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ABSTRACT OF THE DISSERTATION
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High-dimensional Linear Models

By TALAL AHMED

Dissertation Director:

Waheed U. Bajwa

The ordinary linear model has been the bedrock of signal processing, statistics, and

machine learning for decades. The last decade, however, has witnessed a marked trans-

formation of this model: instead of the classical low-dimensional setting in which the

sample size exceeds the number of features/predictors/variables, we are increasingly

having to operate in the high-dimensional setting in which the number of variables far

exceeds the sample size. Although such high-dimensional settings would ordinarily lead

to ill-posed problems, the inference task has been studied under the rubric of high-

dimensional statistical inference, where various notions of structure have been imposed

on the model parameters to obtain unique solutions to the inference problem. While

there are many statistical methods that guarantee unique solutions, these methods can

easily become computationally prohibitive in ultrahigh-dimensional settings, in which

the number of variables can scale exponentially with the sample size. In other cases, the

traditional notions of structure on model parameters can be rather restrictive, especially

when the variables naturally appear in the form of a multi-way array (tensor), as in the

case of neuroimaging data analysis.
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The purpose of this dissertation is to study inference using high-dimensional linear

models for the cases when (i) the number of variables can scale exponentially with the

number of samples, and (ii) the variables naturally form a tensor structure. Specifically,

for each of these respective cases, the dissertation (i) proposes an efficient inference

approach, (ii) provides high-probability performance guarantees for the proposed ap-

proach, and (iii) demonstrates efficacy of the inference approach in statistical analysis

of real-world datasets.
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Chapter 1

Introduction

1.1 Motivation

In this dissertation, we consider an ordinary linear model with response y ∈ R, multidi-

mensional predictorsX ∈ Rn1×n2×···×nd , multidimensional parametersB ∈ Rn1×n2×···×nd ,

and noise η ∈ R such that y = 〈X,B〉 + η, for d ∈ Z+. For the case of vector-valued

predictors, i.e. d = 1, applications of this model can be found in genomics [1, 2] and text

analysis [3, 4]. For the case of tensor-valued predictors, in which d ≥ 3, applications of

this model can be found in application areas like hyperspectral imaging [5–7] and neu-

roimaging [8, 9]. Define {Xi}mi=1, {yi}mi=1, and {ηi}mi=1 to be the realizations of X, y, and

η, respectively, where m refers to the number of samples/observations/measurements.

Then, the realizations of the ordinary linear model can be expressed as

yi = 〈Xi,B〉+ ηi, (1.1)

i ∈ [[m]], where [[a]] := {1, 2, . . . , a} for any a ∈ Z+. Now, given {Xi}mi=1 and {yi}mi=1,

we focus on the task of inference using the regression model in (1.1), which is equivalent

to estimating/recovering/learningB. Over the last decade, we are increasingly having to

operate in the high-dimensional setting in which the number of variables is much greater

than the sample size (i.e.,
∏
i ni � m). Ordinarily, such high-dimensional setting should

lead to ill-posed problems. However, if some notion of structure can be imposed on B

such as to constrain the degrees of freedom of the model, we may be able to formulate

well-defined inference problems, even in the high-dimensional setting. Some important

examples of such structure include tensor rank [10] and sparsity [11]. The focus of

this dissertation is on studying the imposition of such structures that occur naturally in

many data analysis problems, while characterizing the gains in computational or sample
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complexity resulting because of the various structural assumptions.

1.2 Some Challenges in High-dimensional Inference

First, we consider inference using (1.1) for the case when d = 1. Specifically, we con-

sider ultrahigh-dimensional linear models, in which the number of variables can scale

exponentially with the sample size: log n1 = O(mα) for α ∈ (0, 1). The principle of par-

simony—which states that only a small number of variables typically affect the response

y—has been employed in the literature to help obtain unique solutions to inference prob-

lems based on high-dimensional linear models. There exist a number of techniques in the

literature—such as forward selection/matching pursuit, backward elimination [12], least

absolute shrinkage and selection operator (LASSO) [13], elastic net [14]—that can be

employed for inference. However, all such existing inference techniques have super-linear

(in the number of variables n1) computational complexity. In the ultrahigh-dimensional

setting, therefore, use of the traditional methods for statistical inference can easily be-

come computationally prohibitive.

Second, we consider inference using (1.1) for the case when dealing when tensor

data, i.e., d ≥ 3. Tensor data appears naturally in areas like imaging and information

sciences [15, 16], machine learning [17], signal processing [18], and quantum mechan-

ics [19]. One simple approach for estimating parameter tensor B is to vectorize the

tensors, and then use any of the traditional sparsity promoting methods for learning

the regresison model. Specifically, the parameter tensor B and the predictor tensors

{Xi}mi=1 can be vectorized such that the model in (1.1) can equivalently be expressed as

yi = 〈vec(Xi), vec(B)〉+ηi, where vec(.) denotes the vectorization procedure. Given this

vector-valued regression model, any of the aforementioned sparsity promoting techniques

can be employed for estimating vec(B). However, a major drawback of vectorization is

that the spatial structure among the entries of the tensor B is not preserved—structure

that can possibly be exploited for efficient estimation of B. To address this issue,

various tensor decompositions have been considered with B to exploit the inter-modal

relationships among the parameters.
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Among the various tensor decompositions that capture such spatial relationships

among tensor entries [16, 20], the notion of Tucker decomposition has been successfully

employed to learn (1.1) under the imposition of low Tucker rank on B [10, 21, 22].

However, in the various convex and non-convex methods proposed for learning B under

the imposition of low Tucker rank [21–23], the sample complexity of learning B has

been shown to have linear scaling with n, where n := max{ni : i ∈ [[d]]}. Such sample

complexity requirement can become prohibitive in application areas like neuroimaging

data analysis [24]. Another challenge with the sole imposition of low Tucker rank on B

is that the resulting regression model does not encompass the typical situation where

the response depends on only a few of the (scalar) predictors in the model (i.e., the

sparsity assumption).

1.3 Overview and Contributions

Our main contributions include (i) addressing the computational bottleneck for inference

using ultra-high dimensional linear models by analyzing a two-step inference method,

and (ii) addressing the sample complexity of inference using tensor-valued regression

models by analyzing a new regression model and inference method. More specifically,

our contributions are as follows:

1. Variable selection-based dimensionality reduction, commonly referred to as vari-

able screening, has been put forth as a practical means of overcoming the com-

putational bottleneck of inference using sparse high-dimensional linear models

for d = 1. Since only a small number of (independent) variables actually con-

tribute to the response (dependent variable) in the sparse setting, one can first—in

principle—discard most of the variables (the screening step) and then carry out

inference on a relatively low-dimensional linear model using any one of the sparsity-

promoting techniques (the inference step). In this thesis, our focus is on obtaining

understanding of the former step, i.e., the screening step. In Chapter 2, we revisit

one of the simplest screening algorithms, which uses marginal correlations between
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the variables {Xi}pi=1 and the response y for screening purposes [25, 26], and pro-

vide a comprehensive theoretical understanding of its screening performance for

arbitrary ultrahigh-dimensional linear models. Our numerical experiments con-

firm that our new theoretical insights are not mere artifacts of analysis; rather,

they are reflective of the challenges associated with marginal correlation-based

variable screening.

2. In Chapter 3, we derive mathematical conditions for variable screening of two

families of ultra-high dimensional linear models. The first family corresponds to

sub-Gaussian linear models, in which the independent variables/predictors are

independently drawn from (possibly different) sub-Gaussian distributions. The

second family corresponds to arbitrary (random or deterministic) linear models in

which the (empirical) correlations between independent variables satisfy certain

polynomial-time verifiable conditions. The main result for this family of linear

models establishes that, under appropriate conditions, it is possible to reduce

the dimension of an ultrahigh-dimensional linear model to almost the sample size

even when the number of active variables scales almost linearly with the sample

size. This, to the best of our knowledge, is the first screening result that provides

such explicit and optimistic guarantees without imposing a statistical prior on the

distribution of the independent variables.

3. In Chapter 4, we study the tensor-valued regression model, i.e., the model in (1.1)

for d ≥ 3. In our work, we consider the simultaneous imposition of a certain low

Tucker rank and sparse structure on the parameter tensor B, massively reducing

the degrees of freedom in B. Subsequently, we formulate the estimation of B as

a non-convex problem, and we propose a tensor variant of the projected gradient

descent method to solve it. In contrast, prior works that study simultaneous

imposition of multiple structures on tensor-valued regression models either (i)

assume that the tensors satisfy certain cubic structures [27], or (ii) formulate

a convex problem for estimating the parameter tensor [28], which can lead to

sub-optimal sample complexity [23]. Furthermore, we provide theoretical analysis
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to show the convergence behavior of the proposed algorithm, based on a certain

Restricted Isometry Property. Finally, our experiments demonstrate the efficacy

of the proposed method for learning the regression model in (1.1), under the

simultaneous imposition of low rank and sparsity on B.

4. In Chapter 5, we evaluate the Restricted Isometry Property for tensor-valued sub-

Gaussian linear models, and in the process, we characterize the sample complexity

of learning the posed tensor-valued regression model. Our sample complexity

bound only has a polylogarithmic dependence on n, where n := max{ni : i ∈ [[d]]}.

In contrast, prior works in tensor regression pose a sample complexity requirement

that is either linear or super-linear in n [21–23]. In our experiments on real

neuroimaging data, we demonstrate the utility of our proposed model and method

in diagnosis of attention deficit hyperactivity disorder (ADHD) using fMRI images.

Importantly, these experiments show that despite the imposition of low rank and

sparse structure on the parameter tensor B, and a massive reduction in degrees

of freedom, our proposed model is not restrictive and is useful for neuroimaging

data analysis.

1.4 Notation

Bold upper-case letters (Z), upper-case letters (Z), bold lower-case letters (z), lower-

case letters (z), and underlined letters (z) are used to denote tensors, matrices, vectors,

scalars, and tuples, respectively. For any tuple z and scalar α, we use αz to denote the

tuple obtained by multiplying each entry of z by α. For any scalar q ∈ Z+, we use [[q]]

as a shorthand for {1, 2, . . . , q}. Given a ∈ R, dae denotes the smallest integer greater

than or equal to a.

Given a vector v, ‖v‖p denotes its `p norm, vi denotes the i-th entry of v, and vmin

denotes min
i
|vi|. Given two vectors u ∈ Rn and v ∈ Rn of same dimension, u ◦ v

denotes the outer product, u � v denotes ui ≤ vi for all i ∈ [[n]], u = v denotes ui = vi

for all i ∈ [[n]], and max{u,v} denotes entry-wise maxima.

Given a matrix U , Uj denotes its j-th column and Ui,j denotes the entry in its i-th
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row and j-th column, U(:, i) denotes the i-th column, and ‖U‖1,2 denotes max
i
‖U(:, i)‖2.

Further, given a set I ⊂ Z+, UI (resp., vI) denotes a submatrix (resp., subvector)

obtained by retaining columns of U (resp., entries of v) corresponding to the indices in

I. Finally, the superscript (·)> denotes the transpose operation.

Given any tensor Z, the (i1, i2, . . . , id)-th entry is given by Z(i1, i2, . . . , id), the

Frobenius norm ‖Z‖F is given by
√ ∑
i1,i2,...,id

Z(i1, i2, . . . , id)2, the `1 norm is given by∑
i1,i2,...,id

|Z(i1, i2, . . . , id)|, and the mode-i matricization Z(i) is the matrix obtained from

column-arrangement of the mode-i fibers of Z. The conjugate transpose of a given linear

map, X : Rn1×n2×···×nd → Rm, is denoted by X ∗ : Rm → Rn1×n2×···×nd . Following the

tensor notation in [16], for matrices Ũi ∈ Rni×ri , i ∈ [[d]], and tensor S ∈ Rr1×r2×···×rd ,

we define S×1Ũ1×2Ũ2 · · ·×dŨd as
∑

i1,i2,...,id

S(i1, i2, . . . , id) Ũ1(:, i1) ◦ Ũ2(:, i2) ◦ · · · ◦ Ũd(:, id).
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Chapter 2

Correlation-based Variable Screening

Statistical inference can be computationally prohibitive in ultrahigh-dimensional linear

models. Correlation-based variable screening, in which one leverages marginal correla-

tions for removal of irrelevant variables from the model prior to statistical inference, can

be used to overcome this challenge. Prior works on correlation-based variable screen-

ing either impose strong statistical priors on the linear model or assume specific post-

screening inference methods. This chapter extends the analysis of correlation-based

variable screening to arbitrary linear models and post-screening inference techniques.

In particular, (i) it shows that a condition—termed the screening condition—is suf-

ficient for successful correlation-based screening of linear models, and (ii) it provides

insights into the dependence of marginal correlation-based screening on different prob-

lem parameters. Finally, numerical experiments confirm that the insights of this chapter

are not mere artifacts of analysis; rather, they are reflective of the challenges associated

with marginal correlation-based variable screening.

2.1 Introduction

In this chapter, our focus is on the ordinary linear model in (1.1) for the case when

d = 1 (vector-valued predictors), and we define n := n1 so that n denotes the number

of features/predictors/variables in (1.1) for the case when d = 1. Further, for ease of

notation in the case d = 1, we denote the ordinary linear model in (1.1) as y = Xβ+noise

where the dimension, n, of β refers to number of variables; whereas, the dimension, m,

of y refers to the sample size. Finally, we allow the number of variables, n, to scale

exponentially with the number of samples, m, such that log n = O(mα) for α ∈ (0, 1)

(ultrahigh-dimensional setting). In such ultra-high dimensional setting, it is reasonable
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to hypothesize that only a small number of (independent) variables actually contribute

to the response (dependent variable). While there exist a number of techniques in the

literature—such as forward selection/matching pursuit and backward elimination [12],

least absolute shrinkage and selection operator (LASSO) [13], elastic net [14], smoothly

clipped absolute deviation (SCAD) [29], bridge regression [30, 31], adaptive LASSO [32],

group LASSO [33], and Dantzig selector [34]—that can be employed for inference from

high-dimensional linear models, all these techniques have super-linear (in the number

of variables n) computational complexity, and thus these methods can quickly become

computationally prohibitive in the ultrahigh-dimensional setting.

Variable selection-based dimensionality reduction, commonly referred to as variable

screening, has been put forth as a practical means of overcoming this curse of dimen-

sionality [35]: since only a small number of independent variables/predictors actually

contribute to y, one can first—in principle—discard most of the variables (the screening

step) and then carry out inference on a relatively low-dimensional linear model using

any one of the sparsity-promoting techniques (the inference step). There are two main

challenges that arise in the context of variable screening in ultrahigh-dimensional lin-

ear models. First, the screening algorithm should have low computational complexity

(ideally, O(mn)). Second, the screening algorithm should be accompanied with mathe-

matical guarantees that ensure the reduced linear model contains all relevant variables

that affect the response. Our goal in this chapter is to revisit one of the simplest screen-

ing algorithms, which uses marginal correlations between the variables {Xi}ni=1 and the

response y for screening purposes [25, 26], and provide a theoretical understanding of

its screening performance for arbitrary ultrahigh-dimensional linear models.

2.1.1 Relationship to Prior Work

Researchers have long intuited that the (absolute) marginal correlation |X>i y| is a strong

indicator of whether the i-th variable contributes to the response variable. One of the

earliest screening works in this regard that is agnostic to the choice of the subsequent

inference techniques is termed sure independence screening (SIS) [36]. SIS is based

on simple thresholding of marginal correlations and satisfies the so-called sure screening
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property—which guarantees that all important variables survive the screening stage with

high probability—for the case of normally distributed variables. An iterative variant

of SIS, termed ISIS, is also discussed in [36], while [37] presents variants of SIS and

ISIS that can lead to reduced false selection rates of the screening stage. Extensions of

SIS to generalized linear models are discussed in [37, 38], while its generalizations for

semi-parametric (Cox) models and non-parametric models are presented in [39, 40] and

[41, 42], respectively.

The defining characteristics of the works referenced above is that they are agnostic

to the inference technique that follows the screening stage. In recent years, screening

methods have also been proposed for specific optimization-based inference techniques.

To this end, [43] formulates a marginal correlations-based screening method, termed

SAFE, for the LASSO problem and shows that SAFE results in zero false selection rate.

In [44], the so-called strong rules for variable screening in LASSO-type problems are

proposed that are still based on marginal correlations and that result in discarding of

far more variables than the SAFE method. The screening tests of [43, 44] for the LASSO

problem are further improved in [45–47] by analyzing the dual of the LASSO problem.

Notwithstanding these prior works, we have holes in our understanding of variable

screening in ultrahigh-dimensional linear models. Works such as [43–47] necessitate the

use of LASSO-type inference techniques after the screening stage. In addition, these

works do not help us understand the relationship between the problem parameters and

the dimensions of the reduced model. Similar to [36, 37, 48, 49], and in contrast to [43–

47], our focus in this chapter is on screening that is agnostic to the post-screening

inference technique. To this end, [48] lacks a rigorous theoretical understanding of

variable screening using the generalized correlation. While [36, 37, 49] overcome this

shortcoming of [48], these works have two major limitations. First, their results are

derived under the assumption of restrictive statistical priors on the linear model (e.g.,

normally distributed Xi’s). In many applications, however, it can be a challenge to

ascertain the distribution of the independent variables. Second, the analyses in [36,

37, 49] assume the variance of the response variable to be bounded by a constant;

this assumption, in turn, imposes the condition ‖β‖2 = O(1). In contrast, defining
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βmin := mini |βi|, we establish in the sequel that the ratio βmin

‖β‖2 (and not ‖β‖2) directly

influences the performance of marginal correlation-based screening procedures.

2.1.2 Our Contributions

Our focus in this chapter is on marginal correlation-based screening of high-dimensional

linear models that is agnostic to the post-screening inference technique. To this end,

we provide an extended analysis of the thresholding-based SIS procedure of [36]. The

resulting screening procedure, which we term extended sure independence screening (Ex-

SIS), provides new insights into marginal correlation-based screening of arbitrary high-

dimensional linear models. Specifically, we first provide a simple, distribution-agnostic

sufficient condition—termed the screening condition—for (marginal correlation-based)

screening of linear models. This sufficient condition, which succinctly captures joint

interactions among both the active and the inactive variables, is then leveraged to

explicitly characterize the performance of ExSIS as a function of various problem pa-

rameters, including noise variance, the ratio βmin

‖β‖2 , and model sparsity. The numerical

experiments reported at the end of this chapter confirm that the dependencies high-

lighted in this screening result are reflective of the actual challenges associated with

marginal correlation-based screening and are not mere artifacts of our analysis.

The rest of this chapter is organized as follows. We formulate the problem of marginal

correlation-based screening in Sec. 2.2. Next, in Sec. 2.3, we define the screening condi-

tion and present our main result that establishes the screening condition as a sufficient

condition for successful variable screening. Finally, results of numerical experiments are

reported in Sec. 2.4, while concluding remarks are presented in Sec. 2.5.

2.2 Problem Formulation

Our focus in this chapter is on the ultrahigh-dimensional ordinary linear model y =

Xβ + η, where y ∈ Rm, X ∈ Rm×n and n ≫ m. In the statistics literature,
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Algorithm 1: Marginal Correlation-based Screening
Input: X ∈ Rm×n, y ∈ Rm, and d ∈ Z+

1: w← X>y
2: Ŝd ← {i ∈ [[n]] : |wi| is among the d largest of all correlations}
Output: Ŝd ⊂ [[n]] such that |Ŝd| = d

X is referred to as data/design/observation matrix with the rows of X correspond-

ing to individual observations and the columns of X corresponding to individual fea-

tures/predictors/variables, y is referred to as observation/response vector with individ-

ual responses given by {yi}mi=1, β is referred to as the parameter vector, and η is referred

to as modeling error or observation noise. Throughout this chapter, we assume X has

unit `2-norm columns, β ∈ Rn is k-sparse with k < m (i.e.,
∣∣{i ∈ [[n]] : βi 6= 0}

∣∣ =

k < m), and η ∈ Rn is a zero-mean Gaussian vector with (entry-wise) variance σ2 and

covariance Cη = σ2I. Here, η is taken to be Gaussian with covariance σ2I for the sake

of this exposition, but our analysis is trivially generalizable to other noise distributions

and/or covariance matrices. Further, we make no a priori assumption on the distribu-

tion of X. Finally, we define S := {i ∈ [[n]] : βi 6= 0} to be the set that indexes the

non-zero components of β. Using this notation, the linear model can equivalently be

expressed as

y = Xβ + η = XSβS + η. (2.1)

Given (2.1), the goal of variable screening is to reduce the number of variables in

the linear model from n (since n ≫ m) to a moderate scale d (≪ n) using a fast and

efficient method. Our focus here is on screening methods that satisfy the so-called sure

screening property [36]; specifically, a method is said to carry out sure screening if the

d-dimensional model returned by it is guaranteed with high probability to retain all the

columns of X that are indexed by S. In this chapter, we study sure screening using

marginal correlations between the response vector and the columns of X. The resulting

screening procedure is outlined in Algorithm 1.

