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While electrical power has nowadays become an indispensable part of modern life, natural 

disasters are one of the most severe causes of power outages. Power outages could be catastrophic 

when they hit critical infrastructures (CIs), such as hospitals, airports and data centers resulting in 

cascade failures among vital services that have life-dependent functionalities. For example, we 

have recently seen Hurricane Irma's devastation which completely destroyed critical power 

infrastructure and caused one of the largest power outages in U.S. history leaving expansive 

regions without power for weeks. Although energy storage is widely deployed in CIs as a source 

of backup power during times of adverse events, e.g., taking over when blackouts occur, there 

have been little work done in allocating them in the systems considering resiliency scenarios. This 

study aims to come up with a new and unique approach to design CI systems with inherent power 

resiliency in order to reduce vulnerabilities, limit the consequences of failures, and reduce time to 

recovery for vital services. The proposed method includes: 
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1. Techniques for optimizing design strategies of different energy storages for post-event 

infrastructure recovery. 

2. Increase infrastructure resilience in terms of fast recoverability for extreme events with respect to 

time and cost. 

3. Considering uncertainty in the electrical demand load of any infrastructures after a blackout. 

4. Considering uncertainty in length of power outage for capacity estimation of energy storage 

systems needed at the infrastructures site. 

We saw that all the factors mentioned above make considerable differences as we compare the 

results.  This method can be used to find the energy storage systems capacities needed and the 

optimal configuration for a specific infrastructure during power outage. Meanwhile, a time 

dependent model is also represented that might be critical for some facilities.  
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1. Introduction 

We are living in the era that everything depends on electricity, making reliable and 

sufficient power as the foundation for our modern society to operate effectively. The global 

electricity demand is increasing almost twice as fast as overall energy consumption [1]. 

World dependency on electricity is growing in such a way that even a short period of power 

outage can cause many losses in term of costs and data. 

 

1.1 Power Outage  

Over the past years, there have been many large blackouts for various reasons such as 

accidents, supply shortages, equipment failures and degradation. However, natural 

disasters have caused the biggest power outages in the world history (Figure 1). Extreme 

events like hurricane or flooding not only damage the power grid, but also cause damage 

to the power system by making disturbances. Mostly large blackouts happen as the result 

of these disturbance on the power system frequency and voltage instability causing 

cascading failures [2]. 
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Figure 1 - Power outage causes in 2015 [3] 

Researchers at Lawrence Berkeley National Lab (LBNL) have conducted a study on 13 

years of U.S. electricity power interruption claim that “increasingly severe weather events 

are linked to a 5 to 10 percent increase in the total number of minutes customers are without 

power each year” [3]. The authors of this study claim that as the climate continues to 

change and the number of extreme events is rising each year, U.S. electric power system 

must adapt by increasing reliability of electrical grids and dynamic inspection of distributed 

resources (DR’s) [4], [5]. 

Recent blackouts in several power systems in the U.S and their impacts are as following: 

Southwest blackout (2011) that affected 5 separate power grids and left nearly seven 

million people without power[6] , Derecho blackout (2012) caused damage to 4.2 million 

people across 11 states , hurricane Sandy (2012) impacted 24 American states [7] and 

recently hurricane Irma which the damages are still to be recovered.  

Power outage for different regions within U.S. between 2008 to 2015 is shown in Figure 

2. We can see an increasing trend through the past years for almost every region. 
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Figure 2 - Reported power outages by region [3] 

The top 10 states experiencing weather outages between 2008 and 2014 are as follows: [8] 

1. California, 525 outages 

2. New York, 399 outages 

3. Texas, 335 outages 

4. Michigan, 328 outages 

5. Pennsylvania, 294 outages  

6. Ohio, 265 outages 

7. Illinois, 251 outages 

8. Washington, 226 outages 

9. North Carolina, 225 outages (tie)  

9. New Jersey, 225 outages (tie) 
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As previously mentioned component failures and degradation [9], human error and many 

other reasons can cause a power outage but since the number of power outages due to 

natural disasters are increasing, the cost of power outages is on the rise as well. Studies 

published by the Ponemon Institute suggest that other than the resiliency aspect of power 

systems we must consider the cost associated with power outages. Comparative studies in 

2010, 2013 and 2016 are listed below [10]: 

• The average total cost per minute of an unplanned outage increased from $5,617 in 2010 

to $7,908 in 2013 to a current price tag of $8,851 

• The average cost of a data center outage rose from $505,502 in 2010 to $690,204 in 2013 

to $740,357 in the latest study, representing a 38 percent increase in the cost of downtime 

• Maximum downtime costs are rising faster than average, increasing 81 percent since 2010 

to a current high of $2,409,991 

The impacts of power outages are exacerbated by disruptions to critical infrastructure 

systems. In [11], we can see that power outages caused by extreme events affect health 

sector in many aspects such as the difficulties of accessing healthcare and maintaining 

frontline services. The huge impact of power loss on these critical sectors bring up the need 

for safe reliant power operation and planning for power outages. 

 

1.2  Critical Infrastructure  

The definition of Critical Infrastructure (CI) has been the center of attention for years as it 

has been evolving constantly. An unclear and ambiguous meaning of CI can mislead to 

inadequate use of limited resources by simply protecting the wrong facilities or too many 

of them [12]. The most recent definition of CI is for after September 11, 2001 terror attack 
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as a result of which USA PATRIOT Act of 2001 was passed defining “Critical 

Infrastructure” as: 

"Systems and assets, whether physical or virtual, so vital to the United States that the 
incapacity or destruction of such systems and assets would have a debilitating impact on 
security, national economic security, national public health or safety, or any combination 
of those matters." 
 

The National Infrastructure Protection Plan (NIPP) established the following 16 critical 

infrastructure sectors [13]: 

• Chemical 

• Commercial Facilities 

• Communications 

• Critical Manufacturing 

• Dams 

• Defense Industrial Base 

• Emergency Services 

• Energy 

• Financial Services 

• Food and Agriculture 

• Government Facilities 

• Healthcare and Public Health 

• Information Technology 

• Nuclear Reactors, Materials, and Waste 

• Transportation Systems 

• Water and Wastewater Systems 



 

 

6 

In large scale complex systems, a major vulnerability would be the interdependency of 

infrastructures which makes the control procedures hard and increase the potential 

cascading failures impacts [14], [15]. 

 

In [16] O’Rourke states how the dependency of pipeline pumping stations on electricity 

power caused interruption in the supply of oil and petroleum products after Hurricane 

Katrina. As a result of loss of electrical power at three major pipeline stations about 1.4 

million barrels per day of the crude oil supply were lost, accounting for 90 percent of the 

production in the Gulf of Mexico. The three major pipelines were not fully restored until 

more than 17 days after Katrina made landfall. He claims similar experience occurred for 

water-supply pumping stations after the 1994 Northridge earthquake. In this regard, we are 

considering individual infrastructures independent of each other in our research and 

dependent infrastructures will not be studied.  

Each of these sectors have critical services that are dependent of power supply and would 

be disrupted by power outages of a few hours to several weeks. In [17] the author conducted 

a summary for the services of each sector and their dependence of power energy some of 

which are most important are in the following table: 
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Table 1- Examples of Critical Social Services That Depend on the Availability of Electric Power [17] 

Service Category Specific Service Typical Existing Backup 

Emergency 

Services 

911 and related 

dispatch centers 

Most have comprehensive backup 

power systems. Fuel supply and 

reliability could be an issue in long 

outages. 

Police headquarters and 

station houses 

Varies. Some stations do not have 

backup. AC power is often required for 

recharging hand-held radios. 

