
c© 2019

Vivekanandan Balasubramanian

ALL RIGHTS RESERVED

A PROGRAMMING MODEL AND EXECUTION
SYSTEM FOR ADAPTIVE ENSEMBLE

APPLICATIONS ON HIGH PERFORMANCE
COMPUTING SYSTEMS

by

VIVEKANANDAN BALASUBRAMANIAN

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Shantenu Jha and Matteo Turilli

and approved by

New Brunswick, New Jersey

October, 2019

ABSTRACT OF THE DISSERTATION

A programming model and execution system for adaptive

ensemble applications on high performance computing

systems

by Vivekanandan Balasubramanian

Dissertation Directors: Shantenu Jha and Matteo Turilli

Traditionally, advances in high-performance scientific computing have focused on the

scale, performance, and optimization of an application with a large, single task, and

less on applications comprised of multiple tasks. However, many scientific problems are

expressed as applications that require the collective outcome of one or more ensembles

of computational tasks in order to provide insight into the problem being studied.

Depending on the scientific problem, a task of an ensemble can be any type of a program:

from a molecular simulation, to a data analysis or a machine learning model. With

different communication and coordination patterns, both within and across ensembles,

the number and type of applications that can be formulated as ensembles is vast and

spans many scientific domains, including biophysics, climate science, polar science and

earth science.

The performance of ensemble applications can be improved further by using partial

results to adapt the application at runtime. Partial results of ongoing executions can be

analyzed with multiple methods to adapt the application to focus on relevant portions of

the problem space or reduce the time to execution of the application. These benefits are

confirmed by the increasing role played by adaptivity in ensemble applications developed

ii

to support several domain sciences, including biophysics and climate science.

Although HPC systems provide the computational power required for ensemble

applications, their design and policies tend to privilege the execution of single, very large

tasks. On the biggest and busiest systems in the world, queue waiting time for each

task can reach days while lack of elastic coordination and communication infrastructure

makes distributing the execution of ensemble applications difficult. Further, access,

submission and execution methods vary across HPC systems, alongside their policies

and performance. HPC systems are increasingly displaying performance dynamism and

fluctuations due to aggressive thermal management and throttling. Together, these

factors make using HPC systems for adaptive and non-adaptive ensemble applications

challenging.

Existing solutions to express and execute ensemble applications on HPC systems

range from complex scripts and domain specific workflow systems to general purpose

workflow systems. Scripts and domain specific workflow systems serve as point solutions

often limited in functionality, usability and performance to the scope of the specific

application and the HPC system. General purpose systems, on the other hand, requires

retrofitting the ensemble applications using the tools and interfaces provided by the

system which can be challenging, when feasible.

The goal of this research is to advance the state-of-the-art by simplifying the

programmability of ensemble applications, abstracting complexity of their scalable,

efficient and robust execution on HPC systems, and, most importantly, enabling the

domain scientists to focus on the computational campaigns and algorithmic innovations

that are of importance to their science domains. In this dissertation, we describe

several science drivers that employ ensemble applications to address some of the most

challenging scientific problems of our time. We address three main challenges of

executing ensemble applications at scale on HPC resources: (i), we address application

diversity and programmability by developing a generic programming model that treats

an ‘ensemble’ as a first order concern and provides constructs specifically to express

ensemble applications; (ii) we develop a software system, called Ensemble Toolkit, to

provide scalable and robust execution of ensemble applications while abstracting the

iii

user from the architecture and policies of HPC systems, and resource and execution

management; and (iii) we propose and evaluate scheduling strategies to manage the

effect of workload heterogeneity and resource dynamism on the time to execute ensemble

applications on HPC systems. We discuss several achievements and results obtained in

various scientific domains as a consequence of the research and development described

in this dissertation.

iv

Acknowledgements

I would like to thank my advisors, Dr. Shantenu Jha and Dr. Matteo Turilli for their

guidance, support and encouragement during my PhD. I thank Dr. Jha for giving me

the opportunity to work on a diverse set of inter-disciplinary research projects. I thank

Dr. Turilli for his invaluable guidance and advice and for always being available for

helpful discussions.

I am grateful for the valuable input from my proposal and defense committee

members, Dr. Mehdi Javanmard, Dr. Saman Zonouz, Dr. Jorge Ortiz, Dr. Darrin York

and Dr. Dario Pompili. Their comments and suggestions have always been encouraging

and helpful in shaping my research efforts throughout my PhD.

I am fortunate to have worked with helpful and dedicated collaborators in all projects.

I would like to thank Weiming Hu and Dr. Cervone from Pennsylvania State University,

Wenjie Li, Dr. Lefebvre, Uno A. Vaaland and Dr. Tromp from Princeton University,

Eugen Hruska and Dr. Clementi from Rice University, Dr. Laughton from University

of Nottingham and Travis Jensen and Dr. Shirts from University of Colorado. My

sincerest thanks to all other collaborators and co-authors of my publications.

I would like to thank all members of the RADICAL group, Andre Merzky, Ioannis

Paraskevakos, Jumana Dakka, Ming Tai Ha, Mark Santcroos, Hyungro Lee, Aymen

Alsadi and other past members of the group, for the valuable discussions and encourage-

ment.

I am grateful for the financial support provided by the Department of Electrical

and Computer Engineering, Rutgers University and National Science Foundation (NSF)

and the computational grants provided by the Department of Energy and NSF, which

have provided me with the necessary resources to carry on my research and finish this

dissertation.

v

I am thankful to my parents Dr. P. Balasubramanian and Mrs. B. Manjula, and my

wife, Shruthi Ravichandran for their understanding and encouragement. Their support

gives me the strength and confidence to pursue my dreams.

vi

Dedication

To my parents, and my wife Shruthi.

vii

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . vii

List of Tables . xii

List of Figures . xiii

1. Introduction . 1

1.1. Challenges . 3

1.2. Research Contributions . 5

1.3. Dissertation Organization . 6

2. Ensemble Applications . 8

2.1. Science Drivers . 9

2.1.1. Extensible Tools for Advanced Sampling and analYsis (ExTASY) 9

2.1.2. Seismic Tomography . 12

2.1.3. High Resolution Meteorological Probabilistic Forecasts 12

2.1.4. Replica Exchange . 15

2.1.5. High Throughput Binding Affinity Calculation 16

2.2. Current Solutions: Tools, Systems, and Services 17

2.3. Summary . 19

3. Ensemble Toolkit . 20

3.1. Requirements . 21

3.1.1. Functional requirements . 21

viii

3.1.1.1. Application Portability 21

3.1.1.2. Application Diversity 21

3.1.1.3. Fault Tolerance . 22

3.1.2. Performance requirements . 22

3.1.2.1. Scalability . 22

3.1.2.2. Performance Invariance 22

3.1.3. Usability requirements . 23

3.1.3.1. Application Creation 23

3.1.3.2. Resource and Execution Management 23

3.2. Design . 23

3.2.1. Building Blocks approach . 23

3.2.2. Programming Model . 24

3.2.3. Architecture . 25

3.2.4. Execution Model . 27

3.2.5. Failure Model . 28

3.3. Implementation . 29

3.3.1. Communication infrastructure: RabbitMQ 29

3.3.2. Runtime system: RADICAL Pilot 30

3.4. Experiments . 32

3.4.1. Characterization of overheads . 32

3.4.1.1. Performance of EnTK Prototype 32

3.4.1.2. Overheads, Data Staging and Task Execution Time . . 33

3.4.2. Scalability . 36

3.4.2.1. Weak scalability . 36

3.4.2.2. Strong scalability . 37

3.5. Domain science enabled . 38

3.5.1. ExTASY . 38

3.5.2. Seismic Tomography . 39

3.5.3. High Resolution Meteorological Probabilistic Forecasts 40

ix

3.5.4. High Throughput Binding Affinity Calculation 41

3.5.5. Other science applications . 42

3.6. Summary . 42

4. Adaptive Ensemble Applications . 46

4.1. Adaptive Science Drivers . 46

4.1.1. Expanded Ensemble . 47

4.1.2. Markov State Modeling . 48

4.1.3. Adaptive versions of previous science drivers 49

4.2. Challenges . 50

4.3. Current Solutions: Tools, Systems, and Services 50

4.4. Summary . 52

5. Ensemble Toolkit for Adaptive Ensemble Applications 53

5.1. Understanding workflow adaptivity . 53

5.1.1. Types of Adaptations . 54

5.1.1.1. Task-count adaptation 55

5.1.1.2. Task-order adaptation 55

5.1.1.3. Task-property adaptation 55

5.1.2. Challenges in Encoding Adaptive Workflows 56

5.2. Enhancements in Ensemble Toolkit . 57

5.3. Experiments . 58

5.3.1. Characterization of adaptation overheads 59

5.3.2. Validation of Science Driver Implementations 62

5.3.2.1. Expanded Ensemble . 62

5.3.2.2. Markov State Modeling 64

5.4. Domain science enabled . 66

5.4.1. Evaluation of Methodological Efficiency using Adaptive Capabili-

ties in EnTK . 66

5.4.2. Other science enabled . 68

x

5.5. Summary . 68

6. Heterogeneity and Dynamism . 70

6.1. Current Solutions: Tools, Systems, and Services 71

6.2. Late-binding strategy . 72

6.3. Workload Management Emulator . 75

6.3.1. Design . 76

6.3.2. Implementation . 78

6.4. Theoretical and empirical evaluation . 78

6.4.1. Combination 1: Homogeneous and Static Workload, Homogeneous

and Static Resource . 79

6.4.2. Combination 2: Homogeneous and Static Workload, Homogeneous

and Dynamic Resource . 84

6.4.3. Combination 3: Heterogeneous and Static Workload, Homoge-

neous and Dynamic Resource . 91

6.5. Impact and challenges . 98

6.6. Summary . 99

7. Conclusion . 100

7.1. Future Work . 101

References . 103

xi

List of Tables

3.1. Parameters of the experiments plotted in Figure 5.3. 34

5.1. Parameters of the experiments plotted in Fig. 5.3 60

6.1. Tabular representation of the problem space 75

6.2. Parameters to investigate combination 1 using the emulator 80

6.3. Parameters to investigate combination 2 using the emulator 86

6.4. Parameters to investigate combination 3 using the emulator 92

xii

List of Figures

2.1. ExTASY: Iterative simulation analysis loops for the Diffusion-Map-directed-

MD technique . 10

2.2. ExTASY: Iterative simulation analysis loops for the CoCo-MD technique 11

2.3. Iterative workflow for seismic inversion tomography 13

2.4. Iterative workflow for the adaptive unstructured analog algorithm . . . 14

2.5. Workflow for the synchronous replica exchange algorithm 15

2.6. Workflow for the ESMACS HT-BAC Protocol 17

2.7. Workflow for the TIES HT-BAC Protocol 17

3.1. Diagrammatic representation of an application consisting of a set of

pipelines with varying number of stages and tasks. 25

3.2. EnTK architecture and execution model. Components’ (purple) sub-

components (green) use queues (blue and orange) to communicate and

coordinate the execution of an application via a chosen RTS (gray). . . 26

3.3. RADICAL-Pilot (RP) architecture and execution model. Gray: machines;

green: pilot; purple: modules; yellow: components; red: tasks. 31

3.4. Execution time and memory consumed by EnTK prototype with multiple

producers and consumers and 106 tasks. 33

3.5. Overheads and Task Execution Time as function of (a) Task Executable

(Experiment 1), (b) Task Duration (Experiment 2) (c) Computing Infras-

tructure (Experiment 3) (d) Application Structure (Experiment 4). . . . 43

3.6. Weak scalability on Titan: 512, 1,024, 2,048, and 4,096 1-core tasks

executed on the same amount of cores. 44

3.7. Strong scalability on Titan: 8,192 1-core tasks are executed on 1,024,

2,048 and 4,096 cores. 44

xiii

3.8. Task Execution Time of forward simulations using EnTK at various values

of concurrency. 44

3.9. Predictions from random and adaptive methods. (a) theoretical true

value, (b) the interpolated map from 1,800 randomly picked locations, (c)

the interpolated map from 1,800 locations identified using AUA, (d) box

plots of the errors for both implementations. 45

4.1. Schematic of the expanded ensemble (EE) science driver. Two versions

of EE are implemented: (1) local analysis where analysis only data local

to its ensemble member; and (2) global analysis where analysis uses data

from other ensemble members (represented by dashed lines) 48

4.2. Schematic of the Markov State Model science driver. 49

5.1. Adaptivity Loop: Sequence of operations in executing an adaptive

workflow . 54

5.2. Post execution properties of a Stage consisting of one Task. At the end

of the Stage, ’function 1’ (boolean condition) is evaluated to return a

boolean value. Depending on the value, ’function 2’ (true) or ’function 3’

(false) is invoked. 57

5.3. EnTK Adaptation Overhead and Task Execution Time for task-count (i,

ii, and iii), task-order (iv), and task-property (v) adaptations. 61

5.4. Validation of EE implementation: Observed variation of free energy

estimate for methods 1–4. Reference is the MBAR estimate and standard

deviation of four 200ns fixed weight expanded-ensemble simulations. . . 64

5.5. Mean eigenvalue attained by the macro-states (top) and micro-states

(bottom) by Alanine dipeptide after aggregate simulation duration of

100ns implemented using EnTK compared against reference data. 65

5.6. Convergence of expanded ensemble implementation: Observed conver-

gence behavior in methods 1–4. Reference is the MBAR estimate of

the pooled data and the standard deviation of the non-pooled MBAR

estimates of four 200ns fixed weight expanded ensemble simulations. . . 67

xiv

6.1. Problem space . 75

6.2. Architecture of the WLMS Emulator . 76

6.3. Order of the four operations performed by WLMS: A>B>C>D 77

6.4. Experiment 1: TTX as a function of the total number of tasks for early-

and late-binding strategies with random and L2FF criteria. Number of

operations performed by a task (T) = 512, Core performance (K) = 16,

Number of cores (R) = 128 . 81

6.5. Experiment 2: TTX as a function of the total number of tasks for early-

and late-binding strategies with random and L2FF criteria. Number of

operations performed by a task (T) = 512, Core performance (K) = 32,

Number of cores (R) = 128 . 82

6.6. Experiment 3: TTX as a function of the total number of tasks for early-

and late-binding strategies with random and L2FF criteria. Number of

operations performed by a task (T) = 512, Core performance (K) = 64,

Number of cores (R) = 128 . 83

6.7. Experiment 1: TTX as a function of resource dynamism and total number

of tasks for early- and late-binding strategies with random and L2FF

criteria. Number of operations performed by a task (T) = 512, Mean

core performance (K) = 16, Number of cores (R) = 128, Total number of

tasks = 128(a), 256(b), 512(c) and 1024(d) 87

6.8. Experiment 2: TTX as a function of resource dynamism and total number

of tasks for early- and late-binding strategies with random and L2FF

criteria. Number of operations performed by a task (T) = 1024, Mean

core performance (K) = 32, Number of cores (R) = 128, Total number of

tasks = 128(a), 256(b), 512(c) and 1024(d) 88

6.9. Experiment 3: TTX as a function of resource dynamism and total number

of tasks for early- and late-binding strategies with random and L2FF

criteria. Number of operations performed by a task (T) = 2048, Mean

core performance (K) = 64, Number of cores (R) = 128, Total number of

tasks = 128(a), 256(b), 512(c) and 1024(d) 89

xv

6.10. TTX as a function of resource dynamism and total number of tasks

for early- and late-binding strategies with random and L2FF criteria.

Mean number of operations performed by a task (T) = 512, Workload

heterogeneity = 12.5% of T, Mean core performance (K) = 16, Number

of cores (R) = 128, Total number of tasks = 128(a), 256(b), 512(c) and

1024 (d) . 93

6.11. TTX as a function of resource dynamism and total number of tasks

for early- and late-binding strategies with random and L2FF criteria.

Mean number of operations performed by a task (T) = 512, Workload

heterogeneity = 25% of T, Mean core performance (K) = 16, Number

of cores (R) = 128, Total number of tasks = 128(a), 256(b), 512(c) and

1024 (d) . 94

6.12. TTX as a function of resource dynamism and total number of tasks

for early- and late-binding strategies with random and L2FF criteria.

Mean number of operations performed by a task (T) = 512, Workload

heterogeneity = 50% of T, Mean core performance (K) = 16, Number

of cores (R) = 128, Total number of tasks = 128(a), 256(b), 512(c) and

1024 (d) . 95

6.13. TTX as a function of resource dynamism and total number of tasks

for early- and late-binding strategies with random and L2FF criteria.

Mean number of operations performed by a task (T) = 512, Workload

heterogeneity = 100% of T, Mean core performance (K) = 16, Number

of cores (R) = 128, Total number of tasks = 128(a), 256(b), 512(c) and

1024 (d) . 96

xvi

1

Chapter 1

Introduction

High-performance computing (HPC) entails the use of advanced hardware and software

capabilities on supercomputers to implement massively parallel computational techniques

that solve complex problems through models, simulations and analyses. HPC has become

widespread on all aspects of government, academia and industry [1, 2], touching multiple

facets of oil and gas exploration, drug discovery, weather prediction and climate modeling,

financial modeling, design and optimization of consumer product, advanced business

analytics and several other applications [3]. HPC also plays essential roles in national

security in communications, cryptography, signals processing, and weapons design and

testing [4].

The status-quo process of research and development in these domains encompasses,

at a high level, building a physical prototype, performing experiments, analyzing the

results to validate, and verify and repeat. By introducing the capability to model

and simulate with great accuracy, HPC has transformed the paradigm of research and

development. In our research, we focus on using HPC systems for scientific applications

in molecular science, climate science and earth science – where complex multivariate

physical systems need to be modeled and simulated to understand the behavior of the

various components of the system. Our solutions, however, are applicable and extensible

to applications in other domains.

Traditionally, advances in scientific HPC have focused on the scale and performance

of an application with a large but single task. Depending on the science domain, this

task could be an independent simulation as in seismology [5], data analysis processes as

in climate science [6], or machine learning models as in molecular dynamics [7, 8] that

uses a combination of compute and data resources on HPC systems. “Task”, here, is

2

used to represent a stand-alone process that has well defined executable, inputs, outputs,

termination criteria, and dedicated resources.

Moore’s Law [9] describes the technology trend that transistor density on processors

doubles every two years. Increase in density is accompanied with decrease in the size

of the transistors. Dennard scaling behavior describes that the clock frequency of a

transistor can be increased with decreasing the size of the transistor [10]. Moore’s law

coupled with Dennard scaling resulted in exponential performance increases, and along

with micro-architecture, architecture, and compiler advances contributed to maintain

the focus of scientific applications on the performance of a single task [11].

After close to 20 years of exponential growth, around 2005, this growth in com-

putational power ceased [11]. Two specific factors, that depended on the size of the

transistor, limited this growth [12, 13]: (i) the voltage threshold to detect on/off signals

could not be reduced; and (ii) the thickness of the gate insulators could not be reduced.

Reducing the voltage threshold or insulator thickness would increase the leakage current.

Increasing the clock frequencies under such constraints would have led to unsustainable

levels of power and heat dissipation.

Computational capacity has since then increased in the number of processors on a

single chip and not in the processing power of a single processor [11]. HPC systems,

offering large computational capacity, consist of a large number of nodes each consisting

of several multi-core processors (CPUs) [14, 15] and specialized accelerators [16, 17].

Consequently, applications employed algorithms that utilized this new dimension of

computational growth by executing multiple tasks concurrently and using their collective

results to solve their scientific problems faster.

Applications where the collective outcome of a set of tasks is of importance are

called ensemble applications, where “ensemble” refers to the set of tasks whose collective

outcome is to be evaluated. Individual tasks within the set might be coupled or uncoupled.

When coupled, tasks might have global (synchronous) or local (asynchronous) exchanges,

and regular or irregular communication. This is in contrast to traditional parameter

sweeps, or high-throughput computing (HTC) applications, where tasks are typically

identical, uncoupled, idempotent and can be executed in any order.

3

Many scientific applications in the field of molecular sciences, computational bi-

ology [18, 19, 20, 21, 22], seismology [5, 23], weather forecasting [24, 25, 26, 27, 28],

bio-informatics [29] are increasingly reliant on the ability to run ensemble-based methods

to make scientific progress. This is true for applications that are both net producers

of data, as well as aggregate consumers of data. The number and type of applications

that can be formulated as ensembles is vast and spans many scientific domains. Some

scientific problems that have traditionally been expressed as a single computational

task must be reformulated using ensembles so as to overcome limitations of single task

execution [30]. For example, in bio-molecular sciences, due to the end of Dennard scaling,

and thus limited strong scaling of individual molecular simulations, there has been a

shift from running single long running tasks towards multiple shorter running tasks, as

evidenced by a proliferation of ensemble-based algorithms [21, 22].

1.1 Challenges

The execution of ensemble applications on HPC systems presents three main challenges:

(1) encoding and decomposing scientific problems into algorithms that are amenable to

a distributed and coordinated solution; (2) sizing, acquiring, and managing resources for

the execution; and (3) managing the execution of the ensembles of the application on

the acquired resources. Encoding scientific problems into ensemble applications requires

describing tasks with heterogeneous properties, specifying if and how tasks are grouped

into ensembles, and specifying any dependencies between tasks and ensembles. It is

a challenge to provide an generic, domain-independent interface that enables such a

description of ensemble applications.

Sizing resources for ensemble applications depends on calculating the resources needed

by each task and those needed by the set of tasks that can be executed concurrently.

The challenge of sizing resource increases in complexity when the number of tasks to be

executed concurrently is greater than the number of available resources on the HPC

system. Acquisition and management of resources requires knowledge of the queuing

system used, system policies enforced and software availabilities on the HPC system.

The challenge increases manifold as each HPC system differs from another due to

4

combination of these factors.

Managing the execution of the ensembles requires knowledge of available task launch-

ing methods specific to the HPC system, system architecture and policies, and often

is bound to the software packages available on the system. Again, the challenge is

increased as a consequence of heterogeneity across HPC systems.

Often, there is a friction between the resource requirements of an ensemble and the

traditional resource management capabilities of HPC systems. Each task of the ensemble

has to be queued onto an HPC system, incurring into a long queue waiting time that

adds up to the total time to completion of the ensemble. Alternatively, ensembles of

tasks may be executed using multi-processing libraries such as MPI [31]. This results in

three drawbacks: (i) users require knowledge of both the deployment and usage of MPI;

(ii) application robustness depends on the fault-tolerance of MPI; and (iii) mismatch

of objectives as MPI is suitable to execute tasks that are homogeneous and have no

interdependencies.

Finally, the distributed execution of an ensemble and the adaptive requirements

of the application require tailored coordination and communication infrastructure and

protocols, not made readily available to the user via the software and environment

provisioned on HPC systems. These factors make using HPC resources for ensemble

applications, adaptive and non-adaptive, very challenging, when not unfeasible.

In response to these challenges and requirements, the growing importance of ensemble-

based applications in scientific computing on HPC systems, and the absence of mid-

dleware providing scalable, extensible and general solutions, we have designed and

implemented the Ensemble Toolkit (EnTK). EnTK promotes ensembles to a high-

level programming abstraction, providing specific interfaces and execution models for

ensemble-based applications. EnTK is engineered for scale and a diversity of computing

platforms and runtime systems, and it is agnostic of the size, type and coupling of the

tasks comprising the ensemble.

5

1.2 Research Contributions

The goal of this research is to advance the state-of-the-art by simplifying the programma-

bility of ensemble applications, abstracting complexity of their scalable and robust

execution on HPC systems, and, most importantly, enabling the domain scientists to fo-

cus on the computational campaigns and algorithmic innovations that are of importance

to their science domains.

