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ABSTRACT OF THE DISSERTATION 

ANALYSIS AND INTEGRATION OF OMICS DATA: APPLICATIONS IN DRUG 

PHARMACOGENOMICS AND ENDOGENOUS CIRCADIAN BEHAVIOR 

by ALISON ACEVEDO 

Dissertation Director: 

Ioannis P. Androulakis 

The integration of data across omics levels is necessary to accurately reflect physiology, whose 

behavior is not limited to one molecular component level. Further, integration of information 

across experimental platforms, time scales, dosing regiments, tissues, and organisms is necessary 

for the extraction of all possible meaning from the wealth of existing data stored across databases 

globally and for the development of research that is translatable between organisms. In the 

enclosed dissertation, we present a pathway-based meta-analysis approach integrated with 

multivariate decomposition techniques for processing temporal expression data. This framework 

is designed for application to expression data from any omics level, incorporates information 

from multiple databases, and is modular in that it can interrogate expression data with pathways 

extracted from multiple databases. This framework is applied to investigate the dosing- and 

tissue-dependent effects of the corticosteroid methylprednisolone, as well as the endogenous 

expression of model organisms critical to pre-clinical studies, rat and mouse. Such analyses both 

characterize systems not yet completely understood and exemplify the strength of a systems 

pharmacology understanding applied within translational research.  
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Chapter 1: From Gene-Phenotype Associations to Therapy Development 

1.1 Contemporary Data Wealth Capturing Complex Diseases and Drug Effects 

Genetic analyses investigating drug effects and disease development seek to identify association 

between variation in the expression of a biomarker and a physiological phenotype (Wilke, 

Mareedu et al. 2008, Jin, Zuo et al. 2014). These investigations can be hypothesis-driven (focus 

on a small number of candidate genes) or exploratory (a hypothesis-generating screen for the 

identification of multiple candidate genes) (Wilke, Mareedu et al. 2008). Complex diseases 

including autoimmune diseases such as osteoporosis, rheumatoid arthritis, metabolic syndrome, 

various cancers, and other chronic inflammatory conditions, rely on both investigation 

approaches because they are multifactorial, i.e. they manifest as the result of gene locus 

heterogeneity, gene-gene interactions (also gene-protein, protein-protein, etc.), and environmental 

factors (Macfarlane, Forbes et al. 2008, Moore and Williams 2009, Wong, Chin et al. 2016, Sulli, 

Manoogian et al. 2018). The combination of demands for investigation into these complex 

diseases and the continuous improvement of omics screening technology has led to growth in the 

amount of available data capturing all manner of gene-phenotype associations (Caporaso, 

Kuczynski et al. 2010). Given this wealth of data, our scientific community is motivated to glean 

physiological meaning with analytical methods that reflect the multifactorial complexity of 

disease- and drug-induced phenotypes, notably with the ultimate aims of health and therapy 

development (Ginsburg and Phillips 2018, Krzyszczyk, Acevedo et al. 2018).  

1.2 High-throughput Omics Data Techniques Motivate Pathway-based 

Investigations  

Garcia et al. aptly reports that “most basic high-throughput data analysis [results] exist first as 

overwhelmingly large lists of isolated genes detached of biological context (García-Campos, 
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Espinal-Enríquez et al.)” and that the first step in approaching analysis of such data is with a 

functional enrichment step. These initial analyses are designed to contextualize genes with 

recognizable physiological features, such as a signaling, metabolic, or disease pathways (Jin, Zuo 

et al. 2014, García-Campos, Espinal-Enríquez et al. 2015). Because physiological functions 

manifest in the context of a network of molecular components (genes, transcripts, proteins, 

metabolites, etc.) not truly composed of independent components, it is difficult to isolate any 

module or set of genomic/transcriptomic/proteomic (or other -omic levels) components and 

affiliate this set with a single function. We are aware that cellular functions “are caused by the 

combined action of different genes that, in turn, are highly pleiotropic and often participate in 

more than one cell activity (Amadoz, Hidalgo et al. 2018).” However, the hypothesis of a 

biochemical pathway is a useful tool, with which molecular component activity is contextualized 

in a physiologically meaningful way (Jin, Zuo et al. 2014, García-Campos, Espinal-Enríquez et 

al. 2015). We therefore rely on pathway-based analyses to discern meaning from our own 

multivariate data. We take the conventional definition of a pathway as functional group of 

genomic components that accomplish a specific physiological function (Jin, Zuo et al. , García-

Campos, Espinal-Enríquez et al. , Amadoz, Hidalgo et al.), and used functional enrichment and 

feature-based selection techniques to identify these pathway associations, analyze their dynamics, 

and thus discern physiological meaning from our data, processes essential to the fields of systems 

biology and systems pharmacology (Androulakis 2016).  

Generally, pathway-based analyses of high-throughput data can be defined as genome-wide 

association studies (GWAS) that identify variations in gene expression associated with a 

functional group manifesting a phenotype such as metabolic or signaling action or disease 

development (Jin, Zuo et al. 2014). For example, genome-wide association studies are used in the 

context of analyzing circadian regulation in multiple organisms (Almon, Yang et al. 2008, 
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Almon, Yang et al. 2008, Ovacik, Sukumaran et al. 2010, Sukumaran, Xue et al. 2010, 

Mavroudis, DuBois et al. 2018), the development of chronic diseases, as well as to investigate 

drug consequences across various tissues and omics levels such as the investigation of 

corticosteroids within liver, muscle, and kidney (Sun, DuBois et al. 1998, Almon, DuBois et al. 

2002, Ramakrishnan, DuBois et al. 2002, Ramakrishnan, DuBois et al. 2002, Almon, DuBois et 

al. 2004, Almon, Dubois et al. 2005, Almon, DuBois et al. 2007, Almon, DuBois et al. 2007, 

Hazra, Pyszczynski et al. 2007, Hazra, DuBois et al. 2008, Yao, Hoffman et al. 2008, Fang, 

Sukumaran et al. 2013, Nouri-Nigjeh, Sukumaran et al. 2014, Kamisoglu, Sukumaran et al. 2015, 

Acevedo, Berthel et al. 2019). These studies functionally enrich their data in the context of 

metabolic and signaling pathways collected from various databases detailed below. GWAS 

studies fall into a few categories: (1) over-representation analysis (ORA) which identifies over-

represented pathways within data and associates a significance statistic commonly using Fisher’s 

Exact Test; (2) gene set-based scoring, an extension of ORA which, unlike ORA, does not 

assume all genes have equivalent importance and calculates a pathway’s enrichment score (ES) 

incorporating this assumption; (3) multivariate techniques which addresses the interdependence 

of expression data (collinearity) issues in high-throughput data by using decomposition 

techniques including principal component analysis and singular value decomposition); and (4) 

topological-based analyses which are extensions of the aforementioned approaches in that both 

individual genes (nodes) and their relationships (branches) are considered in the calculation of 

pathway significance (Jin, Zuo et al. , García-Campos, Espinal-Enríquez et al. , Amadoz, Hidalgo 

et al. 2018). The analyses presented in this thesis employ over-representation analysis and 

multivariate decomposition techniques primarily, while also acknowledging topological 

information in pathways notably within the ongoing analysis in endogenous circadian expression 

in rat and mouse (Chapter 4). 
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1.3 Supporting Databases for Pathway-based Analysis 

Pathway-based analysis relies upon artificially defined pathways or predefined pathways from 

pathway databases. Adopted from Garcia et al., a comprehensive list of widely used pathway 

databases are presented in Table 1 (Jin, Zuo et al. , García-Campos, Espinal-Enríquez et al.). A 

more exhaustive list of the increasing number of pathway databases available are presented in 

pathguide.org which, as of the publication date of this document, hosts 702 databases, reporting 

for each of these, various details not limited to database accessibility (free/subscription-based), 

organisms included, and pathway types (metabolic, signaling, protein-protein interactions, genetic 

interaction networks, etc.) (Bader, Cary et al. 2006).  

Table 1 Short list of popular pathway databases adopted from Garcia et al. (García-Campos, Espinal-

Enríquez et al.) (PPI, protein-protein interactions; PCI, protein-compound interactions; M, metabolic; S, 

signaling; GR, gene regulation; D, diagrams; PS, protein sequence).  

Pathway Database Name Pathway Focus Website Year of Release 

BioCyc (EcoCyc, 

MetaCyc, HumanCyc, 

etc.) 

M,S biocyc.org 1995 

KEGG M,S,D kegg.jp 1996 

RegulonDB GR regulondb.ccg.unam.mx 1997 

STRINGDB PPI string-db.org 2000 

PANTHER S,D,PS pantherdb.org 2004 

Gene Ontology PPI,M,S geneontology.org 2000 

Reactome M,S,D reactome.org 2005 

MSigDb M,S,GR broadinstitute.org/gsea/msigdb 2005 

Ingenuity Knowledge 

Base 

PPI, PCI, M, S, 

GR, D 

ingenuity.com 2005 

NCI PID S,D pid.nci.nih.gov 2006 

WikiPathways M,S,D wikipathways.org 2008 

Small Molecule Pathway 

DB 

M,S smpdb.ca 2009 
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ConsensusPathDB PPI, PCI, M, S, 

GR 

consensuspathdb.org 2009 

Pathway Commons PPI, PCI, M, S pathwaycommons.org 2010 

 

For our analyses, we rely on one of the most popular and freely available pathway databases, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto , Aoki and Kanehisa , 

Bader, Cary et al. 2006, Amadoz, Hidalgo et al. , Kanehisa, Sato et al. , Acevedo, Berthel et al.). 

Our decision to rely on this database as our primary pathway source for the investigations 

described herein was motivated by: the comprehensive nature of the KEGG database with respect 

to its available signaling, metabolic, tissue-specific, organism-specific pathways; it’s public 

availability; it’s ubiquity of use in research; and the highly curated nature of its content (Bader, 

Cary et al. 2006, Acevedo, Berthel et al.). Other databases, such as Reactome (Fabregat, Jupe et 

al. 2018), are comparably useful and it will be shown how these databases were considered in our 

research and how our pathway-based analysis (Chapter 2) is modular and thus designed for use of 

pathways from any database.  

It is important to reflect on the limitations of pathway databases when using them in research. 

Pathway databases are nonuniform in their content, define pathways based on analysis of 

available literature and other databases, are curated by independent research groups, and update 

their information at different time intervals (Kanehisa and Goto , Aoki and Kanehisa , Bader, 

Cary et al. , García-Campos, Espinal-Enríquez et al. , Amadoz, Hidalgo et al. , Fabregat, Jupe et 

al. 2018, Kanehisa, Sato et al.). Designing a pathway-based analysis with sufficient flexibility to 

cater to the mutable nature of pathway databases enables a more robust analysis, such as in the 

development of our modular framework (Acevedo, Berthel et al.).  
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1.4 Development of Feature-based Analyses for High-throughput Omics Data 

Toward the analysis of high-throughput omics data for investigation into drug effects, disease 

development, and characterization of endogenous expression, we continue to develop feature-

based techniques foundational to the investigations presented in this dissertation. These 

techniques take the assumption essential to pathway-based analyses: that genes relevant to the 

underlying dynamics of the system exist as part of a concerted mechanism (Jin, Zuo et al. 2014, 

García-Campos, Espinal-Enríquez et al. 2015, Amadoz, Hidalgo et al. 2018) (and thus exhibit 

temporal consistency) and that “informative genes…contribute to global deviations away from 

the baseline (Yang, Almon et al.).”  

Clustering algorithms are an essential tool for biological pattern discovery (Eisen, Spellman et al. 

1998, Androulakis, Yang et al. 2007). Not without its issues, when applying clustering 

techniques: (1) it is not immediately obvious what the optimal number of clusters is; (2) every 

clustering method relies on the definition of an appropriate metric; (3) all metrics have their own 

bias and assumptions; and (4) there exists the issue of genes that have some probability of 

existing in more than one cluster (Nguyen, Nowakowski et al. 2009). To address these concerns, 

we have previously developed an algorithm that tested data using multiple clustering methods 

using multiple metrics and built an agreement matrix with this information (Nguyen, 

Nowakowski et al. 2009). This matrix identified gene groups reporting coexpression and non-

coexpression and isolated the subset of genes that were consistently clusterable. Genes that were 

inconsistent in their cluster assignments were considered inconsistent and eliminated. Thus, this 

investigation enabled rapid and robust selection of meaningful genes in a data set without the risk 

of bias inherent to manually selecting one method of unsupervised clustering (Nguyen, 

Nowakowski et al.). 
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In the context of gene expression analysis, clustering techniques are useful for identifying 

consistent features of expression between genes (Jin, Almon et al. , Androulakis, Yang et al. 

2007, Nguyen, Nowakowski et al. 2009). However, factors inherent to the data effect the quality 

of results. Transcriptomic data from microarray platforms is noisy and exhibits uncertainty in 

measurements of mRNA, issues which reduce the quality of information processed with 

clustering techniques (Yang, Almon et al. 2008). Yang et al. was motivated to design a feature-

based technique which could extract intrinsic dynamics within microarray expression data that 

endeavored to overcome the issues of noise and uncertainty in microarray data (Yang, Almon et 

al.). This investigation proposed an algorithm that uses signal discretization and symbolic 

representation of these discrete features to identify groups of genes that have similar response 

profiles. With this, they were thus able to capture essential dynamics of cellular response in liver 

to corticosteroid administration while minimizing for common sources of data-dependent error 

(Yang, Almon et al.). 

In order to reflect system complexity appropriately within the context of a network and analyze 

dynamics of these complex systems, we began to apply feature identification techniques within 

pathway-based analyses (Ovacik, Sukumaran et al. , Kamisoglu, Sukumaran et al. , Acevedo, 

Berthel et al.). In an analysis of endogenous circadian expression in liver, a pathway-based 

analysis was integrated with the multivariate decomposition technique, singular value 

decomposition (SVD) (Ovacik, Sukumaran et al.). Multivariate decomposition techniques are 

unsupervised identification algorithms useful for feature identification and noise reduction (Alter, 

Brown et al. 2000, Ding and He 2004, Tomfohr, Lu et al. , Ovacik, Sukumaran et al.). Such 

techniques are useful especially for identifying trends within gene sets that do not meet arbitrary 

thresholds of differential expression significance but which contain meaningful biological 

phenomena (Ovacik, Sukumaran et al.).  
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Similarly, pathway-based analysis integrated with a singular value decomposition technique was 

used to investigate gene expression changes in testes development in response to Dibutyl 

Phthalate exposure (Euling, White et al. 2011, Euling, Thompson et al. 2013, Euling, White et al. 

2013, Makris, Euling et al. 2013, Ovacik, Sen et al. 2013), a plasticizer with toxic effect in testes 

development during gestation and commonly found in flexible plastics and personal care products 

including perfumes and nail polish (Euling, White et al. 2011, Euling, Thompson et al. 2013, 

Euling, White et al. 2013, Makris, Euling et al. 2013, Ovacik, Sen et al. 2013). This investigation 

was a case study supported by the US EPA in their effort to incorporate toxicogenomic analyses 

into risk assessments. Further, this pathway-based analysis integrated with multivariate 

techniques facilitated investigation into anticipated damage to testes development as well as 

screened for additional affected pathways that would inform possible modes of action of DBP 

(Euling, White et al. 2011, Euling, Thompson et al. 2013, Euling, White et al. 2013, Makris, 

Euling et al. 2013, Ovacik, Sen et al. 2013). Thus, pathway-based analyses enabled 

characterization response of complex data in the context of a system and used multivariate 

techniques which enabled assessment of coherent and subtle trends in expression and noise 

reduction in data, echoing the goals of previous investigations (Nguyen, Nowakowski et al.) and 

the investigations described in the following chapters. 

1.5 Pathway-based Analyses and the Integration of Omics Data 

Pathway-based analysis also enables the development of personalized and precision medicine by 

its rapid and large-scale identification of potential drug targets and disease biomarkers 

(Kamisoglu, Calvano et al. 2014, Kamisoglu, Sukumaran et al. 2015, Kamisoglu, Acevedo et al. 

2017, Krzyszczyk, Acevedo et al. 2018). Such investigations enable the identification of 

relationships between molecular targets, diseases, and drug effects. This further facilitates the 

development of accurate drug action models, an enhancement of classic 
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pharmacokinetics/pharmacodynamics modeling toward the systems perspective of quantitative 

systems pharmacology (Iyengar, Zhao et al. 2012, Jusko 2013, Androulakis 2016, Kamisoglu, 

Acevedo et al. 2017).  

For example, toward the development of regulatory models that capture corticosteroid action in 

liver, Kamisoglu et al. describes the application of pathway-based analysis and consensus 

clustering toward the identification of significant genes functionally relevant to corticosteroids, at 

the transcriptomic and proteomic level (Kamisoglu, Sukumaran et al. 2015, Kamisoglu, Acevedo 

et al. 2017). Clustering techniques were used to identify co-regulatory relationships within genes 

common to both transcriptomic and proteomic data capturing liver response to an acute bolus 

dose of the corticosteroid methylprednisolone (Kamisoglu, Sukumaran et al. 2015). This analysis 

revealed coregulatory relationships between the omics levels in genes representing heat shock 

protein regulation, oxidative stress, lipid metabolism, and bile acid biosynthesis, all functions 

associated with corticosteroid action (Kamisoglu, Sukumaran et al. 2015). This study enabled the 

development of a preliminary regulatory model whose nodes (six protein, six mRNA) connected 

by mRNA-protein regulatory relationships established from literature (Kamisoglu, Acevedo et al. 

2017). Similarly, a pathway-based analysis integrating transcriptomic and metabolomic data 

investigated the human leukocyte response to bacterial endotoxin (lipopolysaccharide; LPS) 

(Kamisoglu, Calvano et al. 2014). Endotoxemia response is associated with metabolic 

fluctuations, so metabolic pathways were focused on within this analysis and the integration of 

multiple omics levels allowed for investigation into both the transcriptional regulation of 

leukocyte metabolic processes and how regulatory patterns might have been affected by 

concurrent fluctuations of metabolites (Kamisoglu, Calvano et al. 2014, Kamisoglu, Acevedo et 

al. 2017).  
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1.6 Summary of Thesis 

The integration of data across omics levels is necessary to accurately reflect physiology, whose 

behavior is not limited to one molecular component level. Further, integration of information 

across experimental platforms, time scales, dosing regiments, tissues, and organisms is necessary 

for the extraction of all possible meaning from the wealth of existing data stored across databases 

globally and for the development of research that is translatable between organisms (Kamisoglu, 

Calvano et al. , Kamisoglu, Sukumaran et al. , Kamisoglu, Acevedo et al. , Ginsburg and Phillips 

2018, Krzyszczyk, Acevedo et al. 2018).  

Therefore, in the following chapters we present a pathway-based meta-analysis approach 

integrated with multivariate decomposition techniques (Chapter 2) which processes temporal 

expression data. This framework is designed for application to expression data from any omics 

level, incorporates information from multiple databases, and is modular in that it can interrogate 

expression data with pathways extracted from multiple databases. Subsequent chapters use this 

framework to investigate the dosing- and tissue-dependent effects of the corticosteroid 

methylprednisolone (Chapters 3 and 4), as well as the endogenous expression of model organisms 

critical to pre-clinical studies, rat and mouse (Chapter 5). In the final chapter, we further detail the 

application of this work in pre-clinical pharmacology research and how this research will 

continue in this perspective. 
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Chapter 2: Development of a Pathway-based Analysis Framework for 

Decomposition of High-Throughput Omics Data 

2.1  Introduction 

Described in greater depth in Chapter 1, pathway-based analysis techniques were designed for, 

and enabled characterization of, high-throughput omics data. Pharmacological time-series high-

throughput data obtained from different (transcriptomic or other) platforms and time-scales, 

including multiple dosing regimens (Jin, Almon et al. 2003, Almon, DuBois et al.), are 

complicated to analyze. Approaches to analyzing and comparing such data generally classify into 

two main categories: (1) integrate profiles from different studies into one dataset so that available 

analysis tools can be directly applied to the concatenated data set, or (2) analyze and interpret 

each data set separately and subsequently compare the analysis (meta-analysis) (Jiang, Deng et al. 

2004, Mecham, Klus et al. 2004, Carter, Eklund et al. 2005, Morris, Wu et al. 2006, Park, Yi et 

al. 2006, Kim, Ki et al. 2007, Lu, Lee et al. 2007, Shabalin, Tjelmeland et al. 2008). Since 

combining data across different platforms remains a serious challenge, meta-analysis approaches 

are gaining popularity (Ghosh, Barette et al. 2003, Ramasamy, Mondry et al. 2008) given the 

underlying hypothesis is that even though raw data may not be comparable, the results of the 

individual analyses are.  

As an alternative to the meta-analysis approach, we recently proposed the mapping of 

transcriptomic data onto signaling and metabolic pathways which are scored based on the 

emerging activity of the pathway, as manifested via the obtained transcriptional data (Ovacik, 

Sukumaran et al. 2010, Euling, Thompson et al. 2013, Euling, White et al. 2013, Ovacik, Sen et 

al. 2013). The pathway scoring expresses the overall, intrinsic dynamic of the pathway and its 
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score does not rely on measuring a consistent set of transcriptional profiles across the various 

conditions – provided the score can be robustly determined (see Results section herein). 

In the present investigation, we extend and expand our earlier framework and present an 

integrated approach for decomposing high throughput omics-based pathway activities enabling 

the characterization of the emerging expression dynamics within this data. This framework is 

applied to multiple case studies in subsequent chapters including analysis of drug response in 

various tissues and across multiple dosing regiments, as well as of endogenous activity of drug-

free tissues across multiple organisms. 

2.2 Development of Pathway-based Framework 

2.2.1 Animals Model and Experimental Data 

This framework was designed for processing and comparing high-throughput omics expression 

data (temporal or across conditions). We have applied the framework to multiple case studies 

discussed in depth in subsequent chapters. Tables reporting each data set analyzed over the course 

of this thesis are included within the Appendix (ST 1). 

2.2.2 Microarray Data Preprocessing 

Only probes that registered as present or marginal within each microarray were retained within 

for analysis. Data preprocessing steps include using row-average data imputation to supplement 

missing values in incomplete expression profiles. Active genes are then identified using 

differential expression analysis with the software Extraction and Analysis of Gene Expression 

(EDGE) (Leek, Monsen et al. 2006). Differentially expressed genes are identified by p-value. 

Differentially expressed profiles are then z-scored with respect to the individual profile mean and 

standard deviation. Replicate profiles are then averaged together, yielding averaged z-scored 

profiles. 
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2.2.3 Mapping Transcriptomic Data onto Pathways 

A pathway can be defined as a network of molecular interactions and reactions designed to link 

genes in the genome to gene products. Pathways express layered and complementary activities, 

meaning pathways are groups of genes linked mechanistically that effect a biochemical action. 

Numerous databases exist describing pathway definition. The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways is used as the functional grouping instrument. KEGG is one of the 

most comprehensive and readily used by genomics researchers (Kanehisa and Goto 2000, 

Kanehisa, Furumichi et al. 2016, Kanehisa, Sato et al. 2018). Approximately 300 of the available 

KEGG pathways are relevant to Rattus norvegicus (relevant to analysis of liver and muscle data 

in Chapter 3, and endogenous rat expression in muscle tissues in Chapter 4) and to Mus musculus 

(relevant to analysis endogenous mouse expression across multiple tissues in Chapter 4). 

Pathways unrelated to a specific tissue or organism are irrelevant to their respective study and the 

categories of pathways eliminated for each of our analyses in rat and mouse are detailed in the 

Approach section of each chapter. For example, within the study of MPL influence within the 

liver, pathways unrelated to the liver (ex. Cardiac muscle contraction, Complement and 

coagulation cascades, Platelet activation), describing neurological diseases (ex. Non-alcoholic 

fatty liver disease, Alzheimer's disease, Parkinson's disease, Huntington's disease), irrelevant to 

the liver (Olfactory transduction), or redundant for all other metabolic pathways (KEGG’s 

pathway entitled Metabolic pathways rno:01100 is the set of all other metabolism related 

pathways) are removed from consideration in the analysis. 

In order to begin characterizing the responses captured in our various data sets, the microarray 

data is contextualized by identifying which of the tissue- and organism-relevant pathways are 

populated by the data sets. Fractional coverage (𝑓𝑐) is calculated for each pathway, a fraction that
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communicates the number of unique genes (rno) identified within the microarray data relative to 

the number of genes within the KEGG pathway (Equation 1). The metric quantifies the extent to 

which a pathway is represented in the dataset and is reported in the genome-wide transcriptomic 

studies. In the early stages of the framework, multiple databases were used for convert 

Affymetrix probe names to recognizable genes names and KEGG gene identifiers (Acevedo, 

Berthel et al.). However, the most recent version of the framework (Acevedo, DuBois et al. 2019 

(submitted)), uses an improved approach. For the gene-to-pathway mapping, Affymetrix probe 

identifiers within the microarray template and are converted into KEGG IDs in order to be sorted 

into rat-relevant pathways from KEGG. Affymetrix probe identifiers are translated into their 

NCBI Entrez IDs and Gene Symbols using the Bioconductor packages for each Affymetrix 

Platform. For example, within the analysis of the muscle data, processing of the chronic MPL 

muscle data is facilitated by package rae230a.db which contains the annotation data for 

Affymetrix Rat Expression Set 230A used to capture the chronic MPL muscle data and package 

rgu34a.db contains the annotation data for Affymetrix Rat Genome U34 Array used to capture the 

acute MPL muscle data. 

𝑓𝑐 =
𝑟𝑛𝑜 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑟𝑛𝑜 𝑖𝑛 𝐾𝐸𝐺𝐺 𝑝𝑎𝑡ℎ𝑤𝑎𝑦
        1 

In order to assess the confidence in the fractional coverage, an associated p-value (𝑓𝑐 p-value) is 

calculated. Confidence in 𝑓𝑐 is important for two reasons: 1) to quantify the extent to which the 

fractional coverage of a pathway based on the specific experiment could have be obtained by a 

random collection of genes; and 2) more importantly, since different experiments may not be 

quantifying the same subsets of pathway-specific genes we need to establish significant coverage 

based on different subsets. The significance of the 𝑓𝑐 is determined using the 1-tail Fisher’s Exact 
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test such that the total rat genome is the set of unique rat genes in all of KEGG’s rat-relevant 

pathways.  

Following the gene-to-pathway assignment, the coverage of the KEGG pathways is assessed by 

evaluating the fractional coverage (𝑓𝑐) of each pathway (Acevedo, Berthel et al. , Acevedo, 

DuBois et al. 2019 (submitted)). This statistic is the fraction of genes within a pathway for which 

gene profiles are available. To assess the confidence in the fractional coverage, an associated p-

value (𝑓𝑐 p-value) is determined using the 1-tail Fisher’s Exact test such that the total rat genome 

is the set of unique rat genes in all KEGG’s rat-relevant pathways (Acevedo, Berthel et al.). Some 

pathways with low fractional occupancy yield inconclusive p-values as an artifact of the Fisher’s 

Exact Test and were eliminated from analysis, discussed further in ST 2. 

A pathway may yield a high 𝑓𝑐 value but contain a small population of actual genes. The selection 

of the list of significant pathways that make up the pathway solution set is presented in the 

Results section. In the process of determining this list of significant pathways, the actual gene 

population for each pathway is necessary to consider. Additionally, determining whether a set of 

pathways is significant involves consideration of the average actual gene count for the set. An 

average rno (rnoavg) is calculated for a pathway solution set. The significance of this statistic is 

reported as a p-value (rnoavg p-value) calculated using a bootstrapping technique (Equation 2). 

Given a pathway set containing P pathways, N random pathway sets of length P are selected and 

rnoavg′ is calculated for each. The distribution of rnoavg′ is compared against the rnoavg from the 

original set of P pathways yielding n pathways with rnoavg′ greater than rnoavg.  

( ' )avg avgrno rno

avg

n
rno p value

N


− =         2 
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2.2.4 Pathway Activity Analysis  

MPL administration, environmental cues, and endogenous clock mechanism are the drivers for 

genomic activity, directly and indirectly, within the datasets considered in the investigations of 

this thesis. Pathways determined to have significant fractional coverage are analyzed with 

pathway activity analysis (Figure 1)1. This component of the analysis determines whether a 

pathway is active without eliminating individual genes; no gene expression profiles are 

eliminated using conventional differential expression analysis and user-defined threshold cutoff 

(Subramanian, Tamayo et al. 2005). Instead, singular value decomposition (SVD) is used to 

identify global and subtle expression trends within the pathway gene sets.  

