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ABSTRACT OF THE DISSERTATION

Data-driven Operations Management in Bike Sharing Systems

By JUNMING LIU

Dissertation Director: Dr. Hui Xiong

The self-service bike sharing systems, which offer an environmentally friendly op-

tion for the first-and-last mile transportation, have become prevalent in urban cities.

In this dissertation, I aim to integrate the advanced Data Mining techniques and

Operations Management algorithms for bike sharing system daily operations man-

agement, service area expansion, and station site selection.

Daily Operations Management. Due to the geographical and temporal unbal-

ance of bike usage demand, a number of bikes need to be reallocated among stations

during midnight so as to maintain a high service level of the system. To conduct such

bike rebalancing operations, I develop a bike demand predictor for station pick-up

demand and drop-off demand prediction. Then, a Mixed Integer Linear Programming

(MILP) model is formulated to optimize the routing problem of rebalancing vehicles.

To address the challenge of computational efficiency, I propose a data-driven hier-

archical optimization methodology to decompose the multi-vehicle routing problem

into smaller and localized single-vehicle routing problems.

Expansion Area Demand Analysis. Another key to success for a bike sharing

systems expansion is the bike demand prediction for expansion areas. I develop a

hierarchical station bike demand predictor which analyzes bike demands from func-

tional zone level to station level. Specifically, I first divide the studied bike stations
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into functional zones by a novel Bi-clustering algorithm which is designed to clus-

ter bike stations with similar POI characteristics and close geographical distances

together. Then, the hourly bike check-ins and check-outs of functional zones are

predicted by integrating three influential factors: distance preference, zone-to-zone

preference, and zone characteristics. The station demand is estimated by studying

the demand distributions among the stations within the same functional zone.

Station Site Location Selection. In an ideal bike sharing network, the station

locations are usually selected in a way that there are balanced pick-ups and drop-offs

among stations. This can help avoid expensive re-balancing operations and maintain

high user satisfaction. Here I propose a bike sharing network optimization approach

based on an Artificial Neural Network for station demand prediction and a Genetic

Algorithm for station site optimization. The goal is to enhance the quality and

efficiency of the bike sharing service by selecting the right station locations.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Recent years have witnessed worldwide prevalence and popularity of public bike shar-

ing system1 . A bike sharing system provides short-term bike rental service with bike

stations scattered over an urban city. Bike users rent the public bike for inner-city

transportation from one bike station to another. With the exploding growth, public

bike sharing system has rapidly emerged as an innovative and sustainable trans-

portation option in urban cities around the world. Furthermore the advance of IT

technology has been greatly adopted to bike sharing systems, such as tracking and

locating bikes with GPS, and storing bike usage information computers2 , which has

greatly improved the bike sharing service and reduced the number of stolen bikes.

The emerging prevalence of public bike sharing system has brought various ben-

efits to commuters, transportation systems, and urban stainability. Commuters may

not only leave the stress of congested downtown traffic, but also get good exercise

by riding bikes. As for transportation systems, the bike sharing systems offer an

environment-friendly solution for the first-and-last mile connection and for bridging

the gap between existing transportation modes such as subways and rail systems. The

1https://en.wikipedia.org/wiki/Bicycle-sharing system
2https://www.bcycle.com/
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public bike sharing service is a type of collaborative consumption, which enables the

optimization of resources and the reduction of carbon footprint. While the bike shar-

ing system makes the urban area more sustainable, it also changes the landscape of

bicycling, creates and enhances communities of people, which consequently increases

the safety in neighborhoods.

While the public bike sharing service could provide many benefits on both macro

and micro levels, there are many challenges in real practice. First, given an urban

area, it is challenging to decide the coverage of bike sharing service. Within each

selected service coverage, bike sharing service providers need to further determine

the specific station locations and estimate the number of docks. To make these

decisions, service providers need to take into account many factors such as daily

human mobility, existing transportation facility, and the road condition. Second, it

is very challenging to operate and manage the bike sharing systems in an effective

and efficient way. For instance, the dynamics of human mobility may cause inevitable

imbalance among all bike stations, i.e., some bike stations may be short of bikes and

others may be overstocked for a short-term period. Thus, it will be very crucial for

service providers to redistribute bikes among stations in a proactive and economical

way in order to ensure the system works effectively. Third, It is very important yet

challenging to discover the purpose of bike trips by various users. Different users

have different motives for using a shared bike. For instance, some users ride bikes

for avoiding the traffic and saving the daily commute time, while others may ride

bikes mainly for the purpose of exercise. Understanding the purpose of trips will not

only help solve the above two challenges but also help vendors decide good marketing
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strategies for attracting more users. In addition, bike sharing service providers may

also need to address other practical challenges such as the potential rider safety issue

and reservation policy.

A promising way to tackle the challenges above is to leverage a variety of data

that are directly or indirectly related to the public bike sharing service. The first

group of data is the bike sharing system data that includes bike trip history and

station status information. The bike trip record includes the pick-up/drop off stations

and times, and some user information. The station status information includes the

vacancy rate of each station at different times. If analyzed properly, this group of

data could provide great insight into the dynamics of demand cross different stations

and the purpose of bike trips. The second group of data is the traditional public

transportation data including taxi GPS logs and bus/train smart card data. Today’s

taxi GPS logs record locations of a taxi cab in a very fine time granularity and its

operation status (e.g., carrying passengers or not) as well. Bus/train smart card data

record the origin and destination of each trip and associated times as well. As each

trip of a taxi, bus or train represents a movement of a human, we may obtain a good

understanding of human mobility by collectively analysing all trips together. This

will consequently help us identify the locations where the first/last mile trip exists

and infer the demand of bicycle at different location. The third group of data is the

Point-of-Interest (POI) data such as the check-ins on Foursquare, which could reveal

the popularity density over times. This kind of information may help us identify the

crowd areas in a city, where many people often wonder. In these areas, more bikes

may be needed than other non-crowd areas. Additional data such as the weather
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report and geographic condition may also be helpful for addressing challenging of

bike sharing service. Particularly, we have already collected partial data from different

sources, including historical bike sharing system logs, public transportation data and

location-based service data in several urban areas such as New York City and Beijing.

Furthermore, we have accomplished some preliminary study with the data (Liu et al.,

2015).

However, it is a non-trivial problem to leverage multiple-source data for improving

the bike sharing service. First, there is redundant information about human mobility

among different types of data such as the taxi GPS log and bus/train smart card

log. How to infer the demand of shared bike at an individual station by integrating

all types of data together is very challenging. Second, most data are spatio-temporal

data, which means observations are associated with location and time. The compu-

tation complexity of many data mining tasks with spatio-temporal data is often very

high (Shekhar et al., 2015). Therefore, efficient methods will be needed for many

prediction and optimization tasks such as predicting the imbalance of bike station

and re-balancing the bike station on an hourly base. Third, although we may obtain

useful knowledge by mining the data, it is still very challenging to take the knowledge

into consideration for optimizing bike station site selection and re-balancing.

1.2 Research Contribution

The major focus of this thesis is on integrating and mining multiple source data

(e.g., bike sharing log, human mobility and transportation data) to understand and

improve the emerging rental bike service in urban areas around the world. I aim



- 5 -

to develop a smart bike sharing system that could not only optimize the selection

of rental bike stations but also proactively re-balance the bikes at stations in an

optimal way. To validate the developed methods, I will not only adopt traditional

machine learning paradigms (e.g., leave-out validation), but also conduct the linear

programming methods. Here I identify the following key research contributions:

• Bike trip profiling. I categorize and reveal the purpose (e.g., daily commut-

ing) of bike trip by analyzing the rental bike records collected from vendors.

The discovered trip purpose distribution over time at each station is leveraged

for optimizing the bike station site selection and station re-balancing.

• Bike station optimization. The first critical research contribution is to op-

timize the location of bike stations in a city. There are two essential issued

addressed in this component. The first one is to create and select useful fea-

tures from various human mobility data, identify potential spots for deploying

bike stations, and further estimate the dynamic demand of bike at these loca-

tions. The second one is how to optimize the selection of stations under different

constraints (such as the limited number of available bikes). The objective of

the optimization is to maximally meet the demand of bike and minimize the

potential imbalance of station.

• Station in-service area expansion. To address the challenge of bike demand

forecasting in expansion areas, where the historical bike trip records are not

available, I develop a hierarchical station bike demand predictor which analyzes

bike demands from functional zone level to station level in expansion areas.
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• Station re-balancing. The objective of this task is to proactively re-balance

the bikes at stations. An essential research contribution is to predict the po-

tential imbalance in advance by leveraging both real-time bike station data and

human mobility data. With the early prediction of imbalance at each station,

the next contribution is to globally optimize the redistribution of bikes under

possible constraints such as the financial cost constraint and the number of

redistribution trucks.

1.3 Overview

Chapter 2 addresses the issue of bike sharing system unbalanced demand. First, I

discuss the motivation and unbalanced human mobility pattern, which result in a low

service level of bike rental services. Then I compute the station level bike pick-up

demand and drop-off demand. Based on the bike demand prediction and its future

station inventory level, I formulate a mixed integer linear programming model to

redistribute bikes among bike stations. In addition, to reduce the computational

cost of this large-scale optimization problem, I develop a hierarchical optimization

method which integrates the capacity constraint K-centers clustering algorithm and

1-vehicle mixed integer programming model. To meet the rebalancing operation of

outlier stations (stations with extremely large rebalancing targets), I further develop a

partial-visiting strategy and multi-visiting strategy. Experiments based on real-world

data validate the effectiveness and efficiency of the developed methods.

Chapter 3 addresses the issue of bike demand forecasting in expansion areas. First,

I start from the demand analysis of existing bike sharing systems by integrating hu-
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man mobility pattern discovery and urban city functional zones. Then a hierarchical

demand forecasting model is developed to learn the bike demand from functional

zone level to station level. Finally, the zone-zone and station-station bike transition

patterns are transferred to the functional zones in expansion areas for bike demand

forecasting.

Chapter 4 presents a data-driven bike station site selection model based on an

artificial neural network model for bike demand and operational cost prediction and a

genetic algorithm for combinatorial optimization of bike station site location selection.

Specifically, for each candidate bike station network, we estimate the total demand

and total operational cost. The genetic algorithm searches for the optimal station

network by testing a better solution which provides a higher total demand and a

smaller operational cost.
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CHAPTER 2

REBALANCING BIKE SHARING SYSTEMS: A DATA-DRIVEN

HIERARCHICAL OPTIMIZATION METHODOLOGY

This chapter focuses on the worldwide Bike Sharing Systems rebalancing problem.

Due to the geographical and temporal unbalance of bike usage demand, a number

of bikes need to be reallocated among stations during midnight so as to maintain

a high service level of the system. To optimize such bike rebalancing operations,

two challenges remain: (1) to accurately predict bike pick-up and drop-off demand

at station level, so as to determine the rebalancing target for each station, and (2)

to efficiently optimize the rebalancing route of multiple dispatching vehicles for the

large-scale bike sharing system with the existence of outlier stations, which have large

rebalancing targets exceeding vehicle capacity. To this end, we develop a meteorology

similarity K-nearest Neighbor regressor and a nonlinear autoregressive network with

exogenous meteorology factors (NARX) to predict bike pick-up demand, and a pick-

drop bike transition (PDBT) predictor for transition patterns discovery and bike

drop-off demand prediction. Then, a Mixed Integer Linear Programming (MILP)

model is formulated to optimize the routing problem of rebalancing vehicles. To

address the challenge of computational efficiency, we propose a data-driven hierarchi-

cal optimization methodology that to decompose the multi-vehicle routing problem

into smaller and localized single-vehicle routing problems. Further, we propose two
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advanced rebalancing strategies: partial target satisfying strategy and multi-vehicle

visiting strategy to deal with outlier stations while ensuring the feasibility of the route

optimization solution. Finally, extensive numerical results, using real data from the

New York City Citi Bike, Chicago Divvy, and Boston Hubway bike sharing systems,

show the accuracy of the proposed bike demand predictors, as well as the effectiveness

and efficiency of the proposed hierarchical optimization strategies.

2.1 Introduction

The self-service bike sharing systems (DeMaio & Meddin, 2018), which offer an en-

vironmentally friendly option for the first-and-last mile transportation, have become

prevalent in urban cities. These systems bridge the gaps between public transporta-

tion modes such as subways, buses and rail systems, and alleviate traffic congestions.

The bike sharing service is a type of collaborative consumption, which enables the op-

timization of resources and reduction of carbon footprint (DeMaio, 2009; Shu, Chou,

Liu, Teo, & Wang, 2013). Further, as a means of exercise, cycling has become a

fashion and increasingly popular transportation method in urban cities.

Despite the significant benefits of bike sharing systems, the daily operations of a

large-scale bike sharing system for a high service level maintenance remain challeng-

ing and inefficient. The dynamics of human mobility often lead to bike supply and

demand imbalance. Specifically, a customer may find a station empty when a bike is

to be picked up, or find a station full when a bike is to be dropped off. The rebalanc-

ing operation has become one of the major cost for service provides to maintain the

service level of bike stations. Thus, it is crucial to reallocate bikes among stations in a
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proactive and economical way. To this end, we study the multiple capacitated vehicle

routing problem for bike system rebalancing optimization when the system is non-

utilized and static (typically during midnight). Practically, system operators need

to determine a daily schedule of bike reallocation among stations during midnight,

considering the truck capacities and time constraints for such operations. During the

rebalancing operations, it assumes that during the rebalancing operation time peri-

ods, the number of bikes at each station will not change, i.e., there is no exogenous

demand (pick-ups or drop-offs by customers) during the rebalancing operations. This

problem is critical for maintaining customer satisfaction, and thus finding an optimal

solution to this problem holds a key to the success of bike sharing systems.

However, several major challenges have been observed to optimize bike rebalancing

operations. The first prominent difficulty is the lack of accuracy in demand predic-

tion. In order to determine the optimal rebalancing schedule, it is essential to decide

the target inventory level (i.e., targeted number of bikes) at each station when the

system resumes normal operation. Subsequently, accurate prediction of station-level

pick-up and drop-off demand is desired, but remains technically challenging because

of multiple impact factors, such as time, locations, weather conditions, and traffic

situations. Most studies on bike demand prediction are based on historical demand

average (Froehlich, Neumann, & Oliver, 2009) or model the system as a stochastic

process with historical pick-up and drop-off rates (Schuijbroek, Hampshire, & van Ho-

eve, 2017). Recently, (Liu, Sun, Chen, & Xiong, 2016a) has shown that the impacts

of other influential factors, such as meteorology reports and inter-station connections

should not be neglected. To close this gap, this paper leverages a variety of data
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(multi-source data) directly or indirectly related to the public bike sharing service, so

as to improve the bike demand prediction accuracy.

Secondly, once the rebalancing targets are determined, the remaining problem be-

comes a large-scale multiple capacitated vehicle routing problem (VRP) with loading

and delivery operations. Bike rebalancing problems on small-scale networks (up to 100

stations) have been investigated by solving optimization models with the assumption

that there exists at least one route covering all target stations (Dell’Amico, Hadji-

costantinou, Iori, & Novellani, 2014). However, in practical problems, such as the

ones considered in this paper, the network typically consists of hundreds of stations

(up to 615 stations in our study), rendering the problem computationally challeng-

ing using traditional optimization algorithms. Furthermore, the problem becomes

more complicated due to the existence of outlier stations, those having very large

numbers of bikes to be relocated, typically exceeding truck capacities. These outlier

stations may render the traditional route optimization models infeasible. Therefore,

to tackle the computational issues incurred by the model size and model infeasibil-

ity, we propose a hierarchical optimization methodology which uses a Spatio-target

Station Clustering Algorithm to decompose the large-scale multiple capacitated VRP

into single-vehicle VRP problems with the consideration of outlier stations. Based

on the clustering-first-optimization-second hierarchical method, we provide a partial

target satisfying strategy to meet the part of rebalancing targets of outlier stations

and a multiple vehicle visiting strategy to allow multiple vehilces to rebalance the

inventory of a single station.

The remainder of this paper is organized as follows. Section 2.2 summarizes related
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literature. Section 2.3 presents the station-level bike demand prediction and the bike

rebalancing optimization problem under study. Section 2.4 introduces the proposed

bike pick-up and drop-off demand prediction models, and Section 2.5 provides the

Mixed Integer Linear Programming formula and the hierarchical approach for solving

the bike rebalancing optimization model. Section 2.6 presents the numerical results

using real data from three major bike sharing systems. Finally, Section 2.7 concludes

this paper.

2.2 Related Work

With the popularization of bike sharing systems around the world, there are increasing

research interests in improving the efficiency of system utilization (Laporte, Meunier,

& Wolfler Calvo, 2015). The related literature mainly focuses on system design, bike

traffic demand analysis, and rebalancing operations.

Bike sharing system design. The design of bike sharing systems is critical for

urban cities which have planned to adopt bike sharing systems, or to expand the

service areas of their existing systems. (dell’Olio, Ibeas, & Moura, 2011) proposes a

comprehensive framework for system implementation, including a prediction model

for potential users’ demand estimation and a location optimization model for station

site selection. (Garca-Palomares, Gutirrez, & Latorre, 2012) uses a geographic infor-

mation system (GIS) to determine the optimal bike station site locations. (Lin, Yang,

& Chang, 2013) proposes a greedy heuristic approach to optimize bike sharing system

design by providing an integrated view of transportation, inventory and facility costs,

as well as service quality. (Freund, Henderson, & Shmoys, 2017) improves the bike
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sharing system design by considering dock capacity allocation. (Liu et al., 2015) and

(Liu et al., 2017) investigate the station site optimization and service area expansion

problems with the consideration of bike demand distribution and expected inventory

unbalance costs. In this paper, we assume that the system design is fixed, and focus

on rebalancing operations, to be reviewed in the sequel.

