/2
, T2 =

T∑
t=1

1

t2
, and T3 =

T∑
t=1

exp(−(1−β)2 · (t−1)/2).

(11.115)

Clearly,

T1 ≤ (lnT )1/2 ·
∫ T

0

1

t1/2
· dt = 2T 1/2 · (lnT )1/2, (11.116)

while T2 and T3 are both bounded by constants.
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Proof of Proposition 2: Let γ = 1− f(0). We divide the proof into two cases,

with respectively, γ ∈ [(1− β)/2, 1] and γ ∈ [0, (1− β)/2).

Consider the first case with γ ∈ [(1− β)/2, 1]. For any positive integer τT , we show

how Pf [Si+1 − Si − 1 ≥ τT + 1] can be bounded. By the definition of the Si’s

around (31),

ŷSi+1−1 ≤ ŷSi −DSi −DSi+1 − · · · −DSi+1−2 − 1. (11.117)

Since both ŷSi and ŷSi+1−1 are between 0 and d̄, the above necessitates that

DSi +DSi+1 + · · ·+DSi+1−2 ≤ d̄− 1. (11.118)

This is only possible when there are at least Si+1 − Si − d̄ zeros among the

Si+1 − Si − 1 demand levels DSi , DSi+1, ..., DSi+1−2. When

Si+1 − Si − 1 = τ + 1 ≥ d̄− 1, the latter event’s chance under f with f(0) = 1− γ

is, by the binomial formula,

τ+1∑
k=τ−d̄+2

(τ + 1)!

k! · (τ + 1− k)!
· (1− γ)k · γτ+1−k < (τ + 1)d̄ · (1− γ)τ−d̄+2 · (1 + γ + · · ·+ γd̄),

(11.119)

which is less than (τ + 1)d̄ · (1− γ)τ−d̄+1. There exists θγ = d̄− 1, d̄, ... such that

when τ ≥ θγ, the aforementioned term will decrease with τ . For τT ≥ θγ, we can

thus deduce that

Pf [Si+1 − Si − 1 ≥ τT + 1] < (τT + 1)d̄ · (1− γ)τT−d̄+1. (11.120)

The summands in (32) are bounded. Indeed, suppose y, z = 0, 1, ..., d̄ are such that
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y ≤ z. Then, following (4),

Qf (z)−Qf (y) = (h̄+ b̄) ·
z−1∑
d=y

Ff (d)− b̄ · (z − y) < h̄d̄. (11.121)

So by (29) and (11.120),

RT2
f (y) ≤

∑T
t=3

∑t−1
s=2∨(t−τT ) Ef [| Qf (ŷs −Ds − · · · −Dt−1)−Qf (ŷt) | ×

×1(ŷt ≤ ŷs −Ds − · · · −Dt−1 − 1)]

+h̄d̄ · (T − 2) · (τT + 1)d̄ · (1− γ)τT−d̄+1.

(11.122)

The above right-hand side can be written as

τT∑
τ=1

RT2,τ
f (y) + h̄d̄ · (T − 2) · (τT + 1) d̄ · (1− γ)τT−d̄+1, (11.123)

where for τ = 1, 2, ..., τT ,

RT2,τ
f (y) =

∑T
t=τ+2 Ef [| Qf (ŷt−τ −Dt−τ − · · · −Dt−1)−Qf (ŷt) | ×

×1(ŷt ≤ ŷt−τ −Dt−τ − · · · −Dt−1 − 1)].
(11.124)

By (9) and (13), we have ŷt ≤ ŷt−τ −Dt−τ − · · · −Dt−1 − 1 only if

F̂t−τ−1(ŷt−τ − 1) < β ≤ F̂t−1(ŷt) ≤ F̂t−1(ŷt−τ −Dt−τ − · · · −Dt−1 − 1). (11.125)

Also, due to the nature of the empirical distribution as illustrated in (10),

F̂t−1(ŷt−τ−Dt−τ−· · ·−Dt−1−1) ≤ F̂t−1(ŷt−τ−1) ≤ F̂t−τ−1(ŷt−τ−1)+
τ

t− τ
. (11.126)

Therefore, ŷt ≤ ŷt−τ −Dt−τ − · · · −Dt−1 − 1 only if

β ≤ F̂t−1(ŷt) ≤ F̂t−1(ŷt−τ −Dt−τ −· · ·−Dt−1−1) < β+
τ

t− τ
≤ β+

τT
t− τ

, (11.127)
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an inequality alluded to earlier in (33). On the other hand, (4) has that, for y ≤ z,

Qf (z)−Qf (y) = h̄ ·
z−1∑
d=y

Ff (d)− b̄ ·
z−1∑
d=y

(1−Ff (d)) = (h̄+ b̄) ·
z−1∑
d=y

(Ff (d)−β). (11.128)

Now by (11.124), (11.127), and (11.128),

RT2,τ
f (y) ≤ (h̄+ b̄) ·

T∑
t=τ+2

Ef [Zt], (11.129)

where

Zt =
∑ŷt−τ−Dt−τ−···−Dt−1−1

d=ŷt
| Ff (d)− β | ×

×1(β ≤ F̂t−1(ŷt) ≤ F̂t−1(ŷt−τ −Dt−τ − · · · −Dt−1 − 1) < β + τT/(t− τ)).

(11.130)

Due partially to the limited ranges of ŷt and ŷt−τ ,

Zt ≤ d̄; (11.131)

in addition,

Zt ≤
∑ŷt−τ−Dt−τ−···−Dt−1−1

d=ŷt
(| Ff (d)− F̂t−1(d) | + | F̂t−1(d)− β |)×

×1(β ≤ F̂t−1(ŷt) ≤ F̂t−1(ŷt−τ −Dt−τ − · · · −Dt−1 − 1) < β + τT/(t− τ))

≤ d̄ · [δV (f, f̂t−1, d̄) + τT/(t− τ)],

(11.132)

where δV (f, f̂t−1, d̄) still stands for maxd̄−1
d=0 |F̂t−1(d)− Ff (d)|. By (11.129), for a

sequence εt,

RT2,τ
f (y) ≤ (h̄+ b̄) ·

∑T
t=τ+2 Ef [Zt|δV (f, f̂t−1, d̄) ≤ εt] · Pf [δV (f, f̂t−1, d̄) ≤ εt]

+(h̄+ b̄) ·
∑T

t=τ+2 Ef [Zt|δV (f, f̂t−1, d̄) > εt] · Pf [δV (f, f̂t−1, d̄) > εt],

(11.133)
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which by (19), (11.131), and (11.132), is less than

(h̄d̄+ b̄d̄) ·
T∑
t=1

[
εt + 2d̄ · exp

(
−2ε2

t · (t− 1)
)

+
τT
t

]
. (11.134)

The situation we face is very similar to (11.113) except for the τT/t-term. So as in

Proposition 1, there are constants C ′′, D′′, and E ′′ such that

RT2,τ
f (y) ≤ C ′′ +D′′ · T 1/2 · (lnT )1/2 + E ′′τT · lnT. (11.135)

The E ′′-term stems from the τT/t-term in (11.134). In view of (11.122)

and (11.123), RT2
f (y) is below

C ′′τT+D′′τT ·T 1/2·(lnT )1/2+E ′′τ 2
T ·lnT+h̄d̄·(T−2)·(τT+1) d̄·(1−γ)τT−d̄+1, (11.136)

when τT is above the θγ defined right after (11.119). Otherwise, we have almost the

same inequality, albeit with the last term replaced by h̄d̄ · (T − 2). Choose τT

appropriately, say τT = blnT/ ln(1/(1− γ))c. Then, as long as T is large enough,

say greater than some T 0
γ , we can ensure that τT is above θγ. Very importantly, just

because γ ∈ (0, 1], we can make sure that the last term, regardless whether τT is

below or above θγ, is always bounded from above by a positive constant F ′′γ . Thus,

RT2
f (y) is less than

C ′′ · lnT
ln(1/(1− γ))

+
D′′ · T 1/2 · (lnT )3/2

ln(1/(1− γ))
+E ′′·

(
1

ln(1− γ)

)2

·(lnT )3+F ′′γ ·(lnT )d̄. (11.137)

However, as long as T is large enough, the T 1/2 · (lnT )3/2-sized term will dominate

all other terms. A constant term can certainly cover the case when T is not that
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large. Therefore, positive constants C ′′γ and D′′γ exist for the intended inequality

RT2
f (y) ≤ C ′′γ +D′′γ · T 1/2 · (lnT )3/2. (11.138)

Since (C ′′(1−β)/2, D
′′
(1−β)/2) can be used as (C ′′γ , D

′′
γ) for cases with γ ≥ (1− β)/2 > 0,

we can have the intended bound, namely,

RT2
f (y) ≤ AProp2 +BProp2 · T 1/2 · (lnT )3/2, (11.139)

as long as γ stays above (1− β)/2.

We now turn to the second case with γ ∈ [0, (1− β)/2). From (32), RT2
f (y) is equal

to

∑T
t=3

∑t−1
s=2 Ef [Qf (ŷs −Ds − · · · −Dt−1)−Qf (ŷt)|L(t) = s] · Pf [L(t) = s]

≤ h̄d̄ ·
∑T

t=3

∑t−1
s=2 Ef [1(ŷs −Ds − · · · −Dt−1 ≥ 1)|L(t) = s] · Pf [L(t) = s]

= h̄d̄ ·
∑T

t=3

∑t−1
s=2 Pf [ŷs −Ds − · · · −Dt−1 ≥ 1 and L(t) = s]

≤ h̄d̄ ·
∑T

t=3

∑t−1
s=2 Pf [ŷs −Ds − · · · −Dt−1 ≥ 1],

(11.140)

where the first inequality is due partially to

0 ≤ ŷt ≤ ŷL(t) −DL(t) − · · · −Dt−1 − 1 ≤ d̄; see (29); also note that

Qf (z)−Qf (y) ≤ h̄d̄ · 1(z ≥ y + 1) for 0 ≤ y ≤ z ≤ d̄; see (11.121). But

Pf [ŷs−Ds−· · ·−Dt−1 ≥ 1] ≤ Pf [ŷs ≥ 1]∧
d̄∑
d=1

Pf [ŷs ≥ d] ·Pf [Ds+ · · ·+Dt−1 ≤ d−1].

(11.141)

Meanwhile, by (13) and the current range of γ,

Pf [ŷs ≥ 1] = Pf
[
F̂s−1(0) < β

]
≤ Pf

[
δV (f, f̂s−1, d̄) > 1− β − γ

]
, (11.142)
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which, due to (19), is below 2d̄ · exp(−2 · (1− β − γ)2 · (s− 1)). Thus,

Pf [ŷs ≥ 1] ≤ 2d̄ · exp
(
−2 · (1− β − γ)2 · (s− 1)

)
. (11.143)

Now we deal with the second term in (11.141). For d = 1, 2, ..., d̄, let

γd = 1− Ff (d− 1). Our setup is such that

0 ≤ γd̄ ≤ γd̄−1 ≤ · · · ≤ γ1 = γ < (1− β)/2. Again due to (13),

Pf [ŷs ≥ d] = Pf
[
F̂s−1(d− 1) < β

]
= Pf

[
s−1∑
τ=1

1(Dτ ≥ d) > (1− β) · (s− 1)

]
.

(11.144)

Note that 1(D1 ≥ d),1(D2 ≥ d), ...,1(Ds−1 ≥ d) are independent Bernoulli random

variables with mean γd, and hence
∑s−1

τ=1 1(Dτ ≥ d) is a Binomial random variable

with mean γd · (s− 1). So by Markov’s inequality, the rightmost term in (11.144) is

below

Ef [
∑s−1

τ=1 1(Dτ ≥ d)]

(1− β) · (s− 1)
=

γd
1− β

. (11.145)

Therefore,

Pf [ŷs ≥ d] ≤ γd
1− β

. (11.146)

Also, it is easy to see that

Pf [Ds + · · ·+Dt−1 ≤ d− 1] ≤ (1− γd)t−s. (11.147)

Combining (11.141), (11.143), (11.146), and (11.147), we can conclude that the term
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∑t−1
s=2 Pf [ŷs −Ds − · · · −Dt−1 ≥ 1] is below

t−1∑
s=2

{[2d̄ · exp(−2 · (1− β − γ)2 · (s− 1))] ∧ [
d̄∑
d=1

(γd/(1− β)) · (1− γd)t−s]}. (11.148)

Consider a(γ, τ) ≡ 2d̄ · exp(−2 · (1− β − γ)2 · (τ − 1)). There exists a t0 ≥ 1 such

that for any t ≥ t0,

a

(
1− β

2
, t

)
= 2d̄ · exp

(
−(1− β)2

2
· (t− 1)

)
< exp

(
−(1− β)2 · t

4

)
. (11.149)

Note also that a(γ, s) < a((1− β)/2, s) for γ ∈ (0, (1− β)/2). Next, consider

b(γ′, τ) ≡ γ′ · (1− γ′)τ . Note that

∂b(γ′, τ)

∂γ′
= (1− γ′)τ−1 · [1− (τ + 1) · γ′], (11.150)

and

∂2b(γ′, τ)

∂(γ′)2
= −τ · (1− γ′)τ−2 · [2− (τ + 1) · γ′]. (11.151)

So the b-maximizing γ′ is γ∗τ = 1/(τ + 1). Plugging back, we have

b(γ∗τ , τ) =
1

τ + 1
· (1− 1

τ + 1
)τ =

1

τ + 1
· 1

(1 + 1/τ)τ
. (11.152)

Note that limτ→+∞(1 + 1/τ)τ = e, the natural logarithmic base which is above 2. So

when τ is large enough, say greater than some t1, the above will be below 1/(2τ + 2).