Fire protection services Same as above. 

Emergency medical 

services 

Same as above. 

Hazardous materials 

response teams 

Same as above. 

Medical services Ambulance and other 

medical transport 

services 

Limited. 

Life-critical in-hospital 

care (such as 

emergency rooms, life 

support systems, 

operating rooms) 

Full back up in most major facilities, 

but some failed during the blackout of 

August 14, 2003. Some systems have 

inadequate testing procedures. Fuel 

supply and reliability could be an issue 

in long outages. 
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Less-critical in-hospital 

services (refrigeration, 

heating and cooling, 

sanitation, etc.) 

Availability of backup varies. Many 

smaller facilities lack backups. 

Clinics and pharmacies Many have no backup. 

Nursing homes Same as above. 

Communications 

and cyber services 

Radio broadcast media Major stations have backup systems 

with several days of fuel on hand. 

Television broadcast 

media 

Many stations have backup power 

systems with several days of fuel. 

Cable television and 

broadband services 

Minimal backup. 

Conventional telephone Conventional phone systems have 

backup power systems.  

Wireless (cellular) 

telephone and data 

systems 

Modest backup. Battery backup 

typically provides only 2-8 hours of 

service. 

Wired data service Many backbone systems have backup. 

Most local systems do not. 

 Computer services (on 

and off premise) 

backups with several days of fuel on 

hand and priority fuel contracts. On-

site typically limited to several 

minutes. 
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Water and sewer Water supply Limited backup. Most systems require 

pumping in treatment plants. Many 

systems also require pumping for 

delivery. 

Sewer systems Very limited backup. Many systems 

require pumps for collection. Most 

require power for treatment. 

Financial Cash machines Typically no backup. 

Credit card systems Little or no backup at most retail 

outlets.  

Banks Little or no backup at smaller banks 

except for security systems. 

 

However, some of these services are essential for the functionality of the infrastructure and 

require power for restoration sooner than the others. The level of importance and 

vulnerability of each of these CIs and their services is different for each city and region 

depending on the geographic location, backup policies and many other factors. 

 

Consequently, here our primary focus is on reducing the vulnerability of these vital services 

which have priority compared to the others in times of blackouts through sustaining and 

rapidly restoration of them.  
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1.3  Resiliency of Critical infrastructures 

After catastrophic infrastructures performance and failures of Hurricane Katrina in 2003, 

resilience of the CIs was drawn to attention, however, we can say after September 11, a 

significant emphasis was put for promoting CI resiliency planning studies and 

coordination. 

A general definition of CI Resilience can be as the level of preparedness to a disaster, 

response to it and recovery process time. 

The NATIONAL INFRASTRUCTURE ADVISORY COUNCIL (NIAC) defines it as: 

“Infrastructure resilience is the ability to reduce the magnitude and/or duration of 
disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon 
its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially 
disruptive event.” [13] 
 
Bruneau et al. [18] , started working on CI resilience in 2003, defining resilience systems 

with four fundamental qualities:  

• Robustness: the inherent strength or resistance in a system to withstand external demands 

without degradation or loss of functionality.  

• Redundancy: system properties that allow for alternate options, choices, and substitutions 

under stress.  

• Resourcefulness: the capacity to mobilize needed resources and services in emergencies.  

• Rapidity: the speed with which disruption can be overcome and safety, services, and 

financial stability restored. 

NIAC characterizes critical infrastructure resilience similarly with few differences by three 

key features: [13] 
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• Robustness: the ability to maintain critical operations and functions in the face of crisis. 

This can be reflected in physical building and infrastructure design (office buildings, power 

generation and distribution structures, bridges, dams, levees), or in system redundancy and 

substitution (transportation, power grid, communications networks). 

• Resourcefulness: the ability to skillfully prepare for, respond to and manage a crisis or 

disruption as it unfolds. This includes identifying courses of action, business continuity 

planning, training, supply chain management, prioritizing actions to control and mitigate 

damage, and effectively communicating decisions. 

• Rapid recovery: the ability to return to and/or reconstitute normal operations as quickly 

and efficiently as possible after a disruption. Components include carefully drafted 

contingency plans, competent emergency operations, and the means to get the right people 

and resources to the right place. 

Here in this study we define resiliency of CIs considering recoverability of the system as:  

Recoverability is the ability of the system to recover in the least possible time at low cost 

from disruptive events. Further explanations will be given in the next section. 

 

1.4  Energy Storage Systems 

The broadest definition of energy storage includes any system for absorbing energy in some 

form at one time and releasing at a later time [19] . There has been an increasing interest 

toward Energy Storage Systems (ESS) studies in the past decades due to many applications 

they provide in electrical power. Many studies have been focused on using ESSs combined 

with renewable energy generators and microgrids in order to improve power balancing, 

shifting demand in peak hours, more flexibility to variable renewable energy resources 
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power generation, minimizing demand load and cost associated with it and most 

importantly back-up power [20], [21]. In this regard, different energy storage technologies 

have been launched to meet the technical feasibility of such applications. Energy storages 

are now able to store very large quantities of energy for weeks or months.  

Energy storages have many attributes that are characterized by their technology and affect 

their employment in power systems to meet reliable electrical needs. Most Important 

attributes include:  

• Power rating storage /discharge rates (MW)  

• Energy storage capacity (MWh)  

• Capital costs 

• Efficiency  

• Ramp rate  

• Utilization rates  

• Maintenance costs  

• Emissions  

• Response time  

• Discharge duration  

• Minimum generation levels  

• Black start capability (the ability of a generator to begin operation without station service 

which is important for recovering from power outages.) 

Each of the energy storages have a set of these attributes which specify the services they 

are best suited for. 
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1.4.1 Classification of Electrical Energy Storages Systems (EES) 

Nowadays Distributed Energy Resources (DERs) and renewable energy along with storage 

systems and batteries have become employed widely in order to increase resiliency of 

systems especially during power outage [22]. Based on the aforementioned information we 

can conclude that energy storages and batteries are the most common and reliable source 

for back-up plans in times of blackouts. Here we will go through different types of energy 

storages, their characteristics and applications. 

Most common way for classifying EES systems is based on the form of energy used in 

their technology shown in Figure 3. 

 

Figure 3  - Classification of electrical energy storage systems according to energy form [23] 

 

Another common approach which is more useful in our study is classification based on 

discharge duration as their applications are largely determined by the length of discharge. 

On this basis EES technologies can be categorized into 3 groups as following: 

Mechanical

Pumped Storage

Flywheel

Compressed Air

Electric

Capacitors

Superconducting 
Electromagnets

Thermal

Molten salt

Chillers

Chemical

Hydrogen

Methane

Electrochemical

Conventional 
batteries

High 
temperature 

batteries

Flow batteries
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Table 2 - Electrical energy storage classification based on discharge length [18] 

Common Name Discharge 

Time 

Example Applications Discharge Time 

Required 

Power Quality Short Transient Stability, Frequency 

Regulation 

Seconds to 

Minutes 

Bridging Power Medium Contingency Reserves, 

Ramping 

Minutes to hour 

Energy 

Management 

Long Load Leveling, Firm Capacity, 

T&D Deferral 

Hours 

 

Power quality applications require rapid response (within less than a second) with short 

discharge time (seconds to minutes). Their energy-to-power ratio is less than 1. 