Bike demand prediction. Existing research on bike sharing systems focuses on

studying spatial-temporal patterns of bike traffics, which discover the characteristics

of bike flow distributions over a daytime (Gebhart & Noland, 2014; Corcoran, Li,

Rohde, Charles-Edwards, & Mateo-Babiano, 2014; Zhou, 2015). (Singhvi et al., 2015)

and (Faghih-Imani, Hampshire, Marla, & Eluru, 2017) build multi-factor statistical

models for bike demand prediction based on linear mixed model and log-log regression

models, respectively. The dynamics of bike demand imbalance for station inventory

management is investigated by estimating station bike pick-up and drop-off rates and

station inventory levels (Alvarez-Valdes, Belenguer, Benavent, Bermudez, Muoz, et

al., 2016; Schuijbroek et al., 2017). Both (Liu et al., 2016a) and (Li, Zheng, Zhang,

& Chen, 2015a) integrates the meteorology conditions as influential factors on bike

demand forecasts. However, both of them ignores the recurrent dynamics of bike

demand as time series.

Bike rebalancing optimization. In general, there are two approaches for rebal-

ancing bikes in a network: by imposing user incentives and by using centralized

rebalancing vehicles. For rebalancing the inherent asymmetry bike demand with

minimum operational cost, (Kaspi, Raviv, & Tzur, 2014) explores bike reservation

policies and suggests users to visit the least loaded stations. Reservations could be
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denied or the destinations could be diverted if no vacant docks were expected to be

available at the original destinations. (Singla et al., 2015) and (Waserhole & Jost,

2016) present different dynamic pricing mechanisms that incentivize users to redis-

tribute bikes by providing alternative rental prices. Although the proposed incentive

schemes are promising in balancing system demands, the user participation rate is

still low and hence existing bike sharing systems mostly rely on using rebalancing

vehicles to reallocate station inventories.

Most studies on the bike rebalancing problem focus on minimizing the operational

cost of the rebalancing vehicles, which is similar to the traveling salesman problem

(Applegate, Bixby, Chvatal, & Cook, 2011) with additional constraints. Thus, it is

an NP-hard problem and to find an exact solution remains challenging. (Erdoğan,

Laporte, & Calvo, 2013) investigates a single-vehicle routing problem that allows

the final bike inventory at each station to be between given lower and upper bounds.

(Chemla, Meunier, & Calvo, 2013) presents a branch-and-cut procedure for the single-

vehicle rebalancing problem, with numerical experiments on a system of up to 100

stations. (Erdoan, Battarra, & Calvo, 2015) develops an exact algorithm to compute

the optimal route for the single-vehicle rebalancing problem. However, the instances

with up to 60 stations for a single vehicle can take about 2 hours to find the optimal

result.

For large-scale station networks, (Forma, Raviv, & Tzur, 2015) proposes a 3-

step model for single-vehicle routing problems. The stations are first grouped into

different clusters based on the geographic information and inventory capacity. The

routing problem is solved within and between clusters. (Kloimüllner, Papazek, Hu, &
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Raidl, 2015) proposes a logic-based Benders decomposition approach to maximize the

number of stations to be rebalanced. (Schuijbroek et al., 2017) proposes a cluster-first

route-second heuristic strategy with the assumption that the service level targets can

always be satisfied within each cluster. However, in real-world problems, there exist

many stations with extremely large rebalancing targets, which make the inner cluster

route optimization infeasible. Actions have been taken to identify the outlier stations

and ensure route optimization feasibility (Liu et al., 2016a), however, rebalancing

those outlier stations remains problematic in operations.

Contributions. This paper contributes to the literature in the following aspects.

First, the emergence of multi-source big data enables a new paradigm for enhancing

bike sharing services. In this paper, we exploit fined-grained features that are related

to bike demands from multi-source big data, including station-to-station bike trans-

action records, station status feed data, and hourly weather reports, for bike pick-up

and drop-off demand prediction. Specifically, we propose a nonlinear autoregressive

network with exogenous meteorology factors (NARX) model to predict the bike pick-

up demand during the day at station level. The drop-off demand at each station is

predicted based on our proposed pick-drop bike transition (PDBT) predictor which

discover trip transition patterns and simulates the station to station bike transition

probabilities and trip durations. In addition, we testify our prediction models us-

ing real-world bike sharing system data. This in turn enables a practical end-to-end

solution for the bike rebalancing problem.

Furthermore, a general mixed integer linear programming (MILP) model is pro-

posed for the multiple capacitated VRP problem with an objective of minimizing



- 16 -

traveling distance and unsatisfied rebalancing targets. In order to deal with the

large-scale rebalancing problem with outlier stations, we propose two hierarchical op-

timization strategies, which extend the outlier removal strategy developed in (Liu et

al., 2016a). More specifically, the partial rebalancing targets satisfying strategy based

on a Spatio-target Station Clustering algorithm considers the objective of minimiz-

ing unsatisfied rebalancing targets within clusters, so as to partially rebalance the

outlier stations. In addition, the multiple vehicle visiting strategy supports that a

single station can be covered by multiple vehicles based on a split-node Spatial-target

Clustering. After the station clustering, the multi-vehicle routing problem is decom-

posed into multiple single-vehicle routing problems, which are much more tractable.

As such, we can solve very large-scale rebalancing problems efficiently and effectively.

It provides an alternative data-driven decomposition approach to traditional mathe-

matical decomposition for large-scale optimization problems.

2.3 Problem Formulation

In this section, we first provide notation and definitions. Then, we introduce the

two-stage bike rebalancing problem, including a station-level bike demand prediction

problem and a rebalancing operations optimization problem.

2.3.1 Notation and Definitions

Bike Station Network

A bike station network is represented by a directed graph G = (S,E), where S is

the set of nodes, each representing a station, and E is the set of directed edges, each
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connecting a pair of stations. For stations si, sj ∈ S, eij = (si, sj) ∈ E represents the

directed edge from station si to station sj. The station network is constructed by

tracking a set of trip records. Here, tr = (so, sd, τo, τd) is a bike trip record from an

origin station so to a destination station sd, where τo is the pick-up time and τd is the

drop-off time. Note that, in our data preprocessing, the records with trip duration

τd − τo shorter than 1 minute are treated as anomalies and filtered.

Station Pick-up and Drop-off Demand

The bike demand at each station is defined as the pick-up (drop-off) frequency per unit

time when there is no lost demand; that is, there are bikes for pick-up (or available

docks for drop-off). A station becomes unavailable when it is under maintenance, on a

blocked street, has no bikes for pick-ups (unavailable for pick-up) or has no available

dock for drop-offs (unavailable for drop-off). Since each station may have certain

unavailable periods (i.e., demand lost due to an empty/full station), historical demand

does not accurately capture the true demand. Hence, we use the expected pick-up

(drop-off) rate to describe the true pick-up (drop-off) demand, which is formally

defined below.

The historical daily bike demand is first divided into hourly time slots, with t ∈

{0, 1, ..., 23}. For station i and time slot t, let pfi(t) and pai(t) be the actual pick-up

frequency (i.e., number of bikes picked-up) and pick-up available duration (effective

time when there are bikes available for pick-up), respectively. The station pick-

up demand, pdi(t), is then defined in Eq (2.1). That is, the pick-up demand is

augmented to take into account the demand lost when customers arrived but found
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no bikes available for pick-up. In a similar vein, the actual drop-off frequency and

drop-off available duration for station i in time slot t are denoted by dfi(t) and dai(t),

respectively. The drop-off demand is then defined as the expected drop-off rate during

the drop-off available duration, shown in Eq (2.2).

pdi(t) =
pfi(t)

pai(t)
(2.1)

ddi(t) =
dfi(t)

dai(t)
(2.2)

Subsequently, we define the bike net (incoming) flow, nfi(t), as follows:

nfi(t) = ddi(t)− pdi(t) (2.3)

As illustrative examples, the average net flows for stations in NYC Citi Bike system

from August 2016 to July 2017 during the morning period (6 am – 10 am) and

the afternoon period (5 pm – 9 pm) are shown respectively in Figures 2.1(a) and

2.1(b). In these two figures, each dot represents a bike station with its size indicating

the absolute value of the net flow. The red color indicates a positive net flow (i.e.,

drop-off demand is higher than the pick-up demand), and the blue color represents

a negative net flow. It is seen that the station net flow distribution is unbalanced

both geographically and temporally. A large positive net flow usually results in a

full station status, while a large negative net flow is usually followed by an empty

station status. Further, Figures 2.1(c) and 2.1(d) show the daily averages of time

percentages for a station being empty and full, respectively, over the same time period.
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It is observed that many stations have a low availability percentage, and hence a low

service level.

(a) Net flow (6am–
10am)

(b) Net flow (5pm–
9pm)

(c) Empty Stock (%) (d) Full Stock (%)

Figure 2.1. NYC Citi Bike station net flow and availability (August 2016 – July 2017)

2.3.2 Problem Description

In this paper, we aim to provide an end-to-end solution for the (static) bike rebal-

ancing problem. To this end, two technical components are needed: (1) an accurate

prediction of station-level bike demand, which will be used to determine the rebal-

ancing target (i.e., number of bikes to be reallocated) for each station; and (2) a fast

and robust optimization approach for the routing of rebalancing vehicles.

Bike Demand Prediction

Given a set of bike trip records {tr} and a set of meteorology reports {R}, the problem

of bike demand prediction is to forecast the future pick-up (drop-off) demand pdi(t)

(ddi(t)) of each station as defined in Section 2.3.1. The main challenge here is to fully

utilize the information provided by multi-source data, so as to improve the prediction
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accuracy.

Once the bike demand is determined, the hourly net flow of each station can be

calculated using Eq. (2.3). Given the initial number of bikes Ii and the (predicted)

bike net flow nfi(t) at station i, the rebalancing target rti is defined as the total

number of bikes to be dropped-off or picked-up by rebalancing (dispatching) vehicles.

Note that rti < 0 indicates the need for pick-ups and rti > 0 indicates the need

for drop-offs. If the rebalancing target rti is 0, it indicates that the station is self-

balanced, as the initial inventory Ii can provide sufficient bikes and available docks

throughout the day. Note further that, in our problem, the rebalancing is performed

only once before the system resumes its operation every day. Thus, the optimal

rebalancing target for each station is the one that maximizes the duration when the

station remains in-service since the system starts its operation. Formally, for station

i, we first compute the set of rti (denoted by Θi) that maximizes the station in-service

duration, T :

Θi = arg max
−Ii≤rti≤SCi−Ii

{
T : 0 ≤ Ii + rti +

T∑
t=0

nfi(t) ≤ SCi

}
(2.4)

where SCi is the capacity (i.e., number of docks) of station i. Then, the optimal

rebalancing target of station i, rt∗i , is chosen from the set Θi to be the one with the

minimum absolute value. Ties can be broken arbitrarily.

Bike Rebalancing Operation Optimization

Once the station rebalancing targets are computed, the next stage is to optimize the

rebalancing operations. Specifically, a multiple capacitated vehicle routing problem
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with additional objective and constraints needs to be solved, where its sets, parame-

ters and decision variables are listed below.

Sets

V Set of rebalancing vehicles

N Set of stations

Nv Set of stations covered by vehicle v, v ∈ V

Q Set of outlier stations, Q ⊂ N

D Set of depots (starting and ending point of each vehicle)

N0 Set of all nodes, N0 = N ∪D

Parameters

TCij i, j ∈ N0 Travel distance from station i to j

rti i ∈ N Rebalancing target of station i, computed from Eq. (2.4)

SCi i ∈ N Station capacity of station i

Ii i ∈ N Initial inventory level of station i

C Vehicle capacity limit

M A positive large number

λ Penalty for each unit of unsatisfied rebalancing target

Variables

xvij ∈ {0, 1} v ∈ V, i, j ∈ N0 Binary variables; xvij equals 1 if vehicle v travels directly

from station i to stationj, and 0 otherwise

Ui ∈ Z≥0 i ∈ N Unsatisfied rebalancing target at station i

rovi ∈ Z v ∈ V, i ∈ N Number of bikes reallocated in station i by vehicle v; a

positive value of rovi indicates a drop-off value

and a negative indicates a pick-up

yvi ∈ Z≥0 v ∈ V, i ∈ N0 Number of bikes carried by vehicle v after leaving station i

The objective of the routing optimization is to minimize the total traveling dis-

tance of rebalancing vehicles and the unsatisfied rebalancing targets of all stations.

The MILP model for this problem is formulated as follows, denoted by v-MILP, where
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v is the number of rebalancing vehicles.

min F1(x) =
∑
v∈V

∑
i∈N0

∑
j∈N0

TCijxvij + λ
∑
i∈N

Ui (2.5)

s.t. − (rti −
∑
v∈V

rovi) ≤ Ui ∀i ∈ N (2.6)

rti −
∑
v∈V

rovi ≤ Ui ∀i ∈ N (2.7)

yvi − rovj ≥ yvj − (1− xvij)M ∀i ∈ N0,∀j ∈ N0,∀v ∈ V (2.8)

yvi − rovj ≤ yvj + (1− xvij)M ∀i ∈ N0,∀j ∈ N0,∀v ∈ V (2.9)

yvi ≤ C ∀v ∈ V ,∀i ∈ N0 (2.10)∑
j∈N

xvij =
∑
j∈N

xvji, ∀v ∈ V ,∀i ∈ N (2.11)

∑
v∈V

∑
j∈N0

xvij ≤ 1 ∀i ∈ N (2.12)

∑
v∈V

∑
j∈N0

xvji ≤ 1 ∀i ∈ N (2.13)

∑
v∈V

rovi ≤ SCi − Ii ∀i ∈ N (2.14)
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∑
v∈V

rovi ≥ −Ii ∀i ∈ N (2.15)

rovi +M
∑
j∈N0

xvij ≥ 0 ∀v ∈ V , i ∈ N (2.16)

rovi −M
∑
j∈N0

xvij ≤ 0 ∀v ∈ V , i ∈ N (2.17)

∑
i∈D

∑
j∈N

xvij = 1 ∀v ∈ V (2.18)

∑
i∈D

∑
j∈N

xvji = 1 ∀v ∈ V (2.19)

∑
i∈Sv

∑
j∈Sv

xvij ≤ |Sv| − 1 ∀v ∈ V ,∀Sv ⊂ N ,Sv 6= ∅ (2.20)

yvi ∈ Z≥0 ∀v ∈ V , ∀i ∈ N (2.21)

xvij ∈ {0, 1} ∀v ∈ V , i, j ∈ N (2.22)

rovi ∈ Z ∀v ∈ V ,∀i ∈ N (2.23)

Ui ∈ Z≥0 ∀i ∈ N (2.24)

The objective (2.5) is to minimize the total transportation cost and unsatisfied

rebalancing targets. Constraints (2.6) and (2.7) define the unsatisfied rebalancing

target at station i as Ui = |rti −
∑

v∈V rovi|. Constraints (2.8) and (2.9) are the

bike flow conservation constraints. Constraint (2.10) sets the vehicle capacity limit.

Constraint (2.11) indicates the route continuity. Constraints (2.12) and (2.13) mean

that a vehicle can visit a station no more than once. Constraints (2.14) and (2.15)

specify that the number of reallocated bikes at station i cannot exceed its capacity

(for drop-off) or station initial inventory (for pick-up). Constraints (2.16) and (2.17)

indicate that if vehicle v does not visit station i, its operation at station i is 0.
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Constraints (2.18) and (2.19) indicate that each rebalancing vehicle must start and

end its trip at a depot. Constraint (2.20) is the subtour elimination constraint (SEC)

that removes illegal subtours in the form of circular paths (Wolsey, 1998). The SECs

grow exponentially with the number of stations. Instead of explicitly including the

SECs in our MILP model, we generate and add theses SECs to our model implicitly as

lazy constraints (Aguayo, Sarin, & Sherali, 2018). Different from normal constraints

which are generated in advance, lazy constraints are activated when a feasible solution

is found while it violated one or multiple SECs. Specifically, there is no SEC in the

initial model. Once a feasible solution is found, all complete tours are checked. If

there is a tour that does not go through any depots and the tour length equals to the

number of stations visited by the tour, we add the station set and its corresponding

SEC to our model so as to eliminate this subtour. In our implementation, we apply

the callback function from Gurobi 6.5.0 Optimizer (Gurobi Optimization, 2016) to

detect and activate SECs.

Although the Gurobi MILP solver has become one of the industry standards in

terms of computational speed and solution quality, the general v-MILP model is still

intractable for large-scale problems. In order to improve the computational efficiency,

we develop a clustering-first optimization-second strategy to reduce the optimization

complexity in Section 2.5.

2.4 Bike Demand Prediction Model

In this section, we provide the technical details of the proposed meteorology simi-

larity weighted KNN (MSWK) statin bike pick-up demand prediction and nonlinear
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autoregressive network with exogenous meteorology factors (NARX) and pick-drop

bike transition (PDBT) predictor for station-level bike demand prediction. Business

days and non-business days (including Federal Holidays) are treated separately for

training and testing.

2.4.1 MSWK Station Bike Pick-up Prediction

The MSWK regressor is built to predict the station level bike pick-up demand si.pd(Dt)

during time slot t of any given day D that is on the basis of a meteorology multi-

similarity function.

Similarity measurement

Given the weather reports Rt
D of each time slot t, which contains weather condition

WDtp (sunny, raining, etc.), temperature FDtp , humidity HDtp , wind speed SDtp and

visibility VDtp of time slot t on day Dp, the similarity between 2 different days Dt
p

and Dt
q is calculated as the linear combination of three units: weather similarity,

temperature similarity and humidity-wind speed-visibility similarity. Each unit is

associated with an effective coefficient a that is learned to improve the prediction

accuracy.