Firstly, we describe the design, architecture and implementation of EnTK, an

ensemble execution system that provides a programming model specific to the encoding of

ensemble applications. We characterize its overheads, analyze its weak and strong scaling

on a leadership-class HPC systems and compare the performance against requirements

from various science drivers. We show that EnTK can support diverse types of ensemble

applications, at scale and on several HPC systems, introducing acceptable overheads.

We describe the science enabled by this work in various domains.

Secondly, we identify the types of adaptivity common in ensemble applications

and enhance EnTK with adaptive capabilities. We characterize the cost of supporting

adaptive capabilities in EnTK and show that it introduces acceptable overheads. We

implement and execute novel adaptive applications at scale, validate the scientific results

obtained from these applications and describe other novel applications developed due to

EnTK’s adaptive capabilities. As such, we propose EnTK as an important addition to

the suite of tools in support of production-grade scientific computing.

Lastly, we discuss the effect of heterogeneity and dynamism in workloads derived

from ensemble applications and resources on HPC systems on the total time to execute

(TTX) the application. We perform theoretical and empirical evaluations with different

levels of heterogeneity and dynamism to study their effects on TTX. We propose a late-

binding strategy that can be used to manage their effects and provide up to 0.1x− 100x

reduction in TTX compared to other strategies.

EnTK exemplifies the building blocks approach for the design, development and

integration of middleware [32]. This approach advocates a sustainable ecosystem

of software components from which tailored workflow systems can be composed, as

6

opposed to having to fit workflows to pre-existing frameworks. The building blocks

approach overcomes the limited flexibility of monolithic workflow systems by enabling

composability and extensibility, and thereby supporting the wide range of workflow

requirements. As circumstantial evidence, EnTK has been used to develop several

diverse domain-specific workflow systems [32].

1.3 Dissertation Organization

The rest of the dissertation is divided into five chapters. In Chapter 2, we present

ensemble applications in greater detail and describe the initial science drivers that

motivated this work. The challenges in executing these ensemble applications on HPC

systems along with the current general-purpose and special-purpose solutions available

to the domain scientists.

In Chapter 3, we describe the requirements, design and implementation of EnTK. We

characterize the performance overhead and scalability of EnTK and detail the domain

science enabled by EnTK in the various science drivers.

In Chapter 4, we present adaptive ensemble applications and their significance in

advancing the status quo in various science domains. We describe the science drivers

that employ adaptive ensemble applications and the challenges in executing them on

HPC systems. We conclude this chapter with a description of the current solutions

available to the domain scientists to address these challenges.

In Chapter 5, we identify the types of adaptivity that is common in adaptive ensemble

applications and the challenges in incorporating in execution systems. We discuss the

enhancements made to EnTK to support adaptivity. We, then, characterize the overhead

of enabling adaptivity in EnTK, validate the implementation of two science drivers

using these capabilities. We then discuss the science enabled by these capabilities in

various domains.

In Chapter 6, we discuss the heterogeneity and dynamism prevalent in workloads

derived from ensemble applications and resources on HPC systems. We perform theo-

retical and empirical evaluations to derive insight on their effects on TTX and propose

7

the late-binding strategy to manage the same.

8

Chapter 2

Ensemble Applications

A large set of scientific applications involve running multiple simulations that try

to recreate real-world events. These simulations are numerical computations with

constraints and boundaries that realize the physical laws governing the real-world events.

The results of these simulations are analyzed to test their feasibility against real-world

events.

The goals of these applications depend on the scientific domain in which they

are pursued. In molecular science [30, 33, 21, 22], they are used to understand the

properties of simple and complex biomolecules. In drug discovery [34], they are used

to study the interaction between drugs and maligned proteins to identify feasible drug

candidates. As such, these computational approaches complement the expensive nature

of wet lab experiments in these science domains. Similar applications can be found

in bio-informatics [29], uncertainty quantification [35, 28] and several other scientific

domains.

Another type of scientific application consists of large number of data processing tasks

that analyze data from sensors and devices that measure real-world events. In climate

science [24, 25, 26, 36, 27], they are used to construct accurate models for short-term

weather and long-term climatic predictions. In several seismologic applications [23, 37,

38], applications use both simulations and data processing tasks to analyze seismic wave

data to understand their propagation around the planet, understand fault lines, and

model the crust of the earth.

Such applications where the collective outcome of a set of tasks is of importance

are called ensemble applications, where ”ensemble” refers to the multiple tasks of the

application whose collective outcome is to be evaluated. Task, in this dissertation,

9

is a term for a stand-alone process that has well defined input, output, termination

criteria, and dedicated resources. Specifically, a task is used to represent an independent

simulation or data analysis process, running on one or more cores of a HPC system.

Ensemble applications, as exemplified above, provide as novel solutions to scientific

problems that could not be solved using existing approaches and improve upon existing

approaches reaching unprecedented scales to solve bigger problems faster and better.

Understanding the patterns and requirements of ensemble applications is imperative

to, both, support the expression and execution of existing ensemble applications and

to enable the exploration of novel ensemble applications. In this chapter, we discuss

five ensemble applications, some pre-existing and some novel approaches, that serve as

science drivers informing us about the requirements and challenges of domain scientists

employing these applications.

2.1 Science Drivers

Ensemble applications span multiple science domains as described above and involve two

computational layers: at the lower level each task executes a domain specific program;

at the higher level, an algorithm codifies the coordination and communication between

different ensembles and within an ensemble. The latter specifies set of task dependencies

and is referred as a workflow or task-graph (TG).

There are five ensemble applications from the molecular science, earth science, climate

science and drug discovery domains that serve as the science drivers informing us about

the requirements and challenges of domain scientists and motivating the research and

development described in this dissertation. We describe the workflow of these drivers,

overview of the scientific problem addressed and, wherever possible, the scales at which

these ensemble applications are to be executed.

2.1.1 Extensible Tools for Advanced Sampling and analYsis (ExTASY)

Molecular dynamics (MD) simulations with all-atom force-fields allow simulating protein

folding and protein kinetics with good accuracy. Reaching biologically relevant scales of

10

MD Simulation 1

LSDMap

MD Simulation 2 MD Simulation N

Reweighting

Initialization

Ensemble

M iterations

Translation

Visualization

Selection

Figure 2.1: ExTASY: Iterative simulation analysis loops for the Diffusion-Map-directed-
MD technique

protein folding or drug binding is limited by the required large computational resources

and long simulation times. One method of reducing both the computational resources

and the simulation times is advanced sampling [39, 20, 40, 19, 41]. Advanced sampling

iteratively analyzes the already explored relatively short MD simulations and iteratively

adds new short MD simulations from different restart conformations in an informed

way to efficiently reach a goal such as crossing rare transition barriers, folding a protein

or recover the protein dynamics of a protein. The exact strategy describing where

to restart new MD simulations determines the success of this approach, and several

different methods have been proposed and investigated [18, 19, 42, 43, 40].

The ExTASY [44] project requires implementation of two advanced sampling algo-

rithms: Diffusion-Map-directed-MD (DM-d-MD) [42] and CoCo-MD [43]. The DM-d-MD

technique (Fig. 2.1) improves the computational time spent by choosing which replicas

of the protein are used to run the simulations. When replicas are too close to each

11

MD Simulation 1

CoCo

MD Simulation 2 MD Simulation N

Initialization

Ensemble

M iterations

Translation

Visualization

Figure 2.2: ExTASY: Iterative simulation analysis loops for the CoCo-MD technique

other, the MD trajectories will be similar. The information gain from simulating MD

with close replicas is small. Part of the replicas which are too close to each other are

deleted. To hold the total number of replicas constant, replicas which are too far apart

from each other are duplicated. In DM-d-MD, a non-linear dimensionality reduction

technique, the Locally Scaled Diffusion Map (LSDMap) [45] is used to calculate the

distance between different replicas. The deletion or duplication of replicas would destroy

the correct sampling of the protein. By changing the weights of individual replicas, the

correct sampling of the protein is obtained.

The CoCo (Complementary Coordinates) technique (Fig. 2.2) was designed as a

method to enhance the diversity of ensembles of molecular structures of the type produced

by NMR structure determination. The method involves the use of PCA [46, 47, 48]

in Cartesian space to map the distribution of the ensembles in a low (typically 2-4)

dimensional space, and then the identification of unsampled regions. CoCo generates

new conformations for the molecule that would correspond to these regions. These new

conformations become the start points for the next iteration of MD simulations. The

method is agglomerative - all simulation data generated, current and historic, is used

for each analysis.

Both the techniques require O(10)-O(100) iterations of the simulation-analysis loop

12

with O(100)-O(1000) simulations to study sufficiently the physical events and interactions

of medium to large physical systems.

2.1.2 Seismic Tomography

Inversion of full-waveform, wide-bandwidth seismic data [23] is one of the most powerful

tomographic technique to study the Earth’s interior. Scaling this technique is challenging,

mostly because of the amount of computational resources and human labor it needs.

These challenges require a more automated approach to the management and execution

of the workflow.

Figure 2.3 shows a high level view of the workflow to perform seismic tomography.

Seismic data (i.e., seismograms) of physical quantities, like displacement, velocity,

acceleration or pressure are recorded as a time series. The goal of the science driver is

to iteratively minimize differences between observed and corresponding synthetic data

through a pre-defined misfit function. As the adjoint-based optimization procedure is

carried on and the data misfit decreases, the model gets closer to reality.

The science driver requires the assimilation of data from about 6,000 earthquakes.

Forward and adjoint simulations are the most computationally expensive parts of the

workflow, each running on 384 GPUs for a total of 10 million core-hours per iteration.

Data processing is relatively computationally inexpensive, utilizing about 48,000 core-

hours in each iteration. Post-processing takes about 10,000 core-hours while optimization

takes about 1 million core-hours. Currently, each part of the workflow relies on a Python-

based proto-workflow management system, Seisflow [49]. However, scaling to higher

resolutions and assimilating data from all 6,000 earthquakes requires more automation

to ensure reliability, minimize errors at the user level and lower the overall time to

solution.

2.1.3 High Resolution Meteorological Probabilistic Forecasts

Analog Ensemble (AnEn) [6] methodology has been used to generate high-resolution,

probabilistic forecasts for environmental variables like temperature or cloud cover.

Relationships between current and past forecasts from the Weather Research and

13

Mesh Creation

Weights Computation

Kernel Summation

Pre-conditioning
Regularization

Optimization Routine

Model Update

Forward Simulation 2Forward Simulation 1 Forward Simulation N

Data Processing 2Data Processing 1 Data Processing N

Source Creation 2Source Creation 1 Source Creation N

Adjoint Simulation 2Adjoint Simulation 1 Adjoint Simulation N

Ensemble

Ensemble

Ensemble

Ensemble

Figure 2.3: Iterative workflow for seismic inversion tomography

14

Identify search space

Error computation

Compute AnEn
for subregion 2

Compute AnEn
for subregion 1

Compute AnEn
for subregion N

Ensemble

Preprocess forecasts

Generate grids

Visualization

Figure 2.4: Iterative workflow for the adaptive unstructured analog algorithm

Forecast model (WRF) data to generate an analog ensemble for a given time and

location. Our implementation finds the most similar historical forecasts, based on a

similarity metric. The observations associated with the most similar past forecasts are

used as analogs.

The goal of the science driver is to implement a dynamic iterative search process,

Adaptive Unstructured Analog (AUA) algorithm, which generates analogs at specific

geographical locations, and interpolates the analogs using an unstructured grid. In

this way, we avoid computing analogs at every available location, noting that for some

output variables, such as temperature, the highest resolution of the analogs is required

only at specific regions, where drastic gradient changes occur.

Figure 2.4 shows the workflow of the AUA algorithm. The initialization step specifies

the search space and the test space, and sets up starting parameters for the AnEn. The

preprocessing step generates preparatory data for the subsequent steps. The largest

amount of computation occurs in the iterative computation step where analogs are

computed and aggregated multiple times until the available resources are exhausted, or

15

MD Simulation 2MD Simulation 1 MD Simulation N Ensemble

Exchange 2Exchange 1 Exchange N Ensemble

Barrier

M iterations

Initialization

Barrier

Figure 2.5: Workflow for the synchronous replica exchange algorithm

the prediction error is below a given threshold. The visualization step interpolates the

analogs to generate the forecast solution.

2.1.4 Replica Exchange

Replica Exchange is a class of methods [50] that is popularly used to enhance sampling

in molecular simulations. Although these methods were introduced for Monte Carlo

methods, their use in molecular science has grown rapidly. Replica Exchange based

MD is used in a range of scientific disciplines including chemistry, physics, biology and

materials science.

Many MD programs [51, 52, 53] offer the capability to perform replica exchange.

These implementations demonstrate high performance but have several limitations due to

the tight coupling of the replica exchange method and the MD program implementation.

These programs are highly optimized code that often require hundreds of human years for

development. As such the tight coupling results in duplication of functionality between

different MD programs, localization of novel capabilities to specific MD programs and

limits the research in new methods as these researchers are not always fully prepared to

handle the complexity of the MD programs. Thus, the tight integration introduces a

barrier to methodological advances and extensibility.

The goal of this science driver is to separate the MD simulations and exchange pro-

grams from the implementation of the replica exchange method. As shown in Figure 2.5

there are phases: one phase is comprised of MD simulations of N different replicas

16

of the original system, where each replica has different thermodynamic configuration.

The second phase involves exchanges of the thermodynamic configurations between

replicas using Metropolis-like acceptance criterion. Exchanges of temperature [33],

hamiltonians [54] and pH values [55] are to be supported.

2.1.5 High Throughput Binding Affinity Calculation

The US currently spends up to $37 billion on the development of drugs to treat

cancer [56, 57]. Targeted kinase inhibitors (TKIs) have become increasingly prominent

in the treatment of cancer. TKIs have been developed to selectively inhibit kinases

involved in the signaling pathways that control growth and proliferation, which often

become dys-regulated in cancers. This targeting of specific cancers reduces the risk of

damage to healthy cells and increases treatment success.

Unfortunately, the development of resistance to these drugs limits the amount of

time that patients can derive benefits from their treatment. Many cancer centers have

begun deep sequencing of patient tumors to identify the genetic alterations driving

individual cancers. The ultimate goal is to make individualized therapeutic decisions

based upon these data via precision cancer therapy.

The goal of the High Throughput Binding Affinity Calculation (HT-BAC) science

driver is to implement the ESMACS [34] (Fig. 2.6) and TIES [58] (Fig. 2.7) protocols at

scale on HPC systems. They are two free energy calculation protocols that implement

absolute and relative methods, respectively. Absolute free energy methods calculate

the binding affinity of a single drug molecule to a protein, while relative methods

calculate the difference in binding affinity between two drug molecules. With 100s of

drug candidates to analyze, multiple instance of ESMACS and TIES are to be executed

concurrently in order to determine the best drug candidate for the patient.

In the ESMACS protocol, there are 25 instances of a 3-step sequence, termed as a

replica, that needs to be executed. The minimization and equilibration are performed to

bring the starting configuration to a stead-state value after which the production-scale

simulation can be performed. Each replica is followed by an analysis to determine the

accuracy of the standard free energy calculation made by the simulation.

17

Minimization 1 Minimization 2 Minimization 25

Equilibration 1 Equilibration 2 Equilibration 25

MD Simulation 1 MD Simulation 2 MD Simulation 25

Analysis 1 Analysis 2 Analysis 25

Figure 2.6: Workflow for the ESMACS HT-BAC Protocol

Minimization 1 Minimization 13 Minimization 65

Equilibration 1 Equilibration 13 Equilibration 65

MD Simulation 1 MD Simulation 13 MD Simulation 65

Local Analysis 1 Local Analysis 5

Minimization 53

Equilibration 53

MD Simulation 53

Global Analysis

Figure 2.7: Workflow for the TIES HT-BAC Protocol

In the TIES protocol, there are 65 replicas, similar to ESMACS, but are followed by

5 local analyses each operating over 13 replicas. The 5 local analyses are followed by a

global analysis to integrate the thermodynamic calculations across all the replicas. As

seen in Figures 2.6 and 2.7, in this science driver, we have an ensemble of concurrent

replicas in contrast to the previous science drivers.

2.2 Current Solutions: Tools, Systems, and Services

ensemble applications span several scientific domains and vary in their communication

and coordination patterns as exemplified in our science drivers above. As described in §1,

there are challenges in encoding ensemble applications, sizing, acquiring and managing

18

resources and managing the coordinated execution of ensembles of the application.

Several current solutions that address some, but, not all the challenges.

Executing ensemble applications on HPC systems requires knowledge of resource,

data and execution management, specific to the HPC system. Several “middleware” [59]

frameworks have been developed to abstract execution details and enable execution

of ensemble applications. Software development kits such as gSOAP [60] enable web

services for HPC applications. Ninf-G [61] and OmniRPC [62] provide client/server-

based frameworks for distributed programming. These solutions provide methods to

launch application tasks on remote machines but leave the details of task scheduling,

resource and data management, and fault tolerance to the user.

Hadoop and its ecosystem have been ported to HPC systems [63, 64, 65], enabling

the use of the MapReduce programming model. In this model, tasks are implemented as

functions and the data movement is internally handled. While some ensemble applications

are data-flow oriented and thus amenable to be implemented with MapReduce, most

of the scientific applications require more flexible and coarse-grained notion of tasks,

where a task is a program which may implement different programming models such as

MPI, MapReduce, parameter sweep, etc.

Feature-rich workflow systems such as Kepler [66], Swift [67], and Pegasus [68] provide

end-to-end capabilities such as resource and execution management, fault tolerance,

monitoring and provenance. However, encoding applications using these systems requires

acquiring specific knowledge, including learning new languages and paradigms. Using

these systems often requires strong collaboration between the domain scientists and the

system developers, even in the presence of informative documentation, as adapting these

systems to user requirements is non-trivial due to their feature richness and end-to-end

design.

Light-weight workflow systems such as Ruffus [69], COSMOS [70], and GXP Make [71]

limit the capabilities and prioritize interface simplicity. Whereas, special-purpose

workflow systems such as Galaxy [72], Taverna [73], BioPipe [74], and Copernicus [75]

implement specific algorithms and focus on providing tailored interfaces to domain

scientists. These systems, similar to several others, have been developed from scratch

19

due to not being able to use existing solutions [76].

One of the limitations observed in existing solutions is that functional and perfor-

mance enhancements are localized to one framework and cannot be easily ported to other

systems. This results in either retrofitting applications in existing solutions or developing

new solutions from scratch. In the next chapter, we discuss the building blocks approach

which motivates composability and reusability of independent systems to build workflows

and workflow systems. We discuss EnTK which enables composition of application using

user facing constructs and builds upon and reuses existing execution systems. Similar

approaches have been explored by Tigres [77] for application composability but it does

not reuse existing systems.

2.3 Summary

In this chapter, we described the different scenarios in which ensemble applications are

employed and their significance and impact in their respective science domains. We

discussed five science drivers from molecular science, earth science, climate science and

drug discovery, that informed us about the requirements and challenges of domain scien-

tists employing these applications. Some of these science drivers are novel applications

and the others are improvements to existing applications to scale to bigger physical

problems. We reviewed some of the existing solutions to enable the expression and

execution of ensemble applications on HPC systems and their limitations. In the next

chapter, we derive functional, performance and usability requirements from these science

drivers in the next chapter and develop our solutions to address them.

20

Chapter 3

Ensemble Toolkit

There is a growing significance of ensemble applications in scientific computing on HPC

systems, some of which have been discussed in §2.1. Ensemble applications from different

science domains differ in their communication and coordination patterns, execution

configurations, scale and performance requirements. Due to an absence of generic,

portable, and scalable middleware tools to enable the expression and execution of such

applications, domain scientists are forced to either develop customized tools or retrofit

their application on to general purpose solutions.

In response to these missing capabilities, we developed a new workflow management

system, called on Ensemble Toolkit (EnTK), based on requirements derived from the

science drivers discussed in §2.1. The design and implementation of EnTK are iterative

and driven by science drivers: Users and developers collaborate to elicit requirements,

prototype rapidly, and validate the prototype against the requirements. This approach

allows the list of requirements to grow based on either new aspects of existing science

drivers or due to new science drivers. EnTK is loosely specified in UML, Jenkins and

Travis are used for continuous integration and automated testing. Documentation and

code are managed and made available via a GitHub repository [78].

EnTK is developed following the principles of the building blocks approach for

workflow systems [32] and uses an existing task executing system RADICAL Pilot [79].

In this chapter, we first describe the requirements arising from our science drivers. We

describe the building blocks approach, design and implementation of EnTK and how it

aligns with the building blocks approach. We characterize the overheads and scalability

of EnTK and conclude with the domain science that has been enabled by our work.

21

3.1 Requirements

As described in §1 and §2, the space of ensemble applications is vast, and thus there is

a need for simple and uniform abstractions while avoiding single-point solutions. We

elicited requirements about scientific ensemble applications, computing infrastructures

(CIs), scale, fault-tolerance, and usability from our science drivers. We classify the

requirements into three types: (1) functionality, (2) performance and (3) usability. We

describe each of the requirements in detail.

3.1.1 Functional requirements

3.1.1.1 Application Portability

Domain scientists generally have access to multiple heterogeneous CIs. Scientists require

that their scientific applications be portable to these different CIs. There can be several

reasons for this requirement such as scale of the problem, computational power of a

CI, availability of special accelerators, estimated wait times, or funding models which

mandate usage of specific CIs. Several current approaches require the user to re-encode

their application based on the policies and capacity of the CI, posing has a high overhead

for the scientists.

3.1.1.2 Application Diversity

Ensemble applications from diverse scientific domains such as molecular science, climate

science, earth science, and polar science may have different communication and coordi-

nation patterns, and different number, size and properties of the ensembles, but they

share the common need to execute ensembles of tasks. Currently, these applications

are encoded either with customized scripts and workflow systems or retrofitted into

general purpose systems. There is a need for tools that enable expression of ensembles

as first order entities and take advantage of the commonality between different ensemble

applications.

22

3.1.1.3 Fault Tolerance

Three types of faults may occur during the execution of ensemble applications on HPC

systems: (1) resource failure on the HPC system; (2) failure of the middleware being

used; and (3) runtime failures of the programs being executed. Consequences of such

failures include loss in computational time, loss of data obtained during execution, and

incorrect computations during execution. Domain scientists require guards from failures

in the resource and middleware. In many cases, scientists know how to recover from

program failures but do not have the software hooks to invoke them upon failures. The

recovery may range from simply re-executing the program or changing configurations or

input for the program.

3.1.2 Performance requirements

3.1.2.1 Scalability

The motivating science drivers require execution of O(1000) tasks, with 4096 being

the maximum. Depending on the requirements of the scientist, these tasks may be

required to run in parallel or may be distributed temporarily into smaller bags of tasks.

Middlewares need to be capable of supporting both execution modes and, ideally, show

linear scaling behavior with the number of tasks.

3.1.2.2 Performance Invariance

Domain specific middleware implement specific algorithms of a particular domain and

can neither share their implementations with other solutions nor can they adopt other

optimized solutions to improve their performance. In the case of general purpose middle-

ware that require retrofitting of ensemble applications, they result in implementations

that are rigid to optimize and introduce overheads due to the retrofitting. Performance

of the middleware is required to remain invariant to the domain in which it is being

used.

23

3.1.3 Usability requirements

3.1.3.1 Application Creation

Domain scientists require to be able to quickly encode their algorithms into an application

using the constructs provided by the middleware. This requires the constructs to be

simple and close to how the domains scientists visualize their ensemble applications.

3.1.3.2 Resource and Execution Management

Domain scientists are interested primarily in their scientific algorithms and the results

that they generate. The complexity of acquiring and managing resources on HPC

systems, and managing execution of tasks on those acquired resources needs to be

abstracted from the domain scientists.

3.2 Design

EnTK is designed to address the above requirements collected from various science

drivers. In this section, we discuss a programming model formulated for ensemble

applications, constructs provided by EnTK to compose ensemble applications, software

architecture of EnTK, resource and execution management performed by EnTK reusing

existing systems, and how fault-tolerance is incorporated in EnTK.

