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ABSTRACT OF THE DISSERTATION

Monopoles, BPS States, and ’t Hooft Defects in 4D N = 2

Theories of Class S

By THEODORE DANIEL BRENNAN

Dissertation Director:

Gregory W. Moore

Monopoles are a fundamental feature of non-abelian gauge theories. They are relevant

to the study of confinement and general non-perturbative quantum effects. In this

dissertation we study some aspects of monopoles in supersymmetric non-abelian gauge

theories. In particular, we focus primarily on ’t Hooft defects (magnetically charged

defects) and their interaction with smooth, supersymmetric monopoles. Here we use

a semiclassical approximation to study the spectrum of bound states between such

monopoles and ’t Hooft defects and the phase transitions where this spectrum changes

discontinuously. Then, we use string theory and localization techniques to compute the

expectation value of ’t Hooft defects as operators in the full quantum theory. Using the

computed expectation value, we are able to directly study the non-perturbative process

called monopole bubbling in which smooth monopoles dissolve into an ’t Hooft defect.

Then, by combining the results of string theory techniques with localization techniques,

we are able to derive general formulas for the full spectrum of monopole bound states

in all possible phases of the theory.
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1

Chapter 1

Introduction

Quantum physics governs the laws of the universe at small sizes. Contrary to the

philosophy of classical physics, quantum physics is fundamentally probabilistic. At

any given point in time, the universe can be in a simultaneous superposition of many

different configurations. In quantum theories, only the probability that the universe

evolves from one state definite to another is determined.

Our current understanding of quantum physics is primarily based upon the notion

of quantizing a classical theory. Generally, the state of a system is described by a quan-

tum probability function. Physical quantities can be computed from this probability

function, and are often of the form of the classical quantity plus a series of small quan-

tum corrections that are controlled by a small, dimensionless parameter. In practice,

one usually computes these perturbative corrections to the classical result to whatever

degree of precision is required for the problem at hand. While this way of approaching

quantum physics has been wildly successful, a perturbative understanding of quantum

physics leads to an inherently incomplete description of the universe.

There are many physical quantum systems that cannot be adequately described

by perturbative quantum physics. Notably, such systems often exhibit the (related))

features where 1.) there is no small expansion parameter or 2.) where there is collective

behavior. In the first case, the coupling parameter that would control the size of

quantum corrections is large enough that the quantum corrections are an infinite series

of terms that are all of the same size (or worse of increasing size). This would require

us to compute all of the contributions to a physical quantity, which, by using standard

techniques, is technically impossible.

Collective behavior, also goes beyond a perturbative understanding of quantum
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physics. It describes the situation when there is some large scale behavior that cannot

be understood by looking at the local degrees of freedom. The canonical example of a

classical system that has collective behavior the case of a “solitary water wave” which

has a profile given by the hyperbolic secant function. Here the water molecules, which

are locally swirling around, conspire to support the solitary wave.

In such systems, collective phenomena give rise to an infinite number of terms in the

perturbation series which, when truncated to a finite number of corrections, does not

correctly describe the behavior of the physical phenomenon. This is analogous to how

the Taylor series expansion of a sine function has an infinite number of terms, which,

when truncated to any finite polynomial, is infinitely far from approximating the sine

function. Or alternatively, we can think of Zeno’s paradox in which after any finite

number of steps, a runner who goes half of the remaining distance does not reach the

goal – one requires an infinite number of steps to see that the runner does indeed cross

the finish line.

One of the fundamental quantum theories of the universe that exhibits both of the

problems we have described is the strong force: quantum chromodynamics (QCD). In

QCD, the coupling parameter that controls the perturbation series, is not small gQCD ∼

1. There are also collective excitations in QCD. Famously, most of the matter in the

universe is made out of protons (and neutrons) which are non-perturbative bound states

of three quarks, the fundamental constituents of most matter in the Universe. These

quarks are held together by non-perturbative “strings” which are collective excitations

of the gluon field. Our lack of understanding about this feature of QCD is perhaps most

succinctly summarized by the statement that we do not understand why the proton is

stable. Said differently, we do not actually know why all of the matter in the universe

does not fall apart.

This fundamental lack of understanding about the way the universe works begs

for better tools to study quantum physics. One way we can hope to develop a new

understanding is by studying collective excitations in theories in which there are other

tools that provide more analytic control. One such avenue of research, and the focus of

this work, is to study non-local excitations in supersymmetric quantum field theories.
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Supersymmetry is a distinguished symmetry of a quantum theory in which every

particle/field has a partner “super”-particle/field. This pairing gives rise to extraordi-

nary cancellations and fantastical properties in the full quantum theory. Supersymme-

try provides a microscope that can be used to study non-perturbative quantum effects.

Using supersymmetry has been wildly successful and has been used in works such as

[156, 155, 149, 81, 67] to completely compute quantities in the quantum theory (to all

orders in perturbation theory including non-perturbative corrections).

Additionally, supersymmetric theories can often be interpreted as a low energy de-

scription of certain string theory configurations. This allows us to use the full power of

string theory to study features of certain types of quantum field theories that can be

described in this way. This provides us with additional tools to study non-perturbative

effects in such theories.

Here, we will mainly focus on the study of monopoles in supersymmetric field theo-

ries. Monopoles are a non-local quantum excitations that source magnetic charge. They

are one of the fundamental types of non-local excitations. They behave as particles,

allowing us to rely on general physical intuition on particles in quantum theories.

Supersymmetry is particularly powerful when used to study monopole configura-

tions. In supersymmetric quantum field theories, monopoles preserve at most half of

the supersymmetries of the theory. States of this type are called BPS states. Because

of the rigid structure of supersymmetry, these states are very robust: they are pro-

tected from decay by supersymmetry. This simplifies the study of such BPS states as

compared to non-SUSY states over which we have practically no control.

Here we will primarily focus on studying a special type of BPS state called framed

BPS states. These are dyonic states that are bound to a defect operator. This can be

thought of as a quantum bound state in a background potential or an infinitely heavy,

classical particle. This case distills many of the essential features of general BPS states

while simplifying the analysis (since it is generally easier to study (N − 1)-bodies in a

fixed background than it is to study general N -body motion).

Due to SUSY, BPS states are generically protected from decay as one changes the
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physical parameters of a supersymmetric theory, such as masses and coupling param-

eters. However, there are special regions in parameter space where the spectrum of

BPS states can change. This is the phenomenon known as BPS state wall crossing.

As it turns out this BPS state wall crossing occurs in a very controlled way, which has

been known for some time [106, 107, 67, 50, 99, 150]. This allows us to infer the BPS

spectrum everywhere in parameter space (including strong coupling) from a knowledge

of the BPS spectrum in some weakly coupled region where we have analytic control.

Thus, studying monopoles in supersymmetric quantum field theories gives us direct

insight into quantum physics outside of the perturbative regime. This will be the main

topic of this work.

1.1 Summary

In this work we will study framed BPS states in 4D N = 2 theories on R3 × S1.

We will primarily focus on using two techniques to study these states: 1.) semiclassical

analysis and 2.) string theory constructions. These two tools will give us complimentary,

geometric pictures of BPS states.

In Chapter 3 we will study the dynamics of semiclassical BPS states. These have dy-

namics coming from quantum fluctuations of the fields around the monopole background

and dynamics of the monopoles themselves. We will treat this in a Born-Oppenheimer

approximation where we integrate out the quantum fluctuations to obtain an effective

description of BPS state interactions as a supersymmetric quantum mechanics (SQM)

on the space of BPS field configurations (monopole moduli space). This description

maps many of the difficult questions in the full QFT to an easily stated quantum me-

chanics problem. For example, in this formulation, stable BPS states are given by

solutions to the Dirac equation on monopole moduli space.

As we will show in Chapter 4, the semiclassical description of (framed) BPS states

is particularly useful for studying BPS state wall crossing. In the semiclassical limit,

generic BPS states can be thought of as a multi-particle state made up from simple

dyonic particles. Here the BPS multi-particle state has a structure similar to that
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of a galaxy or a cluster of stars. When BPS wall crossing occurs, this decays into

sub-clusters which are no longer bound to each other.

For simplicity, we will study the 2-body decay of such BPS states. Since BPS states

are indistinguishable particles, we would expect that there is some kind of universal

behavior of multi-body decay. As we will show, this is indeed the case and that the

2-body (or primitive) wall crossing is controlled by the universal behavior of the Dirac

equation on the four-dimensional Taub-NUT space.

Then, in Chapter 5 we will go on to give a particularly useful embedding of monopoles

and dyonic BPS states in 4D supersymmetric Yang-Mills theory into string theory. In

summary, theory can be described as the low energy effective theory on a stack of D3-

branes in which smooth monopoles (BPS states) can be realized as D1-branes running

between the D3-branes and and singular monopoles (magnetically charged line defects)

can be described by D1-branes stretched between the D3-branes and transverse NS5-

branes.

We will show that this brane configuration gives new insight into the non-perturbative

phenomenon of monopole bubbling. Monopole bubbling describes the processes in

which smooth monopoles dissolve into a singular monopole. This screening the mag-

netic charge of the singular monopole and deposits quantum degrees of freedom on its

world volume. The brane construction of singular monopoles we present here is espe-

cially useful as it allows us to determine the exact content of the SQM that arises from

monopole bubbling.

We then go on to study the expectation value of magnetically charged line defects.

This is intimately related to the study of color confinement in QCD [163]. This is the

mechanism that squeezes the gluon field into QCD strings which hold the nucleons

together. Color confinement is exemplified by the curious feature of the universe that

quarks do not appear alone. Famously, color confinement is measured by the expecta-

tion value of line defects wrapped on a circle [172, 163]. This is because it measures the

total energy of a quark-antiquark (or monopole-antimonopole) pair creation and anni-

hilation. This allows one to determine the behavior of the confining potential. Thus,

the expectation value of a line defect is of great interest.
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In Chapter 6, we discuss the non-perturbative part of the expectation value of an

’t Hooft defect that comes from monopole bubbling. We will show that there is an

important contribution from the quantum degrees of freedom that are deposited on the

world volume of the ’t Hooft defect that arise in monopole bubbling.

Upon closer inspection, we find that computing this expectation value is quite tricky.

The standard method, for computing supersymmetric operators in a quantum field the-

ory is called localization. This uses the cancellation between super-partners to reduce

the path integral of a usual quantum field, which is an integral over an infinite dimen-

sional space, to an integral over a finite dimensional space that can be evaluated by

using computational tricks. However, as we will show, the naive application of this

machinery to the case of the SQM from monopole bubbling gives the incorrect answer.

Because of this, we need to add an additional contribution to the “standard answer.”

We will give both a prescription and a physical explanation for this correction of the

localization computation.

Then in the final section, we derive some new results in mathematics arising from

the comparison of the semiclassical spectrum of framed BPS states bound to an ’t Hooft

defect with results from the localization computation of expectation value of the same

’t Hooft defect. This gives us both an index theorem of Dirac operators on monopole

moduli spaces (which encodes the framed BPS indices) and a formula for characteristic

numbers of related Kronheimer-Nakajima spaces. These results are novel because there

are no known general results for general non-compact spaces.
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Chapter 2

Monopoles

Monopoles are non-trivial solutions to the classical equations of motion in Yang-

Mills theory that carry a non-trivial magnetic charge. They can be thought of as

magnetically charged particles which, in a weak coupling description, are very heavy

compared to W-bosons. In a pure Yang-Mills theory monopoles are singular and are

called singular (or Dirac) monopoles. However, in the case of non-abelian Yang-Mills

theory coupled to a Higgs field, there also exist smooth field configurations that source

magnetic charge. These monopoles are dynamical objects in the full quantum theory

and what are generally referred when speaking of monopoles. Such monopoles, or

smooth monopoles, will be the main focus for this chapter. See [85, 170, 131] for

review.

2.1 Smooth Monopoles

Smooth monopoles exist in Yang-Mills theory on R×R3 with non-abelian gauge group

G coupled to an adjoint valued Higgs field X. This theory has an action:

S =
1

g2

∫
d4x Tr

{
1

4
FµνF

µν +
1

2
DµXD

µX − V (X)

}
, (2.1)

where V (X) ≥ 0. The corresponding Hamiltonian can be written as

H =
1

g2

∫
d4x Tr

{
EiEi + (D0X)2 + |Bi −DiX|2 + V (X)

}
+

2

g2

∫
d4x εabc Tr {∂a(XFbc)} .

(2.2)

This Chapter is based on material from my papers [24, 28].
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Thus, we see that the energy is minimized by solutions to the equation

Bi = DiX , (2.3)

subject to the condition limr→∞ V (X(r)) = 0. This equation is the famous Bogomolny

equation.

A monopole is a time independent, smooth, solution of these equations with asymp-

totic magnetic flux and finite energy. Such solutions are specified by γm, X∞ where

γm ∈ Λcr and X∞ ∈ t. The field configuration corresponding to a monopole with data

γm, X∞ has the asymptotic form

X = X∞ −
γm
2r

+O(r−3/2) as r →∞ ,

F =
γm
2
dΩ +O(r−1/2) as r →∞ ,

(2.4)

where dΩ is the standard volume form on S2.1 Here γm describes the magnetic

charge and X∞ describes the asymptotic Higgs vacuum expectation value which satisfies

V (X∞) = 0.

A smooth gauge field with the behavior (2.4) at infinity necessarily must be defined

patch-wise over at least two patches. If we choose two such patches, covering the

northern or southern hemispheres, the connection can be written as

A =
γm
2

(σ − cos(θ))dφ , (2.5)

where σ = ±1 in the northern/southern hemisphere. These are related by a gauge

transformation g = eiγmφ across the equator of the asymptotic 2-sphere, S2
∞. Since the

gauge transformation above is a map g : U(1)→ G, γm is an element of the cocharacter

lattice γm ∈ Λcochar ⊂ t.2 Further, since R3 is contractible, the gauge transformation

must be homotopic to the identity (by contraction to a point) which is equivalent to

the requirement that g lifts to an element in the cocharacter lattice of the universal

covering group which is isomorphic to the coroot lattice γm ∈ Λcochar(G̃) ∼= Λcr(G)

[131]. Note that this implies that

[γm, X∞] = 0 , (2.6)

1Here we use the convention of a real, anti-hermitian representation of the Lie algebra g.

2The cocharacter lattice Λcochar is defined as: Λcochar = {ϕ ∈ t | e2πiϕ = 1G}.
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and hence the gauge transformation preserves the asymptotic form of the solution X.

We will assume that X∞ is a regular element of the Lie algebra and hence defines a

maximal commuting subalgebra t spanned by a system of simple roots αI and co-roots

HI .

A monopole solution is locally (near the monopole center) of the form of the Prasad-

Sommerfeld solution of an SU(2)-monopole embedded into the gauge group along a

simple coroot [152]. This is a smooth solution that takes the form

X =
1

2
h(r)HI ,

A =
HI

2
(σ − cos(θ))dφ− 1

2
f(r)eσiφ(dθ − i sin(θ)dφ)E+

I

+
1

2
f(r)e−σiφ(dθ − i sin(θ)dφ)E−I ,

(2.7)

where σ = ±1 in the northern/southern hemisphere and

h(r) = mW coth(mW r)−
1

r
, f(r) =

mW r

sinh(mwr)
, (2.8)

where mW is the mass of the W -boson: mW = 〈αI , X∞〉. Here we have taken the

convention where gsu(2) = h⊕ g+ ⊕ g− where h is the Cartan subalgebra generated by

HI and where g± are generated by E±I which satisfy

[E±I , HI ] = ±E±I . (2.9)

This can be embedded into any semisimple lie algebra to give a local solution of a

smooth monopole in a gauge theory with gauge group G.

2.2 Singular Monopoles

If we lift the requirement that classical solutions to have finite energy, we also can have

singular monopoles. These are U(1) Dirac monopoles that have been embedded into

the gauge group along a simple coroot and correspond semiclassically to infinitely heavy

magnetically charged particles and are used to describe ’t Hooft defects. The data of

an ’t Hooft defect is given by (Pn, ~xn) where ~xn ∈ R3 specifies the location of the defect

and Pn ∈ Λcochar ∼= Hom(U(1), T ), where T ⊂ G is the maximal torus specified by X∞,

specifies the magnetic charge. Now the gauge transformation across the equator on the
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asymptotic 2-sphere is no longer homotopic to the identity, but rather is homotopic to

ei
∑
n Pnφ and hence the asymptotic magnetic charge takes elements in a torsor of the

coroot lattice γm ∈ Λcr +
∑

n Pn ⊂ Λcochar.

The defect is then inserted by imposing the following boundary conditions

X =− Pn
2rn

+O(r−3/2
n ) as rn → 0 ,

F =
Pn
2
dΩn +O(r−1/2

n ) as rn → 0 ,

(2.10)

in a local coordinate system centered at ~xn. In the presence of a collection of singular

monopoles with charges {Pn}, γm ∈ Λcr +
∑

n Pn since eiγmφ is no longer homotopic to

the identity by contracting the infinite sphere.

In our upcoming discussion we will need to distinguish between a reducible and an

irreducible singular monopole. An irreducible singular monopole is defined as above by

the data (~x, P ). The definition of a reducible singular monopole requires the defini-

tion of a minimal singular monopole which is simply an irreducible singular monopole

with magnetic charge given by a simple (or minimal) coroot hI . A reducible singular

monopole of charge

P =
∑
I

pIh
I , (2.11)

is then defined as the coincident limit of

p =
∑
I

pI , (2.12)

minimal singular monopoles such that all of their charges sum to P . Sometimes we will

call singular monopoles ’t Hooft defects, but here we will generally reserve the term ’t

Hooft defect to refer to the defect operator in the quantum theory which in our con-

siderations will generally be supersymmetric singular monopoles in a supersymmetric

gauge theory.

2.3 Construction of Monopole Solutions

There many known constructions of monopole solutions. In this section we will review

some of these constructions. See [130, 115, 167] for more details.
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2.3.1 ADHM Construction of Instantons

Before we consider any constructions of monopole solutions, we believe it will be useful

to first review the simpler case of the ADHM construction SU(N) instantons with

charge k on R4.

Consider two complex vector spaces V ∼= Ck and W ∼= CN and the set of maps

Bi ∈ Hom(V, V ) , i = 1, 2 ,

I ∈ Hom(W,V ) ,

J ∈ Hom(V,W ) .

(2.13)

These can be arranged into a short exact sequence

1 −→ V
α−→ V ⊗ C2 ⊕W β−→ V −→ 1 , (2.14)

where C2 is identified with the spin bundle of R4 [102] and

α =


B1 − z11k

B2 − z21k

J

 , β =
(
− (B2 − z21k) , B1 − z11k , I

)
, (2.15)

where z1 = x1 + ix2, z2 = x3 + ix4 parametrize the base R4.

Now we can construct the Dirac operator D† : V ⊗ C2 ⊕W → V ⊕ V where

D† =

 α

β†

 =

 I B2 + z2 B1 + z1

J† −B†1 − z̄1 B†2 + z̄2

 (2.16)

which can be more simply be written

D† =

 I B2 B1

J† −B†1 B†2

− i( ~0T xµσ
µ
)
, (2.17)

where ~0T =

 0

0

.

Now define the subbundle E → R4 of V ⊗ C2 ⊕W → R4 by

E = Ker[D] . (2.18)
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E has rank N so that we can construct solutions {ψi} : R4 → Mat2k,N (C). We can

then arrange these into a (2k +N)×N matrix

Ψ(x) =


...

...
...

ψ1(x) ψ2(x) . . . ψN (x)

...
...

...

 , (2.19)

which we will normalize as

Ψ †(x)Ψ(x) = 1N . (2.20)

We can then construct the projection operator

P = |Ψ(x)〉〈Ψ †(x)| , (2.21)

and the complimentary operator

Q = D†
1

D†D
D , (2.22)

which together satisfy

1 = P +Q . (2.23)

Note that

D†D =

 αα† 0

0 αα†

 =

 β†β 0

0 β†β

 , (2.24)

is a diagonal 2k × 2k matrix.

The connection can then be constructed from this data as

Aµ = Ψ †(x)∂µΨ(x) . (2.25)

In this formulation, there is an SU(k) gauge symmetry that act as

Bi 7→ g−1Big , I 7→ g−1I , J 7→ Jg . (2.26)

Now it remains to show that: 1.) Aµ is su(N)-valued, 2.) it gives rise to a self dual

field strength, and 3.) it has instanton number k.

First, we will show that it is an SU(N) connection. Such matrices obey

A† = −A . (2.27)
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Computing, we find

A†µ = (∂µΨ)†Ψ = −Ψ †∂µΨ , (2.28)

where we have used the identity

Ψ †Ψ = 1 −→ (∂µΨ
†)Ψ + Ψ †∂µΨ = 0 . (2.29)

Now we can compute the connection

Fµν = ∂[µAν] +A[µAν]

= ∂[µ(Ψ †∂ν]Ψ) + (Ψ †∂[µΨ)(Ψ †∂ν]Ψ)

= (∂[µΨ
†)(∂ν]Ψ) + (∂[µΨ

†)(ΨΨ †)(∂ν]Ψ)

= (∂[µΨ
†)Q(∂ν]Ψ)

= Ψ †(∂[µD)
1

D†D
(∂ν]D

†)Ψ

= −2iσµν ⊗
1

D†D

(2.30)

Now using the fact that σµν is self-dual, we have that Fµν is self dual.

We can now compute the instanton number. Using the identity [148]

∗TrNF ∧ F =
1

2
(∂µ∂

µ)2log det(αα†) =
1

2
(∂µ∂

µ)2det log(αα†) , (2.31)

we can compute∫
1

8π2

∫
R4

TrN{F ∧ F} =
1

16π2

∫
R4

d4x (∂µ∂
µ)2TrN log(αα†) . (2.32)

Now since the integrand is a total derivative we can take the asymptotic form of αα† →

x21k such that the integral becomes∫
1

8π2

∫
R4

TrN{F ∧ F} =
1

2π2

∫
S3∞

r̂µd
3ΩTrk

{
xµ

x4
1k

}
= Trk{1k} = k . (2.33)

Hence, the connection constructed in (2.25) is indeed a charge k U(N) instanton.

2.3.2 ADHMN Construction of Smooth Monopoles

The ADHM construction of instantons can be generalized to a method to determine

monopole field configurations [138]. Here we will review the generalization, called the

ADHMN construction for monopoles on R3. See [170, 34, 52] for more details.
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First let us consider the case of SU(2) monopoles on R3 specified by the asymptotic

data

γm = kHI =

 k 0

0 −k

 , X∞ = vHI =

 v 0

0 v

 . (2.34)

The data for a solution of the Bogomolny equation consists of four C-valued k × k

matrices over the interval I =
(
−v

2 ,
v
2

)
which is parametrized by s

Tµ : I →Mk×k(C) , (2.35)

such that they solve Nahm’s equations

dTa
ds

+ i[T0, Ta] +
i

2
εabc[Tb, Tc] = 0 , a, b, c = 1, 2, 3 , (2.36)

with the boundary conditions

lim
s→± v

2

Ta =
σa

s∓ v/2 +O(1) . (2.37)

Again, construct the Dirac operator:

D(s) =
d

ds
+ iT0(s)⊗ 12 − Ta(s)⊗ σa + xa1k ⊗ σa . (2.38)

This operator corresponds to the Dirac operator in the ADHM construction. That is

to say that we consider the kernel

D†(s)wa(s, x) = 0 ,

∫ v/2

−v/2
ds w†a(s, r)wb(s, r) = δab . (2.39)

, and construct fields which satisfy the Bogomolny equations:

Xab =

∫ v/2

−v/2
ds sw†awb , Aabµ = −i

∫ v/2

−v/2
ds w†a∂µwb , (2.40)

where a, b are now SU(N) indices.

Here there is a SU(k) gauge symmetry that acts as

T0 7→ g−1T0g − ig−1 d

ds
g , Ta 7→ g−1Tag . (2.41)

As in the case of the ADHM construction, it can be easily shown that the fields X,Aµ

constructed this way solve the Bogomolny equation and satisfy the asymptotic boundary

conditions (2.34).
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Generalizing to SU(N)

Now let us generalize this discussion to the case of G = SU(N) monopoles. Consider

the asymptotic data

γm =
∑
I

nIHI , X∞ = diag(s1, ..., sN ) , si < si+1 . (2.42)

This choice of X∞ now gives us partition of the interval I = [s1, sN ]:

I =
N−1⋃
p=1

Ip , Ip = (sp, sp+1) , (2.43)

where Ip is the closure of the open interval Ip. On each interval Ip we have a set of four

matrices T
(p)
µ : Ip →Mnp×np(C) that satisfy Nahm’s equations on the interval.

To connect these solutions across the disjoint intervals we must impose boundary

conditions at the si. Near the boundary Ip ∩ Ip+1, we impose the conditions

T (p)
a =

 − L
(p)
a

s−sp+1
+O(1) O

(
(s− sp+1)(np−np+1−1)/2

)
O
(
(s− sp+1)(np−np+1−1)/2

)
T

(p+1)
a +O(s− sp+1)

 , (2.44)

when np > np+1 and

T (p+1)
a =

 L
(p+1)
a

s−sp+1
+O(1) O

(
(s− sp+1)(np+1−np−1)/2

)
O
(
(s− sp+1)(np−np+1−1)/2

)
T

(p)
a +O(s− sp+1)

 , (2.45)

when np < np+1. When np − np+1 = 0 we need to make a choice of “jumping data” to

specify the boundary conditions. The jumping data is given by a choice of a set of 2np

vectors {a(p)
α,r} where α = 1, 2 and r = 1, ..., np [34].

Given a choice of jumping data, the boundary conditions at a Ip ∩ Ip+1 when

np = np+1 is

T
(p−1)
j (sp)− T (p)

j (sp) =
1

2
a†σja (2.46)

Now we again construct the same Dirac operator as before (2.38), solve for the kernel,

and construct the fields X,Aµ as in the case of G = SU(2).

The only difference occurs when we have np = np+1. In this case, the boundary

condition from the jumping data (2.46) descends to the behavior of the solutions to the
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Dirac equation

ψ
(p−1)
b − ψ(p)

b = S
(p)
b · a(p) , δab =

N−1∑
p=1

∫
Ip

ds ψ†aψb +
∑
p

S†aSb , (2.47)

where S
(p)
b is a complex-valued matrix. In this case we must modify the construction

of the fields X,Aµ:

X =

N−1∑
p=1

∫
Ip

sdsψ†ψ +
∑
p

spS
†S ,

Aµ = −i
N−1∑
p=1

∫
dsψ†∂µψ − i

∑
p

S†∂µS .

(2.48)

Again, these fields are SU(N) valued, satisfy the appropriate asymptotic boundary

conditions, and solve the Bogomolny equation.

From Bogomolny to Nahm Data

We can also explicitly reconstruct the Nahm data from a monopole field configuration

of charge γm =
∑

I mIHI with Higgs vev X∞ = diag(ϕ1, .., ϕN ). Consider the Dirac

operators coupled to a monopole field Aµ, X

/D = i(σjDj −X + s) , /D
†

= i(σiDi +X − s) , (2.49)

and their squares

/D
† /D = −D2

i + (X − s)2 , /D /D
†

= −D2
i + (X − s)2 − σµνFµν . (2.50)

The explicit form of the /D
† /D implies that Ker[ /D] = 0 due to a non-trivial potential

(X − s)2. However, we also see that /D /D
†

have zero-modes, and in fact through the

usual index computation see that

dim
[
Ker[ /D

†
]
]

=


mI ϕI < s < ϕI+1

0 else

(2.51)

Since there are a finite number of zero-modes, which form a finite dimensional vector

space of L2 sections on R3, we can write a local basis for the kernel {ψi}ki=1 where

/D
†
ψi = 0 , δij =

∫
R3

d3x ψ†i (x, s)ψj(x, s) . (2.52)
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Using this kernel we can construct the matrices

Tj(s) = −
∫
R3

d3x xjψ
†ψ ,

T0(s) = i

∫
R3

d3x ψ†
dψ

ds
,

(2.53)

which satisfy Nahm’s equations and have the pole structure specified above.

2.3.3 Singular Monopoles and Kronheimer’s Correspondence

There also exists a construction for singular monopole configurations which is similar

to the ADHMN construction of smooth monopole solutions. The construction of sin-

gular monopole field configurations is derived from the one-to-one connection between

singular monopoles on R3 and certain instantons on the four-dimensional Taub-NUT

space [108]. Then by using the construction of instantons on Taub-NUT space called

the bow construction [37, 38, 41], one can give an explicit construct singular monopole

configurations on R3 [19].

In this section we will review the construction of singular monopole field configura-

tions. We will begin by reviewing Taub-NUT spaces and Kronheimer’s correspondence

between certain instantons on Taub-NUT and singular monopoles. Then we will de-

scribe the bow construction and show how it can be used to give explicit constructions

of singular monopole configurations.

Taub-NUT Spaces

Taub-NUT is a 4D asymptotically locally flat (ALF) hyperkähler manifold. Topologi-

cally it is homeomorphic to R4. Taub-NUT can be realized as an S1 fibration over R3

where the restriction of the S1 fibration to any 2-sphere S2 in the base R3 surrounding

the origin is the Hopf fibration of charge 1.

Taub-NUT has a metric which can be written in Gibbons-Hawking form as

ds2 = V (~x) d~x · d~x+ V −1(~x) Θ2 , (2.54)

where

V (~x) = 1 +
1

2|~x| , Θ = dξ + ω , dω = ∗3dV , (2.55)
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where ξ is the S1 fiber coordinate and ∗3 is the Hodge dual restricted to the base R3.

Taub-NUT has a natural U(1) isometry, denoted U(1)K , given by translation of the

fiber coordinate

fk(~x, ξ) = (~x, ξ + ξ0) , f∗ds2 = ds2 . (2.56)

Taub-NUT has a single U(1)K fixed point where the S1 fiber degenerates (in our con-

vention at ~x = 0) called the NUT center. Thus, dξ is not a globally well defined 1-form

while Θ = dξ + ω is globally well defined.

Taub-NUT can be generalized to a manifold called multi-Taub-NUT (TNk). This

space is also a 4D ALF hyperkähler manifold which can be described by a S1 fibration

over R3. However, TNk has k points where the S1 fiber degenerates. TNk also has

a natural U(1)K isometry which has k-fixed points where the S1 fiber degenerates –

hence, there are multiple NUT centers at ~xi ∈ R3. The metric on TNk can also be

written in Gibbons-Hawking form (2.54) where instead

V (~x) = 1 +

k∑
i=1

1

2|~x− ~xi|
, dω = ∗3dV . (2.57)

Again, dξ is globally ill-defined while Θ = dξ + ω is well defined.

Unlike Taub-NUT, TNk is topologically non-trivial. It has a non-trivial (compact)

cohomology group: H2
cpt(TNk,Z) = Γ [Ak−1] where Γ [Ak−1] is the root lattice of the

Lie group Ak−1. By Poincaré duality, the generators of H2
cpt(TNk;Z) correspond to

non-trivial 2-cycles in H2(TNk,Z) which is generated by cycles that are homologous to

the preimage of the lines running between any two NUT centers under the projection

π : TNk → R3.

Review of Kronheimer’s Correspondence

Consider a monopole configuration with k irreducible singular monopoles at positions

~xn ∈ R3 with charges Pn. Kronheimer’s correspondence provides a one-to-one mapping

between such a singular monopole configuration and a U(1)K-invariant instanton solu-

tion on TNk [108]. Here, by a U(1)K-invariant instanton configuration we mean one

in which the lift of the U(1)K action to the gauge bundle P → TNk is equivalent to a
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gauge transformation [61, 84]

f∗Â = g−1Âg + ig−1dg , (2.58)

where f generates translations along ξ as in (2.56) and g is a gauge transformation

that defines the lift of the U(1)K action to the gauge bundle. As shown in Appendix

B, the lift of the U(1)K action is specified by the collection of ’t Hooft charges {Pn}

which fixes the limiting behavior of the lift of the U(1)K action near the NUT centers

lim~x→~xn g = e−iPnξ.

Away from NUT centers, the connection can be put in a U(1)K invariant gauge

Â = AR3 + ψ(x)(dξ + ω) , (2.59)

where AR3 is a connection on the base TNk → R3 that has been lifted to the full TNk.

Ffor Â to describe an instanton, it must satisfy the self-duality equation: F̂ = ∗F̂ where

F̂ is the curvature of Â. The curvature of Â can be written as

F̂ = (FR3 − ψdω)−Dψ ∧ (dξ + ω) , (2.60)

where FR3 is the curvature of AR3 . Using the orientation form Θ ∧ dx1 ∧ dx2 ∧ dx3, we

can then compute the dual field strength

∗F̂ = − ∗3 FR3 ∧
(
dξ + ω

V

)
− V ∗3 Dψ + ψ ∗3 dω ∧

(
dξ + ω

V

)
. (2.61)

Now self-duality F̂ = ∗F̂ reduces to the equation

∗3(FR3 − ψdω) = V Dψ , (2.62)

which can be re-expressed as the relation

∗3FR3 = D(V ψ) . (2.63)

Under the identification X = V ψ, we can recognize this as familiar Bogomolny equation

(2.3).

As shown in Appendix B, the connection (2.59) can be extended globally iff AR3

and ψ(x) have the limiting forms

lim
~x→~xn

AR3 = Pnω , lim
~x→~xn

ψ(x) = −Pn . (2.64)
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In the setting of Kronheimer’s correspondence, this limiting form of the U(1)K-invariant

instanton configuration gives rise to the the limiting behavior of the monopole config-

uration

lim
~x→~xn

FR3 =
Pn
2
dΩ , lim

~x→~xn
X = lim

~x→~xn
V (x)ψ(x) = − Pn

2|~x− ~xn|
. (2.65)

Therefore, since AR3 , X both satisfy the Bogomolny equation (2.63) and have the lim-

iting behavior (2.65), a U(1)K invariant instanton on multi-Taub-NUT is in one-to-one

correspondence with a singular monopole configuration on R3 where the ’t Hooft de-

fects {Pn, ~xn} are encoded in the action of the U(1)K near the NUT centers (which

by extension specifies it everywhere on TNk). More technical details on Kronheimer’s

correspondence can be found in Appendix B.

2.3.4 Instantons on multi-Taub-NUT and Bows

Using Kronheimer’s correspondence we we can construct a singular monopole field

configuration from a U(1)K-invariant instanton on TNk. In [36, 37, 38, 41], the authors

provided a theoretical framework to find explicit instanton solutions on TNk (and indeed

for all gravitational instantons) that fundamentally relies on an object called a bow.

The bow construction effectively reduces to solving Nahm’s equations with a specific

set of boundary conditions which naturally encodes the effect of singular monopoles (or

NUT centers in the case of instantons on Taub-NUT).

Quick Review of Bows

A bow is a quiver where the nodes have been replaced by (wavy) intervals. These

intervals support a vector bundle that can change rank at marked points and connect

together along the quiver edges to form a connected space Σ. In our case Σ = S1.

To a given bow, we can associate a set of differential equations that are analo-

gous to the Nahm equations for the connection on E. It differs by including certain

boundary/matching conditions at edges of intervals and at marked points which encode

the data of the marked points and edges. A solution of the bow equations is called a

representation of the bow.
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The construction of an instanton configuration on multi-Taub-NUT requires two

representations of a bow: a small representation and a large representation. The small

representation encodes the geometry of multi-Taub-NUT and the large representation

encodes geometry of the gauge bundle. These two representations can be used to

construct a “Dirac-type” differential operator whose zero modes can be used to give an

explicit instanton solution in analogy to the ADHM/ADHMN constructions [10, 138].

Now we will give precise definitions of bows and their representations and review

how they can be used to give explicit instanton solutions on Taub-NUT space.

Bow Data: A bow is a directed linear (or ring) graph with nodes, where the nodes

are replaced by a wavy line segments which hosts a collection of marked points. These

marked points divide the wavy line segments into irreducible line segments. This is

specified by:

1. A set of directed edges, denoted E = {ei}.

2. A set of continuous, irreducible wavy line segments, denoted I = {ζi}. We will

additionally use Ii to denote the set of ζ ∈ I in between edges ei, ei+1 ∈ E .

3. A set of marked points denoted Λ = {xi}. We will additionally use the notation

Λi to be the set of marked points x ∈ Λ which are at the end points of the ζ ∈ Ii.

See Figure 2.1 for an example of a bow.

Bow Representations: A representation of a bow consists of the following data

1. To each wavy interval ζ ∈ I, we associate a line segment σζ with coordinate s

such that σζ = [o(ζ), i(ζ)] where o(ζ) and i(ζ) are the beginning and end of ζ

respectively. The intervals σζ connect along marked points and edges to form a

single interval (or circle) Σ =
⋃
ζ∈I σζ according to the shape of the bow.

2. For each x ∈ Λ we define a one-dimensional complex vector space Cx with Her-

mitian inner product 〈 , 〉.
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ζ1

ζ2

ζ3 ζ4

ζ5

ζ6 ζ7

ζ8

ζ9

eN e1 e2 e3 e4 e5 e6
x1 x2

Figure 2.1: This figure is an example of a type An bow with edges {eI}, segments {ζi},
and marked points {xn}.

3. For each ζ ∈ I, we assign a non-negative integer R(ζ) ∈ N and for each point

x ∈ Λ we define ∆R(x) = |R(ζ−)−R(ζ+)| where ζ± are the segments to the left

and right of the point x.

4. For each e ∈ E , we assign a vector ~νe = (ν1
e , ν

2
e , ν

3
e ) ∈ R3.

5. For each ζ ∈ I, we define a vector bundle Eζ → σζ of rank R(ζ). And for

each x ∈ Λ, we define an irreducible su(2) representation of dimension ∆R(x)

with generators {ρi}. This gives a representation of (Eζ±
∣∣
x
)⊥ ⊂ (Eζ∓)

∣∣
x

for

R(ζ∓) > R(ζ±), where ζ± are the segments to the right/left of x.

6. For each x ∈ Λ where ∆R(x) = 0, we define a set of linear maps I : Cx → E
∣∣
x

and J : E
∣∣
x
→ Cx and a set of linear maps BLR

e : E
∣∣∣
t(e)
→ E

∣∣∣
h(e)

, BRL
e : E

∣∣∣
h(e)
→

E
∣∣∣
t(e)

for each e ∈ E where h(e), t(e) is the head, tail of the arrow e respectively.

7. ∇s - a Hermitian connection d
ds +T0 and skew-Hermitian endomorphisms {Ti}3i=1
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on Eζ over the interval σζ which have the pole structure

Tj(s) =

 1
2
ρj
s−x +O((s− x)0) O((s− x)

∆R−1
2 )

O((s− x)
∆R−1

2 ) T−j (λ) +O(s− x)

 , (2.66)

near x ∈ Λ.

8. As in the ADHM and Nahm construction, there is a gauge symmetry of the

instanton bundle E. These gauge transformations act on the various field as

g :



T0

Ti

BLR
e

BRL
e

Ix

Jx


7→



g−1(s)T0g(s)− ig−1 d
dsg(s)

g−1(s)Tig(s)

g−1(h(e))BLR
e g(t(ζ))

g−1(t(e))BRL
e g(h(e)

g−1(x)Ix

Jxg(x)


. (2.67)

9. If we reorganize these linear maps as

Qx =

 J†x

Ix

 , B−e =

 (BLR
e )†

−BRL
e

 , B+
e =

 (BRL
e )†

BLR
e

 ,

T = 1⊗ T0 + iσj ⊗ Tj , T∗ = 1⊗ T0 − iσj ⊗ Tj , νC = ν1 + iν2 ,

(2.68)

then the linear maps are required to satisfy the “Nahm equation” [38]

µ =Im

(
d

ds
T− iT∗ ·T +

∑
x∈Λ

δ(s− x)Qx ⊗Q†x

+
∑
e∈E

(
B−e ⊗ (B−e )†δ(s− t(e)) +B+

e ⊗ (B+
e )†δ(s− h(e))

))
,

(2.69)

where µ =
∑

j νj(s)σ
j and ~ν(s) = ~νeδ(s− h(e)) + ~νeδ(s− t(e)) .
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This equation can be rewritten in a more familiar form as [36, 38, 37]

0 = ∇sT3 +
i

2
[T1 + iT2, T1 − iT2] +

1

2

∑
x∈Λ

(J†xJx − IxI†x)δ(s− x)

+
1

2

∑
e∈E

[ (
(BLR

e )†BLR
e −BRL

e (BRL
e )† − ν3(s)

)
δ(s− t(e))

+
(

(BRL
e )†BRL

e −BLR
e (BLR

e )† − ν3(s)
)
δ(s− h(e))

]
,

0 = ∇s(T1 + iT2) + i[T3, T1 + iT2]−
∑
x∈Λ

IxJxδ(s− x)

+
∑
e∈E

[ (
BRL
e BLR

e − νC(s)
)
δ(s− t(e))

+
(
BLR
e BRL

e − νC(s)
)
δ(s− h(e))

]
.

(2.70)

Note that this is simply the complexified Nahm equations with certain boundary terms.

Bow Construction of Instantons

Now, taking a small and large representation of a bow, we can construct instanton

solutions on TNk. The small representation is that of an Ak−1-type bow (a circular

bow with k-edges and k-intervals) in which Λ = {∅} and Rζ = 1, ∀ζ ∈ I. The small

representation specifies the geometry of TNk. Here, we will denote the triple of skew-

Hermitian endomorphisms of the small representation from condition (7.) as {ti} and

the linear maps for each edge e ∈ E , bLRe : Et(e) → Eh(e) and bRLe : Eh(e) → Et(e). In

each interval away from the marked points and boundaries, the ti satisfy dti
ds = 0 with

boundary conditions defined by the bLRe , bRLe as in the Nahm equation (2.69).

The metric on the multi-Taub-NUT space can then be defined by reducing the “flat”

metric

ds2 =
∑
e

[
1

2
d(bLRe )†dbLRe +

1

2
d(bRLe )†dbRLe + (dt2e,0 + d~t 2

e )

]
, (2.71)

by Nahm’s equations and gauge symmetry. Here, the angular coordinate on TNk is

determined by the gauge invariant data of t0: log(P exp
∮
ds t0) [36, 37, 38, 41].

Now we can construct the instanton configuration from the large representation.

The large representation is allowed to have non-empty Λ and generic data for the R(ζ).

We will denote the maps of this representation as {Ti}, BLR, BRL.
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Given a solution of the Nahm equations, we can define a Dirac operator

Dt =
d

ds
+ Ti ⊗ σi − ti(1⊗ σi) . (2.72)

Then, as in the ADHM and ADHMN constructions, we find the kernel of this operator

Dtψi = 0 , (2.73)

and use it to construct a matrix

Ψ =


...

...
...

ψ1 ψ2 · · · ψN
...

...
...

 , (2.74)

of the linearly independent solutions. Using this, we can reconstruct the self-dual gauge

field as in [36, 38, 37] by

Aµ = i

∫
ds Ψ †DµΨ , (2.75)

where

Dµ =
∂

∂xµ
− isaµ , aµ =

dξ + ω

V (~x)
, (2.76)

and V (~x) is the harmonic function for multi-Taub-NUT and ω is the corresponding

Dirac potential:

dV = ∗3dω . (2.77)

As shown in [19], there is a special class of large bow representations, called Cheshire

bow representations, that give rise to U(1)K-invariant instantons on muti-Taub-NUT.

These bows have the special properties:

• A single sub-interval ζ ∈ I such that R(ζ) = 0,

• R(ζL,e) = R(ζR,e) where ζL, ζR are the intervals to the left and right of an edge

e ∈ E .

These bows give rise to U(1)K instantons because the action of U(1)K is determined by

a non-trivial shift in
∮
ds t0 mod 2π. In the case of a Cheshire bow representation, we

can use gauge symmetry to eliminate this shift since there is a ζ ∈ I where R(ζ) = 0

which means that Σ has effective endpoints on which the gauge transformations of E
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are unrestricted. Thus, any shift of the fiber coordinate can be compensated by a gauge

transformation resulting in U(1)K-invariant instantons [19, 37].

One such class bow and Cheshire representation that has a simple interpretation in

terms of the corresponding singular monopole configuration are those that correspond

to reducible monopoles. Given a bow which

• is circular,

• has p+1 wavy intervals separated by p =
∑

I = pI edges (to which we will identify

the same FI-parameters ~ν),

• has N marked points {xI} distributed such that there are pI edges in between

xI , xI+1 and no edges in between xN , x1,

we can construct a (reducible) singular monopole configuration from a small represen-

tation and a large Cheshire representation which has R(ζ) = mI for wavy intervals

between xI , xI+1 and R(ζ) = 0 for the interval between xN , x1 by

Aa = i

∫
ds Ψ †DaΨ , X = V (~x)

∫
ds Ψ †D4Ψ , (2.78)

where V (~x) is the harmonic function of the TNk determined by the small bow repre-

sentation. Such a singular monopole configuration will have

• Gauge group G = SU(N)

• Relative asymptotic magnetic charge 3

γ̃m = γm − P− =
∑
I

mIHI , (2.79)

• |E| singular monopoles at ~xn = ~ν.

We will discuss the more general identification for irreducible monopoles later in Chap-

ter 5.

3Here, P− is the representative of P in the completely negative Weyl chamber.
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2.4 Monopole Moduli Space

The set of solutions to the Bogomolny equation defines a smooth, finite dimensional

space known as monopole moduli space: M(γm;X∞). This space notably has many

properties:

1. M is a hyperkähler manifold. This comes from the fact that we can combine Ai

and X into a four-dimensional gauge field: Âa = (Ai, X) in which case the Bogo-

molny equation is equivalent to the self-duality equations for the four-dimensional

(x4-invariant) gauge field Âa:

F̂ij =
1

2
εijk`F̂

k` . (2.80)

The space of tangent vectors T[Â]M at a point [Â] ∈ M is described by the

functions which satisfy the linearized self duality equations:

D̂[aδÂb] =
1

2
ε cd
ab D̂cδÂd . (2.81)

Since Âa solves the self-duality equations, then a solution δÂa of the linearized

self-duality equation will come with a triplet of such solutions ηrabδÂ
b where ηr

are the anti-self-dual ’t Hooft symbols. This gives us a triplet of endomorphisms

on TM:

(Jr · δÂ)a = (jr)abδÂ
b , (jr)ab = (Rκ)rs(η̄

s)ab , (2.82)

where Rκ is some choice of SO(3) matrix. The endomorphisms satisfy the quater-

nionic algebra

JrJs = −δrs1 + εrstJt , (2.83)

and hence M is hyperkähler.4

2. M 6= {∅} iff under a decomposition of γm in terms of simple coroots 5

γm =
∑
I

mIHI , (2.84)

4This follows from to the algebra of the {ηr}: ηrηs = −δrs − εrs tη̄t.
5We define the Cartan subalgebra t ⊂ g relative to the asymptotic Higgs vev X∞ which we assume

to be generic. Here we then define t ⊂ g to be the set of commuting elements of g. Then we can define
the set of positive coroots by the set of coroots which have positive inner product with X∞ with respect
to the Killing form.
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then the mI ≥ 0 for all I with at least one mI > 0. In this case, the dimension of

M is:

dimR[M] = 4
∑
X

mI . (2.85)

3. The symmetry group of M is given by Rtrans × SO(3)rot × T . Here R3
trans and

SO(3)rot are translation and rotation symmetry of the spatial R3 respectively.

The translation symmetry is generated by a triholomorphic killing fields while

rotation symmetry is generated by killing vector fields which rotate the complex

structures on M. The factor T of the symmetry group is generated by global

gauge transformations which is generated by triholomorphic killing vector fields.

4. We can separate out the orbits of the global symmetry, allowing us to realize the

moduli space as a quotient

M = R3
cm ×

RX∞ ×M0

D
. (2.86)

The factor R3 is the orbit of translation and RX∞ is the orbit of X∞ in T . Here,

D is the group of deck transformations acting on the universal cover and hence

D ∼= π1(M). M0 is called the strongly centered moduli space and is simply

connected. See [25] for more details.

ADHMN Construction of Monopole Moduli Space

The ADHMN construction of monopole solutions also gives us an algebraic description

of monopole moduli space. Given a solution of Nahm’s equations (2.36), we can con-

struct an explicit solution for the Higgs and gauge field describing the corresponding

monopole configuration. However, these are both acted on by gauge transformations.

In general, a gauge transformation is defined as an (N − 1)-tuple of of smooth maps

g = (g1, ..., gN−1) , gi : Ii → U(ki) , (2.87)

that act as

T0 7→ g−1T0g − ig−1dg , Ta 7→ g−1Tag , (2.88)
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such that the boundary conditions (2.44) – (2.46) are preserved. This gives the descrip-

tion of monopole moduli space

M(γm;X∞) =

 D0T
(p)
i + i

2εijk[T
(p)
j , T

(p)
k ] = 0 (2.44)

D0 = d
ds + i[T0, ·] ∀i, j, k, p (2.46)


/
G , (2.89)

where G is the group of gauge transformations as described above.

2.4.1 Singular Monopole Moduli Space

Similar to the case of smooth monopoles, the space of singular monopoles defines a

moduli space of singular monopolesM(Pn, γm;X∞). It also has many property similar

to M:

1. M(Pn, γm;X∞) is hyperkähler with singularities. The space is conjecturally non-

empty iff the relative magnetic charge γ̃m = γm −
∑

n P
−
n is dominant. Here P−n

is the image of Pn under the Weyl group in the anti-fundamental chamber [131].

This means that under the decomposition

γ̃m =
∑
X

m̃IHI , (2.90)

m̃I ≥ 0 ∀I. If M 6= /0, then the dimension of M is given by:

dim[M] = 4
∑
X

m̃I . (2.91)

2. M does not factorize as in (2.86) since singular monopoles break translation

symmetry.

It will be useful for our purposes to differentiate between the moduli space of ir-

reducible and reducible singular monopoles. Consider a collection of minimal singular

monopoles {Pi = hI(i), ~x
(n)
i } whose coincident limits {~x (n)

i } 7→ ~yn produces the set

of reducible singular monopoles {Pn, ~yn}. We will denote the corresponding singular

monopole moduli space

M̂({Pn}, γm;X∞) = lim
~x

(n)
i →~yn

M({hI(i)}, γm;X∞) . (2.92)
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Explicitly, the ith minimal singular monopole of charge hI(i) is inserted at ~x
(n)
i and

contributes to the reducible singular monopole at ~yn which has total charge

Pn =
∑

i : ~x
(n)
i →~yn

hI(i) . (2.93)

Bow Construction of Singular Monopole Moduli Space

Kronheimer’s correspondence tells us that singular monopole moduli space is equivalent

to some moduli space of U(1)K-invariant instantons on multi-Taub-NUT. By using

the explicit construction of the moduli space instantons on multi-Taub-NUT from the

previous section, we see that singular monopole moduli space can be described as a

bow variety corresponding to Cheshire bow representations [19].

As we discussed, singular monopole configurations correspond to a large represen-

tation of a bow with respect to a small representation that specifies the geometry of

the Taub-NUT space. Thus, let us fix a type Ak−1 bow with a small representation

r. Further, fix the data of the instanton by choosing I, Λ, E , {~νe}, and E → Σ for the

large representation R. The moduli space of singular monopoles is then given by set of

all large representations modulo gauge equivalence. This is given by

Mbow(R, r) =



T ∈ H⊗ End(E) ,

Qx : Cx × Cx → Ex × Ex ,

B+
e : Eh(e) × Eh(e) → Et(e) × Et(e) ,

B−e : Et(e) × Et(e) → Eh(e) × Eh(e) ,

Nahm’s Equations

(2.69)


/
G ,

(2.94)

where Qx, B
±
e ,T are defined as in (2.68) and Es = E

∣∣
s

is the fiber of E → Σ at

s ∈ Σ. This describes the moduli space of instantons on multi-Taub-NUT with fixed

asymptotic data [36, 40].

Bow Variety Isomorphisms: Hanany-Witten Transitions

An interesting feature of bow varieties is that there are often many different, isomorphic

formulations of the same bow variety. One such isomorphism that will be useful for us
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is the Hanany-Witten isomorphism [142]. This allows us to exchange an adjacent edge

and marked point in exchange for modifying the local values of R(ζ).

This isomorphism of representations is explicitly given by

R(ζ1) R(ζ2) R(ζ3) R(ζ1) R(ζ'2) R(ζ3)HW Isom.

where the R(ζi) obey the relation

R(ζ2) +R(ζ ′2) = R(ζ1) +R(ζ3) + 1 . (2.95)

As we will see, this will be intimately related to Hanany-Witten transitions of brane

configurations.

Singularity Structure: Monopole Bubbling

The singular locus ofM has the special interpretation of describing monopole bubbling

configurations. In the case of a single ’t Hooft defect, singular monopole moduli space

M(P, γm;X∞) has the stratification [142]

M(P, γm;X∞) =
∐
|v|≤P

M(s)
(v, γm;X∞) , (2.96)

where M(s)
(v, γm;X∞) ⊂ M(v, γm;X∞) is the smooth component of M(v, γm;X∞)

[142]. Here each component M(s)
(v, γm;X∞) describes the degrees of freedom of the

free (unbubbled), smooth monopoles in the bubbling sector with effective (screened) ’t

Hooft charge given by v ∈ Λcr +P . We will further denote the transversal slice of each

component M(s)
(v, γm;X∞) ⊂ M(P, γm;X∞) by M(P, v). As shown in [142, 23], in

the case of reducible monopoles, M(P, v) is a quiver variety.6

Physically this should be thought of as follows. Singular monopole moduli space

M(P, γm;X∞) decomposes into a collection of nested singular monopole moduli spaces

of decreasing charge and dimension: M(v, γm;X∞) where |v| ≤ |P |. Each lower-

dimensional component describes the singular monopole moduli space that results when

6See Section 5.1.2 for the quivers Γ (P, v) corresponding toM(P, v) for the cases of reducible singular
monopoles.
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a smooth monopole is absorbed into the defect. This reduces the charge of the ’t Hooft

defect and reduces the number of degrees of freedom in the bulk. The complicated

structure of M comes from how the nested components are glued together to form

the total moduli space. This is determined by the transversal slice of each component

which physically describes the moduli of smooth monopoles that were swallowed up by

the ’t Hooft defect. In the case of reducible defects, the transversal slice is particularly

simple and is given by a quiver moduli space [142, 23, 24]. This indicates that quantum

mechanically, bubbling of the smooth monopoles induces a corresponding quiver SQM

on the world volume of the ’t Hooft defect.

2.4.2 Triholomorphic Killing Vectors and Symmetries

A subject which will be crucial in later discussions is the realization of explicit tri-

holomorphic killing vector fields that generate symmetries of monopole moduli space

[75, 76, 77, 132, 133, 134]. Consider a local, real coordinate system {zm} onM. These

coordinates parametrize a smooth family of gauge-inequivalent solutions of the Bogo-

molny equations given by Â = (Ai, X). We can describe the tangent space at [Â] ∈M

by

T[Â]M = spanR

{
δmÂa = ∂zmÂa − D̂aεm

}
, (2.97)

where εm : R3 → g projects onto a representative in gauge orbit of [Â] ∈ M which

implies that

D̂aδmÂa = 0 −→ D̂2εm = 0 . (2.98)

The δmÂa form a local frame of TM. This naturally extends to a covariant derivative

on the moduli space

Dm = ∂m + [εm, ·] , (2.99)

with curvature

φmn = ∂mεn − ∂nεm + [εm, εn] = [Dm, Dn] . (2.100)
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This connection is called the universal connection. We will discuss this in more detail

in the next section.

As we discussed above, the action of the torus T on the fields is generated by triholo-

morphic killing vector fields on M. Such vector fields and hence their corresponding

gauge transformations are generated by elements of the Cartan subalgebra t:

G : t→ isomH(M) . (2.101)

For any H ∈ t, there exists a unique solution to

D̂2εH = 0 , lim
r→∞

εH(x) = H . (2.102)

This generates a vector field G(H)m by decomposing the derivative in terms of the

δmÂa

D̂aεH = −G(H)mδmÂa . (2.103)

By nature of being triholomoprhic killing vectors, translation along G(H)m preserves

any complex structure

£G(H)Jr = 0 . (2.104)

Using the G-map, we can define a basis of the triholomorphic vector fields corresponding

to the group of gauge transformations7

(KI)m = G(HI)
m I = 1, ..., rnk[g] . (2.105)

We will use the notation (KI
0 )m = G0(HI)

m to denote the projection of the projection

of the triholomorphic field G(HI)
m onto the component orthogonal to G(X∞)m on

smooth monopole moduli space. This plays a special role in the analysis of smooth

monopole moduli space which splits into a center of mass and G(X∞)m orbit.

7We are ignoring the subtlety associated with the possibility of the mI = 0 for some I where
γm =

∑
I m

IHI . In this case, one must first reduce to the “effective Lie algebra” and then follow a
similar story. For more details see [133].
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2.4.3 Universal Bundle

The connection introduced in the last section, Dm, naturally arises as the connection on

the universal bundle [11, 47] which parametrizes the principal G bundles over a space

U .

Suppose we want to consider a principal G bundle P → U with a family of con-

nections indexed by some continuous space T . Let Q be a principal G bundle over

U × T such that Q
∣∣
U×t
∼= P , ∀t ∈ T . If these conditions hold, any choice of connec-

tion on Q
∣∣
U×t which is continuous with respect to t ∈ T is induced by pulling back

the connection from a bundle Q, with canonical connection Dm through a bundle map

β : Q → Q. This bundle with connection (Q, Dm) is the universal bundle whose

connection is termed the universal connection.

We can define the universal bundle as follows. Let G be a compact, semisimple Lie

group with a trivial center8 and let P → U be a principal G bundle and let G =
{
Φ :

P → P |π ◦ Φ = π, π : P → U
}

be the group of gauge transformations. We want to

construct a bundle with the spirit of P ×A → U ×A/G. Naively one would expect this

to be a principal G×G bundle, however the action of G×G is generically not free and

does not act without fixed points.

The action of G on P ×A is given by:

Φg · (p,A) = (Φg(p), g
−1Ag + g−1dg) , Φg ∈ G (p,A) ∈ P ×A (2.106)

For generic A ∈ A, the isotopy group ΓA = {Φg ∈ G|Φg(A) = A} can be nontrivial. This

means that the subspace of (P ×A)/G along a slice [A] ∈ A/G is given by P/ΓA×{[A]}.

Since G acts freely on P , (P × A)/G is a well defined, smooth space. However, this

means that the action of G on this space will generically have fixed points. This can be

solved by restricting to irreducible connections A∗ = {A ∈ A|ΓA = C(G) = {1G}} or

to framed connections which we will define momentarily. In this paper, we will restrict

to the space of framed connections following [11].

A framing is a choice of base point x0 ∈ U and an isomorphism ϕ : G → Px0 so

8If we were to include groups with a non-trivial center we would need to restrict P to be a principal
G0 bundle where G0 = G/Z(G).
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that the set of gauge transformations are equivariant with respect to the G-action on

the fiber Px0 under this map ϕ. For our purposes we will pick x0 to be the point at

infinity. This means we can write the space of framed connections as: B̃ = A/G0 where

G0 = {g ∈ G
∣∣ gx0 = 1G} is the space of gauge transformations which act trivially on the

space of framings. Therefore, instead of restricting to the space of framed connections,

we can equivalently restrict to the gauge connections to be the group G0. The action

of G on (P × A)/G0 is free because ∀A ∈ A, G0 ∩ ΓA = {1G}. Thus, the space

Q = (P ×A)/G0 = P × B̃ forms a principal G bundle over U ×A/G0:

P ×A
G

!!

G0

yy
Q = P ×A/G0

G
%%

U ×A

G0}}
U ×A/G0

(2.107)

The universal bundle Q has a natural connection Dm (called the universal connection)

which descends from tautological connection on P × A and is compatible with the

(G× G0)-invariant metric on T (P ×A). At (p,A) ∈ P ×A the metric on Tp,A(P ×A)

is determined by the metric on U , killing form on g, and L2 norm.

2.5 Rational Map Construction of Monopole Moduli Space

There is also an additional algebraic formulation of monopole moduli spaces [54, 92,

93, 108, 30, 102]. The core idea is to study monopole configurations by the scattering

of charged particles. Then, from studying the S-matrix, which relates a set of incoming

states to a nontrivial set of outgoing states, we can reconstruct the field configuration.

The physical data of the monopole configuration will be expressed in the structure of

the bundle of final states over the plane at outgoing infinity, which is further identified

as CP1.

Consider a gauge theory with gauge group G on spatial R3 coupled an adjoint Higgs

field X and a particle in a faithful representation9 of highest weight λ corresponding

9Note that any representation will work for this construction as long as the corresponding field
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to a section of a vector bundle H → R3. Pick a background field configuration with

monopoles. This requires picking a connection∇ and Higgs field configuration satisfying

the Bogomolny equation

∗F = ∇X , (2.108)

where F is the curvature 2-form of ∇.

In order to examine the scattering of the charged particle along straight lines in R3

we will make use of the twistor method of [87] and work on the space of all oriented,

straight lines10 TP1 → CP1
cs.

Given a point η ∈ CP1
cs in the base space, there is an identification R3 ∼= C×R given

by the fiber TηCP1, which we will parametrize by the coordinates (zη, tη) where zη fixes

a line in R3 whose direction is specified by η and tη is the coordinate along this line.

In these coordinates, the covariant derivative splits as (∇tη ,∇zη ,∇zη) on each fiber of

TP1.

Now we want to scatter a charged particle through the static monopole configura-

tion. This is described by parallel transport along the lines ` ⊂ R3, each of which is

defined by some (η, zη) ∈ TP1, by the connection

∇` = (∇tη − iX)
∣∣
zη
. (2.109)

Thus, let us consider scattering the charged particle of representation λ, which takes

values in an associated vector bundle H → R3, through the monopole configuration

along a fixed line ` ⊂ R3. The set of covariantly flat sections ∇`s = 0 of H restricted

to ` defines a vector space:

E` = {s ∈ Γ (`,H|`) | ∇`s = 0} . (2.110)

couples to all of the W-bosons (that is it is a faithful representation) and hence will capture the
interactions with all monopoles.

10The space of oriented, straight lines in R3 can be identified with TP1 as follows. Fix the origin of
R3. A line in R3 is then specified by a choice of direction and displacement from the origin along a
perpendicular plane intersecting the origin. Note that there is S2 ∼= CP1

cs choices of directions in R3

and then there is an R2 space of displacement from the origin. Since this R2 is perpendicular to the
choice of v ∈ S2 ∼= CP1, we can associate this with the tangent space and hence the space of oriented
lines in R3 is given by TS2 ∼= TP1.
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Since (~∇, X) satisfy the Bogomolny equation, there is an operator relation

[
∇z̄η , (∇tη − iX)

]
= 0 , (2.111)

for all η ∈ CP1
cs [87]. Thus, E` extends to a holomorphic vector bundle over TP1

E → TP1 , E
∣∣∣
η,zη

=
{
s ∈ Γ (`zη , H|`zη ) | ∇`(z,η)s = 0 , ∇z̄ηs = 0

}
. (2.112)

This bundle has a pair of natural flag structures determined by the asymptotics of

the set of solutions along the tη → ±∞. Let the vev X∞ be a generic element of

t. Without loss of generality, introduce an ordering of the weights of ∆λ such that

xi = 〈µi, X∞〉 ∈ R are ordered: xi < xi+1 , ∀i. Then the covariantly flat sections of

are of the form

s(t) ∼ |tη|±kp/2 e±xptf(η, zη) as t→ ∓∞ , (2.113)

where kp = 〈µp, γm〉. This allows us to define the two sets of subbundles

E±p =

{
s ∈ E

∣∣∣ lim
t→±∞

|t|±kp/2 e±xpts(t) is finite

}
⊆ E , (2.114)

for which rnk[E±p ] = p. These subbundles have a flag structure:

0 = E±0 ⊂ E±1 ⊂ E±2 ⊂ ... ⊂ E±d = E , (2.115)

given by the asymptotic behavior of the sections, which is determined by the ordering

of the {xp}. This flag structure a gives clear way to visualize the natural G-action on E.

There is a maximal torus T that stabilizes the flag, and hence the space of inequivalent

flags at fixed (η, zη) is given by G/T ∼= GC/B. Here T acts as a phase rotation of

the sections at infinity. This encodes the gauge transformations of the conserved gauge

group. Similarly, the action of B in the setting of GC/B also corresponds to gauge

transformations.

Now in order to obtain the standard construction of monopole moduli space, we

can reduce this to a bundle over CP1 from a bundle over TP1 as follows [87]. First,

make a choice of complex structure by picking a point η ∈ CP1
cs. Now define the

bundles E±I |η → TηP1 ∼= C by restriction. These bundles can be canonically extended

to E±I |η → CP1 by one-point compactification since the two flags of E
∣∣
η
→ C are trivial
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and isomorphic in the limit |z| → ∞ for z ∈ C. This is because physically, the scattering

is trivial at infinity.

Now choose a local framing of Eη → CP1 which trivializes the negative flag 〈E−I 〉

as the standard flag of Cd over CP1. Physically, this trivialization corresponds to

preparing the incoming scattering particle with no initial knowledge of the monopole

configuration. This trivialization gives the flag {E+
I } the property

E+
I /E

+
I−1 = O(kI)⊗ Cnλ(µI) , (2.116)

where kI = 〈µI , γm〉 [92]. This is due to the fact that the asymptotic solutions of

(∇` − iX)s = 0 are of the form s(r) ∼ rkI/2e−xIr. Thus, trivializing {E−I } means that

the terms of E+
I will go as sI(r) ∼ rkIe−xIr and hence the leading term in E+

I but not

in E+
I−1 is a degree kI polynomial [93].

The key to this construction is that the data of the monopole is contained in the

flag structure of {E+
I }. This is because the flag structure encodes the amount to which

the fiber of E rotates as the charged particle scatters through the monopoles. This

non-trivial flag structure is expected because the non-trivial curvature of E can be

attributed to Hecke modifications of the vector bundle as it scatters past monopoles as

in [102].

Thus, we can associate the space of monopole configurations the space of flags {E+
I }

subject to the condition (2.116). The space of these flags is described by the space of

rational functions of degree m = {mI}rI=1 into the flag variety

f : CP1 → GC/B , (2.117)

where r = rnk g and γm =
∑r

I=1m
IHI . This function the scattering matrix of physics.

Remark

1. Since scattering at infinity is trivial, the flag structures should match there and

hence the rational functions are based at infinity: limz→∞ f(z) = 1GC/B.

2. Since the bundle E
∣∣
η
→ CP1 descends from the bundle E → TP1, the rational

map f(z) descends from a rational map f̂ : TP1 → GC/B that is holomorphic

with respect to η ∈ CP1
cs: f(z, η). This encodes the hyperkähler structure of M.
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2.5.1 Explicit Construction of Flag Data and Rational Maps

We will now explicitly construct the rational map which encodes the data of monopoles

and show how to explicitly give an algebro-geometric expression for monopole moduli

space.

Define a set of functions {fI(z)}rI=1 such that fI(z) is a rational function of degree

mI , r = rnk G, and

γm =
r∑
I=1

mIHI . (2.118)

Now define the map

f(z) = exp

∑
α∈Φ+

fα(z)Eα

 , fα =
∑
I∈Sα

fI(z) , (2.119)

where Sα = {αI ∈ Φ+
simple | α =

∑
I∈Sα αI} is the decomposition of α in terms of simple

roots, and Eα ∈ g+ are step operators: [HαI , EαJ ] = CIJEαJ . Clearly f(z) takes values

in GC/B. Such a map defines a flag of subbundles {E+
I } ⊂ E by acting as an upper

triangular matrix on the E+
I , mapping each factor E+

I into the E+
J for J ≥ I. This

construction requires that f(z) is a rational map of degree
∑

I∈Sαm
I for each Eα. This

is equivalent to the condition that each pair fI(z) + fJ(z) is of degree mI + mJ for

CIJ 6= 0. This defines the space of flags, and hence monopole moduli space

M(γm,X∞) =
⋂
I

{
|∆I,J | 6= 0 : CIJ 6= 0

}
, (2.120)

where ∆I,J is the resultant of the rational function fI(z) + fJ(z).

Remark

1. This space is naturally hyperkähler. In the rational functions fI(z), which are

generically of the form

fI(z) =

∑mI−1
j=0 a

(I)
j zj

zk +
∑mI−1

k=0 b
(I)
k zk

. (2.121)

the coefficients {a(I)
i , b

(I)
i } are holomorphic functions of η ∈ CP1

c.s, which parametrizes

the choice of complex structure onM. The function f has this property because

f(z) naturally descend from functions f̂ : TP1 → GC/B. Note that the action
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of spatial rotations, SO(3)rot, changes the direction of η ∈ CP1
cs since it selects a

direction in R3 and hence the action of SO(3)rot rotates the complex structure as

expected.

2. Since M is hyperkähler, it must have a real dimension which is a multiple of 4.

Since the rational functions are generically of the form (2.121), a simple counting

argument shows that specifying f(z) requires mI choices of b
(I)
k and mI choices

of a
(I)
j subject to 2r − 1 constraint equations with 2r − 1 free parameters from

|∆I,J | 6= 0. Thus, the total dimension is

dimC M(γm;X∞) = 2
r∑
I=1

mI =⇒ dimR M(γm;X∞) = 4
r∑
I=1

mI , (2.122)

in agreement with (2.85).

3. Note that due to the choice of complex structure, this formulation only explicitly

realizes SO(2)rot×R×C×U(1)r symmetry where SO(2)rot ∼= U(1)rot is spacetime

rotation in the C-plane, R is translation in the R-direction, C is translation in the

C-plane, and U(1)r is a global gauge transformation along the unbroken maximal

torus.

A generic element (λ, µ, ν, ~ρ) ∈ U(1)rot × R × C × U(1)r where ~ρ = (ρ1, ..., ρr),

acts on the rational maps as

fI(z) 7→ λ−2mIµ−2(ρI)−2fI(λ
−1(z − ν)) . (2.123)

These symmetries can be used to fix |∆I,J | = 1. The full SO(3)rot group acts

by rotating the complex structure and hence is most natural in the setting of the

rational map f̂ : TP1 → GC/B where SO(3)rot acts on CP1
cs.

4. In the case of G = SU(2), (2.120) simply reduces to the condition that f1(z) is a

rational function or that |∆1| = 1 reproducing the result from [12].

2.5.2 Physical Interpretation of Rational Map

It is important to understand how the physical data of monopole moduli space is con-

tained in the rational map. Using the notation from before, we can decompose each
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fI(z) as

fI(z) =
mI∑
i=1

ai
z − bi

, (2.124)

Each term in the sum corresponds to a monopole of charge γm = HI located at ~x =(
−1

2 log|a|, b
)
∈ R×C with phase arg(a) [12]. Physically, this interpretation only makes

sense physically as long as the monopoles are well separated as compared to the W-

boson mass mW ∼
√
〈X2〉.

Example: 2 SU(2) Monopoles

The classic example of how the rational maps reproduce monopole moduli space is in

the computation of the 2-monopole moduli space for G = SU(2) as studied in [12]. In

this case, monopole moduli space is determined by the condition that the rational map

f(z) =
a1z + a0

z2 + b1z + b0
, (2.125)

has degree 2. The corresponding moduli space is given by |∆f | = 1 where we have used

some of the symmetries to fix the resultant. This gives the equation

a2
1 − b2a2

0 − b1a0a1 = 1 . (2.126)

We can now exploit the full symmetries of M to pick different coordinates so that the

strongly centered moduli space M0 is defined by the variety

{x2 − zy2 = 1} ⊂ C3 . (2.127)

This equation defines a 2-dimensional complex variety as a subset of C3 which is the

famous Atiyah-Hitchin manifold [12]. Note that (2.127) defines a 4 complex dimensional

space with 2 coordinates unrestricted. This means that the moduli space will be locally

a direct product of this Atiyah-Hitchin space with a flat space describing the center of

mass degrees of freedom. This is the famous result of [12].

Example: 2 SU(3) Monopoles

Now consider the case of 2 monopoles with total magnetic charge γm = Hα1 + Hα2 in

an SU(3) gauge theory. This means that we should consider two functions

f1(z) =
a1

z − b1
, f2(z) =

a2

z − b2
. (2.128)
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Without loss of generality we can choose our coordinate center so that b1 = 0. Then

we have that the monopole moduli space is defined by the condition that f1(z) + f2(z)

is a degree 2 rational map. Again we will fix the phases so that monopole moduli space

is described by |∆1,2| = 1:

a1a2b
2
2 = −1 . (2.129)

Relabeling into standard coordinates, we can rewrite this in the patch with b2 6= 0 as

x2 + y2 + z2 = 0 , (2.130)

which is simply the unresolved A1 singularity. This tells us that the strongly centered

charge (1,1)-monopole moduli space in SU(3) is topologically equivalent to Taub-NUT.

Restoring the center of mass degrees of freedom we removed by fixing |∆1,2| = 1 and

b1 = 0 tells us that the moduli space should locally be of the form

M(γm = H1 +H2;X∞) ∼= R3 × S1 × TN . (2.131)

This space is of the correct dimension and matches the result of [111].

Using this insight, we can see that the condition above is consistent with the general

asymptotic metric of [111]. Consider the asymptotic limit of monopole moduli space

where all monopoles are far separated relative to the W-boson mass mW ∼
√
u. Now

restrict to the subspace of M where the location and phases of all monopoles except

for two with non-trivial attractive magnetic force
(
(γm,1, γm,2) < 0

)
are fixed. This

subspace is locally of the form R3 × S1 × TN . This can be seen by separating the

function

fI(z) + fJ(z) =
aI

z − bI
+

aJ
z − bJ

+ ffixed(z) , (2.132)

where ffixed(z) is a degree mI +mJ−2 rational function which has all fixed parameters

{ai, bi}. The rational map degree condition now becomes approximately that for the

case of the 2 SU(3) monopoles above so that the subspace of strongly centered moduli

space is approximately Taub-NUT, matching the behavior of the metric from [111].
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2.5.3 Rational Map Formulation of Singular Monopole Moduli Space

This formulation can be extended to include the existence of singular monopoles. These

correspond semiclassically to infinitely heavy magnetically charged particles and are

used to describe ’t Hooft defects. Therefore, it is also important to understand the

moduli space of singular monopoles.

As pointed out in [108, 102], these are equivalent to having non-dynamical monopoles

which are at fixed position and phase. In these references it is explicitly worked out

that the flag {E+
I } should undergo a Hecke modification. This means

E+
I → E+′

I = E+
I

Ndef⊗
n=1

Ozn(pIn) , (2.133)

where Ozn(1) is the sheaf of locally holomorphic functions with a simple pole at zn ∈

CP1 [102] and

Pn =
N∑
I=1

pInh
I , pIn ∈ Z , (2.134)

where {hI}rI=1 form a basis of Λcochar. This construction can further be motivated

in analogy to [132], where singular monopoles were introduced by taking the limit of

infinitely massive, fixed smooth monopoles.

Since we are simply adding magnetic sources without introducing additional moduli,

the functions fI(z) are modified:

fI(z)→ f̃I(z) = fI(z) +

Ndef∑
n=1

f
(n)
I,sing(z) . (2.135)

Here deg[fI(z)] = m̃I and deg[f
(n)
I,sing(z)] = pIn and has a pIn-order pole at zn where

γ̃m = γm −
∑
n

P−n =
∑
I

m̃IHI , (2.136)

and P−n is the representative of Pn in the completely negative Weyl chamber. We will

refer to f
(n)
I,sing(z) as the part of f̃I(z) encoding the data of the singular monopole in

analogy with the physical interpretation of Section 2.5.2. Singular monopole moduli

space is then determined by the condition that

M({Pn}, γm;X∞) =
⋂
I,J

{
|∆̃I,J | 6= 0 : CIJ 6= 0} , (2.137)
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where ∆̃I,J is the resultant of the rational function f̃I(z)+f̃J(z). This does not introduce

any new degrees of freedom in the functions and hence the dimension of the moduli

space is given by.

dimR M({Pn}, γm;X∞) = 4
∑
I

m̃I , (2.138)

matching the results of [132].

Example: Singular Monopoles in PSU(2)

Consider the example of a single monopole interacting with a singular monopole in a

PSU(2) theory. This can be constructed from SU(3) gauge theory with two monopoles

of charge H1, H2 by taking the limit X2
∞ → ∞ where X∞ =

∑
I X

I
∞HI [132]. It is

known from [25] that taking this limit M(γm = H1 + H2) −→ M(P = h1; γm = H1)

will give rise to Taub-NUT space of charge 1. We will now show that this is exactly

what we get from the construction given above.

As in [132], the projection procedure gives the charges

γ̃m = H1 , P =
1

2
H1 , (2.139)

therefore as above, we simply have that the M is defined by the condition that the

rational map

f̃(z) =
a1

z − b1
+

ã
(n)
1

z − zn
, (2.140)

is of degree 2. Let us pick a coordinate system such that the line defect is at the origin

(that is zn = 0). Then, following the example above, we find that the space is given by

the variety

uvw2 = −1 , (2.141)

which again is the relative moduli space of Taub-NUT. The difference between this and

the case of smooth monopoles in γm = 2H1 is that there is no center of mass term since

the singular part of f̃ does not provide additional degrees of freedom as expected.
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Chapter 3

Semiclassical BPS States

Now we will turn to the role of monopoles in supersymmetric quantum field theories

that have Lagrangian descriptions. Here, monopoles take a special role as “BPS states.”

BPS states are 1
2 -SUSY (multi-)particle states that saturate certain energy bounds.

Since BPS states partially break SUSY, they form short (sub-)representations of the

preserved SUSY (sub-)algebra. This property protects them from decay except along

special loci in the moduli space because decay requires the BPS states to combine to

form long representations of the full SUSY algebra. On these special loci, the BPS

states decay in a very controlled way that is known explicitly [106, 107, 67, 50, 99, 150].

Thus, by studying the spectrum of BPS states, we can learn about a quantum theory’s

strong coupling region.

Generically BPS states in the theories we are considering are dyons, which can

be described by non-trivial bosonic field configurations. These are non-perturbative

excitations that can be thought of as quantum lumps [43]. To describe the physics of

such states one must take into account both the perturbative quantum excitations in the

non-trivial bosonic background and the dynamics of the non-trivial bosonic background

field along the moduli space of non-trivial field configurations. Because of this, the study

of BPS states requires both a knowledge of perturbative and non-perturbative physics.

In this section we will discuss some of the basics of BPS states and derive an effective

action that describes their dynamics in the semiclassical, adiabatic limit of a Lagrangian

SUSY gauge theory. Specifically, we will show that they can be described by a SQM on

monopole moduli space which, a.) when in the presence of ’t Hooft defects, is modified

This Chapter is based on material from my papers [22, 28].
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to an SQM on singular monopole moduli space, b.) when in the presence of Wilson

defects, couples to a vector bundle EWilson, and c.) when coupled to 4D hypermultiplet

matter, couples to a vector bundle Ematter.

3.1 BPS States

A supersymmetric quantum field theory is one in which there is a conserved set of

fermionic “supercharges” QA which anti-commute up to a conserved quantity. In 4D,

the generators satisfy

{QAα , Q̄α̇,B} = 2δABσ
m
αα̇Pm ,

{QAα , QBβ } = 2εαβη
ABZ̄ ,

{Q̄α̇,A, Q̄β̇,B} = 2εα̇β̇ηABZ ,

(3.1)

where Pm is the momentum operator, Q̄ is the complex conjugate of Q, α, β, α̇, β̇ = 1, 2

are indices for the 2L and 2R representations of SO(3, 1), A,B = 1, ...,N where ηAB

is an antisymmetric matrix, and Z is the central charge – an operator that commutes

with the Hamiltonian (and supercharges).

Here, the positive integer N = 1, 2, 4 is often referred to as the number of supersym-

metries. This is because the supercharges are acted on by a SU(N )× U(1) symmetry

group which is called the R-symmetry group. We will focus on the case where N = 2

so that ηAB is the standard epsilon symbol of the 2 representation of SU(2). Note that

we can only have non-trivial central charge when N ≥ 2.

Now let us consider how the supercharges act on massive particle states [129].1 In

this case, we can go to the particle’s rest frame so that the momentum operator acts

as

Pµ|ψ〉 = Mδ0
µ|ψ〉 . (3.2)

We can then reparametrize the SUSY algebra in terms of the linear combinations

RAα = ζ−1/2QAα + ζ1/2σ0
αα̇Q̄

α̇A ,

T Aα = ζ−1/2QAα − ζ1/2σ0
αα̇Q̄

α̇A ,

(3.3)

1The massless particle states will follow analogously. See [129] for more details.
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where ζ1/2 ∈ U(1) which satisfy

(R1
1)† = −R2

2 , (R2
1)† = R1

2 , (T 1
1 )† = T 2

2 , (T 2
1 )† = −T 2

2 . (3.4)

In terms of the R, T , the SUSY anti-commutation relations acting on the single particle

state |ψ〉 is given by

{RAα ,RBβ } = 4(M + Re(ζ−1Z))εαβε
AB ,

{T Aα , T Bβ } = 4(−M + Re(ζ−1Z))εαβε
AB ,

{RAα , T Bβ } = 0 .

(3.5)

The Hermiticity conditions (3.3) then imply that(
R1

1 + (R1
1)†
)2

=
(
R2

1 + (R2
1)†
)2

= 4(M + Re(ζ−1Z)) ≥ 0 . (3.6)

This is referred to as the Bogomolny bound. The states that saturate this bound are

BPS states. Consequently a non-BPS state satisfies M > −Re(ζ−1Z).

Consider a BPS state |ψBPS〉. The SUSY algebra then acts on this state following

the commutation relations

{RAα ,RBβ } = 0 ,

{T Aα , T Bβ } = −8Mεαβε
AB .

(3.7)

By rescaling T Aα 7→ T̃ Aα = 1√
8M
T Aα , we the commutation relations become

{RAα ,RBβ } = 0 ,

{T̃ Aα , T̃ Bβ } = −εαβεAB .

(3.8)

We can now see that the state must form a representation of the fermionic harmonic

oscillator (generated by the T̃ Aα ) and is annihilated by the R̃Aα . Thus, a BPS state form

a multiplet:

T̃ 1
1 T̃ 2

1 |ψBPS〉

T̃ 1
1 |ψBPS〉

ww

77

T̃ 2
1 |ψBPS〉
''

gg

|ψBPS〉
''

gg

ww

77

(3.9)
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where we used the Hermiticity condition (3.3) to eliminate the T̃ 1
2 , T̃ 2

2 .

This differs from the case of a non-BPS (fully supersymmetric) state whose SUSY

algebra can be written

{R̃Aα , R̃Bβ } = εαβε
AB ,

{T̃ Aα , T̃ Bβ } = −εαβεAB ,

(3.10)

where R̃Aα = 1√
8M
RAα and T̃ Aα = 1√

8M
T Aα . Non-BPS states are then not annihilated by

either the R̃Aα or T̃ Aα and thus form a long representation of the form

T 1
1 T 2

1 R1
1R2

1|ψ〉

T 2
1 R1

1R2
1|ψ〉

33

T 1
1 R1

1R2
1|ψ〉

99

T 1
1 T 2

1 R2
1|ψ〉

ee

T 1
1 T 2

1 R1
1|ψ〉

kk

R1
1R2

1|ψ〉

OO 55

T 2
1 R2

1|ψ〉

cc 22

T 2
1 R1

1|ψ〉

ii 44

T 1
1 R2

1|ψ〉

jj OO

T 1
1 R1

1|ψ〉

ll ;;

T 1
1 T 2

1 |ψ〉

OOii

R2
1|ψ〉

OO ;; 22

R1
1|ψ〉

ii OO 22

T 2
1 |ψ〉

55ll jj

T 1
1 |ψ〉

OOccii

|ψ〉

kk ee 99 33

(3.11)

Since the representation corresponding to a BPS state (short) and a non-BPS state

(long) are of different dimension, a BPS state cannot become non-BPS unless BPS

states combine together to form a long representation of the SUSY algebra. This

general property protects the mass of such states from quantum corrections that would

potentially break the BPS bound

M ≥ −Re(ζ−1Z) . (3.12)

3.2 N = 2 Supersymmetric Gauge Theory

For the rest of the paper we will consider N = 2 supersymmmetric gauge theories in

4D. Such a theory is specified by a gauge group G, some quaternionic representation of

G, with couplings, masses, and Higgs vevs.
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To the gauge group G we can associate a vectormultiplet superfield with fields

(Aµ, ψA, Φ). Here Aµ is a Lie[G] = g-valued gauge field, ψA is an SU(2)R doublet

of complex Weyl fermions that are in the adjoint representation of G, and Φ is a

complex, adjoint-valued Higgs field. To this vector multiplet we can associate the

complex coupling

τ =
4πi

g2
+

θ

2π
, (3.13)

where g is the standard gauge field coupling and θ is the associated theta angle (in-

stanton fugacity). Additionally, Aµ is uncharged under U(1)R while Φ has charge 2.

To the quaternionic representation G we can associate a hypermultiplet superfield

field which has component fields (qA, λ) where qA is in the quaternionic representation

of G which also furnishes a fundamental representation of SU(2)R and λ is a Dirac

fermion which is uncharged under SU(2)R×U(1)R. The outer automorphism group of

the quaternionic representation which, commutes with the action of G, is a global

symmetry (which may or may not be anomalous) that is referred to as the flavor

symmetry group Gf . The hypermultiplet superfield comes with a specification of mass

parameters which is valued in a Cartan subalgebra m ∈ tf ⊂ gf =Lie[Gf ]. This breaks

the flavor symmetry group down to the normalizer subgroup of m in Gf which we

generically take to be a maximal torus Tf .

With this data one can specify the UV Lagrangian of the theory

L =Re

∫
d2θTr

{−iτ
8π

WαW
α

}
+

Imτ

4π

∫
d2θd2θ̄Φ†e2iV Φ

+
Imτ

4π

{∫
d2θd2θ̄

[
Q†e2iVQ+ Q̃T e−2iV Q̃∗

]
+ Re

∫
d2θ(Q̃†ΦQ+mQ̃†Q)

}
.

(3.14)
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In components this can be written as

L =
1

g2
Tr

[
− 1

2
FµνF

µν + i(ψAσ
µDµψ̄

A + ψ̄Aσ̄µDµψA) + (Mn)2

−i(εABψA[ψB, Φ
∗] + εABψ̄

A[ψ̄B, Φ]) + iΦ∗[D,Φ]

]

+
1

g2

[
−Dµq

A†DµqA + iλ̄γµDµλ− |HA|2 + iqA†(σn) BA MnqB

−i(qA†ΨAλ+ λ̄Ψ̄AqA)− λ̄(ΦR +mR)λ− iλ̄(ΦI +mI)γ
5λ̄

+iqAΦHA − iHA†Φ∗q∗A +mqAHA +m∗q†AH
A∗
]

+
θ

32π2
Tr[εµνσρF

µνF σρ] ,

(3.15)

where Mn is a triplet of auxiliary fields Mn = (g, f,D), m = mR + imI , Φ = ΦR + iΦI ,

and

ΨA =
(
ψA, εABψ̄

B
)
, (3.16)

is a Dirac fermion.

From this Lagrangian, one can show that the classical moduli space is described by

solutions to the equations

Tr
[
T a[Φ,Φ†]

]
+ qAσ3

ABT
aqB = 0 , qA†σ±ABq

B = 0 , Φ · qA +m · qA = 0 , (3.17)

where σ3, σ± are the standard combinations of Pauli matrices. We can generically

distinguish between 3 different types of vacua: 1.) Coulomb-, 2.) Higgs-, and 3.)

mixed-type vacua. These are defined by taking the vev’s of Φ and qA at infinity be 1.)

〈qA〉 = 0, 2.) 〈Φ〉 = 0, and 3.) 〈qA〉, 〈Φ〉 generic. We refer to the collection vacua in

each class the Coulomb, Higgs, and mixed branches respectively.