Weather similarity. The weather conditions are first manually segmented into

different levels according to their suitability for outdoor bicycling (see Figure 2.2(b)):

((heavy snowy, heavy rainy), (snowy, rainy), (hazy, foggy), (clear, cloudy))=(1, 0.75,

0.5, 0.25). Then the weather similarity is defined as follows:

λ1(WDtp
,WDtq

) =
1

2πσ1
e
−

(W
Dtp
−W

Dtq
)2

σ21 (2.25)
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Figure 2.2. Demand net flow (a) and the effect of multiple factors on bike pick-up
demand (b)-(f).
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Temperature similarity. As can be seen from Figure 2.2(c), the bike pick-up

demand is sensitive to the temperature, especially when temperature is below 47

F during the weekends. We extract the temperature information and calculate its

similarity based on a Gaussian Kernel function:

λ2(F t
Dp , F

t
Dq) =

1

2πσ2

e
−

(F
Dtp
−F

Dtq
)2

σ22 (2.26)

Humidity, wind speed and visibility similarity. Different from the effect of

temperature, the humidity, wind speed and visibility affect bike pick-up demand

with similar effects (see Figure 2.2(d)-2.2(f)). We choose a 3-D Gaussian Kernel to

calculate the similarity between (HDtp , SDtp , VDtp) and (HDtq , SDtq , VDtq):

λ3 =
1

2πσ
e
−(

(H
Dtp
−H

Dtq
)2

σ23
+

(S
Dtp
−S

Dtq
)2

σ24
+

(V
Dtp
−V

Dtq
)2

σ25
)

(2.27)

Similarity function. To uniform these similarity calculations, we normalize the

temperature, humidity, wind speed and visibility into range [0, 1] and simplify equa-

tion (2.25)-(2.27) by setting σk = 1 (k = 1, 2, 3, 4, 5). The similarity function is then

defined as a linear combination of λ:

M(Dt
p, D

t
q; a) = δw(Dp, Dq)

3∑
i=1

aiλi (2.28)

where δw(Dp, Dq) is the delta function. δw(Dp, Dq) = 1 if Dp and Dq are both

weekdays or weekends, otherwise δw(Dp, Dq) = 0.
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MSWK learning

Given K and a, we select top K days {Dt
1, D

t
2, ..., D

t
K} with the highest similarity

to our target day Dt
n according to the similarity function. Then the si.pd(Dt

q) is

predicted by a similarity weighed KNN:

si.pd(Dt
q; a) =

∑K
p=1 M(Dt

p, D
t
q; a)si.pd(Dt

p)∑K
p=1M(Dt

p, D
t
q; a)

(2.29)

The weight of different similarity function a in equation (2.28) is trained to reach the

minimum prediction absolute error of predicted value ŝi.pd(Dt
q; a) and ground truth

si.pd(Dt
q) by brute force searching:

a∗ = arg min
a

1

N

N∑
i=1

|ŝi.pd(Dt
q; a)− si.pd(Dt

q)| (2.30)

2.4.2 NARX for Pick-up Demand Prediction

We propose a NARX model to predict the pick-up demand for next time slots t based

on the meteorology reports at time t and previous 24 time slots of pick-up demands

and drop-off demands. NARX, as a special case of recurrent neural network models,

is developed to build complex nonlinear relationships between the prediction tartget

and exogenous from different domains. It also has a feedback which comes from

the output neuron rather than from hidden states to build time dependencies. The

general architecture of our NARX model is shown in Figure 2.3 and the details of the

specification and estimation are summarized below:

Input Layer. The input layer has 53 factors including weather conditions, temper-
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Figure 2.3. Architecture of NARX model

ature, humidity, windspeed, and visibility at time slot t; 24 pick-up demands and 24

drop-off demands from time t− 25 to t− 1.

Hidden Layer Input. The input of unit i in hidden layer k + 1 is the linear

combinations of the outputs αk of units in layer k. Since the features are of different

range scales, they are standardrized with a mean of 0 and standard deviation of 1:

α0(i) = fi (2.31)

lk+1(i) =

Sk∑
j=1

wk+1
ji αk(j) + bk+1

i (i) (2.32)

Layer Output. We use a sigmoid activation function to map a unit input to its

output which is computationally efficient to implement:

ak+1(i) =
1

1 + e−lk+1 (2.33)

The output layer is a linear layer for regression problem of station bike demand
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prediction and the final output aM is tsd.

Training Algorithm. We use the Sum Squared Error as our training objective:

SSE =
1

2

nt∑
i=1

(ti − aMi )2

The Levenberg-Marquardt algorithm, which is proved to be one of the most efficient

way for least squares curve fitting problems, is applied for our NARX model traing

with sum of squared errors objective. Moreover, a validation set is used for monitoring

validation error during the training iterations. When the validation error begin to

rise after a few iterations, the training process will stop. The optimal paramer of

our NARX model are chosen at the iteration which reaches the minimum validation

error.

2.4.3 PDBT for Bike Drop-off Demand Prediction

Historical data shows that drop-off demand has a strong dependency on surround-

ing pick-up events and trip durations. The proposed PDBT predictor simulates the

probability that a picked-up bike from station i in time slot t will be dropped-off at

station j in a future time slots t′. Specifically, the drop-off demand at station j during

time slot t, denoted as ddj(t), can be estimated as follows:

ddj(t) =
∑

i∈N :i 6=j

∑
∆≥0

et−∆
ij P∆

ij (2.34)

where ∆ denotes the number of time slots between a pick-up and drop-off event.

e∆
ij denotes the number of bikes picked-up in station i during time slot t − ∆ and



- 31 -

dropped-off in station j after passing ∆ time slots, and P∆
ij denotes the probability

that a bike picked-up in station i is dropped-off in station j after passing ∆ time slots.

Thus, the term in Eq. (2.34) represents the estimated number of bikes dropped-off

during the time slot t.

Next, we show how to estimate the values on the right-hand side of Eq. (2.34).

Given bike pick-up demand in station i during time slot t−∆, pdi(t−∆), which we

have estimated in Section 2.4.2, et−∆
ij can be estimated from trip history records as

follows:

et−∆
ij = pdi(t−∆)

efij
pdi

(2.35)

where pdi is the daily average pick-up demand at station i and efij is the daily average

number of trips from station i to station j.

To estimate the second term, P∆
ij , we first show three typical patterns of such trip

durations. The dots in Figure 2.4 are the data points of trip durations in a typical

day for three station to station connections for each bike system. The trip transition

patterns are summarized as follows:

• Most trips from station 3141 to 3140 in NYC, from station 115 to 153 in Chicago,

and from station 14 to 32 (shown in small dot markers) are commuter trips, that

is, the trip durations are very close to the route recommended by Google Maps

for commuters (see the second column of Table 2.2).

• Most trips from station 514 to 3256 in NYC, from station 25 to 35 in Chicago,

and from station 67 to 60 in Boston (shown in square dot markers) are tourist

and exerciser trips, as their routes are much longer than the shortest route
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between the pick-up and drop-off stations.

• Trips from station 3137 to 3144 in NYC, from station 6 to 76 in Chicago, and

from station 47 to 98 in Boston (shown in diamond markers) are mixed trips,

that is, a portion of them are commuter trips, and the rests are tourist and

exerciser trips.

Thus, we propose to depict the trip durations between station i and j, denoted as

h, using the following two-peak Gaussian function, which is capable of capturing all

three patterns above. The two peaks represent two different human mobility patterns:

commuting and hanging out, which is related to the point of interests distribution

in urban cities. For example, for the trips connecting stations located in residential

areas and business areas, we may find more bike users as commuters.

Dij(h) = a1e
−(

h−µ1
σ1

)2
+ a2e

−(
h−µ2
σ2

)2
(2.36)

where ai, µi and σi (i = 1, 2) are fitted from data. As illustrative examples, the curves

in Figure 2.4 and their parameters in Table 2.2 show the fitted two-peak Gaussian

functions for the data points in Figure 2.4. More specifically, for the three patterns,

we have the following curves.

• For commuter trips, the curves in black color are the fitted two-peak Gaussian

functions. Note that, since most trips are commuter trips (shortest trips be-

tween two stations), two peaks are very close and hence almost overlap in the

figure.

• For tourist and exerciser trips, the curves in red color are the fitted two-peak
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Gaussian functions. Similarly, two peaks almost overlap in the figure, since

most trips are tourist and exerciser trips.

• For mixed trips, the curves in blue color clear show two peaks of the Gaussian

functions.

Further, let t0 represent the bike pick-up time relative to the start time of each

time slot, e.g., t0 = 20 if a bike is picked up at 10:20 am (20 minutes in time slot

10am-11am), and let |t| be the length of time slot t. The probability that a bike

picked-up at station i will arrive at station j in the same time slot is calculated as

follows:

P 0
ij = P (t0 + h ≤ |t|)

=

∫ |t|
0

P (h ≤ |t| − t0|t0)p(t0)dt0

=
1

|t|

∫ |t|
0

∫ |t|−t0
0

Dij(h)dhdt0

(2.37)

Here, the trip duration h follows the two-peak Gaussian function in Eq. (2.36),

and we assume that the pick-up times in time slot t follow uniform distribution

(p(t0) ∼ U(0, |t|)).

Recall that the probability of trip duration exceeding 1 hour is extremely low,

therefore, a drop-off should happen in the same time slot or the next time slot as the

pick-up. That is, P 0
ij + P 1

ij ≈ 1.
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Figure 2.4. Trip duration histograms of different pick-drop bike trainsition patterns

Table 2.2. Examples of fitting results of Dij(h) and estimations of P 0
ij and P 1

ij

System Edges Map µ1 (95% CI) µ2 (95% CI) R2 SSE P 0
ij P 1

ij

Citi
3141-3140 300 208(204,211) 284(204,368) 0.9983 0.0031 0.91 0.09
514-3256 720 1013(999,1026) 1389(1211,1576) 0.9932 0.0048 0.76 0.24
3137-3144 240 214(204,225) 1230(1165,1294) 0.9103 0.4143 0.83 0.17

Divvy
115-153 240 207(204,210) 263(197,330) 0.9999 0.0001 0.92 0.08
25-35 600 597(570,625) 1020(981,1059) 0.9139 0.5857 0.71 0.29
6-76 240 270(264,278) 1127(964,1289) 0.9348 0.2052 0.81 0.19

Hubway
14-32 240 236(235,238) 329(304,353) 0.9957 0.0081 0.89 0.11
67-60 540 499(486,513) 1059(998,1120) 0.8868 0.7468 0.78 0.22
47-98 360 374(365,383) 1077(876,1277) 0.945 0.2045 0.85 0.15

2.5 Hierarchical Optimization for Rebalancing Operations

In this section, we propose two clustering-first optimization-second algorithms that

can efficiently solve the v-MILP model for large-scale instances that are intractable

using commercial solvers. We mention that, although the algorithm is proposed to

solve the bike rebalancing operations optimization, the idea of clustering-based de-

composition is applicable for solving other NP-hard problems with similar structures.

Clustering algorithms have been used in data mining problems to group instances

with similar patterns. However, the potential of using clustering algorithms to de-

compose large-scale optimization problems has not been fully explored. Further, as

pointed out by (Liu et al., 2016a), another challenge of solving the bike rebalancing

operations optimization problem defined in Section 2.3 is the existence of outlier sta-



- 35 -

tions, namely, the stations with very large rebalancing targets exceeding the vehicle

capacity. (Liu et al., 2016a) proposed an outlier-removal strategy to detect and filter

these outlier stations from the optimization problem, rendering the problem partially

unsolved and leading to sub-optimal solutions. To achieve better optimality, in this

paper, we propose two hierarchical optimization algorithms to be described in details

next.

2.5.1 Station Clustering

The implementation of clustering algorithms for bike rebalancing optimization prob-

lem has two challenges: 1) not only distances between stations should be taken into

account, the station inventory target should also be considered for inventory con-

strains; 2) outlier stations should be discovered to guarantee inner cluster feasible

routes. Although constrained clustering algorithms have been detailed studied, the

constrained conditions in previous studies are mainly in the manner of must-link or

cannot link pairs under the name of semi-supervised clustering (Wagstaff, Cardie,

Rogers, Schrödl, et al., 2001; Basu, Bilenko, & Mooney, 2004). In this problem,

whether two stations belong to the same cluster is not determined by themselves, but

is affected by the total balance of stations in the same cluster. To the best of our

knowledge, such kind of constrained clustering algorithm has not been studied ever

before. In this paper, we propose a constrained K-Centers Clustering algorithm for

bike stations to fill the research gap.

Algorithm 1 presents the proposed algorithm. It begins with an initial center

set E, and assigns each station to its nearest stations. Then for a cluster, if the
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Figure 2.5. Constrained K-Centers Clustering procedure illustration.

balance condition is not satisfied (B(Ck) > V C, where B(Ck) = |
∑

i∈Ck bi|), we

pick some stations out of the cluster. The stations, which are able to reduce the

total balance of the cluster and close to other centers, are firstly picked out. In step

7∼11, the unlabeled stations are assigned with new cluster label. For each unlabeled

station, the new cluster label is determined by the total balance of a cluster and the

distance between the station and its nearest station in the cluster. The unlabeled

outlier stations that are far from cluster centers are preferentially processed. This

step ensures these outliers scattered at the central region of the studied area, and

can be easily covered by other clusters. After adjusting clustering result according to

balance conditions, new centers are selected in Step 12∼13. Step 1∼13 are iterated

until convergence (centers are unchanged). Step 15 outputs the clustering result.

Figure 2.5 presents a toy example of the capacity constrained K-centers algorithm.
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1 Input: TDij , bi, V N , V C, δ, E;
2 Output: c;

1: for all stations do
2: c(i) = arg min

j∈E
(TDij);

3: for each cluster Ck = {i|c(i) = E(k)}, if B(Ck) > V C do
4: while B(Ck) > V C do
5: q = arg min

i∈C∗k
(
∑
j∈E

TDij), where C∗k = {i|B(Ck \ i) < B(Ck)};

6: c(q) = 0,Ck = Ck \ q;
7: find l = arg max

i,c(i)=0
(
∑
j∈E

TDij)

8: if ∃ Sl = {k|B(Ck
⋃
l) < V C, min

j∈Ck
TDlj < δ}

9: then do c(l) = E(k), k = arg min
q∈Sl

(min
j∈Cq

TDlj)

10: else do c(l) = −1;
11: go to step 7 till @ i that c(i) = 0;
12: for each cluster Ck
13: E′(k) = arg min

i,c(i)=Ek

∑
j,c(j)=Ek

TDij ;

14: if E′ 6= E then E = E′ go to step 1, else go to step 15;
15: return clustering result c.

Algorithm 1: CCKC(TD,b,V N ,V C,δ,E)

Fourteen stations are given in Figure 2.5(a), and three stations are marked as initial

centers by triangles. All other stations are assigned to their nearest centers in (b).

Capacity condition is examined in (c). If the capacity of a cluster is over the vehicle

capacity, then some stations are pressed out as temporary outliers. Stations near

other centers are preferentially excluded as they are much easier to be visited by

vehicles from other clusters. The outliers are assigned to other centers with respect

to cluster capacity and traveling distance in (d). New centers are generated according

to the current clustering result in (e) and stations are assigned to new centers in (f).

This procedure is repeated till convergence.

The clustering result obtained by Algorithm 1 has the following features: 1) the

total balance of a cluster is under the capacity of vehicle; 2) stations in a same

cluster are close to each other; 3) clusters are overlapped, their boundaries are not
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discriminative; 4) outliers (if any) are at the central region of the studied area. All the

features mentioned above are very helpful for designing bicycle station rebalancing

routes. Feature 1) guarantees that there exists feasible solutions in the optimization

of inner cluster, while Feature 2) means the traveling cost can be largely reduced

as most of the routes are internal/short-term travels. Feature 3) shows vehicles can

travel in an overlapping manner to serve as many stations as possible. Feature 4)

means outliers are surrounded by a lot of vehicles. Therefore, the stations can be

easily served by adding the capacity of vehicles nearby or by assigning two or more

vehicles from other clusters to serve them. Although these features show advantages

of Algorithm 1 in solving the bicycle station rebalancing problem, this algorithm still

has some shortages as a K-Centers based method. On the one hand, the number of

clusters needs to be specified. On the other hand, the clustering result is influenced

by the initial center set. We further improve Algorithm 1 by proposing an Adaptive

Capacity Constrained K-centers Clustering (AdaCCKC) to overcome these shortages.

Algorithm 2 presents the proposed AdaCCKC algorithm. In each round, it begins

with a randomly generated initial center set in Step 3. In step 4∼9, Algorithm CCKC

is implemented to get a temporary clustering result. If there exists unlabeled bicycle

stations, a new cluster center is added to the current center set. The new added center

is determined by all unlabeled stations as shown in Step 7. The break condition in

Step 6 can also be activated if the number of outliers is below a specified threshold

instead of 0, which makes the proposed algorithm more flexible for bicycle stations

rebalancing problem. Considering the effect of initial center set on the final clustering

result, the number of initial centers is set to vary from 1 to V Nmax in Step 2, where
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1 Input: TDij, bi, V C, δ, V Nmax, NI;
2 Output: c;

1: V Nbest = V Nmax, zbest =
∑

p

∑
q TDpq;

2: for i from 1 to V Nmax do
3: Generate initial center set E;
4: for j from i to V Nmax do
5: c=CCKC(TD, b, V N , V C, δ, E);
6: if @ h that c(h) = 0 then break
7: else l = arg min

p,c(p)=0

∑
q,c(q)=0

TDpq,

8: E = unique(c), E = E
⋃
l;

9: end

10: V N = |E|, z =
|E|∑
k=1

∑
p,q∈C(k)

TDpq;

11: if (V N < V Nbest)&(z < zbest) then
12: V Nbest = V N , zbest = z, c∗ = c;
13: Repeat Step 2∼12 NI times;
14: return c∗.

Algorithm 2: AdaCCKC(TD,b,V C,δ,V Nmax, NI)

V Nmax is the maximum number of available vehicles. Step 12 picks out the best

clustering result. Steps 2∼12 are repeated many times to reduce the influence of

initial center set. As a result, Algorithm 2 can automatically determine the optimal

number of vehicles in a smarter way, and users do not need to provide an initial center

set.

2.5.2 Clustering-Based Decomposition (CBD) Algorithm

The idea of the clustering-based decomposition (CBD) algorithm, described in Al-

gorithm 3, is to groups stations into |V| clusters with the consideration of station

locations and rebalancing targets. The key is to decompose the large-scale optimiza-

tion problem into smaller-size problems that are more tractable.

Specifically, the algorithm starts with a set of randomly selected stations as initial

cluster centers. Each station is then assigned to its nearest center to form a cluster.
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For each cluster, we check inner-cluster net rebalancing targets in Eq. (3). If the

balance condition is not satisfied, we select some stations which could reduce the inner-

cluster rebalancing target and are close to other clusters, and remove them from the

cluster until the inner-cluster balance condition is satisfied. Then, these unassigned

stations are re-assigned by solving an optimal station assignment problem, specified

in Eqs. (2.38)–(2.41). The optimal station assignment problem aims to minimize

the transportation distance while minimizing the unsatisfied rebalancing targets of

a cluster. The station assignment and cluster center re-evaluation are iterated until

convergence (i.e., cluster centers no longer change).