Technologies in this group conclude:  

o double-layer capacitors (DLC) 

o  superconducting magnetic energy storage (SMES)  

o flywheels (FES) 

Bridging power applications generally requires rapid response (seconds to minutes) with 

medium discharge time (minutes to hours) with an energy-to-power ratio of between 1 and 

10. This application is generally associated with several battery technologies as: 

o lead-acid (LA) 

o Lithium ion (Li-ion)  
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o sodium sulphur (NaS) batteries 

o flywheels (FES) 

Energy management applications include longer timescales and generally require 

continuous long discharge time (hours to days): For these EES systems the energy-to-

power ratio is considerably greater than 10. 

o Compressed air energy storage (CAES) 

o Pumped hydro storage (PHS) 

o high-temperature battery (sodium-sulfur battery, sodium-nickel chloride (ZEBRA) battery) 

o liquid electrolyte “flow” battery (batteries – vanadium redox, zinc-bromine) 

o thermal energy storages (molten salt, chillers) 

Figure 4 demonstrates all energy storage technologies as the rated power (W) is plotted 

against the energy content (Wh) and the nominal discharge time at rated power can also be 

seen, covering a range from seconds to months.  
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Figure 4 - Comparison of rated power, energy content and discharge time of different EES technologies [19] 

1.4.2 EES Sizing and Cost Comparison 

In our study, we will compare different energy storage systems to find the optimal cost-

effective design for specific critical infrastructures. We aim to find the best design of 

storage systems in our facilities by optimizing different characteristic of storage systems 

in terms of resiliency. Other studies have been done using the same approach in energy 

industry because of uncertainty of parameters that depend on the  environment [24]. 

Unlike other energy systems, there are different energy-cost metrics defined as means of 

comparing the costs for electrical energy storage systems. 

Energy Storage sizes are reported in terms of storage power capacity (kW) and energy 

capacity (kWh). Depending on the storage application, some energy storages are designed 

to deliver high power capacity, whereas others are optimized for longer discharges through 

more energy capacity (Figure 5). The amount of energy that a battery can store is 
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determined by its energy capacity (kWh), whereas the rate at which it charges, or 

discharges is determined by its power rating (kW) [25]. 

Lithium battery for instance is widely used in Electrical Vehicles because of their unique 

characteristics such as high energy density and power rating [26]–[28]. On the other hand, 

Pumped Hydro and Compressed air storage systems are more used when you have large 

space in your facility and looking for long term discharging. 

Consecutively, another important attribute of energy storage technology is defined as 

storage costs estimated based on capacity (kWh) or power (kW). Energy storages costs 

measured in $/kW are generally favorable economics for high-power systems which are 

mostly used to provide electricity for short period of time such as frequency regulation 

whereas storage costs in $/kWh are suitable for high-energy systems delivering electricity 

for longer periods like hours to weeks. 

 

 

Figure 5 - load profiles of “high peak” and “long duration discharge” customers [25] 
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The table below represents both defined cost for storage systems along with some other 

characteristics such as maturity. 

 

Table 3 - Summary characteristics of various energy storage technologies [25] 

Technology Maturity Cost 

($/kW) 

Cost 

($/kWh) 

Efficiency Response Time 

Pumped Hydro Mature 1,500 - 

2,700 

138 - 338 80 - 82% Seconds to 

Minutes 

Compressed Air 

(Underground) 

Demo to 

Mature 

960 - 

1,250 

60 - 150 60 - 70% Seconds to 

Minutes 

Compressed Air 

(Aboveground) 

Demo to 

Deploy 

1,950 - 

2,150 

390 - 430 60 - 70% Seconds to 

Minutes 

Flywheels Deploy to 

Mature 

1,950 - 

2,200 

7,800 - 

8,800 

85 - 87% Instantaneous 

Lead Acid Batteries Demo to 

Mature 

950 - 

5,800 

350 - 

3,800 

75 - 90% Milliseconds 

Lithium-ion 

Batteries 

Demo to 

Mature 

1,085 - 

4,100 

900 - 

6,200 

87 - 94% Milliseconds 

Flow Batteries 

(Vanadium 

Redox) 

Develop to 

Demo 

3,000 - 

3,700 

620 - 830 65 - 75% Milliseconds 

Flow Batteries (Zinc 

Bromide) 

Demo to 

Deploy 

1,450 - 

2,420 

290 - 

1,350 

60 - 65% Milliseconds 
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Sodium Sulfur Demo to 

Deploy 

3,100 - 

4,000 

445 - 555 75% Milliseconds 

Power To Gas Demo 1,370 - 

2,740 

NA 30 - 45% 10 Minutes 

Capacitors Develop to 

Demo 

- - 90 - 94% Milliseconds 

SMES Develop to 

Demo 

- - 95% Instantaneous 

 

Generally, we can conclude that higher capital cost resources with low operating costs tend 

to be more useful for continuous power supply. 

A database provided by DOE in 2013, reported 202 with a mix of storage technologies 

storage system deployments in the US with a cumulative operational capability of 24.6 GW 

[29]. The extent and range of energy storage systems deployments and the contribution of 

each technology to the overall operational capability is shown in Figure 6.  

 

Figure 6 - Electrical storage systems deployed in US. [30] 
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Following table gives a summary of most of the characteristics of energy storage systems 

and batteries [22], [30]. 

Table 4 - Summary of EES systems[30] 

Technology Primary 

Application 

Current knowledge Challenges 

CAES 

 

• Energy 

management 

• Backup and 

seasonal reserves 

• Renewable 

integration 

 

• Better ramp rates 

than gas turbine 

plants 

• Established 

technology in 

operation since the 

1970’s 

 

• Geographically limited 

• Lower efficiency due 

to roundtrip conversion 

• Slower response time 

than flywheels or 

batteries 

• Environmental impact 

Pumped 

Hydro 

 

• Energy 

management 

• Backup and 

seasonal reserves 

• Regulation 

service also 

available through 

• Developed and 

mature technology 

• Very high ramp rate 

• Currently most cost-

effective form of 

storage 

• Geographically limited 

• Plant site 

• Environmental impacts 

• High overall project 

cost 
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variable speed 

pumps 

Fly wheels 

 

• Load leveling 

• Frequency 

regulation 

• Peak shaving and 

off-peak storage 

• Transient stability 

 

• Modular technology 

• Long cycle life 

• High peak power 

without overheating 

concerns 

• Rapid response 

• High round trip 

energy efficiency 

• Rotor tensile strength 

limitations 

• Limited energy storage 

time due to high 

frictional losses 

 

Advanced 

Lead-Acid 

 

• Load leveling and 

regulation 

• Grid stabilization 

• Mature battery 

technology 

• Low cost 

• High recycled 

content 

• Good battery life 

• Limited depth of 

discharge 

• Low energy density 

• Large footprint 

• Electrode corrosion 

limits useful life 

NaS 

 

• Power quality 

• Congestion relief 

• Renewable source 

integration 

• High energy density 

• Long discharge 

cycles 

• Operating Temperature 

required between 250° 

and 300° C 
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 • Fast response 

• Long life 

• Good scaling 

potential 

• Liquid containment 

issues (corrosion and 

brittle glass seals) 

Li-ion 

 

• Power quality 

• Frequency 

regulation 

 

• High energy 

densities 

• Good cycle life 

• High 

charge/discharge 

efficiency 

 

• High production cost -

scalability 

• Extremely sensitive to 

over temperature, 

overcharge and internal 

pressure buildup 

• Intolerance to deep 

discharges 

Flow 

Batteries 

 

• Ramping 

• Peak Shaving 

• Time Shifting 

• Frequency 

regulation 

• Power quality 

• Ability to perform 

high number of 

discharge cycles 

• Lower 

charge/discharge 

efficiencies 

• Very long life 

• Developing 

technology, not mature 

for commercial scale 

development 

• Complicated design 

• Lower energy density 
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1.5  Problem Statement  

As mentioned previously, hurricanes among other natural disasters are one of the main 

reasons for power outages as we saw recently Hurricane Irma's caused one of the largest 

power outages in U.S. history resulting large-scale devastations. Here in this study we aim 

to improve resiliency by the means of electrical energy storages to reduce the probability 

of infrastructures’ failure during power outages, as well as the consequences from such 

failures and the time to recovery. As we went through different energy storages we saw 

each of them have different set of characteristics that make them favorable for various 

applications. We aim to use these attributes corresponding to each electrical energy storage 

and come up with different design scenarios finding the optimal case which will restore 

electrical power to the most important services within each critical infrastructure and at the 

same time it is cost efficient. Therefore, this study explores the resilience of critical 

infrastructures considering the impact on time to recovery in all possible cases.  

