Staff View
Using measurements and flow models to assess stormwater interactions in woodchip piles

Descriptive

TitleInfo
Title
Using measurements and flow models to assess stormwater interactions in woodchip piles
Name (type = personal)
NamePart (type = family)
Amato
NamePart (type = given)
Matthew Thomas
NamePart (type = date)
1992-
DisplayForm
Matthew Thomas Amato
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Giménez
NamePart (type = given)
Daniel
DisplayForm
Daniel Giménez
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Krogmann
NamePart (type = given)
Uta
DisplayForm
Uta Krogmann
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Strom
NamePart (type = given)
Peter F.
DisplayForm
Peter F. Strom
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (encoding = w3cdtf); (qualifier = exact)
2019
DateOther (encoding = w3cdtf); (qualifier = exact); (type = degree)
2019-10
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
Storing woodchips in outdoor piles can have potentially deleterious environmental impacts, including risks from fire and pollution of nearby water resources. Thus, being able to predict leachate quantities and monitor water content within woodchip piles would be advantageous for assessing risk, as well as for developing stormwater management practices for wood recycling operations to follow.
In the first part of this thesis, the leachate generated from three experimental piles (~30 m3) of woodchips ground either once or twice was continuously collected over a period of six months. Transient three-dimensional flow through the experimental piles was simulated using the numerical model HYDRUS 3D in order to quantify leachate generation. The Bayesian Markov Chain Monte Carlo algorithm DREAMZS was used to optimize hydraulic flow parameters for a single porosity (SPM) and dual porosity (DPM) model to predict leachate generation based on the water retention and hydraulic conductivity characteristics of the woodchip materials. Model performance statistics verified that both models adequately predicted 6-hour leachate volumes (Nash-Sutcliffe efficiency index: >0.7; Root mean square error: <27 liters per 6-hr), although the DPM was prone to numerical difficulties. The models are most suitable for predicting leachate produced by storm events with less than 1 cm of rainfall in 6-hr. During more intense rainfalls, leachate generation was systematically under predicted on average by about 20%. This information is important for designing leachate collection and control systems based on different design storm criteria. Additionally, the size and the geometry of the woodchip pile along with the initial moisture content of the woodchips are also likely to influence leachate generation.
Direct knowledge of the water content within woodchip piles is useful for avoiding fire hazards and simulating leachate generation. A reflectometry method was used for estimating volumetric water content (θ) in woodchips taking into consideration their particle size distribution (PSD), temperature (T) and the dielectric permittivity of the dry woodchips plus air. The bulk dielectric permittivity of fine, medium and coarse PSDs were measured from dry to saturated water contents with CS616-L reflectometers at approximately 10°, 24°, 37°, 55° and 70° C. Calibration equations were developed using a multivariate power law function fitted to the data with a hierarchical Bayesian inference procedure. As θ and T increased and PSD became coarser the fitted relationships became more uncertain. Overall the method was most accurate for taking measurements in partially saturated fine woodchip mixtures with median particle diameters smaller than 4 mm and at temperatures between 10° C to 37° C.
Building on the topics explored in this thesis, future research is necessary to engineer an optimal woodchip pile configuration that minimizes the risk of fire and reduces how much leachate can be potentially generated. This information is crucial both from a policy- and practice-based viewpoint.
Subject (authority = RUETD)
Topic
Environmental Sciences
Subject (authority = LCSH)
Topic
Wood chips -- Environmental aspects
Subject (authority = LCSH)
Topic
Wood chips -- Moisture -- Measurement
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_10193
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xiii, 82 pages) : illustrations
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-vsnr-ah22
Genre (authority = ExL-Esploro)
ETD graduate
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Amato
GivenName
Matthew
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2019-08-28 12:31:46
AssociatedEntity
Name
Matthew Amato
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2019-10-07T16:09:36
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2019-10-07T16:09:36
ApplicationName
Microsoft® Word 2016
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024