3.2.1 Building Blocks approach

As mentioned in §2.2, we suggest the need for a sustainable ecosystem for both existing

and new software tools using which tailored workflow systems can be composed. This

enables the support of agile development and composition of workflow systems that can

be responsive to the wide range of application requirements while leveraging the rich

ecosystem of existing software capabilities.

The building blocks approach [32] builds upon component based-software engineering

and service-oriented architecture concepts, to suggest modularity at the level of stand-

alone software systems and not at the level of modules or routines of a single system

alone. The approach suggests that software systems that are self-sufficient, interoperable,

24

composable, and extensible motivate an integrative approach to develop tailored workflow

systems using standardized interfaces. This reduces the expertise required and cost to

develop tailored solutions while leveraging and promoting a rich ecosystem of software

systems.

EnTK follows the building blocks approach by offering generic constructs for the

user to compose end-user applications or domain-specific workflow systems while reusing

existing systems for resource and execution management.

3.2.2 Programming Model

The workflows of the science drivers discussed in § 2.1 have varying dimensions and

dependencies but what is commonly observed in the presence of ensembles of tasks and

sequences of ensembles and tasks. We propose a programming model that promotes

ensembles as a first-order concern where ensemble applications are expressed in terms of

concurrency and sequentiality of tasks.

We propose three user-facing constructs to enable encoding of applications based on

this programming model: Task, Stage, and Pipeline. We called the programming model

as the PST model named based on the user constructs. The constructs are defined as

the following:

• Task: an abstraction of a computational task that contains information regarding

an executable, its software environment and its data dependences.

• Stage: a set of tasks without mutual dependences and that can be executed

concurrently.

• Pipeline: a list of stages where any stage i can be executed only after stage i− 1

has been executed.

Figure 3.1 shows an application described with pipelines, stages, and tasks (PST).

The application consists of a set of pipelines, where each pipeline is a sequence of stages,

and each stage is a set of tasks. The set of pipelines can execute concurrently, all the

25

Stage 2

Set

S
e
q

u
e
n

c
e

Task

Stage 2

Pipeline 1 Pipeline 2 Pipeline N

Set

Stage 1 Stage 1 Stage 1

Stage 2

Stage S

1

Stage S

2

Stage S

n

Figure 3.1: Diagrammatic representation of an application consisting of a set of pipelines
with varying number of stages and tasks.

stages within each pipeline execute sequentially, and all the tasks of a stage can execute

concurrently.

In this way, ensemble applications are described in terms of the concurrency and

sequentiality of tasks, without requiring the explicit specification of task dependencies.

Note that PST descriptions can be extended to account for dependencies among groups

of pipelines in terms of sequences of sets of pipelines.

3.2.3 Architecture

EnTK, as middleware, sits between the user and the HPC system, abstracting resource

management and execution management from the user. The user is expected to describe

what, when, and where an application needs to be executed, all the complexities of how

it is executed is abstracted from the user.

Fig. 3.2 shows the components (purple) and sub-components (green) of EnTK,

organized in three layers: API, Workflow Management, and Workload Management.

EnTK is designed to interface with different runtime systems (RTS) to enable resource

acquisition and task scheduling on these resources. The choice of a specific RTS may be

driven by application requirements or the configurations and capabilities of the HPC

system. EnTK is designed to have software hooks to integrate with different RTSs.

26

AppManager Synchronizer Pipeline Task

Enqueue

Dequeue

WFProcessor

Pending

Done

Callback

Emgr

TaskManager

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Workflow Management Layer Workload Management Layer

API Layer

1 2

RTS

3

45

6

77

Stage

Rmgr

ResourceManager

Components Sub-components Synchronization queues Communication queues External entity

Figure 3.2: EnTK architecture and execution model. Components’ (purple) sub-
components (green) use queues (blue and orange) to communicate and coordinate the
execution of an application via a chosen RTS (gray).

The API layer provides constructs to codify and submit their applications in the

form of PST descriptions. The Workflow Management layer retrieves information from

the user about available HPC systems and the application, initializes all components of

EnTK, identifies executable tasks of the application based on their organization in terms

of pipelines and stages, and holds the global state of the application during execution.

The Workload Management layer acquires and releases computational resources via a

RTS, and executes the provided set of tasks on the acquires resources

The Workflow Management layer has two components: AppManager and WFPro-

cessor. AppManager is the connector between the user and the components of EnTK.

It receives the PST description of the application and the description of the resource

to use. It passes the PST description to the WFProcessor and that of the resource

to the Workload Management layer. It also uses the Synchronizer subcomponent to

update the state of the application at runtime and thus keeps the global state of the

application. WFProcessor uses the Enqueue subcomponent to enqueue executable

tasks to the Workload Management layer and the Dequeue subcomponent to dequeue

completed tasks from the Workload Management layer.

The Workload Management layer has two components: ResourceManager and

TaskManager. The ResourceManager interfaces with a RTS to acquire and release

computational resources from the target HPC system. The TaskManager interfaces

27

with a RTS via the Emgr subcomponent to execute tasks provided by the Enqueue

subcomponent. The Callback subcomponent pushes the completed tasks to the Dequeue

subcomponent.

One of the benefits of this architecture is the isolation of the RTS into a stand-alone

subsystem. This enables composability of EnTK with diverse RTS and, depending on

capabilities, multiple types of HPC systems. Further, EnTK assumes the RTS to be a

black box enabling fault-tolerance. When the RTS fails or becomes unresponsive, EnTK

can tear it down and bring it back, loosing only those tasks that were in execution at

the time of the RTS failure.

3.2.4 Execution Model

The components and sub-components of EnTK communicate and coordinate with each

other via control messages for the execution of tasks. Users describe an application

via the API, instantiate the AppManager component with information about the

target HPC system and then pass the application description to AppManager for

execution. AppManager holds these descriptions and, upon initialization, creates all

the queues, spawns the Synchronizer, and instantiates the WFProcessor, TaskManager,

and ResourceManager. WFProcessor and TaskManager instantiate their own sub-

components.

Once the user provides the specification of both, the resource to be requested and the

application to be executed, the AppManager first instantiates the ResourceManager and

submits a resource request on the target HPC system. Once the resource is allocated

for execution, all the other components and sub-components are instantiated.

Once EnTK is fully initialized, WFProcessor initiates the execution by processing

a local copy of the application description obtained from the AppManager. Enqueue

identifies tasks who either have no dependency or have all the dependencies satisfied and

pushes these tasks to the Pending queue (Fig. 3.2, 1). The dependency here refers to the

sequential order between stages of a Pipeline or between a sequence of pipelines. Emgr

pulls tasks from the Pending queue (Fig. 3.2, 2) and executes them on the acquired

resource using the RTS (Fig. 3.2, 3). Once tasks have completed execution, the RTS

28

notifies the Callback subcomponent which pushes these tasks to the Done queue (Fig. 3.2,

4). Dequeue pulls completed tasks (Fig. 3.2, 5) and tags them as done, failed or canceled,

depending on the exit code of the task as reported by the RTS.

Throughout the execution of the application, tasks, stages and pipelines undergo

multiple state transitions in both WFProcessor and TaskManager. Each component and

subcomponent synchronizes these transitions with AppManager by pushing messages

through dedicated queues (Fig. 3.2, 6). AppManager pulls these messages and updates

the application states. AppManager then acknowledges the updates via dedicated queues

(Fig. 3.2, 7). This synchronization of state updates ensures that AppManager is always

up-to-date with any state change, making it the only stateful component of EnTK .

3.2.5 Failure Model

We consider four main sources of failure: EnTK components, RTS, HPC system, and

program executed by the tasks. All state updates in EnTK are transactional and are

synchronized with the AppManager. Hence any EnTK component that fails can be

restarted at runtime. The failed component, upon restart, receives the last successful

updates from the AppManager and resumes execution. Tasks that are executing during

the time of failure may be lost, but will be resubmitted once all components are active.

In case the ResourceManager fails, however, a new resource request would have to be

submitted which will face additional wait times on the queues of the HPC system. EnTK

is being developed to recover from full failures, where state information is synced to disk

before a failure and can be used to resume execution from the last successful update.

Both the RTS and the program are considered black boxes. Partial failures of RTS

sub-components at runtime are assumed to be handled locally, not by EnTK . Upon full

failure of the RTS, EnTK assumes all the acquired resources and the tasks undergoing

execution are lost. EnTK purges any components left over by the failed RTS, starts a

new instance of the RTS, acquires a new set of resources, and resumes executing the

application. Users can configure the number of times a RTS is restarted upon failure.

The program being executed by a task is assumed to handle all its failures and

exceptions locally, including any check-pointing for recovery. EnTK relies on the exit

29

code raised by the program to determine the success or failure of the task. EnTK does

not provide check-pointing capabilities but it can complement programs that perform

check-pointing by restarting tasks that failed with the check-pointed data.

Failures in the HPC system may include failure of the computational nodes, filesys-

tems, queueing systems, software environment, etc. Such failures are reported to EnTK

indirectly, either as failed resource allocations or failed tasks. Resource allocations can

be reacquired and tasks can be restarted, up to a certain number of times as configured

by the user. Failures are reported to the user at runtime for live inspected and also

logged for postmortem analysis.

3.3 Implementation

EnTK is implemented in Python and uses the RabbitMQ message queuing system [80] as

the communication infrastructure and RADICAL-Pilot (RP) [79] as the RTS. All EnTK

components and sub-components are implemented as processes and threads respectively.

AppManager is the master process spawning all the other processes. Tasks, stages and

pipelines are implemented as Python objects, transmitted, via transactions, among

processes and threads using queues implemented using RabbitMQ. Synchronization of

state updates with the AppManager is achieved by message-passing via these queues.

3.3.1 Communication infrastructure: RabbitMQ

EnTK relies on RabbitMQ to manage the creation of the communication infrastructure to

transport the objects and messages among components and sub-components. RabbitMQ

provides capabilities to increase durability and backup of messages in transit, persistence

of queues, and a handshake policy such that messages lost in transit or during failure

are automatically resent. Most importantly, it supports the requirement of managing at

least O(104) tasks concurrently.

RabbitMQ is a server-based system and requires to be installed before the execution

of EnTK . This adds overheads but it also offers the following benefits: (1) producers

and consumers do not need to be topology aware because they interact only with the

30

server; (2) messages are stored in the server and can be recovered upon failure of EnTK

components; and (3) messages can be pushed and pulled asynchronously because data

can be buffered by the server upon production.

Services such as CloudAMQP [81] and container systems such as Docker [82] dra-

matically reduce the user overhead in creating and configuring RabbitMQ.

3.3.2 Runtime system: RADICAL Pilot

Currently, EnTK uses RADICAL-Pilot (RP) as the RTS. RP is a runtime system

designed to execute sets of tasks via pilots on HPC systems. A pilot is a container job

that is submitted to the queueing system of the HPC system. It provides a multi-stage

execution mechanism: Resources are acquired via a placeholder job and subsequently

used to execute the application’s tasks. When a pilot is submitted to a HPC system as a

job, it waits in the HPC system’s queue until the requested resources become available.

Once available, the system’s scheduler bootstraps the job on the its compute nodes. RP

does not attempt to ‘game’ the scheduler: Once queued, the pilot is managed according

to the system’s policies.

RP is a distributed system with four major modules: PilotManager, UnitManager,

Agent and DB (Fig. 3.3, purple boxes). PilotManager, UnitManager and Agent have

multiple components (Fig. 3.3, yellow boxes), isolated into separate processes. Com-

ponents are stateless and some of them can be instantiated concurrently to enable RP

to manage multiple pilots and tasks at the same time. Concurrent components are

coordinated via a dedicated communication mesh, scaling throughput and enabling

tolerance to failing components.

Workloads and pilots are described via the RP API and passed to the RP runtime

system (Fig. 3.3, 1). The PilotManager submits pilots as jobs (or virtual machines

or containers) to one or more CIs via the SAGA API (Fig. 3.3, 2). The SAGA API

implements an adapter for each supported type of CI, exposing uniform methods for job

and data management. Once a pilot becomes active on a CI, it bootstraps the Agent

module (Fig. 3.3, 3). The UnitManager schedules each task to an Agent (Fig. 3.3, 4)

via a queue on a MongoDB instance. Each Agent pulls its tasks from the DB module

31

Figure 3.3: RADICAL-Pilot (RP) architecture and execution model. Gray: machines;
green: pilot; purple: modules; yellow: components; red: tasks.

(Fig. 3.3, 5), scheduling them on the Executor. The Executor sets up the task’s execution

environment and then spawns the task for execution.

When required, the input data of a task are either pushed to the Agent or pulled

from the Agent, depending on data locality and sharing requirements. Similarly, the

output data of the task are staged out by the Agent and UnitManager to a specified

destination, e.g., a filesystem accessible by the Agent or the user workstation. Both input

and output staging are optional, depending on the requirements of the tasks. The actual

file transfers are enacted via SAGA, and currently support (gsi)-scp, (gsi)-sftp,

Globus Online, and local and shared filesystem operations via cp. Consequently, the

size of the data along with network bandwidth and latency or filesystem performance

determine the data staging durations and are independent of the performance of the

RTS.

With this design and implementation, the functional and usability requirements are

satisfied. The separation of application creation, processing the application, resource

and execution management, ensures that applications can be composed without specifics

of the CI, providing application portability. EnTK API is kept invariant of any specific

domain, but simple targeted towards ensemble applications, enabling diverse applications

to be supported by the same framework. Fault-tolerance is implemented as re-acquisition

when resources fail, restart when EnTK components or the RTS fails, and resubmission

32

when programs fail.

Usability requirements are also met as the API to create applications is targeted

towards ensemble applications, was developed based on discussions with domain scientists,

and is continuously updated based on feedback and feature requests obtained from users

via the EnTK repository [78]. The resource and execution management complexity is

abstracted from the user as the user only describes the what, when, and where aspects of

the application; the how is managed by EnTK. Performance of EnTK are its validation

against the requirements are discussed in the following section.

3.4 Experiments

We perform three sets of experiments using EnTK: characterization of its overheads;

characterizing of its weak and strong scaling performance; then implement the seismology

and climate science science drivers, described in §2.1 at scale.

3.4.1 Characterization of overheads

We use a prototype of EnTK to benchmark its performance, providing a reference

hardware configuration to support execution of up to O(106) tasks. We then perform

four experiments to characterize the overheads of EnTK.

3.4.1.1 Performance of EnTK Prototype

We prototyped the most computationally expensive functionality of EnTK to instantiate

multiple producers and consumers of tasks. Each producer pushes tasks into RabbitMQ

queues and each consumer pulls tasks from these queues, passing them to an empty

RTS module. We benchmarked configurations with 106 tasks and a different number

of producers, consumers, and queues, measuring: producers and consumers time; total

execution time; base memory consumption when the components are instantiated; and

peak memory consumption during the execution.

Fig. 3.4 shows that tuning of the prototype can reduce the processing time linearly,

at the cost of increased memory usage. Eight producers and consumers require 107

33

1, 1, 1 2, 2, 2 4, 4, 4 8, 8, 8
producers, # consumers, # intermediate queues

0

200

400

600

800

1000

P
ro

ce
ss

in
g

ti
m

e
(s

ec
s)

2400

2600

2800

3000

M
em

or
y

co
n

su
m

p
ti

on
(M

B
)Producers

Consumers

Aggregate

Baseline memory consumption(right)

Peak memory consumption(right)

Figure 3.4: Execution time and memory consumed by EnTK prototype with multiple
producers and consumers and 106 tasks.

seconds to process 106 tasks, with a peak memory consumption of 3,126MB. Uneven

distributions of producers and consumers resulted in lower efficiencies than when using

even distributions.

The execution model of EnTK can be tuned on the basis of this benchmark, workload

requirements, and hardware capabilities. This benchmark shows that the performance

of the core functionality of EnTK depends on the number of tasks that are processed

concurrently. This has relevant implications for the understanding of EnTK overheads

and scalability.

3.4.1.2 Overheads, Data Staging and Task Execution Time

We use two programs in our experiments: Sleep and Gromacs [83]. Sleep and Gromacs

enable control of the duration of task execution and to compare EnTK overheads across

different task programs. We perform our experiments on four CIs: XSEDE SuperMIC,

Stampede, Comet and ORNL Titan.

We characterize EnTK overhead against four parameters that are likely to vary

among applications: Task executable; Task duration; CI on which the application is

executed; and structure of the application, i.e., the way in which tasks are grouped into

stages and stages into pipelines. We measured the overheads that dominate EnTK and

RTS runtime alongside the total task execution time and, when required, the total data

staging time:

• EnTK Setup Overhead: Time taken to setup the messaging infrastructure,

34

Table 3.1: Parameters of the experiments plotted in Figure 5.3.

ID Computing Infrastructure (CI) Pipeline, Stage, Task Executable Task Duration Data

1 SuperMIC (1,1,16) mdrun, sleep 300s TDB
2 SuperMIC (1,1,16) sleep 1s, 10s, 100s, 1,000s None
3 SuperMIC, Stampede, Comet, Titan (1,1,16) sleep 100s None
4 SuperMIC (16,1,1), (1,16,1), (1,1,16) sleep 100s None

instantiate components and subcomponents, and validate application and resource

descriptions.

• EnTK Management Overhead: Time taken to process the application, trans-

late tasks from and to RTS-specific objects, and communicate pipelines, stages,

tasks and control messages.

• EnTK Tear-Down Overhead: Time taken to cancel all EnTK components and

subcomponents, and shutdown the messaging infrastructure.

• RTS Overhead: Time taken by the RTS to submit and manage the execution of

the tasks.

• RTS Tear-Down Overhead: Time taken by the RTS to cancel its components

and to shutdown.

• Data Staging Time: Time taken to copy data between tasks using the function-

ality available on the resource (in this case, the Unix POSIX cp command).

• Task Execution Time: Time taken by the task executables to run on the CI.

We designed four experiments (Table 5.1) to characterize the overheads added by

EnTK and the RP RTS to the time taken to execute an application, excluding the time

taken by the resources to become available. These experiments execute applications

with different task executable (Experiment 1, Fig. 5.3a); task duration (Experiment 2,

Fig. 5.3b); CI (Experiment 3, Fig. 5.3c); and application structure, i.e., the number of

pipelines, stages and tasks per application (Experiment 4, Fig. 5.3d).

Fig. 5.3 shows that EnTK Setup Overhead is ≈0.1s across Experiment 1, 2, 4, and

≈0.05s for Titan in Experiment 3. We attribute this difference to the host from which

35

EnTK was executed. All the experiments on XSEDE machines were performed from

the same virtual machine (VM) hosted at TACC, while experiments on Titan had to be

performed from an ORNL login node. The ORNL login nodes have faster memory and

CPU than the VM.

Fig. 5.3 shows a similar behavior between EnTK Setup Overhead and EnTK Manage-

ment Overhead. EnTK Management Overhead measures ≈10s on all the runs but those

performed on Titan where it measures ≈3s. Also in this case, we attribute this difference

to the performance of the VM and login nodes from which EnTK was executed.

In Fig. 5.3, EnTK Tear-Down Overhead and RTS Tear-Down Overhead vary across

all four experiments with values between ≈1 and ≈10s for EnTK Tear-Down Overhead

and ≈3 and ≈80s for RTS Tear-Down Overhead. We attribute these variations to the

time taken by Python to terminate processes and threads. The higher values of RTS

Tear-Down Overhead are expected as RP uses significantly more processes and threads

than EnTK.

We explain the variations of RTS Overhead in Fig. 5.3 by noticing that, at runtime,

RP initiates communications between the CI and a remote database, and reads and

writes to the shared file system of the CI to create the execution environment of each task.

Further, RP uses third party tools to distribute the execution of tasks across compute

nodes. A detailed analysis of the interplay among network latency, I/O performance, and

the performance of third party tools and libraries is beyond the scope of this dissertation.

This is consistent with EnTK design: the RTS (RP in this case) is assumed to be a

black box.

Fig. 5.3 shows that for tasks executing more than 1s, RP overheads have little

impact on Task Execution time: As per experiment design, executables of Experiment 1

(Fig. 5.3a) run for ≈300s and those of Experiment 3 (Fig. 5.3c) for ≈100s on all four CIs.

In Experiment 2 (Fig. 5.3b), tasks set to run for 1s, run for ≈5s due to RP overhead

but tasks set to run for 10s, 100s, and 1,000s run in about that amount of time. In

Experiment 4 (Fig. 5.3c), for runs with 16 pipelines and 16 tasks, all the tasks execute

concurrently and hence Task Execution Time is ≈100s. However, with 16 stages, tasks

execute sequentially, resulting in Task Execution Time of ≈1,600s.

36

EnTK setup, management, and tear-down overheads vary minimally with the four

parameters of task execution we measured. Setup and management overheads depend

on the memory and CPU performance of the host on which EnTK is executed, while

the tear-down overhead on the Python version utilized. This validates EnTK design

and implementation against its requirements: EnTK can be used in various scientific

domains, with different task executables, and across heterogeneous CIs.

In absolute terms, EnTK overheads are between ≈10 and 20 seconds but Experiment

3 shows that these overheads can be reduced by running EnTK on a host with better

performance. RP RTS shows overheads up to ≈80s, limiting its utilization to applications

with at least minutes-long tasks. These limitations are mostly due to the use of Python

and its process and thread termination time: EnTK and RP should be coded, at least

partially, in a different language to manage the execution of applications of tasks that

are O(1) seconds.

3.4.2 Scalability

We perform two experiments to characterize weak and strong scalability of EnTK. As

with Experiment 1–4, we measure and compare all overheads, Data Staging Time and

Task Execution Time. Weak scaling relates these measures to the amount of concurrency

used to execute the application’s tasks; Strong scaling to the amount of serialization.

3.4.2.1 Weak scalability

To investigate weak scaling, we run four applications on Titan, each with 1 pipeline, 1

stage per pipeline, and 512, 1,024, 2,048, or 4,096 tasks per stage. Each task executable

is Gromacs mdrun, configured to use 1 core for ≈600 seconds. The number of acquired

cores is equal to the number of the application’s tasks. Each task requires 4 input files:

3 soft links of 130B each and 1 file of 550KB.

Fig. 3.6 (right axis) shows that Task Execution Time increases gradually and therefore

does not have ideal weak scaling. Analysis of the RTS profiles shows that this behavior is

due to delays in the Executor module of the RTS Agent and, specifically, in the current

implementation of the Agent scheduler and the ORTE distributed virtual machine of

37

OpenMPI. Ref. [79] characterizes these delays and their causes.

EnTK Management Overhead remains almost constant till 2,048 tasks as the number

of tasks are too small to cause a variation. The overhead, then, increases between 2,048

and 4,096 tasks: With the increase of the number of concurrent tasks, EnTK requires

more resources and starts to strain the resources of the host on which it is executed.

The other EnTK and RTS overheads appear to be consistent with those already noted

in Experiments 1–4.

EnTK neither controls, nor contributes to Data Staging time. Data staging is

performed by the RP RTS that, in this experiment, creates 1 directory for each task,

writing 3 soft links and copying 1 file within it for a total of ≈1MB. RP uses Unix

commands to perform these operations on the OLCF Lustre filesystem. By default, RP is

configured with 1 stager and hence files are staged sequentially. Multiple staging workers

can be used to parallelize data staging but trade offs with the filesystem performance

must be taken into account.

Data Staging time grows linearly with the number of tasks executed: from ≈11s for

512 tasks to ≈88s for 4,096 tasks. As this time mostly depends on the performance of

Lustre, a less linear behavior is expected with larger (amount of) files.

