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There are a host of different experimental efforts looking for signs of physics beyond

the Standard Model. For the most part, the results from these experiments are in

agreement with the Standard Model prediction. Nonetheless, a handful of discrep-

ancies have been observed. One of the most significant discrepancies is observed in

the flavor-changing processes B → Dτν and B → D∗τν. In this work we propose

two novel explanations for these anomalies and study their phenomenology. The

characteristic feature of these two models are (i) use of right-handed neutrinos and

a new W ′ mediator, and (ii) mixing between two leptoquarks after the electroweak

symmetry breaking, respectively. We further study the imprint of these models, as

well as all other viable solutions, on related asymmetry observables. We motivate the

measurement of various asymmetry observables associated with the τ lepton in these

processes, as they can likely distinguish different viable solutions.
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Chapter 1

Introduction

1.1 Beyond the Standard Model of Particle Physics

The Standard Model (SM) of particle physics is the underlying theory describing

the building blocks of our universe and the known interactions between them. It

is consisted of three generations of fermions (leptons and quarks) charged under a

SU(3) × SU(2) × U(1) gauge group. The theory also includes a Higgs scalar that

interacts with some of the gauge bosons and the fermions; this Higgs scalar is respon-

sible for generating masses for all these fundamental particles.

While this framework explains most of the observed phenomena in high energy

physics, there are a handful of discrepancies between its predictions and the experi-

mental results. The focus of this thesis is on a few of these discrepancies.

Before moving on to the main topic of this thesis, it is worth reviewing the field

content of the SM, some of the important properties of each sector that are relevant

for our study, and why it is believed there should be physics beyond this framework.

• SU(3) gauge group. This gauge group describes the strong force of the SM

model. Only the quarks are charged under this gauge group. The strong force

is mediated by the exchange of gluons. The SU(3) gauge symmetry is unbroken

in the SM, hence the gluons are massless. Despite being massless, their effect is

only observable at small scales. The reason for this is that this force becomes

stronger as we go to larger distances and, eventually, it becomes strong enough

that instead of mediating a force between two separated points it generates
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pairs of quarks out of the vacuum.

The non-perturbative behavior associated with the strong force is relevant for

energies smaller than this confinement scale at around 1GeV (associated with

length scales of around 1fm); only states neutral under this force can be more

separated than this. Hence, the fundamental fermions charged under this force,

i.e. quarks, are confined inside bounds states neutral under SU(3); these com-

posite states are the hadrons. In this work, we will work extensively with the

matrix elements between some of these hadrons.

Due to the non-perturbative nature of the strong force, we can not use the con-

ventional perturbative field theory techniques in order to study the hadronic ma-

trix elements. Instead, various approximate models or numerical lattice studies

are invoked to parametrize these matrix elements.

• SU(2)L × U(1)Y gauge group and the Higgs field. The force described

by these groups is the weak force. Unlike the strong force, this force becomes

weaker as we go to larger distances. There are a total of four generators in these

gauge groups each of which corresponding to a mediator of this force.

An important phenomena related to this force is the Higss mechanism. The

minimum of the Higgs potential does not respect this gauge symmetry, thus

spontaneously breaking it to U(1)em. As a result of this breaking, some of the

gauge bosons will get masses comparable to the Higgs vacuum expectation value

(vev). These are the W± and Z bosons. The surviving gauge group describes

electromagnetism and its massless gauge boson in the photon.

Even though W and Z are heavy, thus short-ranged, various precision mea-

surements allow us to track their effects in even longer distances. As will be

discussed in the following sections, the discrepancies with the SM that we will

study in this work are an outcome of such precision experiments.



3

• The SM Fermions. These particles are the bulding blocks of the visible

matter in our universe. Each fermion has two chiralities : left-handed (LH) and

right-handed (RH), which are related to each other through parity symmetry.

Different chiralities of the same field have different charges under the weak force

of the SM, thus the weak interactions break the parity symmetry.

There are three generations of fermions in the SM. The only differences between

these three generations are in their couplings to the Higgs, which in turn gives

rise to different masses for them, and their interactions with the W boson. A

significant part of the SM rich phenomenology is a result of the existence of

these different generations and the cross-generation interactions. The study of

these topics are collectively referred to as flavor physics. There are numerous

excellent reviews on this subject and the on-going research directions, e.g. see

[1].

The active areas of research in flavor physics include study of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix in the quark interactions with the W boson,

signatures of new physics (NP) in rare processes, CP-violation in and beyond

the SM, hadron spectroscopy, searches for dark sectors, etc., see for instance [2]

for different physics goals in flavor physics and the relevant experiments. The

focus of this thesis is on the signatures of NP in rare processes.

We summarize the matter content of the SM model in Tab. 1.1. This framework

has explained a wide range of different phenomena from the electroweak symmetry

breaking scale at subatomic ranges to the neutrinos behavior in cosmological scales.

There are, however, quite a few unexplained issues in the SM. For instance:

• Why are there three generations of matter in the SM? What is the origin of

their different Yukawa couplings to the Higgs field?
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Field Mass [GeV] SM Charges/Gauge Group

QL =

u
d


L

,

c
s


L

,

t
b


L

2.16× 10−3

4.67× 10−3

 ,

 1.28

0.093

 ,

 173

4.18

 (3,2,1/6)

uR, cR, tR 2.16× 10−3, 1.28, 173 (3,1,2/3)

dR, sR, bR 4.67× 10−3, 0.093, 4.18 (3,1,2/3)

eR, µR, τR 0.51× 10−3, 0.11, 1.78 (1,1,-1)

LL =

νe
e


L

,

νµ
µ


L

,

ντ
τ


L

 ∼ 10−10

0.51× 10−3

 ,

∼ 10−10

0.11

 ,

∼ 10−10

1.78

 (1,2,-1/2)

H 125.10 (1,2,1/2)

g 0 SU(3)

Z 90.19 SU(2)× U(1)

W 80.38 SU(2)

γ 0 SU(2)× U(1)

Table 1.1: The field content of the SM. The first three rows include the different

quarks, followed by the leptons in the next two rows. We also have a neutral scalar,

namely the Higgs scalar, and 4 different gauge bosons. The subscripts L,R on the

fermions indicates their chirality. For each type of fermion, the three generations are

include in the same row. The charges under the SM gauge groups SU(3)× SU(2)×

U(1) are included as well; for the gauge bosons, we include the mass eigenstates and

indicate which group they belong to. The gluon (g) and the photon (γ) correspond

to unbroken gauges and thus remain massless. The other masses are from Particle

Data Group [3].
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• Have we discovered all the fundamental particles? Are there other fundamental

particles at the shorter scales?

• What is determining the Electroweak symmetry-breaking scale in the Higgs

sector?

• Why is the SM gauge group SU(3) × SU(2) × U(1) ? Do these gauge groups

have a unified origin?

• What is the nature of the Dark Matter?

• Why are there only LH neutrinos in the SM? Do these particles, like any other

SM fermion, have RH partners as well?

Motivated by these questions, and numerous other shortcomings of the SM, many

searches for beyond SM (BSM) physics are being carried out. In a handful of these

experiments discrepancies with the SM predictions have been observed. These dis-

crepancies have been guiding the BSM model-building in different fronts.

In this thesis, we will focus on a particular set of such ”anomalies” in the charged

current processes in different flavor physics experiments. The discrepancies we are

studying are in a pair of observables called RD and RD∗ , see Sec. 1.2, related to the

decays B → Dτν and B → D∗τν, respectively. After reviewing these observables in

the upcoming section, we will introduce two new BSM explanations and how we can

distinguish various solutions to these anomalies.

Solutions of these anomalies can guide us toward the right answer to a handful

of SM shortcomings mentioned earlier. In particular, as we will see shortly, the solu-

tions to these anomalies require the existence of new heavy states that treat different

generations of fermions on different grounds. As a result of this, it is conceivable that

these BSM proposals could be a part of a larger structure explaining the difference

between different generations and even why there are three generations of fermions.
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Furthermore, the new heavy states could play a role in stabilizing the electroweak

scale or could serve as a portal between the SM matter and a dark matter candidate.

While these are intriguing questions to think about, we should first understand

the anomalies and their possible solutions better. Hence, the focus of this thesis will

be directly on the anomalies themselves and the minimal extensions of the SM that

can explain them.

1.2 The Charged Current Flavor Anomalies

Experimental tests of the SM have probed many different aspects of potential new

physics (NP), including direct searches for new heavy particles at the Large Hadron

Collider (LHC), various direct and indirect dark matter detection experiments, neu-

trino experiments, and precision measurements of flavor physics. For the most part,

predictions from the SM are in good agreement with the results from these exper-

iments. There are, however, a handful of anomalies which suggest the existence of

new physics.

Arguably, some of the most significant and enduring discrepancies with SM pre-

dictions are observed in B-physics experiments. Collaborations such as BaBar [4–6],

Belle [7–9], and LHCb [10–12], have observed anomalies in the rate of B-hadron

decays, compared to the theoretical predictions of the SM. The most significant de-

viations from the SM predictions are found in the semi-leptonic decay of B mesons

to D or D∗, encapsulated in the ratios RD and RD∗ , defined as

RD =
Γ(B̄ → Dτν)

Γ(B̄ → D`ν)
, RD∗ =

Γ(B̄ → D∗τν)

Γ(B̄ → D∗`ν)
, (1.1)

where ` stands for either electrons or muons.

The Standard Model predictions for these ratios are [5, 6, 13–20]

RD = 0.300± 0.008, RD∗ = 0.252± 0.003, (1.2)
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In order to calculate these ratios, we can factorize the matrix element into the hadronic

and the leptonic side; the two sides are connected by a W propagator.

The leptonic side of the calculation can be done straightforwardly. If the masses

of different charged leptons were equal, both these ratios would have been equal to

1 as the SM W interacts with all the leptons with the same strength. The deviation

from 1 in these predictions are entirely due to the phase space suppression when the

off-shell W decays to τ .

On the hadronic side we will have to calculate the B̄ → D(∗) matrix element,

for which the perturbative techniques are not useful thanks to the non-perturbative

nature of the strong force at the scale of these processes. These matrix elements can

be parametrize with the help of a handful of form factors. These form factors in turn

can be determined using numerical results from lattice studies, different sum rules

and quark models, or with the help of heavy quark limit and heavy quark effective

theory (HQET) [21–23]. All these different approaches have been used in calculating

the relevant form factors and they all agree with each other [5, 6, 13–20].

As the hadronic matrix element of the numerator and the denominator in RD(∗)

are the same, by taking the ratio, various sources of uncertainties (such as the un-

certainty in some of the hadronic form factors or in some SM parameters such as

Vcb) cancel [16]. The uncertainties in Eq. (1.2) are mostly due to the uncertainty

in mc/mb, the remaining uncertainties from the from factors, higher order electro-

magnetic corrections, and deviation from heavy quark limit (if we use heavy quark

effective theory) [16, 6].

Meanwhile, the global average [13] of the observed values [4–6, 8–10] for these

ratios are

RD = 0.403± 0.040± 0.024, RD∗ = 0.310± 0.015± 0.008, (1.3)

where the first (second) experimental errors are due to statistics (systematics). The
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dominante sources of uncertainties are the limited data sample, Monte-Carlo statis-

tics, B meson reconstruction, background from decays to excited states like D∗∗, and

the error in determining the efficiencies of different channels [6]. These numbers are

in sharp disagreement with the SM values reported earlier. A combined analysis [13]

shows a ∼ 3.8σ discrepancy with the SM predictions of Eq. (1.2).

Various experiments have measured RD(∗) in various channels. In particular, as

τ can not be observed directly, one can look for its different decay channels as inde-

pendent measurements of RD(∗) . In the e+e− colliders we can further use different

taggings on a second B in our event selection. Figure 1.1 shows different measure-

ments of these ratios (with different B and τ taggings) and the SM predictions. The

figures show the results from different collaborations and clearly illustrate the devia-

tion from the SM predictions.

There is also some correlation between RD and RD∗ measurements that are not

captured in Fig. 1.1. In Fig. 1.2 we present the same data in the RD-RD∗ plane to

illustrate this correlation as well. This figure clearly indicates ∼ 4σ significance for

the combination of anomalies.

The relevant experiments measuring RD(∗) are included in Fig. 1.1 and Fig. 1.2.

Below we briefly review each of these experiments.

• BaBar. BaBar is an experiment with asymmetric e+e− beam at the center-of-

mass energy 10.58GeV, equal to a Υ(4S) mass. The facility is located at SLAC

in California. The experiment collected around 426 fb−1 of data. After the

collision an on-shell Υ(4S) is generated which subsequently decays to a pair of

B mesons with a branching ratio above 96% [3]. The integrated luminosity of

the experiment corresponds to around 0.5 × 109 pairs of BB̄ mesons. Events

in which at least one of the B mesons decays hadronically are selected. This B

can be reconstructed completely and gives us information about the momentum

of the other B. We can use the decays of the second B to probe RD(∗) [6].
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0.2 0.4
R(D)

BaBar had. tag
 0.042± 0.058 ±0.440 

Belle had. tag
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 0.024± 0.039 ±0.407 
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PRD 94 (2016) 094008 
 0.003±0.299 

PRD 95 (2017) 115008 
 0.003±0.299 

JHEP 1712 (2017) 060 
 0.004±0.299 

FNAL/MILC (2015) 
 0.011±0.299 

HPQCD (2015) 
 0.008±0.300 

HFLAV
Summer 2018

/dof = 0.4/ 1 (CL = 52.00 %)2χ

0.2 0.3
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BaBar had. tag
 0.018± 0.024 ±0.332 

Belle had. tag
 0.015± 0.038 ±0.293 

Belle sl.tag
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 0.027± 0.035 ±0.270 
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 0.030± 0.027 ±0.336 
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 0.029± 0.019 ±0.291 
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 0.008±0.260 

JHEP 1712 (2017) 060
 0.005±0.257 

HFLAV
Summer 2018

/dof = 0.4/ 1 (CL = 52.00 %)2χ

Figure 1.1: The measurement of RD (top) and RD∗ (bottom) from different experi-

ments (with various τ and secondary B taggings). The global average of the measured

values (the SM prediction) is shown by the green (red) band. The figure is provided

by the HFLAV collaboration [13].
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Figure 1.2: The measurement of RD and RD∗ from different experiments (with various

τ and secondary B taggings). The figure clearly indicated the correlation in the

measurement of these observables. The SM is around 4σ away from the global average

of all the measurements. The figure is provided by the HFLAV collaboration [13].
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The measurement has been done with both B− → D(∗)0 and B̄0 → D(∗)+ and

with ∼ 20 different bins in the leptonic system momentum q2.

• Belle and Belle II. The Belle experiment is located at the KEK facility in

Japan. It ran from late 90s till 2010 and there are still new analysis published

every year on these anomalies. Similar to BaBar, Belle uses an asymmetric

e+e− beam with center of mass energy equal to Υ(4S). It gathered around 1

ab−1 of data which corresponds to around 109 BB̄ pairs.

The measurement has been done with both B− → D(∗)0 and B̄0 → D(∗)+ and

with∼ 20 different bins in the leptonic system momentum q2. They have studied

exclusive hadronic τ decay channels as well, see Fig 1.1. While BaBar only

records the events with hadronic tagging of the secondary B, Belle has studied

events in which the second B decays both hadronically and semi-leptonically,

see Fig. 1.1.

Belle II is an update of the Belle experiment with some upgrades to the detector.

It is projected to gather around 40 times the Belle data in the next ten years.

Belle II had its first collisions during the last year and has been gathering

data since. The first analyses from this experiment on RD(∗) is scheduled to be

released by late 2021.

• LHCb. LHCb is a part of LHC; thus, unlike the previous experiments, it

has a proton-proton beam and operates in the TeV range. While the integrated

luminosity at LHCb is in the fb−1 ballpark, the large cross-section of the relevant

processes allows it to gather comparable number of events.

Unlike an e+e− collider environment, here the background is less severe for the

leptonic final states. LHCb has looked for the signals of these observables with

both τ → µνν [10] and τ → πππν [24] final decays.

Currently Belle II and LHCb are still running and are projected to have enough
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data and enough sensitivity to establish if these anomalies are indeed due to NP or

not.

Recently Belle has released a new result for measurement of RD with semi-leptonic

tagging of the secondary B. They further re-analyzed and updated their result on

RD∗ with the same tagging. The equivalent of Fig. 1.1 and Fig. 1.2 with the new

result from Belle are depicted in Fig. 1.3 and Fig. 1.4, respectively. These figure

indicate that the average observed value of RD(∗) has slightly decreased with the new

analysis results.

The updated numbers can still constituent a discovery after LHCb and Belle II.

For the most of our studies in this thesis we work with the results from Fig. 1.1 and

Fig. 1.2; as we will see later on, after lowering the measured value of RD(∗) not only

the models we are proposing are still viable, but even more models can explain the

discrepancy while respecting other experimental bounds.

Lastly, let us introduce two closely-related observables that have recently been

measured by Belle and LHCb. Similar to RD(∗) , an upward fluctuation has been

observed in the following ratio

RJ/ψ =
Γ(Bc → J/ψτν)

Γ(Bc → J/ψ`ν)
. (1.4)

The value measured by LHCb is [11]

RJ/ψ = 0.71± 0.17 (stat)± 0.18 (sys). (1.5)

The dominant source of uncertainty is the hadronic form factors. There is significant

uncertainty in the SM predictions for this ratio [25–29] as well. The lattice calculation

of these form factors is not completed yet and results only exist for small values of

q2. The most recent calculation of this ratio [29] in the SM uses light-cone sum rules

and has found,

RSM
J/ψ = 0.23± 0.01, (1.6)
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Figure 1.3: The equivalent of Fig. 1.1 with the new Belle analysis of the data with

semi-leptonic B tagging. We observe that with the new RD measurement and the

reanalysis of the RD∗ result from the same channel, the significance has gone down.
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Figure 1.4: The equivalent of Fig. 1.2 with the new Belle analysis of the data with

semi-leptonic B tagging. The global average has become more consistent with the

SM, but still shows around 3.1σ discrepancy with the SM.

showing ∼ 2σ discrepancy with the observed value. Earlier calculations of this ratio

have larger error bars and find a central value of RJ/ψ ∈ (0.23, 0.39), see [29] and

the references therein. Even considering these error bars there is still a significant

discrepancy with the experimental result in Eq. (1.5).

There are also a host of different polarization and asymmetry observables [30, 31,

16, 32–42] that can be measured in the B → D(∗)τν decays. Recently, Belle has

released preliminary results on the measurement of the D∗ longitudinal polarization

fraction in the B → D∗τν decay [43]

FL
D∗ = 0.60± 0.08 (stat)± 0.035 (sys), (1.7)

where

FL
D∗ =

Γ(B̄ → D∗Lτν)

Γ(B̄ → D∗τν)
(1.8)

with D∗L referring to a longitudinally polarized D∗. Meanwhile the SM prediction is
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[38, 44, 45], e.g. [44]

(FL
D∗)

SM = 0.457± 0.010, (1.9)

showing around 1.6σ fluctuation compared to the SM. As the dominant source of error

in this measurement is statistics, we expect the future updates to significantly reduce

the uncertainty in these measurements. Even among the systematic uncertainties the

dominant uncertainty can be alleviated by more Monte-Carlo statistics [43].

The underlying hard process for all these observables (RD(∗) , RJ/ψ, FL
D∗) is b →

cτντ through a W exchange. As a result, the combination of all these observations

make an appealing case for the existence of BSM effects on this process.

1.3 Three Broad Classes of Solutions

Given the large deviation between the SM predictions and the observed values, an

investigation of different possible theoretical explanations beyond the SM is well-

motivated. Many theoretical models have been put forward to explain the RD and

RD∗ anomalies. Given that the measured RD(∗) ratios are higher than their SM

predictions, model building efforts have focused on enhancing the rate of b → cτν

transitions through new mediating particles (this is much easier than suppressing the

rate of b → c(e, µ)ν transitions, given the much more stringent constraints on new

physics coupling to electrons and muons). Integrating out the heavy mediators along

with the W at tree-level results in a dimension-6 effective Hamiltonian of the form

Heff =
4GFVcb√

2

 ∑
X=S,V,T
M,N=L,R

CX
MNOXMN

 (1.10)

where the four-fermion effective operators are defined as

OSMN ≡ (c̄PMb)(τ̄PNν)

OVMN ≡ (c̄γµPMb)(τ̄ γµPNν) (1.11)

OTMN ≡ (c̄σµνPMb)(τ̄σµνPNν),
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for M,N = R or L. We have separated out the SM contribution in the first term of

Eq. (1.10); the normalization factor is conventional and chosen so that (CV
LL)SM = 1.

The mediators can be spin-0 or spin-1, and they can either carry baryon and

lepton number (leptoquarks) or be B/L neutral (charged Higgs and W ′). These

possibilities are illustrated in Fig. 1.5. Existing models can be divided into three

general categories:

• Extended Higgs sector [31, 46–48]. Integrating out a charged Higgs produces

the scalar-scalar operators OS. These operators are severely constrained by

the bounds on Bc → τν branching ratio [49–52], which rules out nearly all

explanations of the observed RD(∗) using this class of models. It should be

noted that these constraints are generic to all models in this category; even

general extensions of the Higgs sector, for example Type-III two-Higgs-doublet

models (2HDMs), are strongly disfavored for these anomalies.

• Heavy charged vector bosons [53, 54]. Integrating out W ′s gives rise to the

vector-vector operators OV . Constraints on these models arise from the in-

evitable existence of an accompanying Z ′ mediator. By SU(2) invariance, the

W ′bLcL vertex implies a Z ′bLsL vertex. In order to avoid catastrophic tree-level

flavor-changing neutral currents (FCNCs) from this Z ′, some mechanism to sup-

press the Z ′bLsL vertex – for example, minimal flavor violation (MFV) – must

be assumed [55, 56]. However, this will not suppress Z ′bb and Z ′ττ vertices in

general. In such models, there are therefore typically severe constraints from

LHC direct searches for Z ′ → ττ resonances. Evading these limits requires one

to go to unnaturally high Z ′ widths [56, 57].

• Leptoquarks [46, 58]. Leptoquarks (LQs) couple quarks and leptons at a vertex.

Other than their spin (which can be either zero or one), leptoquarks can be

categorized by their representation under SM gauge groups. Appropriate choices
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Figure 1.5: The generic diagrams that contribute to RD and RD∗ by modifying

b → cτν amplitudes with a BSM mediator. The mediator can be one of the three

candidates indicated in the text: (a) charged Higgs or W ′; or (b) leptoquarks.

of these quantum numbers can give rise to many of the operators in Eq. (1.11)

after Fierz rearrangement. Given the wide variety of leptoquark models, there

are many potentially relevant constraints, ranging from b→ sνν flavor bounds

[57], to LHC searches for ττ resonances [56, 57], and measurements of the Bc

life-time [51, 52]. Nevertheless, viable leptoquark models exist (with either spin-

0 and spin-1), and so they are considered to be the favored explanations for the

RD(∗) anomaly [57, 59], because the alternatives (as described above) are even

more stringently constrained.

A more detailed study of these possible mediators will be presented in Chap. 4.

As mentioned earlier, each of these mediators can be embedded in a larger structure,

which in turn can answer a few other puzzles in the SM model. For instance, a

W ′ comes from a broken gauge symmetry; the SM electroweak gauge group can

be embedded in this broken gauge which can potentially stabilize the electroweak

symmetry-breaking scale. The same W ′ or colorless scalars can serve as a portal to a

dark sector as well. Different LQs can be embedded in different gauge groups unifying

the electroweak gauge groups and the strong gauge.
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1.4 Outline

The outline of the rest of the thesis is as follows.

In Chap. 2 we will introduce a model explaining the anomalies using new RH

neutrinos instead of the SM neutrinos. While the W ′ models with LH neutrinos are

severely constrained, we will show that using the RH neutrinos instead will allow us

to circumvent various experimental bounds. This solution is the first solution of the

anomalies with a W ′ and RH neutrinos, and one of the first solutions relying on the

RH neutrinos. The content of this chapter closely follows [60].

Next, In Chap. 3 we first study FL
D∗ and RJ/ψ in more details and show that one

needs CV
RL (or its equivalent with RH neutrinos) in order to explain the observed FL

D∗ .