While each vacua has its own interesting properties and interesting physical phe-

nomena associated to it, we will only focus on the Coulomb branch here. For Coulomb

type vacua, the vacuum equations reduce to

[Φ,Φ†] = 0 , (3.18)

and thus the Coulomb branch B can be identified with B = (t⊗C)
/
W , where W is the

Weyl group of t ⊂ g. Due to the quotient by the Weyl group, the Coulomb branch is

parametrized by the casimirs of the vev of the scalar field.
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At generic points on the Coulomb branch, the gauge group is classically broken to

a maximal torus T ⊂ G except along co-dimension ≥ 1 loci where ΦI∞ = 0 where the

Higgs vev decomposes into simple coroots as

Φ∞ =
∑
I

ΦI∞HI . (3.19)

Quantum mechanically, the gauge symmetry breaks down to a maximal torus T ⊂ G

everywhere on B.

3.2.1 Low Energy Theory

The low energy effective theory of 4D N = 2 SYM theory can then be described as

a 4D gauged non-linear sigma model on B [155, 156]. N = 2 supersymmetry implies

that the metric on B is hyperkähler . In the N = 1 notation of [171], the low energy

effective action can be written

L = Re

[∫
d2θ τ ij(Φ)Wα

i Wα,j

]
+

∫
d4θK(Φ, Φ̄) , (3.20)

where Φ is a N = 1 chiral superfield with components (a, ψ2, F ) and Wα is the curvature

of the remaining massless vector superfield with field components (D,ψ1, Aµ). Here,

τ ij is a holomorphic function of Φ for each i, j, and K(Φ, Φ̄) is the associated Kähler

potential

∂2K

∂ai∂āj
= τ ij , (3.21)

where i, j = 1, ..., rnk g run over the U(1) subgroups of T ∼= U(1)rnk g.

The physical structure of this theory can be seen more clearly by defining coordinates

that are dual to ai

aiD =
∂K

∂ai
, (3.22)

which is allows us to define τ ij as

τ ij =
∂aiD
∂aj

, (3.23)

Under this choice of coordinates, the metric of the effective action and Kähler form

become

ds2 =
1

2π
Im daiDdai , Ω = − 1

8π

(
daiD ∧ dāi − dai ∧ dāiD

)
. (3.24)
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Note that there is an action of SL(2;Z) that acts on the pairs (ai, a
i
D) by a b

c d

 ·
 ai

aiD

 −→
 a′i

ai′D

 , (3.25)

such that the metric and Kähler form are preserved. Equation (3.22) then implies that

τ ij transforms under the same SL(2;Z) as

τ ij 7→ aτ ij + b

cτ ij + d
. (3.26)

We will identify the τ ij that are related by SL(2;Z) transformations as physically

equivalent. Further, physical considerations require us to restrict us to the case where

g2 > 0 which implies that Im τ ij > 0. Thus, τ ij takes values in the upper half plane

quotiented by the action of SL(2;Z): H+/SL(2;Z).

A holomorphic function that takes values in H+/SL(2;Z) where SL(2;Z) acts as

(3.26) (i.e. τ ij is a modular form of weight 0) is uniquely specified. This function is

the j-function of a torus. This allows us to encode the data of all of the τ ij in an

abelian variety X fibered over B with a globally defined 1-form. Specifically, given a

decomposition of the first homology group H1(X;Z) = span{αi, βi} into symplectically

dual cycles, we can define the (ai, a
i
D) by

ai =

∫
αi

λ , aiD =

∫
βi
λ , (3.27)

where λ is the globally defined 1-form which is often referred to as the Seiberg-Witten

differential. The abelian varieties above a point u ∈ B can be encoded as the Prym

variety of an N -fold cover of a Riemann surface 2

Σu
N−→ C , (3.28)

fibered over u ∈ B.

More generally, for a 4D theory with hypermultiplets, Σ and C are allowed to have

singularities at special points in B. In this case we consider only the periods of the

2That is to say the Jacobian variety X is encoded as the kernel of the map of Jacobian varieties
J(Σu)→ J(C).
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Prym variety associated to the fibration of closure of Σu (Σ̄u) over the closure of C

(C̄)

Xu = Prym
[
Σ̄u

N−→ C̄
]

, u ∈ B . (3.29)

The explicit forms of the pairs (Σu, C) and the associated 1-form λ are known in a

large number of cases. This allows one to explicitly compute the exact effective action

in terms of the ai, a
i
D. This was first done by Seiberg and Witten in their seminal

papers [156, 155].

BPS states also have a natural interpretation in this description of the data of

the 4D low energy effective theory. Specifically, they correspond to special closed 1-

dimensional submanifolds of Σ. To each such submanifold P ⊂ Σ we can associate a

mass and central charge

MP =

∫
P
|λ| , ZP =

∫
P
λ . (3.30)

From this definition, it is clear that we have the identity

MP ≥ |ZP | . (3.31)

Thus, BPS states can be identified with 1-dimensional closed submanifolds P ⊂ Σ such

that

MP = ZP . (3.32)

This description of the low energy effective theory of a 4D N = 2 gauge theory in

terms of abelian varieties may seem quite esoteric, but it actually comes from the string

theory construction of the 4D theory. This construction is called the class S construction

in which the 4D theory is given by wrapping M5-branes on Σ producing an effective 4D

theory with N = 2 SUSY. The BPS states then come from the boundary of M2-branes

wrapping the one-dimensional submanifolds. We will discuss this construction further

in Chapter 5.

3.3 Vanilla BPS States

BPS states in a 4D N = 2 theory can generically be classified into two classes: smooth

(or “vanilla”) BPS states and framed BPS states. Framed BPS states are BPS states
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in a classical background with line defect insertions whereas vanilla BPS states are in

a classical background without line defects.

In this section we will describe the dynamics of smooth BPS states in N = 2

super-Yang-Mills theory.3 Here we will take G to be a semisimple, compact gauge

group with trivial center. 4 The classical configurations of smooth BPS states are

generically described by smooth monopoles (which are allowed to additionally have

electric charge). This is clear because the bosonic part of the action of SYM theory

is identical to the Yang-Mills-Higgs theory studied in the previous chapter and hence

the non-trivial background configurations (which we assume to be bosonic) are given

by monopole configurations.

The bosonic part of the 4D N = 2 SYM action is given by 5

Sbos = − 1

g2
0

∫
d4x Tr

{
1

2
FµνF

µν +DµΦD
µΦ− 1

4
[Φ,Φ†]2

}
, (3.33)

where here we use g0 (and later will use θ0) to denote the bare coupling. This is of the

same form as the YMH Lagrangian (2.1) with V (Φ) = [Φ,Φ†]2.

The bosonic part of the Hamiltonian of 4D N = 2 SYM theory can be written

Hbos =
1

g2
0

∫
d3x Tr

{
E2
i +B2

i + |D0Φ|2 + |DiΦ|2 −
1

4
[Φ,Φ∗]2

}
=

1

g2
0

∫
d3x Tr

{
| − Ei − iBi + ζ−1

vanDiΦ|2 + |ζ−1
vanD0Φ+

1

2
[Φ,Φ∗]|2

}
− Re

(
ζ−1
vanZ

cl
)
,

(3.34)

where ζvan is some phase and

Zcl =
2

g2
0

∫
S2∞

Tr {Φ(iF − ∗F )} . (3.35)

Thus, BPS states, which saturate the bound M ≥ −Re[ζ−1
vanZ

cl], must be solutions of

the equations [152, 21]:

Ei = DiY , Bi = DiX , D0X − [Y,X] = 0 , D0Y = 0 (3.36)

3We will study the general case of N = 2 SUSY gauge theories with matter in Section 3.6.

4We will for the remainder of the paper make these assumptions about the gauge group.

5We will adopt the conventions of [133].



55

where ζ−1
vanΦ = Y + iX. The solutions of these equations break 1

2 supersymmetry. The

choice of preserved supercharges is determined by the choice of ζvan ∈ U(1).

In the gauge where A0 = Y , the time-independent BPS equations simplify

Ei = DiY , Bi = DiX . (3.37)

The first equation can be combined with Gauss’s Law to

D2Y = 0 , D2A0 = 0 . (3.38)

These equations have a unique solution once we specify asymptotic boundary conditions

Y = Y∞ −
g2

0

4π

γphyse

2r
+O(r−(1+δ))

Ei =
g2

0

4π

γphyse

2r2
r̂i +O(r−(2+δ))

(3.39)

The second equation is the Bogomolny equation which, after fixing the asymptotic

behavior

X = X∞ −
γm
2r

+O(r−(1+δ)) ,

Bi =
γm
2r2

r̂i +O(r−(2+δ)) ,

(3.40)

has a moduli space of solutions given by monopole moduli space M(γm;X∞) as we

discussed in Chapter 2. Therefore, given the asymptotic boundary conditions (3.39)

and (3.40), the moduli space of BPS configurations is exactly the monopole moduli

space M(γm;X∞).

It is clear from the pairing of Ei with Y = Re[ζ−1
vanΦ] and Bi with X = Im[ζ−1

vanΦ],

that the choice of ζvan that decides this splitting is very important and seemingly

arbitrary. However there is a unique choice for ζvan that maximizes the BPS bound for

BPS states with fixed magnetic charge and finite electric charge:

ζ−1
van = − lim

g0→0

|Zcl|
Zcl

. (3.41)

Given the expansion of Zcl in terms as asymptotic data,

ζ−1
vanZcl = −

[
4π

g2
0

(γm, X∞) + (γphyse , Y∞)

]
+ i

[
4π

g2
0

(γm, Y∞)− (γphyse , X∞)

]
(3.42)
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where

γm =
1

2π

∫
S2∞

F , γphyse =
2

g2
0

∫
S2∞

∗F = −
(
γ∗e +

θ

2π
γm

)
, (3.43)

the choice (3.41) of ζvan implies that

4π

g2
0

(γm, Y∞)− (γphyse , X∞) = 0 . (3.44)

Here γ∗e is the dual element of the quantized electric charge. The shifted electric charge

is derived by choosing a duality frame for the charge lattice above the moduli space

and quantizing the electric and magnetic charges relative to this S-duality frame. See

[133] for more details.

3.3.1 Collective Coordinate Expansion

As shown in [124], the dynamics of BPS states in the slow moving, semiclassical limit

can be approximated by an SQM on the moduli space of BPS state configurations. The

reason is that slow moving BPS states remain approximately BPS. Thus, by taking the

fields to be functions of the coordinates on monopole moduli space, we can write the

action as a functional on M, thus describing an SQM on monopole moduli space.

In practice, we can reduce to the effective theory by perturbatively expanding the

fields in the small coupling parameter g0 and demand that the additional fields Y,A0,

ψA = ρA + iηA solve their equations of motion to order O(g2
0) in the monopole back-

ground.6

Here we will collect spatial gauge field and Higgs field X into a single four-index

vector field Âa = (Ai, X). The vector field Âa can be associated with a self-dual

connection which is invariant under the a = 4 direction. Since the monopole background

is only determined by the fields in Âa, we will assume that the first non-trivial term of

all other fields is at higher order in g0. The equations of motion then imply that the

lowest non-trivial order of the other fields are ψA ∼ O(g
1/2
0 ) and A0, Y ∼ O(g0) [133].

6Here we have decomposed ρA, ηA in terms of sympletic-Majorana-Weyl spinors.
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From the action

Svan = − 1

g2
0

∫
d4x Tr

{1

2
FµνF

µν +DµXD
µX +DµY D

µY + [X,Y ]2

− 2iρAD0ρA − 2iηAD0ηA − 2ηAσ0iDiρA + 2ρAσ0iDiηA

+ 2i(ηA[Y, ηA]− ρA[Y, ρA])− 2i(ρA[X, ηA] + ηA[X, ρA])
}

+
θ0

8π2

∫
Tr F ∧ F ,

(3.45)

one can derive the equations of motion

D̂aEa + [Y, [Y,A0]] + i([ρA, ρA] + [ηA, ηA]) = 0 ,

D̂2Y −D2
0Y − i([ρA, ρA]− [ηA, ηA]) = 0 ,

i(D0ηA − [Y, ηA]) + τaD̂aρA = 0 ,

i(D0ρA + [Y, ρA])− τaD̂aηA = 0 ,

(3.46)

where τa = (σ0σi,−i1). Now let us consider the equations of motion. For ρA, the they

are of the form

τaD̂aρA = i[Y −A0, ηA] , (3.47)

whereas those for ηA are of the form

τaD̂aηA = i[Y +A0, ρA] . (3.48)

If we denote L = iτaD̂a, the fact that Âa is anti-self dual implies that the kernel of L

is non-trivial whereas the kernel of L† = −iτaD̂a is trivial. This means that given a

solution of ρA, Y, and A0, there is a unique solution for ηA. The equation of motion

then implies that ηA ∼ O(g3/2) and hence will lead to terms in the effective Lagrangian

that are of higher order than we are considering.

However, there are non-trivial solutions for ρA. As shown in [133], there is a 2-1

mapping between vector bosons and Weyl fermions

ρA −→δÂa = 2κAτ̄aρ
A ,

δÂa −→ρA = − 1

4 detκ
δÂaτ

aκA ,
(3.49)
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where κA is a constant symplectic-Majorana-Weyl spinor characterizing the mapping

between bosonic and fermionic zero modes.7 This mapping implies that [131]

Ind[L] =
1

2
dimRM(γm;X∞) . (3.50)

We will introduce a (local) basis for the fermionic zero modes of ρA by by {χm}.

This allows us to expand the first non-trivial solution to ρA as

ρA = −
∑
n

δnÂaτ
aκA

4detκ
χn . (3.51)

The fermionic zero modes χn form a local frame for the spin-bundle over the moduli

space.

Using this form of ρA, the solutions for A0, Y are given by [133]

A0 = −żmεm + Y cl +
i

4
φmnχ

mχn +O(g3
0) ,

Y = εY∞ + Y cl − i

4
φmnχ

mχn +O(g3
0) ,

(3.52)

where φmn is the curvature of the pullback of the universal connection εm and

Y cl = θ̃0(X − εX∞) . (3.53)

Here εH for H ∈ t is the unique g-valued function that satisfies

D̂2εH = 0 , lim
r→∞

εH = H ∈ t . (3.54)

Note that Y cl is the unique solution to D̂2Y cl = 0 with the appropriate pole structure

and limr→∞ Y cl = 0.

Substituting these into the action and integrating over the spatial R3 reduces the

field theory to a particle moving on the spin bundle over M. This is described by the

Lagrangian

Lc.c. =
4π

g2
0

[
1

2
gmn (żmżn + iχmDtχn −G(Y∞)mG(Y∞)n)− i

2
χmχn∇mG(Y∞)n

]
− 4π

g2
0

(γm, X∞) +
θ0

2π
gmnż

mG(X∞)n .

(3.55)

7This choice of κ is irrelevant as long as det κ = − 1
2
κBβ κ

β
B 6= 0.
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where:

gmn =
1

2π

∫
R3

d3x Tr
{
δmÂaδnÂ

a
}

, Γmnp =
1

2π

∫
R3

d3x Tr
{
δmÂ

aDpδnÂa

}
,

Dtχn = χ̇n + Γnmpż
mχp ,

and

G(H)m = δmÂ
aD̂aεH , H ∈ t . (3.56)

See [133, 78, 22] for more details.

3.3.2 Universal Hilbert Bundle

To reduce the 4D dynamics of BPS states in a supersymmetric QFTs to a SQM on

monopole moduli space we are implicitly making use of a universal Hilbert bundle.

This is similar to the universal bundle in the sense that it parametrizes families of

Hilbert bundles of sections of a principal bundle over some Riemannian manifold.

Let P → U be a principal G bundle over some Riemannian manifold U and let

L2(U , P ) be the Hilbert space of L2 sections of P . Let A be the space of all connections

on P . There is an action of the gauge group G0 of framed gauge transformations (See

Section 2.4.3) on this space which gives rise to the diagram:

L2(U , P ) // L2(U , P )×A
G0

��
H =

(
L2(U , P )×A

)
/G0

��
A/G0

(3.57)

Analogous to the case of the universal bundle, the bundle H can be thought of as a uni-

versal Hilbert bundle which has the universal connection induced by parallel transport

along A/G0. Now since M injects into A/G0 we can pull back the universal Hilbert

bundle to a Hilbert bundle over the moduli space M:

H

��

ι∗ // ι∗(H)

��

L2(U , P )oo

A/G0 Mι
oo

(3.58)
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Now define a hermitian operator D[Â] with trivial cokernel which acts fiber-wise on

ι∗(H) determined by [Â] ∈ M. We can then define the vector bundle Ker[D[Â]]→M

which is the subspace of L2 sections which are in the kernel of D[Â]. The operator D[Â]

also defines a projection map P : ι∗(H)→ Ker[D[Â]]:

H

��

ι∗ // ι∗(H)

��

P // Ker[D]

��
A/G0 Mι

oo M

(3.59)

From this construction there is a connection onKer[D[Â]] given by: ∇Ker[D] = P (ι∗∇A/G0
)

which is the projected connection from ι∗(H).

Let us be more explicit. Consider a local basis of sections of Ker[D[Â]] given by

{δmÂa}
Ind[D[Â]]

m=1 . Using the L2 norm, Riemannian metric on U , and Killing form on g

we can write the metric on Ker[D[Â]] as:

gmn =
1

2π

∫
U
dnx Tr

{
δmÂ

aδnÂa

}
. (3.60)

This metric gives rise to a projected connection of the form

Γmpq =
1

2π
gmn

∫
U
dnx Tr

{
δnÂ

a

(
∂

∂zp
+ [εp, ·]

)
δqÂa

}
, (3.61)

where εp is the pullback of the universal connection form to ι∗(H). This can more gen-

erally be applied to associated bundles by changing the representation of the connection

form εp as we will see later.

Collective Coordinate Symmetries

Since we are describing BPS particles in 4D, we expect that the symmetries of the

four-dimensional theory are preserved in our collective coordinate theory. This theory

has N = 4 supersymmetry with the fields transforming as

δνz
m = −iνaχn(J̃a) mn +O(g

5/2
0 ) ,

δνχ
m = νa[(ż

p −G(Y∞)p)(Ja) np Γmnqχq] +O(g3
0) ,

(3.62)

where

Ja = (Jr,1) , J̃a = (−Jr,1) , (3.63)
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and Jr are a triplet of complex structures on M as defined earlier. This leads to the

supercharges

Qa =
4π

g2
0

χm(J̃a) nm(żn −G(Y∞)n) +O(g
3/2
0 ) . (3.64)

There is also an SU(2)R symmetry of the four dimensional theory which is realized in the

collective coordinate theory. Recall that under this SU(2)R group, the ρA, ηA transform

as doublets whereas the bosons transform trivially. This leads to the variations

δIrz
m = 0 , δIrχ

m =
1

2
χn(Jr) mn , (3.65)

where we use δIr to denote the transformation associated with the su(2) generators:

Ir. This leads to the conserved charges

Ir =
iπ

g2
0

(ωr)mnχ
mχn , (3.66)

where the ωr are the triplet of Kähler forms associated with the complex structures Jr.

Many of the symmetries of the four-dimensional theory can be expressed in the

SQM as being generated by Killing vectors. Such a Killing vector KE generates the

transformations:

δEz
m = (KE)m , δEχ

m = χn∂n(KE)m . (3.67)

This has a corresponding conserved Noether charge

NE = −4π

g2
0

(
(KE)mgmn(żn + θ̃0G(X∞)n)− i

2
(∇m(KE)n)χmχn

)
+O(g0) . (3.68)

Specifically, as we discussed in Chapter 2, the action of global gauge transformations

on monopole moduli space is generated by triholomorphic Killing vectors. These are

explicitly generated by the G(HI)m. When we quantize this theory, the operator asso-

ciated with this conserved quantity will be the Lie derivative along KE .

3.4 Line Defects

We would now like to generalize our discussion of vanilla BPS states to the framed

case. This requires first reviewing general Wilson-’t Hooft operators in four dimensional

N = 2 field theories.
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3.4.1 Wilson Lines

A Wilson line wrapped on a curve γ can be thought of semiclassically as an infinitely

massive, charged particle which is coupled to the gauge (and Higgs) field whose world

line is given by γ. Here we will consider such line operators that wrap the time direction

at a fixed spatial coordinate which are called Wilson defects. Wilson defects source

electric charge that is labeled by a weight λ ∈ Λwt(G).

Wilson defects can be thought of as creating a Hilbert space of states that are

localized at the insertion point. These defect Hilbert spaces are isomorphic to the

highest weight representation Vλ corresponding to the λ.

In order to describe the contribution of Wilson defects to the collective coordinate

theory it will be most convenient for our purposes to introduce spin impurity fields

whose Hilbert space is exactly Vλ. Consider a four dimensional gauge theory with

gauge group G. Let this theory be coupled to an N -component complex, fermionic

field wa which is in a representation Rλ : G→ GL(Vλ) localized at ~xn with an action:

Sdef =

∫
d4x δ(3)(~x− ~xn)iw†Dtw , Dt = ∂t +Rλ(A0) . (3.69)

This has the equations of motion

dw

dt
= −Rλ(A0)(t)w , (3.70)

which has solutions

w(t) = P exp

[
−
∫ t

t0

dt′ Rλ(A0(t′))dt′
]
w(t0) . (3.71)

To quantize this theory we need to impose

{w†a, wb} = δab , (3.72)

where a, b are indices of the representation Rλ. This leads to a Hilbert space H =

Λ∗(Vλ).

In order to describe a Wilson line in representation Rλ we need to project onto

the first level of the tensor algebra. After this projection, the Lie group g acts on the

Hilbert space Hdef = {w†a|0〉|a = 1, ..., N} by the matrices
∑N

a,b=1w
†
aRλ(T )abwb for

T ∈ g where dimCVλ = N .
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Restricting the tensor algebra can be achieved by projecting onto the N+2
2 -eigenstate

of the operator

Q =
1

2

N∑
a=1

(w†awa − waw†a) . (3.73)

This can be accomplished by introducing an auxiliary scalar field α(t) to the action

Sdef =

∫
d4x δ(3)(x− xn)iw†a

(
Dt +

N + 2

2
α(t)

)
wa . (3.74)

Here, the auxiliary field α projects onto the Hilbert space Λ1(Vλ) ⊂ Λ∗(Vλ).

Upon insertion into the path integral

Zdef [A0] =

∫
DαDwDw† wa(+∞)eiSdefw†b(−∞) , (3.75)

we can integrate out the wa fields using the propagator G(t − t′) = θ(t − t′)δab with

midpoint regularization θ(0) = 1
2 . The integration over the wa fields then yields

Rλ(1)aa +

∫
dt1Rλ(A0)aa(t1)−

∫
dt1dt2Rλ(A0)ab(t1)θ(t1 − t2)Rλ(A0)ba(t2) + ... ,

(3.76)

which sums to

TrRλP exp

(
−
∫
A0(t)dt

)
= WRλ [A0] . (3.77)

See [165, 13] for more details.

Coadjoint Orbit Quantization

Another, equivalent method we may use to describe electrically charged line defects

uses the geometric quantization of coadjoint orbits as in [5, 13]. This method relies on

the geometric restrictions on the space of holomorphic sections of a line bundle on a

certain flag manifold and the Borel-Weil-Bott theorem in order to construct the Hilbert

space of states localized on the line defect as the highest weight representation of the

gauge group.

The coadjoint orbit construction proceeds as follows. Consider a Wilson line inserted

at the origin in R3 with representation Rλ where λ ∈ Λwt is the associated highest

weight. We can define the coadjoint orbitOλ which is the image of λ under the coadjoint
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action of G. By the canonical pairing 〈 , 〉 : g∗ × g→ R, one can identify Oλ ∼= G/Gλ

where Gλ = {g ∈ G|g · λg−1 = λ} is the stabilizer of λ under the coadjoint action. We

will restrict to generic λ in which case Oλ ∼= G/T .8

Now consider a line bundle overG/T . Such line bundles are classified byH2(G/T ;Z).

Due to the short exact sequence

1→ T → G→ Oλ → 1 , (3.78)

there is an isomorphism

H2(G;Z) = H1(T ;Z) = Hom(T,U(1)) ≡ Λchar(G) ∼= Λwt . (3.79)

The Borel-Weil-Bott theorem then shows that the line bundle Lλ specified by λ ∈

H2(Oλ;Z), has vanishing cohomology groups except for H0
∂̄
(Oλ;Z) = Vλ which is the

representation space associated to the associated weight λ ∈ Λwt.

Therefore, consider the line bundle Lλ → Oλ. In order to construct a Hilbert space

Hdef = H0
∂̄
(Oλ, Lλ), we must quantize Oλ. This requires a choice of symplectic form on

Oλ and a choice of polarization of Oλ to define a set of “coordinates” and “momenta”

and their commutation relations.

There is a natural choice of symplectic form coming from the a pre-symplectic form

Θα = −〈α, θ〉 = Tr(λθ) , (3.80)

where:

θ = g−1dg , g ∈ G , (3.81)

is the Maurer-Cartan 1-form on G. Using this we can define the 2-form

να = dΘα =
1

2
〈α, [θ, θ]〉 . (3.82)

However, in order to define a symplectic form, να must be non-degenerate. This re-

quires that on Oλ ⊂ g∗ we take α = λ so that νλ is the symplectic form defining the

commutation relation. These structures are compatible with the metric defined by the

Killing form on Oλ and hence defines a Kähler manifold.

8For generic λ, Gλ = T but more generally T ⊆ Gλ and hence any line bundle over G/Gλ can be
pulled back to G/T .
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We can now define a polarization by a choice of complex structure on Oλ. This

can be achieved by making a choice of positive and negative roots for the lie algebra

g = t⊕ g+ ⊕ g− with respect to λ ∈ t which we assume to be a dominant weight.

With these structures in hand, we can now quantize Oλ. From our choice of po-

larization, we allow our wavefunction to take values in the holomorphic line bundle

Lλ → Oλ.9 The Hilbert space of states is thus given by the space of holomorphic

sections of Lλ

H = H0(Oλ, Lλ) ∼= Vλ . (3.83)

However, this line bundle Lλ has a non-trivial connection connection given by iΘλ

which is subject to the restriction of the Bohr-Sommerfeld quantization condition

1

h

∮
H(p,q)=E

pidqi ∈ N . (3.84)

This is a consistency condition for defining a (projective) physical Hilbert space. It is

equivalent to restricting to a physical Hilbert bundle that has only trivial monodromy

around a closed paths of constant energy in phase space. Mathematically, this implies

that

dΘλ = νλ (3.85)

which is indeed the case for our Hilbert space.

Now that we have shown how to construct a defect Hilbert space we can use this

formalism to incorporate a Wilson line into our path integral. Let us introduce the 1D

Chern-Simons action component to the path integral:

Zdef =

∫
LOλ
DU exp

[
i

∫
R
U∗(Θλ)

]
=

∫
LOλ
DU exp

[
i

∫
R

Tr(λ · U−1dU)

]
, (3.86)

where LOλ is the “line-space” of Oλ so that

U : R→ Oλ , (3.87)

9The condition that the wavefunction is holomorphic comes from the fact that our polarization of
Oλ is the complex structure. We could equivalently consider the antiholomorphic line bundle, but this
choice is equivalent to picking coordinate versus momentum basis in the traditional construction of
quantum mechanics.
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is integrated over the space of maps from the world volume of the Wilson defect R into

Oλ. The variation of the action is given by

δSdef = i

∫
R
dτ να(U)mnδU

mdU
m

dτ
, (3.88)

where we have expanded in local coordinates on Oλ where τ parametrizes the R.

We can further couple this action to the gauge field as before by modifying the

presymplectic form

ΘAλ = −〈λ, θA〉 , θA = g−1dAg , (3.89)

where dA = d+A∧. This changes the action to:

Sdef = i

∫
R
U∗(ΘAλ ) = i

∫
R

Tr (λ · U−1dAU) . (3.90)

Remark Note that this will lead to the same results as the quantization of the spin

defect fields (with slightly different definitions of the same tensor fields) so we will

continue with the spin defect fields since the formulas will be generally clearer.

SUSY Wilson Lines

In order to have a Wilson line that preserves maximal 1/2-supersymmetry, we must also

couple the impurity fields to the Higgs field. This comes with the data of ζ ∈ U(1) which

specifies the unbroken supersymmetry. Therefore in order to incorporate multiple line

defects and preserve supersymmetry all defects must have the same ζ. Supersymmetry

mandates the action:

Sdef =

∫
d4x(iw†(Dt −Rλ(Y ))w) δ(3)(x− xn) , (3.91)

which leads to supersymmetric Wilson lines of the form

WRλ [A0 − Y ] = TrRλP exp

(
−
∫
Rλ(A0 − Y )dt

)
. (3.92)

3.4.2 ’t Hooft Defects

’t Hooft defects can be thought of semiclassically as infinitely heavy magnetically

charged particles, i.e. singular monopoles. In order to incorporate ’t Hooft lines into



67

a four dimensional N = 2 theory at a point ~xn, one must impose boundary conditions

on the fields at ~xn just as in our discussion of singular monopoles. To make an ’t Hooft

defect supersymmetric one has to couple the field to Im[ζ−1Φ] = X, complementary

to the case for Wilson lines.10 The data for these defects is also given by a choice

of ζ and ~xn, but instead of a representation, comes with a choice of magnetic charge

Pn ∈ Λcochar which by S-duality can be related to a weight of the Langlands dual group

LG[100, 102].

An ’t Hooft defect defined by the data (Pn, ~xn, ζ) has the corresponding boundary

conditions

ζ−1Φ =

(
g2

0θ0

8π2
− i
)
Pn
2rn

+O(r−1/2
n ) ,

F =
Pn
2

sin(θn)dθn ∧ dφn − θ̃0
Pn
2r2
n

dt ∧ drn +O(r−3/2
n ) ,

(3.93)

in local coordinates around ~xn as rn → 0. This can be expanded

Bi =
Pn
2r2
n

r̂in +O(r−3/2
n ) , Ei = −θ̃0

Pn
2r2
n

r̂in +O(r−3/2) ,

X = − Pn
2rn

+O(r−1/2
n ) , Y = θ̃0

Pn
2rn

+O(r−1/2
n ) ,

(3.94)

where θ̃0 =
g2
0θ0

8π2 .

In order to have a well defined variational principle with these boundary conditions,

we must include a boundary term in the Lagrangian

Sdef =
2

g2
0

∫
dt
∑
n

Re

{
ζ−1

∫
S2
n

Tr {(iF − ∗F )Φ}
}

= − 2

g2
0

∫
dt
∑
n

∫
S2
n

r2
ndΩnr̂

i
n Tr {XBi + Y Ei} ,

(3.95)

where S2
n is the infinitesimal 2-sphere around the defect at ~xn. Additionally, when

introducing ’t Hooft lines, we must restrict to the gauge transformations that commute

with the ’t Hooft charge at the insertion point. This leads to a reduction of the structure

group of the principal G bundle to Z(Pn) =
{
g ∈ G | g−1eiPnφg = eiPnφ , ∀φ ∈ [0, 2π]

}
at the defect at ~xn ∈ R3. We will denote the ’t Hooft operator defined by (P, ~x, ζ) as

Lζ[P,0](~x). We will often suppress the dependence on ζ and ~x.

10For θ0 6= 0, we also have take into account the Witten effect.
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’t Hooft defects fall into three distinct classes: irreducible, minimal, and reducible

’t Hooft defects as in the case of singular monopoles. An irreducible ’t Hooft defect is

defined by the data (P, ~x, ζ) as discussed above. These are S-dual to the Wilson line

with irreducible representation of highest weight P ∈ Λwt(G∨) [102]. Minimal ’t Hooft

defects are irreducible ’t Hooft defects with minimal charge – that is irreducible ’t Hooft

defects whose ’t Hooft charge is a simple cocharacter P = hI . These are S-dual to the

Wilson line with the minimal irreducible representation of G∨.

A reducible ’t Hooft defect is specified by a charge P ∈ Λcochar, position ~x ∈ R3 and

a phase ζ ∈ U(1). Such defects are the coincident limit of Ndef =
∑

I pI minimal ’t

Hooft defects, each of charge hI(i) such that

P =

Ndef∑
i=1

hI(i) =
rnkG∑
I=1

pIh
I , pI ≥ 0 , ∀I , (3.96)

where i = 1, ..., Ndef indexes the constituent minimal ’t Hooft defects.11 Thus, a

reducible ’t Hooft defect is the operator that results from taking the product of minimal

’t Hooft operators. Consequently, they are S-dual to a Wilson line corresponding to a

reducible representation given by the product of minimal representations of G∨. We

will write reducible ’t Hooft defects as

L~p,0 =

rnkG∏
I=1

(
L[hI ,0]

)pI
. (3.97)

In generic theories with matter in representations {Rµ}, we must further restrict that

〈µ, P 〉 ∈ Z for all highest weights µ. This restricts P to take values in the mag-

netic weight lattice P ∈ Λmw ⊆ Λcochar which is defined as the restriction Λmw =

Λcochar
∣∣
〈µ,P 〉∈Z. We will more generally take ĥI to be the simple magnetic weights and

consequently we we generally use the notation

L~p,0 =
rnkG∏
I=1

(
L[ĥI ,0]

)pI
. (3.98)

In many cases, (3.98) coincides with (3.97).

11Here we use the notation where the ith monopole is of charge hI(i). That is, I(i) = 1, ..., rnk G
according to the charge of the ith monopole.
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In N = 2 supersymmetric theories, reducible ’t Hooft operators are related to

irreducible ’t Hooft operators by the corresponding products of their associated repre-

sentation of the Langlands dual group G∨:

L[P,0] · L[P ′,0] =
⊕
P ′′

R P ′′
PP ′ L[P ′′,0] , RP ⊗RP ′ =

⊕
P ′′

R P ′′
PP ′ RP ′′ . (3.99)

Here RP ,RP ′ ,RP ′′ are representations of G∨ and R P ′′
PP ′ are its structure constants

[102].

3.4.3 General Wilson-’t Hooft Defects

More generally, we can allow for the inclusion of Wilson-’t Hooft defects which source

both electric and magnetic charge [100]. In order to include such defects, we must

modify the boundary conditions of the ’t Hooft defects to allow for an electric charge

Qn. From the equations of motion

D̂iE
i + i([ρA, ρA] + [λA, λA]) =

ig2
0

2

∑
j

w†jRj(T
a)wjδ

(3)(x− xj) ,

D̂2Y −D2
0Y − i([ρA, ρA]− [λA, λA]) =

ig2
0

2

∑
j

w†jRj(T
a)wjδ

(3)(x− xj) ,
(3.100)

we can see that the fields will have the local behavior

Bi =
Pn
2r2
n

r̂in +O(r−3/2
n ) , Ei =

g2
0

4π

Q∗n
2r2
n

r̂in −
θ̃0Pn
2r2
n

r̂in +O(r−3/2) ,

X = − Pn
2rn

+O(r−1/2
n ) , Y = − g

2
0

4π

Q∗n
2rn

+
θ̃0Pn
2rn

+O(r−1/2
n ) ,

(3.101)

near the defect at ~xj . Such field configurations preserve 1
2 -SUSY.

Here Qn ∈ Λwt(Z(Pn)) ⊂ Λwt(G) is the highest weight of a representation of Z(Pn)

12 because time independence of the background field implies

D0Fij = 0 (3.102)

and hence [Qn, Pn] = 0. Again this restricts our space of gauge transformations which

leave the boundary conditions invariant and hence take value in the stabilizer group

12Above we are using the notation Q∗n ∈ t to denote the dual under the canonical pairing 〈 , 〉 :
t∗ × t→ R with respect to an embedding of Λwt(Z(P )) ↪→ Λwt(G).
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of (Pn, Qn) at the defect at ~xn. Further, gauge invariance imposes that the Wilson

and ’t Hooft charges are only dependent on the Weyl orbit [P,Q] ∈
(
Λcochar(G) ×

Λwt(Z(P ))
)/

W .

In the case of multiple Wilson-’t Hooft defects, there is a non-trivial Dirac quanti-

zation condition. For any pair of of line defects with charges (P,Q) and (P ′, Q′) the

Dirac quantization condition is

〈P,Q′〉 − 〈P ′, Q〉 ∈ Z (3.103)

Due to the singularity in the gauge field coming from the ’t Hooft defect, we must

add a boundary term to the action to have a well defined variational principle

Sdef =
2

g2
0

∫
dt
∑
n

∫
S2
n

r2
nd

2Ωnr̂
i
n Tr

{
(EiY +BiX)− g2

0

4π

Q∗n
2r2
n

A0r̂n,i

}
, (3.104)

which leads to the boundary variation

δSbos =
2

g2
0

∫
dt
∑
n

∫
S2
n

d2Ωnr
2
nr̂
i
n Tr

{
δA0

(
Ei +

g2
0θ0

8π2
Bi −

g2
0

4π

Q∗n
2r2
n

r̂n,i

)
−δY (DiY − E) + Y

(
δEi +

θ0g
2
0

8π2
δBi

)
−δX(DiX −Bi)− δAj(Fij − εijkDkX)

}
.

(3.105)

This vanishes for the field configurations satisfying the BPS equations and Wilson-’t

Hooft boundary conditions (3.101).

3.5 Framed BPS States

The presence of line defects significantly alters the Hilbert space of states and the

spectrum of BPS states. These can be viewed in the “core-halo” picture where the

BPS states divide into two types: those which binds tightly to the line defects to form

a “core” and those which are only loosely bound to the line defects at large radius,

forming a collection of “halo” clusters around the core in analogy with galaxies [69].

We now want to know how to describe the moduli space of framed BPS states

in the semiclassical limit. We again have the same BPS equations as before, except

except with new local boundary conditions at the insertion points of the Wilson-’t
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Hooft defects. Thus we can conclude that the moduli space of framed BPS states is

given by the singular monopole moduli space M({P}, γm;X∞) defined by taking only

the magnetic part of all of the line defects.

3.5.1 Collective Coordinate Dynamics with Wilson-’t Hooft Defects

We now implement the same program as before, reducing the 4D description to a su-

persymmetric theory of collective coordinates. In addition to the Bogomolny equations,

we want to satisfy the equations of motion for A0, Y , ψA and λA

D̂2(A0 − żmεm) + i
(
[ρA, ρA] + [λA, λA]

)
− ig2

0

2

∑
j,a

T aw†jRj(T
a)wj δ

(3)(x− xj) = 0 ,

D̂2Y −D2
0Y − i

(
[ρA, ρA]− [λA, λA]

)
− ig2

0

2

∑
j,a

T aw†jRj(T
a)wj δ

(3)(x− xj) = 0 ,

i(D0η
A − [Y, ηA]) + τaD̂aρA = 0 ,

i(D0ρA + [Y, ρA])− τaD̂aηA = 0 ,

(3.106)

to order O(g2
0).

Note that this leads to the same equations of motion for the ρA, λA. Thus, the

moduli space will be M and the dynamics will again couple to its spin bundle. The

different solutions for A0 and Y will again generate a superpotential. Generalizing the

solution from earlier, the collective coordinate expansion for the fields above is given

by

Y =εY∞ + Y cl − i

4
φmnχ

mχn +O(g2
0) ,

A0 =− żmεm + Y cl +
i

4
φmnχ

mχn +O(g2
0) ,

ρA =
1

2
√

det κ
δmÂa(−iτa)κAχm +O(g2

0) ,

ηA =O(g
3/2
0 ) ,

(3.107)

where Y cl is the classical solution for the fields

D̂2Y cl = 0 , lim
r→∞

Y cl = 0 , (3.108)

with the appropriate boundary conditions at the Wilson-’t Hooft defects (4.11).
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Here we are using the definition of εH from the case of vanilla BPS states on M.

Specifically, to a generic point [Â] ∈ M we can identify a connection [Âs] ∈ M by

subtracting the fields of the singular monopoles. Then we can define

D̂2
Âs
εH = 0 , lim

r→∞
εH = H , (3.109)

as in [133].

After integrating over R3 the theory of collective coordinates can be described by

the Lagrangian

Lc.c. =
4π

g2
0

[
1

2
gmn (żmżn + iχmDtχn −G(Y∞)mG(Y∞)n)− i

2
χmχn∇mG(Y∞)n

]
+
θ0

2π
(γm, Y∞) +

θ0

2π

(
gmn (żm −G(Y∞)m)G(X∞)n − iχmχn∇mG(X∞)n

)
− 4π

g2
0

(γm, X∞) + i
∑
j

w†j(Dt − ε(j)Y∞ +
i

2
φmnχ

mχn)wj ,

(3.110)

where

Dtw
b
j = ∂tw

b
j −R(ε(j)m )bcw

c
j , (3.111)

and ε
(j)
m is the pullback of the universal connection evaluated at ~xj ∈ R3. The calculation

of Lc.c. is given in Appendix A.

There are a few notable differences from the case of vanilla BPS states that we wish

to comment on:

1. Note that upon integrating out the wj fields we get a Wilson line coupled to

the universal connection on the moduli space. This is to be expected by naively

plugging in the collective coordinate expansion of A0 − Y into the Wilson line in

the four-dimensional theory. The SQM Wilson line arises from the term A0 =

−żmεm + ...

TrRP exp ei
∫

(A0−Y )dt → TrRP exp e−i
∫
εmżmdt+...

= TrRP exp e−i
∮
εmdzm+... ,

(3.112)

where the ... is the supersymmetric completion. This means that the inclusion of

a Wilson line at ~xj ∈ R3 couples the SQM collective coordinate theory to a vector
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bundle which we will call the Wilson bundle EWilson(Qj) which is an associated

vector bundle of the universal bundle.

2. There are new terms proportional to θ0 in the Lagrangian. The most important

is

− iθ0

2π
χmχn∇mG(X∞)n , (3.113)

This term vanishes on M, but is non-vanishing in the case of ’t Hooft defects

[133].

The SQM collective coordinate theory now couples to a vector bundle which we call

the Wilson bundle

EWilson =
⊗
j

EWilson(Qj) . (3.114)

This theory is again supersymmetric with the same supersymmetry transformations as

that of vanilla BPS states. This gives rise to the same supercharge

Qa =
4π

g2
0

χm(J̃a) nm(żn −G(Y∞)n) . (3.115)

The Wilson Bundle

The Wilson bundle, EWilson is different from bundle of vector multiplet zero modes in

that it does not come from some pull back of the universal Hilbert bundle. Rather the

Wilson bundle is roughly the pull back of the universal bundle, restricted to the defect

point ~xj ∈ R3. One can construct the Wilson bundle by pulling back the principal

G-bundle Q through the diagram:

Q = P ×A/G0
ι∗ //

��

ι∗(Q)
evj∗ //

��

evj∗(ι∗(Q))

��
X ×A/G0 X ×Mι

oo Mevj
oo

(3.116)

where RQj is the representation of highest weight Qj and evj : M → X ×M where

evj : zm 7→ (~xj , z
m). Then we can construct the associated bundle:

EWilson(Qj) = evj∗(ι∗(Q))×RQj C
N −→M . (3.117)

This is why the connection on the Wilson Bundle EWilson(Qj) is given by the universal

connection evaluated at ~xj .
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Hamiltonian Dynamics

We can now convert our Lagrangian formalism to the Hamiltonian formalism in prepa-

ration for quantization. The conjugate momenta of our fields are given by:

pm =
4π

g2
0

gmn

[
żm + θ̃G(X∞)m +

i

2
χpχqΓmpq

]
+ qm ,

(pχ)m =
4π

g2
0

gmnχ
n , (pw)a = i(w†j)a ,

(3.118)

where

qm = i
∑
j

w†jRj(ε
(j)
m )wj . (3.119)

Introducing the notation

πm = pm −
2πi

g2
0

Γm,pqχ
pχq − qm , (3.120)

we can write the Hamiltonian as

Hc.c. = M cl +
g2

0

8π

{
πmg

mnπn + gmnG(Y∞)mG(Y∞)n +
4πi

g2
0

χmχn∇mG(Y∞)n

}
+iθ̃0

(
iG(X∞)mπm +

2π

g2
0

χmχn∇mG(X∞)n

)
+ i
∑
j

w†j(ε
(j)
Y∞ −

i

2
φmnχ

mχn)wj ,

where

M cl =
4π

g2
0

(γm, X∞) + (γphyse , Y∞) , (3.121)

and the supercharge is given by:

Qa = χm(J̃a) nm(πn −G(Y∞)n) . (3.122)

3.5.2 Quantization

We now quantize the collective coordinate theory by elevating the coordinates and

conjugate momenta to operators and imposing canonical commutation relations:

[zm, pn] = iδmn , {χm, χn} =
g2

0

4π
gmn , {wa†j , wbj} = fab (3.123)

We also want to impose [zm, χn] = [zm, waj ] = 0. However, this implies that {χm, pn} 6=

0 and {waj , pn} 6= 0. In order to extract the zm dependence from χ and wj , we will
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introduce (co-)frame fields Em = Emm∂m (em = e
m
mdzm) on the (co-)tangent bundle and

Wilson bundle with the standard properties

emm = δmnE nn gnm , eaa = δabE bb fab . (3.124)

Now let us to redefine the fields

γm =

√
g2

0

8π
emmχ

m , v
a
j = eaaw

a
j ,

(3.125)

such that they obey the relations

[zm, pn] = iδmn , {γm, γn} = 2δmn , [zm, γn] = [pm, γ
n] = 0 . (3.126)

Note that introducing the fields means that the connection term becomes the spin

connection 13

Γm,pqχ
pχq −→ ωm,pqγ

pγq . (3.127)

Using this convention, the operator corresponding to πm becomes

π̂m = −i∇m −
i

2
ωm,pqγ

pγq − qm , (3.128)

which can also be rewritten as

π̂m = −ie−1/2Dme1/2 , (3.129)

where Dm is the spin covariant derivative coupled to the Wilson bundle. Using this we

can write the Hamiltonian operator as

Ĥ =
g2

0

8π

[
− 1√

g
Dm
√
ggmnDn + gmnG(Ycl∞)mG(Ycl∞)n +

i

2
γmn∇mG(Ycl∞)n

]
+M cl + iθ̃0£G(X∞) +

ig2
0

32π

∑
j

v†jR(φmn)γmnvj +O(g2
0) ,

(3.130)

where

£KE = (KE)mDm +
1

4
γmn∇m(KE)n , (3.131)

13For the rest of the paper we will suppress the underline on the indices except when emphasizing
the difference.
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is the Lie derivative along KE . Note that the defect degrees of freedom are missing

from the Hamiltonian as they are incorporated into the mass term M cl or are of higher

order.

The Lie derivative operator can be related to the NE which correspond to the

transformation generated by the killing vector KE

NE = −4π

g2
0

(
(KE)mgmn(żm + θ̃0G(X∞)n)− i

2
χmχn∇m(KE)n

)
. (3.132)

Upon quantization the Noeter charge becomes an operator associated to a conserved

charge

N̂E = i

(
(KE)mDm +

1

4
γmn∇m(KE)n

)
= i£KE . (3.133)

The Noether charges associated to the triholomorphic vector fields KE = G(HI) are

related to the electric charge operator

N̂E |Ψ〉 = 〈HI , γ̂e〉|Ψ〉 , KE = G(HI) . (3.134)

Thus, the Dirac quantization of electric charges then implies that if we expand γe

γe =

rnk[g]∑
I=1

nIe αI , (3.135)

then

nIe = −g(G(Ycl∞),KI)) ∈ Z , (3.136)

where

Y =
4π

g2
0

Y +
θ0

2π
X . (3.137)

Upon quantization, the supercharge operators becomes

Q̂a = − ig0

2
√

2π
γn(J̃a) mn

(
Dm − iG(Ycl∞)m

)
, (3.138)

which can be described as Dirac operators on the the bundle S⊗EWilson →M coupled

to the triholomorphic killing field G(Ycl∞). Using the SUSY algebra for SQM

{Q̂a, Q̂b} = 2δab
(
Ĥ +Re(ζ−1Ẑ)

)
, (3.139)
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and comparing with the above formula for the Hamiltonian, we can identify the central

charge operator

Re(ζ−1Ẑ) = −M cl = −4π

g2
0

(γm, X∞)− (γ̂physe , Y∞) . (3.140)

From (3.138), we now see that the stable BPS states (those which saturate M ≥

−Re(ζ−1Ẑ)) must be in the kernel of the supercharge operators. The SUSY alge-

bra implies that if a state is in the kernel of any one of the supercharge operators,

it is in the kernel of all of the supercharge operators. Therefore, we can without loss

of generality consider Q̂4 in which case the BPS states are given by the kernel of the

twisted Dirac operator

iγm(Dm − iG(Ycl∞)m)Ψ = 0 . (3.141)

Comparison with Low Energy Limit

The standard formula for the central charge is given by:

Ẑ = (γ̂m, aD) + 〈γ̂e, a〉 . (3.142)

Upon identifying a with Φ∞ and aD with τ0Φ∞ (where τ0 = 4πi
g2
0

+ θ0
2π ) in the low energy

limit (to first order in g0) [133, 134] this becomes:

ζ−1Ẑcl =

(
γ∗e +

θ0

2π
γm, Y∞

)
− 4π

g2
0

(γm, X∞) + i

[(
γ∗e +

θ0

2π
γm, X∞

)
+

4π

g2
0

(γm, Y∞)

]
= −

[
4π

g2
0

(γm, X∞) + (γphyse , Y∞)

]
+ i

[
4π

g2
0

(γm, Y∞)− (γphyse , X∞)

]
,

(3.143)

which is consistent with the semiclassical computation above.

3.5.3 1-loop Corrections

Thus far we have only considered terms coming from the perturbation series in g0

coming from the variation of the collective coordinates. However, in quantizing the

field theory, there are also loop corrections from the full quantum field theory. It has

been shown in [133] that these terms give order O(1) corrections to the effective SQM.
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If we restrict to the vacuum of the soliton sector so that there are no incoming or out-

going perturbative states, then the 1-loop corrections are given by a sum over zero-point

energies correcting the mass term. The correction is computed in [133] following [104]

and given here for completeness

∆Mγ =
1

2π

∑
α∈∆+

〈α, γm〉〈α,X∞〉
{

ln

(〈α,X∞〉2
2|Λ|2

)
+ 1

}
+

1

π

∑
α∈∆+

〈α, γm〉〈α, Y∞〉θα ,
(3.144)

where

〈α, a〉 = |〈α, a〉|eiθα . (3.145)

3.5.4 Extended Example

Now we will use the semiclassical analysis to compute the spectrum of framed BPS

states in an example. Consider N = 2 SYM theory with gauge group SU(2). Let us

try to use the formalism developed in this chapter to compute the spectrum of framed

BPS states in the presence of a single Wilson line in the spin-j representation. We will

restrict our attention to the framed BPS states with magnetic charge Hα. Here we will

set Y∞ = 0 and θ0 = 0.14

As discussed above, the framed BPS states with magnetic charge Hα are in the

kernel of a Dirac operator on M(Hα;X∞) ∼= R3 × S1. In this case, we can make a

special choice of gauge for the universal connection εm = Âm. With this choice the

supercharge Dirac operator becomes

Q̂4 = iτaD̂a + iqv , (3.146)

where

X∞ = i

 v 0

0 −v

 , (3.147)

and q is the eigenvalue of the electric charge operator

q̂ =
1

iv
∂φ , (3.148)

14This is the example considered in [165].



79

|q|
j 0 1 2 3 4 5

1/2 1

1 2

3/2 4 3

2 6 4

5/2 9 8 5

3 12 10 6

Table 3.1: This table displays the computed values of Ind[ /D
Y

]
γe=

q
2
α

M(γm=Hα;X∞) =

Ω(Wj , γ = Hα + q
2α) from the index calculation as in [165, 133].

where φ is the coordinate on S1. Note that the Higgs vev leaves an unbroken U(1)

gauge symmetry which implies that framed BPS states are eigenstates of this operator.

Since Â satisfies the Bogomolny equations, Q̂4 has a trivial cokernel. Therefore the

dimension of the kernel of Q̂4 is given by the index of Q̂4. From a generalization of the

usual index computation [31, 56, 165, 131, 169], the index of Q̂4, and hence number of

framed BPS states, is given by

N =
1

2

∑
|m|≤2j
m∈2Z+2j

m sign(m− q) .
(3.149)

Due to the Dirac quantization condition q must take the values [69]

q ∈


2Z j ∈ Z + 1/2

2Z + 1 j ∈ Z
(3.150)

This is to be expected since the dyon bound to a Wilson line always has even charge

when the Wilson line has odd electric charge (i.e. when j is half integer) [165].

This computation for the index gives the multiplicity of BPS states (given by the

framed BPS index Ω(Wj , γ = Hα + q
2α)) is displayed in Table 1.

3.5.5 Sen Conjecture

We can also apply the identification of the supercharge with a Dirac operator on

monopole moduli spaces to extend Sen’s conjecture [158] to the singular spaceM [133].



80

By the no exotics theorem, we know that (framed) BPS states form a trivial represen-

tation of the SU(2)R symmetry group. Thus, any BPS state Ψ should be annihilated

by the generators of the SU(2)R group.

In order to examine the consequences of this statement, it is perhaps easiest to

reformulate the wavefunction in terms of holomorphic differential forms. This makes

use of the isomorphism between the Dirac spinor bundle and the space of (0,∗)-forms

tensored with a square root of the canonical bundle [55]. In the case we are considering,

whereM is hyperkähler , the canonical bundle is trivial and hence that the Dirac spinor

bundle is simply isomorphic to the the space of (0, ∗)-forms on M.

Therefore, the wavefunction of a generic BPS state can be expressed as an L2 section

of the anti-symmetric tensor algebra of the holomorphic cotangent bundle

Ψ ∈ L2

M,

2N⊕
q=1

Λ(0,q)(T ∗M)

 . (3.151)

In terms of holomorphic differential forms, there exists a convenient choice of super-

charge operator

Q =
i
√
π

g0

(
Q̂3 + iQ̂4

)
= ∂q − iG(Ycl∞)(0,1) ∧ , (3.152)

where ∂̄q = ∂̄ + q(0,1)∧ which naturally gives rise to a cochain complex

L2(M, Λ(0,0))
Q0

−−−→ L2(M, Λ(0,1))
Q1

−−−→ ...
Q2N−1

−−−→ L2(M, Λ(0,2N)) , (3.153)

and an associated cohomology

Hq(Q) = ker Qq
/

Im Qq−1 . (3.154)

Now recall that the SU(2)R charges acting on the spinor bundle are given by

Ir =
iπ

g2
0

(ωr)mnχ
mχn . (3.155)

On a (0,q)-form λ, the SU(2)R generators act by [133]

Î+λ = iω+ ∧ λ , Î−λ = −iιω−λ , Î3λ =
1

2
(q −N)λ , (3.156)

where Î± = Î1 ± iÎ2, ω± ∈ Λ2(T ∗M), and dimC[M] = 2N . Thus, we immediately see

that the states that are annihilated by Îr, and hence BPS states must be described by
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primitive forms in the middle dimension: q = N and Î±λ = 0. In fact, since the {Îr}

form a representation of sl(2) and Î± maps Λ(0,N∓2) → Λ(0,N), the Î± must have only

non-trivial action on non-primitive states. Therefore, the BPS states must be given by

the subbundle of primitive states

HBPS = HN (Q) ∩ ker[I±] . (3.157)

This proves the Sen conjecture and extends it to the moduli space of singular monopoles:

M. See [133] for more details.

3.6 BPS States and Hypermultiplets

Now we will turn to the general case of BPS states in N = 2 SUSY gauge theory with

arbitrary matter hypermultiplets and arbitrary line defects. We will take a general

gauge group G and hypermultiplet with arbitrary quaternionic representation R =⊕
iR(i) and flavor symmetry group GF .

For the moment we will take the R(i) = πi ⊕ π∗i to decompose as a direct sum

of two real representations so that we can construct the hypermultiplets from N = 1

pairs of chiral superfields (Qi, Q̃i). We will endow these hypermultiplets that have

constituent fields (qiA, λ
i) with complex masses mi. Here the index (i) denotes the

flavor index which transforms under GF . Note that qA forms an SU(2)R doublet and

λ is an SU(2)R singlet. The Lagrangian of the theory can be written as [110]

L = Im

[∫
d2θ

τ

4π
WαW

α

]
+

Im [τ ]

4π

∫
d4θ Φ†e2iV Φ

+
Im [τ ]

4π

{∫
d4θ

(
Q†ie

2iVQi + Q̃i†e−2iV Q̃i

)
− Re

∫
d2θ

(
Q̃iΦQ

i +mj
i Q̃jQ

i
)}

.

(3.158)

Note that that the mass matrix mj
i is generically a complex valued symmetric matrix.

However, SU(2)R symmetry implies that [m,m†] = 0 [162].15 However, since Qi and

15This can be checked by eliminating the auxiliary fields from the standard superspace Lagrangian.
There is also a quick way to see this by an argument attributed to Seiberg. We can treat the mass
matrix as the vev of a very weekly coupled scalar field which arises from gauging the flavor symmetry.
Then by sending the coupling of the gauged flavor symmetry, we restrict to the vacuum [m,m†] = 0
and the dynamics freeze out, leaving us with a Lagrangian of the form above.
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Q̃i transform in conjugate representations of the flavor group GF , we can diagonalize

mj
i . Hence we can generically take m to be diagonal. We will therefore suppress the

hypermultiplet index (i) and representation maps R(i) : G→ GL(N ;C).

Following the same program as before, we will derive the BPS equations by consid-

ering the bosonic part of the action

Hbos =
1

g2

∫
d3x Tr

{
E2
i +B2

i + |D0Φ|2 + |DiΦ|2 −
1

4
[Φ,Φ∗]2

}
+

1

g2

∫
d3x
(
|D0qA|2 + |DiqA|2 + |mhA|2 −mq†AΦ∗qA −m∗q†AΦqA

+
1

2
q†A{Φ∗, Φ}qA −

1

4
(q†Aσn B

A T rqB)2
)
,

(3.159)

where we are using notation similar to that of [133]. See Appendix A for conventions.

The supersymmetry transformations of the hypermultiplet fields are given by

δξqA = 2(ξAλ1 + εABξ
B
λ2) ,

δξλ1 = iσµξ
A
DµqA − i(Φ∗ −m∗)ξAεABqB ,

δξλ2 = iσµξ
A
DµqA − i(Φ+m)ξAε

ABqB .

(3.160)

Using Gauss’s Law

D̂aE
a =

1

2
([Φ,D0Φ

∗] + [Φ∗, D0Φ])− T r

2

(
q†AR(T r)D0qA − qAR(T r)D0q

∗
A

)
, (3.161)

we can reduce the Hamiltonian to the form

Hbos =
1

g2
0

∫
d3x Tr

{
|Ei + iBi − ζ−1DiΦ|2 +

∣∣∣∣ζ−1D0Φ+
1

2

(
[Φ,Φ∗]− T rqA†σ3 B

A ρ(T r)qB

)∣∣∣∣2
}

+
1

g2
0

∫
d3x
(
|DiqA|2 + |D0q1 + ζ

−1
(Φ∗ −m∗)q1|2 + |D0q2 + ζ−1(Φ+m)q2|2

− 1

4
(qA†σn BA ρ(T r)qB)2

)
+ Re{ζ−1Zcl} ,

(3.162)

where n = 1, 2 and

Zcl = −2m

g2

∫
U
d3x(q†1D0q1 −D0q

†2q2) +
2

g2

∫
∂U
n̂id2xTr [(Ei − iBi)φ] . (3.163)

The new BPS equations for qA are given by

DiqA = 0 , D0q1 + ζ̄−1(Φ∗ −m∗)q1 = 0 , D0q2 + ζ−1(Φ+m)q2 = 0 , (3.164)
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which imply that qA = 0. This is expected since we are considering the theory on the

Coloumb branch. In fact, we will see that when we solve qA perturbatively in g0, we

find that qA = 0 to the order we are considering.

Since bosonic zero modes only come from the vector multiplet, the moduli space

is the same as before. Again there are fermionic zero modes and electric line defects

leading to the spin and Wilson bundles over M respectively. However, now there are

additionally fermionic zero modes that will contribute an additional factor to the total

bundle over M that couples to the SQM which we will refer to as the matter bundle

Ematter. Because the hypermultiplets form a representation of the flavor group GF , the

matter bundle will have a structure group GF .

In order to realize the matter bundle, we must solve the equations of motion

D̂aEa + [Y, [Y,A0]] + i[Ψ
A
, ΨA] + 2iT rλρ(T r)λ = i

∑
j

T rw†jRj(T
r)wj δ

(3)(x− xj) ,

D̂2Y −D2
0Y − i[Ψ

A
, ΨA]− 2iT rλρ(T r)λ = i

∑
j

T rw†jRj(T
r)wj δ

(3)(x− xj) ,

i[ /Dλ+ Y λ− iXγ5λ] +mY λ− imXγ5λ = 0 ,

i( /DΨA − [Y, ΨA] + iγ5[X,ΨA]) = 0 ,

(3.165)

where we have used the Dirac basis for γk and

ΨA =

 ψA

ψ
A

 , λ =

 λ1

−λ2

 , ζ−1m = mY + imX . (3.166)

Note that these equations lead to the same solution for the ρA. Here we take ζ to be

either determined by the data of line defects in the case of framed BPS states or by the

classical action in the vanilla case

ζvan = − Zcl

|Zcl| ≡ − lim
g0→0

Z

|Z| . (3.167)

Typically, upon introducing hypermultiplets there are extra terms in the central charge

Z, however they are not leading order in g0 → 0 since classically qA = 0.

We can now solve for the hypermultiplet zero modes from the fermionic equations



84

of motion:

i[ /D + Y − iXγ5]λ+mRλ− imIγ5λ = 0 , (3.168)

which in components is given by

(iτaD̂a − imX)λ1 =i(A0 − Y + imY )σ0λ2 ,

(iτaD̂a + imX)λ2 =i(A0 + Y − imY )λ1 .

(3.169)

Note that the equations of motion for λ2 is now given by:

(iτaD̂a − imX)λ2 = i(A0 + Y − imY )σ0λ1 . (3.170)

Since Âa is self dual, the kernel of iτ̄aD̂a − imX is non-trivial whereas the kernel of

iτaD̂a + imX is trivial. Hence, given λ1, Y , and A0, there is a unique solution for

λ̄2. Again this implies that there are non-trivial zero modes associated to λ1 which

is O(g
1/2
0 ) while λ2 ∼ O(g3/2) will contribute trivially to the effective action at order

O(g2
0).

The non-trivial zero modes are thus described by solutions to the equation

L̃RλI = 0 , L̃R = iτaD̂a − imX , (3.171)

where R is the full hypermultiplet representation. Self-duality of Âa implies that

coker[L̃R] = {0} and hence Ker[L̃R] =Ind[L̃R]. Therefore the index of L̃R deter-

mines the rank of the matter bundle bundle Ematter(R,m). A computation analogous

to before shows that

rnkC[Ematter(R,m)]

=
1

2

∑
µ∈∆R

nR(µ)

{
〈µ, γm〉 sign(〈µ,X∞〉+Re[ζ−1m]) +

Nd∑
n=1

|〈µ, Pn〉|
}

(3.172)

Here we employed an orthonormal basis of VR associated with a weight space decompo-

sition: VR = ⊕µVR[µ] where µ ∈ ∆R ⊂ Λwt ⊂ t∗ are the weights of the representation

and nR(µ) = dim VR[µ]. In this decomposition, any vector v ∈ VR[u], is acted on by

X∞ ∈ t according to iR(X∞)v = 〈µ,X∞〉v where 〈 , 〉 denotes the canonical pairing

t∗ ⊗ t→ R. See A for full details.



85

Multiple Hypermultiplets

In the case of multiple hypermultiplets of varying representations, we know that the

mass can be chosen to be diagonal so that the hypermultiplet representation decom-

poses:

R =

Nf⊕
i=1

R(i) (3.173)

For generic values of m=diag[m1, ...,mNf ] flavor symmetry is broken to the maximal

torus U(1)Nf . Under this decomposition the matter bundle decomposes as a direct

sum

Ematter(R,m) =

Nf⊕
i=1

E(R(i),mi) ., (3.174)

where each subbundle has rank rnkC[E(R(i),mi)] =Ind[L̃R(i),mi
].

Example

As a consistency check, consider the case of an SU(2) gauge theory with a single hyper-

multiplet in the fundamental representation (nρ(µ) = 1) in the k-monopole background.

Let us take X∞ = vHα where v > 0 and use the conventions , γm = kHα and sign(0)=0.

Then the rank of the matter bundle is given by

Ind[L̃ρ] =
1

2
[sign(v +mX)− sign(−v +mX)] k =


0 |v| < |mX |

k
2 mX = ±v

k |mX | < |v|

(3.175)

This computation exactly agrees with [132, 125, 76].

Note that the index changes rank based on the relative size of mass and Higgs

vev. This change of the rank of the matter bundle is describing the phenomenon of

wall crossing where the number of BPS states changes along certain loci in moduli

space. We will discuss this further in the next chapter. In this scenario, it will have a

clear, geometric interpretation in the string theory constructions that we will discuss

in Chapter 5.
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3.6.1 Matter Bundle and the Universal Connection

As it turns out the matter bundle can be described as a sub-bundle of the pullback

of the universal Hilbert bundle to the moduli space M. As space-time fields, the

hypermultiplet fermions are sections of the bundle S ⊗ ER → R3 where ER = P ×R
CN → R3 is an associated principal G bundle and we have restricted to only time

independent fields as per the collective coordinate prescription. This means that we

want to pull back the universal Hilbert bundle associated with sections L2(R3, S⊗ER).

After pulling back this bundle to the moduli space M, we can define the operator:

L̃ρ = iτ̄aD̂a − imI , (3.176)

and project onto its kernel.

Take a local trivialization of Ker[L̃ρ] → M over an open set U ⊂ M with local

coordinates {zm}. We can pick a local frame in which the fibers are spanned by local

sections {λa(x, z) ∈ L2(U , S± ⊗ E)|L̃ρλa(x, z) = 0, a = 1, ...,Ind[L̃ρ]}. In this local

trivialization we can write the projected connection on Ematter

Am,ab(z) =

∫
U
d3x

〈
λa(x, z),

(
∂

∂zm
+R

(
εm(x, z)

))
λb(x, z)

〉
. (3.177)

where 〈 , 〉 → R is the canonical hermitian connection on the fibers of S± ⊗Eρ → U in

this trivialization.

In the case of multiple hypermultiplets the bundle Ker[L̃ρ] decomposes as a direct

sum

Ker[L̃ρ,mX ] =
⊕
i

Ker[L̃R(i) , Re(ζ−1mi)] . (3.178)

The bundle Ker[L̃ρ,mX ] exactly corresponds to the bundle of hypermultiplet zero

modes: Ematter.

3.6.2 Collective Coordinate Dynamics

Now we need to solve the equations of motion for the vector multiplet fields to reduce

to the effective SQM theory. The equations of motion for the ρA, ηA are the same as
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before because the coupling to the hypermultiplet zero modes are accompanied by a

coupling to the hypermultiplet scalar which has trivial solution.

Thus, we only need to solve the equations of motion for A0 and Y :

D̂2(A0 − żm) + i[ρA, ρA] + 2iT rλρ(T r)λ− i
∑
j

T rw†jRj(T
r)wj δ

(3)(x− xj) = 0 ,

D̂2Y −D2
0Y − i[ρA, ρA]− 2iT rλρ(T r)λ− i

∑
j

T rw†jRj(T
r)wj δ

(3)(x− xj) = 0 .

(3.179)

The equations of motion for all of the fields are solved by the collective coordinate

expansion

A0 = −żmεm +
i

4
φmnχ

mχn + Y cl − 2i

D̂2
T rλaR(T r)λbψ

aψb ,

Y = εY∞ −
i

4
φmnχ

mχn + Y cl +
2i

D̂2
T rλaR(T )rλbψ

aψb ,

ρA =
1

2
√

det κ
δmÂa(−iτa)κAχm ,

Âµ = Âµ(x, z(t)) , hA = 0 , ηA = O(g
3/2
0 ) ,

λ = λa(x; z)ψa , λa(x; z) =

 λαa (x; z(t))

−λ̄α̇a(x; z(t))

 ,

(3.180)

While the formulas for A0, Y appear nonlocal due to the 1
D̂2

, here we simply use this

notation to mean the Green’s function as in [78].

By plugging in the solutions (3.180) into the action (3.15), we can reduce to the

collective coordinate theory which has a Lagrangian

Lc.c. =
4π

g2
0

[
1

2
gmn (żmżn + iχmDtχn −G(Y∞)mG(Y∞)n) +

i

2
χmχn∇mG(Y∞)n

]
+ żmqm +

4π

g2
0

(
ihabψ

aDtψb − (mY hab + 2iTab)ψ
aψb +

1

2
Fmnabχ

mχnψaψb
)

− 4π

g2
0

(γm, X∞) +
θ0

2π
(γm, Y∞) +

θ0

2π

(
gmn(żm −G(X∞)n)− iχmχn∇mG(X∞)n

)
−∆Mγ + i

∑
j

w†j(Dt − ε(j)Y∞ +
i

2
φmnχ

mχn)wj ,

(3.181)
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where {ψa} are the hypermultiplet zero modes with Dtψa = ψ̇a + (Am)abψ
b and

hab =
1

2π

∫
d3x λaλb , Amab =

1

2π

∫
d3x λa(∂m +R(εm))λb ,

Tab =
1

2π

∫
d3x λaR(εY∞)λb , Fmnab = 2∂[mAn]ab +AmacA

c
n b −AnacAcm b .

(3.182)

Here hab is the fiber metric and Amab is associated the metric connection with curvature

Fmnab on the matter bundle from the previous section and Tab is the lift of the covariant

spin derivative ∇mG(Y∞)n to the matter bundle. Additionally ∆Mγ is the 1-loop

correction to the mass (similar to [104], see Appendix A) which is explicitly

∆Mγ =
1

2π

∑
α∈∆+

〈α, γm〉
{

ln

(〈α,X∞〉2
2|Λ|2

)
+ 1

}
+

1

π

∑
α∈∆+

〈α, γm〉〈α, Y∞〉θα

+
1

4π

∑
µ∈∆R

nR(µ)(〈µ,X∞〉+mX)〈µ, γm〉 ln
(

(〈µ,X∞〉+mX)2

2|Λ|2
)
.

(3.183)

This theory again has N = 4 supersymmetry with associated SUSY transformations

δνz
m = −iνs(J̃s)mnχn ,

δνχ
m = (Js)mn(żn −G(Y∞)n)νs − iνsχkχn(Js)`kΓm`n ,

δνψ
a = −Aambδνzmψb ,

(3.184)

whose associated, conserved supercharge is given by

Qs =
4π

g2
0

χm(J̃s)mn(żn −G(Y∞)n) . (3.185)

It is important to note that as a consequence of N = 4 SUSY, this matter bundle is

hyperholomorphic: Fmnab is type (1,1) in all complex structures on M. [55].

Hamiltonian Formalism

Again we will need to convert to the Hamiltonian description in order to quantize the

theory. A straightforward calculation shows that the conjugate momenta are given by

pm =
4π

g2
0

gmn

[
żm +

i

2
χpχqΓmpq + iAmabψ

aψb
]

+
θ0

2π
G(X∞)m + qm ,

(pχ)m =
4π

g2
0

gmnχ
n , (pψ)a =

4π

g2
0

habψ
b , (pwj )a = iδ(w†j)a ,
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where

qm = i
∑
j

w†jRj(ε
(j)
m )wj . (3.186)

Again we introduce the notation

πm = pm −
4π

g2
0

[
i

2
χpχqΓmpq + iAmabψ

aψb
]
− qm . (3.187)

The Hamiltonian can then be written

Hc.c. = M1−lp +
g2

0

8π

{
πmg

mnπn + gmnG(Y∞)mG(Y∞)n +
4πi

g2
0

χmχn∇mG(Y∞)n

}
+ iθ̃0

(
iG(X∞)mπm +

2π

g2
0

χmχn∇mG(X∞)n

)
+

4π

g2
0

(
mRhab −

1

2
Fmnabχ

mχn
)
ψaψb

+ i
∑
j

w†j

(
ε
(j)
Y∞ −

i

2
φmnχ

mχn
)
wj ,

(3.188)

with associated supercharges

Qa = χm(J̃s) nm(πn − iG(Y∞)n) . (3.189)

3.6.3 Quantization

Again we can quantize the theory by elevating coordinates and momenta to operators

and imposing canonical quantization conditions. As before we will need to introduce

(co-)frame fields for our spin, hypermultiplet, and Wilson bundles. Then scaling the

fields as

χm =
g0

2
√

2π
γm , ψa =

g0

2
√

2π
θa , (3.190)

using the same notation from the previous section.

Now we quantize the fields γm, θa, and v
a
j by imposing the C`(4N) algebra relations,

{γm, γn} = 2δmn , {θa, θb} = 2δab , {vs†, vt} = 2δst . (3.191)

Note that we have a C`(4N) because dimR(M) = 4N for some N ∈ N and the asso-

ciated moduli are fermionic. This implies that upon quantization we elevate from the

vector bundle Ematter →M to Spin(Ematter)→M. As before

πm = −i
(
∂m +

1

2
Γnnm +

1

4
ωm,pqγ

pq +
1

2
Ωm,abθ

ab

)
− qm ,

= −ie−1/2Dme1/2 .

(3.192)
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From hereon out we will suppress the underline on the coordinates except to emphasize

the flattened bundle. We can now write the supercharge operators as

Q̂a = − ig0

2
√

2π
γm(J̃a) nm

(
Dm − iG(Ycl∞)m

)
. (3.193)

Using the SUSY algebra

{Q̂a, Q̂b} = 2δab(Ĥ +Re(ζ−1Ẑ)) , (3.194)

We see that the central charge operator is given by

−Re(ζ−1Ẑγ) = M1−lp
γ +mY habθ

aθb . (3.195)

We should expect this additional term because our flavor charge is exactly given by

habθ
aθb which descends from the QFT flavor charge Qf =

∫
d3xλλ. This reproduces

the standard low energy formula

ZLE = (γ̂m, a
1−lp
D ) + 〈γ̂e, a〉+mQf , (3.196)

where Qf is the flavor charge

Qf =
∑
i

habθ
a
i θ
b
i . (3.197)

As before the framed BPS spectrum with hypermultiplets is

HBPS =
{
Ψ ∈ L2(M, S ⊗ EWilson ⊗ Spin(Ematter))

∣∣∣ iγm (Dm − iG(Y∞)m)Ψ = 0
}
.

(3.198)

3.6.4 Generalized Sen Conjecture

It is now straightforward to analyze the cohomology of the total bundle of the effective

SQM and relate it to the space of framed BPS states. From this we can derive a

generalization of the Sen Conjecture which we will refer to as the Generalized Sen

Conjecture. In fact, the proof follows nearly trivially because the new zero modes come

from hypermultiplet fermions which are SU(2)R singlets.

Again we will identify the spin bundle with the holomorphic differential forms. In

this language we can identify the differential operator coming from the suprcharges

Q =
i
√
π

g2
0

(
Q̂3 + iQ̂4

)
= ∂q − iG(Ycl∞)(0,1) ∧ , (3.199)
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and construct an associated differential cochain complex

L2(M, Λ(0,0) ⊗ Sm)
Q0

−−−→ L2(M, Λ(0,1) ⊗ Sm)
Q1

−−−→ ...
Q2N−1

−−−→ L2(M, Λ(0,2N) ⊗ Sm)

(3.200)

where we have denoted Spin(Ematter) as Sm. From this complex we can define the

cohomology groups

Hq(Q) = ker Qq
/

Im Qq−1 . (3.201)

Since the hypermultiplet fermions are SU(2)R singlets, the SU(2)R generators act as

before

Î+λ = iω+ ∧ λ , Î−λ = −iιω−λ , Î3λ =
1

2
(q −N)λ , (3.202)

on some Spin(Ematter) valued (0, q)-form λ. The no exotics theorem implies that q = N

and that BPS states must be primitive elements

λBPS ∈ Λ(0,N)
prim (M, Spin(Ematter)) , (3.203)

where

Λ
(0,N)
prim (M, Spin(Ematter)) = {λ ∈ Λ(0,∗)(T ∗M)⊗ Spin(Ematter) | λÎ±λ = 0} . (3.204)

Thus, the set of BPS states is given by

HBPS = HN
prim,L2 (Q) , (3.205)

where

HN
prim,L2 (Q) = HN (Q) ∩ Λ(0,N)

prim (M, Spin(Ematter))
∣∣∣
L2
, (3.206)

are the L2 sections of the elements of the cohomology group HN (Q) that are also

primitive.

Conserved Charges

The conserved charge related to a (triholomorphic) killing vector KA [133]

N̂A = i£KA +O(g2
0) . (3.207)
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From the explicit form of the supercharge operators, it is easy to show that the charge

operators obey

[N̂A, Q̂4] =
ig0

2
√

2π
γm[KA, G(Ycl∞)]m , (3.208)

where [ , ] denotes the commutator of vector fields. When KA is triholomorphic and

killing, [KA, G(Ycl∞)] = 0. Thus, the electric charge generated by G(Ycl∞) is conserved.

It is also easy to show that the flavor charge in the effective SQM is conserved

because it descends from a conserved charge in the full QFT. Therefore the L2 kernel of

Q̂4 and hence the BPS Hilbert space HBPS is graded by the electric and flavor charges

HBPS =
⊕
γ∈Γ
HBPSL,u,γ , (3.209)

where we can identify (in the semiclassical limit) γ = γm ⊕ γe ⊕ γf .

3.6.5 Summary of Collective Coordinate Analysis

Let us briefly summarize the results of our lengthy collective coordinate analysis. Adi-

abatically evolving BPS states in the semiclassical limit of a 4D N = 2 theory with

gauge group G and hypermultiplets with a quaternionic representation R =
⊕

iR(i) in

the presence of general Wilson-’t Hooft defects is described by N = 4 super quantum

mechanics in the bundle

STot = S
⊗
i

EWilson(Qi)

Nf⊗
j=1

Spin
[
Ematter(R(j),mj)

]
→M({Pn}, γm;X∞) , (3.210)

over singular monopole moduli space.16

16In the case of no magnetically charged line defects we take replace M→M(γm;X∞).
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The dynamics of this system can be described by the Lagrangian

Lc.c. =
4π

g2
0

[
1

2
gmn (żmżn + iχmDtχn −G(Y∞)mG(Y∞)n) +

i

2
χmχn∇mG(Y∞)n

]

+

Nf∑
i=1

4π

g2
0

(
ih

(i)
abψ

a
(i)Dtψb(i) − (m

(i)
Y h

(i)
ab + 2iT

(i)
ab )ψa(i)ψ

b
(i) +

1

2
F

(i)
mnabχ

mχnψa(i)ψ
b
(i)

)
− 4π

g2
0

(γm, X∞) +
θ0

2π
(γm, Y∞) +

θ0

2π

(
gmn(żm −G(X∞)n)− iχmχn∇mG(X∞)n

)
−∆Mγ + i

nW∑
j=1

w†j(Dt − ε(j)Y∞ +
i

2
φmnχ

mχn)wj + żmqm ,

(3.211)

where nW is the number of electrically charged line defects and:

gmn =
1

2π

∫
R3

d3x Tr
{
δmÂaδnÂ

a
}
, Γmnp =

1

2π

∫
R3

d3x Tr
{
δmÂ

aDpδnÂa

}
,

Dtχn = χ̇n + Γnmpż
mχp , Dtψa(i) = ψ̇a(i) + (A(i)

m )abψ
b
(i) , Dtw

b
j = ∂tw

b
j −R(ε(j)m )bcw

c
j ,

h
(i)
ab =

1

2π

∫
d3x λ

(i)
a λ

(i)
b , A

(i)
mab =

1

2π

∫
d3x λ

(i)
a (∂m +R(i)(εm))λ

(i)
b ,

T
(i)
ab =

1

2π

∫
d3x λ

(i)
a R(i)(εY∞)λ

(i)
b , F

(i)
mnab = 2∂[mA

(i)
n]ab +A(i)

macA
(i)c
n b −AnacA

(i)c
m b .

(3.212)

Upon quantization the superchage operators can be written

Q̂a = − ig0

2
√

2π
γm(J̃a) nm×∂m +

1

4
ωm,pqγ

pq +
1

2

Nf∑
i=1

Ω
(i)
m,abθ

ab
(i) −

nW∑
j=1

w†jRj(ε
(j)
m )wj − iG(Y∞)m

 .

(3.213)

They satisfy the N = 4 SQM algebra

{Q̂a, Q̂b} = 2δab(Ĥ − Re(ζ−1Ẑ)) , (3.214)

where

Re(ζ−1Ẑ) = M1−lp
γ +

Nf∑
i=1

m
(i)
R h

(i)
ab θ

a
(i)θ

b
(i) . (3.215)

Therefore BPS states are L2-sections of the above bundle that are also in the kernel of

the operator

Q̂4 = iγm

∂m +
1

4
ωm,pqγ

pq +
1

2

Nf∑
i=1

Ω
(i)
m,abθ

ab
(i) −

nW∑
j=1

w†jRj(ε
(j)
m )wj − iG(Y∞)m

 ,

(3.216)

and further are invariant under SU(2)R.
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3.7 Rational Maps and Hyperholomorphic Vector Bundles

We will now describe how the hyperholomorphic bundles Ematter, EWilson have a natural

geometric interpretation in terms of rational maps.

3.7.1 Hypermultiplet Matter Bundle

Consider the matter bundle defined by the quaternionic representation R and real

mass imx ∈ tf .17 For generic values of imx (as we will generally consider below), the

flavor group is broken to a maximal torus Gf → Tf . In this case, the quaternionic

representation splits as a direct sum of quaternionic representations of the gauge group

G

R →
⊕
i

R(i) , (3.217)

where each factor R(i) corresponds to an eigenspace18 of imx. Thus, the matter bundle

splits as a direct sum over the eigenvalues of imx. We will consider a generic factor in

this sum.

Let us define the set of positive roots by X∞ ∈ t. This specifies a splitting

R(i) = πλ(i) ⊕ π∗λ(i) , (3.218)

where πλ(i) and π∗
λ(i) have corresponding highest weight λ(i) and −λ(i) where λ(i) is a

dominant weight. From hereon we will supress the index (i) when possible. As a warm

up, we will construct a factor of matter bundle where the eigenvalue of imx on the

factor corresponding to R(i) is zero.

Recall that the correspondence between rational maps and monopoles was derived in

the previous chapter by studying the scattering of charged particles off of a monopole

configuration. This can be rephrased as studying the fermionic zero modes in the

presence of monopoles, similar to the semiclassical analysis of [22, 134, 133, 78]. The

advantage of this approach is that it has a clear generalization to hypermultiplet matter

zero modes.

17Note that the the i is included here as naturally Lie(U(1)) ∼= iR.

18Note that there can be repeated factors of R(i).
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The hypermultiplet fermion zero modes are determined by the Dirac equation

(σa∇a + iX)ψ = 0 ⇔

 ∇̄` ∇̄z̄
∇z −∇`

 ψ1

ψ2

 = 0 . (3.219)

where the spin covariant derivatives ∇a act in the R(i) representation. This means

that if we are to consider scattering a fermion of type ψ2, then the field satisfies the

conditions

∇`ψ2 = 0 , ∇̄z̄ψ2 = 0 . (3.220)

And similarly for fermions of type ψ1, we have the complex conjugate equations. Note

that ψ1 couples to anti-monopoles while ψ2 couples to monopoles. Thus, as usual for

four-dimensions, only ψ2 will have zero modes in the presence of monopoles. Therefore,

we will only consider the flat sections of ψ2.

Recall that from the previous section that the flat sections of ∇r+ iX are in general

of the form

sp(r) ∼ e−ϕσrrkσ/2f(θ, φ)~vσ , as r →∞ , (3.221)

where kσ = 〈σ, γm〉, σ ∈ ∆λ(i) , and ~vσ is a vector in the weight space of corresponding

weight σ in the R-representation. This means that after picking the trivialization from

before, the solutions of ψ2 are of the form:

ψ2(t, z) ∼ e−2ϕσtrkσ−nzn~vσ , as t→ +∞ , (3.222)

where 0 ≤ n ≤ kσ. This means that counting zero modes is the same as counting

holomorphic sections of a line bundle corresponding to the flat sections of ∇` with

exponential eigenvalue e−2ϕσt in the in the limit as t → ∞. Since scattering is trivial

as z →∞, we can again trivially extend the line bundles to CP1 at t→∞.

In order to extract the physical information, we must eliminate the gauge redun-

dancy given by the action of the Cartan subgroup T defined by X∞. Due to the natural

G action with T redundancy, these line bundles have a natural construction as the pull

back a line bundle from G/T via a meromorphic map. Recall from the Borel-Weil the-

orem that there exists a line bundle Lλ → GC/B such that H0
∂̄
(Lλ;Z) ∼= Vλ. Again, we

trivialize the incoming hypermultiplet zero modes in the limit t→ −∞ so that it is of
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the form Vλ. Since f : CP1 → GC/B is the scattering matrix which relates the trivial

incoming states at t→ −∞ to the non-trivial bundle of final states (Ematter → CP1) at

t→ +∞, a generic fiber of the matter bundle must be given by H0
∂̄
(f∗Lλ;Z).

Matter Bundle Factor with Vanishing Mass

Formally, we can construct the factor of the matter bundle when im
(i)
x = 0 as follows.

Consider the holomorphic line bundle Lλ → GC/B following from the Borel-Weil the-

orem, corresponding to the dominant weight λ. This line budle Lλ can be constructed

by the pullback of O(1)→ CP1 by the Plücker embedding

hλ :GC/B → CP1
λ ,

gB 7→ g · 1λ .
(3.223)

where 1λ is a 1-dimensional representation of B where

b · 1λ = e−λ(t)1λ , b = et ∈ B . (3.224)

Recall that locally, sections of Lλ are equivalent to B-equivariant maps: Γ (GC/B,Lλ) ∼=

{f : GC → C | f(gb) = e−λ(t)f(g) , b = et ∈ B}. These can be expressed as sections of

the pullback bundle h∗λO(1) which can be written explicitly as

ψ~vµ(g) = 〈π−1
λ (g)~vµ, ~vλ〉 , µ ∈ ∆λ , (3.225)

where ~vλ is the highest weight vector in the πλ highest weight representation of G, ∆λ

is the set of weights of the πλ representation, and π−1
λ (g) = πλ(g−1). Here the action

of B acts as

ψ~vµ(gb) = e−λ(t)ψ~vµ(g) , (3.226)

as expected.

Now consider the pull back of this line bundle through the rational map

f∗(Lλ) = p∗λO(1)

��

Lλ = h∗λO(1)

��

f∗oo O(1)
h∗λoo

��
CP1 f // GC/B

h

λ
// CP1

λ

,

(3.227)
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where pλ = f ◦ hλ. From this construction, it is clear that we are pulling back O(1)→

CP1 via the rational map pλ. The sections of p∗λO(1) are of the form

s(z) = φ(z)ψ~vµ(z) = φ(z)〈π−1(f(z))~vµ, ~vλ〉 , (3.228)

where φ : CP1 → C such that s(z) is smooth and holomorphic. This is only non-zero

for components of f(z) such that 〈λ− µ, π−1
(
f(z)

)
〉 6= 0. Thus

deg[pλ] =
∑
µ∈∆+

λ

∑
I

nλ(µ)〈λ− µ, αI〉〈αI , γm〉 =
∑
µ∈∆+

λ

〈µ, γm〉 , (3.229)

and hence

f∗(Lλ) = p∗λ(O(1)) ∼=
⊕
µ∈∆λ

O
(
〈µ, γm〉

)⊗nλ(µ)
. (3.230)

Now we can identify the matter bundle Ematter →M with the space of holomorphic

sections of the bundle f∗(Lλ). By expanding λ in terms of fundamental weights we

can recover the dimension of the fiber of the matter bundle for mx = 0 from [22] by

counting the number of holomorphic sections

h0(CP1, f∗(Lλ)) =
∑
µ∈∆+

λ

nλ(µ)〈µ, γm〉 =
1

2

∑
µ∈∆λ

nλ(µ) sgn(〈µ,X∞〉)〈µ, γm〉 . (3.231)

This gives the rank of a factor in the matter bundle with vanishing mass (3.172) [22].