The term sure independence screening (SIS) was coined in [36] to refer to screening

of ultrahigh-dimensional Gaussian linear models using Algorithm 1. Our goal in this

chapter is to provide an understanding of the screening performance of Algorithm 1 for
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arbitrary (and, thus, not just Gaussian) design matrices. We use the term extended sure

independence screening (ExSIS) to refer to screening of arbitrary linear models using

Algorithm 1.

2.3 Sufficient Conditions for Sure Screening

In this section, we derive the most general sufficient conditions for ExSIS of ultrahigh-

dimensional linear models. The results reported in this section provide important in-

sights into the workings of ExSIS without imposing any statistical priors on X and β.

We begin with a definition of the screening condition for the design matrix X.

Definition 2.1 ((k, b)-Screening Condition). Fix an arbitrary β ∈ Rn that is k-sparse.

The (normalized) matrix X satisfies the (k, b)-screening condition if there exists 0 <

b(m,n) < 1√
k
such that the following hold:

max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤ b(m,n)‖β‖2, (SC-1)

max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤ b(m,n)‖β‖2. (SC-2)

The screening condition is a statement about the collinearity of the independent vari-

ables in the design matrix. The parameter b(m,n) in the screening condition captures

the similarity between (i) the columns of XS , and (ii) the columns of XS and XSc ; the

smaller the parameter b(m,n) is, the less similar the columns are. Furthermore, since

k < (b(m,n))−2 in the screening condition, the parameter b(m,n) reflects constraints

on the sparsity parameter k.

We now present one of our main screening results for arbitrary design matrices,

which highlights the significance of the screening condition and the role of the parameter

b(m,n) within ExSIS.

Theorem 2.1 (Sufficient Conditions for ExSIS). Let y = Xβ + η with β a k-sparse

vector and the entries of η independently distributed as N (0, σ2). Define βmin := min
i∈S
|βi|

and η̃ := X>η, and let Gη be the event {‖η̃‖∞ ≤ 2
√
σ2 log n}. Suppose X satisfies the
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screening condition and assume βmin

‖β‖2 > 2b(m,n) + 4

√
σ2 logn

‖β‖2 . Then, conditioned on Gη,

Algorithm 1 satisfies S ⊂ Ŝd as long as d ≥

⌈
√
k

βmin
‖β‖2

−2b(m,n)− 4
√
σ2 logn
‖β‖2

⌉
.

We refer the reader to Sec. 2.3.2 for a proof of this theorem.

2.3.1 Discussion

Theorem 2.1 highlights the dependence of ExSIS on the observation noise, the ratio
βmin

‖β‖2 , the parameter b(m,n), and model sparsity. We first comment on the relationship

between ExSIS and observation noise η. Notice that the statement of Theorem 2.1 is

dependent upon the event Gη. However, for any ε > 0, we have (see, e.g., [50, Lemma 6])

Pr(‖η̃‖∞ ≥ σε) <
4n

ε
√

2π
exp

(
− ε2

2

)
. (2.2)

Therefore, substituting ε = 2
√

log n in (2.2), we obtain

Pr(Gη) ≥ 1− 2(n
√

2π log n)−1. (2.3)

Thus, Algorithm 1 possesses the sure screening property in the case of the observation

noise η distributed as N (0, σ2I). We further note from the statement of Theorem 2.1

that the higher the signal-to-noise ratio (SNR), defined here as SNR := ‖β‖2
σ , the more

Algorithm 1 can screen irrelevant/inactive variables. It is also worth noting here trivial

generalizations of Theorem 2.1 for other noise distributions. In the case of η distributed

as N (0, Cη), Theorem 2.1 has σ2 replaced by the largest eigenvalue of the covariance

matrix Cη. In the case of η following a non-Gaussian distribution, Theorem 2.1 has

2
√
σ2 log n replaced by distribution-specific upper bound on ‖X>η‖∞ that holds with

high probability.

In addition to the noise distribution, the performance of ExSIS also seems to be im-

pacted by the minimum-to-signal ratio (MSR), defined here as MSR := βmin

‖β‖2 ∈
(
0, 1√

k

]
.

Specifically, the higher the MSR, the more Algorithm 1 can screen inactive variables.

Stated differently, the independent variable with the weakest contribution to the re-

sponse determines the size of the screened model. Finally, the parameter b(m,n) in

the screening condition also plays a central role in characterization of the performance



14

of ExSIS. First, the smaller the parameter b(m,n), the more Algorithm 1 can screen

inactive variables. Second, the smaller the parameter b(m,n), the more independent

variables can be active in the original model; indeed, we have from the screening con-

dition that k < (b(m,n))−2. Third, the smaller the parameter b(m,n), the lower the

smallest allowable value of MSR; indeed, we have from the theorem statement that

MSR > 2b(m,n) + 4

√
σ2 logn

‖β‖2 .

It is evident from the preceding discussion that the screening condition (equivalently,

the parameter b(m,n)) is one of the most important factors that helps understand the

workings of ExSIS and helps quantify its performance. Unfortunately, the usefulness of

this knowledge is limited in the sense that the screening condition cannot be utilized in

practice. Specifically, the screening condition is defined in terms of the set S, which is

of course unknown. We overcome this limitation of Theorem 2.1 in the next chapter by

implicitly deriving the screening condition for sub-Gaussian design matrices in Sec. 3.2

and for a class of arbitrary (random or deterministic) design matrices in Sec. 3.3.

2.3.2 Proof of Theorem 2.1

We first provide an outline of the proof of Theorem 2.1, which is followed by its formal

proof. Define p0 := n, Ŝp0 := [[n]], and t1 := |{j ∈ Ŝp0 : |wj | ≥ min
i∈S
|wi|}|. Next, fix a

positive integer p1 < p0 and define

Ŝp1 := {i ∈ Ŝp0 : |wi| is among the p1 largest of all marginal correlations}.

The idea is to first derive an initial upper bound on t1, denoted by t̄1, and then choose

p1 = dt̄1e; trivially, we have S ⊂ Ŝp1 ⊂ Ŝp0 . As a result, we get

y = Xβ + η = XŜp0
βŜp0

+ η = XŜp1
βŜp1

+ η. (2.4)

Note that while deriving t̄1, we need to ensure t̄1 < p0; this in turn imposes some

conditions on X that also need to be specified. Next, we can repeat the aforementioned

steps to obtain Ŝp2 from Ŝp1 for a fixed positive integer p2 < p1 < p0. Specifically, define

Ŝp2 := {i ∈ Ŝp1 : |wi| is among the p2 largest of all marginal correlations}
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and t2 := |{j ∈ Ŝp1 : |wj | ≥ min
i∈S
|wi|}|. We can then derive an upper bound on t2,

denoted by t̄2, and then choose p2 = dt̄2e; once again, we have S ⊂ Ŝp2 ⊂ Ŝp1 ⊂ Ŝp0 .

Notice further that we do require t̄2 < p1, which again will impose conditions on X.

In similar vein, we can keep on repeating this procedure to obtain a decreasing

sequence of numbers {t̄j}ij=1 and sets Ŝp0 ⊃ Ŝp1 ⊃ Ŝp2 ⊃ . . . ⊃ Ŝpi ⊃ S as long as

t̄i < pi−1, where
{
pj := dt̄je

}i
j=1

and i ∈ Z+. The complete proof of Theorem 2.1

follows from a careful combination of these (analytical) steps. In order for us to be

able to do that, however, we need two lemmas. The first lemma provides an upper

bound on ti = |{j ∈ Ŝpi−1 : |wj | ≥ min
i∈S
|wi|}| for i ∈ Z+, denoted by t̄i. The second

lemma provides conditions on the design matrix X such that t̄i < pi−1. The proof of

the theorem follows from repeated application of the two lemmas.

Lemma 2.1. Fix i ∈ Z+ and suppose S ⊂ Ŝpi−1, where |Ŝpi−1 | =: pi−1 and pi−1 ≤ p.

Further, suppose the design matrix X satisfies the (k, b)-screening condition for the

k-sparse vector β and the event Gη holds true. Finally, define ti := |{j ∈ Ŝpi−1 : |wj | ≥

min
i∈S
|wi|}|. Under these conditions, we have

ti ≤
pi−1b(m,n)‖β‖2 + ‖β‖1 + 2pi−1

√
σ2 log n

βmin − b(m,n)‖β‖2 − 2
√
σ2 log n

=: t̄i. (2.5)

The proof of this lemma is provided in Appendix 2.6.1. The second lemma, whose

proof is given in Appendix 2.6.2, provides conditions on X under which the upper bound

derived on ti for i ∈ Z+, denoted by t̄i, is non-trivial.

Lemma 2.2. Fix i ∈ Z+. Suppose pi−1 >
√
k

βmin
‖β‖2

−2b(m,n)− 4
√
σ2 logn
‖β‖2

and βmin

‖β‖2 > 2b(m,n)+

4
√
σ2 logn

‖β‖2 . Then, we have 0 < t̄i < pi−1.

We are now ready to present a complete technical proof of Theorem 2.1.

Proof. The idea is to use Lemma 2.1 and Lemma 2.2 repeatedly to screen columns of X.

Note, however, that this is simply an analytical technique and we do not actually need

to perform such an iterative procedure to specify d in Algorithm 1. To begin, recall that
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we have p0 := n, Ŝp0 := [[p0]],

Ŝp1 := {i ∈ Ŝp0 : |wi| is among the p1 largest of all marginal correlations},

and p1 = dt̄1e, where t̄1 is defined in (2.5). By Lemma 2.1 and Lemma 2.2, we have

S ⊂ Ŝp1 and p1 < p0, respectively. Next, given p1 >

⌈
√
k

βmin
‖β‖2

−2b(m,n)− 4
√
σ2 logn
‖β‖2

⌉
, we can

use Lemma 2.1 and Lemma 2.2 to obtain Ŝp2 from Ŝp1 in a similar fashion. Specifically,

let

Ŝp2 := {i ∈ Ŝp1 : |wi| is among the p2 largest of all marginal correlations}

and p2 = dt̄2e, where t̄2 is defined in (2.5). Then, by Lemma 2.1 and Lemma 2.2, we

have S ⊂ Ŝp2 and p2 < p1, respectively.

Notice that we can keep on repeating this procedure to obtain sub-models Ŝp1 , Ŝp2 , . . . , Ŝpl

such that pl ≤
√
k

βmin
‖β‖2

−2b(m,n)− 4
√
σ2 log p
‖β‖2

and pl−1 >
√
k

βmin
‖β‖2

−2b(m,n)− 4
√
σ2 log p
‖β‖2

. By repeated ap-

plications of Lemma 2.1 and Lemma 2.2, we have S ⊂ Ŝpl . Further, we are also guaran-

teed that pl ≤
√
k

βmin
‖β‖2

−2b(m,n)− 4
√
σ2 logn
‖β‖2

. Thus, we can choose d ≥

⌈
√
k

βmin
‖β‖2

−2b(m,n)− 4
√
σ2 logn
‖β‖2

⌉
in Algorithm 1 in one shot and have S ⊂ Ŝd.

2.4 Numerical Experiments

In order to ensure the insights offered by Theorem 2.1 are not mere artifacts of our

analysis, we carry out numerical experiments to study the impact of relevant parameters

on the screening performance of an oracle that has perfect knowledge of the minimum

value of d required in Algorithm 1 to ensure S ⊂ Ŝd. In particular, we use these oracle-

based experiments to verify the role of b(m,n) and MSR in screening using Algorithm 1,

as specified by Theorem 2.1. Before we describe our experiments, let us define the notion

of worst-case coherence, µ, of X as defined in [51]: µ := max
i,j:i 6=j

∣∣X>i Xj

∣∣. Since worst-case

coherence is an indirect measure of pairwise similarity among the columns of X, we use

µ as a surrogate for the value of b(m,n) in our experiments.

The design matrix X ∈ Rm×n in our experiments is generated such that it consists

of independent and identically distributed Gaussian entries, followed by normalization



17

of the columns of X. Among other parameters, m = 500, n = 2000, k = 5, and

σ = 0 in the experiments. The entries of S are chosen uniformly at random from

[[n]]. Furthermore, the non-zero entries in the parameter vector β are sampled from a

uniform distribution U [a, e]; the value of a is set at 1 whereas e ∈ [2, 10]. Finally, the

experiments comprise the use of an oracle to find the minimum possible value of d that

can be used in Algorithm 1 while ensuring S ⊂ Ŝd. We refer to this minimum value of

d as the minimum model size (MMS), and we use median of MMS over 400 runs of the

experiment as a metric of difficulty of screening.

To analyze the impact of increasing µ (equivalently, b(m,n)) and MSR on screening

using Algorithm 1, the numerical experiments are repeated for various values of µ and

MSR. In particular, the worst-case coherence ofX is varied by scaling its largest singular

value, followed by normalization of the columns of X, while the MSR is increased by

decreasing the value of e. In Fig. 2.1a, we plot the median MMS against µ for different

MSR values. The experimental results of the oracle performance offer two interesting

insights. First, the median MMS increases with µ; this shows that any analysis for

screening using Algorithm 1 needs to account for the similarity between the columns

of X. This relationship is captured by the parameter b(m,n) in Theorem 2.1. Second,

the difficulty of screening for an oracle increases with decreasing MSR values. This

relationship is also reflected in Theorem 2.1: as ‖β‖2 increases for a fixed e, MSR

decreases and the median MMS increases.

More interestingly, if we focus on the plot in Fig. 2.1a for b = 10, and we plot the

relationship between µ and median MMS along with the interquartile range of MMS for

each value of µ, it can be seen that there are instances when the oracle has to select all

2000 predictors to ensure S ⊂ Ŝd (see boxplot for µ = 0.65 and 0.75). In other words,

no screening can be performed at all in these cases. This phenomenon is also reflected

in Theorem 2.1: when b(n, p) becomes too large, the condition imposed on MSR is no

longer true and our analysis cannot be used for screening using Algorithm 1.
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(a) (b)

Figure 2.1: Understanding the limitations of correlation-based screening through the
use of an oracle. (a) Relationship between the worst-case coherence and the MMS for
various values of MSR. (b) Boxplot of the MMS versus the worst-case coherence for
e = 10.

2.5 Conclusion

In this chapter, we provided mathematical guarantees for variable screening of arbi-

trary linear models using a marginal correlation-based approach, without imposing any

statistical prior on the linear model. Moreover, our experiments demonstrated that

the insights from the main result are reflective of the actual challenges involved with

screening of arbitrary linear models using marginal correlations.

2.6 Appendix

2.6.1 Proof of Lemma 2.1

We begin by defining

w(i) := X>Ŝpi−1

y = X>Ŝpi−1

XSβS +X>Ŝpi−1

η =: ξ(i) + η̃(i) (2.6)

where w(i) ∈ R|Ŝpi−1 | measures the correlation of the observation vector y with each

column of XŜpi−1
. To derive an upper bound on ti, we derive upper and lower bounds

on
pi−1∑
j1=1
|w(i)

j1
|. A simple upper bound on

pi−1∑
j1=1
|w(i)

j1
| is:

pi−1∑
j1=1

|w(i)
j1
| =

pi−1∑
j1=1

|ξ(i)j1 + η̃
(i)
j1
| ≤

pi−1∑
j1=1

(|ξ(i)j1 |+ |η̃
(i)
j1
|) = ‖ξ(i)‖1 + ‖η̃(i)‖1. (2.7)
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Next, we recall that w = X>y and we further define ξ and η̃ such that

w = X>y = X>XSβS +X>η =: ξ + η̃. (2.8)

Now define Ti := {j1 ∈ Ŝpi−1 : |wj1 | ≥ min
j2∈S
|wj2 |}. Then, a simple lower bound on

pi−1∑
j1=1
|w(i)

j1
| is:

pi−1∑
j1=1

|w(i)
j1
| =

∑
j1∈Ŝpi−1

|wj1 | ≥
∑
j1∈Ti

|wj1 |

≥
∑
j1∈Ti

min
j2∈Ti

|wj2 |
(a)
≥
∑
j1∈Ti

min
j2∈S
|wj2 |

= ti(min
j2∈S
|wj2 |) = ti(min

j2∈S
|ξj2 + η̃j2 |)

≥ ti(min
j2∈S
|ξj2 | −max

j2∈S
|η̃j2 |), (2.9)

where (a) follows from definition of Ti. Combining (2.7) with (2.9), we get

ti ≤
‖ξ(i)‖1 + ‖η̃(i)‖1

min
j2∈S
|ξj2 | −max

j2∈S
|η̃j2 |

. (2.10)

We next bound ‖ξ(i)‖1, max
j2∈S
|η̃j2 |, ‖η̃(i)‖1 and min

j2∈S
|ξj2 | separately. First, we derive an

upper bound on ‖ξ(i)‖1:

‖ξ(i)‖1 =
∑

j1∈Ŝpi−1

∣∣ ∑
j2∈S

X>j1Xj2βj2
∣∣

(b)
=
∑
j1∈S

∣∣ ∑
j2∈S

X>j1Xj2βj2
∣∣+

∑
j1∈Ŝpi−1\S

∣∣ ∑
j2∈S

X>j1Xj2βj2
∣∣

(c)
≤
∑
j1∈S

∣∣∑
j2∈S
j2 6=j1

X>j1Xj2βj2
∣∣+

∑
j1∈S
|βj1 |+

∑
j1∈Ŝpi−1\S

∣∣ ∑
j2∈S

X>j1Xj2βj2
∣∣

≤ kmax
j1∈S

∣∣∑
j2∈S
j2 6=j1

X>j1Xj2βj2
∣∣+ (pi−1 − k) max

j1∈Ŝpi−1\S

∣∣ ∑
j2∈S

X>j1Xj2βj2
∣∣+ ‖β‖1

≤ kmax
j1∈S

∣∣∑
j2∈S
j2 6=j1

X>j1Xj2βj2
∣∣+ (pi−1 − k) max

j1∈Sc

∣∣ ∑
j2∈S

X>j1Xj2βj2
∣∣+ ‖β‖1, (2.11)

where (b) follows since S ⊂ Ŝpi−1 and (c) follows from the triangle inequality and the

fact that the columns of X are unit norm. Next, we have

max
j2∈S
|η̃j2 | ≤ ‖η̃‖∞ ≤ 2

√
σ2 log p, (2.12)
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where the last inequality follows from conditioning on Gη. Similarly, we have

‖η̃(i)‖1 =
∑

j1∈Ŝpi−1

|X>j1η| ≤
∑

j1∈Ŝpi−1

max
j2∈Ŝpi−1

|X>j2η|

= pi−1( max
j2∈Ŝpi−1

|X>j2η|) ≤ 2pi−1
√
σ2 log p (2.13)

where the last inequality, again, follows from Gη. Last, we lower bound min
j1∈S
|ξj1 | as

follows:

min
j1∈S
|ξj1 | = min

j1∈S
|
∑
j2∈S

X>j1Xj2βj2 |

(d)
= min

j1∈S
|
∑
j2∈S
j2 6=j1

X>j1Xj2βj2 + βj1 |

≥ min
j1∈S
|βj1 | −max

j1∈S
|
∑
j2∈S
j2 6=j1

X>j1Xj2βj2 | = βmin −max
j1∈S
|
∑
j2∈S
j2 6=j1

X>j1Xj2βj2 | (2.14)

where (d) follows because the columns of X are unit norm. Combining (2.11), (2.12),

(2.13), (2.14) with (2.10), we obtain

ti ≤

kmax
j1∈S
|
∑
j2∈S
j2 6=j1

X>j1Xj2βj2 |+ (pi−1 − k) max
j1∈Sc

|
∑
j2∈S

X>j1Xj2βj2 |+ ‖β‖1 + 2pi−1
√
σ2 log p

βmin −max
j1∈S
|
∑
j1∈S
j2 6=j1

X>j1Xj2βj2 | − 2
√
σ2 log p

.

(2.15)

Assuming the (k, b)-screening condition for the matrix X holds, we finally obtain

ti ≤
kb(n, p) + (pi−1 − k)b(n, p) + ‖β‖1 + 2pi−1

√
σ2 log p

βmin − b(n, p)− 2
√
σ2 log p

=
pi−1b(n, p) + ‖β‖1 + 2pi−1

√
σ2 log p

βmin − b(n, p)− 2
√
σ2 log p

. (2.16)

This completes the proof of the lemma.