We then embark upon building the first such model. Our proposed model relies on

two LQs and their mixing after the electroweak symmetry-breaking. The content of

this chapter closely follows [61] and an on-going work that will soon appear on arXiv.

We then review all the existing minimal solutions in Chap. 4 and start studying a

few other related observables. In particular, we will show that τ ’s polarization asym-

metry and its forward-backward asymmetry can be used to tell different solutions

apart. We also highlight the importance of a particular CP-odd τ polarization asym-

metry in discerning different models and the need for viable measurement proposals.

This chapter is based on [42].

Finally, in Chap. 5 we conclude our work and propose a few future directions for

similar studies.

Numerous appendices are included in the end as well. These appendices are again

closely related to the results presented in [60, 42, 61].

In App. A we include further details about the calculation of the relevant hadronic

and leptonic matrix elements. In particular, we study the leptonic matrix elements

with RH neutrinos.
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We then study the couplings of the fermions to the gauge bosons in the model

of Chap. 2 in App. B. These details are particularly important in the study of the

electroweak precision bounds on the model of Chap. 2.

In App. C, we include further details related to the study of FL
D∗ and RJ/ψ in

Chap. 3. In Chap. 3 we model-independently look for the maximum of FL
D∗ and

RJ/ψ, through which we arrive at the important role played by CV
RL in explaining the

observed FL
D∗ ; App. C elaborates more on how this maximization goes through.

Finally, in App. D we discuss the asymmetry observables in more depth and

report the most general analytic formula for each observable with all the WCs from

Eq. (1.10).
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Chapter 2

A New Solution With RH Neutrinos

2.1 Motivation and Overview

In this chapter we revisit the W ′ models and identify a new class which avoids the

pitfalls described above. All of the existing W ′ models assume that the missing

energy in the semi-leptonic B decay is a SM neutrino.1 Our key modification is to

make the ν enhancing the B → D(∗)τν rate a light right-handed neutrino, rather than

a left-handed neutrino of the SM. As we will show, cosmological and astrophysical

considerations require mνR . 10 keV, in which case the kinematics of the B decay

into this new particle would be indistinguishable from decays to the (nearly massless)

SM neutrinos. Once we integrate out the W ′ at tree level we generate the dimension

six operator OVRR. We will show that (similar to OVLL) this single operator can explain

both RD and RD∗ simultaneously.

Furthermore, by having the W ′ and Z ′ couple only to right-handed fermions in

the SM (through mixing with heavy vector-like fermions charged under the extra

SU(2)), we can couple the W ′ directly to cR and bR (instead of to the qL2 = (cL, sL)

and qL3 = (tL, bL)) and so can avoid the Z ′bs vertex. Thus there is no danger of tree-

level FCNCs in this model, and we obviate the need for the Z ′ coupling to the third

generation fermions to be enhanced by 1/Vcb when compared to the W ′bc coupling

required to explain the anomalies. This alleviates the stringent bounds from LHC

1RH neutrinos have been combined with leptoquarks in [53, 62] and extended Higgs sector in
[63, 64]; a model-independent study has been done in [39, 65, 66].
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direct searches for Z ′ → ττ resonances which were the main obstacles to previous

W ′ models. That said, we find that these searches still set meaningful bounds on the

parameter space of our W ′ model. These can be satisfied while still keeping the model

perturbative, but it requires a mild enhancement to the Z ′ width (ΓZ′/mZ′ ∼ 3−10%).

We achieve this enhancement by introducing additional vector-like matter charged

under the extra SU(2) which do not mix with the SM.

The additional SU(2) and the fermion mixing we introduce between new vector-

like fermions and SM fields can modify the relation between W and Z masses and

the couplings of SM fermions to W and Z. These are constrained by electroweak

precision (EWP) tests. However, the EWP constraints are much milder than in

models where the two SU(2)’s are broken down to the diagonal by a bifundamental

vev (see, e.g. [54, 67]), as there is no W -W ′ mixing. Additional constraints come from

the effect new right-handed light neutrinos have on the cosmic microwave background

(CMB) power spectrum, as well as their mixing with SM left-handed neutrinos. Flavor

constraints such as FCNCs can be evaded by a suitable choice of fermion mixing,

which eliminate FCNCs at tree-level. As we will show, our model survives all current

experimental tests, while having some prospect of being discovered or ruled out by

the future searches.

2.2 General Setup

In this section, we will review the contributions to RD and RD∗ from each of the

dimension six operators in Eq. (1.10), and discuss how this motivates model building

with W ′’s and RH neutrinos. We begin by writing down useful and fully-general
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numerical formulas for RD and RD∗ in the presence of Heff :

RD ≈ RSM
D ×

{(
|CV

LL + CV
RL|2 + |CV

RR + CV
LR|2

)
+ 1.35

(
|CS

RL + CS
LL|2 + |CS

LR + CS
RR|2

)
+ 0.70

(
|CT

LL|2 + |CT
RR|2

)
+ 1.72Re

[
(CV

LL + CV
RL)(CS

RL + CS
LL)∗ + (CV

RR + CV
LR)(CS

LR + CS
RR)∗

]
+ 1.00Re

[
(CV

LL + CV
RL)(CT

LL)∗ + (CV
LR + CV

RR)(CT
RR)∗

]}
,

RD∗ ≈ RSM
D∗ ×

{(
|CV

LL|2 + |CV
RL|2 + |CV

LR|2 + |CV
RR|2

)
+ 0.04

(
|CS

RL − CS
LL|2 + |CS

LR − CS
RR|2

)
+ 12.11

(
|CT

LL|2 + |CT
RR|2

)
− 1.78Re

[
(CV

LL)(CV
RL)∗ + CV

RR(CV
LR)∗

]
+ 5.71Re

[
CV
RL(CT

LL)∗ + CV
LR(CT

RR)∗
]
− 4.15Re

[
(CV

LL)(CT
LL)∗ + CV

RR(CT
RR)∗

]
+ 0.12Re

[
(CV

LL − CV
RL)(CS

RL − CS
LL)∗ + (CV

RR − CV
LR)(CS

LR − CS
RR)∗

]}
.

(2.1)

To derive these formulas without calculating any new form factors or matrix elements,

one can use the following trick: we expect that these formulas should be invariant

under interchange of R and L (i.e. parity) since we sum over all polarizations and

spins in the end. Thus we can start from the results in the literature for left-handed

neutrinos, and map them using parity to the results for right-handed neutrinos. Since

there is no interference between operators with left- and right-handed neutrinos, this

mapping does not miss any contributions from mixed terms.

The analytic formulae for the differential decay rates dΓ(B → D(∗)τν)/dq2 (using

only the operators that involve the SM neutrinos) are calculated in [68].2 We then

integrate the differential decay rates over the momentum transfer in the interval

2We are using a slightly different naming convention for the Wilson coefficients (WCs) and op-
erators than [68]. The map between our convention and the one used in [68] is

CVLL → CV 1, CVRL → CV 2

CSLL → CS2, CSRL → CS1,

CTLL → CT .

(2.2)



23

Vcb GF [GeV−2] mB̄ [GeV] mD [GeV]

42.2× 10−3 1.166× 10−5 5.279 1.870

mD∗ [GeV] me [GeV] mµ [GeV] mτ [GeV]

2.010 0.511× 10−3 0.106 1.777

Table 2.1: The numerical values of different variables used in deriving Eqs. (2.1).

q2 ∈ (m2
τ , (mB −mD(∗))2), and substitute the numerical values in Table 2.1 for all the

SM parameters [69]. This results in the numerical expressions shown in Eq. (2.1).

We have corroborated this result by directly calculating, from scratch, the con-

tribution of operators involving right-handed neutrinos to RD(∗) . This involves first

calculating the matrix element of B̄ → D(∗)τνR using the Hamiltonian in Eq. (1.10).

The matrix element factorizes into a leptonic side, which can be calculated straight-

forwardly, and a hadronic side [58, 70]. The hadronic matrix elements are functions

of the masses, the momentum transfer, and a handful of known form factors. A list of

these form factors, the leptonic matrix elements with left-handed neutrinos, and the

hadronic matrix elements can be found in [58, 39, 68]. Specifically, for the B̄ → Dτν

we use the same form factors as in [39] (derived from the available lattice results

[17] and from [71]), while for the B̄ → D∗τν decay, following [39, 68], we use the

heavy quark effective theory form factors based on [72]. Further details about this

calculation, and the analytic formulas from which (2.1) is derived, are included in

[42].

Once we find the matrix elements, the differential decay rates of the B meson can

be calculated, and verified to be manifestly parity invariant.

We see from (2.1) that CV
LL, CV

LR and CV
RR are special, in that if we only turn

on one of these coefficients at a time, then RD and RD∗ share the same functional

form. Thus a model that generates one of these coefficients will naturally explain



24

the curious experimental fact that both RD and RD∗ appear to be high relative

to the SM prediction by the same factor. The measured values of RD and RD∗

can be accommodated by the other coefficients at specific points in the complex

plane, but then RD/R
SM
D ≈ RD∗/R

SM
D∗ would be a numerical accident, and far from

natural or automatic. This is illustrated in Fig. 2.1, which shows the dependence

of RD and RD∗ on different individual WCs (we focus in this plot on real values for

simplicity). The explanation of the RD(∗) anomaly in terms of CV
LL is well-explored

in the literature. However, the vector operators involving right-handed neutrinos

are completely unexplored and would appear, from this point of view, to be equally

promising.

Specializing to just CV
RR, the contribution of this Wilson coefficient to each anomaly

is given simply by

RD = RSM
D

(
1 + |CV

RR|2
)
, (2.3)

RD∗ = RSM
D∗

(
1 + |CV

RR|2
)
. (2.4)

We see that CV
RR in the range 0.4–0.6 can explain both anomalies. For the rest of

our phenomenological investigation in this chapter we will focus on this range of this

Wilson coefficient.

2.3 The Model

In this section, we introduce our model that explains the RD and RD∗ anomalies

using a W ′ that couples to right-handed SM fermions and a right-handed neutrino.

The right-handed neutrino is assumed to be light enough (mνR . 10 keV) so that it

is safe from cosmological and astrophysical bounds (see Section 2.4.3); this makes it

indistinguishable at the collider from the nearly-massless SM neutrinos in the decays

of the B mesons. Integrating out the W ′ generates the CV
RR Wilson coefficient, capable

of explaining both branching ratio measurements, as discussed in the previous section.
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Figure 2.1: The dependence of RD and RD∗ on individual WCs from NP (with all the

other NP effects being zero). The orange (blue) band indicates the 1σ band of the

observed values for RD (RD∗) [13]. The qualitatively different dependence of RD(∗) on

operators with left-handed neutrinos (the black lines) and those with right-handed

neutrinos (the red lines) is due to the interference with the SM contribution.
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The field content of the model is summarized in Table 2.2, and a schematic pre-

sentation of the model is included in Fig. 2.2. Our model embeds hypercharge into

a new SU(2)V × U(1)X gauge group (with gauge couplings gV and gX respectively),

broken by the vev of 〈φ′〉 = 1√
2
(0, vV )T . It is useful to define the effective hypercharge

coupling in our model:

g2
Y ≡

g2
Xg

2
V

g2
X + g2

V

. (2.5)

After the heavy particles are integrated out, gL and gY are identified with the SM

gauge couplings, and φ is identified with the SM-like Higgs (with vev 〈φ〉 = 1√
2
(0, vL)T ).

In what follows, we expand some of our equations and find the leading contribution

in vL � vV and gX , gL � gV . This useful limit will simplify many of the equations

that will follow. It will also prove to be a fairly good approximation in the region of

the experimentally allowed parameter space capable of explaining the B-anomalies.

We extend the SM matter fields with a right-handed neutrino νR and NV gener-

ations of vector-like fermions Q and L. In order to explain the anomalies, only one

νR and one generation (NV = 1) of vector-like fermions suffices. However, we will see

in Section 2.4 that additional vector-like fermions (with no mixing into the SM) are

required to evade direct Z ′ → ττ searches (by enlarging the width of the Z ′). The

Lagrangian of the SM is extended to3

−L ⊃MQQ̄LQR +MLL̄LLR +mνRνRνR

+ ỹdQ̄Lφ
′bR − ỹuQ̄Lφ

′∗cR + ỹeL̄Lφ
′τR − ỹnL̄Lφ′∗νR + h.c.

(2.6)

After SU(2)V × U(1)X breaking, the vector-like fermions will mix with right-handed

fermions carrying SM quantum numbers. This will facilitate the interaction between

the bR, cR, τR and νR (mediated by the W ′ of the SU(2)V ) that forms the basis of

our explanation of the RD/RD∗ anomaly.

3The scalar potential part of the Lagrangian is straightforward and we omit it for brevity. We
can have an interaction ν̄Rφ`L at tree-level as well. This operator can generate a large mass and
disastrous mixing between neutrinos (see Section 2.4); hence, we must assume its Yukawa coupling
is very suppressed at tree-level.
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Generations SU(3) SU(2)L SU(2)V U(1)X

φ 1 1 2 1 1/2

qL 3 3 2 1 1/6

uR 3 3 1 1 2/3

dR 3 3 1 1 -1/3

`L 3 1 2 1 -1/2

eR 3 1 1 1 -1

νR 1 1 1 1 0

φ′ 1 1 1 2 1/2

Q NV 3 1 2 1/6

L NV 1 1 2 -1/2

Table 2.2: The field content of the model. The right-handed SM-like fermions uR,

dR, and eR will eventually mix with the fields charged under the new gauge group

SU(2)V to give rise to the actual right-handed SM fermions. One generation of νR,

and one generation of QL/R, and LL/R mixing with SM-like fermions, are sufficient to

explain the RD and RD∗ anomalies. However, we will see in section 2.4.2 that NV > 1

is generally required to evade Z ′ → ττ searches.

In the following sections we will explore the spectrum and couplings of the model,

in preparation for a detailed study of the phenomenology in section 2.4.

2.3.1 Gauge bosons

The charged gauge bosons do not mix at tree-level; their spectrum is given by:

mW =
1

2
gLvL, mW ′ =

1

2
gV vV . (2.7)
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SU(2)L

U(1)X

SU(2)V

φ φ′

fL F, F̄

fR

Figure 2.2: Schematic presentation of gauge groups and matter content of our theory.

We have SM-like fields charged under SU(2)L×U(1)X while new vector-like fermions

and a new scalar φ′ are charged under SU(2)L × U(1)X . For the purpose of the

anomalies of interest, only one generation of singlet νR is necessary. Once φ′ gets

a vev, one generation of the new vector-like fermions mixes with SM-like fermions

through the Yukawa coupling.
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Meanwhile, the spectrum of neutral gauge bosons is given by:

m2
Z ≈ 1

4

(
g2
L + g2

Y

)
v2
L

(
1− v2

Lε
4

v2
V

+O
(
ε6 ×

(
vL
vV

)4
))

, (2.8)

m2
Z′ ≈

1

4
g2
V v

2
V

(
1 +O

(
ε4 ×

(
vL
vV

)2
))

, (2.9)

where ε ≡ gX/gV .

These expressions arise from diagonalizing the following mass matrix:

L ⊃ −1

8

(
B WL

3 W V
3

)
g2
X(v2

L + v2
V ) −gLgXv2

L −gV gXv2
V

−gLgXv2
L g2

Lv
2
L 0

−gV gXv2
V 0 g2

V v
2
V




B

WL
3

W V
3

 (2.10)

via 
B

WL
3

W V
3

 ≡ R†

A

Z

Z ′

 , (2.11)

where, to leading order in vL/vV and ε, the rotation matrix is

R† =


gL√
g2L+g2X

− gX√
g2L+g2X

−ε
gX√
g2L+g2X

gL√
g2L+g2X

0

gL√
g2L+g2X

ε − gX√
g2L+g2X

ε 1

+O
(
ε2
)
. (2.12)

In this limit we see that W V
3 can be identified with the Z ′ while the photon A and Z

boson are a combination of B and WL
3 with a similar mixing pattern as in the SM.

We also observe from Eq. (2.9) that mZ′ is identical to mW ′ up to O(ε4) corrections.

Further details on the mass matrix and the mixing can be found in Appendix B.

2.3.2 Fermion mass and mixing

From Eq. (2.6), after symmetry breaking, the relevant part of the fermion mass ma-

trices can be written as(
F̄L f̄L

)MF
1√
2
ỹfvV

0 mf


FR
fR

 , (2.13)
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where (F, f) refers to a paired set of a new vector-like fermion and a fermion carrying

SM charges. As discussed above, to explain the anomalies without introducing FC-

NCs, these pairs should be (U, c), (D, b), (E, τ), or (N, ν), where (U,D) and (E,L)

come from the vector-like fermions Q and L respectively after SU(2)V breaking.

Here we are implicitly working in the mass basis of the SM-like fermions, i.e.

we imagine having already performed the CKM rotation on the left-handed SM-like

matter fields, so that mf is a number, not a matrix.

Given the structure of the mass matrix above, and the fact that the new fermion

masses are much higher than SM masses, the left-handed fermions are essentially not

mixed with the new vector-like fermions. As a result, for the left-handed fermions,

the relationship between gauge and mass basis – and thus the CKM matrix – is the

same as SM.

Meanwhile, the right-handed fermions are highly mixed with the new vector-like

particles. The mixings can be parametrized by the following replacementsFR
fR

→
Uf∗11 Uf∗21

Uf∗12 Uf∗22


FR
fR

 , (2.14)

In order for the lighter mass eigenvalues to match the observed quark and lepton

masses, the numerical values of mf must differ from the SM by an O(1) amount.

2.3.3 Fermion-vector boson couplings

We begin with the coupling to new gauge bosons. The mixing pattern derived in the

previous section gives rise to couplings between the W ′ gauge bosons and right-handed

SM fermions:

L ⊃ gV√
2
W ′
µ

(
U b∗21U c21c̄Rγ

µbR + U τ∗21Uν21ν̄Rγ
µτR
)

+ h.c. (2.15)

The coupling to left-handed SM fermions is highly suppressed in the large vV and gV

limit, and so we neglect it in the following. After integrating out the W ′ we generate
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the desired CV
RR operator, which can explain the RD/RD∗ anomaly at tree-level. In

our model, the Wilson coefficient is given by:

CV
RR =

g2
V U e21Uν21Ud21Uu21

4
√

2m2
W ′GFVcb

. (2.16)

In order to eventually study the constraints from Z ′ resonance production in LHC,

we also need the coupling of fermions to Z ′. To leading order, the couplings of the

Z ′ to right-handed fermions will be

L ⊃ gV
2
Z ′µ
(
|U c21|2c̄RγµcR + |Uν21|2ν̄RγµνR − |U b21|2b̄RγµbR − |U τ21|2τ̄RγµτR

)
. (2.17)

Even if we go beyond this leading order, we observe that the Z ′ couplings to SM

fermions are flavor diagonal and our model evades the constraining bounds from tree-

level FCNCs at tree-level, as advertised. Again, the coupling of Z ′ to the left-handed

SM fermions is highly suppressed and we ignore it.

Let us now study the couplings of fermions to SM gauge bosons. These couplings

will be relevant in studying EWP tests, see Section 2.4.1. The coupling of W to

left-handed fermions has the same form as in the SM:

L ⊃ 1√
2
gLW

+
µ f̄Lγ

µf ′L + h.c. (2.18)

and similarly for photons:

L ⊃ eQfAµf̄γ
µf, (2.19)

where

e = gL
gY√
g2
L + g2

Y

, Qf = Y + TL3 = X + TL3 + T V3 . (2.20)

Finally, the coupling to the Z takes the form:

L ⊃
√
g2
L + g2

YZµ

(
(cZf + δcZfL )f̄Lγ

µfL + (cZf + δcZfR )f̄Rγ
µfR

)
, (2.21)

where

cZf =

(
TL3 −Qf

g2
Y

g2
L + g2

Y

)
(2.22)
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is as in the SM, and

δcZfR ≈ Qf
v2
Lε

4

v2
V

∓ 1

2

v2
Lε

2

v2
V

(Uf21)2,

δcZfL ≈ (Qf − TL3 )
v2
Lε

4

v2
V

,

(2.23)

parametrize the deviations from the SM formulas. The minus (plus) sign in Eq. (2.23)

is for up-type quarks (down-type quark and charged leptons); further details on these

equations and couplings are included in Appendix B. These deviations arise either

through Z–Z ′ mixing (the terms that are independent of Uf21), or through fermion

mixing with new vector-like fermions (the term proportional to (Uf21)2). Following [73],

we will use these deviations in the couplings in our study of the EWP bounds in

Section 2.4.1.

2.4 Phenomenology and Constraints

In this section we demonstrate that our model can generate the necessary interactions

to explain the B-physics anomalies while evading all present constraints.

We begin by establishing the parameter space of the model. There are six under-

lying parameters most relevant for our studies: the three gauge couplings (gL, gX , gV ),

the vevs (vL, vV ), and the fermion mixing parameter U21.4 Other parameters that we

encounter in our studies can be derived from these six quantities.

Some experimental measurements can be used to impose further relationships

between these core quantities. In particular, given the precise bounds on GF , αem,

and mZ , we keep these quantities fixed at their experimentally observed values [69]

GF = 1.16637× 10−5 GeV−2, αem(mZ) = 7.755× 10−3, mZ = 91.1875 GeV.

(2.24)

4We assume from this point onwards that the mixing parameter is the same for all types of
fermions so as to simplify our analysis.
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We will denote the values of the gauge couplings derived from these measured quan-

tities (assuming the SM gauge structure holds) as

ĝY = 0.356, ĝL = 0.650. (2.25)

We can fix vL using the relation GF = 1/
√

2v2
L (which is a tree-level relation that

continues to hold in our model):

vL = 246.2 GeV. (2.26)

Then, we can use Eqs. (2.8) and (2.19) to solve for gY and gL in terms of the ex-

perimental values of (αem,mZ) and the other parameters of our model. To the first

sub-leading order, the gauge couplings gY and gL in our model are given by

gY = ĝY

(
1− ĝ6

Y v
2
L

2g4
V (ĝ2

L − ĝ2
Y )v2

V

+O
(
ε6 ×

(
vL
vV

)4
))

, (2.27)

gL = ĝL

(
1 +

ĝ2
Lĝ

4
Y v

2
L

2g4
V v

2
V (ĝ2

L − ĝ2
Y )

+O
(
ε6 ×

(
vL
vV

)4
))

, (2.28)

where ĝY and ĝL are the SM values given above. Evidently, the values of gY and gL

are shifted from their SM values by higher order corrections in ε and vL/vV .

Using the three experimentally measured quantities (GF , αem,mZ), we have re-

duced the number of undetermined variables that span our parameter space to three:

(gV , vV ,U21). We work in terms of the more physical parameters (gV ,mW ′ , C
V
RR),

where

CV
RR =

v2
L

v2
V

(U21)4

Vcb
(2.29)

is derived from Eq. (2.16) after setting all the mixing angles equal.

2.4.1 Electroweak precision tests

Our study of the EWP observables in our model closely follows the analysis in [73].

Given the precise measurements of GF , αem, and mZ , these quantities are fixed at

their experimentally observed values. Our model can then be constrained by requiring
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that the NP corrections to the W mass and the coupling of the W and Z gauge bosons

to the SM fermions are within the experimental uncertainties [73].

We saw in Eqs. (2.27)–(2.28) that keeping GF , αem, and mZ fixed implies that

gL and gY should slightly deviate from the SM gauge couplings (ĝL and ĝY ). This

amounts to a change in mW from the SM predictions. Demanding the deviation in

mW (= 80.385± 0.015 GeV) [69] to be within the 1σ experimental range, we find

mW ′gV & 0.97 TeV. (2.30)

This is the most-constraining limit we get from EWP observables on our model.

In principle there could be additional EWP limits coming from deviations in W/Z

couplings to fermions compared to the SM predictions. No such deviation occurs for

the photon, as we have set the coupling e to its experimentally observed value in

Eq. (2.19). From Eq. (2.18), the W the coupling is gL. While gL deviates from

the SM value according to Eq. (2.28), this is precisely the deviation that is being

constrained by the W mass measurement. The W couplings to fermions do not offer

any additional constraint, as they are less precisely measured than the W mass.

