MONOPOLES, BPS STATES, AND T HOOFT
DEFECTS IN 4D N =2 THEORIES OF CLASS S

by
THEODORE DANIEL BRENNAN

A dissertation submitted to the
School of Graduate Studies
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy

Graduate Program in Physics and Astronomy

Written under the direction of
Gregory W. Moore

And approved by

New Brunswick, New Jersey

October, 2019



ABSTRACT OF THE DISSERTATION

Monopoles, BPS States, and ’t Hooft Defects in 4D N = 2
Theories of Class S

By THEODORE DANIEL BRENNAN

Dissertation Director:

Gregory W. Moore

Monopoles are a fundamental feature of non-abelian gauge theories. They are relevant
to the study of confinement and general non-perturbative quantum effects. In this
dissertation we study some aspects of monopoles in supersymmetric non-abelian gauge
theories. In particular, we focus primarily on 't Hooft defects (magnetically charged
defects) and their interaction with smooth, supersymmetric monopoles. Here we use
a semiclassical approximation to study the spectrum of bound states between such
monopoles and 't Hooft defects and the phase transitions where this spectrum changes
discontinuously. Then, we use string theory and localization techniques to compute the
expectation value of 't Hooft defects as operators in the full quantum theory. Using the
computed expectation value, we are able to directly study the non-perturbative process
called monopole bubbling in which smooth monopoles dissolve into an ’t Hooft defect.
Then, by combining the results of string theory techniques with localization techniques,
we are able to derive general formulas for the full spectrum of monopole bound states

in all possible phases of the theory.
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Chapter 1

Introduction

Quantum physics governs the laws of the universe at small sizes. Contrary to the
philosophy of classical physics, quantum physics is fundamentally probabilistic. At
any given point in time, the universe can be in a simultaneous superposition of many
different configurations. In quantum theories, only the probability that the universe
evolves from one state definite to another is determined.

Our current understanding of quantum physics is primarily based upon the notion
of quantizing a classical theory. Generally, the state of a system is described by a quan-
tum probability function. Physical quantities can be computed from this probability
function, and are often of the form of the classical quantity plus a series of small quan-
tum corrections that are controlled by a small, dimensionless parameter. In practice,
one usually computes these perturbative corrections to the classical result to whatever
degree of precision is required for the problem at hand. While this way of approaching
quantum physics has been wildly successful, a perturbative understanding of quantum
physics leads to an inherently incomplete description of the universe.

There are many physical quantum systems that cannot be adequately described
by perturbative quantum physics. Notably, such systems often exhibit the (related))
features where 1.) there is no small expansion parameter or 2.) where there is collective
behavior. In the first case, the coupling parameter that would control the size of
quantum corrections is large enough that the quantum corrections are an infinite series
of terms that are all of the same size (or worse of increasing size). This would require
us to compute all of the contributions to a physical quantity, which, by using standard
techniques, is technically impossible.

Collective behavior, also goes beyond a perturbative understanding of quantum



physics. It describes the situation when there is some large scale behavior that cannot
be understood by looking at the local degrees of freedom. The canonical example of a
classical system that has collective behavior the case of a “solitary water wave” which
has a profile given by the hyperbolic secant function. Here the water molecules, which
are locally swirling around, conspire to support the solitary wave.

In such systems, collective phenomena give rise to an infinite number of terms in the
perturbation series which, when truncated to a finite number of corrections, does not
correctly describe the behavior of the physical phenomenon. This is analogous to how
the Taylor series expansion of a sine function has an infinite number of terms, which,
when truncated to any finite polynomial, is infinitely far from approximating the sine
function. Or alternatively, we can think of Zeno’s paradox in which after any finite
number of steps, a runner who goes half of the remaining distance does not reach the
goal — one requires an infinite number of steps to see that the runner does indeed cross
the finish line.