The proposed framework makes it possible to assess CIs’ fragilities with tools to quantify 

resilience and improve them considering uncertainties under different scenarios. 

Therefore, the next steps would be defining resiliency of critical infrastructures and finding 

cost-effective configuration of electrical storage systems as back-up power systems in 

order to improve resiliency considering uncertainties. 

This study will focus on the interplay between resiliency and recoverability to develop a 

general framework for quantitative assessment of CIs resiliency. Due to complexity of 

infrastructure systems, in our approach these systems are considered independent of each 

other and isolated in times of natural disaster which means there is no connection between 

main grid and the CIs. 
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1.6  Objectives 

This study aims at  

1) Proposing a methodology to analyze dynamics of infrastructures; 

2) Considering priorities for different services within each critical infrastructure; 

3) Developing time-dependent resilience quantification in infrastructures with recovery 

metrics;  

4) Developing design parameters for electrical energy storages considering their set of 

attributes; 

5) Comparing each recovery process for different design scenarios;  

6) Finding the optimal cost-effective design cases considering uncertainties in each step; 

7) Providing insights to decision makers for improving critical infrastructure resilience. 
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2. literature Review on Previous Studies 

2.1 Quantifying Resilience  

The concept of disaster resilience was first formally introduced by Bruneau et al. [18] in 

2003 and evolved in years as there was a debate between the many academic researchers. 

He introduced a new technique for measuring performance of the system for post-disaster 

recovery process.  As shown in Figure 7, this technique considers the quality of 

infrastructure versus time providing a quality curve or response curve. The quality of the 

infrastructure can change from 1(operating) to 0 (inoperable) and Response Curve 

measures infrastructure systems’ initial response to a disaster and the restoration process 

over time. It is providing a tracking system behavior after a disruptive event.  

 

 

Figure 7 - Measure of resilience definition. [16] 

This approach builds on performance and changes in the number of components in a system 

functioning in order to quantify disaster resilience and the extent to which a system has 

recovered. Mathematically defining resiliency as: 
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  (1) 

Their work was mainly focused on the amount of loss and the remaining time to recovery 

in order to measure the area above the quality curve of a system, named resilience triangle, 

as it recovers from the impact a disaster. 

Later on, they extended their work on disaster resilience and defined disaster resilience 

graphically as the shaded area underneath the functionality function of a system, defined 

as Q(t) [31].  

Q(t) is a piecewise continuous function as the one shown in Figure 8(a), where the 

functionality function Q(t) is measured as a dimensionless (percentage) function of time. 

Resilience definition is given by the following equation:  

  (2) 

where 

  (3) 

where L (I, TRE) is the loss function; fRec (t, t0E, TRE) is the recovery function; H is the 

Heaviside step function, TLC is the control time of the system, TRE is the recovery time 

from event E and t0E is the time of occurrence of event E. 
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Figure 8 - Dimensions of resilience: Rapidity (a) and Robustness (b). [31] 

As mentioned previously Bruneau et al. [18] with MCEER (Multidisciplinary Center of 

Earthquake Engineering to Extreme Event) have identified four dimensions of disaster 

resilience along which resiliency can be improved. here we will go through these aspects 

and their quantification in terms of the disaster resilience graph. 

• Rapidity: “capacity to meet priorities and achieve goals in a timely manner in order to 

contain losses and avoid future disruption’’[18] 

Mathematically it represents the slope of the functionality curve during the recovery time 

and it can be expressed by the following equation [31]: 

for t0E ≤ t ≤ t0E + TRE:  

   (4) 

where Q(t) is the functionality of the system and d/dt is the differential operator. 

 An average estimation of rapidity is defined by the total losses over the total recovery time 

to full functionality of system, as follows: 

   (5) 

where L is the loss, or drop of functionality, right after the extreme event. 
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• Robustness: ‘‘the ability of elements, systems or other units of analysis to withstand a given 

level of stress, or demand without suffering degradation or loss of function’’ [18]. 

Which is the residual functionality right after the extreme event (Fig. 8(b)) and can be 

represented by the following relation: [31] 

   (6) 

where L˜ is a random variable expressed as function of the mean mL and the standard 

deviation σL.  

It is quite difficult to quantify Redundancy and Resourcefulness, but we can say that the 

Rapidity and Robustness of an entire system is improved through them as they affect the 

shape and the slope of the recovery curve and the recovery time TRE. 

Furthermore, they came up with an equation for loss function L (I, TRE) which is expressed 

as a function of earthquake intensity I. However, in our study we will have a more general 

view and consider any power outage caused by natural disaster, not only earthquakes. 

O’Rourke et al. [32] defines Quality Function Q(t) as: 

   (7) 

where Q∞ is capacity of the fully functioning structural system, Q0 is post-event capacity; 

b parameter derived empirically from restoration data following the event. And Q(t)=1 is 

considered system fully functioning and Q(t)=0 is when the system is inoperable. 

In this modeling, the ratio of (Q∞ - Q0) to Q∞ is a measure of system robustness and the 

parameter “b” as a measure of the rapidity of the recovery process. The integration of the 

area under the quality curve for any time interval between t1 and t2 is Resilience with the 

equation: 
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   (8) 

 

2.2  Simplified Recovery Function Models 

Since the recovery time and the recovery curve are essential for evaluating resilience, there 

have been studies to estimate it accurately. Modeling recovery of a critical infrastructure is 

a complex subject as information that describe the recovery process is very limited.  

Some simplified types of recovery functions are defined depending on the system and the 

community preparedness. Three possible recovery functions defined are linear [31], 

exponential and trigonometric [33] shown in Figure 9. 

  

Figure 9 - Recovery curves (a) average prepared community, (b) not well-prepared community, (c) well prepared 

community. [31] 

authors in [34] have considered resiliency associated with the response curve, naming it 

measure of performance (MOP), and defined rapidity the same as before, as the slope of 

the curve. However, they considered a different definition for robustness as the Absorptive 

capability of the system which is refers to the strength of the system to resist disruption 

and the ability to reduce the impacts events and minimize consequences. 
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In order to quantify robustness (R) they considered the system absorptive capability which 

is the minimum MOP value as follows: 

  (9) 

where here td is the time of disruptive event; tns represents the time when the system reaches 

the new steady phase. 

They also give a simplified quantified definition for recoverability (RA) as follows: 

   (10) 

where tr is the time the system performance reaches the lowest level and to represents the 

time when the system is in original steady phase. They applied their model on Swiss electric 

power supply system (EPSS) as an exemplary system for resilience assessment. 
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Figure 10 - System resilience transitions and phases [34]. 
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3. Deterministic Model  

3.1 Model Assumptions 

The preliminary model is a linear deterministic problem, which is used as a basic scenario 

in this study. In this modeling, we try to improve the disaster resilience by tracking 

recoverability of the system and the number of services functioning in a critical 

infrastructure. Each of the services functioning fully is equivalent to some levels of the 

system recovery. Here we assume some recovery level as the goal and try to meet the 

electrical demand associated with it.  