Finally, we consider the Z couplings to fermions, shown in Eq. (2.21). These

deviations are captured by the δcZfL,R variables in Eq. (2.23).5 The mW constraint

Eq. (2.30) forces vV & 1 TeV, and we will see in the next subsection that gV & 1.

Using these values in Eq. (2.23), we find that δcZfR . 10−3 and δcZfL is even smaller.

The most constraining limits on the fermion couplings are at the (few)×10−3 level

(coming from δcZeR and δcZτR ) [73]. Therefore, by satisfying the EWP constraint on

mW and the collider bounds of the next subsection, these bounds are automatically

satisfied.6

5The additional deviations from gL 6= ĝL and ĝY 6= gY in Eqs. (2.27)–(2.28) are negligible once
we have satisfied the W mass constraint.

6As a result of a forward-backward asymmetry anomaly in LEP [73, 74], δcZbR is approximately
2σ away from the SM prediction; we do not try to fit this anomaly in our model. Instead, our model
predicts a very small δcZbR , in agreement with SM predictions. According to the analysis of [73], the
1σ best-fit regions of some other couplings do not include the SM values either.
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2.4.2 Collider Searches

Since the W ′ and Z ′ couple to quarks and leptons, they can be produced resonantly

at the LHC. A number of different dedicated searches at LHC target such signatures

[75–79]. In this section we study the bounds that these searches impose on our model.

We focus on what should be the most constraining mode: resonant production of

Z ′’s that subsequently decay to τ+τ− (the situation for W ′ → τν’s should be similar).

The relevant LHC searches [75–79] all assumed a narrow resonance when setting their

limits. We will be interested in the possibility of wide resonances (indeed, this will

be necessary to evade these limits), so it is necessary to recast these searches.

Such a recast was performed for ATLAS searches of resonances decaying to high

pT ττ final states using up to 13.2 fb−1 of the 13 TeV dataset [77, 80, 81] in [56]. This

paper focused on Z ′ models with mixing through left-handed SM fermions and W ′’s

and Z ′’s that couple primarily to the 3rd generation to avoid FCNCs. As a result,

the cross sections are dominated by bb→ Z ′ → ττ , and [56] placed limits on the ratio

η ≡ |gbgτ |v
2
L

m2
Z′

, (2.31)

as a function of mZ′ and ΓZ′/mZ′ , where gb (gτ ) denotes the coupling of left-handed

b quarks (τ leptons) to Z ′. For the couplings required to explain the RD, RD∗

anomaly, [56] found that ΓZ′/mZ′ & 30% was required, leading to the conclusion

that perturbatively calculable W ′ explanations of the anomaly were not viable. This

is consistent with other works on W ′ explanations of the RD/RD∗ anomaly [55, 54, 82].

This conclusion was a consequence of assuming MFV to suppress dangerous tree-

level FCNCs which, in turn, implied a 1/Vcb enhancement of the Z ′ couplings to bb

relative to the W ′bc coupling. In our model, on the other hand, we avoid FCNCs by

having the W ′ and Z ′ only couple to right-handed fermions. Thus our Z ′ττ and Z ′bb

couplings will be the same order as the W ′bc coupling, and the bounds from LHC

searches on Z ′ → ττ will become much less constraining. Hence we expect a smaller
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width to be sufficient to evade experimental bounds.

Indeed, we can see this explicitly from the formula for η in our model. As we

have substantial Z ′cc couplings in addition to the coupling to bR, the definition of the

parameter η of Eq. (2.31) must be modified to

η =
v2
L

m′2Z
gZ
′ττ

R

√
(gZ

′bb
R )2 + χc(gZ

′cc
R )2 ≈ VcbC

V
RR

√
1 + χc +O

(
ε3 ×

(
vL
vV

)3
)
, (2.32)

where gZ
′ff

R denotes the coupling of right-handed fermion f to Z ′, Eq. (2.17), and

the second equality only contains the leading order in vL/vV and ε. Note that the

second equality also uses the assumption that all the mixing angles Uf21 are equal.

Here χc is the ratio of the production cross-section from initial cc and bb states

assuming identical couplings. This captures the parton distribution function (p.d.f.)

enhancement from the cc production channel. We obtain this ratio by simulating our

model for each resonance mass using MadGraph5 aMC@NLO 2.5.5 [83]7. Over

the ranges of mZ′ that interests us, we find χc ∼ 2–3. With these modifications we

can apply the bounds on η in [56] to our model.

Interestingly, we learn that (under the simplifying assumption of equal mixings)

the RD/RD∗ anomaly uniquely predicts η and hence the rate of bb→ Z ′ → ττ at the

LHC in our model. Given the range of CV
RR and χc in our model, Eq. (2.32) implies

η ∈ (0.026, 0.048). For this range of η and a generic Z ′ mass of ∼ 1 TeV, Figure 4

of the recast [56] indicates that a minimum ΓZ′/mZ′ of ∼ 3–10% is required to evade

the collider bounds.

To proceed further in applying collider limits to our model, we need a formula

for ΓZ′ . This requires us to make a choice about the available decay channels for

the Z ′. The Z ′ can decay into SM fermions. If kinematically allowed, it can also

decay to pairs of the heavy vector-like fermions, or a single heavy fermion and a SM

7We use the NNPDF23 lo as 0130 qed p.d.f to calculate these production cross-sections. We also
study the p.d.f and the scale uncertainties in the Z ′ production cross-section and find less than 10%
error in the cross-section. This will not affect the collider bounds on our model significantly.
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partner. The lower bound on new vector-like quarks is found to be above 1 TeV across

a number of different searches with a variety of assumptions about decay channels

[84–92]. We conservatively assume the new vector-like quarks are above 1.5 TeV to

evade these tight bounds. As a result of these large masses (compared to the ∼ 1 TeV

Z ′), decays to such fermions do not contribute significantly to the Z ′ width.

CMS has recently released a search [93] which significantly improves bounds on

uncolored fermions. However, even these updated bounds are still far less constraining

than the ones on the colored particles. The search in [93] targets the decay of a heavy

new set of leptons into the SM charged leptons, plus W and/or Z gauge bosons that

subsequently decay leptonicly. In particular, the τ leptons in the chain should decay

leptonicly as well. The bounds from this search, however, are not that constraining

for our model due to the following reasons.

• Given the particular mixing pattern chosen in our model, only the SM τ leptons

appear in the decay chain. As indicated in [93], the bounds on this tau-phillic

part of the parameter space are the loosest.

• Compared to their SM counterpart, the new gauge bosons W ′ and/or Z ′ in the

decay chain have a lower BR into the light leptons (which is almost exclusively

from the leptonic decay of a τ lepton) that further loosens the bounds on our

model.

Multiplying all the BRs together, we get a relative suppression of the rate into light

leptons compared to the model studied in [93]. Modifying the rates reported in [93]

accordingly, the bounds on the new leptons in our model turn out far below 200 GeV,

which is the smallest mass considered in [93] for the new leptons. We conservatively

assume all heavy leptons in our model are around 250 GeV. To enhance the Z ′ width,

we will allow there to be NV generations of new vector-like leptons (only one of which

has mixing with the SM fermions).
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Given the complicated expressions for the couplings, the full expression for ΓZ′

is lengthy but straightforward, and we omit it here. However, a simple approximate

formula (that is nevertheless fairly accurate) can be obtained if we neglect phase

space suppressions and keep only the leading order expressions in ε and vL/vV (e.g.

Eq. (2.17) for the Z ′ couplings to SM fermions and its analogues for the heavy vector-

like states):

ΓZ′

mZ′
≈ g2

V

48π

(
(2NV − 1) + U4

22 + U2
22U2

21 + 4U4
21

)
. (2.33)

Using U2
21 + U2

22 = 1 and Eq. (2.16), we can rewrite Eq. (2.33) in terms of mW ′ and

CV
LL.

The different terms in Eq. (2.33) are, respectively: the decay to a pair of heavy

left-handed leptons and to a pair of the heavy right-handed leptons that did not mix

with the SM-like leptons (there are NV − 1 of these); the decay to the one pair of

heavy right-handed leptons that did mix with the SM-like leptons; the decay to one

heavy lepton and one SM lepton; and the decay to a pair of SM leptons and quarks.

The factor of 4 in the last term is a consequence of the color factors for quarks.

The bounds from EWP measurements (mW more specifically) and collider searches

are summarized in Fig. 2.3, for two representative choices of the Wilson coefficient

(CV
RR = 0.4 and CV

RR = 0.6) that can account for the RD(∗) anomaly. For every

point below the red line, the required U21 is larger than 1, hence the indicated Wilson

coefficient is not attainable in that region. It can be seen that the contours of constant

ΓZ′/mZ′ are approximately captured by Eq. (2.33). The contours of constant η are

also indicated; they are mostly captured by the (constant) prediction of Eq. (2.32);

the small residual variation is due to variations in χc and higher order terms in the ε

and vL/vV expansion.

One sees that for CV
RR = 0.4, η is always small enough compared to the width

(η ∼ 0.02−0.025), so that there is no bound from the searches recast by [56]. However,

for CV
RR = 0.6, η is large enough that there is a nontrivial bound. As we increase
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Figure 2.3: A summary of the bounds on our model. For the left (right) plots we

are assuming CV
RR = 0.4 (CV

RR = 0.6), two benchmark values that can account for

the RD(∗) anomaly. Those on the top (bottom) correspond to the case NV = 2

(NV = 3) generations of new vector-like fermions, only one of which has mixing with

SM fermions. We are assuming all the new leptons (quarks) have mL = 250 GeV

(mQ = 1500 GeV). The dashed blue curves denote the contours of constant η, while

the solid black curves indicate contours of constant ΓZ′/mZ′ . Points within the gray

region have corrections to mW which are outside 1σ observed range according to [69].

(The simple inequality in Eq. (2.30) explains the shape of the gray lines.) Bounds

from [56] (obtained by recasting an older ATLAS search [77]) are indicated by the

purple region (the colored region is ruled out) while a rough estimation of the bounds

from a newer search [78] are denoted by dashed purple lines. As explained in the text,

adding extra generations of vector-like matter alleviates the collider bounds.
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gV (holding fixed mW ′) we see that η increases slightly (it approaches its asymptotic

value given in Eq. (2.32)), while the width increases more rapidly, as indicated in

Eq. (2.33) – the coupling of Z ′ to SM fermions becomes stronger. So moving in this

direction, the limit eventually disappears. Decreasing mW ′ at fixed gV , we see that η

decreases slightly due to subleading corrections in vL/vV . The width decreases more

significantly, in part due to phase-space suppression, but also because to hold fixed

CV
RR, we see that the fermion mixings U21 have to decrease according to Eq. (2.16).

So we find that in this direction the limits grow stronger. The only exception is at

very small mW ′ , where according to the recast of Eq. (2.32), the limits disappear,

presumably due to the kinematic thresholds of the LHC searches.

The results reported in [56] were obtained by recasting an older ATLAS search

[77]. This was updated in [78]. Given that the limits in the new search on the cross-

section are improved by a factor of ∼ 3, it is reasonable to assume that the η bounds

on the grid of Fig. 2.3 will become a factor of
√

3 tighter. A crude estimate of the

limits from the newer search [78] are shown as dashed lines in Fig. 2.3.

While the case CV
RR = 0.6 seems to be fairly constrained (especially with the

newer search as crudely estimated in Fig. 2.3), we observe that for CV
RR = 0.4 the

same region of the parameter space that is favored by EWP bounds is allowed by the

limits on Z ′. This region has the potential for discovery in upcoming LHC results.

2.4.3 Bounds on right-handed neutrinos

The right-handed neutrinos would be generated in the early Universe and so can

be constrained by cosmology, assuming they are sufficiently long-lived. The lifetime

depends on the right-left mixing. In a general model of right-handed neutrinos, the

mass can arise from both a Dirac (MD) and Majorana (MN) mass term and the

mixing angle θ is [94]

|θ| ≡ MD

MN

.



41

As seen in the mass matrix in Eq. (2.13), assuming a zero mass for left-handed

neutrinos in the SM, there will be no mixing between the left-handed SM neutrinos

and the new vector-like neutrinos at tree-level. Adding in the masses for the left-

handed neutrinos contributes only a mixing at the level of |θ| ∼ 10−20. However, even

in the zero-mass limit for the left-handed neutrinos, there is no underlying symmetry

prohibiting mixing at low energies. The dominant diagram giving rise to mixing

between neutrinos is shown in Fig. 2.4. Other diagrams are significantly suppressed

by the lack of tree-level mixing between νL and NL in our model.

To estimate the contribution of this diagram we can assume the inner loop is a

mass insertion between W -W ′, proportional to mb ×mc. Then we approximate the

diagram and divide it by the neutrino mass to get an estimation for its contribution

to the mixing θ, as below

|θ| ∼ g2
Lg

2
V Vcb

4(16π2)2

mτmbmc

mνRmW ′mW

. (2.34)

Inserting the range of masses and couplings in this equation suggests that our model

prediction for θ is

|θ| ∼ 2× 10−5 ×
( mνR

1 keV

)−1

, (2.35)

Coupling a photon to one of the charged states in the mixing diagram results in

the the loop-induced decay, νR → νLγ, which has a lifetime [94, 95] of

τ ≈
(
1030 s

) (mνR

keV

)−3

. (2.36)

The competing tree-level νR → 3ff̄ (where f is any Standard Model fermion that

couples to the Z and is kinematically accessible) requires a non-zero right-left mixing

angle θ, and has a lifetime of

τ ≈
(
1029 s

) (mνR

keV

)−5
(

sin θ

2× 10−5

)−2

. (2.37)

where θ is the mixing parameter between right- and left-handed neutrinos. As seen

in Eq. (2.35), the mixing angle is always small enough that we expect loop-induced
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νR → νLγ decays to dominate, and the lifetime is generally large compared to the

age of the Universe.

From this, we see that right-handed neutrinos below a GeV in mass are long-lived

enough to be a component of dark matter (heavier νR are not viable replacements

for the nearly-massless νL in the B-decays). Due to Z ′-mediated pair-production

and W ′-mediated co-annihilation with τ leptons, the right-handed neutrinos would

be thermally produced, in addition to any possible non-thermal production modes.

These thermal processes would freeze-out around T ∼ 0.1 − 1 GeV, shortly before

the QCD phase transition. That is, the freeze-out occurs when the neutrinos are

still relativistic. Such a dark matter candidate contributes a relic abundance directly

proportional to its mass, with

Ωh2 ∼ 10−1 [g∗S(Tf )]
−1
(mνR

eV

)
. (2.38)

Assuming Tf ∼ 100 MeV, g∗S ∼ 60, and so mνR must be less than 60 eV as to not

saturate the dark matter density. This upper limit on the neutrino mass could be

alleviated via non-standard cosmology, e.g. significant entropy injection [96, 95], but

in any event, relativistic “hot” dark matter must constitute much less than 100%

of the total [97], pointing toward an even lighter neutrino mass. A right-handed

neutrino with a mass of ∼ 10 eV is safe from these cosmological bounds without

requiring dilution.

Assuming either mνR . 60 eV or significant entropy dilution which waters down

this hot contribution to dark matter, the neutrinos act as a relativistic species. These

affect the CMB power spectrum in a similar way as the SM left-handed neutrinos,

shifting the time of matter-radiation equality and suppressing the power spectrum on

small scales through free-streaming [98, 99]. The effect of N new neutrino-like light

degrees of freedom which were in thermal equilibrium with SM at some point in their
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Figure 2.4: The only potentially dangerous loop-diagram mixing νR with the SM neu-

trinos. Other diagrams are suppressed by lack of tree-level mixing between left-handed

fermions charged under different SU(2) groups. Different sources of suppressions, e.g.

loop factors, Vcb suppression, and heavy mediators, will make this diagram suppressed

enough so that we can evade the bounds from neutrino mixing with light-enough new

neutrinos.

history are usually quantified through the effective number of neutrinos:

∆Neff =

(
g∗(Tν)

g∗(TνR)

)4/3

N, (2.39)

where g∗(Tν) and g∗(TνR) are the number of relativistic degrees of freedom at the

time when SM neutrinos and right-handed neutrinos decoupled, respectively. Using

g∗(TνR) ∼ 80, and g∗(Tν) ∼ 10.7, for our model, ∆Neff . 0.07N . The current

experimental measurement is Neff = 3.12±0.23 from baryon acoustic oscillations and

CMB observations [100]. The SM prediction is Neff = 3.046; therefore, we can easily

accommodate up to three light right-handed neutrinos within 1σ of the cosmological

bounds. Recall that only a single species of right-handed neutrino with small mixing

to the left-handed neutrinos is required in our model.

2.4.4 Other bounds

Besides the bounds we have already discussed, there are other potential phenomeno-

logical constraints on our model. It is straightforward to see that our model can easily
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evade the following bounds.

• Flavor Constraints. General mixing between the right-handed fermions could

give rise to dangerous flavor-changing neutral currents. However, we have fo-

cused on a very specific mixing pattern that will suppress all the FCNCs due to

Z ′ even beyond tree-level and only couples bc quarks through a W ′, rendering

the model immune to these flavor constraints. In particular, the severe bounds

from neutral mesons mixing such as K-K̄ or Bs-B̄s mixing will not apply to

our model since, due to lack of W ′ coupling to s quarks, there are no one-loop

box diagrams that generate such a coupling. A recent summary of the most

constraining flavor bounds for RD(∗) models can be found in [101]; we can easily

see that most of these bounds are irrelevant for our model thanks to the specific

fermion mixing that prohibits dangerous couplings. This pattern of couplings

is ad hoc and is solely motivated by anomalies in bc interactions. It would be

interesting to find a UV completion where these couplings were generated in a

more natural way.

The only potential flavor constraints are those that need only a bc quark flavor-

changing coupling. One such observable is Bc life-time. However, a symmetry

similar to the one discussed in Sec. 2.2 applies to Bc life-time calculation and

relates the contribution of CV
RR to that of CV

LL. As the latter is not constrained

(by Bc life-time) for the range that explains RD(∗) [51], neither is the former.

• Fermions coupling to Higgs. Given the mixing of some SM fermions with

new vector-like ones, they are effectively getting some of their mass from φ′

instead of SM Higgs φ. This might raise the question of how much deviation

will this phenomenon give rise to in the coupling of SM fermions to φ. After all,

there are some constraining bounds on this deviation in the literature [102, 103].

However, the measured couplings are between φ and mass eigenstates and we
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can essentially tune the couplings of fermions charged under SU(2)L to φ such

that after integrating out all the heavy degrees of freedom the effective coupling

(of mass eigenstates) matches the SM predictions.

• LEP bounds. Any vector mediator interacting with the first two generations of

leptons can be subject to very stringent bounds from LEP data [104]. However,

the fermion and gauge boson mixing in our model suppresses the coupling of

Z ′ and W ′ to the first two generations, see Appendix B, so that (except for a

small part of the parameter space in Fig. 2.3 that is already disfavored by mW

limits) we automatically evade these bounds.

2.5 Final Remarks

In this chapter we have considered an alternative, promising hypothesis concerning

RD(∗) : that the anomalous measurements are the result of b quarks decaying to charm

and tau leptons and a new, light right-handed neutrino. After first considering all

possible effective operators which alter RD and RD∗ involving both left- and right-

handed neutrinos, we focus on one particular right-handed operator that has the

potential to explain both anomalies simultaneously.

This single effective operator, OVRR, can result from integrating out a massive W ′

that must couple to τRνR and bRcR. We embed this vector boson in an SU(2)V×U(1)X

extension of the SM. However, in order to avoid an associated Z ′ with 1/Vcb enhanced

couplings to bb, we do not charge the SM fermions under the SU(2)V . Instead, we add

a generation of vector-like fermions that mix with their right-handed SM counterparts.

The only coupling between the right-handed chiral quarks and leptons and the W ′ and

Z ′ occurs through this mixing. As we show, this model can explain both the RD and

RD∗ anomalies while respecting all existing collider, cosmological, and electroweak
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precision bounds.

Our W ′ model makes several concrete predictions that will be tested in the up-

coming LHC data. The W ′ and Z ′ are close in mass, and must be below ∼ 2.5 TeV

in order to fit the anomalies with perturbative gauge couplings. In order to avoid the

LHC searches for Z ′ → ττ , we require a modestly wide Z ′ resonance (ΓZ′ ∼ 0.1mZ′).

While this is safe from current limits with 30 fb−1 of integrated luminosity, the high-

luminosity runs should be able to conclusively discover or exclude the majority of

the viable parameter space. In addition, significant mixing with the right-handed

quarks is achieved through vector-like quarks that are heavier than the existing lim-

its (∼ 1 TeV), but not beyond the kinematic reach of the LHC. The width of the Z ′

is achieved through relatively light (∼ 250 GeV) vector-like leptons, which are also

potentially accessible at the LHC.



47

Chapter 3

A New Solution Relying On CV
RL

3.1 Motivation

As argued in Sec. 1.2, similar fluctuations as RD and RD∗ have been observed in

two other related observable, namely RJ/ψ and FL
D∗ , see Sec. 1.2 for further details.

While these seem to be interesting additions to the RD(∗) anomaly, they are in tension

with not only the SM prediction, but also various new physics models that have been

considered in the literature [26, 27, 29, 105, 106].1 In fact, no model has been found

to come even close to the observed values of FL
D∗ or RJ/ψ.

So far, only minimal BSM models (single mediators) and simple combinations of

WCs have been considered. Here, we will generalize the study of these observables to

the full space of WCs for the dimension 6 effective Hamiltonian in Eq. (1.10).

We will show that (i) there are no combination of these operators that can explain

the observed RJ/ψ, and (ii) one needs to generate the operator CV
RL (or its equivalent

with RH neutrinos, CV
LR) in order to explain the observed FL

D∗ . In light of this

result, we will build the first model in the literature generating this operator. This

model is the first viable proposal for generating CV
RL, thus, it should be a part of any

explanations for the observed FL
D∗ .

Our model augments the SM by a pair of LQs. These two LQs can be embedded

in a bifundamental of SU(2) × SU(2) custodial symmetry. Each of these LQs have

1Ref. [107] considers the possibility of right-handed (RH) neutrinos as well and reports pairs of
WCs that are claimed to explain the observed RJ/ψ. We were unable to reproduce their results in
our calculations.
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been studied before as a solution to these anomalies.

We will show that after the electroweak symmetry breaking these two new medi-

ators can mix with each other. This mixing allows us to generate the CV
RL operators

from Eq. (1.10). We will further study various bounds from EWP tests, collider

searches, and different flavor processes and show that our model can indeed generate

a substantially large CV
RL while respecting all these experimental bounds.

Finally, we will investigate the possibility of adding RH neutrinos to this setup.

After the electroweak symmetry breaking our model can generate CV
LR as well. This

model is again the first viable model generating this WC. Nonetheless, we will show

that it is no possible to generate both CV
RL and CV

LR simultaneously, owing to the

severe constraints from the b→ νν processes.

3.2 Explaining the Observed FL
D∗

3.2.1 General setup

The observables of interest in this chapter are O = RJ/ψ, F
L
D∗ , RD, RD∗ ,Br(Bc → τν).

The first four observables show discrepancies with the SM predictions, while the

bounds on Br(Bc → τν) can be used to severely constrain various BSM explana-

tions of these anomalies [49, 51, 50, 52]. Measurements of the total width of the Bc

meson and Bu → τν decay have been used in [49, 51, 50] and [52] to put bounds

of Br(Bc → τν) . 30% and Br(Bc → τν) . 10%, respectively. Meanwhile the SM

prediction is Br(Bc → τν) = 2.3%. We will use these three reference values for

Br(Bc → τν) throughout the upcoming sections.
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In our study of these observables, we use the numerical formulas in [105],

RD = 0.299
(
|CV

+L|2 + 1.02|CS
+L|2 + 0.9|CT

LL|2

+ Re
[
(CV

+L)(1.49(CS
+L)∗ + 1.14(CT

LL)∗)
])
,

RD∗ = 0.257
(

0.95|CV
−L|2 + 0.05|CV

+L|2 + 0.04|CS
−L|2 + 16.07|CT

LL|2

+ Re
[
CV
−L(0.11(CS

−L)∗ − 5.89(CT
LL)∗)

]
+ 0.77Re

[
CV

+L(CT
LL)∗

] )
,

RD∗F
L
D∗ = 0.116

(
|CV
−L|2 + 0.08|CS

−L|2 + 7.02|CT
LL|2

+Re
[
(CV
−L)(0.24(CS

−L)∗ − 4.37(CT
LL)∗)

])
,

Br(Bc → τν) = 0.023
(
|CV
−L + 4.33CS

−L|2
)
,

(3.1)

where we are defining CS
±L ≡ CS

RL ± CS
LL and CV

±L ≡ CV
LL ± CV

RL. In deriving these

formulas, the authors of [105] use the NLO results of the heavy quark effective theory

from [108] for the hadronic matrix elements. Similar numerical formulas can be found

in the literature, e.g. [109, 110, 42, 106].