3.4.2.2 Strong scalability

To investigate strong scaling, we run four applications on Titan, each with 1 pipeline,

1 stage per pipeline, 8,192 tasks per stage and a total of 1,024, 2,048 or 4,096 cores.

Each task executable is Gromacs mdrun, configured to use 1 core for ≈600 seconds. In

this way, we execute at least 2 generations, each with 4,096 tasks, within the 2 hours

walltime imposed by Titan’s queuing policies. Data staging is as in the weak scalability

experiment.

Fig. 3.7 shows that Task Execution Time reduces linearly with increase in the number

of cores. The availability of more resources for the fixed number of tasks explains this

linear reduction in the Task Execution Time. EnTK Management Overhead is ≈1s,

confirming what already observed in the previous experiments.

All the other overheads and Data Staging Time remain constant across the experiment

38

runs. This suggests that both EnTK and RP overheads mostly depend on the number

of managed tasks, not on the size of the pilot on which they are executed. This is

confirmed for RP in Ref. [79].

Fig. 3.4 shows that EnTK can be configured to execute 106 tasks in less than 200

seconds and consuming less than 4GB of memory. Extrapolating and accounting for

a faster CPU on Titan’s login nodes, EnTK should manage enough tasks to fill all of

Titan cores with an overhead of less than 20 seconds.

With these experiments, we show that the design and implementation of EnTK also

meets the performance requirements posed by the users.

3.5 Domain science enabled

The design and implementation of EnTK meets the requirements derived from the

various science drivers. Consequently, this enabled the encoding and execution of the

ensemble applications from these science drivers at scale. We discuss the results obtained

and science enabled in the various science drivers in this section.

3.5.1 ExTASY

The ExTASY science driver, discussed in §2.1.1, implements advanced sampling by

performing short MD simulations and iteratively adding new simulations from different

restarting configurations to efficiently sample the configuration space. The simulations

are interleaved by analyses which determine what configurations are to be used for the

next round of simulations.

In collaboration with scientists from Rice University and University of Nottingham,

we developed a domain specific workflow system using the capabilities offered by EnTK.

The workflow system, also named ExTASY [84], abstracts the PST model from the users

as the users interface only with two config files. The users use one config file to specify the

resources to be used and the other config file to hold application-related information such

as number of iterations, number of simulations per iteration, length of the simulation,

input molecular system, etc. The two config files are parsed to fully specified the EnTK

39

components. This approach lets the users focus on the algorithm and its parameters

without having to manipulate the implementation of resource management and task

execution.

In Ref [85], scientists used the ExTASY workflow system to evaluate the CoCo-

MD algorithm on two molecular systems, alanine penta-peptide and cyclosporine A,

using NCSA Blue Waters [86]. As the algorithm is unsupervised, the user does not

need to specify in advance the interesting reaction coordinates, these emerge and adapt

automatically as the sampling progresses. The results show that the CoCo-MD algorithm

samples space 10 times faster than the conventional MD approach with no adaptations

to the MD program. The algorithm, and its implementation in ExTASY, can be used

with any MD program and demonstrates the potential of flexible workflow systems

in simulation science, and the value of developing tools that maximize the seamless

integration of established and new computational methods.

3.5.2 Seismic Tomography

We encoded the seismic tomography workflow described in §2.1.2 and depicted in Fig. 2.3

using EnTK focussing primarily on the reliable execution of the forward simulations.

These simulations account for more than 90% of the computation time of the workflow,

requiring 384 nodes on ORNL Titan [87]for each earthquake simulation, and 40MB of

input data each. When earthquakes are concurrently simulated, they require a sizable

portion of Titan and incur a high rate of failures. Without EnTK, these failures result

in manual resubmission of computations, adding a significant overhead due to queue

wait time on user intervention.

We characterize the scalability of forward simulations with EnTK by running ex-

periments with a varying number of tasks, where each task uses 384 nodes/6,144 cores

to forward simulate one earthquake. Understanding this scaling behavior contributes

to optimize the execution of the whole workflow, both by limiting failure and enabling

fault-tolerance without manual intervention. Ultimately, this will result in an increase of

the overall efficiency of resource utilization and in a reduction of the time to completion.

The current implementation of forward simulations causes heavy I/O on a shared

40

file system. This overloads the file system, inducing crashes or requiring termination of

the simulations. EnTK and RP utilize pilots to sequentialize a subset of the simulations,

reducing the concurrency of their execution and without having to go through Titan’s

queue multiple times. This is done by reducing the number of cores and increasing the

walltime requested for the pilot.

Fig. 3.8 shows that increasing concurrency leads to a linear reduction of Task

Execution Time, with a minimum of ≈180 seconds. Interestingly, reducing concurrency

eliminates failures: we encountered no failures in executions with up to 24 concurrent

tasks and 6,144 nodes. At 25 concurrent tasks and 12,288 nodes, 50% of the tasks failed

due to runtime issues.

EnTK automatically resubmits failed tasks until they are successfully executed. In

the run with 25 tasks, EnTK attempts to run a total of 157 tasks. The resulting Task

Execution Time was ≈360 seconds, similar to that of a run with with 24 concurrent

tasks (Fig. 3.8).

EnTK and RP enable reasoning and benchmarking the concurrency of an execution

without any change in the executable code. This gives insight on how to tailor a given

computational campaign on a specific CI. The insight gained via our experiments can be

immediately used in production: On Titan, forward simulations are best executed with

24 concurrent tasks. Further, fault-tolerance has an immediate impact on production

runs, eliminating one of the most limiting factor of the previous implementation of the

workflow.

3.5.3 High Resolution Meteorological Probabilistic Forecasts

We use EnTK to implement the AUA algorithm, described in §2.1.3 to iteratively and

dynamically identify locations of the analogs. We also implement the status quo method

of generating these analogs, i.e., random selection of locations in each iteration. We

perform experiments to compare the two implementations and observe the speedup of

the proposed algorithm. We repeat the experiment 30 times for statistical accuracy,

initializing both implementations using the same initial random locations.

Fig. 3.9 shows the prediction maps and errors obtained from the two implementations.

41

With 1,800 locations calculated for both prediction maps (Fig. 3.9(b), Fig. 3.9(c)), the

AUA algorithm generates a map with certain areas that have a better representation of

the analysis than the map generated by a random selection of pixels.

The box plot in Fig. 3.9(d) shows the distribution of the errors for the two implemen-

tations. The error converges faster in the AUA algorithm than in the random selection.

The total amount of potential locations (pixels) is 262,972; thus both implementations

use a small fraction of the available locations but the AUA algorithm is automatically

steering the computation at each iteration. EnTK and RP avoid the usual shortcoming

of this approach: The evaluation required by the steering can be implemented as a task

and iterations do not wait in the HPC queue, even if their number is unknown before

execution. These results suggest that the AUA algorithm is well suited for very large

domains in comparison to random selection of points.

3.5.4 High Throughput Binding Affinity Calculation

The HT-BAC science driver, discussed in §2.1.5, requires the implementation of the

ESMACS and TIES protocols to calculate the binding affinity of drugs to malign proteins.

In collaboration with domain scientists from University College, London, we developed

a domain specific workflow system, called HTBAC [88], using the capabilities offered by

EnTK.

HTBAC abstracts the EnTK API from the user as the users interface with higher

level objects such as Protocol and Simulation. Users specify the drug candidate to be

analyzed and the corresponding simulation parameters via these objects. Each Protocol

corresponded to a drug candidate and several Protocol objects were submitted to the

HTBAC system. HTBAC interfaced with EnTK to translate the application description

into the PST model and specify the HPC system to be used for the calculation. This

approach enables the users to reason at a much higher level that is closer to their science

goals and requirements.

In Ref [89], we validate the implementation of the protocols implemented in HT-BAC

and present the linear weak scaling behavior of HT-BAC that enables the analysis of

multiple drug candidates concurrently on HPC systems.

42

3.5.5 Other science applications

In the replica exchange science driver, the domain scientists have developed a domain

specific workflow system, called Repex [90]. Repex, similar to ExTASY and HT-BAC,

abstracts the EnTK API from the user and exposes higher level objects such as Replicas

and Exchange methods enabling the users to reason in terms of their domain. Validation

and evaluation of performance characteristics of Repex is ongoing.

EnTK is also being used in the polar science domain to process and analyze O(1000)

of images to identify seal population and penguin migration. As a relatively recent

project, it benefits by the abstractions offered by EnTK to focus on directly on the

processing algorithms.

3.6 Summary

In this chapter, we described the functional, performance and usability requirements

derived from our science drivers. In response to these requirements, we formulated a

programming model specific to ensemble applications, designed EnTK based on the

building blocks approach that offers constructs to encode ensemble applications based

on this programming model. The design and implementation of EnTK abstracts the

complexities of resource and execution management from the user while reusing existing

software systems in accordance with the building blocks approach. We characterized

the overhead of EnTK based on computing infrastructure, structure of the application,

executable program, and task duration and showed that the overhead remains invariant

to these factors. We characterized the scalability of EnTK and showed that EnTK shows

linear weak and strong scaling behavior for up to O(1000) tasks. Finally, we discussed

the science enabled by EnTK in the various science drivers.

43

Figure 3.5: Overheads and Task Execution Time as function of (a) Task Executable
(Experiment 1), (b) Task Duration (Experiment 2) (c) Computing Infrastructure (Ex-
periment 3) (d) Application Structure (Experiment 4).

44

Tasks/Cores

Figure 3.6: Weak scalability on Titan: 512, 1,024, 2,048, and 4,096 1-core tasks executed
on the same amount of cores.

Cores

Figure 3.7: Strong scalability on Titan: 8,192 1-core tasks are executed on 1,024, 2,048
and 4,096 cores.

20/384 21/768 22/1536 23/3072 24/6144 25/12288
concurrent tasks/# nodes

0

1000

2000

3000

4000

E
xe

cu
ti

on
ti

m
e

(s
ec

on
d

s)

20

23

26

29

212
N

u
m

b
er

of
fa

ile
d

ta
sk

s

1 task

2 tasks

4 tasks

8 tasks

16 tasks

32 tasks

Failed tasks(right)

Figure 3.8: Task Execution Time of forward simulations using EnTK at various values
of concurrency.

45

(c)

(b)

(d)

Figure 3.9: Predictions from random and adaptive methods. (a) theoretical true value,
(b) the interpolated map from 1,800 randomly picked locations, (c) the interpolated
map from 1,800 locations identified using AUA, (d) box plots of the errors for both
implementations.

46

Chapter 4

Adaptive Ensemble Applications

Existing ensemble-based methods have been successful for addressing a number of

questions in several science domains. However, researchers are already encountering

the limitations of these methods when studying bigger scientific problems; problems

that require approaches beyond ensemble applications. In biomolecular modeling [91],

studying systems with multiple-timescale behavior extending out to microseconds or

milliseconds, or studying even shorter timescales on larger physical systems will not

only require tools that can support 100–1000 greater degrees of parallelism but also

exploration of adaptive algorithms. In adaptive algorithms, the intermediate results of

simulations are used to alter following simulations. Adaptive approaches can increase

simulation efficiency by greater than a thousand-fold [92] but require more sophisticated

software infrastructure to encode, modularize, and execute complex interactions and

execution logic.

In this chapter, we discuss several important adaptive ensemble applications from

the biophysics science domain, challenges in encoding and executing these applications

and the current set of tools, systems and services available to support adaptive ensemble

applications.

4.1 Adaptive Science Drivers

In this chapter, we discuss two representative adaptive ensemble applications from the

biophysical domain: Expanded Ensemble and Markov State Modeling. Prior to discussing

the implementation of these applications, we describe the underlying algorithms.

47

4.1.1 Expanded Ensemble

Metadynamics [93] and expanded ensemble (EE) dynamics [94] are a class of adaptive

ensemble biomolecular algorithms, where individual simulations jump between simulation

conditions. In EE dynamics, the simulation states take one of N discrete states of

interest, whereas in metadynamics, the simulation states are described by one or

more continuous variables. In both algorithms, each simulation explores the states

independently. Additional weights are required to force the simulations to visit desired

distributions in the simulation condition space, which usually involves sampling in all

the simulation conditions. These weights are learned adaptively using a variety of

methods [94].

Since the movement among state spaces is essentially diffusive, the larger the

simulation state spaces, the more time the sampling takes. “Multiple walker” approaches

can improve sampling performance by using more than one simulation to explore the

same state space [95]. Further, the simulation condition range can be partitioned into

individual simulations as smaller partitions decrease diffusive behavior [96]. The “best”

partitions to spend time sampling may not be known until after simulation. These

partitions can be determined adaptively, based on runtime information about partial

simulation results.

In this dissertation, we implement two versions of EE consisting of concurrent,

iterative ensemble members that analyze data at regular intervals. In the first version,

we analyze data local to each ensemble member; in the second version we analyze data

global to all the ensemble members by asynchronously exchanging data among members.

In our application, each ensemble member consists of two types of task: simulation

and analysis. The simulation tasks generate MD trajectories while the analysis tasks

use these trajectories to generate simulation condition weights for the next iteration of

simulation in its own ensemble member. Every analysis task operates on the current

snapshot of the total local or global data. Note that in global analysis, EE uses any and

all data available and does not explicitly “wait” for data from other ensemble members.

Fig. 4.1 is a representation of these implementations.

48

ConvergedConverged

MD Simulation

Analysis

Check
convergence

U
nc

on
ve

rg
ed

MD Simulation

Analysis

Check
convergence

U
nc

on
ve

rg
ed

MD Simulation

Analysis

Check
convergence

U
nc

on
ve

rg
ed

Ensemble member 1

Converged

Ensemble member 2 Ensemble member N

Figure 4.1: Schematic of the expanded ensemble (EE) science driver. Two versions of
EE are implemented: (1) local analysis where analysis only data local to its ensemble
member; and (2) global analysis where analysis uses data from other ensemble members
(represented by dashed lines)

4.1.2 Markov State Modeling

Markov state modeling (MSM) is another important class of biomolecular simulation

algorithms for determining kinetics of molecular models. Using an assumption of

separation of time scales of molecular motion, the rates of first-order kinetic processes are

learned adaptively. In a MSM simulation, a large ensemble of simulations, typically tens

or hundreds of thousands, are run from different starting points and similar configurations

are clustered as states. MSM building techniques include kinetic information but begin

with a traditional clustering method (eg k-means or k-centers) using a structural metric.

Configurations of no more than 2Å to 3Å RMSDs are typically clustered into the same

“micro-state” [97].

The high degree of structural similarity implies a kinetic similarity, allowing for

subsequent kinetic clustering of microstates into larger “macro-states”. The rates of

transitions among these states are estimated by observing which entire kinetic behavior

can be inferred, even though individual simulations perform no more than one state

transition. However, the choice of where new simulations are initiated to best refine the

definition of the states, improve the statistics of the rate constants, and discover new

simulation states requires a range of analyses of previous simulation results, making the

49

Analysis

MD Simulation n

MD Simulation 2

MD Simulation 1

Check aggregate
simulation

below threshold

threshold
reached

Figure 4.2: Schematic of the Markov State Model science driver.

entire algorithm highly adaptive.

MSM provides a way to encode dynamic processes such as protein folding into a set

of metastable states and transitions among them. In computing MSM from simulation

trajectories, the metastable state definitions and the transition probabilities have to

be inferred. Refs. [98, 99] show that “adaptive sampling” can lead to more efficient

MSM construction as follows: provisional models are constructed using intermediate

simulation results, and these models are then used to direct the placement of further

simulation trajectories. Different from other approaches, in this dissertation we encode

this algorithm as an application where the adaptive code is independent from the

software packages used to perform the MD simulations and MSM construction.

Fig. 4.2 offers a diagrammatic representation of the adaptive ensemble MSM ap-

proach. The application consists of an iterative pipeline with two stages: (i) ensemble

of simulations and (ii) MSM construction to determine optimal placement of future

simulations. The first stage generates sufficient amount of MD trajectory data for an

analysis. The analysis–i.e., the second stage–operates over the cumulative trajectory

data to adaptively generate a new set of simulation configurations, used in the next

iteration of the simulations. The pipeline is iterated until the resulting MSM converges.

4.1.3 Adaptive versions of previous science drivers

In addition to the science drivers discussed above, several science drivers described

in § 2.1 are being investigated with adaptive approaches. In Ref [100], researchers

implemented an adaptive version of the the HT-BAC framework. This version makes

50

two important improvements: (i) the simulations are decomposed into multiple iterations

where the starting configuration for each iteration is determined during runtime; and

(ii) the number of iterations are determined by the analysis of intermediate results.

Both the ExTASY framework, § 2.1.1, and the analog ensemble algorithm, § 2.1.3

are also being investigated with adaptive approaches. In the former, the configurations

to use between the iterations is determined based on the analysis of results obtained

during execution. In the latter, the amount of communication between different tasks

and the number of iterations to reach thresholds is determined based on results obtained

during execution.

4.2 Challenges

Supporting adaptive workflows poses three main challenges. The first challenge is the

expressibility of adaptive workflows as their encoding requires APIs that enable the

description of the initial state of the workflow and the specification of how the workflow

adapts on the base of intermediate signals. The second challenge is determining when

and how to instantiate the adaptation. Adaptation is described at the end of the

execution of tasks wherein a new TG is generated. Different strategies can be employed

for the instantiation of the adaptation [101]. The third challenge is the implementation

of the adaptation of the TG at runtime. We divide this challenge into three parts: (i)

propagation of adapted TG to all components; (ii) consistency of the state of the TG

among different components; and (iii) efficiency of adaptive operations.

4.3 Current Solutions: Tools, Systems, and Services

Adaptive ensemble applications span several science domains including, but not limited

to, climate science, seismology, astrophysics, and bio-molecular science. For example,

Ref. [102] studies adaptive selection and tuning of dynamic RNNs for hydrological

forecasting; Ref. [103] presents adaptive modeling of oceanic and atmospheric circulation;

Ref. [104] studies adaptive assessment methods on an ensemble of bridges subjected to

earthquake motion; and Ref. [105] discusses parallel adaptive mesh refinement techniques

51

for astrophysical and cosmological applications. In this dissertation, we focus on

biomolecular applications, as examples, employing algorithms to simulate biophysical

events.

Algorithms consisting of one or more MD simulations, provide quantitative and

qualitative information about the structure and stability of molecular systems, and

the interactions among them. Specialized computer architectures enable single MD

simulations at the millisecond scale [106] but alternative approaches are motivated by

the higher availability of general-purpose machines and the need to investigate biological

processes at the scales from milliseconds to minutes. Importantly, although we discuss

mostly biological applications, there are many applications of MD in material science,

polymer science, and interface science [107, 108].

Statistical estimation of thermodynamic, kinetic, and structural properties of biomolecules

requires multiple samples of biophysical events. Algorithms with ensembles of MD simu-

lations have been shown to be more efficient at computing these samples than single,

large and long-running MD simulations [95, 109, 110, 111]. Adaptive ensemble algo-

rithms use runtime data to guide the progression of the ensemble, achieving up to a

thousand-fold increase in efficiency compared to non-adaptive alternatives [99, 98].

Several adaptive ensemble algorithms have been formulated. For example, replica

exchange [112] consists of ensembles of simulations where each simulation operates with a

unique value of a sampling parameter, such as temperature, to facilitate escape from local

minima. In generalized ensemble simulation methods, different ensemble simulations

employ distinct exchange algorithms [113] or specify diverse sampling parameters [114]

to explore free-energy surfaces that are less accessible to non-adaptive methods. In

metadynamics [93] and expanded ensemble [94], simulations traverse different states

based on weights “learned” adaptively. Markov State Model [111] (MSM) approaches

adaptively select initial configurations for simulations to reduce uncertainty of the

resulting model.

Current solutions to encode and execute adaptive ensemble algorithms fall into two

categories: monolithic workflow systems that do not fully support adaptive algorithms

and MD software packages where the adaptivity is embedded within the executing

52

kernels. Several workflow systems [115], including Kepler,Taverna and Pegasus support

adaptation capabilities only as a form of fault tolerance and not as a way to enable

decision-logic for changing the workflow at runtime.

Well known MD software packages such as Amber, GROMACS and NAMD offer

capabilities to execute adaptive ensemble algorithms. However, these capabilities are

tightly coupled to the MD package, preventing users from easily adding new adaptive

algorithms or reusing the existing ones across packages.

Domain-specific workflow systems such as Copernicus [75] have also been developed to

support Markov state modeling algorithms to study kinetics of bio-molecules. Although

Copernicus provides an interactive and customized interface to domain scientists, it

requires users to manage the acquisition of resources, the deployment of the system and

the configuration of the execution environment. This hinders Copernicus uptake, often

requiring tailored guidance from its developers.

Encoding the adaptive ensemble algorithm, including its adaptation logic within

MD software packages or workflow systems locks the capabilities to those individual

tools. In contrast, the capability to encode the algorithm and adaptation logic as an

user application promises several benefits: separation between algorithm specification

and execution; flexible and quick prototyping of alternative algorithms; and extensibility

of algorithmic solutions to multiple software packages, science problems and scientific

domains [116, 117]. To realize these promises, we develop the abstractions and capa-

bilities to encode adaptivity at the ensemble application level, and execute adaptive

ensemble applications at scale on high performance computing (HPC) systems.

4.4 Summary

In this chapter we discussed the significance of adaptivity and how they enable researchers

to go beyond the limitations of traditional ensemble applications. We discussed two

science drivers in detail and described adaptive versions of science drivers discussed in

§ 2. We described the challenges in encoding and executing these applications and the

current set of solutions available to researchers and their limitations.

53

Chapter 5

Ensemble Toolkit for Adaptive Ensemble Applications

Adaptive ensemble applications discussed in § 4 involve two computational layers: at

the lower level each simulation or analysis is performed by a program or executable; at

the higher level, an algorithm codifies the coordination and communication between

different tasks. Different adaptive ensemble applications and adaptive algorithms might

have varying coordination and communication patterns, yet are amenable to common

adaptations and similar types of adaptations.

In this chapter, we analyze the execution requirements of adaptive ensemble appli-

cations, identify the different types of adaptivity required by the science drivers and

describe the enhancements made in EnTK to support adaptive ensemble applications.

We characterize the overhead of supporting adaptivity in EnTK, validate the imple-

mentation of our science drivers and discuss the results obtained by executing adaptive

ensemble applications at production scale.

5.1 Understanding workflow adaptivity

Executing adaptive workflows at scale on HPC resources, using ensemble-based methods

presents several challenges [117].

For simplicity, in the discussion of adaptivity we represent a workflow as a task-

graph (TG) when discussing operations applied to the workflow. Workflows may be

represented as a single or multiple disjoint TGs. The following discussion regarding

workflow adaptivity apply to other representations of a workflow.

Our analysis of adaptive workflows suggests that The complete TG of is not known

prior to execution and may change depending on intermediate runtime results. Execution

of adaptive workflows can be decomposed into four operations as represented in Fig. 5.1:

54

Application
creation

Adaptation
A(TGi, x)

Task
execution

Task graph
traversal

Signal (x) TG0

TGi+1

(a) (b) (c) (d)

Figure 5.1: Adaptivity Loop: Sequence of operations in executing an adaptive
workflow

(a) creation of an initial TG, encoding known tasks and dependencies; (b) traversal of the

initial TG to identify tasks ready for execution in accordance with their dependencies; (c)

execution of those tasks on the compute resource; and (d) notification of completed tasks

(control-flow) or generation of intermediate data (data-flow) which invokes adaptations

of the TG.

Operations (b)–(d) are repeated till the complete workflow is determined, and all

its tasks are executed. This sequence of operations is called an Adaptivity Loop: in

an adaptive scenario, the workflow “learns” its future TG based on the execution of

its current TG; in a pre-defined scenario, the workflow’s TG is fully specified and only

operations (a)–(c) are necessary.