One of the fundamental quantum theories of the universe that exhibits both of the
problems we have described is the strong force: quantum chromodynamics (QCD). In
QCD, the coupling parameter that controls the perturbation series, is not small ggop ~
1. There are also collective excitations in QCD. Famously, most of the matter in the
universe is made out of protons (and neutrons) which are non-perturbative bound states
of three quarks, the fundamental constituents of most matter in the Universe. These
quarks are held together by non-perturbative “strings” which are collective excitations
of the gluon field. Our lack of understanding about this feature of QCD is perhaps most
succinctly summarized by the statement that we do not understand why the proton is
stable. Said differently, we do not actually know why all of the matter in the universe
does not fall apart.

This fundamental lack of understanding about the way the universe works begs
for better tools to study quantum physics. One way we can hope to develop a new
understanding is by studying collective excitations in theories in which there are other
tools that provide more analytic control. One such avenue of research, and the focus of

this work, is to study non-local excitations in supersymmetric quantum field theories.



Supersymmetry is a distinguished symmetry of a quantum theory in which every
particle/field has a partner “super”-particle/field. This pairing gives rise to extraordi-
nary cancellations and fantastical properties in the full quantum theory. Supersymme-
try provides a microscope that can be used to study non-perturbative quantum effects.
Using supersymmetry has been wildly successful and has been used in works such as
[156, 155, 149, 81, 67] to completely compute quantities in the quantum theory (to all
orders in perturbation theory including non-perturbative corrections).

Additionally, supersymmetric theories can often be interpreted as a low energy de-
scription of certain string theory configurations. This allows us to use the full power of
string theory to study features of certain types of quantum field theories that can be
described in this way. This provides us with additional tools to study non-perturbative
effects in such theories.

Here, we will mainly focus on the study of monopoles in supersymmetric field theo-
ries. Monopoles are a non-local quantum excitations that source magnetic charge. They
are one of the fundamental types of non-local excitations. They behave as particles,
allowing us to rely on general physical intuition on particles in quantum theories.

Supersymmetry is particularly powerful when used to study monopole configura-
tions. In supersymmetric quantum field theories, monopoles preserve at most half of
the supersymmetries of the theory. States of this type are called BPS states. Because
of the rigid structure of supersymmetry, these states are very robust: they are pro-
tected from decay by supersymmetry. This simplifies the study of such BPS states as
compared to non-SUSY states over which we have practically no control.

Here we will primarily focus on studying a special type of BPS state called framed
BPS states. These are dyonic states that are bound to a defect operator. This can be
thought of as a quantum bound state in a background potential or an infinitely heavy,
classical particle. This case distills many of the essential features of general BPS states
while simplifying the analysis (since it is generally easier to study (/N — 1)-bodies in a
fixed background than it is to study general N-body motion).

Due to SUSY, BPS states are generically protected from decay as one changes the



physical parameters of a supersymmetric theory, such as masses and coupling param-
eters. However, there are special regions in parameter space where the spectrum of
BPS states can change. This is the phenomenon known as BPS state wall crossing.
As it turns out this BPS state wall crossing occurs in a very controlled way, which has
been known for some time [106, 107, 67, 50, 99, 150]. This allows us to infer the BPS
spectrum everywhere in parameter space (including strong coupling) from a knowledge
of the BPS spectrum in some weakly coupled region where we have analytic control.
Thus, studying monopoles in supersymmetric quantum field theories gives us direct
insight into quantum physics outside of the perturbative regime. This will be the main

topic of this work.

1.1 Summary

In this work we will study framed BPS states in 4D A = 2 theories on R? x S!.
We will primarily focus on using two techniques to study these states: 1.) semiclassical
analysis and 2.) string theory constructions. These two tools will give us complimentary,
geometric pictures of BPS states.