We will be interested in calculating the following quantities:

max FL
D∗

∣∣
RD,RD∗ ,Br(Bc→τν)

, max RJ/ψ

∣∣
RD,RD∗ ,Br(Bc→τν)

(3.2)

where the global maximum is taken over the full space of WCs with LH neutrinos (see

the end of this section for a generalization to LH+RH neutrinos). This is a 10 real-

dimensional space, making the maximization of FL
D∗ and RJ/ψ seem like a daunting, if

not impossible task. Yet we will accomplish this task by leveraging several properties

of the above numerical formulas:

• All these observables can be written as

O = z†5MOz5 = xT5MOx5 + yT5 MOy5, (3.3)

where

z5 = x5 + iy5 = (CV
−L, C

V
+L, C

S
−L, C

S
+L, C

T
LL), (3.4)

and the MO matrices are real and positive semidefinite.
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• There is one overall rephasing freedom in defining the WCs, i.e. by multiplying

all the WCs by a common phase the prediction for these observables does not

change.

Using these properties (in particular the first one), we can prove that the maxima

(3.2) actually exist. We observe that the MRD and MRD∗ matrices in (3.3) have

orthogonal null vectors corresponding to CS
−L, CV

−L and CS
+L, respectively. Hence,

fixing RD and RD∗ results in a compact space in the full WC space. Any function on

a compact space must have a maximum somewhere in that space.

We can also prove that the global maximum occurs at real values of the WCs

(modulo the overall rephasing invariance). The proof uses the method of Lagrange

multipliers. Let’s define (for O = FL
D∗ and RJ/ψ):

Õ = O − λ1(RD −R(0)
D )− λ2(RD∗ −R(0)

D∗)− λ3(Br(Bc → τν)− Br(Bc → τν)(0))

= xT5 (MO − λ1MD − λ2MD∗ − λ3MBc)x5

+ yT5 (MO − λ1MD − λ2MD∗ − λ3MBc)y5

+ λ1R
(0)
D + λ2R

(0)
D∗ + λ3Br(Bc → τν)(0)

(3.5)

Setting the derivatives of Õ with respect to x5 and y5 to zero yields

(MO − λ1MD − λ2MD∗ − λ3MBc)x5 = (MO − λ1MD − λ2MD∗ − λ3MBc)y5 = 0 (3.6)

The matrix MÕ ≡MO−λ1MD−λ2MD∗−λ3MBc must be degenerate for this equation

to have non-trivial solutions. Yet we cannot tune the λs to get more than one zero

eigenvalue.2 As a result, the null space is one-dimensional, which means x5 and y5

are parallel to each other. Using the rephasing invariance we can set y5 = 0, i.e. the

WCs at the global maximum can all be taken real.3

2A proof for generic matrices: in order for MÕ to be rank less than 4, all of its first minors must
be zero. There are 25 such minors, generically independent. So it is impossible to set them all to
zero using just three parameters λ1,2,3. We explicitly check that this argument is true for the matrix
combination in (3.6).

3As a side note, we can check that the number of unknowns and number of equations match.
There are three remaining constraints to satisfy, and three unknowns: λ2, λ3 and the modulus of
the null vector x5.
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The proof trivially extends to the case of fixing a WC to a particular value. For

instance, later we will be interested in fixing |CV
RL| to some value and maximizing

the observables with respect to all the other WCs. In that case, we can simply add

another quadratic constraint |CV
RL|2 = (|CV

RL|2)(0) to the mix and the above argument

proceeds exactly as before.

So for the rest of this study we will restrict to real WCs without loss of generality.

This reduces the parameter space from 10 → 5 real dimensional. With the three

constraints RD = R0
D, RD∗ = R0

D∗ and Br(Bc → τν) = B0
c it amounts to maximizing

in 2 real dimensions, or with an additional WC held fixed, in just 1 real dimension.

Finally, we comment on the generalization to LH+RH neutrinos. Since there is no

interference between LH and RH neutrinos, all the numerical formulas in the presence

of both types of neutrinos are of the form z†5Mz5 + z̃†5Mz̃5 where z̃5 refers to the RH

neutrino WCs [42]. So the Lagrange multiplier argument proceeds as before, and z̃5

functions as “additional imaginary parts”, i.e. there is an enhanced SO(4) symmetry

at the global maximum that allows us to rotate x5, y5, x̃5 and ỹ5 into one another.

Thus the global maximum cannot be changed by including RH neutrinos and all of

our conclusions derived below which assume only LH neutrinos will be robust.

3.2.2 Maximizing the observables: global maxima

After we have shown that the maximization problem can be restricted to the real

parts of the (LH neutrino) WCs without loss of generality, the parameter space is

already greatly reduced, and the remaining steps are straightforward if tedious. We

perform a series of transformations to the WCs (rotations, shifts and rescalings) so

that we can solve the constraints RD = R0
D, RD∗ = R0

D∗ and Br(Bc → τν) = B0
c

analytically and simply. This allows the rest of the maximization (over just 2 real

dimensions) to be handled numerically. We provide further details on these steps in

App. C. Here we simply present the results.
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CS
RL CS

LL CV
LL CV

RL CT
LL RD RD∗ FL

D∗ RJ/ψ Br(Bc → τν)

-0.669 -0.884 0.097 2.029 -0.329 0.407 0.304 0.620 0.406 0.023

-0.791 -0.739 0.118 1.977 -0.302 0.407 0.304 0.638 0.410 0.1

-0.972 -0.555 0.142 1.948 -0.298 0.407 0.304 0.662 0.412 0.3

Table 3.1: The combination of WCs that maximize FL
D∗ for the global average of RD(∗)

and with various values of Br(Bc → τν). All these combinations exhibit a large value

of CV
RL and CT

LL; the SM contribution of CV
LL = 1 is also largely canceled.

CS
RL CS

LL CV
LL CV

RL CT
LL RD RD∗ FL

D∗ RJ/ψ Br(Bc → τν)

-0.659 -0.857 0.109 1.967 -0.286 0.407 0.304 0.620 0.409 0.023

-0.787 -0.726 0.124 1.948 -0.282 0.407 0.304 0.637 0.410 0.1

-0.967 -0.542 0.147 1.919 -0.277 0.407 0.304 0.660 0.413 0.3

Table 3.2: The combination of WCs that maximize RJ/ψ for the global average of

RD(∗) and with various values of Br(Bc → τν). Intriguingly, the WCs at the global

maximum of RJ/ψ exhibit very similar features to those at the global maximum of

FL
D∗ .

Regarding the values of the WCs at the global maxima, there are a few interesting

features. In particular, we find a large value of CV
RL and CT

LL,4 and a substantial

cancellation of the SM contribution to CV
LL. These are in fact generic features we find

in the combination of the WCs that maximize FL
D∗ and RJ/ψ for other values of RD(∗)

and Br(Bc → τν) as well. This suggests that any NP origin of FL
D∗ and RJ/ψ may be

nonminimal, in order to give rise to all of these WCs.

In Fig. 3.1, we find the maximum of FL
D∗ or RJ/ψ over all the WCs for different

values of Br(Bc → τν) and RD(∗) .

Meanwhile, we see that the observed value of FL
D∗ is attainable everywhere in the

4Notice that all the existing models in the literature generate a tensor WC with association with
a scalar WC of CSLL ∼ 8CTLL in the IR; hence, having CTLL ∼ 0.3 in the IR implies scalar WCs of
around 2.4.
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Figure 3.1: The maximum attainable FL
D∗ (left) and the maximum attainable RJ/ψ

(right) for different values of Br(Bc → τν) and RD(∗) . The green and red contours

correspond to Br(Bc → τν) = 10% and Br(Bc → τν) = 30%, respectively. The blue

(black) triangle indicates the SM predictions (the world-averaged measured values) of

RD(∗) while the dashed gray ellipses are contours of 1 and 2σ around the world-average

measured values. These figures indicate that indeed there exists a combination of

the WCs that can explain the observed value of FL
D∗ from (1.7); yet, there are no

combinations of these WCs that can reach the 1σ range of the observed RJ/ψ value

in (1.5).
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1 or 2σ ellipse of the measured world average RD, RD∗ . However, no known models

currently can give rise to such a large value of FL
D∗ [105, 106]. This could be due to the

fact that we seem to need a combination of all the WCs to have a large enhancement

to FL
D∗ , as suggested by Tab. 3.1, which can not be achieved with any of the existing

minimal models. It could also be due to the fact that enhanced FL
D∗ seems to require

a large value of CV
RL, which is well-known to be challenging. We will discuss CV

RL

further in the next section.

3.2.3 Maximizing the observables: holding WCs fixed

We can also treat any of the WCs as a constant and go through a similar series of

transformations as above, in order to maximize FL
D∗ and RJ/ψ when holding that WC

fixed. This allows us to study that WC’s contribution to FL
D∗ and RJ/ψ in further

detail.

Going through the procedure above for all different WCs we find interesting results

for the contributions of CT
LL, CV

LL, and CV
RL to FL

D∗ . In Fig. 3.2 we show the maximum

attainable value of FL
D∗ as a function of these three WCs, and in Tab. 3.3 we report

a few benchmark points maximizing FL
D∗ for a fixed CV

RL. These clearly suggest that

in order to explain the observed FL
D∗ in (1.7), we need non-zero values for all of these

WCs from NP. In Fig. 3.2, if we go to larger values of the fixed WC in each plot, it

becomes impossible to satisfy the constraints on RD(∗) .

Most notably, Fig. 3.2 demonstrates that in order to explain the observed FL
D∗

from (1.7), NP should give rise to sizable CV
RL. There are currently no models in the

literature generating this WC. In fact, there are strong general arguments against its

existence. It violates SU(2)L and U(1)Y so it must be higher effective dimension (at

least dimension 8).5

5As discussed in [111, 112], one can generate this operator at dimension 6 in SMEFT but only by
integrating out an off-shell W ; since the couplings of the W to the leptonic side are flavor-universal,
this can not explain our anomalies, which require some LFU violation.
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Figure 3.2: The maximum attainable FL
D∗ as a function of WCs CT

LL, CV
RL, or CV

LL; in

each plot we marginalize over other WCs, given the constraints RD = 0.4 and RD∗ =

0.3. The green and red curves correspond to Br(Bc → τν) = 10% and Br(Bc → τν) =

30%, respectively. The purple (orange) band shows the 1σ error bar around the central

observed value (SM prediction) of FL
D∗ . These figures highlight the necessity of NP

with all of these WCs in order to explain the observed FL
D∗ .
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CS
RL CS

LL CV
LL CV

RL CT
LL RD RD∗ FL

D∗ RJ/ψ Br(Bc → τν)

0.330 0.152 1.012 -0.3 0.092 0.400 0.300 0.510 0.340 0.1

0.481 0.321 0.890 -0.5 0.118 0.400 0.300 0.532 0.347 0.1

0.614 0.471 0.764 -0.7 0.143 0.400 0.300 0.552 0.355 0.1

0.785 0.665 0.567 -1 0.180 0.400 0.300 0.580 0.365 0.1

Table 3.3: Benchmark points that can reach the maximum FL
D∗ with a particular CV

RL

and fixed RD(∗) and Br(Bc → τν). The RJ/ψ with the same set of WCs is calculated

as well; these values of RJ/ψ are very close to the maximum attainable RJ/ψ with the

same CV
RL, see fig. 3.3.

As we saw in Fig. 3.1, there is no point in the parameter space of the dimension

6 effective Hamiltonian consistent with the measured values of RD and RD∗ that can

explain the observed value ofRJ/ψ. For completeness, we elaborate on this by studying

the effect of each individual operator on RJ/ψ. The maximum RJ/ψ attainable with

fixed values of certain WCs is depicted in Fig. 3.3. We further include the prediction

for RJ/ψ with the WCs in Tab. 3.3 that maximize FL
D∗ for any given CV

RL; these

benchmark points can almost reach the maximum attainable RJ/ψ as well.

3.3 A Model for CV
RL

In light of the importance of CV
RL in explaining FL

D∗ , in the rest of this chapter we

propose a new LQ model that can generate this WC while being consistent with

existing flavor, EWP and collider bounds. Our setup is the first model relying on

CV
RL to explain the RD(∗) anomalies.

To set the stage, we first report the range of the WC CV
RL that can explain RD

and RD∗ up to 1σ of the current global average. This is depicted in Fig. 3.4. Here, we

use the numerical formulas in [105] for the contribution of the LH neutrinos, which
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Figure 3.3: The maximum attainable RJ/ψ as a function of WCs CT
LL, CV

RL, or CV
LL;

in each plot we marginalize over other WCs. The colors and bands are as in fig. 3.2.

We see that we can not even reach the 1σ range of the observed RJ/ψ for any values

of the WCs.
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Figure 3.4: The contribution of CV
RL to RD and RD∗ . The orange and the blue bands

denote the 1σ range from Eq. (1.3) for RD∗ and RD, respectively.

include the NLO corrections in heavy quark effective theory from [108]. (Similar

numerical formulas can be found in [109, 110, 42, 106]).

Since our mediators must couple to the Higgs field, the stringent constraints from

EWPT, in particular the T parameter constraint, compel us to impose custodial

symmetry on our model. We consider the symmetry group G ≡ SU(3)C × SU(2)L ×

SU(2)R × U(1)X which includes the SU(2)R custodial symmetry. The SM U(1)Y

emerges from the SU(2)R × U(1)X → U(1)Y breaking. The U(1)X is introduced to

realize LQs with appropriate U(1)Y charges.

The SM Higgs field can be written as H ≡ (H̃,H) where H̃ ≡ iσ2H
∗ and trans-

forms as (1, 2, 2)0 under the group G.

We introduce a scalar LQ, R ≡ (R̃2, R2) which transforms as (3, 2, 2)2/3 under the

group G. Here, two components of SU(2)R, R2 and R̃2, are doublets of SU(2)L. We

use the notation of [113] for these LQs. After the SU(2)R×U(1)X → U(1)Y breaking
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the charge assignment of the new particles under the SM SU(3) × SU(2)L × U(1)Y

gauge group is R2 = (3, 2, 7/6) and R̃2 = (3, 2, 1/6),

R2 =

R2
5/3

R2
2/3

 , R̃2 =

 R̃
2/3
2

R̃
−1/3
2

 , (3.7)

where the superscripts indicate the electric charges of different scalars in each SU(2)L

doublet.

The SU(2)L × SU(2)R transformations for R and H are expressed as

H → ULHU †R, R → ULRU †R, (3.8)

where UL,R are SU(2)L,R rotations respectively.

The relevant terms in the Lagrangian of the model are

L ⊃ LR + LHR + LFR, (3.9)

where

LR = |∂R2|2 + |∂R̃2|2 −M2
R2
|R2|2 −M2

R̃2
|R̃2|2,

LHR = λRTr
(
R†H

)
Tr
(
H†R

)
= λR

{
|R†2H|2 + |R̃†2H̃|2 + (R̃†2H̃H

†R2 + h.c.)
}
,

LFR = gij1 ū
i
RR2εL

j + g̃ij1 L̄
jεR̃†2d

i
R + h.c.,

(3.10)

where ε is the anti-symmetric tensor with two SU(2)L indices and i and j are quark

and lepton flavor indices, respectively. The first line of Eqs. (3.10) contain the mass

terms MR2 , MR̃2
for the LQs R2 and R̃2. In our model the mass of the LQs of

electric charge 5/3 and −1/3 are equal to MR2 and MR̃2
, respectively. Although the

custodial symmetry requires MR2 = MR̃2
, we assume they are different in general

as a difference can be given rise to by any source of custodial symmetry breaking.

We will discuss this point below. The quartic term in the second line respects the

custodial symmetry. We can also write down single trace terms, Tr
(
HR†RH†

)
and
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Figure 3.5: The diagrams generating CV
RL (1st row) and CS

LL, CT
LL (2nd row) WCs

in our model. After integrating the mediators out and Fierz transformation, the WC

in Eqs. (3.13) is generated. The operator OVRL is proportional to the mixing between

the LQs. The relevant couplings from Eq. (3.10) are shown for each diagram.

Tr
(
HH†RR†

)
, but it is only relevant for us that these terms shift four leptoquark

masses universally. This effect can be absorbed by the mass terms in the first line, so

we ignore them in the following discussions. The last line contains the LQ couplings

to the SM fermions and explicitly breaks the custodial symmetry.

A similar model without the extended symmetry had been used in the past [114]

to explain two anomalies in the HERA experiment [115, 116]. It should be noted that

each of these LQs have individually been proposed as solutions to RD(∗) in the past,

see e.g. [68, 62], but our setup is the first model using their mixing to produce CV
RL.

3.3.1 Generation of CV
RL

After the EWSB, R2
2/3 and R̃

2/3
2 mix via the third term in LHR. The mass matrix

of the R2
2/3 and R̃

2/3
2 is given by

M2
2/3 =

M2
R2
− λRv2 −λRv2

−λRv2 M2
R̃2
− λRv2

 , (3.11)
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where v is the Higgs vev v ≈ 246GeV. We can diagonalize this matrix by the rotation,Rl

Rh

 =

cosϕ − sinϕ

sinϕ cosϕ


R2

2/3

R̃
2/3
2

 . (3.12)

Both mass eigenstates Rl and Rh inherit a coupling to both RH and LH fermions of

the SM after this rotation. After rewriting LFR in terms of these mass eigenstates

and integrating them out at tree-level, we can generate the operator (τ̄PRb) (c̄PLν).

After Fierz transformation this operator morphs into OVRL with its WC given by

CV
RL = − v2

4Vcb
g23

1 g̃
33
1 cosϕ sinϕ

(
1

M2
Rh

− 1

M2
Rl

)
, (3.13)

where MRl and MRh(> MRl) are the mass eigenvalues corresponding to the eigen-

states Rl and Rh in Eq. (3.12), respectively. The process of integrating out these

mediators to generate CV
RL is depicted in Fig. 3.5. At the leading order of v2, we can

approximately obtain

CV
RL ≈ −

λR
4Vcb

g23
1 g̃

33
1

v4

M2
R2
M2

R̃2

≈ −0.47×
(
λR
5

)(
g23

1

1.3

)(
g̃33

1

1.3

)
×
(

MR2

800 GeV

)−2( MR̃2

800 GeV

)−2

.

(3.14)

We can see that there is an extra v2/Λ2
NP suppression in this WC. The range of the

WC CV
RL that can explain RD and RD∗ shown in Fig. 3.4 can be realized. We may

wonder if the required size of λR is too large, but this is a scalar quartic coupling and

the threshold for nonperturbativity is ∼ 16π2 (instead of ∼ 4π for Yukawa and gauge

couplings) [117].

3.3.2 Other WCs

Let us briefly comment on other possible WCs which our LQs can generate. Under the

SM gauge symmetry, the two LQs can further give rise to the following interactions

L ⊃ gij2 ē
j
RQ

i
LR2

† + h.c., (3.15)
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where again i and j are quark and lepton flavor indices, respectively. With these

couplings and the couplings in (3.10), the LQ R2 (R̃2) can individually generate the

WCs CS
LL = 4CT

LL at the LQ scale [68, 62]:

CS
LL = − v2

4Vcb
g23

1 g
33
2

(
sin2 ϕ

M2
Rh

+
cos2 ϕ

M2
Rl

)
. (3.16)

It should also be noted that different WCs in Eqs. (3.13) and (3.16) depend on different

pairs of the couplings in Eq. (3.10) and (3.15), as indicated in Fig. 3.5. Since these

WCs have been extensively explored in the literature, we do not further discuss these

operators in our present model.

Further WCs can be generated if a new RH neutrino is added to our setup. We

investigate this possibility in Sec. 3.5.

3.3.3 A cutoff scale

Since the required size of λR to generate CV
RL is rather large, we need to see where

such a λR coupling and the Higgs quartic coupling λ brow up and our effective theory

breaks down. The dominant contributions to the one-loop renormalization group

equations of λ and λR are given by

µ
d

dµ
λ =

1

16π2

(
12λ2 + 18λ2

R

)
,

µ
d

dµ
λR =

1

16π2

(
λλR − 4λ2

R

)
.

(3.17)

The SU(3)C color factor gives an enhancement for the coefficient of the leptoquark

contribution to the running of the Higgs quartic coupling λ. With this large coefficient

and a large initial value of λR, the Higgs quartic first hits a Landau pole. Here, even

the top quark contribution is subdominant and not shown. Assuming λR ∼ 5 at the

LQ mass scale, the Landau pole is O(10) TeV. Therefore, some UV completion of

our model must appear at O(10) TeV or below. We comment on its possibility in the

last section.
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The cutoff scale of ∼ O(10) TeV is also independently hinted at from consider-

ations of fine-tuning. Since a new scalar particle with sizable couplings to the SM

fermions is introduced, we encounter a new hierarchy problem as in the case of the

SM Higgs field. Loops of the SM fermions can generate masses,

δM2
R2
∼ g2

1Λ2

16π2
, δM2

R̃2
∼ g̃2

1Λ2

16π2
, (3.18)

where Λ is a cutoff scale of the model. To avoid a significant fine-tuning, we should

assume Λ . O(10) TeV.

Note that the radiative corrections to M2
R2

and M2
R̃2

do not respect the custodial

symmetry, which is the reason why we do not assume the same mass for R2 and R̃2

in the first line of Eq. (3.10). Then, this source of custodial symmetry breaking con-

tributes to a nonzero T parameter which we will estimate in the next section. Mean-

while, the quartic coupling λR is rather stable against custodial-symmetry-breaking

radiative corrections, because relevant diagrams to generate CV
RL involve the light

quark Yukawa couplings. Then, if we keep the g33
1 coupling small, we can ignore

custodial symmetry breaking in the quartic coupling.

3.4 Phenomenology

In this section we discuss the rich phenomenology in our model. We explore EWPT

and collider bounds as well as flavor constraints and finally we identify the viable

parameter space.

3.4.1 Flavor constraints

We here briefly comment on flavor constraints and the viability of our model. The

branching ratio of Bc → τν can constrain the NP explaining the anomalies [49, 51,

50, 52]. The enhancement to this branching ratio is given by

Br(Bc → τν) = 0.023 |CV
−L + 4.33CS

−L|2, (3.19)
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where we have defined CS
±L ≡ CS

RL ± CS
LL and CV

±L ≡ CV
LL ± CV

RL. The most severe

bound is at Br(Bc → τν) 6 10% [52]. This bound is most constraining when the

NP only gives rise to scalar operators; it does not rule out the scenario of only CV
RL.

However, if we try to generate other WCs such as CS
LL and CT

LL, the bounds from this

observable may become relevant.

Another constraint is from the flavor-changing b→ sνν process [118, 119, 68, 120,

101]. Yet, the couplings required for CV
RL do not contribute to this process.

Unlike CV
RL, the WCs involving RH neutrinos are severely constrained from various

flavor physics processes. We will further comment on these bounds in Sec. 3.5.

Lastly, it should also be noted that our LQs do not have any diquark terms that

give rise to disastrous proton decays [113].

All in all, we observe that our model can generate a CV
RL to explain the anomalies

without any constraints from the flavor physics processes.

3.4.2 EWPT

The coupling between the new LQs and the Higgs field can contribute to the oblique

parameters like S and T [121]. The T parameter constrains the assumption of MR̃2
6=

MR2 in our model. The S parameter can put a strong constraint on the model

parameter space regardless of custodial symmetry breaking.