2.6.2 Proof of Lemma 2.2

For t̄i < pi−1, we need

pi−1b(n, p)‖β‖2 + ‖β‖1 + 2pi−1
√
σ2 log p

βmin − b(n, p)‖β‖2 − 2
√
σ2 log p

< pi−1

⇔ pi−1 >

‖β‖1
‖β‖2

βmin

‖β‖2 − 2b(n, p)− 4
√
σ2 log p

‖β‖2

. (2.17)



21

Since ‖β‖1 ≤
√
k‖β‖2, we have

pi−1 >

√
k

βmin

‖β‖2 − 2b(n, p)− 4
√
σ2 log p

‖β‖2

(2.18)

as a sufficient condition for (2.17). Thus, (2.18) is a sufficient condition for t̄i < pi−1.
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Chapter 3

Variable Screening in Ultrahigh-dimensional Random and
Arbitrary Linear Models

In the previous chapter, we showed that a condition—termed the screening condition—

is sufficient for successful correlation-based screening of linear models. In this chapter,

we explicitly derive the screening condition for two families of linear models, namely,

sub-Gaussian linear models and arbitrary (random or deterministic) linear models. In

the process, we establish that—under appropriate conditions—it is possible to reduce

the dimension of an ultrahigh-dimensional, arbitrary linear model to almost the sample

size even when the number of active variables scales almost linearly with the sample

size.

3.1 Introduction and Our Contributions

The previous chapter provided a simple, distribution-agnostic sufficient condition—

termed the screening condition—for (marginal correlation-based) screening of linear

models. This sufficient condition, which succinctly captures joint interactions among

both the active and the inactive variables, was then leveraged to explicitly character-

ize the performance of ExSIS as a function of various problem parameters, including

noise variance, the ratio βmin

‖β‖2 , and model sparsity. Despite the theoretical usefulness

of the screening condition, it cannot be explicitly verified in polynomial time for any

given linear model. This is reminiscent of related conditions such as the incoherence

condition [52], the irrepresentable condition [53], the restricted isometry property [54],

and the restricted eigenvalue condition [55] studied in the literature on high-dimensional

linear models.

In order to overcome this limitation of the screening condition, we explicitly derive
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it for two families of linear models. The first family corresponds to sub-Gaussian lin-

ear models, in which the independent variables are independently drawn from (possibly

different) sub-Gaussian distributions. We show that the ExSIS results for this family of

linear models generalize the SIS results derived in [36] for normally distributed linear

models. The second family corresponds to arbitrary (random or deterministic) linear

models in which the (empirical) correlations between independent variables satisfy cer-

tain polynomial-time verifiable conditions. The ExSIS results for this family of linear

models establish that, under appropriate conditions, it is possible to reduce the dimen-

sion of an ultrahigh-dimensional linear model to almost the sample size even when the

number of active variables scales almost linearly with the sample size. This, to the best

of our knowledge, is the first screening result that provides such explicit and optimistic

guarantees without imposing a statistical prior on the distribution of the independent

variables.

The rest of this chapter is organized as follows. In Sec. 3.2, we derive the screening

condition for sub-Gaussian linear models and discuss the resulting ExSIS guarantees in

relation to prior work. In Sec. 3.3, we derive the screening condition for arbitrary linear

models based on the correlations between independent variables and discuss implications

of the derived ExSIS results. Finally, results of extensive numerical experiments on both

synthetic and real data are reported in Sec. 3.4, while concluding remarks are presented

in Sec. 3.5.

3.2 Screening of Sub-Gaussian Design Matrices

In this section, we characterize the implications of Theorem 2.1 for ExSIS of the family of

sub-Gaussian design matrices. As noted in Sec. 2.3, this effort primarily involves estab-

lishing the screening condition for sub-Gaussian matrices and specifying the parameter

b(m,n) for such matrices. We begin by first recalling the definition of a sub-Gaussian

random variable.

Definition 3.1. A zero-mean random variable X is said to follow a sub-Gaussian distri-

bution subG(b0) if there exists a sub-Gaussian parameter b0 > 0 such that E[exp(λX )] ≤
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exp
(
b20λ

2

2

)
for all λ ∈ R.

In words, a subG(b0) random variable is one whose moment generating function is

dominated by that of a N (0, b20) random variable. Some common examples of sub-

Gaussian random variables include:

• X ∼ N (0, b20) ⇒ X ∼ subG(b0).

• X ∼ unif(−b0, b0) ⇒ X ∼ subG(b0).

• |X | ≤ b0,E[X ] = 0 ⇒ X ∼ subG(b0).

• X ∼


b0, with prob. 1

2 ,

−b0, with prob. 1
2 ,

⇒ X ∼ subG(b0).

Our focus in this section is on design matrices in which entries are first indepen-

dently drawn from sub-Gaussian distributions and then the columns are normalized. In

contrast to prior works, however, we do not require the (pre-normalized) entries to be

identically distributed. Rather, we allow each independent variable to be distributed

as a sub-Gaussian random variable with a different sub-Gaussian parameter. Thus, the

ExSIS analysis of this section is applicable to design matrices in which different columns

might have different sub-Gaussian distributions. It is also straightforward to extend our

analysis to the case where all (and not just across column) entries of the design matrix

are non-identically distributed; we do not focus on this extension in here for the sake of

notational clarity.

3.2.1 Main Result

The ExSIS of linear models involving sub-Gaussian design matrices mainly requires

establishing the screening condition and characterization of the parameter b(m,n) for

sub-Gaussian matrices. We accomplish this by individually deriving (SC-1) and (SC-2)

in Definition 2.1 for sub-Gaussian design matrices in the following two lemmas.

Lemma 3.1. Let V = [Vi,j ] be an m × n matrix with the entries {Vi,j}m,ni,j=1 indepen-

dently distributed as subG(bj) with variances E[V 2
i,j ] = σ2j . Suppose the design matrix X
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is obtained by normalizing the columns of V , i.e., X = V diag(1/‖V1‖2, . . . , 1/‖Vn‖2).

Finally, fix an arbitrary β ∈ Rn that is k-sparse, define σ∗
b∗

:= min
j∈S

σj
bj
, and let log n ≤

m
16( σ∗4b∗ )

4. Then, with probability exceeding 1− 2k2

n2 , we have

max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤
√

8 log n

m

( b∗
σ∗

)
‖β‖2.

Lemma 3.2. Let V = [Vi,j ] be an m × n matrix with the entries {Vi,j}m,ni,j=1 indepen-

dently distributed as subG(bj) with variances E[V 2
i,j ] = σ2j . Suppose the design matrix X

is obtained by normalizing the columns of V , i.e., X = V diag(1/‖V1‖2, . . . , 1/‖Vn‖2).

Finally, fix an arbitrary β ∈ Rn that is k-sparse, define σ∗
b∗

:= min
j∈S

σj
bj
, and let log n ≤

m
16( σ∗4b∗ )

4. Then, with probability exceeding 1− 2(k+1)(n−k)
n2 , we have

max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤
√

8 log n

m

( b∗
σ∗

)
‖β‖2.

The proofs of Lemma 3.1 and Lemma 3.2 are provided in Appendix 3.6.1 and Ap-

pendix 3.6.2, respectively. It now follows from a simple union bound argument that

the screening condition holds for sub-Gaussian design matrices with probability exceed-

ing 1 − 2(k + 1)n−1. In particular, we have from Lemma 3.1 and Lemma 3.2 that

b(m,n) =
√

8 logn
m ( b∗σ∗ ) for sub-Gaussian matrices. We can now use this knowledge and

Theorem 2.1 to provide the main result for ExSIS of ultrahigh-dimensional linear models

involving sub-Gaussian design matrices.

Theorem 3.1 (ExSIS and Sub-Gaussian Matrices). Let V = [Vi,j ] be an m× n matrix

with the entries {Vi,j}m,ni,j=1 independently distributed as subG(bj) with variances E[V 2
i,j ] =

σ2j . Suppose the design matrix X is obtained by normalizing the columns of V , i.e.,

X = V diag(1/‖V1‖2, . . . , 1/‖Vn‖2). Next, let y = Xβ + η with β a k-sparse vector and

the entries of η independently distributed as N (0, σ2). Finally, define σ∗
b∗

:= min
j∈S

σj
bj

and

βmin := min
i∈S
|βi|, and let log n ≤ m

16( σ∗4b∗ )
4 and βmin

‖β‖2 > 2
√

8 logn
m ( b∗σ∗ ) + 4

√
σ2 logn

‖β‖2 . Then
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Algorithm 1 guarantees S ⊂ Ŝd with probability exceeding 1− 2(k + 2)n−1 as long as

d ≥


√
k

βmin

‖β‖2 − 2
√

8 logn
m

(
b∗
σ∗

)
− 4
√
σ2 logn

‖β‖2

.

Proof. Let Gp be the event that the design matrix X satisfies the screening condition

with parameter b(m,n) =
√

8 logn
m ( b∗σ∗ ). Further, let Gη be the event as defined in

Theorem 2.1. It then follows from Lemma 3.1, Lemma 3.2, (2.3), and the union bound

that the event Gp∩Gη holds with probability exceeding 1−2(k+ 2)n−1. The advertised

claim now follows directly from Theorem 2.1.

3.2.2 Discussion

Since Theorem 3.1 follows from Theorem 2.1, it shares many of the insights discussed

in Sec. 2.3.1. In particular, Theorem 3.1 allows for exponential scaling of the number of

independent variables, log n ≤ m
16( σ∗4b∗ )

4, and dictates that the number of independent

variables, d, retained after the screening stage be increased with an increase in the

sparsity level and/or the number of independent variables, while it can be decreased

with an increase in the SNR, MSR, and/or the number of samples. Notice that the

lower bound on d in Theorem 3.1 does require knowledge of the sparsity level. However,

this limitation can be overcome in a straightforward manner, as shown below.

Corollary 1. Let V = [Vi,j ] be an m × n matrix with the entries {Vi,j}m,ni,j=1 indepen-

dently distributed as subG(b2j ) with variances E[V 2
i,j ] = σ2j . Suppose the design matrix X

is obtained by normalizing the columns of V , i.e., X = V diag(1/‖V1‖2, . . . , 1/‖Vn‖2).

Next, let y = Xβ + η with β a k-sparse vector and the entries of η independently

distributed as N (0, σ2). Further, define σ∗
b∗

:= min
j∈S

σj
bj

and βmin := min
i∈S
|βi|. Finally,

let k ≤ m
logn , log n ≤ m

16( σ∗4b∗ )
4, and βmin

‖β‖2 > 2c1

√
8 logn
m ( b∗σ∗ ) + 4c2

√
σ2 logn

‖β‖2 for some

constants c1, c2 > 2. Then Algorithm 1 guarantees S ⊂ Ŝd with probability exceeding

1− 2(k + 2)n−1 as long as d ≥
⌈

m
logn

⌉
.
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Proof. Theorem 3.1 and the condition βmin

‖β‖2 > 2c1

√
8 logn
m

(
b∗
σ∗

)
+

4c2
√
σ2 logn

‖β‖2 dictates

d ≥


√
k

2(c1 − 1)
√

8 logn
m

(
b∗
σ∗

)
+

4(c2−1)
√
σ2 logn

‖β‖2

 (3.1)

for sure screening of sub-Gaussian design matrices. The claim now follows by noting

that d ≥
⌈

m
logn

⌉
is a sufficient condition for (3.1) since k ≤ m

logn and σ∗ ≤ b∗ for

sub-Gaussian random variables.

A few remarks are in order now concerning our analysis of ExSIS for sub-Gaussian

design matrices and that of SIS for random matrices in the existing literature. To this

end, we focus on the results reported in [36], which is one of the most influential SIS

works. In contrast to the screening condition presented in the previous chapter, the

analysis in [36] is carried out for design matrices that satisfy a certain concentration

property. Since the said concentration property has only been shown in [36] to hold for

Gaussian matrices, our discussion in the following is limited to Gaussian design matrices

with independent entries.

The SIS results reported in [36] hold under four specific conditions. In particular,

Condition 3 in [36] requires that: (i) the variance of the response variable is O(1),

(ii) βmin ≥ cκ
mκ for some cκ > 0, κ ≥ 0, and (iii) mini∈S |cov(β−1i Y,Xi)| ≥ c3 for

some c3 > 0. Notice, however, that the O(1) variance condition is equivalent to having

‖β‖2 = O(1). Our analysis, in contrast, imposes no such restriction. Rather, Theo-

rem 3.1 shows that marginal correlation-based sure screening is fundamentally affected

by the MSR βmin

‖β‖2 . While Theorem 3.1 is only concerned with sufficient conditions, nu-

merical experiments reported in Sec. 3.4 confirm this dependence. Next, notice that

max
i∈S
|
∑
j∈S
j 6=i

cov(Xi, Xj)βj | ≤ 1 − c3 implies mini∈S |cov(β−1i Y,Xi)| ≥ c3. It therefore fol-

lows that (SC-1) in the screening condition is a non-statistical variant of the condition

mini∈S |cov(β−1i Y,Xi)| ≥ c3 in [36].

We next assume σ = 0 for the sake of simplicity of argument and explicitly com-

pare Theorem 3.1 and [36, Theorem 1] for the case of Gaussian design matrices with

independent entries. Similar to [36], we also impose the condition ‖β‖2 = O(1) for
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comparison purposes. In this setting, both the theorems guarantee sure screening with

high probability. In [36, Theorem 1], this requires βmin = Ω(n−κ) for κ < 1/2 and

log n = O(mα) for some α ∈ (0, 1− 2κ). It is, however, easy to verify that substituting

βmin = Ω(m−κ) and log n = O(mα) in Theorem 3.1 results in identical constraints of

κ < 1/2 and α < 1−2κ for our analysis. Next, [36, Theorem 1] also imposes the sparsity

constraint k = O(m2κ) for the sure screening result to hold. However, the condition

log n = O(mα) with α ∈ (0, 1−2κ) reduces this constraint to k = O(n1−α) = O
(

m
logn

)
,

which matches the sparsity constraint imposed by Theorem 3.1 (cf. Corollary 1). To

summarize, the ExSIS results derived in this chapter coincide with the ones in [36] for

the case of Gaussian design matrices. However, our results are more general in the

sense that they explicitly bring out the dependence of Algorithm 1 on the SNR and

the MSR, which is something missing in [36], and they are applicable to sub-Gaussian

design matrices.

3.3 Screening of Arbitrary Design Matrices

The ExSIS analysis in Sec. 3.2 specializes Theorem 2.1 for sub-Gaussian design ma-

trices. But what about the design matrices in which either the entries do not follow

sub-Gaussian distributions or the statistical distributions of entries are unknown? We

address this particular question in this section by deriving verifiable sufficient conditions

that guarantee the screening condition for any arbitrary (random or deterministic) de-

sign matrix. These sufficient conditions are presented in terms of two measures of

similarity among the columns of a design matrix. These measures, termed worst-case

coherence and average coherence, are defined as follows.

Definition 3.2 (Worst-case and Average Coherences). Let X be an m×n matrix with

unit `2-norm columns. The worst-case coherence of X is denoted by µ and is defined

as [51]:

µ := max
i,j:i 6=j

∣∣X>i Xj

∣∣.



29

On the other hand, the average coherence of X is denoted by ν and is defined as [50]:

ν :=
1

p− 1
max
i

∣∣∣∣∑
j:j 6=i

X>i Xj

∣∣∣∣.
Notice that both the worst-case and the average coherences are readily computable

in polynomial time. Heuristically, the worst-case coherence is an indirect measure of

pairwise similarity among the columns of X: µ ∈ [0, 1] with µ ↘ 0 as the columns of

X become less similar and µ ↗ 1 as at least two columns of X become more similar.

The average coherence, on the other hand, is an indirect measure of both the collective

similarity among the columns of X and the spread of the columns of X within the

unit sphere: ν ∈ [0, µ] with ν ↘ 0 as the columns of X become more spread out in

Rm and ν ↗ µ as the columns of X become less spread out. We refer the reader to

[56] for further discussion of these two measures as well as their values for commonly

encountered matrices.

We are now ready to describe the main results of this section. The first result

connects the screening condition to the worst-case coherence. We will see, however, that

this result suffers from the so-called square-root bottleneck: ExSIS analysis based solely

on the worst-case coherence can, at best, handle k = O(
√
m) scaling of the sparsity

parameter. The second result overcomes this bottleneck by connecting the screening

condition to both worst-case and average coherences. The caveat here is that this result

imposes a mild statistical prior on the set S.

3.3.1 ExSIS and the Worst-case Coherence

We begin by relating the worst-case coherence of an arbitrary design matrix X with

unit-norm columns to the screening condition.

Lemma 3.3 (Worst-case Coherence and the Screening Condition). Let X be an m× n

design matrix with unit-norm columns. Then, we have

max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤ µ
√
k‖β‖2, and

max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤ µ
√
k‖β‖2.
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The proof of this lemma is provided in Appendix 3.6.3. It follows from Lemma 3.3

that a design matrix satisfies the screening condition with parameter b(m,n) = µ
√
k

as long as µ < k−1 ⇔ k < µ−1. We now combine this implication of Lemma 3.3 with

Theorem 2.1 to provide a result for ExSIS of arbitrary linear models.

Theorem 3.2. Let y = Xβ + η with β a k-sparse vector and the entries of η indepen-

dently distributed as N (0, σ2). Suppose k < µ−1 and βmin

‖β‖2 > 2µ
√
k + 4

√
σ2 log p

‖β‖2 . Then,

Algorithm 1 satisfies S ⊂ Ŝd with probability exceeding 1 − 2(n
√

2π log n)−1 as long as

d ≥

⌈
√
k

βmin
‖β‖2

−2µ
√
k− 4
√
σ2 logn
‖β‖2

⌉
.

The proof of this theorem follows directly from Lemma 3.3 and Theorem 2.1. Next,

a straightforward corollary of Theorem 3.2 shows that ExSIS of arbitrary linear models

can in fact be carried out without explicit knowledge of the sparsity parameter k.

Corollary 2. Let y = Xβ + η with β a k-sparse vector and the entries of η inde-

pendently distributed as N (0, σ2). Suppose n ≥ 2m, k < µ−1, and βmin

‖β‖2 > 2c1µ
√
k +

4c2

√
σ2 logn

‖β‖2 for some c1, c2 > 2. Then, Algorithm 1 satisfies S ⊂ Ŝd with probability

exceeding 1− 2(n
√

2π log n)−1 as long as d ≥ d
√
me.

Proof. Under the assumption of βmin

‖β‖2 > 2c1µ
√
k +

4c2
√
σ2 logn

‖β‖2 , notice that

d ≥


√
k

2(c1 − 1)µ
√
k +

4(c2−1)
√
σ2 logn

‖β‖2

 (3.2)

is a sufficient condition for d ≥

⌈
√
k

βmin
‖β‖2

−2µ
√
k− 4
√
σ2 logn
‖β‖2

⌉
. Further, note that d ≥

⌈
(2µ)−1

⌉
is a sufficient condition for (3.2). Next, since n ≥ 2m, we also have µ−1 ≤

√
2m from

the Welch bound on the worst-case coherence of design matrices [57]. Thus, d ≥ d
√
me

is a sufficient condition for d ≥

⌈
√
k

βmin
‖β‖2

−2µ
√
k− 4
√
σ2 logn
‖β‖2

⌉
.

It is interesting to compare this result for arbitrary linear models with Corollary 1

for sub-Gaussian linear models. Corollary 1 requires the size of the screened model to

scale as O(m/ log n), whereas this result requires d to scale only as O(
√
m). While



31

this may seem to suggest that Corollary 2 is better than Corollary 1, such an obser-

vation ignores the respective constraints on the sparsity parameter k in the two re-

sults. Specifically, Corollary 1 allows for almost linear scaling of the sparsity parameter,

k = O(m/ log n), whereas Corollary 2 suffers from the so-called square-root bottleneck:

k = O(µ−1) ⇒ k = O(
√
m) because of the Welch bound. Stated differently, Corol-

lary 2 fails to specialize to Corollary 1 for the case of X being a sub-Gaussian design

matrix. We overcome this limitation of the results of this section by adding the average

coherence into the mix and imposing a statistical prior on the true model S in the next

section.

3.3.2 ExSIS and the Coherence Property

In order to break the square-root bottleneck for ExSIS of arbitrary linear models, we

first define the notion of the coherence property.

Definition 3.3 (The Coherence Property). An m×n design matrix X with unit-norm

columns is said to obey the coherence property if there exists a constant cµ > 0 such

that µ < 1
cµ
√
logn

and ν < µ√
m
.

Heuristically, the coherence property, which was first introduced in [50], requires the in-

dependent variables to be sufficiently (marginally and jointly) uncorrelated. Notice that,

unlike many conditions in high-dimensional statistics (see, e.g., [52–55]), the coherence

property is explicitly certifiable in polynomial time for any given design matrix. We now

establish that the coherence property implies the design matrix satisfies the screening

condition with high probability, where the probability is with respect to uniform prior

on the true model S.

Lemma 3.4 (Coherence Property and the Screening Condition). Let X be an m × n

design matrix that satisfies the coherence property with cµ > 10
√

2, and suppose n ≥

max{2m, exp(5)} and k ≤ m
logn . Further, assume S is drawn uniformly at random from
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k-subsets of [[n]]. Then, with probability exceeding 1− 4n−1, we have

max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤ cµµ
√

log n‖β‖2, and

max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤ cµµ
√

log n‖β‖2.

The proof of this lemma is provided in Appendix 3.6.4. Lemma 3.4 implies that a

design matrix that obeys the coherence property also satisfies the screening condition for

most models with b(m,n) = cµµ
√

log n as long as µ < c−1µ (k log n)−1/2 ⇔ k < µ−2

c2µ logn
.