Pathway analysis assumes that pathways exhibits layered behaviors of subgroups of genes. 

Singular value decomposition is used as a dimension reduction technique, reducing temporal gene 

expression datasets into sets of singular vectors and singular values that communicate global 

trends and relative trend dominance (Ovacik, Sukumaran et al. 2010, Euling, White et al. 2011, 

Euling, White et al. 2013, Ovacik, Sen et al. 2013). (As a preprocessing step before application of 

SVD pathway activity analysis, gene expression profiles are z-scored.) This technique is 

previously applied within investigations assessing for subtle circadian rhythmicity in genes that 

otherwise are not recognized as differentially expressed (Ovacik, Sukumaran et al. 2010) and for 

identifying the effects of dibutyl phthalate in male reproductive organ development (Euling, 

White et al. 2011, Euling, White et al. 2013, Ovacik, Sen et al. 2013). Within this investigation, 

complex tissue-specific behavior is revealed by the SVD decomposition of pathway gene sets.   

                                                      

1 The version of the framework used in the liver analysis did not include an EDGE step. 
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Figure 2 Singular value decomposition (SVD) of a pathway gene set. A pathway matrix (X) designed such 

that each row is a unique gene and columns are samples at each timepoint from 0 to 72 hours. SVD yields: 

(1) matrices U (translational matrix) in which the rows are individual genes and columns indicate a gene’s 

match to a metagene (G genes make up a gene set and M metagenes results from SVD where the number of 

metagenes is equal to the number of sample times.); (2) matrix S, a diagonal singular value matrix 

reporting the dominance of each metagene; (3) and matrix V, the transform denoted VT, an additional 

translational matrix in which the rows of VT indicate each metagene and the columns indicate time. PAL 

profiles are taken as metagene expression over time - the rows of VT. 

Application of SVD to a pathway gene set yields two translational matrices (U and V) and a 

singular value matrix (S) (Figure 2). The subtle global trends within the pathways are the 

activities of metagenes, an abstract object that captures dominant characteristics common to many 

gene expression profiles within the dataset. The “expression” or activity of a metagene over time 

is defined as the pathway activity level (PAL) profile. PAL profiles are found within the row 

vectors of the transpose of the translational matrix V (i.e. PAL profiles are the row vectors of 𝑉𝑇) 

denoted in Equation 3.  

The dominance of each metagene’s activity is preserved in the order in which the PAL profiles 

appear descending in 𝑉𝑇 as well as in the diagonal of the singular value matrix (S); the most 

dominant metagene appears first. To quantify this dominance, the singular values within the 

diagonal of matrix S are normalized by the sum of the diagonal (Equation 4) to yield the fraction 
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of pathway activity of a PAL defined as the 𝑓𝑝 statistic (Ovacik, Sukumaran et al. 2010). Each 

PAL describes a pathway activity profile and corresponds to a unique 𝑓𝑝 value which reports the 

percent of total pathway activity represented by that PAL. 

The number of PAL profiles reported by 𝑉𝑇 is equal to the number of samples (time points). 

However, not all patterns are significant. To determine PAL significance, a bootstrapping 

calculation is used to generate a p-value associated with 𝑓𝑝 statistic. The original gene set is 

bootstrapped (N = 1000). Bootstrapped gene sets are constructed by scrambling the pathway 

gene set N times (Kallio, Vuokko et al. 2011). Each bootstrapped pathway gene set is 

decomposed with SVD, yielding N sets of 𝑃𝐴𝐿′ profiles and associated 𝑓𝑝′ values for each 𝑃𝐴𝐿′ 

profile. For each PAL, the distribution of fp
′  values which results from the bootstrapped pathway 

gene sets are compared to the original 𝑓𝑝 values. The number of fp
′  greater than an fp is divided by 

N to determine whether each fp (and by association the PAL) is likely to emerge from a 

randomized gene set (Equation 5).  

This investigation seeks to characterize the consequences of MPL within the liver from a pathway 

perspective. However, the correlation of each metagene to each gene is important to our 

understanding of the consequences of MPL and is identified within the translational matrix U. 

Rows of U correspond to genes and columns to metagenes. The correlation of each gene (g) to 

each metagene (m) is defined as 𝑊𝑔,𝑚 (Equation 6). The correlation of each gene to each 

metagene (𝑊𝑔,𝑚) is the correlation of each gene expression profile to each PAL profile. 

Thus, global trends (PAL) in a gene set each have an associated fraction of the pathway activity 

(𝑓𝑝) that they capture. Multiple significant PAL may emerge for each gene set and each gene’s 



20 

 

 

 

correlation to each PAL is given by its weight. PAL are also symmetric, thus two PAL profiles, of 

opposite sign but equal magnitude, indicate the same expression activity events.  

The list of pathways with significant fractional coverage (𝑓𝑐 p-value ≤ 10−3) is further reduced to 

the list of pathways that also yield significant pathway activity. Pathways capable of generating at 

least one significant PAL profile are considered significant and a PAL profile is significant if its 

corresponding 𝑓𝑝 p-value ≤ 10−3. 

𝑃𝐴𝐿𝑚 = 𝑉𝑇(𝑚, 𝑡)         3 

𝑓𝑝 =
𝑆(𝑚,𝑚)2

∑ 𝑆(𝑚,𝑚)2𝑀

𝑚=1

        4  

𝑓𝑝 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
𝑛

(𝑓𝑝
′ >𝑓𝑝)

𝑁
        5 

𝑊𝑔,𝑚 = 𝑈(𝑔, 𝑚)         6 

2.2.5 Prediction of Pathway Activity with Bootstrapping 

Variability exists in expression data capturing the influence of MPL within the muscle and liver 

and endogenous expression in rat and mouse tissues, indicating non-uniformity that must be 

accounted for in our analysis in order to be scientifically rigorous. To account for the variability, 

a bootstrapping approach is used to generate pathway gene sets likely to exist given additional 

MPL dosing studies which are then assessed for pathway activity. In this component of the 

investigation, the range of activity capable of emerging from the system is investigated. 

Bootstrapped gene sets are constructed from bootstrapped gene expression profiles, where each 

profile is projected within a normal distribution about the gene’s average expression.  In short, 

each gene expression profile is bootstrapped within a normal distribution about the gene 
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expression profile’s mean. The bootstrapped genes are assembled into appropriate pathway gene 

sets, ultimately yielding N bootstrapped pathway gene sets for each pathway (N = 1000 

bootstrapped gene sets per pathway). Each of these bootstrapped pathway gene sets is 

decomposed with SVD. Significant PAL profiles identified from these bootstrapped gene and 

their corresponding fp and fp p-value statistics, are retained for each significant pathway. All PAL 

profiles extracted from these bootstrapped gene sets are assumed likely system behavior that 

would emerge if the rat experiments were repeated. 

For each pathway, the significant bootstrapped PAL are clustered such that common activity 

patterns group together. the MATLAB ® function evalclusters.m is applied to assess optimal 

cluster number using the gap statistic and applying kmeans clustering (MATLAB 2016b). Thus, a 

finite set of PAL centroids are identified, indicating a finite list of activity patterns are induced by 

MPL to emerge from each pathway.  

2.2.6 Evaluating Pathway Dynamics  

The pathway activity analysis decomposes a pathway’s intrinsic dynamics into its leading, 

independent constitutive elements. To compare activities based on non-overlapping gene sets, 

across dosing regimens of different time horizons, we introduce a novel model-based approach, 

where the dynamics of each dominant PAL is approximated using PKPD-driven models 

exploring alternative hypotheses for the mechanisms of regulation of a pathway. For analyses in 

liver and muscle, the influence of MPL is studied so the PKPD-drive model approach is designed 

in the established PKPD of MPL with adaptation of previously established regulatory models 

(Ramakrishnan, DuBois et al. 2002, Hazra, DuBois et al. 2008, Acevedo, Berthel et al.) 

(Ramakrishnan, DuBois et al. 2002, Hazra, DuBois et al. 2008) (Jin, Almon et al. , Hazra, DuBois 

et al. 2008, Yao, Hoffman et al. 2008). 
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Figure 3 Time profiles of MPL pharmacokinetics and receptor dynamics for (A) acute 50 mg/ml bolus MPL 

dose and (B) chronic infusion of 0.3 mg/(kg∙h) MPL. MPL influence over transcription within the liver is 

dosing-dependent and receptor mediated. (Sun, DuBois et al. , Ramakrishnan, DuBois et al. , 

Ramakrishnan, DuBois et al. , Jin, Almon et al. , Hazra, Pyszczynski et al. , Hazra, DuBois et al.) 

Pharmacokinetics: The PK of MPL in both regimens was shown to be appropriately described by 

a two-compartment model (Figure 3, Equations 7 and 8) (Ramakrishnan, DuBois et al. 2002, 

Hazra, DuBois et al. 2008). 𝐴𝑝 and 𝐴𝑡 denote drug in the plasma and tissue compartments 

respectively. Term 𝑘0 is the zero-order rate constant for drug input into the plasma, 𝐶𝐿 indicates 
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clearance, 𝑉𝑝 indicates plasma volume of distribution, and 𝑘12 and 𝑘21 are the intercompartmental 

distribution rate constants. In the case of acute MPL administration, 𝑘0 = 0 indicating a bolus 

injection. Parameter values are adopted from Ramakrishnan et al. and presented in Table 2 

(Ramakrishnan, DuBois et al. 2002, Hazra, DuBois et al. 2008). 

0 21 12

p

t p

p

dA CL
k k A k A

dt V

 
= +  − +  

 
 

        7 

12 21
t

p t

dA
k A k A

dt
=  −          8 

Table 2 Pharmacokinetics parameters for acute and chronic MPL administration (Ramakrishnan, DuBois 

et al. 2002).  

Parameter Definition Acute Chronic 

𝑘0 (
1

ℎ
) 

Rate of drug 

concentration into 

central plasma 

compartment 

0 220 

CL (
𝑙

ℎ∙𝑘𝑔
) Clearance 3.48 5.61 

𝑉𝑝 (
𝑙

𝑘𝑔
) 

Central volume of 

drug distribution 
0.73 0.82 

𝑘12 (
1

ℎ
) 

Drug distribution 

rate constant 
0.98 0.32 

𝑘21 (
1

ℎ
) 

Drug distribution 

rate constant 
1.78 0.68 

 

Table 3 Parameters for receptor-mediated effects of acute and chronic MPL administration (Hazra, 

DuBois et al. 2008). 

Parameter Definition Acute Chronic 

𝑘𝑠𝑅𝑚 (
𝑓𝑚𝑜𝑙

𝑔∙ℎ
) 

Receptor mRNA synthesis rate 

constant 
3.15 0.45 
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𝑘𝑑𝑅𝑚 (
1

ℎ
) 

Receptor mRNA degradation 

rate constant 
0.122 

𝐼𝐶50𝑅𝑚 (
𝑛𝑚𝑜𝑙

𝐿∙𝑚𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛
) 

DRN required for 50% 

inhibition of the synthesis rate 

of Rm 

123.7 

𝑘𝑠𝑅 (
𝑛𝑚𝑜𝑙

𝐿∙𝑚𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛∙𝑓𝑚𝑜𝑙𝑅𝑚∙𝑔∙ℎ
) Receptor synthesis rate 0.84 3.63 

𝑘𝑟𝑒 (
1

ℎ
) 

Loss rate for drug receptor in 

the nucleus 
0.402 

𝑘𝑜𝑛 (
𝑙

𝑛𝑚𝑜𝑙∙ℎ
) 

Association rate for receptor-

drug binding 
0.019 

𝑘𝑑𝑅 (
1

ℎ
) Receptor loss/degradation rate 0.0403 

𝑘𝑇 (
1

ℎ
) 

Translocation of receptor into 

the nucleus 
58.1 

𝑅𝑓 
Receptor recycling factor from 

nucleus to cytosol 
0.69 

 

 

Figure 4 Regulatory mechanism schematics for the (A) monophasic activity model and (B) biphasic activity 

model adapted from Hazra et al (Hazra, DuBois et al. 2008). (A) MPL regulates transcription via binding 

to glucocorticoid receptors within the cytosol, transporting into the nucleus, and binding to a GRE element 

thus initiating targeted transcription, as captured by the monophasic model. (B) The biphasic model 

describes this GRE-binding activity in combination with an additional mechanism of MPL regulation, that 

of binding to an intermediate biosignal (BS) which influences targeted transcription rate. (Sun, DuBois et 

al. , Ramakrishnan, DuBois et al. , Ramakrishnan, DuBois et al. , Jin, Almon et al. , Hazra, Pyszczynski et 

al. , Hazra, DuBois et al.) 
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Receptor dynamics: MPL action is receptor-mediated (Figure 4, Equations 9 through 12) (Sun, 

DuBois et al. 1998, Ramakrishnan, DuBois et al. 2002, Hazra, DuBois et al. 2008). Parameter 

values are adopted from Hazra et al. and presented in Table 3 (Hazra, DuBois et al. 2008). 𝑅𝑚 

indicates mRNA of the free cytosolic receptor, 𝑅 indicates the free cytosolic receptor, 𝐷𝑅 

indicates the cytosolic drug-receptor complex, and 𝐷𝑅𝑁 indicates the drug-receptor complex in 

the nucleus (Ramakrishnan, DuBois et al. 2002). The concentration at which the synthesis rate of 

receptor mRNA drops to 50% of its baseline value is indicated by 𝐼𝐶50𝑅𝑚, parameter. Parameter 

𝑘𝑜𝑛 indicates a second-order rate constant for drug-receptor binding. Parameters 𝑘𝑇 and 𝑘𝑟𝑒 are 

first-order rates of receptor translocation between the nucleus and the cytosol ( 𝑘𝑟𝑒: to the 

nucleus;  𝑘𝑟𝑒: recycling back to the nucleus) (Ramakrishnan, DuBois et al. 2002). The fraction of 

receptor recycled is indicated by parameter 𝑅𝑓. 𝐶𝑀𝑃𝐿 corresponds to the concentration of free 

receptor in the cytosol and is determined by the equation 
p

p

A
0.43

V
MPLC =  where 0.43 is the 

fraction of unbound MPL within the cytosol (Ramakrishnan, DuBois et al. 2002, Hazra, DuBois 

et al. 2008).  

50

1sRm dRm

Rm

dRm DRN
k k Rm

dt IC DRN

 
=  − −  

+ 

      9 

sR f re on MPL dR

dR
k Rm R k DRN k C R k R

dt
=  +   −   −      10 

on MPL T

dDR
k C R k DR

dt
=   −         11 

T re

dDRN
k DR k DRN

dt
=  −         12 
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Pathway pharmacodynamics: Once a pathway’s activity has been decomposed to its constitutive 

intrinsic components, we characterize its dynamics in a model-based manner by assuming that 

each PAL is approximated by an appropriate dynamic model. Comparisons across dosing 

regimens are then performed in the space of models as opposed to the space of transcriptional 

data. We hypothesized (based on the results to be discussed shortly) that the dynamic 

decomposition of the pathway activity indicates components whose transcription is regulated by 

an MPL-receptor complex (DRN) binding to a GRE element in the nucleus and regulated by 

transcription mediated by MPL binding to an intermediate biosignal (BS) – interestingly this was 

dosing-dependent. In this direction we extend the concepts described in (Hazra, DuBois et al. 

2008, Yao, Hoffman et al. 2008). The simpler mode of pathway regulation assumes a saturable 

induction of the pathway activity (Figure 4A, Equation 13) where 𝑘𝑠 indicates the activation rate 

of pathway activity, 𝐼𝐶50𝑃𝐴𝐿 indicates the concentration of DRN responsible for 50% inhibition 

of the pathway activity activation rate, and 𝑘𝑑 indicates the deactivation rate of pathway activity. 

This mode is expected to reflect “monophasic” dynamics with a transient (acute dosing) or 

persistent (chronic dosing) deviation of a pathway’s activity following i.v. MPL administration.  

In addition, the emergence of regulation mediated through an MPL-regulated biosignal, is likely 

to exhibit a “biphasic” response (Figure 4B, Equations 14 and 15), describing the dynamics of an 

intermediate biosignal (BS) whose synthesis is directly related to DRN by 𝑘𝑒,𝑆, is the stimulation 

constant for pathway activity due to DRN, 𝐼𝐶50𝑃𝐴𝐿 indicates the BS responsible for 50% 

inhibition of pathway activity activation rate, and 𝛾 indicates the factor of amplification of the 

influence of BS on the activation of pathway activity. These model equations are adapted from 

the transcription regulatory models of (Hazra, DuBois et al. 2008) where alternative models were 

also discussed, and could be easily accommodate. However, our analysis indicated that these 

simpler forms captured the essence of the pathway dynamics.  
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Monophasic Activity 

50

1s d

PAL

dPAL DRN
k k PAL

dt IC DRN

 
=  −  

− 

      13 

Biphasic Activity 

( )e

dBS
k DRN BS

dt
= −         14 

( )
50

1 1s d

PAL

dPAL BS
k S DRN k PAL

dt IC BS



 

 
=   −  

− 

   15 

Parameter estimation was performed using Matlab’s optimization toolkit in a series of 

optimization stages. In all stages, we sought to minimize the residual sum of squares between the 

model prediction and the cluster centroid profile. In the first stage, it is assumed that the system is 

nonlinear and neither continuous nor differentiable for the entire parameter solution space. 

Therefore, as a rapid preliminary global search for a minimum, a stochastic direct method 

(simulated annealing) with bound constraints is employed. The result of this global search 

technique is taken as the initial parameter values for the second optimization stage using a direct 

pattern search method. In the final stage, a gradient-based method is used to probe this more 

limited space as the final optimization step. This stage uses the sequential quadratic programming 

as implemented through Matlab’s fmincon. The model which results from this optimization 

process is visually inspected. 

2.3 Discussion 

Pharmacological time-series data, from comparative dosing studies, is critical to characterizing 

drug effects. Reconciling the data from multiple studies is inevitably difficult; multiple in vivo 
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high-throughput -omics studies are necessary to capture the global and temporal effects of the 

drug, but these experiments, though analogous, differ in (microarray or other) platforms, time-

scales, and dosing regimens and thus cannot be directly combined or compared. This 

investigation addresses this reconciliation issue with a meta-analysis technique aimed at assessing 

the intrinsic activity at the pathway level (Acevedo, Berthel et al.).  

The pathway-based analysis presented here is applicable to any type of expression data (temporal 

or across conditions) and is applied toward the analysis of the dosing-specific response of liver 

and muscle to methylprednisolone (Chapter 3), analysis of endogenous expression in drug-free 

tissues (Chapter 4), as well as comparison of drug-free endogenous expression across two 

essential pre-clinical animals (Chapter 4), rat and mouse. 

The model-based analysis component of the pathway-based approach is designed to hypothesize 

regulatory relationships that would result in PAL dynamics. In the above chapter, this step is 

presented in the context of the PKPD of MPL and uses mathematical models describing this. 

However, this step is generalizable to any mathematical model and thus is generalizable. What is 

critical to this step is understanding its motivation. Changes in the dynamics of pathway activities 

are compared using the model-based assessment of pathway dynamics, both extending the 

principles of pharmacodynamics/pharmacokinetics (PKPD) to describe pathway activities and 

enabling us to hypothesize on the likely emergence (or disappearance) of regulatory interactions 

when comparing data sets against one another.  

In summary, the pathway-based analysis approach presented above is sufficiently generalizable to 

process any high-throughput expression data (temporal or across conditions), capture and score 

both pathway occupancy and pathway dynamic information, describe these dynamics with a 

model-based assessment to enable discussion of regulatory relationships (generalizable for 
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different mathematical models), and via these techniques, the approach enables comparison 

across experiments (across platforms, tissues, organisms, time-scales). 
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Chapter 3: Pathway-based Analysis toward Investigating Tissue-specific and 

Dosing-specific Responses in Temporal Expression Data 

3.1  Pathway-based Analysis of Liver Response to Intravenous 

Methylprednisolone (MPL) Administration in rats: Acute versus Chronic Dosing 

3.1.1 Introduction 

 

Synthetic glucocorticoids (GC), such as methylprednisolone (MPL), are widely used anti-

inflammatory and immunosuppressive agents for the treatment of a variety of inflammatory and 

auto-immune conditions (Swartz and Dluhy 1978, Barnes 1998). GC drugs magnify the actions of 

endogenous glucocorticoids regulating pathways by binding of a drug-receptor complex to DNA 

glucocorticoid regulatory elements (GREs) or by signaling through receptors in a transcription-

independent manner (Schaaf and Cidlowski 2002). Because of the diverse effects of GC and the 

multitude of molecular mechanisms involved, in vivo high-throughput transcriptomics has proven 

effective in better understanding the temporal and tissue-specific effects of MPL (Almon, DuBois 

et al. 2004, Almon, Dubois et al. 2005, Almon, Lai et al. 2005, Almon, DuBois et al. 2007, 

Almon, Yang et al. 2008, Yang, Almon et al. 2008, Yang, Almon et al. 2009, Nguyen, Almon et 

al. 2010, Nguyen, Almon et al. 2014).  

However, while short-term CS use is beneficial for reducing inflammation, long-term use is 

associated with serious consequences including hyperglycemia, negative nitrogen balance, and fat 

redistribution leading to complications including diabetes, muscle wasting, osteoporosis, etc. 

(Andrews and Walker 1999, Morand and Leech 1999, Yang, Almon et al.). Therefore, and adding 

to the complexity of the physiological and pharmacological effects of corticosteroids (Almon, 

DuBois et al. 2004, Almon, Dubois et al. 2005, Almon, Lai et al. 2005), different dosing regimens 
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of GC administration induce different patterns of expression (Almon, DuBois et al. 2007, Almon, 

DuBois et al. 2007, Yao, Hoffman et al. 2008) likely indicative of dosing-dependent regulation. 

Thus, transcriptional dynamics under acute CS administration may not exhibit similar expression 

patterns during continuous infusion, pointing to the possibility of alternative regulatory 

mechanisms (Hazra, DuBois et al. 2008, Yao, Hoffman et al. 2008, Nguyen, Almon et al. 2010). 

Thus, an improved understanding of corticosteroid pharmacogenomic effects from multiple 

dosing regimens would be required to provide insight into the underlying molecular mechanisms 

of action. In this direction our earlier work had focused on assessing transcriptional dynamics in 

order to (1) identify transcriptional modules of characteristic mRNA dynamic features across 

multiple dosing regimens of corticosteroids; and (2) elaborate on their common regulatory 

controls (Hazra, DuBois et al. 2008, Yao, Hoffman et al. 2008, Nguyen, Almon et al. 2010).  

In the following investigation, we apply the pathway-based analysis framework, presented in 

Chapter 2 (Acevedo, Berthel et al. , Acevedo, DuBois et al.), for the characterization of: 1) of the 

emerging transcriptional dynamics in response to MPL; and 2) of the dosing-dependent 

implications induced due to differences in drug exposure (acute versus chronic). We analyzed 

acute and chronic MPL dosing in male adrenalectomized rats and characterized the dosing-

dependent differences in the dynamic response of MPL-responsive signaling and metabolic 

pathways, including: lipid metabolism (Macfarlane, Forbes et al. , Peckett, Wright et al.), amino 

acid metabolism (Ratnam, Maclean et al. 2002, Christiansen, Djurhuus et al. 2007), carbohydrate 

metabolism (McMahon, Gerich et al. 1988, Nader, Ng et al. 2012) metabolism of cofactors and 

vitamins (Pascussi, Drocourt et al. 2000), regulation of essential organelles (Wallace and 

Cidlowski 2001, Rhen and Cidlowski 2005, Cuzzocrea, Bruscoli et al. 2008), and xenobiotic 

metabolism pathway groups (Dvorak and Pavek 2010). To further elucidate, and consistently 

compare dosing-induced changes in the dynamics of pathway activities, we apply a novel model-
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based assessment of pathway dynamics, extending the principles of 

pharmacodynamics/pharmacokinetics (PKPD) to describe pathway activities. The model-based 

approach enabled us to hypothesize on the likely emergence (or disappearance) of multiple 

dosing-dependent regulatory interactions, pointing to likely mechanistic implications of dosing of 

MPL upon transcriptional regulation. 

 

3.1.2 Approach 

Toward the analysis of the response of liver tissues to acute and chronic MPL dosing, we applied 

the pathway-based analysis approach presented in Chapter 2 (Acevedo, Berthel et al. , Acevedo, 

DuBois et al. 2019 (submitted)). Details specific to the liver analysis are presented herein, 

including the relevant data sets analyzed and notes on the version of the framework applied to 

liver data analysis (Acevedo, Berthel et al. , Acevedo, DuBois et al.). 

Animal Model and Experimental Data use for MPL Liver Analysis  

Acute dosing: 43 adrenalectomized male (ADX) Wistar rats were treated with a bolus dose of 50 

mg/kg MPL intravenously (Jin, Almon et al.). This dose was established in previous 

investigations identifying biomarkers for gene-mediated effects of glucocorticoids within liver 

because it produces strong, but not saturating, effects on gene and protein expression within rat 

liver and for its comparability with large doses in human upon scale-up (Boudinot, D'Ambrosio et 

al. 1986). Liver is analyzed as a primary site of glucocorticoid action and contains a relatively 

high concentration of glucocorticoid receptors in comparison with other tissues (Ballard, Baxter 

et al. 1974). The animals were sacrificed at 17 timepoints (n = 2-4) from 0 to 72 hours post 

dosing. Affymetrix GeneChips Rat Genome U34A (Affymetrix, Inc.) was used to array the 

mRNA expression data collected at these time points (microarray contains 8799 probes). The 
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dataset was collected in a previous investigation, submitted to GEO (GSE490), and we have 

previously presented multiple analyses of the transcription responses (Almon, Yang et al. 2008, 

Almon, Yang et al. 2008, Yang, Almon et al. 2008, Nguyen, Almon et al. 2010, Ovacik, 

Sukumaran et al. 2010, Nguyen, Almon et al. 2014). 

Chronic dosing: 40 ADX male Wistar rats were administered 0.3 mg/kg∙h of MPL intravenously 

for 7 days (Almon, DuBois et al. 2007). As with the acute analysis, liver is analyzed as a primary 

site of glucocorticoid action and contains a relatively high concentration of glucocorticoid 

receptors in comparison with other tissues (Ballard, Baxter et al. 1974). Rats were sacrificed at 11 

timepoints (n = 4) from 0 to 168 h (Almon, DuBois et al. 2007). As an additional timepoint at 0 h 

and as a control, four additional rats were used as a control group at various times throughout 7-

day time period (Almon, DuBois et al. 2007). Affymetrix GeneChips Rat Genome 230A 

(Affymetrix, Inc., Santa Clara, CA) was used to analyze the data in the chronic study (microarray 

contains 15,967 probes). The dataset was collected in a previous investigation, submitted to GEO 

(GDS972), and we have previously presented multiple analyses of the transcription responses 

(Hazra, DuBois et al. 2008, Yao, Hoffman et al. 2008, Nguyen, Almon et al. 2010, Nguyen, 

Almon et al. 2014). 

Notes on Framework for MPL Liver Analysis 

To reconcile the temporal response of liver tissue to acute and chronic MPL dosing, the datasets 

were processed using our pathway activity analysis framework described in Chapter 2 (Acevedo, 

Berthel et al. , Acevedo, DuBois et al.). The liver analysis is recently published (Acevedo, Berthel 

et al.) and uses a slightly earlier version of the framework than the version described in Chapter 2. 

The differences between this version of the framework are minor and briefly listed here: 
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• Complete analysis of the liver data with the pathway-based analysis detailed in Chapter 2 

is previously published (Acevedo, Berthel et al.). 

• Data preprocessing steps include using row-average data imputation to supplement 

missing values in incomplete expression profiles. Only probes that registered as present 

or marginal were retained within the microarray for analysis.  

• As of Jan 2018, the period in which the liver analysis was completed, the KEGG database 

contained 524 pathways that represent genomic and proteomic information across 5,646 

organisms, 53 of which are mammals. 317 of the 524 possible KEGG pathways were 

relevant to Rattus norvegicus. Pathways unrelated to the liver are irrelevant to this study 

of MPL influence within the liver. For this reason, pathways unrelated to the liver (ex. 