The contributions to the S and T parameters in the present model have been

studied in [122, 123]. We follow their results to translate the current bounds on these

oblique parameters [3] into bounds on the parameters of our model. When we expand

the expressions of the S and T parameters in terms of v2 and then expand them also

by the difference of the mass-squared parameters, ∆M2 ≡M2
R̃2
−M2

R2
, at the leading
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order of these expansion parameters, we obtain

∆S ≈ − λRv
2

2πM2
,

∆T ≈ λ2
Rv

2

40π2α

(∆M2)2

M6
,

(3.20)

where α is the fine-structure constant and M2 ≡ (M2
R2

+ M2
R̃2

)/2 is the average of

the mass-squared parameters. When we assume some value of M , the value of λR

has an upper bound from the S parameter constraint and the degree of fine tuning

in ∆M2/M2 can be estimated from the T parameter constraint.

The constraints on the S and T parameters are described by an elliptic contour

as shown in [3]. Since the sign of ∆S in (3.20) is negative with a positive λR, we here

take the bounds as |∆S| . 0.1 and ∆T . 0.1. Then, we obtain

λR . 6.6×
( |∆S|

0.1

)(
M

800 GeV

)2

,

∆M2

M2
. 0.35×

(
∆T

0.1

)1/2(
λR
5

)−1(
M

800 GeV

)
.

(3.21)

We can see that the constraints are mild. The precise bounds are shown in Fig. 3.8.

In this plot, we use the full expressions of the S and T parameters given in [122, 123]

and the elliptic curve bounds on the oblique parameters [3]. As we diverge from the

MR2 = MR̃2
line the custodial symmetry is broken more severely and the bounds from

the T parameter become more constraining. We still find a large available parameter

space in this scenario as well.

3.4.3 Collider bounds

Given the extra v2/Λ2
NP suppression in Eq. (3.14), even with a large quartic coupling

λR, we need a sub-TeV LQ so as to generate a large enough CV
RL. Since LQs are

colored particles, extensive LHC searches give stringent bounds on these particles.

The signature of a light LQ can be looked for in direct pair production (PP) [124–

128, 110, 129–131] and single production (SP) [132, 129], monojet [133, 129], and
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LQ

j

χ

j

j

ψ
φ

Figure 3.6: An example of a new decay channel for the LQ. This new channel allows

the LQ to evade the reducible bounds. The new particles ψ and φ should be chosen

almost degenerate in mass such that the missing particle χ is very soft and is not

treated as MET in the searches. The final signature is three jets per LQ.

generic SUSY searches [134–142]. The bounds from these searches can rule out LQ

masses below a TeV [110, 129]. However, these collider constraints are all reducible,

meaning we can circumvent them by introducing a large branching ratio for each

LQ into other final states [110] undetectable in various searches. As an example

of such a channel we can consider the LQ decaying to three jets and a very soft

(unmeasured) missing ET (MET), see Fig. 3.6. This signature emulates the idea of

stealth SUSY to hide signatures of the superpartners [143–145]. That is, we assume

a sizable coupling of the LQ to a quark and a new color-neutral fermion ψ. The new

fermion ψ subsequently decays to an electrically-neutral light fermion χ, which can be

a dark matter candidate, and a scalar φ with appropriate SM charges. The key point

is that the masses of the fermion ψ and the scalar φ are almost degenerate. Then,

the momentum of χ in the rest frame of ψ is approximately given by ∆m ≡ mψ−mφ.

Taking account of a Lorentz boost factor in the laboratory frame, the amount of MET

is estimated as ∼ (M1/mψ)∆m and suppressed. The scalar φ is assumed to decay

back to a pair of jets. In total, the LQ gives a signature with three jets and a very

soft MET which is assumed here.
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Description Experiment (ir)reducible Diagrams

Direct LQ searches for bτ final state ATLAS-35.9 fb−1 [131] reducible

p

p

τ

b

τ

b

Rl

Rl

Generic SUSY searches with MET CMS-35.9 fb−1 [134, 136] reducible

p

p

τ

b

τ

b

Rl

Rl

p

p

τ

b

ν

c

Rl

Rl

p

p

τ

b

j
j

j
χ

Rl

Rl

p

p

ν

c

ν

c

Rl

Rl

p

p

ν

c

j
j

j
χ

Rl

Rl

p

p

j
j
j
χ
χ
j
j
j

Rl

Rl

Interference with the SM DY ATLAS-36.1 fb−1 [129, 78] irreducible

b τ

b τ

g̃331 sinϕ

g̃331 sinϕ

Rl

c τ

c τ

g231

g231

R5/3

Table 3.4: The searches which give the most constraining reducible and irreducible

bounds and the relevant diagrams.

Our LQs also have an irreducible interference with the Drell-Yan (DY) processes

of the SM through a t-channel diagram [56, 146, 147, 78, 110, 129]. Unlike reducible

bounds mitigated by a new decay channel, the bounds from these processes are not

alleviated by the new channel, hence irreducible.

Another potential irreducible signal is bc → τν studied in [148]. However, this

study shows that the bounds from this process are not yet strong enough to constrain

light LQs like the ones in our model.

We will discuss reducible and irreducible bounds below. For each case, the most

stringent LHC searches and our simulation details are summarized.

Reducible bounds

In studying reducible bounds, we focus on one light LQ and decouple the other three.

The lightest LQ comes from one of the states with electric charge 2/3 and couples to

bτ and cν. The most constraining searches for this particle are summarized in the first

and second rows of Tab. 3.4. For reducible bounds, they are direct LQ searches for

the bτ final state and generic SUSY searches with MET. Direct LQ searches for the
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cν finial state and SP and monojet searches give weaker bounds and are not shown

in the table. The new channel depicted in Fig. 3.6 has been looked for in the context

of RPV SUSY [149]; yet, the current bounds on the production cross-section are a

factor of a few higher than the production cross-section of our LQ. We expect the

next update of the aforementioned searches to probe parts of the currently available

parameter space.

In studying generic SUSY searches with MET, we use MadGraph [83] and PYTHIA8

[150] for event generation and Delphes [151] for detector simulation. We here assume

the masses of the particles in the new decay channel as mψ = 300 GeV, mφ = 295 GeV

and mχ = 1 GeV so that MET is sufficiently suppressed. We recast the most relevant

CMS SUSY searches [134, 136] by using the code-base developed in [152] and find

their limits on the lightest LQ. Some of these searches have recently been updated

with the new LHC data, e.g. [142]; we leave a recast of these new searches and their

effects on our model for a future study.

We show the reducible bounds on Br(LQ → bτ) and Br(LQ → cν) from direct

LQ searches and SUSY searches in Fig. 3.7. The figure indicates the region of the

branching ratio into bτ or cν that is allowed for different LQ masses; other than

these two channels, we assume the LQ only decays to the new stealthy channel in

Fig. 3.6. As we go to a larger branching ratio into bτ or cν, the LQ search targeting

that final state becomes more constraining. As the SUSY searches target final states

with MET, when the branching ratio into the new three jet channel increases, i.e.

the bottom-left of the figure, the bounds from the SUSY searches are loosened and

a light LQ mass is available. We see that with a large enough branching ratio into

the new three jet channel we can have the LQ as light as 650 GeV, which is light

enough to generate a large CV
RL. The figure also indicates that most of the remaining

branching ratio should be attributed to the bτ channel in order to evade the bounds.
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Figure 3.7: The bounds on Br(LQ→ bτ) and Br(LQ→ cν) from direct LQ searches

(brown) and SUSY searches (green). We include the LQ mass M1 of 650 GeV, 750

GeV, and 850 GeV. For each LQ mass, the colored region is excluded. The (gray)

dashed lines denote the branching ratio of the new decay channel.
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It is straightforward to see

Br (LQ→ bτ) /Br (LQ→ cν) = (tanϕ g̃33
1 /g

23
1 )2, (3.22)

thus we can modify the branching ratio into these two channels via the yukawa cou-

plings g and g̃ or by adjusting the mixing angle ϕ.

There are further SUSY searches that can constrain our model as well. In partic-

ular, [153] can in principle be used to constrain the branching ratio to bτ . However,

this search only looks for events with large mT to cut on the SM background; this

will actually discard the signal from our model as it gives rise to SM like mT . We also

recasted a few other SUSY searches [135, 137–141] using the code-base developed in

[152]; we find that the bounds from these searches are sub-dominant to those from

[134, 136] included in Fig. 3.7.

Irreducible bounds

Our LQs also have an irreducible interference with the Drell-Yan (DY) processes of

the SM through t-channel diagrams [56, 146, 147, 78, 110, 129]. See the bottom row

of Tab. 3.4. Unlike reducible bounds mitigated by a new stealthy decay channel, the

bounds from these processes are not alleviated by the new channel. In [129] a search

strategy is devised to look for this signature. We use their result to estimate the

bounds on our model. As [129] only reports the bound relevant for the lightest LQ

coupling to bτ , we incorporate a Parton Distribution Function (PDF) factor to scale

the cross section and calculate the bound on the heavier LQ with electric charge 5/3

coupling to cτ . We show the irreducible constraints from DY processes in Fig. 3.8.

3.4.4 Benchmarks

Fig. 3.8 summarizes all the constraints (EWPT, reducible bounds and irreducible

bounds) and identifies the viable parameter space of MR2 = M5/3 and MR̃2
= M−1/3.
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Figure 3.8: The constraints on the plane of MR2 = M5/3 and MR̃2
= M−1/3 from

EWPT (gray regions) and DY irreducible bounds for cτ (brown) and bτ (blue). We

keep the WC CV
RL and the couplings g̃33

1 and g23
1 fixed on each plot. Then, λ3 (black

curves) and the lighter mass eigenstate of charge 2/3 LQs (green) are determined. For

reducible bounds, we assume the coupling into the new channel is 4π, i.e. maximum

allowed by unitarity arguments; with this coupling, the BR into the new decay channel

from Fig. 3.6 dominates and all the reducible bounds are sub-dominant to the EWPT

and DY bound. The white region is allowed.

In this figure, we fix the WC CV
RL and the couplings g̃33

1 and g23
1 . The value of λR is

determined from the values of MR2 , MR̃2
, CV

RL, and the g couplings. Once λR is fixed,

the masses of charge 2/3 LQs are determined as well. From the figure, we observe

that with the help of (1) a new decay channel, like Fig. 3.6, without MET, (2) proper

braching ratios of the lightest LQ decays into bτ or cν, attainable by adjusting the

ratio g̃33
1 /g

23
1 , and (3) the lightest LQ at 600 GeV or higher, we can evade various
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collider and EWPT bounds and still explain the anomalies. As a further proof of

this claim, in Tab. 3.5 we report a few benchmark points in the parameter space of

our model that respects all these bounds and generates a large |CV
RL|. Although the

EWPT constraints are mild, we here concentrate on the case of MR2 = MR̃2
which

gives a maximum mixing for the LQs of electric charge 2/3.

3.5 Comments on RH Neutrinos

Finally, let us briefly comment on the possibility of generating operators with RH

neutrinos in our setup.

We here show that our setup can generate a non-zero CV
LR by introducing RH

neutrinos coupled to our LQ but various bounds from flavor physics prevent a simul-

taneous generation of both CV
RL and CV

LR.

One of the SU(2)L doublet LQs can further give rise to the following interactions,

L ⊃ g̃i2R̃2Q̄
i
LνR + h.c., (3.23)

where again i is the quark flavor index and νR is a new SM singlet RH neutrino.

Similar to the earlier discussion on CV
RL, it can be shown that these couplings and the

MRl [GeV] MRh [GeV] M−1/3[GeV] M5/3[GeV] λR g23
1 g̃33

1 |CV
RL|

795.3 860 860 860 2 1.3 2.6 0.41

734.4 950 950 950 3 1.4 2.25 0.44

700.7 950 950 950 3.4 1.0 1.73 0.30

726.2 1049.3 1100 950 4 1.40 2.24 0.53

754.0 1100 1100 1100 5.3 1.30 2.08 0.47

914.5 1250 1250 1250 6 1.62 2.98 0.50

Table 3.5: Benchmark points satisfying all the constraints while generating a large

|CV
RL|. In light of the results in Fig. 3.7 we focus on the case of g̃33

1 > g23
1 .
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Figure 3.9: The diagrams generating CV
LR (1st row) and CS

RR, CT
RR (2nd row) WCs.

The relevant couplings from Eqs. (3.10), (3.16) and (3.23) are shown for each diagram.

couplings of (3.16) can generate

CV
LR = − v2

4Vcb
g33

2 g̃
2
2 cosϕ sinϕ

(
1

M2
Rh

− 1

M2
Rl

)
, (3.24)

from the diagram shown in Fig. 3.9. In addition, with the g̃ couplings in (3.10) and

(3.23), the LQ R̃2 can also generate the WCs CS
RR = 4CT

RR at the LQ scale:

CS
RR = − v2

4Vcb
g̃33

1 g̃
2
2

(
cos2 ϕ

M2
Rh

+
sin2 ϕ

M2
Rl

)
. (3.25)

The flavor constraints are now much more stringent than in the case of the LH

neutrinos, because now the left-handed quark doublets are involved. The flavor-

changing b → sνν process [118, 119, 68, 120, 101] now gives a stringent constraint

on the present possibility as the same combination of couplings generating CS
RR =

4CT
RR can give rise to this process, see Fig. 3.10. Given the experimental result,

e.g. [154, 155], this constraint puts an upper bound O(0.01) on CS
RR [156], severely

constraining its contribution to RD(∗) . A small value for g̃2
2 g̃

33
1 allows us to evade

this bound. The coupling combination g̃2
2 g̃

33
1 can have further contributions to Bs-B̄s

mixing, b → sγ, B → Kττ , and Bs → ττ , and Ds → τν as well, see Fig. 3.10. The

experimental bounds on these processes [157–159, 3] are not as constraining as the
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Figure 3.10: The diagrams giving rise to various flavor constraints. The most relevant

constraint is from b → sνν (the top-left diagram), which only constrains CS
RR and

CT
RR. The other processes include : Ds → τν (top-right), the Bs-B̄s mixing diagrams

(middle row), B → Kττ or Bs → ττ (bottom-left) and b → sγ (bottom-right).

With the exception of the top diagrams, all the diagrams here are suppressed by

the neutrino mixing and will not put tight constraints on our model. The relevant

couplings for each process are shown as well; this combination of couplings severely

constrains the CS
RR operator in Eq. (3.25) and prevents us from generating both CV

RL

and CV
LR simultaneously in our setup. All these bounds can be circumvented by

suppressing g̃2
2 g̃

33
1 .
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b → sνν process. With the fact that the g̃2
2 g̃

33
1 combination must be suppressed, we

conclude that CV
RL and CV

LR cannot be generated simultaneously without any issues

in flavor constraints.

3.6 Final Remarks

In this chapter we first investigated anomalies observed in FL
D∗ and RJ/ψ model-

independently. We showed that RJ/ψ can not be explained by any combination of the

possible WCs, while FL
D∗ requires all the WCs with a certain neutrino chirality.

We also proposed a LQ scenario that can generate the WC CV
RL to explain RD(∗)

for the first time. This WC has different effects on polarization observables and is

essential for other anomalies in the charged currents such as FL
D∗ [61, 160]. The model

has a SU(2)L×SU(2)R bidoublet scalar LQ which contains a pair of SU(2)L doublet

LQs. We have studied its phenomenology: flavor constraints, EWPT and collider

bounds.

The most constraining limit on this setup comes from collider searches. However,

we found that the lightest LQ can be as light as 600 GeV with the help of the new

decay channel. An example of such a channel is the LQ decaying to three jets and a

very soft MET. With such a low scale of NP and a relatively large quartic coupling

between the LQ and the Higgs, we could produce a large enough WC CV
RL to explain

the flavor anomalies RD(∗) .

It is interesting to note that according to [61] the present model and a U1 LQ

generate all the WCs which explain FL
D∗ , and RD(∗) .

Since there is an additional scalar in the present model which leads to a new

hierarchy problem and our low-energy theory breaks down at O(10) TeV, we are

tempted to consider some UV completion near the TeV scale. One direction is to

make our new scalar, as well as the Higgs, composites of new strong dynamics. In the
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minimal composite Higgs scenario [161], the Higgs field is a pseudo-Nambu-Goldstone

boson (pNGB) transforming as 4 under the unbroken SO(4) ' SU(2)L × SU(2)R

which the global SO(5) in a strong sector is spontaneously broken to. It may be

interesting to embed our scalar LQ into a pNGB also transforming as 4 under the

SO(4) which some larger global symmetry is broken to. In this scenario, the relatively

large value of the scalar quartic coupling is rather natural. However, one issue is that

if we assume elementary quarks and leptons the LQ couplings to the fermions are

naturally suppressed due to the large dimension of the scalar composite. We may

need partial compositeness of quarks and leptons [162] as in the case of the top quark

Yukawa in composite Higgs models.
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Chapter 4

Discerning Different Solutions

In the previous chapters we introduced two new solutions to the charge current anoma-

lies observed in flavor experiments. There are a few other proposals that can explain

these anomalies as well. A natural question to ask at this stage is, if we establish that

these anomalies are due to some NP, is there anyway we can tell different possible

solutions apart?

As the ratios RD(∗) are both explained by various models, we need to carry out fur-

ther measurements to discern different models from one another. In this chapter, we

first review the existing minimal solutions to RD(∗) and the experimental bounds on

each of them; then we study a few asymmetry observables that received different con-

tributions from different models. We will show that by measuring these observables

we will be able to distinguish almost all different solutions of RD(∗) .

4.1 Simplified Models for RD(∗)

The set of all possible dimension-6 operators modifying the b→ cτν decay are already

reported in Eq. (1.10). We saw that these operators can be generated by integrating

out heavy new mediators; the WCs CX
MN parametrize the most general contribution.1

Different UV models can be categorized using the operators they give rise to (typically

more than one), see Sec. 4.1.2.

In the operator basis of (1.10), the contribution of new physics to the ratios RD(∗)

1The tensor operators with M 6= N , OTRL and OTLR, are identically zero.
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can be calculated in terms of the ten (possibly complex) WCs: five involving a SM

left-handed neutrino, and five requiring a new right-handed neutrino. The numerical

contribution of all the operators from (1.10) to the ratios were shown in Eq. (2.1).

Further details on deriving these numerical equations are included in App. D.

4.1.1 Single Operator Solutions

The range of RD(∗) that each individual operator can generate (with general complex

WCs) is indicated in Fig. 4.1, along with the present-day experimental and theoretical

combined uncertainty in the RD(∗) measurements, showing the 1, 2, and 5σ contours

(gray-dashed ellipses). For a review of experimental correlations in the measurements

of RD(∗) , see [6, 8]. In Fig. 4.1, we use the current average of the correlations, ρcorr =

−0.2 [13]. We see that out of all ten effective operators in (1.10), there are only six

that can explain both anomalies simultaneously: OVLL, OVRL, OSLL, OTLL, OVRR, and

OVLR.

4.1.2 Simplified Model Solutions

We can now enumerate the full set of “simplified” models that can explain both the

RD(∗) anomalies. In this context, “simplified” means a single new mediator particle

that can be integrated out to provide one or more of the effective operators which

modify RD(∗) .

An over-complete list of all the simplified models that can generate the operators

in (1.10) with LH or RH neutrinos can be found in [68, 163, 156]. We gather these

mediators in Tab. 4.1. Notice that the S1 and U1 LQs and uncolored mediators can

couple to either LH or RH fermions and so give rise to operators involving either type

of neutrinos. In this work we consider these possibilities as separate solutions to the

anomalies and will try to distinguish them from one another.

The factor of x in Tab. 4.1 relates the WCs of scalar and tensor operators in some



79

Figure 4.1: Ranges of RD(∗) spanned by single operators with complex WCs. The SM

prediction is denoted by a cyan dot. No other experimental constraints are imposed in

this figure. The 1, 2, and 5σ contours around the current global average are shown as

gray-dashed lines. We also show these contours with the projected Belle II precision

[2] around the current global average (red ellipses) and a hypothetical average after

Belle II that still barely allows a 5σ discovery (magenta ellipses), assuming the current

correlation ρcorr = −0.2. (See Sec. 4.1.4 for details.)
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models after Fierz transformation. At the mediator scale, x = 1/4 for all the models

in Tab. 4.1; as we run down to the GeV scale x changes to ∼ 1/8 [164, 165, 110], with

the exact value depending on the mediator scale. For simplicity, we use the fiducial

value x = 1/8 in our analysis.

In Fig. 4.2, we show the values of RD and RD∗ which can be obtained by each of

the relevant mediators in Tab. 4.1, scanning over complex Wilson coefficient(s). In

these plots the superscripts L and R on S1 and U1 LQs refer to the neutrino chirality

they couple to. Some mediators yield lines in this parameter space; these are single-

coefficient models whose contribution to RD and RD∗ are independent of the phase

of the coefficient. Other operators can cover a region of RD(∗) as the coefficients are

varied, either because the RD(∗) values depend on both magnitude and phase of single

operator, or the model results in two independent WCs.

4.1.3 Additional Constraints and Final List of Viable Models

In addition to explaining RD(∗) , a viable mediator must also avoid a number of other

stringent constraints. In this subsection we will review these and then list the sur-

viving viable solutions.

A subset of the couplings which modify the B̄ → D(∗)τν decay can enhance the

branching ratio Bc → τν [49, 51, 50, 52, 109]. In terms of the WCs in (1.10),

Br(Bc → τν)

Br(Bc → τν)|SM

=

∣∣∣∣(CV
LL − CV

RL

)
+

m2
Bc

mτ (mb +mc)

(
CS
RL − CS

LL

)∣∣∣∣2
+

∣∣∣∣(CV
RR − CV

LR

)
+

m2
Bc

mτ (mb +mc)

(
CS
LR − CS

RR

)∣∣∣∣2 . (4.1)

Given the mass ratios above, these equations imply tighter bounds on the scalar

operators than the vector ones. The SM prediction is Br(Bc → τν)|SM ∼ 2%. The

Bu → τν decay in LEP at the Z boson peak can be used to place the constraint [52]

Br(Bc → τν) 6 10%, (4.2)
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Mediator Operator Combination Viability (V or NV)

Colorless Scalars OSXL NV (Br (Bc → τν))

W ′µ (LH fermions) OVLL NV (collider bounds)

S1 LQ (3̄, 1, 1/3) (LH fermions) OSLL − xOTLL, �
��OVLL V

Uµ1 LQ (3, 1, 2/3) (LH fermions) OSRL, OVLL V

R2 LQ (3, 2, 7/6) OSLL + xOTLL V

S3 LQ (3̄, 3, 1/3) OVLL NV (b→ sνν)

Uµ3 LQ (3, 3, 2/3) OVLL NV (b→ sνν)

V µ
2 LQ (3̄, 2, 5/6) OSRL NV (RD(∗) value)

Colorless Scalars OSXR NV (Br (Bc → τν))

W ′µ (RH fermions) OVRR V

R̃2 LQ (3, 2, 1/6) OSRR + xOTRR NV (b→ sνν)

S1 LQ (3̄, 1, 1/3) (RH fermions) OVRR, ((((
(((OSRR − xOTRR V

Uµ1 LQ (3, 1, 2/3) (RH fermions) OSLR, OVRR V

Table 4.1: A complete list of the simplified mediator models and resulting effective

operators that are possibly relevant for the RD(∗) anomalies. The Uµ
1 and S1 LQs

as well as the colorless scalars can give rise to two independent WCs, while the rest

of the mediators can generate only one. We use x = 1/8 in this work, see the text

for more details. We indicate in the last column if the model is still viable (by V)

or not (by NV), and if not, what experimental constraint rules it out (see Sec. 4.1.3

for discussion of these constraints). The operators with a line crossed over them are

severely constrained by the b→ sνν constraints as well.
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Figure 4.2: The range of RD(∗) spanned by the simplified models from Tab. 4.1 with

complex WCs. The superscript on S1 and U1 LQ refers to the neutrino chirality which

they are coupled to in each figure. No other experimental constraints are imposed in

this figure. The other features are as in Fig. 4.1.
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which in turn puts a constraint on the possible WCs in (4.1). Using the theoretical

calculation of the Bc lifetime and its uncertainties, a looser bound of Br(Bc → τν) 6

30% can be obtained as well [51]. These branching ratio constraints put particularly

severe bounds on models relying on OSMN operators to explain the anomalies – to the

extent that if a model relies solely on a scalar operator to explain the anomalies, it is

ruled out by the constraint (4.2). This remains true even if the global average of the

anomalies reduces to the magenta dot in Fig. 4.2 after Belle II.