In Chapter 3 we will study the dynamics of semiclassical BPS states. These have dy-
namics coming from quantum fluctuations of the fields around the monopole background
and dynamics of the monopoles themselves. We will treat this in a Born-Oppenheimer
approximation where we integrate out the quantum fluctuations to obtain an effective
description of BPS state interactions as a supersymmetric quantum mechanics (SQM)
on the space of BPS field configurations (monopole moduli space). This description
maps many of the difficult questions in the full QFT to an easily stated quantum me-
chanics problem. For example, in this formulation, stable BPS states are given by
solutions to the Dirac equation on monopole moduli space.

As we will show in Chapter 4, the semiclassical description of (framed) BPS states
is particularly useful for studying BPS state wall crossing. In the semiclassical limit,
generic BPS states can be thought of as a multi-particle state made up from simple

dyonic particles. Here the BPS multi-particle state has a structure similar to that



of a galaxy or a cluster of stars. When BPS wall crossing occurs, this decays into
sub-clusters which are no longer bound to each other.

For simplicity, we will study the 2-body decay of such BPS states. Since BPS states
are indistinguishable particles, we would expect that there is some kind of universal
behavior of multi-body decay. As we will show, this is indeed the case and that the
2-body (or primitive) wall crossing is controlled by the universal behavior of the Dirac
equation on the four-dimensional Taub-NUT space.

Then, in Chapter 5 we will go on to give a particularly useful embedding of monopoles
and dyonic BPS states in 4D supersymmetric Yang-Mills theory into string theory. In
summary, theory can be described as the low energy effective theory on a stack of D3-
branes in which smooth monopoles (BPS states) can be realized as D1-branes running
between the D3-branes and and singular monopoles (magnetically charged line defects)
can be described by D1-branes stretched between the D3-branes and transverse NS5-
branes.

We will show that this brane configuration gives new insight into the non-perturbative
phenomenon of monopole bubbling. Monopole bubbling describes the processes in
which smooth monopoles dissolve into a singular monopole. This screening the mag-
netic charge of the singular monopole and deposits quantum degrees of freedom on its
world volume. The brane construction of singular monopoles we present here is espe-
cially useful as it allows us to determine the exact content of the SQM that arises from
monopole bubbling.

We then go on to study the expectation value of magnetically charged line defects.
This is intimately related to the study of color confinement in QCD [163]. This is the
mechanism that squeezes the gluon field into QCD strings which hold the nucleons
together. Color confinement is exemplified by the curious feature of the universe that
quarks do not appear alone. Famously, color confinement is measured by the expecta-
tion value of line defects wrapped on a circle [172, 163]. This is because it measures the
total energy of a quark-antiquark (or monopole-antimonopole) pair creation and anni-
hilation. This allows one to determine the behavior of the confining potential. Thus,

the expectation value of a line defect is of great interest.



In Chapter 6, we discuss the non-perturbative part of the expectation value of an
't Hooft defect that comes from monopole bubbling. We will show that there is an
important contribution from the quantum degrees of freedom that are deposited on the
world volume of the 't Hooft defect that arise in monopole bubbling.

Upon closer inspection, we find that computing this expectation value is quite tricky.
The standard method, for computing supersymmetric operators in a quantum field the-
ory is called localization. This uses the cancellation between super-partners to reduce
the path integral of a usual quantum field, which is an integral over an infinite dimen-
sional space, to an integral over a finite dimensional space that can be evaluated by
using computational tricks. However, as we will show, the naive application of this
machinery to the case of the SQM from monopole bubbling gives the incorrect answer.
Because of this, we need to add an additional contribution to the “standard answer.”
We will give both a prescription and a physical explanation for this correction of the
localization computation.

Then in the final section, we derive some new results in mathematics arising from
the comparison of the semiclassical spectrum of framed BPS states bound to an ’t Hooft
defect with results from the localization computation of expectation value of the same
't Hooft defect. This gives us both an index theorem of Dirac operators on monopole
moduli spaces (which encodes the framed BPS indices) and a formula for characteristic
numbers of related Kronheimer-Nakajima spaces. These results are novel because there

are no known general results for general non-compact spaces.