Rational Map Formulation of Matter Bundle

With this inspiration we can recast the B-action of the line bundle Lλ → GC/B as

ψ~vµ(gb) = e
−∑σ∈∆λ nλ(σ)sgn(〈σ,X∞〉)〈µ,t〉ψ~vµ(g) . (3.232)

This formulation is exactly identical to our previous definition. However, it is now clear

how we should modify this story to take into account im
(i)
x 6= 0. Specifically, if we

consider a component of R = ⊕iR(i) where im
(i)
x is nonzero, we should define the line

bundle Lλ(X∞,m
(i)
x )→ GC/B whose sections have the property

ψ̃~vµ(gb) = e
−∑µ∈∆λ nλ(µ)sgn(〈µ,X∞〉+m(i)

x )〈µ,t〉
ψ̃~vµ(g) . (3.233)

This can be defined again as the pullback bundle from CP1 where now we pullback by

a modified Plücker embedding h̃λ : GC/B → CP1 where

b · 1λ = e
∑
µ∈∆λ nλ(µ)sgn(〈µ,X∞〉+m(i)

x )〈µ,t〉
1λ . (3.234)
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We refer to the pullback bundle under the modified Plücker embedding h̃∗λO(1) =

Lλ(X∞,m
(i)
x ) and we will define the function p̃λ = f ◦ h̃λ. In this case the pullback

bundle will be of the form

f∗(Lλ(X∞,m(i))) =
⊗
µ∈∆+

λ

|〈µ,X∞〉|≥|m(i)
x |

O(〈µ, γm〉)⊗nλ(µ) .
(3.235)

The bundle over M given by the space of holomorphic sections of p̃∗λO(1) to be

h0
∂̄(CP1, f∗(Lλ(X∞,m(i)

x )) =
∑
i

∑
µ∈∆+

λ

|〈µ,X∞〉|≥|m(i)|

nλ(µ)〈µ, γm〉

=
1

2

∑
i

∑
µ∈∆λ

nλ(µ) sgn(〈µ,X∞〉+m(i)
x )〈µ, γm〉 .

(3.236)

This is indeed the rank of the matter bundle as in equation (3.172) [22].

However, in order to match the matter bundle, we need to demonstrate that this

bundle is given by the horizontal component of the universal connection acting in the

πλ representation. Since the gauge group is broken to T ⊂ G by X∞, we have that

gauge symmetry acts on sections of the matter bundle by phase rotation. This means

that the universal connection on Ematter should project onto a single T -representative

in the flag manifold G/T (or B-representative in GC/B).

Note that for the m
(i)
x = 0, the connection on f∗Lλ → CP1 pulls back from the line

bundle Lλ(X∞,m
(i)
x )→ GC/B:

Θλ = −〈λ, θ〉 , θ = g−1dg . (3.237)

We can see this by noticing the equivalence relation on the fibers

ψ(bg) ∼ e−λ(t)ψ(g) . (3.238)

After choosing a representative, this redundancy is removed by the choice of connection

∇Lλ = eλ(t)d(e−λ(t)) = −λ(g−1dg)
∣∣
B

= Θλ . (3.239)

This supports the fact that B acts on the line bundle Lλ as a gauge symmetry. This

means that the connection ∇Lλ projects onto a single B-representative, or rather a
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single gauge representative of the zero mode bundle. Note that in the case of m
(i)
x 6= 0

the connection is slightly modified to

Θ̃λ = −
∑
i

∑
µ∈∆λ

nλ(µ)sgn(〈µ,X∞〉+m(i)
x )〈µ, dg−1g〉 . (3.240)

This natural connection on f∗Lλ lifts to a connection the bundle of sections overM

which projects on a gauge equivalence class. Therefore, this lifted connection is exactly

the parallel component of the unviersal connection and the bundle of sections of the

pullback bundle is the matter bundle.

An important consistency check is that the connection on the matter bundle is

hyperholomorphic. This can be seen as follows. Consider the connection on f∗Lλ for

f ∈ M. Using the choice of generic X∞, we have a canonical splitting of Lie[G] = g =

h⊕g+⊕g− which comes from the splitting of the root lattice Φ = Φ+⊕Φ− into positive

and negative weights with respect to X∞. This splitting defines a complex structure

on Lie[G/T ] and hence on G/T . In this setting the Killing form defines a Hermitian

metric which is only non-degenerate on ( , ): g− × g+ → R. Further, since we have

defined λ to be a dominant weight, [λ, ·] acts diagonally on the splitting g = g+ ⊕ g−.

Using this and the explicit form of the curvature of Lλ

FLλ = d(Θλ) = d(λ, θ) = −1

2
(λ, θ ∧ θ) = −1

2
(θ, [λ, θ]) , (3.241)

we see that FLλ must be a type (1,1)-form on G/T . Since G/T ∼= GC/B, this means

that this also defines a holomorphic connection on GC/B. Since f : CP1 → GC/B is a

rational function, f∗(FLλ) must also be a (1,1)-form on CP1 and hence the connection

on f∗Lλ is hyperholomorphic.

We can now construct the connection on H0
∂̄
(CP1, f∗(Lλ))→M. Consider the map:

ev : CP1×M→ GC/B where ev : (z, f) 7→ f(z). Using this map, we can pull back the

line bundle Lλ

ev∗(Lλ)

��

Lλ
ev∗
oo

��
CP1 ×M ev // GC/B

. (3.242)

The connection on ev∗(Lλ) will also be a hyperholomorphic connection since pulling

back a (1,1)-form by a rational function will still be a (1,1)-form. We can formally
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construct the bundle of zero modes as follows

hol(CP1)×A

��

// H0
∂̄
(CP1, f∗(Lλ))

��

ι∗ // H0
∂̄
(CP1, f∗(Lλ))

��
A A Mι

oo

(3.243)

where A is the space of all meromorphic maps from CP1 → GC/B and hol(CP1) is the

space of all holomorphic functions on CP1.

We see therefore that the connection on H0
∂̄
(CP1, f∗(Lλ)) → M is given by the

horizontal component of the connection on ev∗(Lλ) along M. Since CP1 × M is a

product space, we have that the parallel component of the connection will have a

curvature of type (1,1) and hence is holomorphic.

Recall that f : CP1 → GC/B descends from a rational map f̂ : TP1 → GC/B.

This means that the pullback connection f∗(Θλ) varies holomorphically with respect

to η ∈ CP1
c.s in the base and therefore that the holomorphic (1,1)-form curvature varies

holomorphically with respect to the η ∈ CP1
cs and therefore is a type (1,1)-form with re-

spect to all choices of η ∈ CP1
cs. That is to say the connection on H0

∂̄
(CP1, f∗(Lλ))→M

is a hyperholomorphic connection.

Proof that H0
∂̄
(CP1, f∗(Lλ)) has Hyperholomorphic Connection

Here we will summarize the details of the proof that H0
∂̄
(CP1, f∗(Lλ)) has a hyper-

holomorphic connection worked out in the previous section.

Proof. From explicit construction, we can see that the line bundle Lλ → GC/B has a

holomorphic connection as in (3.241). By pulling back the bundle through the rational

map: ev : CP1 ×M → GC/B, we know that the connection on ev∗(Lλ) has a holo-

morphic connection. Therefore the component of the connection parallel to M, which

is the connection on H0
∂̄
(CP1, f∗(Lλ)) →M, will be holomorphic. And since the map

f : CP1 → GC/B descends from a map f̂ : TP1 → GC/B, ev : CP1×M→ GC/B varies

holomorphically with respect to the complex structure by construction, and hence the

connection on H0
∂̄
(CP1, r∗Lλ)→M must be hyperholomorphic.
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Remark Note that the proof that Θ̃λ is a hyperholomorphic connection follows with

trivial modifications.

By putting together all of the different components of the quaternionic representa-

tion R, we have that the total matter bundle is determined by that property that each

fiber

Ematter

∣∣∣
f∈M

∼=
⊕
i

H0
∂̄

(
f∗L(i)

λ (X∞,m(i));Z
)
, (3.244)

with connection

∇matter =
∑
i

πλ(i)

(
ev∗Θ̃λ(i)

)∣∣∣
M

. (3.245)

Remark on N = 2∗ Theory

It is interesting to think about the case of the N = 2∗ theory. In this theory if we take

the mass parameter m → 0, then the theory should have N = 4 SUSY. As shown in

the seminal paper by Sen [158], this means that space of holomorphic sections of the

line bundle Ladj(X∞, 0) → GC/B should be associated with the holomorphic tangent

space so that the total bundle [133]

SM⊗H0
∂A

(M, Ladj(X∞, 0)) ∼= TM . (3.246)

This implies that the spin bundle SM → M should be identified with the space of

holomorphic sections of Ladj(X∞, 0). This means that SM should be realized in a

mathematically similar way.

In fact, because the coupling to the spin bundle comes from the zero modes of the

vector-multiplet’s (massless) adjoint fermions [22, 78], the above discussion shows that

spin bundle must be isomorphic to Ladj(X∞, 0). Roughly, this can be attributed to

the correspondence between meromorphic functions on CP1, which is used to define the

geometry of M and hence SM, and sections of line bundles, which is used to define

Ladj(X∞, 0).
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3.7.2 Wilson Bundle

The Wilson bundle is similar, yet fundamentally different from the matter bundle. In

order to motivate the construction of this bundle, recall the essential properties of

EWilson from [22]:

• The data of a Wilson line is given by (RQn , ~xn) where RQn representation of the

Wilson defect with highest weight Qn ∈ Λwt and ~xn ∈ R3 is the position of the

defect. The choice of ζ will have no effect here.

• The Wilson bundle will have the form

EWilson =
⊗
n

E(n)
Wilson =

⊗
n

EWilson(~xn, Qn) , (3.247)

where each factor describes the degrees of freedom associated to the nth Wilson

line.

• The rank of the Wilson bundle is fixed

rnkC[EWilson] =
∏
n

dimC[RQn ] . (3.248)

• The connection on E(n)
Wilson is given by the universal connection in the representa-

tion RQn evaluated at ~xn ∈ R3.

The fact that the dimension of the fibers does not change with γm demonstrates

that the Wilson defect zero modes are fundamentally different than the hypermultiplet

zero modes.

Coadjoint Orbit Quantization

In order to construct the Wilson bundle , we will give a construction of a generic factor

E(n)
Wilson. This will require the use of the coadjoint orbit quantization of Wilson lines as

we discussed earlier. In this construction we can identify the Hilbert space of defect

states H = VQn associated to the Wilson line of charge Qn ∈ Λwt by looking at the

vector space of of holomorphic sections of the associated Borel-Weil line bundle

H = VQn = H0
∂̄(LQn ;Z) , LQn → GC/B . (3.249)
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We then parametrize the defect degrees of freedom by the pull-backs of the holomorphic

sections of LQn

U : R→ OQn = GC/B , (3.250)

where R parametrizes the time direction.

In this formalism, the space of the maps into GC/B captures the different field

configurations on the defect. Therefore, we can parametrize the space of fields on a

Wilson line in the direction η at a fixed point ~x ∈ R3 by the set of maps

φ : Rz × CP1 × R→ GC/B , (3.251)

where Rz is line in R3 which is labeled by zη and parametrized by tη for the choice of

complex structure η ∈ CP1.

We can then restrict to a particular (tη, zη) to fix the location of the Wilson line

insertion. Thus, the Hilbert space of states of a Wilson line inserted at a point ~xn =

(tη, zη) is given by

H = ϕ∗H0
∂̄(LQn ;Z) , LQn → GC/B , (3.252)

where ϕ(z, t) = limtη→∞ φ(tη, zη = z, t = 0) where t parametrizes time (not to be

confused with tη which parametrizes lines in R3.

In our formalism, we are considering the time-independent configurations at tη →

+∞. Thus, we are considering maps 19

φ : CP1 → GC/B . (3.253)

Since the Wilson defect can be realized as a collection of localized spin defect fields, we

can again describe the Hilbert space of states as in equation (3.252).

Using the fact that pulling back a line bundle L → GC/B to CP1 couples the

states in H = H0
∂̄
(L;Z) to the gauge field, we can identify φ : CP1 → GC/B with

f : CP1 → GC/B. This leads to a Wilson bundle which has fibers of the form

E(n)
Wilson

∣∣∣
f∈M

= f∗H0
∂̄(Lλ;Z)

∣∣∣
z=zn

. (3.254)

19Here we have implicitly extend the natural map φ̃ : C1 → GC/B to the map φ : CP1 → GC/B.
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We can explicitly check that this ansatz does indeed produce the Wilson bundle by

showing that construction defines a bundle which matches the dimension and connection

of the Wilson bundle. Specifically, the dimension is purely given by the dimension of

the representation with highest weight Qn and the connection will be the universal

connection evaluated at the insertion point in the representation RQn . This can be

seen from the analysis of the rational map construction of the matter bundle from the

previous section. In the case of the matter bundle, the universal connection was given

by the pullback of the connection on Lλ. In this case, the connection on LQn is given

by

ΘQn = −〈Qn, θ〉 , θ = g−1dg , (3.255)

so that

∇Wilson = RQn(f∗θ) . (3.256)

The formal construction of the connection and Wilson bundle is as follows. Let

LQn → GC/B the Borel-Weil line bundle of highest, dominant weight Qn ∈ Λwt (with

connection ΘQn = −〈Qn, θ〉) and H0
∂̄
(LQn ;Z) = VQn be the vector space of holomorphic

sections which is the representation of G with highest weight Qn.

We can now construct a holomorphic vector bundle over M. First choose a point

f ∈ M. Above this point, we have a vector space given by the pull back of the

holomorphic sections of LQn evaluated at the the corresponding insertion point zn ∈ C.

This then extends to a vector bundle over M where each factor of the fiber is of the

form

EWilson(~xn, Qn)
∣∣∣
f∈M

= f∗
(
H0
∂̄(LQn ;Z)

)
z=zn

. (3.257)

This vector bundle describes the Wilson bundle with connection given byRQnf
∗(θ)

∣∣∣
z=zn

.

From the construction of the matter bundle, we know that this connection is the uni-

versal connection evaluated at ~xn in the RQn representation and hence will again be

hyperholomorphic.

The fact that RQnf
∗(θ)

∣∣∣
z=zn

is hyperholomorphic can be seen by the fact that LQn

is a holomorphic line bundle with (1,1) curvature. This means that the pullback by a

rational map, f∗LQn will also be a holomorphic line bundle. Since the pull back of the
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sections will take value in f∗LQn : f∗
(
H0
∂̄
(LQn ;Z)

)
⊂ H0

∂̄
(f∗LQn ;Z), the connection

on f∗
(
H0
∂̄
(LQn ;Z)

)
will also be holomorphic. Further since f(z) descends from a

hyperholomorphic map f̂ : TP1 → GC/B where, this connection will naturally be

hyperholomorphic.

We can directly construct the sections of LQn → GC/B,

ψ~v(g) = 〈R−1
Qn

(g)~v,~vQn〉 , ψ~v ∈ H0
∂̄(LQn ;Z) , (3.258)

where vQn is the highest weight vector and ~v ∈ VQn . In this case, shifting the B-

representative of g acts as

ψ~v(g) 7→ ψ~v(b · g) = e−〈Qn,t〉〈R−1
Qn

(g)~v,~vQn〉 , b = et ∈ B . (3.259)

Thus, the connection on f∗
(
H0
∂̄
(LQn ;Z)

)
is given by

∇Wilson = RQn(f∗θ) , (3.260)

and hence that the curvature of f∗
(
H0
∂̄
(LQn ;Z)

)
is given by

FWilson = RQn(df∗θ) =
1

2
RQn([f∗θ, f∗θ]) . (3.261)

As before, we can realize this in terms of G/T ∼= GC/B. Since [ , ]: g× g is degenerate

on g+×g+ and g−×g−, we have that [f∗θ, f∗θ] ∈ t and is a type (1,1) form. Therefore,

FWilson is a type (1,1)-form and by the same logic as before, and therefore ∇Wilson =

RQn(f∗θ) is a hyperholmorphic connection.

By allowing for the insertion of multiple line defects, we get the complete Wilson

bundle

EWilson

∣∣∣
f∈M

=
⊗
n

EWilson,(~xn,Qn)

∣∣∣
f∈M

=
⊗
n

f∗
(
H0
∂̄(LQn ;Z)

)
z=zn

, (3.262)

with the connection

∇Wilson =
∑
n

RQn

(
f∗ΘQn

)
z=zn

. (3.263)
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Remark

1. The different points z ∈ CP1 encode the data of how the system is affected by hav-

ing a Wilson line at different points in space. In essence the bundle f∗
(
H0
∂̄
(Lλ;Z)

)
contains all of the information of having Wilson lines in the presence of BPS

monopoles.

2. An important question to ask is how this formalism encodes the information

along the scattering direction. This can be answered by considering the action of

translation on the rational maps. Translation in the plane perpendicular to the

scattering direction is given by shifting z 7→ z+ z0. By using the identification in

Section 2.5.2, translation along the scattering direction is given by

t 7→ t+ t0 =⇒ z 7→ e2t0z . (3.264)

This suggests that there is an equivalence of insertion positions for the Wilson

defects. However, this is not surprising as the moduli space encodes all possible

positions of the monopoles and hence only the difference in positions of fixed

defects, such as Wilson-, ’t Hooft-, and Wilson-’t Hooft defects, are physically

relevant.

3.7.3 Rational Maps and General Bundles for Framed BPS States

The hyperholomorphic bundles from the previous section also exist as bundles over

singular monopole moduli space. They are defined similarly to the case of smooth

monopoles.

Matter Bundle for Framed BPS States

In this case we again define the matter line bundle by pulling back the Borel-Weil line

bundle Lλ → GC/B via the rational map f̃ : CP1 → GC/B. However, the framed

case is slightly different from the vanilla case. This is because the singular part of each
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rational map f̃I has no moduli. This means that

H0
∂̄
(f∗(Lλ);Z) ∼= Vtrivial ⊕ Ematter

��
M

(3.265)

where Vtrivial is a trivial vector bundle. This trivial factor exists because of the holo-

morphic sections coming from the singular components of the rational map. This trivial

factor is not an element of the bundle for several reasons

1. rnk[H0
∂̄
(f∗Lλ;Z)] = rnk[Ematter] + rnk[Vtrivial] where rnk[Vtrivial] =

∑
n,I p

I
n,

2. There are generically no trivial factors of Ematter,

3. Physically, the factor Vtrivial corresponds to the collection of zero modes that

are removed when we construct a singular monopole by taking the infinite mass

limit of a smooth monopole. This comes from the fact that our construction of

singular monopole moduli space is effectively taking the singular limit of a smooth

monopole moduli space. See [131] for more details on this decoupling.

As before, this bundle will be a hyperholomorphic vector bundle over (singular)

monopole moduli space of the appropriate rank

rnkR[Ematter] =
∑
µ∈∆λ

nλ(µ)

{
〈µ, γm〉sgn(〈µ,X∞〉+m(i)

x ) +
∑
n

|〈µ, Pn〉|
}

. (3.266)

Wilson Bundle for Framed BPS States

In the case of singular monopoles, we can have two types of electrically charged defects:

Wilson defects and Wilson-’t Hooft defects. These both give rise to Wilson bundles as

both require the insertion of a Wilson line into the path integral. In both cases, the

Wilson bundle is again defined by the analogous construction where a generic fiber of

a factor of EWilson →M is of the form

EWilson(~xn, Qn)
∣∣∣
f∈M

= f̃∗
(
H0
∂̄(LQn ;Z)

)
z=zn

. (3.267)

This will be a hyperholomorphic vector bundle over singular monopole moduli space of

the appropriate rank, rnk E(n)
Wilson = dim[VQn ].
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Chapter 4

Wall Crossing of Semiclassical Framed BPS States

We have now shown how BPS states in the semiclassical, adiabatic limit of a supersym-

metric gauge theory can be described as solutions of the Dirac operator

/D
Y0 = i

(
/D + i /G(Y0)

)
, (4.1)

on monopole moduli space. However, using this property to study the spectrum of BPS

states is in general very difficult. The reason is that solving for the states in the kernel

of /D
Y0 requires solving the Dirac equation on a 4N -dimensional manifold M coupled

to gauge fields and bundles of generic rank. This task is functionally impossible.

However, we can still learn something about BPS states by considering the Dirac

operator in a certain asymptotic region. There the form of the metric simplifies to

subleading order. While this does not allow us to determine the spectrum of BPS

states in the asymptotic limit, it allows us to study primitive wall crossing which can

be described simply as 2-body decay of cluster of BPS states. By studying /D
Y0 in this

limit, we find that primitive wall crossing has a universal behavior that is controlled by

a Dirac operator on single centered Taub-NUT.

4.1 Asymptotic Regions Of Moduli Space

Here we will consider a special subregion of the asymptotic region of monopole moduli

space. This region is called the two-galaxy region in which the cluster of monopoles

roughly separates into two, widely separated subclusters.

The two galaxy region can be defined as follows. The asymptotic region Mas is

region of monopole moduli space where all monopoles are widely separated relative to

the mass of the lightest W -boson. Here we can identify the coordinates (~xi, ψi) with a
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collection of positions and phases that we can associate to individual monopoles. The

two-galaxy region is then defined by the region in which we can partition the ~xi into

two sets S1, S2 representing the two distinct galaxies of size N1 and N2

{~xi}Ni=1 = S1 ∪ S2 , S1 ∩ S2 = ∅ , (4.2)

with

S1 = {~xa}N1
a=1 , S2 = {~xs}N2

s=1 , (4.3)

with N1 + N2 = N , such that mina,s{ras} � max{maxa,b{rab},maxs,t{rst}}. We will

additionally use the notation γi,m to denote the total magnetic charge of all of the

monopoles in Si. Here we will use the length scale Λ >> 1/mW to denote the scale of

the separation mina,s{ra,s} ∼ O(Λ).

As in [25], we conjecture that the /D
Y0 on the asymptotic region,Mas, of monopole

moduli space is a Fredholm perturbation of the true Dirac operator on the full monopole

moduli space. The reason is that wall crossing occurs where the Dirac operator fails to

be Fredholm. This property is controlled by the subleading term in an expansion in 1/Λ.

Thus, on the asymptotic region of monopole moduli space, higher order perturbations

are suppressed to O(1/mwΛ) and the Dirac operator is well approximated by its sub-

leading order.

In the asymptotic region of monopole moduli space, there exists a local, canonical

splitting of the electromagnetic charge lattice so that every particle can be assigned a

charge

γ ∈ Γ = Γm ⊕ Γe . (4.4)

The metric on Mas is given by the Lee-Weinberg-Yi/Gibbons-Manton metric [111, 79]

ds2 = Mijd~x
i · d~xj + (M−1)ijΘiΘj , (4.5)

where

Θi = dξi +
∑
j 6=i

~Wij · d~xj , (4.6)

with

Mij =

 mi −
∑

k 6=i
Dik
rik

, i = j

Dij
rij

, i 6= j ,
& ~Wij =

 −
∑

k 6=iDik ~wik , i = j ,

Dij ~wij , i 6= j
.

(4.7)
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Here mi is the mass of the ith monopole, (rij , θij , φij) are standard spherical coordinates

on R3 centered on ~rij ≡ ~xi − ~xj , ~wij is the Dirac potential in terms of the relative

coordinates ~rij which is of the form

~wij · d~xij =
1

2
(±1− cos θij)dφij , (4.8)

and ξi is an angular coordinate of periodicity pi = 2/α2
I(i), which is the ratio of the

length-squared of the long root to that of the root associated with monopole i. Note

that the term
∑

j
~Wij · d~xj can be rewritten as∑

j

~Wij · d~xj =
∑
j 6=i

Dij

2
(±1− cos(θij))dφij . (4.9)

The mass and coupling parameters in the above formulas are

mi = (HI(i), X∞) , Dij = (HI(i), HI(j)) , (4.10)

where to each constituent fundamental monopole we associate a simple co-root i 7→ HI(i)

describing its magnetic charge and the brackets ( , ) are a Killing form on g, g∗ such

that the length-squared of long roots is two. These masses are related to the physical

mass by a factor of 4π/g2
0, and the basis of simple co-roots is defined by X∞, such that

X∞ is in the fundamental Weyl chamber.

Now let us consider the asymptotic metric in two-galaxy region of monopole moduli

space. Let us introduce the center-of-mass coordinates

~X1 =

∑
ama~x

a

mgal1
, ~y a = ~x a − ~x a+1 , a = 1, . . . , N1 − 1 ,

~X2 =

∑
pmp~x

p

mgal2
, ~y p = ~x p+1 − ~x p+2 , p = N1, . . . , N − 2 , (4.11)

where mgal1 =
∑

ama = (γ1,m,X ) is the mass associated with galaxy 1, etc. The indices

a, b and p, q run over the relative coordinates within galaxies 1 and 2 respectively, and

we’ve built in a shift in the numerical values that p, q run over so that these coordinates

can be grouped together,

~y i = (~y a, ~y p) , i, j = 1, . . . , N − 2 , (4.12)

as will be convenient below. The inverse transformations to (4.11) are denoted

(~x ata) = J1

 ~y a

~X1

 , (~x ats) = J2

 ~y s

~X2

 . (4.13)
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There is a corresponding change of phase variables given by

(ξa) = (JT1 )−1

 ψa

χ1

 , (ξp) = (JT2 )−1

 ψp

χ2

 , (4.14)

and we will denote by ψi = {ψa, ψp} the collection of relative phases. See Appendix C

for further details including the explicit form of the matrices J1,2.

Let us consider, for the moment, galaxy one in isolation. There is an associated mod-

uli space M1 = M(γm,1,X ). The coordinates {~y a, ψa} parameterize the asymptotic

region of the strongly centered spaceM1,0 =M0(γm,1,X ), while { ~X1, χ1} parameterize

the R4 of the universal cover M̃1 = R4
(1) ×M1,0. A similar story holds for galaxy two.

Now we return to the full picture where these two galaxies are interacting with

each other. Using the center-of-mass coordinates for each galaxy we can construct the

overall center-of-mass coordinates { ~X, χ} and the relative-galaxy coordinates {~R,ψ} as

follows:

~X =
mgal1

~X1 +mgal2
~X2

mgal1 +mgal2
, ~R = ~X1 − ~X2 ,

χ = χ1 + χ2 , ψ =
mgal2χ1 −mgal1χ2

mgal1 +mgal2
.

(4.15)

Then it is the collection of position coordinates {~y i, ~R} and phase coordinates {ψi,ψ}

that parameterize the strongly centered space M0(γm,X ) for the whole system.

By rewriting the metric (4.5) in terms of these new coordinates and expanding

perturbatively in 1/R to order O(1/R), where R ∼ |ras| is the distance between the

center of masses of the two galaxies and RmW >> 1, we will find that the metric to

order O(1/R) can be written in the form

dŝ2 := Md ~X2 +
1

M
dΞ2 +

(
d~Y ·, d ~R·

) C̃ + 1
RδC

1
RL

1
RLT µH(R)

 d~Y

d~R

+

+ (Θ0, ΘΨ )

 C̃ + 1
RδC

1
RL

1
RLT µH(R)

−1 Θ0

ΘΨ

 , (4.16)

where

M = M1 +M2 , µ =
M1M2

M1 +M2
, (4.17)
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are the total and reduced mass of the two galaxies.

Here we use the notation ~Y = (~ya, ~ys) for the R3 coordinates for the constituents

relative to the center of mass of each respective galaxy with respective phases

Θ0 = (Θa, Θs) = (dψa +
∑
b6=a

~wab · d~xab, dψs +
∑
t6=s

~wst · d~xst) , (4.18)

and

~R , ΘΨ = dΨ + (γ1,m, γ2,m)~w(R) · d~R , (4.19)

are the coordinates for the relative moduli space, and ( ~X,Ξ) are the moduli coordinates

for the center of mass. Further, the terms

H(R) =

(
1− (γ1,m, γ2,m)

µR

)
, C̃ =

 (C1)ab 0

0 (C2)st

 , (4.20)

can be interpreted as describing the product LWY/GM metric of strongly centered

moduli spaces of the different galaxies and the relative term: M0,1 ×M0,2 ×M0,rel.

All of the other terms can be thought of as theO(1/R) constant corrections which couple

the different factors together. Note that the final term in the 4.16 has infinitely many

terms in the expansion in 1/R, however we only believe them to hold to order O(1/R).

See the Appendix C for the definition of the coordinates and undefined matrices.

Note that since the above metric is in Gibbons-Hawking form to O(1/R) it is hy-

perkähler to order O(1/R2).

4.1.1 Triholomorphic Killing Vectors

In order to study the BPS spectrum we need the explicit form of /D
Y0 . This re-

quires the definition of the triholomorphic Killing field G(Y0)m in terms of the co-

ordinates in the above metric on Mas. This will have a decomposition in terms of the

Killing fields of the LWY/GM metric: {∂/∂ψs}. In the two galaxy limit these become

{∂/∂ψa, ∂/∂ψs, ∂/∂Ψ, ∂/∂Ξ}.

The triplet of Kähler forms on Mas are given by

ωa = Θi ∧ dxai −
1

2
Mijε

abcdxbi ∧ dxcj . (4.21)
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From this form it is clear that

£∂ξi
ωa = 0 , (4.22)

and hence the vector fields ∂/∂ξi and their linear combinations {∂/∂ψa, ∂/∂ψs, ∂/∂Ψ, ∂/∂Ξ}

are triholomorphic Killing fields.

Remark In general, quantum corrections break the property that the {∂/∂ξi} are

triholomorphic Killing fields. However there are rnk[g] linear combinations which will

remain triholomorphic and Killing. They are the vector fields described by

KI = pI
nIm∑
k=1

∂

∂ξIk
, (4.23)

where there are nIm fundamental monopoles charged along HI with corresponding an-

gular coordinates ξIk.

4.2 The Asymptotic Dirac Operator

Now we can compute the explicit form of the twisted Dirac operator on monopole

moduli space. Because of the splitting (2.86), the spin bundle splits as a tensor product

of the center of mass and the strongly centered part. This means that we can simply

consider the kernel of the Dirac operator on the strongly centered moduli space which

is of the form

/D
Y0 = /D + i /G(Y0) . (4.24)

Here G(Y0)m is a vector field which enacts a non-trivial gauge transformation along

Y0 = Y∞ −
(Y∞, X∞)

(X∞, X∞)
X∞ , Y∞ = Im[ζ−1aD] , (4.25)

which is the projection of Y∞ along the strongly centered moduli space. See [133, 134]

for more details. This has the form:

G(Y0) =
∑
I

〈αI ,Y0〉KI , KI = pI
nIm∑
k=1

∂

∂ξIk
. (4.26)

After changing coordinates to those suitable for the two galaxy limit, we have that

G(Y0) = (γ1,m,Y0)
∂

∂Ψ
+ (βa,Y0)

∂

∂ψa
+ (βs,Y0)

∂

∂ψs
, (4.27)
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where (βi,Y0) = |Li|. See Appendix C for more details.

Now, using the spin connection (see Appendix C), we can construct the full Dirac

operator. It is mostly simply written as

/D
Y0 = Λ

(
/D12 + /DRel

)
Λ−1 , (4.28)

where Λ is a frame rotation that absorbs most of the non-diagonal terms of the spin

connection. See Appendix C. Here /D12 and /DRel is the splitting of /D
Y0 with respect

to the splitting of the spin bundle.

Since the Hilbert space is graded by electric charge, we will consider the correspond-

ing L2-harmonic spinors that are eigenvectors of the U(1)N symmetry:

Ψ = eiνaψa+iνsψs+iΨνΨLWY
ν(1),ν(2),ν

. (4.29)

We will now solve for the ΨLWY
ν(1),ν(2),ν

to O(1/R2). Due to the fact that the inter-cluster

forces are suppressed by order O(1/R) relative to the intra-cluster forces, we can make

a Born-Oppenheimer type approximation for the BPS state dynamics. This leads us to

make the ansatz

ΨLWY
ν(1),ν(2),ν

=

(
Ψ

(0)
12 +

1

R
Ψ

(1)
12 +O(R−2)

)
⊗ ΨRel , (4.30)

where we further assume that ΨRel has the form

ΨRel = e−αRRp
(
Ψ̂Rel +O(R−1)

)
, (4.31)

where Ψ̂Rel is independent of R.

With this ansatz, /D12 and /DRel acting on ΨLWY
ν(1),ν(2),ν

takes the form

/̆D12 = /̆D
(0)

12 +
1

R
/̆D

(1)

12 +O(1/R2) ,

/̆D12 = Γ ai
{

(C−1/2)ii∂ai − (WaC
−1/2 + waδCC̃

−1/2)ii∂4i − wa(LT C̃−1/2)i∂4R+

− 1

µR
(C̃−1/2L)i∂aR

}
+

+ Γ 4i

{
(C1/2)ii∂4i − i(C−1/2)ii(β

i,Y0) + i
(γm,1,Y0)

µR
(C̃−1/2L)i

}
+

+
1

4
Γ ρkωµiνj,ρkΓ

µiνj ,

(4.32)
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and

/̆DRel =
1√
µ

(
1 +

(γm,1, γm,2)

2µR

){
Γ aR∂aR − ipµΓ aRwa − iΓ 4R

(
xµ −

pµ
2R

)}
+

+O(1/R2) , (4.33)

where

pµ := − [(γm,1, γm,2)ν − Laνa − Lsνs] = ⟪γ1, γ2⟫ ,

xµ := (γm,1,Y0)− µν = (γm,1,Y0) +

〈
γe,1 −

〈γe, X∞〉
(γm, X∞)

γ∗m,1, X∞

〉
.

(4.34)

where ⟪γ1, γ2⟫ is the DSZ pairing of γ1 with γ2 and the /̆D
(0)

12 and /̆D
(1)

12 and /̆DRel act

only on the Ψ12 and ΨRel parts respectively. Note that now /̆DRel is now exactly the

Dirac operator on Taub-NUT coupled to a vector field which can be translated to the

Dirac operator from [131].

There are two types of terms that are affected by our ansatz 1.) the terms with

angular derivatives and 2.) a term in /̆D12 proportional to ∂aR. Since the angular

coordinates are completely universal, we are allowed to replace all ∂4i and ∂4R terms

by their eigenvalues. Similarly the term in /̆D12 is of the form

/̆D12 = ...− 1

µR
Γ ai(C̃−1/2L)i∂aR . (4.35)

However, this only acts on the exponential ΨLWY
ν(1),ν(2),ν

∼ e−αRRp to order O(1/R) rela-

tive to the leading term. Therefore, this term can be replaced by α
µRΓ

ai(C̃−1/2L)i
Ra
R .

With these simplifications, we see that

{
/̆D12, /̆DRel

}
= O(1/R2) . (4.36)

This implies that ΨLWY
ν(1),ν(2),ν

must satisfy

/̆D12Ψ
LWY
ν(1),ν(2),ν

= 0 , /̆DRelΨ
LWY
ν(1),ν(2),ν

= 0 , (4.37)

separately. Additionally, since the spin representations decouple and

Γ ai∂aR

(
Ψ

(0)
12 +

1

R
Ψ

(1)
12

)
= O(1/R2) , (4.38)
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the separate factors of the wave function must also each satisfy a separate Dirac equa-

tion

/̆D12

(
Ψ

(0)
12 +

1

R
Ψ

(1)
12

)
= 0 , /̆DRelΨRel = 0 . (4.39)

Since the leading term of the metric splits diagonally on M0,1 ×M0,2, the lead-

ing term in the two galaxy Dirac operator, /̆D12, also respects this splitting. Thus,

the leading term Ψ
(0)
12 is simply the product of L2 harmonic spinors for the separate

galaxies. The O(1/R) correction Ψ
(1)
12 is then determined by the leading order terms

using degenerate perturbation theory. Therefore, we can say that the wavefunctions

(and hence the degeneracies) are given by the product of L2-harmonic spinors for the

separate galaxies with O(1/R) corrections coming from interactions with the opposite

galaxy.

Now using the calculations from [131, 133], we see that

α = xµ = (γm,1,Y0) +

〈
γe,1 −

〈γe, X∞〉
(γm, X∞)

γ∗m,1, X∞

〉
,

p = ⟪γ1, γ2⟫ .
(4.40)

This tells us that the relative wave function fails to be renormalizable exactly when α

vanishes or when

(γm,1,Y0) +

〈
γe,1 −

〈γe, X∞〉
(γm, X∞)

γ∗m,1, X∞

〉
= 0 , (4.41)

which we interpret as the location of the walls of marginal stability. This matches

exactly with the field theory calculation from [133, 134].

Near the walls of marginal stability we can clearly see that the spectrum of /̆DRel

degenerates. Specifically, if we were to solve instead for the spectrum of L2-normalizable

spinors solving

/̆DRelΨRel,E = iE ΨRel,E , (4.42)

we would see that the exponential behavior is now dictated by ΨRel,E ∼ e−kEr where

kE =
√
x2
µ − E2 . (4.43)

The L2 normalizable spinors of this inhomogeneous Dirac equation are labeled by a
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positive integer n which satisfies

pµ + 1 +
(γ1,m, γ2,m)

2µ
√
x2
µ − E2

(
x2
µ − (γ1,Y0)2 − E2

)
= −n . (4.44)

Conversely the states which have E > xµ have no solution to (4.44) and reside in a

continuum of scattering states. However, as we approach the wall of marginal stability

by xµ → 0, we see that the energy gap to the continuum of scattering states goes to

zero: Econt. = xµ → 0. Thus we see at the wall of marginal stability where xµ = 0 the

gap to the continuous spectrum vanishes and /D
Y0 is no longer Fredholm. This implies

that the spectrum of BPS states can change across such walls as we would expect from

field theory.

The computation from [133] additionally shows that the space-time spin of the

relative factor of the wavefunction is determined by the quantity pµ:

j =
1

2
(|⟪γ1, γ2⟫| − 1) . (4.45)

This reproduces the expected BPS degeneracies from field theory [133, 134].

Putting all of this together, we can conclude that a subspace of the L2 kernel which

disappears when we cross the wall of marginal stability has the form H1 ⊗ H2 ⊗ Hj .

And further that the change in degeneracies are of the form

∆Ω(γ1 + γ2; y) = χ|⟪γ1,γ2⟫|(y)Ω(γ1; y)Ω(γ2; y) , (4.46)

where χ|⟪γ1,γ2⟫|(y) is the character of the SU(2) representation of dimension |⟪γ1, γ2⟫|
as a polynomial in y. This is exactly the primitive wall-crossing formula of [50]. It is

also pleasing to note that the formulas for the walls of marginal stability and change

in BPS index exactly match with the results of [161].

4.3 Framed BPS States and Haloes

We can now apply this analysis with some simple modifications to the study the wall

crossing behavior of framed BPS states. This follows the construction of singular

monopoles presented in [133, 134, 22]. In these papers, the authors showed that one

can construct a singular monopole by sending the Higgs vev to infinity along a specific
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direction in the Cartan subalgebra. This limiting procedure effectively reduces the rank

of the gauge group and takes the mass of smooth monopoles to infinity, thus turning

them into singular monopoles. Using this limiting procedure we can determine the met-

ric in the asymptotic region of singular monopole moduli space from the metric in the

asymptotic region of smooth monopole moduli space. This will allow us to generalize

the above semiclassical analysis to the case of framed BPS states in the presence of

pure magnetically charged line defects.

4.3.1 Pure ’t Hooft Defects

In [132], the authors showed how one can obtain singular monopoles as a limit of

smooth monopoles. This was motivated by using the string theory interpretation of

SU(N) smooth monopoles as (p, q)-strings stretched between N D3-branes and singular

monopoles as semi-infinite D1-branes. We will discuss this procedure in the context of

string theory later in Chapter 5.

In the context of quantum field theory, the procedure of [132] is as follows. Embed

SU(N) SYM theory with Ndef singular monopoles into an U(N+1) theory with smooth

monopoles where the Ndef defects are represented by smooth monopoles of charge along

the HN simple co-root whose charge we will denote by {Pn}Ndefn=1 . Without loss of

generality, we will take these to be the negative Weyl-chamber representative (all other

choices will be related by a hyperkähler isometry). Now restrict to the locus of far

separated, fixed location and phase of the HN -charged monopoles and then take the

limit of X
(N)
∞ →∞ where

X∞ =

N∑
I=1

X(I)
∞ hI (hI , HJ) = δIJ . (4.47)

This maps sends the U(N +1) theory to a U(N) theory and corresponds to making the

smooth monopoles charged along N th simple coroot infinitely heavy, thereby producing

singular monopoles in the U(N) theory which we can then project to an SU(N) theory.

However, there is a subtlety to this construction in projecting from U(N)→ SU(N).

Recall that in a U(N) gauge theory, there is an extra U(1) degree of freedom that

usually trivially decouples from the dynamics of the system. However, in the presence
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of singular monopoles, this decoupling is no longer trivial. In order to project out the

center of mass properly, one must construct a map:

Π : u(1)⊕ su(N + 1)→ u(1)⊕ su(N) (4.48)

such that the diagram:

u(N + 1)
C //

ρ

��

u(N)

ρ

��
u(1)⊕ su(N + 1)

Π // u(1)⊕ su(N)

(4.49)

commutes where C is the natural projection and ρ is the natural splitting. This map is

given explicitly as:

Π(HI) =


HI I 6= N

HN − N+1
N hN I = N

(4.50)

where hN is the N th cocharacter which satisfies (hI , HJ) = δIJ .

Now since U(N) fits into the short exact sequence:

1→ ZN → U(1)× SU(N)→ U(N)→ 1 (4.51)

we have that projecting out the U(1) degree of freedom in this way results in a theory

whose gauge group is PSU(N) = U(N)/U(1) = SU(N)/ZN . See [132] for further

details.

For our purposes, we will only need to know how to compute the coupling between

the defect charges, {Pn = Π(HN )}, and the smooth monopoles. These couple by terms

proportional to

(Pn, HI(i)) = (Π(HN ), Π(HI(i))) = (HN , HI(i))−
N + 1

N
(hN , HI(i))

= (HN , HI(i)) ,

(4.52)

for defects charged along a simple co-root. Therefore, the coupling is unchanged under

the projection from su(N+1) → su(N).

Now we will apply this limiting procedure to determine the metric on the asymptotic

region of singular monopole moduli space from the smooth LWY/GM metric. First,

let us embed singular monopoles in an SU(N) theory with fundamental charge into an
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SU(N + 1) theory as smooth monopoles charged along the coroot HN . Then, restrict

to the subregion of fixed location and phase of the monopoles charged along HN . Then

take the limit as X
(N)
∞ →∞. This can be written as

ds2
M = lim

X
(N)
∞ →∞

(
ds2
M
∣∣∣
~x

(n)
def=~xn

)
, (4.53)

where the defects are located at {~xn}Ndefn=1 .

A priori, it is not guaranteed that this procedure induces a well defined metric. Due

to the restriction before taking the limit, any singular behavior that may arise from

taking the limit would necessarily be contained in Mij and (M−1)ij . Let Ssing denote

the set of indices that correspond to line operators in the projection. Since we will be

restricting to the subspace ~xi = 0 for i ∈ Ssing, we only need to consider the behavior

of Mij , (M
−1)ij for i, j /∈ Ssing. By the form of Mij in equation 4.7, this clearly be

well defined in the limit. We can now examine the form of (M−1)ij by computing the

cofactor matrix. If we use Λm to denote the mass scale which we take to approach

infinity, cij ∼ O(ΛN
(N)

m ) for i, j /∈ Ssing and det(M) ∼ O(ΛN
(M)

m ) where cij is the matrix

of cofactors and N (N) is the number of monopoles charged under the Nth simple coroot.

Therefore (M−1)ij ∼ O(1) for i, j /∈ Ssing and the limit of the metric is well defined.

The resulting metric is given by

ds2
M = Mijd~x

i · d~xj + (M
−1

)ijΘiΘj , (4.54)

where

Θi = dξi +
∑
j 6=i

Dij

2
(±1− cos(θij))dφij +

Nd∑
n=1

(Pn, Hj)

2
(±1− cos(θin))dφi , (4.55)

and

Mij =


mi −

∑
k 6=i

Dik
rik
−∑Nd

n=1
(Pn,HI(i))

rin
, i = j

Dij
rij

, i 6= j

(4.56)

Note that this construction implies

lim
X

(N)
∞ →∞

(M−1)ij
∣∣∣
~x

(n)
def=~xn

=

(
lim

X
(N)
∞ →∞

Mij

∣∣∣
~x

(n)
def=~xn

)−1

(4.57)
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This means that the analysis used to write down the two galaxy limit of the smooth

monopole moduli space can be implemented directly by substituting different values for

C̃ as in Appendix C.

We conjecture that this metric is the analog of the GM/LWY asymptotic metric

for singular monopole moduli space. And similarly, inspired by Bielawski [17, 18] and

Murray [137], and following the conjecture of Lee, Weinberg, and Yi in [111], we con-

jecture that this metric is exponentially close to the exact metric with corrections of

order e−mîrîĵ for those î, ĵ such that I (̂i) = I(ĵ). In particular, if we have no more than

one smooth monopole of each type, we conjecture that this asymptotic metric is the

exact metric on the moduli space of singular monopoles.

We then may then go to two galaxy region of monopole moduli space. Collecting

all of the line charges into a group we will call the core and the remaining into a group

we will call the halo, two galaxy asymptotic metric may be written as

dŝ2 :=
(
d~Y ·, d ~R·

) C̃ + 1
RδC

1
RL

1
RL

T
MhH(R)

 d~Y

d~R

+

+
(
Θ0, ΘΨ

) C̃ + 1
RδC

1
RL

1
RL

T
MhH(R)

−1 Θ0

ΘΨ

 , (4.58)

where

Θ0 = (Θa, Θs) , H(R) = 1− (γh,m, γc,m)

MhR
,

ΘΨ = dΨ +
(γh,m, γc,m)

2
(±1− cos(Θ)dΦ) ,

Θs = dψs +
∑
t6=s

Dst

2
(±1− cos(θst))dφst +

Nd∑
n=1

(Pn, Hs)

2
(±1− cos(θsn))dφs ,

(4.59)

and Mh = (γh,m, X∞) is the mass of the halo galaxy. Here C̃ is still the diagonal

singular metric on M0,h × M0,c but has additional dependence on the {Pn}. And

similarly L and δC are both still constants with additional dependence on the {Pn}.

This additional dependence is given in Appendix C.

The picture of this physical set up is very similar to before, but with a slightly

different interpretation. Recall that in the case of framed BPS states, BPS states

bound to a line defect, there is a generic core-halo structure. As discussed in the
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previous chapter, this means that there is a “core” of “vanilla” BPS states which are

tightly bound to the line defect and a second cluster or “halo” of vanilla BPS particles

which are weakly bound to the core cluster, mirroring atomic and galactic structures.

This halo is generally made up of many different constituents which bind together to

form multiple different clusters which can be thought of similar to solar systems rotating

around a galactic center. The physical picture we are investigating is the case with a

single cluster of BPS states orbiting this core.

As we can see from of this metric, the Dirac operator will be of an identical form to

the Dirac operator on the strongly centered moduli space for the case of vanilla BPS

states which, by performing the same frame rotation, can be written

/D
Y0 = Λ

(
/D12 + /DRel

)
Λ−1 . (4.60)

Again we make the same ansatz for the wavefunction, Ψ , as before

Ψ
LWY
ν(1),ν(2),ν =

(
Ψ

(0)
12 +

1

R
Ψ

(1)
12 +O(R−2)

)
⊗ ΨRel , (4.61)

with

Ψ = eiνaψa+iνsψs+iΨνΨ
LWY
ν(1),ν(2),ν , ΨRel = e−αRRp

(
Ψ̂Rel +O(R−1)

)
. (4.62)

Again all of the same separability arguments hold. This again tells us that the wall

crossing behavior is controlled by the relative part of the Dirac operator acting on the

relative part of the moduli space which is given by:

1√
Mh

(
1 +

(γh,m, γc,m)

2MhR

){
Γ aR∂aR − ipµΓ aRwa − iΓ 4R

(
xµ −

pµ
2R

)}
ΨRel = 0 (4.63)

where

pµ := − [(γh,m, γc,m)ν − Laνa − Lsνs] = ⟪γh, γc⟫ ,

xµ := (γh,m,Y0)−Mhν = (γh,m,Y0) + 〈γh,e, X∞〉 .
(4.64)

Again the location of the walls of marginal stability and change in BPS spectrum are

controlled by xµ and pµ respectively. This gives the locus for the walls of marginal

stability

(γh,m,Y0) + 〈γh,e, X∞〉 = 0 , (4.65)
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which directly agrees with the computation from [133]. Note that this formula is simply

the same as the vanilla case in the limit X
(N)
∞ → ∞ with the restriction 〈λN , γi,e〉 = 0

for 〈λI , αJ〉 = δIJ .

In the the core-halo configuration of framed BPS states, the coordinate R has the

interpretation of the distance from the center of mass of the halo-galaxy to the core-

galaxy and line operator(s). Thus, the asymptotic form of the wave-function on the

relative moduli space can be used to study what happens to the halo-galaxy near the

walls of marginal stability. Using the form of the wavefunction

ΨRel(R) ∼ (xµ)2pµ+3Rpµe−xµR , (4.66)

we can see that near the wall of marginal stability (when xµ → 0), the peak goes to

infinity and broadens out. While the state is not itself decaying, this broadening comes

from the halo-galaxy experiencing a weaker and weaker effective potential confining the

center of mass to a single radius (where the binding energy balances with the rotational

energy) as the center of mass goes out to infinity. This gives us the picture that as we

cross a wall of marginal stability, BPS bound states go out to infinity and then come

back to a stable boundstate radius as a (possibly) different state.

As before, in studying the solutions to the non-homogeneous Dirac equation

/DRelΨRel = iEΨRel , (4.67)

we see that there is again an exponential dependence ΨRel ∼ e−kR with k =
√
x2
µ − E2.

Similarly there is an analogous bound state condition

pµ + 1 +
(γh,m, γc,m)

2Mh

√
x2
µ − E2

(
x2
µ − (γh,m,Y0)2 − E2

)
= −n . (4.68)

Again we see that as we approach a wall of marginal stability, xµ → 0, the gap to the

continuum of scattering states comes down to zero where the Dirac operator becomes

non-Fredholm.

Analogous to the smooth case, we see that the same BPS degeneracy conditions

hold for the framed case with degeneracy

j =
1

2
(|⟪γh, γc⟫| − 1) , (4.69)
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Again the wall crossing for framed BPS states is of the form

∆Ω(γh + γc; y) = χ|⟪γh,γc⟫|(y)Ω(γh; y)Ω(γc; y) , (4.70)

thus reproducing the primitive wall crossing formula from [69].

4.3.2 Including Wilson Defects

Now we can consider coupling the theory to line defects that also carry electric charge.

This couples the SQM on monopole moduli space to the Wilson bundle EWilson →M

whose rank is given by the product of the dimensions of the highest weight represen-

tations associated to each Wilson defect’s charge λ. Each factor of the Wilson bundle

has a structure group SU(r) with representation ρλ : SU(r)→ GL(EWilson) and hence,

the fiber of EWilson at a generic point [Â] ∈M decomposes

EWilson

∣∣∣
[Â]

=
⊗
n

⊕
µ∈∆λ

V ⊗dλ(µ)
µ , (4.71)

as a sum over weight spaces where dλ(µ) is the degeneracy of the weight space associated

to a weight µ ∈ ∆λ.

Further, this vector bundle naturally has a connection given by the universal con-

nection restricted to monopole moduli space. By supersymmetry this connection is

hyperholomorphic.

As in [79], we can derive the asymptotic form of this connection by analyzing the

Lagrangian for the associated SQM which is given in [22]. This Lagrangian encodes

both the metric and connection, the latter of which describes the force of the Wilson-

type defects on the BPS particles. Therefore, we can determine the hyperholomorphic

connection from the quadratic contribution of the electromagnetic force between the

Wilson line and distant dyons to the classical Lagrangian as in [79].

Consider the interaction between a pure Wilson line of charge Qn ∈ Λwt ⊂ t∗ at

~xn ∈ R3 and a dyon (labeled by î) of magnetic charge HI (̂i), electric charge qî ∈ Λrt, at

position ~xî, with velocity ~vî:

Lî = ...+ 〈qî, ~A〉 · ~vî − 〈qî, A0〉+ (HI (̂i),
~̃
A) · ~vî − (HI (̂i), Ã0) , (4.72)
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where the electric background field is produced by the vector potentials

A0 =
Q∗n

2|~xî − ~xn|
,

~̃
A = Q∗n ~w(~xî − ~xn) , ~A = 0 , Ã0 = 0 . (4.73)

Here
~̃
A, Ã0 are the dual vector potential. We can without loss of generality couple

this to all dyons by summing over the index î, leading to the contribution to the full

Lagrangian

L = ...−
∑
î

(
(q∗
î
, Q∗n)

2|~xî − ~xn|
− (Q∗n, HI (̂i)) ~w(~xî − ~xn) · ~vî

)
. (4.74)

Now if we make the replacement as in [79] 1

q∗
î
→ (M−1)îĵ(ξ̇ĵ + ~w(~xĵ − ~xn) · ~vĵ) , (4.76)

then we get the contribution

L = ...

−

Q∗n,∑
î

HI (̂i)

1

|~xî − ~xn|
(M−1)îĵ(ξ̇ĵ + ~w(~xĵ − ~xn) · ~vĵ)−HI (̂i) ~w(~xî − ~xn) · ~vî

 .

(4.77)

This can be written in the form

L = ...− 〈Qn, q(n)(~x î)〉 , (4.78)

where

q(n) =
∑
î

HI (̂i)

(
1

|~xî − ~xn|
(M−1)îĵΘĵ − ωîn

)
, dωîn = ∗R3d

(
1

|~xî − ~xn|

)
.

(4.79)

This leads to the connection on EWilson

q(~x î) = ρ⊗Qn(q(n)(~x î)) , (4.80)

where each factor of q(~x î) describes the connection on the corresponding factor of (4.71).

This connection is indeed hyperholomorphic and is reminiscent of the hyperholomorphic

connections on Taub-NUT written down in [19, 37, 38, 41, 125].

1In going from the Lagrangian above to the metric we use an effective Lagrangian where there are
N constants of motion

q∗î = HI (̂i)(M
−1)îĵ(ξ̇ĵ + ~w(~xĵ − ~xn) · ~vĵ) , (4.75)

which upon substitution into the Lagrangian, we get the full result of 4.74.



126

4.3.3 Wilson-’t Hooft Defects

We can now consider the case of general Wilson-’t Hooft defects. In this case we will

again have a core-halo system as smooth monopoles will be required to screen the

infinite self-energy of the magnetically charged defects. In order to study this system,

we will couple the Dirac operator on singular monopole moduli space to the connection

(4.79).

In the two galaxy limit the hyperholomorphic connection (4.79) projected onto the

strongly centered moduli space takes the form

q(n) =

(
HI(a)

|~xa − ~xn|
, Bp(x) ,

γh,m

R

) C̃ + 1
RδC

1
RL

1
RL

T
mhaloH(R)

−1 Θ0

Θψ

 , (4.81)

where

Bp(x) =

 N−1∑
p=q+1

mq

mhalo

 p∑
q=Ncore+1

HI(q)

|~xq − ~xn|


−

 p∑
q=Ncore+1

mq

mhalo

 N−1∑
q=p+1

HI(q)

|~xq − ~xn|

 .

(4.82)

See Appendix C for more details.

This couples to the Dirac operator on S+ ⊗ EWilson →M as

/D
Y
W = ...+ ΓµIEνJµIqνJ . (4.83)

Now the full twisted Dirac operator coupled to EWilson can be written in the form

/D
Y0

W = Λ

(
/̆D
Y0

12,W + /̆D
Y0

Rel,W

)
Λ−1 , (4.84)

where

/̆D
Y0

Rel,W =
1√
Mh

(
1 +

(γc,m, γh,m)

2MhR

){
Γ aR∂aR − ipΓ aRwa − iΓ 4R

(
x− p

2R

)}
,

(4.85)

and

p =⟪γmonoc , γh⟫+ iρλ(γh,m) , x = (γh,m,Y0) + 〈γh,e, X∞〉 . (4.86)
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Again since the spin bundle and coordinates split according toM =M0×M1,2×MRel,

the separation of variables ansatz holds and hence the wave function can be written as

ΨLWY
ν(1),ν(2),ν

= Ψ12 ⊗ ΨRel =

(
Ψ

(0)
12 +

1

R
Ψ

(1)
12 +O(R−2)

)
⊗ ΨRel (4.87)

where

/̆D
Y0

12,WΨ12 = 0 , /̆D
Y0

Rel,WΨRel = 0 , (4.88)

separately.

Now since all of the βi, γi,m ∈ t and we have that the Wilson vector bundle splits as

a direct sum of weight spaces, on each factor, Vµ, the Dirac equation is of the form

/̆D
Y0

Rel,¯ =
1√
Mh

(
1 +

(γh,m, γc,m)

2µR

){
Γ aR∂aR − ipµΓ aRwa− iΓ 4R

(
x− pµ

2R

)}
, (4.89)

for

pµ = ⟪γmonoc , γh⟫+ 〈µ, γh〉 . (4.90)

This tells us that the walls of marginal stability are again at the same locations:

xµ = 0. This is explicitly written as

(γh,m,Y0) + 〈γh,e, X∞〉 = 0 , (4.91)

reproducing the results from [133, 134].

We now have to explain how wall crossing works for this situation – it is not so

straight forward. The key is that the kernel of the Dirac operator is graded by the

electric charge of the halo and the core

KerL2

[
/̆D
Y0

Rel,W

]
=

⊕
γh,e,γc,e

Hγc,e,γh,e . (4.92)

Here because of the Wilson bundle decomposition we have a further decomposition

Hγc,e,γh,e =
⊕

µ∈∆λ,γmonoc,e ∈Γe
µ+γmonoc,e =γc,e

Hγmonoc,e ,γh,e [µ] . (4.93)

where pµ is a constant value on each factor of Hγc,e,γh,e . Therefore, we have that across

each wall of marginal stability, a spin-j multiplet on the relative moduli space MRel,

decays where

j =
1

2
(|⟪γc, γh⟫| − 1) . (4.94)
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Thus, across walls of marginal stability, we reproduce the primitive wall crossing formula

of [69]:

∆Ω(γh + γc; y) = χ|⟪γh,γc⟫|(y)Ω(γh; y)Ω(γc; y) . (4.95)

Pure Wilson Defects

In the case of pure Wilson lines, we have a fundamentally different physical picture as

compared to the pure ’t Hooft defects. Although the Wilson defects break translation

invariance, they will not “freeze out” the center of center of mass component of smooth

monopole moduli space. This is because they do not have an infinite self-energy. This

additionally means that there is no core-halo system since the infinite self-energy does

not conjure a core out of the vacuum to screen the defect. Rather we should consider

the case of a single galactic halo far away from a (collection of) Wilson line(s).

An important feature of this system is that we cannot capture all of the bound

states or wall crossing dynamics of this system. This is because by construction we

assume that all states have magnetic charge and hence neglect all bound states of pure

electric charge. However, it does mean that we can capture the bound magnetic states

described in [69, 165].

The relevant Dirac operator for this system is the center of mass component of the

full Dirac operator. This is given explicitly in the asymptotic limit by

q(s) = ρλ(γm)

(
1

2R
dΞ + ~W ( ~X) · d ~X

)
, (4.96)

where | ~X| = R, which is exactly the Dirac monopole connection on R3 × S1. This

directly reproduces and generalizes the results of [165]. In this case the entire twisted

Dirac operator can be written as

/D
Y
W =

[
Γ i∂i − ipΓ iWi( ~X)− iΓ 4

(
x− p

2R

)]
, (4.97)

where

p = ρλ(γm) , x = v +
(γm,Y∞)

(γm, X∞)
=
〈γe, X∞〉
(γm, X∞)

+
(γm,Y∞)

(γm, X∞)
. (4.98)

This is again the Dirac operator studied in [131].
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As before, the walls of stability for these magnetic bound states are defined by the

x = 0 locations and hence at the locus defined by

〈γe, X∞〉+ (γm,Y∞) = 0 . (4.99)

Again from the splitting of the Wilson bundle, the Dirac equation on each factor

Vµ is of the form

/D
Y
W =

[
Γ i∂i − ipµΓ iWi( ~X)− iΓ 4

(
x− pµ

2R

)]
, (4.100)

where

pµ = 〈µ, γm〉 . (4.101)

Since pµ is independent of γe, we have that the dimension of the kernel does not

change across the walls as we can always find a unique γe such that x > 0 and the

quantization condition

pµ + 1 +
1

2x

(
x2 − (γm,Y∞)2

(γm, X∞)2

)
= −n , n ∈ N . (4.102)

This tells us that as we cross a wall of marginal stability, some states decay but then

states come in from infinity with different electric charge. This reproduces exactly the

results of [69].
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Chapter 5

BPS States in String Theory

In this chapter we will study some string theory descriptions of BPS states in 4D

N = 2 SU(N) gauge theories coming from certain brane configurations. Fundamen-

tally, the brane constructions we will consider are primarily based on the embedding

of 4D SU(N) N = 2 SYM theory into the world volume theory of D3-branes. This

construction is as follows.

Take a stack of N parallel D3-branes that are localized at x6,7,8,9 = 0. The world

volume theory of this stack is described by U(N) N = 4 gauge theory. Generally, the

center of mass degree of freedom decouples so we can project to an SU(N) N = 4

gauge theory. By turning on a mass deformation via an Ω-deformation in the x6,7,8,9-

directions we can break the N = 4 SUSY down to N = 2. The resulting theory is

described by the N = 2 SU(N) gauge theory with a massive adjoint hypermultiplet.

Then by sending the mass to infinity (making the Ω-deformation infinitely strong), the

adjoint hypermultiplet is integrated out and the resulting theory is N = 2 SU(N) SYM

theory.

This brane configuration allows for a simple interpretation of BPS states. In the

semiclassical limit of the N = 2 gauge theories that are engineered by this brane

configuration there is a non-trivial Higgs vev X∞ of one of the (real) scalar fields.

This corresponds to separating the D3-branes in the x4-direction. Specifically, given a

decomposition

X∞ =
∑
I

vIHI , (5.1)

This chapter is based on material from my papers [22, 23, 24, 27].
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the Ith D3-brane is localized at x6 = x6
I such that x6

I+1−x6
I = vI . In this configuration,

W -bosons can be interpreted as fundamental strings stretching between the D3-branes.

We can then see by an S-duality transformation that smooth monopoles/magnetically

charged BPS states can be identified as D1-branes stretched between pairs of D3-branes

[52] – or more generally that BPS states are described by (p, q)-strings stretched between

D3-branes. Specifically, a (p, q)-string stretched between the Ith and (I+1)th D3-brane

has a charge

γ = γm ⊕ γe = pHI ⊕ qαI . (5.2)

In [52] it is shown explicitly that the space of supersymmetric vacua is isomorphic to

monopole moduli space. Further, in [132] it is shown that this brane configuration can

be used to understand the wall crossing of these BPS states.

In this section we will study the more general brane configuration of [23, 35] which

describes reducible ’t Hooft defects and their associated framed BPS states. This brane

configuration differs from the brane configuration of [52] for smooth monopoles by the

inclusion of transverse NS5-branes. We will show that the introduction of these NS5-

branes both gives rise to a singular monopole in the low energy effective theory on

the D3-branes and that the supersymmetric vacua of the entire brane configuration is

given by the appropriate singular monopole moduli space. We will show how this brane

configuration can be used to study monopole bubbling, thereby allowing us to derive

the singular geometry of M̂. This will be crucial for computing the expectation value

of ’t Hooft defects in the next section.

5.1 Reducible ’t Hooft Defects in String Theory

Now we will describe the brane configuration for reducible ’t Hooft defects in a 4D

N = 2 SU(N) SYM theory.

Consider flat spacetime R1,9 = R1,3×R6 with N D3-branes localized at x5,6,7,8,9 = 0

and x4 = vI for vI ∈ R and I = 1, ..., N such that

vI < vI+1 ,
N∑
I=1

vI = 0 . (5.3)
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The low energy effective world volume theory of these branes is that of 4D N = 4

U(N) gauge theory. We then project to a 4D N = 2 SU(N) gauge theory with two real

Higgs fields X,Y (corresponding to displacement in the x4, x5-directions respectively)

by projecting out the center of mass degree of freedom and adding a sufficiently large

mass deformation as in [132, 156].

As we discussed, a smooth monopole with charge HI is described by a D1-brane

between the Ith and (I + 1)th D3-brane, localized at x5,6,7,8,9 = 0 and fixed location in

x1,2,3. For our purposes, we will consider the case of a general configuration with mI

smooth monopoles of charge HI at distinct fixed points in the x1,2,3-directions. This is

the standard construction of smooth monopoles in SU(N) SYM theory with

γm =
∑
I

mIHI , X∞ =
∑
I

(vI+1 − vI)HI . (5.4)

Now introduce k NS5-branes (indexed by σ = 1, ..., k) localized at ~xσ = (x1
σ, x

2
σ, x

3
σ)

at distinct points between the I(σ)th and (I(σ) + 1)th D3-branes.1 As argued in

[35], these NS5-branes introduce minimal/reducible singular monopoles and shifts the

asymptotic magnetic charge so that the ’t Hooft and relative magnetic charges are given

by

Pn =
∑

σ : ~xσ=~xn

hI(σ) =
∑
I

p
(n)
I hI , γ̃m =

∑
I

mIHI . (5.5)

See Figure 5.1.

To show that the NS5-branes introduce an ’t Hooft defect into the D3-brane world

volume theory we need to show that: 1.) it sources a magnetic field in the world volume

theory of the D3-brane at a fixed location and 2.) it does not introduce any new degrees

of freedom in the low energy theory. This brane configuration can be seen to reproduce

these properties in the following manner.

As we know from [52], D1-branes ending on D3-branes source magnetic charge in

the world volume theory of the D3-branes. While our brane configuration does not

have any D1-branes connecting the NS5-branes to the D3-branes, it is Hanany-Witten

dual to such a configuration. This can be seen as follows.

1Here we index the NS5-branes by σ. To each NS5-brane we associate σ 7→ I(σ) to specify which
pair of D3-branes it is sitting between in the x4-direction.
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p2

v3 vN
m2

p1

v1 v2
m1

x4

x1,2,3

Figure 5.1: This figure shows the brane configuration of a single, reducible ’t Hooft
defect with ’t Hooft charge P =

∑
I pIh

I , relative magnetic charge γ̃m =
∑

I m
IHI ,

and Higgs vev X∞ =
∑

I(vI+1 − vI)HI .

The D1/D3/NS5-brane configuration is the T-dual (along the x6,7-directions) to

a brane configuration consisting of D3/D5/NS5-branes where D1-branes become D3-

branes, D3-branes become D5-branes and NS5-branes are unaffected [33]. In the T-dual

configuration, we can perform a Hanany-Witten transition which allows us to pull NS5-

branes through an adjacent D5-brane and creating or destroying D3-branes connecting

the D5-brane and NS5-brane so that the linking numbers

LNS5 = −(right)D5 + (left)D3 − (right)D3 ,

LD5 = (left)NS5 + (left)D3 − (right)D3 ,

(5.6)

are preserved. Here we used the convention of [177] where (left)NS5/D5, (right)NS5/D5

are the number of NS5/D5-branes to the left, right of the given brane and (left)D3,

(right)D3 are the number of D3-branes that end on the left, right side of the given

brane respectively [83].

Similarly, Hanany-Witten transitions can be realized in the D1/D3/NS5-brane sys-

tem by first T-dualizing to the D3/D5/NS5-brane configuration, performing the Hanany-

Witten transformation, and then T-dualizing back to the D1/D3/NS5-brane configu-

ration. The resulting transformation in the D1/D3/NS5-brane configuration allows us

to pull an NS5-brane through a D3-brane while additionally changing the number of



134

connecting D1-branes to preserve the analogous linking numbers

LNS5 = −(right)D3 + (left)D1 − (right)D1 ,

LD3 = (left)NS5 + (left)D1 − (right)D1 .

(5.7)

Thus, by performing a sequence of Hanany-Witten transformations (for example

sending the NS5-branes to positions x4
σ < v1), one can transform to a dual frame where

there are D1-branes connecting the NS5-branes to the D3-branes. There it is clear that

the NS5-brane sources magnetic charge in the world volume theory of the D3-brane by

nature of D1/D3-brane intersections.

Let us further consider the dual Hanany-Witten frame where D1-branes connect the

D3- and NS5-branes. Here it may appear that the D1-branes can support local degrees

of freedom, thereby introducing undesirable features to the low energy effective theory.

However, the D3- and NS5-branes impose “opposite” boundary conditions on the D1-

brane. This prevents the D1-brane from supporting any massless fields and hence

does not introduce any new quantum degrees of freedom in the low energy theory [83].

Additionally, since the NS5-brane is heavy compared to all other branes in the system,

its relative position in the x1,2,3 directions will be fixed and hence will source magnetic

charge will be sourced at a fixed location. Therefore, the NS5-brane configuration we

have presented reproduces the “minimal” properties of a ’t Hooft operator in the world

volume theory of the D3-branes.

Remark One may be curious how the phase ζ ∈ U(1) of a ’t Hooft defect operator

is encoded in the geometry of this brane configuration. As shown in [22], this choice

of phase is equivalent to a choice of direction in the Rx4 + iRx5-plane in which to

separate the D3-branes. Thus, the requirement that mutually supersymmetric ’t Hooft

defects have the same choice of ζ is equivalent to the requirement that all NS5-branes

be parallel to each other and are perpendicular to the separation of the D3-branes in

the x4,5-directions. This is the geometric requirement for preserved supersymmetry.

Remark Note that this construction is fundamentally different from that of [83, 132]

in which singular monopoles are obtained by taking an infinite mass limit of smooth

monopoles – that is by sending a D3-brane with attached D1-branes off to infinity.
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This procedure corresponds to embedding the SU(N) SYM theory with singular

monopoles as the worldvolume theory of the first N D3-branes in a stack of N + 1 D3-

branes where the singular monopoles are identified with D1-branes stretched between

the N and (N + 1)th D3-brane. The limit then corresponds to taking an outermost

D3-brane in a stack of N + 1 D3-branes off to infinity. This creates a brane configura-

tion with semi-infinite D1-branes that are connected to a stack of N D3-branes whose

world volume theory is then described by SU(N) SYM theory with singular monopole

insertions at the semi-infinite D1-brane intersections. This process can be used to con-

struct line defects with arbitrary charge, by taking the limit as multiple defects become

coincident.

As we will discuss, the utility of this construction is that it is especially nice for

studying monopole bubbling [23].

5.1.1 SUSY vacua

Now let us study the supersymmetric vacua of this brane configuration. We will take

an approach similar to that of [57, 52] by analyzing the world volume theory of the

D1-branes. See [40, 38] for similar analysis of a T-dual configuration.

Low Energy Effective Theory

Consider the brane configuration in the Hanany-Witten dual configuration in which D1-

branes only end on NS5-branes.2 This brane configuration has p NS5-branes which we

will index by σ. These are localized at distinct points sσ in the x4-direction and at points

~x
(σ)
i in the x1,2,3-directions. We then have mσ D1-branes (indexed by i = 1, ...,mσ)

stretching between the NS5-branes at sσ and sσ+1. Each interval in between pairs of

NS5-branes contains some number of D3-branes (indexed by I = 1, ..., N) which lie at

2It was proven in [23] that this frame exists if we satisfy

pI ≥ 2mI , pI =
∑
n

p
(n)
I , p

(n)
I =

∑
n

(HI , Pn) =
∑

σ : ~xσ=~xn
hJ(σ)=hI

1 , (5.8)

While this is not a necessary condition, it will make the following analysis easier when considering
monopole bubbling. For the rest of this paper we will specify to the case where this condition is
satisfied.
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sσ=1

mσ=p-2

N-1

x4

x1,2,3

mσ=1 mσ=2 mσ=3 mσ=p-1

sσ=2 sσ=3 sσ=p-1 sσ=p

sσ=2<sI=1<sσ=1

Figure 5.2: This figure illustrates the Hanany-Witten frame of the brane configuration
in which we are studying the space of supersymmetric vacua of the wold volume theory
of D1-branes. Here there are mσ D1-branes (red) that end on the NS5-branes (⊗) at
x4 = sσ, sσ+1 and the D3-branes (black) give rise to fundamental domain walls at the
intersection with D1-branes x4 = sI .

distinct points x4 = sI . See Figure 5.2. We will also use the notation qσ to denote the

number of D3-branes in between the σth and (σ+ 1)th NS5-branes. This is summarized

in Table 5.1.

For purposes that will become clear later, we will wrap the x4-direction on a circle

so that the D1-branes stretch along the circle direction but do not wrap all the way

around. Thus, we will identify σ ∼ σ + p where mσ=p = 0.

We want to study the low energy effective theory on the D1-branes. This theory

is a two-dimensional N = (0, 4) quiver gauge theory with domain walls coming from

the interactions with D3- and NS5-branes. The D3-brane intersections will give rise

to fundamental walls, which introduce localized fundamental hypermultiplets from D1-

D3 strings. Similarly, the NS5-brane intersections will give rise to bifundamental walls,

which introduce localized bifundamental hypermultiplets from D1-D1 strings across the

NS5-brane as in [83]. Here the data of the brane configuration maps to the 2D SUSY

gauge theory as
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0 1 2 3 4 5 6 7 8 9

Rt R3 S1 R5

Coordinates x0 ~x s ~y

D3 − − − − sI 0

mσ D1 − ~x
(σ)
i [sσ, sσ+1] 0

NS5 − ~νσ sσ − − − − −

Table 5.1: This table specifies the brane configuration whose moduli space of super-
symmetric vacua is described by singular monopole moduli space.

• Gauge group: G =
∏
σ U(mσ) where each factor corresponds to an interval in the

x4-direction bounded by NS5-branes,

• FI-parameters in each interval are given by the ~νσ,

• The Higgs vevs for the U(mσ) factor is given by

~v (σ)
∞ =


~x

(σ)
1

~x
(σ)
2

. . .

 , (5.9)

up to a choice of ordering.

The action of the D1-brane world volume gauge theory is of the form

S = Sbulk + SFI + Sf + Sbf , (5.10)

where Sbulk is the bulk theory of the D1-branes, SFI are FI-deformations, Sf is the

contribution of fundamental walls (D3-branes), and Sbf is contribution of bifundamental

walls (NS5-branes).

The N = (0, 4) SUSY of the theory comes from the fact that the bulk theory of

the D1-branes (with the mass deformation) is described by a N = (4, 4) theory which

is then broken to N = (0, 4) by the boundary conditions of the D3- and NS5-branes.

The fact that the resulting SUSY is N = (0, 4) rather than N = (2, 2) can be deduced

by noting that the truncation breaks the R-symmetry of the D1-brane theory from

Spin(8)R → Spin(4)R ∼= SU(2)R,1 × SU(2)R,2 along the x1,2,3,5-directions. Then the

introduction of D3- and NS5-branes breaks Spin(4)R → Spin(3)R ∼= SU(2)R along the
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x1,2,3-directions. Then, since theories with N = (2, 2) SUSY have U(1)R,1 × U(1)R,2

symmetry whereas N = (0, 4) has SU(2)R symmetry, we can conclude that the total

theory has N = (0, 4) SUSY. See [165] for a review of N = (0, 4) SUSY.

The bulk theory of the D1-branes is described by 2D N = (4, 4) SYM theory. This

is composed of a N = (0, 2) vector-superfield V with superfield strength Σ, a Fermi

multiplet Ψ , and two chiral multiplets in the adjoint representation (Φ, Φ̃). Here the

vector and Fermi multiplets combine as a N = (0, 4) vector multiplet and the (Φ, Φ̃)

combine into aN = (0, 4) twisted hypermultiplet. These supermultiplets can be written

in terms of the component fields

V = (v0, vs, λ1, D) , Ψ = (λ2, F, EΨ (Φ)) ,

Φ = (φ1, ψ1, G1) , Φ̃ = (φ̄2, ψ̄2, Ḡ2) ,

(5.11)

where λA, and φA are SU(2)R doublets and Ma = (Re[F ], Im[F ], D) is a real SU(2)R

triplet. Here EΨ (Φ) is a superpotential which is a holomorphic function of all chiral

superfields of the theory. It receives the contribution EΨ = ...+ [Φ, Φ̃] from the twisted

N = (0, 4) hypermultiplet (Φ, Φ̃).

The bulk contribution to the total action is

Sbulk =
1

8g2

∫
dt ds d2θTr

{
Σ̄Σ + Ψ̄Ψ + Φ̄(D−)Φ+ ¯̃Φ(D−)Φ̃

}
, (5.12)

where

D− = ∂0 − ∂1 − iV , (5.13)

and the superfields are written explicitly as [165]

V = (v0 − v1)− iθ+λ̄1 − iθ̄+λ1 + θ+θ̄+D ,

Ψ = λ2 + θ+F − iθ+θ̄+(D0 +D1)λ2 − θ̄+EΨ (φ) + θ+θ̄+∂EΨ
∂φi

ψi ,

Φ = φ1 + θ+ψ1 − iθ+θ̄+(D0 +D1)φ ,

Φ̃ = φ̄2 + θ+ψ̄2 − iθ+θ̄+(D0 +D1)φ̄2 .

(5.14)

Under N = (4, 4) SUSY, these fields reorganize themselves into a single N = (4, 4)

vector-multiplet V = (v0, vs, X)i, χA, F,D) where the χA are a doublet of Dirac fermions
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and Xi (for i = 1, 2, 3, 5) are real scalar bosons that encode the fluctuations of the D1-

brane in the xi direction. The SUSY transformations of these fields are given by [29]

δAµ = iε̄Aγµχ
A − iχ̄AγµεA ,

δXa = iε̄A(σa)AB χ
B − χ̄A(σa)AB ε

B , a = 1, 2, 3 ,

δX5 = χ̄Aγcε
A − ε̄AγcχA ,

δχA = γµνF
µνεA − iγcγµεADµX5 + γµ(σa)AB ε

BDµXa +Ma(σ
a)AB ε

B .

(5.15)

Here γµ are the gamma matrices for Dirac fermions in 2D with γc = iγ0γ1 and (σa)AB

are the Pauli matrices for SU(2)R,1 ⊂ Spin(4)R. See [29] for a review on 2D N = (4, 4)

SYM.

In order to determine the vacuum equations of this theory, we will need to eliminate

the auxiliary fields Ma, which are dependent on the interaction of the N = (0, 4)

vector multiplet with all hypermultiplets in the theory. Here the N = (0, 4) (twisted)

hypermultiplet in the N = (4, 4) vector multiplet (Φ, Φ̃), has a non-trivial coupling to

the F - and D-fields given by

δSbulk
δMa

= 2Ma + εabc[Xb, Xc] . (5.16)

Now we will consider the contribution to the action SFI , which encodes the super-

symmetric FI-deformations to the theory. This is given by

SFI =

∫
dt ds Tr

{
ν3(s)

∫
d2θ V + ν̄(s)

∫
dθ+ Ψ + c.c.

}
, (5.17)

where ν(s) = ν1(s) + iν2(s) ∈ C are constant on the interval (sσ, sσ+1). These couple

to the F- and D-terms:

δSFI
δD

= ν3(s)1 ,
δSFI
δF

= ν(s)1 . (5.18)

Now let us consider the contributions to the action from the fundamental domain

walls Sf . This contribution gives rise to N = (0, 4) hypermultiplets restricted to the

world volume of the domain walls. By nature of preserving the Spin(3)R symme-

try associated to the rotations of the x1,2,3-directions, this boundary theory preserves

the SU(2)R,1 R-symmetries. Take the N = (0, 4) hypermultiplet describing the Ith
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fundamental domain wall theory to be described by a doublet of fundamental chiral su-

perfields in conjugate gauge representations, (Q1I ,Q2I), with constituent bosonic fields

(Q1I , J1I) and (Q2I , J2I) respectively. The corresponding contribution to the total ac-

tion is

Sf =
1

2

N∑
I=1

∫
dt

∫
d2θ

(
Q̄1IDtQ1I + Q̄2IDtQ2I

)
, (5.19)

where Dt = ∂0 ± iV where V acts in the appropriate representation.

The localized hypermultiplet fields additionally contribute to the E-term for the

Fermi superfield Ψ as

EΨ = ...+
1

2

N∑
I=1

δ(s− sI)Q1IQ2I . (5.20)

The hypermultiplet fields also couple to the F- and D-terms as

δSf
δD

=
1

2

N∑
I=1

(Q̄2IQ2I −Q1IQ̄1I)δ(s− sI) ,
δSf
δF1

=

N∑
I=1

Q1IQ2Iδ(s− sI) , (5.21)

which have the effect of adding boundary terms to the supersymmetry transformations

and vacuum equations.

Now consider the contribution of bifundamental domain walls Sbf . In analogy with

the fundamental domain walls, bifundamental domain walls give rise to N = (0, 4)

bifundamental hypermultiplets on a domain wall preserving the same supersymmetry.

This can be written in terms of two chiral superfields in conjugate representations

(B1σ,B2σ) with constituent bosonic fields (B1σ, L1σ) and (B2σ, L2σ). These are de-

scribed by the action

Sbf =
1

2

p∑
σ=1

∫
dt Tr

∫
d2θ

(
B̄1σD̃tB1σ + B̄2σD̃tB2σ

)
, (5.22)

where D̃t = ∂t ± i
(
V (sRσ ) − V (sLσ )

)
as appropriate to the representation. Here we use

the notation Λ(sL,Rσ ) = lims→s±σ Λ(s) for any superfield Λ.

The bifundamental hypermultiplets additionally contribute to the E-term for the

Fermi superfield Ψ as

EΨ = ...+
1

2

p∑
σ=1

B1σB2σδ(s− sRσ−1) + B2σB1σδ(s− sLσ ) , (5.23)
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and couple to the F- and D-terms as

δSbf
δD

=
1

2

p∑
σ=1

(B̄1σB1σ −B2σB̄2σ − ν3σ)δ(s− sLσ )

+ (B1σB̄1σ − B̄2σB2σ + ν3σ)δ(s− sRσ−1) ,

δSbf
δF

=

p∑
σ=1

B1σB2σδ(s− sRσ−1) +B2σB1σδ(s− sLσ ) .

(5.24)

Again, these contributions can be interpreted as adding boundary terms to the super-

symmetry transformations and vacuum equations.

Vacuum Equations

Now we can determine the vacuum equations by examining the SUSY variations of the

bulk fields as in (5.15). Since the domain walls break SUSY to N = (0, 4), we only

impose half of supersymmetries of the bulk theory. The conserved supercharges are

those generated by

εA = γµεA . (5.25)

For these transformations, the contribution to the SUSY variation of the action from

the FI-parameters away from the boundaries can be absorbed by making the shift

X3 7→ X3 −
∫ sσ+1

sσ

ds ν3(s) , X1 + iX2 7→ X1 + iX2 −
∫ sσ+1

sσ

ds ν(s) . (5.26)

This transformation, as in [40, 38], shifts the bulk dependence of the FI-parameters to

boundary dependence at the bifundamental domain walls where the FI-parameter is

discontinuous. By choosing the axial gauge A0 = 0, the stationary vacuum equations

become

(σa)ABε
B (D1Xa +Ma) = 0 . (5.27)
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By integrating out the auxiliary fields we see that this reduces to a triplet of equations

which can be written as a real and complex equation:

0 = D1X3 +
i

2
[X, X̄] +

1

2

N∑
I=1

(Q̄2IQ2I −Q1IQ̄1I)δ(s− sI)

+
1

2

p∑
σ=1

(B̄1σB1σ −B2σB̄2σ − νσ3 )δ(s− sLσ ) + (B1σB̄1σ − B̄2σB2σ + νσ−1
3 )δ(s− sRσ−1) ,

0 = D1X + i[X3, X]−
N∑
I=1

Q1IQ2Iδ(s− sI)

+

p∑
σ=1

(B1σB2σ − νσ)δ(s− sLσ ) + (B2σB1σ − νσ)δ(s− sRσ−1) ,

(5.28)

where X = X1 + iX2.

Under the identifications

Ta = Xa , Ix = Q1I , Jx = Q2I ,

~νe = ~νσ , BLR
e = B1σ , BRL

e = B2σ ,

(5.29)

the SUSY vacuum equations (5.28) can be rewritten as the Nahm equations for the

bow construction of instantons (2.70). Therefore, we can identify the moduli space of

supersymmetric vacua Mvac with a moduli space of instantons on multi-Taub-NUT

Mbow.

Now by studying the identification (5.29), we can determine the data of the corre-

sponding bow variety. The ranks R(ζ) can be read off from the ranks of the {Xa} = {Ta}

which correspond to the ranks of the gauge group of the 2D theory in the different

chambers. Further, we can identify the fundamental walls with x ∈ Λ and similarly

the bifundamental walls with e ∈ E . By identifying the bow variety Mbow with the

moduli space of instantons on Taub-NUT, we see that the number of fundamental

walls correspond to the rank of the 4D gauge group and the number of bifundamental

walls correspond to the number of Taub-NUT centers. In this identification, the FI

parameters are mapped to the position of the positions of the NUT centers.

In summary, we can match the data of the brane configuration to that of instantons

on multi-Taub-NUT by specifying
(
E , Λ, I, {~νe}, {R(ζ)}

)
by identifying:
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• The number of edges, |E| = p, with the number NUT centers on multi-Taub-NUT:

p =
∑

I,n p
(n)
I where p

(n)
I = |{e(I)

σ ∈ E | ~ν (I,σ) = ~xn}|,

• The total number of marked points, |Λ| = N , with (one plus) the rank of the

gauge group G: SU(N),

• The numbers R(ζ
(i)
σ ) = mσ with the Chern classes of the instanton bundle (note

that one of the R(ζ
(i)
p ) = 0),

• The hyperkähler moment parameters ~νσ = (ν
(σ)
1 , ν

(σ)
2 , ν

(σ)
3 ) with the positions of

the different NUT centers: ~xσ,

• The holonomy of the gauge field exp
{

1
2π

∮
S1∞

A
}

= exp
{
X∞
2πR′

}
, where R is the

radius of the S1 at infinity and R′ = 1/R.

Note that this is simply the bow variety specified by identifying marked points xI

with D3-branes, edges eσ with NS5-branes, and the wavy lines ζ
(i)
σ (i = 1, ..., 1 + qσ)

with (stacks of) D1-branes in the dual Hanany-Witten frame. Further, the positions of

the NS5-branes in the x1,2,3-directions are identified with the FI parameters ~νσ = ~xσ

and the numbers of D1-branes {mσ}, are identified as the R(ζ
(i)
σ ) = mσ. In this setting,

Hanany-Witten bow isomorphisms correspond to Hanany-Witten transformations of the

brane configuration. Thus, as we would expect, the bow variety that we have derived

describes the moduli space of supersymmetric vacua of the original brane configuration

as in Figure 5.1.

This bow variety is also the same bow variety derived in [23] that describes (re-

ducible) singular monopole moduli space from using Kronheimer’s correspondence.

Therefore, we can indeed identify the moduli space of supersymmetric vacua of the

brane configuration with reducible singular monopole moduli space with the data

Pn =
∑
I

p
(n)
I hI , γ̃m =

∑
I

mIHI , (5.30)

where the Higgs vev is defined by the holonomy

exp

{
1

2π

∮
S1∞

A

}
= exp

{
X∞
2πR′

}
, (5.31)
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where R′ = 1/R is the dual radius of S1
∞. This leads us to the conclusion that the

brane configuration we have presented does indeed describe ’t Hooft defects in 4D

SU(N) N = 2 gauge theories.

5.1.2 Monopole Bubbling

Thus far we have presented analysis showing that the moduli space of supersymmetric

vacua of the brane configuration matches that of the moduli space of reducible singular

monopoles. However, since there is very little known about the singularity structure

of singular monopole moduli space, it is difficult to see that this analysis extends to

include the bubbling configurations describing such singular configurations.