Cardiac muscle contraction, Complement and coagulation cascades, Platelet activation), 

describing neurological diseases (ex. Non-alcoholic fatty liver disease, Alzheimer's 

disease, Parkinson's disease, Huntington's disease), irrelevant to the liver (Olfactory 

transduction), or redundant for all other metabolic pathways (KEGG’s pathway entitled 

Metabolic pathways rno:01100 is the set of all other metabolism related pathways) were 

removed from the pathway set. The final list used for this investigation totals 209 

pathways relevant to the liver. 

• In early stages of the framework, multiple databases were used to convert Affymetrix 

probe identifiers to recognizable gene names and KEGG gene identifiers (Acevedo, 

Berthel et al.). To this end, a series of probe name conversions were completed and 

facilitated by additional databases: DAVID (Da Wei Huang and Lempicki 2009, Huang, 

Sherman et al. 2009) and Uniprot (Consortium 2018). Genes from rat pathways in KEGG 

are recognized by the identifier rno. Uniprot is used to convert from rno to Uniprot 

accession numbers. Only genes reported as reviewed in Uniprot were retained. These are 
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then converted to Affymetrix probe identifiers within the DAVID database. Affymetrix 

probes are redundant meaning multiple Affymetrix identifiers will refer to a single 

protein accession ID. However, one rno ID refers to a single unique protein accession 

number. 

3.1.3 Results 

Fractional coverage analysis of the 209 rat/liver-relevant KEGG pathways yields 56 and 57 

pathways as significant, for acute and chronic dosing respectively. These are decomposed to their 

constitutive activities with the SVD approach described earlier. Each pathway yields multiple 

PAL profiles of varying significance. A fraction of total pathway activity (𝑓𝑝) is identified for 

each PAL and only significant 𝑓𝑝 indicate significant PAL. To assess the significance of the 

coverage we also calculate the confidence for each fpvalue, defined as the 𝑓𝑝 p-value and 

described in Chapter 2. 

For consistency, the p-value threshold of 10−3 is used for selecting both the over-represented 

pathways and the significant 𝑓𝑝 values. A significant 𝑓𝑝 corresponds to a pathway activity level 

profile (PAL profile). A pathway is robustly active if its activity is described by at least one 

significant PAL. This analysis yields: 26 significant pathways in the acute and 27 in the chronic 

datasets (ST 3 and ST 4). Interestingly, we identify that the subset of 24 active pathways are 

shared across both dosing regimens, albeit the patterns of activity observed within the PAL are 

different – as will be discussed in greater detail in the following section. 

Table 4 reports the details of the 24 pathways active in both the acute and chronic data. For each 

pathway, fractional coverage (𝑓𝑐 ) is reported in the acute and chronic datasets. Also reported in 

this table are total 𝑓𝑝values for pathway datasets of different significance thresholds. In the 
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original gene set of each pathway, significant PAL are identified, each corresponding to an 

independent 𝑓𝑝value. The total of these significant 𝑓𝑝 values indicates the fraction of pathway

activity that is significant. This total fraction of pathway activity is what is reported as the total 

𝑓𝑝value within this table.
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Bootstrapping each pathway dataset allows us to identify, in silico, likely activity patterns from 

synthetic replications (bootstrapped) of the animal studies which yielded the transcriptomic 

datasets. 1000 bootstrapped datasets were generated for each pathway and significant pathway 

activities (PAL profiles) were identified, as described in the Methods section. We repeatedly 

identified significant pathway activities within the bootstrapped pathway gene sets and identified 

common patterns of activity despite the variability of the original data. 

Pathways decomposed each into multiple PAL, indicating a likely codominance of activity 

patterns within the pathway and complex regulation of the pathways’ components. To 

consistently characterize the dynamics of each individual PAL for a given pathway we 

hypothesize likely modes of regulation. Namely, we hypothesize a PAL component is either 

directly or indirectly regulated by MPL and possibly an intermediate biosignal. The dynamics of 

each PAL are fitted using either the monophasic or biphasic regulatory models, as described 

below. This step is critical as it allows us to compare PAL dynamics within, and across, dosing 

regimens in a model based, data-independent, manner.  

Detailed analysis of the common pathways revealed very interesting trends. Using the acute 

response as the basis we identify two class groupings within the set of 24 significant pathways: 

class 1: (acute monophasic or acute biphasic response) pathways exhibiting either monophasic or 

biphasic regulation only; and class 2: (acute monophasic and acute biphasic, aka complex acute) 

pathways exhibiting both monophasic and biphasic activity, i.e. individual pathways that yield 

multiple PAL, some of which are acute monophasic and some of which are acute biphasic. 

Within these primary categories based on acute data, we further investigated the type of 

regulation each of the pathways under chronic dosing. Table 5 presents each pathway and its 

categorization by class and response type. 
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Table 5 Responses of significant (𝑓𝑝 p-value and 𝑓𝑐 p-value ≤ 10−3) pathways to acute and chronic MPL 

administration. 

Pathway Pathway Category 
Acute MPL 

Response 

Chronic MPL 

Response 

Cla

ss 

Glyoxylate and dicarboxylate 

metabolism 

Carbohydrate 

Metabolism 
biphasic monophasic 1 

Tryptophan metabolism Amino Acid Metabolism monophasic biphasic 1 

Valine, leucine and isoleucine 

degradation 
Amino Acid Metabolism monophasic 

monophasic/bip

hasic 
1 

Propanoate metabolism 
Carbohydrate 

Metabolism 
monophasic biphasic 1 

Peroxisome Essential Organelles monophasic 
monophasic/bip

hasic 
1 

Fatty acid degradation Lipid Metabolism monophasic 
monophasic/bip

hasic 
1 

Steroid hormone biosynthesis Lipid Metabolism monophasic 
monophasic/bip

hasic 
1 

Fatty acid metabolism Lipid Metabolism monophasic 
monophasic/bip

hasic 
1 

PPAR signaling pathway Lipid Metabolism monophasic 
monophasic/bip

hasic 
1 

beta-Alanine metabolism Amino Acid Metabolism monophasic monophasic 1 

Glutathione metabolism Amino Acid Metabolism monophasic monophasic 1 

Proteasome Essential Organelles monophasic monophasic 1 

Retinol metabolism 
Metabolism of cofactors 

and vitamins 
monophasic monophasic 1 

Citrate cycle (TCA cycle) 
Carbohydrate 

Metabolism 

monophasic/bi

phasic 
biphasic 2 

Pyruvate metabolism 
Carbohydrate 

Metabolism 

monophasic/bi

phasic 
biphasic 2 

Ribosome Essential Organelles 
monophasic/bi

phasic 
biphasic 2 

Metabolism of xenobiotics by 

cytochrome P450 
Xenobiotic Metabolism 

monophasic/bi

phasic 
biphasic 2 

Arginine biosynthesis Amino Acid Metabolism 
monophasic/bi

phasic 
monophasic 2 

Oxidative phosphorylation 
Carbohydrate 

Metabolism 

monophasic/bi

phasic 
monophasic 2 

Biosynthesis of amino acids Amino Acid Metabolism 
monophasic/bi

phasic 

monophasic/bip

hasic 
2 

Cysteine and methionine 

metabolism 
Amino Acid Metabolism 

monophasic/bi

phasic 

monophasic/bip

hasic 
2 

Glycolysis / Gluconeogenesis 
Carbohydrate 

Metabolism 

monophasic/bi

phasic 

monophasic/bip

hasic 
2 

Carbon metabolism 
Carbohydrate 

Metabolism 

monophasic/bi

phasic 

monophasic/bip

hasic 
2 

Protein processing in 

endoplasmic reticulum 
Essential Organelles 

monophasic/bi

phasic 

monophasic/bip

hasic 
2 
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Class 1: Exclusively Monophasic or Biphasic Acute Response 

Twelve pathways are identified with strictly acute monophasic responses and one pathway 

exhibits strictly acute biphasic response. The acute monophasic response pathways are classified 

by pathway families including amino acid metabolism (beta-Alanine metabolism, Glutathione 

metabolism, Tryptophan metabolism, and Valine, leucine and isoleucine degradation) 

(Ratnam, Maclean et al. 2002, Christiansen, Djurhuus et al. 2007), carbohydrate metabolism 

(Propanoate metabolism) (McMahon, Gerich et al. 1988, Nader, Ng et al. 2012), essential 

organelle regulation (Peroxisome and Proteasome) (Wallace and Cidlowski 2001, Rhen and 

Cidlowski 2005, Cuzzocrea, Bruscoli et al. 2008), lipid metabolism (Fatty acid degradation, 

Fatty acid metabolism, PPAR signaling pathway, and Steroid hormone biosynthesis) 

(Macfarlane, Forbes et al. 2008, Peckett, Wright et al. 2011), and metabolism of cofactors and 

vitamins (Retinol Metabolism) (Pascussi, Drocourt et al. 2000).  

The majority of the monophasic responses in this set yield an early monophasic response, which 

consists of a single peak of activity corresponding to the direct effect of DRN between 2 and 5 h 

(also referenced as DRN effect peak) and subsequent return to initial baseline between 18 and 30 

h. The Proteasome pathway exists as an outlier by exhibiting a late monophasic response 

consisting of a delayed DRN event peak between 7 and 15 h and a return to baseline between 32 

and 65 hours, defining the late biphasic response category. Only the Glyoxylate and 

dicarboxylate metabolism pathway, within the carbohydrate metabolism family, exhibits a 

biphasic response to acute MPL administration, discussed further below. 

Though many pathways exhibit monophasic behavior in response to either acute or chronic 

dosing, the Glutathione Metabolism, Retinol Metabolism, Proteasome, and beta-Alanine 
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Metabolism pathways exhibit exclusively monophasic behavior in response to both acute and 

chronic dosing. The acute response for each of these pathways reports a DRN event peak between 

3 and 4 h followed by a return to baseline between 20 and 25 h. In the Glutathione Metabolism 

pathway, chronic MPL administration yields a steep and continuous incline and does not settle to 

a new steady state value within the 168 h of the experiment. The beta-Alanine pathway yields 

strictly one pattern of behavior in response to Chronic MPL, a steep incline until 25 h followed by 

a settling to a new steady state by 120 h. The Retinol metabolism pathway returns multiple 

chronic behavior responses: a steep continuous incline with no peak and no settling to a new 

baseline within the experiment time; steep incline until 25 h followed by settling at a new steady 

state by 120 h; and peak DRN activity event at 22 h followed by a settling at a new steady state 

by 55 h. The Proteasome pathway exhibits a slightly later acute DRN event peak at 9 h and 

returns to baseline by 50 h. The Proteasome pathway is singular in that it’s response to chronic 

MPL administration yields DRN event peaks between 12 and 16 h followed by settling to a new 

steady state by 50 h. 

Two pathways, Propanoate metabolism and Tryptophan metabolism, exhibit a DRN event 

peak at 3 h and a return to baseline by 20 to 25 h in response to acute MPL administration. In 

response to chronic MPL administration, these pathways exhibit strictly biphasic behavior. 

Propanoate Metabolism yields a DRN peak between 11 and 17 h, and a peak activity event due 

to an intermediate biosignal between 40 and 44 h. This pathway does not settle to a new steady 

state within the 168-h timeframe of the experiment, but the approach to an asymptote is implied. 

Tryptophan metabolism reports similar behavior, yielding a DRN event peak at 16 h, an 

intermediate biosignal peak between 44 and 54 h, and approaches an asymptote either by 150 h or 

is implied to approach steady state outside of the 168-hexperimental period. 
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The remaining six pathways (Fatty acid degradation, Fatty acid metabolism, Peroxisome, 

PPAR signaling pathway, Steroid hormone biosynthesis, and Valine, leucine and isoleucine 

degradation) exhibit the acute response (DRN peak between 3 and 4 h and return to baseline by 

20 to 25 h), as well as both monophasic and biphasic responses to chronic MPL administration. 

Within the lipid metabolism pathways, Fatty acid degradation yields monophasic responses 

with DRN event peaks between 22 and 24 h followed by a rapid steady state achievement at 25 h 

or a delayed steady state achievement by 55 h. This pathway’s biphasic responses yield peak 

DRN events at 15 to 16 h, intermediate biosignal events at 40 to 41 h, and settle to a new activity 

baseline by 155 h or after 168 h. Fatty acid metabolism returns monophasic reporting steep 

inclines in activity until 25 h and a similar settling to a new steady state achieved rapidly by 35 h 

or with delay by 90 h. Fatty acid metabolism pathway’s chronic biphasic response reports DRN 

event peaks 14 h, intermediate biosignal event peaks at 33 to 36 h, and new steady state 

achievement either rapidly by 115 h or is implied to approach a new steady state after the 168 h.  

Relatedly within the lipid metabolism family, PPAR signaling pathway and Steroid hormone 

biosynthesis pathway exhibit steep inclines until 30 to 35 h in their monophasic response to 

chronic MPL administration. This is followed by achievement of a new steady state of activity by 

90 to 110 h. The chronic biphasic response within the PPAR signaling pathway describes DRN 

peaks from 15 to 16 h, intermediate biosignal peaks from 34 to 38 h, and new steady state 

achievement by 125 or 130 h or are implied to achieve steady state after 168 h by their approach 

to an activity asymptote. The Steroid hormone biosynthesis pathway exhibits one biphasic 

response that reports a DRN event peak at 1 h, an intermediate biosignal event peak at 30 h, and 

does not appear to achieve steady state within 168 h.  

Glyoxylate and dicarboxylate metabolism pathway, exhibits strictly early biphasic response to 

acute MPL administration and represents the pathway family carbohydrate metabolism. Early 
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biphasic response is defined by pathways exhibiting DRN effect peaks between 1 and 5 h, an 

intermediate biosignal peak between 12 and 20 h, and return to baseline between 38 and 65 h. In 

response to acute MPL administration, this pathway exhibits DRN event peaks between 4 and 5 

h, intermediate biosignal event peaks between 16 and 19 h, and return to baseline between 57 and 

65 h. In response to chronic MPL administration Glyoxylate and dicarboxylate metabolism 

pathway yields a monophasic response reporting a steep incline until 25 h and a settling at a new 

steady state by 90 h.  

Class 2: Complex Acute Response  

Eleven pathways within the pathway groups of amino acid metabolism (Ratnam, Maclean et al. 

2002, Christiansen, Djurhuus et al. 2007) (Arginine biosynthesis, Biosynthesis of amino acids, 

and Cysteine and methionine metabolism), carbohydrate metabolism (McMahon, Gerich et al. 

1988, Nader, Ng et al. 2012) (Pyruvate metabolism, Carbon Metabolism, Glycolysis / 

Gluconeogenesis, Citrate cycle, and Oxidative Phosphorylation), regulation of essential 

organelles (Ribosome and Protein processing in endoplasmic reticulum) (Wallace and 

Cidlowski 2001, Rhen and Cidlowski 2005, Cuzzocrea, Bruscoli et al. 2008), and xenobiotic 

metabolism (Dvorak and Pavek 2010) (Metabolism of xenobiotics by cytochrome P450) also 

report complex responses to acute MPL administration. In this class, the PAL responses captured 

indicate that some components (i.e. subgroups of genes) of pathways respond with monophasic 

behavior while other components exhibit biphasic behavior. Acute MPL administration yields 

multiple profile patterns: both early and late phase of either monophasic or biphasic response. As 

previously defined, early monophasic response indicates DRN event peaks between 2 and 5 h 

followed by a return to baseline between 18 and 30 h. Late monophasic responses are defined by 

a DRN event peak between 7 and 15 h followed by a return to baseline between 32 and 65 hours. 

Early biphasic responses are defined by a DRN event peak between 1 and 5 h, an intermediate 
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biosignal peak between 12 and 20 h, and a return to baseline between 38 and 65 h. Only one 

pathway exhibited a late biphasic response (Arginine biosynthesis), defined by a DRN peak at 16 

h, and intermediate biosignal event peak at 23 h and a return to baseline implied to occur after 72 

h.  

(Acute Response: Early Monophasic and Early Biphasic) Pathways in this subgroup (Protein 

processing in endoplasmic reticulum, Metabolism of xenobiotics by cytochrome P450, and 

Ribosome) exhibit both early monophasic and early biphasic response to acute MPL 

administration. In response to chronic MPL administration, Protein processing in endoplasmic 

reticulum exhibits both monophasic and biphasic responses. The chronic monophasic response 

exhibits a DRN event peak between 5 and 6 h followed by a settling to a new steady state by 45 h. 

The chronic biphasic response exhibits DRN event peak between 16 and 18 h, an intermediate 

biosignal peak between 58 and 60 h, and settles to a new steady state after 168 h. The 

Metabolism of xenobiotics by cytochrome P450 and Ribosome pathways exhibit chronic 

biphasic behavior only. Metabolism of xenobiotics by cytochrome P450 repots DRN effect 

peaks between2 and 4 h, a peak due to the intermediate biosignal between 36 and 38 h, and 

establishment of a new steady state is implied to occur after 168 h. The Ribosome pathways 

exhibits DRN effect peaks slightly later, between 16 and 29 h, followed by intermediate biosignal 

effects between 58 and 60 h, and establishment of a new steady state after 130 h. 

(Acute Response: Early and Late Monophasic and Early Biphasic) Oxidative 

phosphorylation and Carbon metabolism exhibit early and late monophasic, as well as early 

biphasic, responses to acute MPL administration. In response to chronic MPL administration the 

Oxidative phosphorylation pathway exhibits a monophasic response, exhibiting a steep incline 

until 40 h with no clear event peak, but establishes a new steady state by 120 h. Carbon 

metabolism exhibits both monophasic and biphasic responses to chronic MPL administration. Its 
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chronic monophasic response reported a steep incline until 25 h with no peak, and establishes a 

new steady state by 30 h. Its chronic biphasic response reports a DRN event peak between 5 and 

9 h, an intermediate biosignal peak between 35 and 40 h, and a settling to a new steady state after 

150 h. 

(Acute Response: Late Monophasic and Early Biphasic) Pathways Cysteine and methionine 

metabolism, Pyruvate metabolism, Glycolysis / Gluconeogenesis, Biosynthesis of amino 

acids, and Citrate cycle all exhibit this complex response to acute MPL administration, yielding 

both late monophasic and early biphasic responses. In response to chronic MPL administration, a 

combination of monophasic and biphasic responses is also observed. The Cysteine and 

methionine metabolism pathway reports chronic biphasic responses with DRN peaks between 2 

and 9 h, intermediate biosignal peaks between 28 and 30 h, and establishment of a new steady 

state between 55 and 120 h. Its chronic monophasic response exhibits a steep incline until 35 h, 

no discernable peak, and establishment of a new steady state by 90 h. Pyruvate metabolism 

exhibits a chronic monophasic response with a steep continuous incline, no peak, and an 

implication that the system will settle after 168 h. It’s chronic biphasic response exhibits a DRN 

event peak at 8 h, an intermediate biosignal peak at 47 h, and a new steady state is implied after 

168 h. Glycolysis / Gluconeogenesis exhibits multiple chronic monophasic responses: one in 

which a peak is observed at 13 h and a new steady state is achieved by 50 h; as well as a 

monophasic response in which a steep incline is observed until 50 h, no peak is identifiable, and a 

new steady state is implied to occur after 168 h. Its biphasic response reports a DRN peak at 16 h, 

an intermediate biosignal event peak at 57 h, and establishment of a new steady state after 168 h. 

Biosynthesis of amino acids pathway yields monophasic responses that exhibit DRN event 

peaks between 4 and 15 h and settles to a new steady state between 35 and 45 h. Biphasic 

responses to chronic MPL within this pathway report DRN event peaks between 9 and 15 h, 
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intermediate biosignal peaks between 27 and 45 h, and settle to a new steady state by 80 to 120 h. 

Chronic MPL administration exhibits Citrate cycle only chronic biphasic response, reporting a 

DRN event peak between 9 and 13 h, and intermediate biosignal peak between 32 and 37 h, and 

establishment of a new steady state by 95 to 100 h. 

(Acute Response: Late Monophasic, Early and Late Biphasic) Solely Arginine biosynthesis 

demonstrates this combination of responses to acute MPL administration: late monophasic, as 

well as early and late biphasic. In response to chronic MPL, Arginine biosynthesis exhibits 

monophasic behavior. Exhibiting activities with steep and continuous inclines until 30 or 40 h, no 

distinguishable peaks, and establishment of new steady states by 110 h or after 168 h.  

3.1.4 Discussion 

Synthetic glucocorticoids, such as MPL, are widely used anti-inflammatory drugs. Despite their 

widespread usage the actions and secondary effects are still under investigation. Dosing regimens 

further complicate the host’s response to the drug. Of importance is the liver-response, being the 

organ of primary drug metabolism. Earlier studies have focused on liver-specific genome-wide 

transcriptomic analyses under acute and chronic dosing (Sun, DuBois et al. 1998, Ramakrishnan, 

DuBois et al. 2002, Ramakrishnan, DuBois et al. 2002, Jin, Almon et al. 2003, Almon, Dubois et 

al. 2005, Almon, DuBois et al. 2007, Almon, Yang et al. 2008, Hazra, DuBois et al. 2008, Yang, 

Almon et al. 2008, Nguyen, Almon et al. 2010, Nguyen, Almon et al. 2010, Nguyen, Almon et al. 

2014, Nouri-Nigjeh, Sukumaran et al. 2014, Kamisoglu, Sukumaran et al. 2015, Ayyar, Almon et 

al. 2017). Transcriptional analyses focus on characterizing individual gene responses. Clustering 

and functional annotation enables a more complete characterization of the response. In this 

investigation, we approach the problem from another angle: we aim to characterize the dynamic 

response of functionally related a priori groupings of genes. We therefore aim to characterize the 

dynamic response of signaling and metabolic pathways following acute and chronic exposure to 
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MPL. Characterizing the dynamics at the pathway level, or at the level of functionally related 

genes in general, enables comparison across platforms and experiments since the approach does 

not require consistency across experiments. 

The first step of the analysis requires that we identify pathway appropriately represented in the 

microarray data. This is a critical step, since we need to confirm that pathways whose activities 

will be further analyzed, are adequately represented in the experimental data. In doing so we 

define fractional coverage (fc) as the metric characterizing the extent to which a pathway is 

represented in the probe set used and reported in the genome-wide transcriptomic studies, as 

previously defined in the Methods section. We further assess the statistical significance of this 

metric by associating with the fractional coverage of a pathway with a p-value communicating 

our confidence that the fractional coverage is statistically significant. The metric is very important 

particularly in cases like the one we analyzed where we are assessing and comparing 

experimental data using different platforms, or arrays as in our case. Since the initial set of genes 

whose activity is quantified are not the same across the two conditions (different animal studies 

make use of different microarrays), it is important to confirm that the pathways are appropriately 

represented because these pathways are identical across datasets and thus, can be compared. As 

expected, as the statistical significance of the reliability of the fractional coverage metric is 

increased, the set of significantly represented pathways decreases. Our results indicate that of 209 

pathways represented in KEGG which are relevant to Rattus norvegicus and the liver, 56 and 57 

have statistically significant fractional coverage in the acute and chronic experiments, 

respectively, at a confidence level of 10−3. 

The next critical step is to associate a coherent dynamic response with each of the represented 

pathways. Our hypothesis is that each pathway is effectively a high-dimensional dynamic system, 
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with each dimension corresponding to a gene in the pathway. We hypothesize that the multi-

dimensional dynamics can be decomposed into intrinsic elements, identified via the SVD 

decomposition (Tomfohr, Lu et al. 2005, Ovacik, Sukumaran et al. 2010, Ovacik, Sen et al. 

2013). SVD decomposition of the original data determined whether a pathway can generate at 

least one PAL, an indication that the pathway is active and should be further analyzed for 

multiple activity patterns in a manner that considers the inherent variability of the data. To 

account for the inherent variability in the experimental observations, the proposed bootstrap 

enabled us to identify likely intrinsic responses and further to assess a likelihood metric via 

corresponding p-values.  

From within the sets of the 56 and 57 pathways identified to have statistically significant 

fractional coverage in the acute and chronic data respectively, 26 pathways in the acute and 27 in 

the chronic yielded at least one significant PAL profile, indicating their significant pathway 

activity. 24 of these pathways are common to both the acute and chronic significant pathway sets 

(Table 4). The chronic pathways exhibit consistently higher fractional coverage than their acute 

counterparts. Completed a few years after the acute study, the chronic study had access to a 

microarray platform (230A) previously unavailable. Because both experiments investigate MPL 

within the liver, a consistent set of significant pathways is anticipated to emerge when comparing 

these data with our framework. However, it is likely that the difference in platform contributes to 

this discrepancy between acute and chronic pathway fractional coverage. The chronic study has a 

larger probe set on its microarray and thus has more genes to occupy each pathway. Thus, a 

consistent core set of pathways emerges as significantly represented and active in response to 

MPL in both datasets. These pathways emerge from the amino acid metabolism (Ratnam, 

Maclean et al. 2002, Christiansen, Djurhuus et al. 2007), carbohydrate metabolism (McMahon, 

Gerich et al. 1988, Nader, Ng et al. 2012), essential organelle regulation (Wallace and Cidlowski 
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2001, Rhen and Cidlowski 2005, Cuzzocrea, Bruscoli et al. 2008),  lipid metabolism (Macfarlane, 

Forbes et al. 2008, Peckett, Wright et al. 2011), metabolism of cofactors and vitamins (Pascussi, 

Drocourt et al. 2000), and xenobiotic metabolism pathway families (Dvorak and Pavek 2010). 

Interestingly, the decomposition of the pathway dynamics to its intrinsic constituents verified that 

the emergent dynamics were consistent with likely mechanisms of regulation. Broadly, the 

intrinsic responses for the acute dosing reflects transient activity events due to DRN to GRE 

binding or transcription mediated via an intermediate biosignal influenced by MPL – while 

returning to baseline following the elimination of the drug. The chronic administration led to 

more complicated responses, including transient and persistent effects indicating both DRN to 

GRE binding or transcription mediated via intermediate biosignal. The bootstrapping step enabled 

us to investigate how the variability in a pathway dataset influences which pathway activity levels 

are dominant. The initial SVD step which determined whether a pathway can yield at least one 

PAL is a screening step which identifies if the pathway is at all active. The bootstrapping step is 

applied afterwards to ask the question, what kinds of significant activity emerge if the variability 

in the gene set is considered? For this investigation, this bootstrapping step is applied to pathways 

significant with p-values ≤ 10−3. It can be applied to pathway sets of any significance (i.e. 

pathway sets corresponding to p-value ≤ 10−1 and p-value ≤ 10−2), however this is not 

necessary for our investigation as we are only interested in pathways that pass the screening SVD 

test at the greatest significance. This process identified pathways indicating consistent activity 

under either acute or chronic drug administration. The first important observation from our 

analysis is that, regardless of dosing, the pathways encapsulating the MPL effects are similar. 

Interestingly, chronic administration leads to the emergence of complex dynamics, not 

necessarily expected based on analysis of the acute response. 
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To systematically compare across dosing regimens and time horizons (72 h in acute study, 168 h 

in chronic study), we compare the intrinsic dynamics in the space of regulatory models. We 

hypothesize that each intrinsic response can be represented by corresponding PKPD models. 

Following the regulatory mechanisms proposed in previous publications (Sun, DuBois et al. 

1998, Ramakrishnan, DuBois et al. 2002, Hazra, DuBois et al. 2008) we develop a two-

compartment PK model for both acute and chronic dosing (Figure 4) and hypothesized either 

monophasic (Equation 13) or biphasic (Equations 14 and 15) regulation of the intrinsic 

component of the activity of the pathway. We therefore extend the concept of PD dynamic to 

characterizing the intrinsic responses at the pathway level. Our analysis indicates that the acute 

response initiates pathway dynamics consistent with the nature of the acute dosing: since MPL 

half-life of 0.33 h in ADX rats with a total drug clearance observed in ADX rats by 4.6 h (Hazra, 

Pyszczynski et al. 2007). 

We observed that the pathway responses emerging under acute dosing reflect monophasic or 

biphasic responses. However, the same pathway can lead to rather complicated dynamics under 

chronic administration. For consistency in our analysis, we examined pathways based on their 

response under acute administration. We therefore, broadly identified two major categories: Class 

1 capturing pathways yielding strictly monophasic response or strictly biphasic response to acute 

MPL administration; and Class 2 reporting pathways yielding both monophasic and biphasic 

response to acute MPL administration. Within these categories (Table 5), pathway response to 

chronic MPL administration is compared.  