For T ≥ 2 · (t0 + t1)2, the upper bound in (11.148) is further bounded by a constant

plus

∑T
t=2·(t0+t1)2+1[

∑bt1/2/2c
s=2

∑d̄
d=1(γd/(1− β)) · (1− γd)t−s

+
∑t−1

s=bt1/2/2c+1 2d̄ · exp(−2 · (1− β − γ)2 · (s− 1)],
(11.153)
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which, according to the above from (11.149) to (11.152), is below

T∑
t=2·(t0+t1)2+1

 d̄

1− β
·
bt1/2/2c∑
s=2

1

2t− 2s+ 2
+

t−1∑
s=bt1/2/2c+1

exp

(
−(1− β)2 · s

4

) .
(11.154)

But this is smaller than

T∑
t=2·(t0+t1)2+1

[
d̄

2 · (1− β) · t1/2
+

4

(1− β)2
· exp

(
−(1− β)2 · t1/2

8

)]
, (11.155)

which has a constant-plus-T 1/2 bound. So, there are positive constants E ′′ and F ′′

such that

RT2
f (y) ≤ E ′′ + F ′′ · T 1/2, (11.156)

for any γ ∈ (0, (1− β)/2). Now between (11.139) and (11.156), only the former has

to be used when T is made large enough. We therefore have the intended bound.

Proofs of Section 6

Proof of Proposition 3: Fix some k = 1, 2, ..., k̄ and t = 1, 2, .... If

N k
s,0 = N k

s−1,0 + 1 never occurred for s = 1, 2, ..., t, we can conclude that N k
t,0 = 0

from the policy’s initialization. Otherwise, let s = 1, 2, ..., t be the latest time for the

update (48) to occur. Note this must have coincided with ms = 0 and

ks = κs−1(1) = k. To have triggered this in the policy, it must follow that

N k
s−1 < (s/k̄)µ. Thus,

N k
t,0 = N k

s,0 = N k
s−1,0 + 1 ≤ N k

s−1 + 1 <
( s
k̄

)µ
+ 1 ≤

(
t

k̄

)µ
+ 1. (11.157)

For either case, we see that the desired inequality is valid.
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Proof of Proposition 4: We first use induction to prove that, for t = 0, 1, ...,

N κt(k)
t ≥

(
t+ k

k̄

)µ
− 1, ∀k = 1, 2, ..., k̄. (11.158)

For t = 0, we have

N κ0(k)
0 = N k

0 = 0 =

(
k̄

k̄

)µ
− 1 ≥

(
k

k̄

)µ
− 1, ∀k = 1, 2, ..., k̄, (11.159)

which is exactly (11.158) at t = 0. Now suppose (11.158) is true for t− 1. That is,

N κt−1(k)
t−1 ≥

(
t− 1 + k

k̄

)µ
− 1, ∀k = 1, 2, ..., k̄. (11.160)

To show that (11.158) is true, we discuss whether N κt−1(1)
t−1 < (t/k̄)µ and hence

mt = 0 and lt = 1, or N κt−1(1)
t−1 ≥ (t/k̄)µ and hence mt = 1. For the former case, we

have

N κt−1(1)
t = N κt−1(1)

t−1 + 1 ≥
(
t

k̄

)µ
≥
(
t+ k̄

k̄

)µ
− 1, (11.161)

where the equality comes from (48), the first inequality comes from (11.160) when

applied k = 1, and the second inequality is due to the fact that xµ + 1 ≥ (x+ 1)µ.

Now,

N κt(k)
t = N κt−1(k+1)

t = N κt−1(k+1)
t−1 ≥

(
t+ k

k̄

)µ
− 1, ∀k = 1, 2, ..., jt − 1,

(11.162)

where the first equality is due to (12.8), the second equality is due to (50), and the

inequality is due to (11.160); for k = jt,

N κt(jt)
t = N κt−1(1)

t ≥
(
t+ k̄

k̄

)µ
− 1 ≥

(
t+ jt
k̄

)µ
− 1, (11.163)
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where the equality is due to the assignment that κt(jt) = κt−1(lt) = κt−1(1) as

carried out between (12.8) and (12.9), the first ineqaulity comes from (11.161), and

the second inequality comes from the fact that jt ≤ k̄; also, for k = jt + 1, jt + 2, ..., k̄,

N κt(k)
t = N κt−1(k)

t ≥ N κt−1(1)
t ≥

(
t+ k̄

k̄

)µ
− 1 ≥

(
t+ k

k̄

)µ
− 1, (11.164)

where the equality comes from (12.9), the first inequality is due to the definition of

jt with respect to lt = 1, the second inequality comes from (11.161), and the third

inequality is due to the fact that k ≤ k̄. For the latter case, for any k = 1, 2, ..., k̄,

N k
t ≥ N k

t−1 ≥ N
κt−1(1)
t−1 ≥

(
t

k̄

)µ
≥
(
t+ k̄

k̄

)µ
− 1 ≥

(
t+ k

k̄

)µ
− 1, (11.165)

where the first inequality comes from (48) to (50), the second inequality comes

from (54) at t− 1, the third inequality stems from the definition of this case with

mt = 1, the fourth and last inequalities come from reasons already stated. When

combining (11.162) to (11.165), we can derive that κt satisfies (11.158).

Combining (54) and (11.158) at t− 1, we have

N k
t−1 ≥ N

κt−1(1)
t−1 ≥

(
t

k̄

)µ
− 1, ∀k = 1, 2, ..., k̄, (11.166)

which is the desired inequality.

Proof of Proposition 5: By (37) and (47),

|Ṽ k
t−1 − V k

fk | ≤ (p̄k − c̄) · |Ef̃kt−1
[D]−Efk [D]|+ |Qf̃kt−1

(y∗
f̃kt−1
∧ d̄)−Qfk(y

∗
fk)|. (11.167)

For convenience, let us use F̃ k
t−1 for Ff̃kt−1

. By f̃kt−1’s definition around (46),

F̃ k
t−1(d) = 1 for d = d̃kt−1, d̃

k
t−1 + 1, .... Thus, for the first term on the right-hand side
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of (11.167),

|Ef̃kt−1
[D]− Efk [D]| = |

∑+∞
d=0(1− F̃ k

t−1(d))−
∑+∞

d=0(1− Ffk(d))|

≤ |
∑d̃kt−1−1

d=0 [Ffk(d)− F̃ k
t−1(d)]|+

∑+∞
d=d̃kt−1

(1− Ffk(d))

≤ δW (fk, f̃kt−1, d̃
k
t−1) + (m̄2 + s̄2)/(2d̃kt−1 + 1),

(11.168)

where the equality is from the definition at (1), the first inequality is from the

observation just made on F̃ k
t−1, and the second inequality is by both δW ’s definition

at (55) and the inequality at (59). As for the second term on the right-hand side

of (11.167), note it is below

|Qf̃kt−1
(y∗
f̃kt−1
∧ d̄)−Qfk(y

∗
f̃kt−1
∧ d̄)|+ |Qfk(y

∗
f̃kt−1
∧ d̄)−Qfk(y

∗
fk)|. (11.169)

For the first term of (11.169), note that for y ≡ y∗
f̃kt−1

∧ d̄ = 0, 1, ..., d̄,

|Qf̃kt−1
(y)−Qfk(y)| = |h̄ ·

∑y−1
d=0(F̃ k

t−1(d)− Ffk(d)) + b̄ ·
∑+∞

d=y(Ffk(d)− F̃ k
t−1(d))|

= |(h̄+ b̄) ·
∑y−1

d=0(F̃ k
t−1(d)− Ffk(d)) + b̄ ·

∑+∞
d=0(Ffk(d)− F̃ k

t−1(d))|

≤ (h̄d̄+ b̄d̄) ·maxd̄−1
d=0 |F̃ k

t−1(d)− Ffk(d)|+ b̄ · |
∑d̃kt−1−1

d=0 (Ffk(d)− F̃ k
t−1(d))|

+b̄ ·
∑+∞

d=d̃kt−1
(1− Ffk(d))

≤ (h̄d̄+ b̄d̄) · δV (fk, f̂kt−1, d̄) + b̄ · δW (fk, f̂kt−1, d̃
k
t−1) + b̄ · (m̄2 + s̄2)/(2d̃kt−1 + 1),

(11.170)

where the first equality is due to (4), the second equality is through a regrouping,

the first inequality relies on the limited range of y and the earlier observation about

F̃ k
t−1, and the second inequality depends on the fact that f̃kt−1 is the same as f̂kt−1 for

d levels up to d̃kt−1 − 1, as well as the definitions of δV and δW , along with (59). For

the second term of (11.169), first note (52). Thus, we can use Proposition 1 to

derive that

|Qfk(y
∗
f̃kt−1
∧ d̄)−Qfk(y

∗
fk)| ≤ (h̄d̄+ b̄d̄) ·

[
δV (fk, f̂kt−1, d̄) + 1(y∗

f̂kt−1
≥ d̄+ 1)

]
. (11.171)
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Combining (11.167) to (11.171), we obtain

|Ṽ k
t−1 − V k

fk
| ≤ (p̄k − c̄+ b̄) · δW (fk, f̂kt−1, d̃

k
t−1) + (2h̄d̄+ 2b̄d̄) · δV (fk, f̂kt−1, d̄)

+(p̄k − c̄+ b̄) · (m̄2 + s̄2)/(2d̃kt−1 + 1) + (h̄d̄+ b̄d̄) · 1
(
y∗
f̂kt−1

≥ d̄+ 1
)
.

(11.172)

Thus, when (p̄k − c̄+ b̄) · (m̄2 + s̄2)/(2d̃kt−1 + 1) ≤ ε/3, we will have |Ṽ k
t−1 − V k

fk
| ≥ ε

only if i) (p̄k − c̄+ b̄) · δW (fk, f̂kt−1, d̃
k
t−1) ≥ ε/3, ii) (2h̄d̄+ 2b̄d̄) · δV (fk, f̂kt−1, d̄) ≥ ε/3,

or iii) y∗
f̂kt−1

≥ d̄+ 1. Therefore, when d̃kt−1 ≥ (3p̄k − 3c̄+ 3b̄) · (m̄2 + s̄2)/(2ε),

Pf
[
|Ṽ k
t−1 − V k

fk
| ≥ ε

]
≤ Pf

[
δW (fk, f̂kt−1, d̃

k
t−1) ≥ ε/(3p̄k − 3c̄+ 3b̄)

]
+Pf

[
δV (fk, f̂kt−1, d̄) ≥ ε/(6h̄d̄+ 6b̄d̄)

]
+ Pf

[
y∗
f̂kt−1

≥ d̄+ 1
]
.

(11.173)

By (19), (26), and (56), this will result in

Pf
[
|Ṽ k
t−1 − V k

fk
| ≥ ε

]
≤ 2 · exp

(
−A′′ · ε2 · N k

t−1/(d̃
k
t−1)2

)
+2d̄ · exp

(
−B′′ · ε2 · N k

t−1

)
+ 2 · exp

(
−(1− β)2 · N k

t−1/2
)
,

(11.174)

where A′′ and B′′ are positive constants. Note N k
t−1 is involved because, as indicated

in (46), it instead of t− 1 is the number of times that demand under the price choice

k has been observed by the end of period t− 1. For d̃kt−1 defined at (45), both the

lower-bounding requirement on it in front of (11.173) and d̃kt−1 = (N k
t−1)1/4 can be

simultaneously satisfied when N k
t−1 ≥

(
(C ′′/ε) ∨ d̄

)4
for some positive constant C ′′.

As Proposition 4 states that N k
t−1 ≥ (t/k̄)µ − 1, this can further be guaranteed when

t ≥ k̄ ·

[(
C ′′

ε
∨ d̄
)4

+ 1

]1/µ

. (11.175)

For some positive constants D′′ and E ′′, the right-hand side of (11.175) is less than
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D′′ + E ′′/ε4/µ. In any event, when (11.175) occurs, (11.174) will lead to

Pf
[
|Ṽ k
t−1 − V k

fk
| ≥ ε

]
≤ 2 · exp

(
−A′′ · ε2 · (N k

t−1)1/2
)

+2d̄ · exp
(
−B′′ · ε2 · N k

t−1

)
+ 2 · exp

(
−(1− β)2 · N k

t−1/2
)
.

(11.176)

By Proposition 4, this is further below

2 · exp
(
−A′′ · ε2 · ((t/k̄)µ − 1)1/2

)
+ 2d̄ · exp

(
−B′′ · ε2 · ((t/k̄)µ − 1)

)
+2 · exp

(
−(1− β)2 · ((t/k̄)µ − 1)/2

)
.