Comparing this with Lemma 3.3 and the resulting constraint k < µ−1 for the screening

condition to hold in the case of arbitrary design matrices, we see that—at the expense

of uniform prior on the true model—the coherence property results in a better bound

on the screening parameter as long as log n = O(µ−1). We can now utilize Lemma 3.4

along with Theorem 2.1 to provide an improved result for ExSIS of arbitrary linear

models.

Theorem 3.3. Let y = Xβ + η with β a k-sparse vector and the entries of η inde-

pendently distributed as N (0, σ2). Further, assume X satisfies the coherence property

with cµ > 10
√

2 and S is drawn uniformly at random from k-subsets of [[n]]. Fi-

nally, suppose n ≥ max{2m, exp(5)}, k < µ−2

c2µ logn
, and βmin

‖β‖2 > 2cµµ
√

log n +
4
√
σ2 logn

‖β‖2 .

Then, Algorithm 1 satisfies S ⊂ Ŝd with probability exceeding 1 − 6n−1 as long as

d ≥

⌈
√
k

βmin
‖β‖2

−2cµµ
√
logn− 4

√
σ2 logn
‖β‖2

⌉
.

The proof of this theorem is omitted here since it follows in a straightforward manner

from Lemma 3.4, Theorem 2.1, and a union bound argument. Nonetheless, it is worth

mentioning here that the k ≤ m
logn bound in Lemma 3.4 is omitted in Theorem 3.3 since

k < µ−2

c2µ logn
⇒ k ≤ m

logn because of the Welch bound. The final result of this section

is a corollary of Theorem 3.3 that removes the dependence of d on knowledge of the

problem parameters.

Corollary 3. Let y = Xβ + η with β a k-sparse vector and the entries of η indepen-

dently distributed as N (0, σ2). Further, assume X satisfies the coherence property with
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cµ > 10
√

2 and S is drawn uniformly at random from k-subsets of [[n]]. Finally, suppose

n ≥ max{2m, exp(5)}, k < µ−2

c2µ logn
, and βmin

‖β‖2 > 2cµc1µ
√

log n + 4c2

√
σ2 logn

‖β‖2 for some

c1, c2 > 2. Then, Algorithm 1 satisfies S ⊂ Ŝd with probability exceeding 1 − 6n−1 as

long as d ≥
⌈

m
logn

⌉
.

Proof. Since βmin

‖β‖2 > 2c1cµµ
√

log n+
4c2
√
σ2 logn

‖β‖2 , we have that

d ≥


√
k

2(c1 − 1)cµµ
√

log n+
4(c2−1)

√
σ2 logn

‖β‖2

 (3.3)

is a sufficient condition for d ≥

⌈
√
k

βmin
‖β‖2

−2cµµ
√
logn− 4

√
σ2 logn
‖β‖2

⌉
. The claim now follows

because d ≥
⌈

m
logn

⌉
is a sufficient condition for (3.3), owing to the facts that n ≥ 2m

and the Welch bound imply µ−1 ≤
√

2m and k < µ−2

c2µ logn
⇒ k ≤ m

logn .

3.3.3 Discussion

Both Theorem 3.2 and Theorem 3.3 shed light on the feasibility of marginal correlation-

based screening of linear models without imposing a statistical prior on the design ma-

trix. While Theorem 3.2 in this regard provides the least restrictive results, it does

suffer from the square-root bottleneck: k = O(µ−1) ⇒ k = O(
√
m). Theorem 3.3, on

the other hand, overcomes this bottleneck at the expense of uniform prior on the true

model as long as log n = O(µ−1); in this case, the condition on the sparsity parameter

becomes k = O
(
µ−2/ log n

)
. Therefore, Theorem 3.3 allows for sparsity scaling as high

as k = O(m/ log n) for design matrices with µ = O(m−1/2); see [56] for existence of

such matrices. In addition, Theorem 3.2 and Theorem 3.3 also differ from each other

in terms of their respective constraints on βmin

‖β‖2 for feasibility of marginal correlation-

based screening; the constraint in Theorem 3.3 is less restrictive than in Theorem 3.2

for log n = O(µ−1).

A natural question to ask at this point is whether Theorem 3.3 specializes to The-

orem 3.1. The answer to this question is in the affirmative, except for some small

penalties that one has to pay because of the fact that Theorem 3.3 does not exploit any

sub-Gaussianity of the entries of X in its analysis. In order to illustrate this further, we
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consider the case of Gaussian design matrices and reproduce bounds on their worst-case

and average coherences from [56].

Lemma 3.5 ([56, Theorem 8]). Let V = [Vi,j ] be an m × n matrix with the entries

{Vi,j}m,ni,j=1 independently distributed as N (0, 1) and 60 log n ≤ m ≤ n−1
4 logn . Suppose the

design matrix X is obtained by normalizing the columns of V , i.e., X =

V diag(1/‖V1‖2, . . . , 1/‖Vn‖2). Then, with probability exceeding 1− 11n−1, we have

µ ≤
√

15 log n√
m−

√
12 log n

, and

ν ≤
√

15 log n

m−
√

12m log n
.

It can be seen from this lemma that Gaussian design matrices satisfy the coherence

property for log n = O(m1/2). We can therefore specialize Corollary 3 for Gaussian

matrices and conclude that screening of Gaussian linear models using Algorithm 1 can

be carried out with d ≥
⌈

m
logn

⌉
as long as: (i) log n = O(m1/2), (ii) k = O(m/(log n)2),

and (iii) βmin

‖β‖2 = Ω

(
logn√
m

+

√
σ2 logn

‖β‖2

)
. Comparing this with Corollary 1 in general and

the discussion in Sec. 3.2.2 in particular, we see that the general theory of Sec. 3.3.2

almost matches with the specialized theory of Sec. 3.2. Specifically, compared to the

constraints of log n = O(m1/2), k = O(m/(log n)2), and βmin

‖β‖2 = Ω

(
logn√
m

+

√
σ2 logn

‖β‖2

)
arising in Sec. 3.3.2 for Gaussian design matrices, Sec. 3.2 results in slightly less restric-

tive constraints of log n = O(m), k = O(m/ log n), and βmin

‖β‖2 = Ω

(√
logn
m +

√
σ2 logn

‖β‖2

)
.

These small gaps are the price one has to pay for the generality of Theorem 3.3.

3.4 Experimental Results

In this section, we present results from a synthetic and a real-data experiment. In

Section 3.4.1, we analyze the performance of various regularization-based screening pro-

cedures in comparison to the ExSIS procedure. Next, in Section 3.4.2, we analyze the

computational savings achieved from the use of ExSIS for screening of the feature space

as part of sentiment analysis of IMDb movie reviews [58].
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3.4.1 Comparison with Screening Procedures for LASSO-type Meth-

ods

In this section, we use Gaussian data to compare the performance of ExSIS to that of

screening procedures for LASSO-type methods. The design matrix X ∈ Rm×n contains

entries from a standard Gaussian distribution such that the pairwise correlation between

the variables is ρ. In this experiment, we fix m at 200 while we consider two models

with n = 2000 and n = 5000. For each value of n, we further consider two models

with ρ = 0.0 and ρ = 0.3. Thus, in our experiments, we consider four setups with

(n, ρ) = (2000, 0.0), (2000, 0.3), (5000, 0.0) and (5000, 0.3) to analyze the impact of

dimensionality and pairwise correlation on performance of the screening procedures

for LASSO-type methods in relation to ExSIS. For each of these four different setups,

the model size is set at |S| = 5, and the locations of the non-zero coefficients in the

parameter vector β are chosen such that S is a uniformly at random subset of [[n]]. The

values of the non-zero coefficients in the parameter vector β are generated from |z|+ 2

where z is distributed as a standard Gaussian random variable. Furthermore, the noise

samples are generated from a standard Gaussian distribution, and the response vector

y is generated using (2.1). Finally, the response vector y and the columns of the design

matrix X are normalized to have unit norm.

To analyze the performance of screening procedures for the LASSO method [13], the

columns of X are screened using SAFE method [43] and strong rules [44] for LASSO.

Recall that the LASSO problem can be expressed as

β̂ = arg min
β∈Rn

1

2
‖y −Xβ‖22 + λ‖β‖1.

For each of these screening methods, we perform screening of X over a set of 200 values

of the regularization parameter λ that are chosen uniformly from a linear scale. We

compare the screening performance of SAFE method and strong rules for LASSO with

the ExSIS method where d = 2m. Note that our selection of the value of d has some

slack over the suggested value of d from Corollary 1 because the conditions on log n and
βmin

‖β‖2 in Corollary 1 don’t hold true in this experiment.1 To compare the performance

1In order for stated conditions to hold, we need significantly larger m (and n); however, running
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Figure 3.1: Gaussian data matrices are screened using LASSO-based screening proce-
dures for various model parameters. In (a) and (c), n = 2000; whereas, in (b) and
(d), n = 5000. For each value of n, the screening experiment is repeated for ρ = 0.0
and ρ = 0.3. In each experiment, the model size after screening and the correspond-
ing detection rate is evaluated for different values of the regularization parameter λ.
The shown results are median over 100 random draws of the data matrix X/parameter
vector β/noise vector η in (2.1).

of these various screening methods, we use two metrics: (i) the model size (number of

variables) after screening, which is defined as |Ŝd|, and (ii) the detection rate, which is

defined as |S∩Ŝd||S| . Using these metrics of performance, Fig. 3.1 shows the results of our

simulations as median over 100 draws of the random design matrix X/parameter vector

β/noise vector η in (2.1) for each of the four setups that we consider in this section.

Next, the design matrix X is also generated and screened using SAFE method [43]

and strong rules [44] for elastic net [14] as explained before. Recall that the elastic net

LASSO on such large problems has high computational needs.
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Figure 3.2: Gaussian data matrices are screened using elastic net-based screening pro-
cedures for various model parameters. In (a) and (c), n = 2000; whereas, in (b) and
(d), n = 5000. For each value of n, the screening experiment is repeated for ρ = 0.0
and ρ = 0.3. In each experiment, the model size after screening and the correspond-
ing detection rate is evaluated for different values of the regularization parameter λ.
The shown results are median over 100 random draws of the data matrix X/parameter
vector β/noise vector η in (2.1).

problem can be expressed as

β̂ = arg min
β∈Rn

1

2
‖y −Xβ‖22 + λ1‖β‖1 +

1

2
λ2‖β‖2.

In our simulations, we use the parametrization (λ1, λ2) = (αλ, (1 − α)λ) and we let

α = 0.5. Fig. 3.2 shows the screening performance of SAFE method for elastic net,

strong rules for elastic net and ExSIS over 100 draws of the random design matrix X

for each of the four setups, as described before. In both Figs. 3.1 and 3.2, the largest

value of λ for which median detection rate is 1.0 is labeled with an asterisk for each

optimization-based screening procedure. In other words, for each screening procedure,

only if λ is smaller than the value of λ labeled by an asterisk, the screening procedure
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maintains a median detection rate of 1.0. Notice also that if the chosen value of λ is too

small, no variable is deleted by the screening procedure. Thus, as can be seen in both

the figures, there is only a narrow range of values of λ over which the optimization-based

screening procedures are able to get rid of variables while maintaining a detection rate

of 1.0. Thus, from a practical point of view, it is not trivial to use SAFE method or

strong rules for screening because there is no way of ensuring that the chosen value

of λ is within the narrow range of values of λ for which significant screening can be

performed while maintaining a detection rate of 1.0. In comparison, the ExSIS method

does not depend on the parameter λ, and in our experiments, it could always be used for

screening while maintaining a median detection rate of 1.0 (as shown in both Figs. 3.1

and 3.2). Before we end this discussion, note that, even within the narrow range of

values of λ for which SAFE method or strong rules can be used for screening while

maintaining a detection rate of 1.0, there is an even narrower range of values of λ for

which SAFE method or strong rules delete more variables than ExSIS.

3.4.2 Sentiment Analysis of IMDb Movie Reviews and ExSIS

In high-dimensional classification, it has been shown that the presence of irrelevant

variables increases the difficulty of classification, and the classification error tends to

increase with dimensionality of the data model [59, 60]. Variable selection becomes

important in high-dimensional classification as it can be used to discard the subset

of irrelevant variables and reduce the dimensionality of the data model. Once the

variable selection step is performed, classification can be performed based on the subset

of relevant variables. In this section, we consider the problem of classifying IMDb movie

reviews with positive or negative sentiments. In particular, we use variable selection to

(i) reduce dimensionality of the data model, and (ii) learn a linear data model for

classification (as explained later). To build and test our classification model, we make

use of the IMDb movie reviews dataset [58], with the response being either a 1 (positive

review) or a 0 (negative review), and we extract features using the term frequency-inverse

document frequency method [61].

To increase the reliability of our results, the original dataset of 25K reviews is first
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randomly divided into five bins for five independent trials, with each bin further divided

into 3K train and 2K test reviews. In each bin, before we use the 3K reviews for fitting

a linear model on the feature space, we perform a preprocessing step to get rid of the

features (words) that are highly correlated. Note that, when we refer to learning/fitting

a linear model, we mean to estimate the vector β in (2.1). For learning the linear data

model, we use LASSO as well as elastic net. For tuning the regularization parameter

in LASSO as well as elastic net for each bin, we perform a five-fold cross validation

experiment and choose the value of the regularization parameter that minimizes the

mean square error on the training dataset. To evaluate the predictive power of the

linear model, we use the notion of test true positive (TP) rate, which is the percentage

of the remaining 2K test movie reviews that are correctly classified by the model. For

classification of the test reviews, we use the trained linear model to estimate the response

for each test review. If the estimated response is less than 0.5 for a test review, the test

review is assigned a negative sentiment and vice versa. The above procedure is repeated

for each of the five bins of data and the average prediction accuracy is reported in Table

3.1. The average model size before variable selection in the five runs of the experiment

is 21, 345.

We also repeat the aforementioned experiment procedure but with a slight variation.

For each of the five bins of data, we use Algorithm 1 to decrease dimensionality of the

data model before performing the variable selection step. The objective of this variation

in the experiment is to analyze the decrease in computational time and any change in

the prediction accuracy when the variable selection step is preceded with a screening

step using Algorithm 1. To choose the value of d in Algorithm 1, we verify that the

training data matrix for each fold of data satisfies the coherence property, and then we

choose d = 2m where m = 3000. Note that the chosen value of d has some slack over

the suggested value of d in Corollary 3 because the condition on βmin

‖β‖2 in Corollary 3

does not hold true in this experiment. After the screening step, we use LASSO and

elastic net to learn and test a classification model as explained before. The results are

reported in Table 3.1.
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Table 3.1: True positive (TP) rates and computational times for experiments on the
IMDb dataset, averaged over the five folds of the IMDb dataset. The standard deviation
is also reported in parenthesis.

Training method Train TP rate Test TP rate Training time
LASSO 91.35 (0.94) 83.01 (0.77) 388.35 (26.66)
ExSIS-LASSO 98.39 (0.71) 82.23 (0.83) 177.43 (16.85)
Elastic net 96.69 (0.33) 84.35 (0.89) 272.46 (15.76)
ExSIS-Elastic net 99.71 (0.11) 82.06 (0.94) 111.20 (4.65)

Thus, we use LASSO and elastic net, both with and without screening, to train

and test a linear model for classification of movie reviews. For each of these four cases,

Table 3.1 summarizes the train and test TP rates, which are the percentages of correctly

classified reviews in train and test reviews, respectively. The computational time needed

for learning the linear model is also reported as an average over the five folds of data.

It can be seen from the table that Algorithm 1 reduces the training time by a factor of

more than two, while there is only a small decrease in predictive power of the trained

model.

3.5 Conclusion

In this chapter, we furthered our understanding of marginal correlation-based screening

for ultrahigh-dimensional linear models. In our analysis, we provided verifiable con-

ditions for subGaussian and arbitrary (random or deterministic) linear models under

which the dimension of the model can be reduced to almost the sample size. In our

experiments with real-world data, we demonstrated the computational savings that can

be achieved through ExSIS in high dimensional variable selection.

3.6 Appendix

3.6.1 Proof of Lemma 3.1

Since Xi := Vi
‖Vi‖2 , we can write

max
i∈S

∣∣∑
j∈S
j 6=i

X>i Xjβj
∣∣ = max

i∈S

∣∣∑
j∈S
j 6=i

V >i
‖Vi‖2

Vj
‖Vj‖2

βj
∣∣.
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We next fix an i′ ∈ S and derive a probabilistic bound on |
∑
j∈S
j 6=i′

X>i′ Xjβj |. This involves

deriving both upper and lower probabilistic bounds on
∑
j∈S
j 6=i′

X>i′ Xjβj below in Step 1 and

Step 2, respectively.

Step 1 (Upper Bound): To provide an upper probabilistic bound on
∑
j∈S
j 6=i′

X>i′ Xjβj ,

we first establish that ‖Vj‖2 ≥
√

nσ2
j

2 for each j ∈ S with high probability in Step 1a

and then we derive an upper probabilistic bound on
∑
j∈S
j 6=i′

V >
i′

‖Vi′‖2

√
2Vj√
nσ2

j

βj in Step 1b. We

then combine these two steps in Step 1c for the final upper probabilistic bound on∑
j∈S
j 6=i′

X>i′ Xjβj .

Step 1a: Note that

Pr

[
‖Vj‖2 <

√
nσ2j

2

]
≤ exp

(
− n

8

( σj
4bj

)4)
(3.4)

for any j ∈ S [62, eq. (2.20)]. Next, let Gu,a be the event that ‖Vj‖2 ≥
√

nσ2
j

2 for all

j ∈ S \ {i′}. Then

Pr[Gcu,a] = Pr

[⋃
j∈S
j 6=i′

{
‖Vj‖2 <

√
nσ2j

2

}]

≤
∑
j∈S
j 6=i′

Pr

[
‖Vj‖2 <

√
nσ2j

2

]

≤
∑
j∈S
j 6=i′

exp
(
− n

8

( σj
4bj

)4)

≤
∑
j∈S
j 6=i′

exp
(
− n

8

( σ∗
4b∗

)4)

= (k − 1) exp
(
− n

8

( σ∗
4b∗

)4)
. (3.5)

Step 1b: Define

Yi′ :=
∑
j∈S
j 6=i′

√
2

nσ2j

V >i′

‖Vi′‖2
Vjβj ,
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and let Gu,b be the event that Yi′ ≤
√

8 log p
n

(
b∗
σ∗

)
‖β‖2. Then, the claim is that Pr(Gu,b) ≥

1− 1
p2
. In order to prove this claim, let us define another event G′v := {V ′i = vi′}. Then,

defining ui′ :=
vi′
‖vi′‖2

, we have

MYi′ (λ| G
′
v) := E[exp(λYi′)| G

′
v]

= E
[

exp
(
λ
∑
j∈S
j 6=i′

√
2

nσ2j

V >i′

‖Vi′‖2
Vjβj

)∣∣G′v]

= E
[

exp
(
λ
∑
j∈S
j 6=i′

√
2

nσ2j
u>i′ Vjβj

)]

= E
[∏
j∈S
j 6=i′

exp
(
λ

√
2

nσ2j
u>i′ Vjβj

)]

= E
[∏
j∈S
j 6=i′

exp
(
λ

√
2

nσ2j

n∑
l=1

ui′,lVj,lβj

)]

= E
[∏
j∈S
j 6=i′

n∏
l=1

exp
(
λ

√
2

nσ2j
ui′,lVj,lβj

)]

=
∏
j∈S
j 6=i′

n∏
l=1

E
[

exp
(
λ

√
2

nσ2j
ui′,lVj,lβj

)]

≤
∏
j∈S
j 6=i′

n∏
l=1

exp
( λ2

nσ2j
u2i′,lb

2
jβ

2
j

)

=
∏
j∈S
j 6=i′

exp
( λ2

nσ2j
b2jβ

2
j

n∑
l=1

u2i′,l

)

=
∏
j∈S
j 6=i′

exp
( λ2

nσ2j
b2jβ

2
j

)

= exp
(λ2
n

∑
j∈S
j 6=i′

b2jβ
2
j

σ2j

)

≤ exp
(λ2
n

( b∗
σ∗

)2∑
j∈S
j 6=i′

β2
j

)
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≤ exp
(λ2
n

( b∗
σ∗

)2
‖β‖22

)
. (3.6)

By the Chernoff bound on Yi′ , we next obtain

Pr(Yi′ > a| G′v) ≤ min
λ>0

exp(−λa)MYi′ (λ| G
′
v)

≤ min
λ>0

exp(−λa) exp
(λ2
n

( b∗
σ∗

)2
‖β‖22

)
= exp

(
− 1

4

(σ∗
b∗

)2 a2 n
‖β‖22

)
. (3.7)

Substituting a =
√

8 log p
n

(
b∗
σ∗

)
‖β‖2 in (3.7), we obtain

Pr

(
Yi′ >

√
8 log p

n

( b∗
σ∗

)
‖β‖2

∣∣∣G′v
)
≤ 1

p2
. (3.8)

Finally, by the law of total probability, we obtain

Pr

(
Yi′ >

√
8 log p

n

( b∗
σ∗

)
‖β‖2

)
= EV ′i

[
Pr

(
Yi′ >

√
8 log p

n

( b∗
σ∗

)
‖β‖2

∣∣∣G′v
)]

≤ EV ′i

[
1

p2

]
=

1

p2
. (3.9)

Thus, the event Gu,b holds with probability exceeding 1− 1
p2
.