Although PAL profiles resemble gene expression profiles, the features in these profiles do not 

necessarily correspond to up or down gene expression. The SVD linear combination technique 

preserves the relative magnitudes of gene expression profiles, but it does not preserve sign. For 

example, many genes which report an early upregulation event in their expression profiles will 
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contribute to a single unique PAL, which will contain an early event peak. This is because the 

PAL is a linear combination of those gene expression profiles. A set of gene expression profiles 

will “resolve” to a PAL with the same timing and relative magnitude of features, but which may 

appear as a reflection of the gene expression profiles. What is critical to our analysis is the timing 

and relative magnitude of the peak events, which SVD preserves. These features determine 

whether a monophasic of biphasic mechanism is proposed.  

Class 1 includes pathways exhibiting exclusively monophasic or exclusive biphasic regulation 

under acute dosing. MPL induces a response which dies out as the drug is eventually eliminated 

from the system. Out of the 24 pathways, 13 pathways (Tryptophan metabolism, beta-Alanine 

metabolism, Glutathione metabolism, Proteasome, Retinol metabolism, Valine, leucine and 

isoleucine degradation, Propanoate metabolism, Peroxisome, Fatty acid degradation, 

Steroid hormone biosynthesis, Fatty acid metabolism, PPAR signaling pathway, and 

Glyoxylate and dicarboxylate metabolism) exhibited this response under acute dosing. Almost 

all of these pathways reported early acute monophasic response. Only Proteasome exhibited both 

early and late acute monophasic responses and only Glyoxylate and dicarboxylate metabolism 

exhibited biphasic response to acute MPL.  

 

Figure 5 Tryptophan metabolism pathway response to (A) acute and (B) chronic MPL administration. 

Example of Class 1 pathway which yields monophasic response to acute MPL administration but varies in 
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its response to chronic MPL administration. The Tryptophan metabolism pathway yields a biphasic 

response to chronic MPL administration indicating an increased complexity across dosing studies. 

Interestingly, the chronic response for the Class 1 pathways manifested itself in multiple ways. 

Some pathways (Valine, leucine and isoleucine degradation, Tryptophan metabolism, 

Propanoate metabolism, Peroxisome, Fatty acid degradation, Steroid hormone biosynthesis, 

Fatty acid metabolism, and PPAR signaling pathway) exhibited strictly early monophasic 

response but increased complexity in response to chronic MPL administration, exhibiting both 

monophasic and biphasic responses in different subcomponents of each pathway. Tryptophan 

metabolism (Figure 5), a pathway describing the processing of the amino acid tryptophan into 

biproducts catabolized by glycolysis, and other energy regulating pathways (Kanehisa and Goto 

2000, Aoki and Kanehisa 2005, Christiansen, Djurhuus et al. 2007, Kanehisa, Furumichi et al. 

2016) exemplifies the observed shift from acute monophasic response to a response of greater 

complexity, such as chronic biphasic. This shift indicates that the mechanism of regulation 

presumed appropriate for describing the pathway’s response to acute MPL administration is 

insufficient for describing the pathway’s actual mechanism of regulation, which is revealed with 

greater complexity in its biphasic response to chronic MPL administration. The Peroxisome 

pathway (Figure 6), which describes the biogenesis of peroxisome organelles, is crucial to redox 

signaling and lipid homeostasis (Kanehisa and Goto 2000, Aoki and Kanehisa 2005, Cuzzocrea, 

Bruscoli et al. 2008, Peckett, Wright et al. 2011, Kanehisa, Furumichi et al. 2016), yields strictly 

an acute monophasic response to acute MPL. However, the pathway reports multiple dominant 

activity patterns in response to chronic MPL. PAL profiles are linear combinations of the 

expression patterns of individual genes and if a pathway yields multiple significant PAL, it 

indicates that unique subgroups of genes within that pathway are responsible for each.  
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Figure 6 Peroxisome pathway response to (A) acute and (B and C) chronic MPL administration. Example 

of Class 1 pathway which yields monophasic response to acute MPL administration but varies in its 

response to chronic MPL administration. The Peroxisome pathway yields both monophasic and biphasic 

responses to chronic MPL administration indicating an increased complexity across dosing studies as well 

as an internal complexity to the pathway. This pathway exhibits multiple dominant patterns of activity, each 

corresponding to unique subgroups of genes within the pathway. 

The Peroxisome pathway demonstrates this segregation of the pathway; within the gene set that 

composes the Peroxisome pathway, unique subgroups of genes behave differently, some 

prescribing to monophasic regulation and yielding a chronic monophasic response (Figure 6B) 

and some prescribing to a chronic biphasic response (Figure 6C). Thus, the Peroxisome pathway 

cannot be assumed homogenous, and in fact represents at least two subgroups of uniquely 

regulated gene sets. Other pathways maintained a strictly monophasic response (beta-Alanine 



55 

 

 

 

metabolism, Glutathione metabolism, Proteasome, and Retinol metabolism) to both acute and 

chronic MPL administration.  

 

Figure 7 Cysteine and methionine metabolism pathway response to (A and B) acute and (C and D) chronic 

MPL administration. Example of Class 2 pathway which yields both monophasic and biphasic responses to 

acute MPL administration. This complexity indicates that multiple subgroups of genes within this pathway 

are regulated by different mechanisms. For the Cysteine and methionine pathway, this complexity is 

preserved across dosing types. 

One pathway exhibited exclusively biphasic response to acute MPL, the Glyoxylate and 

dicarboxylate metabolism pathway. This pathway describes energy regulating biosynthesis 

reactions for synthesis of carbohydrates from acetyl-CoA and fatty acids (Kanehisa and Goto 

2000, Aoki and Kanehisa 2005, Kanehisa, Furumichi et al. 2016). It yielded early biphasic 
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response to acute MPL administration but a prolonged monophasic response to chronic MPL 

administration.  

The 11 pathways that yielded more complex acute responses were included within Class 2. Some 

pathways (Cysteine and methionine metabolism, Glycolysis / Gluconeogenesis, and Carbon 

metabolism) within this class remained complex between dosing regimens, exhibiting both 

monophasic and biphasic behavior in different subcomponents of the pathway, in response to 

both acute and chronic MPL administration. Cysteine and methionine metabolism (Figure 7), a 

pathway which describes the metabolism of the eponymous amino acids into intermediates 

supplied to such processes as pyruvate metabolism and amino acid synthesizing pathways 

including Valine, leucine, and isoleucine biosynthesis pathway (Kanehisa and Goto 2000, 

Ratnam, Maclean et al. 2002, Aoki and Kanehisa 2005, Christiansen, Djurhuus et al. 2007, 

Kanehisa, Furumichi et al. 2016). It exemplifies the conservation of complex response between 

acute and chronic dosing. Regardless of dosing type, this pathway contains unique subgroups of 

genes who expression patterns are the foundation for the PAL profiles observed in the pathway’s 

response. A complexity which indicates that multiple mechanisms of regulation are required to 

describe the activity of this pathway. Other pathways shifted their response, exhibiting complex 

acute behavior but resolving to either strictly chronic monophasic behavior (Arginine 

biosynthesis and Oxidative phosphorylation) or strictly chronic biphasic behavior (Protein 

processing in endoplasmic reticulum, Citrate cycle (TCA cycle), Pyruvate metabolism, 

Metabolism of xenobiotics by cytochrome P450, and Ribosome). The Arginine biosynthesis 

pathway describes the construction of the amino acid arginine as well as the overlap of this 

process with others including the Citrate cycle (catabolism of 2-Oxoglutarate and production of 

Fumarate), as well as the urea cycle (various steps including the generation of urea) (Kanehisa 

and Goto 2000, Aoki and Kanehisa 2005, Kanehisa, Furumichi et al. 2016). Acute MPL 
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administration provokes both an acute monophasic and acute biphasic response, indicating that 

the pathway can be decomposed into uniquely regulated subcomponents of genes (Figure 8A, B). 

However, this behavior resolves to a strictly monophasic response to chronic MPL administration 

(Figure 8C). This observation indicates that some regulatory structures within this pathway may 

be overwhelmed by chronic MPL administration and lose the phenotypes that distinguish 

monophasic from biphasic mechanisms. 

 

Figure 8 Arginine biosynthesis pathway response to (A and B) acute and (C) chronic MPL administration. 

Example of Class 2 pathway type which yields both monophasic and biphasic responses to acute MPL 

administration. This complexity indicates that multiple subgroups of genes within this pathway are 

regulated by different mechanisms. For the Arginine biosynthesis pathway, chronic MPL administration 

yields a shift to a monophasic response. 
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These results indicate that 16 of the 24 significant pathways exhibited a response pattern that 

changed between acute and chronic dosing. 8 of the 24 pathways (Tryptophan metabolism, 

Valine, leucine and isoleucine degradation, Propanoate metabolism, Peroxisome, Fatty acid 

degradation, Steroid hormone biosynthesis, Fatty acid metabolism, and PPAR signaling 

pathway) exhibit singularly monophasic or biphasic response to acute MPL administration but 

increase their complexity, exhibiting both monophasic and biphasic behavior, in response to 

chronic MPL administration. Increasing complexity indicates that a pathway’s response to MPL 

is dosing-specific, and that different subcomponents (unique groups of genes within a pathway) 

exhibit purely DRN binding to GRE regulation, while other components exhibit both DRN to 

GRE binding as well as transcription regulation mediated by an intermediate biosignal. The 

pathway cannot be defined by simply one response type. For some pathways, the response does 

not change with changing dosing.  

9 of the 24 pathways (beta-Alanine metabolism, Glutathione metabolism, Proteasome, 

Retinol metabolism, Biosynthesis of amino acids, Cysteine and methionine metabolism, 

Glycolysis / Gluconeogenesis, Carbon metabolism, and Protein processing in endoplasmic 

reticulum) exhibit no change in their dynamic, remaining monophasic in response to both dosing 

types or remaining chronic in response to both dosing types. This pathway’s mechanism is 

sufficiently described by either strictly monophasic (DRN to GRE binding regulated 

transcription) or biphasic (DRN to GRE binding regulated transcription and MPL influenced 

intermediate biosignal mediating regulation of transcription). 4 pathways (Citrate cycle, 

Pyruvate metabolism, Ribosome, and Metabolism of xenobiotics by cytochrome P450) shift 

from a complex acute response to chronic biphasic behavior and 3 pathways (Glyoxylate and 

dicarboxylate metabolism, Arginine biosynthesis, and Oxidative phosphorylation) reduce 

from complex acute behavior to monophasic behavior in response to chronic MPL. This reduction 
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in complexity may indicate a dosing-dependence in which a system is overwhelmed by a 

particular magnitude of drug concentration. One mechanism may dominate in response to 

constant MPL administration. 

The pathways that emerged within these classes exist within specific pathway families. Each of 

the pathways within the lipid metabolism (Macfarlane, Forbes et al. 2008, Peckett, Wright et al. 

2011)family (Fatty acid degradation, Steroid hormone biosynthesis, Fatty acid metabolism, 

and PPAR signaling pathway) increased in complexity from acute monophasic to complex 

chronic responses. The amino acid metabolism family (Ratnam, Maclean et al. 2002, 

Christiansen, Djurhuus et al. 2007) yielded three pathways that increased in complexity from 

either monophasic or biphasic acute response to complex chronic response (Tryptophan 

metabolism, Valine, leucine and isoleucine degradation, and Biosynthesis of amino acids), 

three pathways that maintained either a monophasic response or a complex response to both 

dosing types (beta-Alanine metabolism, Glutathione metabolism, and Cysteine and 

methionine metabolism), and one pathway that shifted from a complex acute response to a 

singularly monophasic response (Arginine biosynthesis). Within the regulation of the essential 

organelles family, one pathway (Peroxisome) increased in complexity from acute monophasic to 

complex chronic response, two pathways maintained the same response across dosing types either 

both monophasic or both complex (Proteasome and Protein processing in endoplasmic 

reticulum), and one pathway shifted from a complex acute response to a chronic biphasic 

response (Ribosome). The Retinol metabolism pathway within metabolism of cofactors and 

vitamins maintained the same monophasic response to acute and chronic MPL. The Metabolism 

of xenobiotics by cytochrome P450 pathway within the xenobiotic metabolism family shifted 

from complex acute response to chronic biphasic.  
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This investigation uses meta-analysis technique to capture and compare physiological dynamics 

at the pathway level. This method provides a more comprehensive survey of physiological 

activity than do strictly gene-centric approaches, while capable of predicting likely regulatory 

structures. Designed to facilitate comparison of experiments that differ in platform, time scale, 

and dosing, this framework enabled a multiple dosing to identify and compare the influence of 

MPL within the liver. Significant influence of MPL is observed within five pathway families: 

amino acid metabolism (Ratnam, Maclean et al. 2002, Christiansen, Djurhuus et al. 2007), 

carbohydrate metabolism (McMahon, Gerich et al. 1988, Nader, Ng et al. 2012), regulation of 

essential organelles (Wallace and Cidlowski , Rhen and Cidlowski , Cuzzocrea, Bruscoli et al.), 

lipid metabolism (Macfarlane, Forbes et al. , Peckett, Wright et al.), metabolism of cofactors and 

vitamins (Nader, Ng et al. 2012), and xenobiotic metabolism (Dvorak and Pavek). Within each 

family, most pathways demonstrate changed dynamics across dosing regimens. Further, all 

pathways exhibit some form of dosing-dependence easily identified when comparing acute to 

chronic responses within a pathway. Deconstruction of the activity of a pathway using SVD 

reveals multiple, temporally related, and co-dominant patterns of activity for each pathway, 

activity patterns which correspond to unique subcomponents within a pathway. Thus, this 

investigation not only identifies pathways with physiological relevance to the liver and MPL but 

provides a complex, but defined, systemic characterization of the consequences of MPL within 

the liver and the possible regulatory structures that govern these pathways. 
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3.2  Pathway-based Analysis of the Skeletal Muscle Response to Intravenous 

Methylprednisolone (MPL) Administration in Rats: Acute versus Chronic 

Dosing 

3.2.1 Introduction 

Corticosteroids, such as methylprednisolone (MPL), are synthetic glucocorticoids ubiquitously 

used as an anti-inflammatory and immune-suppressive therapy applied to various autoimmune 

diseases, asthma, used as supplements after organ transplantation and to cancer treatment (Swartz 

and Dluhy 1978, Barnes 1998). Analogues of the endogenous glucocorticoid cortisol, 

corticosteroids regulate transcription via the same mechanisms as this adrenal hormone, by either 

binding of a drug-receptor complex to DNA glucocorticoid regulatory elements (GREs) and by 

signaling through receptors in a manner independent of transcription (Schaaf and Cidlowski 

2002). Glucocorticoid effects are pervasive and involve multiple molecular mechanisms. 

Investigation via in vivo high-throughput transcriptomics has proven a useful tool in capturing 

and understanding tissue and dosing-specific effects of MPL (Sun, DuBois et al. 1998, Sun, 

McKay et al. 1999, Ramakrishnan, DuBois et al. 2002, Ramakrishnan, DuBois et al. 2002, 

Almon, DuBois et al. , Almon, Dubois et al. , Almon, Lai et al. 2005, Almon, DuBois et al. , 

Hazra, Pyszczynski et al. 2007, Almon, Yang et al. 2008, Almon, Yang et al. , Hazra, DuBois et 

al. 2008, Yang, Almon et al. , Yao, Hoffman et al. 2008, Yang, Almon et al. 2009, Nguyen, 

Almon et al. 2010, Nguyen, Almon et al. , Acevedo, Berthel et al. 2019). 

Acute administration is generally beneficial for reducing inflammation temporarily. However, 

chronic administration of corticosteroids, though necessary for chronic conditions, has 

deteriorative consequences including hyperglycemia, negative nitrogen balance, and fat 

redistribution leading to complications including diabetes, muscle wasting, osteoporosis (Morand 
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and Leech 1999, Liu, Wang et al. 2017). These consequences are notably observed within 

muscle; continuous use of corticosteroids leads to muscle atrophy and insulin resistance 

(Schakman, Kalista et al. 2013, Bodine and Furlow 2015). 

Corticosteroids influence physiology at the regulatory level, leading to multifactorial and 

systems-influencing consequences further complicated by the observed differences in response 

dynamics to differing dosing regimens of glucocorticoid administration (Almon, DuBois et al. , 

Yao, Hoffman et al.). These changing dynamics are indicative of likely differences in regulatory 

mechanisms, further revealing that regulatory structures implied in by acute administration are 

not consistent with regulatory structures implied by chronic MPL administration (Hazra, DuBois 

et al. 2008, Yao, Hoffman et al. , Nguyen, Almon et al.). 

In our previous analyses in liver, we developed a meta-analysis approach in order to better 

understand these complex pharmacogenomic effects of corticosteroids captured in temporal high-

throughput transcriptomic data (Acevedo, Berthel et al.). This approach applies a pathway-based 

analysis, which filters transcriptomic data into tissue- and organism-relevant pathways, 

decomposes these pathways for gene expression activity, and uses a model-based assessment of 

activity to assess pathway dynamics, thus endeavoring to analyze and interpret data sets 

separately and subsequently compare the analysis. With this approach, we are able to compare 

across pharmacological time-series obtained from different (transcriptomic or other) platforms 

and time-scales, including multiple dosing regimens (Almon, DuBois et al. 2007, Almon, DuBois 

et al. 2007), and across different tissues.  

In the following sections, we apply the pathway-based analysis approach (Acevedo, Berthel et al. 

, Acevedo, DuBois et al.) to analyze acute and chronic MPL dosing response in gastrocnemius 

muscle of male adrenalectomized rats and characterize the dosing-dependent differences in the 
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dynamic response of MPL-responsive pathways capturing: amino acid metabolism, lipid 

metabolism, signal transduction, endocrine regulation, regulation of cellular functions including 

growth, death, motility, transport, protein degradation, and catabolism. To consistently compare 

across dosing-induced changes, we applied a model-based approach for the assessment of 

pathway dynamics, extending the principles of pharmacokinetics and pharmacodynamics (PKPD) 

to characterize pathway activity (Acevedo, Berthel et al.). With this approach, we hypothesized 

dosing-dependent regulatory interactions in order to understand the mechanistic implications of 

MPL dosing in muscle. Further, we compared acute and chronic MPL response in muscle with 

previously established acute and chronic MPL response in liver (Acevedo, Berthel et al.). Such 

comparison revealed that dynamics are frequently inconsistent across dosing regimen and across 

tissues, though the same regulatory mechanisms capture these different dynamics. 

3.2.2 Approach 

Toward the analysis of the response of muscle tissue to acute and chronic MPL dosing, we 

applied the pathway-based analysis approach presented in Chapter 2 (Acevedo, Berthel et al. , 

Acevedo, DuBois et al.). Details specific to the muscle analysis are presented herein, including 

the relevant data sets analyzed and notes on the version of the framework applied to muscle data 

analysis (Acevedo, Berthel et al. , Acevedo, DuBois et al.). 

Animal Model and Experimental Data 

Two deteriorative consequences of continued application of corticosteroid therapy are muscle 

wasting and insulin resistance. These motivate investigation into the dosing-dependent effects of 

corticosteroids within muscle tissue. The temporal transcriptomic data used for this analysis was 

collected from extracted gastrocnemius muscle in two temporal large rat studies presented here 

(Sun, McKay et al. , Ramakrishnan, DuBois et al.).  

For acquisition of acute MPL response data, 39 adrenalectomized male (ADX) Wistar rats treated 

with a bolus dose of 50 mg/kg MPL intravenously (Sun, McKay et al.). This dose was established 
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previously for identifying biomarkers for gene-mediated effects of glucocorticoids within liver 

tissue because of its induction of strong, but not saturating, effects on gene and protein expression 

and comparability with large doses in human upon scale-up (Boudinot, D'Ambrosio et al.). The 

animals were sacrificed at 17 timepoints (n = 2-4) from 0 to 72 hours post dosing and isolated 

RNA were hybridized with Affymetrix GeneChips Rat Genome U34A (Affymetrix, Inc.) 

(microarray contains 8799 probes).  

Acquisition of chronic MPL administration response data in muscle tissue was isolated from 

another longitudinal study in which 40 ADX male Wistar rats were administered 0.3 mg/kg∙hr of 

MPL intravenously for 7 days (Nguyen, Almon et al.). Animals were sacrificed at 11 time points 

over this period. Isolated RNA from excised gastrocnemius muscle tissue was hybridized with 

Affymetrix GeneChips Rat Genome 230A (Affymetrix, Inc., Santa Clara, CA) (microarray 

contains 15,967 probes). Both the acute and chronic datasets were submitted to GEO (acute: 

GSE490 and chronic: GSE5101) and we have previously presented analyses of the transcription 

responses (Sun, DuBois et al. , Almon, DuBois et al. 2002, Ramakrishnan, DuBois et al. , Almon, 

DuBois et al. , Almon, DuBois et al. 2005, Almon, DuBois et al. , Almon, Yang et al. 2008, Yao, 

Hoffman et al. , Fang, Sukumaran et al. 2013, Nguyen, Almon et al. 2014). 

Application of Pathway-based Analysis Framework 

To reconcile the temporal response of muscle tissue to acute and chronic MPL dosing, the 

datasets were processed using our pathway activity analysis approach described in depth in 

Chapter 2 (Acevedo, Berthel et al. , Acevedo, DuBois et al. 2019 (submitted)). The most recent 

version of the framework was used to analyze muscle data (Acevedo, DuBois et al. 2019 

(submitted)) and details specific to the analysis of muscle data are listed briefly here: 
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Details of this analysis of specific to the muscle data include: 

• Active genes are then identified using differential expression analysis with the software 

Extraction and Analysis of Gene Expression (EDGE) (Leek, Monsen et al. 2006). 

Differentially expressed genes are identified by p-value. Differentially expressed profiles 

are then z-scored with respect to the individual profile mean and standard deviation. 

Replicate profiles are then averaged together, yielding averaged z-scored profiles. 

• As of June 2019, the time of submission of the skeletal muscle manuscript, this database 

contains 326 pathways relevant to rat tissues and used for our analysis. Only pathways 

relevant to muscle tissue are relevant to this analysis motivating the removal of the 

pathways relevant to other tissues (ex. pathways relevant to the digestive, excretory, 

circulatory systems), disease pathways (ex. Neurodegenerative disease, cancers, and 

infectious disease pathways), or redundant pathways (KEGG’s pathway entitled 

Metabolic pathways, rno:01100, is the set of all other metabolism related pathways). This 

elimination step left 179 remaining pathways for consideration in our analysis. 

• Affymetrix probe identifiers are translated into their NCBI Entrez IDs and Gene Symbols 

using the Bioconductor packages for each Affymetrix Platform: Package rae230a.db 

containing the annotation data for Affymetrix Rat Expression Set 230A used with the 

chronic data; and Package rgu34a.db containing the annotation data for Affymetrix Rat 

Genome U34 Array annotation data used with the acute data. 

• Some pathways with low fractional occupancy yield inconclusive p-values as an artifact 

of the Fisher’s Exact Test and were eliminated from the analysis, discussed further in ST 

2. 
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• PAL profiles were captured by our “monophasic” or “biphasic” model types (Acevedo, 

Berthel et al.) and developed as an extension of the concepts presented in (Hazra, DuBois 

et al. 2008, Yao, Hoffman et al.).  

3.2.3 Results 

Of the 179 pathways determined rat- and muscle- relevant pathways, fractional coverage analysis 

yielded 51 significantly covered pathways in the acute dataset and 61 in the chronic dataset. 

Pathway activity analysis, as described above, was used to process these pathways. Multiple PAL 

profiles emerged from each pathway and yielded 𝑓𝑝 and 𝑓𝑝 p-values indicate the fraction of 

activity captured by that PAL profile and the significance of that activity profile, respectively. 

Only pathways that yielded at least one significant PAL profile were retained as significant. For 

consistency, a consistent p-value threshold of 0.05 was used to determine significance for 𝑓𝑝 and 

𝑓𝑐.  

Pathways which yielded at least one significant PAL (𝑓𝑝 p-value ≤ 0.05) were considered 

significantly active. From the acute dataset, 49 pathways emerged as significant. The chronic 

dataset yielded 61 pathways as significant (identical to the list of pathways that exhibited 

significant fractional coverage). Discussed in greater detail below, we identified a subset of 29 

pathways both significant and common to the acute and chronic datasets. Within these pathways, 

PAL profiles exhibit different features across dose. Further, when compared against the list of 

significant pathways in liver (Acevedo, Berthel et al.), we identified a subset of pathways that 

were also significant in liver in response to acute and chronic MPL administration, detailed 

further in the Discussion section. 
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In order to account for variability within the data, a bootstrapping step was applied to each 

pathway. This step allowed us to predict in silico likely activity patterns from muscle tissue, had 

the experiment been repeated. As described in the Methods section above, bootstrapped pathway 

gene sets (n=1000) were generated for each pathway and significant PAL were identified from 

each. Multiple significant PAL frequently emerged from each bootstrapped pathway gene set. 

Despite variability in the data, we repeatedly identified significant pathway activities within the 

bootstrapped pathway gene sets and identified common patterns of activity. When comparing 

across pathways, we frequently observed common patterns of activity in response to a common 

dose. We also observed common patterns of activity across liver and muscle response within the 

same pathway. 

The emergence of multiple significant PAL from original and bootstrapped pathway gene sets 

indicates a codominance of activity patterns, and complex regulatory structures, within the 

pathway. To characterize these activity dynamics consistently, we applied a model-fitting 

technique previously described (Acevedo, Berthel et al.) and adapted from previous 

investigations into corticosteroid influence in muscle tissue (Sun, DuBois et al. , Almon, DuBois 

et al. 2002, Ramakrishnan, DuBois et al. , Almon, DuBois et al. , Almon, DuBois et al. 2005, 

Almon, DuBois et al. , Almon, Yang et al. 2008, Yao, Hoffman et al. , Fang, Sukumaran et al. 

2013, Nguyen, Almon et al. 2014). Models that describe direct and indirect regulation by MPL 

and an intermediate biosignal were fitted to PAL profiles, referred to as monophasic or biphasic 

models. This step served to hypothesize likely modes of regulation within a pathway. This step is 

also essential to our analysis as it enables comparison of drug response in a data-independent 

manner, i.e. without concern for differences in experimental platform, animal, tissue, dosing 

regimen, or time horizon. Table 6 reports the coverage, pathway activity, and model fitting results 

for each of the 29 pathways. 
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We discretized the results from perspective of the acute response data, as it became evident that 

two classes of response existed within this set of significant pathways. Class 1: The majority (26 

pathways) emerged with PAL described by strictly either acute monophasic or acute biphasic 

models. Class 2: The smaller subset (3 pathways) emerged with a more complex response 

exhibiting significant PAL described by both acute monophasic and acute biphasic models 

simultaneously. These classes were further analyzed for chronic response activity and revealed an 

interesting consistency between all 29 common significant pathways. In response to chronic MPL 

administration, pathways varied whether they yielded one or more PAL profile types. However, 

every pathway exhibited what we define as a “tolerance” behavior at a minimum. This behavior is 

characterized by PAL profiles which exhibit activity that deviates from baseline for the majority 

of the 168 h of chronic MPL administration, but which ultimately begins to return to baseline 

despite continued administration of the drug. Specific examples are detailed further below.  

Class 1: Exclusively Monophasic or Biphasic Acute Response 

Twenty-six pathways exhibit either strictly monophasic or strictly biphasic responses to acute 

MPL administration. Many pathway families are represented in this subset including amino acid 

metabolism pathway family (Arginine and proline metabolism, Glutathione metabolism), 

pathways related to cell motility, cell growth and death, cellular events such folding, sorting, and 

degradation of genetic material and proteins, transport, and catabolism (Regulation of actin 

cytoskeleton, Apoptosis, Cellular senescence, Ferroptosis, Proteasome, Autophagy, 

Peroxisome), endocrine regulation (Signaling pathways for Glucagon, GnRH, Insulin, 

Oxytocin, Prolactin, PPAR, and Thyroid hormone), signal transduction (Signaling pathways 

for TGF-beta, AMPK, cGMP-PKG, ErbB, Fox-O, HIF-1, PI3K-Akt, and Rap1), lipid 

metabolism (Fatty acid degradation and Fatty acid metabolism). Interestingly, all monophasic 
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responses to acute MPL administration in muscle tissue exhibit a consistent response of an initial 

peak in activity due to DRN action between 5 and 15 h followed by a return to baseline between 

20 and 40 h. Similarly, pathways exhibiting any biphasic response to acute MPL administration 

exhibit a first peak due to DRN action at approximately 5 h, a second and opposite peak in 

activity due to BS action from 15 to 25 h, and a return to baseline within between 30 and 60 h. 