For outlier station assignment, given a set of clusters of stationsNv that are visited

by vehicle v and a set of outlier stations Q = {q1, q2, ...qm}, the optimal assignment

is determined by solving the following optimization model:

min F ′ =
∑
m∈Q

∑
v∈V

TCmvzmv + λ
∑
v∈V

U ′v (2.38)

s.t. U ′v ≥ 0 ∀v ∈ V (2.39)

U ′v ≥ |
∑
m∈Q

rtmzmv +
∑
i∈Nv

rti| − C ∀v ∈ V (2.40)

∑
v∈V

zmv = 1 ∀m ∈ Q (2.41)

where zmv is the binary decision variable that equals 1 if outlier station qm is assigned

to cluster v and 0 otherwise, and U ′v is the gap between the total net rebalancing tar-

gets and vehicle capacity. The objective (2.38) aims at minimizing the transportation

distance between the outlier stations and their assigned cluster centers, as well as the
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1: (Initialization) Set iteration count k = 0, and randomly select initial |V|
stations as cluster centers, denoted by Ek = {ck1, ck2, . . . , ck|V|}.

2: (Initial Clustering) Assign each station i to its closest cluster center in Ek,
that is, station i is assigned to the following center:

arg min
j∈Ek

(TCij),∀i ∈ N

where ties can be broken arbitrarily.
3: (Outlier Stations Identification) Check the balance condition for each cluster N k

v :

B(N k
v ) = |

∑
i∈N kv

rti| ≤ C,∀v ∈ V

For each cluster v that does not satisfy the balance condition, select
outlier stations iteratively as follows; otherwise, continue to the next step.

4: Select station q as an outlier station from cluster N k
v such that

q ∈ arg min
i∈N kv \{ckv}

(
∑

j∈Ek\{ckv}

TCij)

where ckv is the current center for cluster v, and ties can be broken arbitrarily.
5: Un-assign q from cluster N k

v , and update the cluster N k
v ← N k

v \ {p}.
6: Re-check the balance condition for cluster N k

v . If the balance condition
is not satisfied, go to Step 2.1; otherwise, continue to the next step.

7: (Station Assignment Optimization) Solve the outlier station assignment
optimization problem (Eqs. (2.38)–(2.41)). Then, update clusters N k

v based on
the optimization results.

8: (Clustering Update) Obtain the center for each cluster N k
v as follows:

ck+1
v ∈ arg min

i∈N kv

∑
j∈N kv \{i}

TCij , ∀v ∈ V

where ties can be broken arbitrarily. Then, set Ek+1 = {ck+1
1 , ck+1

2 , . . . , ck+1
|V| }.

9: (Termination) If Ek+1 = Ek, continue to the next step; otherwise, increase the
iteration count k ← k + 1, and go to Step 2.

10: (Routing Optimization) For each cluster N k
v of stations, solve the v-MILP model

(v = 1 in this case) in Section 2.3.2 (Eqs. (2.5)–(2.24)), and output the optimal

routing solution.

Algorithm 3: Clustering-Based Decomposition (CBD) Algorithm

unsatisfied rebalancing targets of all clusters. Constraints (2.39) and (2.40) specify

the definition of U ′v = max(0, |
∑

m∈Q rtmzmv +
∑

i∈Nv rti| − C) for the inner cluster.

Constraint (2.41) ensures that each outlier station is assigned to one cluster. As a
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result, the clustering can always reach the stage where each station is covered by one

cluster.

Figure 2.6(a) presents a toy example with 15 stations, assuming the vehicle ca-

pacity is 15. The number associated with each station in the figure represents the

rebalancing targets. We first randomly select three stations as initial centers which

are marked by triangles (see in Figure 2.6(b)). Stations that are the closest to their

nearest centers are grouped as one cluster. The capacity condition is checked in each

cluster. If one vehicle cannot satisfy the rebalancing targets in one cluster, that is, the

net rebalancing target of a cluster is larger than the vehicle capacity, some stations

are removed from the cluster as temporary outlier stations (see in Figure 2.6(c)). The

stations closer to other clusters are preferentially removed. The outlier stations are

then assigned to other centers by solving the outlier assignment optimization prob-

lem (Eqs. (2.38)–(2.41)) in Figure 2.6(d). New centers are generated according to the

current clustering result and stations are assigned to new centers. This procedure is

repeated until convergence, when the cluster centers and station assignments do not

change between consecutive iterations.

Using the CDA algorithm, the large-scale multiple capacitated vehicles routing

problem is decomposed to v single-vehicle routing problems with small or median

problem sizes. Each decomposed problem is actually a v-MILP model with v = 1,

which is solvable by commercial MILP solvers within a reasonable amount of time.

We mention that these 1-MILP models can be solved in parallel, further reducing the

computational time.
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(a) (b)

(c) (d)

Figure 2.6. Illustrative example of the CBD algorithm

2.5.3 Splitting-Clustering-Aggregation (SCA) Algorithm

Although the CBD algorithm can decompose the multi-vehicle routing optimization

problem into multiple small-scale single-vehicle routing problems, stations within each

cluster is only served by one vehicle and hence the rebalancing targets of those outlier

stations may only be partially satisfied. In order to further improve the optimality of

the problem by allowing multiple vehicles to serve those outlier stations, we propose

the splitting-clustering-aggregation (SCA) algorithm described in Algorithm 4. In this

algorithm, we first split each station i into |rti| substations, where each substation has

a rebalancing target of rti/|rti| (1 or −1). Then we implement the CBD algorithm
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1: (Splitting) Split each bike station i into |rti| substations.
2: (Clustering) Run Steps 0–5 of the CBD algorithm (Algorithm 3)

to cluster the substations into |V| clusters.
3: (Aggregation) For each cluster, aggregate substations at the

same location into one station, and obtain the clusters of stations.
4: (Routing Optimization) For each cluster of stations, solve the v-MILP model

(v = 1 in this case) in Section 2.3.2 (Eqs. (2.5)–(2.24)), and output
the optimal routing solution.

Algorithm 4: Splitting-Clustering-Aggregation (SCA) Algorithm

on the set of substations. As a result, the substations are grouped into |V| clusters.

Next, for each cluster of substations, aggregate the substations at the same location

into one station. Since substations split from the same station may be grouped

into different clusters by the CBD algorithm, the cluster of stations obtained by the

SCA algorithm may see some stations belonging to different clusters, which enables

those stations to be rebalanced by multiple vehicles. We mention that in the routing

optimization step (Step 4) of Algorithm 4, the v-MILP model has been decomposed

into |V| single-vehicle models with a smaller set of stations.

Figure 2.7 demonstrates the key steps of the SCA algorithm on the same example

shown in Figure 2.6(a). The SCA algorithm first splits each single station into a

number of substations, where the number of substations equals the rebalancing target

of the original stations (see Figure 2.7(a)). Then, the CBD algorithm is used to

cluster the substations, resulting in clusters in Figure 2.7(b). In Figure 2.7(c), we

aggregate the substations into stations when appropriate. From the figure, it can

be seen that there are two stations, each belonging to two clusters. Figure 2.7(d) is

the corresponding optimal routing result, where the two aforementioned stations are

visited by two rebalancing vehicles. This example illustrates that the SCA algorithm
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can satisfy the rebalancing targets of outlier stations using multiple vehicles.

(a) (b)

(c) (d)

Figure 2.7. Illustrative example of the SCA algorithm

2.6 Experimental Results

To validate the efficiency and effectiveness of our proposed methods, extensive ex-

periments have been performed using real-world data from NYC Citi Bike, Chicago

Divvy, and Boston Hubway. Summary statistics of the trip data, station status data

and meteorology data used in our tests are presented in Table 2.3. All experiments

were conducted on a computer with 3.6 GHz Intel(R) Core i7-4790 CPU and 16 GB

RAM.
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2.6.1 Experiment Data

Bike sharing system data. The bike transition records of the NYC Citi Bike1 ,

Chicago Divvy bike share2 , and Boston Hubway bike sharing system3 are publicly

available on their official websites. These datasets contain the following information:

station id, bike pick-up station, bike pick-up time, bike drop-off station and bike

drop-off time. In addition, the station status data, including service status, currently

available number of bikes and station capacity, was crawled every 10 minutes from

the station status feed site of Citi Bike4 , Divvy5 and Hubway6 .

Hourly weather reports. The weather report data consists of hourly weather

reports, including time, weather condition, temperature, humidity, wind speed and

visibility, which are publicly available from Weather Underground7 . The missing

meteorology data is completed according to the previous hourly record weather report

and the missing wind speed is estimated by the average value of its previous and next

reports.

2.6.2 Results for Bike Demand Prediction

Recall that the Nonlinear Autoregressive with Exogenous input (NARX) predictor

and the pick-drop bike transition (PDBT) predictor are developed in Section 2.4 to

predict the bike pick-up and drop-off demand, respectively. In order to verify the

1https://www.citibikenyc.com/system-data
2https://www.divvybikes.com/system-data
3https://www.thehubway.com/system-data
4https://feeds.citibikenyc.com/stations/stations.json
5http://feeds.divvybikes.com/stations/stations.json
6http://feeds.thehubway.com/stations/stations.json
7https://www.wunderground.com
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Table 2.3. Details of the datasets

Data Source New York City Chicago Boston
Time Span 8/1/16 to 7/31/17 7/1/16 to 6/30/17 7/1/16 to 7/31/17

# B-days + Non-B-Days 245 + 116 days 251 + 114 days 271 + 125 days

Bike
Data

# of stations 615 580 187
# of bikes 10,000 5,800 1,600
# of trip records 15.34 million 3.68 million 1.38 million

Meteo-
rology
Data

Heavy snowy/rainy 36 hours 26 hours 46 hours
snowy/rainy 503 hours 844 hours 998 hours
Foggy/mist 93 hours 59 hours 37 hours
Cloudy/sunny 7933 hours 7747 hours 8348 hours
Temperature [14, 96.1] oF [-11.9, 96.1] oF [3.9, 97] oF
Visibility [0.2, 10] mile [0, 10] mile [0.1, 10] mile
Wind Speed [3.5, 26.5] mph [3.5, 40.3] mph [3.5, 46] mph
Humidity [13%, 100%] [18%, 100%] [15%, 100%]

prediction accuracy, we compare our predictors with the following baseline methods.

• Multi-similarity-weighted KNN (MSWK) (Liu et al., 2016a): The MSWK

method is built based on a weighted meteorology similairty function, which

takes the weighted average demands of top K most similar historical records

for prediction.

• Multi-similarity-based inference (MSI) (Li et al., 2015a): The MSI consid-

ers the similarity of weather, temperature, wind speed and time. Its similarity

function is the multiplication of these three similarities, but the weight of dif-

ferent factors are not studied.

• Autoregressive Integrated Moving Average (ARIMA): (Szeto, Ghosh,

Basu, & OMahony, 2009): The ARIMA consists of an autoregressive (AR) part

and a moving average (MA) part. Here in this paper we set the parameter of

ARIMA model (p, d, q) = (7, 0, 1).

• Random Forest Regressor (RF) (Grushka-Cockayne, Jose, & LichtendahlJr.,

2017): Random Forest regressor fits a number of decision trees on various sam-
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ples of the original dataset and uses the average results for prediction and over-

fitting control.

• Decision Tree Regressor (DT) (Olson & Wu, 2017): The Decision Tree Re-

gressor breaks down the original dataset into smaller subsets while incrementally

developing the decision rules inferred from the data features.

• Historical Mean (HM) (Froehlich, Neumann, Oliver, et al., 2009): The HM

method takes the average bike demand of previous one-month historical records

as prediction value without considering other influential factors. The one-month

time period is chosen to ensure sufficient historical records with negligible me-

teorology difference.

The metric used to measure the prediction accuracy is the Mean Absolute Error

(MAE ), which measures the number of mis-estimated bikes during one hour.

For each dataset, we select the data of early 220 days as the training set and the

rest as the testing set. The validation follows the rolling forcasting procedure. In

addition, the business and non-business days’ data for the same city are treated as

separate data sets.

Bike Pick-up Demand Prediction

The performance comparison for pick-up demand prediction between the proposed

NARX model and baselines is summarized in Figure 2.8. It can be seen that the MAE

obtained using the proposed NARX model with the MAE=1.375 for NYC weekday,

1.386 for NYC weekend, 0.612 for Chicago weekday, 0.662 for Chicago weekend,

0.822 for Boston weekday, and 0.776 for Boston weekend, which are significantly
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lower than all the baselines with a significant margin. The performance comparison

between NARX and MSWK indicates that we should consider the recurrent dynamics

of bike demand as time series. The comparison between NARX and ARIMA validates

the importance of considering the non-linear relationships. Moreover, the multi-

source prediction models (NARX, MSWK, MSBI and MSEWK) are better than the

signle-factor prediction models (RF, DT, and HM) by leveraging multiple meteorology

factors and historical demand records.
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Figure 2.8. Performance comparison of bike pick-up demand prediction
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Bike Drop-off Demand Prediction

In a similar vein, Figure 2.9 displays the performance comparison for drop-off demand

prediction between the proposed PDBT predictor and baselines. It is seen from the

figure that PDBT has the lowest MAE among all methods tested, with an MAE=1.512

for NYC weekday, 1.622 for NYC weekend, 0.710 for Chicago weekday, 0.732 for

Chicago weekend, 0.822 for Boston weekday, and 0.776 for Boston weekend. The

results indicate that PDBT further improves the prediction accuracy by considering

station-to-station trip transitions. We mention that the performance of PDBT can be

further improved by collecting more trip data to generate better numarical analysis

for inter-station transitions.

2.6.3 Results for Bike Rebalancing Optimization

Given the predicted bike pick-up and drop-off demand, the next step is to optimize

the bike rebalancing operations. In order to illustrate the differences between the

general v-MILP model and the proposed hierarchical optimization approaches, we

first use a small instance with 2 vehicles and 15 stations. Figure 2.10 shows the

different routing results among four strategies: the general v-MILP, outlier removal

strategy, partially visiting strategy, and multiple vehicle visiting strategy. Note that

the general v-MILP model was solved by Gurobi MILP solver to optimality, and its

results are served as our baselines.

In Figure 2.10, each data box represents a bike sharing station associated with

four parameters: Station Index, unsatisfied rebalancing target U , rebalancing target

rt, and the number of redistributed bikes ro (see the legend on each subfigure).
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Figure 2.9. Performance comparison of bike drop-off demand prediction

Starting from depot D, the first vehicle follows the route drawn in green arrows and

the second vehicle follows route drawn in black arrows. The optimal result of the

general v-MILP is displayed in Figure 2.10(a). It is seen that all stations are visited

and the rebalancing targets for most stations are met (i.e., U = 0). The two outlier

stations with a rebalancing target larger than the vehicle capacity (i.e., rt6 = −35

and rt13 = 32) have unsatisfied rebalancing targets (U6 = 10 and U13 = 7). The result

of the outlier removal strategy is displayed in Figure 2.10(b), where all rebalancing

targets are strictly met, while the two outlier stations are left unvisited in order to

ensure inner cluster optimization feasibility. Figure 2.10(c) displays the result of the

partially visiting strategy, where the workload is more balanced for each vehicle and
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the two outlier stations have unsatisfied rebalancing target. Finally, the result of the

multiple visiting strategy is displayed in Figure 2.10(d). It is seen that the outlier

stations are visited by both vehicles and thus the most rebalancing targets are met.

(a) general v-MILP (b) outlier removal

(c) partially visiting (d) multiple visiting

Figure 2.10. Comparison of routings for different optimization strategies.

To verify the computational advantages of proposed optimization approaches, we

further test several sets of instances based on real-world bike sharing data and their

predicted rebalancing targets. Table 2.4–2.11 present the experimental results con-

ducted on instances with |N | ranging from 20 to 35. For each instance, we compare

the objective (Obj) and computational time (CT; in seconds) of different approaches:

v-MILP model, Nearest Neighbor Search (NS)(Yianilos, 1993)+1-MILP model, par-

tially visiting, and multiple visiting strategy. The objective gap (Gap%) is calculated

as the percentage difference between the optimal result of the hierarchical approach
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and the baseline approach (i.e., the general v-MILP model). The lower case letter of

each case ID indicates the bike sharing system. For example, Case “n20A” indicates

the instance from NYC and Case “c20A” indicates the instance from Chicago. Note

that, in Table 2.11, Gurobi was unable to solve the problems within 10 hours, and

hence no result is reported for v-MILP and objective gaps.

It is observed that the computational time of the general v-MILP model is much

longer than the hierarchical approaches. Specifically, it typically took several hours to

solve large instances, rendering the general v-MILP model non-applicable for solving

real cases. For the outlier removal strategy, although the computational time is

much shorter than the baseline approach, the objective values are much larger than

those of the baseline approach, due to the neglect of outlier stations. Thus, it is

not recommended to be used in the real systems. The partially visiting strategy is

able to obtain close results compared to the v-MILP model, while significantly reduce

the computational times. Finally, the multiple visiting strategy achieves the best

results as it is able to serve outlier stations using multiple vehicles. Meanwhile, the

computational times are typically within 15 minutes, even for problems with N = 35

and V = 3.