Step 1c: Conditioning on Gu,a ∩ Gu,b, we have from (3.5) and (3.9) that

∑
j∈S
j 6=i′

X>i′ Xjβj ≤
√

8 log p

n

( b∗
σ∗

)
‖β‖2. (3.10)

Further, note that

Pr(Gu,a ∩ Gu,b) ≥ 1− Pr(Gcu,a)− Pr(Gcu,b)

≥ 1− (k − 1) exp
(
− n

8

( σ∗
4b∗

)4)
− 1

p2

(a)
≥ 1− (k − 1)

p2
− 1

p2
= 1− k

p2
,

where (a) follows since log p ≤ n
16

(
σ∗
4b∗

)4. Thus, (3.10) holds with probability exceeding

1− k
p2
.

Step 2 (Lower Bound): Our claim in this step is that
∑
j∈S
j 6=i′

X>i′ Xjβj ≥ −
√

8 log p
n

(
b∗
σ∗

)
‖β‖2
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with probability exceeding 1− k
p2
. To establish this claim, notice that

∑
j∈S
j 6=i′

X>i′ Xjβj ≥ −
√

8 log p

n

( b∗
σ∗

)
‖β‖2 ⇐⇒ −

∑
j∈S
j 6=i′

X>i′ Xjβj ≤
√

8 log p

n

( b∗
σ∗

)
‖β‖2.

(3.11)

Further, we have −
∑
j∈S
j 6=i′

X>i′ Xjβj ≡ −
∑
j∈S
j 6=i′

V >
i′

‖Vi′‖2
Vj
‖Vj‖2βj =

∑
j∈S
j 6=i′

V >
i′

‖Vi′‖2
Ṽj
‖Vj‖2βj , where Ṽj :=

−Vj is still distributed as Vj because of the symmetry of sub-Gaussian distributions.

The claim now follows from a repetition of the analysis carried out in Step 1.

Final Step: Step 1 and Step 2, along with the union bound, imply that

∣∣∑
j∈S
j 6=i

X>i′ Xjβj
∣∣ ≤√8 log p

n

( b∗
σ∗

)
‖β‖2

with probability exceeding 1− 2k
p2
. Next, notice that

Pr

[
max
i∈S

∣∣∑
j∈S
j 6=i

X>i Xjβj
∣∣ ≤√8 log p

n

( b∗
σ∗

)
‖β‖2

]

= 1− Pr

[ ⋃
i∈S

{∣∣∑
j∈S
j 6=i

X>i Xjβj
∣∣ >√8 log p

n

( b∗
σ∗

)
‖β‖2

}]

≥ 1−
∑
i∈S

Pr

[∣∣∑
j∈S
j 6=i

X>i Xjβj
∣∣ >√8 log p

n

( b∗
σ∗

)
‖β‖2

]

≥ 1−
∑
i∈S

2k

p2
= 1− 2k2

p2
. (3.12)

This complete the proof of the lemma.

3.6.2 Proof of Lemma 3.2

Once again, notice that

max
i∈Sc
|
∑
j∈S

X>i Xjβj | = max
i∈Sc

∣∣∣∑
j∈S

V >i
‖Vi‖2

Vj
‖Vj‖2

βj

∣∣∣.
We next fix an i′ ∈ Sc. Similar to the proof of Lemma 3.1, the plan is to first derive

a probabilistic bound on |
∑
j∈S

X>i′ Xjβj | and then use the union bound to provide a
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probabilistic bound on max
i∈Sc
|
∑
j∈S

X>i Xjβj |. Using steps similar to the ones in the proof

of Lemma 3.1, it is straightforward to establish that

∣∣∑
j∈S

X>i′ Xjβj
∣∣ ≤√8 log p

n

( b∗
σ∗

)
‖β‖2

with probability exceeding 1− 2(k+1)
p2

. The union bound finally gives us

Pr

[
max
i∈Sc

∣∣∑
j∈S

X>i Xjβj
∣∣ ≤√8 log p

n

( b∗
σ∗

)
‖β‖2

]

= 1− Pr

[ ⋃
i∈Sc

{∣∣∑
j∈S

X>i Xjβj
∣∣ >√8 log p

n

( b∗
σ∗

)
‖β‖2

}]

≥ 1−
∑
i∈Sc

Pr

[∣∣∑
j∈S

X>i Xjβj
∣∣ >√8 log p

n

( b∗
σ∗

)
‖β‖2

]
≥ 1−

∑
i∈Sc

2(k + 1)

p2
= 1− 2(k + 1)(p− k)

p2
. (3.13)

This completes the proof of the lemma.

3.6.3 Proof of Lemma 3.3

Notice that max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤ max
i∈S

∑
j∈S
j 6=i

|X>i Xjβj | ≤ max
i∈S

∑
j∈S
j 6=i

|X>i Xj ||βj |. Further, we

have

max
i∈S

∑
j∈S
j 6=i

|X>i Xj ||βj | ≤ max
i∈S

∑
j∈S
j 6=i

µ|βj | ≤ µ‖β‖1 ≤ µ
√
k‖β‖2. (3.14)

An identical argument also establishes that max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤ µ‖β‖1 ≤ µ
√
k‖β‖2.

3.6.4 Proof of Lemma 3.4

The proof of Lemma 3.4 relies on the following two lemmas, which are formally proved

in [50].

Lemma 3.6 ([50, Lemma 3]). Assume S is drawn uniformly at random from k-subsets

of [[p]] and choose a parameter a ≥ 1. Let ε ∈ [0, 1) and k ≤ min{ε2ν−2, (1 + a)−1p}.
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Then, with probability exceeding 1− 4k exp(− (ε−
√
kν)2

16(2+a−1)2µ2
), we have

max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤ ε ‖β‖2.

Lemma 3.7 ([50, Lemma 4]). Assume S is drawn uniformly at random from k-subsets

of [[p]] and choose a parameter a ≥ 1. Let ε ∈ [0, 1) and k ≤ min{ε2ν−2, (1 + a)−1p}.

Then, with probability exceeding 1− 4(p− k) exp(− (ε−
√
kν)2

8(2+a−1)2µ2
), we have

max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤ ε ‖β‖2.

Using a simple union bound with Lemma 3.6 and Lemma 3.7, we have

max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤ ε ‖β‖2, and

max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤ ε ‖β‖2

with probability exceeding 1 − δ where δ = 4p exp(− (ε−
√
kν)2

16(2+a−1)2µ2
). Fix ε = cµµ

√
log p

and a = 9. Then, the claim is that δ ≤ 4p−1. Next, we will prove our claim. Before

we can fix ε = cµµ
√

log p and a = 9, we need to ensure that the chosen values of a,

ε and the allowed values of k satisfy the assumptions in Lemma 3.6 and Lemma 3.7.

First, note that ε < 1 because of µ < 1
cµ
√
log p

. Second, k ≤ p
1+a because of a = 9,

p ≥ max{2n, exp(5)} and k ≤ n
log p . Third, and last, k ≤ ε2

(9ν)2
because of ν < µ√

n
,

k ≤ n
log p , p ≥ 2n and cµ > 10

√
2. Finally, we use

√
kν ≤ ε

9 with a = 9, cµ > 10
√

2 and

ε = cµµ
√

log p to obtain exp(− (ε−
√
kν)2

16(2+a−1)2µ2
) ≤ p−2 and thus δ ≤ 4p−1.
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Chapter 4

Linear Tensor Regression Model

In this chapter, we study a new regression model with a scalar response variable and

tensor-valued predictors, where the parameters form a tensor in Rn1×n2×···×nd , and the

parameter tensor simultaneously embeds structures of low rank and sparsity. Specifi-

cally, we focus on the task of estimating the parameter tensor fromm observations of the

response variable and the tensor-valued predictors. We formulate parameter estimation

as a non-convex problem, and we propose a projected gradient descent-based method

to solve it. We also provide theoretical guarantees for the proposed method, in which

we show that the method converges to the correct solution within a certain number of

iterations, based on a certain Restricted Isometry Property. In our experiments on syn-

thetic data, we demonstrate the efficacy of the proposed learning method for learning

the proposed regression model.

4.1 Introduction

In this chapter, we consider the ordinary linear model in (1.1) for the case when d ≥ 3.

A major application of this model can be found in neuroimaging data analysis, where

the voxels (predictors) in a brain image naturally appear in the form of a tensor and the

associated disease outcome (response) appears as a scalar variable [8, 9, 63, 64]. Given

{Xi}mi=1 and {yi}mi=1 in (1.1), we focus on the task of learning the regression model

in (1.1), which is equivalent to estimating B. One simple approach for estimating

B is to vectorize the tensors, and then use any of the traditional sparsity promoting

methods for learning the regresison model. Specifically, the parameter tensor B and the

predictor tensors {Xi}mi=1 can be vectorized such that the model in (1.1) can equivalently

be expressed as yi = 〈vec(Xi), vec(B)〉 + ηi, where vec(.) denotes the vectorization
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procedure. Given this vector-valued regression model, any of the traditional sparsity

promoting techniques in the literature—such as forward selection/matching pursuit,

backward elimination [12], least absolute shrinkage and selection operator (LASSO)

[13], elastic net [14], bridge regression [30, 31], adaptive LASSO [32], group LASSO [33],

and Dantzig selector [34]—can be employed for estimating vec(B). However, typically

in tensor regression models, the number of predictors are massive compared with the

sample size, and thus the application of the aforementioned learning techniques can

easily become computationally prohibitive. To address this computational bottleneck,

various two-stage approaches have been proposed in the literature, where the learning

stage is preceded by application of a dimensionality reduction step to reduce the number

of predictors in the model. Some prominent examples of such dimensionality reduction

methods include principal component analysis [65] and variable screening [36, 66, 67]

methods.

Besides the computational bottleneck of vectorization-based learning approaches,

another major drawback of vectorization is that the spatial structure among the entries

of the tensor B is not preserved—structure that can possibly be exploited for efficient

estimation of B. Among the various tensor decompositions that capture such spatial

relationships among tensor entries [16, 20], a popular decomposition is the Tucker de-

composition. The notion of rank associated with Tucker decomposition of a tensor B

is known as the Tucker rank, which is an n-dimensional tuple whose i-th entry is the

column rank of the mode-i unfolding B(i) of B:

(
rank(B(1)), rank(B(2)), . . . , rank(B(d))

)
.

This notion of Tucker rank has been successfully employed for learning tensor-valued

regression models [10, 21, 22] under the imposition of low Tucker rank on B. Specifi-

cally, some early approaches were based on minimization of the sum of nuclear norm of

matricizations of tensor B in each mode [10, 21, 23, 68]. To analyze the sample complex-

ity of learning methods in the literature, suppose (r, r, . . . , r) is the Tucker rank of B,

n := n1 = n2 = · · · = nd, and Xi draws values from Gaussian distribution for i ∈ [[m]].

Under these suppositions, it was shown that approaches based on sum of nuclear norm
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minimization require Ω(rn(d−1)) samples [23], which is highly suboptimal. Thus, more

recently, tensor variants of the projected gradient method [69–71] have gained popularity

for solving non-convex formulations of the learning problem [22, 72, 73]. In such recent

work that studies the imposition of low Tucker rank on B [22], it was shown that B

can be learnt using O
(
(rd + nrd) log d

)
observations. Note that this sample complexity

bound is order optimal up to a logarithmic factor.

Although consideration of low Tucker rank allows for efficient learning, the sample

complexity requirement still has a linear dependence on n, since the degrees of freedom

of B are O(rd + nrd). Such sample complexity requirement can become prohibitive in

application areas like neuroimaging data analysis. For example, given a typical MRI

image of size 256× 256× 256 with r = 3 and d = 3, we have nrd = 1152; whereas, the

number of subjects are typically less than ≈ 1000 [24]. Thus, an interesting research

question is whether we can remove the linear dependence of the sample complexity on n,

while still being able to exploit the spatial relationships among the entries of the tensor

parameter? Clearly, the sample complexity dependence on n is unavoidable in Tucker

decomposition, because the degrees of freedom in the Tucker model scale linearly with

n. Another problem with Tucker decomposition is that of model interpretability: unlike

the imposition of sparsity on the parameters by the application of traditional variable

selection methods [12–14], the parameters are typically non-zero with the imposition of

low Tucker rank on B.

We address these shortcomings of the Tucker decomposition by considering a tensor

structure that massively reduces the degrees of freedom in B while increasing inter-

pretability of the regression model in (1.1). Specifically, we study the simultaneous

imposition of low Tucker rank and sparsity on B, where sparsity on B is invoked by

imposing sparsity on the factor matrices of Tucker decomposition. In the next section,

we formally motivate and define the simultaneous imposition of low rank and sparsity

on the parameter tensor, and then we explicitly outline our contributions.



50

4.2 Model Setup

4.2.1 Background on Tensor Decompositions

The Tucker decomposition [16, 20] decomposes a tensor into a core tensor transformed

by different factor matrices along different modes. Using Tucker decomposition, any

arbitrary tensor B ∈ Rn1×n2×···×nd can be written as

B = G̃×1 Ũ1 ×2 Ũ2 · · · ×d Ũd, (4.1)

where G̃ ∈ Rn1×n2×···×nd is the core tensor, and Ũi ∈ Rni×ni , i ∈ [[d]], are the factor

matrices. Let B(i) be the mode-i matricization of B, such that the columns of B(i)

contain the mode-i fibers of B. Then, the mode-i matricization of B can be expressed

as

B(i) = Ũi G̃(i)(Ũn ⊗ · · · ⊗ Ũ(i+1) ⊗ Ũ(i−1) ⊗ · · · ⊗ Ũ1)
>, (4.2)

where G̃(i) ∈ Rni×
∏
j 6=i nj is the mode-i matricization of the core tensor G̃. Let ri be

the column rank of B(i), and let Ui ∈ Rni×ri be a basis of the column span of B(i).

Multiplying both sides of (4.2) by Ui(U>i Ui)
−1U>i , which is a projection matrix for the

column space of B(i), we obtain

B(i) = Ui(U
>
i Ui)

−1U>i Ũi G̃(i)(Ũn ⊗ · · · ⊗ Ũ(i+1) ⊗ Ũ(i−1) ⊗ · · · ⊗ Ũ1)
>, (4.3)

Then, without loss of generality, we can absorb the linear transformation (U>i Ui)
−1U>i Ũi

into G̃(i). Correspondingly, G̃(i) is transformed from Rni×
∏
j 6=i nj to Rri×

∏
j 6=i nj , and

(4.3) can be expressed as

B(i) = Ui G̃(i)(Ũn ⊗ · · · ⊗ Ũ(i+1) ⊗ Ũ(i−1) ⊗ · · · ⊗ Ũ1)
>, (4.4)

where Ui ∈ Rni×ri and G̃(i) ∈ Rri×
∏
j 6=i nj . Carrying out these transformations from

(4.2) to (4.4) for all modes i ∈ [[d]], the tensor B, without loss of generality, can be

expressed as

B = G×1 U1 ×2 U2 · · · ×d Ud, (4.5)

where G ∈ Rr1×r2×···×rd is the core tensor, Ui ∈ Rni×ri , i ∈ [[d]], are the factor matrices,

and ri is the column-rank of B(i), i ∈ [[d]].
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4.3 Problem Formulation

For ease of notation, let us define W := Rn1×n2×···×nd , Y := Rm, and let us denote the

collection of tensors {Xi}mi=1 in (1.1) by a linear map/measurement operator X :W → Y

such that (1.1) can equivalently be expressed as

y = X (B) + η, (4.6)

where y = [y1, y2, . . . , ym], and η = [η1, η2, . . . , ηm]. In this work, we impose that the

parameter tensor B ∈ Rn1×n2×···×nd is structured in the sense that it is r-rank and

s-sparse, where the notion of an r-rank and s-sparse tensor is defined as follows.

Definition 4.1 (r-rank and s-sparse tensor). Given a rank tuple r := (r1, r2, . . . , rd)

and a sparsity tuple s := (s1, s2, . . . , sd), a tensor Z ∈ Rn1×n2×···×nd is said to be r-rank

and s-sparse if Z can be expressed as

Z = S×1 U1 ×2 U2 · · · ×d Ud, (4.7)

where S ∈ Rr1×r2×···×rd and Ui ∈ Rni×ri , with ‖Ui(:, j)‖0 ≤ si, ∀i ∈ [[d]], j ∈ [[ri]].

Notice that, trivially, ri ≤ ni and si ≤ ni.

Recall from [16] that (4.7) is expressing Z in terms of a Tucker decomposition, in

which S is termed the core tensor and the Ui’s are referred to as factor matrices, with

additional sparsity constraints on the factor matrices. It can also be seen from (4.7) that

for the special case when si = ni, the mode-i matricization of Z has rank ri: rank(Z(i))

= ri; i.e., the r-rank of Z is simple the Tucker rank of Z. Further, note that we are

defining sparsity of Z in terms of sparsity of the columns of the factor matrices {Ui(:, j)},

i ∈ [[d]], j ∈ ri, that are generating the tensor. This notion of sparsity is different from

the conventional notion of sparsity, where sparsity is defined as the number of non-zero

entries for the data structure under consideration, i.e., tensor Z in this case. In contrast,

the said notion of sparsity not only induces sparsity on Z but also dramatically reduces

the number of free parameters in Z ∈ Rn1×n2×···×nd from n :=
∏
i ni to the order of∏

i ri +
∑

i risi log ni, which can be significantly smaller than n for ri � ni and si � ni

(the log ni factor arises from the need to encode the locations of the si non-zero entries
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in a given column of Ui). This reduction in degrees of freedom allows us to learn the

tensor regression model in (4.6) with lower sample complexity, as we show later.

Since we are imposing the unknown tensor B is r-rank and s-sparse in our regression

model (4.6), we formally define a set of such tensors as follows:

C ={S×1 U1 ×2 U2 ×3 · · · ×d Ud : S ∈ Rr1×r2×···×rd , and

Ui ∈ Rni×ri , ‖Ui(:, j)‖0 ≤ si, i ∈ [[d]], j ∈ [[ri]]}. (4.8)

Using the definition of constraint set C, and given a known linear map X , we can

pose the following constrained optimization problem for recovery of B from noisy linear

measurements y:

B̂ = arg min
Z∈C

1

2
‖y −X (Z)‖22. (4.9)

We can see that the optimization problem posed in (4.9) is non-convex because of

non-convexity of the constraint set C. In contrast, most of the prior works in tensor

parameter estimation focus on solving convex relaxations of the tensor recovery problem

for various notions of low-dimensional tensor structures [10, 21, 23, 68], hence benefiting

from rich literature on theory and algorithms for convex optimization. But the issue

with convex relaxation-based solutions is that convex relaxations can be suboptimal in

terms of number of measurements required to solve the problem [23]. While posing

and solving the tensor recovery problem in a non-convex form tends to circumvent this

issue, it brings about difficulties in terms of theoretically characterizing behavior of the

associated recovery algorithm. In the next section, we present our proposed method for

solving (4.9), while theoretical characterization of the proposed approach is an important

contribution of this chapter.

4.3.1 Our Contributions

In the following we summarize the main contributions of this chapter:

1. We propose a new tensor regression model in (4.6), where we impose the parameter

tensor B is r-rank and s-sparse. We formulate parameter estimation as a non-

convex problem in (4.9), and we propose Algorithm 2 to solve it. In contrast, prior
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works that study simultaneous imposition of multiple structures for regression

either (i) assume that the tensors satisfy certain cubic structures [27], or (ii)

formulate a convex problem for estimating the parameter tensor [28], which can

lead to sub-optimal sample complexity [23].

2. We provide theoretical analysis to show that Algorithm 2 provides an approxi-

mately correct solution within a given number of algorithm steps, under a cer-

tain Restricted Isometry Property assumption—related to r−rank and s−sparse

tensors—on the linear map. This assumption is reminiscent of the Restricted

Isometry Property in the literature for sparse regression [69, 74] and low rank

tensor regression [22, 72].

The rest of this chapter is organized as follows. In Sec. 4.4, we present our proposed

algorithm for learning the tensor regression model in (4.6); whereas, in Sec. 4.5, we pro-

vide mathematical guarantees for the algorithm, based on a certain Restricted Isometry

Property assumption on the linear map. Finally, in Sec. 5.3, we report results of exten-

sive numerical experiments on synthetic data, while concluding remarks are presented

in Sec. 5.4.