Response to chronic administration yielded similar consistency in profile activity events a cross 

pathways. Though pathways varied in their complexity of response to chronic administration by 

exhibiting monophasic and/or biphasic behavior, all pathways exhibited a biphasic response that 

we define as tolerance. A tolerance profile is characterized by: (1) a biphasic model in which 

effect due to DRN and effect due to BS regulate the activity in opposite direction (i.e. positive 

effect due to DRN combined with a negative effect due to BS, or the reverse); and (2) a return of 

the PAL profile to baseline after approximately 100 h despite continued administration of MPL. 

The pathways that exhibit strictly biphasic response to MPL administration (Proteasome, Fatty 

acid degradation, TGF-beta signaling pathway) yield greater complexity in response to 

chronic administration. The Proteasome and Fatty acid degradation pathways exhibit exclusively 

tolerance response to chronic MPL administration. This models for these predict a steep increase 

in activity until 20 to 25 h, a subsequent shallower incline in activity until 85 to 100 h, a defined a 

peak in activity at that time, and ultimately a continuous return to baseline through the end of the 

experiment at 168 h. The TGF-𝛽 signaling pathway exhibits this tolerance response to chronic 

MPL administration, as well as a chronic monophasic response characterized by a steep incline in 

activity until 5 to 10 h, a small overshoot at that time, and a subsequent settling to a new steady 

by approximately 40 h. 

Acute MPL monophasic response only 
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Most significant pathways in muscle tissue exhibit strictly monophasic response to acute MPL 

administration. The significant PAL of these pathways are characterized monophasic models that 

yield an initial peak in activity between 5 and 15 h, due to DRN action, followed by a return to 

baseline between 25 and 30 h. Response to chronic MPL administration is again more complex. 

Some pathways yield strictly tolerance response to chronic MPL (AMPK signaling pathway, 

Thyroid hormone signaling pathway, Autophagy, ErbB signaling pathway, Ferroptosis, and 

Fatty acid metabolism). The tolerance behavior exhibits profiles consistent with those 

previously described: a steep increase in activity until 20 to 25 h, a subsequent shallower incline 

in activity until 85 to 120 h and a defined a peak in activity at that time, and then a return to 

baseline for the remainder of the experiment at 168 h. Other pathways exhibit both monophasic 

and tolerance responses to chronic MPL administration (HIF-1 signaling pathway, Regulation 

of actin cytoskeleton, Oxytocin signaling pathway, PI3K-Akt signaling pathway, Apoptosis, 

Cellular senescence, Peroxisome, Insulin signaling pathway, Rap1 signaling pathway, 

Glucagon signaling pathway, cGMP-PKG signaling pathway, Arginine and Proline 

metabolism, Glutathione metabolism, PPAR signaling pathway). The tolerance and 

monophasic response profiles are identical to those previously described. 

An additional set of pathways (Fox-O signaling pathway, Prolactin signaling pathway, GnRH 

signaling pathway) exhibit tolerance behavior in response to chronic administration consistent 

with previously described tolerance profiles, as well as an additional form of biphasic behavior. 

The Fox-O and Prolactin signaling pathways yield biphasic profiles exhibiting an initial peak 

between 15 and 20 h due to DRN action, a secondary and opposite peak by 40 or 60 h primarily 

due to BS action, and an approach to a new steady state far from baseline as the experiment 

continues to 168 h. The GnRH signaling pathway exhibits a slightly different profile in which a 
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first peak is observed at 25 h, a steep deviation from baseline in the direction opposite the first 

peak, and ultimately approaches a new steady state until 168 h. 

Class 2: Complex Acute Response 

Three pathways exhibit both monophasic and biphasic responses to acute MPL administration. 

These pathways represent the endocrine regulation (Adipocytokine signaling pathway) and 

signal transduction (MAPK signaling pathway and VEGF signaling pathway). The 

monophasic responses to acute MPL administration are similar to those previously described: an 

initial peak due to DRN action from 5 to 10 h and a return to baseline by 20 to 30 h for all 

pathways. Similarly, the biphasic responses of these pathways to acute MPL administration report 

consistent activity events including an initial peak due to DRN action at 5 h, a secondary peak 

due to BS action from 15 to 20 h, and a return to baseline thereafter between 40 and 50 h. The 

Adipocytokine signaling pathway exhibits only tolerance behavior in response to chronic MPL 

administration. The remaining pathways exhibit chronic monophasic response characterized by a 

steep incline in activity until 10 to 15 h, a shallow overshoot at that time, followed a settling to a 

new steady state by 45 to 50 h. 

3.2.4 Discussion 

Ubiquitously used anti-inflammatory and immune-suppressing drugs, corticosteroids exhibit both 

deleterious and beneficial effects, notably within muscle; continuous use of corticosteroids leads 

to muscle atrophy and insulin resistance (Schakman, Kalista et al. 2013, Bodine and Furlow 

2015). Despite its continued use, its induced responses are not entirely characterized. To this end, 

we seek to reconcile data capturing MPL response across multiple tissues using a meta-analysis 

pathway-based approach (Acevedo, Berthel et al.). Though foundational, gene-centric analyses do 

not capture the complexity of the multi-genomic consequences of MPL. Further, reconciling data 
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from multiple studies that explore the influence of MPL is not straightforward, as this data was 

collected using different experimental platforms, on different time scales, within different tissues, 

and across different dosing regimens (Ghosh, Barette et al. 2003, Ramasamy, Mondry et al. 2008, 

Tseng, Ghosh et al. 2012). To compare results across studies and capture the multi-genomic 

consequences of MPL administration in muscle, it becomes necessary to first analyze the MPL 

response in each data set independently in the context of functional groups, i.e. pathways, and 

characterize this in the space of regulatory models. We then compare these model results across 

data sets and observed dosing-dependence.  

We first analyzed response of muscle tissue to acute and chronic MPL administration 

independently through the application of the pathway activity analysis previously published 

(Acevedo, Berthel et al.). The first step of this analysis sorts temporal expression data into 

functional pathways harvested from KEGG (Kanehisa and Goto 2000, Kanehisa, Furumichi et al. 

2016, Kanehisa, Sato et al. 2018), using only rat-relevant and muscle-relevant pathways. These 

pathway gene sets were analyzed for fractional coverage (𝑓𝑐). Pathways that exhibited significant 

fractional coverage (𝑓𝑐 p-value ≤ 0.05) were retained for subsequent pathway analysis. Of the 

179 pathways considered, fractional coverage analysis yielded 51 pathways in the acute dataset 

and 61 in the chronic dataset selected for subsequent pathway activity analysis. 

Pathway activity analysis identifies pathways that are significantly active in response to MPL 

administration in the liver. This step hypothesizes that a pathway is a high-dimensional system 

that we can decompose in order to identify significant trends. With singular value decomposition 

(SVD), we decompose the pathway into constituent singular values and singular vectors. The 

singular vectors are linear combinations of the original transcript expression over time. Thus, they 

capture trends in the activity of the pathway and we define these Pathway Activity Level (PAL) 
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profiles. The fraction of variability of each PAL profile is calculated from the singular values and 

is defined as the fraction of pathway activity (𝑓𝑝). Alternatively, a PAL profile can be thought of 

as the expression of a metagene over time, where the metagene is a representation of common 

trends in gene expression within a pathway.  

Pathways exhibiting at least one significant PAL profile (𝑓𝑝 p-value ≤ 0.05) are considered 

significant, a threshold step which yields 49 and 61 significant pathways from the acute and 

chronic data sets, respectfully ( 
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ST 5 and ST 6). The discrepancy in number of significant pathways between data sets is likely 

due to the difference in size of the chronic data set compared to the acute. The chronic study was 

completed later than the acute and thus had access to the Affymetrix microarray platform 230A 

which is considerably larger than the U34a microarray platform used to generate the acute data 

set. However, because both data sets investigate the influence of MPL in muscle tissue, a 

consistent subset of significant pathways is reasonably expected to emerge. Our investigation 

yields a subset of 29 significant pathways common to both acute and chronic data sets (Table 6) 

including pathways relevant to amino acid metabolism, lipid metabolism, signal transduction, 

endocrine regulation, regulation of cellular functions including growth, death, motility, transport, 

protein degradation, and catabolism. 

Decomposition of these pathways yielded emergent activity dynamics consistent with established 

mechanisms of regulation. More specifically, previously established mechanisms of CS 

regulation including events due to DRN binding to GRE elements or transcription mediated by an 

intermediate BS (Sun, McKay et al. , Ramakrishnan, DuBois et al. , Ramakrishnan, DuBois et al. 

, Hazra, Pyszczynski et al. , Yao, Hoffman et al.). Given that the animals in these experiments 

were adrenalectomized, acute MPL administration would activate what was once directly or 

indirectly regulated by cortisol. In the case of acute MPL administration, these effects would be 

transient while chronic administration yields more persistent effects. Though the consistency of 

the activity profiles of the original pathway gene set is interesting, it is important to consider the 

influence of inherent variability of the original transcript expression data when characterizing a 

pathway’s response. To this end, the aforementioned bootstrapping technique is applied to 

replicate the experiments in silico and so predict alternative response profiles for each pathway. 

Each significant pathway was thus bootstrapped, and significant PAL profiles were determined 

from each of 1000 bootstrapped gene sets for each pathway. We observed strikingly consistent 
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response profiles across pathways and within the same dosing regimen and that chronic 

administration yielded more complex pathway dynamics for most pathways than did acute 

administration. 

The issue of reconciling data set captured within different time horizons, dosing regimens, 

microarray platforms, and tissues is overcome by analyzing the PAL profiles in the space of 

regulatory models. Based on previous analyses of MPL response in muscle, we hypothesize that 

the PAL response profiles observed can be captured with previously established regulatory 

mechanisms (Sun, McKay et al. , Ramakrishnan, DuBois et al. , Ramakrishnan, DuBois et al. , 

Hazra, Pyszczynski et al. , Yao, Hoffman et al.). A two-compartment PK model describes the 

administration of CS intravenously and transfer from plasma to muscle tissue compartment for 

both acute and chronic dosing. It is important to note that our analysis indicates that the acute 

response initiates pathway dynamics consistent with the nature of the acute dosing: as MPL half-

life of 0.33 hours in ADX rats with a total drug clearance observed in ADX rats by 4.6 hours 

(Hazra, Pyszczynski et al. 2007). The PD is described by previously proposed relationships 

between drug, receptor, and the drug-receptor complex transferring to the nucleus initiating 

transcription activity. This traditional PD model is extended to characterize activity at the 

pathway level by the hypothesized monophasic and biphasic regulation. Though PAL profiles 

resemble gene expression profiles, the features in these profiles do not correspond necessarily to 

up or down gene expression (Acevedo, Berthel et al.). A consequence of the linear algebra of the 

SVD technique is loss of sign but preservation of relative magnitude in a PAL profile; a PAL 

profile will predict a change from up- to down- regulation in a pathway’s activity but will report 

this as either an up/down profile or a down/up profile. For example, a PAL that reports a peak 

around 5 h in its profile is indicating that its reference pathway either has an upregulation or 

downregulation transcription event at 5 h. The PAL does not communicate which. A pathway 
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gene set will resolve to a PAL that captures the timing and relative magnitude of activity events 

which is the information critical to our analysis as these features determine whether a monophasic 

of biphasic model is proposed. 

Analysis of the response dynamics of the common pathways yielded definite dosing-dependence 

in muscle tissue with increased complexity in the case of chronic administration. We define the 

classes of pathway response by response to acute administration first.  

Class 1: Simple acute response 

Class 1 consists of pathways that exhibit exclusively monophasic or biphasic response to acute 

MPL administration. These pathways exhibit strikingly consistent patterns of activity and 

corresponding times for events due to DRN effect. All 23 pathways that yield monophasic 

behavior in response to acute MPL exhibit a single event between 5 and 15 h due to DRN action 

followed by a return to baseline (Arginine and proline metabolism, Glutathione metabolism, 

Apoptosis, Cellular senescence, Ferroptosis, Regulation of actin cytoskeleton, Prolactin 

signaling pathway, GnRH signaling pathway, Glucagon signaling pathway, Insulin 

signaling pathway, Oxytocin signaling pathway, PPAR signaling pathway, Thyroid 

hormone signaling pathway, Fatty acid metabolism, Fox-O signaling pathway, cGMP-PKG 

signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling 

pathway, AMPK signaling pathway, ErbB signaling pathway, Peroxisome, Autophagy).  

Analysis of the three pathways that exhibit biphasic response to acute MPL administration 

(Adipocytokine signaling pathway, MAPK signaling pathway, VEGF signaling pathway) 

reveals that action due to DRN initiates a peak at approximately 5 h for each, an event time which 

corresponds to the DRN peak in the acute monophasic pathway response. This is where the 

correspondence ends, however. The settling time of the acute monophasic profiles is much earlier 
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than that of biphasic profiles, ranging from 20 to 40 h. This corresponds to neither the range of 

event times for the event due to BS action (20 to 40 h) or the return to steady state time range (50 

to 60 h) for acute biphasic pathways.  

 

Figure 9 AMPK signaling pathway response to (A) acute and (B) chronic MPL administration. Example of 

Class 1 pathway which yields monophasic response to acute MPL administration but varies in its response 

to chronic MPL administration. The AMPK pathway yields biphasic response to chronic MPL 

administration indicating an increased complexity across dosing studies. This format of biphasic response 

indicates the development of tolerance to MPL within this pathway of the muscle tissue because the system 

returns to baseline by the end of the experiment despite continued administration of MPL.  

In response to chronic administration, all pathways in this class exhibited, at minimum, a biphasic 

response. For some pathways (Ferroptosis, Proteasome, Fatty acid degradation, Thyroid 

hormone signaling pathway, Fatty acid metabolism, AMPK signaling pathway, ErbB 

signaling pathway, Autophagy), only one format of biphasic behavior was observed 

exemplified by the AMPK signaling pathway (Figure 9), an energy metabolism regulator and is 

responsible for inhibiting energy-consuming pathways (anabolic functions) and activating ATP-

generating catabolic pathways (KEGG 2019). Activation of this pathway is unsurprising because 

it is previously observed that corticosteroid treatment causes mitochondrial dysfunction in muscle 

cells, which induces a state of ATP deprivation and subsequent activation of AMPK signaling to 



78 

 

 

 

counteract this, ultimately leading to muscle atrophy (Liu, Peng et al. 2015). In response to 

chronic MPL, the AMPK pathway yields biphasic response - an increased complexity only 

revealed by experimenting with multiple dosing regimens. This format of biphasic response 

indicates the development of tolerance to MPL because despite continuous administration of 

MPL over the course of the experiment, the pathway begins to return to baseline after 100 h. The 

model that captures this response is biphasic and the demand placed on the system is such that 

intermediate biosignal must be continuously generated in order to drive the PAL back to baseline, 

a presumable energy drain on the pathway and tissue (Figure 10C).  

Chronic MPL administration yielded another format of biphasic response for other pathways 

(Prolactin, GnRH, and Fox-O signaling pathways). The Fox-O signaling pathway consists of a 

series of transcription factors that regulate multiple events within the cell including “apoptosis, 

cell-cycle control, glucose metabolism, oxidative stress resistance, and longevity (KEGG 2019).” 

Fox-O transcription factors including Foxo1 and Foxo3a are upregulated in response to the 

corticosteroid dexamethasone and are key regulators of gene expression leading to muscle 

atrophy (Waddell, Baehr et al. 2008, Zhao, Qin et al. 2009, Schakman, Kalista et al. 2013). In 

response to chronic MPL administration, the Fox-O pathway (Figure 11) yields two formats of 

biphasic response revealing an increased complexity across dosing studies as well as an internal 

complexity to the pathway. Subgroups of genes within this pathway respond differently to the 

same chronic dosing regimen. One subgroup of genes (Figure 11B) indicates the development of 

tolerance to MPL because the system returns to baseline by the end of the experiment despite 

continued administration of MPL. An additional subgroup of genes yields another format of 

biphasic response (Figure 11C) which settles to a new steady state far from its original baseline.  
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Figure 10 Expression of intermediate biosignal in different response cases. (A) BS signaling in case of 

acute biphasic response (generated from the Fatty acid degradation pathway). (B) Chronic biphasic 

response characterized by two opposite PAL peaks. (C) Chronic biphasic response characterized by 

tolerance. (B and C are generated from the Fox-O signaling pathway.) 
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Figure 11 Fox-O signaling pathway response to (A) acute and (B, C) chronic MPL administration. 

Example of Class 1 pathway which yields monophasic response to acute MPL administration but varies in 

its response to chronic MPL administration. The Fox-O pathway yields two formats of biphasic response to 

chronic MPL administration indicating an increased complexity across dosing studies as well as an 

internal complexity, i.e. subgroups of components within the pathway subject to different regulatory 

structures. The response of (B) indicates the development of tolerance to MPL because the system returns 

to baseline by the end of the experiment despite continued administration of MPL. This is as opposed to the 

response format in (C) which settles to a new steady state far from baseline. 
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Figure 12 PPAR signaling pathway response to (A) acute and (B, C) chronic MPL administration. Example 

of Class 1 pathway which yields monophasic response to acute MPL administration but varies in its 

response to chronic MPL administration. The PPAR pathway yields biphasic (B) and monophasic (C) 

response formats to chronic MPL administration indicating an increased complexity across dosing studies 

as well as an internal complexity, i.e. subgroups of components within the pathway subject to different 

regulatory structures. The response of (B) indicates the development of tolerance to MPL because the 

system returns to baseline by the end of the experiment despite continued administration of MPL. This is as 

opposed to the response format in (C) which settles to a new steady state far from baseline. 

The remaining pathways within Class 1 also yield two modes of response to chronic MPL 

administration indicating similar complexity within the pathway: a combination of the biphasic 

tolerance response and a monophasic response, exemplified by the PPAR signaling pathway 

(Figure 12). This pathway helps to regulate lipid metabolism in liver and skeletal muscle (Burri, 

Thoresen et al. , KEGG 2019) and is observed to cause muscle atrophy in response to 
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corticosteroid dexamethasone treatment via the mechanism of PPAR upregulation of Fox-O 

transcription factor expression in muscle (Castillero, Alamdari et al. 2013). These authors further 

established that interruption of PPAR signaling helps ameliorate loss of muscle in cases of 

glucocorticoid- and sepsis-induced muscle atrophy. Much like the Fox-O pathway example, the 

PPAR pathway demonstrates two modes of response to chronic administration, one in which the 

system seeks to return to baseline thus exhibiting tolerance of MPL administration over time 

(Figure 12B) and another in which the system remains deviated from baseline (Figure 12C). 

Class 2: Complex acute response 

Class 2 consists of pathways that exhibit both monophasic or biphasic responses to acute MPL 

administration indicating that subgroups of genes within these pathways respond to separate 

regulatory mechanisms in response to acute MPL administration. These pathways also exhibit 

consistent patterns. All acute monophasic response modes are characterized by a peak from 5 to 

10 h (due to DRN effects) and a return to baseline by 20 to 30 h. Within the biphasic response 

profiles, the initial peak due to DRN effect is also observed at approximately 5 h. The biphasic 

response profiles settle slightly later, however, by 40 to 50 h. All pathways in this class exhibit at 

least a biphasic response profile that captures the tolerance behavior previously described. The 

Adipocytokine signaling pathway exhibits only this biphasic tolerance response whereas the 

other two pathways in this class (MAPK and VEGF signaling pathway) exhibit both 

monophasic and tolerance behavior identical to that exemplified by the PPAR signaling pathway 

of Class 1. Model results for all pathways in Table 6 are included as Supplementary Figures. 
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3.3 Comparison of Response to Acute and Chronic MPL Dosing Across Multiple 

Tissues 

We have previously analyzed the dosing-dependent consequences of MPL within liver pathways 

(Acevedo, Berthel et al.). We anticipate this tissue-specificity extends to analyses at the pathway 

level based on previous analysis of corticosteroid influence in multiple tissues, the ubiquity of 

glucocorticoid responsiveness observed in multiple tissues, and the tissue-specific deteriorative 

effects of corticosteroid treatment (Ballard, Baxter et al. 1974, Sun, DuBois et al. , Sun, McKay et 

al. , Yao, Hoffman et al. , Nguyen, Almon et al. 2014). To compare liver and muscle response, 

the sets of significant pathways in muscle tissue in response to acute (49 significant pathways) 

and chronic (61 significant pathways) MPL administration were compared with the list of 

significant pathways reported in liver ( 
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ST 5 and ST 6) (Acevedo, Berthel et al.).  

Comparison of significant pathways in response to acute MPL administration between muscle 

and liver yielded significant pathways describing: regulation of essential organelles (Peroxisome 

and Proteasome pathways); lipid metabolism (Fatty acid degradation, Fatty acid 

metabolism, and PPAR signaling pathway), and amino acid metabolism (Glutathione 

metabolism). Comparison of significant pathway results in response to chronic MPL 

administration yielded significant pathways capturing: carbohydrate metabolism (Glyoxylate and 

dicarboxylate metabolism, Propanoate metabolism, Citrate cycle, Pyruvate metabolism, 

Oxidative phosphorylation, Glycolysis/Gluconeogenesis, Carbon metabolism); amino acid 

metabolism (Tryptophan metabolism, Valine, leucine and isoleucine degradation, 

Glutathione metabolism, Arginine biosynthesis, Biosynthesis of amino acids, Cysteine and 

methionine metabolism); regulation of essential organelles (Peroxisome, Proteasome, Protein 

processing in endoplasmic reticulum); and lipid metabolism (Fatty acid degradation, Fatty 

acid metabolism, PPAR signaling pathway). The greater number of significant pathways in the 

chronic data set, as compared to the acute data set, is likely due to its larger size (larger 

microarray platform).  

3.3.1 Comparison of Acute Response across Liver and Muscle 

In response to acute MPL administration, there is an overwhelming number of Case 1 (simple 

acute) pathway responses in muscle tissue. The list of significant pathways from the acute muscle 

data was compared against the significant list of 24 pathways found in liver (Acevedo, Berthel et 

al.), revealing multiple pathways and dynamics help in common between the groups. Seven 

pathways emerged including Peroxisome, Fatty acid degradation, Fatty acid metabolism, 

PPAR signaling, Glutathione metabolism, Proteasome, and Metabolism of xenobiotics by 

cytochrome P450. Some pathways exhibited the same dynamic response in liver and muscle 
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(Peroxisome, Fatty acid metabolism, PPAR signaling, and Glutathione metabolism) (Figure 

13A). Although captured by the same regulatory model, these pathways do not correspond in 

their DRN event peak times. Liver exhibits DRN peak event times at approximately 5 h for each 

pathway in Figure 13A, which is slightly ahead of the observed peaks in muscle which occur 

nearer 10 h. The closest correspondence in peak time within this example set of pathways is the 

peroxisome proliferator-activated receptor (PPAR) signaling pathway. In this pathway, we 

observe that muscle tissue exhibits its peak near 5 h, however liver peaks slightly before the peak 

in muscle. This difference of a few hours is not marginal when we consider the 4.6 h total drug 

clearance time of MPL. Comparison across tissues in the context of these pathways reveals that 

MPL administration induces an activity response slightly before muscle tissue, when predicting 

drug response with our established models. It may be that this time difference is marginal. 

However, this observed lag in response may also speak to greater sensitivity to MPL in liver 

compared to muscle.  

Comparison across tissues in the acute reveals that some pathways exhibit a monophasic response 

in liver but a biphasic response in muscle (Fatty acid degradation and Proteasome) (Figure 

13B). Although the DRN peak times align for these pathways, responses in muscle indicate a 

secondary activity event in response to the action of an intermediate biosignal. Both the Fatty acid 

degradation pathway and the pathway that regulates Proteasome subunit expression are sensitive 

to corticosteroid action within the liver and muscle tissues, contributing to the development of 

metabolic syndrome, muscle wasting, among other harmful consequences of corticosteroids (Du, 

Mitch et al. 2000, Short, Nygren et al. 2004, Macfarlane, Forbes et al. 2008), but clearly exhibit 

difference expression dynamics in different tissues.  
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Figure 13 Comparison of acute MPL administration in liver and muscle. (A) Pathways exhibiting 

monophasic response in liver and muscle. (B) Pathways exhibiting monophasic response in liver and 

biphasic in muscle. 

3.3.2 Comparison of Chronic Response across Liver and Muscle 

In response to chronic MPL administration, liver and muscle tissue share 19 significant pathways, 

many of which exhibit different response profiles to chronic MPL administration discussed in 

detail below. The most striking observation is that the tolerance response observed in muscle 

tissue is rarely found in the liver (see exceptions in the discussion below of Biosynthesis of amino 

acid pathway, Figure 14A, and Tryptophan metabolism, Figure 15B). This suggests that in 

response to chronic MPL administration, muscle tissue is capable of making functional 
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adjustments in order to return to its original set point, whereas liver remains modified and settles 

to a new set point in most cases. 

 

Figure 14 Comparison of response to chronic MPL administration in liver and muscle. (A) Pathways 

exhibiting both monophasic and biphasic response. (B) Pathways exhibiting either monophasic or biphasic 

response. 

Figure 14A presented pathways that exhibit a complex response to chronic MPL administration in 

both liver and muscle (Peroxisome, PPAR signaling pathway, Biosynthesis of amino acids, 

Cysteine and methionine metabolism, Glycolysis / Gluconeogenesis, Carbon metabolism, 

and Protein processing in endoplasmic reticulum). Within the PPAR signaling pathway, we 

observe a chronic monophasic response similar to the chronic monophasic response observed in 

liver. We also observe biphasic responses in both tissues. In muscle, this biphasic response 
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manifests as the tolerance behavior characteristic of muscle tissue, whereas the biphasic response 

in liver is characterized by two peaks in opposite directions corresponding to an initial event due 

to DRN and subsequent action due to BS. Relating to the activity of the biosynthesis of amino 

acid pathway, glucocorticoids (and corticosteroids by extension) are observed to increase protein 

degradation and suppress protein synthesis in muscle (Kuo, Harris et al. 2013). Interestingly, the 

biosynthesis of amino acid is one of the few liver response pathways that exhibits a biphasic 

response that appear to return to its initial set point. This may indicate that the liver exhibits some 

tolerance as well according to the model predictions. However, the error observed within the 

biphasic response of liver in this pathway may also contradict this possibility. 

Some pathways in liver and muscle exhibit a singular response to chronic MPL administration in 

both tissues, either monophasic or biphasic response (Propanoate metabolism, Proteasome, 

Citrate cycle, Arginine biosynthesis, and Valine, leucine, and isoleucine degradation) (Figure 

14B). The citrate cycle pathway is essential to the oxidation of carbohydrates and fatty acids, a 

function of liver and muscle tissue (Koves, Ussher et al. 2008, Rui 2011). The citrate cycle in 

muscle exhibits a chronic monophasic response, settling to a new baseline in response to chronic 

MPL administration. The liver tissue exhibits a biphasic response with opposing peak events due 

to the action of DRN and BS. It is important to note that the liver response to chronic MPL 

administration predicts that the model will settle to a new set point, unlike in the Biosynthesis of 

amino acid pathway. The arginine biosynthesis pathway indicates additional contrast between 

tissues. Tolerance response is observed in muscle tissue, while the liver response is captured by a 

monophasic model. Valine, leucine, and isoleucine degradation pathways captures the 

degradation of these amino acids for the purposes of protein metabolism, reported in muscle and 

liver (Nair, Schwartz et al. 1992, Campos-Ferraz, Bozza et al. 2013) (Holeček 2002). This 

pathway exhibits a biphasic tolerance response in muscle and a biphasic (opposite DRN and BS 
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events) response in liver. The response in muscle drives toward its original activity set point, 

however this is not observed in the liver response. These three pathways exemplify another 

striking difference between liver and muscle tissue; although both liver and muscle require the 

functions of these two pathways, they regulate their activity with entirely different mechanisms 

and thus experience different responses to chronic MPL administration. 

Pathways that exhibit a complex response to chronic MPL administration in one tissue but a 

singular response in another tissue are presented in Figure 15, and provide examples of changes 

in drug response complexity as we move across tissues. These include pathways with a singular 

response in liver and a complex response in muscle (Fatty acid degradation and Fatty acid 

metabolism) (Figure 15A) and pathways that exhibit a complex response in liver and a singular 

response in muscle (Glyoxylate and dicarboxylate metabolism, Tryptophan metabolism, 

Glutathione metabolism, Pyruvate metabolism, and Oxidative phosphorylation) (Figure 15B). 