Table 2.4. Experimental results for |N | = 20 and |V| = 2

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n20A 13.66 2455 48.21(253) 5 43.24(217) 9 14.24(4.25) 12 11.46(-16.1) 14
n20B 15.54 5706 51.12(229) 72 46.6(199) 84 16.1(3.6) 96 11.43(-26.4) 234
n20C 9.19 179 25.89(181) 53 23.82(159) 76 9.82(6.9) 3 8.3(-9.7) 3
c20A 24.96 57 57.51(130) 13 40.97(64.1) 114 27.47(10.1) 117 26.23(5.1) 288
c20B 18.1 37 41.41(129) 38 36.48(101.5) 15 19.48(7.6) 28 19.22(6.2) 234
c20C 21.28 268 38.39(80.4) 11 36.95(73.6) 4 23.45(10.2) 8 23.33(9.6) 14
b20A 15.77 161 35.54(125) 8 30.83(95.5) 85 17.33(9.9) 12 15.7(-0.4) 28
b20B 19.16 5706 23.58(23.1) 27 19.45(1.5) 84 19.45(1.5) 96 19.45(1.5) 234
b20C 15.24 254 31.33(105) 4 30.4(99.5) 13 17.4(14.2) 13 15.3(0.4) 18

Finally, we present a real-world sized case study for a randomly selected dataset
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Table 2.5. Experimental results for |N | = 20 and |V| = 3

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n20A 16.45 9389 48.33(194) 22 46.13(180.5) 3 17.13(4.1) 5 14.67(-10.8) 31
n20B 18.33 11061 50.02(173) 62 49.13(168.1) 6 18.63(1.7) 8 14.39(-21.5) 10
n20C 10.71 126 29.73(177) 98 25.94(142.2) 32 11.94(11.5) 33 10.46(-2.3) 46
c20A 28.1 2732 48.51(72.7) 21 42.64(51.8) 9 29.14(3.7) 9 28.44(1.2) 51
c20B 20.34 132 51.16(151) 9 38.41(88.8) 6 21.41(5.2) 6 19.22(-5.5) 8
c20C 23.49 897 44.09(87.7) 31 38.49(63.8) 4 24.99(6.4) 5 24.29(3.4) 4
b20A 17.43 91 43.89(152) 4 31.62(81.4) 3 18.12(4) 3 16.3(-6.5) 16
b20B 21.48 172 25.76(20) 3 22.99(7) 23 22.99(7) 23 22.99(7) 23
b20C 17.57 593 38.23(118) 4 31.12(77.1) 6 18.12(3.1) 6 17.64(0.4) 32

Table 2.6. Experimental results for |N | = 25 and |V| = 2

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n25A 11.94 1503 26.53(122) 68 23.47(96.5) 77 12.76(6.8) 61 11.45(-4.2) 23
n25B 17.98 1075 59.32(230) 5 53.73(198) 7 18.23(1.4) 8 15.86(-11.8) 16
n25C 18.22 987 55.18(203) 6 54.15(197) 9 18.65(2.4) 9 14.21(-22) 11
c25A 15.91 3460 39.65(149) 286 30.31(90.6) 372 17.31(8.9) 500 16.41(3.1) 988
c25B 24.94 607 48.97(96.4) 8 40.48(62.3) 15 25.48(2.2) 14 15.86(-36.4) 16
c25C 26.72 393 58.74(120) 19 56.45(111.3) 12 28.44(6.5) 24 27.28(2.1) 11
b25A 19.33 1503 22.73(17.6) 13 21.35(10.5) 61 21.35(10.5) 62 21.35(10.5) 61
b25B 14.15 1075 17.58(24.2) 3 15.59(10.2) 8 15.59(10.2) 8 15.59(10.2) 8
b25C 20.15 987 41.09(104) 6 36.3(80.1) 8 21.8(8.2) 7 20.76(3) 10

Table 2.7. Experimental results for |N | = 25 and |V| = 3

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n25A 15.15 1862 36.17(139) 55 30.01(98.1) 67 17.01(12.3) 68 16.67(10) 221
n25B 19.36 1094 56.47(192) 59 55.49(186.7) 8 19.99(3.3) 10 12.4(-36) 25
n25C 20.19 1715 78.1(287) 112 56.64(180.5) 17 21.14(4.7) 18 14.59(-27.8) 39
c25A 19.98 5811 40.04(100) 11 34(70.2) 3 21(5.1) 2 20.31(1.6) 33
c25B 27.43 2745 60.28(120) 31 42.43(54.7) 9 27.43(0) 11 26.25(-4.3) 26
c25C 26.09 1355 62.79(141) 5 42.37(62.4) 8 27.37(4.9) 9 26.41(1.2) 23
b25A 21.79 2058 25.47(17) 3 23.2(6.5) 12 23.2(6.5) 13 23.2(6.5) 12
b25B 16.15 7400 17.83(9.1) 7 17.35(7.4) 11 17.35(7.4) 11 17.35(7.4) 11
b25C 21.8 12759 38.79(77.9) 2 36.78(68.7) 8 22.28(2.2) 8 22.07(1.2) 9

Table 2.8. Experimental results for |N | = 30 and |V| = 2

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n30A 18.91 7627 36.23(91.6) 11 34.29(81.3) 3 19.79(4.7) 3 18.15(-4) 2
n30B 11.33 411 31.69(179) 22 26.76(107) 4 12.26(8.1) 8 11.11(-14.2) 75
n30C 16.7 42831 32.27(93.2) 42 30.11(80.3) 39 17.62(5.4) 37 17.62(5.4) 39
c30A 19.47 3491 37.34(91.8) 4 34.63(77.9) 3 21.13(8.5) 3 20.59(5.7) 9
c30B 16.55 7132 22.46(35.7) 12 17.48(5.6) 4 17.48(5.6) 4 17.48(5.6) 4
c30C 24.59 2570 70.64(187) 98 53.05(115.7) 39 25.55(3.9) 38 24.57(-0.1) 46
b30A 22.23 9676 41.92(88.6) 26 37.74(69.8) 106 23.24(4.6) 107 21.51(-3.2) 380
b30B 15.4 988 51.16(232) 17 30.83(138.1) 250 16.83(9.3) 29 15.23(-1.1) 250
b30C 18.5 22059 34.8(88.1) 13 34.8(88.1) 59 20.8(12.4) 26 17.55(-5.1) 221

Table 2.9. Experimental results for |N | = 30 and |V| = 3

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n30A 21.73 3691 48.67(124) 133 36.72(69) 9 24.65(13.5) 9 22.22(2.3) 21
n30B 12.95 10319 40.31(211) 19 29(124) 498 14.5(12) 465 12.08(-6.7) 553
n30C 19.65 60266 20.97(6.7) 105 20.29(3.3) 120 20.29(3.3) 120 20.29(3.3) 121
c30A 21.62 3905 43.11(99.4) 25 35.93(66.2) 18 22.43(3.8) 16 21.93(1.4) 47
c30B 19.79 11128 26.96(36.3) 42 21.8(10.2) 28 21.8(10.2) 28 21.8(10.2) 28
c30C 27.23 36181 71.27(162) 45 57.76(112.2) 320 30.26(11.2) 321 27.62(1.5) 447
b30A 23.93 45327 45.27(89.2) 6 37.74(67.7) 7 25.64(7.1) 13 22.61(-5.5) 14
b30B 17.03 2307 33.24(95.2) 36 32.41(90.3) 40 18.41(8.1) 39 17.41(2.2) 42
b30C 20.57 14171 48.61(132) 9 35.63(73.2) 6 21.63(5.1) 6 20.3(-1.3) 15
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Table 2.10. Experimental results for |N | = 35 and |V| = 2

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n35A 15.64 50322 33.41(114) 54 29.72(90) 68 16.73(6.9) 74 16.19(3.5) 82
n35B 22.01 16418 48.15(118) 121 46.04(109) 21 24.04(9.2) 27 15.84(-28.1) 241
n35C 13.56 13589 29.03(141) 66 28.63(111) 258 14.63(7.9) 436 14.28(5.3) 2873
c35A 19.19 13228 37.19(93.8) 52 34.02(77.3) 51 20.52(6.9) 63 18.37(-4.3) 69
c35B 19.88 51348 40.88(106) 128 37.49(88.6) 165 22.99(15.7) 236 18.26(-8.1) 251
c35C 19.01 21467 48.22(154) 279 37.04(94.9) 1777 20.54(8.1) 1800 16.53(-13) 216
b35A 24.12 50322 46.3(91.9) 133 40.58(68.2) 491 28.05(16.3) 493 23.09(-4.3) 652
b35B 26.33 16418 52.2(98.2) 65 46.04(74.8) 268 29.76(13) 23 27.17(3.2) 418
b35C 20.92 13589 48.61(132) 206 47.97(129) 571 22.01(5.2) 580 22.01(5.2) 663

Table 2.11. Experimental results for |N | = 35 and |V| = 3

Case
v-MILP NS+1-MILP outlier removal partially visiting multiple visiting

Obj CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT Obj (Gap%) CT
n35A - - 46.63(-) 208 36.26(-) 467 22.26(-) 460 19.79(-) 533
n35B - - 68.51(-) 105 50.08(-) 224 28.08(-) 233 19.7(-) 258
n35C - - 44.01(-) 74 31.69(-) 496 17.69(-) 532 16.77(-) 589
c35A - - 52.11(-) 53 38.41(-) 90 24.91(-) 93 22.19(-) 699
c35B - - 55.44(-) 103 41.6(-) 25 27.1(-) 24 22.32(-) 38
c35C - - 50.49(-) 111 40.66(-) 80 24.16(-) 80 20.16(-) 115
b35A - - 53.31(-) 281 46.32(-) 407 30.11(-) 412 27.16(-) 643
b35B - - 59.37(-) 89 45.89(-) 433 32.88(-) 445 28.45(-) 566
b35C - - 41.33(-) 102 40.13(-) 329 28.13(-) 354 23.47(-) 591

for the NYC Citi Bike system. The rebalancing targets of 615 stations in NYC are

displayed in Figure 2.11(a)). Particularly, the red dots represent stations that need

bike drop-offs and blue dots represent stations that need pick-ups. We mention that

82 stations with zero inventory targets (marked as gray dots in Figure 2.11(a)) are

self-balanced stations, and thus are filtered before optimization. Figure 2.11(b) shows

the optimization results using multiple visiting strategy with 35 rebalancing vehicles.

The outlier stations are detected and marked as “X”. The stations that are visited by

multiple vehicles are marked as “diamond”. The self-balanced stations are marked

as “square”. The stations belonging to the same cluster are displayed in the same

color and are rebalanced by the same vehicle. The depots are marked as “star” from

which an arrow points toward the first visited station. The computational time for

the clustering is 20 seconds and the computational cost for the largest single-vehicle

inner cluster route optimization (including 34 nodes) is 3987 seconds. If we implement
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the 1-MILP models in parallel computers, the total time to find the optimal solution

of the route optimization for the NYC Citi Bike system is merely above 4000 seconds

for this case study, which is practically implementable given that such operations is

run on a daily basis.

(a) Target Distribution (b) Optimal Route

Figure 2.11. Optimal vehicle routing using multiple visiting strategy for a case study
in NYC)

2.7 Conclusion

In this paper, we developed a multi-source data-driven optimization approach for

addressing the bike rebalancing problem in bike sharing systems. Specifically, we

first propose a nonlinear autoregressive network with exogenous meteorology factors
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(NARX) model for predicting station-level bike pick-up demand, and a pick-drop

bike transition (PDBT) model for trip pattern discorvery and bike drop-off demand

prediction. Then, the station inventory target levels are determined based on the

predicted traffic flows, and subsequently used for the rebalancing operations. For the

bike rebalancing operations optimization, we developed three algorithms based on

the clustering-first optimization-second idea. This idea is similar to the mathemat-

ical decomposition approaches, which decompose large-scale optimization problems

into smaller, solvable ones. The decomposition used in the proposed approaches are

based on data analytics and clustering. Furthermore, the clustering-based approaches

consider outlier stations, which have large inventory targets exceeding rebalancing

vehicle capacity. Finally, the extensive numerical experiments using real-world bike

sharing system data from the NYC Citi Bike system, Chicage Divvy bike system and

Boston Hubway bike system verified the advantages of our approach for bike demand

prediction and large-scale bike rebalancing optimization, both in terms of solution

quality and computational results.

This work still has some limitations and leaves spaces for future research. First, we

do not support single vehicle-multi-visit solution. In our solution, one vehicle can only

visit one station no more than once. However, it is possible to improve the rebalancing

efficiency by visiting one station multiple times by the same rebalancing vehicle.

Another study can be performed to examine the use of trailers that complements the

rebalancing trucks. Trailers have much smaller capacities compared to the trucks,

but are more flexible and thus can be used to handle outlier stations. Finally, the

static bike rebalancing operations are executed once per day during midnight, and all
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operations should be completed before the system resumes normal operations (e.g.,

at 6am). Technically, a time window for each rebalancing vehicle can be imposed

to guarantee the time-feasibility of the routes obtained. We do not model such time

window in our MILP models, since such time-feasibility is guaranteed in our solutions

given sufficient number of vehicles available. In a future study, we can impose such

time window to the routing optimization model, and it would be interesting to check

those cases when there are insufficient number of vehicles in service.
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CHAPTER 3

FUNCTIONAL ZONE BASED HIERARCHICAL DEMAND PREDICTION FOR

BIKE SYSTEM EXPANSION

Many providers of bike sharing systems are ready to expand their bike stations from

the existing service area to surrounding regions. A key to success for a bike shar-

ing systems expansion is the bike demand prediction for expansion areas. There are

two major challenges in this demand prediction problem: First. the bike transition

records are not available for the expansion area and second. station level bike demand

have big variances across the urban city. Previous research efforts mainly focus on

discovering global features, assuming the station bike demands react equally to the

global features, which brings large prediction error when the urban area is large and

highly diversified. To address these challenges, in this chapter, I develop a hierar-

chical station bike demand predictor which analyzes bike demands from functional

zone level to station level. Specifically, I first divide the studied bike stations into

functional zones by a novel Bi-clustering algorithm which is designed to cluster bike

stations with similar POI characteristics and close geographical distances together.

Then, the hourly bike check-ins and check-outs of functional zones are predicted by

integrating three influential factors: distance preference, zone-to-zone preference, and

zone characteristics. The station demand is estimated by studying the demand dis-

tributions among the stations within the same functional zone. Finally, the extensive
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experimental results on the NYC Citi Bike system with two expansion stages show

the advantages of our approach on station demand and balance prediction for bike

sharing system expansions.

3.1 Introduction

With the success of bike sharing system, most urban cities are planning or have been

constructing bike sharing network expansion to attract more customers. For example,

NYC has completed two bike sharing network expansions since its foundation in 2013.

However, despite the significant benefits from bike sharing network expansion, it is

very challenging to decide the expansion strategy which relies on an accurate bike

demand prediction for expansion areas. An accurate bike demand prediction can help

bike sharing system designers estimate how many new customers will be attracted

and how much additional operation cost they need to spend on a larger system. To

this end, in this chapter, I study the bike demand prediction problem for bike sharing

system expansion. There are two major challenges for this problem. First, there are

no historical bike transition records available in the expansion areas. This challenge

makes it impractical to conduct a direct supervised learning model on the station

network after expansion. Second, the station level bike demand has big variances

across the city, which can be impacted by multiple factors, such as time, location,

surrounding environment (Point of Interest (POI) structure), transportation network,

and human mobilities.

A number of recent researchers have studied the bike demand prediction problem.

Most studies on bike demand prediction are based on single factor predictors like
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stochastic process (Schuijbroek, Hampshire, & van Hoeve, 2013; Alvarez-Valdes, Be-

lenguer, Benavent, Bermudez, Muoz, et al., 2016) without considering the impact of

other influential factors. A promising way to improve bike demand prediction accu-

racy is to leverage a variety of data that is directly or indirectly related to the public

bike sharing service (Liu, Sun, Chen, & Xiong, 2016b; Li, Zheng, Zhang, & Chen,

2015b). However, these methods rely on the availability of historical bike transition

records to train the proposed model and are not applicable for bike sharing system

expansion. Our previous work (Liu et al., 2015) proposes a global station level bike

demand predictor based on a set of fine grained global features which are used for

current station network redesign, however, considering the complexity of urban city

structures and station demand variances across the large area of urban city, the global

features may not affect bike demand equally in different regions.

Indeed, the emergence of multi-source big data enables a new paradigm for en-

hancing bike demand predictions. Along this line, I exploit multi-source data related

to bike sharing services, such as trip records, station status records, POI dataset, taxi

trip records for developing station level bike demand solutions. Specifically, starting

from the existing bike sharing system (which I call it principle bike system) with its

historical trip records available, I build a hierarchical prediction model to analyze

bike demand from zone level to station level. The station in service area is firstly

divided into different functional zones through our Bi-Clustering algorithm which

considers the POI structures and station locations simultaneously. Then, a zone level

bike check-in and check-out predictor is studied based on the bike trip distance pref-

erence, zone-to-zone preference, zone characteristics and the historical transitions of
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the principle bike system. The check-ins and check-outs are then distributed to each

station within the functional zone according to the POI structures and their links

to other transportation networks. To predict the station bike demand after system

expansion, I re-estimate the zone level features by considering the expanded zone-to-

zone network and the inner-zone demand distribution for expansion area stations.

Finally, I carry out extensive experiments on a real-world dataset of three different

time periods from the NYC Citi Bike system: Stage 1. the principle bike station

system consisting of 329 stations from 07/01/2013 to 07/31/2015, Stage 2. the bike

system after first expansion including 486 stations from 08/06/2015 to 07/18/2016

and Stage 3. the third stage starts from 07/23/2016 to 11/30/2016 with 617 stations

in service after second expansion. Figure 3.1(a) presents the three stages of station

distributions with each dot representing a bike station in New York City. The red

dots represent the principle bike station distribution. The orange and the blue dots

represent the second and third stages of station expansions respectively. In additional,

a few stations represented by different symbols are closed in different stages.

3.2 Related Work

There is an increasing interest in optimization problems arising in bike sharing sys-

tems. Below we describe some related studies that have been accomplished on demand

prediction for bike sharing systems.

Station Clustering. The clustering algorithms have been proposed to discovery

bike transition patterns, reduce the station demand variance and improve prediction

accuracy. Patrick, etc (Vogel, Greiser, & Mattfeld, 2011) explored bike activity pat-
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terns based on temporal and spatial validation of clusters, and revealed imbalances

in the distribution of bikes. Lin, etc (Li et al., 2015b) proposed a Bipartite station

clustering algorithm consisting of Geo-clustering and Bike-Transit-Clustering accord-

ing to the similarities of bike usage patterns and station locations. Similarly, Chen,

etc. (Chen et al., 2016) proposed a Geographically-Constrained Station Clustering to

group stations. However, their station clustering algorithms are based on historical

bike transition records. Motivated by the Functional Zone discovery analysis (Yuan

et al., 2015; Long & Shen, 2015), our Bi-Clustering algorithm is based on both of

POI structures and station geographical constraints that could be applicable for the

expansion areas where no historical bike transition records are available. The iden-

tification of heat-peak bike stations is motivated by a recently proposed clustering

method that is published in Science in 2014 (Rodriguez & Laio, 2014), however, the

cluster centers in our work are POI heat peaks rather than density peaks. In order

to discover functional zones with distinguished POI characteristics, we proposed the

HPC clustering algorithm, which can find representative stations via different POI

categories. Different from most existing clustering algorithms based on predefined

similarities of objects(Xu & Wunsch, 2005; Luxburg, 2007), the POI characteristics

of stations fadeaway in the process of computing similarities.