4.4 Estimation of r-Rank and s-Sparse Regression Tensors

In this section, we present a method for estimation of the structured parameter tensor

B in the regression model (4.6), given the linear map X , response vector y, and the

assumption that B is r-rank and s-sparse. Our method is inspired by the various

projected gradient descent-based methods in the literature, where such methods have

been employed for recovery of sparse vectors [69], low-rank matrices [71], and more

recently, low rank tensors [22, 72]. The method, termed tensor projected gradient descent

(TPGD), is summarized in Algorithm 2. The TPGD method consists of two steps.

First we perform gradient descent iteration over the objective function in (4.9) (Step 4,

Algorithm 2), and then, we project the iterate onto set C, which is the set of r-rank and

s-sparse tensors (Step 5, Algorithm 2). The projection operator, H : Rn1×n2×···×nd →
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Rn1×n2×···×nd , in Step 5 of Algorithm 2 is defined as:

H(B̃) := arg min
B̂∈C
‖B̃− B̂‖2F . (4.10)

Algorithm 2: Tensor Projected Gradient Descent (TPGD)
1: Input: Linear map X , response vector y, step size µ, sparsity tuple s, rank tuple r
2: Initialize: Tensor B0 and k ← 0
3: while Stopping criterion do
4: B̃k ← Bk − µX ∗(X (Bk)− y)
5: Bk+1 ← H(B̃k)
6: k ← k + 1
7: end while
8: return Tensor B∗ = Bk

In general, computation of tensor projections, such as the one given in (4.10), is

considered to be an NP-hard problem [75]. Despite that, several algorithms have been

proposed in the literature for computing low-rank tensor approximations corresponding

to various notions of tensor decompositions [16, 76–78]. Although these approxima-

tion algorithms do not come with mathematical guarantees regarding the accuracy of

tensor approximation, they have been employed successfuly in practice for parameter

estimation in various examples of tensor regression models [22, 27, 72, 73, 78]. Corre-

spondingly, since these approximation methods are not guaranteed to obtain the best

tensor approximation, mathematical guarantees for the various parameter estimation

methods assume the goodness of the tensor approximation step.

In a similar vein, in our mathematical guarantees for Algorithm 2 (Sec. 5.2), we

assume that the projection step in (4.10) can be exactly computed. However, in our

numerical simulations (Sec. 5.3), we employ Algorithm 3 for computation of the step

in (4.10), where Algorithm 3 is essentially the Sparse Higher-Order SVD method [76],

within which we employ the inverse power method from [79] for computation of the factor

matrices. Despite the lack of mathematical guarantees for Algorithm 3, our numerical

simulations show it can be effectively employed with Algorithm 2 to efficiently learn the

regression model in (4.6) under certain conditions.
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Algorithm 3: Sparse Higher-Order SVD

1: Input: Tensor B̃, sparsity tuple s, rank tuple r
2: for j = 1, . . . , d do
3: U j ← [column-wise arrangement of sj-sparse principal components of B̃(j)]

4: U j ← U j(:, 1 : rj)
5: end for
6: S← B̃×1 U1 ×2 U2 ×3 · · · ×d Ud
7: return Tensor B = S×1 U1 ×2 U2 ×3 · · · ×d Ud

4.5 Convergence Analysis of Tensor Projected Gradient Descent

In this section we provide theoretical guarantees for TPGD (Algorithm 2), which, as

explained earlier, is a projected gradient method to solve (4.9). Variants of the pro-

jected gradient method have been analyzed for recovery of sparse vectors [69], low-

rank matrices [71], and low-rank tensors [22, 72] under the assumption that the linear

map/measurement operator satisfies some variant of the restricted isometry property

(RIP) [54]. Since different tensor decompositions induce different notions of tensor

rank [22, 27], and different regression models lead to different measurement operators

[22, 72], various notions of RIP have also been posed for various tensor decompositions

and regression models. Before we present the notion of RIP assumed on the linear

map in this work, let us define a set of r-rank and s-sparse tensors, with an additional

constraint on the `1 norm of the associated core tensor:

Gr,s,τ ={S×1 U1 ×2 U2 ×3 · · · ×d Ud : S ∈ Rr1×r2×···×rd , ‖S‖1 ≤ τ, and

Ui ∈ Rni×ri , ‖Ui(:, j)‖0 ≤ si, i ∈ [[d]], j ∈ [[ri]]}. (4.11)

For the recovery of r-rank and s-sparse tensors considered in this work, we con-

sider the following notion of RIP on the linear map X , which is followed by our first

main theoretical result that characterizes the convergence behavior of TPGD under the

assumption of an exact projection step (Step 5, Algorithm 2).

Definition 4.2 ((r, s, τ, δr,s,τ )-Restricted Isometry Property). The restricted isometry

constant δr,s,τ ∈ (0, 1) of a linear map X : Rn1×n2×···×nd → Rm acting on tensors of
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order d is the smallest quantity such that

(1− δr,s,τ )‖Z‖2F ≤ ‖X (Z)‖22 ≤ (1 + δr,s,τ )‖Z‖2F (4.12)

for all tensors Z ∈ Gr,s,τ .

Theorem 4.1 (Convergence of TPGD). Let y = X (B) + η, and let B0 be the tensor

initialization in Algorithm 2. For some fixed γ ∈ (0, 1), if X : Rn1×n2×···×nd → Rm

satisfies RIP in Definition 4.2 with δ2r,s,2τ < γ
4+γ , then for b =

1+3δ2r,s,2τ
1−δ2r,s,2τ

, choosing

some c1 > 0, and fixing the step size µ = 1
1+δ2r,s,2τ

, the TPGD algorithm (Algorithm 2)

obtains a solution B∗ such that

‖B∗ −B‖2F ≤
2

1− δ2r,s,2τ

(
1 + c1 +

b

1− γ

)
‖η‖22

in at most 1
log( 1

γ
)

log
(
‖y−X (B0)‖22

c1‖η‖22

)
iterations.

4.5.1 Discussion of Theorem 4.1

Let c0 := 2
1−δ2r,s,2τ

(
1+c1+ b

1−γ

)
‖η‖22. Next, define the closed ball B(c0,B) with center

at B and radius c0 as the set of all Z ∈ Rn1×n2×···×nd such that ‖Z−B‖2F ≤ d. Further,

let t := 1
log( 1

γ
)

log
(
‖y−X (B0)‖22

c1‖η‖22

)
. With these definitions, it can be seen from Theorem 4.1

that the solution of TPGD will be in B(c0,B) after t iterations of TPGD. Note that

although the mathematical guarantees in this section depend on the (r, s, τ, δr,s,τ )-RIP

property in Definition 4.2, we evaluate the property for a known family of linear maps

in the next section.

Additionally, Theorem 4.1 also characterizes the impact of noise power ‖η‖22 and RIP

constant δ2r,s,2τ on convergence behavior of the TPGD algorithm. First, the radius of

ball B(c0,B) scales linearly with the noise power ‖η‖22. Thus, the more the noise power,

the less accurate may the solution of TPGD be and vice versa. Second, Theorem 4.1

shows that the smaller the RIP constant δ2r,s,2τ , the smaller the radius of ball B(c0,B).

Thus, the larger the value of δ2r,s,2τ , the less accurate may the solution of TPGD

be and vice versa. Furthermore, observing that ‖y − X (B0)‖2 ≤
√

1 + δ2r,s,2τ‖B −

B0‖F + ‖η‖2 given B0 ∈ B(c0,B), the theorem also shows that the rate of convergence

of the algorithm is inversely related to the value of the RIP constant δ2r,s,2τ and the

initialization distance ‖B−B0‖F .
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4.5.2 Proof of Theorem 4.1

Before we present a proof of Theorem 4.1, let us provide a lemma that involves analysis

of any step that involves linear combination of r-rank and s-sparse tensors. A key step

in proving Theorem 4.1 is to show that any linear combination of two r-rank and s-

sparse tensors has rank at most 2r and sparsity s. We formally state this in the form

of following lemma.

Lemma 4.1. Let Za ∈ Rn1×n2×···×nd and Zb ∈ Rn1×n2×···×nd be members of the set

Gr,s,τ , where r := (r1, r2, . . . , rd), s := (s1, s2, . . . , sd), and τ ∈ R+. Define Zc = γaZa+

γbZc, where γa, γb ∈ R. Then, Zc is a member of the set G2r,s,κ, where κ = (|γa|+|γb|)τ .

The proof of this lemma is provided in Appendix 4.8.1. We are now ready to present a

complete technical proof of Theorem 4.1.

Proof. Let L(Z) := ‖y−X (Z)‖22 be the loss function for any Z ∈ Rn1×n2×...×nd . Then,

we have

L(Bk+1)− L(Bk) = ‖y −X (Bk+1)‖22 − ‖y −X (Bk)‖22

= ‖X (Bk+1)‖22 − ‖X (Bk)‖22 − 2〈y,X (Bk+1 −Bk)〉

= ‖X (Bk+1)‖22 + ‖X (Bk)‖22 − 2‖X (Bk)‖22 − 2〈y,X (Bk+1 −Bk)〉

= ‖X (Bk+1 −Bk)‖22 + 2〈X (Bk),X (Bk+1)〉 − 2〈X (Bk),X (Bk)〉

− 2〈y,X (Bk+1 −Bk)〉

= ‖X (Bk+1 −Bk)‖22 + 2〈X (Bk)− y,X (Bk+1 −Bk)〉

= ‖X (Bk+1 −Bk)‖22 + 2〈A∗(X (Bk)− y),Bk+1 −Bk〉

≤ (1 + δ2r,s,2τ )‖Bk+1 −Bk‖2F + 2〈A∗(X (Bk)− y),Bk+1 −Bk〉,

(4.13)

where the last inequality follows from application of Definition 4.2 with Lemma 4.1.
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For any Z ∈ Rn1×n2×...×nd , define

g(Z) := (1 + δ2r,s,2τ )‖Z−Bk‖2F + 2〈A∗(X (Bk)− y),Z−Bk〉

(a)
= (1 + δ2r,s,2τ )‖Z− B̃k + µA∗(y −X (Bk))‖2F

+ 2〈A∗(X (Bk)− y),Z− B̃k + µA∗(y −X (Bk))〉

(b)
= (1 + δ2r,s,2τ )‖Z− B̃k‖2F −

1

1 + δ2r,s,2τ
‖A∗(y −X (Bk))‖2F , (4.14)

where (a) follows by substituting Bk = B̃k + µA∗(X (Bk) − y) and (b) follows by

substituting µ = 1
1+δ2r,s,2τ

. Then, since ‖Bk+1 − B̃k‖F ≤ ‖B − B̃k‖F , which follows

from Bk+1 = H(B̃k), we have g(Bk+1) ≤ g(B). Using g(Bk+1) ≤ g(B) with (4.13), we

obtain

L(Bk+1)− L(Bk) ≤ (1 + δ2r,s,2τ )‖B−Bk‖2F + 2〈A∗(X (Bk)− y),B−Bk〉

= 2δ2r,s,2τ‖B−Bk‖2F + (1− δ2r,s,2τ )‖B−Bk‖2F

+ 2〈A∗(X (Bk)− y),B−Bk〉

≤ 2δ2r,s,2τ‖B−Bk‖2F + ‖X (B−Bk)‖22

+ 2〈A∗(X (Bk)− y),B−Bk〉

= 2δ2r,s,2τ‖B−Bk‖2F + ‖X (B−Bk)‖22

+ 2〈X (Bk),X (B−Bk)〉 − 2〈y,X (B−Bk)〉

= 2δ2r,s,2τ‖B−Bk‖2F + ‖X (B)‖22 − ‖X (Bk)‖22 − 2〈y,X (B−Bk)〉

= 2δ2r,s,2τ‖B−Bk‖2F + ‖y −X (B)‖22 − ‖y −X (Bk)‖22

≤ 2δ2r,s,2τ
1− δ2r,s,2τ

‖X (B−Bk)‖22 + L(B)− L(Bk), (4.15)

where the last two inequalities follow from application of Definition 4.2 with Lemma 4.1.

Thus, we have

L(Bk+1) ≤ 2δ2r,s,2τ
1− δ2r,s,2τ

‖X (B−Bk)‖22 + L(B). (4.16)

Using X (B) = y − η, we have

‖X (B−Bk)‖22 = ‖y −X (Bk)− η‖22 ≤ 2(‖y −X (Bk)‖22 + ‖η‖22) = 2
(
L(Bk) + ‖η‖22

)
,

(4.17)
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where the inequality follows since (u + v)2 ≤ 2(u2 + v2) for all u, v ∈ R. Using (4.16)

with (4.17), and observing L(B) = ‖η‖22, we obtain

L(Bk+1) ≤ 4δ2r,s,2τ
1− δ2r,s,2τ

(
L(Bk) + ‖η‖22

)
+ ‖η‖22

=
4δ2r,s,2τ

1− δ2r,s,2τ
L(Bk) +

(
1 +

4δ2r,s,2τ
1− δ2r,s,2τ

)
‖η‖22. (4.18)

Using δ2r,s,2τ < γ
4+γ , γ < 1, and b =

1+3δ2r,s,2τ
1−δ2r,s,2τ

yields

L(Bk+1) ≤ γL(Bk) + b‖η‖22. (4.19)

Iterative application of this inequality leads to

L(Bk) ≤ γkL(B0) +
b

1− γ
‖η‖22 (4.20)

for all k ≥ 1.

Next, let us fix some K ∈ Z+. In order to obtain L(BK) that is small enough for

some c1 > 0, that is,

L(BK) ≤ γKL(B0) +
b

1− γ
‖η‖22 ≤

(
c1 +

b

1− γ

)
‖η‖22, (4.21)

the algorithm requiresK ≥ 1
log( 1

γ
)

log( L(B
0)

c1‖η‖22
). Finally, using Definition 4.2 with Lemma 4.1,

‖BK −B‖2F ≤
1

1− δ2r,s,2τ
‖X (BK −B)‖22

(c)
≤ 2

1− δ2r,s,2τ

(
L(BK) + ‖η‖22

)
(d)
≤ 2

1− δ2r,s,2τ

(
1 + c1 +

b

1− γ

)
‖η‖22, (4.22)

where (c) and (d) follow from (4.17) and (4.21), respectively.

4.6 Experimental Results

In this section, we analyze the performance of our proposed TPGD method (Algo-

rithm 2) for learning tensor regression models, using numerical experiments on synthetic

data. We compare the TPGD method with two tensor variants of the projected gradient
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descent method, in which we consider low Tucker rank [22] and low CP rank [80] on the

parameter tensor, respectively. Some relevant implementation details for these learning

methods are as follows. For computation of H in Algorithm 2, we employ Algorithm 3

(Sparse Higher-Order SVD method [76]), within which we employ the inverse power

method from [79] for computation of the factor matrices. For computation of the pro-

jection steps in the Tucker rank and the CP rank based methods, we employ the tensor

toolboxes in [81] and [82], respectively.

For the synthetic-data experiments, we generate the r-rank and s-sparse tensor B ∈

Rn1×n2×···×nd in (4.6) as follows. We set d = 3, n1 = 50, n2 = 50, n3 = 20, and in

(4.7), we set s1 = 2, s2 = 2, s3 = 2, and r = 3. For each j ∈ [[d]], we generate the

r column vectors Uj(:, i), for all i ∈ [[r]], such that ‖Uj(:, i)‖0 ≤ sj . The sj non-zero

entries in Uj(:, i) are chosen uniformly at random from [[nj ]]. Setting a = 0.2, we

sample the non-zero entries in Uj(:, i) from (−1)u(a + |z|), where u was drawn from a

Bernoulli distribution with parameter 0.5 and z was drawn from a standard Gaussian

distribution, Gaussian(0, 1). To finally generate the parameter tensor B, the entries of

the core tensor S are sampled from a uniform distribution with parameters 0 and 1, and

the tensor B is generated as in (4.7). To generate the response vector y, the tensors

{Xi}mi=1 are generated such their entries are i.i.d. Gaussian(0, 1/m), the noise vector

η is sampled from Gaussian(0, σ2zI), and then the response vector y is generated as in

(4.6).

We perform the experiments for noise variance σz = 0.1 as well as σz = 0.4, for

various values of m. For each value of σz and m, (i) the parameter tensor B, the

linear map X , and the response vector y are generated as explained in the previous

paragraph, and (ii) a parameter estimate B̂ is computed using each of the learning

methods. The performance of each learning method is characterized using the recovery

error, which is defined as ‖B−B̂‖F‖B‖F . For each value of σz and m, the experiment is

repeated 50 times, and the average recovery error is reported in Fig. 4.1. For all

learning methods, algorithm parameters like r, s, Tucker rank, and CP rank are chosen

in separate validation experiments, where the parameters are chosen such as to minimize

the recovery error on validation datasets.
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(a) (b)

Figure 4.1: Comparison of TPGD with low Tucker rank and low CP rank based estima-
tion over synthetic data. The mean error is reported over varying number of observations
m, and the experiment is repeated for (a) σz = 0.1, (b) σz = 0.4. As σz decreases, the
accuracy of the solution of TPGD increases. This is also reflected in Theorem 4.1: the
lower the noise power, the more accurate the solution of TPGD.

Importantly, Fig. 4.1 shows the efficacy of the projection stepH in Algorithm 2, since

the proposed method demonstrates better sample complexity performance compared

with the other learning methods. Despite the lack of theoretical guarantees for the

projection step in Algorithm 2, the projection step can be computed accurately enough

for us to be able to simultaneously exploit low rankness and sparsity in the parameter

tensor. Furthermore, comparing Fig. 4.1a and Fig. 4.1b, we can see that as the noise

power is reduced, the accuracy of the solution of TPGD increases, which is also what

we learnt from our main result in Theorem 4.1.

Note that LASSO performs considerably worse than the other learning methods;

thus, it’s not included in Fig. 4.1 for clarity of plots. However, we plot the results

for the LASSO method separately, in Fig. 4.2, for large sample sizes. Specifically,

we perform the experiment for values of m ranging from 1000 to 20000, repeating the

experiment for σz = 0.1 as well as σz = 0.4. As can be seen from Fig. 4.2, the recovery

error for the LASSO method does decrease as we increase the sample size significantly.

However, the LASSO method requires a much larger sample size to achieve recovery

error that is comparable to the recovery error achieved by the other estimation methods

in Fig. 4.1.
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(a)

Figure 4.2: Recovery performance of LASSOmethod over synthetic data for large sample
sizes. The recovery error is reported for values of m ranging from 1000 to 20000, and
the experiment is repeated for (a) σz = 0.1, (b) σz = 0.4.

4.7 Conclusion

In this chapter, we proposed a new regression model that considers the simultaneous

imposition of multiple structures on the parameter tensor, massively reducing the de-

grees of freedom in the model. We proposed an algorithm for parameter estimation,

and we showed that the algorithm provides an approximately correct solution to the

posed model under certain assumptions. Importantly, the simultaneous imposition of

structures on the parameter tensor allowed us to provide better sample complexity

bounds for parameter estimation using the proposed method, and in our experiments,

we demonstrated the application of the proposed model and method in high-dimensional

neuroimaging data analysis.
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4.8 Appendix

4.8.1 Proof of Lemma 4.1

Since Za ∈ Gr,s,τ , it can be expressed as

Za = Sa ×1 Ua,1 ×2 Ua,2 · · · ×d Ua,d,

where Sa ∈ Rr1×r2×···×rd such that ‖Sa‖1 ≤ τ , and Ua,i ∈ Rni×ri , with ‖Ua,i(:, j)‖0 ≤ si,

∀i ∈ [[d]], j ∈ [[ri]]. Similarly, since Zb ∈ Gr,s,τ , it can be expressed as

Zb = Sb ×1 Ub,1 ×2 Ub,2 · · · ×d Ub,d,

where Sb ∈ Rr1×r2×···×rd such that ‖Sb‖1 ≤ τ , and Ub,i ∈ Rni×ri , with ‖Ub,i(:, j)‖0 ≤ si,

∀i ∈ [[d]], j ∈ [[ri]]. Let Zc = γaZa+γbZc, where γa ∈ R, γb ∈ R, so that Zc is some linear

combination of Za and Zb. Define the Cartesian product DP := [[r1]]× [[r2]]×· · ·× [[rd]].

Using the definition of DP , define Sc ∈ R2r1×2r2×...×2rd where

Sc(i1, i2, . . . , id) =


γa Sa(i1, i2, . . . , id) : (i1, i2, . . . , id) ∈ DP

γb Sb(i1, i2, . . . , id) : (i1 − r1, i2 − r2, . . . , id − rd) ∈ DP

0 : otherwise

for (i1, i2, . . . , id) ∈ [[2r1]]× [[2r2]]×· · ·× [[2rd]]. Note that ‖Sc‖1 = ‖γaSa‖1+‖γbSb‖1 ≤

(|γa|+|γb|)τ . Furthermore, for i ∈ [[d]], define Uc,i ∈ Rni×2ri such that Uc,i := [Ua,i Ub,i].