In this setup, monopole bubbling occurs when a D1-brane becomes spatially coin-

cident with and intersects an NS5-brane. One may be worried that at the intersection

with NS5-branes, the interpretation of the brane configuration breaks down. However,

there are several reasons that suggest the opposite. First, the bubbling locus reproduces

the correct effect on the bulk dynamics. Specifically, as argued in [23], one can adapt

the computation from [39] to show that the ’t Hooft charge is appropriately screened

during monopole bubbling.

Additionally, although bubbling involves an intersection of a D1-brane with an NS5-

brane, the bubbling configurations are actually non-singular. Specifically, we can go to

the Hanany-Witten frame in which all of the NS5-branes are localized at distinct x4
σ <

v1. In this case, bubbling D1-branes will at most make them coincident with another

D1-brane created by pulling NS5-branes through a D3-brane. See Figure 5.3. Further,

notice that in studying the supersymmetric vacua, there is no obstruction to describing

the singular locus of monopole moduli space. Therefore, it is not unreasonable to

conjecture that this brane configuration gives a good description for monopole bubbling.

In fact, this brane configuration has actually been shown to reproduce some key data

of singular monopole moduli spaces. In [23] it is shown that this brane configuration

reproduces the structure of the bubbling locus (2.96) of reducible singular monopole

moduli space M̂ [142]. This can be seen as follows.

Consider the case of the N = 2 SU(2) SYM theory. This can be described by the
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1 2 3 N-1 N

NS5

D3 D3 D3 D3 D3

Figure 5.3: This figure describes a Hanany-Witten dual frame of the brane configuration
in which monopole bubbling appears to be a non-singular process. In this figure we
can see that bubbling of the finite D1-branes (blue) occur when they become spatially
coincident with the NS5-brane (and associated D1-branes in red) in the x1,2,3-directions.
Here, one can see that in this frame, bubbling is non-singular as it corresponds to at
most coincident D1-branes.

above brane configuration as explained above by adding a large mass deformation. Now

consider adding a single reducible ’t Hooft defect localized at the origin with charge

P = p1h
1 , (5.32)

where there are k1 ≤ m1 bubbled D1-branes such that 2k1 ≤ p1. Now to study

monopole bubbling, consider only the bubbled D1-branes in addition to the D3- and

NS5-branes. We can now perform a sequence of Hanany-Witten moves to go to the

dual frame in which D1-branes only end on NS5-banes.3 See Figure 5.4.

Now the D1-brane world volume theory is given by a quiver SQM described by the

quiver Γ (P,~v):

1 2 3 k1-1 k1 k1 k1-1 3 2 1

1 1

10

where the node of degree k1 is repeated p1 − 2k1 + 1-times. This SQM has a moduli

3Note that this exists because 2k1 ≤ p1. See [23] for a proof.
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space of supersymmetric vacua given by MSQM (Γ (P, v)). 4

Similarly, one can go through the exercise to determine the quiver SQM for monopole

bubbling inN = 2 SYM theory. Let us consider monopole bubblng of the ’t Hooft defect

with charge

P =
∑
I

pIh
I , (5.33)

in the case where the magnetic charge of the bubbled monopoles is given by

γ(bubbled)
m = P − v =

∑
I

kIHI . (5.34)

This brane configuration corresponds to a stack of N (separated) D3-branes with pI

spatially transverse NS5-branes in between the D3I - and D3I+1-branes. The bubbling

corresponds to setting kI D1-branes that run between the D3I - and D3I+1-branes to

be spatially coincident (in the x1,2,3-directions) with the NS5-branes. In this case, the

bubbling SQM can be determined by going to the dual Hanany-Witten frame in which

the bubbled D1-branes only end on NS5-branes. In this frame the SQM is again a quiver

gauge theory describing the effective world volume theory of the D1-branes given by

the quiver Γ (P, v):

Γ0,1 Σ1 Γ1,2 Σ2 Γ2,3 ΣN−1 ΓN−1,N

13

where the sub-quivers ΣI are given by

4There is also an additional special consideration when p1 = 2k1. In this case the quiver is given by

1

2

1
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pI pI pI pI

ωI,I−1 ωI,I+1

=ΣI

14

where ΣI is of length

|ΣI | = nI + 1− |pI+1 − pI |ωI,I+1 − |pI−1 − pI |ωI,I−1 , ωi,j =


0 pI ≤ pj

1 pI > pj

(5.35)

while the sub-quiver ΓI,I+1 is given by (with p0 = 0 and pN = 0)

pI + 1 pI + 2 pI+1−2 pI+1−1=ΓI,I+1

15

when pi < pI+1 and

pI − 1 pI − 2 pI+1+2 pI+1+1=ΓI,I+1

16

when pI > pI+1.5

Here the subquivers ΓI,I+1 come from NS5-branes that change chambers in going

to the magnetic Hanany-Witten frame and the subquivers ΣI correspond to the NS5-

branes which do not. Moving NS5-branes to the left or right across the D3I+1-brane

(determined by the ordering of pI , pI+1) will give rise to an increasing or decreasing

5There are again some special cases for the above quiver:

• pI = pI+1: there is no ΓI,I+1 quiver connecting ΣI and ΣI+1, but rather the last node of ΣI is
identified with the first node of ΣI+1. Note that in this case |ΣI +ΣI+1| = |ΣI |+ |ΣI+1| − 1.

• pI = pI+1 ± 1: ΓI,I+1 is omitted and ΣI is directly connected to ΣI+1.

• |ΣI | = 1: there is a single gauge node of magnitude pI with two fundamental hypermultiplets.
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k1 k1

p1

k1
1 2 3 2 1

-v1

x1,2,3

x4

v1 v1-v1

(a) (b)

m1-k1

Figure 5.4: This figure shows the two Hanany-Witten frames of our brane configuration
that we are considering: (a) the standard frame and (b) the Hanany-Witten “dual
magnetic” frame (with the unbubbled monopoles removed).

ΓI,I+1 respectively and additionally endows the ΣI+1 or ΣI subquiver respectively with

a fundamental hypermultiplet on the gauge node of the adjacent end. This combination

of the ordering of pI , pI+1 and pI , pI−1 and their corresponding hypermultiplet nodes

give rise to 4 different types of Σi subquivers.

Thus, this brane configuration shows that there is a SQM of bubbled monopoles

living on the world line of the ’t Hooft defect which indicates how the singular strata

in (2.96) are glued into the full moduli space. Specifically, the moduli space of super-

symmetric vacua of this 1D quiver SQM MSQM (Γ (P, v)) defines the transversal slice

of each singular strata M(P, v) in (2.96).

Additionally, this construction has also been shown to reproduce exact quantum

information about monopole bubbling by using localization. We will discuss the details

of this computation in Chapter 6. However, the results therein provide a powerful

verification that this brane configuration can be used to generally study monopole

bubbling and further, it also suggests that monopole bubbling is itself a semiclassical

effect.

5.1.3 Kronheimer’s Correspondence and T-Duality

Notice that the above identification of singular monopole moduli space with the mod-

uli space of the supersymmetric vacua of the D1/D3/NS5-brane configuration relies

crucially on Kronheimer’s correspondence. This suggests an interesting relationship

between Kronheimer’s correspondence and T-duality which we will now explore.

Consider a general reducible singular monopole configuration with a reducible ’t
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Hooft defect in N = 2 SU(N) SYM theory subject to the constraint (5.8). Now

“resolve” the configuration by pulling apart all of the defects into minimal ’t Hooft

defects localized at ~xσ ∈ C which are indexed by σ.

By Kronheimer’s correspondence this is dual to U(1)K-invariant instantons on Taub-

NUT where the lift of the U(1)K action to the gauge bundle around any NUT center

is given by

lim
~x→~xσ

g(~x;α) = eih
I(σ)α , α ∈ U(1)K , hI(σ) ∈ Λcochar , (5.36)

where Pσ = hI(σ). Further, the first Chern class of the gauge bundle is given by

γ̃m =
∑
I

mIHI , (5.37)

and the Higgs vev is given in terms of the holonomy of the gauge field around the circle

at infinity6

exp

{
1

2π

∮
S1∞

Â

}
= exp

{
X∞
2πR′

}
, (5.38)

where R′ = 1/R is the dual radius of S1
∞.

This gauge theory configuration can be embedded in the world volume theory of

D4-branes wrapping TNp. Having resolved the singularities coming from the coincident

NUT centers, we can study the behavior of the T-dual brane configuration. T-dualizing

along the circle fiber of TNp then takes this configuration to a theory describing the

world volume of D3-branes with some collection of NS5-branes (from NUT centers) and

D1-branes from the D0-brane instantons. in the presence of D1- and NS5-branes.

We can then take the coincident limit of the NUT centers. Assuming that T-duality

commutes with the resolving and taking the coincident limit of the NUT centers, we

find that the T-dual brane configuration of D1/D3/NS5-branes coincides with the brane

configuration that we have presented for reducible singular monopoles. However, before

proceeding with the technical details of this calculation, we will first motivate this result.

6 Here this equation is only strictly true if we take X∞ to be a periodic scalar field, which in
decompactifying the T-dual S1 → R we allow to be a t-valued scalar.
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Action of T-Duality on Fields

Let us consider the action of T-duality on gauge field configuration describing a U(1)K-

invariant instanton on TNp in the 4D N = 2 SYM theory. Near each NUT center, the

gauge field can be written in the U(1)K-invariant gauge

Â = AR3 + ψ(dξ + ω) , (5.39)

where

lim
~x→~xσ

AR3 = Pσ ω~xσ , lim
~x→~xσ

ψ = −Pσ . (5.40)

Again we will use the notation

ds2 = V (~x)d~x · d~x+ V −1(~x)(dξ + ω)2 , (5.41)

where

V (~x) = 1 +
∑
σ

1

2|~x− ~xσ|
, dω = ∗3dV , dω~xσ = ∗3d

(
1

2|~x− ~xσ|

)
. (5.42)

In T-dualizing, Buscher duality tells us that the term V −1(~x)(dξ + ω)2 in the metric

generates a non-trivial B-field source at the positions of the NUT centers. This indicates

the existence of NS5-branes in the transverse space at the position of the NUT centers in

the x1,2,3-directions. Additionally, since the S1 fiber has radius 1/
√
V , under T-duality,

the one form roughly transforms as

ψ(~x)dξ = ψ(~x)
√
V

(
dξ√
V

)
7→ ψ(~x)V dξ′ = Xdξ′ . (5.43)

This leads to the standard Higgs field X and connection AR3 in (3+1)D that satisfy the

Bogomolny equation. Additionally, from the limiting forms of (AR3 , ψ) in (5.40) and

the form of the harmonic function (5.42), one can see that these fields have the limiting

form

lim
~x→~xσ

AR3 = Pσω , lim
~x→~xσ

V (~x)ψ(~x) = − Pσ
2|~x− ~xσ|

, (5.44)

which is exactly the ’t Hooft boundary conditions at ~xσ. Therefore, from the field

perspective, it clear that T-duality maps U(1)K-invariant instanton configurations on

TNp to singular monopole configurations on R3.
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Note that the other bosonic fields of the (3+1)D theory A0, Y (where ζ−1Φ = Y +iX

is the standard complex Higgs field) come from the five-dimensional gauge field along

the x0-direction and the 5D Higgs field describing the D4-branes in the x5-direction

and hence do not play a role in T-duality.7

String Theory Analysis

As described in [177], instantons in the world volume theory of a stack of D4-branes

wrapping TNp are T-dual to a brane configuration described by D1-, D3-, and NS5-

branes. Here we will apply the analysis of [177] to the D1/D3/NS5-brane configuration

to study how it behaves under T-duality. Here we will find that the brane configuration

of D1/D3/NS5-branes proposed above is T-dual to the corresponding U(1)K-invariant

instanton configuration on TNp given by Kronheimer’s correspondence [108].

Consider the D1/D3/NS5-brane configuration in the Hanany-Witten duality frame

where D1-branes only end on NS5-branes as in Figure 5.2. 8 In this case we have p

NS5-branes (indexed by σ) with mσ D1-branes running from the σth to the (σ + 1)th

NS5-brane and qσ D3-branes in between the σth and (σ+1)th NS5-branes. Now wrap the

x4-direction on a circle. T-duality along the x4-direction then maps: 1.) the collection

of p NS5-branes into a transverse TNp [147, 82], 2.) the stack of D3-branes to a stack of

D4-branes wrapping the TNp, and 3.) the D1-branes to some instanton configuration

of the gauge bundle living on the D4-branes.

In order to specify the T-dual brane configuration we need to specify how the num-

bers and positions of the branes are reproduced by the instanton brane configura-

tion. The number and positions of the NS5-branes are encoded in the B-field of the

D1/D3/NS5-brane configuration. Since the NS5-branes are charged under the B-field,

T-dualizing them give rise to a NUT center (due to Buscher duality) at the previous

location of the NS5-brane in the x1,2,3-directions. Thus, the relative positions of the

7Note that we are truncating the standard 5D N = 2 SYM theory to a N = 1 theory by projecting
out fluctuations in the x6,7,8,9-directions by including a large mass deformation as before.

8Recall that we are imposing the condition (5.8) so that there exists a magnetic Hanany-Witten
duality frame.
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NS5-branes on the T-duality circle is encoded by the cohomology class of the B-field.9

This can be measured by its period integrals

θσ − θσ′ =

∫
Cσσ′

B

2π
, (5.45)

where θσ is the position of the σth NS5-brane along the x4-direction [147, 82]. Here

we have identified the homology cycles Cσσ′ as follows. Given an ordering of the NS5-

branes, there is a natural basis of H2(TNp;Z) given by {Cσσ+1} where Cσσ+1 is defined

as the preimage under the projection map π : TNp → R3 of the line running between

the NUT centers corresponding to the NS5σ-brane and NS5σ+1-brane in the base R3.

Here we identify σ ∼ σ + p. We then define Cσσ′ as the homology cycle

Cσσ′ =
σ′−1∑
ρ=σ

Cρρ+1 , (5.46)

where we have assumed σ > σ′. This is topologically equivalent to the cycle defined

by the preimage of the line running between the NUT centers corresponding to the

NS5σ-brane and the NS5σ′-branes.

The rest of the data of the brane configuration is encoded in the gauge bundle

through the instanton configuration [177]. In order to specify the class of the instanton

bundle corresponding to the T-dual brane configuration, one must specify the first

Chern class, second Chern class, and the holonomy of the connection.10 The first Chern

class is valued in H2
cpt(TNp;Z). These elements can be understood in the following

fashion. H2
cpt(TNp;Z) is naturally isomorphic to H2(TNp;Z) by Poincaré duality. Using

the basis of H2(TNp;Z) above, we can identify the homology cycles {Cσσ+1} with basis

elements {bσσ+1} of H2
cpt(TNp;Z). We can then identify a sequence of p numbers,

{fσ : σ = 1, ..., p} to an element of H2
cpt(TNp;Z) as

B =
σ∑

(fσ+1 − fσ) bσσ+1 . (5.47)

In this setup, [177] determined that the first Chern class of the instanton bundle is

given by the corresponding element of H2
cpt(TNp;Z) determined by the sequence of p

9Note that this is the relative positions as the absolute positions along the T-duality S1 is a gauge
dependent.

10That is to say, we specify the data of the relevant instanton moduli space. See [177] for more
details.
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numbers given by the linking numbers of the p NS5-branes: {`σ : σ = 1, ..., p} where

`σ = mσ −mσ−1 + qσ . (5.48)

In [177], the author also computed the 2nd Chern character of the instanton bundle

V → TNp ∫
ch2(V ) = m0 , (5.49)

where m0 is the number of D1-branes running between the NS5p-brane and the NS51-

brane (recall that the NS5-branes are separated along a circle). In our case, we have

m0 = 0.

In order to completely specify the instanton bundle, we also need to specify the

holonomy of the gauge connection. In the 5D gauge theory, the monodromy along the

S1 fiber at infinity encodes the positions of the D3-branes: 11

U∞ = diag (exp(is1/R), exp(is2/R), ..., exp(isN/R)) . (5.51)

Given this data of the instanton bundle and B-field configuration, we can completely

determine the T-dual brane configuration of D1/D3/NS5-branes. Now by taking the

coincident limit of the appropriate NUT centers, we arrive at the T-dual brane config-

uration for reducible ’t Hooft defects.

In order to complete this discussion, we need to understand the action of U(1)K on

the T-dual instanton configuration. Under T-duality, translation along the T-duality

circle (the action of U(1)K) maps to non-trivial abelian gauge transformations in the D1-

brane world volume theory along the x4-direction in D1/D3/NS5-brane configuration.

However, since the branes do not wrap all the way around the x4-direction, any such

gauge transformation can be undone by a trivial gauge transformation. Therefore, this

brane configuration will be dual to a U(1)K-invariant instanton configuration on TNp.

11Here when we take the decompactification radius we take R → ∞ and the sI → ∞ such that
sI/R→ vI where the Higgs vev of the 4D theory is given by

X∞ =

N−1∑
I=1

(vI+1 − vI)HI . (5.50)
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T-duality and Line Bundles

We will now show explicitly that T-duality exchanges singular monopole configurations

with the U(1)K-invariant instanton solution given by Kronheimer’s correspondence.

Consider SU(N) N = 2 SYM theory with a collection of reducible ’t Hooft defects

{Pn, ~xn} such that

Pn =
∑
I

p
(n)
I hI , (5.52)

where hI are simple cocharacters. Additionally, let us allow for some collection of far

separated smooth monopoles with total charge

γm =
∑
I

mIHI , (5.53)

that are indexed by i = 1, ...,
∑

I m
I with fixed positions ~xi ∈ R3 and charges HI(i)

where HI , HI(i) are simple coroots.

Now let us resolve the defects by pulling them apart into constituent minimal ’t

Hooft defects index by σ = 1, ..., p =
∑

n,I p
(n)
I with charges hI(σ) located at ~xσ. The

corresponding brane configuration is T-dual to a gauge theory on multi-Taub-NUT

with p NUT centers located at {~xσ}pσ=1 and U(1)K invariant instantons that are far

separated at positions {~xi}. Due to the holonomy of the gauge bundle, the Chan-Paton

bundle asymptotically12 splits as a direct sum of line bundles

T =
N⊕
I=1

RI . (5.54)

These line bundles can be decomposed as a tensor product of line bundles that are each

individually gauge equivalent to a canonical set of line bundles which can be defined as

follows.

Choose the NUT center at position ~xσ. Now choose a line Lσ from ~xσ to ∞ which

does not intersect any other NUT centers. Define Cσ = π−1(Lσ) to be the preimage

of this line. To this infinite cigar we can identify a complex line bundle L~xσ with

12Here by asymptotically we mean at distances sufficiently far from any instanton. Specifically, we
are interested in the behavior at infinity and arbitrarily close to the NUT centers. This can be seen
from the perspective of singular monopole configurations because the gauge symmetry is broken at
infinity by the Higgs vev and at the ’t Hooft defects by their non-trivial boundary conditions [100].
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connections

Λ~xσ = − dξ + ω

2|~x− ~xσ|V (~x)
+

1

2
ω~xσ , dω~xσ = ∗3d

(
1

|~x− ~xσ|

)
. (5.55)

This family of line bundles can be extended to include connections associated to arbi-

trary points ~xi 6= ~xσ

Λ~xi = − dξ + ω

2|~x− ~xi|V (~x)
+

1

2
ω~xi , dω~xi = ∗3d

(
1

|~x− ~xi|

)
. (5.56)

Under a B-field gauge transformation, the Chan-Paton bundle T transforms as

T 7→ T ⊗ LΛ , B 7→ B + dΛ , (5.57)

where LΛ is the line bundle with connection given by Λ.

These connections have the property that∫
Cσ

dΛ~xρ
2π

= Cσρ , (5.58)

where Cσρ is the Cartan matrix of Ap−1.

We can additionally define the topologically trivial line bundle

L∗ =

p⊗
σ=1

L~xσ , (5.59)

where L~xσ is a line bundle with connection which is gauge equivalent to Λ~xσ as above.

This line bundle is topologically trivial because its periods are trivial due to the prop-

erties of the Cartan matrix.

Since this is a topologically trivial line bundle,13 we can also define Lt∗ with connec-

tion

Λ
(t)
∗ = t

p∑
σ=1

Λ~xσ = t
dξ + ω

V (x)
, t ∈ R

/
2πZ . (5.60)

These connections have the limiting forms

lim
~r→~xi

Λ∗ → 0 , lim
~r→~xi

Λ~xi → −
1

2
ω~xi , lim

~x→~xσ
Λ~xσ → −

1

2
ω~xσ ,

lim
~r→∞

Λ∗ → (dψ + ω) , lim
~r→∞

Λ~xi →
1

2
ω , lim

~r→∞
Λ~xσ → −

1

2
ω ,

(5.61)

13This is trivial in the sense that the canonical pairing of the curvature with any closed 2-cycle is
trivial.
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where all other limits are finite. Here ω~xi is the Dirac potential centered at ~xi. This

tells us that Λ
(t)
∗ has non-trivial holonomy along the asymptotic circle fiber∮

S1∞

Λ
(t)
∗ = 2πt , t ∼ t+ 1 . (5.62)

Therefore, this component of the Chan-Paton bundle describes the Higgs vev X∞ of

the T-dual brane configuration (5.68). Additionally, these asymptotic forms tell us that

Λ~xi is an asymptotically flat connection except near ~xi ∈ R3 where it can be smoothly

continued in exchange for inducing a non-trivial first Chern class.

Using this, the factors of the Chan-Paton (gauge) bundle of the T-dual brane con-

figuration are given by

RI = LsI/2πR∗
⊗

σ : I(σ)=I

L−1
~xσ

⊗
j : I(j)=I

L~xj
⊗

k : I(k)=I+1

L−1
~xk

, (5.63)

where here the j = 1, ..,mI and k = 1, ...,mI+1 index smooth monopoles with magnetic

charge HI and HI+1 respectively where mN = m0 = 0. Note that this reproduces the

expression (5.51) where again sI is the position of the ith D3-brane along the x4 circle

before decompactifying.

The above decomposition of the Chan-Paton bundle is non-trivial and can be de-

duced by studying Hanany-Witten transformations. Consider the brane configuration

where there is a single D3-brane localized at s = 0 along the x4 circle with p NS5-branes

at distinct, non-zero positions {s = yσ 6= 0} along the x4 circle direction. We can choose

a background B-field such that the Chan-Paton bundle of the D3-brane is trivial. Now

move the D3-brane around the circle in the clockwise direction. Before the D3-brane

intersects an NS5-brane, the Chan-Paton bundle is trivial and of the form

R = Ls/2πR∗ . (5.64)

As shown in [177], when the D3-brane intersects an NS5-brane at s = yσ, the Chan-

Paton bundle can jump by a factor of L−1
~xσ

. This reflects the fact that the Hanany-Witten

transition creates a D1-brane which ends on the D3-brane (thus inducing the factor of

L−1
~xσ

). Thus by moving the D3-brane around the circle to the point s, the Chan-Paton

bundle is of the form

R = Ls/2πR∗
⊗

σ : yσ<s

L−1
~xσ

. (5.65)
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Note that when the D3-brane moves around the entire circle, the Chan-Paton bundle is

again trivial because the s→ s+2πR is canceled by the overall factor of
⊗

σ L−1
~xσ

= L∗.

Therefore, each D1-brane that ends on a D3-brane contributes a factor of (L~xσ)±1

to its Chan-Paton bundle depending on orientation. This decomposition allows us to

determine the cohomology classes of the line bundles in the asymptotic decomposition

of the Chan-Paton/gauge bundle, thus giving the result (5.63).

This form of the Chan-Paton bundle corresponds to an instanton configuration with

connection that is asymptotically of the form

Â = diag(Λ1, ..., ΛN ) , (5.66)

where

ΛI = Λ
(sI/2πR)
∗ +

∑
σ : I(σ)=I

Λ~xσ −
∑

j : I(j)=I

Λ~xj +
∑

j : I(j)=I+1

Λ~xj , (5.67)

up to gauge equivalence. Because the connections are hyperholomorphic, this connec-

tion indeed describes an instanton configuration.

Now we can take the coincident limit of the appropriate NUT centers – this cor-

responds to reconstructing the reducible ’t Hooft defects in the D1/D3/NS5-brane

configuration. Since T-duality commutes with the movement of the NUT centers or

NS5-branes appropriately, we can conclude that the coincident limit of NUT centers

is the T-dual configuration corresponding to the D1/D3/NS5-brane configuration with

reducible ’t Hooft defects.

Using the asymptotic forms of the individual connections, we see that the connection

Â has the limiting form exactly given by

Â = A+ ψ(x)(dξ + ω) , (5.68)

such that

dA = ∗3d
(
V ψ
)

, lim
~x→~xσ

V (x)ψ(x) = − Pσ
2|~x− ~xσ|

, lim
r→∞

V (x)ψ(x) = X∞ −
γm
2r

,

(5.69)

to leading order.14 This is an exact match with Kronheimer’s correspondence [108].

14 Note that we had to take the decompactification limit as described in Footnote 6 which requires
scaling the sI with R′ = 1/R→∞.
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Therefore, Kronheimer’s correspondence for our brane configurations acts as T-duality.

5.2 Irreducible Monopoles

Now by using the fact that Kronheimer’s correspondence is equivalent to T-duality in

the previous section, we can try to generalize this picture to include a description of

non-minimal irreducible ’t Hooft defects.15 The idea will be to first describe irreducible

singular monopoles as U(1)K-invariant instantons on Taub-NUT through Kronheimer’s

correspondence, embed it into string theory as in the previous section, and then T-

dualize to arrive at a brane configuration describing singular monopoles in R3.

We expect this to work a priori because the field theoretic arguments we made

before in Section 5.1.3 made no reference to whether the ’t Hooft defect in question

was reducible or irreducible. Thus we can expect that T-duality will more generally

map U(1)K-invariant instantons with U(1)K-lift defined by P ∈ Λcochar to singular

monopole configurations with ’t Hooft charge P . Further, the fact T-duality maps be-

tween families of configurations with isomorphic moduli spaces matches the fact that

Kronheimer’s correspondence states that the moduli space of U(1)K-invariant instan-

tons whose action is defined by P ∈ Λcochar is isomorphic to the singular monopole

moduli space defined by the ’t Hooft charge P .

However, we expect this to produce a different brane configuration as compared to

reducible ’t Hooft defects because U(1)K-invariant instantons on multi-Taub-NUT can

differentiate between irreducible and reducible ’t Hooft defects through the combined

data of the U(1)K action and the NUT charge. The NUT charge is defined as the Hopf

charge of the TNp

∣∣
S2
σ,ε
→ S2

σ,ε over an infinitesimal 2-sphere of radius ε around a NUT

center at ~xσ which can additionally be determined by the coefficient of the term 1
2|~x−~xσ |

in the harmonic function of the metric. Note that this changes as we take the limit as

~xσ′ → ~xσ as in the case of reducible ’t Hooft defects.

Now we can use the framework from the previous section to explicitly construct the

Chan-Paton bundle in the case of an irreducible ’t Hooft defect. This allows us to easily

15Here we mean ’t Hooft defects associated to a ’t Hooft charge P ∈ Λcochar which are S-dual to a
Wilson line of irreducible representation of highest weight P ∈ Λwt(G∨).
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1 2 3 N-1 N

p1 p2 p3 pN-1

Figure 5.5: In this figure we show how to construct the string theory embedding of a
SU(N) irreducible ’t Hooft operator of charge P =

∑
I pIh

I .

control the lift of the U(1)K action and NUT charge separately and distinguish between

the reducible and irreducible cases. This will allow us to give a complete description of

the instanton configuration and its T-dual brane configuration for the case of generic

NUT charge and U(1)K-action.

In summary, we will find that in a particular Hanany-Witten frame, an irreducible

singular SU(N) monopole at ~xn ∈ R3 with ’t Hooft charge

P =
∑
I

pIh
I , (5.70)

will be given by a single NS5-brane connected to the (I + 1)th D3-brane in a stack of

N D3-branes by pI D1-branes as in Figure 5.5.

5.2.1 SU(2) Irreducible ’t Hooft Defects

First let us consider the case of a single irreducible ’t Hooft defect at the origin in

SU(2) N = 2 SYM theory with ’t Hooft charge, relative magnetic charge, and Higgs

vev given by

P = p h1 , γ̃m = mH1 , X∞ = vH1 . (5.71)

By Kronheimer’s correspondence this is dual to a U(1)K-invariant instanton on
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Taub-NUT where the lift of the U(1)K action to the gauge bundle is given by

lim
~x→~0

g(~x;α) = ei p h
1α , α ∈ U(1)K , (5.72)

the first Chern class of the instanton bundle is given by (mH1 − ph1), and the Higgs

vev is given in terms of the holonomy of the gauge field around the circle at infinity

exp

{
1

2π

∮
S1∞

Â

}
= exp

{
X∞
2πR′

}
, (5.73)

where R′ = 1/R is the dual radius of S1
∞. As in Section 2.3.3 we can locally write the

connection Â as

Â = A+ ψ(x)(dξ + ω) , (5.74)

such that

dA = ∗3d
(
V ψ
)

, lim
r→0

V (x)ψ(x) = − P
2r

, lim
r→∞

V (x)ψ(x) = X∞ −
γm
2r

. (5.75)

Again, consider embedding this configuration of U(1)K-invariant instantons into

string theory by wrapping a pair of D4-branes on Taub-NUT in the x1,2,3,4-directions

(localized at x5,6,7,8,9 = 0) with fractional D0-branes.

As before consider the Chan-Paton bundle of the D4-branes. Due to the non-trivial

holonomy, this splits asymptotically as a direct sum of line bundles

R = R1 ⊕R2 . (5.76)

Since the Ri describe an instanton background in the D4-brane world volume theory

along the Taub-NUT direction, the connection of these line bundles is hyperholomorphic

(the curvature is a (1,1)-form in any complex structure).

As before, on Taub-NUT there are two families of U(1)K-invariant hyperholomor-

phic connections

Λ∗ =
dξ + ω

V (x)
, Λ~xi = − dξ + ω

2|~x− ~xi|V (x)
+

1

2
ωi , (5.77)

where ωi is the Dirac potential centered at ~xi which solves

dωi = ∗3d
(

1

2|~x− ~xi|

)
. (5.78)
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Again we can define a line bundle with connection Λ
(t)
∗ = tΛ∗ which is asymptotically

flat and has non-trivial holonomy at infinity

e
i
∮
S1∞

Λ
(t)
∗ = e2πit , (5.79)

while Λ~xi sources a non-trivial first Chern class centered around ~xi.

Now since there is a nontrivial Higgs vev X∞, the connection Â has nontrivial

holonomy and hence asymptotically decomposes into two connections Âi on the Ri
factors of the Chan-Paton bundle respectively. This can be written

Âa =


A+ ψ(x)(dξ + ω) a = 1

−A− ψ(x)(dξ + ω) a = 2

(5.80)

such that

dA = ∗3d
(
V ψ
)

, lim
r→0

V (x)ψ(x) = − p

4r
, lim

r→∞
V (x)ψ(x) = v − m

2r
. (5.81)

Using this, we can write down the connections Âa in terms of the Λ~xi , Λ∗ as

Â1 =
s1

2πR
Λ∗ − pΛ0 +

∑
i

Λ~xi , Â2 =
s2

2πR
Λ∗ −

∑
i

Λ~xi , (5.82)

in a certain choice of gauge where s1 − s2 = v. This gives rise to the decomposition of

the Chan-Paton bundles as

R1 = Ls1/2πR∗ ⊗ Lp0
m⊗
i=1

L−1
~xi

, R1 = Ls2/2πR∗
m⊗
i=1

L~xi , (5.83)

where as before L(t)
∗ is the line bundle with connection tΛ∗, L~xi is the line bundle with

connection that is gauge equivalent to Λ~xi , and we have taken the positions of the

monopoles to be at {~xi}. Here we used the fact that flat gauge transformations of the

B-field, B → B + dΛ act on the Chan-Paton bundle as [177]

R 7→ R⊗ LΛ , (5.84)

to make a choice of gauge such that 0 < s1 < s2 < 2πR and L0 only appears in R1

with integer power.

Now we wish to T-dualize this configuration along the S1 fiber of Taub-NUT. Fol-

lowing the identification from the previous section, we can see that this configuration
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p

Figure 5.6: This figure shows the brane configuration for a reducible SU(2) ’t Hooft
defect with charge P = p h1.

will be T-dual to the brane configuration in Figure 5.6. This brane configuration is

described by a pair of D3-branes localized at x5,6,7,8,9 = 0 and at definite values of

x4
1, x

4
2 > 0 so that ∆x4 = v with an NS5-brane localized at x4 = 0 and x1,2,3 = 0. There

are then m D1-branes running between the D3-branes localized at positions ~xn ∈ R3

and p D1-branes connecting the NS5- and the D31-brane. These D1-branes emanating

from the NS5-brane and ending on the D3-brane source a local magnetic charge which

we identify with the ’t Hooft defect. We will describe the ’t Hooft charge P as specified

by this configuration shortly.

5.2.2 SU(N) Irreducible Monopoles

This story has a clear and straightforward generalization to the case of irreducible

singular monopoles in an SU(N) theory. Consider a single irreducible monopole con-

figuration with ’t Hooft charge, relative magnetic charge, and Higgs vev

P =
∑
I

pIh
I , γ̃m =

∑
I

mIHI , X∞ =
∑
I

vIHI . (5.85)

By Kronheimer’s correspondence, this can be described by U(1)K-invariant instantons

on Taub-NUT where the lift of the U(1)K action to the gauge bundle is given by

lim
~x→~0

g(~x;α) = eiPα , α ∈ U(1)K , (5.86)
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the first Chern class is given by γm = γ̃m−P−. Again the holonomy of the gauge field

around the S1 fiber at infinity is dictated by the Higgs vev

exp

{
1

2π

∮
S1∞

Â

}
= exp

{
X∞
2πR′

}
, (5.87)

where R′ = 1/R is the radius of S1
∞. Now embed this configuration into string theory

by wrapping N D4-branes on Taub-NUT along the x1,2,3,4 directions (that is they are

localized at x5,6,7,8,9 = 0) with fractional D0-branes.

Now the Chan-Paton bundle of the D4-branes is a rank N bundle which asymptot-

ically splits as the direct sum of line bundles:

R =
N⊕
I=1

RI . (5.88)

Again, the Chan-Paton bundles must decompose as a tensor product of line bundles

with connections of the form Λ
(t)
∗ and Λ~xi :

RI = LsI/2πR∗ ⊗ LpI0

mI⊗
nI=1

L~xnI
mI−1⊗
nI−1=1

L−1
~xnI−1

, (5.89)

where {nI} indexes over the smooth monopoles with charge along HI , pN = m0 = 0,

and 0 < sI < sI+1. Notice here that we have completely gauge fixed the B-field to a

choice which is very convenient for matching to physical data.

T-dualizing this configuration will produce a configuration of D1/D3/NS5-branes

as in Figure 5.5. In words, it will have a stack of N D3-branes separated at points

x4
i+1 > x4

i > 0 such that x4
I+1 − x4

I = vI , 16 localized at x5,6,7,8,9 = 0 with a single

NS5-brane localized at x4 = 0 and at the origin in R3. There will also be mI D1-branes

stretching from the D3I - to the D3I+1-brane and pI D1-branes stretching from the NS5-

brane to the D3I -brane. Again, the D1-branes emanating from the NS5-brane that end

on the D3I -brane will source a local magnetic charge in the world volume theory of the

D3-branes.

16See Footnote 14.
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5.2.3 Physical ’t Hooft Charges

This construction of singular monopoles is similar to that of [132] in the sense that

they both introduce a Dirac monopole by having D1-branes in a way that couples to

the center of mass of the stack of D3-branes which we have already projected out in

going from a U(N)→ SU(N) gauge theory. Thus, we also need to project out the part

of the physical charges that couple to this center of mass degree of freedom. We take

the natural projection map, given by:

Π(h) = h− (TrNh) · 1N , (5.90)

for h an element of the Cartan subalgebra h ∈ t.

Now let us consider some example brane configurations to show that the ’t Hooft

charges match the field configurations we claim to describe.

Example 1 Consider again the case of SU(2) singular monopoles as in the previous

subsection. In this case, the brane configuration is described by the U(2) ’t Hooft

charge

P̃ =

 p 0

0 0

 . (5.91)

Under the projection map Π : u(N)→ su(N), the ’t Hooft charge becomes

P = Π(P̃ ) =
1

2

 p 0

0 −p

 = p h1 . (5.92)

This is exactly the charge of the field theory configuration (5.71).

Example 2 Now consider the case of singular monopoles in SU(N) gauge theory. As

in the previous subsection, take the brane configuration of Figure 5.6. This is described

as follows.

Consider a stack of N D3-branes localized at x5,6,7,8,9 = 0 and at distinct values in

the x4-direction which we will give an ordering from left to right. Now consider a single

NS5-brane localized to the left of all of the D3-branes in the x4-direction and localized

at ~xn ∈ R3. Now add pI D1-branes which run from the NS5-brane to the D3I -brane
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1 2 3 p

1 2 3 p

p

p

(a) (b)

Figure 5.7: In this figure we show how to relate the (L[h1,0])
p reducible ’t Hooft operator

(a) to the L[P,0] irreducible ’t Hooft operator (b). This suggests that the tail of the
reducible singular monopole configuration is analogous to the subleading terms in the
OPE.

for I 6= N . This configuration will have a U(N) ’t Hooft charge

P̃ = pI

I∑
J=1

eJ,J , (5.93)

where eI,J is the diagonal matrix with a single 1 in the (I, J)-component. Under the

projection to SU(N), this becomes

P = Π(P̃ ) = pI

(
I∑

J=1

eJ,J −
1

2
1N

)
= pIh

I . (5.94)

This matches the charge of the corresponding field configuration in (5.85).

Remark It is also interesting to note that heuristically one can think of irreducible ’t

Hooft defects as reducible defects where we have removed the “subleading terms” from

the OPE. There is similarly a geometric interpretation to this procedure in terms of

the brane construction. If we consider a reducible ’t Hooft defect in SU(2) SYM theory

where we move all of the NS5-branes to distinct points to the left of the D3-branes,

then we can think of removing the subleading terms of the OPE as removing all but the

right most NS5-brane and the D1-branes connecting it to the D3-branes as in Figure

5.7.

Remark From this construction it is also clear how to insert multiple irreducible

’t Hooft defects since the brane configuration only include local brane interactions.

Therefore, this brane configuration can be used to describe general ’t Hooft defect

configurations in 4D N = 2 supersymmetric gauge theories.



166

θ

D31

D32

D33

m1 D1

m2 D1D7

x4

ix5  

mR

mI

ζ=eiθ

xcom

Figure 5.8: This figure illustrates the configuration of D-branes in Type IIB string
theory corresponding to an SU(3) gauge theory with total magnetic charge γm =
m1H1 + m2H2 coupled to a single hypermultiplet in the fundamental representation
with mass ζ−1m = mR + imI . Here have identified the R4 ⊕ iR5

∼= C. Here there are
m1 D1-D7 strings which gives rise to vanilla BPS states that are charged under the
flavor symmetry associated to the D7-brane.
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5.3 Including Fundamental Hypermultiplets

We can also consider the case where we add fundamental hypermultiplets to the 4D

N = 2 SU(N) SYM theory. Coupling to 4D fundamental matter changes the charge

quantization of these theories satisfy pI ∈ 2Z+ where P =
∑

I pIh
I for simple cocharac-

ters pI .17 This can be achieved in the brane configuration by adding D7-branes at fixed

locations x4 + ix5 = m(i) where i indexes the fundamental hypermultiplets and m(i)

is the complex mass of the corresponding fundamental hypermultiplet. This picture

can be used to geometrically determine the spectrum of vanilla BPS states and its wall

crossing as in [22]. See Figure 5.8.

As shown in [165], this couples the quiver SQM describing the low energy effective

theory of the D1-branes to a short N = (0, 4) fundamental Fermi-multiplet. The quiver

gauge theories are then of the form

1 2 3 k − 1 k k k k − 1 3 2 1

1 1

Nf

17

where the length of the quiver is n− 1 with k occuring n− 2k + 1 times where

P = n ĥ1 , P − ~v = kH1 , n ∈ 2Z+ , ĥ1 ∈ Λcochar . (5.95)

and the Nf fundamental Fermi-multiplets are coupled to the (n/2)th gauge node. Ad-

ditionally, when n = 2k, Γ (P,~v) takes the special form

17This is a consequence of the fact that in a theory with fundamental matter Λmw/Λcochar = Z2.
Hence, we will have 2pI = nI in these theories where the ’t Hooft charge can be written as P =

∑
I pIh

I

or P =
∑
I nI ĥ

I where hI ∈ Λmw and ĥI ∈ Λcochar.
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1 2 3 k − 1 k k − 1 3 2 1

2

Nf B = (1, 0)

18

See Figure 5.9 for examples.

5.3.1 Fundamental Hypermultiplets and Brane Webs

When we consider framed BPS states in the presence of fundamental hypermultiplets

there are also interactions between NS5-branes and D7-branes in the full string theory

[9]. Specifically, D7-branes are distinguished in type IIB string theory in that they

are sources for the axio-dilaton. Thus, the holonomy around a D7-brane is exactly

equivalent to an S-duality transformation T ∈ SL(2;Z). This means that picking a

fixed S-duality frame requires a specification of branch cuts in the transverse space.

For a generic choice of branch cuts they will intersect the NS5-branes causing them to

undergo an S-duality transformation.

To study the implications of this branch cut, we will have to first review some

technology of (p, q)-Brane webs.

Brief Review on (p, q)-Brane Webs

A (p, q)-brane is a certain type of 5-brane in type IIB string theory that has p-units of

NS-charge and q-units of RR-charge. This means that we can identify a (1, 0)-brane

with an NS5-brane and a (0, 1)-brane with a D5-brane. As one would expect, the

charge vector (p, q) of a (p, q) 5-brane transforms as a vector under the S-duality group

SL(2;Z). Further a tension of such a 5-brane is given by

T(p,q) = |p+ τq|TD5 , (5.96)

where τ is the expectation value of the axio-dilaton and TD5 is the D5-brane tension.
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NS5

(a)

D31 D32D1

(b)

x1,2,3

x4

Nf-D7 Nf-D7

(c)

Nf-D7

1 2 1

2

Nf

(d)

19

Figure 5.9: This figure shows many facets of the brane configuration describing singular
monopoles and monopole bubbling in 4D N = 2 gauge theory with Nf fundamental
hypermultiplets for (a) the example of SU(2) gauge theory with γm = 3H1 and P =
4h1. (b) displays an example of monopole bubbling where 2 monopoles have bubbled,
screening the defect. By performing the Hanany-Witten transformations (c), we can
see that the SQM living on the D1-branes is given by a quiver SQM (d).



170

(a) (b)

(1,0)

(0,1)

(1,1)

(c) (d)

(1,0)

(0,1)

(1,1)

(0,1)

(1,1)

D7
D7

Figure 5.10: This figure shows two examples of (p, q)-brane webs in (a) and (b). (a) is
the fundamental trivalent junction including an NS5- and D5-brane. (b) is an example
of a generic (p, q) 5-brane web. Additionally, this figure shows in (c) and (d) how
D7-branes can be combined with (p, q) 5-brane webs. (c) the brane web can end on
them or (d) they can act on the brane web via the S-duality branch cut. These two are
related by a Hanany-Witten-type transformation where the D7-brane is pulled through
the 5-branes.
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m1 D1

D3 D3

D7 D7

D7 D7

(1,1) (1,-1)

(1,0)(1,0)

(1,-1) (1,1)

(2,0)

(2,0)

 

m1 D1

D3 D3

D7 D7

D7 D7

(1,1) (1,-1)

(1,0)(1,0)

(1,0) (1,0)

(1,0) (1,0)

(1,-1) (1,1)

(0,1)

(0,1)

Figure 5.11: This figure shows the example of the improved brane configuration for the
fundamental ’t Hooft defect in SU(2) Nf = 4 gauge theory. On the right is the resolved
brane configuration suggested by [9].

Such (p, q) 5-branes can intersect in interesting ways to form a sort of web by taking

their world volume to span the x0,1,2,3,4-directions and wrap straight lines in the x5+ix6

C-plane. See Figure 5.10.

(p, q)-brane webs can be realized as the T-dual of M-theory compactified on a Calabi-

Yau 3-fold with toric singularities [114]. More straightforwardly, they can be fundamen-

tally constructed from trivalent brane intersections. Charge conservation implies that

for any trivalent vertex of (p, q)-branes with charges (pi, qi), that the charges satisfy

3∑
i=1

pi =
3∑
i=1

qi = 0 . (5.97)

Preserving supersymmetry implies that up to an overall rotation, a (p, q)-brane must

have a slope given by [1]

∆x4 + i∆x5 || p+ τq . (5.98)

In the semiclassical limit we take τ ≈ i so that D5- and NS5-branes are essentially

perpendicular and a (p, q) brane has slope in the x4 + ix5 plane given by m = q/p.
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(0,1)
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Figure 5.12: This figure shows the brane configuration for the bubbling locus of the
L1,0 ’t Hooft defect in in SU(2) Nf = 4 gauge theory. Here the red line is a D1-brane,
the black wavy lines are D1-D7 strings which give rise to fundamental Fermi multiplets,
and the blue wavy lines are the D1-D5 strings that give rise to additional fundamental
hypermultiplets.

Improved Brane Configuration

Now let us return to the D1/D3/NS5-brane configuration with additional D7-branes

added in. It is pointed out in [9] that there is a non-trivial interaction between the

NS5-branes that give rise to the ’t Hooft defect and the D7-branes that give rise to

the fundamental hypermultiplets. This implies that 5-brane webs are needed to fully

realize monopole bubbling when coupling to fundamental hypermultiplets. The reason

is that when the NS5-branes intersect the branch cuts from the D7-branes that they

undergo an S-duality transformation to become a (1,±1)-brane. See Figure 5.10.

Preserving SUSY then implies that these transformed NS5-branes bend so that their

world volume is along a sloped line in the x4 + ix5 plane. This means that the NS5-

branes are no longer asymptotically parallel but rather intersect at some point along

the x5-direction. This gives rise to the brane configuration on the left of Figure 5.11.

It is then shown in [9], that the resulting vertex in the brane-web configuration can
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be “resolved” via a D5-brane as in the right side of Figure 5.11. However, by resolving

the vertex of the 5-brane web via a D5-brane, one allows for D3-D5 strings that give rise

to a Fermi-multiplet that is localized on the world volume of the ’t Hooft defect. This

Fermi multiplet is coupled to the 4D gauge field and Higgs field of the N = 2 vector

multiplet in the fundamental representation. This Fermi-multiplet can be thought of as

a spin defect field that gives rise to a Wilson line as shown in [165]. Thus, resolving the

D5-brane interaction adds electric charge to the ’t Hooft defect. This will be important

in the next section for computing the expectation value of ’t hooft defect operators.

Example Consider the example of the minimal ’t Hooft defect L1,0 in SU(2) N = 2

gauge theory with Nf = 4 fundamental hypermultiplets. This can be described by a

brane configuration realized by two parallel D3-branes, 4 D7-branes and 2 NS5-branes.

Introducing the D7-branes requires Nf = 4 branch cuts which intersect the NS5-branes.

The NS5-brane intersections can then be resolved as in [9] by introducing D5-branes

such that there the D1-, D3-, and D7-branes are contained in an octagon.

The bubbling SQM can be read by going to the bubbling locus where we send a D1-

brane to run between the NS5-branes as in Figure 5.12. The SQM is again a N = (0, 4)

theory that is described by the quiver:

12

2

4

20

5.4 The Class S Construction

Another brane configuration that can be used to study 4D N = 2 gauge theories is

called the class S construction. This brane configuration goes back to the work of

[155, 156, 176, 66, 68], explaining the geometric origin of Seiberg-Witten theory. There

has been a great deal of technology for understanding 4D N = 2 theories that have been

developed via the class S construction. In fact, this technology will be fundamental to
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understanding our later chapters on localization and comparing the expectation values

of line defects.

5.4.1 The 6D N = (2, 0) Theory

6D theories with N = (2, 0) supersymmetry have osp(6, 2|4) superconformal symmetry

which has a bosonic subgroup SO(5, 1) × Spin(5)R of Lorentz and R-symmetry [138].

The field content is that of tensor multiplets which are comprised of a self-dual 2-

tensor Bµν , 4 fermions Ψa, and 5 scalar fields ϕi where a = 1, ..., 4 and i = 1, .., 5. As

representations of SO(5, 1)× Spin(5), the fields transform as

Bµν : (3, 1; 1) , ψa : (2, 1; 4) , ϕi : (1, 1; 5) . (5.99)

The 6D N = (2, 0) theory can be constructed from string theory by compactifying

type IIB on a K3-manifold [175].18 Consequently a corresponding 6D N = (2, 0) theory

is labeled by an ADE Lie algebra g corresponding to the singularity structure of the

K3-manifold.

In this construction, D3-branes that wrap non-trivial 2-cycles of K3 give rise to

strings in the 6D theory that are charged under the B-field. Thus, a 6D N = (2, 0)

theory of type g and has has a spectrum of charged objects classified by elements of the

integer lattice Λ = Λwt(g). The tension of the strings is proportional to the volume of

the 2-sphere [175]. At singular point in K3 moduli space, where the non-trivial 2-cycles

degenerate, the tension of these strings is identically zero. These are the “tensionless

strings” in the (2,0) theory.

There is also another construction of the 6D N = (2, 0) theory of type g = An as

the low energy effective theory of a stack of M5-branes wrapped on M6 ⊂ X11. Here

the Spin(5)R symmetry is manifest as symmetry group of the transverse 5-directions

and allows us to identify the normal bundle of the world volume of M5-branes with the

R-symmetry bundle in 6D R→M6.

In this construction, the B-field can be seen as the boundary field that trivializes the

bulk 3-form gauge field C. When the M5-branes wrap a topologically trivial manifold

18This requires some subtlety with decoupling gravity. See [157] for more details.
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M6, the B-field arises as the trivialization of the bulk C-field restricted to the world

volume of the M5-branes M6:19

dB = C
∣∣
M6

. (5.101)

The scalar fields of the 6D N = (2, 0) describe the transverse fluctuations of the

M5-branes in 11D space time. Because the M5-branes are indistinguishable, there is

an Sn exchange symmetry when they are coincident. This acts as the Weyl group on

the lattice of charged objects. Thus, the 6D N = (2, 0) theory has a moduli space of

supersymmetric vacua (sometimes called the tensor branch or Coulomb branch) that is

parametrized by the independent Weyl-invariant operators constructed out of the vevs

of scalar fields

M = R5r/W . (5.102)

Since the strings of the 6D N = (2, 0) theory are sources for the B-field, the fact

that it descends from the bulk C-field implies that the strings arise from the ends of M2-

branes that between M5-branes. These strings have a tension given by the separation

between M5-branes which in the 6D theory is proportional to the vev of the scalar fields.

Thus, at the singularity of the tensor branch where the M5-branes are all coincident

the strings are “tensionless”.

In the M-theory construction of the 6D N = (2, 0) theory of type An, compactifying

the stack of M5-branes on a circle then produces a stack of D4-branes in type IIA. These

branes have a world volume theory is U(N) maximal supersymmetric Yang-Mills theory

(MSYM). Thus, we can conclude that the compactification the 6D N = (2, 0) theory is

described by 5D non-abelian MSYM.

19Defining the precise relation between the bulk C-field and the B-field on the world volume of the
M5-branes requires the use of differential cohomology.20 Let us take the world volume of the M5-branes
to be M6 and the 11-dimensional spacetime to be X11 which locally forms a non-trivial R5 bundle over
M6 which we can identify with the normal bundle of M6. We can then identify the normal bundle
with the R-symmetry bundle R → M6. From this we can construct the associated sphere bundle
S(R)→M6. As shown in [135] the curvature of the B-field H can be explicitly written as

dH̆ =
1

2
π∗(C̆S(R) ∪ C̆S(R)) . (5.100)

Here H̆ is the lift of H to a differential coycle and C̆ is the restriction of the lift of C to a differential
cocycle that is further restricted to the sphere bundle S(R). The map π∗ is then integration over the
fibers of the map π : S(R) → M6. This shifts the cocycle C̆S(R) by a representative of the Wu-class
λS(R) = 1

4
p1(TS(R)). See [135, 136] for more details.
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5.4.2 The Class S Construction of SU(N) Theories

Let us take spacetime to be R7 × Q where Q is a hyperkähler four-manifold. As is

convention, we will take the flat directions to be the x0,1,2,3,7,8,9-directions and Q is

spanned by the coordinates x4,5,6,10. Let us endow Q with a complex structure where

v = x4 + ix5 and s = x6 + ix10 are holomorphic and let Σ ⊂ Q be a complex Riemann

surface in Q. Presently we compactify the x10-direction, so we will more generally

define the complex coordinate t = e−s = e−(x6+ix10)/R.

Theories of class S with 4D gauge group G =
∏r
i=1 SU(Ni) can be described by

compactifying the 6D N = (2, 0) type AN theory onto a Riemann surface C. Equiv-

alently we can consider wrapping a single M5-brane on an N -branched cover Σ → C

which we take to be defined by a polynomial:

F (t, v) =
r∏
i=1

(t− fi(v)) , (5.103)

where each fi(v) is a polynomial of order Ni.

Upon compactification along the x10 direction, we produce the type IIA brane con-

figuration from [176] where there are r parallel NS5-branes localized x7,8,9 = 0 and

certain values of x6 (encoding the gauge coupling of the 4D theory) and Ni parallel

D4-branes runing between the NS5i and NS5i+1-branes that are localized at x7,8,9 = 0

and specific values of x4,5 (encoding the Higgs vev). Specifically, if we hold v fixed and

vary t, we will see that the roots are exactly the positions of the NS5-branes. Similarly

if we hold t fixed and vary v, the roots will give us the position of the D4-branes. Here

the SU(Ni) gauge theory lives on the world volume theory of the stack of D4-branes

stretched between the NS5i and NS5i+1-brane. See Figure 5.13.

So let us consider the 6D N = (2, 0) theory of type AN−1 compactified on the Rie-

mann surface C (with punctures). Since Riemann surfaces generally have a holonomy

group containing SO(2), we can construct a 4-dimensional N = 2 theory by topologi-

cally twisting the compactified theory. In the 6-dimensional theory, the superconformal

algebra is given by osp(6, 2|4) which has bosonic part so(5, 1) ⊕ so(5)R. Under this
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N D4

x6+ix10

x4+ix5

Figure 5.13: This is a figure of a system of D4- (red) and NS5- (black) branes as
considered by Witten [176]. This brane construction arises as the compactification of
an M5-brane wrapped on a Riemann surface in the class S construction and describes
a 4D N = 2 quiver gauge theory with gauge group SU(N)r.

compactification the algebra decomposes as

so(1, 5)⊕ so(5)R → so(1, 3)⊕ so(2)C ⊕ so(3)⊕ so(2)R , (5.104)

which we can further twist by projecting to the diagonal component of so(2)C ⊕

so(2)R → so(2)′C :

so(1, 3)⊕ so(2)C ⊕ so(3)⊕ so(2)R → so(1, 3)⊕ so(3)⊕ so(2)C′ . (5.105)

Under this process, the 6-dimensional supercharges decompose:

(4, 4)→ (2, 1; 2)+1 + (1, 2; 2)0 + (2, 1; 2)0 + (1, 2; 2)−1 . (5.106)

Under compactification, only the terms (1, 2; 2)0 and (2, 1; 2)0 survive, thus producing

a 4D theory with N = 2 SUSY.

The theory on such a Riemann surface can be understood more generally as follows.

First consider a pants decomposition of such a theory given by a series of cuts {γi}3g−3+n
i=1

that are not homotopic to the boundary components. For each cut γi there is an

associated SU(N) factor of the gauge group in 4D. Additionally, to each puncture,

there is an associated hypermultiplet in 4D with representation specified by additional

data at the puncture. See [162] for a full review of this identification.
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The curve defined by (5.103) determines the entire brane configuration and in fact

corresponds to the Seiberg-Witten curve that we discussed in Chapter 2 [176]. The

corresponding Seiberg-Witten differential is given by the trivialization of the holmorphic

symplectic form Ω = dx ∧ dz restricted to Σ:

λ = x ∧ dz . (5.107)

In this setting, the closed one-dimensional submanifolds corresponding to BPS states

are M2-branes wrapping non-trivial cycles in Σ as it stretches between different sheets

of Σ.

5.4.3 ’t Hooft Defects in Theories of Class S

The brane construction of theories of class S also have a natural construction of ’t Hooft

defects in the resulting 4D N = 2 theories. In such theories, a 4D line operator descends

from a 1
2 -SUSY surface defect/string operator in the 6D theory. Such a surface defect

operator can be written in terms of the B-field and scalar field ϕi as

W(Σ;ni) = exp

{∫
P×Rt

(
B + niϕ

ivol(P × Rt)
)}

, (5.108)

where Σ is the world volume of the surface defect/string operator and ni ∈ S4 is a

vector determining the preserved SUSY. The surface defect/string operators of the 6D

N = (2, 0) theory descend from the intersection of the M5-branes with M2-branes.

To produce a line operator in the 4D theory of class S, we wrap the string operator

on a 1-cycle P ⊂ C and the world volume of the line operator in 4D. Then by performing

the topological twist along C and compactifying to 4D, this line operator becomes a

line operator:

L = PRt [W(P × Rt;ni)] = exp

{∫
P

(
Bt + niY

ivol(P)
)}

, (5.109)

where PRt is the projection to the 4D theory. Therefore, the line defects can be labeled

by LP where P is a smooth one-dimensional submanifold of C.

Isotopy classes of such submanifolds can be conveniently labeled, given a pants de-

composition of C in terms of Dehn-Thurston parameters: 21

21The importance of being careful about connected components in the Dehn-Thurston theorem was
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Theorem (Dehn-Thurston): [48, 164] Let C be an oriented Riemann surface

with negative Euler characteristic that has genus g and n punctures. Let {γi}3g−3+n
i=1

be a maximal set of non-intersecting curves defining a pants decomposition of C and

let {γi}3g−3+2n
i=3g−3+n+1 be a collection of simple closed curves near the punctures. There is

a mapping

D : I(C)→ Z3g−3+2n
≥0 × Z3g−3+2n ,

γ 7→
(
〈γ, γi〉, ~q

) (5.110)

where I(C) is the set of isotopy classes of closed one dimensional submanifolds, qi is

the twisting number with respect to γi, and 〈 , 〉 is the intersection number. Elements

in the image of D are denoted (~p, ~q) and are called Dehn-Thurston parameters.

The choice of {γi}3g−3+n
i=1 above correspond to a weak coupling decomposition of the

UV curve C, and specifies a Lagrangian duality frame with gauge algebra su(2)⊕h with

h = 3g− 3 + n. Each curve corresponds to a weakly coupled SU(2) gauge group in the

4D theory.

Now consider the line defect associated to a generic 1D submanifold γ~p,~q with Dehn-

Thurston (DT) parameters (~p, ~q) = (p1, ..., ph, q1, ..., qh). This submanifold will have a

set of connected components γ~p,~q =
⊕k

α=1 γ
(α)
~p,~q labeled by α, each of which has its own

Dehn-Thurston parameters: (~p(α), ~q(α)) = (p
(α)
1 , ..., p

(α)
h , q

(α)
1 , ..., q

(α)
h ). The line defect

L(γ~p,~q, ζ) then decomposes as a product of line defects

Lγ~p,~q =

k∏
α=1

L
γ

(α)
~p,~q

, (5.111)

In [58] it is conjectured that the line defects L(P) are the same as the ’t Hooft-

Wilson line defects of the Lagrangian theory with gauge algebra su(2)⊕h. Moreover, it

is proposed that the Dehn-Thurston parameters should be identified with the ’t Hooft-

Wilson parameters characterizing the magnetic and electric charges. This cannot be

first made clear to us in joint work with Anindya Dey while checking predictions of S-duality in class
S theories of type A1.
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true in general, but it seems highly plausible for those Dehn-Thurston parameters that

correspond to one-dimensional submanifolds γ~p,~q with only one connected component.

In this case the proposal of Drukker-Morrison-Okuda is that L(P) corresponds to the

4D line operator L[P (i),Q(i)] which has ’t Hooft-Wilson charges

P =
h⊕
j=1

pjh
I(j) , Q =

h⊕
j=1

qjλ
I(j) , (5.112)

where hI(j) is the simple magnetic weight, λI(j) is the simple weight of the jth factor

of the gauge group, and h = 3g − 3 + n. It should be stressed that some more work is

needed to make use of this conjecture: In mathematics it is not known what conditions

one should put on the Dehn-Thurston parameters (~p, ~q) in order for γ~p,~q to have a

single connected component! The only case where this is known is the once-punctured

torus (corresponding to the G = SU(2) N = 2∗ theory) and the four-punctured sphere

(corresponding to the G = SU(2) Nf = 4 theory) [121]. In that case there are only

a pair of DT parameters (p, q) and γ(p,q) has g connected components, where g is the

greatest common denominator of p and q.

For example, in the case where the four-dimensional gauge group is G = SU(2) we

have only a pair of DT parameters (p, q). Here the minimally charged ’t Hooft defect

corresponds to the line with DT parameters (1, 0)

Lγ(1,0)
= L[h1,0] , (5.113)

which can be identified with the highest weight representation Rh1 of SU(2)∨. Following

the decomposition above, a line defect corresponding to DT parameters (p, 0) is the pth

power of the simple ’t Hooft defect

Lγ(p,0)
=
(
L[h1,0]

)p
. (5.114)

Thus, we see that the ‘t Hooft defect corresponding to Lγ(p,0)
is reducible. This is the

origin of our notation from (3.98)

Lp,0 := Lγ(p,0)
. (5.115)

By contrast L[ph1,0] corresponds to a trace in the representation Rph1 .
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Chapter 6

Expectation Value of ’t Hooft Defects

In this section we will continue our discussion of ’t Hooft defects. Again we will

consider 4D N = 2 gauge theories that have a Lagrangian description that are also the-

ories of class S. Theories that live in this intersection are amenable to many different

techniques for studying ’t Hooft defects, and in particular to compute their expecta-

tion values. In this chapter we will review the computation of the expectation value

of ’t Hooft defects in these theories by two such techniques: spectral networks and

localization.

6.1 Line Defects in Theories of Class S

In general, the expectation value of the supersymmetric line operators we are consid-

ering 〈L〉 is a holomorphic function on M, the Hitchin moduli space, in a complex

structure determined by the supersymmetry preserved by L. The preserved supersym-

metry can be characterized by a phase ζ, which may be viewed as an element of the

twistor sphere: ζ also determines a complex structure onM. We will denote the space

M with complex structure determined by ζ as Mζ . 〈L(ζ)〉 on Mζ can be computed,

exactly, by using class S techniques.

For theories of class S, one exact method for computing the expectation value of

L(ζ) expresses 〈L(ζ)〉 in terms of “spectral network coordinates” on Mζ [69, 71, 70].

These coordinates are generalizations of well-known cluster, shear, and Fock-Goncharov

coordinates. They are functions on the twistor space and, restricted to a fiberMζ , are

This section is based on material from my papers [23, 26, 27].
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holmorphic Darboux coordinates in complex structure ζ. We refer to the exact result

for 〈L(ζ)〉 in these coordinates as the “Darboux expansion.”

The collective work of [67, 68, 69, 70, 71] develops a technology to compute this

expectation value. This relies on the fact that the expectation value of such a line

operator can be computed by the trace of the holonomy of flat gauge connections along

a path on the associated UV curve C

〈LP〉 = TrR HolLP P exp

(∮
P
A
)
. (6.1)

This can be expressed as a Laurent polynomial in Darboux coordinates which is sub-

ordinate to a cell decomposition of C

〈LP〉 =
∑
γ∈Γu

Ω(LP , γ;u)Yγ , (6.2)

where Γu is the local charge lattice above u ∈ B, Ω(LP , γ;u) is the framed BPS in-

dex corresponding to the state with charge γ bound to the operator LP , and Yγ are

“Darboux coordinates” on the moduli space of flat connections with the complexified

gauge group GC: Mflat(C;GC). These coordinates have the physical interpretation of

the expectation value of a line defect of charge γ in the IR limit. Further, they satisfy

the Poisson algebra

YγYγ′ = (−1)⟪γ,γ
′⟫Yγ+γ′ , (6.3)

where ⟪·, ·⟫ : Γ × Γ → Z is the DSZ pairing on Γ .

The main tool for computing this holonomy of the flat connection on a vector

bundle for generic Riemann surfaces is the method of spectral networks [70, 71]. This

technique generalizes the method of trivializing the vector bundle over a triangulation

with gluing conditions at the edges. And further, it makes use of a map between a

vector bundle on C and a line bundle on the multi-sheeted cover Σ (the Seiberg-Witten

curve). Each spectral network introduces a natural set of coordinates on the moduli

space of flat connections, Mflat(C;GC) corresponding to the Darboux coordinates of

the above expansion Yγ .
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6.1.1 Theories of Class S and Spectral Networks

As we discussed in Chapter 5, theories of class S are constructed by taking the six-

dimesional N = (2, 0) theory and compactifying it along an oriented Riemann surface C

with a topological twist [68, 66, 176]. For the type AN−1 theories of class S, this can be

described by string theory as the low energy effective action of a stack of N M5-branes

wrapped on C ×M4 with the same topological twist where M4 is our 4D spacetime.

In going to the low energy limit, the M5-branes wrap a Riemann surface Σ which is

an N -branched cover Σ → C. The vacuum equations describing the four-dimensional

physics in M4 are given by Hitchin’s equations1 on C

FC + [ϕ,ϕ†] = 0 , ∂̄ACϕ = 0 , (6.4)

with gauge group G = SU(N). Given a solution of these equations, we can identify the

Seiberg-Witten curve and differential as

Σ = { det(xdz − ϕ) = 0} ⊂ T ∗C , λSW = xdz , (6.5)

where (x, z) 7→ xdz are coordinates on T ∗C.

In these theories, a 4D line operator comes from an M2-brane whose boundary wraps

a closed 1-cycle P ⊂ C times a path γ ⊂M4. These M2-branes couple to the 4D gauge

field A associated flat GC connection

A = ζ−1ϕ+AC + ζϕ , (6.6)

so that their expectation value is given by the trace of the holonomy A along γ times

the holonomy of A along P. Since this theory is topologically twisted, all supersym-

metric quantities are independent of the sizes of M4, Σ. Therefore, we can see that the

expectation value of the 4D ’t Hooft defect is given (semiclassically) by the holonomy

of the flat complexified connection A along P by taking the limit where Σ is small so

that there is no fluctuations in these spacetime dimensions [68, 69].

Spectral networks are a technique constructed in [67, 68, 69, 70, 71] which can be

used to compute the trace of the holonomy of a complexified flat connection and hence

1Here we use the notation AC the G-connection on C.
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the expectation value of 4D line operators in theories of class S. Here we will only

consider the case of 2-fold coverings which corresponds to the case of G = SU(2) and

GC = SL(2;C). In this case we will label the sheets by an index i = 1, 2.

We define a spectral network W subordinate to the covering Σ → C to be an oriented

collection of open paths w on C called walls with the following properties:

• Generic walls, w, begin at branch points of π : Σ → C and end at punctures of

C.

• Three walls begin at each branch point.

• Walls carry an ordered pair of the sheets of Σ → C – in our case: 12 or 21.

• Walls do not intersect, except at branch points.

• Each puncture of C has a decoration which encodes a trivialization and orientation

of the covering Σ → C over the puncture.

• Walls can also end on other branch points in which case they pair with another

wall to form a double wall.

• Each network comes with a resolution convention of double walls – American or

British. These describe in which direction the walls are infinitesimally displaced

in order to compute parallel transport across double walls.

A special class of spectral networks which arise naturally in theories of class S are called

WKB spectral networks. These are defined by a meromorphic, quadratic differential ϕ2

on the closure C of C. Locally, this is of the form

ϕ2 = u(z)(dz)2 . (6.7)

We can now use ϕ2 to define a spectral network as follows. Pick2 a ϑ ∈ R/2πZ. Now

consider the foliation of C by curves γ which satisfy

e−2iϑϕ2(γ) ∈ R+ or e−2iϑu(γ(t))

(
dγ

dt

)2

∈ R+ , (6.8)

2For our case we will want to pick eiϑ = ζ where ζ is the phase of the line defect.
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where we use the notation of 2ϑ following that of [89].

The spectral network W(ϕ2, ϑ) is then defined by the critical graph of the foliation

– i.e. the limiting set of γ which divide the foliation into distinct sectors. In the class

S construction, this is given by the square of the scalar field in the Hitchin system

ϕ2 = λ2
SW . (6.9)

Spectral networks allow one to define a trivialization of the SL(2;C) vector bundle

over the complement C\W and give gluing conditions across the walls. Consider the

rnk = 2, SL(2;C) vector bundle π : E → C with connection ∇. On each connected

component σ ∈ C\W, we can trivialize the bundle E → C such that E
∣∣
σ
∼= L1 ⊕ L2

where Li are line bundles on patches of C. Since the spectral network is subordinate

to the covering Σ → C, the trivialization of the vector bundle E over a connected

component σ ⊂ C\W lifts to a GL(1;C) line bundle over Σ

E = π∗L , (6.10)

where L is a line bundle on Σ such that the connection ∇ on E lifts to an abelian

GL(1;C) connection ∇ab on L ∇ = π∗∇ab. This can also be written as

E
∣∣∣
z

∼=
(
L1 ⊕ L2

)∣∣∣
z

∼= L
∣∣∣
z(1)
⊕ L

∣∣∣
z(2)

, (6.11)

where z ∈ C and π−1(z) = z(1) ⊕ z(2). This compatibility leads to the isomorphism

[70, 71]

Mflat(Σ,GL(1;C)) ∼=Mflat(C;SL(2;C)) . (6.12)

This can be understood as a reflection of gauge group enhancement in a stack of D-

branes.

This isomorphism allows us to compute holonomies of the non-abelian vector bundle

E → C in terms of holonomies of the connection of a flat line bundle on Σ. This moduli

space has a natural set of coordinates3:

Xγ = Holγ∇ab ∈ C× , ∀[γ] ∈ H1(Σ;Z) . (6.13)

3Here we use the notation Xγ for the Darboux coordinates where γ ∈ H1(Σ;Z) while we use Yγ for
the Darboux coordinates where γ ∈ Γ (the charge lattice).
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These coordinates follow the multiplication rule

XγXγ′ = Xγ+γ′ , (6.14)

and satisfy

Xγb = −1 , Xγ+ω∗γ = 1 , (6.15)

where γb is a small loop around a branch point b. Let us define Σ′ = Σ\{branch points}.

For generic W, we can fix a basis of {γi} ∈ H1(Σ′;Z)/〈γ+ω∗γ〉 to form our coordinate

system onM(Σ,GL(1)). These Xγi are the Darboux coordinates related to the spectral

network W.

To each [γ] ∈ H1(Σ′;Z) we can associate a physical, conserved charge in the four

dimensional theory γ ∈ Γ . In order to relate these to the physical charges of the 4D

theory, these charges must be chosen so that the oriented intersection number of two

curve classes is given by the charge DSZ pairing on the physical charges:

[γ1]#[γ2] =� γ1, γ2 � . (6.16)

In general, there is not necessarily a unique choice of charge identification. These

different choices correspond to different duality frames of the 4D theory.

After identifying the physical charge associated to [γ] ∈ H1(Σ;Z), the corresponding

Darboux coordinate is of the form [67]

logXγ =
πR

ζ
Zγ + πR ζ Zγ + iθ ·Qγ +

 non-perturbative

in g4D

 , (6.17)

where Zγ is the central charge evaluated on the charge associated to γ and θ ·Qγ is the

Cartesian product of the vector of electric and magnetic theta angles with the vector of

electromagnetic charges associated to Qγ . It is important to note that these coordinates

generically have non-perturbative corrections which, while complicated, are known and

given in explicit formulas in [67].

We can compute the holonomy of the flat non-abelian gauge connection by decom-

posing the closed 1-cycle into open paths and computing the product of their associated

holonomies. Since the spectral network provides a trivialization of the connection in
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each of the cells, the holonomy along a path in a single cell can be written as

DP =

 XP 0

0 X−1
P

 and D̃P =

 0 XP
−X−1
P 0

 , (6.18)

where D̃P corresponds to when the path crosses a branch cut since the sheet order

switches. Then in making a convenient choice of localization, we can write the holonomy

across a a generic wall [69, 70, 71]

Sw =



 1 Sw

0 1

 for w of type 21,

 1 0

Sw 1

 for w of type 12,

. (6.19)

To compute the parallel transport across a double wall, one must infinitesimally dis-

place the phase ζ (according to the resolution convention) so that the double wall is

replaced by a pair of generic walls; then one can compute the holonomy using the rules

above. These rules allow one to compute the holonomy of a complexified flat gauge

connection along any path in terms of Darboux coordinates defined by the spectral

network (spectral coordinates).

There are several consistency conditions that restrict the number of free spectral

coordinates. These come from abelian gauge symmetry on open path segments and

from imposing monodromy conditions around branch points and punctures. This gauge

symmetry acts by rescaling the spectral coordinate Yγij by a function corresponding

to the end points of the curve γij with beginning and end points labeled by i and j

respectively

Xγij → giXγijg−1
j , (6.20)

so that the trace of the holonomy around closed paths are gauge invariant.

The consistency conditions we impose for monodromy around a branch point b and

puncture p is that

Holγb∇ =

 −1 0

0 −1

 , Holγp∇ =

 Xmp 0

0 X−1
mp

 , (6.21)
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which come from the condition in 6.15 and the trivialization of the vector bundle at

the punctures given in the data specifying the spectral network. Note that the data mp

associated to a puncture p is the mass parameter of the corresponding matter multiplet

as in [66, 68, 69].

6.1.2 Wall Crossing in Spectral Networks

An important feature of spectral networks is that they give us an excellent tool for

understanding wall crossing. In this setting, wall crossing is realized by changes of

topology of the spectral network W(ϕ2, ϑ) as we scan the phase ζ = eiϑ which can be

lifted to ζ̂ ∈ C∗.

The locations of the critical phases ζ = ζc where the spectral network undergoes

topology changes lift to a co-dimension-1 “walls” in C∗ called and are called K-walls[70].

Physically, each K-wall corresponds to a wall of marginal stability Ŵ (γk) where ζ is

aligned with the phase of Zγk . Here, the change in topology of the spectral network

causes the Darboux coordinates to undergo a cluster-like transformation [69]

Kγk : Xγi 7→ (1 + σ(γ)Xγk)−�γk,γi�Ω(γk)Xγi , γk ∈ Γ , (6.22)

where

σ(γ) = (−1)�γe,γm� , (6.23)

is a particular choice of quadratic refinement with respect to a choice of splitting of the

charge lattice and γ = γe ⊕ γm.4

However, since the expectation value of a line operator LP is defined by a path

P ⊂ C which is independent of the topology of the spectral network, the expectation

value

〈LP〉 =
∑
γ∈Γ

Ω(γ, LP)Yγ , (6.24)

is wall crossing invariant. This means that the Yγ undergo coordinate transformations

which exactly cancel the wall crossing of the framed BPS indices. Thus, by studying

4We will be working in the semiclassical limit so that there is always an almost canonical choice of
charge lattice splitting.
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E2

E1

E

E4

E3 E'1E'3

E'4

E'2

E'

γE γE'

Figure 6.1: This figure shows the flip of an edge in a triangulation (left flips to right)
giving rise to a Fock-Goncharov (shear) coordinate inside a quadrilateral with edges
E1, E2, E3, E4. This figure also demonstrates the projection of the paths in Σ → C
corresponding to the Darboux coordinates XE and XE′ .

the wall crossing properties of the Yγ , one can infer the wall crossing of framed BPS

states.

A nice feature of generic WKB spectral networks is that the walls provide an ideal

triangulation of C. In these networks, the associated Darboux coordinates have a

natural identification with the edges of the triangulation. These coordinates are given by

the holonomy along the lift under the projection π : Σ → C of a path running between

the branch points of different triangles through a given edge of the triangulation. See

Figure 6.1. We will use the notation where the Darboux coordinate associated to the

edge E is denoted XE .

In such spectral networks, the fundamental topology shift that occurs in wall cross-

ing is a flip of the triangulation . See Figure 6.1. Explicitly, in a generic WKB spectral

network and consider a quadrilateral with edges E1, E2, E3, E4 with diagonal edge E,

a flip on the edge E 7→ E′ acts on the corresponding Darboux coordinates by:

XE 7→ XE′ , XE1 7→ X ′E1
= XE1(1 + XE) ,

XE2 7→ X ′E2
= XE2(1 + X−1

E )−1 , XE3 7→ X ′E3
= XE3(1 + XE) ,

XE4 7→ X ′E4
= XE4(1 + X−1

E )−1 ,

(6.25)

where the signed intersection pairing of the edges is 〈Ei, Ej〉 = δi+1,j − δi−1,j .



190

(a) (b) (c) (d)

Figure 6.2: This figure shows how a wall running to a puncture (a) twists around the
puncture in a sequence of flips (b),(c) and approaches the juggle in which the wall runs
completely around the puncture (d).

In the case where there are punctures on C spectral networks can also undergo a

topology change called a juggle.5 This can be understood as an infinite sequence of

flips involving a puncture that has the effect of twisting a wall that runs to a puncture

until it completely encircles it [68]. See Figure 6.2.

The juggle can be understood as follows [68]. Consider an annulus surrounding a

puncture, P (which we replace by a disk with a marked point), with a single vertex

V of the triangulation on the outer boundary. Now consider lifting the configuration

to the simply connected cover which is a triangulated infinite strip as in Figure 6.3.

In this covering there are an infinite number of images of the interior marked point

(P → {Pi}), exterior vertex (V → {Vi}), and edges indexed by i ∈ Z. We can define

Darboux coordinates on the annulus as the Darboux coordinates on the triangulated

strip corresponding to the different edges in the same preimage under the projection to

the annulus.

If we choose an ordering of the lifted images of the vertices, we can define a winding

number of an interior edge by the difference of the image number of the end points.

Further, we can iteratively increase (decrease) the winding numbers of the interior edges

by performing a sequence of simultaneous flips on all of the preimages of the the interior

5There is another transformation called a “pop” which has to do with changing the decoration of a
given puncture, but this will not be important for our story. See [68] for more details.
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V0 V1 V2V-1

P-1 P0 P1 P2

V

P

Figure 6.3: This figure shows how to lift a spectral network on an annulus surrounding
a puncture on C to the simply connected cover. The puncture P , and exterior vertex
V lift an an infinite number of seperated points, denoted {Pi} and {Vi} respectively,
connected by interior edges giving a triangulation of the strip.

edge with the lowest (highest) winding number. See Figure 6.4. After n such flips, the

interior edges run between the 0th exterior vertex preimage to the nth and (n − 1)th

interior preimage. We can now make sense of the corresponding Darboux coordinates

in the limit as n→∞. First note that as n→∞ the interior edges approach a parallel

line to the interior and exterior edges. This corresponds to a spectral network where

there is a single, double wall circling the puncture of C under consideration. If we define

Y(n)
+ and Y(n)

− to be the edges with higher and lower winding number respectively after

n flips, then in the n→∞ limit we can construct the well defined coordinates:

Y(+)
A = lim

n→∞
Y(n)

+ Y
(n)
− , Y(+)

B = lim
n→∞

(Y(n)
+ )−n(Y(n)

− )1−n . (6.26)

There exists an analogous coordinate system {Y(−)
A ,Y(−)

B } for the limit of sending the

winding to −∞ which is related

Y(−)
A = (Y(+)

A )−1 , Y(−)
B = (ξ+ − ξ−)−4(Y(+)

B )−1 , (6.27)



192

V0 V1 V2V-1

P-1 P0 P1 P2

V0 V1 V2V-1

P-1 P0 P1 P2

V0 V1 V2V-1

P-1 P0 P1 P2

(a) (b)

(c)

Figure 6.4: This figure demonstrates how flips in the spectral network on the annulus
corresponds to increasing winding number by considering the flips of all of the preimages
in the triangulated strip. Here the processes of going from (a) → (b) and (b) → (c)
requires a sequence of 2 flips where the red edges undergo the flip.

where ξ+, ξ− are the positive and negative eigenvalues of the monodromy matrix around

the given puncture.

6.1.3 Line Defects and the AGT Correspondence

The expectation value of line defects in theories of class S can also be exactly computed

by using what is known as the AGT correspondence [3, 4].

Recall that theories of class S are constructed by compactifying a corresponding

6D N = (2, 0) theory on a Riemann surface C with a topological twist that makes the

theory independent of the scale of C. Because of this, the expectation value of SUSY

operators in the 4D theory, which descend from SUSY operators in the 6D theory, are

equal to the expectation value of a corresponding operator in the 2D theory on C [3, 4].

For theories of class S with SU(N) gauge group, the above construction is equivalent

to wrapping a stack of N M5-branes on C with a topological twist. In this case, the

corresponding 2D theory is AN−1 Toda theory on the closure of C, denoted C. Here,

punctures of C are associated with a flavor symmetry of 4D hypermultiplets and come

with the data of a mass parameter specifying the 4D flavor symmetry. In the associated
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2D Toda theory, each puncture corresponds to a vertex operator insertion in the path

integral whose weight is determined by the associated mass parameter [69, 4, 59, 58].

We are interested in computing the expectation value of magnetically charged line

defects in the 4D theory. Again, recall that in theories of class S, line defects descend

from strings in the 6D theory that wrap the 2-manifold γ × S1
t ⊂ C × (R3 × S1

t ) where

γ is a closed 1-dimensional submanifold of C that does not go into the punctures.

The electromagnetic charge of the associated 4D line defect in an S-duality frame is

determined by the homology class of γ ⊂ C with respect to the weak coupling cut

decomposition of C corresponding to the S-duality frame [69, 58, 59, 4].

In the 2D Toda theory, a line defect associated to a closed curve γ corresponds to a

loop operator Lγ . This can be computed by [4, 168, 126]

〈L~p,0〉T4[SU(N),C] =

〈∏
f

Vmf

Lγ~p
〉

Toda[AN−1,C]

, (6.28)

where T4[SU(N), C] is the type SU(N) 4D theory of class S corresponding to the

Riemann curve C, the {Vmf } are the vertex operators corresponding to the punctures

of C with mass parameters {mf}, and γ~p is the curve corresponding to the operator

L~p,0 [4, 58, 59].

Complexified Fenchel-Nielsen Coordinates

The expectation value of 4D line defects computed using the AGT correspondence is

naturally expressed in terms of Fenchel-Nielsen coordinates a, b. These can be defined

as follows.

Choose a weak coupling region of the Coulomb branch. This defines a complex

structure and comes with a maximal set of non-intersecting curves {γi}3g−3+n
i=1 that are

not isotopic to punctures on the UV curve C which correspond to weakly coupled gauge

groups indexed by i.6 Each γi, corresponds to an SU(N) factor of the gauge group of

g, to which we can define the associated holomorphic coordinates {ai} ∈ tC defined by

〈Lγi〉 = TrNe
ai . (6.29)

6Here we are restricting to the case of Lagrangian theories of class S with SU(N) gauge group.
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The {ai} are Poisson commuting with respect to the standard, symplectic (2, 0)-form

ΩJ on Seiberg-Witten moduli space [53, 102]

ΩJ

(
∂

∂ai
,
∂

∂aj

)
= 0 , (6.30)

and form a maximal set of Poisson commuting holomorphic functions.

Now we can define a set of symplectically dual coordinates {bi} ∈ tC with respect

to ΩJ such that

ΩJ =
1

~
∑
i

TrN (dai ∧ dbi) . (6.31)

We can then fix the redundancy bi → bi + fi(a) where ∂aifj = ∂ajfi by specifying the

semiclassical limit:

a =iθ(i)
e − 2πβY (i)

∞ + ... ,

b =iθ(i)
m +

8π2β

g2
X(i)
∞ − ϑβY (i)

∞ + ... ,
(6.32)

where θ
(i)
m and θ

(i)
e are the magnetic and electric theta angles of the ith factor of the gauge

group, ζ−1Φ
(i)
∞ = Y

(i)
∞ + iX

(i)
∞ are the real and imaginary parts of the phase rotated vev

of the adjoint-valued Higgs field Φ(i) of the N = 2 vectormultiplet corresponding to the

ith factor of the gauge group, and ϑ, g define the real and complex part of the complex

gauge coupling τ which we assume to be the same for all factors of the gauge group.

Note that we will generally take Φ∞ to be fixed so that the a, b have ζ-dependence via

X∞, Y∞. Additionally, here β is the radius of the thermal circle and (...) correspond to

non-perturbative corrections, which we will discuss later in Section 7.1.1.

For example, in the case of a single SU(2) gauge group, the above discussion reduces

to a single pair of Fenchel-Nielsen coordinates a, b.

6.2 Localization for Zmono(P, v)

Now we will discuss how to compute the expectation value of ’t Hooft defects by using

localization. To facilitate discussion, let us consider the the example of the 4D N = 2

SU(N) gauge theory on R3 × S1 with Nf fundamental hypermultiplets.7

7The analysis follows similarly for theories with higher rank gauge groups.
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In such theories, the expectation values of line defects, and in particular ’t Hooft

defects, are holomorphic functions on Seiberg-Witten moduli space. In a weak coupling

domain, the expectation value can be written in terms complexified Fenchel-Nielson co-

ordinates a, b which are holomorophic, Darboux coordinates on Seiberg-Witten moduli

space. Here, a is canonically defined and its symplectic dual b, while not canonically

defined is uniquely fixed via the weak coupling expansion as in the previous section.

From general principles, the expectation value of the ’t Hooft defects can be ex-

pressed in these coordinates as a Fourier expansion in b. In general, this can be ex-

pressed as [97, 81]

〈LP,0〉 =
∑
v≤P

cosh(v, b)(F (a))|v|Zmono(a,m, ε;P, v) , (6.33)

where the sum is over v =
∑

I vIh
I such that vI ≤ pI for all I where P =

∑
I pIh

I .

The expectation value above is expressed as a sum over monopole bubbling configu-

rations where cosh(v, b)F (a) encodes the contribution of bulk fields and Zmono(a,m, ε;P, v)

describes the contribution from the SQM that arises on the ’t Hooft defect from bub-

bling [23].

The field content of this theory consists of a N = 2 vector multiplet (Φ,ψA, Aµ) with

gauge group SU(N) and Nf fundamental hypermultiplets (q
(f)
A , λ(f)) with masses mf

where f = 1, ...,Nf . We will express these hypermultiplets as a single hypermultiplet

(qA, λ) that transforms under the bifundamental representation of G×Gf = SU(N)×

SU(Nf ) with a single mass parameter m ∈ tf ⊂ gf . Here qA, ψA are a scalar- and Weyl

fermion-doublets transforming under the spin-1
2 representation of SU(2)R and λ is a

Dirac fermion.
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This theory is described by the Lagrangian [133, 22]:

L = Lvec + Lhyp ,

Lvec =
1

g2

∫
d3x Tr

(
1

2
FµνFµν + |DµΦ|2 −

1

4
[Φ,Φ†]2

− 2iψ̄Aσ̄µDµψA − iψA[Φ†, ψA] + iψ̄A[Φ, ψ̄A]

)

+
ϑ

8π2

∫
Tr (F ∧ F ) ,

Lhyp =
1

g2

∫
d3x

(
|DµqA|2 + 2iλ̄ /Dλ+ |mqA|2 − imq†AΦ†qA − im∗q†AΦqA

− 2mRλ̄λ+ 2imI λ̄γ
5λ− iλ̄Φλ− iλTΦ†λ∗

+ 2qAλ̄ΨA + 2Ψ̄Aq†Aλ+
1

2
qA{Φ,Φ†}qA +

1

8
(q†AT a(τs) B

A qB)2

)
,

(6.34)

where s = 1, 2, 3 is summed over, (τs)
B
A are the SU(2)R generators, ΨTA = (ψA, ψ̄A) is

a Dirac fermion, and m = mR + imI .