The oxidative phosphorylation pathway describes the coupling of respiration and generation of 

ATP along the mitochondrial matrix, a function which is observed to be modified by 

glucocorticoids (Roussel, Dumas et al. 2004). In response to chronic MPL administration, this 

pathway exhibits complexity in muscle but a singular response in liver. Similarly, tryptophan 

metabolism pathway exhibits complexity in muscle but singularly biphasic response in liver. It is 

interesting that the biphasic response observed in liver does appear to settle near to its original set 

point. We may then include tryptophan alongside biosynthesis of amino acids as examples in 

which the liver does appear to return to its initial set point while MPL is continuously 

administered, i.e. possible tolerance behavior. Fatty acid degradation (Short, Nygren et al. 2004, 

Macfarlane, Forbes et al. 2008) also exhibits the tolerance behavior in muscle, but exhibits 

complexity in liver which yields two distinct regulatory structures, both of which settle to new set 

points.  
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Comparison of muscle and liver response to acute and chronic MPL administration indicates that 

few pathways exhibit consistent responses across tissues. Even when pathway responses can be 

described by the same regulatory mechanism, the peak events do not necessarily align, as with the 

comparison of acute response profiles across liver and muscle. Similarly, even when a biphasic 

model captures response to chronic MPL administration in both liver and muscle, muscle 

frequently exhibits a tolerance behavior in which pathway activity returns to the initial set point. 

This tolerance behavior is arguably observed in some liver pathways (Biosynthesis of amino 

acids and Tryptophan metabolism chronic responses), but not at the level of consistency observed 

in muscle tissue. The differences in dynamics observed across tissues within the same pathways 

follows the expectation that corticosteroids have tissue-specific consequences. Our analysis 

expands on this expectation by establishing temporal dynamics and characterizing these in the 

context of established regulatory mechanisms.  

Such characterization of drug response from the perspective of a functional groups or pathways 

enables us to capture the unavoidably multifactorial consequences of drug administration, a 

systems pharmacology perspective essential to translational research and drug development. 

Practical implementation of this knowledge relies on translation of this information from 

preclinical understanding to selection of potential drug targets. For example, in order to 

implement a theoretical action such as manipulating the PPAR signaling pathway to disrupt 

muscle atrophy (Burri, Thoresen et al. , Castillero, Alamdari et al.), the functional response of the 

PPAR signaling pathway and connected pathways, in addition to potential drug targets, can be 

identified with this framework. The nature of singular value decomposition is such that PAL 

profiles are associated with each gene in the gene set with varying magnitude. In the 

decomposition of a pathway gene set by singular value decomposition, PAL correspond to each 

gene in the gene set by varying magnitudes, previously identified as the translational matrix U 
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(Acevedo, Berthel et al.). Via applying the meta-analysis technique that is the pathway-based 

analysis framework, we understand the consequences of the drug in the context of the 

physiological systems. We can then isolate subgroups within the network that correspond to 

hypothetical regulatory mechanisms (have large U coefficients corresponding to a PAL), then 

target these with further preclinical and clinical studies.  

In summary, this investigation uses a pathway-based meta-analysis technique to compare the 

physiological dynamics of muscle tissue in response to acute and chronic MPL administration. As 

with our previous analysis in liver (Acevedo, Berthel et al.), we seek to enhance a conventional 

gene-centric approach and characterize a complex multi-genomic drug response in the context of 

functional groups that can reflect that complexity, i.e. functional pathways. We analyze data sets 

capturing the response of muscle tissue to acute and chronic dosing regimens of MPL and 

identify significant pathways representative multiple pathway families. All pathways exhibit a 

dosing dependence, moving from an acute response characterized by consistent and transient 

activities captured by monophasic and biphasic models, to a more complex chronic response. 

Interestingly, all significant pathways exhibited at least a tolerance biphasic response format 

indicating the tendency of muscle tissue to drive to its original set point. This analysis compared 

responses across liver and muscle, extending the discussion of activity to tissue-dependence. 

Comparison with liver revealed that tolerance behavior is pervasive in muscle tissue, though 

some pathways within liver present a biphasic response that settles near the original set point 

echoing tolerance behavior. Through characterization of MPL influence in muscle and subsequent 

comparison with liver, we endeavor to characterize the differences in functional response of the 

same pathway to different dosing regimens and across multiple tissues. It is evident that for a 

corticosteroid therapy, the differences in functional behavior of CS-sensitive tissues must be 
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considered as they exhibit consistently different mechanisms of regulation and response dynamics 

across the same pathways. 
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Figure 15 Comparison of response to chronic MPL administration in liver and muscle. (A) Pathways that 

exhibit both biphasic (tolerance) and monophasic response in muscle but either monophasic or biphasic in 

liver. (B) A pathway exhibiting biphasic (tolerance) response in muscle but exhibits both biphasic and 

monophasic response in liver. 
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Chapter 4: Endogenous Circadian Activity Across Multiple Tissues in Rat and 

Mouse 

4.1 Introduction 

The biological time-keeping machinery which maintains 24 h oscillations in cellular and 

physiological processes in mammals is organized as a hierarchical, interconnected, network of 

clocks (Albrecht 2012). The master, or central, clock in the suprachiasmatic nuclei (SCN) is 

mainly linked to light/dark cycle, and synchronizes a network of peripheral clocks, distributed 

across tissues, by controlling timing of feeding and activity cycles (Cassone 1990, Cardone, 

Hirayama et al. 2005). Homeostasis is maintained through rhythmic hormonal and metabolic 

signals that establish the phase relationships among the various clocks  (Skarke, Lahens et al. 

2017). The circadian rhythms coordinate the interactions between endocrine, immune, autonomic, 

and central nervous systems (Cutolo and Masi 2005) so that these are regulated in a precise 

temporal manner by the central and peripheral circadian clocks (Buijs, van Eden et al. 2003, 

Dibner, Schibler et al. 2010), thus coordinating the time-of-day variation of important 

physiological mediators playing a major role in immune (Lee and Edery 2008, Paladino, Leone et 

al. 2010, Silver, Arjona et al. 2012) and metabolic functions (Feillet, Albrecht et al. 2006) and 

conferring adaptive advantages (Edery 2000).  

Recent genome-wide studies have confirmed that a substantial fraction of the mammalian genes 

is expressed with 24-hour periodicity (Zhang, Lahens et al. 2014, Mavroudis, DuBois et al. 2018, 

Mure, Le et al. 2018). Additional studies have indicated that circadian regulation organizes the 

metabolic fingerprint as well (Dyar, Lutter et al. 2018). Interestingly, the strong connections 

between circadian rhythms, and their disruption, in health and disease have not only been 

recognized and established (Bishehsari, Levi et al. 2016, Kaczmarek, Thompson et al. 2017, 
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Doherty 2018, Khaper, Bailey et al. 2018, Varcoe 2018, Zaki, Spence et al. 2018) but also the 

idea of pharmacologically, and non-pharmacologically, targeting the circadian rhythms directly is 

gaining acceptance (Fang, Guo et al. 2015, Cunningham, Ahern et al. 2016, Nakamura, Nakano et 

al. 2016). 

In view of these recent findings, genome-wide studies (Zhang, Lahens et al. 2014, Mavroudis, 

DuBois et al. 2018, Mure, Le et al. 2018) have a profound impact in that they enable us to 

decipher the details of circadian regulation at a very fundamental level. As such, the 

aforementioned studies have established a number of key conclusions: (1) periodicity in gene 

expression is widespread across the host’s genome; (2) rhythmic gene expression appears to have 

strong tissue-specific characteristics; and (3) despite tissue-specific rhythmic patterns, the “core 

clock machinery” - a small group of mutually regulated genes/transcription factors maintaining 

periodicity at the cell level (Buhr and Takahashi 2013) – is coherently expressed across tissues. 

The latter is very interesting, indicating that despite the fact the underlying time-keeping 

mechanism is consistent across tissues, its effects are manifested in a tissue-specific manner.  

Recognizing not only the importance of genome-wide studies, but also the wealth of information 

they provide, in this work we establish a computational framework to enable the characterization 

of circadian dynamics at the level of “functional groupings of genes” and do so within two 

organisms essential to preclinical research, rat and mouse (Consortium 2002, Consortium 2004, 

Bryda 2013, Denayer, Stöhr et al. 2014, Ellenbroek and Youn 2016). Without loss of generality, 

the functional groupings in our study are based on KEGG pathways (Kanehisa and Goto 2000, 

Kanehisa and Goto , Aoki and Kanehisa , Kanehisa, Sato et al.). In other words, we aim to 

identify how individual genes come together to generate rhythmic patterns in the context of 

signaling and metabolic pathways (or any other networked functional grouping of interest), 

capitalizing on our earlier work on pathway activity analyses (Ovacik, Sukumaran et al. 2010, 
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Euling, White et al. 2011, Euling, White et al. 2013, Acevedo, Berthel et al. , Acevedo, DuBois et 

al.). By mapping genome-wide transcriptional data onto pathways, we characterize the tissue-

specific circadian dynamics at the pathway level to assess how individual genes come together. 

Our analysis focuses on four rat and mouse tissues (adipose, liver, lung and muscle) recently 

analyzed in (Zhang, Lahens et al. , Mavroudis, DuBois et al. 2018). Interestingly, we identify 

alternative tissue-specific and organism-specific cascading and non-cascading circadian behavior 

within immune and signaling, metabolic, and cell regulatory pathways. A genome-wide pathway-

centric analysis enables us to develop a more complete picture on how the observed circadian 

variation at the individual gene level, orchestrates functional responses at the pathway level. 

Finally, such “meta-data” analysis that the pathway approach offers enables the rational 

integration and comparison across organisms, platforms and experimental designs since we 

evaluate emergent dynamics as opposed to comparing individual elements.   

4.2. Approach 

Toward the analysis of the endogenous circadian expression within multiple tissues across rat and 

mouse, we applied the pathway-based analysis approach presented in Chapter 2 (Acevedo, 

Berthel et al. , Acevedo, DuBois et al.). However, this data is not an analysis of drug response, 

thus the corticosteroid modeling component is not used in this part of the analysis. This 

investigation remains ongoing and modeling may be incorporated in investigations related to this 

work in the thesis work of future graduate students in our lab. 

4.2.1 Animal Model and Experimental Data 

The data capturing the endogenous circadian expression of liver, muscle, adipose, and lung within 

rat is described in great detail in (Mavroudis, DuBois et al. 2018). In brief, normal male Wistar 

rats acclimatized to a constant 22˚C environment, were equipped with a 12:12 h light-dark cycle 

with free access to standard rat chow and water. The animals were sacrificed at 9 timepoints: 
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0.25, 1, 2, 4, 6, 8, 10, 11, and 11.75 h after lights on (ZT=0 at 8 am) for the light period, and 9 

sample times at 12.25, 13, 14, 16, 18, 20, 22, 23, and 23.75 h after lights off (ZT=12 at 8 pm) for 

the dark period. Livers, gastrocnemius muscles, abdominal fat pads, and lungs were excised. 

mRNA expression data from the tissue samples were obtained using Affymetrix Rat Expression 

Set 230A for liver and muscle tissue, and Affymetrix Rat Genome 230 2.0 for adipose and lung 

tissue (Affymetrix, Santa Clara, CA). Datasets were submitted to Gene Expression Omnibus 

(GEO) (GSE8988 for liver, GSE8989 for muscle, GSE20635 for adipose, and GSE25612 for 

lung), and were previously published (Almon, Yang et al. 2008, Almon, Yang et al. 2008, 

Sukumaran, Xue et al. 2010, Sukumaran, Jusko et al. 2011, Mavroudis, DuBois et al. 2018, 

Mavroudis, DuBois et al. 2018). 

The data capturing the endogenous expression of liver, muscle, adipose, and lung within mouse is 

described in (Zhang, Lahens et al. 2014). In brief, C57/BL6 mice were entrained to a 12:12 h 

light-dark schedule then released in constant darkness. Beginning at CT18, three mice were 

sacrificed every 2 h for 48 h (24 samples over 2 days). Many organs were harvested from each 

mouse for analysis in previous publications (Zhang, Lahens et al. 2014). Our analysis seeks to 

compare activity across a consistent set of organs common to available rat and mouse analyses, so 

we use the data sets specific to liver, muscle, lung, and brown adipose collected by (Zhang, 

Lahens et al. 2014).mRNA expression was quantified using  Affymetrix MoGene 1.0 ST arrays 

and submitted to the Gene Expression Omnibus (GEO) (GSE54652 for all tissues) (Zhang, 

Lahens et al. 2014). 

4.2.2 Application of Pathway-based Analysis Framework 

To characterize endogenous circadian expression across multiple organisms and tissues, we 

applied our pathway activity analysis approach described in depth in Chapter 2 (Acevedo, Berthel 
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et al. , Acevedo, DuBois et al. 2019 (submitted)), but did not include the corticosteroid modeling 

component as it was not relevant to analyzing drug-free tissue. The most recent version of the 

framework was applied for this analysis (Chapter 2)(Acevedo, DuBois et al. 2019 (submitted)) 

and details specific to this analysis are listed here: 

Data Preprocessing 

Active genes were identified using differential expression analysis accomplished with the 

software Extraction and Analysis of Gene Expression (EDGE) (Leek, Monsen et al. 2006). 

Differentially expressed genes are identified by p-value. Differentially expressed profiles are then 

z-scored with respect to the individual profile mean and standard deviation. Replicate profiles are 

then averaged together, yielding averaged z-scored profiles. 

Mapping Data onto Pathways 

As of June 2019, the KEGG database contains approximately 300 pathways relevant to rat and/or 

mouse tissues and used for our analysis. Only pathways relevant to each tissue (liver, lung, 

muscle, adipose) are used in the independent analysis of each. However, many pathways are 

removed for each pathway including (ex. pathways relevant to the digestive, excretory, 

circulatory systems), disease pathways (ex. Neurodegenerative disease, cancers, and infectious 

disease pathways), or redundant pathways (KEGG’s pathway entitled Metabolic pathways, 

rno:01100, is the set of all other metabolism related pathways). This elimination step left about 

178 pathways to consider in this analysis.  

Affymetrix probe identifiers are translated into their NCBI Entrez IDs and Gene Symbols using 

the Bioconductor packages for each Affymetrix Platform: Package rae230a.db containing the 

annotation data for Affymetrix Rat Expression Set 230A used with the rat liver and muscle tissue; 

Package rat2302.db containing the annotation data for Affymetrix Rat Genome 230 2.0 Array 
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annotation data used with the rat adipose and lung tissue; Package mogene10sttranscriptcluster.db 

containing the annotation data for Affymetrix MoGene 1.0 ST Array used for all tissues in 

mouse. 

Some pathways with low fractional occupancy yield inconclusive p-values as an artifact of the 

Fisher’s Exact Test and were eliminated from the analysis, discussed further in ST 2. 

Pathway Activity Analysis 

Active genes are identified using differential expression analysis with the software Extraction and 

Analysis of Gene Expression (EDGE) (Leek, Monsen et al. 2006). Differentially expressed genes 

are identified by p-value, 𝑝 ≤ 0.05. 

All pathways yielding fractional occupancy 𝑓𝑐 p-value  ≤ 0.05 with at least one significant PAL 

profile 𝑓𝑝 p-value ≤ 0.05 are defined as significant. 

4.3 Analysis of Endogenous Circadian Activity in Rat  

4.3.1 Results  

A computational framework was developed to enable the characterization of genome-wide, multi-

tissue circadian dynamics at the level of “functional groupings of genes” defined in the context of 

signaling, cellular/genetic processing and metabolic pathways. Our aim is to identify how 

individual genes come together to generate orchestrated rhythmic patterns and how these may 

vary within and across tissues.  We focus our analysis on four tissues in rat (adipose, liver, lung, 

and muscle). Interestingly, we identify alternative tissue-specific cascading and non-cascading 

circadian behavior within immune and signaling, metabolic, and cell regulatory pathways. A 

genome-wide pathway-centric analysis enables us to develop a comprehensive picture on how the 

observed circadian variation at the individual gene level, orchestrates functional responses at the 

pathway level. Such “meta-data” analysis that the pathway approach enables the rational 
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integration and comparison across platforms and/or experimental designs since we evaluate 

emergent dynamics as opposed to comparing individual elements.  One of our key findings is that 

when considering the dynamics at the pathway level, a complex behavior emerges, as it is not 

likely that a pathway will exhibit a pattern of activity indicative of “rush hours” as occurs with 

individual gene expression patterns. Rather tissues tend to coordinate activity in a way that 

optimizes tissue-specific activity depending of each tissue’s broader role in homeostasis.  

The mapping of rat gene expression data onto pathways reveals interesting patterns of activity. 

Characteristics examples are presented in Figure 16, Figure 17, and Figure 18 for TCA, mTOR 

and glycolysis/gluconeogenesis pathways in liver. Unlike earlier studies which appear to 

emphasize the clustering of gene expression data around specific “rush hours” (Zhang, Lahens et 

al. 2014, Mavroudis, DuBois et al. 2018), pathways manifested dynamics indicating a flow of 

activity with individual genes’ phases that span a wide range during the 24-h period. These results 

suggest that multiple processes coordinate appropriately in the context of a pathway and that 

pathways are not characterized by a coordinated burst of activity. 

 

Figure 16 Circadian pathway activity pattern (TCA cycle in liver). The peak expression activities of the 

genes coordinating a function is focused during specific period of the circadian cycle for most of the genes 
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Figure 17 Circadian pathway activity pattern (mTOR in liver) The peak expression activity of each gene is 

different, resulting in a “wave” of activity across the pathway during the circadian cycle. 

 

Figure 18 Circadian pathway activity pattern (Glycolysis/gluconeogenesis in liver). The peak activities of 

the genes in a pathway result in the emergence of complex dynamics. 

Once mapped onto pathways, the tissue-specific transcriptional data were analyzed to assess the 

emergence of pathways with well-defined dynamics. The fractional occupancy and activity 

criteria described earlier were applied to all four tissues and coherently active pathways were 
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identified. Interestingly the active pathways exhibit structured patterns of activity over the course 

a 24-hour period. A comprehensive list of the significant pathways that emerged from each tissue 

is presented in the Appendix (ST 7). In summary, the tissues are characterized as follows: 

In liver, 6796 unique Affymetrix probes contained at least one measurement recorded as Present. 

Differential expression analysis using EDGE (Leek, Monsen et al. 2006) yielded 2,636 probe 

profiles. 57 pathways were identified representing a plethora of signaling and metabolic functions 

including, but not limited to: metabolism of amino acids, TCA cycle, fatty acid metabolism and 

degradation, glycolysis/gluconeogenesis, oxidative phosphorylation, pentose phosphate 

metabolism, bile biosynthesis, pyruvate, purine metabolism, as well as a multitude of signaling 

pathways including mTOR, PPAR, and insulin. The dynamics within each pathway are complex 

and reflected in the characteristic examples in Figure 19, with the mTOR signaling pathway (top) 

exhibiting expression of its elements in a form of “wave” with phases of individual genes 

distributed during the course of a 24-hour period. Whereas the cysteine and methionine 

metabolism pathway (bottom) exhibits primarily two blocks of activity, both concentrated around 

the light/dark and dark/light transition periods. Mapping the expression patterns on the network 

representation of the pathway provides an overall view of the distribution of activity across the 

pathway, Figure 20. 



106 

 

 

 

 

Figure 19 (top) mTOR and (bottom) Cysteine/Methionine Metabolism activity maps in liver 
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Figure 20 Mapping of liver onto KEGG pathway schematics (top: mTOR; bottom: Cysteine/Methionine 

Metabolism) 

 

Figure 21 mTOR activity in lung. 

In lung, 20,126 unique Affymetrix probes contained at least one measurement recorded as 

Present. Differential expression analysis using EDGE (Leek, Monsen et al. 2006) yielded 11,979 

probe profiles. Occupancy and pathway activity analysis yielded 60 significant pathways. Liver 

and lung generated the richest set of circadian pathways, in line with earlier studies that observed 

similar trends in the context of circadian gene expression (Zhang, Lahens et al. 2014, Mavroudis, 

DuBois et al. 2018). Interestingly, most coordinate responses in lung were related to signaling 

pathways, including mTOR, MAPK, Rap1, Ras, TGF-𝛽, TNF, HIF, and Fox-O. It must be 

emphasized that the number of genes eventually considered in lung were about 5 times more than 

those in liver (due to the different arrays used). However, it is still interesting that in lung, 

signaling pathways dominated as opposed to metabolic pathways. Comparing the dynamics 

across tissues, notable observations emerge. It is noteworthy to consider the difference at the 

tissue level of mTOR between liver (Figure 19) and lung (Figure 21). In lung, strong activity 



109 

 

 

 

appears to emerge during the early stages of the light (rest) period, unlike the broader distribution 

in liver. Lung, unlike the other three tissues, exhibited some notable exceptions to the structure of 

the pathway dynamics by yielding high activity during the early rest period. Interestingly, lung-

specific gene expression patterns were is generally observed to be broadly different in lung than 

in other tissues in both the mouse (Zhang, Lahens et al. 2014) and rat (Mavroudis, DuBois et al. 

2018). The mapping of expression data onto the mTOR pathway in lung is shown in Figure 22. 

 

Figure 22 Mapping of mTOR gene expression patterns onto KEGG schematic in lung. 

In muscle, 7,086 unique Affymetrix probes contained at least one measurement recorded as 

Present. Differential expression analysis using EDGE (Leek, Monsen et al. 2006) yielded 2,233 

probe profiles (p value ≤ 0.05). 47 pathways were identified as significant in muscle. Muscle 

emerged as relatively active metabolically, including pathways within amino acid, carbohydrate, 

and lipid metabolism pathway subgroups (families) (ST 7). Muscle also exhibited robust 

activities within endocrine signaling and signal transduction.  
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Within adipose, 17,246 unique Affymetrix probes contained at least one measurement recorded 

as Present. Differential expression analysis using EDGE (Leek, Monsen et al. 2006) yielded 

4,851 probe profiles (p value ≤ 0.05).  Adipose tissue yielded 47 significant pathways (ST 7). 

Consistent with earlier studies at gene expression levels (Zhang, Lahens et al. 2014, Mavroudis, 

DuBois et al. 2018), both muscle and adipose expressed far fewer rhythmic genes, and by 

extension, exhibited less coherent activity at the pathway level. Similar to lung, the muscle and 

adipose tissues primarily revealed the importance of signaling pathways including, but not limited 

to, cGMP-PKG, insulin, ErbB, AMPK, and Fox-O. 

All tissues appear to share broadly similar activities in term of pathways related to genetic and 

cellular information processing. An overview of the broad distribution of processes active in each 

tissue is presented in Figure 23 and the detailed list of significant pathways is provided in the 

Appendix (ST 7). 
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Figure 23 Distribution of pathways with robust circadian activity across tissues in rat. Pathways are 

grouped by the (top) group and (bottom) subgroup (family) labels (ST 7). The percentages (bottom) 

indicate the fraction of total pathways for the corresponding tissue. 
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4.3.2 Discussion 

Circadian rhythms play a critical role in homeostasis and health (Zvonic, Floyd et al. 2007, 

McEachron 2012, Portaluppi, Tiseo et al. 2012, Tan and Scott 2014, Bishehsari, Levi et al. 2016, 

Zhou, Wang et al. 2016, Gnocchi and Bruscalupi 2017, Doherty 2018, Khaper, Bailey et al. 

2018). Both managing and restoring circadian rhythms are emerging as major therapeutic 

approaches (Sulli, Manoogian et al. 2018). Recent evidence has shown that not only is timing of 

drug administration relative to circadian rhythms of drug targets significant (Kanemitsu, 

Tsurudome et al. 2017), but directly targeting components of the molecular clock is also a 

powerful pharmacological approach (He, Nohara et al. 2016). As such, numerous recent studies 

have started to map out genomic elements under the regulation of the molecular clock and have 

successfully identified numerous genes that exhibit, under homeostatic conditions, robust 

circadian oscillations. Our study explores the emergent coordination of circadian rhythmicity 

among various genomic components when viewed as parts of functional groups. We do so by 

examining circadian pathway activity across tissues by analyzing a priori groupings of 

functionally related genes in the context of biochemical pathways and within the four rat tissues. 

Characterizing the dynamics at the pathway level, or at the level of any set of functionally related 

genes, enables an extension of the gene-centric perspective. A meta-analysis technique was 

applied in which each tissue is analyzed separately for pathway activity. Via this analysis, we 

developed a more systemic view of circadian regulation, assisting in understanding inherent 

circadian behavior across tissues and in developing treatments for conditions which are 

interdependent with circadian-regulated functions. 
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Figure 24 The circadian clock mechanism consists of cell-autonomous transcription-translation feedback 

loops that drive rhythmic 24-hour expression patterns of core clock components. Comparison of the 

corresponding pathways in (top) adipose, liver; (bottom) lung, muscle. 

Peripheral circadian expression is regulated both globally by the central clock (SCN) delivering a 

uniform signal throughout the body (Pett, Kondoff et al. 2018), as well as locally by endogenous 

clock mechanisms of peripheral tissues (Panda, Antoch et al. 2002, Liu, Lewis et al. 2007, 

Mirsky, Liu et al. 2009, Doherty and Kay 2010). Interestingly, the peripheral clocks are 

coordinated across tissues, with major components of the clocks exhibiting aligned patterns of 

activity, as noted in Figure 24. Despite the peripheral clock machine being similar across tissues 

and the fact that all tissues are exposed to systemic levels of humoral signals, the perception and 

translation of these signals is dependent on each tissue, pointing to likely tissue-dependent 
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regulation (Pett, Kondoff et al. 2018). Therefore, the mechanism by which the tissue-specific 

regulation of the peripheral clocks is implemented may be the presence of tissue-specific 

transcription factors and translational/post-translational mechanisms, though as yet unknown 

(Nguyen, Almon et al. 2014, Yeung, Mermet et al. 2018). We have recently hypothesized that 

tissue-specific regulatory mechanisms are the likely drivers behind this type of tissue-specificity 

(Nguyen, Almon et al. 2014), whereas in (Korencic, Kosir et al. 2014) alternative models are 

suggested that could enable translation of common circadian signals to tissue-specific responses. 

One of the key realizations of the analysis of the four rat tissues in the context of individual gene 

expression patterns was that tissues tend to coordinate gene expression is such a way that 

apparent dominant phases (“rush hours”) within a tissue emerge (Mavroudis, DuBois et al. 2018).  

These emerging structures were presumed to indicate tissue-specific activity depending of each 

tissue’s broader role in homeostasis. The patterns of individual gene expression, as noted in 

(Mavroudis, DuBois et al. 2018), appear concentrated in a tissue-specific manner, namely: in 

liver, the peak of activity was broadly observed during the active (dark) period; muscle and 

adipose exhibited a more uniformly distributed activity; and lung maintained high transcriptional 

activity during the active (light) period. Similar studies often identify and discuss events of 

increased activity focusing on transition periods characterized by peak expression, usually during 

transitions from dark to light period (Zhang, Lahens et al. 2014). However, when considering the 

dynamics at the pathway level, in other words in the context of a coordinated expression of 

functionally related genes, a more complex behavior emerges as it is not likely that a pathway 

will exhibit a pattern of activity indicative of “rush hours”.  

Rather, a group of functionally related genes coordinate their activities in a way that, potentially, 

optimizes the pathway’s function. Some pathways may exhibit an overall dynamic indicative of a 

dominant peak expression phase, usually during the active/inactive transition. An example of that 
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is depicted in Figure 16, portraying the 24-hour dynamic fingerprint of TCA cycle in liver. The 

PAL analysis indicates the presence of a single dominant pattern, which is further decomposed 

into two broad gene sub-groups within the pathway: the dominant with expression peaking during 

the dark/light (ZT=0 h) transition, and a secondary with peak expression during the light/dark 

(ZT=12 h) transition. A mapping of the expression patterns onto the KEGG representation of the 

pathway enables us to allocate specific patterns across the pathway. This type of response is more 

in line with earlier studies that assign peak expression to specific points during the circadian cycle 

and by extension, following functional enrichment of the gene set, peak activity of the 

corresponding enriched pathway would be assumed at similar time intervals (Mavroudis, DuBois 

et al. 2018). Similar observations strictly based on gene expression patterns were also reported for 

diurnal animal where peak expression clustered around “dawn and dusk” (Mure, Le et al. 2018). 