The other relevant flavor constraint is from b→ sνν decay and the meson decays

it enables [118, 119, 68], in particular the inclusive B → Xsνν and the exlusive

B → K(∗)νν. The current bound on the inclusive branching ratio of B → Xsνν is

from the ALEPH Collaboration [166],

Br (B → Xsνν) 6 6.4× 10−4 (4.3)

at 90% CL, whereas the bound on the exclusive decay rates above are [155]

Br (B → Kνν) 6 1.6× 10−5, Br (B → K∗νν) 6 2.7× 10−5. (4.4)

While the mediators introduced for RD(∗) generate charged currents, the b→ sνν

decay requires a neutral current beyond the SM. However, in some models that rely

on leptoquarks [68, 120, 156], there is an inevitable neutral current due to the SM

SU(2)L symmetry.

If both the neutrinos in the b → sνν decay are LH, Lorentz invariance implies

that the dimension six effective operator can only be a vector current. The associated

charged current then can only give rise to OVLL. Thus, for the models with LH

neutrinos, this bound may only constrain the CV
LL Wilson coefficient.

For instance, the S3 LQ can give rise to the following terms (among others) [120]

L ⊃ gijL Q̄
c,i
L iσ2σ

aLjLS
a
3 , (4.5)
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where i, j are flavor indices and a is an SU(2) adjoint index. After Fierz transforma-

tion, this LQ can give rise to OVLL with

CV
LL = −Vtb

Vcb

g3j1
L g23,∗

L

4
√

2GFM2
S3

, (4.6)

where GF is the fermi constant and MS3 is the S3 LQ mass. Due to the SU(2)L

symmetry, this term will contribute to b → sνν as well.2 The contribution of this

LQ to the neutral b → sνν processes can be captured by the following effective

Hamiltonian [119]

Heff ⊃ −
√

2
αem
π
GFV

∗
tsVtbC

ν
L (s̄γµPLb) (ν̄γµPLν) , (4.7)

where Cν
L is a Wilson coefficient and αem is the fine structure constant. After inte-

grating out a S3 LQ, the generated Cν
L Wilson coefficient will be

Cν
L =

π

2
√

2αemGFV ∗tsVtb

g2j1
L g3j2,∗

L

M2
S3

, (4.8)

where j indices refer to different generations of neutrinos. Using the numerical formu-

las reported in [119] and the bound on Br (B → Kνν), which is the most constrained

branching ratio in (4.3)-(4.4), we find

|g3j1
L g2j2,∗

L |1TeV2

M2
S3

. 0.017, (4.9)

which when combined with (4.6) yields the following bound on the contribution on

NP to CV
LL:

(CV
LL)NP . 0.006. (4.10)

This bound is severe enough that we can safely neglect the contribution of CV
LL

from the S3 LQ to the anomalies. A similar bound also applies to the U3 and S1

LQs that are coupled to LH fermions [120]. S3 and U3 can only generate OVLL and

2It is possible to generate CVLL with these leptoquarks by invoking gi6=3,j
L couplings as well. In this

case, however, we will have a substantial CKM suppression and will need non-perturbative couplings
to explain the anomalies. As a result, we discard this possibility.
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are therefore completely ruled out. Since S1 can generate OSLL and OTLL operators

from other couplings in the Lagrangian, it can still be a viable explanation of the

anomalies despite this severe bound on CV
LL. Finally, due to the SU(2) structure of

the operators that it gives rise to, this bound does not apply to U1 LQ [118, 120],

even though this LQ does generate OVLL.

If instead we allow for one of the neutrinos in the b → sνν process to be RH,

then the dimension six effective operator can be either a scalar or a tensor current.

In particular, the same couplings that generate OSRR ± xOTRR operators in S1 and R̃2

LQs also give rise to the operators [156]

(s̄LbR) (ν̄LνR) , (s̄Lσ
µνbR) (ν̄LσµννR) , (4.11)

which contribute to the b → sνν processes. The bound on these operators WCs

translates into O(0.01) bounds on the OSRR in S1 and R̃2 models [156], hence we can

safely discard their contribution to the anomalies too.3 The R̃2 is thus ruled out,

while the S1 LQ model becomes degenerate with a W ′ and the single operator CV
RR.

Other than these flavor constraints, there are some bounds from direct searches

for these mediators. For the case of leptoquarks, the current bounds are not severe

enough to rule out any further models [156, 110, 167]. On the other hand, the bounds

on the W ′ are fairly constraining [60, 168, 56, 101]. In particular, if the W ′ couples to

LH fermions, the bounds on the accompanying Z ′ effectively rule out the explanations

of the anomalies [56, 101].

The combination of these constraints significantly reduces the viable explanations

of the RD(∗) anomalies. In the last column of Tab. 4.1 we indicate which models sur-

vive. In all, there are three viable simplified models (S1, R2, and U1 LQs) that couple

to LH neutrinos, and three that couple to RH (W ′, U1 and S1 LQs). Note however

3Notice that since these models do not have any interference with the SM, the contribution to
the anomalies is quadratic in their Wilson coefficient and a O(0.01) bound on a Wilson coefficient
implies order 10−4 improvement in the RD(∗) ratios.
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that the W ′ and S1 LQ with RH neutrinos generate the same Wilson coefficient,

which is a subset of the parameter space generated by the U1 LQ with RH neutrinos.

In the rest of this chapter, we will focus on these surviving simplified models, along

with the viable single operators OVLR, OVRL, and OTLL.

4.1.4 Benchmark Belle II Scenarios

Belle II will measure RD(∗) with much smaller errors compared to the present, thus

greatly reducing the possible range of WCs in each model. As can be seen in Figs. 4.1–

4.2, central values near the present averages would by themselves rule out at high

significance many models which are presently under consideration. Meanwhile, values

closer to the SM prediction (while still allowing a 5σ discovery at Belle II) would

leave all the mediators and single operators we currently consider as possibilities,

before constraints from the asymmetry observables are applied. Aside from having

a potentially huge impact on the list of models that explain the anomalies, this

can also greatly affect our ability to distinguish between these models with further

measurements (such as the asymmetries).

As a result, we will consider two different outcomes of the Belle II measurement

of RD(∗) as benchmarks for our study.

1. The 10σ scenario: Belle II measures RD(∗) with central values equal to the

present average. With the projected Belle II sensitivities, this would corre-

spond to a O (10σ) discovery. We then consider ranges of RD(∗) within the 2σ

Belle II error ellipse about this central value (the second innermost red ellipse

in Fig. 4.1–4.2). As we will show, in the 10σ scenario, the task of discerning

different models is simplified considerably.

2. The 5σ scenario: The measured RD(∗) values are closer to the SM expectation

while still allowing a 5σ discovery; specifically, we assume the central value of
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the anomalies after Belle II shifts to RD = 0.34 and RD∗ = 0.275. This point

was chosen to have 5σ significance with Belle II projected error bars, to be

within ∼ 2σ of the current global average, and (crucially) to allow for all of

the simplified models to continue to explain the RD(∗) anomalies (see Fig. 4.2).

Compared to the 10σ scenario, distinguishing between different models is much

more challenging here.

These two benchmark scenarios are meant to bracket the range of possibilities that

we can expect from Belle II, assuming that the RD(∗) anomalies are fully confirmed.

The 10σ scenario is meant to illustrate how easy it can be to distinguish different

models using the τ asymmetries, while the 5σ scenario is meant to provide a “worst-

case scenario” from the point of view of distinguishing between different models.

4.2 Asymmetry Observables

The relevant models for RD(∗) and their predictions for these ratios were reviewed

in the previous section. However, one can extract more information from the decay

processes than just the total decay rate and the ratios RD(∗) . Shown in Fig. 4.3 is a

diagram of the detailed kinematics of the decay process. Many of these angles and

momenta can be measured or reconstructed, and they provide a much finer probe of

the effective Hamiltonian responsible for the decay.

In particular, using the event kinematics, we can construct asymmetry observables

which are sensitive to the different WCs in (1.10). Four such observables are the

forward-backward asymmetry of the τ lepton with respect to ~pD(∗) in Fig. 4.3, denoted

by A(∗)
FB, and its polarization asymmetry in all three of the ê directions in Fig. 4.3,

denoted by P(∗)
ê . All of these asymmetries are defined in the leptonic center of mass

frame, which we will also refer to as the “q2 frame”, where q = pB − pD(∗) = pτ + pν

denotes the four-momentum transferred to the leptonic system by the decaying B
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~pB
~pD(∗)

~pτ

~pν

~pd

~pν′

θ

θτdχ

êτ

ê⊥
êT

Figure 4.3: The kinematics of B̄ → D(∗)τν and subsequent τ → dν ′ decay processes,

in the center-of-mass frame of the leptonic system (the “q2 frame”). The black plane

indicates the original decay plane, defined by the B momentum ~pB (or the D(∗)

momentum ~pD(∗)) and the leptonic pair. The red plane is the decay plane of the τ ,

defined by the visible daughter meson d and invisible daughter neutrino ν ′ of the

τ . The three directions in which we will project the τ polarization asymmetries are

indicated in green.

meson. As we will see, models with LH and RH neutrinos have a qualitatively different

contribution to these asymmetry observables.

We will calculate the dependence of these observables on all the WCs in (1.10)

and report the result in the form of numerical formulas (like (2.1) for RD and RD∗).

In particular, we carry out the calculation including the contribution of the operators

with right-handed sterile neutrinos with negligible masses compared to the other

energy scales in the decay. Full analytic versions are available in the appendices.

Wherever possible, we have checked that parts of our calculations (results from the

numerical equations, q2 distributions, the SM predictions, etc.) are in agreement

with previous studies, e.g. [39, 40, 58, 169]. A further consistency check is that the

numerical equations for the observables will manifest a symmetry between left- and
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right-handed neutrinos such that by applying the following transformations,

hτ → −hτ , CS,V,T
LL ↔

(
CS,V,T
RR

)∗
, CX

RL ↔
(
CX
LR

)∗
, (4.12)

(where hτ refers to the τ helicity) the observables will transform as

RD(∗) → RD(∗) , Px → −Px, AFB → AFB. (4.13)

In writing CV
LL in (4.12) (and in all the up-coming numerical equations), we are

including the contribution of the SM operator.4 These symmetries indicate that if

we flip the spin of all the external particles and the associated WCs, we should get

the same result for the decay rate in a particular q2 and θ direction. The interference

between the SM term in (4.12) and the sign flip in (4.13) are the two sources of the

qualitatively different contributions from different types of neutrinos.

4.2.1 Forward-backward Asymmetry

The first observable of interest is the forward-backward asymmetry in the τ lepton

decay with respect to the D(∗) direction. This observable and its correlation with

RD(∗) have been studied previously [39, 34, 36, 37, 32, 33, 35, 38, 40, 41]. It is defined

as

A(∗)
FB =

1

Γ(∗)

(
−
∫ θ=π/2

θ=0

+

∫ θ=π

θ=π/2

)
dθ
dΓ(∗)

dθ
, (4.14)

where θ is the angle between the τ and D(∗) momenta in the leptonic system rest

frame, see Fig. 4.3, and Γ(∗) is the total decay rate of B̄ → D(∗)τν. The full analytic

expression for dΓ(∗)

dθ
in terms of all the WCs is included in App. D. The numerical

4The complex conjugate in the way the WCs are transformed is only relevant for the study of

P(∗)
T observables and is essentially an artifact of the definition in (D.2) and how the τ spin transforms

under this symmetry.



90

formula for A(∗)
FB that follows from this is:

AFB ≈ 1

RD

{
−0.11

(∣∣CV
LL + CV

RL

∣∣2 +
∣∣CV

RR + CV
LR

∣∣2)
− 0.35Re

[
(CS

LL + CS
RL)(CT

LL)∗ + (CS
RR + CS

LR)∗(CT
RR)
]

− 0.24Re
[
(CV

LL + CV
RL)(CT

LL)∗ + (CV
RR + CV

LR)∗(CT
RR)
]

− 0.15Re
[
(CV

LL + CV
RL)(CS

LL + CS
RL)∗ + (CV

RR + CV
LR)∗(CS

RR + CS
LR)
]}
,

(4.15)

A∗FB ≈ 1

RD∗

{
−0.813

(∣∣CT
LL

∣∣2 +
∣∣CT

RR

∣∣2)
+ 0.016

(∣∣CV
LL

∣∣2 +
∣∣CV

RR

∣∣2)− 0.082
(∣∣CV

RL

∣∣2 +
∣∣CV

LR

∣∣2)
+ 0.066Re

[
CV
RL(CV

LL)∗ + (CV
LR)∗CV

RR

]
+ 0.095Re

[
(CS

RL − CS
LL)(CT

LL)∗ + (CS
LR − CS

RR)∗CT
RR

]
+ 0.395Re

[
(CV

LL − CV
RL)(CT

LL)∗ + (CV
RR − CV

LR)∗(CT
RR)
]

+ 0.023Re
[
(CS

LL − CS
RL)(CV

LL − CV
RL)∗ + (CS

RR − CS
LR)∗(CV

RR − CV
LR)
]

− 0.142Re
[
(CT

LL)(CV
LL + CV

RL)∗ + (CT
RR)∗(CV

RR + CV
LR)
]}
,

The factor of RD(∗) in the denominators are the result of normalizing to the total

decay rate Γ(∗) in (4.14).

4.2.2 Tau Polarization Asymmetries

Our second set of observables is comprised of the different polarization asymmetries

of the τ lepton in the decay. Such asymmetries are defined as

P(∗)
ê =

Γ
(∗)
+ê − Γ

(∗)
−ê

Γ
(∗)
+ê + Γ

(∗)
−ê

, (4.16)

where ± refer to the two possible outcomes of measuring τ spin along direction ê.

The vector ê can be in any arbitrary direction. We consider the three directions [41],

êτ =
~pτ
|~pτ |

, êT =
~pD(∗) × ~pτ
|~pD(∗) × ~pτ |

, ê⊥ = êT × êτ , (4.17)
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where ~pτ (~pD(∗)) is the spatial momentum of the τ (D(∗)) in the final state (all in the

q2 frame). P(∗)
τ indicates the polarization asymmetry along the longitudinal direction

of the τ lepton, and P(∗)
⊥ the asymmetry in the decay plane and perpendicular to

~pτ , while P(∗)
T is the polarization asymmetry along the direction normal to the decay

plane including τ and D(∗), see Fig. 4.3. The first two are CP-even while the latter is

CP-odd. The details of calculating each P(∗)
ê and their analytic results are included

in App. D.

Longitudinal polarization

The numerical expression for the contribution of all the WCs to P(∗)
τ is:

Pτ ≈
1

RD

{
0.402

(∣∣CS
LL + CS

RL

∣∣2 − ∣∣CS
RR + CS

LR

∣∣2)
+ 0.013

[∣∣CT
LL

∣∣2 − ∣∣CT
RR

∣∣2]+ 0.097
[∣∣CV

LL + CV
RL

∣∣2 − ∣∣CV
RR + CV

LR

∣∣2]
+ 0.512Re

[
(CV

LL + CV
RL)(CS

LL + CS
RL)∗ − (CV

RR + CV
LR)∗(CS

RR + CS
LR)
]

− 0.099Re
[
(CV

LL + CV
RL)(CT

LL)∗ − (CV
RR + CV

LR)∗(CT
RR)
]}

(4.18)

P∗τ ≈
1

RD∗

{
−0.127

(∣∣CV
LL

∣∣2 +
∣∣CV

RL

∣∣2 − ∣∣CV
RR

∣∣2 − ∣∣CV
LR

∣∣2)
+ 0.011

(∣∣CS
LL − CS

RL

∣∣2 − ∣∣CS
RR − CS

LR

∣∣2)+ 0.172
(∣∣CT

LL

∣∣2 − ∣∣CT
RR

∣∣2)
+ 0.031Re

[(
CV
LL − CV

RL

) (
CS
RL − CS

LL

)∗ − (CV
RR − CV

LR

)∗ (
CS
LR − CS

RR

)]
+ 0.350Re

[(
CV
LL

)
(CT

LL)∗ −
(
CV
RR

)∗
(CT

RR)
]

− 0.481Re
[
(CV

RL)(CT
LL)∗ − (CV

LR)∗(CT
RR)
]

+ 0.216Re
[
(CV

LL)(CV
RL)∗ − (CV

RR)∗(CV
LR)
]}
.
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Perpendicular polarization

Similar to the previous section we include the numerical expression for contribution

of all the WCs to P(∗)
⊥ .

P⊥ ≈
1

RD

Re
{
−0.350

[
(CT

LL)
(
CS
LL + CS

RL

)∗ − (CT
RR)∗

(
CS
RR + CS

LR

)]
− 0.357

[(
CV
LL + CV

RL

) (
CS
LL + CS

RL

)∗ − (CV
RR + CV

LR

)∗ (
CS
RR + CS

LR

)]
− 0.247

[
(CV

LL + CV
RL)∗(CT

LL)− (CV
RR + CV

LR)(CT
RR)∗

]
− 0.250

[∣∣CV
LL + CV

RL

∣∣2 − ∣∣CV
RR + CV

LR

∣∣2]}
(4.19)

P∗⊥ ≈
1

RD∗
Re
{(
CS
RR − CS

LR

) [
0.099CT

RR − 0.054
(
CV
RR − CV

LR

)]∗
−

(
CS
LL − CS

RL

)∗ [
0.099CT

LL − 0.054
(
CV
LL − CV

RL

)]
+ (CT

RR)
[
0.146CV

RR − 0.478CV
LR − 1.855CT

RR

]∗
− (CT

LL)∗
[
0.146(CV

LL)− 0.478CV
RL − 1.855CT

LL

]
+ (CV

LR)
[
−0.081CT

RR + 0.025CV
LR − 0.075CV

RR

]∗
− (CV

RL)∗
[
−0.081CT

LL + 0.025CV
RL − 0.075(CV

LL)
]

+ (CV
RR)

[
−0.071CT

RR − 0.075CV
LR + 0.126CV

RR

]∗
− (CV

LL)∗
[
−0.071CT

LL − 0.075CV
RL + 0.126(CV

LL)
]}
.
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Transverse polarization

Finally, we present the numerical formulas for P(∗)
T :

PT ≈ 1

RD

Im
{
−0.350

[
(CT

LL)
(
CS
LL + CS

RL

)∗ − (CT
RR)∗

(
CS
RR + CS

LR

)]
− 0.357

[(
CV
LL + CV

RL

) (
CS
LL + CS

RL

)∗ − (CV
RR + CV

LR

)∗ (
CS
RR + CS

LR

)]
− 0.247

[
(CV

LL + CV
RL)∗(CT

LL)− (CV
RR + CV

LR)(CT
RR)∗

]}
(4.20)

P∗T ≈ 1

RD∗
Im

{(
CS
RR − CS

LR

) [
0.099CT

RR − 0.054
(
CV
RR − CV

LR

)]∗
−

(
CS
LL − CS

RL

)∗ [
0.099CT

LL − 0.054
(
CV
LL − CV

RL

)]
+ (CT

RR)
[
0.146CV

RR − 0.478CV
LR

]∗ − (CT
LL)∗

[
0.146(CV

LL)− 0.478CV
RL

]
− (CV

LR)
[
0.081CT

RR

]∗
+ (CV

RL)∗
[
0.081CT

LL

]
− (CV

RR)
[
0.071CT

RR

]∗
+ (CV

LL)∗
[
0.071CT

LL

]}
The P(∗)

T observables are particularly interesting to measure as they can provide

us with a way to hunt for CP-violation in B-meson decays. The SM prediction for

these observables is zero. In this work we focus on the P(∗)
T observables for the B̄

meson decay. Due to its CP-odd nature, the associated observables in the decay of B

mesons can be obtained by complex conjugation of all the WCs, i.e. an overall sign.

4.2.3 Overview of the Experimental Results and Proposals

So far the only asymmetry observable studied experimentally is P∗τ , by Belle in a

series of works [9, 170, 171]. The missing energy in these decays prevents us from fully

reconstructing all the momenta and thus complicates the measurement of different

angular observables. However, Belle was able to extract P∗τ from single-prong τ

decays, τ → dν with d = π, ρ, using the observation that the differential decay rate

of B̄ → D∗τν, τ → dν can be written as

1

Γ

dΓ

dθhel

=
1

2
(1 + αdP∗τ cos θhel) , (4.21)
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W ∗

~pW ∗ = 0

τν

d

ν

θτd ∼ τ

~pτ = 0

W ∗

d

ν

θhel

Figure 4.4: A schematic showing the Lorentz boost that relates the angles θτd in the

q2 frame on the left and θhel in the τ rest frame on the right. The former angle is re-

constructible at the B-factories, while the latter is used to extract P(∗)
τ . Although the

τ momentum vector cannot be fully reconstructed at the B factories, its magnitude

is measurable, and this is sufficient to relate the two frames.

where θhel is the angle between d and the opposite of the W ∗ direction in the τ rest

frame, see Fig. 4.4. The constant αd captures the sensitivity to P∗τ of the particular

τ decay channel under study.

Unfortunately, the τ rest frame is not reconstructible, even at the B-factories.

What is reconstructible is the q2 frame, i.e. the leptonic center of mass frame, by

boosting to the frame where the (fully measurable) B and D∗ momenta are pointed

in the same direction. Furthermore, in the q2 frame, the angle θτd between the τ and

its daughter meson d is given by

cos θτd =
2EτEd −m2

τ −m2
d

2|~pτ ||~pd|
. (4.22)

The RHS is completely known, because the magnitude of the τ momentum is a

function of q2 in the q2 frame

|~pτ | =
q2 −m2

τ

2
√
q2

. (4.23)

As evident from Fig. 4.4, the angle θτd is related to θhel via a boost along the τ

momentum direction. Although we do not know the direction, it is enough to know
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the magnitude:

|~pτd| cos θhel = −γ |~pτ |
Eτ

Ed + γ|~pd| cos θτd, (4.24)

where |~pτd| = (m2
τ − m2

d)/(2mτ ) is the momentum of the daughter meson in the τ

rest frame, and γ = Eτ/mτ . This relation determines θhel in terms of all measurable

quantities, and allowed Belle to obtain a measurement of P∗τ = −0.38 ± 0.51+0.21
−0.16

(compared to a SM prediction of (P∗τ )SM = −0.497).

Although this method works, it resulted in an enormous uncertainty, and has so far

only been applied to P∗τ . There are further proposals in the literature on how we can

infer additional asymmetry observables from the angular distribution of the visible

daughter mesons in the τ lepton decays. In particular, [41] puts forward methods for

measuring Pτ , P⊥, and AFB in B → Dτν decays (with τ → dν), claiming a better

attainable precision than the Belle procedure described above.

In their method, q2, Ed, and the angle θd between d and D – all evaluated in

the q2 frame, and all directly measurable – are used to express the differential decay

rates,

d3Γ

dq2dEdd cos θd
= Bd

N
2mτ

(
I0

(
q2, Ed

)
+ I1

(
q2, Ed

)
cos θd + I2

(
q2, Ed

)
cos2 θd

)
,

(4.25)

where Bd is the branching ratio of τ into the daughter meson under study, N is

a normalization factor, and I0,1,2 are functions of q2 and Ed defined in [41]. After

integrating over θd, adding together or subtracting the decay rates into the two spatial

hemispheres give rise to double distributions, from which Pτ , P⊥ and AFB can be

extracted.

In Tab. 4.2, we list the projected Belle II sensitivity claimed in [41] (which we

also adopt in this work), as well as our calculation for the SM predictions. Although

there are currently no analogous proposals to measure the D∗ asymmetry observables

in the literature, we believe that a similar method to the one proposed in [41] should

be applicable.
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Observable AFB A∗FB Pτ P∗τ P⊥ P∗⊥ PT P∗T
SM value −0.360 0.063 0.325 −0.497 −0.842 −0.499 0 0

Projected Precision [41] 10% − 3% − 10% − − −

Table 4.2: The Asymmetry Observables studied in this work, our numerical calcu-

lation for the prediction in the SM, and the projected Belle II sensitivity (assuming

the 50 ab−1 full data set) where available. We use these observables to identify dif-

ferent explanations of the anomalies. In the upcoming sections we will assume the

observables in B → D∗τν are measured with the same uncertainty as in B → Dτν.