The supersymmetry transformations of these fields are

δξΨA = −iσµνFµνξA + iσµDµξ̄A +
i

2
ξA[Φ,Φ†] ,

δξΦ = 2ξAψA , δξAµ = ξAσµψ̄A + ψ̄Aσ̄µψA ,

δξqA = 2Ξ̄Aλ , δξλ = iγµΞ̄ADµqA − (iΦ† +m∗)qA(Ξ∗)A ,

(6.35)

where ΞT
A = (ξA, ξ̄A) is a Dirac-fermion doublet of SUSY transformation parameters

that transforms in the spin 1
2 -representation of SU(2)R.

As in the case of Seiberg-Witten theory, the space of SUSY vacua is given by the

complexification of a Cartan subalgebra modulo the action of the Weyl group which

is again parametrized by the vev of the complex scalar field. This generically breaks

the conserved global symmetry group down to T̃ = Tgauge × U(1)ε × Tf where Tgauge

is the maximal torus of the 4D gauge group, which describes the group of global gauge

transformations, and Tf is the maximal torus of the flavor symmetry group.

Now let us include a (reducible) ’t Hooft operator specified by the data (P, ~x = 0, ζ).

The gauge field singularity at ~x = 0 requires adding a local boundary term to the action
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specified by ζ: 8

Sbnd = − 1

g2
lim
ε→0

∫
S2
ε (~0)

Tr
(
Im[ζ−1Φ]F + Re[ζ−1Φ] ∗ F

)
, (6.36)

where S2
ε (~0) is the 2-sphere of radius ε centered at ~x = ~0.

This insertion manifestly breaks 1
2 -supersymmetry. The choice of ζ ∈ U(1) defines

the conserved symmetries to be generated by a parameter ρA that is defined by

ξA = ζ
1
2 (ρA + iπA) , (6.37)

where ρA, πA are symplectic-Majorana-Weyl fermions.9 The conserved supercharges

are given by the real combination

Q = ρAQA + ρ̄AQ̄
A , (6.38)

where QA is the complex supercharge of the full N = 2 SUSY algebra. Specifically,

this means that Lp,0 is a Q-invariant operator. This Q satisfies the relation

Q2 = H + aQa + ε+J+ +m · F , (6.39)

where H is the Hamiltonian, Qa is the charge associated with global gauge transforma-

tions with fugacity a, J+ is the charge associated to supersymmetric rotations10 in R3

that we associate with ε+ in a 1
2 -Ω background, and F is the set of conserved flavor

charges.

6.2.1 Localization

Now we will compute the expectation value of the ’t Hooft defect by using localization.

The localization principle states that the expectation value of a Q-invariant operator is

invariant under a Q-exact deformation of the Lagrangian

L → L+ tQ · V . (6.40)

8Really we must take a sum of p boundary terms (where the charge of the reducible ’t Hooft defect
is P = p h1), each centered at ~x(i), and then take the limit as ~x(i) → 0. Each of these corresponds
to the boundary condition for a constituent minimal ’t Hooft defect inserted at ~x(i). To represent a
single reducible ’t Hooft defect, we require taking the limit ~x(i), ε(i) → 0 such that |~x(i)|/ε(i) → 0 where
the physical boundary term for each minimal ’t Hooft defect is inserted on a 2-sphere of radius ε(i)

surrounding ~x(i). For simplicity, we will ignore this subtlety in the main discussion.

9Symplectic-Majorana-Weyl fermions satisfy: ρA = εABσ̄0ρ̄B .

10These are spatial rotations with an R-charge rotation.
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Then, by studying the limit as t → ∞, we see that the path integral localizes to the

zeros of V that are fixed under the action of T̃ . As in [97, 81], if we make a choice

V = (Q · λ̄, λ) + (Q · ψ̄A, ψA) , (6.41)

then the path integral localizes to the zeros of Q · λ and Q · ψA. This reduces the

path integral to an integral over (the T̃ -invariant subspace of) the moduli space of

BPS equations. Note that since shifting t is a Q-exact deformation of the action, the

localization behavior of the path integral is independent of the value of t.

In our case, the associated BPS equations (before 1
2Ω-deformation) are given by 11

DiX = Bi , Ei = DiY ,

DtY = 0 , DtX − [Y,X] = 0 ,

Diq = 0 , D0q + (Y +mI)q + i(X −mR)q = 0 ,

(6.42)

where Bi, Ei are the magnetic and electric field respectively and m is rotated by the

phase ζ: ζ−1m = mR + imI . The solutions to these equations with respect to the

’t Hooft defect (3.94) and asymptotic boundary conditions (3.39) – (3.40) are given

exactly by singular monopole moduli space [97, 81, 23].

Thus, the expectation value of the ’t Hooft defect localizes to an integral over the

T̃ -fixed locus of singular monopole moduli space with measure determined by the 1-loop

determinant times the exponential of the classical action.12 In this integral, the classical

11To regularize the path integral, we will need to turn on a 1
2
-Ω-deformation that modifies the BPS

equations. However, the T̃ -fixed locus of the moduli space of the deformed BPS equations will be
identical to the T̃ -fixed locus of the moduli space of the undeformed BPS equations. See [81, 23] for
the explicit form and more details.

12To be precise, we are computing the expectation value of the ’t Hooft defect with fixed electric and
magnetic theta angle θe, θm. The electric theta angle is defined by fixing the holonomy of the gauge
connection along the circle at infinity ∮

S1
∞

Atdt = θe . (6.43)

The magnetic theta angle is defined as the Fourier dual of path integral with fixed magnetic charge
〈L~p,0〉γm :

〈L~p,0〉θm =
∑
m

〈L~p,0〉γme
−i(γm,θm) . (6.44)

Thus, by saying that the path integral “localizes to singular monopole moduli space”, we mean that
each term in the Fourier sum (6.44) reduces to an integral over the reducible singular monopole moduli
spaceM(P, γm;X∞). Due to the universality of the geometry of the transversal slices/bubbling SQMs,
we will find that this subtlety is irrelevant for the calculation of Zmono(P, v). See [23] for more details.
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action is determined by the effective bulk charge sourced by the ’t Hooft defect. Since

singular monopole moduli space decomposes as the disjoint union of bubbling sectors

with different effective charges, the expectation value of the line defect reduces to a

sum of integrals over the T̃ -fixed locus of different strata of the bubbling locus. Thus,

the expectation value is of the form

〈L~p,0〉 =
∑
|v|≤|P |

v∈Λcr+P

Z(a, b,mf , ε+;P, v) , (6.45)

where Z(a, b,mf , ε+;P, v) is the reduction of the localized integral over M̂(P, γm;X∞)

to the strata M̂
(s)

T̃ (v, γm;X∞) and the corresponding transverse slice M(P, v).

By integrating over the T̃ -fixed subspace of each M̂
(s)

T̃ (v, γm;X∞), the computa-

tion for Z(a, b,mf , ε+;P, v) can be further reduced to a T̃ -equivariant integral over the

transversal slice of each strata, M(P, v) [97, 81, 23]. As shown in [23], we can identify

the universal coefficient of the integrand with e(v,b)Z1−loop(a,mf , ε+; v) and the remain-

ing, integral dependent part as Zmono(a,mf , ε+;P, v). This will lead to the form of the

expectation value of the ’t Hooft defect

〈L~p,0〉 =
∑
|v|≤|P |

v∈Λcr+P

e(v,b)Z1−loop(a,mf , ε+; v)Zmono(a,mf , ε+;P, v) , (6.46)

where, Zmono(P, v) can be identified as:

Zmono(a,mf , ε+;P, v) =

∫
M(P,v)

eω+µ
T̃ Â

T̃
(TM) · C

T̃
(V(R)) . (6.47)

Here, Â
T̃

is the T̃ -equivariant Â genus, C
T̃

is a T̃ -equivariant characteristic class that

depends on the matter content of the theory, eω+µ
T̃ is the equivariant volume form, and

a,mf , ε+ enter the expression as the equivariant weights under the T̃ -action. It will be

crucial to us that Zmono(P, v) is independent of β.13 See [127, 97, 23] for more details.

6.2.2 Bubbling SQMs

As shown in [23], Zmono(P, v) can be physically interpreted as the contribution of an

SQM localized on the ’t Hooft defect of charge P that has an effective charge v. This

13a is treated as independent of β.



200

NS5

D3

D1

x1,2,3

x4

Nf-D7

(a) (b)

(c)

(d)

Figure 6.5: This figure illustrates which strings give rise to the various fields in the
bubbling SQM. (a) describes the D1-D1 strings that give rise to a N = (0, 4) vector
multiplet with fields (vt, σ, λ

A), (b) describes the D1-D3 strings that give rise to N =
(0, 4) fundamental hypermultiplets with fields (φA, ψI), (c) illustrates D1-D1’ strings
that give rise to N = (0, 4) bifundamental hypermultiplets with fields (φA, ψ

I
), and (d)

describes D1-D7 strings that give rise to the short N = (0, 4) Fermi multiplets with
fields (η,G).

leads to the interpretation of the integral in (6.47) as the localized path integral of the

bubbling SQM. Then, since the (twisted) path integral of a SQM is formally equal to

its Witten index, the monopole bubbling contribution, Zmono(P, v) can be expressed as

the Witten index of the corresponding bubbling SQM specified by the quiver Γ (P, v)

as in Section 5.1.2:

Zmono(P, v) = IW (Γ (P, v)) := TrHΓ (P,v)
(−1)F e−

β
2
{Q,Q}+aQa+ε+Qε+m·F , (6.48)

where Qa is the charge for the flavor symmetry associated with 4D global gauge trans-

formations, Qε is an R-charge associated to the 1
2Ω-deformed background, 14 and F is

the set of conserved flavor charges.

The bubbling SQM specified by the quiver Γ (P, v) is given by compactifying the

2D N = (0, 4) quiver gauge theory. Let us use the notation G =
∏p−1
i=1 U(k(i)) for

14Qε can also be understood as an R-symmetry charge in the bubbling SQM. The N = (0, 4) bubbling
SQMs we are consider have an SU(2)R R-symmetry and an SU(2)r outer-automorphism “R-symmetry”.
Here the Qε is diagonal combination of the Cartans: Qε = QR −Qr. See [165] for more details.
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the gauge group of the SQM such that the corresponding Lie algebra g decomposes as

g =
⊕n−1

i=1 g(i) =
⊕n−1

i=1 u(k(i)) and its Cartan subalgebra t =
⊕n−1

i=1 t(i) =
⊕n−1

i=1 u(k(i))

where P = n ĥ1, ĥI ∈ Λcochar.15

Each gauge node corresponds to a N = (0, 4) vector multiplet with constituent fields

(σ(i), λA(i), v
(i)
t ), where i = 1, ..., n − 1 indexes the gauge nodes. In the string theory

interpretation of Section 5.3, these vector multiplets arise from the D1i-D1i strings on

the stack of D1i-branes stretched between the NS5i- and NS5i+1-branes. Additionally

there are N = (0, 4) fundamental hypermultiplets with constituent fields (φ(i), ψ(i)) ⊕

(φ̃(i), ψ̃(i)) that come from D1i-D3 strings andN = (0, 4) bifundamental hypermultiplets

with constituent fields (φ(i), ψ(i)) ⊕ (φ̃
(i)
, ψ̃

(i)
) that come from the D1i-D1i+1 strings

at NS5-branes. Also, in the case of theories with 4D fundamental hypermultiplets,

there are additional N = (0, 4) short Fermi-multiplets with constituent fields (η(i), G(i))

coming from D3-D7 strings. See Figure 6.5. Additionally, see [165, 90] for more details

on N = (0, 4) SQMs.

The bubbling SQM has a Lagrangian that decomposes as a sum of terms

L = Lvec + LFermi + Lf + Lbf , (6.49)

which describe the contributions from vector multiplets, Fermi-multiplets, fundamental

hypermultiplets, and bifundamental hypermultiplets respectively. These contributions

can be found in Appendices D.1 and D.2. Here we will pick the convention where the

gauge couplings for each factor in the gauge group are equal to e2 by fixing a universal

normalization of the Killing form for the SQM Lie algebra.

Now we wish to compute the Witten index of the bubbling SQM. This requires an

understanding of the spectrum of the bubbling SQM. We can infer an approximate

version of the spectrum from the classical moduli space and its surrounding potential.

15Recall that here we use the notation Lp,0 for P = ph1, h1 ∈ Λmw.
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In this SQM, the potential energy is of the form

U =
1

e2

∑
i

(
|σ(i) · φ(i)|2 + |σ(i) · φ̃(i)|2

)
+

1

e2

∑
i

(
|(σ(i+1) − σ(i)) · φ(i)|2 + |(σ(i+1) − σ(i)) · φ̃(i)|2

)
+

1

2e2

∑
i

(
|φ(i)|2 − |φ̃(i)|2 − |φ(i)|2 + |φ̃(i)|2 + |φ(i−1)|2 − |φ̃(i−1)|2

)2

+
1

e2

∑
i

∣∣∣φ(i)φ̃(i) − φ(i)φ̃
(i)

+ φ(i−1)φ̃
(i−1)

∣∣∣2 ,

(6.50)

where here we are using scalar contraction. Thus, the moduli space is defined by the

solutions to the equations:

0 = |σ(i)φ(i)|2 , 0 = |σ(i)φ̃(i)|2 ,

0 = |(σ(i+1) − σ(i))φ(i)|2 , 0 = |(σ(i+1) − σ(i))φ̃
(i)|2 ,

0 = |φ(i)|2 − |φ̃(i)|2 − |φ(i)|2 + |φ̃(i)|2 + |φ(i−1)|2 − |φ̃(i−1)|2 ,

0 = φ(i)φ̃(i) − φ(i)φ̃
(i)

+ φ(i−1)φ̃
(i−1)

,

(6.51)

for each i.

The solutions of these equations can be divided into Coulomb, Higgs, and mixed

branches

Mvac =MC ∪MH ∪Mmix , (6.52)

where

MC = {σ(i) ∈ t(i) , σ(i) 6= σ(i+1) , φ(i), φ̃(i), φ(i), φ̃
(i)

= 0} ,

MH =

{
|φ(i)|2 − |φ̃(i)|2 − |φ(i)|2 + |φ̃(i)|2 + |φ(i−1)|2 − |φ̃(i−1)|2 = 0

φ(i)φ̃(i) − φ(i)φ̃
(i)

+ φ(i−1)φ̃
(i−1)

= 0
, σ(i) = 0

}/
G ,

(6.53)

and G is the group of gauge transformations. The mixed branch is significantly more

complicated to write down in full generality, but it should be thought of as having

asymptotic directions as in the Coulomb branch for some subset of directions of σ ∈ t

and some hypermultiplet scalars with non-zero expectation value. Because of this hybrid

quality, the mixed branch, like the Coulomb branch, is non-compact and, like the Higgs

branch, is a singular manifold.
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We can additionally add an FI-deformation to the theory

LFI = −(ξ,D) = −
∑
i

ξ(i)D(i) . (6.54)

This contribution changes the potential to

U =
1

e2

∑
i

(
|σ(i) · φ(i)|2 + |σ(i) · φ̃(i)|2

)
+

1

e2

∑
i

(
|(σ(i+1) − σ(i)) · φ(i)|2 + |(σ(i+1) − σ(i)) · φ̃(i)|2

)
+

1

2e2

∑
i

(
|φ(i)|2 − |φ̃(i)|2 − |φ(i)|2 + |φ̃(i)|2 + |φ(i−1)|2 − |φ̃(i−1)|2 − e2ξ(i)

)2

+
1

e2

∑
i

∣∣∣φ(i)φ̃(i) − φ(i)φ̃
(i)

+ φ(i−1)φ̃
(i−1)

∣∣∣2 .

(6.55)

This lifts the classical vacua associated to the Coulomb branch along with certain non-

compact directions in the mixed branch by modifying the D-term vacuum equation

to

e2ξ(i) = |φ(i)|2 − |φ̃(i)|2 − |φ(i)|2 + |φ̃(i)|2 + |φ(i−1)|2 − |φ̃(i−1)|2 . (6.56)

Consequently, when ξ(i) 6= 0, the hypermultiplet scalar fields cannot all simultaneously

satisfy φ(i), φ̃(i), φ(i), φ̃
(i)

= 0.

Additionally, the FI-deformation resolves the singularities of the mixed and Higgs

branches and lifts certain directions in the mixed branch. Now the Higgs branch can

be written as a (resolved) hyperkähler quotient

MH = ~µ−1(~ξ )
/
G , ~ξ = (ξR, ξC) = (e2ξ, 0) , (6.57)

where

µR = |φ(i)|2 − |φ̃(i)|2 − |φ(i)|2 + |φ̃(i)|2 + |φ(i−1)|2 − |φ̃(i−1)|2 ,

µC = φ(i)φ̃(i) − φ(i)φ̃
(i)

+ φ(i−1)φ̃
(i−1)

.

(6.58)

Now in order to couple the Witten index to flavor fugacities, let us add masses for

the hypermultiplet fields. These can be defined as flat connections coming from an

associated flavor symmetry. We will choose to turn on mass parameters corresponding

to the 1
2 -Ω deformation with a mass parameter ε+ = Im[ε+/β] and to a fugacity for 4D
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global gauge symmetry with mass parameter a = Im[a/β]. 16 These mass deformations

modify the mass terms in the potential (6.55):

U =
∑
i

1

e2

∣∣∣(σ(i) + aQa + ε+Qε) · φ(i)
∣∣∣2 +

1

e2

∣∣∣(σ(i) + aQa + ε+Qε) · φ̃(i)
∣∣∣2

+
1

e2

∑
i

∣∣∣(σ(i+1) − σ(i) + aQa + ε+Qε
)
· φ(i)

∣∣∣2 +
∣∣∣(σ(i+1) − σ(i) + aQa + ε+Qε

)
· φ̃(i)

∣∣∣2
+

1

2e2

∑
i

(
|φ(i)|2 − |φ̃(i)|2 − |φ(i)|2 + |φ̃(i)|2 + |φ(i−1)|2 − |φ̃(i−1)|2 − e2ξ(i)

)2

+
1

e2

∑
i

∣∣∣φ(i)φ̃(i) − φ(i)φ̃
(i)

+ φ(i−1)φ̃
(i−1)

∣∣∣2 .

(6.59)

where Qa · Φ and Qε · Φ encode the Qa, Qε charges of the field Φ. See Appendices D.1

and D.2 for details about the charges of the fields.

The mass deformation lifts most of the Higgs and mixed branch vacua except at

a collection of intersecting hyperplanes where hypermultiplet scalars become massless.

This reduces the Higgs branch to a collection of points while reducing the mixed branch

so that it only has non-compact directions coming from vector multiplet scalars. The

mass deformations additionally give a mass of 4ε+ to the fermionic component λ2 which

breaks SUSY N = (0, 4) → N = (0, 2) under which the N = (0, 4) vector multiplet

decomposes as a N = (0, 2) vector multiplet (vt, σ, λ
1, D) and a N = (0, 2) Fermi-

multiplet (λ2, F ). With this choice, Q = ρAQA is the preserved complex supercharge.

Due to the form of (6.59), the potential around each of the vacuum branches is

quadratically confining. In the limit e2 → 0, this potential becomes infinitely steep

and states become exactly localized on the moduli spaces. Since the Higgs branch is

given by a collection of points, in the limit e2 → 0, this supports an infinite, discrete

spectrum of harmonic oscillator-like states. However, the mixed branch, which has non-

compact directions, supports both a discrete spectrum of bound states and a continuum

of scattering states.

In addition, there are also states localized on the classically lifted Coulomb and

mixed branches. Even though the potential energy on these branch is no longer zero, it

16This identification allows us to work with a unitary theory. We can then derive the full Witten
index by analytic continuation. See [60] for more details.
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is bounded. Again the potential in the normal direction is quadratically confining such

that in the limit e2 → 0, the states become exactly localized on the lifted branches.

Thus, the the Coulomb and lifted mixed branches constitute non-compact directions in

field space with finite potential energy which can also support both a discrete spectrum

of bound states and a continuum of scattering states. See Section 6.2.4 for further

discussion of Higgs, mixed, and Coulomb Branch states.

Localization

Now we will attempt to compute the partition function of this theory by using localiza-

tion. While parts of the following analysis have also been done using similar methods in

[14, 90], we will find it instructive and physically insightful to present the full derivation

of the localization computation.

The key to using localization in this setting is that the action of these theories is

Q-exact. That is to say, we can rewrite the Lagrangian

L =
1

e2
Q · Vvec +

1

e2
Q · Vmatter , (6.60)

with

Vvec =
∑
i

(
Q̄ · λ̄(i)

A , λ
(i)A
)
,

Vmatter =
∑
i

[(
Q̄ · ψ̄(i), ψ(i)

)
+
(
Q̄ · ¯̃

ψ(i), ψ̃(i)
)

+
(
Q̄ · η̄(i), η(i)

)]
.

(6.61)

Thus, shifting the value of e is a supersymmetric deformation of the theory. This means

that the result of localization should be independent of e and therefore we will take e

to be generic and strictly positive.17

Now by the localization principle, the partition function reduces to an integral over

the the moduli space of the time independent BPS equations: 18

[σ, vt] = 0 , Mr = 0 . (6.62)

17Note that these are actually dimensionful quantities in the 1D SQM. These have dimension [e2] =
`−3. Thus to take the “e→ 0” limit, we must take `3e2 → 0 where ` is some fixed length scale. In our
discussion we will use the FI-parameter ξ as our fixed length scale since in the upcoming discussion we
want β to be variable.

18See (D.10)-(D.11) for the full SUSY transformations.
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These BPS equations have a moduli space of solutions given by 19

MBPS =
{
ϕ = β(σ + ivt)

∣∣
t=0
∈ (t× T )/W

}
∼= (tC/Λcr)/W = M̂/W , (6.63)

where t is the Lie algebra corresponding to the torus T of the SQM gauge group as

defined by the quiver Γ (P, v). Note that this ϕ is not to be confused with the hy-

permultiplet fields φi, φ̃i, φi, φ̃i. Now as in [90, 14], the Wick rotated path integral is

reduced to

Z(Loc) =

∫
MBPS

d2rϕ

(2πi)r
Zdet(ϕ) =

1

|W |

∫
M̂

d2rϕ

(2πi)r
Zdet(ϕ) , (6.64)

where r = rnk g and g is the Lie algebra of the gauge group of the quiver SQM. The 1-

loop determinant Zdet can now be computed in the background given by the zero-mode

ϕ. For quiver SQMs this is of the form [90]

Zdet(ϕ) =

∫
t
drDZint(ϕ,D) exp

{
−πβ(D,D)

e2
+ 2πiβ(ξ,D)

)
, (6.65)

where

Zint(ϕ,D) = Zvec(ϕ) · ZFermi(ϕ) · Zhyp(ϕ,D) . (6.66)

Here Zvec, ZFermi, and Zhyp are the 1-loop determinants from the vector-, Fermi-, and

hyper- multiplet fields respectively.

First consider the vector multiplet contribution. This term originates solely from

vector multiplet fermions. The reason is that there are no propagating modes of ϕ due

to Gauss’s law and there are no propagating modes of D due to the lack of a kinetic

term [90]. Thus, the contributions to Zvec come from integrating over the non-zero

modes of λA. Note that λ2 does not have any zero modes because it has a generic,

non-zero mass due to the Ω-deformation.

Explicitly, the vector multiplet fermions give the contribution

Zvec =

n−1∏
i=1

∏
α∈∆(i)

adj

sinh(α(ϕ(i)) + qi)
∏

α∈∆(i)
adj

α 6=0

sinh(α(ϕ(i))) ,
(6.67)

19Note that this rescaling enforces the periodicity condition ϕ ∼ ϕ+ 2πiλ for λ ∈ Λcr.
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where ∆
(i)
adj are the weights of the adjoint representation of the ith simple summand of

the gauge group and qi represent the coupling to all global charges associated to the

N = (0, 2) Fermi-multiplet of the N = (0, 4) vector multiplet (since only N = (0, 2)

SUSY is preserved).

Similarly, the contribution from the Fermi-multiplet is given by only by the 1-loop

determinant of the fermions which can be written as

ZFermi =

Nf∏
f=1

∏
µ∈∆(f)

fund

sinh(µ(ϕ(f)) + qf ) , (6.68)

where qf encodes the coupling to all global charges and ϕ(f) is the complex vector

multiplet scalar that couples to the f th Fermi multiplet.

Now consider the contribution from hypermultiplets. This term can be divided into

two parts

Zhyp = Z
(kin)
hyp · Z

(Y uk)
hyp , (6.69)

where Z
(kin)
hyp comes from kinetic terms of the hypermultiplet fields and Z

(Y uk)
hyp comes

from integrating out Yukawa interactions. Explicitly, these are of the form

Z
(kin)
hyp =

∏
j

∏
µ∈∆(j)

hyp

∏
m∈Z

(πm− iµ(ϕ̄(j))− iq̄j)
(|πm+ iµ(ϕ(j)) + iqj |2 + iµ(D)

=
∏
j

∏
µ∈∆(j)

hyp

sinh(µ(ϕ̄(j)) + q̄j)

sinh(α+
j,µ) sinh(α−j,µ)

,

Z
(Y uk)
hyp = dethab(ϕ,D) ,

(6.70)

where j indexes the set of fundamental and bifundamental N = (0, 2) chiral multiplets

making up the N = (0, 4) hypermultiplets and ϕ(j) is the complex vector multiplet

scalar that couples to the jth hypermultiplet where

α±j,µ = i Im[µ(ϕ(j)) + qj ]±
√

Re[µ(ϕ(j)) + qj ]2 + iµ(D) ,

hab(ϕ,D) =
∑
j

∑
µ∈∆(j)

hyp

∑
m∈Z

〈µ,HI(a)〉〈µ,HI(b)〉(
|πm+ iµ(ϕ(j)) + iqj |2 + iµ(D)

)
(πm− iµ(ϕ̄(j))− iq̄j)

,

(6.71)

and HI(a) runs over the simple coroots of g.
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Although the Yukawa coupling of is order O(e), it is required to soak up the λ1 zero

modes. Thus, all other contributions from expanding the exponential of the Yukawa

term will be suppressed by additional positive powers of e. Since these higher order

terms do not contribute in the limit e→ 0, they must evaluate to zero by the localization

principle.

Therefore, putting all of these elements together, the total 1-loop determinant is

given by

Zdet(ϕ) =

∫
t
drD

Nf∏
f=1

∏
µ∈∆(f)

fund

sinh(µ(ϕ(f)) + qf ) exp

{
−πβ(D,D)

e2
+ 2πiβ(ξ,D)

}

×
n−1∏
i=1

∏
α∈∆(i)

adj

sinh(α(ϕ(i)) + qi)
∏

α∈∆(i)
adj

α 6=0

sinh(α(ϕ(i)))

×
∏
j

∏
µ∈∆(j)

hyp

sinh(µ(ϕ̄(j)) + q̄j)

sinh(α+
j,µ) sinh(α−j,µ)

· dethab(ϕ,D) .

(6.72)

Regularization

As it turns out, this integral is singular and requires regularization. Physically, this

arises because the bosonic part of the Euclidean action is of the form

Sbos =
1

e2

∫
dt

(
φ̄|∂t + ϕ+m|2φ+ iD(|φ|2 − e2ξ) +

1

2
D2

)
, (6.73)

for a generic bosonic hypermultiplet field phi where m is its mass which is generically

dependent on a, ε+. Thus, there is a bosonic zero mode when ϕ = −m,D = 0. This

makes the path integral infinite due to the co-dimension 3r singularity.

Therefore, consider the local behavior near finite singularities. These singularities

come from the hypermultiplet contribution to the 1-loop determinant where m = 0 and

are given by the a collection of intersecting singular hyperplanes in tC/Λcr located at

Hµ,j =
{
ϕ ∈ tC/Λcr | D = 0 , µ(ϕ(j)) + qj = 0 , µ ∈ ∆(j)

hyp

}
. (6.74)

In order to see that this singularity leads to a divergent integral, it is sufficient to study

the singularity from a single hyperplane in a transverse plane. In a local coordinate z
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centered at the hyperplane, this singularity is of the form∫
B2
R

d2z

∫ L

−L
dx

1

(|z|2 + ix)2
, (6.75)

where x = µ(D(j)) and B2
R is an 2D ball of radius R around the origin and L is some

finite cutoff. This integral is singular. Therefore, we need to regularize this integral.

One way we can regulate this expression is by shifting the contour of integration for

D by t→ t + iη for η ∈ t. In this case the singular integral becomes∫
B2
R

d2z

∫ L+iy

−L+iy
dx

1

(|z|2 + ix)2
=

∫
B2
R

d2z

∫ L

−L
dx

1

(|z|2 − y + ix)2
, (6.76)

where y = µ(η(j)). This resolves the singularities where µ(η(j)) < 0. However, the

integrand is still singular along a circle in the complex plane for the case for those µ

such that µ(η(j)) > 0. This can further be regulated by cutting out the disks B
(sing)
δ

of radius
√
|µ(η(i))| + δ around the ring singularity and then send δ → 0 . There are

subtleties associated with taking the limit δ → 0 which will also require taking η → 0,

however we will postpone a discussion until later. Now the regularized path integral is

given by

I
(Loc)
W =

∫
(tC/Λcr)\B(sing)

δ

d2rϕ

(2πi)r

∫
t+iη

drDZint exp

{
−πβ(D,D)

e2
+ 2πiβ(ξ,D)

}
,

(6.77)

where B
(sing)
δ is a union of δ-neighborhoods of the singularities of the integrand.

There can also be singularities arising from the infinite volume over t and tC/Λcr.

Thus, let us examine the behavior of the integrand at D → ∂t. Here, the Gaussian

factor will exponentially suppress the integrand and hence there will be no singularity

from the D-field.

Now let us examine the behavior of the integrand near ∂(tC/Λcr)). Consider the

integrand in the limit

τ →∞ where ϕ = τu , u ∈ t (6.78)

where t is the Lie algebra of g which itself decomposes as t =
⊕p−1

i=1 t(i). As shown in

Appendix D.3, the integrand Zint has the limiting form

|Zint| .
τ→∞
ϕ=τu

n−1∏
i=1

exp

{
2τ

(
s(i)− 2− 2δs(i),1 − 4δs(i),2 +

Nf

2
δi,im

) k(i)∑
a=1

|u(i)
a |
}
, (6.79)
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where

s(i) = 2k(i) − k(i+1) − k(i−1) , im =
n

2
− 1 . (6.80)

Using the fact that s(im) = 0 or 2 and the fact that Nf ≤ 4, we see that the exponential

factors can at most completely cancel as τ → ∞. In this case, the behavior of the 1-

loop determinant at infinity will be polynomially suppressed by the Yukawa terms for

the hypermultiplet fields to order O
(∏

i τ
−3k(i)

)
. Therefore, since the measure goes

as
∏
i τ

2k(i)−1, we have that the product of the integrand and measure will vanish as

O
(∏

i τ
−k(i)−1

)
and does not contribute infinitely to the localized path integral.

Therefore, excising the δ-neighborhoods B
(sing)
δ clearly resolves all singularities in

the integrand and renders its integral finite. However, since we are making a choice of

regularization, it is unclear how the resulting integral is related to the true path integral.

Therefore, we will refer to this as the localized Witten index, I
(Loc)
W , to emphasize how

it is distinct from the true Witten index.

Remark The D-contour deformation is physically well motivated because introducing

a FI-parameter is equivalent to shifting the saddle point of the D integral to ie2ξ. In

our regularization prescription, the localization result will generically be dependent on

η, ξ. This dependence even persists in the limit η → 0, ξ/β → 0 as the dependence on

the chamber of η, ξ ∈ t∗ defined by the charges of the hypermultiplet scalars µi ∈ t∗

as in the Jeffrey-Kirwan residue prescription.20 This dependence encodes wall crossing

in the SQM as studied in [90]. Thus, since the saddle point occurs at η = e2ξ, we will

restrict η, ξ ∈ t∗ to be in the same chamber. This is most easily achieved by assuming

η = cξ for some positive constant c ∈ R+.

6.2.3 Reduction to Contour Integral

Now that we have a well defined volume integral over tC/Λcr × (t + iη), we can utilize

the identity

∂

∂ϕ̄a
Z

(kin)
hyp = −iDbh

abZhyp , (6.81)

20See 21 for more details.
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where a, b are indices for a basis of simple coroots, to reduce the volume integral to a

contour integral. This allows us to write the 1-loop determinant as a total derivative

Zint =

(∏
a

1

iDa
∂̄ϕ̄a

)
Z

(kin)
int , Z

(kin)
int = Zvec · ZFermi · Z(kin)

hyp , (6.82)

such that the volume integral over tC/Λcr can be reduced to a contour integral over the

boundaries of the excised δ-neighborhoods and boundary ∂tC/Λcr

I
(Loc)
W =

∫
(tC/Λcr)\B(sing)

δ

d2rϕ

(2πi)r

∫
t+iη

drDZint exp

{
−πβ(D,D)

e2
+ 2πiβ(ξ,D)

}
,

=

∫
(tC/Λcr)\B(sing)

δ

d2rϕ

(2πi)r

∫
t+iη

∏
a

dDa

iDa
∂

(r)
ϕ̄

(
Z

(kin)
int

)
exp

{
−πβ(D,D)

e2
+ 2πiβ(ξ,D)

}
,

=

∮
∂B

(sing)
δ

∪(−∂(tC/Λcr))

dϕ1 ∧ ... ∧ dϕr
(2πi)r

∫
t+iη

∏
a

dDa

iDa
Z

(kin)
int exp

{
−πβ(D,D)

e2
+ 2πiβ(ξ,D)

}
,

(6.83)

where r = rnkg and a indexes the simple coroots of t. Here B
(sing)
δ is the neighbor-

hood of radius
√
|µ(η)| + δ surrounding each ring singularity in the integrand (where

µ(η) > 0) and ∂tC/Λcr is the (asymptotic) boundary of tC/Λcr. The identity (6.81) is

a consequence of supersymmetry [127, 128, 90, 14, 16, 15].

Consider the contributions from the contour integral around the excised B
(sing)
δ .

These terms are non-zero due to the poles in the 1-loop determinant from the bosonic

fields of the hypermultiplets which are of the form:

Zint ∼
∏
j

∏
µ∈∆

hyp(j)

1

(|µ(ϕ(j)) + qj |2 + µ(η) + iµ(D′))2
, D′ = D + iη , (6.84)

for µ(η) > 0. In this case, the contour integral over the excised disk of radius
√
|µ(η)|+

δ = r + δ where D′ = 0 is of the form∮
∂Bδ

ϕ̄dϕ

|ϕ|2 − r2
= 2πi

(r + δ)2

2rδ + δ2
. (6.85)

Now we need to take δ → 0 as a regulator of the singularity at |ϕ|2 = |µ(η)|. Note that

the integral above is infinite unless we take
√
|µ(η)| → 0 faster than δ. Therefore, we will

define the regularization of the localized path integral with
√
|µ(η)| → 0, δ → 0, such

that
√
|µ(η)|/δ → 0. In this limit, we find that the boundary integrals are equivalent

to computing the residue at the singularity with
√
|µ(η)|, D = 0.
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Now we can evaluate the terms in the integral (6.83) attributed to the poles ∂B
(sing)
δ .

By using the fact

lim
|ηa|→0

1

Da + iηa
= P

(
1

Da

)
− iπ sign(ηa)δ(Da) , (6.86)

we get

I
(Loc),sing
W =

∮
∂B

(sing)
δ

dϕ1 ∧ ... ∧ dϕr
(2πi)r

∫
t+iη

∏
a

dDaδ(Da)Z
(kin)
int

× exp

{
−πβ(D,D)

e2
+ 2πiβ(ξ,D)

}
+
{

Principal Terms in 1/D
}
,

(6.87)

where principal terms are those that have a principal value of some Da. Here, the

principal value term vanishes because integrand does not have a singularity of suffi-

ciently high codimension in ϕ and hence the contour integral over ϕ is identically zero.

Therefore, we find that the terms coming from the excised disks is exactly

I
(Loc),sing
W =

∮
∂B

(sing)
δ

dϕ1 ∧ ... ∧ dϕr
(2πi)r

Z
(kin)
int (ϕ,D = 0) , (6.88)

which reduces to a sum over residues of Z
(kin)
int (ϕ,D = 0).

This sum over residues is equivalent to the Jeffrey-Kirwan residue prescription [98].

The reason is that the contour integral simply picks out tuples of poles for which

µ(η) > 0 – or equivalently it picks poles corresponding to given tuples of {µp}rnkg
p=1 such

that µp(η) > 0, ∀p. By mapping η ∈ t to η∨ ∈ t∗ by the Killing form, this is equivalent

to the statement that the contour integral includes tuples of poles such that η∨ is in the

positive cone defined by the {µp}. This is the definition of the JK residue prescription

[98].21

21 The Jeffrey-Kirwan residue prescription selects a contour that such that the integral evaluates to
a sum of residues corresponding a particular set of poles specified by a parameter ~ξ ∈ t∗. These are
selected as follows. Consider a contour integral over an r-complex dimensional space. The poles of the
integrand are solutions of the equations

Qi(ϕ) + fi(q) = 0 , (6.89)

for some set of Qi ∈ t∗ and fi(q) functions of some parameters qj . Each of these poles defines a
hyperplane in t along which the integrand is singular. To each hyperplane specified by the solution of
(6.89), we associate the charge Qi ∈ t∗. Any set of r linearly independent {Qi} ∈ t∗ defines a positive
cone in C{Qi} ⊂ t∗. Each such cone corresponds to the intersection of r hyperplanes, which has a
non-trivial residue.

The Jeffrey-Kirwan prescription specified by the ξ ∈ t∗ picks a contour such that the contour integral
evaluates to the sum of residues associated to all cones C{Qi} such that ξ ∈ C{Qi} weighted by the sign
of the determinant sgn(Qi1 ∧ ... ∧Qir ).
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Boundary Terms at Infinity

Now consider the contributions to the contour integral from the boundary ∂tC/Λcr.

For simplicity we will consider only the case of a U(1) gauge theory as it is our main

example. However, the following analysis in the next two sections generalizes to generic

gauge groups. We will comment more on this later and continue to use notation that

accommodates this generalization.

Here we are considering the integral

Zbnd =

∮
−∂(tC/Λcr)

dϕ

2πi

∫
R+iη

dD

iD
Z

(kin)
int (ϕ,D)e−

πβD2

e2
+2πiβξD

(6.90)

where 22

Z
(kin)
int (ϕ,D) =2 sinh(2ε+)

Nf∏
f=1

sinh(µf (ϕ)−mf )×

4∏
j=1

sinh(µj(ϕ̄) + q̄j)

cosh(2i Im[µj(ϕ) + qj ])− cosh(2
√

Re[µj(ϕ) + qj ]2 + iµj(D))
.

(6.91)

Here j indexes over the representations of the 4 different N = (0, 4) fundamental chiral

multiplets making up the two N = (0, 4) fundamental hypermultiplets.

In the limit Re[ϕ]→ ±∞, the function Z
(kin)
int (ϕ,D) is independent of D and is the

0th order coefficient of the Laurent expansion in eϕ. Thus, the boundary integral, which

is evaluated in the limit Re[ϕ]→ ±∞, is given by

Zbnd =
∑
±

lim
Re[ϕ]→±∞

(
±Z(kin)

int

)(
c(η)− erf

(√
πβeξ

))
,

=
∑
±
± lim
Re[ϕ]→±∞

(
2 sinh(2ε+)e(

∑
f |µf |−

∑
j |µj |)|Re[ϕ]|

)
e±
∑
f sign(µf )q̄f∓

∑
j sign(µj)qj

×
(
c(η)− erf

(√
πβeξ

))
,

(6.92)

where we have applied the formula in for the integral in Appendix D.4 and erfc+(x) is

the error function

erf(x) =
2√
π

∫ x

0
du e−u

2
. (6.93)

22Note that the contribution from the vector multiplet fermions is only given by sinh(2ε+) since the
adjoint action is trivial for a U(1) gauge group.
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Here

c(η) =


1 η > 0

−1 η < 0

. (6.94)

See Appendix D.4 for more details.

By using the fact that in our models∑
f

|µf | −
∑
i

|µi| = Nf − 4 , (6.95)

we see that this boundary term is only non-zero when Nf = 4.23

In summary, by carefully performing the localization computation of IW → I
(Loc)
W

by regularization, we find that

I
(Loc)
W = ZJK + Zbnd , (6.97)

where ZJK is the result from the Jeffrey-Kirwan residue prescription and Zbnd is the

boundary computation computed in (6.92).

Note that Zbnd has explicit β, e, ξ dependence. Generically one would expect that

the answer is independent of these parameters since the Lagrangian is Q-exact and

hence variations of β, e, ξ are supersymmetric deformations of the action. However,

this dependence can arise from a continuous spectrum of states which allows for a spec-

tral asymmetry between bosonic and fermionic states [2]. As we previously discussed,

our models have such a continuous spectrum of states arising from the non-compact

directions in the mixed and Coulomb branches.

Remark Note that if we had instead identified η = e2ξ, regularity would have required

us to take the limit e2 → 0. Then we would find that I
(Loc)
W = ZJK + Zbnd(β = 0).

This matches with the analysis of [113] in which the authors found that the localization

computation of the Witten index, under a specific choice of regulator, can be identified

with the computation of the Witten index in the limit β → 0.

23We can additionally consider the effect of including Chern-Simons terms as in Section 6.4. A
Chern-Simons term with level k shifts the argument of (6.92) by a factor e2kRe[ϕ]. Thus we have that
this boundary term is only non-zero when∑

f

|µf | −
∑
i

|µi|+ 2k = Nf − 4 + 2k = 0 . (6.96)
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Comparison with Literature

Let us take a moment to compare our results with that of the literature [14, 15]. In these

papers, the authors give a physical derivation of the Jeffrey-Kirwan residue prescription

for the elliptic genus of 2D N = (0, 2) gauge theories. Here the authors consider the

localized path integral in the limit e2 → 0 over (tC/Λr)× t which they decompose as

Z =

∫
tC/Λcr

d2rϕ

(2πi)r

∫
t
drDZint(ϕ,D)e−π

βD2

e2
+2πiβξD

=

∫
(tC/Λcr)\B(sing)

δ

d2rϕ

(2πi)r

∫
t
drDZint(ϕ,D)e−

πβD2

e2
+2πiβξD

+

∫
B

(sing)
δ

d2rϕ

(2πi)r

∫
t
drDZint(ϕ,D)e−

πβD2

e2
+2πiβξD ,

(6.98)

where B
(sing)
δ is the collection of δ-neighborhoods of the singularities as before.

After dropping the singular term, which the authors argue can be regularized to

zero, the path integral to

Z =

∫
(tC/Λcr)\B(sing)

δ

d2rϕ

(2πi)r

∫
t
drDZint(ϕ,D)e−

πβD2

e2
+2πiβξD , (6.99)

which is the same as (6.77). The authors then also deform the D-contour and reduce the

path integral to a contour integral around ∂B
(sing)
δ . They then show by contour integral

methods that (6.99) reduces to a sum of residues according to the Jeffrey Kirwan residue

prescription as above.

In our analysis we also take into account the possibility of an additional contribution

coming from the asymptotic boundary of ∂(tC/Λcr), while the models studied in [14, 15]

have a compact target space so such terms do not arise. Similar boundary terms are

also discussed for some models in [90, 16]. However, the analysis of these papers is not

directly applicable to our model.

6.2.4 Coulomb and Higgs Branch States

In our discussion we often use the terminology such as “Higgs branch states” and

“Coulomb branch states.” Here we will define this terminology precisely.

Pick a bubbling SQM and consider the family of quantum systems defined by the

varying with respect to e, β, ξ. Due to the localization principle, the states that survive
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MH
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Figure 6.6: This figure illustrates the behavior of the potentials on the Higgs (blue)
and Coulomb (red) branch.

in the limit e2|ξ|3 → 0 should be the only ones that give non-canceling contributions to

the Witten due to the localization principle.24 As we monotonically approach e2|ξ|3 → 0

with ξ fixed, the potential energy function of these families approaches an infinite value

on all of field space except along the Higgs, Coulomb, and mixed branches as discussed

in Section 6.2.2. See Figure 6.6.

As we decrease e2|ξ|3 → 0, the potential around each component of the Higgs branch

(which is topologically a collection of points) approaches an infinitely steep harmonic

oscillator potential for all fields. In this limit, the potential additionally becomes flat

along the Coulomb and mixed branches (which are non-compact) while simultaneously

approaching an infinitely steep harmonic potential in the transverse directions.

Now consider the spectral decomposition of the Hilbert space defined by the family

of Hamiltonians parametrized by e, ξ. Due to the behavior of the potential function near

the different classical vacua, there will be orthogonal projection operators PH , PC , Pmix

onto a space of eigenstates of the Hamiltonian such that the wave functions of states

in this subspace have support localized near the classical Higgs, Coulomb, and mixed

24Here we are taking our fixed length scale to be set by ξ in anticipation of the next section where
we allow β to vary.
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vacua respectively. We will refer to states in the image of PH as “Higgs branch states,”

those in the image of PC as “Coulomb branch states,” and those in the image of Pmix

as “mixed branch states.”

In fact, we believe there are projectors PC,+ ≥ PC and Pmix,+ ≥ Pmix to a subspace

on which the Hamiltonian has a continuous spectrum but such that all the states in the

image have wave functions with support localizing to a neighborhood of the Coulomb

branch or mixed branch respectively.

Of course, in the spectral decomposition of the Hilbert space defined by the Hamil-

tonian, there will additionally be a projection operator PM to a subspace on which the

spectrum of the Hamiltonian is continuous and bounded below by a large constant M

such that states in the image of PM will have support throughout field space and are

not in any sense localized near either branch. However, the mass gap M to the unlo-

calized, continuum of states goes to infinity as e2|ξ|3 → 0 and hence gives vanishing

contribution to the Witten index.

Physical Interpretation of Jeffrey-Kirwan Residues

The Jeffrey-Kirwan prescription for computing the path integral counts the BPS states

that are localized on the Higgs branch. The reason is that the residues that are summed

over in the JK residue prescription are in one-to-one correspondence with the unlifted

Higgs branch vacua.

Consider the integrand Zint in (6.66). This has poles along the hyperplanes

Hµ,j = {ϕ ∈ tC/Λcr | µj(ϕ) + qj = 0} , µj ∈ ∆(j)
hyper , (6.100)

where qj is the global charge for the jth hypermultiplet (or equivalently its mass). The

JK residue formula specified by the FI-parameter ξ ∈ t∗ then selects the residue given

by r-tuples of poles corresponding to a codimension r intersection of r hyperplanes Hµ,j

such that

(ξ, µj) > 0 , for each µj . (6.101)
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Physically, the hyperplanes Hµ,j define the locus in field space where the corre-

sponding hypermultiplet field becomes massless:

0 = |(µj(σ) + aQa + ε+Qε) · Φj |2 , (6.102)

where j indexes over the fundamental and bifundamental scalar fields Φj ∈ {φ(i), φ̃(i), φ(i), φ̃
(i)}

that have charge µj and (Φj ,
¯̃Φj) forms an SU(2)R doublet. Since rnkg = r, and each Φi

has a different mass, there can only be r simultaneously massless hypermultiplet fields.

This corresponds to the statement that there are at most codimension r intersections

of the hyperplanes Hµ,j .

Now consider the D- and F-term equations for the Higgs branch. These can be

written as

0 =−
∑

j : (ξ(i),µj)>0

|Φj |2 +
∑

j : (ξ(i),µj)<0

|Φj |2 + e2|ξ(i)|

0 =
∑

j : (ξ(i),µj)>0

ΦjΦ̃j −
∑

j : (ξ(i),µj)<0

ΦjΦ̃j .

(6.103)

As in the JK-prescription, the solutions of these equations where at most r Φj are

massless are enumerated by an r-tuple Φj which obey

(ξ, µj) > 0 for each j . (6.104)

This enumerates the entire resolved Higgs branch with respect to an FI-parameter

ξ ∈ t∗. Therefore, the JK-residues are in one-to-one correspondence with the points on

the Higgs branch.

Now note that the Jeffrey-Kirwan residue computation is independent of the value

of e2. Thus, in the limit e2 → 0, we can identify states as being localized to a single

vacuum branch in field space. Thus, we can identify each residue of the JK-prescription

as counting the states that are localized on the corresponding point of the Higgs branch

in the limit e2 → 0:

ZJK = IHiggs . (6.105)

Remark Note that the interpretation of the ZJK as an object counting the contri-

bution of Higgs branch states matches with the previous analysis by taking a limit of
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e2β3 → 0, ξ/β →∞ with β fixed such that e2ξ = ξ′ is constant.25 In the effective SQM

on the non-compact branches, the mass of the ground states is given by

m ∼
√
e|ξ| → ∞ as e2β3, β/ξ → 0 , with e2ξ = ξ′ , β fixed . (6.106)

Thus in taking this limit, all states on the non-compact branches are killed and Iasymp →

0. Similarly, if we were to compute the standard Witten index, taking this limit kills

the boundary terms. Thus

lim
e2β3→0
ξ/β→∞
e2ξ=ξ′

IW = IHiggs = ZJK . (6.107)

We stress that this is not the appropriate limit for computing Zmono(P, v). See [90] for

more details regarding the computation of the Witten index in this limit.

6.2.5 Ground State Index

As shown in [160, 2, 178], the Witten index has to be handled with care in the case of

a SQM with a continuous spectrum. As in our case, we have found that when there

is a continuous spectrum, there can be a spectral asymmetry that gives rise to non-

trivial β, e, and ξ dependence. Note that in order to compute the Witten index, we

introduced the FI-parameter ξ. In the 4D picture this corresponds to separating the

insertions of the minimal ’t Hooft defects that make up the reducible ’t Hooft defect.

Thus, to compute Zmono(P, v), we want to take the limit “ξ → 0” which is formally

given by the limit ξ/β → 0. However, this is computationally indistinguishable from

taking β/ξ → ∞ with ξ fixed. Thus, Zmono(P, v) can be identified with the Witten

index in the limit “β →∞:”

Zmono(P, v) = IH0 := lim
β→∞

TrH (−1)F e−
β
2
{Q,Q}+aQa+ε+J++m·F . (6.108)

In the limit β → ∞, contributions from all non-BPS states are completely sup-

pressed. This effectively restricts the Witten index to a trace over the Hilbert space of

BPS ground states. We will refer to the Witten index in this limit, IH0 , as the ground

25Note that this is different from the rest of our analysis where we take ξ to be the fixed length scale.
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state index. This matches with the fact that the result computed via AGT [3, 4] is

independent of β, suggesting that we should only have contributions from BPS states.

As in the case of the Witten index, the ground state index can be computed as

(the limit of) a path integral. Thanks to supersymmetry, one can attempt to compute

that path integral by using localization. Again, using localization requires a choice of

regularization26 and hence we will refer to the result of the localization computation as

I
(Loc)
H0

to distinguish it from the true ground state index.

This limit of the Witten index can be easily computed using our analysis from the

previous section. Recall that I
(Loc)
W = ZJK +Zbnd. Since the ZJK term is independent

of β, taking the limit β →∞ only affects Zbnd. The limit of the boundary term can be

computed

lim
β→∞

Zbnd = lim
β→∞

∑
±

lim
Re[ϕ]→±∞

(
±Z(kin)

int

)(
c(η) + erf

(√
πβeξ

))
= 0 , (6.109)

where

c(η) =


1 η > 0

−1 η < 0

. (6.110)

Using the fact that

lim
β→∞

(
c(η)− erf

(√
πβeξ

))
=


0 ξ × η > 0

−2 ξ > 0 > η

2 η > 0 > ξ

, (6.111)

we see that

lim
β→∞

Zbnd = 2 sinh(2ε+) sinh

∑
f

mf

×


0 ξ × η > 0

−2 ξ > 0 > η

2 η > 0 > ξ

. (6.112)

By identifying η ∼ e2ξ, we find that

lim
β→∞

Zbnd = 0 , (6.113)

26We will be taking the same choice of regularization as in the case of the Witten Index.
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and hence that the localization computation of the ground state index is given by

I
(Loc)
H0

= ZJK . (6.114)

Remark Although we have only shown that the boundary contribution vanishes

for a SQM with a U(1) gauge group, this result holds in general. One can see that

the boundary contributions vanish more generally in the limit β → ∞ as follows.

Decompose ∂M̂ into a disjoint union of open sets of increasing codimension ∂M̂ =

∂tC/Λcr =
∐
i(∂tC/Λcr)

(i). For each boundary component, the contour integral is of

the form the contour integral is of the form

Z
(i)
bnd =

∮
(∂tC/Λcr)(i)

dϕ1 ∧ ... ∧ dϕr
(2πi)r

∫
t+iη

∏
a

dDa

Da
Z

(kin)
int (ϕ,D)e−

πβ(D,D)

e2
+2πiβ(ξ,D) ,

(6.115)

where a indexes over the simple coroots of t. On each component, there exists a simple

root α ∈ Φ+ such that |〈α,ϕ〉| → ∞ on (∂tC/Λcr)
(i). Thus, in each such integral, Z

(kin)
det

will be independent of 〈α,D〉 for some positive root α ∈ Φ+. This means that each

boundary integral will be proportional to a factor of

Z
(i)
bnd ∼

(
c(〈α, η〉)− erf

(√
πβe〈α, ξ〉

))
, (6.116)

for some positive root α ∈ Φ+ where c(〈α, η〉) is defined in (6.110). By identifying

η ∼ e2ξ, this factor completely suppresses all boundary terms in the limit β → ∞.

Thus, the boundary terms vanish in the localization computation of the ground state

index

lim
β→∞

Z
(i)
bnd = 0 ∀i , (6.117)

and therefore the ground state index is generally given by the Jeffrey-Kirwan residue

formula

I
(Loc)
H0

= ZJK . (6.118)

6.2.6 Summary

In this section we reviewed the localization computation for the Witten index of bub-

bling SQMs. In summary, we found:
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1. The localized integral over the BPS moduli space is not well defined: it requires

regularization. In general, the regularized Witten index, I
(Loc)
W , will differ from

the true Witten index, IW .

2. Under the choice of regularization we have presented, one arrives at the JK residue

prescription plus a β-dependent boundary term that indicates the existence of a

continuous spectrum of excited states: I
(Loc)
W = ZJK + Zbnd.

3. Since the AGT computation shows that Zmono(P, v) is independent of β, we

conjecture that Zmono(P, v) should only count contributions from BPS states.

Therefore, we identify Zmono(P, v) as the ground state index IH0 which elimi-

nates contributions from non-ground states by taking the limit as β →∞ of the

Witten index. By direct computation, we find that in this limit, the localization

computation of the ground state index is given by the Jeffrey-Kirwan residue

prescription:

I
(Loc)
H0

= lim
β→∞

(
ZJK + Zbnd

)
= ZJK , (6.119)

which we identify as counting the states localized on the Higgs branch

IH0 = ZJK = IHiggs . (6.120)

After regularization with η ∼ e2ξ, we have

I
(Loc)
H0

=

∮
JK(ξ)

dϕ1 ∧ ...dϕr
(2πi)r

Zvec(ϕ)ZFermi(ϕ)Z̃
(kin)
hyper(ϕ) , (6.121)

where

Zvec =

n−1∏
i=1

∏
α∈∆(i)

adj

sinh(α(ϕ(i)) + qi)
∏

α∈∆(i)
adj

α 6=0

sinh(α(ϕ(i))) ,

ZFermi =

Nf∏
f=1

∏
µ∈∆(f)

fund

sinh(µ(ϕ(f)) + qf ) ,

Z̃
(kin)
hyp =

∏
j

∏
µ∈∆(j)

hyp

1

sinh(µ(ϕ(j)) + qj)
,

(6.122)

and ξ ∈ t∗.
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6.2.7 Examples: SU(2) Nf = 4 Theory

Now we have eliminated the β dependence of the localization computation of Zmono(P, v)

by identifying Zmono = IH0 . Nevertheless, in general, the localization computation

I
(Loc)
H0

still does not generically agree with Zmono(P, v) as computed from AGT. We will

now illustrate this claim with several non-trivial examples in the SU(2) Nf = 4 the-

ory to show that the localization calculation for the ground state index I
(Loc)
H0

= ZJK

does not match with the results from the AGT computations [97]. These examples are

an explicit realization of a generic feature of ’t Hooft defects in N = 2 SU(N) gauge

theories with Nf = 2N fundamental hypermultiplets.

Zmono(1, 0)

Consider the L1,0 (minimal) ’t Hooft defect in the SU(2) Nf = 4 theory. This has ’t

Hooft charge

P = h1 = 2ĥ1 = diag(1,−1) , h1 ∈ Λmw , ĥ1 ∈ Λcochar . (6.123)

From general considerations, the expectation value of L1,0 is of the form

〈L1,0〉 =
(
eb + e−b

)
F (a,mf , ε+) + Zmono(1, 0) , (6.124)

where Zmono(1, 0) corresponds to the bubbling with v = diag(0, 0). Here

F (a,mf , ε+) =

( ∏
±
∏4
f=1 sinh(a±mf )

sinh2(2a)
∏
± sinh(2a± 2ε+)

) 1
2

. (6.125)

In this example, the monopole bubbling contribution can be computed as the Witten

index of the N = (0, 4) SQM described by the quiver:

1

2

4

2
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Now the path integral from the previous section reduces to the contour integral

Z(Loc)
mono(1, 0) =

∮
JK(ξ)

dϕ

2πi
Zvec(ϕ, a, ε+)Zhyper(ϕ, a)ZFermi(ϕ, ε+,mi) . (6.126)

where JK(ξ) is the Jeffrey-Kirwan residue prescription specified by a choice of ξ ∈ t∗ ∼=

R [98, 113, 90].

The general contributions of the different N = (0, 2) multiplets for a SQM labeled

by gauge nodes (k(1), ..., k(n−1)) and fundamental hypermultiplet nodes (w1, ..., wp) are

given by [94, 23]

Zvec(ϕ, ε+) =

n∏
i=1

 k(i)∏
a6=b=1

′ 2 sinh(ϕ
(i)
ab )×

n∏
i=1

k(i)∏
a6=b=1

sinh(ϕ
(i)
ab + 2ε+) ,

ZFermi(ϕ,mf , ε+) =
4∏

f=1

k(f)∏
a=1

2 sinh(ϕ(f)
a −mf ) ,

Zfund(ϕ, a, ε+) =
∏
j

k(j)∏
a=1

wj∏
`=1

∏
±

1

2 sinh(±(ϕ
(j)
a − a`) + ε+)

,

Zbifund(ϕ, a, ε+) =

n−1∏
i=1

k(i+1)∏
a=1

k(i)∏
b=1

∏
±

1

2 sinh(±(ϕ
(i+1)
a − ϕ(i)

b ) + ε+)
,

(6.127)

where the product
[∏

I,J

]′
omits factors of 0, a = diag(a1, a2) ∈ Lie[SU(2)], the funda-

mental Fermi-multiplets couple to the f th gauge group, and j indexes over the funda-

mental hypermultiplets (which couple to ϕ(j)). For our SQM, this reduces to

Z(Loc)
mono(1, 0) =

∮
JK(ξ)

dϕ

2πi
2 sinh(2ε+)

∏4
f=1 sinh(ϕ−mf )∏

± sinh(ϕ± a + ε+) sinh(−ϕ± a + ε+)
. (6.128)

Here the JK residue prescription is determined by a choice of ξ ∈ R which corresponds

to introducing an FI-parameter in the SQM. As shown in [90], the Witten index of an

SQM can generically have wall crossing as ξ jumps between ξ ∈ R+ and ξ ∈ R−.

Using this, the localization computation becomes

Z(Loc)
mono(1, 0) = −4

∏
f sinh (a−mf ∓ ε+)

sinh(2a) sinh (2a∓ 2ε+)
− 4

∏
f sinh (a + mf ± ε+)

sinh(2a) sinh (2a± 2ε+)
: ± ξ > 0 .

(6.129)

This function is not symmetric under the action of the Weyl group of the flavor sym-

metry group 27 and is not invariant under the choice of ξ ∈ R. Therefore, this cannot

27The Weyl group under the SO(8) flavor symmetry is generated by mi ↔ mi+1 and m3 ↔ −m4

[97, 156].
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be the correct form of Zmono(1, 0).

From the AGT result presented above, we know that the correct Zmono(1, 0) is given

by

Zmono(1, 0) = −4

∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)
− 4

∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)

+2 cosh

∑
f

mf ± 2ε+

 : ± ξ > 0 .

(6.130)

This answer for Zmono(1, 0) is surprisingly independent of the choice of ξ:

Zmono(1, 0; ξ > 0)− Zmono(1, 0; ξ < 0) = 0 . (6.131)

Clearly the AGT result for Zmono(1, 0) in (6.130) does not match the localization result

(6.129) due to the “extra term” 2 cosh
(∑

f mf ± 2ε+

)
. Therefore, as noted in [97],

there is a discrepancy between the localization and AGT computation for Zmono(1, 0).

Zmono(2, 1)

Now consider the L2,0 line defect. This defect has ’t Hooft charge

P = 2h1 = 4ĥ1 = diag(2,−2) , h1 ∈ Λmw , ĥ1 ∈ Λcochar . (6.132)

The expectation value of this line defect has two different monopole bubbling contribu-

tions:

〈L2,0〉 =
(
e2b + e−2b

)
F (a,mf )2 +

(
eb + e−b

)
F (a,mf )Zmono(2, 1) + Zmono(2, 0) ,

(6.133)

where Zmono(2, v) is Zmono(a,mf , ε+;P, v) for v = diag(v,−v). Here we will only be

interested in the term Zmono(a,mf , ε+; 2, 1). In this case, the relevant SQM is given by
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1 1 1

1 14

3

The contour integral from localization of this SQM is of the form

ZJK(2, 1) =
1

2

∮
JK(~ξ)

(
3∏
i=1

dϕi
2πi

)
sinh3(2ε+)

∏4
f=1 sinh(ϕ2 −mf )

sinh(±ϕ21 + ε+) sinh(±ϕ32 + ε+)
×

1

sinh(±(ϕ1 − a2) + ε+) sinh(±(ϕ3 − a1) + ε+)
.

(6.134)

Evaluating the above contour integral requires a choice of parameter ~ξ ∈ R3 that

specifies the JK residue prescription. Due to the intricate dependence on the choice of

~ξ, we will examine this in the simple sectors of ξi > 0 and ξi < 0.

For the choice of ξi > 0, the Jeffrey-Kirwan prescription sums over the residues

associated to four poles specified by the triples:

I. ϕ1 = −a− ε+ ϕ2 = −a− 2ε+ ϕ3 = a + ε+

II. ϕ1 = a− 3ε+ ϕ2 = a− 2ε+ ϕ3 = a− ε+
III. ϕ1 = −a− ε+ ϕ2 = a− 2ε+ ϕ3 = a− ε+
IV. ϕ1 = −a− ε+ ϕ2 = −a− 2ε+ ϕ3 = −a− 3ε+

(6.135)

Summing over the associated residues, the above contour integral evaluates to:

Z(Loc)
mono(2, 1) = −

4
∏
f sinh(a + mf + 2ε+)

sinh(2a + 2ε+) sinh(2a)
−

4
∏
f sinh(a−mf − 2ε+)

sinh(2a− 2ε+) sinh(2a− 4ε+)

−
4
∏
f sinh(a−mf − 2ε+)

sinh(2a) sinh(2a− 2ε+)
−

4
∏
f sinh(a + mf + 2ε+)

sinh(2a + 2ε+) sinh(2a + 4ε+)
,

(6.136)

for ξi > 0. Similarly, for ξi < 0, the Jeffrey-Kirwan prescription sums over the residues
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associated to the poles

I. ϕ1 = −a + ε+ ϕ2 = −a + 2ε+ ϕ3 = a− ε+
II. ϕ1 = a + 3ε+ ϕ2 = a + 2ε+ ϕ3 = a + ε+

III. ϕ1 = −a + ε+ ϕ2 = a + 2ε+ ϕ3 = a + ε+

IV. ϕ1 = −a + ε+ ϕ2 = −a + 2ε+ ϕ3 = −a + 3ε+

(6.137)

In the case ξi < 0, summing over the residues associated to these poles computes the

contour integral to be

Z(Loc)
mono(2, 1) = −

4
∏
f sinh(a + mf − 2ε+)

sinh(2a− 2ε+) sinh(2a)
−

4
∏
f sinh(a−mf + 2ε+)

sinh(2a + 2ε+) sinh(2a + 4ε+)

−
4
∏
f sinh(a−mf + 2ε+)

sinh(2a) sinh(2a + 2ε+)
−

4
∏
f sinh(a + mf − 2ε+)

sinh(2a− 2ε+) sinh(2a− 4ε+)
.

(6.138)

Now we can make use of the fact that the expectation value of line defects form a ring

under the Moyal product [97]

〈L2,0〉 = 〈L1,0〉 ∗ 〈L1,0〉 , (6.139)

with respect to the (2,0) symplectic form ΩJ :

(f ∗ g)(a, b) = e−ε+(∂b∂a′−∂a∂b)f(a, b)g(a′, b′)
∣∣
a,a′=a
b,b′=b

, (6.140)

to compute Zmono(2, 1) from the AGT computation for 〈L1,0〉. This gives the result

Zmono(2, 1) = −
4
∏
f sinh(a±mf + 2ε+)

sinh(2a + 2ε+) sinh(2a)
−

4
∏
f sinh(a±mf + 2ε+)

sinh(2a + 2ε+) sinh(2a + 4ε+)

−
4
∏
f sinh(a∓mf − 2ε+)

sinh(2a) sinh(2a− 2ε+)
−

4
∏
f sinh(a∓mf − 2ε+)

sinh(2a− 2ε+) sinh(2a− 4ε+)

+ 2 cosh

∑
f

mf ± 6ε+

+ 2 cosh

∑
f

mf ± 2ε+

 , ±ξi > 0 , ∀i .

(6.141)

As before, this answer is independent of the choice of sign of ξi.
28

Again, we see that this does not match the localization computations for Zmono(2, 1)

for either choice of ξ due to the “extra term” +2 cosh
(∑

f mf ± 6ε+

)
+2 cosh

(∑
f mf ± 2ε+

)
.

Further, the localization result is not independent of the choice of ~ξ and for both choices

28In fact, this is independent of the choice of ~ξ ∈ R3\{0}.
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of ~ξ (and indeed for all other choices of ~ξ), Zmono(2, 1) is not invariant under Weyl sym-

metry of the SO(8) flavor symmetry group. Therefore, as in the previous example, we

find that the localization computation cannot be correct.

6.3 Proposed Resolution: Coulomb Branch States

As we have shown, there is a discrepency between the localization and AGT result for

the expectation value of ’t Hooft defects in SU(2) Nf = 4 supersymmetric gauge theory.

Let us write the AGT result for the expectation value as

〈L[P,0]〉AGT =
∑
|v|≤|P |

e(v,b)
(
F (a)

)|v|
Zmono(a,mi, ε+;P, v) ,

Zmono(a,mi, ε+;P, v) = Z(Loc)
mono(a,mi, ε+;P, v) + Z(extra)

mono (a,mi, ε+;P, v) ,

(6.142)

where Z
(Loc)
mono = I

(Loc)
H0

is the localization computation for Zmono(P, v) and Z
(extra)
mono (P, v)

is some extra term that is the difference between Zmono(P, v) and Z
(Loc)
mono = ZJK .

We now would like to understand what is the origin of the extra term Z
(extra)
mono (P, v)

that we must add to the localization computation to give the full result for Zmono(P, v).

As we will now show, these extra contributions come from states that are not counted

by localization.

6.3.1 Witten Indices with Continuous Spectra

As shown in [160, 2, 178, 113], computing the Witten index is much more subtle for

theories with a continuous spectrum of states. In that case, the supercharges are non-

Fredholm operators and thus the Witten index, which is still well defined, cannot be

understood as the index of a supercharge operator. In order to illustrate some features

of the computation of the Witten index in these cases, we will take a brief aside to

study a toy model that is closely related to the bubbling SQMs we are studying.

Toy Model on Semi-Infinite Line

Here we will examine a simplified model of the effective SQM on the Coulomb branch.

Consider a supersymmetric particle on a semi-infinite line with a smooth potential h(x).
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This theory is described by the Hamiltonian [2, 90]

H =
e2p2

2
+
e2

2
h2(x) +

e2

2
[ψ†, ψ]h′(x) , (6.143)

where x, ψ are superpartners that satisfy the commutation relations

[x, p] = i , {ψ†, ψ} = 1 . (6.144)

These fields satisfy the supersymmetry transformations

δηx =
1√
2
η ψ +

1√
2
η†ψ† ,

δηψ =
1√
2
η†(ip+ h(x)) ,

(6.145)

which are generated by the supercharge

Q =
1√
2
ψ†(ip+ h) . (6.146)

Let us consider a toy model of the effective SQM on an asymptotic Coulomb branch

where h(x) = h0 + q
x where q 6= 0. In our applications, 2q will be an integer.

Generic states in this theory are described by wave functions of the form

ψ(x) = f+(x)|0〉+ f−(x)ψ†|0〉 (6.147)

where we define the Clifford vacuum by ψ|0〉 = 0.

We are interested in computing the ground state index of this theory. This can be

derived from the spectrum of the Hamiltonian. The Hamiltonian can be written as a

diagonal operator

H = −e
2

2
∂2
x +

e2(q2 ± q)
2x2

+
e2qh0

x
+
e2

2
h2

0 , (6.148)

on a basis of states {f+(x)|0〉, f−(x)ψ†|0〉}. Thus, eigenstates of the Hamiltonian solve

the differential equation(
−∂2

x +
q2 ± q
x2

+
2qh0

x
+ h2

0 −
2E

e2

)
f±(x) = 0 . (6.149)

The L2-normalizable solutions of this equation are given by 29

fs(x) = c e−κxxjs1 1F1

(
js1 +

s2|q| |h0|
κ

, 2s1js1 , 2κx

)
, s, si = ±1 , (6.152)

29Note that we could also solve for the space of BPS states by writing

ψ(x) = f+(x)|0〉+ f−(x)ψ†|0〉 −→ ψ(x) =

(
f+(x)
f−(x)

)
, (6.150)
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where c is a constant, κ =
√
h2

0 − 2E
e2

, s1 = s× sign(q), s2 = sign(q)× sign(h0), and

js1 = |q|+ 1 + s1

2
or js1 = −|q|+ 1 + s1

2
. (6.153)

Further, due to the large x-behavior of the confluent hypergeometric function of the

first kind

1F1(m,n, x) ∼
x→∞

Γ (n)ex
xm−n

Γ (m)
, m /∈ Z+ , (6.154)

L2-normalizability implies that

js1 > −
1

2
, js1 +

s2|q| |h0|
κ

= −n , n ∈ Z+ . (6.155)

The first condition comes from imposing regularity at x = 0 whereas the second condi-

tion comes from imposing regularity at x→∞. Together, these conditions imply that

there is a global minimum of the potential energy at some x > 0 that supports a bound

state.

From regularity at x→∞, we can solve for the discrete spectrum of the Hamiltonian

for generic h0, q

En =

(
1− 4q2

(1 + 2n+ 2|q|+ s1)2

)
e2h2

0

2
. (6.156)

In the case of BPS ground states (E = 0), the L2-normalizability constraints imply

that the ground states of this theory solve

(1 + s2)|q|+ 1

2
(1 + s1) = −n , (6.157)

or

(s2 − 1)|q|+ 1

2
(1 + s1) = −n and |q| < 1

2
. (6.158)

This implies that the allowed solutions are those with s1, s2 < 0 or s1 < 0 < s2 with

|q| < 1
2 .

As in the case of the Coulomb branch, this theory has a continuum of scattering

states. These occur due to the non-compact direction in field space where the potential

so that the real supercharge Q =
(
Q+ Q̄

)
acts as the differential operator

Q =
1√
2

(
0 ∂x + h(x)

−∂x + h(x) 0

)
=

1√
2

(
iσ2∂x + σ1h(x)

)
. (6.151)

It is now straightforward to solve for the kernel of Q and impose normalizability. When one further
takes into account boundary conditions, equation (6.163) is reproduced.
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energy approaches a finite value limx→∞ U(x) =
e2h2

0
2 . In this case, the gap to the

continuum is given by Egap =
e2h2

0
2 . Thus, the full spectrum of states is similar to that

of the Hydrogen atom. There is a discrete spectrum of states for energies E < Egap

that accumulate at Egap and a continuous spectrum of states for energies E ≥ Egap.

However, there is an additional subtlety to this model. Due to the presence of the

boundary at x = 0, we additionally have to worry about the real supercharge Q = Q+Q̄

being Hermitian:

〈Ψ1|QΨ2〉 = 〈QΨ1|Ψ2〉 . (6.159)

If we consider two generic states

|Ψi〉 = fi(x)|0〉+ gi(x)ψ†|0〉 7→ |Ψi〉 =

 fi(x)

gi(x)

 , (6.160)

then the real supercharge operator Q acts as

Q =
1√
2

 0 ∂x + h(x)

−∂x + h(x) 0

 (6.161)

The constraint that Q be Hermitian (6.159), then reduces to

[
f̄1g2 − ḡ1f2

]
x=0

= 0 . (6.162)

There are 3 different types of restrictions we can impose on the Hilbert space so that

Q is Hermitian:

1. Impose f(x) = 0, ∀x ∈ R+. In this case the Hilbert space is reduced so that wave

functions are only of the form H = spanL2(R+){ψ†|0〉}.

2. Impose g(x) = 0, ∀x ∈ R+. In this case the Hilbert space is reduced so that wave

functions are only of the form H = spanL2(R+){|0〉}.

3. Impose f(0) = 0, g(0) = 0 or f(0) and g(0) = 0. In this case we restrict the form

of the wave functions allowed in the Hilbert spaceH = span L2(R+)
〈x|ψ〉|x=0=0

{|0〉 , ψ†|0〉}.
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These three different choices give the different answers. They are each given by

1.) IH0 =


−1 h0 < 0 , q > −1

2

0 else

2.) IH0 =


1 h0 > 0 , q < 1

2

0 else

3.) IH0 =


0 h0 × q > 0

−1 q > 0 > h0

1 h0 > 0 > q

(6.163)

Now let us try to use localization to compute the ground state index. This SQM

can be described by the Lagrangian

L =
1

2e2

(
ẋ2 + ψ†ψ̇ +D2

)
+Dh(x)− e2

2
h′(x)[ψ†, ψ] , (6.164)

on the half space x > 0. As before, this Lagrangian is Q-exact. Thus, by studying the

limit e → 0, we see that the path integral localizes to the Q-fixed points ẋ = 0. This

reduces the path integral to an integral over the line 30

Z =

∫
R
dD

∫
R+

dx

∫
[dψdψ†] e−S . (6.165)

In this case, the 1-loop determinant comes from integrating over the fermion zero modes.

The partition function then reduces to

Z = −
∫
R
dD

∫
R+

dx β h′(x)e−
πβD2

e2
+2πiβDh . (6.166)

This can be evaluated by first integrating over D:

Z = −
∫
R+

dx β h′(x)

√
e2

β
e−πβe

2h2(x) . (6.167)

We can then evaluate the partition by making a change of variables. This produces the

result

Z =
1

2


−1 + erf

(√
πβe2h0

)
q > 0

1 + erf
(√

πβe2h0

)
q < 0

(6.168)

30Here we fix the normalization of the path integral so that the ground state index is an integer.
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Now we can compute the ground state index by taking the limit as β →∞. In this

case we find that the localization computation for the ground state index is exactly

given by

I
(Loc)
H0

=


0 h0 × q > 0

−1 q > 0 > h0

1 h0 > 0 > q

(6.169)

Which matches with the explicit computation in the SQM for the third choice of bound-

ary condition. Note that in the case q = 0 the Witten index is identically zero because

the fermionic fields are non-interacting and massless. This is also reflected in the identi-

cally vanishing of the path integral since there are no fermion insertions. However, any

correction can lift this exact degeneracy and give rise to a possibly non-trivial Witten

index.

Effective Coulomb Branch SQM

Now let us apply this computation to the effective SQM on the Coulomb branch for the

bubbling SQM of the minimal ’t Hooft defect in the SU(2) N = 2 gauge theory with

Nf = 4 fundamental hypermultiplets. See Section 6.3.3 and Appendix D.1. We will

refer to this theory as TMC
. This theory is again a supersymmetric particle moving in

a potential

h(σ) = 〈D〉(σ) = ξ +
1

2

2∑
i=1

(
1

ωi
− 1

ω̃i

)
. (6.170)

However, we are now taking the theory on two semi-infinite intervals I+ = {σ > a+ ε}

and I− = {σ < −a − ε} where ωi, ω̃i are the effective masses of the integrated out

hypermultiplet fields

ωi = |σ + (−1)ia+ ε| , ω̃i = |σ + (−1)ia− ε| , (6.171)

for parameters a, ε ∈ R+. On each of these intervals, the vacuum state has Fermion

number −1 and has flavor charges +1 on I+ and −1 on I−. Note that this differs

slightly from the effective SQM in Appendix D.1. They are related by a different choice
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of normalization for the wave function describing the matter fields.31

The localization computation of the ground state index proceeds as before except

that there are now two boundary contributions at σ = ±(a + ε). Due to the limiting

behavior of h(σ), the localization result for the ground state index, analogous to (6.168),

is given by

I
(Loc)
H0

(TMC
) = − lim

β→∞
sinh(2ε+)e

∑
f mf

(
1− erf

(√
πβeξ

))
− lim
β→∞

sinh(2ε+)e−
∑
f mf

(
1 + erf

(√
πβeξ

))
.

(6.172)

Here, the factor of 2 sinh(2ε+) comes from the decoupled Fermi-multiplet in the N =

(0, 4) vector multiplet described by λ2, λ̄2 and the e±
∑
f mf comes flavor charge of the

ground state on I+ and I− respectively. By using the explicit form of h(σ) (6.170), we

obtain the result

I
(Loc)
H0

(TMC
) = −2 sinh(2ε+)e∓

∑
f mf , ±ξ > 0 . (6.173)

Solving for the entire spectrum of this theory is much more difficult than in the

previous example. However, only the BPS states contribute to the ground state index.

These are computed in the Born-Oppenheimer approximation in Appendix D.1. In

summary, we find that there are over 10 different types of restrictions on the Hilbert

space in each interval that make Q Hermitian: we will make a symmetric choice. Two

distinguished choices lead to

1.) IH0 (TMC
) = 2 cosh

∑
f

mf ± 2ε+

 , ±ξ > 0 ,

2.) IH0 (TMC
) = −2 sinh(2ε+)e∓

∑
f mf , ±ξ > 0 .

(6.174)

Now we see that the localization computation matches the explicit computation for the

second choice of boundary condition.

However, now recall the localization expression for Zmono(1, 0) in the SU(2) Nf = 4

theory in the expectation value of L1,0 from Section 6.2.7. There we showed that

31See Appendix D.1 for more details.
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Z
(Loc)
mono(1, 0) 6= Zmono(1, 0) as computed via AGT. In fact, they differed by a term

Z(extra)
mono (1, 0) := Zmono(1, 0)− Z(Loc)

mono(1, 0) = 2 cosh

∑
f

mf ± 2ε+

 , ±ξ > 0 .

(6.175)

However, this is exactly the computation of the ground state index of the BPS states

localized on the Coulomb branch with the first choice (6.174). As it turns out, there

is a unique choice of boundary conditions if we restict to the case of pure Neumann or

Dirichlet.

This result is in fact very natural. Recall that in Section 6.2.4 we explained that

the Hilbert space of BPS states of a generic bubbling SQM theory can be decomposed

into states localized on the Higgs, Coulomb, and mixed branches:

HBPS = H(Higgs)
BPS ⊕H(Coulomb)

BPS ⊕H(mixed)
BPS . (6.176)

Thus, the ground state index should similarly decompose as

IH0 = IHiggs + ICoulomb + Imixed . (6.177)

In our case there is no mixed branch so that the summand H(mixed)
BPS is trivial and

Imixed = 0. However, since we have identified the Jeffrey-Kirwan residue, ZJK = IHiggs,

as counting the Higgs branch states, we have that I
(Loc)
H0

= IHiggs has no contribution

from Coulomb branch states. Therefore, it is clear that we need to add a term

Iasymp = ICoulomb + Imixed , (6.178)

which counts the BPS ground states on the non-compact Coulomb and mixed branches.

6.3.2 Proposal

Thus far we have been able to show that the localization computation of IH0 , I
(Loc)
H0

,

reproduces the JK-prescription for the path integral, but that this does not correctly

reproduce Zmono(P, v) at least with the regularization procedure for localization that

we have adopted. Further, by identifying ZJK as counting Higgs branch states, we were

able to conclude that I
(Loc)
H0

does not count any contributions from the ground states

along the Coulomb and mixed branches.
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Therefore, we propose that Z
(extra)
mono (P, v) is the contribution of BPS states along

the non-compact vacuum branches in the bubbling SQM. Mathematically, this can be

phrased as

Zmono = IH0 = I
(Loc)
H0

+ Iasymp = ZJK + Iasymp , (6.179)

where Iasymp := ICoulomb + Imixed is the ground state index evaluated on the states

localized along the Coulomb and mixed branches and ZJK = IHiggs is the Jeffrey-

Kirwan sum over residues [98].

Note that Iasymp is fundamentally distinct from the defect term δIH0 which similarly

can be appended to limβ→∞ I
(Loc)
W to correct the localization result [160, 178, 113]. As

shown above, our computation of I
(Loc)
H0

has already taken the defect term into account.

Rather, we propose that one must add an additional term Iasymp that corrects for the

omitted ground states localized on the non-compact vacuum branches.

These states can be computed in the effective theory on the relevant vacuum branches

in the Born-Oppenheimer approximation. As we will see, this definition is independent

of the choice of ξ in all known examples. Since the Born-Oppenheimer approxima-

tion is only valid for |σ/a|, |σ/ε+| >> 0, we must make a choice of effective boundary

conditions at |σ| = |a| + |ε+|. Unitarity then restricts the types of allowed bound-

ary conditions. In each of the following examples, there exists a (sometimes unique)

boundary condition such that Iasymp = Z
(extra)
mono . We have chosen to use this boundary

condition in all cases. The cases in which Iasymp = 0 do not require such a choice.

Relation to Defect Contribution

The correction of the ground state index by Iasymp at first glance appears to be similar

to the work of [178, 160] in which the authors compute the ground state index by adding

a “defect term” or “secondary term” to the Witten index. However, the two stories are

quite different. The definition of the “defect term” relies on rewriting

IH0 = IBulkH0
(β0) + δIH0(β0) , (6.180)
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where

IBulkH0
= IW (β0) = TrH(−1)F e−β0H+... ,

δIH0 =

∫ ∞
β0

dβ ∂β

(
TrH(−1)F e−

β
2
{Q,Q}+...

)
,

(6.181)

which we will call the bulk and defect terms respectively. This is a trivial rewriting by

making use of the fundamental theorem of calculus. When we write the path integral

as an integral over field space, we can use supersymmetry to rewrite the ∂β in the defect

term as

∂β

(
TrH(−1)F e−

β
2
{Q,Q}+...

)
= −TrH(−1)FQ2e−

β
2
{Q,Q}+...

= TrHQ(−1)FQe−β2 {Q,Q}+... .
(6.182)

Then by integrating by parts inside the path integral [2, 160], this is equal to a derivative

on field space

TrHQ(−1)FQe−β2 {Q,Q}+... = TrH(−1)FQ2e−βH+... + TrH∂φi
(
ψi(−1)FQe−β2 {Q,Q}+...

)
=

1

2
TrH∂φi

(
ψi(−1)FQe−β2 {Q,Q}+...

)
,

(6.183)

where ψi∂φi are the derivative terms in the supercharge which in turn can be written

as a boundary integral in field space. One might therefore hope that the defect term is

a feasible computation.

The utility of this rewriting is in the fact that the bulk term IBulkH0
can be computed

exactly in the limit as β0 → 0 by heat-kernel techniques. In this way, one might try to

compute the ground state index IH0 .

In this paper we are using a different decomposition of IH0 . Here, we want to

compute the ground state index directly by using localization. Since we can compute

the Witten index via localization for generic β, we find that we can simply take the

limit as β →∞ to obtain the ground state index

I
(Loc)
H0

= lim
β→∞

I
(Loc)
W (β) . (6.184)

Unfortunately, once we have used what appears to be the most natural way of regular-

izing the localized integral, we find that the localization expression for the ground state
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index does not agree with AGT. Further, we find that this can be corrected by adding

the contribution from BPS states that are localized along non-compact directions in

field space with finite asymptotic potential.

In summary, the difference between our proposal and the defect term of [160, 178] is

that the defect term δIH0 is the difference between the Witten index at β = 0 and the

ground state index whereas the asymptotic contribution Iasymp counts the BPS states

that are omitted in the implementation of localization to compute the ground state

index.

6.3.3 Examples

In this section, we will provide several non-trivial examples to show that Z
(extra)
mono (P, v)

is indeed reproduced by the ground state index of the Coulomb and mixed branch BPS

states. In these examples we will study components of the expectation value of two

line defects: L1,0 and L2,0. Specifically, we will be again interested in Zmono(1, 0) and

Zmono(2, 1).

Although we are only performing the computation for examples of abelian gauge

groups, there is no fundamental obstruction for performing the analogous computa-

tions for non-abelian gauge groups. The computation would be analogous to that of

Appendices D.1 and D.2 with increased computational complexity. We believe that in

the case of a non-abelian bubbling SQM, Iasymp may have a more interesting form and

could potentially depend on the gauge fugacity a.

SU(2) Nf = 4 Theory

In this theory we will study components of the expectation value of two line defects:

L1,0 and L2,0. Specifically, we will be interested in Zmono(1, 0) and Zmono(2, 1).

Zmono(1,0)

In the full expression for the expectation value of the L1,0 ’t Hooft line defect, there
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are two terms that contribute to Zmono(1, 0):

Zmono(1, 0) = Z(Loc)
mono(1, 0) + Z(extra)

mono (1, 0) . (6.185)

As shown in the previous section, the localization result for this Zmono(1, 0) is given by

(6.129) whereas the full expression for Zmono(1, 0), as we know from AGT, is given by

(6.130). This means that Z
(extra)
mono (1, 0) is given by

Z(extra)
mono (1, 0) =


2 cosh

(∑
f mf + 2ε+

)
ξ > 0

2 cosh
(∑

f mf − 2ε+

)
ξ < 0

(6.186)

We conjecture that this should be exactly reproduced by the Witten index of the ground

states on the Coulomb branch.

As we have shown in Appendix D.1, this is indeed exactly reproduced by the Witten

index of the asymptotic states on the Coulomb branch:

Z(extra)
mono (1, 0) = Iasymp(1, 0) =


2 cosh

(∑
f mf + 2ε+

)
ξ > 0

2 cosh
(∑

f mf − 2ε+

)
ξ < 0

(6.187)

Zmono(2,1)

Again by comparing the localization expressions (6.136)-(6.138) with the full ex-

pression from AGT (6.141) for Zmono(2, 1), we find that

Z(extra)
mono (2, 1) = 2 cosh

∑
f

mf ± 6ε+

+ 2 cosh

∑
f

mf ± 2ε+

 , ±ξi > 0 , ∀i .

(6.188)

As shown in Appendix D.2, Z
(extra)
mono (2, 1) is exactly reproduced by the ground state

index of the effective super quantum mechanics on the Coulomb branch (Iasymp):

Iasymp = 2 cosh

∑
f

mf ± 6ε+

+2 cosh

∑
f

mf ± 2ε+

 , ±ξi > 0 , ∀i . (6.189)

By explicit computation, one can see that the Coulomb branch terms restore Weyl-

invariance32 and invariance of Zmono(2, 1) under the choice of ~ξ.