A deterministic resource-constraint model for assessing the electrical restoration process 

of any critical infrastructure is considered. we evaluate different energy storage systems 

and determine the optimal configuration of Energy Storage Systems for specific 

infrastructure and the capacities needed for each one based on the storage systems’ 

attributes and the infrastructure’s needs. The set of properties specify the services they are 

best suited for. 

The preliminary model assumptions are as follows: 

• As previously mentioned, each energy storage system has a response time as the time it 

takes for the energy storage to supply electricity for demand. Here we have considered this 

response time as tr in our model due to its importance in times of disaster  

• Since many infrastructures such as hospital or airport have services which are more critical, 

like emergency services for hospitals, in this study we assume priority for CI’s different 

services by putting more weight for more important services in order to restore energy to 

those important services sooner and longer. In this way, each CI have K1 to Kn services 
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which k1 is the most important service (associated with weight w1) and Kn is the least 

critical one (associated with weight wn). However, some sectors like residential 

communities may not have electrical restoration priority, which still this methodology can 

be used with randomizing priority of each service. 

• As mentioned previously, electrical power system is critical infrastructure itself so in order 

to improve the resiliency of infrastructures during extreme events we must consider them 

independent of each other. In this regard, here we consider that the connection between 

CI’s and main grid is disrupted completely during the recovery process and electrical 

restoration is only provided by energy storages installed on-site. 

• In the modeling, we consider a limit of time for the recovery process as that would be the 

maximum time allowance (t*) for power restoration using energy storages as if after that 

time the connection to main grid will be back. In this stage for the primary model we 

considered this time t* to be deterministic but in the next chapter we will extend the model 

considering uncertainties regarding time which the connection between facility and main 

grid is back.  

 

3.2 Variables and Parameters  

t*: maximum number of days for recovery  

Lj: demand load of service j (kWh)  

lij: energy discharged from storage i to service j (kWh) 

xi: total capacity needed for storage i (kWh) 

Smin i: minimum capacity of storage i (kWh) 

Smax i: maximum capacity of storage i (kWh) 
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wj: weight associated to service j 

ci: storage i installation cost ($/kWh) 

Ysi: storage i efficiency  

Re: recovery level (%) 

D: demand load energy (kWh) 

Vi: storage i energy density (L) 

V*: maximum space (volume) available (Wh/L) 

Zi : binary variable for determining the state of the ESS 

CSi: the starting-up cost for storage i 

tri: response time for storage i  

Dup: ramp-up rate limit 

Ddown: ramp-down rate limit 

 

3.3  Mathematical Model 

The mathematical modeling consists of two optimization problems which the main one is 

for minimizing cost and the other is for maximizing priority restoration. In the first 

problem, the objective function is to minimize the installation cost of ESS’s (maintenance 

costs are negligible since they’re pretty low compared to the installation costs) while 

finding the total energy capacity needed for each one. The primary constraints are for 

recovery level required and ESS’s energy density associated with maximum space 

available.  

𝑚𝑖𝑛𝑖𝑚𝑧𝑒	'𝑥). 𝑐)

,

)-.

	(11) 
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subject to: 

'𝑌𝑆). 𝑥) ≥ 𝑅𝑒.'𝐷(𝑡)
8∗

8-.

	(12)
,

)-.

 

'𝑥).
1
𝑣)
≤ 𝑉∗

,

)-.

(13) 

	0 ≤ 	 𝑥) ≤ 	𝑅𝑒.'𝐷(𝑡)				𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘
8∗

8-.

			(14) 

𝑆𝑚𝑖𝑛) ≤ 𝑥) ≤ 𝑆𝑚𝑎𝑥	) 											𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘      (15) 

In equation (12) we are looking to meet the energy requirement based on the fact that each 

storage has a storing efficiency (Ys) and the summation of the energy requirement of the 

whole t* days of disruption should be satisfied at least at the Reliability level (Re). Here 

we are assuming that we know the electrical demand (D) of our infrastructure. 

As mentioned before energy density is the amount of energy that can be stored per unit 

volume.  The above formulation is based on the fact that energy density is of great 

importance when deciding which storage system to use for a specific infrastructure. For 

instance, consider Pumped Hydroelectric Storage has a low energy density requiring space 

versus Lithium-ion battery which has a very high energy density and can be used in places 

with limited space (13). Equations (14) and (15) are to consider limitations of ESSs 

capacities. 

Now that we have the capacity and total amount of energy for each of the ESS’s, In the 

second problem, we will maximize restoration to the most critical demand loads based on 

their priority which is the weight assigned to them.  

 



 

 

36 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	'𝑤). 𝐿)J

,

)-.

		(16) 

subject to: 

0	 ≤ 	'𝐿)J ≤ 𝑥)		𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘				(17)
M

J-.

 

0	 ≤ 	'𝐿)J ≤ 𝐿J		𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗 = 1	𝑡𝑜	𝑛						(18)
,

)-.

 

the constraints would be in a way that the total amount of energy discharged from a storage 

would not exceed its capacity and on the other hand, the total amount of energy discharge 

to service j would not exceed its demand. 

 

3.4  Time Dependency Modeling 

The second step here would be to find the optimal scheduling of the ESSs which is a time-

dependent optimization problem. The mathematical formulation will be the same except 

the fact that everything is time-dependent, meaning that the decision variables, xi(t), are 

discharge energy of ith storage at hour t. Here, we try to find the optimal discharge of energy 

storages to meet the energy demand of our critical infrastructure in each time interval of 1 

hour. 

Consequently, constraints and variables related to time management will be added. 

Variables to determine staring up and shutting down ESSs and constraints for response 

time, ramp rate, minimum up time, …  are among the important ones. We go through each 

one of them in what follows. 
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𝑚𝑖𝑛𝑖𝑚𝑧𝑒	''𝑥)(𝑡). 𝑐)
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subject to: 

'𝑌𝑆). 𝑥)(𝑡) ≥ 𝑅𝑒.𝐷(𝑡)						(20)
,
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												𝑓𝑜𝑟	𝑡 = 1	𝑡𝑜	𝑡 ∗ 

 

''𝑥)(𝑡).
1
𝑣)
≤ 𝑣∗

8∗

8-.

,

)-.

			(21) 

 

𝑥)(𝑡) = 	0							𝑓𝑜𝑟	𝑡 = 1	𝑡𝑜	𝑡𝒓		𝑎𝑛𝑑	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘							(22) 

 

𝑦)(𝑟𝑎𝑛𝑔𝑒	) ≥ 	𝑦)(𝑡) −	𝑦)(	𝑡 − 1)						𝑓𝑜𝑟	𝑟𝑎𝑛𝑔𝑒 = 𝑡	to		min	{𝑡∗, 𝑡 + 𝑚𝑖𝑛𝑢𝑝(𝑖) − 1}	(23) 

 

	𝐶ℎ𝒎𝒊𝒏	(𝑖). 𝑦)	(𝑡) ≤ 	 𝑥)(𝑡) ≤ 	𝑅𝑒. 𝐷(𝑡). 𝑦)(𝑡)							𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘			(24) 

 

𝑥)(𝑡 − 1) −	𝑥)(𝑡) ≤ 𝐷𝑑𝑜𝑤𝑛(𝑖)							𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘				 (25) 

 

𝑥)(𝑡) − 𝑥)(𝑡 − 1) ≤ 𝐷𝑢𝑝(𝑖)							𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘								(26) 

The main difference here would be that the decision variables are for each time step so that 

we have i times ti* decision variables. An on-off binary variable (yi) has been defined in 

order to find start-ups and shut-downs. 
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In the objective function a second part is added since there is usually a starting-up cost 

associated with ESSs. Z is a binary indicator (defined by yi) which is 1 when system has 

started up at time t and 0 otherwise. And CS(i) is the starting-up cost for storage i. 