Bike Demand Prediction. The early research on bike sharing system focused on

the studies of bike activity patterns discovery (Kaltenbrunner, Meza, Grivolla, Cod-

ina, & Banchs, 2010a; O’Brien, Cheshire, & Batty, 2014; Zhou, 2015) or daily bike

demand forecasting using data mining techniques and classical empirical statistical

methods. Yutaka (Motoaki & Daziano, 2015) and Juan(Garca-Palomares, Gutirrez,
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& Latorre, 2012) built multi-factor statistical models for bicycle demand prediction

with the consideration of weather and geography. The hourly bike demand prediction

was investigated by implementing statistical models or machine learning techniques

on multi-source data (Alvarez-Valdes, Belenguer, Benavent, Bermudez, Muoz, et al.,

2016; Schuijbroek et al., 2013; Liu et al., 2016b). A hierarchical bike traffic prediction

model that integrating station clustering algorithm and meteorology reports were also

studied (Li et al., 2015b). However, all of these prediction models require the avail-

ability of historical transition records of target stations and thus are not applicable

for expansion demand prediction problem. Liu etc.(Liu et al., 2015), Wang (Wang,

2016) and Zeng etc.(Zeng et al., 2016) built station demand prediction models by

extracting global features from multiple static factors of surrounding environment

and public transportation networks. However, among these multi-factor prediction

models, the feature bias among stations across the urban areas are neglected with

the global features and predictors. Moreover, the direct analysis of station-to-station

bike transition may suffer from insufficient transition records at station level.

3.3 Problem Formulation

In this section, we first introduce some preliminaries used throughout this paper, and

then formally define the problem of station bike demand prediction for bike system

expansion.



- 65 -

3.3.1 Preliminaries

Station bike demand and unbalance

The station bike demand is defined as the pick-up (drop-off) frequency per unit time

when the station is available. Station availability means the station is in service and

there are bikes available for pick-up (drop-off). Station unavailability is usually due

to maintenance, street block, empty dock (for pick-up) and full dock (for drop-off).

We do not consider the station demand during its unavailable period.

Definition 1: Station Bike demand . Let si.pf(t)(si.df(t)) and si.pa(t)(si.da(t))

represent the pick-up (drop-off) frequency and the pick-up (drop-off) available time

of station i during time slot t. Each time slot t represents a 60 minutes time duration.

The bike demand during the day is split into 24 time slots: t ∈ {0, 1, ..., 23}. The

station pick-up (drop-off) demand si.pd(t) ((si.dd(t))) is defined as follows:

si.pd(t) =
si.pf(t)

si.pa(t)
(si.dd(t) =

si.df(t)

si.da(t)
) (3.1)

Due to unbalanced bike demand distribution, some bike stations can have continuous

large positive bike flows (drop-off demand is much larger than pick-ups) or negative

bike flows. The station bike net flow distributions during AM and PM rush hours

are presented in Figure 3.1(b) and Figure 3.1(c) as an example. In Figure 3.1(b)

and Figure 3.1(c), each dot represents a bike station in stage 3 with its size repre-

senting the absolute value of net flow. The red color represents a positive net flow

(drop-off frequency is larger than pick-up frequency) and the blue color represents

a negative net flow. As can be seen, the station demand distribution is unbalanced
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(a) Station Distribution (b) Net Flow AM (c) Net Flow PM

(d) Positive Unbalance (e) Negative Unbalance

Figure 3.1. Station Distribution of NYC Citi Bike System.
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both geographically and temporally. The unbalanced bike flows will cause full station

or empty station status and require more operation cost to rebalance the inventory

level. We investigate the station balance problem by first introducing the concept of

station positive unbalance si.pu and negative unbalance si.nu based on accumulated

station net flow.

Definition 2: Station unbalance . Let si.pd(t) and si.dd(t) represent the pick-

ups and drop-offs at station si during time slot t, the station unbalance is defined as

the maximum accumulate bike net flow during the day. The positive unbalance and

negative unbalance are defined as the contiguous subarray of series {si.dd(t)−si.pd(t)}

whose values have the largest positive sum and smallest negative sum. The station

positive unbalance si.pu and negative unbalance si.nu are formally defined as follows:

si.pu = max
ti,tj
{
tj∑
t=ti

si.dd(t)− si.pd(t), ti < tj} (3.2)

si.nu = max
ti,tj
{
tj∑
t=ti

si.pd(t)− si.dd(t), ti < tj} (3.3)

Ideally, a self-balanced station with balanced bike flow will make si.pu and si.nu close

to 0. However, most bike stations in NYC are far from balanced status. The NYC Citi

Bike station daily averaged positive unbalance and negative unbalance distributions

are presented in Figure 3.1(d) and Figure 3.1(e) as an example.

Functional Zone

Since need-based customers will choose the station closest to their current locations

or final destinations, we partition the bike station in service area using a Voronoi-

based gridding method (Aurenhammer, 1991), from which the map is partitioned
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into regions based on walking distance to bike stations. Each grid is centered by

one bike station and the points within one region is closest to its center. As a result,

pick-up/drop-off points for taxi trips and POIs are mapped to the nearest bike station.

Definition 3: Voronoi Region . Let X be a space coordinate endowed with a

walking distance wd extracted from Google Maps Distance Matrix API. The Voronoi

region Rsi associated with station si is the set of points in X whose distance to si is

no greater than that to other stations:

Rsi = {x ∈ X|wd(x, si) ≤ wd(x, sj), ∀j 6= i} (3.4)

Definition 4: Functional Zone . A functional zone ZK is comprised of a group

of regions {RK
si
} with similar urban functions identified by the distribution of socioe-

conomic activities (Yuan et al., 2015). Each functional zone has its major category

characterized by its POI structure. For example, the commercial zones have a lot of

shopping centers while the transportation junctions have many transportation centers

compared to other functional zones.

3.3.2 Problem Definition

Expansion Station Bike Demand Prediction . Given a set of existing principle

bike station locations Spl and a set of expansion station locations Sel , the problem of

expansion station bike demand prediction is to predict the hourly pick-up (drop-off)

demand si.pd(t) (si.dd(t)) of the expanded station (including principle stations along

the edge of expansion area and coverage expansion stations) during a day.
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Figure 3.2. Framework Overview

Station unbalance Prediction . Once the hourly bike demand is estimated, we

can further estimate the station unbalance characteristic according to definition 2.

3.3.3 Framework Overview

Figure 3.2 shows the framework overview of our proposed method which consists of

three major sections: functional zone based bike station Bi-Clustering, Zone level

bike transition prediction and station level bike demand prediction.

Functional zone based station clustering. We first propose a functional zone

based Bi-clustering algorithm to cluster stations into different groups based on their

Voronoi region POI structures (Aurenhammer, 1991; Liu et al., 2015) and station

locations. The stations within one functional zone are close to each other and designed

to serve for the same functional zone customers.
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Zone level bike transition prediction. The zone level bike transition prediction

integrates the bike trip distance preference, zone-to-zone transition preference and

zone characteristics to predict zone check-ins and check-outs based on the Random

Forest predictor.

Station level bike demand prediction. The station level bike demand prediction

is to distribute the inner zone bike check-ins and check-outs to individual stations

based on their covered resources (POI densities).

3.4 Methodology

3.4.1 Principle station network learning

The principle station network learning studies the station level bike demand predic-

tion model by analyzing the historical bike transition records of the principle station

network in 3 steps: 1. functional zone identification; 2. zone-to-zone bike transition

learning and 3. inner zone station level bike demand prediction.

Functional zone identification. We first discuss how to divide the whole bike

sharing system in service area into many functional zones, where a functional zone

is a subregion contains several bike stations and their associated Voronoi regions,

the stations in the same functional zone have similar POI distribution and close

geographical locations.

Assume the POI matrix of bike stations is P = {pij}, where pij is an indicator

of j-th type of POIs of bike station i. POI matrix P is derived from POI counts

in Voronoi regions of stations, which is essentially a POI heat matrix of the bike

stations. This paper considers many types of POIs. Some types of POIs have similar
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geographical distribution, for example, pharmacy and convenience store, they may

have a symbiotic relationship; while the other types of POIs show quite different

geographical distributions, e.g., financial service or car rental service. So it is very

important to study the relationships between different types of POIs before partition

the studied region into functional zones.

Algorithm 5 presents a novel Bi-clustering algorithm which clusters the bike sta-

tions and POI features alternatively. In step 1, we get initial station clustering result

and POI feature clustering result at the same time. Then we construct virtual bike

stations in step 4∼6, and get new clustering result of POI features (or POI category)

in step 7. Step 8 is a break condition, where NMI is a popular information-based

evaluation metric of clustering results, which describes the coherence of two cluster-

ing results(Vinh, Epps, & Bailey, 2009). In step 12∼14, we use new POI features

to represent each station, where new POI features are generated according to cur-

rent clustering result of POI categories. Step 15 gets new station clustering result

according to stations in new feature space. Kf and Ks are the number of station

clusters and that of feature clusters respectively. From a theoretical view, the setting

of the number of clusters is essentially a balance of fitting error and model complex-

ity; while in practical applications, we set the parameters according to data volume.

In this problem, Ks is set as approximately 10% number of stations, Ks is about

10% number of POI types. Table 3.1 shows the Bi-clustering result of the studied

POI categories, where two POI categories are assigned into the same cluster means

the two POI types have similar geographical distribution and symbiotic relationship.

Take 4-th cluster, for example, pharmacy, grocery, and store, often locate together,
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Require: Input: P,Kf ,Ks,ItrMax;
1: Itr = 0, cs = kmeans(P,Ks), cf0 = kmeans(PT ,Kf );
2: while Itr < ItrMax do
3: Itr = Itr + 1;
4: for i = 1 : Ks do
5: Idxs = find(cs = i);

6: xfi· = mean(PIdxs·, row);

7: cf = kmeans(Xf ,Kf ); % Xf = {xfi·}T .

8: if NMI(cf , cf0) = NMI(cf , cf ) then
9: Break;

10: else
11: cf0 = cf .
12: for j = 1 : Kf do
13: Idxf = find(cf = j);
14: xs·j = mean(P·Idxf , col);
15: cs = kmeans(Xs,Ks); % Xs = {xs·j}.

Algorithm 5: BiC-POIs(P,Kf ,Ks,ItrMax)

while the 3-rd cluster indicates the geographical distribution of taxi pickups and taxi

dropoffs are almost the same.

Table 3.1. Clustering result of POI categories

Cluster POI categories

1st subway, transit station, train station,
finance, ...

2nd park, museum, bus station, amusement
park, ...

3rd taxi pickup, taxi dropoff, ...
4th pharmacy, grocery, supermarket, store,

hair care, school, shopping mall, florist,
lodging, doctor, ...

5th food, cafe, bar, night club, church, spa,
ATM, ...

6th parking, car rental, car wash, repair,
car dealer, ...

After clustering the original POI categories into several groups, we generate new

POI features based on the clustering result. The new POI heat matrix is repre-

sented by H = {hij}, hij represents the heat of bike station i w.r.t. j-th category of
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POIs. We will discover functional zones by clustering bike stations according to their

geographical locations and POI heats. However, it is a very challenging clustering

problem, most of the existing clustering algorithms cannot be employed in this task

because: 1) this problem requires the consideration of both geographical locations

and POI features of bike stations; 2) similarities between objects are required to be

predefined in most of the previous methods, and the definitions of similarities usually

mix all the features of objects together. Therefore, the POI characteristics of a bike

station will fade away as a result of average effect. For example, if the POI heat

of a bike station is hi = [1, 0, · · · , 0], it should become a representative station in

a functional zone as it has the highest heat value of the first POI type. However,

if we cluster stations according to similarity defined by station feature vectors like

‖hi−hj‖, it will be very difficult to identify representative stations with distinguished

POI characteristics. That is why we develop a novel Heat Peaks based Clustering

(HPC) algorithm in this paper. Algorithm 6 presents the proposed HPC method.

The core of Algorithm 6 is PeakDiscovery(h,D, K), which is used in step 3 and

25. This function finds K heat-peak stations according to distribution of POI heat

h and geographical distances between stations D, where a heat-peak station satisfies

two conditions: 1) it has relatively larger POI heat value, and 2) there is no station

with even higher heat value in its neighborhood. Besides heat value hi, the other

indicator of i-th station is defined as

γi = min
j,hj≥hi

Dij. (3.5)
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Require: Input: H,D,NP 0,NP I ,δ,NCMin;
1: PeaksAll = ∅; cs = 0;
2: for f = 1 : Nf do
3: PeaksI = PeakDiscovery(H·f , D,NP

0);
4: PeaksAll = PeaksAll ∪ PeaksI;
5: PeaksAll0 = PeaksAll;
6: while ∃ csi = 0 do
7: for i = 1 : N do
8: if i ∈ PeaksAll then
9: csi = i;
10: else
11: PeaksNI = {j|D(i, j) ≤ δ, j ∈ PeaksAll};
12: if PeaksNI 6= ∅ then
13: csi = arg max

k∈PeaksNI
Sf (i, k)

14: for k = 1 : NP t do
15: Clusters(k) =

{
i|csi = PeaksAll(k), i = 1, 2, · · · , N

}
16: if |Clusters(k)| ≤ NCMin then
17: csi = 0, i ∈ Clusters(k);
18: PeaksAll = PeaksAll\PeaksAll(k);
19: if PeaksAll = PeaksAll0 then
20: Break;
21: else
22: PeaksAll0 = PeaksAll;
23: I = find(cs = 0), Hu = H(I,·), D

u = D(I,I);

24: for f = 1 : Nf do
25: PeaksI = PeakDiscovery(Hu

·f , D
u, NP I);

26: PeaksAll = PeaksAll ∪ PeaksI;
27: for i = 1 : N do
28: if csi = 0 then

29: csi = arg max
k∈PeaksAll

Sf (i, k);

Algorithm 6: HPC(H,D,NP 0,NP I ,δ,NCMin)

PeakDiscovery(h,D, K) is to pick out K stations with largest η values, where ηi =

hi · γi. It can be known that a heat-peak station selected by our method is a station

with highest heat value in a relative large region.

In Algorithm 6, step 2∼4 discover the first batch of heat-peak stations, which

select NP 0 heat-peak stations from each of N f POI categories. In the following,

step 7∼13 assign each bike station a cluster label by first finding heat-peak stations

in its δ-neighborhood, then assigning the stations to a heat-peak station with the

most similar POI mode. If there are no heat-peak stations in its δ-neighborhood, the

cluster label of the station is set 0. Step 14∼18 reset the cluster label of a station

as 0 if the scale of the cluster it belongs to is less than NCMin. In step 23∼26,
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we find new heat peaks from unlabeled bike stations. Repeat 7∼26 till there are no

new heat-peak stations added in an iteration. The residual unlabeled bike station is

finally assigned in step 27∼29.

Figure 3.3. POI characteristics of 6 FZ categories.

We partition the current Citi Bike in service area into 6 functional zone categories.

Figure 3.3 shows POI characteristics of the 6 functional zones categories. The first

category can be defined as a mixed business zone as it contains a balanced high

density of POIs from the first, third, and fifth POI category, while the third category

is the residential area, which contains a large POIs density like grocery, pharmacy,

and food. The other categories also have distinguished POI characteristics that can

be categorized as transportation area (second functional zone category), scenic spots

(fourth functional zone category), car services area (5th functional category) and

education area and Park areas (the park zones that have few POIs).

It can be known that the proposed HPC algorithm can discover functional zones

with the consideration of both geographical locations and POI characteristics of bike

stations. The identified functional zones consist of bike stations with similar POI
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Figure 3.4. Bike Transition Distance Preference

mode and close geographical distance. Demand prediction of bike station can not only

benefit from POI features of functional zones, but also from zone-to-zone transition

patterns.

Zone-to-Zone transition learning. The zone-to-zone transition learning focuses

on the three major factors that would affect the check-outs and check-ins of each

functional zone: trip distance preference, zone-to-zone preference, and zone charac-

teristics.

Distance Preference Learning. The distance preference refers to the distance range

that a person prefers to taking a bike other than other transportation methods such

as subways or taxis. Mathematically, the pick-up frequency density versus transition

distance forms a log-normal distribution (see the blue fitting line in Figure 4.2). As

can be seen, the bike transition distance distributions are identical during different
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(a) Weekday 8am to 9am (b) Weekday 5pm to 6pm

(c) Weekend 8am to 9am (d) Weekend 5pm to 6pm

Figure 3.5. Zone-to-Zone Transition Matrix

time periods and between different functional zones. Therefore, given the locations

of origin o.c and destination d.c, associated with their distance x ≡ ‖o.c − d.c‖, we

can estimate the users’ distance preference of taking bicycles, which is defined by a

Distance Preference Score (DPS):

DPS(x) = y0 +
A√

2πwx
exp(−(ln(x/xc))

2

2w2
) (3.6)

Where y0, A, w, xc are fitting parameters (see fitting results in inserted table of Figure

4.2). The formula of DPS indicates that people would not like to take bikes for long

term trip (larger than 4 miles) or within walking distances. People who have an

origin-to-destination distance in the range of FWHM (full width at half maximum)

of DPS (1.5 miles ∼ 2.7 miles) are more willing to take bicycles.

Zone-to-zone preference learning. Besides the distance preference, customers have
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their functional zone preference in different periods. For example, during AM rush

hour, customers will have a high preference to take bikes from subways exits to

business areas even though a nearby parking lot has a higher DPS. Here we define a

functional zone transition matrix T (Ci, Cj) to describe the transition preference from

functional zones of class Ci to functional zones of class Cj that satisfies:

T (Ci, Cj)
N∑
n=1

DPS(x; on.c ∈ Ci, dn.c ∈ Cj) = N (3.7)

Where N represents the total transitions from functional zone of class Ci to Cj.