(11.177)

When t is greater than some constant F ′′, though, (t/k̄)µ − 1 will be greater than

(t/k̄)µ/2 and A′′ · tµ/2 will be below B′′ · tµ. Combine this with the observation

below (11.175), and we can reach our first conclusion. This upper bound is certainly

below

AProp 5 · exp
(
−BProp5 · (ε2 ∧ 1) · tµ/2

)
+ 2 · exp

(
−CProp5 · tµ

)
. (11.178)

When t is greater than a constant, BProp5 · (ε2 ∧ 1) · tµ/2 will be less than CProp5 · tµ.

Then, the first term will dominate. This will give rise to the second expression for

the upper bound.

Proof of Proposition 6: To bound T1 at (66), note from Proposition 3 that

N k
T,0 <

1

k̄µ
· T µ + 1. (11.179)

Since δV k
f is bounded from above by maxk̄k=1 p̄

k · d̄, (66) will lead to (72).

To bound T2 at (67), we make the simplifying assumption that k∗f = 1. Note that

Pf

[
Ṽ 1
t−1 ≤ Ṽ k

t−1

]
≤ Pf

[
Ṽ 1
t−1 ≤

V 1
f1 + V k

fk

2

]
+ Pf

[
V 1
f1 + V k

fk

2
≤ Ṽ k

t−1

]
. (11.180)
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But by the definition of δV k
f in (64),

Pf

[
Ṽ 1
t−1 ≤

V 1
f1 + V k

fk

2

]
= Pf

[
V 1
f1 − Ṽ 1

t−1 ≥
δV k

f

2

]
, (11.181)

Pf

[
V 1
f1 + V k

fk

2
≤ Ṽ k

t−1

]
= Pf

[
Ṽ k
t−1 − V k

fk ≥
δV k

f

2

]
. (11.182)

Now utilizing Proposition 5 while noting that any probability, especially those

corresponding small t-values, is below 1, we see that
∑T

t=1 Pf

[
Ṽ 1
t−1 ≤ Ṽ k

t−1

]
is below

I ′′+J ′′/(δV k
f )4/µ+K ′′ ·

T∑
t=1

exp
(
−L′′ · (δV k

f )2 · tµ/2
)
+2·

T∑
t=1

exp (−M ′′ · tµ) , (11.183)

for some positive constants I ′′, J ′′, K ′′, L′′, and M ′′. For a > 0 and b ∈ [1/4, 1), note

that

T∑
t=1

exp(−a · tb) ≤
∫ ∞

0

exp(−a · tb) · dt =
1

a1/b · b
·
∫ ∞

0

y1/b−1 · exp(−y) · dy, (11.184)

which is below some positive constant say J ′′ times 1/(a1/b · b). Now (11.183) will

entail (73). By (69) and the fact that the δV k
f ’s are bounded from above by

maxk̄k=1 p̄
k · d̄ while from below by the given δ > 0, we can obtain (74). This can be

translated into

T2 ≤ W ′′
δ, (11.185)

for some δ-related constant W ′′
δ that satisfies limδ→0+ W ′′

δ = +∞.

To bound T3 at (68), note that ŷt there is equal to y∗
f̃kt−1

∧ d̄ and hence y∗
f̂kt−1

∧ d̄

by (51) and (52). Further due to (37) and (38),

V k
fk − Vfk

(
p̄k, y∗

f̂kt−1
∧ d̄
)

= Qfk

(
y∗
f̂kt−1
∧ d̄
)
−Qfk

(
y∗fk
)
. (11.186)
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According to (13), the pure control uses the same ordering policy. So (68) can be

written as

T3 =
k̄∑
k=1

Ef

[
R
N kT ,1
fk

(y)
]
, (11.187)

where each R
N kT ,1
fk

(y) is as defined in (16), with N k
T here replacing T there and fk

here replacing f there. Due to Proposition 1, we have (75).

Combining (65), (72), (11.185), and (75), we can obtain

RT1
f (k,y) ≤ AProp6δ +BProp6 · T µ + CProp6 · T 1/2 · (lnT )1/2, (11.188)

for some positive constants AProp6δ, B
Prop6, and CProp6. When µ = 1/2, the term

involving BProp6 is also not necessary, and the regret is at its lowest growth rate.

Proof of Proposition 7: We still have (72) of Proposition 6 for bounding T1. To

bound T2, we can still resort to (69) and Proposition 6’s (73). Hence,

T2 ≤
k̄∑
k=2

{(
L′′ · δV k

f +
M ′′

(δV k
f ) 4/µ−1

)∧(
δV k

f · T
)}

. (11.189)

The cases where T ≤ L′′ can be covered by a constant. Suppose T ≥ L′′ + 1. Then,

on the right-hand side, the maximum at each k is achieved at

δV k
f = (M ′′/(T − L′′))µ/4. Therefore, for some positive constants A′′ and B′′,

T2 ≤ A′′ +B′′ · T 1−µ/4. (11.190)

On the other hand, we can still use (75) of Proposition 6 to bound T3.

Combining (65), (72), (75), and (11.190), while noting that
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µ ∨ (1− µ/4) ≥ 4/5 > 1/2 for µ ∈ [1/2, 1), we can obtain

RT1
f (k,y) ≤ AProp7 +BProp7 · T µ∨(1−µ/4), (11.191)

for some positive µ-independent constants AProp7 and BProp7. The choice for

µ ∈ [1/2, 1) that ensures the slowest guaranteed growth rate for RT1
f (k,y) is

certainly 4/5.

Proofs of Section 7

Proof of Proposition 8: Note that Pf

[
Ṽ 1
t−1 ≤ maxk̄k=2 Ṽ

k
t−1 + δV ∗f /2|M(t) = m

]
is

below

Pf

[
Ṽ 1
t−1 ≤ V 1

f1 −
δV ∗f

4
|M(t) = m

]
+ Pf

[
V 1
f1 −

3δV ∗f
4
≤ k̄

max
k=2

Ṽ k
t−1|M(t) = m

]
,

(11.192)

which is further below

Pf

[
V 1
f1 − Ṽ 1

t−1 ≥
δV ∗f

4
|M(t) = m

]
+

k̄∑
k=2

Pf

[
Ṽ k
t−1 ≥ V 1

f1 −
3δV ∗f

4
|M(t) = m

]
.

(11.193)

But by the definition of δV k
f in (64) and that of δV ∗f in (70), for k = 2, ..., k̄,

Pf

[
Ṽ k
t−1 ≥ V 1

f1 − 3δV ∗f /4|M(t) = m
]
≤ Pf

[
Ṽ k
t−1 ≥ V 1

f1 − 3δV k
f /4|M(t)

]
= Pf

[
Ṽ k
t−1 − V k

fk
≥ δV k

f /4|M(t) = m
]
≤ Pf

[
Ṽ k
t−1 − V k

fk
≥ δV ∗f /4|M(t) = m

]
.

(11.194)

It can be checked that both Propositions 4 and 5 are valid when the concerned

probabilities are replaced with probabilities conditioned on M(t) being any

particular m. So by Proposition 5, the earlier probability before (11.192) will be
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below

A′′ · exp
(
−B′′ · (δV ∗f ∧ 1)2 · tµ/2

)
, (11.195)

when t is greater than C ′′ +D′′/(δV ∗f )4/µ; here, A′′, B′′, C ′′, and D′′ are all positive

constants.

Proof of Proposition 9: By (37) and (47),

|Ṽ k
t′−1− Ṽ k

t−1| ≤ (p̄k − c̄) · |Ef̃k
t′−1

[D]−Ef̃kt−1
[D]|+ |Qf̃k

t′−1
(y∗
f̃k
t′−1

∧ d̄)−Qf̃kt−1
(y∗
f̃kt−1
∧ d̄)|.

(11.196)

Like in the proof of Proposition 5, let us use F̃ k
s−1 for Ff̃ks−1

. By f̃ks−1’s definition

around (46), F̃ k
s−1(d) = 1 for d = d̃ks−1, d̃

k
s−1 + 1, .... Thus, for the first term on the

right-hand side of (11.196),

|Ef̃k
t′−1

[D]− Ef̃kt−1
[D]| = |

∑+∞
d=0(1− F̃ k

t′−1(d))−
∑+∞

d=0(1− F̃ k
t−1(d))|

≤ |
∑d̃kt−1−1

d=0 [F̃ k
t′−1(d)− F̃ k

t−1(d)]|+
∑d̃k

t′−1

d=d̃kt−1

(1− F̃ k
t′−1(d))

≤ δW (f̃kt′−1, f̃
k
t−1, d̃

k
t−1) + (m̄2 + s̄2)/(2d̃kt−1 + 1),

(11.197)

where the equality is from the definition at (1), the first inequality is from the

observation just made on F̃ k
t−1, and the second inequality is by δW ’s definition

and (59). Since Qf (·) as defined at (4) is convex for any f ∈ F0, we must have

Qf̃k
t′−1

(
y∗
f̃k
t′−1

∧ d̄
)
≤ Qf̃k

t′−1

(
y∗
f̃kt−1
∧ d̄
)
, Qf̃kt−1

(
y∗
f̃kt−1
∧ d̄
)
≤ Qf̃kt−1

(
y∗
f̃k
t′−1

∧ d̄
)
.

(11.198)

Thus, the second term on the right-hand side of (11.196) is below

|Qf̃k
t′−1

(y∗
f̃kt−1
∧ d̄)−Qf̃kt−1

(y∗
f̃kt−1
∧ d̄)| ∨ |Qf̃kt−1

(y∗
f̃k
t′−1

∧ d̄)−Qf̃k
t′−1

(y∗
f̃k
t′−1

∧ d̄)|. (11.199)
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But for any y = 0, 1, ..., d̄, the term |Qf̃k
t′−1

(y)−Qf̃kt−1
(y)| is equal to

|h̄ ·
∑y−1

d=0(F̃ k
t′−1(d)− F̃ k

t−1(d)) + b̄ ·
∑+∞

d=y(F̃
k
t−1(d)− F̃ k

t′−1(d))|

= |(h̄+ b̄) ·
∑y−1

d=0(F̃ k
t′−1(d)− F̃ k

t−1(d)) + b̄ ·
∑+∞

d=0(F̃ k
t−1(d)− F̃ k

t′−1(d))|,
(11.200)

where the first equality is due to (4) and the second equality is through a

regrouping. But the above is further less than

(h̄d̄+ b̄d̄) ·maxd̄−1
d=0 |F̃ k

t′−1(d)− F̃ k
t−1(d)|

+b̄ · |
∑d̃kt−1−1

d=0 (F̃ k
t−1(d)− F̃ k

t′−1(d))|+ b̄ ·
∑d̃k

t′−1

d=d̃kt−1

(1− F̃ k
t′−1(d))

≤ (h̄d̄+ b̄d̄) · δV (f̃kt′−1, f̃
k
t−1, d̄) + b̄ · δW (f̃kt−1, f̃

k
t′−1, d̃

k
t−1)

+b̄ · (m̄2 + s̄2)/(2d̃kt−1 + 1),

(11.201)

where the first inequality relies on the limited range of y and the earlier observation

about any F̃ k
s−1, and the second inequality depends on the definitions of δV and δW ,

as well as (59). Combining (11.196) to (11.201), we can obtain the first claim.

To prove the second claim, note that (46) entails

F̃ k
t+τ−1(d) =

∑t+τ−1
s=1 1(ps = p̄k and ds ≤ d)

N k
t+τ−1

, (11.202)

for τ = 0, 1, ... and d = 0, 1, ..., d̃kt−1 − 1. Therefore,

N k
t−1 · F̃ k

t−1(d) =
t−1∑
s=1

1(ps = pk and ds ≤ d) ≤
t+τ−1∑
s=1

1(ps = pk and ds ≤ d), (11.203)

which is equal to N k
t+τ−1 · F̃ k

t+τ−1(d). Also,

t+τ−1∑
s=1

1(ps = pk and ds ≤ d) ≤
t−1∑
s=1

1(ps = pk and ds ≤ d) + τ = N k
t−1 · F̃ k

t−1(d) + τ,

(11.204)
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At the same time, the hypothesis that N k
t+τ−1 = N k

t−1 + τ will lead to

N k
t+τ−1 · F̃ k

t+τ−1 = (N k
t−1 + τ) · F̃ k

t+τ−1 ≤ N k
t−1 · F̃ k

t+τ−1 + τ. (11.205)

Combine (11.203) to (11.205), and we can obtain

− τ

N k
t−1

·
(

1− F̃ k
t+τ−1(d)

)
≤ F̃ k

t−1(d)− F̃ k
t+τ−1(d) ≤ τ

N k
t−1

· F̃ k
t+τ−1(d), (11.206)

and hence |F̃ k
t−1 − F̃ k

t+τ−1(d)| ≤ τ/N k
t−1. This has helped us achieve the second

claim.