32The Weyl group under the SO(8) flavor symmetry is generated by mi ↔ mi+1 and m3 ↔ −m4.
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Note that the bubbling SQM for this example has a non-trivial mixed branch. How-

ever, we conjecture that there are no states localized there. See D.2.3 for more details.

SU(2) Nf = 2 Theory

Now consider the L1,0 (minimal) ’t Hooft defect in the SU(2) Nf = 2 theory. As in the

case of the SU(2) Nf = 4 theory, this has ’t Hooft charge

P = h1 = 2ĥ1 = diag(1,−1) , h1 ∈ Λmw , ĥ1 ∈ Λcochar . (6.190)

Similarly, the expression for its expectation value is of the form

〈L1,0〉 =
(
eb + e−b

)
F (a,mf ) + Zmono(1, 0) , (6.191)

where

F (a,mf ) =

( ∏
±
∏2
f=1 sinh (a±mf )

sinh(2a)
∏
± sinh (2a± 2ε+)

) 1
2

. (6.192)

The monopole bubbling contribution can be computed as the Witten index of the

N = (0, 4) SQM described by the N = (0, 2) quiver:

1

2

2

4

The Witten index of this quiver SQM reduces to the contour integral

Z(Loc)
mono(1, 0) =

∮
JK(ξ)

dϕ

2πi
Zvec(ϕ, a, ε+)Zhyper(ϕ, a, ε+)ZFermi(ϕ, a, ε+) , (6.193)

which is explicitly given by

Z(Loc)
mono(1, 0) =

1

2

∮
JK(ξ)

dϕ

2πi
sinh(2ε+)

∏2
f=1 sinh(ϕ−mf )∏

± sinh(ϕ± a + ε+) sinh(−ϕ± a + ε+)
.

(6.194)
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This integral evaluates to 33

Z(Loc)
mono(1, 0) =

∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)
+

∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)
: ± ξ > 0 .

(6.195)

From carefully taking the limit of 〈L1,0〉 in the Nf = 4 theory to the Nf = 2 theory34,

we can see that the correct Zmono(P, v) contribution is given exactly by

Zmono(1, 0) =

∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)
+

∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)
: ± ξ > 0 .

(6.196)

Thus, we see that

Z(extra)
mono (1, 0) = 0 . (6.197)

As seen in Appendix D.1, there are no Coulomb branch states and thus:

Z(extra)
mono (1, 0) = Iasymp(1, 0) = 0 . (6.198)

Note that the fact that Z
(extra)
mono (1, 0) = 0 is consistent with the fact that Zmono(1,0)

is actually invariant under the choice of ξ and under the Weyl symmetry of the flavor

symmetry group.

SU(2) SYM Theory

Here we will again be interested in the expectation value of the minimal ’t Hooft defect

that experiences monopole bubbling. This line defect has ’t Hooft charge

P = 2h1 = 2ĥ1 =
1

2
diag(2,−2) , h1 ∈ Λmw , ĥ1 ∈ Λcochar , (6.199)

and hence is the next to minimal ’t Hooft defect: L2,0.

Its expectation value takes a similar form to 〈L1,0〉 of the SU(2) Nf = 4 theory:

〈L2,0〉 =
(
e2b + e−2b

)
F (a,mf ) + Zmono(2, 0) , (6.200)

33Note that this required fixing the overall sign of the Jeffrey-Kirwan residue computation. The
reason is that the JK prescription does not give a derivation of the overall sign.

34This requires taking Re[m4], Re[m3] → ∞ such that sgn(Re[m4]/Re[m3]) = −1. This is a very
subtle point that we will discuss in section 6.4. See [96] for more details about the analogous issues in
5D SYM.
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where

F (a,mf ) =

(
1

sinh(2a)
∏
± sinh(2a± 2ε+)

) 1
2

. (6.201)

The monopole bubbling contribution (Zmono) can be computed as the Witten index of

the N = (0, 4) SQM described by the N = (0, 2) quiver:

1

2

5

The Witten index of this quiver SQM reduces to the contour integral

Z(Loc)
mono(2, 0) =

∮
JK(ξ)

dϕ

2πi
Zvec(ϕ, a, ε+)Zhyper(ϕ, a, ε+) , (6.202)

which is explicitly given by

Z(Loc)
mono(2, 0) =

1

8

∮
JK(ξ)

dϕ

2πi
sinh(2ε+)

∏
±

1

sinh(ϕ± a + ε+) sinh(−ϕ± a + ε+)
. (6.203)

This integral evaluates to

Z(Loc)
mono(2, 0) = − 1

4 sinh(2a) sinh(2a∓ 2ε+)
− 1

4 sinh(2a) sinh(2a± 2ε+)
: ± ξ > 0 .

(6.204)

From carefully taking the limit of 〈L2,0〉 in the Nf = 4 theory to the Nf = 0 theory35,

we can see that the correct Zmono(2, 0) contribution is given exactly by

Zmono(2, 0) = − 1

4 sinh(2a) sinh(2a∓ 2ε+)
− 1

4 sinh(2a) sinh(2a± 2ε+)
: ± ξ > 0 .

(6.205)

Thus, we see that

Z(extra)
mono (2, 0) = 0 . (6.206)

35As before, this requires a bit of care by taking Re[mi] → ∞ such that two masses go to +∞ and
two go to −∞.
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As seen in Appendix D.1, there are no Coulomb branch states and thus

Z(extra)
mono (2, 0) = Iasymp(2, 0) = 0 . (6.207)

This is again consistent with the fact that Z
(Loc)
mono(2, 0) is independent of the choice of ξ

and invariant under the action of the Weyl symmetry of the flavor symmetry group.

SU(2) N = 2∗ Theory

Here we will again be interested in the expectation value of the minimal ’t Hooft defect

that exhibits monopole bubbling. As in the case of SU(2) SYM theory, this line defect

has ’t Hooft charge

P = 2h1 = 2ĥ1 =
1

2
diag(2,−2) , h1 ∈ Λmw , ĥ1 ∈ Λcochar , (6.208)

and hence is the next to minimal ’t Hooft defect: L2,0. As in the case of the SU(2)

SYM theory, this is of the form

〈L2,0〉 =
(
e2b + e−2b

)
F (a,mf ) + Zmono(2, 0) , (6.209)

where

F (a) =

(∏
s1,s2=± sinh(2a + s1m+ s2ε+)∏
± sinh2(2a) sinh(2a± 2ε+)

) 1
2

. (6.210)

The monopole bubbling contribution (Zmono) can be computed as the Witten index of

the (mass deformed) N = (4, 4) SQM described by the quiver:

1

2

6

The Witten index of this quiver SQM reduces to the contour integral

Z(Loc)
mono(2, 0) =

∮
JK(ξ)

dϕ

2πi
Zvec(ϕ, a, ε+)Zhyper(ϕ, a, ε+) , (6.211)
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where the contributions of the different N = (0, 2) multiplets for this SQM are given

by

Z(Loc)
mono(2, 0) =

∮
JK(ξ)

dϕ

2πi

sinh(2ε+)

2
∏
± sinh(m± ε+)

×
∏
±

sinh(±(ϕ+ a) +m) sinh(±(ϕ− a) +m)

sinh(±(ϕ+ a) + ε+) sinh(±(ϕ− a) + ε+)
.

(6.212)

Using this we can compute

Z(Loc)
mono(2, 0) =

∏
s=± sinh(2a + sm+ ε+)

sinh(2a) sinh(2a + 2ε+)
+

∏
s=± sinh(2a + sm− ε+)

sinh(2a) sinh(2a− 2ε+)
, ±ξ > 0 .

(6.213)

As shown in [97], the AGT computation produces

Zmono(2, 0) =

∏
s=± sinh(2a + sm+ ε+)

sinh(2a) sinh(2a + 2ε+)
+

∏
s=± sinh(2a + sm− ε+)

sinh(2a) sinh(2a− 2ε+)
, ±ξ > 0 ,

(6.214)

and therefore that

Z(extra)
mono (2, 0) = 0 . (6.215)

As shown in Appendix D.1, there is a complete cancellation between Coulomb branch

states such that Z
(extra)
mono (2, 0) is reproduced by the Witten index of the asymptotic

Coulomb branch states:

Z(extra)
mono (2, 0) = Iasymp(2, 0) = 0 . (6.216)

This is again consistent with the fact that Z
(Loc)
mono(2, 0) is independent of the choice of ξ

and invariant under the action of the Weyl symmetry of the flavor symmetry group.

Remark In general, the “extra” terms can be dependent on a as well as mf and ε+.

The reason is that because for non-abelian SQM gauge groups, there are generically non-

trivial contributions from mixed branches which we expect can give rise to a dependence.

6.3.4 Comment on 4D N = 2 SU(2) Quiver Gauge Theories

It is interesting to ask how this analysis applies to 4D N = 2 quiver gauge theories with

gauge group SU(2) at each node.36 We believe there is no fundamental obstruction to

36Here we consider only SU(2) gauge groups due to additional subtleties with higher rank simple
gauge groups with Nf ≥ 4 fundamental hypermultiplets. See upcoming work for additional details.
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applying this analysis to such theories beyond increasing computational complexity.

There is also the additional complication that the brane configuration presented here

does not simply generalize to the case of quiver gauge theories and hence can not be

used to derive the quivers for the bubbling SQM.

However, the bubbling SQM can be deduced from the following arguments. Consider

the bubbled defect in a quiver gauge theory with gauge group G =
∏
i SU(2)i specified

by the data (P, v) ∈ Λmw ×Λmw which decomposes as a sum over gauge group factors

P =
⊕
i

Pi , v =
⊕
i

vi . (6.217)

Further, let us define the quiver Γi which specifies the bubbling SQM associated to

the pair (Pi, vi) with appropriate matter interactions. The full bubbling SQM is then

derived by taking into account the 4D bifundamental hypermultiplets which lead to

extra fermi and/or chiral multiplets connecting nodes between different Γi. The precise

couplings can be obtained from demanding U(1)K-invariance of the full quiver.37

Unfortunately, testing our hypothesis in this setting would be quite difficult as the

necessary AGT computations also become increasingly difficult with increasing gauge

group rank. The computation of the bubbling contribution to the expectation value of

’t Hooft defects in quiver gauge theories is of interest for many reasons. One reason is

the potential utility in exploring the deconstruction of the 6D N = (0, 2) theory [8].

Consider a N = 2 superconformal ring quiver gauge theory with G =
∏N
i=1 SU(2)i.

The deconstruction hypothesis conjectures that in the limit N → ∞ and gYM → ∞,

the UV completion of this 4D theory is that of the 6D A1 N = (0, 2) theory. In this

limit the ’t Hooft defects become surface defects that interact with tensionless strings

[157]. Thus, the correct computation of expectation ’t Hooft defects in quiver gauge

theories can be used as a probe for understanding the 6D N = (0, 2) theory.

Therefore, let us demonstrate that our analysis applies to the computation of the

monopole bubbling contribution of an ’t Hooft defect in the simplest example of quiver

gauge theory of higher rank. Consider the case of a superconformal N = 2 quiver gauge

theory with G = SU(2)1 × SU(2)2 with fundamental matter:

37See upcoming work for additional details.
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2 SU(2) SU(2) 2

7

Now consider the bubbling sector where

P =
2⊕
i=1

Pi , v =
2⊕
i=1

vi , (Pi, vi) =
(
diag(1,−1),diag(0, 0)

)
. (6.218)

In this case, the N = (0, 2) bubbling SQM is of the form

1 1

2 2

2 2

9

The localization contribution to Zmono
(
(1, 0) ⊕ (1, 0)

)
is then given by the contour

integral

Z(Loc)
mono((1, 0)⊕ (1, 0)) =∮
JK(ξ1,ξ2)

dϕ1dϕ2

(2πi)2

sinh2(2ε+)
∏2
f=1 sinh(ϕ1 −mf ) sinh(ϕ2 −mf+2)∏2

i=1

∏
± sinh(±(ϕi − ai) + ε+) sinh(±(ϕi + ai) + ε+)

×
∏
± sinh(−ϕ1 ± a2 +m+ ε+) sinh(ϕ2 ± a1 +m+ ε+)

4 sinh(ϕ2 − ϕ1) sinh(ϕ1 − ϕ2 + 2ε+)
.

(6.219)
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Let us choose ξ1, ξ2 > 0. In this case there are 8 poles contributing to this path integral:

I : ϕ1 = a1 − ε+ , ϕ2 = a2 − ε+ ,

II : ϕ1 = a1 − ε+ , ϕ2 = −a2 − ε+ ,

III : ϕ1 = −a1 − ε+ , ϕ2 = a2 − ε+ ,

IV : ϕ1 = −a1 − ε+ , ϕ2 = −a2 − ε+ ,

V : ϕ1 = a1 − ε+ , ϕ2 = a1 − ε+ ,

VI : ϕ1 = −a1 − ε+ , ϕ2 = −a1 − ε+ ,

VII : ϕ1 = a2 − 3ε+ , ϕ2 = a2 − ε ,

VIII : ϕ1 = −a2 − 3ε+ , ϕ2 = −a2 − ε .

(6.220)

See Appendix D.5 for the full expression of Z
(Loc)
mono((1, 0)⊕(1, 0)) computed with ξ1, ξ2 >

0.

One can check that the localization result for Zmono((1, 0) ⊕ (1, 0)) from residues

associated to these poles is not invariant under the Weyl symmetry of the SU(2)×SU(2)

flavor symmetry group. Therefore, this cannot be the full, correct monopole bubbling

contribution Zmono
(
(1, 0) ⊕ (1, 0)

)
for this ’t Hooft defect. Thus, we expect that the

true Zmono
(
(1, 0)⊕ (1, 0)

)
has an extra contribution coming from Coulomb and mixed

branch states that are missed in the standard localization computation.

6.4 Decoupling Flavors

Another way we can check our hypothesis is to see whether it is compatible with decou-

pling matter from N = 2 theories. Consider decoupling fundamental hypermultiplets

from the SU(2) Nf=4 theory. The expressions for 〈Lp,0〉Nf<4 can be obtained by taking

the limit as mi → ∞ while holding a, b fixed, provided we allow for a multiplicative

renormalization of 〈Lp,0〉Nf=4. This kind of limit was described in [69] Section 9. Note

that this limit is not the decoupling limit in [156].38

This allows us to compute the expectation value of the line defects in 4D SU(2) gauge

38The limit from [156] takes

ΛNf=3 = 64q1/2m4 , (6.221)
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theories with Nf ≤ 3 fundamental hypermultiplets by taking the decoupling limit of the

Nf = 4 theory. However, in order to use our prescription to compute Iasymp, we must

take into account the effect of the decoupling limit on the bubbling SQM. When we

decouple the fundamental hypermultiplets we are integrating out fundamental Fermi-

multiplets coupled to the gauge field in bubbling SQM. This will generically introduce

a Chern-Simons term (or in this case a Wilson line) determined by the way we decouple

the masses [153, 154, 146, 6]

q =
1

2

4∑
f=Nf+1

sgn(Re[mf ]) . (6.223)

This means that the Nf = 1, 3 theories must necessarily have a Chern-Simons term

of level 2n+1
2 , n ∈ Z to be well defined.39 The necessity of these half integer Chern-

Simons terms is reflected in bubbling SQMs as a gauge anomaly for q ∈ Z. In general,

the allowed values of the Chern-Simons levels is consistent with the condition that the

bubbling SQM be anomaly free q ∈ Z +
Nf
2 as noted in [90].

6.4.1 Examples

Now we can determine the value of Zmono(P, v) in the general Nf theory by taking

certain limits of Zmono(P, v) in the Nf = 4 theory. This also gives an additional check

of our hypothesis as we will now demonstrate in the case of the Nf = 2, 3 theories.

Similar results also hold for the Nf = 0, 1 theories.

fixed with u,m→∞ with

uNf=3 = u+
1

3
m2

4 , (6.222)

held constant where ΛNf=3 is the UV cutoff of the Nf = 3 theory. Further decoupling to the Nf ≤ 2
proceeds analogously. The limit from [156] is different from the limit we take here because in their
limit, the expressions for a, b from (6.32) diverge (and non-perturbative corrections are small).

39An analogous system was studied in 5D in [96].
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〈L1,0〉 in the Nf = 3 Theory

Recall that for the expectation value of the 〈L1,0〉 ’t Hooft defect in the Nf = 4 theory,

Zmono(1, 0) is of the form

Z
Nf=4
mono (1, 0) = −4

∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)
− 4

∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)

+2 cosh

∑
f

mf ± 2ε+

 ,

(6.224)

for ±ξ > 0. Note that this actually invariant under the choice of ξ ∈ R+.

By taking the limit Re[m4]→ ±∞ we can decouple the 4th fundamental hypermul-

tiplet and find a result for the Nf = 3 theory. This produces the result

Z
Nf=3
mono (1, 0; q =

s

2
) = lim

Re[m4]→s∞
esm4Zmono(Nf = 4)

= 2se−sa±sε+
∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)
− 2sesa±sε+

∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)
,

+ es
∑
f mf±2sε+ : ± ξ > 0 .

(6.225)

Note that Z
Nf=3
mono (1, 0; q = 1

2) 6= Z
Nf=3
mono (1, 0; q = −1

2).

In this case we see that Re[m4] → ±∞ corresponds to q = s
2 . This modifies the

localization integrand by including a factor of e2qϕ:

Z(Loc)
mono(1, 0; q =

s

2
) =

∮
JK(ξ)

dϕ

2πi

2esϕ sinh(2ε+)
∏3
f=1 sinh(ϕ−mf )

sinh(ϕ± a + ε+) sinh(−ϕ± a + ε+)
. (6.226)

As before, this can be evaluated as

Z(JK)
mono(1, 0; q =

s

2
) =2se−sa±sε+

∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)

− 2sesa±sε+
∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)
,

(6.227)

where s = sign(q).40 This means that we have

Z(extra)
mono (1, 0; q =

s

2
) =


es(
∑
f mf+ε+) ξ > 0

es(
∑
f mf−ε+) ξ < 0

(6.228)

This is exactly given by Iasymp(q = s
2) as shown in Appendix D.1.

40Again this required fixing the overall normalization of the path integral.
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〈L1,0〉 in the Nf = 2 Theory

Now we can go to the Nf = 2 theory by decoupling the 3rd fundamental hypermultiplet.

This can be done in two ways (Re[m3] → ±∞) which can induce a Wilson line of

charge q = −1, 0, 1. The result for q = 0, which can be achieved by taking Re[m3] →

−sgn(qNf=4)×∞, is given in the previous section. In the case of q = ±1, we have that

Zmono(1, 0) is given by

Zmono(Nf = 2) = lim
Re[m4],Re[m3]→q∞

e−sm4−sm3Zmono(Nf = 4)

= −e−2qa±2qε+

∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)
− e2qa±2qε+

∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)

+ es
∑
f mf±2sε+ ,

(6.229)

where s = sign[q]. Again, by introducing the Wilson line in the SQM, this changes the

localization computation to give

Z(Loc)
mono(1, 0) =

1

2

∮
JK(ξ)

dϕ

2πi

e2qϕ sinh(2ε+)
∏2
f=1 sinh(ϕ−mf )∏

± sinh(ϕ± a + ε+) sinh(−ϕ± a + ε+)
. (6.230)

As before, this can be evaluated as 41

Z(JK)
mono(1, 0) =− e−2qa±2qε+

∏
f sinh(a−mf ∓ ε+)

sinh(2a) sinh(2a∓ 2ε+)

− e2qa±2qε+

∏
f sinh(a + mf ± ε+)

sinh(2a) sinh(2a± 2ε+)
.

(6.231)

Z(extra)
mono =


es
∑
f mf+2sε+ ξ > 0

es
∑
f mf−2sε+ ξ < 0

, s = sign(q) . (6.232)

Note that as shown in the previous section, Iasymp(q = 0) = 0. This is exactly given by

Iasymp(q) as appropriate as shown in Appendix D.1.

41Again this required fixing the overall normalization of the path integral.
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Chapter 7

Index Theorems on M and Characteristic Numbers on

Kronheimer-Nakajima Spaces

Thus far we have discussed how the expectation value of an ’t Hooft defect operator

can be computed in theories of class S by using spectral networks or in weakly coupled

Lagrangian theories using localization. The class S technique of spectral networks

expresses the expectation value as a Laurent series in certain holomorphic “Darboux”

coordinates on the Hitchin moduli space M whose coefficients are framed BPS indices

for IR framed BPS states. By the results of Chapter 2, we know that this can be related

to the index of a Dirac operator

Ω(γ, u;L(P, ζ)) = Ind
[
/D
Y](γe)

M(P,γm;X∞)
, (7.1)

where γ = γm ⊕ γe can be identified in the semiclassical limit via its Lagrangian de-

scription.

On the other hand, localization of the weakly coupled Lagrangian description of ’t

Hooft defects computes the expectation value to be some rational function of the (expo-

nentiated) complexified Fenchel-Nielsen coordinates a, b. These expressions encode the

characteristic numbers of certain Kronheimer-Nakajima quiver varieties in the terms

that we have thus far called Zmono.

Thus, by comparing the line defect vev’s computed by spectral networks and local-

ization, we can derive unusual expressions for the L2-index of certain Dirac operators in

terms of characteristic numbers of Kronheimer-Nakajima varieties. This can be used to

yield an index theorem. In this chapter we will illustrate this principle in the example

This chapter is based on material from my publication [27].
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of 4D G = SU(2) N = 2 SUSY gauge theories.

In the case of 4D G = SU(2) N = 2 supersymmetric gauge theories, there are two

complexified-Fenchel-Nielsen coordinates a, b. From general principles, the expectation

value of the ’t Hooft defects can be expressed in Fenchel-Nielsen coordinates as a Fourier

expansion in b. More precisely, this can be written as [97, 81]

〈Lp,0(ζ)〉 =
∑

v∈Z+ : v≤p
cosh(v, b)(F (a))vZmono(a,m, ε;P, v) , (7.2)

where v = diag(v,−v) and P = diag(p,−p). On the right hand side the ζ-dependence

is captured by the use of complexified Fenchel-Nielsen coordinates on Mζ .
1

Here the expectation value above is expressed as a sum over monopole bubbling

configurations where cosh(v, b)F (a)v encodes the contribution of bulk fields and Zmono

describes the contribution from the SQM that arises on the ’t Hooft defect from bubbling

[23]. See [23, 24, 26] for more background and explanation of notation.

In the localization computation of 〈Lp,0〉, Zmono(P, v) is given by a characteristic

number of a certain resolved Kronheimer-Nakajima space 2

Zmono(a,m, ε;P, v) = lim
ξ→0

∫
M̃ξ

KN (P,v)
eω+µT ÂT (TM̃ξ

KN ) · CT×TF (V(R)) . (7.3)

Here M̃ξ
KN (P, v) is a certain resolved Kronheimer-Nakajima space determined by the

line defect charge (P ) and core magnetic charge (v), eω+µT induces the T -equivariant

volume form on M̃ξ
KN (P, v), ÂT (TM̃ξ

KN ) is the T -equivariant Â-genus that describes

the contribution from the N = 2 vectormultiplet and CT×TF (V(R)) is a characteristic

class related to the matter hypermultiplets where T is the conserved global symmetry

group of flavor, R-, and global gauge transformations. The equivariant integral can then

be evaluated as a contour integral in an algebraic torus whose poles are enumerated by

Young tableaux [143, 127, 128].

1Usually complexified Fenchel-Nielsen coordinates are introduced as holomorphic coordinates, de-
pending on a cutting system, of the character variety X = Hom(π1(C), GC)

∖
conj. for some complex

gauge group GC. In our case, Mζ is isomorphic to X for all ζ 6= 0,∞ as a complex manifold, but not
canonically. Our Fenchel-Nielsen coordinates will therefore also be functions on the twistor space of
M which, when restricted to a fiber Mζ , are holomorphic Darboux coordinates. It is in this way that
they become comparable to spectral network coordinates.

2As discussed in Chapter 6, there is an additional subtlety with 4D N = 2 SU(N) theories with
Nf = 2N .
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On the other hand, using the class S technology, the expectation value of a super-

symmetric line defect can be computed by the trace of the holonomy of a flat SL(N ;C)

connection along a corresponding curve γ in an associated Riemann surface C. Spectral

networks express the expectation value of such 4D line defects as

〈Lp,0〉u∈B =
∑
γ∈Γ

Ω(γ, Lp,0;u)Yγ , (7.4)

where Ω(γ, Lp,0;u) are framed BPS indices, Yγ are Darboux functions on the moduli

space of flat SL(N ;C) connections on C associated to the physical charge γ = γm⊕γe⊕

γf ∈ Γ , and Γ is a torsor of the IR charge lattice [69]. Locally on moduli space we can

decompose γ non-canonically into magnetic, electric, and flavor charge γ = γm⊕γe⊕γf .

In the semiclassical limit of the theories we are considering, the framed BPS indices

of ’t Hooft defects can be identified with the index of a twisted Dirac operator on

singular monopole moduli space [124, 22, 133, 134, 165, 77, 78, 125]:

Ω(γ, Lp,0;u) = IndL2

[
/D
Y]γe⊕γf
Ematter⊗SM(P,γm,u)

. (7.5)

Here the superscript γe ⊕ γf denotes the associated eigenspace of the L2 index of /D
Y

,

a Dirac operator modified by adding Clifford multiplication by a hyperholomophic

vector field defined by Y ∈ tC. The Dirac operator acts on sections of Ematter ⊗

SM(P, γm, u) where SM(P, γm, u) is the spinor bundle on the singular monopole mod-

uli space M(P, γm, u) and Ematter →M(P, γm, u) is a vector bundle over it related to

hypermultiplet zero-modes. Additionally we take γ = γm⊕γe⊕γf to be the asymptotic

charge of the BPS state.

Thus, by comparing the expectation value of ’t Hooft defects computed via localiza-

tion and spectral network techniques in a weak coupling limit, we can derive a relation

between characteristic numbers of Kronheimer-Nakajima spaces and indices of Dirac

operators on singular monopole moduli space:∑
γ∈Γ

Ω(γ, Lp,0;u)Yγ

=
∑
|v|≤|P |

e(v,b)
(
F (a)

)|v|
lim
ξ→0

∫
M̃ξ

KN (P,v)
eω+µT ÂT (TM̃ξ

KN ) · CT×TF (V(R)) .

(7.6)
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Since the formula is valid for an infinite number of line defects, we can use it both to

express Yγ in terms of a, b (or vice versa) and to determine relations between Dirac

indices and characteristic numbers on certain Kronheimer-Nakajima spaces.

7.1 Fenchel-Nielsen Networks

Generally, we will find that the coordinate transformations are quite complicated. How-

ever, as it turns out, there is a special class of spectral networks called Fenchel-Nielsen

networks which is especially well suited to comparing with the localization results of

〈Lp,0〉 in terms of Fenchel-Nielsen coorcinates [89]. Roughly, this is because the Darboux

coordinates for Fenchel-Nielsen spectral networks exactly coincide with the Fenchel-

Nielsen coordinates from localization.

These spectral networks have only double walls corresponding to a set of minimal

cuts necessary to decompose the Riemann surface C into a disjoint product of punc-

tured discs and annuli. This is a WKB spectral network where ϕ2 is a Jenkins-Strebel

differential — ϕ2 gives a foliation of C by closed paths. Another way of saying this

is that a Fenchel-Nielsen spectral network is given by a pants decomposition of C in

which on each pair of pants, the spectral network is one of the two networks in Figure

7.1.

These spectral networks are referred to as Fenchel-Nielsen-type because the a-type

Fenchel-Nielsen coordinate has a straightforward interpretation in terms of the associ-

ated spectral network coordinates. associated to these networks have a straightforward

interpretation as complexified Fenchel-Nielsen coordinates.

Let us take a maximal set of non-intersecting curves {γi}3g−3+n
i=1 that define a pants

decomposition of C. On each pair of pants, there are classes of curves which are

homotopic to a subset of the {γi}. The holonomy around a curve that is homotopic to
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Figure 7.1: This shows the two possible types of Fenchel-Nielsen spectral networks on
a single pair of pants where the dotted orange lines are a branch cut. These spectral
networks are called “molecules” in [89].

such a γi is given in terms of the spectral network coordinates 3

〈Lγi〉 = Tr2

 Yγi 0

0 Y−1
γi

 = Yγi + Y−1
γi . (7.7)

However, we see from before, that this is simply the definition of the Fenchel-Nielsen

coordinate a:

Yγi + Y−1
γi = Tr2e

a . (7.8)

Wilson line vevs for a fundamental representation of a factor in the (four-dimensional)

gauge algebra are usually expressed as three-term expressions in the functions Yγ . (See

e.g. (10.33) from [69].) The relation to the above two-term expansion is clarified in

equation (7.36) above.

In a large class of theories, such as the ones we study here, Fenchel-Nielsen spectral

networks can be obtained from a generic WKB spectral network by performing a juggle.

This requires changing ζ such that we cross an infinite number of K-walls. In the

theories we consider, there are infinite number of such walls which accumulate along

co-dimension 1 “accumulation points” in the ζ-plane. See Figure 7.2. In our setting,

sending ζ to an accumulation point is equivalent to undergoing the infinite number of

3Note that Yγ are defined for γ ∈ H1(Σ;Z) while Lγ is defined for γ ⊂ C. Here we use the loose
notation where Yγ for γ ⊂ C is defined as Yπ−1(γ)|i the lift under the projection π : Σ → C onto one of
the sheets. Due to (6.15), the two choices of lifting are related by inverses and thus are merely a choice
of convention.
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ζ

Figure 7.2: This figure shows the structure of the K-walls in the ζ-plane. There are
accumulation points (red) on the imaginary axis where the associated WKB spectral
network becomes a Fenchel-Nielsen spectral network.

flips that occur in a juggle, leading to a Fenchel-Nielsen spectral network. See Section

7.1.1 for further discussion.

Remark Recall from the discussion of Section 6.2, that the spectral network coordi-

nates Yγ is given in (6.17) and has a semiclassical expansion with an infinite number of

non-perturbative corrections. Since, as we showed above, we can identify the complexi-

fied Fenchel-Nielsen coordinates with spectral network coordinates, the Fenchel-Nielsen

coordinates a, b must similarly have an infinite number of non-perturbative corrections

to their semiclassical value. We will demonstrate this in the example of the SU(2)

Nf = 0 theory in Section 7.2.2 by computing the leading non-perturbative corrections.

7.1.1 Fenchel-Nielsen Spectral Networks and The Semiclassical Re-

gion

Now we can connect the formalism of semiclassical BPS states and spectral networks.

Recall that the the expectation value of line defects is determined by the framed BPS
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index as in (6.2). Therefore, the index of the Dirac operator from the previous section

can be used to determine the expectation value of an ’t Hooft defect in the semiclassical

limit.

Since we want to compare to the localization computation, which is naturally ex-

pressed in terms of Fenchel-Nielsen coordinates, one would hope to use Fenchel-Nielsen

spectral networks and the associated Dirac operators. In order to implement this we

need to know: 1.) if there exists Fenchel-Nielsen spectral networks in the semiclassical

limit and 2.) where in parameter space these spectral networks exist so that we can

compare to indices of Dirac operators. In this section we will show that such spectral

networks exist in the semiclassical limit, but that they only exist in parameter space

where the moduli space approximation breaks down.

The question of whether or not a Fenchel-Nielsen network exists is equivalent to

the question of whether or not there exists a Jenkins-Strebel differential on C that

encodes the data of the theory in some semiclassical limit. The data of the differential

is (u, ζ,m) ∈ B × U(1)× tF .

The existence of Jenkins-Strebel differentials on a Riemann surface C with punctures

are studied by Liu [117, 116]. There, Liu shows that given a decomposition of C into a

collection of punctured disks {Dm} and annuli {Rk}, there exists a uniquely determined

real Jenkins-Strebel differential with closed trajectory ϕ2 with fixed monodromy mi ∈ R

around each puncture and height hk ∈ R around each annuli where the height is defined

as

hk = Infγk

∮
γk

|Im√ϕ2| , (7.9)

where the infimum is taken over all paths that run between the boundaries of Rk.

Note that the Fenchel-Nielsen spectral network is exactly given by the union of the

boundaries of these component disks and annuli.

Now consider as an example the case of the 4D SU(2) N = 2∗ theory. This theory

is constructed as a theory of class S by taking C to be a torus with a single puncture.

This theory comes with a complex 2-dimensional parameter space defined by u ∈ B ∼= C

and the complex mass parameter of the hypermultiplet. C can be decomposed as an

annulus Ra and a punctured disk Dm. See Figure 7.3 for the example of the 4D SU(2)
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Figure 7.3: This figure shows the explicit decomposition of the UV curve C = T 2\{0}
into disks and annuli for the 4D SU(2) N = 2∗ theory in two different ways. Note that
the boundary of these components give rise to the Fenchel-Nielsen spectral networks
corresponding to both types of fundamental molecules. The type of Fenchel-Nielsen
molecule describing the spectral network depends on the relative holonomies of the
cuts. See [89] for details.

N = 2∗ theory where C = T 2/{0}.4 Thus, there is a 3 dimensional family (specifying

m, γ, and ζ) of Jenkins-Strebel differentials which forms a real co-dimension 1 subspace

of parameter space. This suggests that there could exist a Jenkins-Strebel differential in

the semiclassical limit (|u| → ∞ ) and therefore that there could exist a Fenchel-Nielsen

spectral networks in the semiclassical limit. This has been confirmed by numerical

computations.5

4We would especially like to thank Pietro Longhi for providing these figures.

5We would like to thank Pietro Longhi for sharing his numerical computation for the SU(2) N = 2∗

theory and for making the authors aware of Liu’s work on Jenkins-Strebel differentials.
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Now recall that for a WKB Fenchel-Nielsen spectral network, the real Jenkins-

Strebel differential is related to the Seiberg-Witten differential as

ϕ2 = ζ−2λ2
SW . (7.10)

Asking that ϕ2 as defined by this equation is a Jenkins-Strebel differential defines the

Fenchel-Nielsen locus in B∗ × C∗.

As usual in Seiberg-Witten theory, the periods of λSW give the vev’s of the Higgs

field and mass parameters. In our case the UV curve is given by C = T 2\{0}. This

means that if we pick a basis of H1(Σ̄;Z) = spanZ{A,B},∮
A
λSW = a ,

∮
B
λSW = aD ,

∮
Dp

λSW = mf , (7.11)

where Dp is a loop circling the puncture and mf is the mass of the adjoint hypermulti-

plet. In this notation, the condition that ϕ2 is a Jenkins-Strebel differential (and hence

gives rise to a Fenchel-Nielsen-type WKB spectral network) is that∮
A
ζ−1λSW ∈ R ,

∮
Dmi

ζ−1λSW ∈ R , (7.12)

which can be rewritten as

Im[ζ−1a] = X∞ = 0 , Im[ζ−1mf ] = mx = 0 . (7.13)

This locus in parameter space, which we will call the Fenchel-Nielsen locus, is an ac-

cumulation point of K-walls in the ζ-plane and we will denote the associate phase in

U(1) as ζFN .

Unfortunately, the Fenchel-Nielsen locus is exactly where the moduli space approxi-

mation, which gives the identification between the framed BPS index and the index of a

Dirac operator on singular monopole moduli space, breaks down. In the limit X∞ → 0,

the space M(Pn, γm;X∞) (and M(γm;X∞)) are not defined. The reason is that the

semiclassical expression for the central charge is given by

ζ−1Zγ = −
[

4π

g2
(γm, X∞)− 〈γe, Y∞〉

]
+ i

[
4π

g2
(γm, Y∞) + 〈γe, X∞〉

]
. (7.14)

Thus the BPS mass MBPS = Re[ζ−1Zγ ] for a monopole goes to zero as we scan ζ

such that X∞ → 0. However, we know that monopoles do not become massless in
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the semiclassical limit. Thus, we can deduce that the non-perturbative quantum effects

must become large and therefore the effective SQM description above must break down.

However, by taking |X∞|, |Y∞| → ∞ as |X∞|/|Y∞| → 0, we can still identify framed

BPS indices with the index of a Dirac operator for phases which are arbitrarily close

to the Fenchel-Nielsen locus. This will allow us to give an index theorem for the

supercharge Dirac operators almost everywhere on the ζ-plane. See Figure 1 of [134]

or Figure 4. of [133] for more details.

The above analysis makes it clear that there always exists SU(2) Fenchel-Nielsen

networks (and in fact all SU(N)-type Fenchel-Nielsen spectral networks) in the semi-

classical limit. These exist on the locus where all of the masses and ai =
∮
Ai
λSW have

the same phase. Such a spectral network can be constructed by gluing together pairs

of pants with semiclassical Fenchel-Nielsen spectral networks on them by the procedure

of [89]. The only condition here is that the Fenchel-Nielsen spectral networks all have

the associated phase.

Remark Recall that a Fenchel-Nielsen spectral network corresponds to a WKB spec-

tral network with a Jenkins-Strebel differential. This is defined by decomposing the

Riemann surface C into a collection of annuli and punctured disks. On each compo-

nent, the flow lines of ϕ give a foliation of curves that are homotopic to the boundary

components. If we consider infinitesimally deforming the phase ζ associated to the

quadratic differential, we find that the flow lines on each component are no longer ho-

motopic to the boundary components, but rather spiral into them with a very large

winding number. Thus, as we send ζ → ζFN the flow lines of ϕ2 twist around the

boundary components infinitely many times until they form closed paths, producing a

Fenchel-Nielsen spectral network. This infinite spiraling indicates that Fenchel-Nielsen

spectral networks can be achieved by performing a juggle on a WKB spectral network

where all physical parameters have aligned phases. Using the procedure from Section

8.4 of [89], one can identify the limiting coordinates (6.26) with the Fenchel-Nielsen

coordinates Y(+)
A = ea, while Y(+)

B defines a choice of eb.6

6Note that we could also approach the Fenchel-Nielsen locus in the opposite direction. The procedure
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Thus, the Darboux coordinates associated to Fenchel-Nielsen spectral networks in

the cases we are studying can be obtained by acting on a generic set of spectral network

coordinates by an infinite number of cluster coordinate transformations. The resulting

spectral network coordinates are those that result from the flip (6.26). This gives

a recursion formula for the Darboux coordinates that can be “integrated” to give a

relation between the Darboux coordinates of a spectral network in any chamber and

the Fenchel-Nielsen coordinates which are used in localization computations. This will

be the primary computational tool that we will use to construct an index theorem and

give a formula for the characteristic numbers in the next section.

7.2 Index Theorem and Characteristic Numbers

In this section we will compare the different methods of computing the expectation

value of ’t Hooft defects in 4D N = 2 G = SU(2) asymptotically free theories with

fundamental and hypermultiplet matter. We will outline how this comparison can be

used to give an index theorem for Dirac operators on singular monopole moduli spaces

and give the characteristic numbers of certain Kronheimer-Nakajima spaces7. We will

explicitly show these for the SU(2) Nf = 0 theory.

7.2.1 General Theory

Consider an N = 2 SU(2) Lagrangian theory of class S with mass parameters of

identical phase. Now pick a point in the semiclassical limit of the Coulomb branch

away from the Fenchel-Nielsen locus. We are interested in computing the expectation

values of a ’t Hooft defect which is specified by an integer p and a phase ζ.

Now consider comparing the localization and spectral network result for the ex-

pectation value of ’t Hooft defects. Localization requires introducing an IR regulating

from [89] in conjunction with the relation between the two limiting coordinates (6.27), correspond to
two different choices of Fenchel-Nielsen coordinates. Equation (7.52) of [68] shows that a is well-defined
and Y±B define two choices of b that are related by (6.27).

7These are the transversal slice to the stratum of the bubbling locus of singular monopole moduli
spaces. See [23, 142] for details.
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1
2Ω-deformation and expresses the expectation value in terms of Fenchel-Nielsen co-

ordinates. This coordinate expansion is well defined almost everywhere in a simply

connected region on the Coulomb branch and is independent of the phase of ζ there

due to trivial monodromy. The spectral networks computation however, is not inde-

pendent of the phase ζ. Rather, it is different in each chamber cn ⊂ Cζ of the ζ-plane.8

The reason is that the spectral network undergoes topology change at each K-wall and

hence has a different set of associated Darboux coordinates in each chamber cn ⊂ Cζ .

Away from the Fenchel-Nielsen locus, the spectral network coordinates are not

Fenchel-Nielsen coordinates, but rather are Darboux coordinates which are related

to the localization Fenchel-Nielsen coordinates by an infinite sequence of Kontsevich-

Soibelman transformations.

Due to the “simple” transformation properties of the spectral network coordinates,

these coordinate transformations can be integrated to determine the mapping between

Fenchel-Nielsen coordinates and the Darboux coordinates in every chamber. This can

be achieved as follows. First, solve for the expectation value of the minimal Wilson

and ’t Hooft defects in a generic WKB spectral network of choice. We will assign the

chamber in the ζ-plane in which we have computed these as the c0 chamber. Now by

tuning the phase of ζ, we will cross walls of marginal stability which takes us from the

cn chamber to the cn±1 chamber depending on the direction we tune ζ.

Now we can solve for the expectation values in all chambers by solving the recursive

K-wall crossing formulas [69]:

〈L1,0〉ζ∈cn(Yγi) = 〈L1,0〉ζ∈cn−1(Kγn · Yγi) , 〈L0,1〉ζ∈cn(Yγi) = 〈L0,1〉ζ∈cn−1(Kγn · Yγi) ,

(7.15)

where 〈L〉ζ∈cn is the expectation value of L computed using the WKB spectral network

associated to ζ ∈ cn and the K-wall between the cn and cn−1 chamber is Ŵ (γn).

After we set the 1
2Ω deformation parameter ε+ → 0, we can then compare the

localization expression of the expectation value of the Wilson and ‘t Hooft defects to

their expression in terms of the spectral network coordinates in a generic chamber

8Here ζ changes the decomposition of u into X∞, Y∞.
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chamber ci. Inverting these formulas allows us to solve for (a, b) in terms of the Yγ in

some fixed chamber ci.

Then, by combining this with the solution with the KS-wall crossing formulas, we

then have an expression for the Fenchel-Nielsen coordinates (a, b) in terms of the Yγ
in all chambers cn. Inverting the formulas, one obtains an (admittedly complicated)

expression for the a, b in terms of the Yγ .

We can then take these expressions and substitute the expression for a, b in terms

of the Yγ into the localization expression above. By identifying the coefficients of

the Laurent expansion with that of the spectral network computation we arrive at an

expression for the framed BPS indices in every chamber. Then by using the relation

of the index of the Dirac operator to the framed BPS indices in the semiclassical limit

away from the Fenchel-Nielsen locus∑
γ∈Γ

Ind
[
/D
Y]γe⊕γf
M(P,γm;X∞)

Yγ =
∑
γ∈Γ

Ω
(
γ;L[P,0], cn

)
Yγ

=

 ∑
|v|≤|P |

e(v,b)
(
F (a)

)|v| [
lim
ξ→0

∫
M̃ξ

KN (P,v)
eω+µT ÂT (TM̃KN ) · CT×TF (V(R))

]
a(Yγ)
b(Yγ)

,

(7.16)

we get an index formula for the associated Dirac operator in all chambers arbitrarily

close to the Fenchel-Nielsen locus.

Similarly, we can substitute the expression for the Darboux coordinates Yγ in the

cn chamber in terms of the Fenchel-Nielsen coordinates a, b into the spectral network

computation. Then, identifying the coefficients of the Laurent expansion in terms of

the exponentiated Fenchel-Nielsen coordinates on both sides∑
|v|≤P

eb
(
F (a)

)|v|
Zmono(a,m;P, v) =

∑
γ∈Γ

Ω(γ;L[P,0], cn)Yγ(a, b) ,

Zmono(a,m;P, v) = lim
ξ→0

∫
M̃ξ

KN (P,v)
eω+µT ÂT (TM̃KN ) · CT×TF (V(R)) ,

(7.17)

allows us to express the characteristic numbers that determine Zmono(a,m;P, v) as a

rational function of exponentiated Fenchel-Nielsen a-coordinates, masses, and framed

BPS indices.
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Remark Note that there is an additional subtlety in the case of the N = 2 SU(2) Nf =

4 theory. The reason is that Zmono(a,m;P, v) is not entirely given by a characteristic

number but rather has an additional contribution from states on the Coulomb branch

of an associated SQM [26].

7.2.2 Example: SU(2) Nf = 0 Theory

Now we will apply the above, discussion to determine the framed BPS indices for

the SU(2) Nf = 0 theory. This will produce an index-like formula for a Dirac operator

coupled to a hyperholomorphic vector field Gn(Y∞) on singular monopole moduli space.

The expectation value of the ’t Hooft defect in the Nf = 0 theory is given in terms

of Fenchel-Nielsen coordinates as

〈Lp,0〉Loc =
∑

0≤v≤p
cosh(v, b)

(
F (a)

)v
Zmono(a;P, v) , (7.18)

where

P = diag(p,−p) , v = diag(v,−v) . (7.19)

In the case where ε+ = 0, which is necessary for comparing with the Fenchel-Nielsen

and Dirac operator expressions, these have the simple form

〈L0,1〉Loc = ea + e−a , 〈L1,0〉Loc =
eb + e−b

2 sinh(a)
. (7.20)

As shown in [69, 133], the expectation value of the ’t Hooft defect of minimal charge

in terms of Darboux coordinates in the chamber cn is given by 9

〈L1,0〉ζ∈cn =
1

XmX ne

(
Un(fn)− 1

Xe
Un−1(fn)

)
, 〈L0,1〉ζ∈cn = 2fn , (7.21)

where

fn =
1

2

(
Xe +

1

Xe

(
1 + X 2

mX 2n+2
e

))
, (7.22)

and

Xm = Y 1
2
Hα

, Xe = Y 1
2
α . (7.23)

9Recall that L1,0 is the minimal ’t Hooft defect and L0,1 is the minimal Wilson defect.
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Here we take n ∈ Z+ to denote the chamber cn in the ζ-plane and the notation Un to

denote the Tchebyshev polynomial of the second kind:

Un−1(cos(x)) =
sin(nx)

sin(x)
. (7.24)

In this theory, the Fenchel-Nielsen locus is given by 〈α,X∞〉 = 0.10 Let us pick a u ∈ B

such that Φ∞ = ±iX∞ when ζ ∈ R and Φ∞ = ±Y∞ when ζ ∈ iR. We can now identify

the imaginary axis as the Fenchel-Nielsen locus.

The spectrum of the vanilla BPS states in the semiclassical region are given by

γ = ±α , γ±n = ±Hα ⊕ nα , n ∈ Z , (7.25)

with BPS indices

Ω(γ;u) =


−2 γ = ±α

1 γ = γ±n

0 else

(7.26)

Thus, the phase of the central charge corresponding to a state with charge γ = γm⊕ γe
is given by

phase(Zγ) = − arctan

[
(γm, Y∞)

(γm, X∞)
+
g2

4π

( 〈γe, X∞〉
(γm, X∞)

+
(γm, Y∞)〈γe, Y∞〉

(γm, X∞)2

)]
+O(g4) ,

= − arctan

{
(γm, Y∞)

(γm, X∞)

[
1 +

g2

4π

( 〈γe, Y∞〉
(γm, X∞)

+
〈γe, X∞〉
(γm, Y∞)

)]}
+O(g4) .

(7.27)

Without loss of generality, we can restrict to the case ζ in the positive real half-

plane (the other cases follow analogously). We are now only concerned with the phase

of BPS states whose K-walls are in the positive real half-ζ plane. These BPS states

have charges γ−n with K-walls along the phases

phase(Zγ−n ) = − arctan

{
(Hα, Y∞)

(Hα, X∞)

[
1− n g2

4π

(
(Hα, Y∞)

(Hα, X∞)
+

(Hα, X∞)

(Hα, Y∞)

)]}
, (7.28)

to order O(g4). Note that the phases of the central charges are ordered

phase(Zγ−n ) > phase(Zγ−n−1
) , (7.29)

10Note, that here we have defined X∞ ∈ t to lie in the positive chamber. We will thus assume that
〈α,X∞〉 ≥ 0.
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in the positive real half-plane. We can now define the chambers cn ⊂ Ĉ∗ as

cn :=
{
ζ ∈ Ĉ∗ | phase(Zγn) > phase(ζ) > phase(Zγn−1)

}
. (7.30)

At the K-wall defined by Ŵ (γ−n ), the Xi,n−1 mutate as:

Kγ−nX1,n−1 = (1 +X1,n−1X
n
2,n−1)−2nX1,n−1 ,

Kγ−nX2,n−1 = (1 +X1,n−1X
n
2,n−1)2X2,n−1 .

(7.31)

By comparing with the computation of 〈L1,0〉 and 〈L0,1〉 using localization, we can

determine the coordinate transformation relating the Fenchel-Nielsen coordinates to

the spectral network coordinates in the cn chamber:

Xm = −b(a
2 − 1)(1 + a2n+2b2)n

a(1 + a2nb2)n+1
, Xe =

a(1 + a2nb2)

(1 + a2n+2b2)
, (7.32)

where

a = ea , b = eb . (7.33)

We can now invert the expressions (7.32) to get

a = fn −
√
f2
n − 1 , b =

√
a−Xe√

a2n+1(aXe − 1)
,

fn =
1

2

(
Xe +

1

Xe
+ X 2

mX 2n+1
e

)
.

(7.34)

Note that both of these pairs of expressions requires matching the semiclassical expres-

sions for X1,0, X2,0, e
a, eb.

This can be used to show explicitly that the spectral network coordinates approach

the Fenchel-Nielsen coordinates as we approach the Fenchel-Nielsen locus. Sending

the phase ζ → ζFN can then be achieved by sending n → ∞ or n → −∞. Going

to the Fenchel-Nielsen locus rotates the phase of Φ∞ = ζ(Y∞ + iX∞) so that, in the

limit n → ±∞, ±〈α, Y∞〉 > 0. Then from the expression for Yγ (6.17), we see that

limn→±∞ Yγn is exponentially suppressed

lim
n→±∞

Yγn ∼ lim
n→∞

e−(|n|+1)πR|〈α,Y∞〉| ×O(e−4π2R/g2
) = 0 . (7.35)

Thus, sending ζ → ζFN reduces the standard three-term expansion of the value of the

Wilson line to

lim
n→±∞

〈L1,0〉n = Y 1
2
α + Y− 1

2
α . (7.36)
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This allows us to identify Y 1
2
α = e±a.11

The coordinate identification above can also be seen from taking limits of the coor-

dinate transformation expressions (7.32). As ζ → ζFN , we pass through chambers with

n→ ±∞. From the semiclassical expression for a in (6.32), we see that in this region∣∣∣e±〈α,a〉∣∣∣ < 1 . (7.37)

Therefore:

lim
n→±∞

Xe = lim
n→±∞

Y 1
2
α = e±a

∣∣
ζ=ζFN

. (7.38)

Similarly we can apply this method to Xm = Y 1
2
Hα

to find

lim
n→±∞

Y 1
2
Hα

= − sinh(a)e±b
∣∣
ζ=ζFN

. (7.39)

Using the identification of the Fenchel-Nielsen coordinates with spectral network

coordinates in cn (7.34), it is possible to compute explicitly the non-perturbative correc-

tions to a, b. From the results of [67], we know that the corrections to the semiclassical

contribution of Yγ is given by solving the recursive formula

logYγ(u, θ, ζ) = logYsfγ (u, θ, ζ)

+
∑
γ′
Ω(γ′;u)

〈γ′, γ〉
4πi

∫
`γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ log(1− Yγ′(u, θ, ζ ′)) ,
(7.40)

where Ysfγ is the semi-flat term which is the semiclassical expression in (6.17) and `γ′

is the ray in the ζ-plane along the K-wall Kγ′ .

To compute the first order non-perturbative corrections to a, b, we need to use the

fact that the semi-flat expressions for Xe,Xm are of order X sfe ∼ O(1) while X sfm ∼

O
(
e
− 4π
g2

)
. Using this, we can expand the expressions for a, b as a Laurent series in Xm:

ea = Xe
[
1 +

X 2n+1
e

Xe − 1/Xe
X 2
m +O(X 4

m)

]
,

eb = − Xm
Xe −X−1

e

[
1− X 2n+1

e X 2
m

(Xe − 1/Xe)3
fn(Xe) +O(X 4

m)

]
,

(7.41)

where

fn(Xe) = Xe + n(Xe − 1/Xe) . (7.42)

11As we will see below, the signs are correlated with the different limits n→ ±∞.
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Then by taking into account the non-perturbative corrections to Xe,Xm and comparing

orders in e
− 4π
g2 , we can compute the first order non-perturbative corrections to the

leading (semiclassical) expression for a, b as

a(1)
n.p. = log[X n.p.(1)

e ] + log

[
1 +

(X sfe )2n+1(X sfm )2

X sfe − 1/X sfe

]
,

b(1)
n.p. = log[X n.p.(1)

m ] +

(
X sfe + 1/X sfe
X sfe − 1/X sfe

)
log[X n.p.(1)

e ]

+ log

[
1− (X sfe )2n+1(X sfm )2

4(X sfe − 1/X sfe )2
fn(X sfe )

]
,

(7.43)

Here a
(1)
n.p., b

(1)
n.p. are the first of an infinite series of non-perturbative corrections to the

semiclassical values of a, b

a = as.c. +

∞∑
i=1

a(i)
n.p. , b = bs.c. +

∞∑
i=1

b(i)
n.p. , (7.44)

and X n.p.(1)
e ,X n.p.(1)

m are the leading order non-perturbative corrections to the semi-flat

expressions for Xm,Xe which are given by [67]:

X n.p.(1)
e (u,Θ, ζ) =

∑
γ′=γ±n

Ω(γ′;u)
⟪γ′, 1

2α⟫
4πi

eiΘ·γ
′
∫
R+

dζ ′

ζ ′
ζ ′ + ζe−iαγ′

ζ ′ − ζe−iαγ′
e−2πR|Zγ′ |(ζ′+1/ζ′) ,

X n.p.(1)
m (u,Θ, ζ) =

∑
γ′=γ±n ,±α

Ω(γ′;u)
⟪γ′, 1

2Hα⟫
4πi

eiΘ·γ
′

×
∫
R+

dζ ′

ζ ′
ζ ′ + ζe−iαγ′

ζ ′ − ζe−iαγ′
e−2πR|Zγ′ |(ζ′+1/ζ′) ,

(7.45)

Using the BPS indices (7.26), these integrals simplify to

X n.p.(1)
e =

i

π

∑
n∈Z

∫
R+

dζ ′

ζ ′
sin(θm + nθe)(ζ

′2 + ζ2) + 2ζ ′ζ cos(θm + nθe) sin(αγ+
n

)

ζ ′2 + ζ2 − 2ζ cos(αγ+
n

)

× e−2πR|Zγ′ |(ζ′+1/ζ′) ,

X n.p.(1)
m =

∑
n∈Z

n

2πi

∫
R+

dζ ′

ζ ′
sin(θm + nθe)(ζ

′2 + ζ2) + 2ζ ′ζ cos(θm + nθe) sin(αγ+
n

)

ζ ′2 + ζ2 − 2ζ cos(αγ+
n

)

× e−2πR|Zγ′ |(ζ′+1/ζ′)

+
2i

π

∫
R+

dζ ′

ζ ′
sin(θe)(ζ

′2 + ζ2) + 2ζ ′ζ cos(θe) sin(αα)

ζ ′2 + ζ2 − 2ζ cos(αα)
e−2πR|Zγ′ |(ζ′+1/ζ′) .

(7.46)
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where above we have used the notation where the integral over ζ ′ has been mapped to

the integral over the positive reals by the phase rotation eiαγ′ = phase(Zγ′) and ⟪γ, γ′⟫
is the DSZ pairing of charges.

Note that the Yγ are functions of u, θe, θm, ζ on the Hitchin moduli space. Because

of the relation between the a, b and the Xe,Xm in (7.32) and (7.34), we clearly see that

the a, b must also be functions of u, θe, θm, ζ. The explicit dependence of a, b on ζ can be

seen first fixing a point in Hitchin moduli space with fixed coordinates (u, θe, θm), and

then studying the Fenchel-Nielsen coordinates as functions of the complex structure ζ.

Index Theorem

We can now use these coordinate transformations to determine an index formula as

follows:

1. Calculate the localization computation for the expectation value of the given line

operator:

〈Lp,0〉Loc =
∑
|v|<|P |

e(v,b)

sinh|v|(a)
· lim
ξ→0

∫
M̃ξ(P,v)

eω+µT Â(TM̃) , (7.47)

where M̃ξ
KN (P, v) = M̃ξ

KN (~k, ~w) is the corresponding Kronheimer-Nakajima

quiver variety as described in Section 5.1.2. In this example it evaluates to

〈Lp,0〉Loc =

(
eb + e−b

2 sinh(a)

)p
. (7.48)

2. Perform the change of coordinates:

a 7→ log(fn −
√
f2
n − 1) , b 7→ log

( √
a−Xe√

a2n+1(aXe − 1)

)
, (7.49)

in the localization result, where fn is given in equation (7.22) and a = ea as a

function of Xm,Xe.

3. Expand the 〈Lp,0〉Loc as a Laurent series in Xm,Xe:

〈Lp,0〉Loc =
∑
n1,n2

Cnm,neX nmm ,X nee . (7.50)
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4. Identify the coefficient of the X nmm X nee term, Cnm,ne , with the index:

Ind
[
/D
Y]γe
M,cn

= Cnm,ne , (7.51)

where

ζ ∈ cn , M =M(P, γm) , γ =
ne
2
α⊕ nmHα , P = pHα . (7.52)

After performing the Laurent expansion for 〈Lp,0〉 given in (7.48) in terms of the

Darboux coordinates in the cn chamber, we have an expression for the graded index of

the twisted Dirac operator /D
Y

on singular monopole moduli space:

Ind
[
/D
Y]γe=ne

2
α

M(P,γm;X∞)
=
∞∑
m=0

p∑
j=0

2p∑
k=0

∞∑
`=0

∞∑
i=0

k∑
q=0

j+m+q+i
+(2n+1)(p−k)∑

d1=0

bd1/2c∑
d2=0

∞∑
d3

 p+m− 1

m


×

 2p

k

 p+ `− 1

`

 k + i− 1

i

 p

j

 k

q


×

 j +m+ q + i+ (2n+ 1)(p− k)

d1

 bd1/2c

d2

 2d3

d2

 (−1)j+q+d22−2p

(1− 2d3)

×



∑
i1+i2=2`−2d2−2d3

 2`− 2d2 − 2d3

i1, i2

 (−1)i1∆ne,nm `− d2 − d3 > 0

∞∑
i1=0

i1∑
i2=0

 i1 + 2d2 + 2d3 − 2`− 1

i1


 i1

i2

 (−1)i1∆ne,nm `− d2 − d3 < 0

(7.53)

where ∆ne,nm is a delta function that restricts the sum over the {m, j, k, `, i, q, di, ii}

such that

nm =


i2 `− d2 − d3 > 0

2(`− d2 − d3)− i1 `− d2 − d3 < 0

ne =


2i1 + (2n+ 2)i2 + 2(d2 + d3 − `) + i+ j + k −m− p `− d2 − d3 > 0

−(2n+ 2)i1 + 2i2 − 2(2n+ 1)(d2 + d3 − `) + i+ j +m− p `− d2 − d3 < 0

(7.54)
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are fixed. Additionally,

P = diag(p,−p) , ζ ∈ cn , γm = nmHα . (7.55)

This index formula for the case of SU(2) SYM theory is also found in [133].

Characteristic Numbers

Now by expressing Yγ in terms of Fenchel-Nielsen coordinates, we can perform a Laurent

expansion with respect to the exponential Fenchel-Nielsen coordinate eb. This will

allow us to isolate the characteristic number. By using the equations for the Darboux

coordinates in terms of Fenchel-Nielsen coordinates (7.32), we get the expansion

lim
ξ→0

∫
M̃ξ

KN (P,v)
eω+µT Â(TM̃KN ) =

∑
0≤nm,ne≤p

{
Ω(nm, ne; cn)Q

(nm,ne)
1 (a; cn)

+Ω(−nm, ne; cn)Q
(nm,ne)
2 (a; cn) +Ω(−nm,−ne; cn)Q

(nm,ne)
3 (a; cn)

+Ω(nm,−ne; cn)Q
(nm,ne)
4 (a; cn)

}
.

(7.56)

where

P = diag(p,−p) , v = diag(v,−v) ,

Ω(nm, ne; cn) = Ω(γ; cn) , γ = nmHI ⊕ ne
1

2
α ,

(7.57)
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and the Q
(nm,ne)
i (a, v; cn) are different rational functions of a, defined as

Q
(nm,ne)
1 (a, v; cn) =

ne∑
i1=0

[
2nm+v

2
−i1

2nnm

]
∑
j1=0

′∑
i2+j2=

v−nm
2
−i1−j1

 ne

i1

 i2 + ne − 1

i2



×

 2nm n

j1

 j2 + 2nm(n+ 1)− 1

j2

 (−1)2nm+i2+j2

× a2n(i1+j2)+(2n+2)(i2+j1)+ne−2(nm−v)(1− a2)2(nm+v) ,

Q
(nm,ne)
2 (a, v; cn) =

ne∑
i1=0

[
2nm+v

2
−i1

2nm(n+1)

]
∑
j1=0

′∑
i2+j2=

nm+v
2
−i1−j1

 ne

i1

 i2 − ne − 1

i2



×

 2nm(n+ 1)

j1

 j2 + 2nm n− 1

j2

 (−1)i2+j2+2nm

× a2n(i1+j1)+(2n+2)(i2+j2)+ne+2nm−2v(1− a2)2(v−nm) ,

Q
(nm,ne)
3 (a, v; cn) =

ne∑
i1=0

[
2nm+v

2
−i1

2nm(n+1)

]
∑
j1=0

′∑
i2+j2=

nm+v
2
−i1−j1

 ne

i1

 i2 − ne − 1

i2



×

 2nm(n+ 1)

j1

 j2 + 2nmn− 1

j2

 (−1)i2+2nm+j2

× a2n(i1+j1)+(2n+2)(i1+j2)+2nm−ne−2v(1− a2)2(v−nm) ,

Q
(nm,ne)
4 (a, v; cn) =

ne∑
i1=0

[
2nm+v

2
−i1

2nnm

]
∑
j1=0

′∑
i2+j2=

v−nm
2
−i1−j1

 ne

i1

 i2 + ne − 1

i2



×

 2nm n

j1

 j2 + 2nm(n+ 1)− 1

j2

 (−1)i2+j2+2nm

× a2n(i2+j2)+(2n+2)(i1+j1)−2nm−ne−2v(1− a2)2(nm+v) .

(7.58)
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Here we use the notation

[mn ]∑
i=0

=

min[m,n]∑
i=0

,

 −1

0

 = 1 ,
′∑

i2+j2=...

=



∑
i2+j2=... ne, nm 6= 0∑
j2=...
i2=0

ne = 0 , nm 6= 0

∑
i2=...
j2=0

nm = 0 , ne 6= 0

∑
i2,j2=0 ne = nm = 0 .

(7.59)

and the sums are restricted such that
∑b

n=a is identically zero for b < a.

Note that in both the formulas for the index of /D
Y

and the characteristic numbers

on MKN , there is a clear mixing of framed BPS states of magnetic charge γm among

many characteristic numbers for different. This suggests that there is a very non-trivial

relationship between framed BPS states and the geometry of singular monopole moduli

space since the MKN are transversal slices to singular strata in M(P, γm;X∞). It is

an interesting challenge to differential geometers to try to prove such relations.

Explicit Example: 〈L2,0〉 in SU(2) SYM

We can illustrate the above formulas for the index of /D
Y

and the characteristic numbers

onMKN (P, v) with the non-trivial example of the next-to-minimal ’t Hooft defect: L2,0.

Let us first demonstrate the index theorem by calculating the index of /D
Y

. In our

example, the expectation value from localization can be written

〈L2,0〉Loc =
2 cosh(2b)

sinh2(a)
+ Zmono(a; 2, 0) , (7.60)

where

Zmono(a; 2, 0) = lim
ξ→0

∫
M̃ξ(2,0)

eω+µT Â(TM̃) , (7.61)

is the characteristic number on the Kronheimer-Nakajima space defined by the quiver

1

2

12
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as described in Section 5.1.2.

For this example, the characteristic number evaluates to [23]

Zmono(a; 2, 0) =
2

4 sinh2(a)
. (7.62)

Let us compute the index theorem for the chamber c1. In this chamber, the coordinate

transformation is of the form

a = ea = f1 −
√
f2

1 − 1 , f1 =
1

2
Xe +

1

2Xe
+
X 2
mX 2n+1

e

2
,

b = eb =

√
f1 −

√
f2

1 − 1−Xe
(f1 −

√
f2

1 − 1)4Xe − (f1 −
√
f2

1 − 1)3
.

(7.63)

Plugging this into the full expectation value

〈L2,0〉Loc =
2 cosh(2b)

sinh2(a)
+

1

2 sinh2(a)
, (7.64)

yields the Darboux expansion

〈L2,0〉Loc
∣∣∣
a,b7→Xm,Xe

=
1

X 2
m

+ X 4
e X 2

m + 2X 2
e , (7.65)

in terms of the spectral network coordinates in the c1 chamber. Note that this matches

the direct computation from spectral networks (7.21) [133].

From this expansion we can read off the indices of the Dirac operator:

Ind
[
/D
Y]γe=ne

2
α

M(P,γm;X∞)
=



1 γ = Hα ⊕ 2α

1 γ = −Hα

2 γ = α

0 else

(7.66)

where P = 1
2diag(2,−2) and ζ ∈ c1.

Now let us perform the inverse coordinate substitution to derive the characteristic

number from the spectral network computation. Let us start with the expectation value

of L2,0 from the spectral network associated with ζ ∈ c1:

〈L2,0〉ζ∈c1 =
1

X 2
m

+ X 4
e X 2

m + 2X 2
e . (7.67)
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The coordinate transformation (7.32) now takes the form

Xm = −b(a
2 − 1)(1 + a4b2)

a(1 + a2b2)2
, Xe =

a(1 + a2b2)

(1 + a4b2)
. (7.68)

Plugging this into (7.67) we find

〈L2,0〉ζ∈c1
∣∣∣
Xm,Xe 7→a,b

=
(b+ 1/b)2

(a− 1/a)2
, (7.69)

which indeed matches with the localization computation. Expanding this in powers of

b = eb, we see that the 0th order term (Zmono(a; 2, 0)) is given by

Zmono(a; 2, 0) =
2

(a− 1/a)2
=

2

4 sinh2(a)
. (7.70)

We can also derive this result from the full formula for the characteristic number.

Using the data

Ω(−1, 0; c1) = Ω(1, 4; c1) = 1 , Ω(0, 2; c1) = 2 , (7.71)

the characteristic number formula (7.56) reduces to

lim
ξ→0

∫
M̃ξ

KN (2,0)
eω+µT Â(TM̃KN ) =

Ω(1, 4; c1)Q
(1,4)
1 (a; c1) +Ω(0, 2; c1)Q

(0,2)
1 (a; c1) +Ω(−1, 0; c1)Q

(1,0)
2 (a; c1) .

(7.72)

Evaluating the polynomials, we find

Q
(1,4)
1 (a; c1) = 0 ,

Q
(0,2)
1 (a; c1) =

2∑
i1=0

−i1∑
j1=0

∑
i2=0

 2

i1

 i2 + 1

i2

 (−1)i2+j2a2(i1+j2)+(4(i2+j1)+2 = a2 ,

Q
(1,0)
2 (a; c1) =

1∑
j1=0

∑
j2=1−j1

 4

j1

 j2 + 1

j2

 (−1)j2
a2j1+4j2+2

(1− a2)2
=
−2a6 + 4a4

(1− a2)2
.

(7.73)

Combining these results with the framed BPS indices (7.71), the full formula for the

characteristic number evaluates to

lim
ξ→0

∫
M̃ξ

KN (2,0)
eω+µT Â(TM̃KN ) = 2a2 +

−2a6 + 4a4

(1− a2)2
=

2

(a− 1/a)2
, (7.74)

matching the result from direct computation.
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E1

E2

E3

Figure 7.4: This figure shows a generic WKB spectral network (blue) on the punctured
torus. This corresponds to the triangulation given by the (black) edges E1,2,3 where the
rectangle is periodically identified and the puncture is located at the identified corners.

7.2.3 Comments on the N = 2∗ Theory

Here we would like to make some clarifying comments on the SU(2) N = 2∗ theory and

the Fenchel-Nielsen locus in this theory. In the case of the N = 2∗ theory the UV curve

C is given by the once punctured torus. The algebra of line operators of this theory

can be generated by the three simple line operators Lγ(1,0)
, Lγ(0,1)

, and Lγ(1,1)
. Note

that there are three generating operators because the homology lattice is generated by

a cycles that wrap the A-cycle, B-cycle, and the puncture.

A generic spectral network associated to the SU(2) N = 2∗ theory is given by an

ideal triangulation of C as in Figure 7.4. In each chamber of the ζ-plane c, the charge

lattice is spanned by three simple elements γi[c] for i = 1, 2, 3 such that

〈γi[c], γi+1[c]〉 = 2 , γ1[c] + γ2[c] + γ3[c] = γf . (7.75)

Given a particular choice of chamber c0 we can identify

γ1[c0] = −α⊕ γf , γ2[c0] = −Hα , γ3[c0] = Hα ⊕ α . (7.76)

In such a chamber, the expectation values of the line operators can be expanded in
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Figure 7.5: This figure shows a generic WKB spectral network on the punctured torus.
The punctured torus is presented as a trinion with two boundary circles identified.
These are the two lower circles in the above figure. We choose the A-cycle to be defined
by the boundary of these circles. Here the lines are the walls of the corresponding
WKB spectral network. While it is not drawn here due to computational limitations,
the walls corresponding to the open paths run to the (upper) puncture.

terms as

〈Lγ(1,0)
〉 =

√
Yγ2Yγ3 +

1√
Yγ2Yγ3

+

√
Yγ3

Yγ2

,

〈Lγ(0,1)
〉 =

√
Yγ3Yγ1 +

1√
Yγ3Yγ1

+

√
Yγ1

Yγ3

,

〈Lγ(1,1)
〉 =

√
Yγ2Yγ1 +

1√
Yγ2Yγ1

+

√
Yγ2

Yγ1

.

(7.77)

Here Yγi is the spectral network coordinate corresponding to the edge Ei.

In the SU(2) N = 2∗ theory, the Fenchel-Nielsen locus is defined by

m̄

∫
A
λSW ∈ R ,

∫
A
ζ−1λSW ∈ R , (7.78)

where ζ is the phase defining the line operator (and corresponding WKB spectral net-

work). As it turns out, this coincides with the exceptional locus

E =
⋃
i

Ei , Ei = {u ∈ B | Z(γi;u)/m > 0 , Arg[Z(γi+1;u)] < Arg[Z(γi−1;u)]} ,

(7.79)
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Figure 7.6: This figure shows the behavior of the generic WKB spectral network on the
punctured torus from Figure 7.5 as it approaches the Fenchel-Nielsen spectral network
(left in Figure 7.1). Again, while it is not drawn here due to computational limitations,
the walls corresponding to the open paths run to the (upper) puncture.

from [120]. Here mathematical simplifications arise that allow for the exact computation

of the spectrum generator which encodes the entire spectrum of BPS states.

As we approach to the Fenchel-Nielsen locus, we cross an infinite number of K-walls

in passing through the chambers cn with increasing n. Mathematically, crossing the K-

wall going from chamber cn → cn+1 corresponds to mutating along one of basis elements

of the charge lattice in cn, γi[cn]. As discussed in [69], this transformation keeps the

three-term expansion of the 〈Lγ〉 that have explicit Yγi dependence but increases the

complexity of the 〈Lγ〉 that are independent of Yγi . This leads to a fairly simple change

of variables between the complexified Fenchel-Nielsen coordinates and the Yγi given by

[53]√
Yγ1 =

i

`

β̃ − β̃−1

β̃λ− (β̃λ)−1
,
√
Yγ2 = i

β̃λ− (β̃λ)−1

λ− λ−1
,
√
Yγ3 = −i λ− λ

−1

β̃ − β̃−1
,

λ = ea , ` = em , β̃ = eb
√
ea+m − e−a−m
ea−m − e−a+m

.

(7.80)

Sending ζ → ζFN acts on the corresponding spectral network as in Figure 7.6. This

makes it obvious that the Wilson line 〈Lγ(1,0)
〉, which is the holonomy around one of
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the resolved punctures, keeps a three term expansion. And further, from the properties

of a Fenchel-Nielsen spectral network, we see that the expression for 〈Lγ(1,0)
〉 becomes

a two term expansion in the limit ζ → ζFN . We believe mirrors the same behavior of

the expectation value of the Wilson line in the SU(2) Nf = 0 theory as discussed in

the previous section.
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Appendix A

Semiclassical Framed BPS States

A.1 Collective Coordinate Calculation for SYM

In this appendix we perform the calculation to reduce the four dimensional theory

to the theory of collective coordinates. We will begin by expanding the fields:

Y = εY∞ + Y cl − i

4
φmnχ

mχn ,

A0 = −żmεm + Y cl +
i

4
φmnχ

mχn ,

Ea = (D̂aA0 − ∂0Âa) = −żmδmÂa + D̂aY
cl +

i

4
D̂aφmnχ

mχn ,

(A.1)

and plugging them into the Lagrangian

L =
1

g2
0

∫
d3x Tr

{
E2
i − 2(D̂iX)2 − (D̂iY )2 − 2iρA(D0ρA + [Y, ρA]) + 2θ̃0EiB

i
}

+
2

g2
0

∑
n

∫
S2
n

d2Ωa
n Tr {EaY +BaX}+

∑
j

∫
d3x δ(3)(x− xj)iw†j(Dt −R(Y ))wj ,

(A.2)

which can be rewritten as

L =
1

g2
0

∫
d3x Tr

{
(D̂a − ∂0Âa)

2 − 2(D̂X)2 − (D̂Y )2 + 2iρA(D0ρA + [Y, ρA])
}

+
2θ̃0

g2
0

∫
d3x Tr

{
BiEi

}
+ 2

∑
n

∫
S2
n

d2Ωnr
2
nr̂
i
n Tr

{
(EiY +BiX)− g2

0

4π

Qn
2r2
n

A0r̂
i
n

}
+

1

g2
0

∑
j

∫
d3x δ(3)(x− xj)iw†jDtwj +O(g4

0) .

(A.3)

This Appendix is material from my publication [22].
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The result is given by

g2
0L =

∫
d3x Tr

{
żmżnδmÂ

aδnÂa − 2żmδmÂ
aD̂aY

cl − i

2
żmδmÂ

aD̂aφmnχ
mχn

+
i

2
D̂aY

clD̂aφmnχ
mχn + (D̂aY

cl)2 − 1

16
(D̂aφmn)χ4

− (D̂aεY∞)2 − (D̂aY
cl)2 +

1

16
(D̂aφmn)2χ4 − 2D̂aεY∞D̂

aY cl

+
i

2
D̂aφmnD̂

aεY∞χ
mχn − i

2
D̂aY

clD̂aφmnχ
mχn − 2(D̂aX)2

+ iδmÂ
aδnÂaχ

mχ̇n + iχmδmÂ
aDpδnÂaż

pχn

− i

2

(
εY∞ + 2Y cl

)
D̂2φmnχ

mχn

+ 2θ̃0D̂
aX

(
−żmδmÂa + D̂aY

cl +
i

4
D̂aφmnχ

mχn
)}

+ 2
∑
n

∫
S2
n

d2Ωa
n Tr

{
XD̂aX

− g2
0

4πr2
n

Q∗n

(
−żmεm + Y cl +

i

4
φmnχ

mχn
)

+ (εY∞ + Y cl − i

4
φmnχ

mχn)(−żmδmÂa

+ D̂aY
cl +

i

4
D̂aφmnχ

mχn)
}

+ ig2
0

∑
j

w†jẇj + ig2
0

∑
j

w†j(−żmεm − εY∞ +
i

2
φmnχ

mχn)wj .

(A.4)

For the rest of the calculation we will use the asymptotics and identities:

θ̃0 =
θ0g

2
0

8π2
, D̂2φmn = 2[δmÂ

a, δnÂa] , D̂aεH = −G(H)mδmÂa ,

φmn ∼ O∞(1/r), On(1) , X ∼ O∞(1), On(1/rn) , Y cl ∼ O∞(1/r2), On(1/rn) ,

δmÂa ∼ O∞(1/r2), On(r−1/2
n ) , εH ∼ O∞,n(1) ,

(A.5)

where On and O∞ are the behavior as r →∞ and r → rn respectively. Using these we
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can rewrite the Lagrangian:

g2
0L = 2πgmn(żmżn −G(Y∞)mG(Y∞)n + iχmDtχ

n)

+ i

∫
U
d3x Tr

{
− 1

2
żmδmÂaD̂

aφmn +
1

2
D̂aεY∞D̂aφmn +

1

2
D̂aY clD̂aφmn

+
1

2
εY∞D̂

2φmn + Y clD̂2φmn +
θ̃0

2
D̂aXD̂aφmnχ

mχn
}

+ i
∑
n

∫
S2
n

d2Ωa
n Tr

{1

2
żmδmÂaφstχ

sχt

− 1

2

(
D̂aY

clφmn − εY∞D̂aφmn − Y clD̂aφmn
)
χmχn

}
+

∫
U
d3x Tr

{
− 2żmδmÂ

aD̂aY
cl − 2D̂aεY∞D̂

aY cl

− 2θ̃0D̂
aXδmÂaż

m + 2θ̃0D̂
aXD̂aY

cl − 2(D̂aX)2
}

+ 2
∑
n

∫
S2
n

d2Ωa
n Tr

{
XD̂aX + εY∞D̂aY

cl + Y clD̂aY
cl

− żmδmÂaY cl − żmδmÂaεY∞
}

− g2
0

4πr2
n

∑
n

∫
S2
n

d2Ωa
n Tr

{
Q∗n

(
−żmεm + Y cl +

i

4
φmnχ

mχn
)}

+ ig2
0

∑
j

w†jDtwj + ig2
0

∑
j

w†j

(
−ε(j)Y∞ +

i

2
φ(j)
mnχ

mχn
)
wj ,

(A.6)

where we have used:

gmn =
1

2π

∫
U
d3x Tr

{
δmÂ

aδnÂa

}
, Γn,pq =

1

2π

∫
U
d3x Tr

{
δnÂ

aDpδqÂa

}
Dtχ

n = χ̇n + Γnpq ż
pχq , Dtwj = ẇj −R(ε(j)m )żmwj ,

(A.7)
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This can be reduced to the following by canceling terms using asymptotics:

g2
0L = 2πgmn(żmżn −G(Y∞)mG(Y∞)n + iχmDtχ

n) + iw†Dtw + 4πθ̃0Gm(X∞)żm

+ i

∫
U
d3x Tr

{
Y clD̂2φmn +

1

2
θ̃0D̂

aXD̂aφmn +
1

2
D̂aY clD̂aφmn

}
χmχn

+ i
∑
n

∫
S2
n

d2Ωa
n Tr

{
1

2
Y clD̂aφmn −

1

2
D̂aY

clφmn

}
χmχn − (γm, X∞)

+
i

2

∫
U
d3x Tr

{
εY∞D̂

2φmn

}
χmχn +

∫
U
d3x Tr

{
−2D̂aεY∞D̂

aY cl
}

+

∫
S2
n

d2Ωa
n Tr

{
2εY∞D̂aY

cl
}
− i
∑
j

(iw†jεY∞wj) +
i

2

∑
j

(iw†jφmnwj)χ
mχn

+

∫
U
d3x Tr

{
2θ̃0D̂

aXD̂aY
cl
}

+
∑
n

∫
S2
n

d2Ωa
n Tr

{
2Y clD̂aY

cl
}

− g2
0

4π

∑
n

∫
S2
n

d2Ωa
n Tr

{
Qn

r̂n,a
r2
n

(
−żmεm + Y cl +

i

4
φmnχ

mχn
)}

.

(A.8)

By construction the purely classical components cancel which reduces to:

=2πgmn(żmżn −G(X∞)mG(X∞)n + iχmDtχ
n) + i

∑
j

w†jDtwj + żmqm

+ 4πθ̃0G(X∞)mż
m − (γm, X∞) +

ig2
0

2

∑
j

(iw†jφ
(j)
mnwj)χ

mχn − g2
0

∑
j

(iw†jε
(j)
Y∞wj)

− 2

∫
U
d3x Tr

{
D̂aεY∞D̂

aY cl
}

+ 2
∑
n

∫
S2
n

d2Ωa
n Tr

{
εY∞D̂aY

cl
}

+
i

2

∫
U
d3x Tr

{
εY∞D̂

2φmn

}
χmχn + i

∫
U
d3x Tr

{
Y clD̂2φmn

}
χmχn .

(A.9)

We are now reduced to solving for the last two lines. The last line will turn out being

related to identities equivalent to those in [133]. Consider the penultimate line:

−2

∫
U
d3x Tr

{
D̂aεY∞D̂

aY cl
}

+ 2
∑
n

∫
S2
n

d2Ωa
n Tr

{
εY∞D̂aY

cl
}

= −2

∫
S2∞

d2Ωa
∞ Tr {εY∞Ea} =

θ0g
2
0

2π
((γm, X∞)− gmnG(X∞)mG(Y∞)n) .

(A.10)

This makes use of the identities:

γphyse = −γ∗e −
θ0

2π
γm , 〈γe, hA〉 = −4π

g2
0

gmnG(Y∞)mG(KA)n

Ea = D̂aY
cl + D̂aεY∞ .

(A.11)
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We can now use the same computation as in [133] to reduce the penultimate term:

i

2

∫
U
d3x Tr

{
εY∞D̂

2φmn

}
= −2πi∇mG(Y∞)n . (A.12)

The final term then evaluates to:

i

∫
U
d3x Tr

{
Y clD̂2φmn

}
χmχn . (A.13)

This results in the same collective coordinate Lagrangian as in [133] with additional

terms for the defect degrees of freedom:

Lc.c. =
4π

g2
0

[
1

2
gmn (żmżn + iχmDtχn −G(Y∞)mG(Y∞)n)− i

2
χmχn∇mG(Y∞)n

]
+
θ0

2π

(
gmn (żm −G(Y∞)m)G(X∞)n − iχmχn∇mG(X∞)n

)
− 4π

g2
0

(γm, X∞) +
θ

2π
(γm, Y∞) + i

∑
j

w†j(Dt − ε(j)Y∞ +
i

2
φmnχ

mχn)wj .

(A.14)

Note that upon integrating out the wj fields we again arrive at a Wilson line but this

is on the moduli space. This is to be expected by naively plugging in the collective

coordinate expansion of A0 − Y into the Wilson line in the 4-dimensional theory. This

can be seen to be a Wilson line by looking at the term −żmεm in A0:

TrRP exp ei
∫

(A0−Y )dt → TrRP exp e−i
∫
εmżmdt+... = TrRP exp e−i

∮
εmdzm+... , (A.15)

where ... refers to the supersymmetric completion.

A.1.1 Wilson-’t Hooft Collective Coordinate Supersymmetry

It was shown in [133] that the supersymmetric variation of the first two lines of (A.20)

are invariant under the supersymmetry transformations:

δνz
m =− iνaχn(J̃a) mn ,

δνχ
m =νa(ż

n −G(Y∞)n)(Ja) mn − iνaχp(Ja) np Γmnqχq .
(A.16)

Therefore we only need to examine the supersymmetric variation of the terms containing

the fields wj . It is important to note that these wj are sections of a associated principal

G-bundle overM with representation Rj . Note that we have been suppressing an index
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for this representation which we will now include as wa. This comes with a fiber metric

fab for which (ε
(j)
m )ab is the metric connection. This induces a supersymmetric variation:

δν(waj ) = (ε(j)m )abδνz
mwbj . (A.17)

The computation of the supersymmetric variation of action is now identical to that of

hypermultiplets:

δν

[
ifabw

a†Dtw
b
]

=2ifabδν(wa†)Dtw
b − iwa†δνzm∂m(fab(εn)bc)ż

nwc

− ifabwa†(εm)bcδν ż
mwc − iδνzm∂m(fab)w

†ẇb

=2ifabδν(wa†j )Dtw
b − iwa†δνzm∂m(fab(εn)bc)ż

nwc

+ żm∂m(fab(εm)bc)δ
n
νw

a†wc − iδνzm∂m(fab)w
†ẇb

=− i(φmn)abδνz
mżnwa†wb − δνzn(2(εm)ab + ∂nfab)w

a†ẇb

=− i(φmn)abδνz
mżnwa†wb ,

(A.18)

where we used the identities:

w†aDt(δνw
b) = δνw

†aDtw
b ,

∂nfab = −(εn)ab − (εn)ba ,

(A.19)

from [133] and [78] respectively. We also have from [78] that the variation of the εY∞

term will be given by:

δν(wa†(εY∞)abw
b) = δνz

mwa†∇m(εY∞)abw
b = −(φmn)abδνz

mG(Y∞)nwa†wb . (A.20)

This uses the identity

∇mεY∞ =
1

D̂2
D̂2∇mεY∞ =

1

D̂2

(
D̂a∇mD̂aεY∞ + D̂a[δmÂa, εY∞ ]

)
= −2G(Y∞)n

1

D̂2
[δmÂ

a, δnÂa] = −φmnG(Y∞)n .

(A.21)

Additionally, the variation of the φmn-term is given by

δε

[
(φmn)abχ

mχnwa†wb
]

= δνz
p∇p(φmn)abχ

mχnwa†wb + 2(φmn)abχ
mδνχ

nwa†wb

= 2νs(φmn)ab(J(s))mp(ż
p −G(Y∞)p)χnwa†wb ,

(A.22)

which exactly cancels the other terms provided:

(φmn)ab(J(s))np = −Fpnab(J̃(s))nm , (A.23)

which is exactly the condition that the Wilson bundle EWilson(Qj) is hyperholomorphic.
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A.2 Hypermultiplet Index Calculation

In this appendix we will compute the index of the operator which determines the rank

of the hypermultiplet matter bundle over the BPS moduli space. Consider the Dirac

operator

L̃ρ = iτ̄aD̂a + imX , (A.24)

acting on a fermion in the representation ρ where mX is a real scalar.

A.2.1 Reduction to Boundary

Following [133], we will assume that ρ : g → gl(Vρ) to be a Lie algebra representation

of g. We want to compute the index of L̃ρ given by

Ind[L̃ρ] = lim
z→0+

trC2⊗Vρ⊗L2(U)

{
z

L̃†ρL̃ρ + z
− z

L̃ρL̃
†
ρ + z

}
= lim

z→0+
Bρ,z ,

Bρ,z = lim
z→0

trC2⊗Vρ⊗L2(U)

{
z

L̃†ρL̃ρ + z
− z

L̃ρL̃
†
ρ + z

}
.

(A.25)

Writing

i /̂Dρ =

 0 L̃ρ

L̃†ρ 0

 , (A.26)

where again we use the convention

Γ a =

 0 τa

τa 0

 , τa = (σ0σi,−i12) , (A.27)

the index can be expressed as

Ind[L̃ρ] = lim
z→0+

trC4⊗Vρ⊗L2(U)

{
z

− /̂Dρ + z
Γ

}
,

Γ =
∏

Γ i =

 −1 0

0 1

 .

(A.28)
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If we now consider the Green’s function

Gλ =
(
i /̂Dρ + λ

)−1
,

Giλ =
(
i /̂Dρ − iλ

)(
− /̂D2

+ λ2
)−1

,

=

 −iλ L̃†ρ

L̃ρ −iλ



(
L̃†ρL̃ρ + λ2

)−1
0

0
(
LρL

†
ρ + λ2

)−1

 .