Table 3.5 presents the normalized FZ transition preference matrix of 4 time periods:

weekday 8 am-9 am 3.5(a), weekday 5 pm-6 pm 3.5(b), weekend 8 am-9 am 3.5(c)

and weekend 5 pm-6 pm 3.5(d). As can be seen, bike users are least likely to move

between the functional zones of the same class (small diagonal value of T ), which

indicates that in order to motivate more bike users, the functional zones should be

diversified. The transition matrix varies in different time periods and some classes

have high links in different time periods.

Therefore, given two functional zone Zm, Zn with its location center Zm.l, Zn.l

and class Zm.C, Zn.C, we define the Zone Transition Score ZTS of time period t as

follows:

ZTS(Zm, Zn; t) = T (Zm.C, Zn.C; t)DPS(|Zm.l − Zn.l|) (3.8)

The functional zone check-out preference score ZPSout and check-in preference score

ZPSin are then defined by considering the transition scores to and from all surround-
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ing functional zones:

ZPSout(m; t) =
∑
n6=m

ZTS(Zm, Zn; t) (3.9)

ZPSin(m, in; t) =
∑
n6=m

ZTS(Zn, Zm; t) (3.10)

Zone Characteristics. The last factor considered in our prediction model that could

affect the bike demands is the characteristics of each functional zone, including the

densities of 6 major POI categories, historical taxi check-outs and check-ins, and the

number of available docks.

Entire traffic prediction. After we extract the most influential factors from the zone

characteristics, zone check-out and check-in preference scores, the entire check-outs

Zout(m; t) and check-ins Zin(m; t) are predicted by feeding the factors into the Random

Forest Regressor (RF) for different time periods.

Station level bike demand prediction. After we predict the check-ins and check-

outs of each Functional zone, the station bike demand in the functional zone is pre-

dicted by ridge regression fC(si.F ), indicating the number of check-ins or check-outs

distributed to each station based on the station level feature vector F (Voronoi area

POI densities and their distance to nearest transportation entrances, such as parking

lots, subway entrances and bus stops). The logistic regressor for pick-up demand and

drop-off demand are trained by the historical transition records of stations within

the same functional zone of category C. For each station si located in Functional

Zone Zm of category C, the station level pick-up si.pd and drop-off demand si.dd are
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formally predicted as follows:

si.pd(t) = Zout(m; t)
fCp (si.F )∑

sj∈Zm f
C
p (sj.F )

(3.11)

si.dd(t) = Zin(m; t)
fCd (si.F )∑

sj∈Zm f
C
d (sj.F )

(3.12)

3.4.2 Demand prediction after expansion

There are two kinds of stations for expansion: station coverage expansion and com-

plementary station expansion. Different kinds of expansion strategy have different

effects on the demand related factors.

The station setup for coverage expansion is to set up new stations in the area that

has no stations before. As a result, the new functional zones of the expansion areas

will affect the zone-to-zone connection preference and transition distance preference

of the principle system. By the definition of Zone Transition Score ZTS, which

decreases fast for long distance transportation, the coverage expansion stations will

have fewer effects on the functional zones located far away compared to the functional

zones located near the expansion edges. The complementary station expansion aims

at reducing the station workload by adding one or more stations to existing bike

sharing system covered functional zones. The complementary stations have fewer

effects on zone level bike check-ins/check-outs predictions but will redistribute the

bike pick-ups and drop-offs within the functional zones.

Although different expansion strategies have different effects, these effects are

reflected in the changes of our predictor input feature vectors. To predict the station
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demand prediction after expansion, we reconstruct the input features at zone level

and station level after expansion and implement the predictors we have trained in the

principle station network learning.

3.5 Experimental Results

To validate the efficiency and effectiveness of our proposed method, extensive exper-

iments are performed on real world NYC CitiBike trip data of three different time

periods. The first stage is the principle bike station system consisting of 329 stations

from 07/01/2013 to 07/31/2015. The second stage has 486 stations from the comple-

tion of first expansion on 08/06/2015 to 07/18/2016. And the third stage starts from

07/23/2016 to 11/30/2016, with 617 stations in service after the second expansion.

All experiments are conducted on a PC 7 with an Intel(R) Core i7-4790 CPU, 3.6

GHz, and 16 GB RAM running 64-bit Windows 10 system.

3.5.1 Experimental Data

We conduct our experiments with bike sharing system data, Google Place API1 , taxi

trip records from NYC with their statistics presented in Table 3.2. Citibike transition

records are generated by NYC Bike Sharing System which is public available from

Citibike official website 2 . This data set contains the following information: station

id, bicycle pick-up station, bicycle pick-up time, bicycle drop-off station and bicycle

drop-off time. In addition, the station status is crawled every 10 minutes from station

status feed site 3 which contains the information of station in service status, currently

1https://developers.google.com/places/
2https://www.citibikenyc.com/system-data
3https://feeds.citibikenyc.com/stations/stations.json
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Table 3.2. Details of the datasets

Data Source New York City Bike System
Time from

to
7/1/13 8/6/15 7/29/16
7/31/15 7/18/16 11/30/16

Weekdays
(Weekends)

524
(237)

238
(110)

85
(40)

#Stations 329 486 617
#Records 17.58 million 11.76 million 6.07 million

Data Source Google Place API
POI type number POI type number

establishment 70335 car service 1088
education 2784 supermarket 4077

shopping mall 206 entertainment 996
store 28418 bus station 1981

lodging 1262 railway station 1142
home service 1166 finance 8103
convenience 9914 estate agency 5693

health center 42164 restaurant 11825
night life 4115 travel agency 1595

fitness 1357 · · · · · ·
Data Source New York City Taxi Trip Records
effective days time Period # of trip records

31 08/2013 12.6 million
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available bikes and station capacity.

3.5.2 Baselines & Metric

The methods proposed in our work to predict the station level pick-up demand and

drop-off demand are denoted as Functional Zone based Random Forest Regressor

(FZ+RF). In order to confirm the effectiveness of our models, we conduct experi-

ments to compare our methods with the following baselines:

Station Level Predictor (Li et al., 2015b): The station level predictors esti-

mate the bike demand based on a set of global feature elements. The baselines of

station level predictors we use in this paper include Random Forest (RF), K-Nearest

Neighbor Regressor (KNN), Neural Network (NN) and Gradient Boosting Regressor

(GBR). The features used for station level predictors include the 19 fine grained POI

densities, Voronoi region taxi check-ins and check-outs.

Hierarchical Demand Predictor: Considering our Functional Zone based station

clustering is the first attempt, we use the FZ+GBR as a baseline. The only difference

between the FZ+GBR and our method is that it uses GBR for zone level bike

transitions prediction.

Metric: The metrics we adopt to measure the performance are the Error Rate ER

and Root Mean Squared Logarithmic Error RMLSE, which are formally defined as

follows:

ER(t) =

∑N
i=1|ŝi.d(t)− si.d(t)|∑N

i=1 si.d(t)

RMLSE(t) =

√√√√ 1

N

N∑
i=1

(log(ŝi.d(t) + 1)− log(si.d(t) + 1))2
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Here si.d(t) is our ground truth of bike pick-up or drop-off demand of station i during

time slot t and ŝi.d(t) is the corresponding prediction value. The principle stations

in Stage 1 are used as training set. For the expansion analysis of Stage 2 and Stage

3 bike sharing systems, only the bike stations in the expansion areas, the stations

located within the functional zones taht are adjacent to the expansion boundaries,

and the complementary stations are included in the testing set.

3.5.3 Demand Prediction

Hourly station bike demand prediction after first expansion. The perfor-

mance comparison for first expansion bike demand prediction (including weekday

pick-up demand, weekday drop-off demand, weekend pick-up demand and weekend

drop-off demand) between our proposed FZ+RF and baselines is summarized in Fig-

ure 3.6. From Figure 3.6, we can see that for all time periods, both of the Error

Rate (ER) and the Root Mean Squared Logarithmic Error (RMSLE) obtained from

our proposed method are much lower than all the baselines with a significant margin.

Moreover, the hierarchical demand predictor based on functional zone station clus-

tering (FZ+GBR and FZ+RF represented by dot lines) achieve a better performance

than station level predictors based on global features (represented by star symbol

lines). The high ER of early morning predictions is mainly due to the few transition

records which amplify the ER but leads to a very small RMSLE.

Hourly station bike demand prediction after second expansion. Figure 3.7

presents the performance comparison for bike demand prediction after the second

system expansion. As can be seen, our proposed method lower the ER and RMSLE



- 85 -

(a) Weekday Pick-up ER (b) Weekday Drop-off ER

(c) Weekend Pick-up ER (d) Weekend Drop-off ER

(e) Weekday Pick-up RMSLE (f) Weekday Drop-off RMSLE

(g) Weekend Pick-up RMSLE (h) Weekend Drop-off RMSLE

Figure 3.6. Performance comparison of station bike demand prediction after first
expansion.
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of bike demand predictions of different time periods. However, compared to the

bike demand prediction performance after the first expansion, the ER and RMSLE

increase. It might be due to the reason that the functional zones in the second

expansion areas have a larger difference compared to that in the principle area.

Overall Performance Comparison. The daily averaged pick-up demand, drop-off

demand, positive balance and negative balance prediction accuracy comparisons are

represented in Figure 3.8. For the first stage expansion, our method achieves an over-

all pick-up ER of 0.3118 which is 0.0482 lower than the other hierarchical demand

predictor (stage 1) and 0.0863 lower than the most competitive station level predictor

RF. The overall drop-off demand ER of our method is 0.3295 which is much lower

than other baselines. In terms of RMLSE, our method achieves an overall RMLSE

of 0.1096, 0.1184, 0.1509 and 0.157 for stage-1 pick-up demand prediction, stage-1

drop-off demand prediction, stage-2 pick-up demand prediction and stage-2 drop-off

demand prediction respectively. Moreover, an accurate hourly demand prediction can

also benefit the station unbalance prediction. The Figure 3.8(c) and Figure 3.8(d)

summarize the performance of the positive unbalance and negative unbalance predic-

tion. As can be seen, our proposed method can provide a more accurate unbalance

status prediction which can further help bike sharing system designers estimate the

rebalancing operation cost after bike sharing network expansion.

3.6 Conclusion

In this paper, we developed a hierarchical bike demand prediction models for ex-

pansion area station level bike demand prediction. Specifically, we first partitioned
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(a) Weekday Pick-up ER (b) Weekday Drop-off ER

(c) Weekend Pick-up ER (d) Weekend Drop-off ER

(e) Weekday Pick-up RMSLE (f) Weekday Drop-off RMSLE

(g) Weekend Pick-up RMSLE (h) Weekend Drop-off RMSLE

Figure 3.7. Performance comparison of station bike demand prediction after second
expansion.
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(a) ER of demand prediction (b) RMLSE of demand prediction

(c) ER of balance prediction (d) RMLSE of balance prediction

Figure 3.8. Overall Performance Comparison
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the station in service area into different functional zones based on our Bi-Clustering

algorithm. Then based on the functional zones, we implemented Random Forest Re-

gressor to estimate the functional zone bike transitions by integrating the bike trip

distance preference, zone-to-zone preference, and zone characteristics. The station

level bike demand was predicted by distributing the zone level check-ins and check-

outs to each station with the consideration of their Voronoi region POI structures.

Finally, the extensive experiments on real-world data from the 3-stage NYC Citi Bike

System showed the advantages of our hierarchical strategy of bike demand prediction

for bike sharing system expansion.
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CHAPTER 4

STATION SITE OPTIMIZATION IN BIKE SHARING SYSTEMS

In an ideal bike sharing network, the station locations are usually selected in a way

that there are balanced pick-ups and drop-offs among stations. This can help avoid

expensive re-balancing operations and maintain high user satisfaction. However, it is

a challenging task to develop such an efficient bike sharing system with appropriate

station locations. Indeed, the bike station demand is influenced by multiple factors

of surrounding environment and complex public transportation networks. Limited

efforts have been made to develop demand-and-balance prediction models for bike

sharing systems by considering all these factors. To this end, in this paper, we pro-

pose a bike sharing network optimization approach by considering multiple influential

factors. The goal is to enhance the quality and efficiency of the bike sharing service

by selecting the right station locations. Along this line, we first extract fine-grained

discriminative features from human mobility data, point of interests (POI), as well as

station network structures. Then, prediction models based on Artificial Neural Net-

works (ANN) are developed for predicting station demand and balance. In addition,

based on the learned patterns of station demand and balance, a genetic algorithm

based optimization model is built to choose a set of stations from a large number

of candidates in a way such that the station usage is maximized and the number of

unbalanced stations is minimized. Finally, the extensive experimental results on the
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NYC CitiBike sharing system show the advantages of our approach for optimizing the

station site allocation in terms of the bike usage as well as the required re-balancing

efforts.

4.1 Introduction

To offer immediate and convenient access, a network of bike docking stations are po-

sitioned throughout an urban area. However, developing an efficient bike sharing sys-

tem with proper station locations is a challenging task. To construct a successful bike

sharing network, we must consider the station locations in the bike sharing network

and their relationship with trip demand and balance (Garćıa-Palomares, Gutiérrez,

& Latorre, 2012; Martinez, Caetano, Eiró, & Cruz, 2012; Contardo, Morency, &

Rousseau, 2012). Specifically, there are two major challenges for bike station site

selections. First, bike sharing system is an undirected network that the performance

(i.e., bicycle demand) of one station highly depends on its connection to other stations

and its surrounding human activities. The multi-factor effects of surrounding envi-

ronment and station network structure make it difficult to predict station demand.

Second, the demand distribution is unbalanced both geographically and temporally.

It is costly to dispatch bikes from full stations to empty stations for re-balancing, and

the efficiency of the station usage is reduced during the unavailable period.

Recently, a number of researches on bike sharing systems analysis have been con-

ducted from different aspects. Most of the studies have focused on the historic de-

velopment of bicycle sharing system (Shaheen, Guzman, & Zhang, 2010), promotion

strategies (Pucher, Garrard, & Greaves, 2011), bicycle temporal and geographical
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usage patterns analysis (Kaltenbrunner, Meza, Grivolla, Codina, & Banchs, 2010b),

station demand related factors (Pucher, Dill, & Handy, 2010) and re-balancing bicy-

cles among established bike stations (Rainer-Harbach, Papazek, Hu, & Raidl, 2013;

Kloimüllner, Papazek, Hu, & Raidl, 2014). However, there are relatively few studies

quantitatively addressing the relationship between the multiple influential factors and

the station demand or its geographically imbalance distribution.

To solve the aforementioned challenges, in this paper, we first extract insightful

features from human mobility data, POIs and bike station network structures. Next,

we propose an Artificial Neural Network based prediction model for station demand

and balance prediction according to the features extracted. Then an optimization

problem aiming at maximizing station demand and minimizing the number of unbal-

anced stations is addressed and solved using a genetic algorithm. The performance of

our prediction model and optimization strategy is comprehensively evaluated on real

world bike sharing system data generated by NYC CitiBike System and the experi-

mental results demonstrate the effectiveness and efficiency of our proposed method.

4.2 Problem Formulation

In this section, we first introduce some preliminaries used throughout this paper, and

then formally define the problem of bike station network optimization.



- 93 -

4.2.1 Preliminaries

Station Network

The bike station network is represented by a direct graph G = (S,E). With each

station s ∈ S as a node, the edges in E are directed connections of bike stations

eij = (si, sj) ∈ E. Each node and edge have several attributes. For example, eij.f

represents the commuting frequency of pick-up at station si and a drop-off at station

sj.

Since need-based customers will choose the station closest to their current lo-

cations or final destinations, we partition the bike station in service area using a

Voronoi-based gridding method (Aurenhammer, 1991), from which the map is parti-

tioned into regions based on walking distance to bike stations. Each grid is centered

by one bike station and the points within one region is closest to its center. As a

result, pick-up/drop-off points for taxi trips and POIs are mapped to the nearest bike

station.

Definition 1 (Voronoi Region) Let X be a space coordinate endowed with a walk-

ing distance wd extracted from Google Maps Distance Matrix API. The Voronoi region

Rsi associated with station si is the set of all points in X whose distance to si is no

greater than their distance to other stations:

Rsi = {x ∈ X|wd(x, si) ≤ wd(x, sj),∀j 6= i}.

The NYC CitiBike in service area (Manhattan island below 61st street and western

Brooklyn) is partitioned into Voronoi Regions centered by each CitiBike Station (see

Figure 4.1(a)).
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(a) Station Voronoi Region (b) Demand Distribution

(c) Net-pick-up Distribution (d) Net-drop-off Distribution

Figure 4.1. NYC CitiBike stations in service area Voronoi Region partition, bike
demand distribution and balance distribution.
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Station Demand

The station demand is defined as the average pick-up frequency/hour when this sta-

tion is available. Station availability means the station is in service and there are

bikes available for pick-up. Station pick-up unavailability is usually due to maintain-

ing and empty dock. We do not consider the station demand during its unavailable

period.

Definition 2 (Station Demand) Let si.f(T ) and si.a(T ) represent the daily pick-

up frequency and station in service time duration (hour) in day T . The station de-

mand (SDi) is defined as: SDi = 1
T

∑
T
si.f(T )
si.a(T )

.

The station demand distribution of stations of NYC CitiBike sharing system is pre-

sented in Figure 4.1(b) as an example. In Figure 4.1(b), each circle represents a

current in service bike station in NYC with its size representing its bike demand

defined by Defintion 2.

Station Balance

Due to unbalanced bike demand distribution, bikes from full stations are dispatched

by truck to empty stations, which greatly increases the operation cost of bike sharing

systems and affects customers’ conveniences. We investigate the station imbalance

problem by first introducing the concept of station net pick-up/drop-off frequency

from the daily transaction records. Let {si.pd(tj)|j = 0, 1...} represents the pick-

up/drop-off events of station si at time tj, where si.pd(tj) = 1 for pick-up record and

si.pd(tj) = −1 for drop-off record. The net pick-up (net drop-off) si.np (si.nd) is

defined as the contiguous subarray of series {si.pd(t)} whose values have the largest
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positive sum (smallest negative sum).

In our study, if the average net pick-up or net drop-off of station exceeds a thresh-

old γ (decided by the tolerance of a station vacancy rate), we discriminate this station

as unbalanced. For the situation of NYC CitiBike system, γ equals to the average

dock numbers of the CitiBike stations.