What is further observed for the overwhelming majority of pathways is that circadian gene 

expression profiles generate a cascade of events resulting in a distribution of information across 

the pathway throughout the light/dark periods. The example of mTOR signaling in liver (Figure 

17) best exemplifies this pattern. The genes that comprise this signaling pathway are each 

characterized by their individual phase (location of peak expression), however, the activities 

“flow” through the pathway in a wave-like function. This is an important observation as it 

challenges the more traditional view of a circadian pattern defined primarily by the phase of the 

constituents. The PAL analysis indicates the emergence of multiple dominant profiles which 

reveal that the peak activity is not concentrated at specific time intervals, such as during the 

dark/light transition. Rather, each component of the pathway peaks at its own phase through the 

circadian cycle, but in such a way that the overall functional impact of the pathway is harmonized 

with the broader homeostasis goals. 
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Pathways may also manifest dynamics expressing a combination of the two patterns indicated 

earlier. For example, glycolysis/gluconeogenesis in liver (Figure 18) exhibits functional activity 

decomposed in two parts: elements of the pathway with peak activity during the light/dark 

transition period, as well as elements of the pathway exhibiting peak activity in the form of a 

cascade of events encompassing almost the entire dark (active) period. The decomposition of the 

intrinsic dynamics into three components (PALs) is a manifestation of this behavior. 

The emergence of disparate patterns of functional activity is indicative of the likely distinct role 

that pathways play within a tissue as a function of the time-of-day. Figure 19 clearly depicts the 

distinct organization the mTOR and cysteine/methionine (CYS/MET) metabolism pathways in 

liver. Whereas mTOR exhibits a uniform distribution of phases of individual genes, the 

CYS/MET pathway indicates a rush of activity for part of the pathway during the light/dark 

transition and for another part of the pathway mostly during the dark/light transition. The 

distribution of activity is also clearly indicated in the corresponding pathway schematics (Figure 

20). 

Comparison of liver, gastrocnemius muscle, lung, and adipose tissue gene expression reveals that 

clock-controlled genes exhibit tissue-specific expression patterns that group by functional 

enrichment including genes relevant to metabolism, transcription/translation, and signaling events 

that peaked at different times across tissues (Mavroudis, DuBois et al. 2018). Mapping of 

expressed genes onto KEGG pathways yielded evidence of robust circadian activity in pathways 

related to immune and signaling functions, metabolism, and regulation of cellular events 

including transcription, translation, protein processing and packaging for all tissues. The lung and 

liver datasets yielded the greatest number of significant pathways, a finding consistent with 

earlier works that have also determined the, relative to liver and lung, smaller number of 

circadian regulated genes in other tissues (Zhang, Lahens et al. 2014, Mavroudis, DuBois et al. 
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2018). Liver tissue is established as a primary target of metabolism and circadian regulation, so 

robust circadian activity in the pathway analysis is expected in pathways related to metabolism 

and the immune system’s inflammatory response (Almon, Yang et al. 2008, Yang, Almon et al. 

2008, Ovacik, Sukumaran et al. 2010, Nguyen, Almon et al. 2014). Circadian regulation is also 

present in lung tissue an understanding of which is essential to the treatment of lung diseases, 

such as asthma (Gibbs, Beesley et al. 2009). Despite a relatively small list of significant circadian 

pathways identified in adipose and muscle, these tissues exhibit circadian regulation and are 

influenced by drug administration (Almon, DuBois et al. 2004, Almon, Dubois et al. 2005, 

Almon, DuBois et al. 2007, Almon, Yang et al. 2008, Nguyen, Almon et al. 2014). 

In terms of the tissue-specific circadian activity, we observe that while tissues share similarities, 

they also express individual characteristics. As indicated in Figure 23, liver is undoubtedly the 

most metabolically-driven tissue, followed by muscle. The genetic and cellular information 

processing footprint during the day appears to be more uniform across tissues. Interestingly, the 

lung appears to be substantially more active within signaling pathways, an observation that is 

supported by the knowledge that the lung is an organ that constantly interacts with the 

environment and is exposed to foreign materials. 

Earlier analyses that focused exclusively on liver-specific gene expression circadian patterns 

(Almon, Yang et al. 2008) note the importance of oscillating genes related to metabolism and 

emphasize the importance of individual genes peaking at specific times. However, the pathway 

view of the dynamics communicates different information.  The genes composing the metabolic 

pathways do not exhibit synchronized expression patterns. On the contrary, activity across the 

pathway proceeds in a wave-form, with different genes peaking at different point in time. 

Therefore, rhythmic characteristics of individual genes do not properly describe the overall 

dynamics of the pathway.  
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Lung is an active organ, constantly interacting with the environment. We observe that significant 

circadian activity is observed in signaling pathways (Figure 23, ST 7). Unlike liver, lung appears 

more consistent with earlier observations on the nature of gene dynamics, where lung pathways 

appear to have phase distribution across the 24-h period, as well as activity concentrated during 

the early phases of the light (rest) period (Sukumaran, Jusko et al. 2011). This is likely related to 

the circadian characteristics of pulmonary function which generally exhibit lower activity during 

the rest period, likely purposed to optimize use of resources. 

Signaling and cellular processing pathways appear to be the most active during the 24-h period, 

for adipose tissue. Adipose tissue also appears to exhibit complex dynamics characteristics, with 

a concentration of coherent pathway activity during the dark (active) period, consistent with 

earlier observations (Sukumaran, Xue et al. 2010). While adipose tissue did not exhibit coherent 

circadian metabolic activity, adipose appears to be active in signaling and cellular processes, as 

well as the regulation of its immune response. This includes the regulation of chemokines and 

TNF signaling. This was an interesting observation as it is well established that low-grade chronic 

inflammation in adipose is a hallmark of obesity (Xu, Barnes et al. 2003, Heilbronn and Campbell 

2008, Cooke, Connaughton et al. 2016). 
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Figure 25 Activity maps for RNA transport (top: adipose - liver; bottom: lung - muscle) 

 

Figure 26 Activity maps for Insulin signaling (top: adipose – liver; bottom: lung – muscle) 

As noted in Figure 23, the processing of cellular and genetic information appears to be an active 

function in all tissues. However, the processing of this information appears to take different forms 

in each tissue. Consider the example of RNA transport between the nucleus and the cytoplasm 
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(Figure 25). In liver, activity appears prominent during the active (dark) period. In adipose the 

activity appears more uniformly distributed throughout the day. Alternatively, lung again exhibits 

increased activity during the early stages on the light (rest) period and again during the light/dark 

transition, whereas muscle exhibits activity primarily during the early light period. These 

observations indicate that each tissue attempts to optimize the dynamics of their corresponding 

cellular functions in a tissue-specific manner. The cross-tissue differences and similarities are 

easily observed. Figure 26 depicts the emergent dynamics of the insulin signaling pathway in all 

four tissues. Liver and muscle appear to be active during the transition (dark/light and light/dark) 

periods, adipose expresses dynamics with a wave of activity during the 24-h period, and lung 

exhibits activity during the early hours of the light (rest) period and again during the light/dark 

(inactive/active) transition. However, the arginine and proline metabolism pathway in liver 

(Figure 27) exhibits characteristically different dynamics in liver and muscle, between which the 

periods of activity/inactivity seem opposite.  
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Figure 27 Activity maps for Arginine Proline Metabolism (top: liver; bottom: muscle) 

Finally, it should be noted that the lack of a plethora of metabolic and signaling pathways 

exhibiting coordinated circadian rhythmicity at the pathway level in muscle and adipose tissues, 

in comparison to lung and liver, does not point to a lack of circadian components within those 

tissues, or the criticality of circadian regulation. Instead, it likely indicates a lack of strong 

circadian coordination at the pathway level. However, this should not diminish the importance of 

individual components. Even though it is recognized that clock-controlled genes in different 

tissues have little overlap in terms of peak phases (Korencic, Kosir et al. 2014), we hypothesize 

that analysis of individual genes does not necessarily convey coordination of biological and 

physiological functions. Even though individual components of a broader function may differ, 

their integrated response may communicate coordination.  
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4.4 Comparison of Endogenous Circadian Activity Across Multiple Species 

4.4.1 Motivation 

Comparative (translational) research is highly dependent on rat and mouse models in that we first 

seek to understand a process in these organisms before extending to high-order organisms, 

including humans (Bryda 2013).Rats and mice are historically used because of their economic 

advantages including their relatively (as compared to larger experimental organisms such as pigs, 

dogs, and primates) small living space requirements and size, rapid gestation period, large 

number of offspring, rapid development and short life spans (Bryda 2013). They are valued in 

contemporary scientific research for these economic advantages as well as their ability to be 

genetically modified through transgenic, knock-out, and knock-in techniques (Consortium 2002, 

Bryda 2013). Rat and mouse share sufficiently high genomic relationships with each other, and 

with humans, to justify retaining their place as primary pre-clinical model organisms (Consortium 

2002, Consortium 2004). 

Despite the advantages of these model organisms, translation from pre-clinical rodent studies to 

successful clinical studies in humans has low success rate (Denayer, Stöhr et al. 2014). There are 

many reasons for this. Many drug studies fail in Phase II and Phase III clinical trials because lack 

of characterization of drug targets (lack of sufficient translational research) leads to reduced drug 

efficacy (Denayer, Stöhr et al. 2014). This failure is not necessarily the result of a lack of 

similarity between human and rodent models, but of a lack of understanding of the function of the 

selected animal model (Denayer, Stöhr et al. 2014, Ellenbroek and Youn 2016). Selection of the 

correct animal model for your pre-clinical research is critical. As previously stated, rodent 

organisms share sufficient genetic similarity with humans to merit their use as pre-clinical model 

organisms (Consortium 2002, Bryda 2013). Further, the ability to genetically modify rat and 

mouse models in contemporary biomedical research is effectively equal, thus it becomes 
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necessary to focus on the functional differences in model organism in order to support successful 

translational research (Ellenbroek and Youn 2016). 

Discussed in detail in Chapter 1, multifactorial conditions (diabetes, cancers, rheumatoid arthritis, 

metabolic syndrome, and other chronic inflammatory conditions and auto-immune diseases) 

require a systems pharmacology approach, a characterization of physiology at the systems level, 

in order to be understood and addressed. Circadian regulation drives a diverse set of biological 

processes and disruption of circadian regulation leads to and/or exacerbates these multifactorial 

conditions (Mavroudis, Scheff et al. 2013, Bae and Androulakis 2018, Rao, Scherholz et al. 2018, 

Bae and Androulakis 2019, Rao and Androulakis 2019, Scherholz, Schlesinger et al. 2019). It is 

important, therefore, to focus our investigation on endogenous circadian activity, and see how it 

compares across model organisms. Such investigations inform selection of appropriate animal 

models for investigating multifactorial disease. 

Thus, we seek to investigate the underlying endogenous circadian activity within this data to 

better understand how drug-free and intact model organisms’ function in a state of health. In this 

investigation, we endeavor to characterize and compare mouse and rat model organisms at the 

systemic level using our pathway-based analysis approach (Acevedo, Berthel et al. , Acevedo, 

DuBois et al.). We believe that such an investigation will help direct pre-clinical decision-making 

relevant to translational research.  

4.4.2 Additional Pre-processing Steps Enables Comparison Across Species 

Extra pre-processing steps needed to be taken so that pathway activity dynamics could be 

appropriately compared across species. This is not necessarily true if we were to extend into the 

space of indirect modeling as with the MPL research in previous chapters (Acevedo, Berthel et al. 

, Acevedo, DuBois et al.). Such steps include comparing temporal expression across a consistent 
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set of sample times between experiments. To achieve this, the mouse and rat data were 

additionally processed as follows: 

• The mouse data was sampled every 2 h over a 48-h period. Expression data 

corresponding to the same circadian time was averaged together. For example, gene 

expression from the two microarrays sampled at CT18 on subsequent days were 

averaged. This resulted in 12 time points of data (CT0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 

22) used for subsequent analysis of expression over a single day. 

• The rat data was collected within an experiment that lasted a single day. In order to 

coordinate with mouse expression data time points, only data from the following time 

points were considered for analysis: 0.25 h, 2, 4, 6, 8, 10, 12.25, 14, 16, 18, 20, 22. 

4.4.3 Preliminary Results 

Application of the pathway-based framework (Chapter 1) to temporal transcriptomic expression 

data enabled the characterization of genome-wide circadian dynamics at the level of functional 

groupings of genes across multiple tissues in mouse (liver, lung, adipose, muscle). As with our 

analysis in rat above, our aim is to identify how individual genes come together to generate 

orchestrated rhythmic patterns and how these may vary within and across tissues. We further 

extend this discussion to compare pathway dynamics across mouse and rat, revealing interesting 

tissue-specific and organism-specific dynamics.  

After mapping the transcriptomic data onto mouse-relevant pathways, fractional occupancy 

analysis, and pathway activity analysis, pathways emerged as significant for each tissue (all p-

values ≤ 0.05). We observe structured patterns of activity over the course a 24-hour period in 

mouse data, as we did in rat. A comprehensive list of the significant pathways that emerged from 

each tissue from the mouse data is presented in the Appendix (ST 8). In summary, the tissues are 

characterized as follows: 
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Each of the tissues were processed using the same Affymetrix platform (MoGene 1.0 ST) which 

has 33,556 probes. Pre-processing of data with EDGE yielded 4,831 probes that were 

differentially expressed in liver, 6,322 in adipose, 6,036 in lung, and 818 in muscle. It is unclear 

why muscle tissue yielded such low relative return given a consistent analysis across all tissues. 

Liver tissue yielded 49 pathways primarily encompassing carbohydrate and lipid metabolism 

pathways as well as signaling functions including AMPK, Fox-O, mTOR, and TNF signaling 

pathways. The lung tissue data yielded 28 significant pathways with comparable representation of 

pathways related to signaling and metabolic pathways including MAPK, mTOR, PI3K-Akt, TNF, 

VEGF, and insulin signaling. Adipose tissue yielded 28 significant pathways similarly including 

signaling pathways such as MAPK, mTOR, GnRH, glucagon, and regulation of lipolysis in 

adipocytes pathways. Muscle tissue yielded the smallest number of significant pathways (12 

pathways) which follows from its relatively small number of differentially expressed genes. Some 

pathways that did emerge as significant were primarily signaling-related including Jak-STAT, 

AMPK, and cGMP signaling. A comprehensive list of significant pathways in mouse is included 

in the Appendix (ST 8) and an overview of the broad categories of pathway representation in 

mouse tissues is presented in Figure 28. 

Pathways resulting from mouse analysis yielded dynamic patterns similar to those observed in rat 

tissue (Figure 29). Liver tissue exhibits two dominating dynamics across its significant pathway 

set: cascading circadian expression exemplified by AMPK and fatty acid metabolism pathways, 

as well as non-cascading circadian dynamics exemplified by the oxidative phosphorylation 

pathway. Lung tissue cascading circadian activity in effectively all of the pathways that emerge 

as significant. Adipose yields complexity observed earlier in rat, both cascading circadian 

dynamics (AMPK signaling) and pathways that exhibit both cascading and non-cascading 
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circadian expression as exemplified by cAMP, Rap1, and Ras signaling pathways. In the sparse 

set of significant pathways in muscle, we observe strictly non-cascading circadian expression.  

 

Figure 28 Distribution of pathways with robust circadian activity across tissues in mouse. Pathways are 

grouped by the (top) group and (bottom) subgroup (family) labels (ST 8). The percentages (bottom) 

indicate the fraction of total pathways for the corresponding tissue. 
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Figure 29 Examples of pathway dynamics that dominate each mouse tissue. 

Comparison Across Mouse and Rat Dynamics 

Even as we develop our preliminary analysis into the dynamics independently within mouse data, 

we cannot help but observe similarities and differences in significant pathway content and 

dynamics between the two model organisms. When considering the distribution of significant 

pathways categorized by pathway family, we observe that pathways related to signal transduction 

and endocrine regulation dominate for both mouse and rat tissues (Figure 23 and Figure 28, 

bottom). Rat tissues exhibit greater proportional representation across certain pathway families 

including amino acid metabolism, cellular development, and transcriptional events (folding, 
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sorting, and degradation pathway family). Mouse tissue reports relatively little to no 

representation for most of these categories. Such observations may speak to a reduced complexity 

in the physiology of mouse as compared to rat.  

Comparison within tissue between organisms reveals that metabolic pathways dominate in liver 

and signaling pathways dominate in lung for both mouse and rat (Figure 23 and Figure 28, top). 

Adipose tissues also have comparable representation in both organisms with respect to signaling 

pathways. However, muscle tissue representation is not consistent for most pathway groups and 

subgroups between tissues. This is likely due to the low yield from the mouse muscle data. If 

reliable and not an artifact of experimental error, such observations indicate significant 

differences in the muscle function between mouse and rat which may inform model organism 

selection for conditions related to muscle. 

We look within distributions of significant pathways across organisms and tissues to analyze 

circadian pathway dynamics in example pathways. We observe that rat and mouse both 

expression cascading and non-cascading circadian expression. However, dynamics are not always 

conserved across organisms or tissues. For example, the mTOR signaling pathway is significant 

across lung and adipose in mouse and rat but the cascading circadian expression observed in 

mouse is not observed in rat. Instead, we observe non-cascading circadian expression (Figure 30). 

The mTOR signaling pathway is a component of various cellular processes (cell metabolism, 

growth, proliferation and survival) (Laplante and Sabatini 2009). This pathway is observed to be 

deregulated in humans when certain cancers and type 2 diabetes develops (Sakaguchi, Isono et al. 

2006, Laplante and Sabatini 2009). For these and other conditions (solid tumor development and 

rheumatoid arthritis), mTOR inhibitors, such as rapamycin, are used to stem disease development 

(Sakaguchi, Isono et al. 2006, Laplante and Sabatini 2009, Li, Brown et al. 2010). Such 

conditions are multifactorial and thus have consequences across multiple tissues, motivating the 
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need to characterize this and other relevant pathways across multiple tissues and the model 

organisms in which these diseases are studied. 

The cAMP signaling pathway (Figure 31) is also significant is identical tissues across rat and 

mouse. This is an example of a pathway in which dynamics are conserved across organisms but 

not across tissues; cascading circadian expression is observed within liver for mouse and rat, but 

non-cascading circadian expression is observed within lung for both organisms. The cAMP 

pathway is an intracellular secondary messenger activated in response to extracellular ligand 

action and regulated many downstream targets downstream including protein kinases, 

transcription factors, and repressors which modulate metabolic functions and adaptive immune 

functions (Raker, Becker et al. 2016). Thus, it is targeted pharmacologically for its 

immunoregulatory effects within autoimmune and inflammatory conditions including psoriasis, 

lupus, neurodegenerative disorders, and heart disease (Pierre, Eschenhagen et al. 2009, Raker, 

Becker et al. 2016). Targeting of the cAMP pathway is not completely characterized and thus 

merits further investigation into its tissue-specific and organisms-specific effects (Pierre, 

Eschenhagen et al. 2009). Current scientific understanding has established that therapies which 

generally enhance cAMP signaling reduce immune response while suppression of cAMP 

signaling is immunostimulatory (Pierre, Eschenhagen et al. 2009, Raker, Becker et al. 2016). 

There also exist examples of pathways who are consistent in their dynamics across organisms and 

tissues. The AMPK signaling pathway (Figure 32) exhibits cascading circadian expression in 

both lung and adipose for both rat and mouse. Balancing nutrient supply with energy demand is 

regulated by the AMPK signaling pathway (Choi, Savage et al. 2007, Nath, Khan et al. 2009, 

Viollet, Horman et al. 2010).  Accordingly, this pathway is responsible for the integration of 

nutritional and hormonal signals and, when targeted for suppression in muscle and liver tissue, is 

reported to increase rates of fatty acid oxidation leading to increased energy use and reduced 
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adipose content (Choi, Savage et al. 2007, Viollet, Horman et al. 2010). Components of this 

pathway have thus been targeted for activation to treat conditions such as multiple sclerosis 

(Nath, Khan et al. 2009) and for suppression to treat type II diabetes and obesity (Choi, Savage et 

al. 2007). As with previously discussed pathways, such pervasive regulatory influence of the 

AMPK pathways merits additional investigation into the dynamics of this pathway across tissues 

and within model organisms. 

 

Figure 30 mTOR signaling pathway within adipose and lung in rat and mouse. An example of tissue-

specific dynamics that are not conserved across organisms, but which are conserved across tissues. 
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Figure 31 cAMP signaling pathway within liver and lung in rat and mouse. An example of tissue-specific 

dynamics conserved across organisms.  

 

Figure 32 AMPK signaling pathway within adipose and lung in rat and mouse. An example of tissue-

specific dynamics conserved across organisms and tissues. 
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4.5 Concluding Remarks 

In the above investigations our pathway-based analysis technique enables the meta-analysis of 

tissue-specific transcriptomic data by assessing the emergence of coherent dynamic patterns at the 

level of functionally-related gene groupings (KEGG pathways). We focused on unravelling the 

circadian dynamic patterns of liver, lung, muscle, and adipose within mouse and rat, two essential 

pre-clinical research organisms.  

One of the defining observations of our analysis of the four tissues is that when considering the 

coherent or synergistic dynamics of functionally related groupings of genes, the dynamic picture 

of the circadian patterns becomes more nuanced than the one emerging when considering 

independent gene expression patterns. We identified the need for appropriate coordination within 

a pathway, resulting in complex patterns of activity cooperating to perform homeostatic function. 

The comparison of pathway dynamics within and across organisms point to likely differences in 

coordination mechanisms and the possible existence of critical mediators whose circadian 

rhythms are of paramount importance. Further, these results indicate that “rush hour” activity 

may not necessarily be present at the pathway level, but rather gene activity appears concentrated 

in a way that optimizes the circadian role of the pathway. 

The investigation into mouse endogenous circadian expression and its comparison with dynamics 

in rat remains ongoing. Presented are preliminary results that reveal evidence of tissue-specific 

and organism-specific dynamics within signaling and metabolic pathways whose disruption 

facilitates disease treatment and development. We seek to extend our analysis to fully 

characterize the differences between the essential model organisms enabling future translational 

research.  
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Chapter 5: Conclusion 

In the enclosed investigations we present a pathway-based meta-analysis approach integrated 

with multivariate decomposition techniques (Chapter 2) designed to extract physiological 

meaning from high-throughput omics data appropriately by analyzing physiological data from a 

functional and feature-based perspective and with consideration of the multivariate complications 

of interdependent expression data. We apply this framework to characterize temporal drug effects 

across multiple tissues and multiple dosing regimens (Chapters 3) and to understand endogenous 

circadian expression again across multiple tissues as well as across essential pre-clinical animal 

models: mouse and rat (Chapter 4). 

In this dissertation, we seek to highlight how the pathway-based framework enables integration of 

information across experimental platforms, time scales, dosing regimens, tissues, and organisms. 

Such comparisons are necessary for the extraction of all possible meaning from the wealth of 

existing data stored across databases globally and for the development of research that is 

translatable between organisms. 

The framework presented above is a translational research tool, designed modularly to anticipate 

its use within other omics levels and with use of other pathway databases. We anticipate its use in 

comparing functional response within additional tissues (Almon, Lai et al.) and organisms, 

including humans (Wu, Ruben et al.). Characterization of human response is difficult because we 

cannot sample from humans in the same manner that we can from animal models. However, 

blood and skin samples are tissues that facilitate longitudinal sampling within humans (Wu, 

Ruben et al.). (Wu, Ruben et al.) collected skin samples at 4 time points over a 24 h period in 

their search for potential epidermal biomarkers, focusing their analysis on clock genes. We see 

additional translational research potential in this data set and have begun to expand on Wu et al.’s 

analysis by applying our pathway-based framework to this data. Preliminary functional 
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enrichment already reveals significant metabolic, signaling, and cell regulatory pathway activity 

in human pathways in KEGG (Table 7). We anticipate expanding on this preliminary 

investigation and analysis of temporal plasma data (Wu, Ruben et al.) with our pathway-based 

framework will provide additional translational research merit. 

Table 7 Significant pathways that emerged from application of pathway-based analysis framework 

(Chapter 2) to temporal transcriptomic data capturing endogenous expression in human skin (Wu, Ruben 

et al. 2018). 

Subgroup (Family) Pathway Name 

Cell growth and death 

Apoptosis 

Cell cycle 

p53 signaling pathway 

Cell motility Regulation of actin cytoskeleton 

Transport and catabolism 
Endocytosis 

Lysosome 

Signal transduction 

ErbB signaling pathway 

HIF-1 signaling pathway 

Hippo signaling pathway 

MAPK signaling pathway 

Notch signaling pathway 

Sphingolipid signaling pathway 

TNF signaling pathway 

VEGF signaling pathway 

Folding, sorting and degradation Protein processing in endoplasmic reticulum 

Carbohydrate metabolism Carbon metabolism 

Glycan biosynthesis and metabolism Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 

Lipid metabolism Fatty acid metabolism 

Metabolism of terpenoids and polyketides Terpenoid backbone biosynthesis 

Endocrine system 
Prolactin signaling pathway 

Thyroid hormone signaling pathway 

 

The pathway-based analysis framework can be further improved with an expansion into 

topological information. Although we already consider pathway topology within our analysis 

(Figure 20 and Figure 22), topological information is not incorporated into the pathway scoring 
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(fractional coverage and pathway activity statistics). However, topological pathway-based 

analyses enhance functional understanding (Lima-Mendez and van Helden 2009, Yeung and Naef 

2018) and future versions of the framework would benefit from incorporating such information. 

Within our endogenous circadian expression analyses in Chapter 4, we discussing cascading 

dynamics across pathways, a discussion which would be enhanced if discussion of movement 

across a pathway was accompanied by a topologically relevant statistic calculated from analysis 

of data-populated pathway schematics such as presented in Figure 20 and Figure 22. 
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Appendix 

ST 1 High-throughput data analyzed for reported investigations 

Transcriptional data capturing methylprednisolone influence across liver and muscle in adrenalectomized 

rats (Sun, DuBois et al. , Jin, Almon et al. , Almon, DuBois et al. , Almon, DuBois et al. , Almon, DuBois et 

al. , Hazra, Pyszczynski et al. , Hazra, DuBois et al.) 

Organ Acute: Single MPL dose at time 

zero. 

Chronic: Continuous intravenous 

delivery 

Liver Transcript: GEO GDS253 (Sun, 

DuBois et al. , Jin, Almon et al. , 

Almon, DuBois et al.) 

72 hours, 16 timepoints 

Affymetrix Probe Set RGU34A (8799 

probes) 

Transcript: GEO GDS972 (Almon, 

DuBois et al. , Hazra, DuBois et al.) 

168 hours, 10 timepoints 

Affymetrix Probe Set 230A (15967 

probe sets) 

Skeletal 

Muscle 

Transcript: GSE490 (Almon, DuBois 

et al.) 

72 hours, 16 timepoints 

Affymetrix Probe Set RGU34A (8799 

probes)   

Transcript: GSE5101 (Almon, DuBois 

et al.) 

168 hours, 10 timepoints 

Affymetrix Probe Set RAE230A (15967 

probes)  

 

Transcriptional data capturing drug-free expression in intact rats (Mavroudis, DuBois et al.) 

Organ Transcriptomic Microarray Studies in Intact Wistar 

Rats 

24 hours, 22 timepoints, 4 tissues 

(Mavroudis, DuBois et al.) 

Liver GEO GSE8988 

Affymetrix GeneChips Rat Genome 230A  

Lung GEO GSE25612   

Affymetrix GeneChips Rat Genome 230A 2  

Adipose GEO GSE20635  

Affymetrix GeneChips Rat Genome 230A 2 

Skeletal 

Muscle 

GSE8989 

Affymetrix GeneChips Rat Genome 230A  
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Transcriptional data capturing drug-free expression in intact mice (Zhang, Lahens et al.) 

Organ Transcriptomic Microarray Studies in Intact Mouse 

48 hours, 24 timepoints, 12 tissues 

(5 used for circadian study) 

(Zhang, Lahens et al.) 