In the energy requirement constraint (20) the main difference is that instead of summing 

the energy requirement of the whole t* days, we try to meet the requirement for each time 

step. Since this section is the deterministic modeling we are assuming we know the load 

demand of our critical infrastructure in each time interval. 

Maximum volume limit constraint (21) is also the same except the fact that now we have 

to sum up the total energy of each time step to find the space taken by each storage. 

Equation (22) is to consider response time of the storage systems.  

Most storage systems have a minimum up-time, meaning once they have been turned on 

they should operate for a certain amount of time before shutting down. Equation (23) is to 

formulate the required up-time of storages. The right-hand side of the equation will be 1 

only when the storage has been started and the left-hand side is to make sure the storage 

system will work for the required amount of time. 

Constraint (24) is to make sure if a storage system is on it should discharge not less than 

the minimum discharge rate and not more than the demand load at time t.  

Equations (25,26) are to consider ramp rate limitations of ESSs.  

 

3.5 Results: Case study  

MATLAB has been used for simulating this model with historical data of a hospital. Also, 

MATLAB package Yalmip has been used for optimization. The results for recovery 
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process are plotted below. In the tested results t* of 3 days which is equal to 72 hours was 

considered. 

We considered four most used and common energy storage systems in our case study so 

that each of which vary in the characteristics that are important in decision making of our 

model.  

For instance, Pumped Hydro Storage (PHS) has a very low installation cost but also very 

low energy density as it requires huge amount of land and water. On the other hand, 

Lithium-ion batteries have high installation cost and high energy density so that we can say 

these two are ends of a spectrum. Flow batteries (VRB) and Compressed Air Energy 

Storage (CAES) stand in between with moderate energy densities and installation costs.    

Other than these two critical characteristics, other features like storage efficiency, rated 

capacity and … are also very different as well. For instance, despite the fact that CAES has 

a low installation cost but higher energy density compared to PHS, it has a lower energy 

density which makes it quite difficult to choose between them. This is main reason each 

infrastructure would best work during disasters with different EESs configurations. 

The data used for simulating the model is the hourly load profile data for a hospital based 

on the U.S. Department of Energy (DOE) commercial reference buildings. The U.S. 

Department of Energy has commercial reference buildings which is available online and 

can be used for energy modeling studies.  There are 16 building types that represent 

approximately 70% of the commercial buildings in the U.S. and hospital is one of the 

reference buildings. Moreover, 16 climate zones have been used to create the reference 

buildings presented by DOE which represent all U.S. climate zones.  The data presented is 
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for a hospital with floor area 241,351 ft2 and 5 number of floors located in New Jersey [26, 

27]. 

The plot for illustrating the variation in electrical demand of the hospital we are studying 

with respect to time, known as the load curve, is shown in figure 11. The daily load shape 

for one year of this hospital (24 hours each day) consists of 365 curves shows a pattern 

which can be explained by peak hours from hour 10th to 18th and a general variation in the 

curves possibly affected by seasonality. Usually the demand is comparatively higher during 

summers than winters.  In fact, electrical load curve dependents on large number of factors 

i.e. weather condition, geographical diversity, sunrise and sunset times and seasonal 

diversity. 

Despite the fact that variation in load curves are pretty high, in our study we considered all 

the data we have for the whole year to find a distribution for the demand load and did not 

consider seasonality since we should be prepared for a blackout during any time.  
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Figure 11 - Demand load for one year 

We assumed 70 percent recovery of the system is required throughout the whole time after 

the disaster (until the main grid is back). In this way, 70 percent of the infrastructure which 

is mainly the critical loads within the system should be up during the disruption time. The 

figure below shows a sample of the estimated load curve and the 70% required demand to 

be met. As you can see it is a daily load curve from hour 1 to 24. 
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Considering all above information, the optimal configuration and sizing of ESSs would 

vary a lot based on size of the infrastructure, available space, budget limitation and so on. 

Here we show the results for this particular infrastructure by insisting on some constraints 

while relaxing others to show different configurations and their effect on the whole system. 

We plot the histogram of the demand load to see its behavior and how it can be similar to 

a known distribution, similar to most real-life data structures, we see that it does not look 

like a particular distribution (figure). In this regard, we will use the kernel density 

estimator. 
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Figure 12 - required reliability level of demand 
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Figure 13 - Demand load histogram 

In this section, first we will go through the results for the deterministic case and then 

stochastic case. We will discuss the optimum capacity modeling of the ESS’s for the 

hospital and then the scheduling of the ESS’s based on the determined capacities.  

The energy densities, efficacies of each storage system and also installation costs play an 

important role in required capacity estimation. Going over the literature we assumed the 

following quantities for these storages [37].  
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Table 5 - ESS's properties used 

Storage type Storage efficiency Energy density(Kwh/L) Cost ($/Kwh) 

Pumped Hydro 0.87 1/1000 50 

Lithium battery 0.85 300/1000 1000 

Vanadium redox battery 0.8 30/1000 500 

Compressed Air 0.75 4.5/1000 250 

 

In figure below the results for different scenarios are shown; a comparative figure in which 

the available space changes from 200 m3 (which is the minimum space for a feasible 

solution here) and goes up by 100 m3 each step until 40,000 m3. s assumed for each storage 

type by going through literature is as following:  
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Figure 14 - ESSs optimal capacities for different volume availability 

This figure illustrates that when we have little space, Lithium-ion batteries are the best 

choice but as the space increases combinations of Lithium-ion batteries and Flow batteries 

is more reasonable since installation cost of Flow batteries is lower and this is a cost 

minimization. And this trend goes on until using Flow batteries does not make sense and 

Compressed Air Energy Storage replaces it completely.  As the point where, available 

volume reaches 10,000 m3, using Compressed Air decreases and Pumped Hydro Storage 

is more convenient instead. Finally, when we have large enough space, Pumped Hydro will 

be used alone. 
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It would be useful to see the cost change as the available volume changes. Figure below 

shows the gradual decrease in cost as the space increase. The sudden changes in the slope 

are for specific volume units that the storage design changes; meaning that one storage is 

dropped from the optimal ones and another one becomes feasible and optimum based on 

the available volume.  

 

 

Figure 15 - cost versus volume availability 

As mentioned before, available volume at the infrastructure is among one of the factors 

that affect the optimal configuration of ESSs. Another important parameter is the reliability 
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the design (or capacity) change with respect to different reliability level. For instance, 

consider available space at the hospital under study is 10,000,000 (L) (V*= 10,000 m3). 

The figure below shows different designs of the four ESSs while reliability level changes 

from 70% to 100%. Meaning how will the optimal design for our infrastructure change if 

we want to satisfy 70% recovery of the total demand versus 80%, 90% and up until 100% 

recovery for demand satisfaction. 

 

Figure 16 - ESSs capacities for different reliability levels 
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As the reliability level for demand requirement goes up the cost (objective function in our 

problem) will also go up. The figure below shows once you change reliability level from 

70% to 100%, the cost associated with it will be twice as much as the 70% reliable system. 

 

Figure 17 - cost versus reliability level 

now if we want to look at the optimal scheduling of the ESS, sometimes the capacities and 

configuration is different than just finding the capacities. It is because of all the different 

constraints such as maximum discharge rate, minimum discharge rate or minimum up time. 