(A.29)

Using this operator, one can express

Bρ,z = −i√ztrC4⊗Vρ⊗L2(U)

{
ΓGρ,i

√
z

}
. (A.30)

However, we can also compute Gρ,z by using the fact that it is the inverse of a differential

operator. Specifically Gρ,z solves

iΓµ
(

∂

∂xµ
+ ρ(Aµ)(x)

)
Gρ,λ(x, y) + iΓ 4ρ(X)(x)Gρ,λ(x, y)

+(Γ 4mX + λ)Gρ,λ(x, y) = 0 ,

−i ∂
∂y
Gρ,λ(x, y)Γµ + iGρ,λ(x, y)

(
Γ iρ(Ai)(y) + Γ 4ρ(X)(y)

)
+Gρ,λ(x, y)Γ 4mX + λGρ,λ(x, y) = 0 .

(A.31)

where we used the fact thatG†ρ,λ∗(x, y) = Gρ,λ
T

(y, x) and thatG† is the Green’s function

for L̃†ρ + λ∗. We can now combine these equations as in [133]:

2λtrC4⊗Vρ⊗L2(U)

{
ΓGρ,λ

}
=− i

(
∂

∂xµ
+

∂

∂yµ

)
trC4⊗Vρ

{
ΓΓµGρ,λ

}
− itrC4⊗Vρ

{
ΓΓµ(ρ(Âµ)(x)− ρ(Âµ)(y))Gρ,λ(x, y)

}
(A.32)

Following [31] we can write

Iρ(z) = trL2(U)Bz,ρ =
i

2

∫
U
d3x∂iJ

i
ρ,z(x, x) =

i

2

∫
U
d3xr̂ · ~Jρ,z(x, x)

J iρ,z(x, y) = trC4⊗Vρ⊗L2(U)

{
ΓΓ iGi

√
z(x, y)

} (A.33)

This implies:

Bz,ρ =
i

2
tr


 0 −~σ · r̂

~σ · r̂ 0

 −i√z L̃†ρ

L̃ρ −i√z

 (Rρ,z +∆Rρ)
−1 0

0 R−1
ρ,z


(A.34)
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where the trace is over C4 ⊗ Vρ ⊗ L2(U) and we have defined

Rz,ρ = L̃ρL̃
†
ρ = −D2 − ρ(X)2 +m2

X + 2imXρ(X) + z

= −∂2 − ρ(X∞)2 +m2
X + 2imXρ(X∞) +O(r−1) ,

∆Rρ = L̃†ρL̃ρ − L̃ρL̃†ρ = −2i~σ · ρ( ~B) ,

L̃† − L̃ρ = 2ρ(X∞)− 2imX +O(r−1) ,

(A.35)

where ~B is the magnetic field and limr→∞ = X∞. We will begin by computing the

index at r →∞. In this case

∆Rρ = ~σ · r̂ iρ(γm)

r2
+O(r−(2+δ)) . (A.36)

Note that at r → ∞, ∆Rρ can be used as an perturbative expansion coefficient so we

can simplify

Bρ,z =
i

2
tr
{

(r̂ · ~σ)(L̃†ρ − L̃ρ)R−1
ρ,z − (r̂ · σ)LρR

−1
ρ,z∆RρR

−1
ρ,z

}
+O(r−(2+δ)) . (A.37)

It is clear that the first term will vanish in summing over the C2 representation since

the term is proportional to ~σ · r̂ which is of course traceless. We now have

Iρ(z) = − i
2

∑
µ∈∆ρ

nρ(µ)

∫
S2∞

d2x

∫
d3k

(2π)3

trC2⊗Vρ

{
(r̂ · ~σ)

(−X + imX)(i~σ · r̂ρ(γm)

r2(k2 − ρ(X∞)2 +m2
X + 2imXρ(X∞) + z)2

}
=
∑
µ∈∆ρ

nρ(µ)

∫
S2∞

d2Ω

∫
d3k

(2π)3

(〈µ,X∞〉+mX)〈µ, γm〉
(k2 + 〈µ,X∞〉2 +m2

X + 2mX〈µ,X∞〉+ z)2

=
1

2

∑
µ∈∆ρ

nρ(µ)
(〈µ,X∞〉+mX)〈µ, γm〉√

(〈µ,X∞〉+mX)2 + z
,

(A.38)

which agrees with [131] in the limit of mX → 0. Here we employed an orthonormal

basis of Vρ associated with a weight space decomposition: Vρ = ⊕µVρ[µ] where µ ∈

∆ρ ⊂ ΛVG ⊂ t∗ are the weights of the representation and nρ(µ) = dim Vρ[µ]. In this

decomposition we have ∀v ∈ Vρ[u], that iρ(X∞)v = 〈µ,X∞〉v where 〈 , 〉 denotes

the canonical pairing t∗ ⊗ t → R. Note that our representation ρ is a quaternionic

representation since it acts on the hA fields. This means it splits: ρ = π ⊕ π∨ which

has a quaternionic structure coming from SU(2)R symmetry.
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Contribution from Defects

Now we can calculate the contribution from the defects and [56] in the case of no defects.

As in [131] we can do this by using a spectral representation. This is nearly identical

to the case as in [131] which includes a constant term for the scalar field X except that

we will impose that this has a constant weight mX in each weight space. This has the

effect of modifying the solution

Ψ̃
(iµ)
j,m,s(E;x)→ Ψ̃

(iµ)
j,m,s(

√
E2 +m2

X ;x) , sgn(E)→ phase(E − im) . (A.39)

It is important to note that the normalization of the Dirac fermions in [131] will be

unchanged. Because of this, the only difference is in the integrals:

I(1)
ν (a) =

∫ ∞
−∞

dE
r|E|

E − ia/rJν(
√
E2 +m2

Xr)
2

= 2ia

∫ ∞
mr

ξdξ

(ξ2 −m2
Xr

2 + a2)
Jν(ξ)2 ,

I(2)
ν (a) =

∫ ∞
−∞

r(E ± imX)|E|dE
|E − im|(E + i

√
z + d(x))

Jν(
√
E2 +m2

Xr)Jν+1(
√
E2 +m2

X)

= 2

∫ ∞
mr

dξ
ξ2 −mr2

ξ2 −m2
Xr

2 + a2
Jν(ξ)Jν+1(ξ)∓ 2mra

∫ ∞
mr

Jν(ξ)Jν+1(ξ)dξ

(ξ2 −m2
Xr

2 + a2)
.

(A.40)

It is clear that for a 6= 0 that all of these integrands are bounded. We can evaluate

these integrals by taking the limit inside the integral of r → 0 and find that these all

have bounded integrals. Then we have that a → 0 in this limit so I(1)
ν → 0. And

similarly the second term in I(2)
ν vanishes. However we find that the first term in I(2)

ν

is non-vanishing and in fact approaches the value in [131] and hence we end up with

the same result for the singular monopole contribution to the zero modes.

Therefore we have that the number of zero modes for the hypermultiplet fermions

is given by

Ind[L̃ρ] =
1

2

∑
µ∈∆ρ

nρ(µ)

{
sgn(〈µ,X∞〉+mX)〈µ, γm〉+

Nd∑
n=1

|〈µ, Pn〉|
}

. (A.41)

Thus, the rank of the matter bundle is given by

rnkC[Ematter] =
1

2

∑
µ∈∆ρ

nρ(µ)

{
sgn(〈µ,X∞〉+mX)〈µ, γm〉+

Nd∑
n=1

|〈µ, Pn〉|
}

. (A.42)
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A.3 Hypermultiplet Collective Coordinates

Coupling to hypermultiplets in the quaternionic representation ρ give rise to the addi-

tional terms in the vector multiplet bosonic fields

A0 =− żmεm −
i

4
φmnχ

mχn + Y cl − 2i

D̂2
T rλaρ(T r)λbψ

aψb ,

Y =εY∞ +
i

4
φmnχ

mχn + Y cl +
2i

D̂2
T rλaρ(T r)λbψ

aψb ,

(A.43)

where {λa} are the Dirac spinors which span the kernel of L̃ρ and T r span the lie algebra

g. Since these terms mirror the φmn terms, we only need to worry abouta subset of the

terms from (A.4). By asymptotic analysis, the only nonzero terms are of the form{
− 2i

g2
0

∫
U
d3x λaρ(εY∞)λb

}
ψaψb , (A.44)

which is the analogous term to the covariant derivative of the triholomorphic killing

vector field: ∇mG(Y∞)n. More concretely, we are looking at the terms

L =
2

g2

∫
d3x

(
iλ /̂Dλ− iλY λ− imXλγ5λ−mY λλ

)
. (A.45)

This gives the collective coordinate Lagrangian

Lferm = hmn (iψmDtψn +mψmψn) + Lint . (A.46)

We now need to consider the interaction terms (that is terms with Y and A0). Specifi-

cally we get term

Tab =
1

2π

∫
U
d3x λaρ(εY∞)λb , (A.47)

which upon comparing with the calculation in Appendix A is the term analogous to

the covariant spin derivative of G(Y∞).

A.4 1-Loop Mass Contribution from HM

Here we calculate the 1-loop mass contribution to the BPS states from the hypermul-

tiplet fields. The key assumption we make is that we restrict to the “vacuum” of the

solitonic sector (the vacuum of the quantum excitation Fock-space) so that there are no

perturbative excitations in the incoming and outgoing states. Because of this, the 1-loop
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contribution is simply the sum of the zero-point energies whose quadratically divergent

parts we expect to vanish due to supersymmetry. We can calculate this following [104].

We will begin by considering the hypermultiplet Lagrangian

g2
0LHM =Dµh

†ADµhA − i(λIσµDµλI + λIσ
µDµλI)

+ 2i(h†AψAλ1 + λ1ψ
A
hA − h†AψAλ2 + λ2ψ

AhA)

− 2i(λ2φλ1 − λ2φ
∗λ1)− 2mλ2λ1 − 2m∗λ1λ2

+ imh†Aφ∗hA + im∗h†AφhA + |m|2h†AhA

− 1

2
h†A{φ, φ∗}hA +

1

4
(h†Aσr BA T rhB)2 .

(A.48)

Since we are expanding around the classical solution: hA = λI = ψA = Y = A0 =

mY = 0 we can reduce this using Dirac spinors to

g2
0LHM =Dµδh

†ADµδhA − δh†AX2δhA + 2imXδh
†AXδhA +m2

Xδh
†AδhA

− 2(iδλ /Dδλ+ δλγ5Xδλ− imXδλγ5δλ) ,

(A.49)

where we used δhA and δλ to denote the quantum fluctuations about the classical

solution. Using an eigen-function decomposition of the equations of motion

(−D2
i −X2 + 2imXX +m2

X)δhA = ω2
b δhA ,

(iγiDi + γ5X − imXγ5)λ = ωfγ0λ .

(A.50)

The fermionic equation of motion squares to

(
−D2

i −X2 +m2
X + 2imXX − iγ5γ

iBi + iσk ⊗ 12Bk

)
λ = 0 . (A.51)

This can further be decomposed as

(−D2
i −X2 +m2

X + 2imXX)η = ω2
ηη ,

(−D2
i −X2 +m2

X + 2imXX + 2σkσ
0Bk)χ = ω2

χχ .

(A.52)

This means when we add the vacuum fluctuation energies

M1−loop = ~
∑

ωb −
~
2

∑
ωη −

~
2

∑
ωχ , (A.53)

this reduces to

M1−loop =
~
2

∑
(ωχ − ωη) . (A.54)
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This simplification occurs because the δhA are superpartners to the χ. Thus the spec-

trum of frequencies for ωb, ωχ match exactly. Note that the above quantity is non-zero

because of the difference in the density of states between χ and η. This this is exem-

plified by the fact that χ has zero modes while η does not. Following [104], we can use

the index computation

I(z) = Tr

{
z

D†D + z
− z

DD† + z

}
=

1

2

∑
µ∈∆ρ

nρ(µ)

{
(〈µ,X∞〉+mX)〈µ, γm〉√

(〈µ,X∞〉+mX)2 + z
+

Nd∑
n=1

|〈µ, Pn〉|
}

,

(A.55)

(where D†D = −D2
i −X2 +m2

X + 2imXX + 4σkσ
0Bk and DD† = −D2

i −X2 +m2
X +

2imXX) to find this difference in the density of states

I(z)− I(0) =

∫ ∞
0

dω2 z

ω2 + z

(
dn[χ]

dω2
− dn[η]

dω2

)
. (A.56)

From these equations (drawing inspiration from [104]) we can see that the difference in

the density of states is given by

dn[χ]

dω2
− dn[η]

dω2
=

−
∑
µ∈∆ρ

nρ(µ)(〈µ,X∞〉+mX)〈µ, γm〉
2πω2(ω2 − (〈µ,X∞〉+mX)2)1/2

θ
(
ω2 − (〈µ,X∞〉+mX)2

)
.

(A.57)

Which we can use to evaluate the 1-loop contribution to the mass:

M1−loop =
~
2

∫
dω2 ω

(
dn[χ]

dω2
− dn[η]

dω2

)
= − ~

2π

∑
µ∈∆ρ

nρ(µ)(〈µ,X∞〉+mX)〈µ, γm〉
∫ ∞

0

dk√
k2 + (〈µ,X∞〉+mX)2

,
(A.58)

which is logarithmically divergent.

We can regularize this by using a cutoff in the integral:

M1−loop = − ~
2π

∑
µ∈∆ρ

nρ(µ)(〈µ,X∞〉+mX)〈µ, γm〉
∫ 1/ε

0

dk√
k2 + (〈µ,X∞〉+mX)2

= − ~
2π

∑
µ∈∆ρ

nρ(µ)(〈µ,X∞〉+mX)〈µ, γm〉log

(
1 +

√
1 + (〈µ,X∞〉+mX)2ε2

(〈µ,X∞〉+mX)ε

)

= − ~
2π

∑
µ∈∆ρ

nρ(µ)(〈µ,X∞〉+mX)〈µ, γm〉 (−log(ε)− log((〈µ,X∞〉+mX)/2))

+O(ε) .

(A.59)
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In renormalizing, we expect to keep the non-divergent term

M1−loop =
~

4π

∑
µ∈∆ρ

nρ(µ)(〈µ,X∞〉+mX)〈µ, γm〉log

(
(〈µ,X∞〉+mX)2

2|Λ|2
)
, (A.60)

where Λ is the dynamically generated scale.

A.5 Hypermultiplet Collective Coordinate Supersymmetry

Here we compute the supersymmetry transformation of the collective coordinate La-

grangian following [78]. Since the collective coordinate theory for the supervector field

has been shown to be supersymmetric [133, 78], we will only show that the hypermul-

tiplet terms are supersymmetric:

δzm = −iεsJ̃(s)m
n χn ,

δχm = J(s)m
n (ż −G(Y∞))nεs − iεsχkχnJ(s)`

k Γm`n ,

δψa = −Aambδzmψb = iεsA
a
nbχ

mJ̃(s)n
m ψb .

(A.61)

Since the hypermultiplet bosonic field is vanishing, the supersymmetry transformations

for the vectormultiplet fields will be the same as those from [133]. We simply need

to derive the collective coordinate Lagrangian for the hypermultiplet fermionic fields.

Since hA = 0, the supersymmetric variation of λ is given by

δελ = 0 . (A.62)

Plugging in the collective coordinate expanded field

λ = ψa(t)λa(x, z(t)) , (A.63)

we have the supersymmetry transformation

δελ = λaδεψ
a + ∂mλaδεz

mψa = 0 . (A.64)

After taking the L2(U) inner product with λb we get

δεψ
a = −Aambδεzmψb . (A.65)
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We can now calculate the supersymmetric variation of the Lagrangian. We will start

with the variation of the kinetic term:

δε(habψ
aDtψb) = 2habδεψ

aDtψb + δεz
m∂m(habA

b
nc)ż

nψaψc + habψ
aAbncδεż

nψc

+ δεz
m∂mhabψ

aψ̇b

= 2habδεψ
aDtψb + δεz

m∂m(habA
b
nc)ż

nψaψc − żm∂m(habA
b
nc)δεz

nψaψb

+ δεz
m∂mhabψ

aψ̇b

= Fnmabδεz
nżmψaψb − δεzn(2Anabψ

aψ̇b − ∂nhabψaψ̇b)

= Fnmabδεz
nżmψaψb ,

(A.66)

where we used the identities

ψaDt(δεψb) = δεψ
aDtψb , ∂nhab = Anab −Anba , (A.67)

from [133] and [78] respectively. We also have from [78] that the variation of the Tab

term will be given by

δε(Tabψ
aψb) = δεz

m∇mTabψaψb = Fmnabδεz
mG(Y∞)nψaψb , (A.68)

where here ∇m uses the connection Amab. Finally we need to show that the variation

of the mass terms is zero:

δε(habψ
aψb) = 2habψ

aδεψ
b + δεz

m∂mhabψ
aψb = δεz

mψaψb(−2Amab + ∂mhab)

= 0 .

(A.69)

Therefore in order for our theory to be supersymmetric, we need to add a term which

contains Fmnab. This term has to be Fmnabχ
mχnψaψb following [78]. Computing the

supersymmetric variation we find

δε(Fmnabχ
mχnψaψb) = δεz

p∇pFmnabχmχnψaψb + 2Fmnabχ
mδεχ

nψaψb +O(g5/2)

= 2εsFmnabJ(s)m
p (ż −G(Y∞))pχnψaψb .

(A.70)

Where we used the Bianchi identity in going from the first to the second line and again

∇m is with respect to Amab not Γmpq . We now have the condition on Fmnab:

FmnabJ(s)n
p = −FpnabJ̃(s)n

m , (A.71)

for s = 1, 2, 3. This equation implies that Amab is a hyperholomorphic connection.
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A.6 Conventions for Hypermultiplets

In this paper we use the following conventions from [133, 171] where the signature of

the metric is given by (−,+,+,+) and Weyl fermions obey the relations

ψα = εαβψβ , ψα = εαβψ
β , ε12 = ε21 = 1 ,

ψχ = ψαχα = χαψα = χψ ,

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = χ̄α̇ψ̄

α̇ = χ̄ψ̄ ,

(A.72)

and

σµν =
1

2
(σµσ̄ν − σν σ̄µ) ,

σ̄µν =
1

2
(σ̄µσν − σ̄νσµ) ,

εµνσρσ
σρ = σµν ,

εµνσρσ̄
σρ = −σ̄µν ,

(A.73)

as in [171]. We also have the identities

σµαα̇ = εαβεα̇β̇σµ
β̇β

,

θαθβ =
1

2
εαβθ

2 ,

θ̄α̇θ̇β̇ = −1

2
εα̇β̇ θ̄

2 ,

(A.74)

which imply

θσµθ̄θσν θ̄ = −1

2
θ2θ̄2ηµν ,

(θψ)(θλ) = −1

2
θ2ψλ ,

(θ̄ψ̄)(θ̄λ̄) = −1

2
θ̄2ψ̄λ̄ .

(A.75)

We will take the notation that complex conjugation does not change the order of the

fermions but rather acts as

(ψα)∗ = −ψ̄α̇ , (ψα)∗ = ψ̄α̇ , (ψ̄α̇)∗ = −ψα , (ψ̄α̇)∗ = ψα . (A.76)

This is chosen to preserve the inner product of two fermions and is used so that the

complex conjugation does not affect the representation of the gauge group. Similarly

when we have an SU(2) doublet of fermions will transform as

(ψA)∗ = ψ̄A , (ψA)∗ = −ψ̄A , (ψ̄A)∗ = ψA , (ψ̄A)∗ = −ψA . (A.77)
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These are chosen to be an involution, and we have associated the complex conjugate

space of the spinor representation with the dual representation. Whenever spinor indices

are suppressed we adopt canonical notation where contractions between spinor space

and dual spinor space have the raised index first whereas contractions between complex

conjugated spinor space and its dual space have the lowered index first:

ψχ = ψαχ , ψ̄χ̄ = ψ̄α̇χ̄
α̇ . (A.78)

This notation also generalizes to the hypermultiplet scalar bosons as

(hA)† = h†A , (hA)† = −h†A , (h†A)† = hA , (h†A)† = −hA . (A.79)

This means that we will follow the notation

|hA|2 = (hA)†(hA) = −h†AhA . (A.80)

Note that since the hypermultiplet bosons form a complex doublet under SU(2)R, the

index of hA can be raised and lowered with the εAB tensor.

A.7 SU(2)R Invariance of Hypermultiplets

Consider a single hypermultiplet in a representation ρ = π⊕π∗ coupled to a gauge field

with gauge group G. Since we are dealing with a single hypermultiplet with a single

representation, we will suppress ρ. The Lagrangian for this theory is given by:

L =− iτ

4π

∫
d2θWαW

α + c.c.+
Im τ

4π

∫
d4θ Φ†e2iV Φ

+
Im τ

4π

{∫
d4θ

(
Q†e2iVQ+ Q̃e−2iV Q̃†

)
+

∫
d2θ(iQ̃ΦQ+mQ̃Q) + c.c.

}
.

(A.81)

Note that Q and Q̃ are in conjugate representations of the gauge group (π vs. π∗) so

that Q̃ΦQ and Q̃Q are gauge invariant. If we denote the components of V = (φ, ψA, Aµ),

Φ = (φ, ψ2, F ), Q = (h1, λ1, H1), and Q̃ = (−h†2, λ2, H
†2). Here hA and ψA are SU(2)R
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doublets. As in the notation of [171], the superfields can be written:

V = −θσµθ̄vµ − θ2θ̄ψ̄1 + θ̄2θψ1 +
1

2
[2D − i∂µAµ] θ2θ̄2 ,

Wα = ψ1α + [δβαD − i(σµσ̄ν)βα∂[µAν]]θβ − iθ2σµαα̇∂µψ̄
1α̇ ,

Φ = φ+ iθσµθ̄∂µφ+
1

4
θ2θ̄2�φ+ 2θψ2 − iθ2∂µψ2σ

µθ̄ + θ2F ,

Q = h1 + iθσµθ̄∂µh1 +
1

4
θ2θ̄2�h1 + 2θλ1 − iθ2∂µλ1σ

µθ̄ + θ2H1 ,

Q̃ = −h†2 + iθσµθ̄∂µh
†2 − 1

4
θ2θ̄2�h†2 + 2θλ2 − iθ2∂µλ2σ

µθ̄ − θ2H†2 .

(A.82)

The different terms of the Lagrangian can be written in terms of component fields as

WαW
α
∣∣∣
θ2

= 2iψ1σ
µDµψ̄

1 +D2 − 1

2
FµνFµν +

i

4
εµνσρF

µνF σρ ,

Φ†e2iV Φ
∣∣∣
θ2θ̄2

= −Dµφ
†Dµφ+ |F |2 + iφ∗[D,φ]

+ i(ψ2σ
µDµψ̄

2 + ψ̄2σ̄µDµψ2)− i(εABψA[ψB, φ
∗] + εABψ̄

A[ψB, φ]) ,

Q†e2iVQ
∣∣∣
θ2θ̄2

= Dµh
†1Dµh1 − i(λ1σ

µDµλ̄1 + λ̄1σ̄
µDµλ1)− ih1†Dh1

+ 2i(h†1ψ1λ1 + λ̄1ψ̄
1h1)−H†1H1 ,

Q̃e−2iV Q̃†
∣∣∣
θ2θ̄2

= Dµh
†2Dµh2 − i(λ2σ

µDµλ̄2 + λ̄2σ̄
µDµλ2) + ih†2Dh2

+ 2i(λ2ψ1h2 + h†2ψ̄1λ̄2)−H†2H2 ,

iQ̃ΦQ
∣∣∣
θ2

= −ih†2φH1 − iH†2φh1 − 2i(λ2φλ1 + λ2ψ2h1 − h†2ψ2λ1)− ih†2Fh1

Q̃Q
∣∣∣
θ2

= −h†2H1 −H†2h1 − 2λ2λ1 ,

(A.83)

where the covariant derivatives are given by:

Dµφ
r = ∂µφ

r + f rstAsµφ
t , Dµψ

r
A = ∂µψ

r
A + f rstAsµψ

t
A ,

DµhA = ∂µhA + T aAaµhA , DµλI = ∂µ + T aAaµλI ,

(A.84)

Here we used A,B as indices for the fundamental representation of SU(2)R and I, J as

uncharged indices. We also assume that the representation of our gauge group is real

(and hence elements of the lie algebra g are antisymmetric):

[T r, T s] = f rstT t , Tr[T rT s] = δrs , (T r)T = −T r . (A.85)
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Putting everything together we can write the Lagrangian:

L =
1

g2
0

Tr

 −1
2FµνF

µν −Dµφ
∗Dµφ+ i(ψAσ

µDµψ̄
A + ψ̄Aσ̄µDµψA)

+D2 + |F |2 − i(εABψA[ψB, φ
∗] + εABψ̄

A[ψ̄B, φ]) + iφ∗[D,φ]


+

θ

32π2
Tr {εµνσρFµνF σρ}

+
1

g2
0



Dµh
†ADµhA − i(λIσµDµλ̄I + λ̄I σ̄

µDµλI)−H†AHA − ih†Aσm B
A Mmh

B

+2i(h†aψAλ1 + λ̄1ψ̄
AhA − h†Aψ̄Aλ̄2 + λ2ψ

AhA)

−i(H†2φh1 + h†2φH1 + h†1φ∗H2 +H†1φ∗h2)− 2i(λ2φλ1 − λ̄2φ
∗λ̄1)

−im(h†2H1 +H†2h1 + 2λ2λ1) + im∗(H†1h2 + h†1H2 + 2λ̄1λ̄2)


(A.86)

where the F - and D-terms have been rewritten as Mm = (f, g,D) where F = f + ig.

This demonstrates the hyperkähler property of this theory. The auxiliary F - and D-

terms can be eliminated from their equations of motion:

2D + i[φ, φ∗]− iT r(h†Aσ3 B
A T rhB) = 0 ,

2g + iT r(h†Aσ2 B
A T rhB) = 0 ,

2f + iT r(h†Aσ1 B
A T rhB) = 0 ,

H1 + iφ∗h2 − im∗h2 = 0 ,

H2 + iφh1 + imh1 = 0 .

(A.87)

In order to emphasize the holomorphy of hypermultiplet fields we can write the equa-

tions for f, g as:

f + ig = − iT
r

2
(h†Aσ+ B

A T rhB) , σ± = σ1 ± iσ2 . (A.88)
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This is the complex moment map. Now, by eliminate D, f, g, and HI , and combining

h1 and h2 into an SU(2)R doublet hA we can express the Lagrangian

L =
1

g2
0

Tr

 −
1
2FµνF

µν + i(ψAσ
µDµψ̄

A + ψ̄Aσ̄µDµψA)−DµφD
µφ∗

−i(εABψA[ψB, φ
∗] + εABψ̄

A[ψ̄B, φ]) + 1
4 [φ, φ∗]2


+

θ

32π2
Tr {εµνσρFµνF σρ}

+
1

g2
0



Dµh
†ADµhA − i(λIσµDµλ̄I + λ̄I σ̄

µDµλI)

+2i(h†AψAλ1 + λ̄1ψ̄
AhA − h†Aψ̄Aλ̄2 + λ2ψ

AhA)

−2i(λ2φλ1 − λ̄2φ
∗λ̄1)− 2imλ2λ1 + 2im∗λ̄1λ̄2

−mh†Aφ∗hA +m∗h†AφhA + |m|2h†AhA
−1

2h
†A{φ, φ∗}hA + 1

4(h†Aσn BA T rhB)2



(A.89)

where n = 1, 2, 3. Note that this Lagrangian is manifestly SU(2)R invariant.
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Appendix B

Kronheimer’s Correspondence

In this appendix we will give a more in depth review and proof of Kronheimer’s

correspondence. This correspondence gives a one-to-one mapping between singular

monopole configurations on R3 with U(1)K invariant instantons on (multi-)Taub-NUT.

Therefore, for completeness, we will first give a brief review of Taub-NUT spaces and

their general properties.

B.1 Review of Taub-NUT Spaces

Taub-NUT is an asymptotically, locally flat (ALF) space. It has the natural structure

of a circle fibration over R3, π : TN
S1

→ R3 whose fiber degenerates at a single point

(the NUT center), which we will take to be at the origin in R3. For any finite, positive

value of r, the restriction of the S1 fibration of Taub-NUT to a 2-sphere of radius R, is

the Hopf fibration of charge ` = 1, TN |R ∼= S3 S1

→ S2
R.

This space has a metric which can be expressed in Gibbons-Hawking form as

ds2 = V (~x) d~x · d~x+ V −1(~x) Θ2 , (B.1)

where

V (~x) = 1 +
1

2r
, Θ = dξ + ω , (B.2)

where ξ is the S1 fiber coordinate with periodicity 2π and |~x| = r is the radius in the

base R3 space. Note that V (~x) is sometimes called the harmonic function. Further,

ω ∈ Ω1(TN) is a 1-form on Taub-NUT and solves the equation

dω = ∗3dV , (B.3)

This Appendix is based on material from my publication [24].
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where ∗3 is the Hodge-star on the base R3 lifted to TN . Note that while ω and dξ are

not globally well defined 1-forms, Θ is globally well defined. Additionally, Taub-NUT

is homeomorphic to R4 under the coordinate transformation

x1 + ix2 =
√
r cos

(
θ

2

)
ei(φ+ξ) , x3 + ix4 =

√
r sin

(
θ

2

)
ei(φ−ξ) . (B.4)

This space comes with a natural U(1) action (which we will refer to as the U(1)K

action) given by translation of the ξ coordinate. This means ∀k ∈ U(1)K , there exists a

fk ∈ diff(TN) such that in local coordinates fk : (~xR3 , ξ)→ (~xR3 , ξ+ k̂) for k̂ ∈ R/2πZ.

Note that the metric is invariant under this action

f∗k (ds2) = ds2 . (B.5)

Taub-NUT can also be extended to have multiple NUT centers, called multi-Taub-

NUT (or TNk for k-NUT centers). This space is also naturally a circle fibration over

R3: TNk
S1

→ R3 where the S1 fiber degenerates at k-points {~xi}ki=1 in the base R3. This

space has a non-trivial topology given by H2
cpt(TNk,Z) = Γ [Ak−1] where Γ [Ak−1] is

the root lattice of the Lie group Ak−1. These non-trivial 2-cycles are homologous to

the preimage of the lines running between any two NUT centers under the projection

π : TNk → R3. This space has a metric given by

ds2 = V (~x) d~x · d~x+ V −1(~x) Θ2 , (B.6)

where1

V (~x) = 1 +
k∑
i=1

1

2|~x− ~xi|
, Θ = dξ + ω , (B.7)

and again dω = ∗3dV . Again Θ is a globally defined 1-form and there is a natural

U(1)K action given by translation along the S1 fiber coordinate ξ.

B.2 Kronheimer’s Correspondence for a Single Defect

Now we will derive Kronheimer’s correspondence for the case of a single ’t Hooft defect.

Our setting is U(1)K-invariant instantons on single centered Taub-NUT space, TN .

1More generally we can have V (r) = 1 +
∑n
i=1

`i
2|~x−~xi| where `i ∈ Z. We can think of this as taking

the case above and taking the limit ~xi → ~xj for some set of combination of i, j. Having `i 6= 1 leads to
orbifold-type singularities in the metric at the NUT centers.
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Let us introduce a gauge field on Taub-NUT by introducing a principal G bundle,

σ : P → TN with a connection Â, for G a compact, simple Lie group. In order to

study U(1)K-invariant instantons, we must first define a lift of the U(1)K action to P.

Due to the degeneration of the S1 fiber, this must be defined on local patches and then

extended globally by demanding U(1)K equivariant transition functions for P.

In each simply connected patch Uα ⊂ R3\{0} not containing the origin which lifts

to a patch Uα = π−1(Uα) not containing the NUT center. In this patch, the lift of the

U(1)K action is defined by a pair of choices (f, ρ) : U(1)K → Aut(TN) × Aut(g) such

that in local coordinates {xµ},

k · (xµ, g) 7→
(
fk(x

µ),
(
ρk(x

µ)
)−1

gρk(x
µ)
)

(B.8)

and

σ(fk(x
µ), ρ−1

k gρk) = fk(x
µ) ∈ Uα , (B.9)

where π : TN → R3. This means that a U(1)K-invariant connection Â in a patch Uα
must satisfy f∗k Â

∼= Â up to a smooth gauge transformation

f∗k Â = ρ−1
k Âρk + iρ∗kθ , (B.10)

where θ is the Maurer-Cartan form [61, 84].

Now consider a self-dual, U(1)K-invariant connection above the patch Uα = π−1(Uα),

for Uα ⊂ R3\{0} simply connected. Without loss of generality, this can be written in

the form [108]

Â = π∗A− ψ(x)(dξ + ω) , (B.11)

where A is a g valued 1-form on the base R3. We will refer to the form (B.11) of the

connection as the U(1)K-invariant gauge.

Dropping the π∗ notation, the curvature can be written as

F̂ = D̂Â = DA− ψdω −Dψ ∧ (dξ + ω) ,

= (F − ψdω)−Dψ ∧ (dξ + ω) ,

(B.12)

where D̂ and D are the gauge-covariant derivatives with respect to the connection Â

and A respectively.
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Using the orientation form2 Θ∧dx1∧dx2∧dx3, we can compute the dual curvature

∗F̂ = − ∗3 F ∧
(
dξ + ω

V

)
− V ∗3 Dψ + ψ ∗3 dω ∧

(
dξ + ω

V

)
. (B.13)

Self-duality F̂ = ∗F̂ then reduces to the simple equation

∗3(F − ψdω) = V Dψ , (B.14)

which can be written

∗3F = D(V ψ) , (B.15)

which is equivalent to the Bogomolny equation under the identification X = V ψ.

Therefore a U(1)K-invariant connection on the patch Uα in Taub-NUT is self-dual if

and only if, the associated three dimensional connection and Higgs field Â 7→ (A,X =

V ψ) satisfies the Bogomolny equation on Uα ⊂ R3.

Now that we have shown that there is a local correspondence between U(1)K-

invariant instantons on Taub-NUT and monopoles on R3, we need to show that these

solutions can be smoothly extended over all patches Uα = π−1(Uα) for Uα ⊂ R3\{0}.

Recall that in order to have a well defined principal G-bundle over a generic manifold

M , on any two patches Uα,Uβ with non-trivial intersection, the gauge fields must be

related by some gauge transformation gαβ. This is the data of the bundle and encodes

its topology.

Let us define Uα,Uβ = π−1(Uα), π−1(Uβ) for Uα, Uβ ⊂ R3\{0}. By comparing the

definition of U(1)K-invariance in each patch with the gluing condition, the ρα satisfy

ρα(~x, k)gαβ(k · ~x) = gαβ(~x)ρβ(~x, k) , (B.16)

or rather

gαβ(k · ~x) = ρ−1
α (~x, k)gαβ(~x)ρβ(~x, k) , (B.17)

and hence the transition functions are U(1)K-equivariant with respect to the lifted

U(1)K action.

Now we want to extend the action over the NUT center where the S1 fiber degener-

ates. Consider a generic open set Uα = π−1(Uα) where 0 /∈ Uα ⊂ R3. As before in this

2Note that this orientation form is the natural choice as dξ is not globally well defined.
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patch we can write the connection Âα in a U(1)K-invariant gauge (where ρα(~x; k) = 1G).

Now take U0 = π−1(B3
ε ) where B3

ε is the three dimensional ε-ball around the origin.

Since the S1 fiber degenerates at the origin, the U(1)K action has a fixed point in U0

and hence Â0 cannot be written in the U(1)K-invariant gauge (B.11) in that patch .

However, we can determine the form of Â0 in terms of a gauge transformation of

a connection Âα in the U(1)K-invariant gauge. Consider a Uα as defined before such

that Uα ∩U0 6= ∅. The transition function g0α between the U(1)K-invariant connection

Âα on Uα and Â0 on U0 has the limiting form lim~x→0 g(~x, ξ) → e−iP ξ for some choice

of P ∈ Λcochar [108], and hence lim~x→0 g
−1dg = −iPdξ.

The reason we have this limiting form of the gauge transformation is as follows. The

component of any smooth gauge field along the fiber direction must go to zero at the

NUT center. However, the U(1)K-invariant gauge is generically non-zero. Therefore,

we must have that the transition between these two gauges must have the limit of a

constant function

lim
~x→0

g−1dg = −iPdξ , (B.18)

which cancels the non-zero value of ψ(0). Further since we must have a well defined

gauge transformation, P is restricted to lie in Λcochar =
{
P ∈ t | Exp[2πP ] = 1G

}
and

hence the condition that Â be U(1)K-invariant and smooth requires that lim~x→0 ψα(~x) ∈

Λcochar. This results in the limiting form described above. Note that this gauge trans-

formation g0α(~x, ξ) is smooth for neighborhoods arbitrarily close to the NUT center,

but is not globally smooth because of the degeneration of the ξ-fiber.

Using the limiting form of the gauge transformation above, the gauge field on U0

is of the form Â0 = g−1
0α Âαg0α + ig−1

0α dg0α. It is clear from this form that we should

identify ρ0(~x; k) with g−1
0α (~x, k) since Âα is U(1)K-invariant and all of the ξ-dependence

of Â0 is in the g0α gauge transformation. Therefore, fixing the lift of the U(1)K action

at the NUT center fixes the action globally in the case of a single singular monopole

by gluing across the patches using (B.17) which is trivial due to the trivial topology of

Taub-NUT (H2(TN ;Z) ∼= 0). Hence, gauge inequivalent U(1)K-invariant connections

are defined by a choice of P ∈ Λcochar.
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Using this we can see that the connection Â0 has the limiting form

lim
~x→0

Â0 → [A+ Pω]− [ψ + P ](dξ + ω) . (B.19)

By Uhlenbeck’s Theorem, the gauge bundle can be smoothly continued over the NUT

center if the action of the field Â0 is finite [166]. This implies that

lim
~x→0

ψ(~x) = −P +O(rδ) , lim
x→0

A = −Pω +O(r−1+δ) , (B.20)

and that all apparent singularities arising from higher order terms (as in δ ≥ 1
2) can

be gauged away. This means that the corresponding monopole solution will have the

asymptotic behavior

FR3 =
Pn
2
dΩ +O(r−2+δ) , X = −Pn

2r
+O(r−1+δ) , (B.21)

in the limit r → 0 for some δ > 0.

Note that near r →∞, V = 1 and hence X → ψ(~x). This means that the Higgs vev

X∞ is encoded in the holonomy of Â along the S1 fiber at infinity – i.e. by the value

of ψ as r →∞.

Therefore, by using the global lift of the U(1)K-action to the gauge bundle, lo-

cal Kronheimer’s correspondence can be extended globally. Hence, general singular

monopoles configurations in R3 with one defect are in one-to-one correspondence with

U(1)K-invariant instantons on Taub-NUT where the lift of the U(1)K action is defined

by the ’t Hooft charge of the singular monopole.

Remark It is worth commenting on the admissibility of subleading terms in the asymp-

totic behavior of the gauge/Higgs fields in the instanton/monopole solutions. From the

analysis from [133], locally solving the gauge covariant Laplacian in the presence of a

singular monopole imposes that

FR3 =
Pn
2
dΩ +O(r−2+δ)

Φ = −Pn
2r

+O(r−1+δ)

, δ =


1
2 ∃ µ ∈ Λ+

rt s.t. 〈µ, P 〉 = 1

1 else

, (B.22)

where Λ+
rt is the positive root lattice of the gauge group relative to X∞ ∈ t. The

O(r−1/2) behavior can be explained by ψ(r) having a subleading term going as O(r1/2).
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This is in fact the only subleading term allowed by the requirement of finite action by

integrating

Sε = − 1

4g2

∫
π−1(B3

ε )
Tr

{
F̂ ∧ ∗F̂

}
, (B.23)

in the singular gauge as in (B.19) where B3
ε is the solid 2-ball of radius ε > 0 around

the origin.

This fractional subleading behavior simply allows for the existence of non-smooth

instantons which we should generally expect to contribute to any physical processes.

The subleading behavior also seems to be a manifestation of the fact that singular

monopoles with charge P /∈ Λcr cannot be fully screened by smooth monopoles which

generally have charge in Λcr.

B.3 Generalization to Multiple Defects

Now we can ask how this generalizes to the case of multiple defects. This is accom-

plished by considering U(1)K-invariant instantons on multi-Taub-NUT, TNk. Since the

metric for this space can again be written in Gibbons-Hawking form as in (B.6), again

locally self-dual U(1)K connections on TNk are in one-to-one correspondence with local

solutions of the Bogomolny equations on R3. This follows from an identical calculation

as in the previous section for a single defect by substituting the harmonic function and

corresponding 1-form (V, ω) for those in the multi-Taub-NUT metric.

The proof of Kronheimer’s correspondence for multiple defects is thus reduced to

understanding how the U(1)K action extends across different patches. Due to this non-

trivial topology, fixing the lift of the U(1)K action of a single NUT center does not

specify the action completely as there are infinitely many gauge inequivalent ways to

glue this action across different patches approaching different NUT centers.

Rather, the topology of the gauge bundle can be specified by the lift at a single

NUT center and by a choice of Dirac monopole charge for each non-trivial homology

2-sphere – or equivalently one can specify the lift of the U(1)K action at each NUT

center. However, we should ask whether or not specifying the topological class of the

bundle in addition to the lift of the U(1)K action at a NUT center fixes the global lift of
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the U(1)K action. We will momentarily argue that this is indeed the case. If this is true,

then the set of all inequivalent choices of U(1)K action on the principal G-bundle on

multi-Taub-NUT is in one-to-one correspondence with the set of all possible choices of

’t Hooft charges in the corresponding singular monopole configuration. Together with

local Kronheimer’s correspondence, this global lift of the U(1)K action would imply

that Kronheimer’s correspondence also holds globally.

The question of whether or not we can construct this correspondence is now reduced

to the question of whether or not there exists a gauge transformation on the intersection

of different patches which is U(1)K equivariant such that the U(1)K action has the

proper limiting form at the various NUT centers. As we reviewed in the previous

section, in order to have a well defined principalG-bundle with U(1)K action, on any two

intersecting patches Uα,Uβ, the gauge fields are related by some gauge transformation

gαβ which satisfies the equivariance condition

gαβ(k · x) = ρ−1
α (x, k)gαβ(x)ρβ(x, k) . (B.24)

The new complication of defining the U(1)K action on multi-Taub-NUT is how it

glues across patches containing different NUT centers. So, let us consider Uα,Uβ =

π−1(Uα), π−1(Uβ) for Uα, Uβ ⊂ R3 containing NUT centers at ~xα, ~xβ respectively such

that Uα ∩ Uβ 6= ∅. Using the limiting forms of the ρα, we can explicitly solve for the

form of gαβ(x) in the patch Uα ∩ Uβ:

gαβ(x) ∼= Exp [i(Pβ − Pα)ψ] , (B.25)

up to a trivial gauge transformation, and hence specifies a class in H2(TNn,Z).

The physical argument that this must be the correct class for the transition function

is as follows. Consider a line `ij from ~xi to ~xj (two NUT centers). We know that the

U(1)K action on a patch Ui near the ~xi goes as ρi(k) ∼ eiPik and similarly on Uj near

~xj , ρj(k) ∼ eiPjk. This means that on the transition Ui ∩ Uj along the line `ij , the

transition function must be in the same cohomology class as Exp [i(Pα − Pβ)ξ] because

the winding number of P → π−1(`ij) ∼= S2 is Pi on one hemisphere and Pj on the other

hemisphere.
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This is exactly analogous to the translation function along the equator on the sphere

at infinity for a monopole in R3. These transition functions, as in the picture of

monopoles in R3, have the interpretation of the gauge field having non-trivial flux

on these spheres. This is necessary for the consistent lift of the U(1)K action across the

entire space and in the corresponding singular monopole configuration on R3, this flux

is literally the physical magnetic flux between two singular monopoles (in the absence

of smooth monopoles).

Therefore, the U(1)K action can be globally lifted to the gauge bundle over multi-

Taub-NUT which can be used to globally extend local U(1)K-invariant instanton so-

lutions. Hence, general singular monopole configurations in R3 are in one-to-one cor-

respondence with U(1)K-invariant instantons on multi-Taub-NUT where the collection

of ’t Hooft charges specifies both the topology of the gauge bundle and the global lift

of the U(1)K action.
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Appendix C

Wall Crossing

C.1 The Two-galaxy Region for Smooth Monopoles

In describing the two-galaxy limit of the asymptotic region of monopole moduli space,

we introduce center of mass and relative coordinates. Note that the difference of any

two ~x a’s can be expressed as a linear combination of center of mass coordinates ~y a’s

only. The coordinate transformations between the ~xa (absolute coordinates) and ~ya

(relative coordinates) from (4.13) - (4.14) are given explicitly by

~x a = ~X1 + (j1)ab~y
b , ~x p = ~X2 + (j2)pq~y

q . (C.1)

where

j1 =



a1 a2 · · · aN1−1

b1 a2 · · · aN1−1

b1 b2 · · · aN1−1

...
...

. . .
...

b1 b2 · · · bN1−1


, j2 =



aN1 aN1+1 · · · aN−2

bN1 aN1+1 · · · aN−2

bN1 bN1+1 · · · aN−2

...
...

. . .
...

bN1 bN1+1 · · · bN−2


, (C.2)

with

aa =
ma+1 + · · ·+mN1

mgal1
, ba = −(m1 + · · ·+ma)

mgal1
, (a = 1, . . . , N1 − 1) ,

ap =
mp+2 + · · ·+mN

mgal2
, bp = −(mN1+1 + · · ·+mp+1)

mgal2
, (p = N1, . . . , N − 2) .(C.3)

This Appendix is based on material from my publication [25].
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These fit into square Jacobian matrices that give the map ({~y}, ~X)T 7→ {~x} as follows:

(~xâ) = (j1 | 11)

 ~ya

~X1

 ≡ J1

 ~ya

~X1

 , (C.4)

(~xp̂) =(j2 | 12)

 ~ys

~X2

 ≡ J2

 ~yp

~X2

 . (C.5)

Here 11,12 denote a length N1, N2 column vector with all entries equal to 1 respectively.

Similarly the angular coordinates transform as

(
∂

∂ξa

)
= J1

 ∂
∂ψa

∂
∂χ1

 ,

(
∂

∂ξs

)
= J2

 ∂
∂ψs

∂
∂χ2

 . (C.6)

And finally we implement the global center of mass and relative coordinates (4.15).

In the limit that R is much greater than all of the y, the matrix Mij has the structure

Mij =

 Mab
Daq
R +O( y

R2 )

Dpb
R +O( y

R2 ) Mpq

 , (C.7)

where

Mab = (M1)ab −
1

R
δab(HI(a), γm,2) +O

( y

R2

)
,

Mpq = (M2)pq −
1

R
δpq(γm,1, HI(p)) +O

( y

R2

)
, (C.8)

with

(M1)ab =

 ma −
∑

c 6=a
Dac
rac

, a = b ,

Dab
rab

, a 6= b ,
(M2)pq =

 mp −
∑

r 6=p
Dpr
rpr

, p = q ,

Dpq
rpq

, p 6= q .

(C.9)

The latter are the matrices that would appear in the GM/LWY metrics for galaxies one

and two in isolation. Thus in the two-galaxy limit, the “mass matrix” takes the form

Mij =

 (M1)ab 0

0 (M2)pq

+
1

R

 −δab(HI(a), γm,2) Daq

Dbp −δpq(γm,1, HI(p))


+O

( y

R2

)
,

(C.10)
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which we will write as

M =

 M1 0

0 M2

− 1

R

 D11 −D12

−D21 D22

+O
( y

R2

)
, (C.11)

where D11 and D22 are diagonal matrices and D21 = (D12)T .

Then within each galaxy we make the change of variables (C.4). The relevant

quantities to be computed are, at leading order,

JT1 M1J1 =

 C1 0

0 mgal1

 , JT2 M2J2 =

 C2 0

0 mgal2

 , (C.12)

where C1 = jT1 M1j1, etc. The O(1/R) terms are

JT1 D11J1 =

 jT1 D11j1 〈βa, γ2,m〉

〈βb, γ2,m〉 (γ1,m, γ2,m)

 ,

JT2 D22J2 =

 jT2 D22j2 〈βp, γ1,m〉

〈βq, γ1,m〉 (γ1,m, γ2,m)

 ,

JT1 D12J2 =

 jT1 D12j2 〈βa, γ2,m〉

〈βq, γ1,m〉 (γ1,m, γ2,m)

 ,

(C.13)

where

βa = (JT1 ) b
a H

∗
I(b) = aa

a∑
c=1

H∗I(c) + ba

N1∑
c=a+1

H∗I(c) , a = 1, . . . , N1 − 1 , (C.14)

and similarly

βp = (JT2 ) q
p H

∗
I(q) = ap

p+1∑
r=N1+1

H∗I(r) + bp

N∑
r=p+2

H∗I(r) , p = N1, . . . , N − 2 , (C.15)

with the a and b coefficients given in (C.3). The key property to note of the βa,p is that

they have zero pairing with X ; for example we have 〈βa,X〉 = −aaba + baaa = 0.

Thus far we have described the transformation of the quadratic form Mij from the

basis of differentials d~x i to the basis (d~y a, d ~X1, d~y
p, d ~X2)T . Next we implement the

transformation ( ~X1, ~X2) 7→ ( ~X, ~R) to center of mass coordinates. One finds that the

quadratic form diagonalizes with respect to the overall center of mass coordinate. Then
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collecting the remaining differentials into the block structure (d~y, d ~R) = (d~ya, d~yp, d ~R),

one obtains the first line of (4.16) with

C̃ =

 C1 0

0 C2

 , δC =

 −jT1 D11j1 jT1 D12j2

jT2 D21j1 −jT2 D22j2

 ,

L =

 −〈βa, γ2,m〉

〈βp, γ1,m〉

 , H(R) = 1− (γ1,m, γ2,m)

µR
. (C.16)

Note that δC and L are coordinate independent.

Now we turn to the connection one-forms on the N -torus, Θi. We change variables

in the fiber coordinates according to (4.14). Denoting J = diag(J1,J2), the quantity

we want to investigate therefore is JT ~WJ, where ~W is the matrix with components

~Wij given in (4.7). The reason for the JT on the left is that we want Θi to transform

like the legs along the fiber directions, (4.14). The overall factors of JT will then be of

the right form to transform the inverse quadratic form, (M−1)ij , to the y-X basis. The

reason for the J on the right of ~W is that we will put a JJ−1 between ~Wij and d~x j ,

using the J−1 to map the d~x j to (d~y b, d ~X1, d~y
q, d ~X2)T .

However we only need ~Wij through O(1/R), which takes the form

( ~Wij) =

 ( ~W1)ab 0

0 ( ~W2)pq

+

 −δab(HI(a), γm,2) Daq

Dbp −δpq(γm,1, HI(p))

 ~w(~R)

+O
( y

R2

)
,

(C.17)

where ~W1,2 are the corresponding ~W ’s for galaxies one and two in isolation. Wrapping

the JT -J around the first term, we observe that

JT1
~W1J1 =

 jT1
~W1j1 0

0T 0

 , (C.18)

and similarly for 1 7→ 2. In the text we denoted the upper-left (N1,2 − 1) × (N1,2 − 1)

corners of these expressions by ~W1,2 respectively:

~W1 = jT1
~W1j1 , ~W2 = jT2

~W2j2 . (C.19)
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For the J-transformation of the O(1/R) terms we can make use of (C.13). We then

make the final transformation to the center of mass coordinates on the relevant two-by-

two block of JT ~WJ — that is, the block whose rows correspond to χ1, χ2 and whose

columns correspond to ~X1, ~X2. Making use of the definitions (C.16), one eventually

finds

Θi(M
−1)ijΘj =

dχ2

(mgal1 +mgal2)
+ (Θ0, ΘΨ )

 C̃ + 1
RδC

1
RL

1
RLT µH(R)

−1 Θ0

ΘΨ


+O

( y

R2

)
,

(C.20)

with (Θ0, ΘΨ ) defined as in (4.18), (4.19).

C.1.1 Hyperkählerity of the metric

Here we address the hyperkählerity of the asymptotic metric (4.16) in the two-galaxy

region of the strongly centered moduli space. We collect the position and phase coor-

dinates using indices ĩ, j̃ = 1, . . . , N − 1 and writing

~y ĩ = (~y a, ~y p, ~R) = (~y, ~R) , ψĩ = (ψa, ψp, Ψ) , (C.21)

the metric has the form

ds2
0 = Gĩj̃d~y

ĩ · d~y j̃ + (G−1)ĩj̃
(
dψĩ + ~Vĩk̃ · d~y k̃

)(
dψj̃ + ~Vj̃ l̃ · d~y l̃

)
, (C.22)

where the matrices G, ~V are given by

G =

 C̃ + 1
RδC

1
RL

1
RLT µH(R)

 ,

~V =

 ~W + δC⊗ ~w(~R) L⊗ ~w(~R)

LT ⊗ ~w(~R) −(γ1,m, γ2,m)~w(~R)

 ,

(C.23)

where ~W = diag( ~W1, ~W2). Note that G, ~V are of the form

G = G̃ +
1

R
A , ~V =

~̃
V + A⊗ ~w(~R) , (C.24)

where G̃ = diag(C̃, µ),
~̃
V = diag( ~W , 0), and A is a constant matrix.



314

A metric of the form (C.22) is hyperkähler iff (letting α, β, γ = 1, 2, 3)

∂

∂yαĩ
Vβj̃k̃ −

∂

∂yβj̃
Vαĩk̃ = ε γ

αβ

∂

∂yγĩ
Gj̃k̃ &

∂

∂yαĩ
Gj̃k̃ =

∂

∂yαj̃
Gĩk̃ . (C.25)

These equations are satisfied on the leading order pieces, (G,V) → (G̃, Ṽ) because

this just gives a direct product metric on M1,0 ×M2,0 × R4
rel with the corresponding

GM/LWY hyperkähler metrics on the first two factors, (the strongly centered moduli

spaces for galaxies one and two in isolation), and a flat metric on the third. Since A

is constant, the only derivatives that do not annihilate the correction term are those

involving derivatives with respect to the components of ~R. It follows that the equations

are indeed satisfied to order O(1/R2), and hence the metric (4.16) is hyperkähler to the

relevant order.

C.2 The Dirac Operator in the Two-galaxy Region

Now we will construct the asymptotic Dirac operator based on the metric (4.16) to order

O(1/R). We will employ the coordinates (yαĩ, ψĩ) as in (C.21), and we will sometimes

combine these together into yµĩ, introducing µ, ν = 1, . . . , 4 with y4̃i ≡ ψĩ. We refer to

the components of the hatted metric onM0 with respect to these coordinates as Gµĩ,νj̃

so that

ds2
0 = Gµĩ,νj̃dy

µĩdyνj̃ . (C.26)

We will use underlined indices to refer to the corresponding tangent space directions.

C.2.1 Vielbein

The nonzero components of the vielbein, e
µĩ

µĩ
, are taken to be

e
αĩ

αĩ
= δααe

ĩ

ĩ
, e

4̃i

αĩ
= (eα)

ĩ

ĩ
, e

4̃i

4̃i
= (e4)

ĩ

ĩ
, (C.27)
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where the matrices are given by

e =

 C̃1/2 + 1
2RC̃−1/2δC 1

RC̃−1/2L

0 µ1/2
(

1− 1
2µR(γm,1, γm,2)

)
 ,

eα =


(
C̃−1/2 − 1

2RC̃−1/2δCC̃−1
)
Wα + wαC̃−1/2δC wαC̃−1/2L

µ−1/2wαLT −µ−1/2(γm,1, γm,2)wα

 ,

e4 =

 C̃−1/2 − 1
2RC̃−1/2δCC̃−1 − 1

µRC̃−1/2L

0 µ−1/2
(

1 + 1
2µR(γm,1, γm,2)

)
 . (C.28)

Similarly, the components of the inverse vielbein, Eµĩ
µĩ

, are given by

Eαĩ
αĩ

= δααE
ĩ
ĩ
, E4̃i

αĩ
= δ α

α (Eα)ĩ
ĩ
, E4̃i

4̃i
= (E4)ĩ

ĩ
, (C.29)

with

E =

 C̃−1/2 − 1
2RC̃−1δCC̃−1/2 − 1

µ1/2R
C̃−1L

0 µ−1/2
(

1 + 1
2µR(γm,1, γm,2)

)
 ,

Eα =

 −Wα

(
C̃−1/2 − 1

2RC̃−1δCC̃−1/2
)
− wαδCC̃−1/2 1WαC̃−1L

µ1/2R
− wαL

µ1/2

−wαLT C̃−1/2 µ−1/2(γm,1, γm,2)wα

 ,

E4 =

 C̃1/2 + 1
2RδCC̃−1/2 1

µ1/2R
L

0 µ1/2
(

1− 1
2µR(γm,1, γm,2)

)
 . (C.30)

These satisfy the necessary relations to the order we are working:

Eµĩ
µĩ
e
µĩ

νj̃
= δµνδ

ĩ
j̃ +O(1/R2) , δµνδĩj̃e

µĩ

µĩ
e
νj̃

νj̃
= Gµĩ,νj̃ +O(1/R2) . (C.31)

C.2.2 Spin connection

Using the vielbein above, one can compute the spin connection. The discussion is

organized according to how many of the ĩ, j̃, k̃ indices take the last value, N − 1, corre-

sponding to ~yN−1 = ~R. By a slight abuse of notation we will refer to this index value as

“ ĩ = R ” rather than ĩ = N − 1. The remaining indices running over the N − 2 relative

positions ~y = (~y a, ~y p)T are i, j, k = 1, . . . , N − 2. We give the expressions below with

all indices referred to the frame on the tangent space.
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When there are no R indices, there is a leading O(1) piece and O(1/R) corrections

to it:

ωµiνj,ρk = ω̃µiνj,ρk + δωµiνj,ρk + · · · , (C.32)

where δω = O(1/R). Explicitly, the nonzero leading-order spin connection is found to

be

ω̃αiβj,γk =
1

2
(C̃−1/2) ii (C̃−1/2) j

j (C̃−1/2) k
k

(
δαγδ

β
β ∂βjC̃ik − δβγδ α

α ∂αiC̃jk

)
−

− 1

2
δαβδ

γ
γ (C̃−1/2) k

k

[
(∂γkC̃

1/2)C̃−1/2 − C̃−1/2(∂γkC̃
1/2)

]
ij
,

ω̃4iβj,γk =
1

2
(C̃−1/2) ii (C̃−1/2) j

j (C̃−1/2) k
k δ

β
β δ γ

γ (∂βjWγik − ∂γkWβij) ,

ω̃4i4j,γk = − 1

2
(C̃−1/2)

k
k δ

γ
γ

[
(∂γkC̃

1/2)C̃−1/2 − C̃−1/2(∂γkC̃
1/2)

]
ij

ω̃αiβj,4k = − 1

2
(C̃−1/2) ii (C̃−1/2) j

j (C̃−1/2) k
k δ

α
α δ β

β (∂αiWβkj − ∂βjWαki) ,

ω̃αi4j,4k =
1

2
(C̃−1/2) ii (C̃−1/2) j

j (C̃−1/2) k
k ∂αiC̃jk . (C.33)

This is the spin connection onM1,0×M2,0×R4
rel, with theM0 factors equipped with

their respective GM/LWY metrics. The O(1/R) corrections to the above components

are captured by the simple replacement rule

C̃→ C = C̃ +
1

R
δC , (C.34)

leaving Wα unchanged, (and expanding the result to first order in 1/R). The reason

this captures all O(1/R) corrections to these components of the spin connection is that

the contributions from the wα terms in the vielbein cancel.

Note that the components involving the Wαij can be simplified using relations

(C.25):

ω̃αi4j,βk = ω̃αiβj,4k = −1

2
(C̃−1/2) ii (C̃−1/2) j

j (C̃−1/2) k
k ε

γ

αβ δ γ
γ ∂γiC̃jk . (C.35)

Furthermore, this relation can be extended to the O(1/R) corrections to these com-

ponents using the replacement (C.34). The reason is that (C.34) is simply a shift of

C̃ by a constant as far as the yαi are concerned, and C̃ is always differentiated in the

relations (C.25).
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Next we consider the components of the spin connection with one R index that have

a non-vanishing O(1/R) piece. With some effort they can all be related to the (C.33)

in a rather simple way:

ωαiβj,γR = − 1√
µR

(C̃−1/2L)k ω̃αiβj,γk +O(1/R2) ,

ωαiβR,γk = − 1√
µR

(C̃−1/2L)j ω̃αiβj,γk −
1√
µR

(C̃−1/2) k
k δαβδ

γ
γ ∂γk(C̃

−1/2L)i

+O(1/R2) ,

ω4iβj,γR = − 1√
µR

(C̃−1/2L)k ω̃4iβj,γk +O(1/R2) ,

ω4iβR,γk = − 1√
µR

(C̃−1/2L)j ω̃4iβj,γk +O(1/R2) ,

ωαiβR,4k = − 1√
µR

(C̃−1/2L)j ω̃αiβj,4k +O(1/R2) ,

ω4iβR,4k = − 1√
µR

(C̃−1/2L)j ω̃4iβj,4k +O(1/R2) ,

ω4i4j,γR = − 1√
µR

(C̃−1/2L)k ω̃4i4j,γk +O(1/R2) .

(C.36)

Finally, one can show that components of the spin connection with two or three R

indices start at O(1/R2), and thus we can neglect them to the order we are working.

Now introduce gamma matrices Γµĩ satisfying the Clifford algebra

[Γµĩ, Γ νj̃ ]+ = 2δµνδĩj̃ , (C.37)

and define Γµĩνj̃ = 1
2 [Γµĩ, Γ νj̃ ] as usual. When we contract the spin connection compo-

nents with the gamma matrices to construct the Dirac operator, we can absorb almost

all effects of the ω with one R index by introducing shifted gamma matrices:

Γ ρk̃ωµĩνj̃,ρk̃Γ
µĩνj̃ = Γ ρkωµiνj,ρkΓ

µiνj − 2Γ γkΓαiβR
1√
µR

δαβ(C̃−1/2) k
k δ

γ
γ ∂γk(C̃

−1/2L)i

+O(1/R2) ,
(C.38)

with

Γαi = Γαi − 1√
µR

(C̃−1/2L)iΓαR , Γ 4i = Γ 4i . (C.39)

We also account for the O(1/R) corrections to the ωµiνj,ρk by working with the corrected

C as we discussed around (C.34). So above we account for both types of O(1/R)
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corrections to the spin connection by working with ωαiβj,γk which is expressed in terms

of C rather than C̃, and working with the Γαi.

These hatted gamma matrices can be realized by a frame rotation on the spin

bundle. To do so we first complete the definition of the Γµĩ by setting

ΓαR = ΓαR +
1√
µR

(C̃−1/2L)iΓ
αi , Γ 4R = Γ 4R . (C.40)

Then Γµĩ = Rµĩ
νj̃
Γ νj̃ , where the rotation is given by

R =
∏
α,i

R(α)

θi
, (C.41)

where R(α)

θi
is a local rotation in the eαi - eαR plane by angle

θi =
1√
µR

(C̃−1/2L)i , (C.42)

and we work to linear order in the θi. This rotation on the frame index can in turn be

implemented through an adjoint action on the spinor indices,

Γµĩ = Rµĩ
νj̃
Γ νj̃ = ΛΓµĩΛ−1 . (C.43)

with

Λ =
∏
α,i

exp
(
alfθiΓαiΓαR

)
= 1 + alfθiΓαiΓ

αR +O(θ2) . (C.44)

C.2.3 Dirac operator

To construct the Dirac operator, /D
Y0 , on M0 we will also need /G(Y0). We first have

G(Y0) =

rnk g∑
I=1

〈αI ,Y0〉G(hI) =
∑
I

〈αI ,Y0〉pI
nIm∑
kI=1

∂

∂ξIkI
+ {exp. small}

=
∑
I

(HI ,Y0)

nIm∑
kI=1

∂

∂ξIkI
+ {exp. small}

=

N1∑
a=1

(HI(a),Y0)
∂

∂ξa
+

N∑
p=N1+1

(HI(p),Y0)
∂

∂ξp
+ {exp. small} , (C.45)

where we used that the exact triholomorphic Killing vectors G(hI) approach the linear

combinations of those in the GM/LWY metric exponentially fast (in the same sense
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that exact metric approaches the GM/LWY metric exponentially fast). Then using

(C.6), (C.14), (C.15), followed by the change to center of mass coordinates (4.15), we

find

G(Y0) =
∑
a

〈βa,Y0〉
∂

∂ψa
+
∑
p

〈βp,Y0〉
∂

∂ψp
+ (γm,1,Y0)

∂

∂χ1
+ (γm,2,Y0)

∂

∂χ2
+ exp. small

=
∑
i

〈βi,Y0〉
∂

∂ψi
+ (γm,1,Y0)

∂

∂Ψ
+ exp. small ,

(C.46)

where in the last step we also used that (γm,Y0) = 0, or equivalently (γm,1,Y0) =

−(γm,2,Y0).

Now we can compute

/D
Y0 = Γ ρk̃E ρk̃

ρk̃
∂ρk̃ +

1

4
Γ ρk̃ωµĩνj̃,ρk̃Γ

µĩνj̃ − iΓρk̃e
ρk̃

ρk̃
G(Y0)ρk̃ , (C.47)

to O(1/R2) using (C.28), (C.30), (C.38), and (C.46). Given the simplifications in the

spin connection afforded by (C.38), the goal will be to express everything in terms of

the rotated Γ ’s and then use (C.43). The final result will be an expression for /D
Y0 ,

through to O(1/R2), in terms of the Λ-conjugation of another Dirac-type operator.

The advantage of this approach is that the Λ-conjugation, which implements the frame

rotation on the spin bundle, is sufficient to block-diagonalize the Dirac operator with

respect to the Γµi - ΓµR decomposition of the Dirac spinor bundle. A key point

is that the ‘extra’ term on the right-hand side of (C.38), which originates from the

inhomogeneous term in the second line of (C.36), is exactly what is needed to account

for the action of the derivative on Λ:

Λ
[
Γ γkE γk

γk ∂γk

]
Λ−1 = Γ γkE γk

γk ∂γk

− 1

2
Γ γkΓαiβR

1√
µR

δαη(C̃
−1/2) k

k δ
γ
γ ∂γk(C̃

−1/2L)i +O(1/R2) .

(C.48)

Thus, suppressing the details, we are able to bring the Dirac operator to the form

quoted in the text:

/D
Y0 = Λ

(
/D
Y0

12 + /D
Y0

rel +O(1/R2)
)
Λ−1 , (C.49)
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where /D
Y0

12 consists of terms involving only µi-type gamma matrices, and /Drel consists

of terms involving only µR-type gamma matrices. For the first operator we have

/D12 = /D
Y0

M1,0×M2,0
+ ( /D

Y0

12 )(1) , (C.50)

where the first term is precisely the G(Y0)-twisted Dirac operator on M1,0 ×M2,0,

where each factor equipped with the GM/LWY metric, and the second term contains

the O(1/R) corrections. Explicitly,

/D
Y0

M1,0×M2,0
= Γαiδ α

α

[
(C̃−1/2)ii∂αi − (WαC̃

−1/2)ii∂4i

]
+ Γ 4i(C̃1/2)ii∂4i

+
1

4
Γ ρkω̃µiνj,ρkΓ

µiνj − iΓ 4i(C̃−1/2)ii(βi,Y0) , (C.51)

and

( /D
Y0

12 )(1) = Γαiδ α
α

{
− 1

2R
(C̃−1δCC̃−1/2)ii∂αi + (( 1

2RWαC̃
−1 − wα1)δCC̃−1/2)ii∂4i

− wα(LT C̃−1/2)i∂4R −
1

µR
(C̃−1/2L)i∂αR

}
+ Γ 4i

{
1

2R
(C̃−1/2δC)ii∂4i −

1

2R
(C̃−1/2δCC̃−1)ii(βi,Y0)

+ i
(γm,1,Y0)

µR
(C̃−1/2L)i

}
+

1

4
Γ ρkδωµiνj,ρkΓ

µiνj .
(C.52)

Meanwhile the second operator takes the form

/D
Y0

rel =
1√
µ

(
1 +

(γm,1, γm,2)

2µR

){
ΓαRδ α

α

[
∂αR + (γm,1, γm,2)wα∂4R − wαLi∂4i

]
+ Γ 4R

[(
µ− (γm,1, γm,2)

R

)
∂4R +

Li

R
∂4i − i(γm,1,Y0)

]}
. (C.53)

(Strictly speaking, this expression contains some O(1/R2) terms when the R−1 multi-

plies wα which should be dropped.)

C.3 Singular Monopole Moduli Space

In the case of singular monopoles, we have a core-halo system. Here we can choose our

origin to be anywhere in the core, but to be explicit we choose it to be centered on one

of the singular monopoles. In this case we need only go to center of mass and relative

coordinates in the halo galaxy. We let indices a, b = 1, . . . , Ncore run over fundamental
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(mobile) constituents in the core and indices p, q = Ncore + 1, . . . , Ncore + Nhalo = N ,

run over fundamental constituents in the halo galaxy. We set

~R =

∑
pmp~x

p

mhalo
, ~y p = ~x p − ~x p+1 , (C.54)

where mhalo =
∑

pmp and we have introduced indices p, q = Ncore + 1, . . . , N − 1 that

run over the relative positions of halo constituents. The inverse is given by

~x p = ~R+ (jh)pq~y
q , (C.55)

where jh has an identical form to j2 with the galaxy-two constituent masses replaced

by halo constituent masses. Constructing Jh by appending a column of 1’s in the same

way, we introduce the halo fiber coordinates ψp

Ψ

 = JTh (ξp) . (C.56)

Note that (~R, Ψ) play the role here that was previously played by ( ~X2, χ2). They

parameterize the position of the center of mass of the halo galaxy relative to the fixed

core.

The large R expansion of the quadratic form M ij , can be written in block form

(M)ij =

 (M)ab
Daq
R +O

(
1
R2

)
Dpb
R +O

(
1
R2

)
(M)pq ,

 (C.57)

with

(M)ab = (M c)ab − δab
(HI(a), γh,m)

R
+O

(
1

R2

)
, (C.58)

where

(M c)ab =


ma −

∑
c 6=a

Dac
rac
−∑Ndef

n=1
(Pn,HI(a))

rna
a = b

Dab
rab

a 6= b

, (C.59)

and similarly

(M)pq = (Mh)pq − δpq
(HI(p), γc,m)

R
+O

(
1

R2

)
, (C.60)

where

(Mh)pq =


mp −

∑
u6=p

Dpu
rpu

p = u

Dpq
rpq

p 6= q

. (C.61)
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In these expressions the core and halo magnetic charges are given by

γc,m =

Ncore∑
a=1

HI(a) +

Ndef∑
n=1

Pn , γh,m =
N∑

p=Ncore+1

HI(p) . (C.62)

Therefore in the limit of large R we can write (M)ij as

M ij =

 (M c)ab 0

0 (Mh)pq

+
1

R

 −δab(γh,m, HI(a)) Daq

Dbp −δpq(γc,m, HI(p))


+O

(
1/R2

)
.

(C.63)

As before, we will write this as

M =

 Mc 0

0 Mh

− 1

R

 Dcc −Dch

−Dhc Dhh

+O
(
1/R2

)
(C.64)

Now we make the similarity transformation to the center of mass and relative coor-

dinates in the halo, defining Ch with components (Ch)pq such that

JTh MhJh =

 jTh Mhjh 0

0T mhalo

 =

 Ch 0

0T mhalo

 . (C.65)

We combine Ch with the leading order core matrix, writing

C =

 Mc 0

0 Ch

 . (C.66)

The first order corrections to this are captured by

δC =

 −Dcc Dchjh

jTh Dhc −jTh Dhhjh

 . (C.67)

Finally the vector L and the harmonic function H(R) appearing in (4.58) are

L =

 −(HI(a), γh,m)

〈βp, γc,m〉

 , H(R) =

(
1− (γh,m, γc,m)

mhaloR

)
. (C.68)

Here βp is defined as in (C.15) but with J2 replaced by Jh.

The terms in (4.58) involving the connection one-forms (Θ0, ΘΨ ) can be obtained

by following analogous steps to those in the case of smooth monopoles.
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Appendix D

SQM Localization

D.1 U(1) N = (0, 4) SQM Analysis

In this appendix we will present a general analysis of the N = (0, 4) SQM with a U(1)

gauge group coming from monopole bubbling in 4D SU(2) N = 2, asymptotically free,

supersymmetric gauge theories. See [165] for a review of N = (0, 4) SUSY.

The N = (0, 4) SQM we are considering consists of a U(1) vector multiplet, two

fundamental hypermultiplets and up to four N = (0, 2) Fermi-multiplets Ψ (i), that have

been embedded into the N = (0, 4) theory by either embedding Ψ
(i)
N=(0,2) ↪→ Ψ̃

(i)
N=(0,4) as

short N = (0, 4) Fermi-multiplets or by combining (Ψ
(i)
N=(0,2) ⊕ Ψ̄

(i+2)
N=(0,2)) = Ψ̂N=(0,4) to

make long N = (0, 4) Fermi-multiplets. In the case of a 4D theory with Nf fundamental

hypermultiplets we will have Nf short N = (0, 4) fundamental Fermi-multiplets. In the

case of the 4D SU(2) N = 2∗ theory, the multiplets form N = (4, 4) SUSY multiplets

which are then mass deformed to theN = (0, 4) theory. This means that in studying the

N = 2∗ theory, we must include a massive N = (0, 4) adjoint (twisted) hypermultiplet

Γ and two long fundamental Fermi-multiplets in the SQM.

In general, these SQMs have a Lagrangian given by

L = Luniv + Ltheory . (D.1)

Here Ltheory is the part of the Lagrangian that is dependent on the details of the 4D

N = 2 theory, and Luniv is the universal part of the Lagrangian that does not change

This Appendix is based on material from my publication [26].
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with the matter content of the 4D Theory. Here we have

Luniv = Lvec + Lhyp + LFI , (D.2)

where

Lvec =
1

e2

[
1

2
(∂tσ)2 + iλ̄A∂tλ

A +
1

2
D2 + |F |2

]
,

Lhyp =
1

e2

(
|Dtφ

A,f |2 − |σφA,f |2 − φ̄A,f (σr)ABMrφ
B,f
)

+
i

2e2

(
ψ̄f1 (Dt + iσ)ψ1,f + ψ1,f (D̃t − iσ)ψ̄f1 + ψ̄f2 (D̃t − iσ)ψ2,f + ψ2,f (Dt + iσ)ψ̄f2

)
+

i√
2e2

(φ̄A,fλ
Aψf1 − ψ̄1,f λ̄Aφ

A,f + φ̄A,f λ̄
Aψ̄f2 − ψ2,fλAφ

A,f ) ,

LFI = −ξD ,

Mr = (f , g , D) , r = 1, 2, 3 , f =
1√
2

(F + F̄ ) , g =
1√
2i

(F − F̄ ) .

(D.3)

Here A = 1, 2 is an SU(2)R index, f = 1, 2 is an index for the global SU(2) flavor

symmetry, e is the gauge coupling, and σr=1,2,3 are the Pauli matrices acting on the

SU(2)R indices. Here we use the convention

(φA)∗ = φ̄A , φA = εABφ
B , ε21 = ε12 = 1 . (D.4)

We additionally have that Ltheory can have contributions from terms

Ltheory = LFermi + Ladj hyp , (D.5)

which are of the form

LFermi =
1

e2

∑
j

[
i

2
(η̄j(Dt + iσ)ηj + ηj(Dt − iσ)η̄j) + |Gj |2 + mj [η̄j , ηj ]

]
,

Ladj hyper =
1

e2

[
|∂tρA|2 +

i

2

2∑
I=1

(χ̄I∂tχI + χI∂tχ̄I)

]
,

(D.6)

where in the case of a 4D theory with Nf fundamental hypermultiplets, we only include

Nf fundamental Fermi multiplets and in the case of the N = 2∗ theory we include both

the adjoint hypermultiplet and 4 (short) fundamental Fermi multiplets.1

1Note that four short fundamental Fermi-multiplets is equivalent to two long fundamental Fermi-
multiplets.
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In the following analysis we will decompose the N = (0, 4) hypermultiplet that

transforms in a quaternionic representation R into two N = (0, 2) chiral multiplets

transforming in conjugate representations R⊕ R̄:

Fundamental Hypermultiplet Φ = (φA, ψI)R = Φ1 ⊕ ¯̃Φ2 = (φ, ψ)R ⊕ (φ̃, ψ̃)R̄ , (D.7)

where I = 1, 2.

In this notation, the field content of this theory is given by

Lagrangian Term Multiplet Fields QGauge Qa Qε Fj

Universal N = (0, 4) Vector- σ 0 0 0 0

λ1 0 0 0 0

λ2 0 0 4 0

Universal N = (0, 4) φ1 1 -1 1 0

Fund. Hyper- φ̃1 -1 1 1 0

φ2 1 1 1 0

φ̃2 -1 -1 1 0

ψ1 1 -1 1 0

ψ̃1 -1 1 1 0

ψ2 1 1 1 0

ψ̃2 -1 -1 1 0

4D Nf Fund. Hyper- N = (0, 4) Fund. Fermi- ηj 1 0 0 -2

N = 2∗ Theory N = (0, 4) Adjoint ρ 0 0 1 1

Twisted Chiral ρ̃ 0 0 -1 1

χ 0 0 0 1

χ̃ 0 0 0 -1

N = 2∗ Theory N = (0, 4) Fund. Fermi η1 1 -1 1 0

η̃1 -1 1 1 0

η2 1 1 1 0

η̃2 -1 -1 1 0
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This non-SU(2)R invariant notation is explicitly related to the SU(2)R-invariant nota-

tion by

φA,f =

 φf

¯̃
φf

 , ψfI =

 ψf

¯̃
ψf

 , ρA =

 ρ

¯̃ρ

 , χI =

 χ

¯̃χ

 . (D.8)

Here we will use the convention ε12 = ε21 = 1 and will use a notation that is not flavor

SU(2)-invariant by mapping

φf , φ̃f , ψf , ψ̃f 7→ φf , φ̃f , ψf , ψ̃f , (D.9)

so that the {φf , φ̃f , ψf , ψ̃f} should be understood as normal complex valued scalar and

fermion fields. It should be understood that all flavor and SU(2)R indices are contracted

properly in the upcoming analysis. Additionally, note that in these theories, there are

only J-type Fermi-multiplet interactions. See [90, 165] for a more complete discussion

about this Lagrangian and the corresponding field content.

These fields transform under supersymmetry as

δvt = − 1√
2
εAλ̄A −

1√
2
ε̄Aλ

A , δσ =
1√
2
εAλ̄A +

1√
2
ε̄Aλ

A ,

δλA =
i√
2
εADtσ +

1√
2e2

εBMr(σ
r)AB ,

(D.10)

and

δφA,f = −i
(
εAψf + ε̄A

¯̃
ψf
)
,

δψf = ε̄A

(
Dt −

i

e2
σ

)
φA,f , δ

¯̃
ψf = −εA(Dt −

i

e2
σ)φA,f ,

δηj = iε1Gj + ε̄1F̄j , δGj = −1

2
ε̄1(Dt + iσ)ηj −

1

2
ε1(D̃t − iσ)η̄j ,

δρA = −i
(
εAχ1 + ε̄Aχ2

)
, δχ1 = ε̄A∂tρ

A , δχ2 = −εA∂tρA ,

(D.11)

The supercharges generating the supersymmetry transformations for the vector multi-

plet fields (σ, λA) and hypermultiplet fields (φ, ψ), (φ̃, ψ̃) are given by

QA = ψf
(
πA,f +

iσ

e2
φ̄A,f

)
+ ψ̃f

(
π̄fA −

iσ

e2
φfA

)
− 1√

2
λ̄A(−ipσ) +

1√
2e2

(σr) B
A λ̄BMr .

(D.12)

Additionally, when considering the 4D N = 2∗ theory, we must add another hypermul-

tiplet (ρA, χI) which contributes

QA = ...+ χ1

(
πρ,A +

im

e2
ρ̄A

)
+ χ̄2

(
π̄ρ,A −

im

e2
ρA

)
, (D.13)
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where we have included possible mass terms.

Now consider adding the masses: 2

mΦ1 = −Im[a/β] + Im[ε+/β] = −2a+ 2ε ,

mΦ̃1
= −Im[a/β]− Im[ε+/β] = −2a− 2ε ,

mΦ2 = Im[a/β] + Im[ε+/β] = 2a+ 2ε ,

mΦ̃2
= Im[a/β]− Im[ε+/β] = 2a− 2ε ,

mλ2 = 4Im[ε+/β] = 4ε ,

(D.14)

Additionally, in the case of 4D theories with matter, we will add the masses

mρ1 = Re[m/β] + Re[ε+/β] = 2m + 2ε ,

mρ2 = Re[m/β]− Re[ε+/β] = 2m− 2ε ,

mΨ̂ (i) = ±Re[a/β] + Re[m/β] = ±2a+ 2m ,

m
Ψ̃ (f) = 2Re[mf/β] = 2mf ,

(D.15)

as appropriate. These masses break SUSY down to N = 2 where Q1, Q̄
1 are the

conserved supercharges. Since we know that the Witten index depends holomorphically

on the masses [60], we will take the mass parameters to be real and positive with a > ε

for simplicity and analytically continue in the final answer.3

2These masses come from turning on a flat gauge connection for a flavor symmetry 7→ a, and for a
U(1)R symmetry 7→ ε. The U(1)R symmetry comes from the diagonal combination of SU(2)R×SU(2)r
where SU(2)R is an R-symmetry and SU(2)r is an outer automorphism symmetry. Turning on the ε
mass corresponds to gauging the combination Qε = QR − Qr where QR, Qr are the generator of the
Cartan for SU(2)R, SU(2)r respectively.

3The analysis changes slightly for the case of mass parameters and when ε > a, but the answer will
be independent of these choices.
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In terms of component fields, the universal Lagrangian is given by

Luniv =
1

e2

[
1

2
(∂tσ)2 +

i

2

(
λ̄1∂tλ

1 + λ1∂tλ̄1

)
+ iλ̄2(∂t − 4iε)λ2 − 1

2
D2 − |F |2

]
+

1

e2

[
|Dtφ1|2 + |Dtφ2|2 + |D̃tφ̃1|2 + |D̃tφ̃2|2

]
− 1

e2

[
(σ − a+ ε)2|φ1|2 + (σ − a− ε)2|φ̃1|2 + (σ + a+ ε)2|φ2|2 + (σ + a− ε)2|φ̃2|2

]
+

i

2e2

(
ψ̄1(Dt + i(σ − a+ ε))ψ1 + ψ1(D̃t − i(σ − a+ ε))ψ̄1

+ ψ̄2(Dt + i(σ + a+ ε))ψ2 + ψ2(D̃t − i(σ + a+ ε))ψ̄2

+
¯̃
ψ1(D̃t − i(σ − a− ε))ψ̃1 + ψ̃1(Dt + i(σ − a− ε)) ¯̃

ψ1

+
¯̃
ψ2(D̃t − i(σ + a− ε))ψ̃2 + ψ̃2(Dt + i(σ + a− ε)) ¯̃

ψ2

)
D

e2
(|φ1|2 + |φ2|2 − |φ̃1|2 − |φ̃2|2 − e2ξ) +

F̄

e2
(φ1φ̃1 + φ2φ̃2) +

F

e2
(φ1φ̃1 + φ2φ̃2)

− i√
2e2

∑
i

(
φ̄iλ

1ψi + φ̃iλ
2ψi + φ̃iλ̄1

¯̃
ψi − φ̄iλ̄2

¯̃
ψi

− ψ̄iλ̄1φi − ψ̄iλ̄2
¯̃
φi − ψ̃iλ1 ¯̃

φi + ψ̃iλ
2φi

)
,

(D.16)

where Dt = ∂t + ivt and D̃t = ∂t − ivt.

Similarly, the Ltheory will be of the form

Ltheory =
1

e2

Nf∑
j=1

[
i

2

(
η̄j(Dt + iσ)ηj + ηj(D̃t − iσ)η̄j

)
− |Gj |2 + mj [η̄j , ηj ]

]
, (D.17)

in the case of 4D SU(2) with Nf -fundamental hypermultiplets and

Ltheory =
1

e2

[
|∂tρ|2 + |∂tρ̃|2 − (m + ε)2|ρ|2 − (m− ε)2|ρ̃|2

+
i

2
(χ̄∂tχ+ χ∂tχ̄+ ¯̃χ∂tχ̃+ χ̃∂t ¯̃χ)− m

2
([χ̄, χ]− [ ¯̃χ, χ̃])

]

+
1

e2

[
i

2

(
η̄1(Dt + i(σ − a+ ε))η1 + η1(D̃t − i(σ − a+ ε))η̄1

+ ¯̃η1(D̃t − i(σ − a− ε))η̃1 + η̃1(Dt + i(σ − a− ε))¯̃η1

+ (η̄2(Dt + i(σ + a+ ε))η2 + η2(D̃t − i(σ + a+ ε))η̄2

+ ¯̃η2(D̃t − i(σ + a− ε))η̃2 + η̃2(Dt + i(σ + a− ε))¯̃η2

)
− |G1|2 − |G2|2

]
,

(D.18)
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for the case of the 4D SU(2) N = 2∗ theory.

By defining the conjugate momenta to the elementary fields

pσ =
1

e2
∂tσ , pλA =

i

e2
λ̄A , pψi =

i

e2
ψ̄i , p̃ψi =

i

e2
¯̃
ψi ,

πi =
1

e2
D̃tφ̄i , π̃i =

1

e2
Dt

¯̃
φi , pηj =

i

e2
η̄j ,

pχ =
i

e2
χ̄ , p̃χ =

i

e2
¯̃χ , πρ =

1

e2
∂tρ̄ , π̃ρ =

1

e2
∂t ¯̃ρ ,

(D.19)

we can compute the Hamiltonian and integrate out the auxiliary fields (D,F,G):

H =
e2

2
p2
σ −

4ε

e2
λ̄2λ

2 + U +Hmatter +HI + vtQGauge , (D.20)

where

U =
1

2e2

(
|φ1|2 + |φ2|2 − |φ̃1|2 − |φ̃2|2 − e2ξ

)2
+

1

e2
|φ1φ̃1 + φ2φ̃2|2 , (D.21)

and

Hmatter = e2
[
|π1|2 + |π2|2 + |π̃1|2 + |π̃2|2

]
+

1

e2

[
(σ − a+ ε)2|φ1|2 + (σ − a− ε)2|φ̃1|2 + (σ + a+ ε)2|φ2|2 + (σ + a− ε)2|φ̃2|2

]
+

1

2e2

(
(σ − a+ ε)[ψ̄1, ψ1] + (σ + a+ ε)[ψ̄2, ψ2]

− (σ − a− ε)[ ¯̃
ψ1, ψ̃1]− (σ + a− ε)[ ¯̃

ψ2, ψ̃2]
)

+Htheory

(D.22)

and

HI = − i√
2e2

∑
i

(
φ̄iλ

1ψi + φ̃iλ
2ψi + φ̃iλ̄1

¯̃
ψi − φ̄iλ̄2

¯̃
ψi

− ψ̄iλ̄1φi − ψ̄iλ̄2
¯̃
φi − ψ̃iλ1 ¯̃

φi + ψ̃iλ
2φi

)
,

(D.23)

where

QGauge = Qtheory +
∑
i

(
iφiπi − iφ̄iπ̄i − iφ̃iπ̃i + i

¯̃
φi ¯̃πi −

1

2e2
[ψ̄i, ψi] +

1

2e2
[
¯̃
ψi, ψ̃i]

)
.