Definition 3 (Station Balance) Let (si.np(Tj), si.nd(Tj)), j = 1, ..., n represents

the net-pick/drop frequency of station si from day T1 to Tn, the station balance is

identified as a binary variable discriminated by a delta function δ(x) = 1 if x is

TRUE and 0 otherwise:

SBi = δ( 1
n

∑n
j=1 si.np(Tj) ≥ γ or 1

n

∑n
j=1 si.nd(Tj) ≥ γ)

For the example of NYC CitiBike system, the station net pick-up/drop-offs and their

balance patterns are presented in Figure 4.1(c) and Figure 4.1(d) with the unbalanced

station highlighted in red.

4.2.2 Problem Formulation

The bike station network optimization problem for bike sharing systems can be sep-

arated into two stages: station demand and balance prediction; station network op-

timization.

Station Demand and Balance Prediction

Given a set of bike station locations and their surrounding features (F), the problem of

station demand and balance prediction is to predict the station demand defined in Def-

inition 2 and to identify if the station is unbalanced according to Definition 4. In our
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study, we feed multi-factor features extracted from human mobilities, POIs and sta-

tion network structures into prediction models based on neural network NNSD(si; F)

for station demand prediction and neural network NNSB(si; F) for station balance

prediction.

Station Network Optimization

Given the well trained neural network prediction models NNSD and NNSB from

stage 1 and a set of bike station location candidates SC of size |SC| = m, the

problem of station network optimization is to find an optimal subset OC of the

location candidates SC such that the total demands from all chosen stations are

maximized while the number of unbalanced stations are minimized. Formally, our

objective function for station network optimization is defined as follows:

maxF(y) =
m∑
i=1

yi(
1

n
NNSD(si)− λNNSB(si)) (4.1)

s.t.
k∑
i=1

yi = n1 (4.2)

m∑
i=k+1

yi = n2 (4.3)

‖si − sj‖≥ yiyjd ∀i 6= j (4.4)

yi ∈ {0, 1} j = 1, 2, ...,m (4.5)

where y = {y1, y2, ..., ym} is a binary variable vector. yi=1 indicating location candi-

date si is chosen to be an optimal station site locationn otherwise yi = 0. “‖a− b‖”

is spherical earth (ignoring ellipsoidal effects) distance calculation according to the

coordinates of two points. λ is a penalty parameter representing the additional cost
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and demand losing for unbalanced stations. Constrain (4.2) and Constrain (4.3)

specify the limits of total number of stations in different areas respectively and the

total number of stations n is pre-determined. Constrain (4.4) specifies the minimum

distance between any optimal stations. Different from other optimization problems

which treat station candidates independently, the station demand and balance are

non-functionally decided by the chosen stations indicated by indicator vector y. For

the same selected candidate si, a different network will have different Voronoi Regions

and different network structures which will affect the station demand and balance

pattern for station si.

4.3 Feature Extraction

In this section, we introduce 10 fine-grained features extracted from station network,

bicycle trajectories, taxi trajectories and POIs for station demand balance prediction.

4.3.1 Transportation Related Features

Public bicycles are widely used for short-term distance traveling and transportation

missing link connection. It is very common that people will take bikes to nearby

locations with more convenient accesses to other long-distance transportation like

subways, taxis, etc. In our study, we extract the walking distance from each bike

station to its nearest parking lot, the walking distance to the nearest subway station,

the taxi pick-up densities and the number of faster bicycle routes as our transportation

related features. Taxi pick-up density mapped to station si is the number of taxi pick-

up in Voronoi Regin Rsi divided by the region size: si.TP =
∑

kt
δ(TPkt ∈ Rsi)/|Rsi|.

Because of traffic jams and vehicle detours, bicycling is faster than vehicles in some
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areas. For the same origins and destinations, people are more willing to take bikes

if it is faster, cheaper and more convenient than vehicles. By tracking bicycles and

taxies as speed sensors, we are able to define the feature of number of faster bicycle

routes as follows: Let eij.vt, eij.vb represents the average transportation time of taxis

and bicycles from station si to station sj. The feature number of faster bicycle route

is defined as the number of edges taking a bicycle is faster than a taxi: si.FR =∑
j 6=i δ(eij.vb− eij.vt > 0)

4.3.2 POIs Features

POIs provide us various information about the city from different aspects. The density

of POIs is an indicator of human crowd intensity. A high population density means a

high probability of bicycle demand. On the other hand, people tend to take bicycles

to go to/from their POIs. In terms of station balance, the stations near schools

and restaurants are more likely to have a large net pick-up/drop-off during after-

school time period and dining time. In this study, we use the density of 4 major

categories of POIs within the Voronoi region surrounding each bicycle station, which

are entertainment, restaurant, shopping center and education.

4.3.3 Station Network Profile

Station Scale. The station scale is represented by the total number of docks. Al-

though the pick-up frequency is restricted by the station scale since a small station is

more likely to be empty, the station demand from our definition is not restricted by

this situation because the empty time period is not counted. In addition, because of

the bike sharing re-balance system, the stations with size smaller than the threshold
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Figure 4.2. Distance preference comparisons between bicycles and taxis

γ defined in Definition 3 can still have a net pick-up/drop-off larger than γ and our

definition of station balance is not restricted.

Nearby Station Score. Bicycle users will have a different traveling distance pref-

erence compared to vehicle users. From the historical traveling distance records of

bicycles and taxis, we calculate the statistic frequencies of trips in different trip dis-

tance intervals and represent the frequencies as distance preference. The difference

of the transportation distance preference between taxis and bicycles are presented

in Figure 4.2. From Figure 4.2, we can see that people usually take bicycles for

0.5-1.5 mile distance transportation while most people take taxis for long distance

destinations where the bicycles can hardly reach. Mathematically, the normalized

pick-up frequency versus station distance forms a log-normal distribution (see the

blue fitting line in Figure 4.2). Therefore, given the locations of two stations si.c, sj.c

associated with their distance x ≡ ‖si.c − sj.c‖, we can estimate the users’ prefer-
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ence of taking bicycles from si to sj, which is defined by a single nearby station score

(SNSSij = y0 + A√
2πwx

exp(− (ln(x/xc))2

2w2 )). y0, A, w, xc are fitting parameters (see fitting

results in inserted table of Figure 4.2). The feature of nearby station score is then

defined as NSSi =
∑n

j 6=i SNSSij. From the definition of NSS, we can see that a

station should not be located too close or too far away from other stations and the

station demand should be positively correlated to the NSS.

4.4 Methodology

4.4.1 Prediction Model

We propose an artificial neural network (ANN) to predict the station demand and sta-

tion balance based on the features extracted. The comparative advantage of ANN over

most conventional prediction models is that it can implicity detect complex nonlinear

relationships between the features from different domains and the targets without

any prior assumptions about the underlying data generating process (Benediktsson,

Swain, & Ersoy, 1990). The details of the specification and estimation of our M-layer

ANN model is summarized below.

Layer Input. The net input to unit i in layer k+ 1 is the linear combinations of the

outputs αk in layer k. The network input α0 is the feature vector normalized within

[0,1] ranges by mapping x = x−xmin
xmax−xmin .

Layer Output. The output of unit i in layer k + 1 is mapped from lk+1 using a

sigmoid activation function ak+1(i) = 1

1+e−lk+1 . The output layer is a linear layer

for regression problem of station demand prediction and the final output aM is tsd

(continue variable). For station balance prediction, a threshold output layer is trained
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and the final output aM is binary variable tsb.

Training Algorithm. Our training task is to learn the associations between the

inputs and outputs of our training set which aims at minimizing the prediction error:

V = 1
2

∑nt
i=1(ti−aMi )2. The Levenberg-Marquardt algorithm (Hagan, Demuth, Beale,

et al., 1996) is applied for parameter training in our study. Moreover, a testing set is

used for monitoring validation error and overfitting control without affecting training

parameters during the training process.

4.4.2 Optimization Model

The station network optimization problem is to find a binary indicator vector y that

maximizes our objective function (4.1). We first simulate k = 1702 and m − k =

634 locations as candidates in Manhattan and Brooklyn areas. Among which, we

select n1 = 252 optimal stations from Manhattan and n2 = 68 optimal stations from

Brooklyn. The candidates are simulated with equally distanced interval which cover

the NYC CitiBike in service area and the docks number of each candidate is simulated

to be 35 (the average number of docks of current bike system).

A genetic algorithm (GA) can be understood as a probabilistic search algorithm

which is applicable to our combinational optimization problem (Reeves, 1993). In

our case, each possible solution (an optimal station network) represented by our in-

dicator vector y is identified by a chromosome as an individual with each element

yi representing one piece of gene. The process for solving the bike station network

optimization problem starts by randomly initializing 1000 individuals as the first

generation, which are transformed to the next generation through the designed tour-
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nament selection (Miller & Goldberg, 1995), recombination and mutation (Gen &

Cheng, 2000). The termination criteria is setup by identifying if best objective is

varying within 0.2% for 5 continuous generations.

In the tournament selection process of our study, 3 individuals are selected ran-

domly from the large population and the selected individuals compete against each

other. The individual with the highest value of objective function among the three

is selected as one of the next generation population. This procedure is repeated 100

times and 100 individuals are selected for genetic operation of recombination and

mutation to generate next generation. In recombination process, a multiple points

crossover specified by a binary vector S = (s1, s2, ..., sm) is applied to determine the

genes inherited from the two parents. In general, the crossover point marker S can be

arbitrarily decided. However, we limit the structure of S to guarantee the constrain

(4.2) and (4.3) in our optimization problem. Mutation is applied to explore newly

possible offsprings for diversified generation. Two pieces of gene of offsprings from

crossover are randomly selected to have 2 genes mutated.

4.5 Experiment

To validate the efficiency and effectiveness of our proposed method, extensive exper-

iments are performed on real world NYC CitiBike trajectory data of 320 stations in

Manhattan and Brooklyn area (see Figure 4.1(b)). The stations are randomly split

into 80% (256) for training and 20% (64) for validation. Their demand and balance

information are extracted from the CitiBike system historical data as our ground

truth.
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4.5.1 Data Description

Citibike Transactions. Citibike transactions are generated by NYC Bike Sharing

System which is public available from Citibike official website. 11.3 million trans-

actions are extracted from July 2013 to November 2014 with winter session from

December 2013 to March 2014 excluded because the demand for bicycle during the

winter is very low. This data set contains the following information: station id, bicy-

cle pick-up station, bicycle pick-up time, bicycle drop-off station and bicycle drop-off

time.

Taxi GPS Transactions. Taxi GPS transaction dataset is generated by taxis in

New York City in August 2013 which is public available. 11.3 million taxi transactions

are collected with each record containing the information of trip distance, taxi pick-up

coordinate, taxi pick-up time, taxi drop-off coordinate and taxi drop-off time.

4.5.2 Feature Analysis

Correlation Analysis

We first perform a correlation analysis investigating the correlation relationship be-

tween our targets (station demand and station balance) and the features extracted

from real world data (see Figure 4.3). The Pearson correlation coefficient is applied

for station demand and features. For the correlation of station balance and features,

we use Point-Biserial correlation. From Figure 4.3 we can see that all features are

correlated to the targets we investigate, compared to a simulated random noise fea-

ture (RN). Moreover, the features of distance to subway entrance and parking lot are

negative correlated, which indicate the bike station is treated as an transportation
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Figure 4.3. Correlation of features and station demand & balance patterns

missing link connection.

4.5.3 Station Demand Prediction

Evaluation Metrics. To show the effectiveness of our proposed method for station

demand prediction, we use the coefficient of determination for the prediction error

measurement.

Training Progress. Figure 4.4(a) shows how fast the ANN converges using Levenberg-

Marquardt algorithm. Although the training error continues decreasing, the opti-

mized ANN is chosen at epoch 13 of minimum validation error.

Baseline Algorithm. We evaluate the effectiveness of our model for station de-

mand prediction with a set of baselines, including (1)K-Nearest Neighbor; (2)Logistic

Regression (3)SVR with RBF kernal; (4)Decision Tree; and (5) Adaboost Decision

Tree Regression. All baseline algorithms are trained on the same training data set

and their performance are compared using the same validation set as our Regression
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Figure 4.4. Station demand prediction training progress and performance

Neural Network. All the baselines are implemented by a python machine learning

library named Scikit-Learn (Pedregosa et al., 2011).

Overall Performance. The overall performance comparison of different methods

is summarized in Figure 4.4(b). Our proposed Neural Network achieves an R2 of

0.88168, which obviously outperforms the baseline algorithms with a significant mar-

gin. Among the 5 baseline algorithms, only AdaBoosted decision tree can achieve a

relatively high R2 of 0.76152. The algorithms of KNN (0.55322) logistic regression

(0.62134), Suport Vector Regressor (0.60479) and CART (0.62261) are not able to

predict station demand based on the features extracted.

4.5.4 Station Balance Prediction

Evaluation Metrics. The classification performance of the optimized artificial neu-

ral networks for station balance prediction is evaluated using evaluation metrics in-

cluding overall accuracy, precision, recall and F-measure.

Baseline Algorithm. We evaluate the effectiveness of our model for station demand

prediction with a set of baselines: (1)K-Nearest Neighbor Classifier (KNN); (2)Sup-



- 107 -

port vector classifier (SVC) with linear kernal; (3)Gaussian Naive Bayes (GNB) clas-

sifier; (4)classification and regression tree (CART) and (5)Adaboost Decision Tree

Classifier.

Overall Performance. The training and validation performance of artificial neural

network based station balance prediction is presented by two confusion matrixes in

Figure 4.5. Our proposed prediction model can achieve an accuracy of 85.2% for the

256 stations (185 balanced and 71 unbalanced stations) in training set and the valida-

tion accuracy reaches 90.6% for the rest 64 stations (49 balanced and 15 unbalanced

stations). The overall performance comparison of different methods is summarized

in Figure 4.6. As can be seen from Figure 4.6(a), our proposed method achieves the

highest prediction accuracy compared to the 5 most commonly used classification al-

gorithms. The overall validation accuracy of AdaBoost is above 84% and the Gaussian

Naive Bayes has the lowest accuracy of 76.6%. Moreover, from Figure 4.6(b), 4.6(c)

and 4.6(d), our method outperforms other baseline algorithms in terms of precision,

recall and F-measure.

4.5.5 Station Network Optimization

Based on our prediction models, a bike sharing network optimization is conducted

to find 252 optimal stations from 1720 station candidates in Manhattan area and

68 optimal stations from 967 station candidates in Brooklyn. Figure 7(a) shows the

progress of searching best station network. It can be seen, the optimization converges

at 109th generation with the best objective of 3.42323, significantly higher than the

current station network that has the same number of stations but obtains a much
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Figure 4.5. Confusion Matrix of ANN training and validation outputs
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Figure 4.7. Distribution and statistics of optimum bike stations

lower objective of 2.71. The optimum stations achieve a high objective from two

respects: the average station demand is 3.98323 compared to current stations with

an average demand of 3.57092; the number of unbalanced stations decreases from 86

to 56 (see Figure 7(b)).The distribution of optimum stations is presented in Figure

7(c). The potential station demands are represented by the circle sizes and the red

circles indicate unbalanced stations.

4.6 Conclusion

In this paper, we developed a comprehensive bike station network optimization ap-

proach by selecting bike station locations with high demand and balanced pick-

ups/drop-offs . To the best of our knowledge, this paper is the first attempt to

integrate multiple factors from human mobilities, surrounding POIs and station net-



- 110 -

work structures for station demand prediction and balance evaluation in bike sharing

systems. Specifically, artificial neural network based prediction models was devel-

oped to build the complex nonlinear relationships between the features extracted

from different factors and the patterns of station demand and balance. Evaluated by

bike sharing system data generated by NYC CitiBike System, our proposed model

manifested the best prediction performance among other state of the art algorithms.

Moreover, an genetic algorithm based optimization strategy aiming at maximizing

station network demand as well as minimizing number of unbalanced stations was

conducted by selecting optimal station locations from a large set of station locations.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, I integrate data mining techniques and optimization algorithms

for the design and operaions management in bike sharing systems, by effectively

modeling and efficientyly computing with various bike system data, human mobility

data, meteorology data, and other POI data.

First, I developed a data-driven bike station inventory reblancing model by ex-

ploiting the station-level bike pick-up and drop-off demand. I first develop a metorol-

ogy similarity K-nearest Neighbor regressor and a nonlinear autoregressive network

with exogenous meteorology factors (NARX) to predict bike pick-up demand, and

a pick-drop bike transition (PDBT) predictor for transition patterns discovery and

bike drop-off demand prediction. Then, a Mixed Integer Linear Programming (MILP)

model is formulated to redistribute bikes using rebalancing vehicles. To address the

challenge of computational efficiency, we propose a data-driven hierarchical optimiza-

tion methodology to decompose the multi-vehicle routing problem into smaller and

localized single-vehicle routing problems. Further, we propose two advanced rebal-

ancing strategies: partial target satisfying strategy and multi-vehicle visiting strategy

to deal with outlier stations while ensuring the feasibility of the route optimization

solution.

Second, I developed a hierarchical bike demand prediction models for expansion
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area station level bike demand prediction. Specifically, we first partitioned the station

in service area into different functional zones based on our Bi-Clustering algorithm.

Then based on the functional zones, we implemented Random Forest Regressor to

estimate the functional zone bike transitions by integrating the bike trip distance

preference, zone-to-zone preference, and zone characteristics. The station level bike

demand was predicted by distributing the zone level check-ins and check-outs to each

station with the consideration of their Voronoi region POI structures.

Third, I developed a comprehensive bike station network optimization approach by

selecting bike station locations with high demand and balanced pick-ups/drop-offs .

This model attemptted to integrate multiple factors from human mobilities, surround-

ing POIs and station network structures for station demand prediction and balance

evaluation in bike sharing systems. Specifically, artificial neural network based pre-

diction models was developed to build the complex nonlinear relationships between

the features extracted from different factors and the patterns of station demand and

balance. Evaluated by bike sharing system data generated by NYC CitiBike System,

our proposed model manifested the best prediction performance among other state

of the art algorithms. Moreover, a genetic algorithm based optimization strategy

aiming at maximizing station network demand as well as minimizing number of un-

balanced stations was conducted by selecting optimal station locations from a large

set of station locations.
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