Consider the case above where we have maximum space V*= 10,000 m3, the optimal 

discharge of ESS is in the figure below. 
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Figure 18 - ESSs optimal discharge in deterministic case 

the optimal discharge of ESSs matters since important factors such as response time or 

black start is considered in the time dependent model and they are parameters that should 

be under attention during power outage. In figure below, we considered the same case 

above but with a response time of 5 hours for Compressed Air Storage. The difference can 

be noted. For the first 5 hours Pumped Hydro is used instead of Compressed Air. 
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Figure 19 - ESSs optimal discharge with response time 
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4. Stochastic Model 

In an event of natural disasters, due to the uncertainty of the event, actions should be taken 

before and after it. In this section, we will consider uncertainties associated with different 

aspects of this problem. 

Chance constraint is a known way for mathematical modelling in stochastic programs with 

uncertainties. Generally, this methodology is adopted in decision making based on 

incomplete information about random effects of different parameters in the problem. Many 

methods exists for considering uncertainty in your optimization model [38],but the main 

idea here for us is chance-constrained programming which is used to assume certain 

reliability levels for random constraints. Therefore, it can be used to model systems 

reliability. 

This methodology has many applications in which planning or designing reliability-

constrained systems that need to be modeled as an optimization problem with probabilistic 

constraints which is a very common situation in optimization models in engineering 

applications. 

Likewise, in designing and scheduling energy storage systems, we need to consider the 

uncertainty in electrical demand.  

Chance-constrained optimization was first introduced by Charnes and Cooper (1959) [39], 

[40]. In literature, there are two types of chance constraints; individual and joint. Here we 

will only talk about individual chance constraint. 

Chance constrained optimization models are commonly constraints with right hand side 

uncertainty which are required to be satisfied with a presumed probability threshold called 

confidence level. In other words, chance constraints (CCs) allows us to define a confidence 
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level or reliability level of satisfying constraints in an optimization model. In this way, the 

solution to the problem satisfies the constraints with at least a given level of probability for 

all possible scenarios. Simple format would be: 

𝑃{𝑔(𝑥) ≥ 	𝜉} ≥ 1 − α   (27)           

where g(x) is the decision variable function, 𝜉 is the random variable, 1 − α is the 

confidence level (here for us reliability level), and α is the risk level. 

The Complexities of CCs such as convexity of the optimization problem have been 

investigated by Prekopa [41]–[44]. In particular, it has been shown that if the random 

variable is log-concave (in our case normal / Gaussian) and g(x) function is concave (in 

our case linear), then the chance constraint can be reformulated algebraically. It is beyond 

the scope of our research study to provide a full literature review of the theory and solution 

methods for CCs and their application [45]–[47]. 

Furthermore, we can say that in stochastic programming the probability distribution of the 

random parameters is usually unknown, but we can estimate it from historical data. 

Here we use a data-driven approach to solve the chance constraint optimization with right-

hand side uncertainty. The approach consists of using kernel density estimate to 

approximate unknown probability distribution of the electrical demand. This technique 

consists in approximating the probability density function (PDF) of a random variable with 

unknown distribution from a given sample. Kernel Density Estimation is a nonparametric 

statistical method that do not require to specify functional forms for random variables. 

Other approaches such as Gene Expression Programming (GEP) or Genetic Programming 

(GP) approach has also been used by researchers for non-parametric prediction in energy 

reserve and consumption [48], [49] . 
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 We will use the historical data for the random variable in the optimization model 

(uncertain demand) to find the cumulative distribution function and the quantile function 

and then solve the chance constrained problem with the Monte Carlo method. Monte Carlo 

algorithm consists of sampling variables and parameters of a problem in order to get 

numerical results. The general reformulating would as follow: 

𝑀𝑖𝑛	∑ 𝑐J. 𝑥JM
J-.       (28) 

subject to:  

considering 𝑏mi ~ Fi 

𝑃{	∑ 𝑎)J𝑥J ≥ 	 𝑏mJ	} ≥ 	𝛼J						𝑓𝑜𝑟	𝑖 = 1…𝑚M
J-. 					(29) 	→ 		∑ 𝑎)J𝑥J ≥ 𝐹𝑖r.s𝛼JtM

J-. 	(30)		  

 

4.1 Model Assumptions 

1. Since in power outages, the time connection to the main grid (maximum time allowance 

t*) is back is uncertain so we consider it as a random variable with a certain distribution in 

the following work. 

2. Total amount of demand load is usually stochastic especially in case of a disaster it can 

vary from normal times pretty much. In this section, we find an estimation for the demand 

load shape. 

 

4.2 Variables and Parameters  

t*: maximum number of days for recovery  

Lj: demand load of service j (kWh)  

lij: energy discharged from storage i to service j (kWh) 
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xi: total capacity needed for storage i (kWh) 

𝑆𝑚𝑖𝑛): minimum capacity of storage i (kWh) 

𝑆𝑚𝑎𝑥	): maximum capacity of storage i (kWh) 

wj: weight associated to service j 

ci: storage i installation cost ($/kWh) 

Ysi: storage i efficiency  

Re: recovery level (%) 

D: demand load energy (kWh) 

Vi: storage i energy density (L) 

V*: maximum space (volume) available (Wh/L) 

𝜂	: risk level  

Zi: binary variable to determine the status of the ith ESS 

CSi: the starting-up cost for storage i. 

tri: response time of storage i 

Dup: ramp-up rate limit 

Ddown: ramp-down rate limit 

 

4.3 Mathematical modeling 

As mentioned, in order to model the uncertainty of the demand associated with our 

problem, we consider demand (D) as random variable and fit historical data we have for it 

to find the estimated distribution. 

Here we consider disruption time (t*) to follow normal distribution with known mean and 

standard deviation but for actual determination of this matter, further data and investigation 
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is needed. Since we couldn’t find enough accurate data about maximum time until 

electrical power is back from main grid to different infrastructures after the blackout, we 

just simply assumed a certain mean and standard deviation for it. 

  

𝑀𝑖𝑛𝑖𝑚𝑧𝑒	'𝑥). 𝑐)

,

)-.

	(31) 

subject to: 

𝑃𝑟{'𝑌𝑆). 𝑥) − 	𝑅𝑒.'𝐷(𝑡)
8∗

8-.

≥ 0	} ≥ 1 − 𝜂		(32)
,

)-.

 

'𝑥).
1
𝑣)
≤ 𝑉∗

,

)-.

(33) 

0 ≤ 	𝑥) ≤ 	𝑅𝑒.'𝑥𝑑𝑒(𝑡)		(34)							𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘
8∗

8-.

 

𝑆𝑚𝑖𝑛) ≤ 𝑥) ≤ 𝑆𝑚𝑎𝑥	) 									(35)						𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘 

Here same as the previous section we try to meet the demand for the summation of all 1-

hour intervals during the disruption time but this time we are considering the demand to be 

met as confidence level to be unknown.  

 

4.4 Time Dependency Modeling 

As we have determined the capacity needed for each storage type considering demand as 

random variable in the previous step, now we can schedule for optimal discharge ESS’s 
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accordingly. This is a time-dependent optimization problem again like the time dependency 

modeling in chapter 2 but with respect to the uncertainty in electrical demand and 

maximum time allowance that the infrastructure is disconnected from the main grid. 

 

Consequently, constraints and variables related to time management will be added. 

Variables to determine staring up and shutting down ESSs and constraints for response 

time, ramp rate, minimum up time are added too.  

As mentioned, in order to model the uncertainty of the demand associated with our 

problem, we consider demand (D) as random variable to fit historical data we have for it 

and find the estimated distribution and normal distribution for t* as the maximum time of 

the disruption. 