Proof of Propostion 10: Due to the first claim of Proposition 9, we have

|Ṽ 1
t+τ−1 − Ṽ 1

t−1| ≤ (h̄d̄+ b̄d̄) · δV (f̃ 1
t−1, f̃

1
t+τ−1, d̄)

+(p̄1 − c̄+ b̄) · (m̄2 + s̄2)/(2d̃1
t−1 + 1) + (p̄1 − c̄+ b̄) · δW (f̃ 1

t−1, f̂
1
t+τ−1, d̃

1
t−1),

(11.207)

as long as N 1
t+τ−1 = N 1

t−1 + τ ; that is, as long as kt = kt+1 = · · · = kt+τ−1 = 1. Note

it has been hypothesized that Ṽ 1
t−1 > maxk̄k=2 Ṽ

k
t−1 + δV ∗f /2 and there is no

interruption from learning. For τ = 1, we already have kt+τ−1 = 1 and

N 1
t+τ−1 = N 1

t−1 + τ . Suppose this is true for an arbitrary τ . Then, due to the nature

of the LwD(µ) policy, we will have kt+τ = 1 and hence N 1
t+τ = N 1

t−1 + τ + 1 when

the right-hand side of (11.207) is below δV ∗f /2.

While keeping this process going without being interrupted by learning in the

periods t, t+ 1, ..., t+ t′− 1, we will achieve kt = kt+1 = · · · = kt+t′−1 = 1. So the key

lies in whether we can keep the right-hand side of (11.207) below δV ∗f /2. Meanwhile,

this can be maintained as long as for some positive constants A′′, B′′, and C ′′,

δV (f̃ 1
t−1, f̃

1
t+τ−1, d̄) ≤ A′′ · δV ∗f , ∀τ = 1, ..., t′, (11.208)
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d̃1
t−1 ≥ B′′/δV ∗f , and

δW (f̂ 1
t−1, f̂

1
t+τ−1, d

1
t−1) ≤ C ′′ · δV ∗f , ∀τ = 1, ..., t′. (11.209)

By (18), the requirement (11.208) can be achieved if

|F̃ 1
t−1(d)− F̃ 1

t+τ−1(d)| ≤ A′′ ·δV ∗f , ∀d = 0, 1, ..., d̄−1, τ = 1, ..., t′; (11.210)

also, with (45), we can guarantee the requirement on d̃1
t−1 when

N 1
t−1 ≥

D′′

(δV ∗f )4
, (11.211)

for some constant D′′; in addition, due to (55), we can obtain a guarantee

for (11.209) as

|
d̃1
t−1−1∑
d=0

[F̃ 1
t−1(d)− F̃ 1

t+τ−1(d)]| ≤ C ′′ · δV ∗f , ∀τ = 1, ..., t′. (11.212)

In periods t to t+ t′ − 1, price 1 is constantly being adopted; hence,

N 1
t+τ−1 = N 1

t−1 + τ for τ = 1, ..., t′. So by the second claim of Proposition 9, the

requirement (11.210) would be true if τ ≤ A′′ · δV ∗f · N 1
t−1. Due to Proposition 4, this

in turn can be guaranteed when τ ≤ A′′ · δV ∗f · ((t/k̄)µ − 1). Due to the same

proposition, (11.211) would be guaranteed by t ≥ k̄ · (D′′/(δV ∗f )4 + 1)1/µ.

Meanwhile, (11.212) would be true if τ ≤ C ′′ · δV ∗f · N 1
t−1/d̃

1
t−1. By (45), this can be

guaranteed by N 1
t−1 ≥ d̄ 4 and τ ≤ C ′′ · δV ∗f · (N 1

t−1)3/4. In the end, all of these can

be guaranteed by t ≥ AProp 10 +BProp 10/(δV ∗f )4/µ and

τ ≤ CProp 10 · δV ∗f ·
(
(t/k̄)µ − 1

)3/4
for some positive constants AProp10, BProp10, and

CProp10.
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Proof of Proposition 11: Since s′i ≥ (i+ Iµ,δ)
1/µ/G

1/µ
µ,δ , (81) will lead to

(N ′t,0 + Iµ,δ)
1/µ

G
1/µ
µ,δ

≤ s′N ′t,0 ≤ t, (11.213)

and hence

N ′t,0 ≤ Gµ,δ · tµ − Iµ,δ. (11.214)

Due to (77), (82), and (11.214), as well as the facts that Iµ,δ ≥ k̄, we can

ensure (83); for instance, we could let Hµ,δ = Gµ,δ + k̄1−µ.

For t = s′′i (m) at any given i, (83) would lead to

i = N ′′t,0(m) ≤ Hµ,δ · tµ = Hµ,δ · (s′′i (m))µ, (11.215)

which is just (84). We have (85) because s′′i (m) ≤ s′i and s′i ≤ (i+ Iµ,δ)
1/µ/G

1/µ
µ,δ + 1.

For any x ∈ (0, 1), we have from Taylor expansion that

(1 + x)1/µ = 1 +

(
1

µ

)
· x+

1

2
·
(

1

µ

)
·
(

1

µ
− 1

)
· x2 +

+∞∑
k=1

(−T1k + T2k), (11.216)

where for k = 1, 2, ...,

T1k =

(
1

µ

)
·
(

1

µ
− 1

)
· 1

(2k + 1)!
·

2k∏
j=2

(
j − 1

µ

)
· x2k+1, (11.217)

and

T2k =

(
1

µ

)
·
(

1

µ
− 1

)
· 1

(2k + 2)!
·

2k+1∏
j=2

(
j − 1

µ

)
· x2k+2. (11.218)
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If µ = 1/2, we have T1k = T2k = 0 throughout. Suppose µ ∈ (1/2, 1). Then,

T2k

T1k

=
2k + 1− 1/µ

2k + 2
· x < 1. (11.219)

Either way, we can conclude from (11.216) that

(1 + x)1/µ − 1 ≤
(

1

µ

)
· x+

1

2
·
(

1

µ

)
·
(

1

µ
− 1

)
· x2 <

(
1

µ2

)
· x ≤ 4x. (11.220)

For y > 1, we then have

(y + 1)1/µ − y1/µ = y1/µ ·

[(
1 +

1

y

)1/µ

− 1

]
< 4 · y1/µ−1. (11.221)

By the definition that s′i = d(i+ Iµ,δ)
1/µ/G

1/µ
µ,δ e, it follows that

s′i+1 − s′i ≤

[
(i+ Iµ,δ + 1)1/µ

G
1/µ
µ,δ

− (i+ Iµ,δ)
1/µ

G
1/µ
µ,δ

]
+ 1 <

4 · (i+ Iµ,δ)
1/µ−1

G
1/µ
µ,δ

+ 1. (11.222)

Since (i+ Iµ,δ)
1/µ/G

1/µ
µ,δ ≤ s′i and hence i ≤ Gµ,δ · (s′i)µ − Iµ,δ, the above would entail

s′i+1 − s′i ≤
(

4

Gµ,δ

)
· (s′i)1−µ + 1. (11.223)

For any i with s′′i+1(m) ≥ s′1 + 1, we can identify j such that s′j ≤ s′′i (m) and

s′j+1 ≥ s′′i+1(m). So due to (11.223),

s′′i+1(m)− s′′i (m) ≤ s′j+1 − s′j ≤
(

4

Gµ,δ

)
· (s′j)1−µ + 1, (11.224)

and hence (86) as by choice, s′j ≤ s′′i (m). Otherwise, we still have

s′′i+1(m)− s′′i (m) ≤ s′1.

Proof of Proposition 12: Due to (83) and the fact that r1
f (x) is bounded by a
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constant, (89) would lead to

T1 ≤ A′′ · Ef [N ′′T,0] ≤ B′′µ,δ · T µ, (11.225)

for some constants A′′ and B′′µ,δ. Since B′′µ,δ ≥ A′′ ·Hµ,δ, we know limδ→0+ B′′µ,δ = +∞.

In view of Proposition 8 as well as the facts that regrets are positive and each rtf (x)

is bounded by a constant times t, (92) will lead to

η2(m) ≤ C ′′ ·
∑N ′′T,0(m)

i=1 [1
(
s′′i (m) ≤ AProp8 +BProp8/δ4/µ

)
∨

∨ exp
(
−CProp8 · (δ2 ∧ 1) · (s′′i (m) + 1)µ/2

)
] ·
(
s′′i+1(m)− s′′i (m)− 1

)
,

(11.226)

where C ′′ is a positive constant. By (86), this is below

C ′′ · (AProp8 +BProp8/δ4/µ)×

×(4/Gµ,δ) ·
[
(AProp8 +BProp8/δ4/µ)1−µ ∨ d(1 + Iµ,δ)

1/µ/G
1/µ
µ,δ e

]
+ λ(m),

(11.227)

where the term before T3 caps the case where the s′′i (m)’s are not large enough and

λ(m) = C ′′ ·
N ′′T,0(m)∑
i=1

exp
(
−CProp8 · (δ2 ∧ 1) · (s′′i (m) + 1)µ/2

)
·
(
s′′i+1(m)− s′′i (m)− 1

)
.

(11.228)

By (83) and (86), we can see that λ(m) is below

(
4C ′′

Gµ,δ

)
·
dHµ,δ·Tµe∑

i=1

exp
(
−CProp8 · (δ2 ∧ 1) · (s′′i (m) + 1)µ/2

)
· (s′′i (m) + 1)

1−µ
+D′′µ,δ,

(11.229)

where D′′µ,δ covers the case when the s′′i (m)’s are not large enough. Note

x1−µ · exp(−CProp8 · (δ2 ∧ 1) · xµ/2) is decreasing in x when the latter is large enough.
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So in view of (84),

λ(m) ≤
(

4C ′′

Gµ,δ

)
·
dHµ,δ·Tµe∑

i=1

exp
(
−CProp8 · (δ2 ∧ 1) · (i/Hµ,δ)

1/2
)
· (i/Hµ,δ)

(1−µ)/µ +E ′′µ,δ,

(11.230)

where E ′′µ,δ is a constant that grows with 1/δ which accounts for the occasion when

s′′i (m) is not large enough. Therefore,

λ(m) ≤
(

4C ′′

Gµ,δ

)
·
∫ dHµ,δ·Tµe/Hµ,δ

0

exp
(
−CProp8 · (δ2 ∧ 1) · x1/2

)
· x(1−µ)/µ · dx+ F ′′µ,δ,

(11.231)

where F ′′µ,δ is another constant that has to grow with 1/δ. Since the integral is

bounded by [2/(CProp8 · (δ2 ∧ 1))2/µ] ·
∫ +∞

0
y(2−µ)/µ · exp(−y) · dy, there is a constant

G′′µ,δ that grows with 1/δ, such that λ(m) ≤ G′′µ,δ. Combine (11.227) with this, and

we obtain

η2(m) ≤ J ′′µ,δ, (11.232)

for some constant J ′′µ,δ that grows with 1/δ.

Meanwhile, (93) will lead to

ζ2(m) ≤
∑N ′′T,0(m)

i=1 Ef [
∑Ni(m)

j=1 r
Ui,j+1(m)−Ui,j(m)

fKi,j(m) (Xi.j(m))|

|M(T ) = m and Ṽ 1
s′′i (m)+1 > maxk̄k=2 Ṽ

k
s′′i (m)+1 + δV ∗f /2].

(11.233)

By the way in which Gµ,δ is specified in (80) and the facts that µ ≥ 4/7, we would

have

(4/Gµ,δ) · (s′′i (m))1−µ ≤ (CProp10 · δ/k̄3µ/4) · [(s′′i (m) + 1)µ − k̄µ]3/4

≤ (CProp10 · δV ∗f /k̄3µ/4) · [(s′′i (m) + 1)µ − k̄µ]3/4,
(11.234)



-89-

as long as s′′i (m) is large enough. When this happens, (86) will then lead to

s′′i+1(m)− s′′i (m)− 1 ≤ CProp10 · δV ∗f ·
(

(s′′i (m) + 1)µ

k̄µ
− 1

)3/4

. (11.235)

Due to Proposition 10, we would have Ni(m) = 1 and Ki,1(m) = 1 as long as s′′i (m)

is large enough. Just like in (11.227), the contribution by terms with small s′′i (m)’s

to the right-hand side of (11.233) is bounded. Thus, (11.233) would lead to

ζ2(m) ≤
∑N ′′T,0(m)

i=1 Ef [r
s′′i+1(m)−s′′i (m)−1

f1 (Xs′′i (m)+1)|

|M(T ) = m and Ṽ 1
s′′i (m)+1 > maxk̄k=2 Ṽ

k
s′′i (m)+1 + δV ∗f /2] +K ′′µ,δ,

(11.236)

where K ′′µ,δ is a constant that grows with 1/δ. But by (76), for w(t) ≡ t1/2 · (ln t)3/2,

ζ2(m) ≤
N ′′T,0(m)∑
i=1

[
AProp2 +BProp2 · w

(
s′′i+1(m)− s′′i (m)− 1

)]
+K ′′µ,δ. (11.237)

With the help of (83), we can then come to

ζ2(m) ≤ K ′′µ,δ + AProp2Hµ,δ · T µ +BProp2 · γ2(m), (11.238)

where γ2(m) =
∑N ′′T,0(m)

i=1 w
(
s′′i+1(m)− s′′i (m)− 1

)
. The key now lies in bounding

γ2(m).