Encoding of adaptive workflows requires two sets of abstractions: one to encode the

workflow; and the other to encode the adaptation methods (A) that, upon receiving a

signal x, operate on the workflow. The former abstractions are required for creating the

TG, i.e., operation (a), while the latter are required to adapt the TG, i.e., operation (d).

5.1.1 Types of Adaptations

Adaptivity Loop applies an adaptation method (Fig. 5.1d) to a TG. We represent a

TG as TG = [V,E], with the set V of vertices denoting the tasks of the workflow and

their properties (such as executable, required resources, and required data), and the

set E of directed edges denoting the dependencies among tasks. For a workflow with

TG = [V,E], there exist four parameters that may change during execution: (i) set

of vertices; (ii) set of edges; (iii) size of the vertex set; and (iv) size of the edge set.

We analyzed the 24 permutations of these four parameters and identified 3 that are

valid and unique. The remaining permutations represent conditions that are either not

55

possible to achieve or combinations of the 3 valid permutations.

5.1.1.1 Task-count adaptation

We define a method Atc (operator) as a task-count adaptation if, on receiving a signal x,

the method performs the following adaptation (operation) on the TG (operand):

TGi+1 = Atc(TGi, x) =⇒ size(Vi) 6= size(Vi+1) ∧ size(Ei) 6= size(Ei+1)

where TGi = [Vi, Ei] ∧ TGi+1 = [Vi+1, Ei+1].

Task-count adaptation changes the number of TG’s tasks, i.e., the adaptation method

operates on a TGi to produce a new TGi+1 such that at least one vertex and one edge

is added or removed to/from TGi.

5.1.1.2 Task-order adaptation

We define a method Ato as a task-order adaptation if, on a signal x, the method performs

the following adaptation on the TG:

TGi+1 = Ato(TGi, x) =⇒ Ei 6= Ei+1 ∧ Vi = Vi+1

where TGi = [Vi, Ei] ∧ TGi+1 = [Vi+1, Ei+1].

Task-order adaptation changes the dependency order among tasks, i.e., the adaptation

method operates on a TGi to produce a new TGi+1 such that the vertices are unchanged

but at least one of the edges between vertices is different between TGi and TGi+1.

5.1.1.3 Task-property adaptation

We define a method Atp as a task-property adaptation if, on a signal x, the method

performs the following adaptation on the TG:

TGi+1 = Atp(TGi, x) =⇒ Vi 6= Vi+1 ∧ size(Vi) = size(Vi+1) ∧ Ei = Ei+1

where TGi = [Vi, Ei] ∧ TGi+1 = [Vi+1, Ei+1].

Task-property adaptation changes the properties of at least one task, i.e., the

adaptation method operates on a TGi to produce a new TGi+1 such that the edges

56

and the number of vertices are unchanged but the properties of at least one vertex is

different between TGi and TGi+1.

We can represent the workflow of the two science drivers using the notations presented.

Expanded ensemble (EE) consists of N ensemble members executing independently for

multiple iterations till convergence is reached in any ensemble member. We represent

one iteration of each ensemble members as a task graph TG and the convergence criteria

with x. An adaptive EE workflow can then be represented as:

parellel for i in [1 : N]:

while (condition on x):

TGi = Atp(Ato(Atc(TGi)))

Markov State Modeling (MSM) consists of one ensemble member which iterates

between simulation and analysis till sufficient trajectory data is analyzed. We represent

one iteration of the ensemble member as a task graph TG and its termination criteria

as x. An adaptive MSM workflow can then be represented as:

while (condition on x):

TG = Ato(Atc(TG))

5.1.2 Challenges in Encoding Adaptive Workflows

Supporting adaptive workflows poses three main challenges. The first challenge is the

expressibility of adaptive workflows as their encoding requires APIs that enable the

description of the initial state of the workflow and the specification of how the workflow

adapts on the base of intermediate signals. The second challenge is determining when

and how to instantiate the adaptation. Adaptation is described at the end of the

execution of tasks wherein a new TG is generated. Different strategies can be employed

for the instantiation of the adaptation [101]. The third challenge is the implementation

of the adaptation of the TG at runtime. We divide this challenge into three parts: (i)

propagation of adapted TG to all components; (ii) consistency of the state of the TG

among different components; and (iii) efficiency of adaptive operations.

57

from r a d i c a l . entk import Task , Stage
s = Stage ()
t = Task ()
<add task p rope r t i e s>
s . add tasks (t)
s . po s t exec = {

’ cond i t ion ’ : <f u n c t i o n 1 name>,
’ on true ’ : <f u n c t i o n 2 name>,
’ o n f a l s e ’ : <f u n c t i o n 3 name>

}

Figure 5.2: Post execution properties of a Stage consisting of one Task. At the end
of the Stage, ’function 1’ (boolean condition) is evaluated to return a boolean value.
Depending on the value, ’function 2’ (true) or ’function 3’ (false) is invoked.

5.2 Enhancements in Ensemble Toolkit

In response to these challenges we engineered EnTK with three new capabilities: ex-

pressing an adaptation operation, executing the operation, and modifying a TG at

runtime.

Adaptations in ensemble workflows follow the Adaptivity Loop described in §5.1.

Execution of one or more tasks is followed by some signal x that triggers an adaptation

operation. In EnTK, this signal is currently implemented as a control signal triggered

at the end of a stage or a pipeline. We added the capability to express this adaptation

operation as post-execution properties of stages and pipelines. In this way, when all the

tasks of a stage or all the stages of a pipeline have completed, the adaptation operation

can be invoked to evaluate based on the results of the ongoing computation, whether a

change in the TG is required. This is done asynchronously without effecting any other

executing tasks.

The adaptation operation is encoded as a Python property of the Stage and Pipeline

objects. The encoding requires the specification of three functions: one function to

evaluate a boolean condition over x, and two functions to describe the adaptation,

depending on the result of the boolean evaluation.

Users define the three functions specified as post-execution properties of a Stage

or Pipeline, based on the requirements of their application. As such, these functions

58

can modify the existing TG or extend it as per the three adaptivity types described in

§5.1.1.

Ref. [101] specifies multiple strategies to perform adaptation: forward recovery,

backward recovery, proceed, and transfer. In EnTK, we implement a non-aggressive

adaptation strategy, similar to ‘transfer’, where a new TG is created by modifying the

current TG only after the completion of part of that TG. The choice of this strategy is

based on the current science drivers where tasks that have already executed and tasks

that are currently executing are not required to be adapted but all forthcoming tasks

might be.

Modifying the TG at runtime requires coordination among EnTK components to

ensure consistency in the TG representation. AppManager holds the global view of the

TG and, upon instantiation, Workflow Processor maintains a local copy of that TG.

The dequeue sub-component of Workflow Processor acquires a lock over the local copy

of the TG, and invokes the adaptation operation as described by the post-execution

property of stages and pipelines. If the local copy of the TG is modified, Workflow

Processor transmits those changes to AppManager that modifies the global copy of TG,

and releases the lock upon receiving an acknowledgment. This ensures that adaptations

to the TG are consistent across all components, while requiring minimal communication.

Pipeline, stage, and task descriptions alongside the specification of an adaptation

operation as post-execution for pipelines and stages enable the expression of adaptive

workflows. The ‘transfer’ strategy enacts the adaptivity of the TG, and the implementa-

tion in EnTK ensures consistency and minimal communication in executing adaptive

workflows. Note how the design and implementation of adaptivity in EnTK does not

depend on specific capabilities of the software package executed by each task of the

ensemble workflow.

5.3 Experiments

We perform three sets of experiments. The first set characterizes the overhead of

EnTK when performing the three types of adaptation described in §5.1.1. The second

59

set validates our implementation of the two science drivers presented in §4.1 against

reference data. The third set compares our implementation of adaptive expanded

ensemble algorithm with local and global analysis against results obtained with a single

and an ensemble of MD simulations.

We use four application kernels in our experiments: stress-ng [118], GROMACS [83],

OpenMM [119] and Python scripts. stress-ng allows to control the computational

duration of a task for the experiments that characterize the adaptation overhead of

EnTK, while GROMACS and OpenMM are the simulation kernels for the expanded ensemble

and Markov state modeling validation experiments.

We executed all experiments from the same host machine but we targeted three

HPC systems, depending on the amount and availability of the resources required by the

experiments, and the constraints imposed by the queue policy of each machine. NCSA

Blue Waters and ORNL Titan were used for characterizing the adaptation overhead

of EnTK, while XSEDE SuperMIC was used for the validation and production scale

experiments.

5.3.1 Characterization of adaptation overheads

We perform five experiments to characterize the overhead of adapting ensemble workflows

encoded using EnTK. Each experiment measures the overhead of a type of adaptation

as a function of the number of adaptations. In the case of task-count adaptation, the

overhead is measured also as a function of the number of tasks and of their type, single-

or multi-node. This is relevant because with the growing of the size of the simulated

molecular system and of the duration of that simulation, multi-node tasks may perform

better than single-node ones.

Each experiment measures EnTK Adaptation Overhead and Task Execution Time.

The former is the time taken by EnTK to adapt the workflow by invoking user-specified

algorithms; the latter is the time taken to run the executables of all tasks of the workflow.

Consistent with the scope of this dissertation, the comparison between each adaptation

overhead and task execution time offers a measure of the efficiency with which EnTK

implements adaptive functionalities. Ref. [120] has a detailed analysis of other overheads

60

Table 5.1: Parameters of the experiments plotted in Fig. 5.3

ID
Adaptation

Type
Experiment

variable
Fixed parameters

I Task-count Number of adaptations
Number of tasks added per
adaptation = 16,
Type of tasks added = single-node

II Task-count
Number of tasks added
per adaptation

Number of adaptations = 2,
Type of tasks added = single-node

III Task-count Type of tasks added
Number of adaptations = 2,
Number of tasks added per
adaptation = 210 ∗ 2s (s=stage index)

IV Task-order Number of adaptations
Number of re-ordering operations per
adaptation = 1,
Type of re-ordering = uniform shuffle

V Task-property Number of adaptations

Number of property modified per
adaptation = 1,
Property adapted = Number of cores
used per task

of EnTK.

Table 5.1 describes the variables and fixed parameters of the five experiments about

adaptivity overheads in EnTK. In these experiments, the algorithm is encoded in EnTK

as 1 pipeline consisting of several stages with a set of tasks. In the experiments I–III

about task-count adaptation, the pipeline initially consists of a single stage with 16

tasks of a certain type. Each adaptation, at the completion of a stage, adds 1 stage

with a certain number of tasks of a certain type, thereby increasing the task-count in

the workflow.

In experiments IV–V, the workflow is encoded as 1 pipeline with 17, 65, or 257 stages

with 16 tasks per stage. Each adaptation occurs upon the completion of a stage and, in

the case of task-order adaption, the remaining stages of a pipeline are shuffled. In the

case of task-property adaption, the number of cores used by the tasks of the next stage

is set to a random value below 16, keeping the task type to single-node. The last stage

of both experiments are non-adaptive, resulting in 16, 64, and 256 total adaptations.

In the experiments I, IV and V, where the number of adaptations varies, each task

of the workflow executes the stress-ng kernel for 60 seconds. For the experiments II

61

16 64 256
(i)

10−3

10−1

101

103

105

T
im

e
(s

ec
on

d
s)

1024 2048 4096
(ii)

single-node multi-node
(iii)

16 64 256
(iv)

16 64 256
(v)

EnTK Adaptation Overhead Task Execution Time

Figure 5.3: EnTK Adaptation Overhead and Task Execution Time for task-count (i, ii,
and iii), task-order (iv), and task-property (v) adaptations.

and III with O(1000) tasks, the execution duration is set to 600 seconds so to avoid

performance bottlenecks in the underlying runtime system and therefore interferences

with the measurement of EnTK adaptation overheads. All experiments have no data

movement as the performance of data operations is independent from that of adaptation.

Figs. 5.3(i), 5.3(iv), and 5.3(v) show that EnTK Adaptation Overhead and Task

Execution Time increase linearly with the increasing of the number of adaptations.

EnTK Adaptation Overhead increases due to the time taken to compute the additional

adaptations and its linearity indicates that the computing time of each adaptation is

constant. Task Execution Time increases due to the time taken to execute the tasks of

the stages that are added to the workflow as a result of the adaptation.

Figs. 5.3(i), 5.3(iv), and 5.3(v) also show that task-property adaptation (v) is the

most expensive, followed by task-order adaptation (iv) and task-count (i) adaptation.

These differences depend on the computational cost of the Python functions executed

during adaptation: in task-property adaptation, the function parses the entire workflow

and invokes the Python random.randint function 16 times per adaptation; in task-order

adaptation, the Python function shuffles a Python list of stages; and in task-count

adaption, the Python function creates an additional stage, appending it to a list.

In Fig. 5.3(ii), EnTK Adaptation Overhead increases linearly with an increase in

the number of tasks added per task-count adaptation, explained by the cost of creating

additional tasks and adding them to the workflow. The Task Execution Time remains

constant at ≈ 1200s, since sufficient resources are acquired to execute all the tasks

concurrently.

Fig 5.3(iii) compares EnTK Adaptation Overhead and Task Execution Time when

62

adding single-node and multi-node tasks to the workflow. The former is greater by ≈ 1s

when adding multinode tasks, whereas the latter remains constant at ≈ 1200s in both

scenarios. The difference in the overhead, although negligible when compared to Task

Execution Time, is explained by the increased size of a multi-node task description. As

in Fig. 5.3(ii), Task Execution Time remains constant due to availability of sufficient

resources to execute all tasks concurrently.

Experiments I–V show that EnTK Adaptation Overhead is proportional to the

computing required by the adaptation algorithm and is not determined by the design or

implementation of EnTK. In absolute terms, EnTK Adaptation Overhead is orders of

magnitude smaller than Task Execution Time. Thus, EnTK advances the practical use

of adaptive ensemble workflows.

5.3.2 Validation of Science Driver Implementations

We implement the two science drivers of §4.1 using the abstractions developed in EnTK.

We validate our implementation of Expanded Ensemble (EE) by calculating the binding

of the cucurbit[7]uril 6-ammonio-1-hexanol host-guest system, and our implementation

of Markov State Modeling (MSM) by simulating the Alanine dipeptide system and

comparing our results with the reference data of the DESRES group [121].

5.3.2.1 Expanded Ensemble

We execute the EE science driver described in §4.1.1 on XSEDE SuperMIC for a total of

2270ns MD simulation time. To validate the process, we carry out a set of simulations of

the binding of cucurbit[7]uril (host) to 6-amino-1-hexanol (guest) in explicit solvent for

a total of 29.12ns per ensemble member, and compare the final free energy estimate to a

reference calculation. Each ensemble member is encoded in EnTK as a pipeline of stages

of simulation and analysis tasks, where each pipeline uses 1 node for 72 hours. With 16

ensemble members (i.e., pipelines) for the current physical system, we use ≈ 1K/23K

node/core-hours of computational resources.

The EE simulates the degree of coupling between the guest and the rest of the system

(water and host). As the system explores the coupling using EE dynamics, it binds and

63

unbinds the guest to and from the host. The free energy of this process is gradually

estimated over the course of the simulation, using the Wang-Landau algorithm [122].

However, we hypothesize that we can speed convergence by allowing parallel simulations

to share information with each other, and estimate free energies using the potential

energy differences among states and the Multistate Bennett Acceptance Ratio (MBAR)

algorithm [123].

We consider four variants of the EE method:

• Method 1: one continuous simulation, omitting any intermediate analysis.

• Method 2: multiple parallel simulations without any intermediate analysis.

• Method 3: multiple parallel simulations with local intermediate analysis, i.e.,

using current and historical simulation information from only its own ensemble

member.

• Method 4: multiple parallel simulations with global intermediate analysis, i.e.,

using current and historical simulation information from all ensemble members.

In each method, the latter 2/3 of the simulation data available at the time of each

analysis is used for free energy estimates via the MBAR algorithm. In methods 3 and 4,

adverse effects of the Wang-Landau algorithm are eliminated due to the intermediate

analyses. These provide a better estimate of the weights that are used to force simulations

to visit desired distributions in the simulation condition space (see §4.1.1). Note that

in methods 3 and 4, where intermediate analysis is used to update the weights, the

intermediate analysis is always applied at 320ps intervals.

The reference calculation consisted of four parallel simulations that ran for 200ns

each and with fixed weights, i.e., using a set of estimated weights and not using the

Wang-Landau algorithm. MBAR was used to estimate the free energy for each of these

simulations.

Fig. 5.4 shows the free energy estimates obtained through each of the four methods

with the reference calculation value. Final estimates of each method agree within error

to the reference value. Validating that the four methods used to implement adaptive

ensembles converge the free energy estimate to the actual value.

64

Method 1 Method 2 Method 3 Method 4 Reference
42

44

46

48

F
re

e
E

n
er

gy
E

st
im

at
e

(k
ca

l/
m

ol
)

Figure 5.4: Validation of EE implementation: Observed variation of free energy estimate
for methods 1–4. Reference is the MBAR estimate and standard deviation of four 200ns
fixed weight expanded-ensemble simulations.

5.3.2.2 Markov State Modeling

We execute the MSM science driver described in §4.1.2 on XSEDE SuperMIC for a

total of 100ns MD simulation time over multiple iterations. Each iteration of the TG is

encoded in EnTK as one pipeline with 2 stages consisting of 10 simulation tasks and 1

analysis task. Each task uses 1 node to simulate 1ns.

We compare the results obtained from execution of the EnTK implementation against

reference data by performing the clustering of the reference data and deriving the mean

eigenvalues of two levels of the metastable states, i.e., macro- and micro-states. The

reference data was generated by a non-adaptive workflow consisting of 10 tasks, each

simulating 10ns.

Eigenvalues attained by the macro-states (top) and micro-states (bottom) in the

EnTK implementation and reference data are plotted as a function of the state index

in Fig. 5.5. Final eigenvalues attained by the implementation agree with the reference

data within the error bounds. The validation of the implementation warrants that

similar implementations should be investigated for larger molecular systems and longer

durations, where the aggregate duration is unknown and termination conditions are

evaluated during runtime.

65

1 2 3 4

Macrostate index

0.2

0.4

0.6

0.8

1.0

M
ea

n
ei

ge
n

va
lu

e EnTK implementation

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Microstate index

0.2

0.4

0.6

0.8

1.0

M
ea

n
ei

ge
n

va
lu

e EnTK implementation

Reference

Figure 5.5: Mean eigenvalue attained by the macro-states (top) and micro-states
(bottom) by Alanine dipeptide after aggregate simulation duration of 100ns implemented
using EnTK compared against reference data.

66

5.4 Domain science enabled

5.4.1 Evaluation of Methodological Efficiency using Adaptive Capa-

bilities in EnTK

We analyzed the convergence properties of the free energy estimate using the data

generated for the validation of EE. The convergence behavior of Method 1 observed in

Fig. 5.6 implies that the current method converges faster than ensemble based methods

but does not represent the average behavior of the non-ensemble based approach. The

average behavior is depicted more clearly by Method 2 because this method averages

the free energy estimate of 16 independent single simulations.

The most significant feature of Fig. 5.6 is that all three ensemble based methods

converge at similar rates to the reference value. We initially hypothesized that adding

adaptive analysis to the estimate of the weights would improve convergence behavior but

we see no significant change in these experiments. However, the methodology described

here gives researchers the ability to implement additional adaptive elements and test their

effects on system properties. Additionally, these adaptive elements can be implemented

on relatively short time scales, giving the ability to test many implementations.

Analysis of these simulations revealed a fundamental physical reason that demon-

strates a need for additional adaptivity to successfully accelerate these simulations.

Although expanded ensemble simulations allowed the ligand to move in and out of the

binding pocket rapidly, the slowest motion, occurring on the order of 10s of nanoseconds,

was the movement of water out of the binding pocket, allowing the ligand to bind

as water backs into a vacant binding pocket. Simulation biases that equilibrate on

shorter timescales may stabilize either the waters out or the waters in configurations,

preventing the sampling of both configurations. Additional biasing variables are needed

to algorithmically accelerate this slow motions, requiring a combination of metadynamics

and expanded ensemble simulations, with biases both in the protein interaction variable

and the collective variable of water occupancy in the binding pocket. Changes in the

PLUMED2 metadynamics code are being coordinated with the developers to make this

possible.

67

Figure 5.6: Convergence of expanded ensemble implementation: Observed convergence
behavior in methods 1–4. Reference is the MBAR estimate of the pooled data and
the standard deviation of the non-pooled MBAR estimates of four 200ns fixed weight
expanded ensemble simulations.

68

Analysis of the slow motions of the system suggests the potential power of more

complex and general adaptive patterns. Simulations with accelerated dynamics along

the hypothesized degrees of freedom can be carried out, and resulting dynamics can be

analyzed, automated and monitored for degrees of freedom associated with remaining

slow degrees of motion [124]. Accelerated dynamics can be adaptively adjusted as the

simulation process continues. Characterization experiments suggest that EnTK can

support the execution of this enhanced adaptive workflow with minimal overhead.

5.4.2 Other science enabled

In Ref [100], researchers implemented an adaptive version of the the HT-BAC framework

discussed in § 2.1.5. The framework encoded the adapting functions and executed their

adaptive quadrature algorithm using the enhancements described in this chapter. As

a result, the adaptive HT-BAC framework showed 77% improvement in accuracy of

the binding affinity calculation given a fixed amount of computing resources and an

improvement of 32% in resource utilization when compared to non-adaptive algorithms

for binding affinity calculation.

Adaptive versions of the ExTASY framework discussed in § 2.1.1 have been imple-

mented to investigate the whole energy landscape of 3 proteins and their protein folding

times. The adaptive version shows an order of magnitude speed up compared to ”brute

force” molecular dynamics simulations.

5.5 Summary

In this chapter, we discussed the sequence of operations involved in executing adaptive

ensemble applications which informed us about when, where and how adaptivity can be

supported. Based on our science drivers, we identified three types of adaptivity that is

required to be supported. We described their implementation in EnTK, characterized its

overhead and determined that the overhead is orders of magnitude smaller than TTX of

ensemble applications. We implemented two adaptive ensemble applications, expanded

ensemble and markov state modeling, and validated the results against reference data.

69

We implemented expanded ensemble at production scale and identified several ways of

improving the algorithm and described other science enabled by the adaptive capabilities

discussed in this chapter.

70

Chapter 6

Heterogeneity and Dynamism

In the previous chapters, we discussed the programmability and execution of various

adaptive and non-adaptive ensemble applications on HPC systems. Workloads, derived

from these applications, and computational resources on HPC systems can be hetero-

geneous and dynamic. In our work, so far, we have not considered these aspects of

heterogeneity and dynamism when making scheduling decisions. In this chapter, we

describe heterogeneity and dynamism in workloads and resources, their implications on

the application total time to execute (TTX), and when and how they can be managed

by proposing and evaluating a strategy.

We define a group of entities as heterogeneous when the entities differ from each

other based on their properties. A heterogeneous workload consists of tasks that differ

from each other based on properties like execution time, executed program, required

resource, etc. Similarly, a heterogeneous resource consists of computational cores that

differ from each other based on properties such as processing speed, memory capacity,

filesystem and memory access speed, etc.

We refer to an entity as being dynamic if its properties change over time. A dynamic

computational core could have a processing speed, filesystem capacity or memory access

speed that fluctuates over time. We refer to the resource, which consists of these

dynamic computational cores, as also being dynamic as the properties of the resource

are composed of the properties of its cores.

EnTK and other systems discussed in §2.2 and §4.3 make the assumption that

workloads derived from ensemble applications are homogeneous. However, workloads

from ensemble applications can be heterogeneous as their tasks can have different

properties. Examples include simulations that have different configurations [23], analyses

71

that process different type and amount of data [6], concurrent pipelines that evaluate

different models in climate modeling or concurrent pipelines that are invoked for different

drug candidates in drug discovery [89].