(D.24)

Here, Htheory is of the form

Htheory =
1

2e2

Nf∑
j=1

(σ − 2mj)[η̄j , ηj ] , (D.25)
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for the 4D theory with Nf -fundamental hypermultiplets and

Htheory =
m

2e2
[χ̄I , χI ] + e2|πρ|2 + e2|π̃ρ|2 +

(m + ε)2

e2
|ρ|2 +

(m− ε)2

e2
|ρ̃|2

− (σ − a+ m)

2e2
[η̄1, η1] +

(σ − a−m)

2e2
[¯̃η1, η̃1]

− (σ + a+ m)

2e2
[η̄2, η2] +

(σ + a−m)

2e2
[¯̃η2, η̃2] ,

(D.26)

for the N = 2∗ theory. Additionally,

Qtheory = −1

2

Nf∑
j=1

[η̄j , ηj ] , (D.27)

or

Qtheory = −1

2
([η̄1, η1]− [¯̃η1, η̃1] + [η̄2, η2]− [¯̃η2, η̃2]) , (D.28)

for the Nf -fundamental hypermultiplet and N = 2∗ theory respectively. By Gauss’s

law we have that QGauge must annihilate all physical states.

The classical vacuum equations for this theory are given by4

|φ1|2 + |φ2|2 − |φ̃1|2 − |φ̃2|2 − e2ξ = 0 , φ1φ̃1 + φ2φ̃2 = 0 ,

(σ − a+ ε)2|φ1|2 + (σ − a− ε)2|φ̃1|2 + (σ + a+ ε)2|φ2|2 + (σ + a− ε)2|φ̃2|2 = 0 .

(D.29)

The classical vacua of this theory are described by a Coulomb and Higgs branch

which are defined by

MC = {σ ∈ R , φi, φ̃i = 0} ∼= R ,

MH =



σ = ±a±′ ε ,

|φ1|2 + |φ2|2 − |φ̃1|2 − |φ̃2|2 = −e2ξ , φ1φ̃1 + φ2φ̃2 = 0

(σ − a+ ε)2|φ1|2 + (σ − a− ε)2|φ̃1|2

+(σ + a+ ε)2|φ2|2 + (σ + a− ε)2|φ̃2|2 = 0


/
U(1) .

(D.30)

Note that in this case, the Higgs branch is given by a disjoint union of 4 points given

by the 4-different choices of (±,±′) in (D.30).

Now if we rescale the fields ψi, ψ̃i, ηi, λi:

ψi, ψ̃i, ηi →
1

e
ψi,

1

e
ψ̃i,

1

e
ηi , λA, χ, χ̃→ 1

e
λA,

1

e
χ,

1

e
χ̃ , (D.31)

4There is an additional vacuum equation for the N = 2∗ theory, however it has only trivial solutions:
ρA = 0.
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such that the commutation relations become

{ψ̄i, ψj} = δij , { ¯̃
ψi, ψ̃j} = δij , {η̄i, ηj} = δij , {χ̄, χ} = { ¯̃χ, χ̃} = 1 ,

[φi, πj ] = iδij , [φ̃i, π̃j ] = iδij , [ρ, πρ] = i , [ρ̃, π̃ρ] = i .

(D.32)

with all other commutation relations (or anticommutation as appropriate) are trivial,

we can define the oscillators

ai =
1√
2e

(√
ωiφi +

ie2π̄i√
ωi

)
, āi =

1√
2e

(√
ωiφ̄i +

ie2πi√
ωi

)
,

ãi =
1√
2e

(√
ω̃iφ̃i +

ie2 ¯̃πi√
ω̃i

)
, ˜̄ai =

1√
2e

(√
ω̃i

¯̃
φi +

ie2π̃i√
ω̃i

)
,

aρ =
1√
2e

(
√
ωρρ+

ie2π̄ρ√
ωρ

)
, aρ̄ =

1√
2e

(
√
ωρρ̄+

ie2πρ√
ωρ

)
,

ãρ =
1√
2e

(√
ω̃ρρ̃+

ie2 ¯̃πρ√
ω̃ρ

)
, ãρ̄ =

1√
2e

(√
ω̃ρ ¯̃ρρ +

ie2π̃ρ√
ω̃ρ

)
,

(D.33)

where

ω1 = |σ − a+ ε| , ω2 = |σ + a+ ε| , ω̃1 = |σ − a− ε| , ω̃2 = |σ + a− ε| ,

ωρ = |m + ε| , ω̃ρ = |m− ε| ,

(D.34)

and all other (anti-) commutation relations have zero on the right hand side. Using

this we can define a Fock space vacuum

ai|0〉 = āi|0〉 = ãi|0〉 = ˜̄ai|0〉 = aρ|0〉 = aρ̄|0〉 = ãρ|0〉 = ãρ̄|0〉 = 0 ,

ψi|0〉 = ψ̃i|0〉 = λA|0〉 = ηj |0〉 = χ|0〉 = χ̃|0〉 = 0 .

(D.35)

Using these creation and annihilation operators, Hmatter and QGauge can be written

Hmatter = ω1(a†1a1 + ā†1ā1 + 1) + (σ − a+ ε)(ψ̄1ψ1 −
1

2
)

+ ω2(a†2a2 + ā†2ā2 + 1) + (σ + a+ ε)(ψ̄2ψ2 −
1

2
)

+ ω̃1(ã†1ã1 + ¯̃a†1¯̃a1 + 1)− (σ − a− ε)( ¯̃
ψ1ψ̃1 −

1

2
)

+ ω̃2(ã†2ã2 + ¯̃a†2¯̃a2 + 1)− (σ + a+ ε)(
¯̃
ψ2ψ̃2 −

1

2
) +Htheory ,

(D.36)

and

QGauge = −
[
a†1a1 + a†2a2 − ā†1ā1 − ā†2ā2 − ã†1ã1 − ã†2ã2 + ¯̃a†1¯̃a1 + ¯̃a†2¯̃a2

]
−1

2

[
ψ̄1ψ1 + ψ̄2ψ2 − ¯̃

ψ1ψ̃1 − ¯̃
ψ2ψ̃2

]
+Qtheory ,

(D.37)



332

where

Htheory =
1

2

Nf∑
j=1

(σ − 2mj)[η̄j , ηj ] , (D.38)

or

Htheory =
m

2
([χ̄, χ]− [ ¯̃χ, χ̃]) + ωρ

[
a†ρaρ + a†ρ̄aρ̄ + 1

]
+ ω̃ρ

[
a†ρ̃aρ̃ + a†¯̃ρa ¯̃ρ + 1

]
+

1

2
(σ − a+ m)[η̄1, η1]− 1

2
(σ − a−m)[¯̃η1, η̃1]

+
1

2
(σ + a+ m)[η̄2, η2]− 1

2
(σ + a−m)[¯̃η2, η̃2] ,

(D.39)

and

Qtheory = −1

2

Nf∑
j=1

[η̄j , ηj ] or Qtheory = −1

2
([η̄1, η1]− [¯̃η1, η̃1] + [η̄2, η2]− [¯̃η2, η̃2]) ,

(D.40)

for the Nf -fundamental hypermultiplet and N = 2∗ theory respectively.

D.1.1 Matter Ground States

We we can determine the asymptotic ground states by applying the Born-Oppenheimer

approximation. In this approximation, we divide our fields into “slow” and “fast” fields.

We then decompose the wave function as

|Ψ〉 = |ψslow〉 ⊗ |ψfast〉 , (D.41)

and solve for the ground state of the fast degrees of freedom in the background deter-

mined by the slow degrees of freedom. This is described by |ψfast〉. Then we solve for

the ground state of the slow degrees of freedom in the effective potential created by

integrating out the fast degrees of freedom.

For our purposes, we want to study Coulomb branch states that stretch out into the

asymptotic region of the Coulomb branch. Here, the fast degrees of freedom are de-

scribed by the matter fields (the fundamental hypermultiplets and fundamental Fermi-

multiplets) while the slow degrees of freedom are then described by the vector multiplet

fields.5 Now determining the vacuum state of the fast fields requires minimizing Hmatter

5In the case of the 4D N = 2∗ theory, the slow degrees of freedom include the adjoint valued twisted
hypermultiplet.
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and U subject to the the constraint that QGauge|Ψ〉 = 0. In order to construct a basis

of states for the fast fields, let us define the operators

a3 = aρ , ā3 = aρ̄ , ã3 = ãρ , ˜̄a3 = ãρ̄ , (D.42)

and similarly

ω3 = ωρ , ω̃3 = ω̃ρ . (D.43)

Now, Hmatter, QGauge can be written in terms of the in terms of the complex creation

and annihilation operators ai, āi, a
†
i , ā
†
i , ãi, ˜̄ai, ã

†
i , ˜̄a
†
i and the fermionic creation and an-

nihilation operators ψi, ψ̃i, ηi, ψ̄i,
¯̃
ψi, η̄i, χi, χ̄i. Now let us pick a basis of states

|(ni, n̄i, ñi, ¯̃ni,mi, m̃i, fj)〉

=

2∏
i=1

(
a†i
)ni (

ā†i
)n̄i (

ã†i
)ñi (

˜̄a†i
)¯̃ni

ψ̄mii
¯̃
ψm̃ii χ̄m3

1 χ̄m̃3

4∏
j=1

η̄
fj
j

∣∣0〉 , (D.44)

in the case of fundamental 4D matter and

|(ni,n̄i, ñi, ¯̃ni,mi, m̃i, fj)〉

=
3∏
i=1

(
a†i
)ni (

ā†i
)n̄i (

ã†i
)ñi (

˜̄a†i
)¯̃ni

ψ̄mii
¯̃
ψm̃ii χ̄m3

1 χ̄m̃3

2∏
j=1

η̄
fj
j

¯̃ηf̃j
∣∣0〉 , (D.45)

for the case of the N = 2∗ theory. Note that this means that the quantum numbers are

constrained

ni, n̄i, ñi, ¯̃ni ∈ Z+ , mi, m̃i, fj , f̃j = 0, 1 . (D.46)

These quantum numbers have the interpretation of the eigenvalue of the number

operator associated to the given fields. In this case, we have that the eigenvalues of
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Hmatter, QGauge of these states are given by

Ematter =ω1 (n1 + n̄1 + 1) + (σ − a+ ε)

(
m1 −

1

2

)
+ ω2 (n2 + n̄2 + 1) + (σ + a+ ε)

(
m2 −

1

2

)
+ ω̃1 (ñ1 + ¯̃n1 + 1)− (σ − a− ε)

(
m̃1 −

1

2

)
+ ω̃2 (ñ2 + ¯̃n2 + 1)− (σ + a− ε)

(
m̃2 −

1

2

)
+ Etheory ,

qmatter = −(n1 − n̄1 + n2 − n̄2 − ñ1 + ¯̃n1 − ñ2 + ¯̃n2 −m1 −m2 + m̃1 + m̃2)

+ qtheory .

(D.47)

Note that the mi, m̃i are quantum numbers and not masses. Here

Etheory =

Nf∑
j=1

(σ − 2mj)(fj −
1

2
) , (D.48)

or

Etheory = m[m3 − m̃3] + ω3(n3 + n̄3 + 1) + ω̃3(ñ3 + ¯̃n3 + 1)− (σ − a+ m)(f1 −
1

2
)

+ (σ − a−m)(f̃1 −
1

2
)− (σ + a+ m)(f2 −

1

2
) + (σ + a−m)(f̃2 −

1

2
) ,

(D.49)

and

Qtheory = −
Nf∑
j=1

(fj −
1

2
) or Qtheory = −(f1 + f2 − f̃1 − f̃2) , (D.50)

for the Nf -fundamental hypermultiplet and N = 2∗ theory respectively.

Here we also need to define the flavor charges

Qa = Q
(theory)
a +

1

2
[ψ̄1, ψ1]− 1

2
[
¯̃
ψ1, ψ̃1]− 1

2
[ψ̄2, ψ2] +

1

2
[
¯̃
ψ2, ψ̃2]

− 2

e2


ω1|φ1|2 + ω̃1|φ̃1|2 − ω2|φ2|2 − ω̃2|φ̃2|2 σ > a+ ε

−ω1|φ1|2 − ω̃1|φ̃1|2 + ω2|φ2|2 + ω̃2|φ̃2|2 σ < −a− ε

(D.51)

where Q
(theory)
a = 0 or

Q
(theory)
a =

1

2

(
[η̄1, η1]− [¯̃η1, η̃1]− [η̄2, η2] + [¯̃η2, η̃2]

)
. (D.52)
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and

Qε = Q(theory)
ε + 4λ̄2λ

2 +
1

2
[ψ̄1, ψ1] +

1

2
[
¯̃
ψ1, ψ̃1] +

1

2
[ψ̄2, ψ2] +

1

2
[
¯̃
ψ2, ψ̃2]

− 2

e2

2∑
i=1


(
ωi|φi|2 − ω̃i|φ̃i|2

)
σ > a+ ε

−
(
ωi|φi|2 − ω̃i|φ̃i|2

)
σ < −a− ε

(D.53)

and Q
(theory)
ε = 0 or

Q(theory)
ε =

2

e2

(
− ωρ|ρ|2 + ω̃ρ|ρ̃|2

)
+

1

2

∑
i

([η̄i, ηi] + [¯̃ηi, η̃i]) , ±σ > 0 . (D.54)

In our basis of states, these can be written as

Qa = Q
(theory)
a

+


n1 + n̄1 + ñ1 + ¯̃n1 − n2 − n̄2 − ñ2 − n̄2 +m1 − m̃1 −m2 + m̃2 σ > a+ ε

−n1 − n̄1 − ñ1 − ¯̃n1 + n2 + n̄2 + ñ2 + n̄2 +m1 − m̃1 −m2 + m̃2 σ < −a− ε

(D.55)

with Q
(theory)
a = 0 or

Q
(theory)
a = (f1 − f̃1 − f2 + f̃2) , (D.56)

and

Qε = Q(theory)
ε + 4λ̄2λ

2

+


−n1 − n̄1 + ñ1 + ¯̃n1 − n2 − n̄2 + ñ2 + ¯̃n2 +m1 + m̃1 +m2 + m̃2 σ > a+ ε

n1 + n̄1 − ñ1 − ¯̃n1 + n2 + n̄2 − ñ2 − ¯̃n2 +m1 + m̃1 +m2 + m̃2 σ < −a− ε

(D.57)

where Q
(theory)
ε = 0 or

Q(theory)
ε = − (n3 + n̄3 − ñ3 − ¯̃n3) +

(
f1 + f̃1 + f2 + f̃2

)
. (D.58)

The constraint for a supersymmetric ground state is now

(Hmatter + εQε + aQa +
∑
f

mfFf )|Ψ〉 = 0 , QGauge|Ψ〉 = 0 (D.59)
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There are 5 distinct regions in σ space in which we can impose these conditions. The

physically relevant ones are those for which |σ| > |a|+ |ε|. Therefore we will restrict to

the regions in which σ > a+ ε and σ < −a− ε where we are assuming a > ε > 0.

It is actually more convenient to solve the equations

(Hmatter + εQε + aQa +
∑
f

mfFf + σQGauge)|Ψ〉 = 0 , (D.60)

and then solve QGauge|Ψ〉 = 0.

As it turns out there are only solutions only for the case of Nf = 4 and the N = 2∗

theory. For the general theory, the zero energy condition (D.59), can be written as

0 =
2∑
i=1


ni + ¯̃ni +mi + (1− m̃i) σ > a+ ε

−n̄i − ñi − m̃i − (1−mi) σ < −a− ε
(D.61)

For Nf fundamental hypermultiplet theories, the gauge invariance condition can be

written

0 =


n̄1 + n̄2 + ñ1 + ñ2 +

(
2− Nf

2

)
+
∑Nf

j=1(1− fj) σ > a+ ε

−n1 − n2 − ¯̃n1 − ¯̃n2 −
(

2− Nf
2

)
−∑Nf

j=1 fj σ < −a− ε
(D.62)

while for the N = 2∗ theory, it can be written as

0 =


n̄1 + n̄2 + ñ1 + ñ2 + 2− (f1 + f2 − f̃1 − f̃2) σ > a+ ε

−n1 − n2 − ¯̃n1 − ¯̃n2 − 2− (f1 + f2 − f̃1 − f̃2) σ < −a− ε
(D.63)

These equations clearly have no solution for Nf = 0, 1, 2, 3.

The ground state solutions for N = 2∗ and the Nf = 4 theory are given by:

σ > a+ ε : n̄i, ñi = 0 , {fj = 1 or f1,2 = 1 , f̃1,2 = 0} ,

σ < −a− ε : ni, ¯̃ni = 0 , {fj = 0 or f̃1,2 = 1 , f1,2 = 0} .
(D.64)

Now we can solve for the matter ground states in the regions σ > a+ε and σ < −a−ε.
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We will define the matter ground states in these regions as 6

|+〉 = Θ(σ − a− ε)|(ni, n̄i, ñi, ¯̃ni,mi = 0 , m̃i = 1 , {fj = 1 or f1,2 = 1 , f̃1,2 = 0}〉 ,

|−〉 = Θ(a+ ε− σ)|(ni, n̄i, ñi, ¯̃ni, m̃i = 0 , mi = 1 , {fj = 0 or f̃1,2 = 1 , f1,2 = 0}〉 .

(D.65)

D.1.2 Asymptotic States

Thus far we have computed |ψfast〉 = |±〉 for ±σ > a + ε. Now we must find the state

|ψslow〉 that is dependent on the adjoint valued fields only, such that the entire state

|Ψ〉 = |ψslow〉 ⊗ |±〉 is annihilated by the conserved supercharge operators Q1, Q̄
1. To

this effect, we can apply the Born rule to get an effective supercharge

Qeff,A = −〈ψfast|QA|ψfast〉
〈ψfast|ψfast〉

= −〈QA〉 . (D.66)

Using the fact that |∓〉 is in the harmonic oscillator ground state of all bosonic, hyper-

multiplet fields, 7 we find that 〈F 〉 = 0 and that the effective supercharges are of the

form

Qeff,A =
e√
2

(
−i〈pσ〉 δ B

A −
1

e2
〈D〉(σ3) B

A

)
λ̄B ,

Q̄Aeff =
e√
2

(
i〈pσ〉 δ B

A −
1

e2
〈D〉(σ3) B

A

)
λ̄B ,

(D.70)

where

〈pσ〉 = −i∂σ +
i

2

∑
±

(
1

σ ± a+ ε
+

1

σ ± a− ε

)
,

〈D〉 = −e2ξ +
e2

2

∑
i

(
1

ωi
− 1

ω̃i

)
.

(D.71)

6Note that we do not need to worry about the normalization of |±〉, so long as it is normalizable.
The reason is that the only physically relevant thing is for the total wave function to have unit norm.

7Due to the form of the oscillators (D.33):

a ∼ e√
2ω

(
iπ̄ +

ω

e2
φ
)

=
e√
2ω

(
∂φ̄ +

ω

e2
φ
)
, (D.67)

the wave function |±〉 is of the form

|±〉 ∼ e−
ω
e2
|φ|2

. (D.68)

Note that this implies

〈±| |φ|2|±〉 =
e2

2ω
. (D.69)



338

Explicitly, the complex supercharges are given by

Qeff,1 =
e√
2
λ̄1


(
−∂σ + 1

σ+a−ε + 1
σ−a−ε + ξ

)
σ > a+ ε(

−∂σ + 1
σ+a+ε + 1

σ−a+ε + ξ
)

σ < −a− ε

Qeff,2 =
e√
2
λ̄2


(
−∂σ + 1

σ+a+ε + 1
σ−a+ε − ξ

)
σ > a+ ε(

−∂σ + 1
σ+a−ε + 1

σ−a−ε − ξ
)

σ < −a− ε

(D.72)

with similar expressions for the complex conjugate supercharges.8

Using these complex supercharges, we can construct the real supercharges

Q1 = Qeff,1 + Q̄1
eff , Q2 = −i(Qeff,1 − Q̄1

eff) ,

Q3 = Qeff,2 + Q̄2
eff , Q4 = −i(Qeff,2 − Q̄2

eff) ,

(D.73)

Since we are deforming by a mass parameter ε, SUSY is broken from N = (0, 4)→

N = (0, 2) such that Q1,Q2 are the conserved real supercharges. Therefore, supersym-

metric ground states are in the kernel of Q1,Q2 or equivalently in the kernel of Qeff,1

and its complex conjugate operator.

Now let us consider the states that are killed by Qeff,1 and its complex conjugate

on the semi-infinite interval σ > a+ ε.

Here the relevant supercharges are given by

Qeff,1 =
e√
2
λ̄1


(
−∂σ + 1

σ+a−ε + 1
σ−a−ε + ξ

)
σ > a+ ε(

−∂σ + 1
σ+a+ε + 1

σ−a+ε + ξ
)

σ < −a− ε

Q̄1
eff =

e√
2
λ1


(
∂σ − 1

σ+a+ε − 1
σ−a+ε + ξ

)
σ > a+ ε(

∂σ − 1
σ+a−ε − 1

σ−a−ε + ξ
)

σ < −a− ε

(D.74)

Since the ε-mass deformation breaks SUSY from N = (0, 4)→ N = (0, 2) we have that

only the Qeff,1 supercharge is preserved. These supercharges satisfy the supersymmetry

algebra

{Qeff,1, Q̄
1
eff} = Heff − Z , (D.75)

8Note that if we had normalized the matter wave functions |±〉 such that 〈±|±〉 = 1, then we would
have 〈pσ〉 = −i∂σ. However, we have made this choice of normalization such that when restricted to
the Coulomb branch, all of the σ dependence is manifested in |ψadjoint〉. This will make the discussion
of normalizability of the state along the Coulomb branch simpler.
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where

Z = −εQε − aQa −
∑
j

mfFj . (D.76)

This corresponds to the effective Hamiltonian

Heff =
e2〈pσ〉2

2
+ 〈D〉2 + ∂σ〈D〉[λ1, λ̄1] . (D.77)

The wave functions dependent on the Clifford algebra spanned by the {λ̄1, λ̄2} that

are killed by both Qeff,1 and Q̄1
eff span a 4-dimensional Fock space dependent on the

vector multiplet zero fields

|ψSUSY 〉

=


ω̃1ω̃2e

ξσ
(
α1|+〉+ β1λ̄2|+〉

)
+ ω1ω2e

−ξσ (α2λ̄1|+〉+ β2λ̄1λ̄2|+〉
)

σ > a+ ε

ω1ω2e
ξσ(α1|−〉+ β1λ̄2|−〉) + ω̃1ω̃2e

−ξσ(α2λ̄1|−〉+ β2λ̄1λ̄2|−〉) σ < −a− ε

(D.78)

where the αi, βi are undetermined coefficients and ωi, ω̃i are given by (D.34).

There are some additional considerations for the case of the N = 2∗ theory. The

reason is that there is a decoupled N = (0, 4) adjoint valued hypermultiplet field that

pairs with the N = (0, 4) vector multiplet to make a N = (4, 4) vector multiplet.

Because of the representation theory of the supersymmetry algebra, the Witten index

is identically zero.

This can be seen as follows. Since the N = (0, 4) adjoint valued hypermultiplet is

completely decoupled, the vector multiplet state splits

|ψslow〉 = |ψvector〉 ⊗ |ψhyper〉 . (D.79)

Since we can write the Hamiltonian for the adjoint hypermultiplet fields in terms of

simple harmonic oscillators, we can pick a basis of states for the hypermultiplet wave

functions

|n3, n̄3, ñ3, ¯̃n3 , m3, m̃3〉 = (a†3)n3(ā†3)n̄
†
3(ã†3)ñ3(¯̃a†3)

¯̃n3χ̄m3 ¯̃χm̃3 |0〉hyp , (D.80)

where

a3|0〉hyp = ā3|0〉hyp = ã3|0〉hyp = ¯̃a3|0〉hyp = χ|0〉hyp = χ̃|0〉hyp = 0 . (D.81)
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Because the hypermultiplet fields are completely decoupled (up to flavor symmetries),

there are no constraints on the values of the n′s and m′s except

n3, n̄3, ñ3, ¯̃n3 ∈ Z+ , m3, m̃3 = 0, 1 . (D.82)

These states have definite charge under Qm and Qε. The eigenvalues of these charge

operators is given by

qε = (n3 − n̄3 − ñ3 + ¯̃n3) , qm = 2m(m3 − m̃3) +m(n3 − n̄3 + ñ3 − ¯̃n3) . (D.83)

Now pick a state |ψ0〉 = |n∗3, n̄∗3, ñ∗3, ¯̃n∗3 , m∗3, m̃∗3〉. Now to this state we can identify

another state with the same charges under Qm and Qε with different fermion numbers.

Specifically, we can make a shift depending on the value of (m∗3 − m̃∗3)

(m∗3 − m̃∗3) 7→ (m′3 − m̃′3) = (m∗3 − m̃∗3) + 1 , (n̄∗3, ¯̃n
∗
3) 7→ (n′3, ñ

′
3) = (n̄∗3 + 1, ¯̃n∗3 + 1) ,

(D.84)

or

(m∗3 − m̃∗3) 7→ (m′3 − m̃′3) = (m∗3 − m̃∗3)− 1 , (n∗3, ñ
∗
3) 7→ (n′3, ñ

′
3) = (n∗3 + 1, ñ∗3 + 1) ,

(D.85)

depending on the value of (m∗3 − m̃∗3) where we only shift one of the m∗3, m̃
∗
3. The state

|ψ′0〉 = |n′3, n̄′3, ñ′3, ¯̃n′3 , m′3, m̃′3〉 will then have the same eigenvalues qε, qm with different

fermion number by ±1, hence canceling the contribution of |ψ0〉 to the Witten index.

Therefore, there is no contribution to the Witten index from asymptotic Coulomb

branch states in bubbling SQM for the case of the 4D N = 2∗ theory. Thus, from

hereon out, we will only consider the bubbling SQM for the Nf = 4 theory.

It is a subtle point to define the fermion number of these states. As explained in

[72], the bosonic Fermi vacuum should be defined relative to the lowest energy state

of the fermions. The Fermi vacuum of the Fermi-multiplet and multiplet fermions is

defined by their bare mass terms in the full Hamiltonian. However, since the fermions

in these multiplets come in pairs, the fermion number (−1)F is only dependent on the

vector multiplet fermions that do not come in a symmetric pair.

In our Born-Oppenheimer approximation, the vector multiplet fermion λ2 is given
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a bare mass while λ1 is given a mass from 1-loop terms. The mass terms are given by

Hmass = −4ελ̄2λ
2 ∓ e2

∑
i

(
1

ω2
i

− 1

ω̃2
i

)
[λ1, λ̄1] , ±σ > a+ ε . (D.86)

Since ωi > ω̃i for σ > a + ε (ωi < ω̃i for σ < −a − ε) for ε > 0 and similarly ωi < ω̃i

for σ > a+ ε (ωi > ω̃i for σ < −a− ε) for ε < 0, the physical, bosonic vacuum state is

defined by

λ̄2|0〉phys = λ1|0〉phys = 0 , ε > 0 ,

λ2|0〉phys = λ̄1|0〉phys = 0 , ε < 0 ,

(D.87)

which differs from our ε-invariant choice of Fock vacuum is defined in (D.35):

λA|0〉ours = 0 . (D.88)

These two choices are related by

|0〉phys =


λ̄2|0〉ours ε > 0

λ̄1|0〉ours ε < 0

. (D.89)

Thus, the fermion number of our vacuum states are given by

(−1)F |0〉 = −|0〉 =⇒ (−1)F |±〉 = −|±〉 . (D.90)

D.1.3 Hermitian Supercharge Operators and Boundary Conditions

Note that the real supercharge operators defined in (D.73) are not actually self-adjoint

on the relevant semi-infinite interval because integration by parts picks up boundary

terms. Therefore, we must restrict the Hilbert space of BPS states to those on which the

above supercharges are self-adjoint. It will be sufficient to impose that Q1 = Qeff,1+Q̄1
eff

is Hermitian. In the seminifinite interval ±σ > a+ ε, this has the form

Q =
e√
2

(λ1 − λ̄1)Dσ

+
e√
2

(λ1 + λ̄1)

(
1

|σ + a+ ε| +
1

|σ − a+ ε| −
1

|σ + a− ε| −
1

|σ − a− ε| + ξ

)
,

(D.91)

where Dσ = 〈ipσ〉.
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Since this only has λ̄1 and λ1 Clifford elements, it is natural to divide the Hilbert

space as

H = span{1, λ̄2} ⊗ {|+〉 , λ̄1|+〉} . (D.92)

Now consider a generic state that is annihilated by λ2:

|Ψ〉 = f(σ)|+〉+ g(σ)λ̄1|+〉 . (D.93)

In this subspace, the supercharge Q1 (which we choose to be our localizing supercharge)

is the form of a Dirac operator:

Q =
e√
2

 0 Dσ +A(σ)

−Dσ +A(σ) 0

 where |Ψ〉 =

 f(σ)

g(σ)

 , (D.94)

and

A(σ) =

(
1

|σ + a+ ε| +
1

|σ − a+ ε| −
1

|σ + a− ε| −
1

|σ − a− ε| + ξ

)
. (D.95)

On these states, we have that

〈Ψ1|Q1Ψ2〉 = 〈Q1Ψ1|Ψ2〉 −
[
f̄1g2 − ḡ1f2

]
±σ=a+ε

. (D.96)

And therefore, for the Qi to be self-adjoint, we must impose[
f̄1g2 − ḡ1f2

]
±σ=a+ε

= 0 . (D.97)

A similar argument holds for the pair of states

|Ψ̃〉 = f̃(σ)λ̄2|+〉+ g̃(σ)λ̄1λ̄2|+〉 . (D.98)

Now we see that there are more than 10 different restrictions we can impose on the

Hilbert space such that (D.97) is satisfied. We will impose the same condition on the

Hilbert space for σ = a+ ε and σ = −a− ε. These choices are given by a combination

of restricting wave functions and completely eliminating all wave functions in different

factors of the Hilbert space under the decomposition

H = ⊕n1,n2=0,1Hn1,n2 = ⊕n1,n2=0,1spanL2{λ̄n1
1 λ̄n2

2 |0〉} . (D.99)

These different conditions that we can impose are:
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• Type I: restricting the wave functions in a factor ofHn1,n2 such that 〈σ|ψ〉
∣∣
σ=±(a+ε)

=

0 for |ψ〉 ∈ Hn1,n2

• Type II: eliminating a factor of Hn1,n2

We will choose either purely Type I or Type II conditions.

Given our assumptions that the boundary conditions are symmetric and purely Type

I or Type II, there is a unique such choice such that Iasymp = Z
(extra)
mono . If we choose any

other boundary condition, then we have that Iasymp 6= Z
(extra)
mono . Therefore, we believe

that the physics of relating I
(Loc)
H0

with a counting of Higgs branch states suggests that

we we should choose boundary conditions that restrict our wave functions to be of the

form |Ψf 〉:

Hσ>a+ε
BPS = span

{
N1 ω1ω2e

ξσλ̄2|+〉 , N2 ω̃1ω̃2e
−ξσλ̄1|+〉

}
. (D.100)

A similar computation shows that

Hσ<−a−εBPS = span
{
N1 ω̃1ω̃2e

ξσλ̄2|−〉 , N2 ω1ω2e
−ξσλ̄1|−〉

}
. (D.101)

Thus, what we have really shown is that in the Born-Oppenheimer approximation, there

is a suitable boundary condition so that Iasymp = Z
(extra)
mono . Clearly this aspect of our

proposal needs to be improved.

D.1.4 Extra Contribution to the Witten Index

Now we have found the BPS states for the semi-infinite intervals σ > a + ε and σ <

−a− ε. Interestingly, these states undergo wall crossing with the sign of ξ. Essentially,

as is evident from equations (D.100)-(D.101), as one approaches the wall of marginal

stability at ξ = 0, the states contributing to the Witten index go off to infinity as 1/ξ

and become non-normalizable at ξ = 0. Then as we again increase |ξ| from 0, another

state comes in from infinity.

By using the results of (D.100) and (D.101), we have that there are only 2 normaliz-

able BPS states for a given choice of ξ > 0 or ξ < 0. The corresponding (unnormalized,
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but normalizable) states are given by:

|Ψ1〉 =


ω̃1ω̃2e

−ξσλ̄1|+〉 ξ > 0

ω1ω2e
ξσλ̄2|+〉 ξ < 0

,

|Ψ2〉 =


ω̃1ω̃2e

ξσλ̄2|−〉 ξ > 0

ω1ω2e
−ξσλ̄1|−〉 ξ < 0

.

(D.102)

Now we can ask how these contribute to the Witten index. Here the flavor charges

associated to a, ε are given by equations (D.51) and (D.53). For our cases, these reduce

to

Qa = 0 , Qε = 2− 4λ̄2λ
2 . (D.103)

and similarly

Qmf
= [η̄f , ηf ] . (D.104)

This means that the flavor charges of the ground state are given by

Qa Qε Fj

|+〉 0 +2 +1

|−〉 0 +2 -1

Then, using the fact that λ̄2 has charge −4 under Qε with all other charges an-

nihilating λ̄1, λ̄2, we see that the charges evaluated on the different states are given

by

aQa

mfFf

εQε

(−1)F


λ̄1|+〉 =



0

+mf

+2ε

+1


λ̄1|+〉 ,



aQa

mfFf

εQε

(−1)F


λ̄2|−〉 =



0

−mf

−2ε

+1


λ̄2|−〉 ,



aQa

mfFf

εQε

(−1)F


λ̄2|+〉 =



0

+mf

−2ε

+1


λ̄2|+〉 ,



aQa

mfFf

εQε

(−1)F


λ̄1|−〉 =



0

−mf

+2ε

+1


λ̄1|−〉 .

(D.105)
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We are interested in the contribution of these states to the ground state index:

IH0

∣∣∣
MC

= Iasymp = lim
β→∞

IHMC
(−1)F e−

β
2
{Q,Q}+aQa+ε+Qε+

∑
f mfFf . (D.106)

By using the fact that BPS states are annihilated by Q and the charges (D.105), the

asymptotic Coulomb branch states as in (D.102) give a contribution to the Witten

index:

Iasymp =


e−
∑
f mf−2ε + e

∑
f mf+2ε = 2 cosh

(∑
f mf + 2ε

)
ξ > 0

e−
∑
f mf+2ε + e

∑
f mf−2ε = 2 cosh

(∑
f mf − 2ε

)
ξ < 0

= Z(extra)
mono .

(D.107)

This is exactly the contribution Z
(extra)
mono (1, 0).

D.1.5 1D Wilson Lines

We can additionally add supersymmetric Wilson lines to the SQM. These are labeled by

a parameter q that is quantized q ∈ Z+
Nf
2 . This adds a term to the total Lagrangian:

LWilson = −q(vt + σ) . (D.108)

Note that this is supersymmetric due to the fact that δvt = −δσ. This only changes

the above analysis by changing the gauge invariance condition (recall that we solved

the condition (H + Z + σQGauge)|Ψ〉 = 0):

(QGauge − q)|Ψ〉 = 0 . (D.109)

This only changes the choice of matter ground states. Let us consider the Nf funda-

mental hypermultiplet theory. Here the gauge invariance condition is given by equation

0 = q −


n̄1 + n̄2 + ñ1 + ñ2 +

(
2− Nf

2

)
+
∑Nf

j=1(1− fj) σ > a+ ε

−n1 − n2 − ¯̃n1 − ¯̃n2 −
(

2− Nf
2

)
−∑Nf

j=1 fj σ < −a− ε
(D.110)

Therefore, for Nf < 4, we only have solutions for q = ±4−Nf
2 = ±qcrit in the ±σ > a+ ε

region.

Once we have the existence of the matter ground states, the analysis for the vector-

multiplet part of the states carries over from the Nf = 4 theories. This leads to the
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contribution to the ground state index (D.106) from the asymptotic states

Iasymp =


e
∑
f mf+2ε+ q = qcrit

e−
∑
f mf−2ε+ q = −qcrit

0 else

(D.111)

for ξ > 0 and

Iasymp =


e
∑
f mf−2ε+ q = qcrit

e−
∑
f mf+2ε+ q = −qcrit

0 else

(D.112)

for ξ < 0.

Note that here the fermion number is always even due to the sign of the mass term

of the Fermi-multiplets which is determined by the sign of σ. This relies on the fact

that we are working in the limit where σ >> mf , ∀f .

D.2 U(1)3 N = (0, 4) SQM Analysis

In this appendix we will analyze the ground states on the Coulomb branch of the N =

(0, 4) SQM with gauge group U(1)1×U(1)2×U(1)3 corresponding to the monopole bub-

bling term Zmono(a,mf , ε; 2, 1). Here we have three U(1) vector multiplets (σi, λ
A
i ,M

r
i )

where i = 1, 2, 3, two fundamental hypermultiplets (φAi , ψi,I) where i = 1, 2, and two

bifundamental hypermultiplets (φA
i
, ψ

i,I
) where i = 1, 2. Additionally, dependent on

the specific 4D theory, we have up to 4 fundamental (short) Fermi-multiplets (ηi, Fi)

and 3 adjoint valued hypermultiplets (ρAi , χi,I). The quivers for the bubbling SQMs are

given by:
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1 1 1

1 1

Nf

21

1 1 1

1 1

22

in the case of the theory with Nf fundamental hypermultiplets (given by a N = (0, 4)

quiver SQM) and the N = 2∗ theory (given by a N = (4, 4) quiver SQM).

The total Lagrangian again decomposes as

L = Luniv + Ltheory , (D.113)

where Luniv is the universal term describing 4D SYM field content and Ltheory depends

on the matter content of the 4D theory. The universal term decomposes as

Luniv = Lvec + Lhyp + Lbf + LFI . (D.114)

After introducing notation analagous to that of Appendix D.1, the field content of this

theory and their charges are given by
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Lag. Term N = (0, 4) Multiplet Fields Q
(1)
G Q

(2)
G Q

(3)
G Qa Qε Fj

Universal Vector- σ1 0 0 0 0 0 0

λ1
1 0 0 0 0 0 0

λ2
1 0 0 0 0 4 0

σ2 0 0 0 0 0 0

λ1
2 0 0 0 0 0 0

λ2
2 0 0 0 0 4 0

σ3 0 0 0 0 0 0

λ1
3 0 0 0 0 0 0

λ2
3 0 0 0 0 4 0

Universal Fund. Hyper- φ1 1 0 0 -1 1 0

φ̃1 -1 0 0 1 1 0

φ2 0 0 1 1 1 0

φ̃2 0 0 -1 1 1 0

ψ1 1 0 0 -1 1 0

ψ̃1 -1 0 0 1 1 0

ψ2 0 0 1 1 1 0

ψ̃2 0 0 -1 1 1 0

Universal Bifund. Hyper- φ
1

-1 1 0 0 1 0

φ̃
1

1 -1 0 0 1 0

φ
2

0 -1 1 0 1 0

φ̃
2

0 1 -1 0 1 0

ψ
1

-1 1 0 0 1 0

ψ̃
1

1 -1 0 0 1 0

ψ
2

0 -1 1 0 1 0

ψ̃
2

0 1 -1 0 1 0
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Lag. Term N = (0, 4) Multiplet Fields Q
(1)
G Q

(2)
G Q

(3)
G Qa Qε Fj

Nf Fund. Hyper- Fund. Fermi- ηf 0 1 0 0 0 -2

N = 2∗ Theory Twisted Chiral ρ1 0 0 0 0 1 1

ρ̃1 0 0 0 0 -1 1

χ1 0 0 0 0 0 1

χ̃1 0 0 0 0 0 -1

ρ2 0 0 0 0 1 1

ρ̃2 0 0 0 0 -1 1

χ2 0 0 0 0 0 1

χ̃2 0 0 0 0 0 -1

ρ3 0 0 0 0 1 1

ρ̃3 0 0 0 0 -1 1

χ3 0 0 0 0 0 1

χ̃3 0 0 0 0 0 -1

N = 2∗ Theory Fund. Fermi η1 1 0 0 1 -1 0

η̃1 -1 0 0 1 1 0

η2 0 0 1 1 1 0

η̃2 0 0 -1 -1 1 0
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In terms of these component fields, the Lagrangian terms can be written as

Lvec + LFI =
3∑
i=1

1

2e2

[
(∂tσi)

2 + i
(
λ̄i,1∂tλ

1
i + λ1

i ∂tλ̄i,1
)

+ 2iλ̄i,2(∂t − 4iε)λ2
i − (Mi,r)

2 − 2e2ξiMi,3

]
,

e2Lhyp = |Dt,1φ
A
1 |2 − |σ1φ

A
1 |2 + φ̄1,A(σr)ABM1,rφ

B
1 +

i

2

(
ψ̄1(Dt,1 + iσ1)ψ1

+ ψ1(D̃t,1 − iσ1)ψ̄1 +
¯̃
ψ1(D̃t,1 − iσ1)ψ̃1 + ψ̃1(Dt,1 + iσ1)

¯̃
ψ1

)
+

i√
2

(
φ̄1,Aλ

A
1 ψ1 − ψ̄1λ̄1,Aφ

A
1 + φ̄1,Aλ̄

A
1

¯̃
ψ1 − ψ̃1λ1,Aφ

A
1

)
+ |Dt,3φ

A
2 |2 − |σ3φ

A
1 |2 + φ̄2,A(σr)ABM3,rφ

B
2 +

i

2

(
ψ̄2(Dt,3 + iσ3)ψ2

+ ψ2(D̃t,3 − iσ3)ψ̄2 +
¯̃
ψ2(D̃t,3 − iσ3)ψ̃2 + ψ̃2(Dt,3 + iσ3)

¯̃
ψ2

)
+

i√
2

(
φ̄2,Aλ

A
3 ψ2 − ψ̄2λ̄3,Aφ

A
2 + φ̄2,Aλ̄

A
3

¯̃
ψ2 − ψ̃2λ3,Aφ

A
2

)
,

e2Lbf = |Dt,21φ
A
1
|2 − |σ21φ

A
1
|2 + φ̄

1,A
(σr)ABM21,rφ

B
1

+
i

2

(
ψ̄1(Dt,21 + iσ21)ψ1

+ ψ1(D̃t,21 − iσ21)ψ̄1 +
¯̃
ψ1(D̃t,21 − iσ21)ψ̃1 + ψ̃1(Dt,21 + iσ21)

¯̃
ψ1

)
+

i√
2

(
φ̄

1,A
λA21ψ1 − ψ̄1λ̄21,Aφ

A
1

+ φ̄
1,A
λ̄A21

¯̃
ψ1 − ψ̃1λ21,Aφ

A
1

)
+ |Dt,32φ

A
2
|2

− |σ32φ
A
2
|2 + φ̄

2,A
(σr)ABM32,rφ

B
2

+
i

2

(
ψ̄2(Dt,32 + iσ32)ψ2

+ ψ2(D̃t,32 − iσ32)ψ̄2 +
¯̃
ψ

2
(D̃t,32 − iσ32)ψ̃

2
+ ψ̃

2
(Dt,32 + iσ32)

¯̃
ψ

2

)
+

i√
2

(
φ̄

2,A
λA32ψ2 − ψ̄2λ̄32,Aφ

A
2

+ φ̄
2,A
λ̄A32

¯̃
ψ

2
− ψ̃

2
λ32,Aφ

A
2

)
.

(D.115)

where we used the notation

(Dt,ij ± iσij) = ∂t + 2i(vi,t − vj,t)± i(σi − σj) , λAij = λAi − λAj . (D.116)

Ltheory can have contributions from terms of the form

Ltheory = LFermi + Ladj hyp . (D.117)
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In components, this can be written

e2LFermi =
∑
j

[
i

2

(
η̄i(Dt,2 + iσ2)ηi + ηi(D̃t,2 − iσ2)η̄i

)
+ |Gi|2 + mj [η̄j , ηj ]

]
,

Ladj hyp =
∑
i

1

e2

[
|∂tρAi |2 + (m + ε)|ρi|2 + (m− ε)2|ρ̃i|2

+
∑
I

(
i

2
(χ̄i,I∂tχi,I + χi,I∂tχ̄i,I)−

m

2
[χ̄i,I , χi,I ]

)]
,

(D.118)

where χi,I = (χi , ¯̃χi) .

Now we can go to the Hamiltonian formalism and integrate out the auxiliary fields.

We will again scale our fermionic fields such that they obey anti-commutation relations

of the form

{ψ̄i, ψj} = δij , {η̄i, ηj} = δij . (D.119)

Now the total Hamiltonian will be form the form

H = Hvm + U +Hmatter +HI +
∑
i

vt,iQ
(i)
Gauge , (D.120)

where

Hvm =
e2

1p
2
σ1

2
+
e2

2p
2
σ2

2
+
e2

3p
2
σ3

2
− 4ε

∑
i

λ̄i,2λ
2
i +Hadj hyp ,

Hmatter = e2
[
|π1|2 + |π2|2 + |π̃1|2 + |π̃2|2 + |π1|2 + |π2|2 + |π̃1|2 + |π̃2|2

]
+

1

e2

(
ω2

1|φ1|2 + ω2
2|φ2|2 + ω̃2

1|φ̃1|2 + ω̃2
2|φ̃2|2 + ω2

1|φ1
|2 + ω2

2|φ2
|2 + ω̃2

1|φ̃1
|2 + ω̃2

2|φ̃2
|2
)

+
1

2

(
(σ1 − a+ ε)[ψ̄1, ψ1]− (σ1 − a− ε)[ ¯̃

ψ1, ψ̃1]

+ (σ3 + a+ ε)[ψ̄2, ψ2]− (σ3 + a+ ε)[
¯̃
ψ2, ψ̃2]

)
− 1

2

(
(σ21 + ε)[ψ̄

1
, ψ

1
]− (σ21 − ε)[ ¯̃ψ1

, ψ̃
1
] + (σ21 + ε)[ψ̄

2
, ψ

2
]− (σ32 − ε)[ ¯̃ψ2

, ψ̃
2
]
)

+HFermi ,

(D.121)
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where

ω1 = |σ1 − a+ ε| , ω̃1 = |σ1 − a− ε| , ω2 = |σ3 + a+ ε| , ω̃2 = |σ3 + a− ε| ,

ω1 = |σ21 + ε| , ω̃1 = |σ21 − ε| , ω2 = |σ32 + ε| , ω̃2 = |σ32 − ε| ,

ωi+2 = |m + ε| , ω̃i+2|m− ε| , for a, ε > 0 .

(D.122)

and

HFermi =
1

2

Nf∑
j=1

(σ2 − 2mf )[η̄j , ηj ] , (D.123)

or

HFermi =(σ1 − a+m))[η̄1, η1]− (σ1 − a−m))[¯̃η1, η̃1]

+ (σ3 + a+m))[η̄2, η2]− (σ3 + a−m))[¯̃η2, η̃2] ,

(D.124)

for the 4D theories with Nf -hypermultiplets or for the N = 2∗ theory respectively and

Hadj hyp is only included for the N = 2∗ theory and is given by

Hadj hyp =

3∑
i=1

[
e2|πi+2|2 + e2|π̃i+2|2 +

ω2
i+2

e2
|ρi|2 +

ω̃2
i+2

e2
|ρ̃i|2 +

m

2

∑
I

[χ̄i,I , χi,I ]

]
.

(D.125)

Additionally,

U =
1

2e2

(
|φ1|2 − |φ̃1|2 − |φ1

|2 + |φ̃
1
|2 − e2ξ1

)2

+
1

2e2

(
|φ

1
|2 − |φ̃

1
|2 − |φ

2
|2 + |φ̃

2
|2 − e2ξ2

)2

+
1

2e2

(
|φ

2
|2 − |φ̃

2
|2 + |φ2|2 − |φ̃2|2 − e2ξ3

)2

+
1

e2
|φ1φ̃1 − φ1

φ̃
1
|2 +

1

e2
|φ

1
φ̃

1
− φ

2
φ̃

2
|2 +

1

e2
|φ

2
φ̃

2
+ φ2φ̃2|2 ,

(D.126)
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and

HI =
i√
2

(
φ̄1λ

1
1ψ1 + φ̃1λ

2
1ψ1 + φ̃1λ̄1,1

¯̃
ψ1 − φ̄1λ̄1,2

¯̃
ψ1

− ψ̄1λ̄1,1φ1 − ψ̄1λ̄1,2
¯̃
φ1 − ψ̃1λ

1
1

¯̃
φ1 + ψ̃1λ

2
1φ1

)
+

i√
2

(
φ̄2λ

1
3ψ2 + φ̃2λ

2
3ψ2 + φ̃2λ̄3,1

¯̃
ψ2 − φ̄2λ̄3,2

¯̃
ψ2

− ψ̄2λ̄3,1φ2 − ψ̄2λ̄3,2
¯̃
φ2 − ψ̃2λ

1
3

¯̃
φ2 + ψ̃2λ

2
3φ2

)
+

i√
2

(
φ̄

1
λ1

21ψ1
+ φ̃

1
λ2

21ψ1
+ φ̃

1
λ̄21,1

¯̃
ψ

1
− φ̄

1
λ̄21,2

¯̃
ψ

1

− ψ̄
1
λ̄21,1φ1

− ψ̄
1
λ̄21,2

¯̃
φ

1
− ψ̃

1
λ1

21
¯̃
φ

1
+ ψ̃

1
λ2

21φ1

)
+

i√
2

(
φ̄

2
λ1

32ψ2
+ φ̃

2
λ2

32ψ2
+ φ̃

2
λ̄32,1

¯̃
ψ

2
− φ̄

2
λ̄32,2

¯̃
ψ

2

− ψ̄
2
λ̄32,1φ2

− ψ̄
2
λ̄32,2

¯̃
φ

2
− ψ̃

2
λ1

32
¯̃
φ

2
+ ψ̃

2
λ2

32φ2

)
.

(D.127)

Now by identifying φi+2 = ρi, we can define the operators

ai =
1√
2e

(
ωiφi +

ie2π̄i
ωi

)
, āi =

1√
2e

(
ωiφ̄i +

ie2πi
ωi

)
,

ãi =
1√
2e

(
ω̃iφ̃i +

ie2 ¯̃πi
ωi

)
, ¯̃ai =

1√
2e

(
ω̃i

¯̃
φi +

ie2π̃i
ωi

)
,

(D.128)

for i = 1, ..., 5 and

ai =
1√
2e

(
ωiφi +

ie2π̄i
ωi

)
, āi =

1√
2e

(
ωiφ̄i +

ie2πi
ωi

)
,

ãi =
1√
2e

(
ω̃iφ̃i +

ie2 ¯̃πi
ωi

)
, ¯̃ai =

1√
2e

(
ω̃i

¯̃
φi +

ie2π̃i
ωi

)
,

(D.129)

for i = 1, 2.
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Now we can write the matter Hamiltonian as

Hmatter = ω1(a†1a1 + ā†1ā1 + 1) + (σ1 − a+ ε)(ψ̄1ψ1 −
1

2
)

+ ω̃1(ã†1ã1 + ¯̃a†1¯̃a1 + 1)− (σ1 − a− ε)( ¯̃
ψ1ψ̃1 −

1

2
)

+ ω2(a†2a2 + ā†2ā2 + 1) + (σ3 + a+ ε)(ψ̄2ψ2 −
1

2
)

+ ω̃2(ã†2ã2 + ¯̃a†2¯̃a2 + 1)− (σ3 + a− ε)( ¯̃
ψ2ψ̃2 −

1

2
)

+ ω1(a†1a1 + ā†1ā1 + 1) + (σ2 − σ1 + ε)
(
ψ̄

1
ψ

1
− 1

2

)
+ ω̃1(ã†1ã1 + ¯̃a†1¯̃a1 + 1)− (σ2 − σ1 − ε)

( ¯̃
ψ

1
ψ̃

1
− 1

2
)

+ ω2(a†2a2 + ā†2ā2 + 1) + (σ3 − σ2 + ε)
(
ψ̄

2
ψ

2
− 1

2
)

+ ω̃2(ã†2ã2 + ¯̃a†2¯̃a2 + 1)− (σ3 − σ2 − ε)
( ¯̃
ψ

2
ψ̃

2
− 1

2
)

+HFermi .

(D.130)

here again HFermi is given by (D.123) or (D.124) for the case of the corresponding 4D

theory having Nf fundamental hypermultiplets or being the N = 2∗ theory respectively.

These operators also allow us to write Q
(i)
Gauge simply as

Q
(1)
Gauge = −

(
a†1a1 − ā†1ā1 − ã†1ã1 + ¯̃a†1¯̃a1 − a†1a1 + ā†1ā1 + ã†1ã1 − ¯̃a†1¯̃a1

)
−
(
ψ̄1ψ1 − ¯̃

ψ1ψ̃1 − ψ̄1
ψ

1
+

¯̃
ψ

1
ψ̃

1

)
+Q

(1)
theory ,

Q
(2)
Gauge = −

(
a†1a1 − ā†1ā1 − ã†1ã1 + ¯̃a†1¯̃a1

)
+
(
a†2a2 − ā†2ā2 − ã†2ã2 + ¯̃a†2¯̃a2

)
− (ψ̄

1
ψ

1
− ¯̃
ψ

1
ψ̃

1
) + (ψ̄

2
ψ

2
− ¯̃
ψ

2
ψ̃

2
) +Q

(2)
theory ,

Q
(3)
Gauge = −

(
a†2a2 − ā†2ā2 − ã†2ã2 + ¯̃a†2¯̃a2

)
−
(
a†2a2 − ā†2ā2 − ã†2ã2 + ¯̃a†2¯̃a2

)
− (ψ̄2ψ2 − ¯̃

ψ2ψ̃2)− (ψ̄
2
ψ

2
− ¯̃
ψ

2
ψ̃

2
) +Q

(3)
theory .

(D.131)

where

Q
(2)
theory = −1

2

Nf∑
j=1

[η̄j , ηj ] , Q
(1)
theory = Q

(3)
theory = 0 (D.132)

for the theory with Nf fundamental hypermultiplets and

Q
(1)
theory = −1

2
[η̄1, η1] +

1

2
[¯̃η1, η̃1] ,

Q
(3)
theory = −1

2
[η̄2, η2] +

1

2
[¯̃η2, η̃2] ,

Q
(2)
theory = 0 ,

(D.133)
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for the case of the N = 2∗ theory.

Let us again pick a basis of states for our Hilbert space∣∣∣∣∣(ni, n̄i, ñi, ¯̃ni,mi, m̃i) ; (ni, n̄i, ñi, ¯̃ni) ; (fj)

〉
=(

5∏
i=1

(
a†i
)ni (

ā†i
)n̄i (

ã†i
)ñi (

¯̃a†i
)¯̃ni

ψ̄mii
¯̃
ψm̃ii

)
×

(
2∏
i=1

(
a†i
)ni (

ā†i
)n̄i (

ã†i
)ñi (

¯̃a†i
)¯̃ni

ψ̄
mi
i

¯̃
ψ
m̃i
i

)
×

 4∏
j=1

η̄
fj
j

∣∣∣0〉 ,
(D.134)

for the case of 4D fundamental matter or∣∣∣∣∣(ni, n̄i, ñi, ¯̃ni,mi, m̃i) ; (ni, n̄i, ñi, ¯̃ni) ; (fj)

〉
=(

5∏
i=1

(
a†i
)ni (

ā†i
)n̄i (

ã†i
)ñi (

¯̃a†i
)¯̃ni

ψ̄mii
¯̃
ψm̃ii

)
×

(
2∏
i=1

(
a†i
)ni (

ā†i
)n̄i (

ã†i
)ñi (

¯̃a†i
)¯̃ni

ψ̄
mi
i

¯̃
ψ
m̃i
i

)
×

 2∏
j=1

η̄
fj
j

¯̃ηf̃j

∣∣∣0〉 ,
(D.135)

for the case of N = 2∗ theory where we have identified χ1,i = ψi+2 and χ2,i = ψ̃i+2 and

the vacuum state is defined as

ai|0〉 = āi|0〉 = ãi|0〉 = ¯̃ai|0〉 = ai|0〉 = āi|0〉 = ãi|0〉 = ¯̃ai|0〉 = 0 ,

ψi|0〉 = ψ̃i|0〉 = ψ
i
|0〉 = ψ̃

i
|0〉 = ηj |0〉 = η̃j |0〉 = 0 .

(D.136)

Thus, the quantum numbers are constrained

ni, n̄i, ñi, ¯̃ni, ni, n̄i, ñi, ¯̃ni ∈ Z+ , mi, m̃i, fj = 0, 1 . (D.137)

Now as before we want to solve for gauge invariant BPS states. These satisfy

(H − Z)|Ψ〉 = 0 , QGauge|Ψ〉 = 0 , (D.138)

where

Z = −aQa − εQε −mFm −
Nf∑
j=1

mjFj , (D.139)

where Fm and Fj are the flavor charges associated with the 4D adjoint hypermultiplet

and 4D fundamental hypermultiplets respectively.
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As in the U(1) case, there are unique matter ground states for the regions9

S+ = {σ1 > a+ ε , σ3 > −a+ ε , σ2 > σ1 + ε , σ3 > σ2 + ε} . (D.140)

and

S− = {σ1 < a− ε , σ3 < −a− ε , σ2 < σ1 − ε, σ3 < σ2 − ε} , (D.141)

which have the quantum numbers

S+ : Ni, N̄i, Ñi,
¯̃Ni, m̃i, m̃1,m2 = 0 , mi,m1, m̃2 = 1 , fj = 0 ,

S− : Ni, N̄i, Ñi,
¯̃Ni,mi,m1, m̃2 = 0 , m̃i, m̃1,m2 = 1 , fj = 1 ,

(D.142)

where here we use the notation {Ni, N̄i, Ñi,
¯̃Ni,Mi, M̃i}4i=1 to collectively refer to the

quantum numbers of all hypermultiplets where i = 1, 2 correspond to the fundamental

hypermultiplets and i = 3, 4 correspond to the 1st and 2nd bi-fundamental hypermulti-

plets respectively.

We will denote the matter ground state wave functions in these regions as

|Ψ+〉 = δS+ |Ni, N̄i, Ñi,
¯̃Ni, m̃i, m̃1,m2 = 0 , mi,m1, m̃2 = 1 , fj = 0〉 ,

|Ψ−〉 = δS− |Ni, N̄i, Ñi,
¯̃Ni,mi,m1, m̃2 = 0 , m̃i, m̃1,m2 = 1 , fj = 1〉 ,

(D.143)

where δS is the indicator function for the set S.

D.2.1 Effective Hamiltonian

In analogy with the procedure in Appendix D.1 we can compute the effective Hamil-

tonian by integrating out the fundamental hypermultiplet and Fermi-multiplet matter.

In this SQM, the supercharge is of the form:

QA = Qmatter,A −Qvec,A ,

Qvec,A =

3∑
i=1

e√
2

(
−ipσiλ̄i,A +Mr(σ

r) B
A λ̄B

)
,

(D.144)

and Qmatter,A is analogous to the first terms of (D.12) which annihilate the harmonic

oscillator wave functions of the matter fields. Now the effective supercharge is of the

9Recall that we are assuming a, ε > 0.
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form

Qeff,A = 〈Qvec,A〉 =

3∑
i=1

e√
2

(
−i〈pσi〉λ̄i,A −

1

e2
〈Di〉(σ3) B

A λ̄B −
√

2

e2
〈Fi〉(σ+) B

A λ̄B −
√

2

e2
〈F̄i〉(σ−) B

A λ̄B

)
,

(D.145)

where

F1 =
(
φ1φ̃1 − φ1

φ̃
1

)
, F2 =

(
φ

1
φ̃

1
− φ

2
φ̃

2

)
, F3 =

(
φ

2
φ̃

2
+ φ2φ̃2

)
,

D1 =
(
|φ1|2 − |φ̃1|2 − |φ1

|2 + |φ̃
1
|2 − e2ξ1

)
,

D2 =
(
|φ

1
|2 − |φ̃

1
|2 − |φ

2
|2 + |φ̃

2
|2 − e2ξ2

)
,

D3 =
(
|φ

2
|2 − |φ̃

2
|2 + |φ2|2 − |φ̃2|2 − e2ξ3

)
.

(D.146)

Now by using the form of (D.146), we see that 〈Fi〉 = 〈F̄i〉 = 0, ∀i. Again, due to

having a non-zero ε, a, we have broken SUSY to N = (0, 2), preserving the supercharges

Qeff1, Q̄
1
eff .

We can now compute the effective Hamiltonian by squaring the supercharges

Heff = {Q̄1
eff , Qeff,1} − Z . (D.147)

Using the fact that Gauss’s law imposes Q
(i)
Gauge = 0, ∀i, we have that only flavor charges

contribute to the central charge. This gives rise to the central charge:

Z = 4ε
∑
i

λ̄i,2λ
2
i − 6ε−

4∑
f=1

mf [η̄f , ηf ] . (D.148)

This gives us the full effective Hamiltonian:

Heff =
∑
i

e2〈pσi〉2
2

+
1

2e2
〈Di〉2 −

1

2
[λ̄i,1, λ

1
i ]∂σi〈Di〉

− 4ε
∑
i

λ̄i,2λ
2
i + 6ε+ 2

4∑
f=1

mf [η̄f , ηf ] ,

(D.149)

where

〈Di〉 = −e2ξ +
e2

2



1
ω1
− 1

ω̃1
− 1

ω1
+ 1

ω̃1
i = 1

1
ω1
− 1

ω̃1
− 1

ω2
+ 1

ω̃2
i = 2

1
ω2
− 1

ω̃2
+ 1

ω2
− 1

ω̃2
i = 3

(D.150)
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and

i〈pσi〉 = ∂σi −
1

2



1
σ1−a+ε − 1

σ1−a−ε −
1

σ21+ε − 1
σ21−ε i = 1

1
σ21+ε + 1

σ21−ε −
1

σ32+ε − 1
σ32−ε i = 2

1
σ3+a+ε + 1

σ3+a−ε + 1
σ32+ε + 1

σ32−ε i = 3

(D.151)

where the si = sign(arg(ωi)), s̃i = sign(arg(ω̃i)) where ωi, ω̃i are treated as the absolute

value function of its argument. This gives rise to the effective supercharges:

Qeff,1 =
e√
2
λ1

1

(
−∂σ1 −

1

ω̃1
+

1

ω̃1

+ ξ1

)
+

e√
2
λ1

2

(
−∂σ2 −

1

ω̃1

+
1

ω̃2

+ ξ2

)
+

e√
2
λ1

3

(
∂σ3 −

1

ω̃2

− 1

ω̃2
+ ξ3

)
Q̄1

eff =
e√
2
λ1

1

(
−∂σ1 +

1

ω1
− 1

ω1

+ ξ1

)
+ +

e√
2
λ1

2

(
∂σ2 +

1

ω1

− 1

ω2

+ ξ2

)
+

e√
2
λ̄3

(
∂σ3 +

1

ω2

+
1

ω2
+ ξ3

)
,
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for S+ and:

Qeff,1 =
e√
2
λ̄1,1

(
−∂σ1 +

1

ω1
− 1

ω1

+ ξ1

)
+

e√
2
λ̄2,1

(
−∂σ2 +

1

ω1

− 1

ω2

+ ξ2

)
+

e√
2
λ̄3,1

(
−∂σ3 +

1

ω2

+
1

ω2

)
,

Q̄1
eff =

e√
2
λ1

1

(
∂σ1 −

1

ω̃1
+

1

ω̃1

+ ξ1

)
+

e√
2
λ1

2

(
∂σ2 −

1

ω̃1

+
1

ω̃2

+ ξ2

)
+

e√
2
λ1

3

(
∂σ3 −

1

ω̃2

− 1

ω̃2
+ ξ3

)
,

(D.153)

for S−.

D.2.2 Ground States

Unfortunately, solving for the ground states of this system is significantly more com-

plicated than the last section. We have to balance an unknown choice of boundary

conditions, Born-Oppenheimer approximation, and solving a system of partial differen-

tial equations.

Recall that in the Born-Oppenheimer approximation, we can only truly make sense

of the quantum physics away from the boundaries. Thus, we are working in the limit

ε/σ1 , ε/σ3 , ε/σ21 , ε/σ32 << 1 . (D.154)
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Therefore, we will solve for ground states that are to first order in these parameters.

In order to study this differential operator, we will introduce a basis for the Clifford

algebra:

f1

f2

f3

f4

f5

f6

f7

f8


±

=
f1|±〉+ f2λ̄1,1|±〉+ f3λ̄2,1|±〉+ f4λ̄1,1λ̄2,1|±〉+ f5λ̄3,1|±〉

+f6λ̄1,1λ̄3,1|±〉+ f7λ̄2,1λ̄3,1|±〉+ f8λ̄1,1λ̄2,1λ̄3,1|±〉
. (D.155)

In this basis, the Dirac operator Q1 = Qeff,1 + Q̄1
eff , can be written as

Q1 =



0 D−3 D−2 0 D−1 0 0 0

D+
3 0 0 D−2 0 D−1 0 0

D+
2 0 0 D−3 0 0 D−1 0

0 D+
2 D+

3 0 0 0 0 D−1
D+

1 0 0 0 0 D−3 D−2 0

0 D+
1 0 0 D+

3 0 0 D−2
0 0 D+

1 0 D+
2 0 0 D−3

0 0 0 D+
1 0 D+

2 D+
3 0



(D.156)

where

Di = −i〈pσi〉 , Di = 〈Di〉 , D±i = ±Di +Di . (D.157)

Now by taking wave functions that are functionally of the form

|ψ〉 =
∏
i

ωiω̃iωiω̃i|χ〉 , (D.158)
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we can simplify the Dirac operator to

Q̂1 =



0 −∂−3 −∂−2 0 −∂−1 0 0 0

∂+
3 0 0 −∂−2 0 −∂−1 0 0

∂+
2 0 0 −∂−3 0 0 −∂−1 0

0 ∂+
2 ∂+

3 0 0 0 0 −∂−1
∂+

1 0 0 0 0 −∂−3 −∂−2 0

0 ∂+
1 0 0 ∂+

3 0 0 −∂−2
0 0 ∂+

1 0 ∂+
2 0 0 −∂−3

0 0 0 ∂+
1 0 ∂+

2 ∂+
3



, (D.159)

where ∂±i = ∂i ±Di.

Ground States in S+

Now we can try to solve the equations

Q̂1|χ〉 = 0 . (D.160)

Let us consider states in S+ for which ξi > 0, ∀i. First let us restrict to ξ2 < ξ1, ξ3. In

this case the only states that are normalizable have exponential dependence that goes

as e−ξiσi . Therefore let us consider states on which ∂i +Di vanishes:

|χ〉 =
(σ1 − a+ ε)(σ3 + a+ ε)

(σ1 − a− ε)(σ3 + a− ε)
(σ21 − ε)(σ32 + ε)

(σ21 + ε)(σ32 − ε)
e−ξ1σ1−ξ2σ2−ξ3σ3 |χ̂〉 . (D.161)

Now Q̂1 acting on |χ̂〉 is of the form

Q̃1 =



0 2D3 2D2 0 2D1 0 0 0

0 0 0 2D2 0 2D1 0 0

0 0 0 2D3 0 0 2D1 0

0 0 0 0 0 0 0 2D1

0 0 0 0 0 2D3 2D2 0

0 0 0 0 0 0 0 2D2

0 0 0 0 0 0 0 2D3

0 0 0 0 0 0 0 0



. (D.162)
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Now we are reduced to finding zero-eigenvectors of this matrix.

Recall that

Di = 2



1
ω1
− 1

ω̃1
− 1

ω1
+ 1

ω̃1
+ ξ1

2 i = 1

1
ω1
− 1

ω̃1
− 1

ω2
+ 1

ω̃2
+ ξ2

2 i = 2

1
ω2
− 1

ω̃2
+ 1

ω2
− 1

ω̃2
+ ξ3

2 i = 3

. (D.163)

Using the properties of the ωi’s, we have that

1

ωi
− 1

ω̃i
∼ O(ε/σ2) ∼ 0 . (D.164)

Therefore, in our approximation, we only need to cancel the ξi’s which are not para-

metrically small and hence we can effectively replace Di by ξi.

We see that (1, 0, 0, 0, 0, 0, 0, 0) is clearly a 0-eigenvector and hence is a normalizable

SUSY ground state. Now by rescaling our basis of eigenvectors by factors of ξi, we

can see that there are additional approximate 0-eigenvectors such that the full space of

ground states is given by

spanC
{
|v(+)

1 〉, |v
(+)
2 〉, |v

(+)
3 〉

}
= spanC

{
(1, 0, 0, 0, 0, 0, 0, 0)tr , (0, 1,−1, 0, 0, 0, 0, 0)tr , (0, 1, 0, 0,−1, 0, 0, 0)tr

}
.

(D.165)

Ground States in S−

We can similarly perform the same analysis in the negative wedge. Here the analysis

changes by looking for states that are annihilated by ∂i −Di. These states are of the

form

|χ〉 =
(σ1 − a− ε)(σ3 + a− ε)
(σ1 − a+ ε)(σ3 + a+ ε)

(σ21 + ε)(σ32 − ε)
(σ21 − ε)(σ32 + ε)

eξ1σ1+ξ2σ2+ξ3σ3 |χ̂〉 . (D.166)
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Acting on these states, the supercharge operator Q1 is of the form

Q̂1 =



0 0 0 0 0 0 0 0

2D3 0 0 0 0 0 0 0

2D2 0 0 0 0 0 0 0

0 2D2 2D3 0 0 0 0 0

2D1 0 0 0 0 0 0 0

0 2D1 0 0 2D3 0 0 0

0 0 2D1 0 2D2 0 0 0

0 0 0 2D1 0 2D2 2D3 0



(D.167)

Again we find 3 approximate BPS states{
|v(−)

1 〉, |v
(−)
2 〉, |v

(−)
3 〉

}
=
{

(0, 0, 0, 0, 0, 0, 0, 1)tr , (0, 0, 0, 0, 0,−1, 1, 0)tr , (0, 0, 0,−1, 0, 0, 1, 0)tr
}
.

(D.168)

Hermiticity

Again we have to impose boundary conditions so that the supercharges are Hermitian.

The minimal boundary conditions to impose hermiticity allows us to keep all BPS states

in both sectors. We will make a choice that is symmetric between exchange of λ̄I,1 and

λ̄I,2 in analogy with the U(1) case, and that is symmetric under λ̄1,I and λ̄3,I .

So let us define the (unnormalized) states

|ψ(+)
1 〉 =

(∑
i

λ̄i,2

)
|v(+)

1 〉 , |ψ(+)
2 〉 = |v(+)

2 〉+ |v(+)
3 〉 ,

|ψ(−)
1 〉 =

∏
i

λ̄i,2|v(−)
1 〉 , |ψ(−)

2 〉 = λ̄1,2λ̄2,2|v(−)
2 〉+ λ̄2,2λ̄3,2|v(−)

3 〉 .
(D.169)

Then it is consistent to pick boundary conditions such that the supersymmetric ground

states are given by

{|ψ(+)
1 〉 , |ψ

(+)
2 〉 , |ψ̃

(+)
1 〉 , |ψ̃

(+)
2 }S+ ∪ {|ψ

(−)
1 〉 , |ψ

(−)
2 〉 , |ψ̃

(−)
1 〉 , |ψ̃

(−)
2 }S− , (D.170)

where

|ψ̃(±)
i 〉 = P̃ |ψ(±)

i , replace ξi ↔ −ξi〉 , P̃ =
∏
i,A

(
λAi + λ̄A,i

)
. (D.171)
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Under this choice of boundary conditions, the normalizable asymptotic Coulomb

branch states for ξi > 0 and ξi < 0 are given by

{|ΨBPS〉} =


{|ψ(±)

1 , |ψ(±)
2 〉} ξi > 0 , ∀i

{|ψ̃(±)
1 , |ψ̃(±)

2 〉} ξi < 0 , ∀i
(D.172)

D.2.3 Mixed Branch

As it turns out, there are no mixed branch states in this theory. The reason is the

following. The localization principal states that only finite energy states that survive

in the limit e2 → 0 contribute to the Witten index. Due to the form of the potential

(6.59), we must simultaneously solve the mass equations

0 = (σ1 − a+ ε)2|φ1|2 = (σ1 − a− ε)2|φ̃1|2 = (σ21 + ε)2|φ
1
|2 = (σ21 − ε)2|φ̃

1
|2 ,

0 = (σ3 + a+ ε)2|φ2|2 = (σ3 + a− ε)2|φ̃2|2 = (σ32 + ε)2|φ
2
|2 = (σ32 − ε)2|φ̃

2
|2 ,

(D.173)

the F-term equations

0 = φ1φ̃1 − φ1
φ̃

1
,

0 = φ
1
φ̃

1
− φ

2
φ̃

2
,

0 = φ
2
φ̃

2
+ φ2φ̃2 ,

(D.174)

and the D-term equations

0 = |φ1|2 − |φ̃1|2 − |φ1
|2 + |φ̃

1
|2 − e2ξ1 ,

0 = |φ
1
|2 − |φ̃

1
|2 − |φ

2
|2 + |φ̃

2
|2 − e2ξ2 ,

0 = |φ
2
|2 − |φ̃

2
|2 + |φ2|2 − |φ̃2|2 − e2ξ3 ,

(D.175)

to order O(e).

Let us consider the case where ξi > 0 or ξi < 0, ∀i. Here there are only solutions to

the D-term equations when there are light fundamental hypermultiplet fields with non-

zero expectation value due to the repeated appearance of bifundamental hypermultiplet
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fields. Therefore the mixed branches are

I+ : σ1 = a− ε , |σ2|, |σ3| >> 0 ,

II+ : σ1 = σ2 − ε = a− ε , |σ3| >> 0 ,

III+ : σ3 = −a− ε , |σ2|, |σ1| >> 0 ,

IV+ : σ3 = σ2 − ε = −a− ε , |σ1| >> 0 ,

V+ : σ1 = a− ε , σ3 = −a− ε , |σ2| >> 0 ,

(D.176)

for ξi > 0 and the mixed branches

I− : σ1 = a+ ε , |σ2|, |σ3| >> 0 ,

II− : σ1 = σ2 + ε = a+ ε , |σ3| >> 0 ,

III− : σ3 = −a+ ε , |σ2|, |σ1| >> 0 ,

IV− : σ3 = σ2 + ε = −a+ ε , |σ1| >> 0 ,

V+ : σ1 = a+ ε , σ3 = −a+ ε , |σ2| >> 0 ,

(D.177)

for ξi < 0. We conjecture that there are no BPS states localized on these vacuum

branches.10

D.2.4 Contribution to the Witten Index

It follows from our conjecture in Section D.2.3 that in the U(1)3 bubbling SQM, only

Coulomb branch states contribute to the non-compact index Iasymp. These states give

rise to the results

Iasymp(ξi > 0) = e
∑
f mf+6ε+ + e−

∑
f mf−6ε+ + e

∑
f mf+2ε+ + e−

∑
f mf−2ε+

= 2 cosh

∑
f

mf + 6ε+

+ 2 cosh

∑
f

mf + 2ε+

 ,
(D.178)

or

Iasymp(ξi < 0) = e
∑
f mf−6ε+ + e−

∑
f mf+6ε+ + e

∑
f mf−2ε+ + e−

∑
f mf+2ε+

= 2 cosh

∑
f

mf − 6ε+

+ 2 cosh

∑
f

mf − 2ε+

 .
(D.179)

10See upcoming dissertation of the first author for more details.
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D.3 Behavior of Localized Path Integral at Infinity

In this appendix we will consider the behavior of the integrand of the localized path

integral (6.66), Zint(ϕ), at ϕ → ∂tC/Λcr. Let us take G =
∏n−1
i=1 U(k(i)) to be the

gauge group of the SQM such that the corresponding Lie algebra g decomposes as

g =
⊕n−1

i=1 g(i) =
⊕n−1

i=1 u(k(i)). Consider taking the limit

τ →∞ where ϕ = τu , u ∈ t (D.180)

where t is the Lie algebra of g which itself decomposes as t =
⊕n−1

i=1 u(k(i)) =
⊕n−1

i=1 t(i).

The element u can be written with respect to this decomposition as

u =

n−1⊕
i=1

u(i) , u(i) =

k(i)∑
a=1

u(i)
a e

(i)
a , t(i) ⊂ u(k(i)) , t(i) = spanR{e(i)

a }k
(i)

a=1 ,

(D.181)

and as a matrix e
(i)
a = δa,a. The matter content of a generic bubbling SQM transforms

under the representations

bifundamental hyper :

n−1⊕
i=1

[
k(i) ⊗ k(i+1)

]
⊕
[
k

(i) ⊗ k
(i+1)

]
,

fundamental hyper :

n−1⊕
i=1

[
δs(i),1k(i) ⊕ k

(i)
]
⊕ 2

[
δs(im),2k(im) ⊕ k

(im)
]
,

fundamental Fermi : Nfk(im) ,

(D.182)

where

s(i) = 2k(i) − k(i+1) − k(i−1) , im =
1

2
n− 1 . (D.183)

Using this, we can compute the limiting form of the different terms in Zdet as τ →∞.

Using (6.67), we can see that

|Zvec| ∼τ→∞
ϕ=τu

n−1∏
i=1

exp

2τ
∑

α∈∆(i)
adj

|α(u(i))|

 =
n−1∏
i=1

exp

4τ
∑

α∈∆(i)+
adj

α(u(i))


=

n−1∏
i=1

e4τρ(i)·u ,

(D.184)

where ∆
(i)+
adj are the set of positive weights of the adjoint representation with respect

to the splitting of the weight lattice where u is in the fundamental chamber and

ρ =
1

2

∑
α∈∆+(g)

α =
n−1∑
i=1

ρ(i) , ρ(i) =
1

2

∑
α∈∆+(g(i))

α , (D.185)



366

is the Weyl element of g and g(i) respectively. Then using the form of

ρ(i) =
1

2

k(i)∑
a=1

(k(i) − 2a+ 1)e(i)
a , (D.186)

we can rewrite the limiting form as

|Zvec| ∼τ→∞
ϕ=τu

n−1∏
i=1

e4τ
∑k(i)

a=1(k(i)−2a+1)u
(i)
a . (D.187)

The contribution from the bifundamental hypermultiplets (6.69) has the limiting form

|Zhyper;bf | ∼τ→∞
ϕ=τu

n−1∏
i=1

e−2τ(k(i−1)+k(i+1))
∑k(i)

a=1 |u
(i)
a | . (D.188)

Similarly, the fundamental hypermultiplets (6.69) and (6.68) contributions have the

limiting forms

|Zhyper;f | ∼τ→∞
ϕ=τu

n−1∏
i=1

e−2τ(δs(i),1+2δs(i),2)
∑k(i)

a=1 |u
(i)
a | ,

|ZFermi;f | ∼τ→∞
ϕ=τu

eτNf
∑k(im)

a=1 |u(im)
a | .

(D.189)

Putting these factors all together, we find that

|Zint| ∼τ→∞
ϕ=τu

n−1∏
i=1

exp

{
4τ

k(i)∑
a=1

(k(i) − 2a+ 1)u(i)
a + τNf

k(im)∑
a=1

|u(im)
a |

− 2τ
(
k(i−1) + k(i+1) + δs(i),1 + 2δs(i),2

) k(i)∑
a=1

|u(i)
a |
}
.
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This is bounded from above by

|Zint| .
τ→∞
ϕ=τu

n−1∏
i=1

exp

{
4τ

k(i)∑
a=1

(k(i) − 1)|u(i)
a |+ τNf

k(im)∑
a=1

|u(im)
a |

− 2τ(k(i−1) + k(i+1) + δs(i),1 + 2δs(i),2)
k(i)∑
a=1

|u(i)
a |
}
,

(D.191)

which can further be simplified to

|Zint| .
τ→∞
ϕ=τu

n−1∏
i=1

exp

{
2τ

(
s(i)− 2− 2δs(i),1 − 4δs(i),2 +

Nf

2
δi,im

) k(i)∑
a=1

|u(i)
a |
}
. (D.192)

Using the fact that s(im) = 0 or 2 and the fact that Nf ≤ 4, we see that the exponential

factors can at most completely cancel as τ → ∞. In this case, the behavior of the 1-

loop determinant at infinity will be polynomially suppressed by the Yukawa terms for
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the hypermultiplet fields to order O(
∏
i τ
−3k(i)

). Therefore, since the measure goes

as
∏
i τ

2k(i)−1, we have that the product of the integrand and measure will vanish as

O(
∏
i τ
−k(i)−1) and the integral is convergent.

D.4 A Useful Integral

Often in the text we make use of a non-standard integral identity which we will now

precisely derive. Consider the integral

F (a, b, η) =

∫
R+iη

dD

D
e−aD

2+ibD , (D.193)

where

a > 0 , b ∈ C , η ∈ R∗ . (D.194)

We claim this integral is just

F (a, b, η) = +iπ erf

(
b

2
√
a

)
− iπ sign(η) , (D.195)

where we choose the positive square root of a and

erf(x) =
2√
π

∫ x

0
dye−y

2
. (D.196)

Proof: F (a, b, η) is an entire function of b. Moreover, it satisfies the differential

equation

∂F

∂b
= i

√
π

a
exp

{
− b

2

4a

}
, (D.197)

so

F (a, b, η) =

∫ b

0
i

√
π

a
exp

{
− s

2

4a

}
ds+ F (a, 0, η)

= F (a, 0, η) + iπ erf

(
b

2
√
a

)
.

(D.198)

It thus remains to determine

F (a, 0, η) = H(η/
√
a) , (D.199)

where

H(η/
√
a) =

∫
R+iη

dD

D
e−D

2
. (D.200)
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Now by contour integration arguments H(η) only depends on the sign of η. Let H+

be the value for η > 0 and H− the value for η < 0. We can take the limit as η → 0+

and use

1

D + iη
→ P

(
1

D

)
− iπδ(D) , (D.201)

for D real, where P is the principal part. But

P

∫
dD

D
e−D

2
= lim

ε→0+

[∫ −ε
−∞

dD

D
e−D

2
+

∫ ∞
ε

dD

D
e−D

2

]
= 0 . (D.202)

Moreover, H∗− = H+, so

H(η) =


−iπ η > 0

+iπ η < 0

(D.203)

D.5 Bubbling Contribution in the SU(2)× SU(2) SCFT

Consider the case of a superconformal N = 2 quiver gauge theory with G = SU(2)1 ×

SU(2)2 with fundamental matter:

2 SU(2) SU(2) 2

23

Now consider the bubbling sector where

P =

2⊕
i=1

Pi , ~v =

2⊕
i=1

~vi , (Pi, ~vi) =
(
diag(1,−1),diag(0, 0)

)
. (D.204)

In this case, the N = (0, 4) bubbling SQM is of the form

1 1

2 2

2 2

24
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The localization contribution to Zmono
(
(1, 0) ⊕ (1, 0)

)
is then given by the contour

integral

Z(Loc)
mono = sinh2(2ε+)

×
∮
JK(ξi,ξ2)

dϕ1dϕ2

(2πi)2

∏2
f=1 sinh(ϕ1 −mf ) sinh(ϕ2 −mf+2)∏2

i=1

∏
± sinh(±(ϕi − ai) + ε+) sinh(±(ϕi + ai) + ε+)

×
∏
± sinh(−ϕ1 ± a2 +m+ ε+) sinh(ϕ2 ± a1 +m+ ε+)

4 sinh(ϕ2 − ϕ1) sinh(ϕ1 − ϕ2 + 2ε+)
.

(D.205)

Let us choose ξ1, ξ2 > 0. In this case there are 8 poles contributing this to this path

integral:

I : ϕ1 = a1 − ε+ , ϕ2 = a2 − ε+ ,

II : ϕ1 = a1 − ε+ , ϕ2 = −a2 − ε+ ,

III : ϕ1 = −a1 − ε+ , ϕ2 = a2 − ε+ ,

IV : ϕ1 = −a1 − ε+ , ϕ2 = −a2 − ε+ ,

V : ϕ1 = a1 − ε+ , ϕ2 = a1 − ε+ ,

VI : ϕ1 = −a1 − ε+ , ϕ2 = −a1 − ε+ ,

VII : ϕ1 = a2 − 3ε+ , ϕ2 = a2 − ε ,

VIII : ϕ1 = −a2 − 3ε+ , ϕ2 = −a2 − ε .

(D.206)

Using this set of poles as defined via the Jeffrey-Kirwan residue prescription, we find

that the localization computation of Z
(Loc)
mono((1, 0)⊕ (1, 0)) is given by
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Z(Loc)
mono((1, 0)⊕ (1, 0)) =

−∏2
f=1 sinh(a1 −mf − ε+) sinh(a2 −mf+2 − ε+)

sinh(2a1) sinh(2a1 − 2ε+) sinh(2a2) sinh(2a2 − 2ε+)

× sinh(a2 − a1 +m+ 2ε+) sinh(a1 + a2 −m− 2ε+)

sinh(a2 − a1) sinh(a1 − a2 + 2ε+)

× sinh(a2 − a1 +m) sinh(a2 + a1 +m)

−
∏2
f=1 sinh(a1 −mf − ε+) sinh(a2 +mf+2 + ε+)

sinh(2a1) sinh(2a1 − 2ε+) sinh(2a2) sinh(2a2 + 2ε+)

× sinh(a2 + a1 −m− 2ε+) sinh(a1 − a2 −m− 2ε+)

sinh(a2 + a1) sinh(a1 + a2 + 2ε+)

× sinh(a2 + a1 −m) sinh(a2 − a1 −m)

−
∏2
f=1 sinh(a1 +mf + ε+) sinh(a2 −mf+2 − ε+)

sinh(2a1) sinh(2a1 + 2ε+) sinh(2a2) sinh(2a2 − 2ε+)

× sinh(a2 + a1 +m+ 2ε+) sinh(a1 − a2 +m+ 2ε+)

sinh(a2 + a1) sinh(a1 + a2 − 2ε+)

× sinh(a2 + a1 +m) sinh(a2 − a1 +m)

+

∏2
f=1 sinh(a1 +mf + ε+) sinh(a2 +mf+2 + ε+)

sinh(2a1) sinh(2a1 + 2ε+) sinh(2a2) sinh(2a2 + 2ε+)

× sinh(a2 − a1 −m− 2ε+) sinh(a1 + a2 +m+ 2ε+)

sinh(a2 − a1) sinh(a1 − a2 − 2ε+)

× sinh(a2 − a1 −m) sinh(a2 + a1 −m)

− sinh(m)

∏2
f=1 sinh(a1 −mf − ε+) sinh(a1 −mf+2 − ε+)

sinh(2a1) sinh(2a1 − 2ε+)

× sinh(2a1 +m)
∏
±

sinh(a1 ± a2 −m− 2ε+)

sinh(a1 ± a2) sinh(a1 ± a2 − 2ε+)

+ sinh(m)

∏2
f=1 sinh(a1 +mf + ε+) sinh(a1 +mf+2 + ε+)

sinh(2a1) sinh(2a1 + 2ε+)

× sinh(2a1 −m)
∏
±

sinh(a1 ± a2 +m+ 2ε+)

sinh(a1 ± a2 + 2ε+) sinh(a1 ± a2)

+ sinh(m+ 4ε+)

∏2
f=1 sinh(a2 −mf − 3ε+) sinh(a2 −mf+2 − ε+)

sinh(2a2) sinh(2a2 − 2ε+)

× sinh(2a2 −m− 4ε+)
∏
±

sinh(a2 ∓ a1 +m)

sinh(a2 ± a1 − 2ε+) sinh(a2 ± a1 − 4ε+)

− sinh(m+ 4ε+)

∏2
f=1 sinh(a2 +mf + 3ε+) sinh(a2 +mf+2 + ε+)

sinh(2a2) sinh(2a2 + 2ε+)

× sinh(2a2 +m+ 4ε+)
∏
±

sinh(a2 ± a1 −m)

sinh(a2 ± a1 + 2ε+) sinh(a2 ± a1 + 4ε+)
.

(D.207)



371

One can check that the localization result for Zmono((1, 0) ⊕ (1, 0)) from residues as-

sociated to these poles is not invariant under the Weyl group of the flavor symmetry

groups which is generated by the elements W = 〈a1, a2, b1, b2〉 that act on the masses

in the previous formula as

a1 : (m1,m2,m3,m4) 7→ (m2,m1,m3,m4) ,

a2 : (m1,m2,m3,m4) 7→ (m1,m2,m4,m3) ,

b1 : (m1,m2,m3,m4) 7→ (−m2,−m1,m3,m4) ,

b2 : (m1,m2,m3,m4) 7→ (m1,m2,−m4,−m3) .

(D.208)
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