Finally, with these definitions, Zc can be expressed as

Zc = Sc ×1 Uc,1 ×2 Uc,2 · · · ×d Uc,d,

where Sc ∈ R2r1×2r2×...×2rd such that ‖Sc‖1 ≤ (|γa| + |γb|)τ , and Uc,i ∈ Rni×2ri such

that ‖Uc,i(:, j)‖0 ≤ si, for all i ∈ [[d]], j ∈ [[2ri]]. Therefore, Zc is a member of the set

G2r,s,κ, where κ = (|γa|+ |γb|)τ .
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Chapter 5

Sample Complexity of Tensor Regression

In the previous chapter, we considered a new linear regression model for the case when

predictors are tensor-valued, and we proposed a non-convex projected gradient descent-

based method for estimating the parameter tensor. An important contribution of the

previous chapter was to characterize the convergence behavior of the proposed method,

based on a certain Restricted Isometry Property on the linear map. In this chapter, we

evaluate the posed Restricted Isometry Property for the case when the predictors draw

values from a sub-Gaussian distribution, and in the process, we characterize the sample

complexity bound for parameter estimation. Importantly, our sample complexity bound

only has a polylogarithmic dependence on n, where n := max
{
ni : i ∈ {1, 2, . . . , d}

}
. In

contrast, such sample complexity requirements in prior works pose a linear dependence

on n. Furthermore, our real data experiments on an fMRI imaging dataset demonstrate

the efficacy of the proposed regression model for neuroimaging data analysis. Specifi-

cally, our proposed model and method exhibit better classification performance on the

neuroimaging dataset, demonstrating their applicability in settings where
∏
i ni ≫ m.

5.1 Contributions

In the following we summarize the main contributions of this chapter:

1. We evaluate the posed Restricted Isometry Property (RIP) (Definition 4.2) for

sub-Gaussian linear maps, and we characterize the sample complexity of param-

eter estimation. Specifically, we show that Algorithm 2 requires O
(( d∏

i=1
ri +

d∑
i=1

siri
)(

log(3nd)
)2) samples for providing an approximately correct solution,

where n := max{ni : i ∈ [[m]]}. Importantly, our sample complexity bound only
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has a polylogarithmic dependence on n. In contrast, prior works in tensor regres-

sion pose a sample complexity requirement that is either linear or super-linear in

n [21–23].

2. In our synthetic experiments, we demonstrate the efficacy of the proposed method

(Algorithm 2) for learning the proposed regression model in (4.6). In our real

data experiments, we demonstrate the utility of our proposed model and method

in diagnosis of attention deficit hyperactivity disorder (ADHD) using fMRI images.

Importantly, these experiments show that despite the imposition of low rank and

sparse structure on the parameter tensor B, which leads to a massive decrease

in degrees of freedom of the model, our model is not restrictive and is useful for

neuroimaging data analysis.

The rest of the chapter is organized as follows. In Sec. 5.2, we evaluate the posed

Restricted Isometry Property for sub-Gaussian linear maps and provide sample com-

plexity bounds. In Sec. 5.3, we report results of numerical experiments on real data,

while concluding remarks are presented in Sec. 5.4.

5.2 Evaluating the Restricted Isometry Property for Sample Com-

plexity Analysis

In the previous chapter, we provided theoretical guarantees for recovery of the parameter

tensor B using the TPGD method, based on assumption of the Restricted Isometry

Property (Definition 4.2). In this section, we provide examples of linear maps that

satisfy this property. Specifically, we consider linear maps in (4.6), X , that denote the

collection of tensors in (1.1), {Xi}mi=1, such that the entries of {Xi}mi=1 are independently

drawn from zero-mean, unit-variance sub-Gaussian distributions. We denote such linear

maps as sub-Gaussian linear maps. Before we evaluate the condition in Definition 4.2

for these maps, let us recall the definition of a sub-Gaussian random variable.

Definition 5.1. A zero-mean random variable Z is said to follow a sub-Gaussian distri-

bution subG(α) if there exists a sub-Gaussian parameter α > 0 such that E[exp(λZ)] ≤

exp
(
α2λ2

2

)
for all λ ∈ R.
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In words, a subG(α) random variable is one whose moment generating function is domi-

nated by that of a Gaussian random variable. Some common examples of sub-Gaussian

random variables include:

• Z ∼ N (0, α2) ⇒ Z ∼ subG(α).

• Z ∼ unif(−α, α) ⇒ Z ∼ subG(α).

• |Z| ≤ α,E[Z] = 0 ⇒ Z ∼ subG(α).

• Z ∼


α, with prob. 1

2 ,

−α, with prob. 1
2 ,

⇒ Z ∼ subG(α).

Next, we evaluate the Restricted Isometry Property (Definition 4.2) for sub-Gaussian

linear maps.

Theorem 5.1. Let the entries of {Xi}mi=1 be independently drawn from zero-mean,

1
m -variance subG(α) distributions. Define n̄ := max{ni : i ∈ [[d]]}. Then, for any

δ, ε ∈ (0, 1), the linear map X satisfies δr,s,τ ≤ δ with probability at least 1− ε as long

as

m ≥ δ−2 max

{
K1 τ

2

( d∏
i=1

ri +

d∑
i=1

siri

)(
log(3n̄d)

)2
, K2 log(ε−1)

}
,

where the constants K1, K2 > 0 depend on τ and α.

5.2.1 Discussion

We compare the result in Theorem 5.1 with sample complexity bounds in the liter-

ature for estimation of the parameter tensor B in (4.6). Theoretically, we can pose

the estimation problem as (i) low Tucker-rank recovery problem [22], or (ii) sparse

recovery problem [74]. Thus, in this section, we first compare the sample complex-

ity bound in Theorem 5.1 with complexity bounds from low rank recovery and sparse

recovery literature. For ease of comparison, define r̄ := max{r1, r2, . . . , rd} and s̄ :=

max{s1, s2, . . . , sd}. With these definitions, the sample requirement in Theorem 5.1 can

be posed as Ω
((
r̄d + s̄ r̄ d

)(
log(3 n̄ d)

)2). Next, let’s compare this complexity result

with complexity bounds in aforementioned prior works.
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Low Tucker-Rank Recovery

Among the many works that study the problem of estimating B under the imposition

of low Tucker rank on B [10, 21–23], the most tight sample complexity bound has been

shown to be Ω
(
(r̄d+ n̄ r̄ d) log(d)

)
[22]. If we apply this complexity bound for estimating

the parameter tensor B in (4.6), the sample complexity requirement scales linearly with

n̄. In contrast, since we consider sparsity on columns of the factor matrices within

Tucker decomposition of B, our sample complexity bound has a linear dependence on

s̄ and only a polylogarithmic dependence on n̄, where s̄� n̄.

Sparse Recovery

The regression model in (4.6), or equivalently the model in (1.1), can be vectorized such

that the model can be expressed as yi = 〈vec(Xi), vec(B)〉+ηi, i ∈ [[m]], and the problem

of recovering B can be posed as a sparse recovery problem. It has been shown that if the

entries of vec(Xi), i ∈ [[m]], draw values from a Gaussian distribution, vec(B) can be

recovered using O(k log(n̄d/k)) samples [83], where k is the number of non-zero entries

in vec(B). The number of non-zero entries in vec(B) are upper bounded by (s̄ r̄)d, which

leads to a worst-case sample complexity requirement of O(d (s̄ r̄)d log(n̄/s̄ r̄)). Thus, the

sparse signal recovery literature poses a worst-case sample complexity requirement that

has linear dependence on d (s̄ r̄)d. In contrast, since we consider the multi-dimensional

structure within B, our sample complexity requirement has linear dependence on r̄d +

s̄ r̄ d only.

Finally, note that the number of free parameters in the parameter tensorB are on the

order of
∏
i ri+

∑
i risi log ni, which can be more conveniently expressed as r̄d+s̄ r̄ d log n̄.

Thus, the posed sample complexity requirement of Ω
((
r̄d + s̄ r̄ d

)(
log(3 n̄ d)

)2) in The-

orem 5.1 is order-optimal up to a polylogarithmic factor.

5.2.2 Outline of the Proof

The general idea of the proof of Theorem 5.1 is similar to that of [71, Theorem 4.2], [84,

Theorem 2.3], [85, Theorem 4.1], and [22, Theorem 2], where the main analytic challenge



68

is to analyze the complexity of the set that is hypothesized to contain the regression

parameters. In this work, the challenge translates into characterizing the complexity of

the set Gr,s,τ , for which we employ the notion of ε-nets and covering numbers, defined

as follows.

Definition 5.2 (ε-nets and covering numbers). Let (V, h) be a metric space, and let

T ⊂ V . The set X ⊂ T is called an ε-net of T with respect to the metric h if for any

Ti ∈ T , ∃Xi ∈ X such that d(Xi, Ti) ≤ ε. The minimum cardinality of an ε-net of T

(with respect to the metric d) is called the covering number of T with respect to the

metric d and is denoted by Ψ(T, d, ε) in this paper.

Next, we provide an outline to the proof of Theorem 5.1. In the first step, we provide

an upper bound on the covering number of Gr,s,τ with respect to the Frobenius norm,

which forms our main contribution. In the second step, we employ a deviation bound

from prior works [22, 85] to complete the proof of this theorem. A formal proof of

Theorem 5.1 follows in Appendix 5.8.

Bound on Covering Number of Gr,s,τ

The following result provides a bound on the covering number of Gr,s,τ with respect to

the Frobenius norm:

Lemma 5.1. For tuples r := (r1, r2, . . . , rd), s := (s1, s2, . . . , sd), and for any τ > 0,

the covering number of

Gr,s,τ ={S×1 U1 ×2 U2 ×3 · · · ×d Ud : S ∈ Rr1×r2×···×rd , ‖S‖1 ≤ τ, and

Ui ∈ Rni×ri , ‖U(:, j)‖2 ≤ 1, ‖Ui(:, j)‖0 ≤ si, i ∈ [[d]], j ∈ [[ri]]}

with respect to the metric hG satisfies

Ψ(Gr,s,τ , hG , ε) ≤
(3τ(d+ 1)

ε

) d∏
i=1

ri(3n̄τ(d+ 1)

ε

) d∑
i=1

siri
, ε ∈ (0, 1),

where n̄ := max{ni : i ∈ [[m]]} and hG(G(1),G(2)) = ‖G(1)−G(2)‖F for any G(1),G(2) ∈

Gr,s,τ .
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Let us provide an outline to the proof of Lemma 5.1, while a formal proof is pro-

vided in Appendix 5.7. Define Cartesian product of metric spaces (DS, hS), (DU1 , hU1),

(DU2 , hU2), . . . , (DUd , hUd), that is

DP := DS ×DU1 ×DU2 × · · · × DUd ,

where DS := {S ∈ Rr1×r2×···×rd : ‖S‖1 ≤ τ}, hS(S(1),S(2)) := 1
τ ‖S

(1) − S(2)‖1 for any

S(1),S(2) ∈ DS, DUi := {U ∈ Rni×ri : ‖U(:, j)‖2 ≤ 1, ‖U(:, j)‖0 ≤ si, j ∈ [[ri]]}, and

hUi(U
(1)
i , U

(2)
i ) = ‖U (1)

i − U (2)
i ‖1,2 for any U (1)

i , U
(2)
i ∈ DUi , for all i ∈ [[d]]. Next, we

compute a bound on the covering number of DP with respect to the metric hP defined

as

hP (P (1), P (2)) = max
{

max
i∈[[d]]

{‖U (1)
i − U

(2)
i ‖1,2},

1

τ
‖S(1) − S(2)‖1

}
,

where P (1), P (2) ∈ DP , S(1),S(2) ∈ DS, and U
(1)
i , U

(2)
i ∈ DUi , i ∈ [[d]]. Specifically,

using Lemma 5.5, a bound on Ψ(DP , hP , ε) can be obtained as

Ψ(DP , hP , ε) ≤ Ψ(DS, hS, ε)

d∏
i=1

Ψ(DUi , hUi , ε). (5.1)

Thus, to compute an upper bound on Ψ(DP , hP , ε), we need upper bounds on Ψ(DS, hS, ε)

and Ψ(DUi , hUi , ε), respectively. To obtain a bound on Ψ(DS, hS, ε), we employ the fol-

lowing lemma, which is proved in Appendix 5.5.

Lemma 5.2. Define DS := {S ∈ Rr1×r2×···×rd : ‖S‖1 ≤ τ} with distance measure ‖ . ‖1.

Then the covering number of DS (with respect to the norm ‖ . ‖1) satisfies the bound

Ψ(DS, ‖ . ‖1, ε) ≤
(3 τ

ε

) d∏
i=1

ri
, ε ∈ (0, 1).

Similarly, to obtain a bound on Ψ(DUi , hUi , ε) for any i ∈ [[d]], we employ the following

lemma, which is proved in Appendix 5.6.

Lemma 5.3. Define DU := {U ∈ Rn×r : ‖U(:, j)‖2 ≤ 1, ‖U(:, j)‖0 ≤ s for all j ∈ [[r]]}

with distance measure hU , where hU (U (1), U (2)) = ‖U (1) − U (2)‖1,2 for any U (1), U (2) ∈

DU . Then the covering number of DU with respect to the metric hU satisfies the bound

Ψ(DU , hU , ε) ≤
(3n

ε

)sr
, ε ∈ (0, 1).
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Therefore, the bound in (5.1) can be evaluated using Lemma 5.2 and Lemma 5.3.

To finally derive a bound on the covering number of Gr,s,τ with respect to the metric

hG , define a mapping Φ such that

Φ(S, U1, U2, . . . , Ud) = S×1 U1 ×2 U2 ×3 · · · ×d Ud

where (S, U1, U2, . . . , Ud) ∈ DP . From this definition, it follows that Φ : DP → Gr,s,τ .

We evaluate a constant L ∈ R such that hG(Φ(P (1)),Φ(P (2))) ≤ L hP (P (1), P (2)), and

then we employ Lemma 5.6 with (5.1) to obtain an upper bound on Ψ(Gr,s,τ , hG , ε).

Deviation Bound

Next, since δr,s,τ = sup
Z∈Gr,s,τ

∣∣∣‖X (Z)‖22 − E
[
‖X (Z)‖22

]∣∣∣, we derive a probabilistic bound

on the right hand side of this equality, using techniques similar to those in [22, 85].

Specifically, define ξ to be a random vector in Rn1 n2 ...ndm with independent entries

from zero-mean, unit-variance, subG(B) random variables. Further, let Z ∈ Gr,s,τ , and

define VZ to be a matrix in Rm×n1 n2 ···ndm such that

VZ =
1√
m



z> 0 0 . . . 0

0 z> 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . z>


,

where z ∈ Rn1 n2 ···nd×1 is the vectorized version of Z. Then, we have the equivalence

relationship X (Z) = VZ ξ. For ease of notation, let us further define a setM := {VZ :

Z ∈ Gr,s,τ}. With this additional notation, we have δr,s,τ = sup
M∈M

∣∣∣‖Mξ‖22−E
[
‖Mξ‖22

]∣∣∣,
and we apply the following theorem to obtain a deviation bound on the right hand side

of this equality.

Theorem 5.2 ([22, 85]). Let M0 be a set of matrices, and let ξ0 be a random vector

with independent entries from zero-mean, unit-variance, subG(α0) random variables.
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For the setM0, define

dF (M0) := sup
M∈M0

‖M‖F , d2→2(M0) := sup
M∈M0

‖M‖2,

and d4(M0) := sup
M∈M0

‖M‖S4 = sup
M∈M0

(
tr
[
(M>M)2

]) 1
4 .

Furthermore, let γ2(M0, ‖ . ‖2) be the Talagrand’s γ2-functional [86]. Finally, set

E = γ2(M0, ‖ . ‖2)(γ2(M0, ‖ . ‖2) + dF (M0)) + dF (M0)d2→2(M0)

V = d24(M0), and U = d22→2(M0).

Then, for t > 0,

P
(

sup
M∈M0

∣∣∣‖Mξ‖22 − E
[
‖Mξ‖22

]∣∣∣ ≥ c1E + t

)
≤ 2 exp

(
− c2 min

{
t2

V 2
,
t

U

})
,

where the constants c1, c2 depend on α0.

For the application of Theorem 5.2, we evaluate bounds on the metrics dF (M),

d2→2(M), d4(M), and γ2(M, ‖ . ‖2). However, the main analytical challenge in this

application is evaluation of a bound on the Talagrand’s γ2-functional γ2(M, ‖ . ‖2), which

encompasses a geometric characterization of the metric space (M0, ‖ . ‖2). We obtain a

bound on the Talagrand’s γ2-functional using the following inequality [22, 86]:

γ2(M, ‖ . ‖2) ≤ C
∫ d2→2(M)

0

√
log Ψ(M, ‖ . ‖2, ε) dε, (5.2)

where C > 0 and Ψ(M, ‖ . ‖2, u) denotes the covering number of the metric space

(M, ‖ . ‖2) with respect to the metric ‖ . ‖2. Thus, we employ Theorem 5.2 with (5.2)

and Lemma 5.1 to obtain a bound on sup
M∈M

∣∣∣‖Mξ‖22 − E
[
‖Mξ‖22

]∣∣∣. A formal proof of

Theorem 5.1 follows in Appendix 5.8.

5.3 Experimental Results

In this section, we perform experiments on real-world neuroimaging data to analyze the

performance of the proposed TPGD method (Algorithm 2), which, as explained before,

is a tensor variant of the projected gradient descent (PGD) method. As in the previous

chapter, we compare TPGD with learning methods based on the imposition of sparsity,



72

low Tucker-rank and low CP-rank [16] on the parameter tensor B, respectively. To

analyze imposition of sparsity, we employ LASSO [13], and to analyze imposition of

low Tucker-rank and low CP-rank, we employ Tucker-rank and CP-rank variants of the

tensor projected gradient descent method, respectively.

To analyze the performance of TPGD for neuroimaging data analysis, we build a

prediction model for attention deficit hyperactivity disorder (ADHD) diagnosis, using

a preprocessed repository of ADHD-200 fMRI images [87] from the NYU Child Study

Center. Specifically, we use preprocessed brain maps of fractional amplitude of low-

frequency fluctuations (fALFF) [88] that were obtained using the Athena pipeline [24].

Note that fALFF is defined as the ratio of power within the low-frequency range (0.01-

0.1 Hz) to that of the entire frequency range and as such it characterizes the intensity

of spontaneous brain activity. Importantly, altered levels of fALFF have been reported

in a sample of children with ADHD relative to controls [89], so fALFF brain maps form

a useful feature space for predicting ADHD diagnosis.

The train data consists of fALFF brain maps of 227 individuals pertaining to NYU

and NeuroImage. Each individual’s fALFF map forms a third-order tensor Xi ∈

R49×58×47, and the ADHD diagnosis yi (1 = ADHD, 0 = normal control) forms the

response, where i ∈ [[m]]. Thus, in our real data experiment, we havem = 227, n1 = 49,

n2 = 58 and n3 = 47. Given fALFF maps {Xi}mi=1 and responses {yi}mi=1, the task of

learning the regression model in (1.1) is equivalent to learning the parameter tensor B.

We estimate the unknown parameter tensor using TPGD, PGD-Tucker, PGD-CP, and

LASSO.

To analyze the performance of these learning methods, we employ separately pro-

vided test datasets for the NYU and the NeuroImage imaging sites, pertaining to fALFF

maps of 41 subjects and 25 subjects, respectively. To analyze the performance for each

method, we use the estimate of B to compute the responses for the test subjects using

(1.1). If the computed response is more than 0.5 for a test subject, the subject is la-

beled with ADHD and vice versa. To evaluate the predictive power of each method using

test data, we use the notion of (i) prediction accuracy, which is the ratio of subjects

correctly labeled, (ii) sensitivity, which is the ratio of subjects diagnosed with ADHD
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that are correctly labeled with ADHD, (iii) specificity, which is the ratio of subjects

not diagnosed with ADHD that are correctly labeled as normal controls, and (iv) har-

monic mean, which is the harmonic mean of sensitivity and specificity. The results of

this experiment for NYU and NeuroImage imaging sites are shown in Table 5.1 and

Table 5.2, respectively. Note that, in these experiments, the algorithmic parameters

for each learning method were chosen in a five fold cross-validation experiment on the

train data. Specifically, the algorithmic parameters were chosen such as to maximize

the harmonic mean of sensitivity and specificity, as an average over the five folds of the

cross-validation experiment.

Table 5.1: Comparison of TPGD with PGD-Tucker, PGD-CP, and LASSO for predicting
ADHD diagnosis of 41 test subjects, who participated in the ADHD-200 Consortium at
the New York University Child Study Center (NYU).

Method Prediction ac-
curacy

Sensitivity Specificity Harmonic
mean

TPGD 0.561 0.517 0.667 0.583
PGD-Tucker 0.488 0.483 0.417 0.447
PGD-CP 0.439 0.448 0.417 0.432
LASSO 0.341 0.241 0.583 0.342

Table 5.2: Comparison of TPGD with PGD-Tucker, PGD-CP, and LASSO for predicting
ADHD diagnosis of 25 test subjects, who participated in the ADHD-200 Consortium at
The Donders Institute (NeuroImage).