Similarly, current software systems make the assumption that the performance of the

acquired resources are static and uniform. However, this does not reflect the execution

performance measured in practice [125, 126, 127]. Resource performance can be highly

dynamic and has been shown to fluctuate by up to 100% [125, 127]. Some factors

causing such variations include inter-application resource contention [128, 127]; kernel

intrusions [127]; thermal control [129]; and process scheduling algorithms [127].

Typically, domain scientists have constraints on the time to solution of their applica-

tion and a budget on the amount of resources that can be utilized. On HPC systems,

time to solution is described as the sum of the time spent in the queue of the HPC

system to acquire the resources and the total time to execute the application once the

resources are acquired. Queue time depends on queuing policy and system load, and is

difficult to predict [130, 131, 132, 133]. Thus, in this dissertation, we refer to the total

time to execute, TTX, as the total time to solution.

Assumptions, described above, on the heterogeneity and dynamism of workloads

and resources lead to sub-optimal execution, resulting in a long TTX or low resource

utilization. Thus, it is important to develop solutions that consider heterogeneity and

dynamism when making runtime decisions such that their TTX and resource utilization

are manageable and acceptable. In the following sections, we discuss: (1) current

solutions to address this limitation; (2) our strategy to manage heterogeneity and

dynamism; (3) design and implementation of an emulator to evaluate our strategy; (4)

evaluation of the late-binding strategy; and (5) impact of our findings.

6.1 Current Solutions: Tools, Systems, and Services

Heterogeneity in the workload and resources is typically managed by selecting a subset

of entities from the larger set. Quite common in literature, this operation is performed to

identify tasks or resources that exhibit optimal performance within required constraints.

72

Ref [134] uses benchmarks generated by the resource providers against user criteria to

select resources. Tools such as Nimrod [135] use “bids” for resources as a weight in their

selection. Matchmaker [136] provides language and syntax to match user requests to

the most suitable resources. Ref [137] extends this language to select multiple suitable

resources. Resource selection is also integrated in frameworks such as Mesos [138] and

Pegasus [139] which support different selection algorithms. Similar work can be found

for task selection such as delay scheduling in MapReduce frameworks [140], sophisticated

cost-time optimization algorithms [141], resiliency [142], and application-driven criteria.

Runtime parameters such as TTX have been improved by 2-7% when using historic

data regarding the dynamism of the resources [143, 144], by up to 33% when using live

probing [145], and parameters such as utilization and energy consumption on clouds

can be improved by 28% [146].

As mentioned in our science drivers, the size of the workload is orders of magnitude

greater than the resources available and cannot be executed at 100% concurrency and

needs to be temporally segmented into different generations. In current solutions,

decisions on when and where a task of a workload is to be executed are based either

on historical data, data acquired during resource acquisition, or are simply based on

algorithms such as round-robin that do not use any information regarding the workload

or resource. This decision is also made for tasks in generations that are to be executed

later in time, and are not informed about the heterogeneity and dynamism of the

workload and resource, leading to sub-optimal execution. We term these approaches as

employing an early-binding strategy.

Alternatively, we propose and evaluate a late-binding strategy where scheduling

decisions are delayed till the tasks need to be executed, using the latest information

regarding the workload and resource. We discuss our strategy further in the next section.

6.2 Late-binding strategy

Ref. [147] investigates the late-binding strategy when the application is non-adaptive

and performance of the compute resources are assumed to be uniform and static, but the

73

availability of compute resources is heterogeneous and dynamic. The paper describes the

strategy as delaying the decision to bind tasks to resources on different HPC systems till

the resources become available. Compute resources on a HPC system become available

for use after a queue wait time, which is difficult to accurately predict and can be

significantly high [130, 131, 132, 133]. The paper compared two scenarios: (1) tasks

are bound to one large resource request; and (2) tasks are late bound to three smaller

resource requests as they become available. The paper showed that the second scenario

exhibited lower time to completion than the former, and that the effectiveness of the

strategy holds true when the queue times are larger than the execution time of the tasks.

We propose that the late-binding approach can be employed to reduce TTX in the

presence of heterogeneity and dynamism in resources and workloads. Prior to proposing

our hypothesis, we first define four terms that we will use frequently in the following

sections.

Definitions:

• Core: Abstraction of a processing unit that can perform a specific number of

operations per second. We will refer to the number of operations that can be

performed per second by a core as the core performance.

• Task: Abstraction of a computational process that performs a specific number of

operations during execution. We assume that all tasks use a single-core. We will

refer to the number of operations that is to be performed by a task as the task

length.

• Resource: A set of cores where their performance may vary spatially, i.e., per-

formance of different cores of a resource may be different at a given time, and

temporally, i.e., the performance of a single core may vary over time.

• Workload: A set of tasks where the task length may vary spatially, i.e., number

of operations to be performed by different tasks of a workload may be different.

We hypothesize that late-binding, i.e., delaying the scheduling decision of when and

on which core a task needs to be executed, can lead to better performance metrics than

74

early-binding, i.e., scheduling decisions are made as soon as the workload and resource

are available.

We make five assumptions that we consider in our hypothesis:

1. Compute resources have already been acquired and are ready to be used for task

execution.

2. The size of the acquired resources remains constant. We consider dynamism only

in the performance of the acquired compute resources.

3. Entities providing information regarding the performance of the compute resources

are external to the system and are assumed to be accurate.

4. We assume that the performance of the cores do not vary during execution but

vary only between different task submissions.

5. We assume that there is no cost to make scheduling decisions, i.e., time to make

scheduling decisions is 0, and does not influence the scheduling decision.

Combinatorially, heterogeneity and dynamism for workloads and resources gives us 16

possibilities, but not all of them can be realized when focusing on ensemble applications

and HPC systems. Workloads derived from ensemble applications consist of tasks that

may differ in their properties but the property of a task does not change over time.

Consequently, workloads derived from ensemble applications, composed of such tasks,

may be heterogeneous but not dynamic. Additionally, HPC systems are composed of

several hundreds and thousands of computational cores but all cores have the same

architecture. Typically, HPC systems that contain cores with different architectures

cannot be acquired at the same time. Thus, computational cores on HPC systems are

always homogeneous. Computational cores experience different loads over time and,

thus, their performance is dynamic in practice.

Narrowing down the problem space with the above three considerations, we are left

with two possible combinations: 2 and 3 in Table 6.1 and Fig. 6.1. For reference, we

also consider the case when the workload and resource are both homogeneous and static,

75

2

3

1

Resource
Dynamism

Workload
Heterogeneity

Figure 6.1: Problem space

Table 6.1: Tabular representation of the problem space

Combination
Workload

Heterogeneity
Resource

Heterogeneity
Workload
Dynamism

Resource
Dynamism

1 0 0 0 0
2 0 0 0 1
3 1 0 0 1

mentioned as combination 1 in Table 6.1 and Fig. 6.1. These 3 combinations form the

problem space in which we will be evaluating early- and late-binding strategies.

In this chapter, we perform a theoretical and empirical evaluation of these three

combinations at various levels of heterogeneity and dynamism using early- and late-

binding strategies. In order to perform empirical evaluations, we developed an emulator

that we describe in the following section.

6.3 Workload Management Emulator

Creating workloads with real-world tasks and resources with cores that exhibit different

levels of heterogeneity and dynamism is non-trivial, if not impossible. But studying the

effect of heterogeneous workloads and dynamic resources is important to manage the

execution of ensemble applications on HPC systems. For this purpose, we developed a

76

Resource Workload Engine

Task selector Core selector

Task sorter Spatial binder

Executor
W

LM
S

Figure 6.2: Architecture of the WLMS Emulator

workload management emulator that enables (1) creation of workloads with heteroge-

neous or homogeneous tasks; (2) creation of resource with homogeneous and dynamic

cores; and (3) specifying criteria for scheduling decisions; to emulate the execution

behavior when using early- and late-binding strategies.

6.3.1 Design

We present the architecture of the emulator in Fig. 6.2. The emulator has three

user facing components: Resource, Workload and Engine. The Resource component

represents a group of computational cores and can be specified to be heterogeneous or

homogeneous and static or dynamic. It can be specified with a distribution from which

the performance of its cores are sampled.

Similarly, the Workload component represents a group of tasks and can be specified

to be heterogeneous or homogeneous. It can be specified with a distribution from which

the length of its tasks are sampled.

The Engine accepts a user specified resource, workload and criteria to be used for

scheduling decisions. There are four criteria, corresponding to the four subcomponents of

the WLMS component, that can be specified along with the strategy to use: late-binding

or early-binding.

Workload Management System or WLMS is the component of the emulator that

performs the scheduling decisions to create a schedule of when and on which core a

task needs to be executed, which is passed over to the Executor. WLMS consists of

77

Task

Selector

Core

Selector

Task

Sorter

New workload

New resource

Selected

tasks

Spatial

Binder

Selected

cores

Temporally

ordered tasks

Final schedule

to be executed

A B

C D

Figure 6.3: Order of the four operations performed by WLMS: A>B>C>D

four subcomponents: Task Selector, Core Selector, Task Sorter and Spatial Binder that

correspond to four operations performed by the WLMS. The two selectors are used to

identify tasks from workloads or cores from resources that are eligible for execution, for

example, cores that offer non-zero computational capability are to be selected. Task

Sorter is used to temporally order the tasks of the workload based on the task properties.

Spatial Binder is used to place a task on the appropriate core based on the properties of

the task and core. The criteria specified by the user determine the rule to use to order

the tasks in the Task Sorter and the placement of the tasks in the Spatial Binder. The

WLMS, thus, decides both when and where a task should execute. Fig. 6.3 represents

the order of operations in the WLMS.

The Engine also informs the WLMS whether early-binding or late-binding strategy

is to be used. If early-binding strategy is to be used, scheduling decisions, i.e. task

sorting and spatial binding, of all tasks are made based on the initial core performance

observed at the time of resource availability and does not take into account the changes

78

in the core performance if the resource is dynamic. If late-binding strategy is to be used,

scheduling decisions are made based on the latest core performance observed, taking

into account the performance changes of the cores of a dynamic resource. As described

above, we assume that the core performance does not change during task execution but

only between different task submissions.

The Executor receives a schedule from the WLMS that describes when and on which

core a task needs to be executed. The Executor executes as per the schedule and uses

the latest performance of the core as it is aware of resource dynamism. The Executor

records the execution and generates profiles that can be analyzed post-mortem.

6.3.2 Implementation

The Emulator is implemented in Python and user facing components are implemented

as Python objects using which users can create the scenarios they want to execute.

The Resource and Workload can be specified with two types of distributions: uniform

distribution and normal distribution. Currently, the selectors can be configured to either

select all entities of a group, entities with properties above a threshold or entities with

properties below a threshold. The Task Sorter can be configured to use one of the

three criteria: sort in random order, sort in ascending order of task length or sort in

descending order of task length. Spatial Binder can be configured with two criteria:

random placer which assigns tasks to cores randomly or ’L2FF’, which places the longest

task on the core where it will finish execution first or earliest.

6.4 Theoretical and empirical evaluation

For each of the three combinations described in Table 6.1, we will estimate the time to

execute a workload on a resource where the properties of the workload and resource are

described as specified in Table 6.1. In our evaluations, the length of tasks of a workload

and performance of cores of a resource are drawn from an uniform distribution where

the width of the distribution represents the heterogeneity or dynamism.

79

6.4.1 Combination 1: Homogeneous and Static Workload, Homoge-

neous and Static Resource

In combination 1, the workload is homogeneous and static and resource is homogeneous

and static. Let the uniform distribution which is sampled for task lengths be between

(slow, shigh) and the uniform distribution which is sampled for core performance be

between (klow, khigh). As there is no heterogeneity or dynamism, the uniform distri-

butions which are sampled for task length and core performance have no width, i.e.,

shigh − slow = 0 and khigh − klow = 0. Let the length of all tasks be S and performance

of all cores be K, i.e., shigh = slow = S and khigh = klow = K.

Lets say that there are R cores and T tasks such that T > R and we will have N

generations where N = T/R when R tasks are executing concurrently. Let tstart(g) be

the time at which the first task of generation g starts execution. Let tstop(g) be the time

at which the last task of generation g stops execution. Then we can represent the start

and stop times at the end of the first generation as,

tstart(1) = 0 (6.1)

tstop(1) = S/K (6.2)

and at the end of the second generation as,

tstart(2) = S/K (6.3)

tstop(2) = 2S/K (6.4)

Similarly, after N generations we get,

tstop(N) = NS/K (6.5)

Thus, we can estimate our TTX, tstop(N)− tstart(1), after N generations as,

80

E(TTX) = NS/K (6.6)

Equation 6.6 describes that the TTX, in the case of combination 1, is directly

proportional to the number of generations and task length and inversely proportional to

the core performance.

We use our emulator described in §6.3 to observe the TTX as a function of the

number of tasks, core performance, binding strategies and sorting and binding criteria

for a homogeneous and static workload and homogeneous and dynamic resource. We

specify the workload and resource parameters used for our experiments in Table 6.2.

For each of row of parameters described in Table 6.2, we employ both the early- and

late-binding strategies. For each strategy, we employ two criteria: random, which sorts

and binds tasks randomly, and L2FF which places the longest task on the core that

will finish executing the task first. Thus, each experiment mentioned in Table 6.2 is

executed in four scenarios: (i) early binding with random criteria; (ii) late binding with

random criteria; (iii) early binding with L2FF criteria; and (iv) late binding with L2FF

criteria. The results with random criteria serve as a baseline for our analysis.

Table 6.2: Parameters to investigate combination 1 using the emulator

Exp ID Fig ID Task length Core performance # Tasks # Cores

1 6.4

512 16 128 128
512 16 256 128
512 16 512 128
512 16 1024 128

2 6.5

512 32 128 128
512 32 256 128
512 32 512 128
512 32 1024 128

3 6.6

512 64 128 128
512 64 256 128
512 64 512 128
512 64 1024 128

We present the results obtained in figures 6.4, 6.5 and 6.6 and discuss three insights

learned. We see that when, both, workload and resource are homogeneous and static,

81

Figure 6.4: Experiment 1: TTX as a function of the total number of tasks for early- and
late-binding strategies with random and L2FF criteria. Number of operations performed
by a task (T) = 512, Core performance (K) = 16, Number of cores (R) = 128

82

Figure 6.5: Experiment 2: TTX as a function of the total number of tasks for early- and
late-binding strategies with random and L2FF criteria. Number of operations performed
by a task (T) = 512, Core performance (K) = 32, Number of cores (R) = 128

83

Figure 6.6: Experiment 3: TTX as a function of the total number of tasks for early- and
late-binding strategies with random and L2FF criteria. Number of operations performed
by a task (T) = 512, Core performance (K) = 64, Number of cores (R) = 128

84

there is no difference in TTX between early-binding with random criteria, early-binding

with L2FF criteria and late-binding with L2FF criteria. This is explained by the fact

that all tasks and cores have the same properties over time and space and execution

time of any task on any core at any time is the same. Note that late-binding with

random criteria has higher TTX than the other three as the random sorter and binder

has no memory between task submissions and may place multiple tasks on to the same

cores, staggering the resulting TTX.

Secondly, we observe that the TTX increases with increase in the number of tasks

which is explained by the increased number of generations as the number of cores

is constant. Thirdly, we observe that the TTX reduces with increase in the core

performance which is explained by the decrease in the execution time of a task when

placed on a core with higher performance.

Although not presented in the experiments above, we can also confirm that, for

emulation of combination 1, the TTX varies linearly with the task length explained

by the increase (or decrease) in the number of operations to be performed on a core

with same performance. All these observations are consistent with equation 6.6 and our

emulator matches the expectation for our base case, combination 1.

6.4.2 Combination 2: Homogeneous and Static Workload, Homoge-

neous and Dynamic Resource

In combination 2, the workload is homogeneous and static and the resource is homo-

geneous and dynamic. Let the uniform distribution which is sampled for task lengths

be between (slow, shigh) and the uniform distribution which is sampled at different

times during execution for core performance be between (klow, khigh). As there is no

heterogeneity in the workload, the uniform distribution sampled for task length has no

width, i.e., shigh − slow = 0. Let the length of all tasks be S, i.e., S = shigh = slow and

the mean performance of all cores be K, i.e., K = (khigh + klow)/2.

Lets say that there are R cores and T tasks such that T > R and we will have N

generations where N = T/R when R tasks are executing concurrently. Let tstart(g) be

the time at which the first task of generation g starts execution. Let tstop(g) be the time

85

at which the last task of generation g stops execution. Then we can represent the start

and stop times at the end of first generation as,

tstart(1) = 0 (6.7)

tstop(1) = S/K (6.8)

In the second generation, the value of the resource performance is sampled from

the uniform distribution as the resources are dynamic. Thus, at the end of the second

generation we have,

tstart(2) = S/K (6.9)

tstop(2) = max(S/K + S/k21, S/K + S/k22, S/K + S/k23,, S/K + S/k2r) (6.10)

where kji indicates the performance value of ith core after j generations.

Similarly, after N generations,

tstop(N) = max(S/K + S/k21 + + S/kN1 , S/K + S/k22 + + S/kN2 ,

S/K + S/k23 + + S/kN3 ,, S/K + S/k2r + + S/kNr)

(6.11)

We can estimate our TTX, tstop(N) − tstart(1) after N generations as a sum of

independent variables drawn of a uniform distribution, which would be a Irwin-Hall

distribution [148, 149], a distribution that tends towards a normal distribution based

on the number of random variables summed. Its mean and standard deviation can be

formulated as,

E(TTX) = NT/K (6.12)

86

Stddev(TTX) = T ∗ ((khigh − klow)/khigh ∗ klow) ∗
√

(N − 1)/12 (6.13)

Equation 6.12 describes that the mean TTX, in the case of combination 2, is directly

proportional to the number of generations and task length and inversely proportional to

the core performance. Equation 6.13 describes that the space, around the mean TTX,

in which the actual TTX lies grows linearly with the task length, number of generations

and the dynamism of the resource.

We use our emulator described in §6.3 to observe the TTX as a function of the

number of tasks, mean core performance, binding strategies and sorting and binding

criteria for a homogeneous and static workload and homogeneous and dynamic resource.

We specify the workload and resource parameters used for our experiments in Table 6.3

For each of row of parameters described in Table 6.3, we employ both the early- and

late-binding strategies. For each strategy, we employ two criteria: random, which sorts

and binds tasks randomly, and L2FF which places the longest task on the core that

will finish executing the task first. Thus, each experiment mentioned in Table 6.3 is

executed in four scenarios: (i) early binding with random criteria; (ii) late binding with

random criteria; (iii) early binding with L2FF criteria; and (iv) late binding with L2FF

criteria. The results with random criteria serve as a baseline for our analysis.

Table 6.3: Parameters to investigate combination 2 using the emulator

Exp ID Fig ID Task length Core performance # Tasks # Cores

1

6.7 (a) 512 16 128 128
6.7 (b) 512 16 256 128
6.7 (c) 512 16 512 128
6.7 (d) 512 16 1024 128

2

6.8 (a) 1024 32 128 128
6.8 (b) 1024 32 256 128
6.8 (c) 1024 32 512 128
6.8 (d) 1024 32 1024 128

3

6.9 (a) 2048 64 128 128
6.9 (b) 2048 64 256 128
6.9 (c) 2048 64 512 128
6.9 (d) 2048 64 1024 128

87

Figure 6.7: Experiment 1: TTX as a function of resource dynamism and total number
of tasks for early- and late-binding strategies with random and L2FF criteria. Number
of operations performed by a task (T) = 512, Mean core performance (K) = 16, Number
of cores (R) = 128, Total number of tasks = 128(a), 256(b), 512(c) and 1024(d)

88

Figure 6.8: Experiment 2: TTX as a function of resource dynamism and total number of
tasks for early- and late-binding strategies with random and L2FF criteria. Number of
operations performed by a task (T) = 1024, Mean core performance (K) = 32, Number
of cores (R) = 128, Total number of tasks = 128(a), 256(b), 512(c) and 1024(d)

89

Figure 6.9: Experiment 3: TTX as a function of resource dynamism and total number of
tasks for early- and late-binding strategies with random and L2FF criteria. Number of
operations performed by a task (T) = 2048, Mean core performance (K) = 64, Number
of cores (R) = 128, Total number of tasks = 128(a), 256(b), 512(c) and 1024(d)

90

We present the results obtained in figures 6.7, 6.8 and 6.9 and discuss four insights

learned. Firstly, we see that when workload is homogeneous and static and resource

is homogeneous and dynamic, there is considerable difference in TTX between early-

and late-binding strategies with different criteria. The TTX when using early-binding

with random criteria, late-binding with random criteria and early-binding with L2FF,

increases with increase in resource dynamism. This behavior is explained as these three

do not consider the changes in the core performance and can place tasks on sub-optimal

cores. When the resource dynamism is not considered in making scheduling decisions,

early-binding with L2FF criteria essentially behaves like early-binding with random

criteria after the first generation. This can be seen in the similarity of the TTX of the

two early-binding strategies.

Late-binding with L2FF however shows much lower TTX than the other three

approaches. This is explained by the fact the late-binding strategy ensures use of the

latest core performance of the dynamic resource and the L2FF criteria places tasks

on cores based on its performance. Using late-binding with L2FF ensures that more

tasks are executed on faster cores to minimize the overall TTX. It can be seen that this

approach provides 0.1x− 100x better TTX compared to the other 3 for the parameters

in Table 6.3.

Secondly, we observe that the TTX for late-binding with L2FF is consistently lower

at 100% than at 50%. This is explained by the fact that with increase in dynamism,

there are cores with even greater performance than when dynamism is at 50% and the

L2FF ensures that more tasks are executed on these faster cores reducing the overall

TTX.

Thirdly, we observe that the TTX increases with increase in the number of tasks

which is explained by the increased number of generations as the number of cores is

constant. Although not presented in our experiments, we can confirm that the TTX

varied proportionally to the task length and inversely with the core performance. These

behavior are consistent with our expectations based on equation 6.12.

Finally, across the three experiments we vary values of task length but keep the ratio

of task length to mean core performance constant, which equates to constant mean time

91

to execute a task. We observe that the TTX increases with increase in the task length,

although marginally. This is consistent with our expectations based on equation 6.13

as the possibility of a higher TTX increases with the task length. Experiments with

greater task lengths can be performed to observe greater fluctuations.

Using the theoretical and empirical evaluation via the emulator, we explain that the

execution of homogeneous and static workloads on homogeneous and dynamic resources

can benefit from using the late-binding strategy with the L2FF criteria as it leads to a

reduction the TTX.

6.4.3 Combination 3: Heterogeneous and Static Workload, Homoge-

neous and Dynamic Resource

In combination 3, the workload is heterogeneous and static, resource is homogeneous

and dynamic. Let the uniform distribution which is sampled for task lengths be between

(slow, shigh) and the uniform distribution which is sampled at different times during

execution for core performance be between (klow, khigh). Let the mean length of tasks

be S, i.e., S = (shigh + slow)/2 and the mean performance of all cores be K, i.e.,

K = (khigh + klow)/2.

Lets say that there are R cores and T tasks such that T > R and we have N

generations where N = T/R when R tasks executing concurrently. Let tstart(g) be the

time at which the first task of generation g starts execution. Let tstop(g) be the time at

which the last task of generation g stops execution.

The estimate of TTX, tstop(N)− tstart(1) after N generations can be described by,

E(TTX) = NS/K (6.14)

Stddev(TTX) = T ∗ ((d− c)/d ∗ c) ∗
√

(N − 1)/12 (6.15)

where c = slow/khigh and d = shigh/klow.

Similar to case 2, equation 6.14 describes that the mean TTX, in the case of

92

combination 3, is directly proportional to the number of generations and task length

and inversely proportional to the core performance. Equation 6.15 describes that the

space, around the mean TTX, in which the actual TTX lies grows linearly with the task

length, number of generations, heterogeneity of the workload and the dynamism of the

resource.