Due to (83), (86), and the monotonicity of w(·),

γ2(m) ≤
dHµ,δ·Tµe∑

i=1

w

(
4

Gµ,δ

· (s′′i (m))1−µ
)
, (11.239)

which by (85) leads further to

γ2(m) ≤
dHµ,δ·Tµe∑

i=1

w

 4

Gµ,δ

·

(
1

G
1/µ
µ,δ

· (i+ Iµ,δ)
1/µ + 1

)1−µ
 . (11.240)
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When i is large, the term inside w(·) will be below M ′′
µ,δ · i1/µ−1 for some M ′′

µ,δ ≥ 1.

So

γ2(m) ≤ N ′′µ,δ +

dHµ,δ·Tµe∑
i=1

w
(
M ′′

µ,δ · i1/µ−1
)
≤ N ′′µ,δ +

∫ Hµ,δ·Tµ+2

1

w
(
M ′′

µ,δ · x1/µ−1
)
· dx,

(11.241)

where N ′′µ,δ is a constant which safeguards against the occasion when i is not yet

large enough. If we let y = ln(M ′′
µ,δ · x1/µ−1) ≥ 0, the integral in (11.241) would

become

µ

(1− µ) · (M ′′
µ,δ)

µ/(1−µ)
·
∫ ln(M ′′µ,δ·(Hµ,δ·Tµ+2)1/µ−1)

0

exp

(
(1 + µ) · y

2− 2µ

)
·y3/2 ·dy. (11.242)

After letting z equal (1 + µ) · y/(2− 2µ), the above is equal to

O′′µ,δ ·
∫ (1+µ)·ln(M ′′µ,δ·(Hµ,δ·Tµ+2)1/µ−1)/(2−2µ)

0

exp(z) · z3/2 · dz, (11.243)

for some constant O′′µ,δ. Through integration by parts, the above is further bounded

by a term proportional to

u

(
(1 + µ) · ln

(
M ′′

µ,δ · (Hµ,δ · T µ + 2)1/µ−1
)

2− 2µ

)
, (11.244)

for u(z) ≡ exp(z) · z5/2. Thus, for large enough constants P ′′µ,δ and Q′′µ,δ, we have

γ2(m) ≤ P ′′µ,δ +Q′′µ,δ · T (1+µ)/2 · (lnT )5/2. (11.245)

In view of (11.238) and (11.245),

ζ2(m) ≤ K ′′µ,δ+BProp2P ′′µ,δ+AProp2Hµ,δ ·T µ+BProp2Q′′µ,δ ·T (1+µ)/2 ·(lnT )5/2. (11.246)

Combining (88) to (93), (11.225), (11.232), (11.246), and the facts that
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∑
m∈M(T ) Pf [M(T ) = m] = 1, µ ≥ 4/7, and θ2(m) = η2(m) + ζ2(m), we can obtain

the desired result for RT2
f (k,y), with AProp12

µ,δ = J ′′µ,δ +K ′′µ,δ +BProp2P ′′µ,δ,

BProp12
µ,δ = B′′µ,δ + AProp2Hµ,δ, and CProp12

µ,δ = BProp2Q′′µ,δ.

Since both B′′µ,δ and Hµ,δ grow to +∞ when δ approaches 0+, we know

limδ→0+ BProp12
µ,δ = +∞. From (11.244), we know it not necessary that

Q′′µ,δ > 2 · (M ′′
µ,δ)

(1+µ)/(2−2µ) ·H (1+µ)/(2µ)
µ,δ . Due to (11.240) and (11.241), it is also not

necessary that M ′′
µ,δ > 8/G

1/µ
µ,δ . Since Hµ,δ can be made less than 2Gµ,δ, these

translate into it being possible for CProp12
µ,δ to be less than a δ-independent constant

times 1/G
(1+µ)/(2−2µ)
µ,δ . As limδ→0+ Gµ,δ = +∞, it is possible that

limδ→0+ CProp12
µ,δ = 0.

Proofs of Section 8

Proof of Propostion 13: Without loss of generality, suppose kt = 1. Due to the

first claim of Proposition 9,

|Ṽ 1
t+τ−1 − Ṽ 1

t−1| ≤ (h̄d̄+ b̄d̄) · δV (f̃ 1
t−1, f̃

1
t+τ−1, d̄)

+(p̄1 − c̄+ b̄) · (m̄2 + s̄2)/(2d̃1
t−1 + 1) + (p̄1 − c̄+ b̄) · δW (f̃ 1

t−1, f̂
1
t+τ−1, d̃

1
t−1),

(11.247)

as long as N 1
t+τ−1 = N 1

t−1 + τ ; that is, as long as kt = kt+1 = · · · = kt+τ−1 = 1. Note

it has been hypothesized that Ṽ 1
t−1 ≥ maxk̄k=2 Ṽ

k
t−1 and there is no interruption from

learning. For τ = 1, we already have kt+τ−1 = 1 and N 1
t+τ−1 = N 1

t−1 + τ . Suppose

this is true for an arbitrary τ . Then, due to the nature of the sticky policy, we will

have kt+τ = 1 and hence N 1
t+τ = N 1

t−1 + τ + 1 when the right-hand side of (11.247)

is below ν/(t+ τ − 1)3µ/4−ψ.

While keeping this process going without being interrupted by learning in the

periods t, t+ 1, ..., t+ t′− 1, we will achieve kt = kt+1 = · · · = kt+t′−1 = 1. So the key

lies in whether we can keep the right-hand side of (11.247) below ν/(t+ τ − 1)3µ/4−ψ.
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Meanwhile, this can be maintained as long as for some positive constant A′′,

δV (f̃ 1
t−1, f̃

1
t+τ−1, d̄) ≤ A′′ · ν

t3µ/4−ψ
≤ 2A′′ · ν

(t+ t′ − 1)3µ/4−ψ , ∀τ = 1, ..., t′,

(11.248)

d̃1
t−1 ≥ 2 · (p̄1 − c̄+ b̄) · (m̄2 + s̄2) · t3µ/4−ψ/ν ≥ (p̄1 − c̄+ b̄) · (t+ t′ − 1)3µ/4−ψ/ν, and

δW (f̂ 1
t−1, f̂

1
t+τ−1, d

1
t−1) ≤ A′′ · ν

t3µ/4−ψ
≤ 2A′′ · ν

(t+ t′ − 1)3µ/4−ψ , ∀τ = 1, ..., t′.

(11.249)

By (18), the requirement (11.248) can be achieved if

|F̃ 1
t−1(d)− F̃ 1

t+τ−1(d)| ≤ A′′ · ν

t3µ/4−ψ
, ∀d = 0, 1, ..., d̄− 1, τ = 1, ..., t′;

(11.250)

also, with (45), we can guarantee the requirement on d̃1
t−1 when

(N 1
t−1)1/4 ≥ 2 · (p̄1 − c̄+ b̄) · (m̄2 + s̄2) · t

3µ/4−ψ

ν
; (11.251)

in addition, by (55), we can obtain the guarantee for (11.249) as

|
d̃1
t−1−1∑
d=0

[F̃ 1
t−1(d)− F̃ 1

t+τ−1(d)]| ≤ A′′ · ν

t3µ/4−ψ
, ∀τ = 1, ..., t′. (11.252)

By the second claim of Proposition 9, the requirement (11.250) would be true if

τ ≤ A′′ · ν · N 1
t−1/t

3µ/4−ψ. Due to Proposition 4, this in turn can be guaranteed when

τ ≤ A′′ · ν · ((t/k̄)µ − 1)/t3µ/4−ψ. Due to the same proposition, (11.251) would be

guaranteed by our choices that ψ ≥ µ/2, ν > 2k̄µ/4 · (p̄1 − c̄+ b̄) · (m̄2 + s̄2), and t be

large enough. Meanwhile, (11.252) would be true if τ ≤ A′′ · ν · N 1
t−1/(d̃

1
t−1 · t3µ/4−ψ).

By (45), this can be guaranteed by N 1
t−1 ≥ d̄ 4 and τ ≤ A′′ · ν · (N 1

t−1)3/4/t3µ/4−ψ.

Due to Proposition 4, this can in turn be guaranteed when (t/k̄)µ − 1 ≥ d̄ 4 and

τ ≤ A′′ · ν ·
(
(t/k̄)µ − 1

)3/4
/t3µ/4−ψ.
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Proof of Proposition 14: We still have (72) of Proposition 6 for bounding T1. To

bound T2 at (96), we suppose k∗f = 1. Note that Pf

[
Ṽ 1
t−1 ≤ Ṽ k

t−1 + ν/t3µ/4−ψ
]

is

below

Pf

[
Ṽ 1
t−1 ≤

V 1
f1 + V k

fk

2
+

ν

2 t3µ/4−ψ

]
+ Pf

[
V 1
f1 + V k

fk

2
− ν

2 t3µ/4−ψ
≤ Ṽ k

t−1

]
. (11.253)

But by the definition of δV k
f in (64),

Pf

[
Ṽ 1
t−1 ≤

V 1
f1 + V k

fk

2
+

ν

2 t3µ/4−ψ

]
= Pf

[
V 1
f1 − Ṽ 1

t−1 ≥
δV k

f

2
− ν

2 t3µ/4−ψ

]
, (11.254)

Pf

[
V 1
f1 + V k

fk

2
− ν

2 t3µ/4−ψ
≤ Ṽ k

t−1

]
= Pf

[
Ṽ k
t−1 − V k

fk ≥
δV k

f

2
− ν

2 t3µ/4−ψ

]
. (11.255)

Let t0µ,ν,ψ ≡ bν4/(3µ−4ψ)/(δV k
f )4/(3µ−4ψ)c. Note that δV k

f /2− ν/(2t3µ/4−ψ) ≥ 0 will be

true when t ≥ t0µ,ν,ψ + 1. Thus, by (11.253) to (11.255),∑T
t=1 Pf

[
Ṽ 1
t−1 ≤ Ṽ k

t−1 + ν/t3µ/4−ψ
]

is below

ν4/(3µ−4ψ)/(δV k
f )4/(3µ−4ψ) +

∑T
t=t0µ,ν,ψ+1 Pf

[
V 1
f1 − Ṽ 1

t−1 ≥ δV k
f /2− ν/(2t3µ/4−ψ)

]
+
∑T

t=t0µ,ν,ψ+1 Pf

[
Ṽ k
t−1 − Ṽ k

fk
≥ δV k

f /2− ν/(2t3µ/4−ψ)
]
.

(11.256)

Let t1µ,ν,ψ ≡ b(2ν)4/(3µ−4ψ)/(δV k
f )4/(3µ−4ψ)c. We have δV k

f /2− ν/(2t3µ/4−ψ) ≥ δV k
f /4

when t ≥ t1µ,ν,ψ. Hence, the above is further below

2 · (2ν)4/(3µ−4ψ)

(δV k
f )4/(3µ−4ψ)

+
T∑

t=t1µ,ν,ψ+1

{
Pf

[
V 1
f1 − Ṽ 1

t−1 ≥
δV k

f

4

]
+ Pf

[
Ṽ k
t−1 − Ṽ k

fk ≥
δV k

f

4

]}
.

(11.257)

Now utilizing Proposition 5 while noting that any probability is below 1, we see that



-94-

∑T
t=1 Pf

[
Ṽ 1
t−1 ≤ Ṽ k

t−1 + ν/t3µ/4−ψ
]

is below

A′′+B′′/(δV k
f )4/µ +C ′′µ,ν,ψ/(δV

k
f )4/(3µ−4ψ) +D′′ ·

T∑
t=1

exp
(
−E ′′ · ((δV k

f /4) ∧ 1)2 · tµ/2
)
,

(11.258)

for some positive constants A′′, B′′, C ′′µ,ν,ψ, D′′, and E ′′. For a > 0 and b ∈ [1/4, 1),

note that

T∑
t=1

exp(−a · tb) ≤
∫ ∞

0

exp(−a · tb) · dt =
1

a1/b · b
·
∫ ∞

0

y1/b−1 · exp(−y) · dy, (11.259)

which is below some positive constant times 1/(a1/b · b). Now (11.258) will entail

T∑
t=1

Pf

[
Ṽ 1
t−1 ≤ Ṽ k

t−1 +
ν

t3µ/4−ψ

]
≤ A′′ +

F ′′

(δV k
f ∧ 4)4/µ

+
C ′′µ,ν,ψ

(δV k
f )4/(3µ−4ψ)

, (11.260)

where F ′′ is another positive constant. Since the case where δV k
f > 4 can be covered

by a constant and 4/(3µ− 4ψ) ≥ 4/µ due to the fact that ψ ≥ µ/2, we further have

T∑
t=1

Pf

[
Ṽ 1
t−1 ≤ Ṽ k

t−1 +
ν

t3µ/4−ψ

]
≤ G′′µ +

H ′′µ,ν,ψ
(δV k

f )4/(3µ−4ψ)
, (11.261)

for some positive constants G′′µ and H ′′µ,ν,ψ. Now by (97), we have

T2 ≤
k̄∑
k=2

{(
G′′µ · δV k

f +
H ′′µ,ν,ψ

(δV k
f ) 4/(3µ−4ψ)−1

)∧(
δV k

f · T
)}

. (11.262)

The cases where T ≤ G′′µ can be covered by a constant. Suppose T ≥ G′′µ + 1. Then,

on the right-hand side, the maximum at each k is achieved at

δV k
f = (H ′′µ,µ,ψ/(T −G′′µ))3µ/4−ψ. Therefore, for some positive constants I ′′µ,ν,ψ and

J ′′µ,ν,ψ,

T2 ≤ I ′′µ,ν,ψ + J ′′µ,ν,ψ · T 1−3µ/4+ψ. (11.263)
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On the other hand, we can still use (75) of Proposition 6 to bound T3.