Liver GEO GSE54652 

Affymetrix MoGene 1.0ST array  

Lung GEO GSE54652 

Affymetrix MoGene 1.0ST array  

White 

Adipose 

GEO GSE54652 

Affymetrix MoGene 1.0ST array  

Brown 

Adipose 

GEO GSE54652 

Affymetrix MoGene 1.0ST array  

Skeletal 

Muscle 

GEO GSE54652 

Affymetrix MoGene 1.0ST array  
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ST 2 Fisher’s Exact Test Limitations 

The application of the Fisher’s Exact Test (FET), in the context of our genomic analysis, compare 

a pathway’s presence in the rat genome compared to the pathway’s presence in a data set, making 

use of contingency tables as depicted in the example in Table 8: Glycolysis/Gluconeogenesis 

pathway contingency table from the acute muscle data set. Each pathway is analyzed 

independently within each data set and p-values are generated. These p-values are called 𝑓𝑐 p-

values, as they report the significance of the fractional coverage calculation. When the 𝑓𝑐 and 𝑓𝑐 

p-values were compared, an interesting peak trend was observed for each data set (Figure 33).  

The ratio of data set size to genome size controls the location of this peak. As this ratio grows 

large (data set size is large relative to genome size), this peak appears and shifts to the right. As 

the ratio grows small (data set is small relative to genome), the peak shifts left or disappears 

entirely. Observation of this artifact of the FET motivated us to take a conservative approach in 

our analysis and disregard pathways with 𝑓𝑐 below the location of the peak in the 𝑓𝑐 vs. 𝑓𝑐 p-value 

plots, as the meaning and reliability of the 𝑓𝑐 p-values for sub-peak pathways are unclear. Thus, 

pathways below 6% for the acute data and below 18% for the chronic data were removed from 

this analysis. 

Table 8 Example contingency table for Glycolysis/Gluconeogenesis within the acute muscle data 

set. This data set yields a sufficient number of differentially expressed Affymetrix probes that 

represent 489 genes. The rat genome consists of the set of unique genes found in all rat-relevant 

KEGG pathways. 

No. of Genes  

(KEGG Genes) 

Within Data Set Not Within Data Set Total 

Pathway 5 67 72 

Not in Pathway 482 8078 8560 

Total 489 8145 8634 
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Figure 33 Results of fractional coverage analysis for acute and chronic muscle data sets. 

Significant pathways refer to the pathways that emerged as significant after entire framework is 

completed. 
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ST 3 List of Significant Pathways from Acute Liver Data 

KEGG 

ID 
Pathway Name Pathway Subgroup Pathway Group 

04146 Peroxisome Transport and catabolism Cellular Processes 

03050 Proteasome 

Folding, sorting and 

degradation 

Genetic Information 

Processing 

04141 

Protein processing in endoplasmic 

reticulum 

Folding, sorting and 

degradation 

Genetic Information 

Processing 

03010 Ribosome Translation 

Genetic Information 

Processing 

00220 Arginine biosynthesis Amino acid metabolism Metabolism 

00410 beta-Alanine metabolism 

Metabolism of other amino 

acids Metabolism 

01230 Biosynthesis of amino acids Amino acid metabolism Metabolism 

00650 Butanoate metabolism Carbohydrate metabolism Metabolism 

01200 Carbon metabolism Carbohydrate metabolism Metabolism 

00020 Citrate cycle (TCA cycle) Carbohydrate metabolism Metabolism 

00270 

Cysteine and methionine 

metabolism Amino acid metabolism Metabolism 

00982 

Drug metabolism - cytochrome 

P450 

Xenobiotics biodegradation 

and metabolism Metabolism 

00071 Fatty acid degradation Lipid metabolism Metabolism 

01212 Fatty acid metabolism Lipid metabolism Metabolism 

00480 Glutathione metabolism 

Metabolism of other amino 

acids Metabolism 

00010 Glycolysis / Gluconeogenesis Carbohydrate metabolism Metabolism 

00630 

Glyoxylate and dicarboxylate 

metabolism Carbohydrate metabolism Metabolism 

00980 

Metabolism of xenobiotics by 

cytochrome P450 

Xenobiotics biodegradation 

and metabolism Metabolism 

00190 Oxidative phosphorylation Energy metabolism Metabolism 

00640 Propanoate metabolism Carbohydrate metabolism Metabolism 

00620 Pyruvate metabolism Carbohydrate metabolism Metabolism 

00830 Retinol metabolism 

Metabolism of cofactors and 

vitamins Metabolism 

00140 Steroid hormone biosynthesis Lipid metabolism Metabolism 

00380 Tryptophan metabolism Amino acid metabolism Metabolism 

00280 

Valine, leucine and isoleucine 

degradation Amino acid metabolism Metabolism 

03320 PPAR signaling pathway Endocrine system Organismal Systems 
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ST 4 List of Significant Pathways from Chronic Liver Data 

KEGG 

ID 
Pathway Name Pathway Subgroup Pathway Group 

04140 Autophagy - animal Transport and catabolism Cellular Processes 

04216 Ferroptosis Cell growth and death Cellular Processes 

04146 Peroxisome Transport and catabolism Cellular Processes 

03050 Proteasome Folding, sorting and degradation 

Genetic Information 

Processing 

04141 

Protein processing in endoplasmic 

reticulum Folding, sorting and degradation 

Genetic Information 

Processing 

03010 Ribosome Translation 

Genetic Information 

Processing 

00220 Arginine biosynthesis Amino acid metabolism Metabolism 

00410 beta-Alanine metabolism Metabolism of other amino acids Metabolism 

01230 Biosynthesis of amino acids Amino acid metabolism Metabolism 

01200 Carbon metabolism Carbohydrate metabolism Metabolism 

00020 Citrate cycle (TCA cycle) Carbohydrate metabolism Metabolism 

00270 Cysteine and methionine metabolism Amino acid metabolism Metabolism 

00071 Fatty acid degradation Lipid metabolism Metabolism 

01212 Fatty acid metabolism Lipid metabolism Metabolism 

00480 Glutathione metabolism Metabolism of other amino acids Metabolism 

00010 Glycolysis / Gluconeogenesis Carbohydrate metabolism Metabolism 

00630 

Glyoxylate and dicarboxylate 

metabolism Carbohydrate metabolism Metabolism 

00980 

Metabolism of xenobiotics by 

cytochrome P450 

Xenobiotics biodegradation and 

metabolism Metabolism 

00190 Oxidative phosphorylation Energy metabolism Metabolism 

00640 Propanoate metabolism Carbohydrate metabolism Metabolism 

00620 Pyruvate metabolism Carbohydrate metabolism Metabolism 

00830 Retinol metabolism 

Metabolism of cofactors and 

vitamins Metabolism 

00140 Steroid hormone biosynthesis Lipid metabolism Metabolism 

00380 Tryptophan metabolism Amino acid metabolism Metabolism 
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00280 

Valine, leucine and isoleucine 

degradation Amino acid metabolism Metabolism 

04910 Insulin signaling pathway Endocrine system Organismal Systems 

03320 PPAR signaling pathway Endocrine system Organismal Systems 
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ST 5 List of Significant Pathways from Acute Muscle Data 

KEG

G ID 
Pathway Name Pathway Subgroup Pathway Group 

04210 Apoptosis Cell growth and death Cellular Processes 

04140 Autophagy - animal Transport and catabolism Cellular Processes 

04110 Cell cycle Cell growth and death Cellular Processes 

04218 Cellular senescence Cell growth and death Cellular Processes 

04216 Ferroptosis Cell growth and death Cellular Processes 

04115 p53 signaling pathway Cell growth and death Cellular Processes 

04146 Peroxisome Transport and catabolism Cellular Processes 

04145 Phagosome Transport and catabolism Cellular Processes 

04810 Regulation of actin cytoskeleton Cell motility Cellular Processes 

04152 AMPK signaling pathway Signal transduction 

Environmental 

Information Processing 

04024 cAMP signaling pathway Signal transduction 

Environmental 

Information Processing 

04022 cGMP-PKG signaling pathway Signal transduction 

Environmental 

Information Processing 

04512 ECM-receptor interaction 

Signaling molecules and 

interaction 

Environmental 

Information Processing 

04012 ErbB signaling pathway Signal transduction 

Environmental 

Information Processing 

04068 FoxO signaling pathway Signal transduction 

Environmental 

Information Processing 

04340 Hedgehog signaling pathway Signal transduction 

Environmental 

Information Processing 

04066 HIF-1 signaling pathway Signal transduction 

Environmental 

Information Processing 

04390 Hippo signaling pathway Signal transduction 

Environmental 

Information Processing 

04630 JAK-STAT signaling pathway Signal transduction 

Environmental 

Information Processing 

04010 MAPK signaling pathway Signal transduction 

Environmental 

Information Processing 

04072 

Phospholipase D signaling 

pathway Signal transduction 

Environmental 

Information Processing 

04151 PI3K-Akt signaling pathway Signal transduction 

Environmental 

Information Processing 

04015 Rap1 signaling pathway Signal transduction 

Environmental 

Information Processing 

04014 Ras signaling pathway Signal transduction 

Environmental 

Information Processing 
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04350 TGF-beta signaling pathway Signal transduction 

Environmental 

Information Processing 

04668 TNF signaling pathway Signal transduction 

Environmental 

Information Processing 

04370 VEGF signaling pathway Signal transduction 

Environmental 

Information Processing 

03050 Proteasome 

Folding, sorting and 

degradation 

Genetic Information 

Processing 

00330 

Arginine and proline 

metabolism Amino acid metabolism Metabolism 

00071 Fatty acid degradation Lipid metabolism Metabolism 

01212 Fatty acid metabolism Lipid metabolism Metabolism 

00480 Glutathione metabolism 

Metabolism of other amino 

acids Metabolism 

00561 Glycerolipid metabolism Lipid metabolism Metabolism 

00564 

Glycerophospholipid 

metabolism Lipid metabolism Metabolism 

00260 

Glycine, serine and threonine 

metabolism Amino acid metabolism Metabolism 

00980 

Metabolism of xenobiotics by 

cytochrome P450 

Xenobiotics biodegradation 

and metabolism Metabolism 

00230 Purine metabolism Nucleotide metabolism Metabolism 

04920 

Adipocytokine signaling 

pathway Endocrine system Organismal Systems 

04925 

Aldosterone synthesis and 

secretion Endocrine system Organismal Systems 

04922 Glucagon signaling pathway Endocrine system Organismal Systems 

04912 GnRH signaling pathway Endocrine system Organismal Systems 

04910 Insulin signaling pathway Endocrine system Organismal Systems 

04921 Oxytocin signaling pathway Endocrine system Organismal Systems 

03320 PPAR signaling pathway Endocrine system Organismal Systems 

04917 Prolactin signaling pathway Endocrine system Organismal Systems 

04923 

Regulation of lipolysis in 

adipocytes Endocrine system Organismal Systems 

04924 Renin secretion Endocrine system Organismal Systems 

04919 

Thyroid hormone signaling 

pathway Endocrine system Organismal Systems 

04918 Thyroid hormone synthesis Endocrine system Organismal Systems 
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ST 6 List of Significant Pathways from Chronic Muscle Data 

KEGG Pathway Name Pathway Subgroup Pathway Group 

04210 Apoptosis Cell growth and death Cellular Processes 

04218 Cellular senescence Cell growth and death Cellular Processes 

04216 Ferroptosis Cell growth and death Cellular Processes 

04810 

Regulation of actin 

cytoskeleton Cell motility Cellular Processes 

04140 Autophagy - animal Transport and catabolism Cellular Processes 

04136 Autophagy - other Transport and catabolism Cellular Processes 

04144 Endocytosis Transport and catabolism Cellular Processes 

04142 Lysosome Transport and catabolism Cellular Processes 

04137 Mitophagy - animal Transport and catabolism Cellular Processes 

04146 Peroxisome Transport and catabolism Cellular Processes 

04152 AMPK signaling pathway Signal transduction 

Environmental 

Information Processing 

04371 Apelin signaling pathway Signal transduction 

Environmental 

Information Processing 

04022 

cGMP-PKG signaling 

pathway Signal transduction 

Environmental 

Information Processing 

04012 ErbB signaling pathway Signal transduction 

Environmental 

Information Processing 

04068 FoxO signaling pathway Signal transduction 

Environmental 

Information Processing 

04066 HIF-1 signaling pathway Signal transduction 

Environmental 

Information Processing 

04010 MAPK signaling pathway Signal transduction 

Environmental 

Information Processing 

04150 mTOR signaling pathway Signal transduction 

Environmental 

Information Processing 

04070 

Phosphatidylinositol signaling 

system Signal transduction 

Environmental 

Information Processing 

04151 PI3K-Akt signaling pathway Signal transduction 

Environmental 

Information Processing 

04015 Rap1 signaling pathway Signal transduction 

Environmental 

Information Processing 

04071 

Sphingolipid signaling 

pathway Signal transduction 

Environmental 

Information Processing 

04350 TGF-beta signaling pathway Signal transduction 

Environmental 

Information Processing 

04370 VEGF signaling pathway Signal transduction 

Environmental 

Information Processing 
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04310 Wnt signaling pathway Signal transduction 

Environmental 

Information Processing 

03050 Proteasome 

Folding, sorting and 

degradation 

Genetic Information 

Processing 

03060 Protein export 

Folding, sorting and 

degradation 

Genetic Information 

Processing 

04141 

Protein processing in 

endoplasmic reticulum 

Folding, sorting and 

degradation 

Genetic Information 

Processing 

04120 

Ubiquitin mediated 

proteolysis 

Folding, sorting and 

degradation 

Genetic Information 

Processing 

03040 Spliceosome Transcription 

Genetic Information 

Processing 

03013 RNA transport Translation 

Genetic Information 

Processing 

00330 

Arginine and proline 

metabolism Amino acid metabolism Metabolism 

00220 Arginine biosynthesis Amino acid metabolism Metabolism 

01230 Biosynthesis of amino acids Amino acid metabolism Metabolism 

00270 

Cysteine and methionine 

metabolism Amino acid metabolism Metabolism 

00380 Tryptophan metabolism Amino acid metabolism Metabolism 

00280 

Valine, leucine and isoleucine 

degradation Amino acid metabolism Metabolism 

01210 

2-Oxocarboxylic acid 

metabolism Carbohydrate metabolism Metabolism 

01200 Carbon metabolism Carbohydrate metabolism Metabolism 

00020 Citrate cycle (TCA cycle) Carbohydrate metabolism Metabolism 

00051 

Fructose and mannose 

metabolism Carbohydrate metabolism Metabolism 

00010 Glycolysis / Gluconeogenesis Carbohydrate metabolism Metabolism 

00630 

Glyoxylate and dicarboxylate 

metabolism Carbohydrate metabolism Metabolism 

00030 Pentose phosphate pathway Carbohydrate metabolism Metabolism 

00640 Propanoate metabolism Carbohydrate metabolism Metabolism 

00620 Pyruvate metabolism Carbohydrate metabolism Metabolism 

00190 Oxidative phosphorylation Energy metabolism Metabolism 

00920 Sulfur metabolism Energy metabolism Metabolism 

00071 Fatty acid degradation Lipid metabolism Metabolism 

01212 Fatty acid metabolism Lipid metabolism Metabolism 

00670 One carbon pool by folate 

Metabolism of cofactors and 

vitamins Metabolism 

00480 Glutathione metabolism 

Metabolism of other amino 

acids Metabolism 
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04920 

Adipocytokine signaling 

pathway Endocrine system Organismal Systems 

04922 Glucagon signaling pathway Endocrine system Organismal Systems 

04912 GnRH signaling pathway Endocrine system Organismal Systems 

04910 Insulin signaling pathway Endocrine system Organismal Systems 

04921 Oxytocin signaling pathway Endocrine system Organismal Systems 

03320 PPAR signaling pathway Endocrine system Organismal Systems 

04917 Prolactin signaling pathway Endocrine system Organismal Systems 

04919 

Thyroid hormone signaling 

pathway Endocrine system Organismal Systems 

04710 Circadian rhythm Environmental adaptation Organismal Systems 
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ST 7 Significant Pathways in Rat Expression Data 

Pathway 

Group 

Pathway 

Subgroup 

(Family) 

Pathway Name Liver Muscle Adipose Lung 

Regulation of 

Cellular 

Machinery and 

Cellular 

Processes 

Cell growth 

and death 

Apoptosis 0 0 0 1 

Cell cycle 1 0 1 1 

Cellular senescence 0 0 1 1 

Ferroptosis 1 1 1 1 

Necroptosis 0 0 1 0 

p53 signaling pathway 0 0 1 1 

Cell motility 
Regulation of actin 

cytoskeleton 0 0 1 1 

Transport and 

catabolism 

Autophagy - animal 1 1 1 1 

Endocytosis 0 1 1 1 

Lysosome 1 1 1 1 

Mitophagy - animal 0 1 1 1 

Peroxisome 1 1 0 0 

Phagosome 1 0 1 0 

Signal 

Transduction 

and Processing 

Signal 

transduction 

AMPK signaling pathway 1 1 1 1 

Apelin signaling pathway 0 1 1 1 

cAMP signaling pathway 0 1 0 0 

cGMP-PKG signaling 

pathway 0 1 1 1 

ErbB signaling pathway 0 1 1 0 

FoxO signaling pathway 1 1 1 1 

HIF-1 signaling pathway 0 1 0 1 

Hippo signaling pathway 0 0 1 1 

Hippo signaling pathway - 

multiple species 0 0 0 1 

MAPK signaling pathway 0 1 0 1 

mTOR signaling pathway 1 0 1 1 

NF-kappa B signaling 

pathway 0 0 0 1 

Notch signaling pathway 0 0 1 0 

Phosphatidylinositol 

signaling system 0 0 0 1 

Phospholipase D signaling 

pathway 0 0 0 1 

PI3K-Akt signaling 

pathway 0 0 1 1 

Rap1 signaling pathway 0 0 0 1 
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Ras signaling pathway 0 0 0 1 

Sphingolipid signaling 

pathway 0 0 1 1 

TGF-beta signaling 

pathway 0 0 1 1 

TNF signaling pathway 0 0 1 1 

VEGF signaling pathway 0 1 0 1 

Wnt signaling pathway 0 0 1 1 

Signaling 

molecules 

and 

interaction ECM-receptor interaction 0 0 1 1 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

Proteasome 1 1 0 1 

Protein export 1 1 1 1 

Protein processing in 

endoplasmic reticulum 1 1 1 1 

RNA degradation 0 1 1 1 

SNARE interactions in 

vesicular transport 0 0 0 1 

Ubiquitin mediated 

proteolysis 0 1 1 1 

Replication 

and repair 

DNA replication 1 0 1 0 

Homologous 

recombination 0 0 1 0 

Mismatch repair 1 0 0 0 

Nucleotide excision repair 1 0 1 1 

Transcription 
RNA polymerase 1 0 0 1 

Spliceosome 1 1 1 1 

Translation 

mRNA surveillance 

pathway 1 0 1 0 

Ribosome 1 1 0 0 

Ribosome biogenesis in 

eukaryotes 0 1 1 1 

RNA transport 1 1 1 1 

Metabolism 
Amino acid 

metabolism 

Alanine, aspartate and 

glutamate metabolism 1 0 0 0 

Arginine and proline 

metabolism 1 1 0 0 

Arginine biosynthesis 1 0 0 0 

Biosynthesis of amino 

acids 1 1 0 0 

Cysteine and methionine 

metabolism 1 1 0 0 
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D-Glutamine and D-

glutamate metabolism 0 0 0 1 

Glutathione metabolism 1 0 0 0 

Glycine, serine and 

threonine metabolism 1 0 0 0 

Lysine degradation 1 0 0 1 

Tryptophan metabolism 1 0 0 0 

Valine, leucine and 

isoleucine degradation 1 0 0 0 

Biosynthesis 

of other 

secondary 

metabolites Caffeine metabolism 1 0 0 0 

Carbohydrate 

metabolism 

2-Oxocarboxylic acid 

metabolism 1 1 0 0 

Amino sugar and 

nucleotide sugar 

metabolism 0 0 0 1 

Carbon metabolism 1 1 0 0 

Citrate cycle (TCA cycle) 1 1 0 0 

Glycolysis / 

Gluconeogenesis 1 1 0 0 

Glyoxylate and 

dicarboxylate metabolism 1 1 0 0 

Inositol phosphate 

metabolism 0 0 0 1 

Pentose phosphate 

pathway 1 0 0 0 

Propanoate metabolism 1 0 0 0 

Pyruvate metabolism 1 1 0 0 

Energy 

metabolism 

Nitrogen metabolism 1 1 0 0 

Oxidative phosphorylation 1 1 0 0 

Sulfur metabolism 1 0 0 0 

Glycan 

biosynthesis 

and 

metabolism 

Glycosaminoglycan 

degradation 0 0 1 0 

Glycosphingolipid 

biosynthesis - ganglio 

series 0 0 1 0 

N-Glycan biosynthesis 1 0 0 1 

Other types of O-glycan 

biosynthesis 0 0 0 1 

Lipid 

metabolism 

Biosynthesis of 

unsaturated fatty acids 1 0 0 0 

Fatty acid biosynthesis 0 1 0 0 
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Fatty acid degradation 1 1 0 0 

Fatty acid metabolism 1 0 0 0 

Glycerolipid metabolism 1 0 0 0 

Glycerophospholipid 

metabolism 0 0 0 1 

Primary bile acid 

biosynthesis 1 0 0 0 

Steroid biosynthesis 1 0 0 0 

Synthesis and degradation 

of ketone bodies 1 0 0 0 

Metabolism 

of cofactors 

and vitamins 

Biotin metabolism 0 0 0 1 

One carbon pool by folate 1 0 1 0 

Metabolism 

of terpenoids 

and 

polyketides 

Terpenoid backbone 

biosynthesis 1 0 0 1 

Nucleotide 

metabolism Purine metabolism 1 0 0 0 

Regulation of 

Organ Systems 

Endocrine 

system 

Adipocytokine signaling 

pathway 0 0 0 1 

Aldosterone synthesis and 

secretion 0 1 0 0 

Glucagon signaling 

pathway 0 1 1 0 

GnRH signaling pathway 0 1 0 0 

Insulin signaling pathway 1 1 1 1 

Oxytocin signaling 

pathway 0 1 1 0 

Parathyroid hormone 

synthesis, secretion and 

action 0 1 1 1 

PPAR signaling pathway 1 0 0 0 

Progesterone-mediated 

oocyte maturation 0 0 1 1 

Prolactin signaling 

pathway 1 0 0 1 

Regulation of lipolysis in 

adipocytes 0 0 1 0 

Relaxin signaling pathway 0 1 1 1 

Thyroid hormone signaling 

pathway 0 1 1 1 

Thyroid hormone synthesis 0 0 1 0 

Circadian rhythm 0 1 1 1 



167 

 

 

 

Environment

al adaptation Thermogenesis 1 1 0 1 

 

ST 8 Significant Pathways in Mouse Expression Data 

Pathway 

Group 

Pathway 

Subgroup 
Pathway Adipose Liver Muscle Lung 

Regulation of 

Cellular 

Machinery 

and Cellular 

Processes 

Cell growth 

and death Ferroptosis 0 1 0 0 

Cell motility 
Regulation of actin 

cytoskeleton 0 0 0 1 

Transport and 

catabolism 

Autophagy - animal 0 1 0 1 

Endocytosis 0 0 0 1 

Lysosome 0 1 0 1 

Peroxisome 1 1 0 0 

Signal 

Transduction 

and 

Processing 

Membrane 

transport ABC transporters 0 0 0 1 

Signal 

transduction 

AMPK signaling 

pathway 1 1 1 1 

Apelin signaling pathway 1 1 0 1 

Calcium signaling 

pathway 0 0 0 1 

cAMP signaling pathway 1 0 0 0 

cGMP-PKG signaling 

pathway 1 0 1 1 

FoxO signaling pathway 0 1 0 1 

HIF-1 signaling pathway 1 0 0 1 

Hippo signaling pathway 0 0 0 1 

Jak-STAT signaling 

pathway 0 0 1 0 

MAPK signaling 

pathway 1 0 1 1 

mTOR signaling pathway 1 1 0 1 

Notch signaling pathway 0 0 0 1 

Phosphatidylinositol 

signaling system 1 0 1 1 

Phospholipase D 

signaling pathway 1 0 0 1 

PI3K-Akt signaling 

pathway 1 0 0 1 

Rap1 signaling pathway 1 0 0 1 

Ras signaling pathway 1 0 0 1 
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Sphingolipid signaling 

pathway 0 1 0 0 

TNF signaling pathway 0 1 0 1 

VEGF signaling pathway 0 0 0 1 

Signaling 

molecules and 

interaction 

Cell adhesion molecules 

(CAMs) 0 0 1 0 

Cytokine-cytokine 

receptor interaction 0 0 1 0 

ECM-receptor interaction 1 0 0 0 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

Proteasome 0 0 0 1 

Protein processing in 

endoplasmic reticulum 0 1 0 0 

Replication and 

repair Fanconi anemia pathway 0 1 0 0 

Transcription RNA polymerase 0 0 0 1 

Metabolism 

Amino acid 

metabolism 

Alanine, aspartate and 

glutamate metabolism 1 0 0 0 

beta-Alanine metabolism 0 0 0 1 

Cysteine and methionine 

metabolism 0 1 0 0 

Glutathione metabolism 0 1 0 1 

Glycine, serine and 

threonine metabolism 0 1 0 0 

Tryptophan metabolism 0 1 0 0 

Valine, leucine and 

isoleucine degradation 0 1 0 1 

Biosynthesis of 

other 

secondary 

metabolites 

Neomycin, kanamycin 

and gentamicin 

biosynthesis 0 0 0 1 

Carbohydrate 

metabolism 

Amino sugar and 

nucleotide sugar 

metabolism 0 0 0 1 

Carbon metabolism 0 1 0 0 

Glyoxylate and 

dicarboxylate metabolism 0 1 0 0 

Inositol phosphate 

metabolism 0 0 1 0 

Propanoate metabolism 1 0 0 1 

Pyruvate metabolism 1 1 0 0 

Starch and sucrose 

metabolism 0 1 0 0 

Energy 

metabolism 

Oxidative 

phosphorylation 0 1 0 0 
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Sulfur metabolism 0 1 0 0 

Glycan 

biosynthesis 

and 

metabolism 

N-Glycan biosynthesis 0 1 0 0 

Other glycan degradation 0 0 0 1 

Lipid 

metabolism 

Biosynthesis of 

unsaturated fatty acids 0 1 0 1 

Ether lipid metabolism 0 1 0 0 

Fatty acid biosynthesis 0 1 0 0 

Fatty acid elongation 0 1 0 0 

Fatty acid metabolism 0 1 0 1 

Glycerolipid metabolism 1 1 0 0 

Glycerophospholipid 

metabolism 0 1 0 1 

Primary bile acid 

biosynthesis 0 1 0 0 

Sphingolipid metabolism 0 0 0 1 

Steroid biosynthesis 0 1 0 0 

Metabolism of 

cofactors and 

vitamins 

Folate biosynthesis 0 1 0 0 

Nicotinate and 

nicotinamide metabolism 0 1 0 0 

One carbon pool by 

folate 0 1 0 0 

Riboflavin metabolism 0 1 0 0 

Metabolism of 

terpenoids and 

polyketides 

Terpenoid backbone 

biosynthesis 1 1 0 1 

Nucleotide 

metabolism 

Purine metabolism 0 1 0 0 

Pyrimidine metabolism 0 1 0 0 

Regulation of 

Organ 

Systems 

Endocrine 

system 

Adipocytokine signaling 

pathway 0 1 0 0 

Aldosterone synthesis 

and secretion 1 0 0 1 

Estrogen signaling 

pathway 0 0 0 1 

Glucagon signaling 

pathway 1 1 0 0 

GnRH signaling pathway 1 0 0 1 

Insulin secretion 0 0 0 1 

Insulin signaling pathway 0 1 0 1 

Melanogenesis 0 0 0 1 

Oxytocin signaling 

pathway 0 0 1 0 
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Parathyroid hormone 

synthesis, secretion and 

action 1 1 1 1 

PPAR signaling pathway 0 1 0 0 

Progesterone-mediated 

oocyte maturation 1 0 0 0 

Prolactin signaling 

pathway 0 1 0 0 

Regulation of lipolysis in 

adipocytes 1 1 0 1 

Relaxin signaling 

pathway 1 0 0 1 

Thyroid hormone 

signaling pathway 1 0 0 1 

Thyroid hormone 

synthesis 0 0 0 1 

Environmental 

adaptation 

Circadian entrainment 0 0 1 0 

Circadian rhythm 1 1 1 1 

Thermogenesis 0 1 0 0 

 

 

 