Chapter 2

Monopoles

Monopoles are non-trivial solutions to the classical equations of motion in Yang-
Mills theory that carry a non-trivial magnetic charge. They can be thought of as
magnetically charged particles which, in a weak coupling description, are very heavy
compared to W-bosons. In a pure Yang-Mills theory monopoles are singular and are
called singular (or Dirac) monopoles. However, in the case of non-abelian Yang-Mills
theory coupled to a Higgs field, there also exist smooth field configurations that source
magnetic charge. These monopoles are dynamical objects in the full quantum theory
and what are generally referred when speaking of monopoles. Such monopoles, or
smooth monopoles, will be the main focus for this chapter. See [85, 170, 131] for

review.

2.1 Smooth Monopoles

Smooth monopoles exist in Yang-Mills theory on R x R? with non-abelian gauge group

G coupled to an adjoint valued Higgs field X. This theory has an action:

1
g2

1 1
S = /d4:c Tr {4FWF‘“’ + §D,J(DHX - V(X)} : (2.1)

where V(X) > 0. The corresponding Hamiltonian can be written as

i
g2

H= /d4:): Tr {E'E; + (DoX)? + |B; — D;X|* + V(X)}

2
t / diz € Tr{0,(X Fy.)} .

This Chapter is based on material from my papers [24, 28].



Thus, we see that the energy is minimized by solutions to the equation
B; = D; X , (2.3)

subject to the condition lim,_,~ V(X (7)) = 0. This equation is the famous Bogomolny
equation.

A monopole is a time independent, smooth, solution of these equations with asymp-
totic magnetic flux and finite energy. Such solutions are specified by v, Xoo where
Ym € Agr and Xoo € t. The field configuration corresponding to a monopole with data

Ym, Xoo has the asymptotic form

X:Xoo—v—m—i-O(r*?’ﬁ) asr — oo,
2r (2.4)
F:77md!2+0(r71/2) as r — oo,

where df? is the standard volume form on S2.! Here 7, describes the magnetic
charge and X, describes the asymptotic Higgs vacuum expectation value which satisfies
V(Xx) =0.

A smooth gauge field with the behavior (2.4) at infinity necessarily must be defined
patch-wise over at least two patches. If we choose two such patches, covering the

northern or southern hemispheres, the connection can be written as

A= ’Y?m(a —cos(0))d¢ , (2.5)

where ¢ = +1 in the northern/southern hemisphere. These are related by a gauge
transformation g = e¢’m? across the equator of the asymptotic 2-sphere, S2. Since the
gauge transformation above is a map ¢ : U(1) — G, 7, is an element of the cocharacter
lattice v € Acochar C .2 Further, since R3 is contractible, the gauge transformation
must be homotopic to the identity (by contraction to a point) which is equivalent to
the requirement that g lifts to an element in the cocharacter lattice of the universal

covering group which is isomorphic to the coroot lattice v, € Acochar(G) = Aer(G)

[131]. Note that this implies that

[’vaXoo] =0 y (2'6)

'Here we use the convention of a real, anti-hermitian representation of the Lie algebra g.

2The cocharacter lattice Acochar is defined as: Acochar = {@ € t | ™% = 15}.



and hence the gauge transformation preserves the asymptotic form of the solution X.
We will assume that X, is a regular element of the Lie algebra and hence defines a
maximal commuting subalgebra t spanned by a system of simple roots ay and co-roots
Hj.