Combining (65), (72), (75), and (11.263), while noting that

µ∨ (1− 3µ/4 +ψ) ≥ µ∨ (1− µ/4) > 4/5 ≥ 1/2 for µ ∈ [1/2, 1) and ψ ∈ [µ/2, 3µ/4),

we can obtain

RT1
f (k,y) ≤ AProp14

µ,ν,ψ +BProp14
µ,ν,ψ · T

µ∨(1−3µ/4+ψ), (11.264)

for some positive constants AProp14
µ,ν,ψ and BProp14

µ,ν,δ. The parameters that ensure

the slowest guaranteed growth rate for RT1
f (k,y) certainly satisfy µ = 4/5 and

ψ = 2/5.

Proof of Proposition 15: Since s′i ≥ (i+ Iµ,ν,ψ)1/(1−ψ)/G
1/(1−ψ)
µ,ν , (81) will lead to

(N ′t,0 + Iµ,ν,ψ)1/(1−ψ)

G
1/(1−ψ)
µ,ν

≤ s′N ′t,0 ≤ t, (11.265)

and hence

N ′t,0 ≤ Gµ,ν · t1−ψ − Iµ,ν,ψ. (11.266)

Due to (77), (82), and (11.266), as well as the fact that Iµ,ν,ψ ≥ k̄, we can

ensure (98); for instance, we could let Hµ,ν = Gµ,ν + k̄1−µ. By treating 1− ψ here as

µ in Proposition 11, we can obtain (99) and (100) as we did (85) and (86) in the

proof of the earlier proposition.

Proof of Proposition 16: Due to (98) and the fact that r1
f (x) is bounded by a

constant, (89) would lead to

T1 ≤ A′′ · Ef [N ′′T,0] ≤ B′′µ,ν · T µ∨(1−ψ), (11.267)

for some constants A′′ and B′′µ,ν .
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By the way in which Gµ,ν is specified in (94), we would have

(
4

Gµ,ν

)
·(s′′i (m))ψ ≤ CProp13 ·

((
s′′i (m) + 1

k̄

)µ
− 1

)3/4

· ν

(s′′i (m) + 1)3µ/4−ψ , (11.268)

as long as s′′i (m) is large enough. When this happens, (100) will then lead to

s′′i+1(m)−s′′i (m)−1 ≤ CProp13·
((

s′′i (m) + 1

k̄

)µ
− 1

)3/4

· ν

(s′′i (m) + 1)3µ/4−ψ . (11.269)

Due to Proposition 13 and the fact that ks′′i (m)+1 achieves the maximum Ṽ k
t−1 among

k = 1, ..., k̄, we now have Ni(m) = 1 and Ki,1(m) = 1. Thus, (91) would lead to

θ2(m) ≤
N ′′T,0(m)∑
i=1

Ef

[
r
s′′i+1(m)−s′′i (m)−1

f
k
s′′
i

(m)+1
(Xs′′i (m)+1)|M(T ) = m

]
+K ′′µ,ν,ψ, (11.270)

where K ′′µ,ν,ψ is a constant. But by (76), we further have, for w(t) = t1/2 · (ln t)3/2,

θ2(m) ≤
N ′′T,0(m)∑
i=1

[
AProp2 +BProp2 · w

(
s′′i+1(m)− s′′i (m)− 1

)]
+K ′′µ,ν,ψ. (11.271)

With the help of (98), we can come to

θ2(m) ≤ K ′′µ,ν,ψ + AProp2Hµ,ν · T µ∨(1−ψ) +BProp2 · γ2(m), (11.272)

where γ2(m) =
∑N ′′T,0(m)

i=1 w
(
s′′i+1(m)− s′′i (m)− 1

)
.

Due to (98), (100), and the monotonicity of w(·),

γ2(m) ≤
dHµ,ν ·Tµ∨(1−ψ)e∑

i=1

w

(
4

Gµ,ν

· (s′′i (m))ψ
)
, (11.273)
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which by (99) leads further to

γ2(m) ≤
dHµ,ν ·Tµ∨(1−ψ)e∑

i=1

w

 4

Gµ,ν

·

(
1

G
1/(1−ψ)
µ,ν

· (i+ Iµ,ν,ψ)1/(1−ψ) + 1

)ψ
 . (11.274)

When i is large, the term inside w(·) will be below M ′′
µ,ν,ψ · iψ/(1−ψ) for some constant

M ′′
µ,ν,ψ ≥ 1. Therefore, for some constant N ′′µ,ν,ψ,

γ2(m) ≤ N ′′µ,ν,ψ +
∑dHµ,ν ·Tµ∨(1−ψ)e

i=1 w
(
M ′′

µ,ν,ψ · iψ/(1−ψ)
)

≤ N ′′µ,ν,ψ +
∫ Hµ,ν ·Tµ∨(1−ψ)+2

1
w
(
M ′′

µ,ν,ψ · xψ/(1−ψ)
)
· dx,

(11.275)

If we let y = ln(M ′′
µ,ν,ψ · xψ/(1−ψ)) ≥ 0, the integral in (11.275) would become

1− ψ
ψ · (M ′′

µ,ν,ψ)1/ψ−1
·
∫ ln(M ′′µ,ν,ψ ·(Hµ,ν ·Tµ∨(1−ψ)+2)ψ/(1−ψ))

0

exp

(
(2− ψ) · y

2ψ

)
· y3/2 · dy.

(11.276)

After letting z equal (2− ψ) · y/(2ψ), the above is equal to

O′′µ,ν,ψ ·
∫ (2−ψ)·ln(M ′′µ,ν,ψ ·(Hµ,ν ·Tµ∨(1−ψ)+2)ψ/(1−ψ))/(2ψ)

0

exp(z) · z3/2 · dz, (11.277)

for some constant O′′µ,ν,ψ. Through integration by parts, the above is further

bounded by a term proportional to

u

(
(2− ψ) · ln

(
M ′′

µ,ν,ψ · (Hµ,ν · T µ∨(1−ψ) + 2)ψ/(1−ψ)
)

2ψ

)
, (11.278)

for u(z) ≡ exp(z) · z5/2. Thus, for large enough constants P ′′µ,ν,ψ and Q′′µ,ν,ψ, we have

γ2(m) ≤ P ′′µ,ν,ψ +Q′′µ,ν,ψ · T (2−ψ)·(µ∨(1−ψ))/(2−2ψ) · (lnT )5/2. (11.279)
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In view of (11.272) and (11.279),

θ2(m) ≤ K ′′µ,ν,ψ +BProp2P ′′µ,ν,ψ + AProp2Hµ,ν · T µ∨(1−ψ)

+BProp2Q′′µ,ν,ψ · T (2−ψ)·(µ∨(1−ψ))/(2−2ψ) · (lnT )5/2.
(11.280)

Combining (88) to (91), (11.267), (11.280), and the fact that∑
m∈M(T ) Pf [M(T ) = m] = 1, we can obtain the desired result for RT2

f (k,y), with

AProp16
µ,ν,ψ = K ′′µ,ν,ψ +BProp2P ′′µ,ν,ψ, BProp16

µ,ν,ψ = B′′µ,ν + AProp2Hµ,ν , and

CProp16
µ,ν,ψ = BProp2Q′′µ,ν,ψ.
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12 Supplementary Materials

1 Discussion of the Four Cases

Let production cost be linear at a unit rate c̄. We suppose that, at the end of the

terminal period T , the firm will gain c̄x if there are x items left and will pay, on top

of backlogging costs that may apply, c̄x if there are still x items owed to customers.

For the backlogging case involving nonperishable items, recall that h̄ is the holding

cost rate and b̄ the backlogging cost rate. To ensure positive production quantities

y1 − 0 as well as yt − (yt−1 − dt−1) for t = 2, 3, ..., T , we maintain that (3) be true.

Now note the identity

T∑
t=1

dt = (y1 − 0) +
T∑
t=2

(yt − yt−1 + dt−1)− (yT − dT ), (12.1)

where the right-hand side sums up the T periods of production quantities less the

final leftover or negative backlogged quantity. Thus, we can summarize the firm’s

total cost as

c̄ ·
T∑
t=1

dt + h̄ ·
T∑
t=1

(yt − dt)+ + b̄ ·
T∑
t=1

(dt − yt)+. (12.2)

Since the first term in (12.2) is not affected by the decision sequence (y1, y2, ..., yT ),

we can focus on the latter inventory-related cost term
∑T

t=1 q(yt, dt) with q(y, d)

defined at (2).

Now suppose each item left over at the end of a period is worth some s̄ < c̄ to the

firm. However, it will no longer be available in the next period. Suppose any unit

unsatisfied demand still incurs a penalty of b̄ per period. For the terminal period T ,

let the firm be additionally charged c̄ per unit owed. Here, the production quantities

y1 − 0 as well as yt + (dt−1 − yt−1)+ for t = 2, 3, ..., T are always positive. The total
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cost to the firm will be

c̄ · {(y1−0)+
T∑
t=2

[yt+(dt−1−yt−1)+]+(dT −yT )+}− s̄ ·
T∑
t=1

(yt−dt)+ + b̄ ·
T∑
t=1

(dt−yt)+.

(12.3)

In view of (12.1), the first term in (12.3) above will be

c̄ ·
T∑
t=1

dt + c̄ · [
T∑
t=2

(yt−1 − dt−1)+ + (yT − dT )+] = c̄ ·
T∑
t=1

dt + c̄ ·
T∑
t=1

(yt − dt)+. (12.4)

We will get back to (12.2) when identifying h̄ with c̄− s̄.

For the lost sales case involving nonperishable items, we can assume the same unit

production cost c̄ and holding cost rate h̄. On the other hand, let l̄ > c̄ be the cost

of not satisfying a unit demand in any of the periods 1, ..., T . Again, let each item

leftover at the end of period T be worth c̄. To ensure positive production quantities

y1 − 0 as well as yt − (yt−1 − dt−1)+ for t = 2, 3, ..., T , we effectively require (3) due

to the positivity of the yt’s. Then, the total cost will be

c̄ · {(y1−0)+
T∑
t=2

[yt− (yt−1−dt−1)+]− (yT −dT )+}+ h̄ ·
T∑
t=1

(yt−dt)+ + l̄ ·
T∑
t=1

(dt−yt)+.

(12.5)

But in view of (12.1), the above (12.5) will be the same as (12.2) when we identify b̄

with l̄ − c̄.

For the repeated-newsvendor case, i.e., the case where items are perishable and

unsatisfied demands are lost, the starting inventory level in every period is 0 and

each yt will be both the ordering and order-up-to level for period t. Suppose each

item left over at the end of a period will earn the firm s̄ < c̄ and as in the lost sales

case, each unsatisfied demand unit will cost the firm l̄ > c̄. Then the total cost will
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be

c̄ ·
T∑
t=1

yt − s̄ ·
T∑
t=1

(yt − dt)+ + l̄ ·
T∑
t=1

(dt − yt)+. (12.6)

Again, (12.6) will be the same as (12.2) when we identify h̄ with c̄− s̄ and b̄ with

l̄ − c̄.

Effectively, all cases enjoy the same cost expression (12.2), albeit with different

interpretations for the strictly positive constants h̄ and b̄. Also, whether items are

nonperishable or not depends on whether or not (3) is enforced.

2 Details on Maintaining (54)

First, it can let κ0(k) = k for k = 1, 2, ..., k̄. Due to the initialization where N k
0 = 0

for every k, (54) is true for t = 0. Next, suppose (54) is true for t− 1 at the

beginning of period t. Now step 0.2 can be rewritten as the following:

0.2. also, let price choice kt = κt−1(lt) with lt = 1;

meanwhile, step 1.2 can be rewritten as the following:

1.2. also, let price choice kt = κt−1(lt), where lt is any member of

argmaxl=1,2,...,k̄Ṽ
κt−1(l)
t−1 .

The policy can use the following to obtain κt for period t. First, let

κt(k) = κt−1(k), ∀k = 1, 2, ..., lt − 1. (12.7)

Then, as k traverses rightward from lt to k̄ − 1, let

κt(k) = κt−1(k + 1), whenever N κt−1(lt)
t > N κt−1(k+1)

t . (12.8)

Denote by jt the smallest k = lt, lt + 1, ..., k̄ − 1 such that N κt−1(lt)
t ≤ N κt−1(k+1)

t ,

while making jt = k̄ when the inequality is unsatisfiable. Now let κt(jt) = κt−1(lt),
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and

κt(k) = κt−1(k), ∀k = jt + 1, jt + 2, ..., k̄. (12.9)

Due to (48), (49), and (50), as well as (54) at t− 1,

N κt−1(1)
t ≤ N κt−1(2)

t ≤ · · · ≤ N κt−1(lt−1)
t , N κt−1(lt+1)

t ≤ N κt−1(lt+2)
t ≤ · · · ≤ N k̄

t ;

(12.10)

also, N κt−1(lt)
t = N κt−1(lt)

t−1 + 1. Hence, (12.7) to (12.9) will guarantee κt’s satisfaction

of (54).