At present, there is no substantiative experimental proposal for how to measure

P(∗)
T at Belle II.5 However, we have included it in our study, owing to the important

role it can play in distinguishing certain models from one another (see the next sec-

tion), and in the hopes that viable proposals for how to measure it will emerge in the

future.

4.3 Distinguishing Different Solutions

Having calculated these asymmetry observables, we now use them to distinguish

between different simplified models for the RD(∗) anomalies (see Sec. 4.1). As the

range of possible WCs depends on the value of RD and RD∗ after the Belle II data

set is collected, we consider the two benchmark scenarios described in Sec. 4.1.4 and

indicated in Figs. 4.1 and 4.2.

5In [40] it has been shown that the total decay rates above and their dependence on the azimuthal

angle χ between the two planes in Fig. 4.3 contains information about P(∗)
T . We cannot confirm the

claim that this angle is experimentally accessible and are not aware of any experimental proposals
for its measurement at Belle II.
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4.3.1 10σ Scenario

In this scenario, for the models involving the LH neutrinos, the LQ U1, as well as the

single operators OTLL and OVRL, will be able to explain the anomalies while satisfying

the experimental bounds mentioned above. Among the RH neutrino proposals, only

U1 LQ will remain viable.

Fig. 4.5 shows the ranges of CP-even asymmetry observables that are achievable

in each model, projected here into 2D plots, one for each pair of observables. In

each model, we have scanned over the (complex) WCs of the model, subject to the

following constraints: RD and RD∗ should be within the 2σ Belle II error ellipse for

this scenario; Br(Bc → τν) < 10%. The gray regions in each plot denote the Belle II

projected relative uncertainty from Tab. 4.2 centered around the SM prediction; for

the observables in the B̄ → D∗τν process, as there are no available projection, we

assume the same relative uncertainties as in the B̄ → Dτν decay. Models affected

by the b→ sνν bounds are already ruled out in this scenario and are not included in

Fig. 4.5.

It is obvious from Fig. 4.5 that by measuring all these observables we can distin-

guish well each individual model. In particular, the observables P(∗)
τ and A∗FB are the

most promising discriminators. This conclusion would remain unchanged even if we

had applied the looser Br(Bc → τν) < 30% bound.

4.3.2 5σ Scenario

In our second scenario for the outcome of Belle II measurements, we study the situ-

ation in which the observed values of the RD(∗) anomalies in the Belle II data are

reduced significantly from the present average, but still significant enough to be

claimed as a 5σ discovery, see Section 4.1.4 for details. With the reduced values

of RD(∗) , many more models become viable. The minimal models with the R2, S1, or

U1 LQs, as well as the individual operators CT
LL and CV

RL can explain the anomalies
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Figure 4.5: Two-dimensional plots of asymmetry observables for the 10σ scenario.

We scan over WCs that result in RD(∗) values within the 2σ Belle II error ellipse

centered on the present-day world averages. We also impose the Br(Bc → τν) 6 10%

bound [52]. The projected Belle II precision for each observable, centered on the SM

prediction, is indicated by the dashed gray lines, see the text. Regions which can

be realized by models with LH SM neutrinos (shown in green) are from U1 LQ and

single operators OTLL and OVRL, while the one requiring new RH neutrinos (shown in

red) corresponds to U1 LQ. We can distinguish all the models from one another by

measuring these asymmetry observables.
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with a LH neutrino in the decay. For the solutions with the RH neutrinos, a U1 or a

S1 LQ, a W ′, or the single operator CV
LR are viable. Given the severe constraints from

the b→ sνν processes, the S1 LQ and the W ′ mediators coupled to RH neutrinos are

degenerate; since these two mediators generate a subset of operators generated by a

U1 LQ (CV
RR), it is impossible to distinguish these three mediators from one another.

Similar 2D plots for this scenario as in the previous one are included in Fig. 4.6. We

see immediately that the various regions are much closer together than in Fig. 4.5,

as expected from the reduced requirement from RD(∗) . Combining the results in

different plots shows that we can still distinguish different neutrino chiralities (the

green regions vs. the red ones) from each other. The best plots that can collectively

illustrate this point (again, highly contingent on the projected precision of the Belle II

measurement) are Pτ–A∗FB, Pτ–P∗τ , A∗FB–P∗τ , and A∗FB–P∗⊥.

While we can still discern models with different neutrino chiralities, it is not

immediately obvious if we can distinguish models with the same type of neutrinos

from each other. To quantify how well we can separate these models, we use a crude

χ2 measure that includes the six CP-even asymmetry observables from Fig. 4.6 as

well as the RD(∗) ratios themselves, for a total of 8 d.o.f.. As there are no data

available at this point, the correlation between different asymmetry observables (and

RD(∗)) is not known; we neglect these correlations in this χ2 estimation and only use

the current ρcorr = −0.2 between the RD(∗) ratios. We calculate this χ2 between all

pairs of scanned points from the models that we want to distinguish. We use the

relative uncertainties from Tab. 4.2 in this calculation; as there are no projections

for the precision in measuring the quantities in B̄ → D∗τν, we use the same relative

uncertainty as their counterparts in B̄ → Dτν from Tab. 4.2 in our calculation.

Our χ2 estimation corroborates the conclusion from Fig. 4.6 that with measur-

ing all CP-even observables we can distinguish models with different neutrinos from
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Figure 4.6: Two-dimensional plots of asymmetry observables in the 5σ scenario. We

scan over WCs which result in RD(∗) values within the 2σ Belle II error ellipse centered

at RD = 0.34 and RD∗ = 0.275. We also impose the b→ sνν bound [119, 155] and the

Br(Bc → τν) 6 10% bound [52]. The projected Belle II precision for each observable,

centered on the SM prediction, is indicated by the dashed gray lines, see the text.

All the currently viable models and single operators remain viable in this scenario.

Regions which can be realized by models with LH SM neutrinos are shown in green,

while those requiring new RH neutrinos are in red.
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each other.6 However, depending on the outcome of the measurements, it may not

be possible to discern individual models with similar neutrino chiralities from one

another.

As noted before, the three possible mediators coupled to RH neutrinos (U1 and

S1 LQs, and a W ′) give rise to identical or overlapping parameter spaces, and thus

cannot be distinguished from one another on the basis of this effective Hamiltonian

alone. Our χ2 measure, however, indicates that we can distinguish them from the

single operator CV
LR.

Our χ2 estimate further shows that we can distinguish all the viable mediators

with LH neutrinos (U1, S1, and R2 LQs) from the individual operators with the same

type of neutrinos (CT
LL and CV

RL). However, there exist some outcomes where different

viable heavy mediators (U1, S1, and R2 LQs) can not be told apart.

In Tab. 4.3 we list benchmark pairs of measurement outcomes in which pairs

of mediators S1, U1, or R2 coupled to LH neutrinos, are not distinguishable. Here

we take one of the operators to have real WCs without loss of generality, since the

observables are insensitive to an overall rephasing of all the WCs. The CS and CV

refer to different scalar and vector WCs for the different models; see Tab. 4.1 for

details.

These benchmark points illustrate that the six CP-even asymmetry observables

are not enough to completely break the degeneracy between the S1, U1, and R2 LQs

when they are coupled to LH neutrinos. However, we still have a pair of observables at

our disposal that could distinguish these models: PT and P∗T . After our χ2 estimation

with all eight CP-even observables, we keep the points from pairs of these LQ models

that are less than 1σ apart from each other and study their contribution to the CP-odd

6The closest points from two solutions with different neutrino chiralities belong to the CTLL and
the CVLR individual operator solutions, with a minimum separation of 2.1 χ2/d.o.f . For the heavy
mediator solutions the closest pair of points belong to the U1 LQ models coupled to different types
of neutrinos, with the minimum separation of 3.4 χ2/d.o.f .
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Model
(
CS, CV

)
RD [±0.010] AFB [±0.037] Pτ [±0.010] P⊥ [±0.086] ∆χ2/d.o.f

RD∗ [±0.005] A∗FB [±0.007] P∗τ [±0.015] P∗⊥ [±0.048]

SL1 LQ (0.062 + 0.065i, 1.005) 0.333 −0.347 0.402 −0.823 1.14

0.262 0.060 −0.510 −0.478

UL
1 LQ (0.041 + 0.076i, 1.017) 0.332 −0.354 0.376 −0.830

0.263 0.060 −0.498 −0.514

Model
(
CS, CV

)
RD [±0.010] AFB [±0.037] Pτ [±0.010] P⊥ [±0.086] ∆χ2/d.o.f

RD∗ [±0.005] A∗FB [±0.007] P∗τ [±0.015] P∗⊥ [±0.048]

SL1 LQ (0.011 + 0.371i, 1.006) 0.362 −0.288 0.441 −0.697 1.16

0.265 0.061 −0.484 −0.466

R2 LQ (−0.002− 0.37i, .) 0.352 −0.320 0.428 −0.727

0.261 0.048 −0.474 −0.475

Model
(
CS, CV

)
RD [±0.010] AFB [±0.037] Pτ [±0.010] P⊥ [±0.086] ∆χ2/d.o.f

RD∗ [±0.005] A∗FB [±0.007] P∗τ [±0.015] P∗⊥ [±0.048]

UL
1 LQ (0.052 + 0.113i, 1.013) 0.338 −0.350 0.393 −0.819 1.13

0.261 0.059 −0.495 −0.515

R2 LQ (−0.022− 0.335i, .) 0.331 −0.326 0.396 −0.746

0.263 0.046 −0.473 −0.477

Table 4.3: Pairs of benchmark points for the LQ models S1, U1, and R2 coupled

to LH neutrinos that are less than 1σ apart in our estimation. The approximate

uncertainties using Tab. 4.2 are quoted in the first row as well. We need further

measurements to distinguish these models in these cases.
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observables P(∗)
T . The results are depicted in Fig. 4.7. Given a reasonable precision,

say δP(∗)
T ∼ 0.1, these observables are able to resolve the different degenerate models,

apart from the special case where the models are CP even.

To recap, in this scenario, measurement of the CP-even asymmetry observables

at Belle II, for which theoretical proposals exist [41], can easily discern the models of

different types of neutrinos. Models with the same type of neutrinos can be distin-

guished in many (but not all) cases using the same CP-even measurements or with

the additional measurement of CP-odd polarization asymmetries P(∗)
T .

4.4 Final Remarks

In this chapter we studied various τ asymmetry observables that can potentially be

measured at Belle II and that could help to resolve the BSM origin of the long-standing

RD(∗) anomalies. In (4.15) and (4.18)–(4.20), we reported numerical formulas for the

τ forward-backward asymmetry A(∗)
FB and polarization asymmetries P

(∗)
τ , P

(∗)
⊥ , and

P
(∗)
T , as a function of all relevant dimension 6 Wilson coefficients (including those for

RH neutrinos). The analytic formulas from which our numerical results are derived

are included in App. D. While similar analytic formulas existed in the literature

previously, here we report the contribution of the massless RH neutrinos as well.

We also catalogued all the simplified models involving both LH and RH neutrinos

that explain the RD(∗) anomalies and are not ruled out by the severe Br (Bc → τν)

and b → sνν constraints, see Tab. 4.1. We then showed that, using the CP-even

asymmetry observables A(∗)
FB, P

(∗)
τ , P

(∗)
⊥ for which proposed measurement methods

exist, it is possible to tell apart solutions with different types of neutrinos (SM LH

vs. RH sterile ones) from one another, see Fig. 4.5 and Fig. 4.6. In most instances,

it is even possible to tell apart different mediators with the same neutrino chirality.

The most useful observables for this purpose were P
(∗)
τ , followed by P

(∗)
⊥ and A(∗)

FB.
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Figure 4.7: The PT and P∗T observables for the points from Fig. 4.6 that are less

than 1σ apart in our estimation. These figures indicate that the CP-odd asymmetries

PT and P(∗)
T may be useful for further distinguishing the R2, U1, and S1 leptoquark

models coupled to LH neutrinos; however, the fact that they cross at the origin in

the left figure also indicates that these asymmetries cannot resolve the difference in

all cases.
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In some of the most difficult cases, the CP-even asymmetries are not enough. Here

we show that the information carried in the CP-odd asymmetries P(∗)
T plays a further,

crucial role in distinguishing different models. As these observables do not yet have

a fully-developed experimental strategy, our results provide a strong motivation to

construct one.

Our ability to distinguish between different BSM models for the RD(∗) anomalies

depends on what Belle II actually measures for RD(∗) . If Belle II measures the RD(∗)

ratios near the present values, see Eq. (1.3), with much smaller error bars, then this

measurement alone will greatly reduce the number of viable new physics models with

either left- or right-handed neutrinos, compared to the present situation. In this

case, it will be relatively straightforward to distinguish different models from one

another using asymmetry observables. If instead, Belle II finds RD(∗) ratios which are

closer to the Standard Model prediction, while still constituting a 5σ discovery of new

physics, then more models remain viable, and distinguishing between them becomes

more difficult. However, in either scenario, we show that it is at least possible to

distinguish between models with LH neutrinos and models with RH neutrinos through

measurement of CP-even asymmetry observables.

Additionally, although we have focused on measuring these observables at Belle II

in this chapter, one can also consider the possibilities of doing this at LHCb. There are

various reasons that suggest that LHCb will have significant difficulty in measuring

these quantities with reasonable precision – in particular lack of knowledge of the

initial rest frame and generally higher background. However, it is conceivable that

high statistics at LHCb and lower-background decay channels like τ → lνν may

be leveraged to obtain comparable precision in the measurement of these angular

asymmetries.

Furthermore, in this chapter we focused on the asymmetry observables in the B →

D(∗)τν. Similar observables can be measured in the related decay of Bc → J/ψτν. As
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there is already a fluctuation in this decay, captured by the ratio RJ/ψ defined earlier,

it is interesting to investigate the τ polarization and forward-backward asymmetry in

that decay too.
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Chapter 5

Outlook

The charged current anomalies in various flavor experiments are one of our best guides

for BSM physics. These anomalies are observed in the measurement of RD, RD∗ , RJ/ψ,

and FL
D∗ , the underlying hard process for all of which is b→ cτν. Motivated by these

observations, various extensions of the SM have been proposed.

With the LHCb and Belle II working on these anomalies, we expect to have enough

data in 2-3 years to be able to decide if these anomalies are due to NP or not. Given

these experimental activities, the theory community should carry out an in-depth

study of all the relevant models and observables to catalog different signatures that

the experimental studies could be focusing on.

In this work we introduced two possible new solutions to these anomalies. Each

of these new solutions leverages interesting, and hitherto unexplored, ideas in BSM

model buildings and can have further predictions for other observables.

The novel point in the first proposal is the introduction of a new W ′ and RH

neutrinos as the missing energy in the decay. While a W ′ mediator or RH neutrinos

had been studied in the literature before, our model is the first proposal that combines

the interesting features of these two extensions of the SM to generate a viable solution

for these anomalies. The W ′ in our model originates from breaking of a new SU(2)×

U(1) gauge group down to the SM U(1)Y . We showed that our setup gives rise to

very unique signatures not only in the flavor experiments, but also in various other

collider studies.

In the second model we extend the SU(2)L symmetry of the SM to SU(2)L ×
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SU(2)R × U(1)X and rely on a bifundamental of the two SU(2)s to generate the

dimension six operators OVRL or OVLR to explain the anomalies. Prior to our model,

there were no models in the literature generating these operators.

This model is specially interesting in the light of the recent measurement of FL
D∗ .

We showed in Chap. 3 that any proposal trying to explain FL
D∗ should envision a way

for generating OVRL or OVLR. Our setup is the only viable proposal generating these

operators, which automatically makes it the only viable solution to the observed FL
D∗

fluctuation.

Both these models can evade various experimental constraints. These constraints

include direct collider searches, precision measurements of the electroweak processes,

and various flavor physics bounds (Bc → τν branching ration, B → K(∗)νν branching

ratios, B − B̄ and Ds − D̄s meson mixings, etc.).

Finally, we proposed a way to discern various solutions from one another through

further measurement of other related observables. In particular, we studied the

polarization asymmetry and forward-backward asymmetry of the τ lepton in the

B → D(∗)τν process and showed that if the observed anomalies are due to NP, these

observables can distinguish between almost all different BSM solutions.

Of all these asymmetry observables, so far only the longitudinal τ polarization

asymmetry in B → D∗τν (P∗τ ) has been measured. Our study highlighted the impor-

tance of measuring the rest of these observables in Belle II and LHCb. In particular,

we indicated the important role of the CP-odd observables P(∗)
T for which there are

no viable measurement proposals yet. We hope our results motivate the experimental

community to start studying this observable as a viable measure of CP-violation in

these decays.

There are various possible ways the theoretical studies around RD(∗) can be ex-

tended. We conclude this thesis with listing a handful of such possibilities.

• It is always interesting to think about possible new solutions and what other
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novel signatures they can give rise to.

• In particular, it would be interesting to investigate the relationship between

these anomalies and the hierarchy problem, unification of SM gauge groups, the

yukawa hierarchy problem, the nature of dark matter and its portal to the SM,

the origin of the neutrinos mass, or any other shortcoming of the SM listed in

Chap. 1.

• There are a handful of other anomalies observed in the flavor experiments. A

unified explanation of the anomalies studied here and other flavor anomalies

is indeed well-motivated. While a few studies have been done in this front, a

comprehensive study of all possible joint explanations of different anomalies in

the data is still undelivered.

• Given the on-going experimental efforts, it is interesting to look for related ob-

servables, how we can measure them, and how precisely this measurement can

be done. For instance, while there are projections for how precisely the asym-

metry observables from Chap. 4 in B → Dτν can be measured, the equivalent

study for the B → D∗τν decay is in order.

• Furthermore, as we argued in Chap. 4, there are currently no proposals for mea-

suring the CP-odd observables P(∗)
T . Given the importance of this observable

in distinguishing different models and the fact that there are currently no other

handles on CP-violation in these decays, it is interesting to further investigate

new proposals for this measurement.

• In this thesis we focused on the prospects of the Belle II experiment for mea-

suring different asymmetry observables. It would be interesting to study the

prospects of similar measurements at LHCb as well.

• Any new solution to the anomalies will require new mediators beyond the SM.
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These mediators will have further signatures in other collider searches. It is

interesting to study all the possible signatures of different mediators to catalog

different collider signals that should be looked for in any of the solutions of the

anomalies.
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Appendix A

Leptonic and Hadronic Functions

In [58, 68], the physics of the leptonic and the hadronic side of the processes in

the RD(∗) anomalies are factorized and the relevant matrix elements are calculated.

We use the leptonic and the hadronic matrix elements reported therein in our work.

However, as we are working with right-handed neutrinos, one needs to calculate a few

more matrix elements. In this appendix we report the new leptonic matrix elements

involving right-handed neutrinos, and the new hadronic matrix element with tensor

current.

The leptonic matrix elements are defined as

Lrλτ = 2〈τ(pτ , λτ )ν̄|τ̄PRν|0〉, (A.1)

Lrλτ
λ̄

= 2εµ(λ̄)〈τ(pτ , λτ )ν̄|τ̄ γµPRν|0〉, (A.2)

Lrλτ
λ̄λ̄′

= −2iεµ(λ̄)εν(λ̄
′)〈τ(pτ , λτ )ν̄|τ̄σµνPRν|0〉, (A.3)

where λ̄ (λτ ) denotes the polarization of the mediator (τ lepton). We use the same

convention for the ε as [70]. Explicitly carrying out the calculation, we find the

following results for different polarizations.

Lr+ = 0, (A.4)

Lr− = 2
√
q2v. (A.5)
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Lr+
± = −

√
2
√
q2v(1∓ cos θ) (A.6)

Lr+
0 = −2

√
q2v sin θ (A.7)

Lr+
t = 0 (A.8)

Lr−± = ∓
√

2mτv sin θ (A.9)

Lr−0 = −2mτv cos θ (A.10)

Lr−t = 2mτv, (A.11)

Lr±λλ = 0, (A.12)

Lr±λλ′ = −Lr±λ′λ, (A.13)

Lr+
0± = ∓

√
2mτv(1∓ cos θ), (A.14)

Lr+
+− = −Lr+

t0 = 2mτv sin θ, (A.15)

Lr+
±t =

√
2mτv(1∓ cos θ), (A.16)

Lr−0± = −
√

2
√
q2v sin θ, (A.17)

Lr−+− = −Lr−t0 = 2
√
q2v cos θ, (A.18)

Lr−±t = ±
√

2
√
q2v sin θ, (A.19)

where θ is again the angle between the τ lepton and the D(∗) in the leptonic system

rest-frame, see Fig. 4.3, and v =
√

1−m2
τ/q

2. The subscript t refers to the fourth

polarization of a virtual W . These leptonic functions are related to the ones involving

the LH neutrinos in [58] through parity transformation.

For the hadronic side of the matrix element, we use the notation from [68] and

define

Hs
V,0(q2) ≡ Hs

V 1,0(q2) = Hs
V 2,0(q2),

Hs
V,t(q

2) ≡ Hs
V 1,t(q

2) = Hs
V 2,t(q

2),

Hs
S(q2) ≡ Hs

S1(q2) = Hs
S2(q2), (A.20)

Hs
T (q2) ≡ Hs

T,+−(q2) = Hs
T,0t(q

2) = −Hs
T2,+−(q2) = Hs

T2,0t(q
2).
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HV,±(q2) ≡ H±V 1,±(q2) = −H∓V 2,∓(q2),

HV,0(q2) ≡ H0
V 1,0(q2) = −H0

V 2,0(q2),

HV,t(q
2) ≡ H0

V 1,t(q
2) = −H0

V 2,t(q
2),

HS(q2) ≡ H0
S1(q2) = −H0

S2(q2), (A.21)

HT,±(q2) ≡ H±T,±0 = ±H±T,±t(q2),

HT2,±(q2) ≡ H±T2,±0 = ∓H±T2,±t(q
2),

HT,0(q2) ≡ H0
T,+−(q2) = H0

T,0t(q
2) = H0

T2,+−(q2) = −H0
T2,0t(q

2).

The hadronic functions in (A.20) correspond to the B̄ → Dτν decay, while those

in (A.21) correspond to the B̄ → D∗τν decay. The superscripts 0 and ± in (A.21)

stand for the D∗ polarization, while the subscripts 0, ±, and t refer to the virtual

mediator polarization. The subscripts S, V , and T refer to the scalar, vector, and

tensor currents, respectively.

In the B̄ → Dτν hadronic functions, we use the same form factors as in [39]

(derived from the available lattice results [17] and from [71]); for the B̄ → D∗τν

decay, following [39, 68], we use the heavy quark effective theory form factors based

on [72].

When working with the right-handed neutrino models for RD(∗) , there is one new

hadronic function, namely

〈D(∗)|c̄σµν(1 + γ5)b|B〉, (A.22)

where σµν = i/2[γµ, γν ]. To calculate this matrix element, we can simply borrow the

results in [68] for the hadronic side of the operator OTLL (c̄σµν(1− γ5)b operator) and

merely flip the sign of the axial current. The resulting hadronic functions, denoted

by HT2, will be

Hs
T2,+−(q2) = −Hs

T2,0t(q
2) = −Hs

T,+−(q2), (A.23)

where the superscript s indicates that these functions are corresponding to D meson
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and HT functions are defined in [68], and

H0
T2,+−(q2) = −H0

T2,0t(q
2) = H0

T,+−(q2),

H±T2,±0(q2) = ∓H±T2,±t(q
2)

=

√
mBmD∗√

q2
A1(w)

(
±(mb −mc)(w + 1)− (mb +mc)

√
w2 − 1R1(w)

)
,

HλM
T2,λ1λ2

(q2) = −H0
T2,λ2λ1

(q2), (A.24)

for D∗ where again the HT functions and the form factors A1(w) and R1(w) are

defined in [58, 68], mM is the final meson (here D∗) mass, and

w =
m2
B +m2

M − q2

2mMmB

. (A.25)
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Appendix B

Details of Fermion-Gauge Boson Couplings

In this appendix we go through the details of the Z boson couplings to the SM

fermions in the model of Chap. 2, which is used in our study of the EWP tests. The

relevant part of the Lagrangian is

L ⊃ F̄ γµ(gXXFBµ+gV T
V
3 W

3,V
µ )F+f̄Lγ

µ(gXXfLBµ+gLT
L
3 W

3,L
µ )fL+f̄Rγ

µ(gXXfRBµ)fR

(B.1)

where fR, fL correspond to the SM-like fermions, and F to the new, heavy vector-like

fermions, in the interaction basis. Bµ is the U(1)X gauge boson and XF,f are the

U(1)X charges (given in Table 2.2).