A monopole solution is locally (near the monopole center) of the form of the Prasad-
Sommerfeld solution of an SU(2)-monopole embedded into the gauge group along a

simple coroot [152]. This is a smooth solution that takes the form

X :%h(r)HI ,
A ="0 (0 — cos(8))dg — 3 F(r)e”(dh — isin(6)do) B (2.7)
4 F(r)e™7(df — isin(6)ds) B

where 0 = £1 in the northern/southern hemisphere and

h(r) = mu coth(mur) — % o fr) = (2.8)

~ sinh(m,r)
where myy is the mass of the W-boson: my = (a5, Xoo). Here we have taken the

convention where gq,2) = h @ g+ © g— where b is the Cartan subalgebra generated by

H; and where g are generated by EIi which satisfy

This can be embedded into any semisimple lie algebra to give a local solution of a

smooth monopole in a gauge theory with gauge group G.

2.2 Singular Monopoles

If we lift the requirement that classical solutions to have finite energy, we also can have
singular monopoles. These are U(1) Dirac monopoles that have been embedded into
the gauge group along a simple coroot and correspond semiclassically to infinitely heavy
magnetically charged particles and are used to describe 't Hooft defects. The data of
an 't Hooft defect is given by (P,,#,) where Z,, € R3 specifies the location of the defect
and P, € Acochar = Hom(U(1),T), where T' C G is the maximal torus specified by X,

specifies the magnetic charge. Now the gauge transformation across the equator on the
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asymptotic 2-sphere is no longer homotopic to the identity, but rather is homotopic to
¢! 2n Pn® and hence the asymptotic magnetic charge takes elements in a torsor of the
coroot lattice vp, € Aer + Y-, Pn C Acochar-

The defect is then inserted by imposing the following boundary conditions

P

X:—2—n+0(r;3/2) asrp, — 0,
b 'n (2.10)
F zfdﬁn +0(r; /%) asrp, — 0,

in a local coordinate system centered at Z,. In the presence of a collection of singular
monopoles with charges {P,}, vm € A + Zn P, since €"m? is no longer homotopic to
the identity by contracting the infinite sphere.

In our upcoming discussion we will need to distinguish between a reducible and an
irreducible singular monopole. An irreducible singular monopole is defined as above by
the data (&, P). The definition of a reducible singular monopole requires the defini-
tion of a minimal singular monopole which is simply an irreducible singular monopole
with magnetic charge given by a simple (or minimal) coroot h!. A reducible singular

monopole of charge
P=> ph', (2.11)
1

is then defined as the coincident limit of

p=S"r, (2.12)
I

minimal singular monopoles such that all of their charges sum to P. Sometimes we will
call singular monopoles 't Hooft defects, but here we will generally reserve the term ’t
Hooft defect to refer to the defect operator in the quantum theory which in our con-
siderations will generally be supersymmetric singular monopoles in a supersymmetric

gauge theory.

2.3 Construction of Monopole Solutions

There many known constructions of monopole solutions. In this section we will review

some of these constructions. See [130, 115, 167] for more details.
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2.3.1 ADHM Construction of Instantons

Before we consider any constructions of monopole solutions, we believe it will be useful
to first review the simpler case of the ADHM construction SU(N) instantons with
charge k on R*.
Consider two complex vector spaces V = CF and W = CV and the set of maps
Bie Hom(V,V), i=1,2,
I € Hom(W,V) , (2.13)
J € Hom(V,W) .

These can be arranged into a short exact sequence
e 2 B8
1 —V—=VaeC oW —V —1, (2.14)

where C? is identified with the spin bundle of R* [102] and

B1 *Zl]lk
a=| By— 2l , B= <_(BQ_22]1k) , B1 — 211y, I) ; (2.15)
J

where 21 = x1 + ix9, 20 = 3 + ix4 parametrize the base R*.