3 Details Revolving around Theorem 4

We can construct a demand-distribution vector f ≡ (fk)k=1,2,...,k̄ ∈ (F∞(d̄))k̄ such

that 0 = V 1
f1 = · · · = V k̄−1

f k̄−1 < V k̄
f k̄

. For two demand distributions f k̄a,T and f k̄b,T that

become ever closer to f k̄ as T → +∞, consider two vectors fa,T ≡ (f 1, ..., f k̄−1, f k̄a,T )

and fb,T ≡ (f 1, ..., f k̄−1, f k̄b,T ). By exploiting the difficulty of distinguishing the two

distributions, as expressed through Theorem 2.2 (iii) of Tsybakov [36], we can

establish the T 1/2-sized bound.

However, at least for the case where

p̄1 − c̄ > b̄, (12.11)

there is hope that a three- rather than two-scenario treatment might help tighten up

the bound further. The three scenarios fa,T , fb,T , and fc,T can be constructed

differently from the above. A policy’s ability to tell apart scenarios fa,T and fb,T can

be shown to depend on Ef̂b,T [N 1
T ], the average number of times that p̄1 is adopted

when applying the policy to scenario fb,T . The smaller Ef̂b,T [N 1
T ] is, the tighter the

regret’s lower bound will be. We design fc,T such that a large Ef̂c,T [N 1
T ] will be

impossible when the regret is small. Yet, also by ensuring that fc,T is close to fb,T ,
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we can potentially make Ef̂b,T [N 1
T ] small as well. Unfortunately, so far a good

enough bound for Ef̂b,T [N 1
T ]− Ef̂c,T [N 1

T ] has not been found. The current T 1/2-sized

bound has only utilized the crude Ef̂b,T [N 1
T ] ≤ T .

In the hope that our proof technique can be further improved, we choose to present

details for the case satisfying (12.11). At each horizon length T , we consider three

demand-distribution vectors fa,T , fb,T , and fc,T from (F∞(d̄))k̄ that differ only under

the first price choice. Effectively, let fa,T = (f 1
a,T , f

2, f 3, ..., f k̄),

fb,T = (f 1
b,T , f

2, f 3, ..., f k̄), and fc,T = (f 1
c,T , f

2, f 3, ..., f k̄). For some small constants

εT and ηT that go down to 0 at different speeds as T → +∞, we make sure that

DKL(f 1
b,T ||f 1

a,T ) is proportional to ε 2
T and DKL(f 1

c,T ||f 1
b,T ) is proportional to η 2

T . We

need to consider only deterministic policies (k,y), so that each time-t price choice kt

is a function of historical demand observation d[1,t−1] and so is each ordering

decision yt. This is because the performance of any randomized policy is the average

of deterministic policies.

Under any fixed deterministic policy (k,y), we can ensure that the regret RT
fa,T

(k,y)

of applying the policy to scenario fa,T is more than a constant times of εT

multiplying
∑T

t=1 Pf̂a,T [kt 6= 1 or yt 6= 1], the average number of times either price

choice is not 1 or ordering decision is not 1; we can be sure that the regret

RT
fb,T

(k,y) of applying the policy to scenario fb,T is more than a constant times of εT

multiplying
∑T

t=1 Pf̂b,T [kt = 1 and yt = 1], the average number of times both price

choice is 1 and ordering decision is 1; also, we can be sure that the regret RT
fc,T

(k,y)

of applying the policy to scenario fc,T is more than a constant times of ηT

multiplying Ef̂c,T [N 1
T ], the average number of times the price choice is 1.

Since “either kt 6= 1 or yt 6= 1” and “both kt = 1 and yt = 1” are two opposite bets,

the regret due to the inability to tell apart fa,T and fb,T can be bounded using

Theorem 2.2 (iii) of Tsybakov [36]. For distributions f̂t and ĝt on F t and function φ
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from F t to {0, 1}, the theorem states that

Pf̂t [φ(D[1t]) = 0] ∨ Pĝt [φ(D[1t]) = 1] ≥ 1

4
· exp

(
−DKL(f̂t||ĝt)

)
, (12.12)

where DKL(f̂t||ĝt) is the Kullback-Leibler divergence between f̂t and ĝt, such that

DKL(f̂t||ĝt) ≡
d̄∑

d1=0

· · ·
d̄∑

dt=0

f̂t(d[1t]) · ln

(
f̂t(d[1t])

ĝt(d[1t])

)
. (12.13)

In our execution, f̂t will be substituted by f̂b,T,t−1, the distribution for d[1,t−1] that

results from applying (k,y) to the demand-distribution vector fb,T ; whereas, ĝt will

be substituted by f̂a,T,t−1, the distribution for d[1,t−1] that results from applying

(k,y) to the demand-distribution vector fa,T . The divergence DKL(f̂b,T,t−1||f̂a,T,t−1)

that appear on the right-hand side of (12.12), on the other hand, is equal to

DKL(f 1
b,T ||f 1

a,T ) times Ef̂b,T [N 1
t−1], the number of times that price choice 1 is taken

up to time t when applying (k,y) to scenario fb,T .

To see this, suppose demand-distribution vectors f ≡ (fk)k=1,2,...,k̄ and

g ≡ (gk)k=1,2,...,k̄ in (F∞(d̄))k̄ along with decision rule (k,y) result with f̂t and ĝt on

F t; i.e.,

 f̂t(d[1t]) = fk1(d1) · fk2(d1)(d2) · · · fkt(d[1,t−1])(dt),

ĝt(d[1t]) = gk1(d1) · gk2(d1)(d2) · · · gkt(d[1,t−1])(dt).
(12.14)

Then from (12.13),

DKL(f̂t||ĝt) =
∑d̄

d1=0 · · ·
∑d̄

dt=0 f
k1(d1) · fk2(d1)(d2) · · · fkt(d[1,t−1])(dt)×

× ln[fk1(d1) · fk2(d1)(d2) · · · fkt(d[1,t−1])(dt)/(g
k1(d1) · gk2(d1)(d2) · · · gkt(d[1,t−1])(dt))],

(12.15)
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which is further equal to

∑d̄
d1=0 f

k1(d1) · [ln(fk1(d1)/gk1(d1))

+
∑d̄

d2=0 f
k2(d1)(d2) · [ln(fk2(d1)(d2)/gk2(d1)(d2)) + · · · · · ·

+
∑d̄

dt=0 f
kt(d[1,t−1])(dt) · ln(fkt(d[1,t−1])(dt)/g

kt(d[1,t−1])(dt)) · · · ]]

= DKL(fk1||gk1) +
∑d̄

d1=0 f
k1(d1) · [DKL(fk2(d1)||gk2(d1)) + · · · · · ·

+
∑d̄

dt−1=0 f
kt−1(d[1,t−2])(dt−1) ·DKL(fkt(d[1,t−1])||gkt(d[1,t−1])) · · · ]

=
∑k̄

k=1 DKL(fk||gk) · {1(k1 = k) +
∑d̄

d1=0 f
k1(d1) · [1(k2(d1) = k) + · · ·

+
∑d̄

dt−1=0 f
kt−1(d[1,t−2])(dt−1) · 1(kt(d[1,t−1]) = k) · · · ]}

=
∑k̄

k=1 DKL(fk||gk) · Ef̂t [N
k
t ].

(12.16)

Replacing f by our current fb,T , and g by our current fa,T , while noting that fb,T and

fa,T differ only under the price choice 1, we can obtain from (12.15) and (12.16) that

DKL(f̂b,T,t−1||f̂a,T,t−1) = DKL(f 1
b,T ||f 1

a,T ) · Ef̂b,T [N 1
t−1]. (12.17)

Since DKL(f 1
b,T ||f 1

a,T ) is proportional to ε 2
T , the above indicates that one lower

bound for supf∈(F∞(d̄))k̄ R
T
f (k,y) will come in the form of

Rba,T = A′′ · εT ·
T∑
t=1

exp
(
−B′′ · ε 2

T · Ef̂b,T [N 1
t−1]
)
, (12.18)

where A′′ and B′′ are constants. The better an upper bound we have for Ef̂b,T [N 1
T ],

the better a lower bound we will have for supf∈(F∞(d̄))k̄ R
T
f (k,y). For instance, if

Ef̂b,T [N 1
T ] and hence Ef̂b,T [N 1

t−1] were bounded by a constant times T 2/3, then we

could choose εT as “bad” as being proportional to T−1/3. This would make Rba,T

bounded by a constant times T 2/3.

Our introduction of fc,T is for the purpose of bounding Ef̂b,T [N 1
T ]. For RT

fc,T
(k.y)

which is above a constant times ηT · Ef̂c,T [N 1
T ] to be upper-bounded by a constant



-106-

times T 2/3, while ηT is decreasing in T very slowly say at the pace of T−ν for some

tiny ν > 0, we must have Ef̂c,T [N 1
T ] being upper-bounded by a constant times

T 2/3+ν . Because DKL(f 1
c,T ||f 1

b,T ) is proportional to η 2
T , which though slowly will

decrease to 0 as T → +∞. So decisions under fb,T and fc,T should be close. If this

were exploited efficiently, this might lead to

Ef̂b,T [N 1
T ] ≤ Ef̂c,T [N 1

T ] + a slow-growing term. (12.19)

If we succeeded in (12.19) and arrived to a bound for Ef̂b,T [N 1
T ] that is proportional

to T 2/3+2ν say, then we would be able to prove a lower bound for the regret that is

proportional to T 2/3−ν—just consider εT = T−1/3−ν in (12.18).

This now leads to our potentially improvable lower bound, Theorem 4.

Proof of Theorem 4: Throughout, we let items be perishable. The same lower

bound will certainly be true when (3) is further required. Let β still stand for the

parameter b̄/(h̄+ b̄) ∈ (0, 1). We first concentrate on the case with (12.11). Define

γ ∈ (β, 1) such that

γ = 1− p̄1 − c̄− b̄
p̄2 − c̄− b̄

· (1− β). (12.20)

Consider f ≡ (fk)k=1,2,...,k̄ ∈ (F∞(d̄))k̄ such that

f 1(0) = β, f 1(1) = 1− β, f 1(2) = f 1(3) = · · · = 0, (12.21)

f 2(0) = γ, f 2(1) = 1− γ, f 2(2) = f 2(3) = · · · = 0, (12.22)

and for k = 3, 4, ..., k̄,

fk(0) = 1, fk(1) = 0, fk(2) = fk(3) = · · · = 0. (12.23)
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From (9), we know y∗f1 = y∗f2 = y∗f3 · · · = y∗
f k̄

= 0; thus, by (37), (38), (102),

and (12.20),

V 1
f1 = V 2

f2 = (p̄1− c̄− b̄) ·(1−β) = (p̄2− c̄− b̄) ·(1−γ) > V 3
f3 = · · · = V k̄

f k̄
= 0. (12.24)

At each T , consider alternatives fa,T , fb,T , and fc,T to f , with

fa,T = (f 1
a,T , f

2, f 3, ..., f k̄), fb,T = (f 1
b,T , f

2, f 3, ..., f k̄), and fc,T = (f 1
c,T , f

2, f 3, ..., f k̄).