Going to the mass basis for the gauge bosons and the fermions via Eqs. (2.11)

and (2.14) respectively, we obtain the couplings of Z to SM fermions:

L ⊃ gZfL Zµf̄Lγ
µfL + gZfR Zµf̄Rγ

µfR (B.2)

where

gZfL = gL(TL3 )fR†22 + gXXfLR†12 (B.3)

and

gZfR = (gV (T V3 )FR†32 + gXXFR†12)|Uf21|2 + gXXfRR†12|Uf22|2

= (gV (T V3 )FR†32 + gX(XF −XfR)R†12)|Uf21|2 + gXXfRR†12

= (T V3 )F (gVR†32 − gXR†12)|Uf21|2 + gXQfR†12.

(B.4)

Note that for the left-handed fermions, there is essentially no mixing with the vector-

like states, so the coupling to the Z is relatively simple. For the right-handed fermions,
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we have to take into take into account mixing with the vector-like states. The choice

of F in Eq. (B.4) is dictated by the fermion mixing. For instance, if fR = cR (bR)

then F = U (D) and (T V3 )F = 1
2

(−1
2
). In the second line of Eq. (B.4), we have

used |Uf21|2 + |Uf22|2 = 1. In the third line we have used Qf = XfR = XF + (T V3 )F for

right-handed fermions and the vector-like fermions that they mix with.

To proceed further, we require more explicit formulas for the gauge boson mixing

matrix elements R†i2. By diagonalizing the mass matrix Eq. (2.10), it is straightfor-

ward to verify that

R†12 = −gY
gX
cαsw −

gY
gV
sα, R†22 = cαcw, R†32 =

gY
gX
sα −

gY
gV
cαsw, (B.5)

where the Weinberg angle is defined in terms of gY and gL in the same way as the

SM, and

tan(2α) =
2v2

Lg
2
X

√
g2
V g

2
L + g2

Xg
2
L + g2

V g
2
X

−v2
V (g2

V + g2
X)2 + v2

L(g2
V g

2
L + g2

Xg
2
L + g2

V g
2
X − g4

X)
, (B.6)

is the effective Z − Z ′ mixing angle (which vanishes in the vV →∞ limit).

Then Eq. (B.3) becomes

gZfL =
√
g2
L + g2

Y cα

(
(TL3 )f −Qf

g2
Y

g2
L + g2

Y

)
−XfL

gXgY
gV

sα (B.7)

and Eq. (B.4) becomes

gZfR = −QfgY cαsw −Qf
gXgY
gV

sα + (T V3 )F sα

√
g2
V + g2

X |Uf21|2. (B.8)

Expanding these at large vV and gV we reproduce Eqs. (2.21)–(2.23) in the text.
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Appendix C

Details on Maximizing the Observables

We now provide some details to our procedure. We hope these details will prove

useful to others who may be interested in maximizing other observables in the future

(or replicating our analysis).

The first step is to solve the equation of Br(Bc → τν) for CS
−L,

CS
−L =

1

4.33

(
eiξRBc − CV

−L
)
, (C.1)

where ξ is an arbitrary phase and we have defined

RBc ≡
√

Br(Bc → τν)

Br(Bc → τν)SM
. (C.2)

We can use the phase invariance mentioned earlier to fix the value of ξ to any number

in order to simplify the calculation; in our analysis, we use ξ = π. With this choice of

ξ we explicitly break the symmetry between the contribution of real and imaginary

parts of the WCs to various observables and exhaust the freedom in rephasing the

WCs.

Next, we perform the following transformation (which is a combination of rota-

tions, shifts and rescalings) on the WCs:

CS
+L

CV
+L

CV
−L

CT
LL


=



1.8108 3.7863 −2.1150 0

0 −5.1839 2.8958 0

0 13.3846 −0.4787 −1

0 4.2232 −0.1510 0





C̃S
+L

C̃V
+L

C̃V
−L + 0.0114RBc

C̃T
LL


, (C.3)
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in order to simultaneously diagonalize the quadratic terms in RD and RD∗ :

RD = (C̃S
+L)2 + x̃T3MDx̃3

RD∗ = x̃T3 M̃D∗x̃3 + vTD∗x̃3 + AD∗
(C.4)

Here x̃3 ≡ (C̃V
+L, C̃

V
−L, C̃

T
LL)T and

M̃D =


1 0 0

0 1 0

0 0 0

 , M̃D∗ =


26.7838 0 0

0 0.0553 0

0 0 0.2388

 , (C.5)

vD∗ =


−0.0727RBc

0.0026RBc

0

 , AD∗ = 0.0005R2
Bc
.

(C.6)

Under this transformation, the observables become:

RD∗F
L
D∗ = x̃T3 M̃F x̃3 + vTF x̃3 + AF

RJ/ψ = x̃T3 M̃J/ψx̃3 + vTJ/ψx̃3 + AJ/ψ

(C.7)

where

M̃F =


5.6079 −0.2005 −0.4042

−0.2005 0.0072 0.0145

−0.4042 0.0145 0.1105

 , vF =


−0.0639RBc

0.0023RBc

0.0029RBc

 ,

M̃J/ψ =


18.8505 −0.3420 −0.5463

−0.3420 0.0368 0.0195

−0.5463 0.0195 0.2756

 , vJ/ψ =


−0.0945RBc

0.0034RBc

0.0017RBc

 ,

AF = 0.0004R2
Bc , AJ/ψ = 0.0007R2

Bc .

(C.8)

We can go to spherical coordinates in (C̃S
+L, C̃

V
+L, C̃

V
−L) and solve the RD constraint

for the radial coordinate. Then we can solve the RD∗ constraint for C̃T
LL which only

appears as (C̃T
LL)2. This leaves behind two angles which we can then easily numerically

maximize over and verify explicitly with a plot.
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Appendix D

Analytic Expressions for the Observables

In order to get an expression for the polarization asymmetries, we write the total

decay rate with the spin of the final state τ lepton in the arbitrary direction ŝ as [30]

dΓ(∗)(ŝ) =
1

2

(
dΓ

(∗)
tot +

(
dΓ(∗)

τ êτ + dΓ
(∗)
⊥ ê⊥ + dΓ

(∗)
T êT

)
· ŝ
)
, (D.1)

where we have suppressed all other final state indices, e.g. D∗ polarization, and

dΓ
(∗)
tot =

1

2mB

(
|M+|2 + |M−|2

)
dΦ,

dΓ(∗)
τ =

1

2mB

(
|M+|2 − |M−|2

)
dΦ, (D.2)

dΓ
(∗)
⊥ =

1

2mB

2Re
(
M†

+M−

)
dΦ,

dΓ
(∗)
T =

1

2mB

2Im
(
M†

+M−

)
dΦ,

whereM± are the corresponding matrix elements with ± τ helicity. The phase space

element dΦ is given by

dΦ =

√
((mB +mM)2 − q2) ((mB −mM)2 − q2)

256π3m2
B

(
1− m2

τ

q2

)2

dq2d cos θ, (D.3)

with mM being the final meson (D(∗)) mass, q2 being the four-momentum transferred

to the leptonic side, and θ being the angle between the τ momentum and the final me-

son M in the q2 frame. Using (D.2) in (4.16) we find an expression for the integrated

asymmetries in every direction

P(∗)
x =

1

Γ
(∗)
tot

∫
dΓ(∗)

x , (D.4)
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where x = τ,⊥, T . Similarly, the forward-backward symmetry defined in (4.14) can

be written as

A(∗)
FB =

1

Γ
(∗)
tot

∫
q2

(
−
∫ cos(θ)=1

cos(θ)=0

+

∫ cos(θ)=0

cos(θ)=−1

)
dΓ

(∗)
tot (D.5)

In this appendix we use (D.4) for the polarization asymmetries, as well as (D.5) for

the forward-backward asymmetry A(∗)
FB, to find analytic formulas for different decay

rates used in Sec. 4.2. As indicated in the previous appendix, we use the convention

and the notation in [68] for the hadronic functions.

We start with Γ
(∗)
tot and Γ

(∗)
τ . For the LH neutrinos contribution to the B̄ → Dτν

we have

dΓtot

dq2
=

G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)(m2

τ − q2)2{
|CV

LL + CV
RL|2

[
(Hs

V,0)2

(
m2
τ

2q2
+ 1

)
+

3m2
τ

2q2
(Hs

V,t)
2

]
+

3

2
(Hs

S)2|CS
RL + CS

LL|2 + 8|CT
LL|2(Hs

T )2

(
1 +

2m2
τ

q2

)
+3Re

[
(CV

LL + CV
RL)(CS

RL + CS
LL)∗

] mτ√
q2
Hs
SH

s
V,t

− 12Re
[
(CV

LL + CV
RL)(CT

LL)∗
] mτ√

q2
Hs
TH

s
V,0

}
,

(D.6)

dΓτ
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)(m2

τ − q2)2{
|CV

LL + CV
RL|2

[
(Hs

V,0)2

(
m2
τ

2q2
− 1

)
+

3m2
τ

2q2
(Hs

V,t)
2

]
+

3

2
(Hs

S)2|CS
RL + CS

LL|2 + 8|CT
LL|2(Hs

T )2

(
1− 2m2

τ

q2

)
+3Re

[
(CV

LL + CV
RL)(CS

RL + CS
LL)∗

] mτ√
q2
Hs
SH

s
V,t

+ 4Re
[
(CV

LL + CV
RL)(CT

LL)∗
] mτ√

q2
Hs
TH

s
V,0

}
.
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Similarly, the contribution of the RH neutrinos to these rates are

dΓtot

dq2
=

G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)(m2

τ − q2)2{
|CV

LR + CV
RR|2

(
(Hs

V,0)2

(
m2
τ

2q2
+ 1

)
+

3m2
τ

2q2
(Hs

V,t)
2

)
+

3

2
|CS

RR + CS
LR|2(Hs

S)2 + 8|CT
RR|2(Hs

T )2

(
1 +

2m2
τ

q2

)
+3Re

[
(CS

RR + CS
LR)(CV

LR + CV
RR)∗

] mτ√
q2
Hs
SH

s
V,t

− 12Re
[
(CV

RR + CV
LR)(CT

RR)∗
] mτ√

q2
Hs
TH

s
V,0

}
(D.7)

dΓτ
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)(m2

τ − q2)2{
|CV

LR + CV
RR|2

(
(Hs

V,0)2

(
−m

2
τ

2q2
+ 1

)
− 3m2

τ

2q2
(Hs

V,t)
2

)
−3

2
|CS

RR + CS
LR|2(Hs

S)2 + 8|CT
RR|2(Hs

T )2

(
−1 +

2m2
τ

q2

)
−3Re

[
(CS

RR + CS
LR)(CV

LR + CV
RR)∗

] mτ√
q2
Hs
SH

s
V,t

− 4Re
[
(CV

RR + CV
LR)(CT

RR)∗
] mτ√

q2
Hs
TH

s
V,0

}
.

The dependence of all the hadronic functions H on q2 is implicit. These equations

can be used to calculate the contribution of each type of neutrinos to RD and Pτ .



122

For the LH neutrinos contribution to B̄ → D∗τν we have

dΓ∗tot

dq2
=

G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2

τ − q2)2{
(|CV

LL|2 + |CV
RL|2)

[
(H2

V,+ +H2
V,− +H2

V,0)

(
m2
τ

2q2
+ 1

)
+

3m2
τ

2q2
H2
V,t

]
−2Re

[
(CV

LL)(CV
RL)∗

] [
(2HV,+HV,− +H2

V,0)

(
m2
τ

2q2
+ 1

)
+

3m2
τ

2q2
H2
V,t

]
+

3

2
(HS)2|CS

RL − CS
LL|2 + 8|CT

LL|2
(

1 +
2m2

τ

q2

)
(H2

T,+ +H2
T,− +H2

T,0)

+3Re
[
(CV

LL − CV
RL)(CS

RL − CS
LL)∗

] mτ√
q2
HSHV,t

−12Re
[
(CV

LL)(CT
LL)∗

] mτ√
q2

(HT,0HV,0 +HT,+HV,+ −HT,−HV,−)

+ 12Re
[
CV
RL(CT

LL)∗
] mτ√

q2
(HT,0HV,0 +HT,+HV,− −HT,−HV,+)

}
,

(D.8)

dΓ∗τ
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2

τ − q2)2{
(|CV

LL|2 + |CV
RL|2)

[
(H2

V,+ +H2
V,− +H2

V,0)

(
m2
τ

2q2
− 1

)
+

3m2
τ

2q2
H2
V,t

]
−2Re

[
(CV

LL)(CV
RL)∗

] [
(2HV,+HV,− +H2

V,0)

(
m2
τ

2q2
− 1

)
+

3m2
τ

2q2
H2
V,t

]
+

3

2
(HS)2|CS

RL − CS
LL|2 + 8|CT

LL|2
(

1− 2m2
τ

q2

)
(H2

T,+ +H2
T,− +H2

T,0)

+3Re
[
(CV

LL − CV
RL)(CS

RL − CS
LL)∗

] mτ√
q2
HSHV,t

+4Re
[
(CV

LL)(CT
LL)∗

] mτ√
q2

(HT,0HV,0 +HT,+HV,+ −HT,−HV,−)

− 4Re
[
CV
RL(CT

LL)∗
] mτ√

q2
(HT,0HV,0 +HT,+HV,− −HT,−HV,+)

}
.
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The corresponding decay rates with RH neutrinos instead are

dΓ∗tot

dq2
=

G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2

τ − q2)2{
(|CV

LR|2 + |CV
RR|2)

(
m2
τ

2q2
+ 1

)(
(HV,−)2 + (HV,+)2

)
+|CV

LR − CV
RR|2

(
(HV,0)2

(
m2
τ

2q2
+ 1

)
+ (HV,t)

2 3m2
τ

2q2

)
−4Re

[
CV
LR(CV

RR)∗
](m2

τ

2q2
+ 1

)
HV,+HV,− +

3

2
|CS

RR − CS
LR|2(HS)2

+3Re
[
(CV

RR − CV
LR)(CS

LR − CS
RR)∗

] mτ√
q2
HSHV,t

+8|CT
RR|2

(
1 +

2m2
τ

q2

)(
(HT2,−)2 + (HT,0)2 + (HT2,+)2

)
−12Re

[
CV
LR(CT

RR)∗
] mτ√

q2
(HT2,−HV,− −HT,0HV,0 −HT2,+HV,+)

+ 12Re
[
CV
RR(CT

RR)∗
] mτ√

q2
(HT2,−HV,+ −HT,0HV,0 −HT2,+HV,−)

}
(D.9)

dΓ∗τ
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2

τ − q2)2{
(|CV

LR|2 + |CV
RR|2)

(
−m

2
τ

2q2
+ 1

)(
(HV,−)2 + (HV,+)2

)
+|CV

LR − CV
RR|2

(
(HV,0)2

(
−m

2
τ

2q2
+ 1

)
− (HV,t)

2 3m2
τ

2q2

)
−4Re

[
CV
LR(CV

RR)∗
](
−m

2
τ

2q2
+ 1

)
HV,+HV,− −

3

2
|CS

RR − CS
LR|2(HS)2

−3Re
[
(CV

RR − CV
LR)(CS

LR − CS
RR)∗

] mτ√
q2
HSHV,t

+8|CT
RR|2

(
−1 +

2m2
τ

q2

)(
(HT2,−)2 + (HT,0)2 + (HT2,+)2

)
−4Re

[
CV
LR(CT

RR)∗
] mτ√

q2
(HT2,−HV,− −HT,0HV,0 −HT2,+HV,+)

+ 4Re
[
CV
RR(CT

RR)∗
] mτ√

q2
(HT2,−HV,+ −HT,0HV,0 −HT2,+HV,−)

}
.

We can use (D.8)–(D.9) to find the contribution of each type of neutrinos to RD∗ and

P∗τ .
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The symmetry outlined in (4.12)–(4.13) between RH and LH neutrino contribu-

tion is manifested in the decay rates (D.6)–(D.9). In other words, the unpolarized

decay rates have the same q2 dependence for either types of neutrinos. The only

difference between the two cases is the irreducible SM contribution. Even considering

this difference, there are scenarios with different types of neutrinos that have indis-

tinguishable q2 distributions. An example of this is illustrated in Fig. D.1 for U1 LQ

models interacting with different types of neutrinos. In this figure we normalize the

differential rate to the SM total rate, so that the area under each plot is proportional

to its RD(∗) prediction. Each curve results in an RD(∗) close to the current global

averages (see the 10σ scenario in Sec. 4.1.4). These plots show that in this scenario

there are benchmark points that, unlike the asymmetry observables we studied, the

q2 distribution of the decay rates will not be able to distinguish models with different

types of neutrinos.

For Γ⊥ and ΓT we have

dΓ⊥
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)(m2

τ − q2)2Re (Σ) ,

(D.10)

dΓT
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)(m2

τ − q2)2Im (Σ) ,

where

Σ =
3π

4q2

[(√
q2(CS

RR + CS
LR)Hs

S +mτ (C
V
LR + CV

RR)Hs
V,t

)
×(

(CV
LR + CV

RR)∗
√
q2Hs

V 0,0 − 4mτ (C
T
RR)∗Hs

T

)
− (D.11)(

(CS
RL + CS

LL)∗
√
q2Hs

S +mτ (C
V
LL + CV

RL)∗Hs
V,t

)
×(

(1 + CV
LL + CV

RL)
√
q2Hs

V,0 − 4mτ (C
T
LL)Hs

T

)]
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Figure D.1: The q2 distribution for benchmark WCs for models interacting with LH

neutrinos (green curves) and those interacting with RH neutrinos (red curves). The

decay rate for B̄ → Dτν (B̄ → D∗τν) is shown on top (bottom). We show the viable

LQ models whose effective operators from Tab. 4.1 are related through the symmetry

in (4.12)–(4.13). The dashed gray line is the SM prediction. The area under each

curve is proportional to its prediction for RD(∗) . Up to a rescaling factor the plots for

different types of neutrinos have indistinguishable shapes.
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Equivalently, we can write the polarization asymmetries in B̄ → D∗τν as

dΓ∗⊥
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2

τ − q2)2Re (Σ∗) ,

(D.12)

dΓ∗T
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2

√
((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2

τ − q2)2Im (Σ∗) ,

where Σ∗ is given by

Σ∗ =
3π

8q2

[
−
(

(CV
LL)
√
q2HV,− −

√
q2CV

RLHV,+ + 4CT
LLmτHT,−

)
×(

mτ (C
V
LL)∗HV,− −mτ (C

V
RL)∗HV,+ + 4

√
q2(CT

LL)∗HT,−

)
+

(
2
√
q2(CS

LL − CS
RL)∗HS + 2mτ (−1− CV

LL + CV
RL)∗HV,t

)
×(

(CV
LL − CV

RL)
√
q2HV,0 − 4CT

LLmτHT,0

)
+

(√
q2CV

RLHV,− −
√
q2(CV

LL)HV,+ + 4mτC
T
LLHT,+

)
×(

mτ (C
V
RL)∗HV,− −mτ (C

V
LL)∗HV,+ + 4

√
q2(CT

LL)∗HT,+

)
(D.13)

−
(

(CV
RR)∗

√
q2H+

V,+ −
√
q2(CV

LR)∗H−V,− + 4(CT
RR)∗mτHT2,−

)
×(

mτC
V
RRHV,+ −mτC

V
LRHV,− + 4

√
q2CT

RRHT2,−

)
+

(
2
√
q2(CS

RR − CS
LR)HS + 2mτ (−CV

RR + CV
LR)HV,t

)
×(

(CV
LR − CV

RR)∗
√
q2HV,0 + 4(CT

RR)∗mτHT,0

)
+

(√
q2(CV

LR)∗HV,+ −
√
q2(CV

RR)∗HV,− + 4mτ (C
T
RR)∗HT2,+

)
×(

mτC
V
LRHV,+ −mτC

V
RRHV,− + 4

√
q2CT

RRHT2,+

)]
Let us now move on to the forward-backward asymmetries A(∗)

FB. Here we report

the analytic results for a finer observable, namely the forward-backward asymmetry

of τ with a specific helicity. For the B̄ → Dτν decay involving the LH neutrinos we
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have

dA+
FB

dq2
= − G2

FV
2
cb

192m3
Bπ

3q2ΓB→Dτν

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)

(m2
τ − q2)2 3

2q2
Re
[(√

q2(CS
RL + CS

LL)Hs
S +mτ (C

V
LL + CV

RL)Hs
V,t

)
(
mτ (C

V
LL + CV

RL)Hs
V,0 − 4CT

LL

√
q2Hs

T

)∗]
,

(D.14)

dA−FB
dq2

= 0.

Here the superscripts ± refer to specific τ helicities. Similarly, for the right-handed

neutrinos contribution we have

dA+
FB

dq2
= 0

(D.15)

dA−FB
dq2

= − G2
FV

2
cb

192m3
Bπ

3q2ΓB→Dτν

√
((mB −mD)2 − q2) ((mB +mD)2 − q2)

(m2
τ − q2)2 3

2q2
Re
[(√

q2(CS
RR + CS

LR)Hs
S +mτ (C

V
LR + CV

RR)Hs
V,s

)
(
mτ (C

V
LR + CV

RR)Hs
V,0 − 4CT

RR

√
q2Hs

T

)∗]
.

Equivalently, for the decays into D∗ we have

dA+∗
FB

dq2
= − G2

FV
2
cb

192m3
Bπ

3q2ΓB→D∗τν

√
((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)

(m2
τ − q2)2 3

2q2
Re
[(√

q2(CS
RL − CS

LL)HS +mτ (C
V
LL − CV

RL)HV,t

)
(
mτ (C

V
LL − CV

RL)HV,0 − 4CT
LL

√
q2HT,0

)∗]
,

(D.16)

dA−∗FB
dq2

=
G2
FV

2
cb

192m3
Bπ

3q2ΓB→D∗τν
×√

((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2
τ − q2)2

(
3

4q2

)
Re
[(√

q2(CV
LL − CV

RL)(HV,− +HV,+) + 4mτC
T
LL(HT,− −HT,+)

)
(√

q2(CV
LL + CV

RL)(HV,− −HV,+) + 4mτC
T
LL(HT,− +HT,+)

)∗]
,
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for the LH neutrinos contribution. For the RH neutrino contribution we have

dA+∗
FB

dq2
= − G2

FV
2
cb

192m3
Bπ

3q2ΓB→D∗τν
×√

((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2
τ − q2)2 3

4q2

Re
[(√

q2(CV
LR − CV

RR)(HV,− +HV,+) + 4mτC
T
RR(−HT2,− +HT2,+)

)
(√

q2(CV
LR + CV

RR)(HV,− −HV,+)− 4mτC
T
RR(HT2,− +HT2,+)

)∗]
,

(D.17)

dA−∗FB
dq2

= − G2
FV

2
cb

192m3
Bπ

3q2ΓB→D∗τν
×√

((mB −mD∗)2 − q2) ((mB +mD∗)2 − q2)(m2
τ − q2)2

3

2q2
Re
[(√

q2(CS
RR − CS

LR)HS +mτ (C
V
LR − CV

RR)HV,t

)
(
mτ (C

V
LR − CV

RR)HV,0 + 4CT
RR

√
q2HT,0

)∗]
.

We note that A±,(∗)FB contain more information than the A(∗)
FB observables we studied

in this work. The experimental proposal in [41] for measuring the forward-backward

asymmetry is applicable to the total asymmetry summed over final τ helicity. It is

intriguing to find a similar proposal for measurement of A±,(∗)FB . In particular, (D.14)

and (D.15) suggest that a non-zero A−FB (A+
FB) is a clear signature of RH (LH)

neutrinos.

The numerical formulas in Sec. 4.2 are obtained by using similar form factors as

in [39], and integrating the analytic formulas in this appendix over q2. We use the

same numerical parameter values as in [60], which we list here again in Tab. D.1 for

completeness.
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