Method Prediction ac-
curacy

Sensitivity Specificity Harmonic
mean

TPGD 0.720 0.636 0.786 0.703
PGD-Tucker 0.640 0.727 0.500 0.593
PGD-CP 0.600 0.636 0.571 0.602
LASSO 0.600 0.455 0.714 0.556

5.4 Conclusion

In this chapter, we analyzed the sample complexity of learning the tensor-structured

regression model proposed in the previous chapter. Specifically, we evaluated the re-

stricted isometry property constant for the case of sub-Gaussian predictors, and in the

process, we derived upper bound on the sample complexity of learning the regression
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model under consideration. Finally, in our experiments with real-world data, we demon-

strated that the posed tensor-structured regression model is not restrictive, and it can

be effectively employed for neuroimaging data analysis.

5.5 Appendix

5.6 Proof of Lemma 5.3

The set DU can be expressed as the Cartesian product of the sets D(j)
U := {x ∈ Rn :

‖x‖0 ≤ s, ‖x‖2 ≤ 1}, j ∈ [[r]]. For any j ∈ [[r]], since there are
(
n
s

)
ways to choose the

support of an s-sparse vector, we have

Ψ(D(j)
U , ‖ . ‖2, ε) ≤

(
n

s

)(3

ε

)s
, (5.3)

with the application of Lemma 5.4. Then, the covering number of DU with respect to

the metric hU , for any ε ∈ (0, 1), satisfies the bound

Ψ(DU , hU , ε)
(a)
≤

r∏
j=1

Ψ(D(j)
U , ‖ . ‖2, ε)

(b)
≤
[(
n

s

)(3

ε

)s ]r
≤ nsr

(s!)r

(
3

ε

)sr
=

(
3n

(s!)
1
s ε

)sr
≤
(

3n

ε

)sr
,

where (a) and (b) follow from Lemma 5.5 and (5.3), respectively.

5.7 Proof of Lemma 5.1

Recall the metric space (DS, hS), where DS := {S ∈ Rr1×r2×···×rd} and hS(S(1),S(2)) :=

1
τ ‖S

(1) − S(2)‖1 for any S(1),S(2) ∈ DS. Using Lemma 5.2, the covering number of DS

with respect to the metric hS satisfies the bound

Ψ(DS, hS, ε) ≤
(3

ε

) d∏
i=1

ri
, ε ∈ (0, 1).

Further, recall the metric space (DUi , hUi), where DUi := {U ∈ Rni×ri : ‖U(:, j)‖2 ≤

1, ‖U(:, j)‖0 ≤ si, j ∈ [[ri]]} and hUi(U
(1)
i , U

(2)
i ) := ‖U (1)

i − U
(2)
i ‖1,2 for any U (1)

i , U
(2)
i ∈

DUi , i ∈ [[d]]. Using Lemma 5.3, the covering number of DUi with respect to the metric

hUi satisfies the bound

Ψ(DUi , hUi , ε) ≤
(3n̄

ε

)siri
, ε ∈ (0, 1),
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for any i ∈ [[d]]. Next, recall the metric space (DP , hP ), where

DP := DS ×DU1 ×DU2 × · · · × DUd , and

hP (P (1), P (2)) = max
{

max
i∈[[d]]

{‖U (1)
i − U

(2)
i ‖1,2},

1

τ
‖S(1) − S(2)‖1

}
,

such that P (1), P (2) ∈ DP , S(1),S(2) ∈ DS, and U
(1)
i , U

(2)
i ∈ DUi , for any i ∈ [[d]]. Then,

using Lemma 5.5, the covering number of DP with respect to the hP metric satisfies the

bound

Ψ(DP , hP , ε) ≤
(3

ε

) d∏
i=1

ri(3n̄

ε

) d∑
i=1

siri
, ε ∈ (0, 1). (5.4)

To finally derive a bound on the covering number of Gr,s,τ , recall that we use the metric

based on the Frobenius norm, denoted by hG , in order to cover the set Gr,s,τ . Further,

recall the mapping Φ defined as

Φ(S, U1, U2, . . . , Ud) = S×1 U1 ×2 U2 ×3 · · · ×d Ud,

where (S, U1, U2, . . . , Ud) ∈ DP . From this definition, it follows that Φ : DP → Gr,s,τ .

Then, given P (1), P (2) ∈ DP , the claim is that

hG(Φ(P (1)),Φ(P (2))) ≤ τ(d+ 1)hP (P (1), P (2)), (5.5)

which implies the mapping Φ is Lipschitz with a Lipschitz constant of τ (d+ 1). Using

the claim in (5.5) with (5.4) and Lemma 5.6, the statement of this lemma follows. Next,

we prove the claim in (5.5) to complete the proof of this lemma.

Let Ga,Gb ∈ Gr,s,τ such that

Ga = Sa ×1 Ua,1 ×2 Ua,2 ×3 · · · ×d Ua,d , and

Gb = Sb ×1 Ub,1 ×2 Ub,2 ×3 · · · ×d Ub,d ,
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where Sa,Sb ∈ DS, and Ua,i, Ub,i ∈ DUi , i ∈ [[d]]. Then, we have

hG(Ga,Gb) =‖Ga −Gb‖F

=‖Sa ×1 Ua,1 ×2 Ua,2 ×3 · · · ×d Ua,d − Sb ×1 Ub,1 ×2 Ub,2 ×3 · · · ×d Ub,d‖F

=‖Sa ×1 Ua,1 ×2 Ua,2 ×3 · · · ×d Ua,d

± Sa ×1 Ua,1 ×2 Ua,2 ×3 · · · ×d−1 Ua,d−1 ×d Ub,d

± Sa ×1 Ua,1 ×2 Ua,2 ×3 · · · ×d−2 Ua,d−2 ×d−1 Ub,d−1 ×d Ub,d

± · · · ± Sa ×1 Ub,1 ×2 Ub,2 ×3 · · · ×d−1 Ub,d−1 ×d Ub,d

− Sb ×1 Ub,1 ×2 Ub,2 ×3 · · · ×d−1 Ub,d−1 ×d Ub,d‖F

≤ ‖Sa ×1 Ua,1 ×2 Ua,2 ×3 · · · ×d−1 Ua,d−1 ×d (Ua,d − Ub,d)‖F

+ ‖Sa ×1 Ua,1 ×2 Ua,2 ×3 · · · ×d−2 Ua,d−2 ×d−1 (Ua,d−1 − Ub,d−1)×d Ub,d‖F

+ · · ·+ ‖Sa ×1 (Ua,1 − Ub,1)×2 Ub,2 ×3 · · · ×d−1 Ub,d−1 ×d Ub,d‖F

+ ‖(Sa − Sb)×1 Ub,1 ×2 Ub,2 ×3 · · · ×d−1 Ub,d−1 ×d Ub,d‖F , (5.6)

where ±V denotes +V − V for any tensor V ∈ Rn1×n2×···×nd . Define bj := ‖Sa ×1

Ua,1×2 · · ·×j−1Ua,j−1×j (Ua,j−Ub,j)×j+1Ub,j+1×j+2 · · ·×dUb,d‖F . With this definition,

(5.6) can be re-written as

hG(Ga,Gb) ≤
d∑
j=1

bj + ‖(Sa − Sb)×1 Ub,1 ×2 Ub,2 ×3 · · · ×d−1 Ub,d−1 ×d Ub,d‖F . (5.7)

We will bound the first d terms and the last term in (5.7) separately. Beginning with

any term from among the first d terms in (5.7), for any j ∈ [[d]], we have

b2j = ‖Sa ×1 Ua,1 ×2 · · · ×j−1 Ua,j−1 ×j (Ua,j − Ub,j)×j+1 Ub,j+1 ×j+2 · · · ×d Ub,d‖2F

=
∑

i1,i2,...,id

[(
Sa ×1 Ua,1 ×2 · · · ×j−1 Ua,j−1 ×j (Ua,j − Ub,j)×j+1 Ub,j+1 ×j+2 · · ·

×d Ub,d
)
(i1, i2, . . . , id)

]2
=

∑
i1,i2,...,id

( ∑
k1,k2,...,kd

Sa(k1, k2, . . . , kd) Ua,1(i1, k1) Ua,2(i2, k2) · · ·

(
Ua,j − Ub,j

)
(ij , kj) · · · Ub,d(id, kd)

)
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( ∑
l1,l2,...,ld

Sa(l1, l2, . . . , ld) Ua,1(i1, l1) Ua,2(i2, l2) · · ·
(
Ua,j − Ub,j

)
(ij , lj) · · · Ub,d(id, ld)

)
=

∑
i1,i2,...,id

∑
k1,k2,...,kd

∑
l1,l2,...,ld

Sa(k1, k2, . . . , kd) Sa(l1, l2, . . . , ld) Ua,1(i1, k1) Ua,1(i1, l1)

· · · Ua,2(i2, k2) Ua,2(i2, l2) · · ·
(
Ua,j − Ub,j

)
(ij , kj)

(
Ua,j − Ub,j

)
(ij , lj) · · ·

Ub,d(id, kd) Ub,d(id, ld)

=
∑

k1,k2,...,kd

∑
l1,l2,...,ld

Sa(k1, k2, . . . , kd) Sb(l1, l2, . . . , ld)
∑
i1

Ua,1(i1, k1) Ua,1(i1, l1)

∑
i2

Ua,2(i2, k2) Ua,2(i2, l2) · · ·
∑
ij

(
Ua,j − Ub,j

)
(ij , kj)

(
Ua,j − Ub,j

)
(ij , lj) · · ·

∑
id

Ub,d(id, kd) Ub,d(id, ld)

(a)
≤

∑
k1,k2,...,kd

∑
l1,l2,...,ld

Sa(k1, k2, . . . , kd) Sa(l1, l2, . . . , ld)

∑
ij

(
Ua,j − Ub,j

)
(ij , kj)

(
Ua,j − Ub,j

)
(ij , lj)

≤ ‖Ua,j − Ub,j‖21,2
∑

k1,k2,...,kd

∑
l1,l2,...,ld

Sa(k1, k2, . . . , kd) Sa(l1, l2, . . . , ld)

≤ ‖Ua,j − Ub,j‖21,2 ‖Sa‖1 ‖Sa‖1 ≤ ‖Ua,j − Ub,j‖21,2 τ2 , (5.8)

where (a) follows since u>v ≤ 1 for any column vectors u and v such that ‖u‖2 ≤ 1 and

‖v‖2 ≤ 1. Similarly, to bound the last term in (5.7), note that

‖
(
Sa − Sb

)
×1 Ub,1 ×2 Ub,2 ×3 · · · ×d−1 Ub,d−1 ×d Ub,d‖2F

=
∑

i1,i2,...,id

∑
k1,k2,...,kd

(
Sa − Sb

)
(k1, k2, . . . , kd) Ub,1(i1, k1) Ub,2(i2, k2) · · · Ub,d(id, kd)

∑
l1,l2,...,ld

(
Sa − Sb

)
(l1, l2, . . . , ld) Ub,1(i1, l1) Ub,1(i2, l2) · · · Ub,d(id, ld)

=
∑

i1,i2,...,id

∑
k1,k2,...,kd

∑
l1,l2,...,ld

(
Sa − Sb

)
(k1, k2, . . . , kd)

(
Sa − Sb

)
(l1, l2, . . . , ld)

Ub,1(i1, k1) Ub,1(i1, l1) Ub,2(i2, k2) Ub,2(i2, l2) · · · Ub,d(id, kd) Ub,d(id, ld)

=
∑

k1,k2,...,kd

∑
l1,l2,...,ld

(
Sa − Sb

)
(k1, k2, . . . , kd)

(
Sa − Sb

)
(l1, l2, . . . , ld) (5.9)
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∑
i1

Ub,1(i1, k1) Ub,1(i1, l1)
∑
i2

Ub,2(i2, k2) Ub,2(i2, l2) · · ·
∑
id

Ub,d(id, kd) Ub,d(id, ld)

(b)
≤

∑
k1,k2,...,kd

∑
l1,l2,...,ld

(
Sa − Sb

)
(k1, k2, . . . , kd)

(
Sa − Sb

)
(l1, l2, . . . , ld)

≤ ‖Sa − Sb‖21, (5.10)

where, again, (b) follows since u>v ≤ 1 for any column vectors u and v such that

‖u‖2 ≤ 1 and ‖v‖2 ≤ 1. Finally, using (5.7) with (5.8) and (5.10), we obtain

hG(Ga,Gb) ≤
d∑
j=1

τ ‖Ua,j − Ub,j‖1,2 + ‖Sa − Sb‖1

≤ (d+ 1) τ max
{

max
j∈[[d]]

{‖Ua,j − Ub,j‖1,2},
1

τ
‖Sa − Sb‖1

}
= (d+ 1) τ hP (P (1), P (2)), (5.11)

which proves the claim in (5.5).

5.8 Proof of Theorem 5.1

We employ Theorem 5.2 with Lemma 5.1 to obtain a probabilistic bound on the re-

stricted isometry property constant in Definition 4.2. Before we can employ Theo-

rem 5.2, we need to evaluate bounds on the quantities dF (M), d2→2(M), d4(M), and

γ2(M, ‖ . ‖2), which we obtain as follows. We obtain a bound on dF (M) as

dF (M) = sup
M∈M

‖M‖F
(a)
= sup

Z∈Gr,s,τ
‖Z‖F

(b)
≤ τ , (5.12)

where (a) follows from the definition ofM and (b) follows from the definition of Gr,s,τ .

Next, to obtain a bound on d2→2(M) and d4(M), note that for any Z ∈ Gr,s,τ we have

VZV
>
Z =

1

m



z>z 0 0 . . . 0

0 z>z 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . z>z


=
‖z‖22
m

Im×m,

which leads to

d2→2(M) = sup
M∈M

‖M‖‖ . ‖2 = sup
Z∈Gr,s,τ

‖Z‖F√
m
≤ τ√

m
, and (5.13)
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d44(M) = sup
M∈M

‖M‖4S4
= sup

M∈M
tr
[
(M>M)2

]
= sup

M∈M
tr
[
(MM>)2

]
= sup

Z∈Gr,s,τ
tr
[(‖Z‖2F

m
Im×m

)2]
= sup

Z∈Gr,s,τ

‖Z‖4F
m2

tr
[
Im×m

]
≤ τ4

m
. (5.14)

Finally, to obtain a bound on the Talagrand’s γ2-functional, we use the following

bound [22, 86]:

γ2(M, ‖ . ‖2) ≤ C
∫ d2→2(M)

0

√
log Ψ(M, ‖ . ‖2, u) du, (5.15)

where C > 0 and Ψ(M, ‖ . ‖2, u) denotes the covering number of the metric space (M,

‖ . ‖2) with respect to the metric ‖ . ‖2. We now employ (5.15) with Lemma 5.1 to obtain

a bound on γ2(M, ‖ . ‖2) as

γ2(M, ‖ . ‖2) ≤ C
∫ d2→2(M)

0

√
log Ψ(M, ‖ . ‖2, u) du ≤ C

∫ τ√
m

0

√
log Ψ(M, ‖ . ‖2, u) du

=
C√
m

∫ τ

0

√
log Ψ(M, ‖.‖F , ũ) dũ

(c)
≤ C√

m

∫ τ

0

√√√√( d∏
i=1

ri +

d∑
i=1

siri

)
log

(
3n̄τ(d+ 1)

ũ

)
dũ

= C

√√√√√ d∏
i=1

ri +
d∑
i=1

siri

m

∫ τ

0

√
log

(
3n̄τ(d+ 1)

ũ

)
dũ

(d)
≤ C

√√√√√ d∏
i=1

ri +
d∑
i=1

siri

m

∫ τ

0

log

(
3n̄τ(d+ 1)

ũ

)
dũ

= C

√√√√√ d∏
i=1

ri +
d∑
i=1

siri

m

[
τ log

(
3n̄(d+ 1)

)
+ τ
]

= C

√√√√√τ2
(

d∏
i=1

ri +
d∑
i=1

siri

)
m

[
log
(
3n̄(d+ 1)

)
+ 1
]

= C̃

√√√√√τ2
(

d∏
i=1

ri +
d∑
i=1

siri

)
m

log
(
3n̄d

)
, (5.16)

where C̃ > 0, (c) follows from Lemma 5.1, and (d) follows since
√

logb(x/a) ≤ logb(x/a)

for x/a ∈ R+, b ∈ R+, x ≥ a b. Now that we have evaluated bounds on dF (M),
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d2→2(M), d4(M), and γ2(M, ‖ . ‖2), we can evaluate the quantities E, U , and V in

Theorem 5.2. Evaluating a bound on E, we get

E = γ2(M, ‖ . ‖2)
(
γ2(M, ‖ . ‖2) + dF (M)

)
+ dF (M)d2→2(M)

= γ2(M, ‖ . ‖2)2 + γ2(M, ‖ . ‖2)dF (M) + dF (M)d2→2(M)

(e)
≤ C̃2

τ2
(

d∏
i=1

ri +
d∑
i=1

siri

)
m

(
log
(
3n̄d

))2
+ C̃ τ

√√√√√τ2
(

d∏
i=1

ri +
d∑
i=1

siri

)
log
(
3n̄d

)
m

+
τ2√
m

(f)
≤ δ2 C̃2

K1
+
τ δ C̃√
K1

+
τ δ√
K1

(g)
≤ δ C̃2

K1
+
τ δ C̃√
K1

+
τ δ√
K1

≤
δ
(
C̃2 + C̃ τ + τ

)
min{K1,

√
K1}

, (5.17)

where (e) follows from application of (5.12) and (5.13) with (5.16), (f) follows from the

bound on m, and (g) follows since δ ∈ (0, 1). Setting K1 ≥ max

{(
2c1(C̃

2 + C̃ τ +

τ)
)2
, 2c1(C̃

2 + C̃ τ + τ)

}
in (5.17) for some c1 > 0, we obtain

c1E ≤
δ c1

(
C̃2 + C̃ τ + τ

)
min{K1,

√
K1}

≤ δ

2
. (5.18)

Next, we can evaluate bounds on U and V as

U = d22→2(M)
(h)
≤ τ2

m
, and (5.19)

V = d24(M)
(i)
≤ τ2√

m
, (5.20)

where (h) follows from (5.13) and (i) follows from (5.14). Finally, we use these bounds

on U and V to bound the quantity 2 exp
(
− c2 min{ t2

V 2 ,
t
U }
)
as

2 exp
(
− c2 min

{ t2
V 2

,
t

U

})
≤ 2 exp

(
− c2 min

{
m
( t

τ2

)2
,
tm

τ2

})
(j)
≤ 2 exp

(
− c2 min

{( δ

2τ2

)2K2 log(ε−1)

δ2
,
K2 log(ε−1)

2τ2 δ

})
= 2 exp

(
− c2K2 log(ε−1)

2δ
min

{ δ

2τ4
,

1

τ2

})(k)
≤ ε, (5.21)

where (j) follows from setting t = δ
2 and using the bound on m, while (k) holds true for

K2 ≥ max
{

(2τ2)2, 2δτ2
}( log(1/2)

c2 log(ε)
+

1

c2

)
.

Using (5.18), (5.21), and t = δ
2 with Theorem 5.2, the proof of this theorem follows.
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5.9 Auxiliary Lemmas

Lemma 5.4 ([84]). For any fixed notion of norm ‖ . ‖, define a unit-norm ball B1 :=

{x ∈ Rn : ‖x‖ ≤ 1} with distance measure ‖ . ‖. Then the covering number of B1 (with

respect to the norm ‖ . ‖) satisfies the bound

Ψ(B1, ‖ . ‖, ε) ≤
(3

ε

)n
, ε ∈ (0, 1).

Lemma 5.5 ([90]). Define metric spaces (D1, h1, (D2, h2), . . ., (Dp, hp). Further, define

the Cartesian product D0 := D1×1D2×2 · · ·×pDp with respect to the norm h0(D
1
0, D

2
0) =

maxj∈[[p]]
{
hj(D

1
j , D

2
j )
}
, where D1

0, D
2
0 ∈ D0 such that D1

0 = D1
1 ×1 D

1
2 ×2 · · · ×p D1

p ,

D2
0 = D2

1 ×1 D
2
2 ×2 · · · ×p D2

p , and D1
j , D

2
j ∈ Dj for any j ∈ [[p]]. Then the covering

number of D0 (with respect to the norm h0) satisfies the bound

Ψ(D0, h0, ε) ≤
d∏
j=1

Ψ(Dj , hj , ε).

Lemma 5.6 ([91]). Define sets D1 and D2 with distance measures h1 and h2, respec-

tively. Further, define map Φ : K → D2 such that K ⊂ D1. Then, for some L > 0, if Φ

satisfies

h2(Φ(K1),Φ(K2)) ≤ Lh1(K1,K2) for K1,K2 ∈ K,

i.e. Φ is a Lipschitz map with constant L, then, for any ε > 0, we have

Ψ(Φ(K), h2, L ε) ≤ Ψ(K, h1, ε).
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