We use our emulator described in § 6.3 to observe the TTX as a function of the

number of tasks, mean core performance, binding strategies and sorting and binding

criteria for a heterogeneous and static workload and homogeneous and dynamic resource.

We specify the workload and resource parameters used for our experiments in Table 6.4.

Table 6.4: Parameters to investigate combination 3 using the emulator

Exp ID Fig ID
Workload

heterogeneity
Task length

Core
perf.

Tasks # Cores

1

6.10 (a)

12.5%

512 16 128 128
6.10 (b) 512 16 256 128
6.10 (c) 512 16 512 128
6.10 (d) 512 16 1024 128

2

6.11 (a)

25%

512 16 128 128
6.11 (b) 512 16 256 128
6.11 (c) 512 16 512 128
6.11 (d) 512 16 1024 128

3

6.12 (a)

50%

512 16 128 128
6.12 (b) 512 16 256 128
6.12 (c) 512 16 512 128
6.12 (d) 512 16 1024 128

4

6.13 (a)

100%

512 16 128 128
6.13 (b) 512 16 256 128
6.13 (c) 512 16 512 128
6.13 (d) 512 16 1024 128

For each of row of parameters described in Table 6.4, we employ both the early- and

late-binding strategies. For each strategy, we employ two criteria: random, which sorts

and binds tasks randomly, and L2FF which places the longest task on the core that

will finish executing the task first. Thus, each experiment mentioned in Table 6.4 is

executed in four scenarios: (i) early binding with random criteria; (ii) late binding with

random criteria; (iii) early binding with L2FF criteria; and (iv) late binding with L2FF

93

Figure 6.10: TTX as a function of resource dynamism and total number of tasks for
early- and late-binding strategies with random and L2FF criteria. Mean number of
operations performed by a task (T) = 512, Workload heterogeneity = 12.5% of T, Mean
core performance (K) = 16, Number of cores (R) = 128, Total number of tasks = 128(a),
256(b), 512(c) and 1024 (d)

criteria. The results with random criteria serve as a baseline for our analysis.

We present the results obtained in figures 6.10, 6.11, 6.12 and 6.13 and discuss four

insights learned. Firstly, we see that when workload is heterogeneous and static and

resource is homogeneous and dynamic, there is considerable difference in TTX between

early- and late-binding strategies with the different criteria. Similar to the behavior in

combination 2, the TTX when using early-binding with random criteria, late-binding

with random criteria and early-binding with L2FF, increases with increase in resource

dynamism. This behavior is explained as these three do not consider the changes in the

core performance and can place tasks on sub-optimal cores.

Late-binding with L2FF however shows much lower TTX than the other three

approaches. This is explained by the fact the late-binding strategy ensures use of the

latest core performance of the dynamic resource and the L2FF criteria places tasks

94

Figure 6.11: TTX as a function of resource dynamism and total number of tasks for
early- and late-binding strategies with random and L2FF criteria. Mean number of
operations performed by a task (T) = 512, Workload heterogeneity = 25% of T, Mean
core performance (K) = 16, Number of cores (R) = 128, Total number of tasks = 128(a),
256(b), 512(c) and 1024 (d)

95

Figure 6.12: TTX as a function of resource dynamism and total number of tasks for
early- and late-binding strategies with random and L2FF criteria. Mean number of
operations performed by a task (T) = 512, Workload heterogeneity = 50% of T, Mean
core performance (K) = 16, Number of cores (R) = 128, Total number of tasks = 128(a),
256(b), 512(c) and 1024 (d)

96

Figure 6.13: TTX as a function of resource dynamism and total number of tasks for
early- and late-binding strategies with random and L2FF criteria. Mean number of
operations performed by a task (T) = 512, Workload heterogeneity = 100% of T, Mean
core performance (K) = 16, Number of cores (R) = 128, Total number of tasks = 128(a),
256(b), 512(c) and 1024 (d)

97

on cores based on its performance. Using late-binding with L2FF ensures that more

tasks are executed on faster cores to minimize the overall TTX. It can be seen that this

approach provides 0.1x100x better TTX compared to the other 3 for the parameters in

Table 6.4.

Secondly, we observe that the TTX for late-binding with L2FF is consistently lower

at 100% than at 50%. This is explained by the fact that with increase in dynamism,

there are cores with even greater performance than when dynamism is at 50% and the

L2FF ensures that more tasks are executed on these faster cores reducing the overall

TTX. This reduction can be seen also when the workload heterogeneity increases from

50% to 100% and can explained by the presence of shorter tasks when heterogeneity is

at 100% when compared to the tasks at 50%.

Thirdly, across the four experiments we vary the workload heterogeneity and, for the

same value of resource dynamism, we can see that the TTX increases with increase in

the workload heterogeneity when using early-binding with random criteria, late-binding

with random criteria and early-binding with L2FF criteria. This is explained by the fact

that there are increasing number of long tasks when workload heterogeneity increases

and these tasks placed on sub-optimal cores. In the case of late-binding with L2FF

criteria, the TTX does not vary with increase in workload heterogeneity as the longer

tasks are always optimally placed.

Finally, as in the case of combinations 1 and 2, we observe that the TTX increases

with increase in the number of tasks which is explained by the increased number

of generations as the number of cores is constant. Although not presented in our

experiments, we can confirm that the TTX varied proportionally to the task length and

inversely with the core performance. These behavior are consistent with our expectations

based on equations 6.14 and 6.15.

Using the theoretical and empirical evaluation via the emulator, we explain that the

execution of heterogeneous and static workloads on homogeneous and dynamic resources

can benefit from using the late-binding strategy with the L2FF criteria as it leads to a

reduction the TTX.

98

6.5 Impact and challenges

In the experiments above, we have shown that the total TTX can be heavily affected

by workload heterogeneity and resource dynamism. Through theoretical and empirical

analysis, we showed that our approach of late-binding with the L2FF criteria can be

used to manage the effect of heterogeneity and dynamism on TTX. We believe that

the results described above, insight derived from the results and the capabilities of the

emulator benefit both end users and system developers.

In our experiments, late-binding strategy with the L2FF criteria showed 0.1x− 100x

better total TTX compared to early-binding strategies when the heterogeneity and

dynamism were varied between 12.5%-100%. The improvement was achieved for the same

number of cores in all experiments, which, in the context of HPC systems, translates to

efficient resource utilization. This is because in HPC systems, the complete resource

(including used and unused cores) is held for the duration of the TTX and is released

only after the last task finishes execution, thus, lowering the TTX lowers the resource

utilization. The values used for task length and core performance were representative,

but the performance improvements obtained in TTX can translate into hours and days in

real-world applications and the gains in resource utilization could enable longer ensemble

applications or a campaign of ensemble applications for the same resource budget.

Conversely, using the capabilities of the emulator and results derived above, develop-

ers of workload management systems can argue, prior to investing time in developing

these systems, whether sophisticated late-binding strategies and different criteria are use-

ful for an application and a HPC system, given information regarding the heterogeneity

of the workload and dynamism of the resources.

We foresee two main challenges in implementing late-binding strategies and using

them in practice: (1) tools and services to measure workload heterogeneity and resource

dynamism may not be available, and if available, may not be accurate; and (2) the time

to make the scheduling decisions needs to be factored while making the decision. Both

of these challenges were assumed to be addressed in our approach in order to simplify

the problem space. Our strategy discussed and the emulator developed here provide

99

important insight and are pre-cursory for developing workload management systems to

be used in practice.

6.6 Summary

In this final chapter, we discussed the workload heterogeneity in ensemble applications

and performance dynamism in HPC resources. We discussed the implications of not

accounting for heterogeneity and dynamism while making scheduling decisions. We

described the current solutions to this problem, their drawbacks and proposed the

late-binding strategy that delays the decision to decide when and where tasks of a

workload need to be executed in order to minimize the TTX. We performed a theoretical

evaluation of the valid cases and derived formula to depict the space in which the TTX

may lie. We developed an emulator to investigate and compare the late-binding strategy

against early-binding for different criteria.

Our theoretical and experimental analysis showed that the TTX is proportional to

the level of heterogeneity, level of dynamism, total number of tasks to be executed,

number of available cores, task length and core performance. Our experiments showed

that using the late-binding strategy with L2FF criteria, that places the longest task

on the cores on which they finish first, provides 0.1x − 100x reduction in total TTX

compared to early-binding strategies when the heterogeneity and dynamism are between

12.5%-100%.

100

Chapter 7

Conclusion

In this dissertation, we presented a body of research in middleware advancing the

state-of-the-art to enable the programmability and execution of scientific applications on

HPC systems abstracting the complexity of resource and execution management. This

enables the domain scientists to focus on algorithmic innovations and computational

campaigns of larger scale solving bigger problems without having to manage resource

and task execution aspects. Specifically, this research makes the following contributions.

A specific class of scientific applications called ensemble applications is described and

their significance in advancing the status-quo in various scientific domains is explained.

Requirements and challenges are identified based on five different science drivers and

a generic software framework, EnTK, is designed and developed to address missing

capabilities in existing solutions. The framework offers a programming model focused

on expressing ensemble applications and abstracts resource and execution complexities

from the user. The framework provides fault tolerance, minimal overheads, linear strong

and weak scaling up to O(1000) tasks on leadership-class HPC systems at NSF and DoE.

Complying with the building blocks approach the framework is designed to integrate

with different task execution systems based on the requirements of the application. The

scientific research activities enabled by EnTK are described signifying the impact of the

programming model and execution capabilities offered by EnTK.

Advancement in scientific applications to solve problems that ensemble applications

cannot solve have come in the form of adaptive ensemble applications where the science

drivers require the capability to modify the application workflow during runtime based

on the intermediate results obtained during execution. These adaptive approaches

have been shown to improve scientific results by orders of magnitude in theory or

101

at small scale. Supporting such solutions at production-scale requires capabilities to

reliably adapt workflows without interrupting execution and automation to avoid human

involvement required when at scale, both of which are not available in current solutions.

In response to these missing capabilities, we identified the types of adaptivity common

in ensemble applications and enhanced EnTK using three science drivers with adaptive

requirements. We characterized the adaptivity overhead to show that it is orders of

magnitude lesser than the TTX of these applications, validated the implementation of

two adaptive ensemble applications and described the advances enabled by our efforts

in multiple scientific domains.

Workloads derived from adaptive and non-adaptive ensemble applications may be

homogeneous or heterogeneous and performance of resources on HPC systems can be

largely dynamic in nature. The effect of heterogeneity and dynamism in workloads

and resources on the TTX and resource utilization is not closely investigated due to

lack of necessary tools and services. We develop a workload management emulator to

evaluate these scenarios and perform a theoretical and empirical evaluation to show

their effects on TTX. We propose a late-binding strategy with ’L2FF’ scheduling criteria

that can reduce the TTX by 0.1x− 100x compared to other common strategies when

workload heterogeneity and resource dynamism varies between 12.5%-100%. We discuss

the impact of the insight derived through the theoretical and empirical evaluation of

results obtained when using the emulator and mention the challenges in implementing

such a workload manager and strategies in practice.

Our research advances the state-of-the-art of middleware tools providing the ca-

pabilities to solve the scientific problems of today and tomorrow in multiple scientific

domains.

7.1 Future Work

Our solutions presented in this dissertation are largely invariant to the scientific domain

in which it is utilized and portable to different HPC systems due to, both, the current

task execution system used in EnTK as well as the building blocks design approach

102

which allows EnTK to integrated with other task execution systems. Coupled with our

insights derived using our workload management emulator, we foresee four avenues of

research and development that can be pursued going forward.

Currently, EnTK coupled with RP enable scalable execution up to O(1000) tasks on

several HPC systems. With the advent of HPC systems for pre-exascale and exascale

computing, we will soon require scaling up to O(104)-O(106) tasks. In preparation for

this requirement, research efforts need to be made into optimize existing or developing

new task execution systems that can reach such scales. Due to the building block

approach employed, EnTK can be integrated with these systems through standardized

interfaces. This would enable existing applications and domain specific workflow systems

developed using EnTK to transparently scale to exascale.

A second avenue of research to reach greater scales of execution is to enable the

concurrent use of multiple resources on the same or different HPC systems. This would

require enhancing EnTK to acquire and manage multiple resources as well as research

into the efficient and reliable scheduling and execution of tasks on these resources.

A third avenue of future research would be in the development of a workload

management system that offers late-binding strategies to schedule workloads on to

resources. We believe our strategies evaluated and the emulator developed in this

research provide important insight and are pre-cursory for developing a workload

management system that can be used in practice. As mentioned in § 6.5, such a system

can be useful to end users who may benefit from reduced TTX and improved resource

utilization.

Finally, a very useful addition to this body of work would be to extend the current

capabilities to cloud based systems. Owing to the building blocks approach employed,

support cloud systems can be enabled by switch the runtime system used by EnTK. Cloud

systems with no queue times have the potential to serve as test beds for applications at

small scales before moving to production-scales on HPC systems, complimenting the

capabilities of an HPC system.

103

References

[1] Don Johnston. Hpc matters to our quality of life and prosperity. Scientific
Computing, 2014. http://www.scientificcomputing.com/article/2014/11/

hpcmatters-our-quality-life-and-prosperity.

[2] Stephen J Ezell and Robert D Atkinson. The vital importance of high-performance
computing to us competitiveness. Information Technology and Innovation Foun-
dation, April, 28, 2016.

[3] IDC. High performance computing in the eu: Progress on the implementa-
tion of the european hpc strategy report. Brussels: European Commission
DG Communications Networks, Content and Technology, 2015, 2015. http:

//knowledgebase.e-irg.eu/documents/243153/246094/High+Performance+

Computing+in+the+EU+-+Progress+on+the+Implementation+of+the+

European+HPC+Strategy.pdf/b0adf617-3f50-4a6f-9217-4e0fbb5edd09.

[4] Amber Harmon. Hpc matters: Funding, collaboration, innovation.
ScienceNode, November 2014. https://sciencenode.org/feature/

hpc-matters-funding-collaboration-innovation.php.

[5] Dimitri Komatitsch and Jeroen Tromp. Spectral-element simulations of global seis-
mic wave propagationi. validation. Geophysical Journal International, 149(2):390–
412, 2002.

[6] Guido Cervone, Laura Clemente-Harding, Stefano Alessandrini, and Luca
Delle Monache. Short-term photovoltaic power forecasting using artificial neural
networks and an analog ensemble. Renewable Energy, 108:274–286, 2017.

[7] Gianni D’Angelo and Salvatore Rampone. Towards a hpc-oriented parallel imple-
mentation of a learning algorithm for bioinformatics applications. BMC bioinfor-
matics, 15(5):S2, 2014.

[8] Marco Caccin, Zhenwei Li, James R Kermode, and Alessandro De Vita. A frame-
work for machine-learning-augmented multiscale atomistic simulations on parallel
supercomputers. International Journal of Quantum Chemistry, 115(16):1129–1139,
2015.

[9] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum,
34(6):52–59, 1997.

[10] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and
Andre R LeBlanc. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

http://www.scientificcomputing.com/article/2014/11/hpcmatters-our-quality-life-and-prosperity
http://www.scientificcomputing.com/article/2014/11/hpcmatters-our-quality-life-and-prosperity
http://knowledgebase.e-irg.eu/documents/243153/246094/High+Performance+Computing+in+the+EU+-+Progress+on+the+Implementation+of+the+European+HPC+Strategy.pdf/b0adf617-3f50-4a6f-9217-4e0fbb5edd09
http://knowledgebase.e-irg.eu/documents/243153/246094/High+Performance+Computing+in+the+EU+-+Progress+on+the+Implementation+of+the+European+HPC+Strategy.pdf/b0adf617-3f50-4a6f-9217-4e0fbb5edd09
http://knowledgebase.e-irg.eu/documents/243153/246094/High+Performance+Computing+in+the+EU+-+Progress+on+the+Implementation+of+the+European+HPC+Strategy.pdf/b0adf617-3f50-4a6f-9217-4e0fbb5edd09
http://knowledgebase.e-irg.eu/documents/243153/246094/High+Performance+Computing+in+the+EU+-+Progress+on+the+Implementation+of+the+European+HPC+Strategy.pdf/b0adf617-3f50-4a6f-9217-4e0fbb5edd09
https://sciencenode.org/feature/hpc-matters-funding-collaboration-innovation.php
https://sciencenode.org/feature/hpc-matters-funding-collaboration-innovation.php

104

[11] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In 2011 38th
Annual international symposium on computer architecture (ISCA), pages 365–376.
IEEE, 2011.

[12] David J Frank, Robert H Dennard, Edward Nowak, Paul M Solomon, Yuan Taur,
and Hon-Sum Philip Wong. Device scaling limits of si mosfets and their application
dependencies. Proceedings of the IEEE, 89(3):259–288, 2001.

[13] Thomas N Theis and Paul M Solomon. In quest of the next switch: prospects for
greatly reduced power dissipation in a successor to the silicon field-effect transistor.
Proceedings of the IEEE, 98(12):2005–2014, 2010.

[14] XSEDE. https://portal.xsede.org/.

[15] ORNL. https://www.olcf.ornl.gov/computing-resources.

[16] Tacc frontera (accessed may 2019). https://www.tacc.utexas.edu/systems/

frontera.

[17] Ornl summit (accessed may 2019). https://www.olcf.ornl.gov/

olcf-resources/compute-systems/summit/.

[18] Susanna Röblitz and Marcus Weber. Fuzzy spectral clustering by pcca+: appli-
cation to markov state models and data classification. Adv. Data. Anal. Classi.,
7(2):147–179, 2013.

[19] S. Doerr and G. De Fabritiis. On-the-fly learning and sampling of ligand binding
by high-throughput molecular simulations. J. Chem. Theory Comput., 10(5):2064–
2069, 2014.

[20] Gregory R Bowman, Daniel L Ensign, and Vijay S Pande. Enhanced modeling
via network theory: adaptive sampling of markov state models. J. Chem. Theory
Comput., 6(3):787–794, 2010.

[21] John D Chodera and Frank Noé. Markov state models of biomolecular conforma-
tional dynamics. Current opinion in structural biology, 25:135–144, 2014.

[22] Frank Noé, Christof Schütte, Eric Vanden-Eijnden, Lothar Reich, and Thomas R
Weikl. Constructing the equilibrium ensemble of folding pathways from short
off-equilibrium simulations. Proceedings of the National Academy of Sciences,
106(45):19011–19016, 2009.

[23] J. Virieux and S. Operto. An overview of full-waveform inversion in exploration
geophysics. GEOPHYSICS, 74(6):WCC1–WCC26, November 2009.

[24] Hui Wan, Philip J Rasch, Kai Zhang, Yun Qian, Huiping Yan, and Chun Zhao.
Short ensembles: an efficient method for discerning climate-relevant sensitivities
in atmospheric general circulation models. Geoscientific Model Development,
7(5):1961–1977, 2014.

[25] Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical
weather prediction. Nature, 525(7567):47–55, 2015.

https://portal.xsede.org/
https://www.olcf.ornl.gov/computing-resources
https://www.tacc.utexas.edu/systems/frontera
https://www.tacc.utexas.edu/systems/frontera
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

105

[26] G Cervone, P Franzese, Y Ezber, and Z Boybeyi. Risk assessment of atmospheric
emissions using machine learning. Natural Hazards and Earth System Sciences,
8(5):991–1000, 2008.

[27] S Alessandrini, L Delle Monache, S Sperati, and G Cervone. An analog ensemble
for short-term probabilistic solar power forecast. Applied energy, 157:95–110, 2015.

[28] James M Murphy, David MH Sexton, David N Barnett, Gareth S Jones, Mark J
Webb, Matthew Collins, and David A Stainforth. Quantification of modelling un-
certainties in a large ensemble of climate change simulations. Nature, 430(7001):768,
2004.

[29] Jeffrey Martin, Vincent M Bruno, Zhide Fang, Xiandong Meng, Matthew Blow,
Tao Zhang, Gavin Sherlock, Michael Snyder, and Zhong Wang. Rnnotator: an
automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads.
BMC genomics, 11(1):663, 2010.

[30] Thomas E Cheatham III and Daniel R Roe. The impact of heterogeneous comput-
ing on workflows for biomolecular simulation and analysis. Computing in Science
& Engineering, 17(2):30–39, 2015.

[31] Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack Dongarra,
and David Walker. MPI–the Complete Reference: The MPI core, volume 1. MIT
press, 1998.

[32] Matteo Turilli, Vivek Balasubramanian, Andre Merzky, Ioannis Paraskevakos, and
Shantenu Jha. Middleware building blocks for workflow systems. Computing in
Science & Engineering (CiSE) special issue on Incorporating Scientific Workflows
in Computing Research Processes, forthcoming.

[33] Yuji Sugita and Yuko Okamoto. Replica-exchange molecular dynamics method
for protein folding. Chemical physics letters, 314(1):141–151, 1999.

[34] Shunzhou Wan, Agastya P Bhati, Stefan J Zasada, Ian Wall, Darren Green, Paul
Bamborough, and Peter V Coveney. Rapid and reliable binding affinity prediction
of bromodomain inhibitors: a computational study. Journal of chemical theory
and computation, 13(2):784–795, 2017.

[35] Sethuraman Sankaran and Alison L Marsden. A stochastic collocation method for
uncertainty quantification and propagation in cardiovascular simulations. Journal
of biomechanical engineering, 133(3):031001, 2011.

[36] Thomas M Hamill, Michael J Brennan, Barbara Brown, Mark DeMaria, Edward N
Rappaport, and Zoltan Toth. Future of ensemble-based hurricane forecast products.
Bull. Amer. Meteor. Soc, 2010.

[37] Ebru Bozda, Daniel Peter, Matthieu Lefebvre, Dimitri Komatitsch, Jeroen Tromp,
Judith Hill, Norbert Podhorszki, and David Pugmire. Global adjoint tomography:
first-generation model. Geophysical Journal International, 207(3):1739–1766, 2016.

[38] Nicolas Cherpeau, Guillaume Caumon, and Bruno Lévy. Stochastic simulation
of fault networks from 2d seismic lines. In SEG Technical Program Expanded
Abstracts 2010, pages 2366–2370. Society of Exploration Geophysicists, 2010.

106

[39] Nina Singhal and Vijay S Pande. Error analysis and efficient sampling in markovian
state models for molecular dynamics. J. Chem. Phys., 123(20):204909, 2005.

[40] Jeffrey K Weber and Vijay S Pande. Characterization and rapid sampling of protein
folding markov state model topologies. J. Chem. Theory Comput., 7(10):3405–3411,
2011.

[41] Zahra Shamsi, Alexander S. Moffett, and Diwakar Shukla. Enhanced unbiased
sampling of protein dynamics using evolutionary coupling information. Sci. Rep.,
7(1):12700, 2017.

[42] Jordane Preto and Cecilia Clementi. Fast recovery of free energy landscapes via
diffusion-map-directed molecular dynamics. Physical Chemistry Chemical Physics,
16(36):19181–19191, 2014.

[43] Charles A Laughton, Modesto Orozco, and Wim Vranken. Coco: a simple tool to
enrich the representation of conformational variability in nmr structures. Proteins:
Structure, Function, and Bioinformatics, 75(1):206–216, 2009.

[44] Extasy. https://nsf.gov/awardsearch/showAward?AWD_ID=1265929.

[45] Mary A Rohrdanz, Wenwei Zheng, Mauro Maggioni, and Cecilia Clementi. Deter-
mination of reaction coordinates via locally scaled diffusion map. The Journal of
chemical physics, 134(12):03B624, 2011.

[46] Ian Jolliffe. Principal component analysis. Springer, 2011.