𝑚𝑖𝑛𝑖𝑚𝑧𝑒	''𝑥)(𝑡).		𝐶)

8∗

8-.

+'𝑍)

8∗

)-.

(𝑡)
,

)-.

. 𝐶𝑆)			(36) 

subject to: 

𝑃𝑟{'𝑌𝑆). 𝑥)(𝑡) − 	𝑅𝑒. 𝐷(𝑡) ≥ 0	} ≥ 1 − 𝜂	.			(37)
,

)-.

					𝑓𝑜𝑟	𝑡 = 1	𝑡𝑜	𝑡 ∗ 

''𝑥)(𝑡).
1
𝑣)
≤ 𝑣 ∗

8∗

8-.

,

)-.

(38) 

𝑥)(𝑡) = 	0							𝑓𝑜𝑟	𝑡 = 1	𝑡𝑜	𝑡𝒓			(39)  

𝑦)(𝑟𝑎𝑛𝑔𝑒	) ≥ 	𝑦)(𝑡) −	𝑦)(	𝑡 − 1)					𝑓𝑜𝑟	𝑟𝑎𝑛𝑔𝑒 = 𝑡	tomin{𝑡 ∗, 𝑡 + 𝑚𝑖𝑛𝑢𝑝(𝑖) −

1} (40)	  

𝐶ℎ𝒎𝒊𝒏	). 𝑦)	(𝑡) ≤ 	 𝑥)(𝑡) ≤ 	𝑅𝑒.𝐷(𝑡). 𝑦)(𝑡)			𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘			(41) 

𝑥)(𝑡 − 1) −	𝑥)(𝑡) ≤ 𝐷𝑑𝑜𝑤𝑛)							𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘				 (42) 
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𝑥)(𝑡) −	𝑥)(𝑡 − 1) ≤ 𝐷𝑢𝑝)									𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1	𝑡𝑜	𝑘								(43) 

 

The main difference here would be that the decision variables are for each time step so that 

we have i times ti* decision variables. An on-off binary variable (yi) has been defined in 

order to find start-ups and shut-downs.  

In the objective function a second part is added since there is usually a starting-up cost 

associated with ESSs. Z is a binary indicator (defined by yi) which is 1 when system has 

started up at time t and 0 otherwise. And CS(i) is the starting-up cost for storage i. 

In the energy requirement constraint (37) the main difference is that instead of summing 

the energy requirement of the whole t* days, we try to meet the requirement for each time 

step. Since this section is the deterministic modeling we are assuming we know the load 

demand of our critical infrastructure in each time interval. Equation (37) should be true in 

each time step, meaning that we try to meet the electrical demand in each time interval of 

1 hour with respect to the uncertainty in demand and disruption time 

Maximum volume limit constraint (38) is also the same except the fact that now we have 

to sum up the total energy of each time step to find the space taken by each storage. 

Equation (39) is to consider response time of the storage systems.  

Most storage systems have a minimum up-time, meaning once they have been turned on 

they should operate for a certain amount of time before shutting down. Equation (40) is to 

formulate the required up-time of storages. The right-hand side of the equation will be 1 

only when the storage has been started and the left-hand side is to make sure the storage 

system will work for the required amount of time. 
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Constraint (41) is to make sure if a storage system is on it should discharge not less than 

the minimum discharge rate and not more than the demand load at time t.  

Equations (42,43) are to consider ramp rate limitations of ESSs.   
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4.5 Results 

In figure below the results for different scenarios (with same characteristics as the one 

mentioned in deterministic case) are shown; a comparative figure in which the available 

space changes from 200 m3 and goes up by 100 m3 each step until 40,000 m3. 

 

Figure 20 - ESS capacities for different volume in uncertain case 

As the figure above shows, the stochastic model has a lot of variation. The same thing goes 

for the cost (figure 21). this variation can be explained by the uncertainty in considered 

variables of the model. 
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Figure 21 - cost versus volume in uncertain case 

The optimal discharge scheduling of ESSs can also be evaluated in the uncertain case, but 

because of the variations in the demand it does not reveal any important information. To 

be more specific, in the stochastic case the demand is considered a random variable from 

a certain distribution and each time we run the simulation new random variables will be 

generated randomly. In this regard, the timely schedule of discharge varies each time and 

does not contain new information. If we consider the same scenario we had in deterministic 

case with the maximum space V*= 10,000 m3 but this time we set a very low limit of 2 kwh 

for ramp rate (equations 42 and 43) to avoid these variations on discharge scheduling. The 

optimal discharge of ESS is in the figure below.  
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Figure 22 - ESSs optimal discharge in uncertain case 

 

4.6 Comparison 

In this section, the comparison between stochastic case versus deterministic case will be 

presented to show the importance of the uncertainties associated in the problem. In the 

uncertainty modeling we considered our confidence level to be 0.99 meaning that the 

demand will definitely be much more than the deterministic case. 

now we can compare the two models of stochastic and deterministic and see the uncertainty 

affecting decision making. Figure below shows this comparison. The blue plots are for the 

stochastic case and the red ones are for deterministic case. 
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Figure 23 - comparison of ESSs capacities in deterministic and uncertain cases 
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5. Conclusions 

Although the number of natural disasters such as hurricanes are increasing each year 

because of the global warming and environmental causes, however the reliability of 

infrastructures can be improved by certain actions and plans ahead. In this study, we came 

up with a methodology for enhancing the resiliency of infrastructures during power outage 

by implementing energy storage systems and evaluating different design scenarios 

considering reliability. We defined reliability of the infrastructure in terms of meeting the 

critical demand load necessary for the facility to function at a required level with is also 

defined by the vital services that the infrastructure has. 

In modeling this problem, first we learned about critical infrastructures (CI) and how their 

resiliency is defined in different studies. Going through the 16 most critical infrastructures, 

we evaluated different aspects of them and different causes that effect their reliability in 

order to consider them in our modeling. Certainly, for a data center factor “time” is the 

most important matter affecting the functionality and consequently the reliability of the 

facility. On the other hand, other facilities like hospital may depend on “time” in 

milliseconds as a data center do. 

Knowing the aspects of critical infrastructure, we evaluated different properties of energy 

storage systems to find the important and real-life characteristics that should be in our 

model. Properties such as energy densities, installation costs, response times, etc. are 

among the important ones that affect decision making for each infrastructure. 

After understanding both the critical infrastructure and energy storages, we came up with 

a methodology that includes the important features of both ESSs and infrastructure in the 

model and come up with solutions based on those features. The solutions consist the 
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optimal set of energy storage systems and the capacities need for the specific infrastructure 

that would satisfy the electrical demand during blackouts. The modeling part is divided in 

two parts; in the first part, we considered everything including the demand to be 

deterministic which might be the case in some situations. However, in most real-life 

situations many parameters affecting the problem have uncertainties associated with them. 

In our case, when it comes to natural disasters and power outages the probabilities of having 

unexpected and varying behavior in factors of the problem increases. In this regard, in the 

second part of modeling we considered uncertainties of demand load during power outages 

and also the duration of the outage. 

After assessing the capacities need and the optimal configuration, we presented a time 

dependent model that considers other properties that might be important to some facilities. 

In this model, we have the optimal discharge scheduling of different energy storage 

systems based on the requirements of the critical infrastructure and their load demand. 

At last, to present the model we considered a hospital as our case study and used the online 

available data for it. We evaluated this hospital in deterministic and stochastic case using 

our model and showed different results based on the infrastructure’s requirements and 

properties. We considered four main infrastructure that are widely used and have 

significate differences from each other in some properties. 
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