Let εT and ηT be constants within (0, [β ∧ (1− γ)]/2) that satisfy εT < ηT ; also, let

f 1
a,T (0) = β − εT f 1

a,T (1) = 1− β + εT , f 1
a,T (2) = f 1

a,t(3) = · · · = 0, (12.25)

f 1
b,T (0) = β + εT , f 1

b,T (1) = 1− β − εT , f 1
b,T (2) = f 1

b,T (3) = · · · = 0, (12.26)

f 1
c,T (0) = β + ηT , f 1

c,T (1) = 1− β − ηT , f 1
c,T (2) = f 1

c,T (3) = · · · = 0, (12.27)

Due to (9), we have y∗
f1
a,T

= 1 and y∗
f1
b,T

= y∗
f1
c,T

= 0. By (37) and (38), it also follows

that

V 1
f1
a,T

= Vf1
a,T

(p̄1, 1) = (p̄1 − c̄) · (1− β + εT )− h̄ · (β − εT )

= (p̄1 − c̄− b̄) · (1− β) + (p̄1 − c̄+ h̄) · εT = V 2
f2 + (p̄1 − c̄+ h̄) · εT ,

(12.28)

Vf1
a,T

(p̄1, 0) = (p̄1 − c̄− b̄) · (1− β + εT ) = V 2
f2 + (p̄1 − c̄− b̄) · εT , (12.29)

V 1
f1
b,T

= Vf1
b,T

(p̄1, 0) = (p̄1 − c̄− b̄) · (1− β − εT )

= (p̄1 − c̄− b̄) · (1− β)− (p̄1 − c̄− b̄) · εT = V 2
f2 − (p̄1 − c̄− b̄) · εT ,

(12.30)

Vf1
b,T

(p̄1, 1) = (p̄1 − c̄) · (1− β − εT )− h̄ · (β + εT ) = V 2
f2 − (p̄1 − c̄+ h̄) · εT , (12.31)

V 1
f1
c,T

= Vf1
c,T

(p̄1, 0) = (p̄1 − c̄− b̄) · (1− β − ηT )

= (p̄1 − c̄− b̄) · (1− β)− (p̄1 − c̄− b̄) · ηT = V 2
f2 − (p̄1 − c̄− b̄) · ηT ,

(12.32)

Vf1
c,T

(p̄1, 1) = (p̄1 − c̄) · (1− β − ηT )− h̄ · (β + ηT ) = V 2
f2 − (p̄1 − c̄+ h̄) · ηT . (12.33)
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Now from (12.13) and (12.25) to (12.27), we can obtain

DKL(f 1
b,T ||f 1

a,T ) = (β + εT ) · ln
(
β + εT
β − εT

)
+ (1− β − εT ) · ln

(
1− β − εT
1− β + εT

)
, (12.34)

DKL(f 1
c,T ||f 1

b,T ) = (β + ηT ) · ln
(
β + ηT
β + εT

)
+ (1− β − ηT ) · ln

(
1− β − ηT
1− β − εT

)
. (12.35)

From (12.34),

DKL(f 1
b,T ||f 1

a,T ) = (β + εT ) · ln(1/(1− x)) + (1− β − εT ) · ln(1/(1 + y))

≤ (β + εT ) · (x+ x2) + (1− β − εT ) · (−y + y2)

= 4ε 2
T · [1/(β + εT ) + 1/(1− β − εT )] ≤ 8ε 2

T /(β · (1− β)),

(12.36)

where x = 2εT/(β + εT ) and y = 2εT/(1− β − εT ). From (12.35),

DKL(f 1
c,T ||f 1

b,T ) = (β + ηT ) · ln(1/(1− x)) + (1− β − ηT ) · ln(1/(1 + y))

≤ (β + ηT ) · (x+ x2) + (1− β − ηT ) · (−y + y2)

= (ηT − εT )2/((β + ηT ) · (1− β − ηT )) < 2η 2
T /(β · (1− β)),

(12.37)

where x = (ηT − εT )/(β + ηT ) and y = (η − εT )/(1− γ − ηT ).

For i = a, b, c, let f̂i,T,t−1 be the distribution on F t−1 resulting from applying the

current policy to demand-distribution vector fi,T for t− 1 periods. Thus,

with (12.15), the definitions of fa,T , fb,T , and fc,T , as well as (12.36) and (12.37),

DKL(f̂b,T,t−1||f̂a,T,t−1) = DKL(f 1
b,T ||f 1

a,T ) · Ef̂b,T [N 1
t−1] ≤ 8ε 2

T

β · (1− β)
· Ef̂b,T [N 1

t−1],

(12.38)

DKL(f̂c,T,t−1||f̂b,T,t−1) = DKL(f 1
c,T ||f 1

b,T ) · Ef̂c,T [N 1
t−1] ≤ 2η 2

T

β · (1− β)
· Ef̂c,T [N 1

t−1].

(12.39)

Under a given adaptive policy (k,y), let N k,y
t be the number of periods from 1 to t
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under which the price choice is k and ordering decision is y:

N k,y
t =

t∑
s=1

1(ks = k and ys = y). (12.40)

Compared to N k
t in (42), it is certainly true that N k

t =
∑d̄

y=0N
k,y
t .

Meanwhile, (41), (12.24), and (12.28) to (12.33) reveal that

RT
fa,T

(k,y) ≥ (h̄+ b̄) · εT · Ef̂a,T [N 1,0
T ] + (p̄1 − c̄+ h̄) · εT · Ef̂a,T [N 2

T ]

+(p̄1 − c̄− b̄) · (1− β) · Ef̂a,T [T −N 1,0
T −N

1,1
T −N 2

T ],
(12.41)

RT
fb,T

(k,y) ≥ (p̄1 − c̄− b̄) · εT · Ef̂b,T [N 1,0
T ] + (p̄1 − c̄+ h̄) · εT · Ef̂b,T [N 1,1

T ]

+(p̄1 − c̄− b̄) · (1− β) · Ef̂b,T [T −N 1,0
T −N

1,1
T −N 2

T ],
(12.42)

RT
fc,T

(k,y) ≥ (p̄1 − c̄− b̄) · ηT · Ef̂c,T [N 1,0
T ] + (p̄1 − c̄+ h̄) · ηT · Ef̂c,T [N 1,1

T ]

+(p̄1 − c̄− b̄) · (1− β) · Ef̂c,T [T −N 1,0
T −N

1,1
T −N 2

T ].

(12.43)

Hence,

 RT
fa,T

(k,y) ≥ (h̄+ b̄) · εT ·
∑T

t=1 Pf̂a,T [kt 6= 1 or yt 6= 1],

RT
fb,T

(k,y) ≥ (h̄+ b̄) · εT ·
∑T

t=1 Pf̂b,T [kt = 1 and yt = 1],
(12.44)

which, due to (12.12), will lead to

RT
fa,T

(k,y)∨RT
fb,T

(k,y) ≥ 1

8
· (h̄+ b̄) · εT ·

T∑
t=1

exp
(
−DKL(f̂b,T,t−1||f̂a,T,t−1)

)
, (12.45)

where we have used the fact that, for positive numbers x1, y1, ..., xn, yn,

(x1 + · · ·+ xn)∨ (y1 + · · ·+ yn) ≥ x1 + y1

2
+ · · ·+ xn + yn

2
≥ x1 ∨ y1

2
+ · · ·+ xn ∨ yn

2
.

(12.46)
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Now combine (12.38) and (12.43) with (12.45), and we can obtain

sup
f∈(F∞(d̄))k̄

RT
f (k,y) ≥ Rba,T ∨Rc,T , (12.47)

where

Rba,T =
1

8
· (h̄+ b̄) · εT ·

T∑
t=1

exp

(
− 8ε 2

T

β · (1− β)
· Ef̂b,T [N 1

t−1]

)
, (12.48)

Rc,T = (p̄1 − c̄− b̄) · ηT · Ef̂c,T [N 1
T ]. (12.49)

Note that Ef̂b,T [N 1
t−1] ≤ Ef̂b,T [N 1

T ] ≤ T . When εT = T−1/2, every exponential term

in (12.48) will be bounded from below by a constant. This will lead to a T 1/2-sized

lower bound for Rba,T . We will thus obtain the theorem’s bound using (12.47).

Our bound would improve if (12.19) could be achieved by exploiting the yet

untouched (12.39) and (12.49). The best of our effort is summarized. Using a trick

from Auer et al. [3], we see that Ef̂b [N
1
t−1] is linked with Ef̂c [N

1
t−1]. By (12.39),

Ef̂b,T [N 1
T ]− Ef̂c,T [N 1

T ] is equal to

∑d̄
d1=0 · · ·

∑d̄
dT−1=0 1(N 1

T (d[1,T−1])) · [f̂b,T (d[1,T−1])− f̂c,T (d[1,T−1])]

≤ T ·
∑d̄

d1=0 · · ·
∑d̄

dT−1=0 1(f̂b,T (d[1,T−1]) ≥ f̂c,T (d[1,T−1])×

×[f̂b,T (d[1,T−1])− f̂c,T (d[1,T−1])]

= T · ||f̂b,T,t−1 − f̂c,T,t−1||1/2 ≤ T · (2 ·DKL(f̂c,T,t−1||f̂b,T,t−1))1/2/2

≤ T · ηT · (Ef̂c,T [N 1
t−1])1/2/(β · (1− β))1/2,

(12.50)

where the first equality realizes that N 1
T achieves the same value under the same

demand path under both distributions, and the first inequality is attributable to

N 1
T ≤ T . Note that ||f̂b,T,t−1 − f̂c,T,t−1||1 stands for the sum of terms

|f̂b,T,t−1(d[1,t−1])− f̂c,T,t−1(d[1,t−1])| and its relation with DKL(f̂c,T,t−1||f̂b,T,t−1) is

known as Pinsker’s inequality. From (12.49), we can obtain a T 2/3+2ν-sized upper
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bound for Ef̂c,T [N 1
T ] if Rc,T is to be kept below some constant times T 2/3+ν while

ηT = T−ν . Unfortunately, this fails to make (12.50) much closer to (12.19).

For the general case where (102) but not necessarily (12.11) is maintained, let

f00 ∈ F0 be the all-zero demand distribution such that

f00(0) = 1, f00(1) = f00(2) = · · · = 0. (12.51)

For Vf (p, y) defined at (37), note that Vf00(p, y) = −b̄ · y for any price p and any

order-up-to level y = 0, 1, ..., d̄; hence, for V k
f defined at (38), it follows that

V k
f00

= Vf00(p̄k, 0) = 0. Let fβ ∈ F0 be the demand distribution with a β portion on

d̄− 1 and a 1− β portion on d̄:

fβ(0) = · · · = fβ(d̄− 2) = fβ(d̄+ 1) = · · · = 0, fβ(d̄− 1) = β, fβ(d̄) = 1− β.

(12.52)

From (9), note that y∗fβ = d̄− 1. The earlier (102) amounts to

V k̄
fβ

= Vfβ(p̄k̄, d̄−1) = Vfβ(p̄k̄, d̄) = (p̄k̄− c̄) ·(d̄−1)−(b̄+ c̄− p̄k̄) ·(1−β) > 0. (12.53)

Consider f ≡ (f 1, f 2, ..., f k̄) ∈ (F∞(d̄))k̄ such that

f 1 = f 2 = · · · = f k̄−1 = f00, f k̄ = f00. (12.54)

Our construction has ensured that

V k̄
f k̄

= (p̄k̄ − c̄) · (d̄− 1)− (b̄+ c̄− p̄k̄) · (1− β) > 0 = V 1
f1 = · · · = V k̄−1

f k̄−1 . (12.55)

Consider perturbations fa,T ≡ (f 1, ..., f k̄−1, f k̄a,T ) and fb,T ≡ (f 1, ..., f k̄−1, f k̄b,T ). Let εT
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be a constant within (0, [β ∧ (1− β)]/2) and

 f k̄a,T (0) = · · · = f k̄a,T (d̄− 2) = f k̄a,T (d̄+ 1) = f k̄a,T (d̄+ 2) = · · · = 0,

f k̄a,T (d̄− 1) = β − εT , f k̄a,T (d̄) = 1− β + εT ,
(12.56)

 f k̄b,T (0) = · · · = f k̄b,T (d̄− 2) = f k̄b,T (d̄+ 1) = f k̄b,T (d̄+ 2) = · · · = 0,

f k̄b,T (d̄− 1) = β + εT , f k̄a,T (d̄) = 1− β − εT .
(12.57)

Due to (9), y∗
f k̄a,T

= d̄ and y∗
f k̄b,T

= y∗
f k̄c,T

= d̄− 1. By (37) and (38), it also follows that

V k̄
f k̄a,T

= Vf k̄a,T
(p̄k̄, d̄) = (p̄k̄ − c̄) · (d̄− β + εT )− h̄ · (β − εT )

= (p̄k̄ − c̄) · (d̄− β)− h̄ · β + (p̄k̄ − c̄+ h̄) · εT = V 2
f2 + (p̄k̄ − c̄+ h̄) · εT ,

(12.58)

Vf k̄a,T
(p̄k̄, d̄− 1) = (p̄k̄ − c̄) · (d̄− β + εT )− b̄ · (1− β + εT )

= (p̄k̄ − c̄) · (d̄− β)− b̄ · (1− β)− (b̄+ c̄− p̄k̄) · εT = V 2
f2 − (b̄+ c̄− p̄k̄) · εT ,

(12.59)

V k̄
f k̄b,T

= Vf k̄b,T
(p̄k̄, d̄− 1) = (p̄k̄ − c̄) · (d̄− β − εT )− b̄ · (1− β − εT )

= (p̄k̄ − c̄) · (d̄− β)− b̄ · (1− β) + (b̄+ c̄− p̄k̄) · εT = V 2
f2 + (b̄+ c̄− p̄k̄) · εT ,

(12.60)

Vf k̄b,T
(p̄k̄, d̄) = (p̄k̄ − c̄) · (d̄− β − εT )− h̄ · (β + εT )

= (p̄k̄ − c̄) · (d̄− β)− h̄ · β − (p̄k̄ − c̄+ h̄) · εT = V 2
f2 − (p̄k̄ − c̄+ h̄) · εT ,

(12.61)

From these, we obtain

 RT
fa,T

(k,y) ≥ (p̄k̄ − c̄+ h̄) · εT ·
∑T

t=1 Pf̂a,T [kt 6= k̄ or yt 6= d̄],

RT
fb,T

(k,y) ≥ (p̄k̄ − c̄+ h̄) · εT ·
∑T

t=1 Pf̂b,T [kt = k̄ and yt = d̄],
(12.62)

much like the earlier (12.44). Meanwhile, due to (12.13), (12.56), and (12.57),

DKL(f k̄b,T ||f k̄a,T ) is again upper-bounded by a constant times ε 2
T , much like the

earlier (12.36). A T 1/2-sized lower bound for the regret will then follow from using
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the same logic employed earlier.
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