[47] Edward C Sherer, Sarah A Harris, Robert Soliva, Modesto Orozco, and Charles A
Laughton. Molecular dynamics studies of dna a-tract structure and flexibility.
Journal of the American Chemical Society, 121(25):5981–5991, 1999.

[48] Stanislaw T Wlodek, Terry W Clark, L Ridgway Scott, and J Andrew McCammon.
Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. Journal
of the American Chemical Society, 119(40):9513–9522, 1997.

[49] Ryan T Modrak, Dmitry Borisov, Matthieu Lefebvre, and Jeroen Tromp. Seis-
flowsflexible waveform inversion software. Computers & geosciences, 115:88–95,
2018.

[50] Robert H Swendsen and Jian-Sheng Wang. Replica monte carlo simulation of
spin-glasses. Physical review letters, 57(21):2607, 1986.

[51] Romelia Salomon-Ferrer, David A Case, and Ross C Walker. An overview of
the amber biomolecular simulation package. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 3(2):198–210, 2013.

[52] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhor-
shid, Elizabeth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and
Klaus Schulten. Scalable molecular dynamics with namd. Journal of computational
chemistry, 26(16):1781–1802, 2005.

[53] Herman JC Berendsen, David van der Spoel, and Rudi van Drunen. Gromacs: a
message-passing parallel molecular dynamics implementation. Computer physics
communications, 91(1-3):43–56, 1995.

https://nsf.gov/awardsearch/showAward?AWD_ID=1265929

107

[54] Hiroaki Fukunishi, Osamu Watanabe, and Shoji Takada. On the hamiltonian
replica exchange method for efficient sampling of biomolecular systems: Application
to protein structure prediction. The Journal of chemical physics, 116(20):9058–
9067, 2002.

[55] Yilin Meng and Adrian E Roitberg. Constant ph replica exchange molecular
dynamics in biomolecules using a discrete protonation model. Journal of chemical
theory and computation, 6(4):1401–1412, 2010.

[56] U.s. food and drug administration. hematology oncology (can-
cer) approvals & safety notifications (accessed may 2019. https:

//www.fda.gov/drugs/resources-information-approved-drugs/

hematologyoncology-cancer-approvals-safety-notifications.

[57] Zheng Zhao, Hong Wu, Li Wang, Yi Liu, Stefan Knapp, Qingsong Liu, and
Nathanael S Gray. Exploration of type ii binding mode: a privileged approach for
kinase inhibitor focused drug discovery? ACS chemical biology, 9(6):1230–1241,
2014.

[58] Agastya P. Bhati, Shunzhou Wan, David W. Wright, and Peter V. Coveney.
Rapid, accurate, precise, and reliable relative free energy prediction using ensemble
based thermodynamic integration. Journal of Chemical Theory and Computation,
13(1):210–222, 2017. PMID: 27997169.

[59] Michael Stonebraker. Too much middleware. ACM Sigmod Record, 31(1):97–106,
2002.

[60] Giovanni Aloisio, Massimo Cafaro, Daniele Lezzi, and Robert van Engelen. Secure
web services with globus gsi and gsoap. Euro-Par 2003 Parallel Processing, pages
421–426, 2003.

[61] Yoshio Tanaka, Hidemoto Nakada, Satoshi Sekiguchi, Toyotaro Suzumura, and
Satoshi Matsuoka. Ninf-g: A reference implementation of rpc-based programming
middleware for grid computing. Journal of Grid computing, 1(1):41–51, 2003.

[62] Mitsuhisa Sato, Taisuke Boku, and Daisuke Takahashi. OmniRPC: a Grid RPC
system for parallel programming in cluster and grid environment. In IEEE/ACM
CCGrid, pages 206–213. IEEE, 2003.

[63] Sriram Krishnan, Mahidhar Tatineni, and Chaitanya Baru. myhadoop: Hadoop-on-
demand on traditional hpc resources. San Diego Supercomputer Center Technical
Report TR-2011-2, University of California, San Diego, 2011.

[64] William Clay Moody, Linh Bao Ngo, Edward Duffy, and Amy Apon. Jummp: Job
uninterrupted maneuverable mapreduce platform. In IEEE Int. Conf. on Cluster
Computing (CLUSTER), pages 1–8. IEEE, 2013.

[65] Magpie. https://github.com/LLNL/magpie(accessed December 2017).

[66] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew B Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific workflow
management and the kepler system. Concurrency and Computation: Practice and
Experience, 18(10):1039–1065, 2006.

https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications
https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications
https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications
https://github.com/LLNL/magpie

108

[67] Michael Wilde, Mihael Hategan, Justin M Wozniak, Ben Clifford, Daniel S Katz,
and Ian Foster. Swift: A language for distributed parallel scripting. Parallel
Computing, 37(9):633–652, 2011.

[68] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anasta-
sia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Scientific Programming,
13(3):219–237, 2005.

[69] Leo Goodstadt. Ruffus: a lightweight python library for computational pipelines.
Bioinformatics, 26(21):2778–2779, 2010.

[70] Erik Gafni, Lovelace J Luquette, Alex K Lancaster, Jared B Hawkins, Jae-Yoon
Jung, Yassine Souilmi, Dennis P Wall, and Peter J Tonellato. Cosmos: Python
library for massively parallel workflows. Bioinformatics, 30(20):2956–2958, 2014.

[71] Kenjiro Taura, Takuya Matsuzaki, Makoto Miwa, Yoshikazu Kamoshida, Daisaku
Yokoyama, Nan Dun, Takeshi Shibata, Choi Sung Jun, and Junichi Tsujii. Design
and implementation of gxp makea workflow system based on make. Future
Generation Computer Systems, 29(2):662–672, 2013.

[72] Jeremy Goecks, Anton Nekrutenko, and James Taylor. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome biology, 11(8):R86, 2010.

[73] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark
Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, et al.
Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045–3054, 2004.

[74] Shawn Hoon, Kiran Kumar Ratnapu, Jer-ming Chia, Balamurugan Kumarasamy,
Xiao Juguang, Michele Clamp, Arne Stabenau, Simon Potter, Laura Clarke, and
Elia Stupka. Biopipe: a flexible framework for protocol-based bioinformatics
analysis. Genome Research, 13(8):1904–1915, 2003.

[75] Sander Pronk, Iman Pouya, Magnus Lundborg, Grant Rotskoff, Bjorn Wesen,
Peter M Kasson, and Erik Lindahl. Molecular simulation workflows as parallel
algorithms: The execution engine of copernicus, a distributed high-performance
computing platform. Journal of chemical theory and computation, 11(6):2600–2608,
2015.

[76] Mirko Sonntag, Dimka Karastoyanova, and Frank Leymann. The missing features
of workflow systems for scientific computations. Software Engineering 2010–
Workshopband (inkl. Doktorandensymposium), 2010.

[77] Valerie Hendrix, James Fox, Devarshi Ghoshal, and Lavanya Ramakrishnan. Tigres
workflow library: Supporting scientific pipelines on hpc systems. In 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pages 146–155. IEEE, 2016.

109

[78] Entk github (accessed may 2019). https://github.com/radical-cybertools/
radical.entk.

[79] Andre Merzky, Matteo Turilli, Manuel Maldonado, Mark Santcroos, and Shantenu
Jha. Using pilot systems to execute many task workloads on supercomputers.
In Workshop on Job Scheduling Strategies for Parallel Processing, pages 61–82.
Springer, 2018.

[80] Pivotal. Rabbitmq. https://www.rabbitmq.com/ (accessed April 2019).

[81] CloudAMQP. Cloudamqp. https://www.cloudamqp.com/ (accessed April 2019).

[82] Docker. Docker. https://www.docker.com/ (accessed April 2019).

[83] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C
Smith, Berk Hess, and Erik Lindahl. GROMACS: High performance molecu-
lar simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX, 1:19–25, 2015.

[84] V. Balasubramanian, I. Bethune, A. Shkurti, E. Breitmoser, E. Hruska,
C. Clementi, C. Laughton, and S. Jha. Extasy: Scalable and flexible coupling of md
simulations and advanced sampling techniques. In 2016 IEEE 12th International
Conference on e-Science (e-Science), pages 361–370, Oct 2016.

[85] Ardita Shkurti, Ioanna Danai Styliari, Vivek Balasubramanian, Iain Bethune,
Conrado Pedebos, Shantenu Jha, and Charles A Laughton. Coco-md: A simple
and effective method for the enhanced sampling of conformational space. Journal
of chemical theory and computation, 2016.

[86] NCSA Blue Waters. https://bluewaters.ncsa.illinois.edu/.

[87] ORNL Titan. https://www.olcf.ornl.gov/computing-resources/

titan-cray-xk7/.

[88] Htbac github (accessed may 2019). https://github.com/radical-cybertools/
htbac.

[89] Jumana Dakka, Kristof Farkas-Pall, Vivek Balasubramanian, Matteo Turilli,
Shunzhou Wan, David W Wright, Stefan Zasada, Peter V Coveney, and Shantenu
Jha. Enabling trade-offs between accuracy and computational cost: Adaptive
algorithms to reduce time to clinical insight, 2018.

[90] Repex, a Replica-Exchange Framework.
https://github.com/SrinivasMushnoori/repex/.

[91] Brooke E. Husic and Vijay S. Pande. Markov state models: From an art to a
science. J. Am. Chem. Soc., 140(7):2386–2396, 2018.

[92] Gregory R. Bowman, Daniel L. Ensign, and Vijay S. Pande. Enhanced modeling
via network theory: Adaptive sampling of markov state models. Journal of
Chemical Theory and Computation, 6(3):787–794, 2010.

https://github.com/radical-cybertools/radical.entk
https://github.com/radical-cybertools/radical.entk
https://www.rabbitmq.com/
https://www.cloudamqp.com/
https://www.docker.com/
https://bluewaters.ncsa.illinois.edu/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://github.com/radical-cybertools/htbac
https://github.com/radical-cybertools/htbac
https://github.com/SrinivasMushnoori/repex/

110

[93] Alessandro Barducci, Massimiliano Bonomi, and Michele Parrinello. Metady-
namics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 1(5):826–843, September
2011.

[94] Riccardo Chelli and Giorgio F. Signorini. Serial Generalized Ensemble Simulations
of Biomolecules with Self-Consistent Determination of Weights. J. Chem. Theory
Comput., 8(3):830–842, March 2012.

[95] Jeffrey Comer, James C Phillips, Klaus Schulten, and Christophe Chipot. Multiple-
replica strategies for free-energy calculations in namd: multiple-walker adaptive
biasing force and walker selection rules. Journal of chemical theory and computa-
tion, 10(12):5276–5285, 2014.

[96] Lorant Janosi and Manolis Doxastakis. Accelerating flat-histogram methods for
potential of mean force calculations. J. Chem. Phys., 131(5):054105, August 2009.

[97] Vijay S Pande, Kyle Beauchamp, and Gregory R Bowman. Everything you wanted
to know about markov state models but were afraid to ask. Methods, 52(1):99–105,
2010.

[98] Nina Singhal and Vijay S Pande. Error analysis and efficient sampling in marko-
vian state models for molecular dynamics. The Journal of chemical physics,
123(20):204909, 2005.

[99] Nina Singhal Hinrichs and Vijay S Pande. Calculation of the distribution of
eigenvalues and eigenvectors in markovian state models for molecular dynamics.
The Journal of chemical physics, 126(24):244101, 2007.

[100] Jumana Dakka, Kristof Farkas-Pall, Matteo Turilli, David W Wright, Peter V
Coveney, and Shantenu Jha. Concurrent and adaptive extreme scale binding free
energy calculations. In 2018 IEEE 14th International Conference on e-Science
(e-Science), pages 189–200. IEEE, 2018.

[101] Wil MP van der Aalst and Stefan Jablonski. Dealing with workflow change:
identification of issues and solutions. Computer systems science and engineering,
15(5):267–276, 2000.

[102] Paulin Coulibaly and Connely K Baldwin. Nonstationary hydrological time series
forecasting using nonlinear dynamic methods. Journal of Hydrology, 307(1-4):164–
174, 2005.

[103] Jörn Behrens, Natalja Rakowsky, Wolfgang Hiller, Dörthe Handorf, Matthias
Läuter, Jürgen Päpke, et al. amatos: Parallel adaptive mesh generator for
atmospheric and oceanic simulation. Ocean Modelling, 10(1-2):171–183, 2005.

[104] Chiara Casarotti and Rui Pinho. An adaptive capacity spectrum method for
assessment of bridges subjected to earthquake action. Bulletin of Earthquake
Engineering, 5(3):377–390, 2007.

[105] Zhiling Lan, Valerie E Taylor, and Greg Bryan. Dynamic load balancing for
structured adaptive mesh refinement applications. In Parallel Processing, 2001.
International Conference on, pages 571–579. IEEE, 2001.

111

[106] David E Shaw, Martin M Deneroff, Ron O Dror, Jeffrey S Kuskin, Richard H
Larson, John K Salmon, et al. Anton, a special-purpose machine for molecular
dynamics simulation. Communications of the ACM, 51(7):91–97, 2008.

[107] Harry A. Atwater and Albert Polman. Plasmonics for improved photovoltaic
devices. Nat. Mater., 9:205–213, 2010.

[108] Simone Napolitano, Emmanouil Glynos, and Nicholas B. Tito. Glass transition
of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys.,
80(3), MAR 2017.

[109] Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proc. Natl.
Acad. Sci. USA, 99(20), October 2002.

[110] Luca Maragliano, Benôıt Roux, and Eric Vanden-Eijnden. Comparison between
mean forces and swarms-of-trajectories string methods. Journal of chemical theory
and computation, 10(2):524–533, 2014.

[111] John D Chodera, William C Swope, Jed W Pitera, and Ken A Dill. Long-
time protein folding dynamics from short-time molecular dynamics simulations.
Multiscale Modeling & Simulation, 5(4):1214–1226, 2006.

[112] Ayori Mitsutake and Yuko Okamoto. Replica-exchange extensions of simulated
tempering method. The Journal of chemical physics, 121(6):2491–2504, 2004.

[113] Yuko Okamoto. Generalized-ensemble algorithms: enhanced sampling techniques
for monte carlo and molecular dynamics simulations. Journal of Molecular Graph-
ics and Modelling, 22(5):425–439, 2004.

[114] Volodymyr Babin, Christopher Roland, and Celeste Sagui. Adaptively biased
molecular dynamics for free energy calculations. The Journal of chemical physics,
128(13):134101, 2008.

[115] Marta Mattoso, Jonas Dias, Kary ACS Ocaña, Eduardo Ogasawara, Flavio Costa,
Felipe Horta, et al. Dynamic steering of hpc scientific workflows: A survey. Future
Generation Computer Systems, 46:100–113, 2015.

[116] Philip K McKinley, Seyed Masoud Sadjadi, Eric P Kasten, and Betty HC Cheng.
Composing adaptive software. Computer, 37(7):56–64, 2004.

[117] Peter M Kasson and Shantenu Jha. Adaptive ensemble simulations of biomolecules.
Current opinion in structural biology, 52:87–94, 2018.

[118] Stress-ng. http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf (ac-
cessed March 2018).

[119] Openmm. https://github.com/pandegroup/openmm (accessed March 2018).

[120] Vivek Balasubramanian, Matteo Turilli, Weiming Hu, Matthieu Lefebvre, Wenjie
Lei, Ryan T. Modrak, Guido Cervone, Jeroen Tromp, and Shantenu Jha. Harness-
ing the power of many: Extensible toolkit for scalable ensemble applications. In
2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2018, Vancouver, BC, Canada, May 21-25, 2018, pages 536–545, 2018.

http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf
https://github.com/pandegroup/openmm

112

[121] Md trajectories of ala2. https://figshare.com/articles/new_fileset/

1026131 (accessed March 2018).

[122] Fugao Wang and D. P. Landau. Efficient, multiple-range random walk algorithm
to calculate density of states. Phys. Rev. Lett., 86:2050–2053, 2001.

[123] M. R. Shirts and J. D. Chodera. Statistically optimal analysis of samples from
multiple equilibrium states. J. Chem. Phys., 129:124105, 2008.

[124] Pratyush Tiwary and B. J. Berne. Spectral gap optimization of order parameters
for sampling complex molecular systems. Proceedings of the National Academy of
Sciences, 2016.

[125] Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs.
There goes the neighborhood: performance degradation due to nearby jobs. In
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, page 41. ACM, 2013.

[126] Hafiz Fahad Sheikh, Hengxing Tan, Ishfaq Ahmad, Sanjay Ranka, and Phanisekhar
Bv. Energy-and performance-aware scheduling of tasks on parallel and distributed
systems. ACM Journal on Emerging Technologies in Computing Systems (JETC),
8(4):32, 2012.

[127] David Skinner and William Kramer. Understanding the causes of performance
variability in hpc workloads. In Workload Characterization Symposium, 2005.
Proceedings of the IEEE International, pages 137–149. IEEE, 2005.

[128] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim.
Calciom: Mitigating i/o interference in hpc systems through cross-application
coordination. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th
International, pages 155–164. IEEE, 2014.

[129] Jim Brandt, David DeBonis, Ann Gentile, Jim Lujan, Cindy Martin, Dave Mar-
tinez, Stephen Olivier, Kevin Pedretti, Narate Taerat, Ron Velarde, et al. Enabling
advanced operational analysis through multi-subsystem data integration on trinity.
Proc. Cray Users Group, 2015.

[130] Warren Smith, Valerie Taylor, and Ian Foster. Using run-time predictions to
estimate queue wait times and improve scheduler performance. In Workshop on
Job Scheduling Strategies for Parallel Processing, pages 202–219. Springer, 1999.

[131] Aniruddha Marathe, Rachel Harris, David K Lowenthal, Bronis R De Supinski,
Barry Rountree, Martin Schulz, and Xin Yuan. A comparative study of high-
performance computing on the cloud. In Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing, pages 239–250.
ACM, 2013.

[132] John Brevik, Daniel Nurmi, and Rich Wolski. Predicting bounds on queuing delay
in space-shared computing environments. In Workload Characterization, 2006
IEEE International Symposium on, pages 213–224. IEEE, 2006.

https://figshare.com/articles/new_fileset/1026131
https://figshare.com/articles/new_fileset/1026131

113

[133] Daniel Nurmi, Anirban Mandal, John Brevik, Chuck Koelbel, Rich Wolski, and
Ken Kennedy. Evaluation of a workflow scheduler using integrated performance
modelling and batch queue wait time prediction. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 119. ACM, 2006.

[134] Erik Elmroth and Johan Tordsson. A grid resource broker supporting advance
reservations and benchmark-based resource selection. In International Workshop
on Applied Parallel Computing, pages 1061–1070. Springer, 2004.

[135] Rajkumar Buyya, David Abramson, and Jon Giddy. Nimrod/g: An architecture
of a resource management and scheduling system in a global computational grid.
arXiv preprint cs/0009021, 2000.

[136] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed
resource management for high throughput computing. In hpdc, page 140. IEEE,
1998.

[137] Chuang Liu, Lingyun Yang, Ian Foster, and Dave Angulo. Design and evaluation
of a resource selection framework for grid applications. In null, page 63. IEEE,
2002.

[138] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDI, volume 11, pages 22–22,
2011.

[139] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, et al.
Pegasus: A framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13(3):219–237, 2005.

[140] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems, pages 265–278. ACM, 2010.

[141] Rajkumar Buyya and Manzur Murshed. A deadline and budget constrained cost-
time optimisation algorithm for scheduling task farming applications on global
grids. arXiv preprint cs/0203020, 2002.

[142] Omer Subasi, Javier Arias, Osman Unsal, Jesus Labarta, and Adrian Cristal.
Programmer-directed partial redundancy for resilient hpc. In Proceedings of the
12th ACM International Conference on Computing Frontiers, page 47. ACM, 2015.

[143] Lingyun Yang, Jennifer M Schopf, and Ian Foster. Conservative scheduling: Using
predicted variance to improve scheduling decisions in dynamic environments. In
Proceedings of the 2003 ACM/IEEE conference on Supercomputing, page 31. ACM,
2003.

[144] Chris Gregg, Michael Boyer, Kim Hazelwood, and Kevin Skadron. Dynamic
heterogeneous scheduling decisions using historical runtime data. In Workshop on
Applications for Multi-and Many-Core Processors (A4MMC), 2011.

114

[145] Ioana Banicescu, Vijay Velusamy, and Johnny Devaprasad. On the scalability
of dynamic scheduling scientific applications with adaptive weighted factoring.
Cluster Computing, 6(3):215–226, 2003.

[146] Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L Hellerstein. Dy-
namic heterogeneity-aware resource provisioning in the cloud. IEEE transactions
on cloud computing, 2(1):14–28, 2014.

[147] Matteo Turilli, Feng Liu, Zhao Zhang, Andre Merzky, Michael Wilde, Jon Weiss-
man, Daniel S Katz, and Shantenu Jha. Integrating abstractions to enhance
the execution of distributed applications. In Parallel and Distributed Processing
Symposium, 2016 IEEE International, pages 953–962. IEEE, 2016.

[148] P Nxx. On the frequency distribution of the means of samples from a population
having any law of frequency with finite moments, with special reference to pearson’s
type ii. Biometrika, 19(3/4):225–239, 1927.

[149] Philip Hall. The distribution of means for samples of size n drawn from a
population in which the variate takes values between 0 and 1, all such values being
equally probable. Biometrika, 19(3/4):240–245, 1927.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Challenges
	Research Contributions
	Dissertation Organization

	Ensemble Applications
	Science Drivers
	Extensible Tools for Advanced Sampling and analYsis (ExTASY)
	Seismic Tomography
	High Resolution Meteorological Probabilistic Forecasts
	Replica Exchange
	High Throughput Binding Affinity Calculation

	Current Solutions: Tools, Systems, and Services
	Summary

	Ensemble Toolkit
	Requirements
	Functional requirements
	Application Portability
	Application Diversity
	Fault Tolerance

	Performance requirements
	Scalability
	Performance Invariance

	Usability requirements
	Application Creation
	Resource and Execution Management

	Design
	Building Blocks approach
	Programming Model
	Architecture
	Execution Model
	Failure Model

	Implementation
	Communication infrastructure: RabbitMQ
	Runtime system: RADICAL Pilot

	Experiments
	Characterization of overheads
	Performance of EnTK Prototype
	Overheads, Data Staging and Task Execution Time

	Scalability
	Weak scalability
	Strong scalability

	Domain science enabled
	ExTASY
	Seismic Tomography
	High Resolution Meteorological Probabilistic Forecasts
	High Throughput Binding Affinity Calculation
	Other science applications

	Summary

	Adaptive Ensemble Applications
	Adaptive Science Drivers
	Expanded Ensemble
	Markov State Modeling
	Adaptive versions of previous science drivers

	Challenges
	Current Solutions: Tools, Systems, and Services
	Summary

	Ensemble Toolkit for Adaptive Ensemble Applications
	Understanding workflow adaptivity
	Types of Adaptations
	Task-count adaptation
	Task-order adaptation
	Task-property adaptation

	Challenges in Encoding Adaptive Workflows

	Enhancements in Ensemble Toolkit
	Experiments
	Characterization of adaptation overheads
	Validation of Science Driver Implementations
	Expanded Ensemble
	Markov State Modeling

	Domain science enabled
	Evaluation of Methodological Efficiency using Adaptive Capabilities in EnTK
	Other science enabled

	Summary

	Heterogeneity and Dynamism
	Current Solutions: Tools, Systems, and Services
	Late-binding strategy
	Workload Management Emulator
	Design
	Implementation

	Theoretical and empirical evaluation
	Combination 1: Homogeneous and Static Workload, Homogeneous and Static Resource
	Combination 2: Homogeneous and Static Workload, Homogeneous and Dynamic Resource
	Combination 3: Heterogeneous and Static Workload, Homogeneous and Dynamic Resource

	Impact and challenges
	Summary

	Conclusion
	Future Work

	References