Now we can construct the Dirac operator DT : V@ C2@ W — V @ V where

; « I Bs+ 29 Bi+2z
D' = = (2.16)

ﬁT JT *Birle B;+22

which can be more simply be written

—

I By B
? ' —i( 07 z,0" ) : (2.17)

D' =
Ji —Bl BI

R 0
where 07 =

0
Now define the subbundle E — R* of V ® C2 @ W — R* by

E =Ker[D] . (2.18)
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E has rank N so that we can construct solutions {¢;} : R* — Mato, x(C). We can

then arrange these into a (2k + N) x N matrix

()= | ¢1(z) volz) ... ¥n(x) | (2.19)

which we will normalize as

Iz (z) =1y . (2.20)
We can then construct the projection operator
P = |(x)(@(2)| , (2:21)

and the complimentary operator

1

Q= DTWD , (2.22)
which together satisfy
1=P1Q. (2.23)
Note that
D'D = aal 0 = G , (2.24)
0 aal 0 pBip

is a diagonal 2k x 2k matrix.

The connection can then be constructed from this data as
A, =01 (2)0,9 () . (2.25)
In this formulation, there is an SU (k) gauge symmetry that act as
Bi— g 'Big ., Iw—g I , JwJg. (2.26)

Now it remains to show that: 1.) A, is su(N)-valued, 2.) it gives rise to a self dual
field strength, and 3.) it has instanton number k.

First, we will show that it is an SU(N) connection. Such matrices obey

Al =—A. (2.27)
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Computing, we find
Al = (0, 0)1w = —wlg,w | (2.28)

where we have used the identity
vl =1 — (90N +wi9,w=0. (2.29)
Now we can compute the connection
Fuw = 0pdy) + Ay
= 0, (F1o,w) + (¥10,,9)(¥'0, W)

= (9. 2")(9,)9) + (9,21 (¥e")(9,)%)

(2.30)
= (9.21)Q(9,)¥)
— 01 (9,D) (9, D)w
= 0} (9},D) 57750 DY)
_ 1
= —2ZO'M,/ ® ﬁ
Now using the fact that o, is self-dual, we have that F},, is self dual.
We can now compute the instanton number. Using the identity [148]
1 1
«TryENF = 5(8M8“)210g det(aal) = 5(8M8“)2det log(aal) , (2.31)
we can compute
/1/ Trny{F AF} = ! / d*z (9,0")?Trylog(aal) (2.32)
8712 Jpa 1672 Jpa H ‘ '

Now since the integrand is a total derivative we can take the asymptotic form of aal —

221}, such that the integral becomes

1 1 zh
— | Teny{FAF}=_— PP OTr 1y » = Trp{l )t =k . 2.
/87r2 /R4 IN{FAF} = o5 /sgoru Tk{x4 k;} e {1y} (2.33)

Hence, the connection constructed in (2.25) is indeed a charge k U(N) instanton.

2.3.2 ADHMN Construction of Smooth Monopoles

The ADHM construction of instantons can be generalized to a method to determine
monopole field configurations [138]. Here we will review the generalization, called the

ADHMN construction for monopoles on R?. See [170, 34, 52] for more details.
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First let us consider the case of SU(2) monopoles on R? specified by the asymptotic

data
kK 0 v 0
Ym = kHy = , Xoo =vH;= . (2.34)
0 -k 0 v

The data for a solution of the Bogomolny equation consists of four C-valued k x k

matrices over the interval I = (—%, %) which is parametrized by s
Ty : I — Mxr(C), (2.35)

such that they solve Nahm’s equations

dT,
ds

+ i[T(]a Ta] + %fabc[Tba Tc] =0 , a, b, Cc= 1, 2, 3 s (236)

with the boundary conditions

. Oq
lim T, = ——4+0(1) . 2.37
an:Ttl% @ s F 1)/2 T ( ) ( )
Again, construct the Dirac operator:
d . .
D(s) = — +iTo(s) @ Iz — To(s) ® 04 + 271 @ 0, - (2.38)

ds
This operator corresponds to the Dirac operator in the ADHM construction. That is

to say that we consider the kernel
v/2
D (s)wq(s,z) =0 / ds w] (s, m)wy(s,7) = dap . (2.39)
—v/2
, and construct fields which satisfy the Bogomolny equations:
v/2 v/2
X = / ds swiwy, Azb = —i/ ds wid,wy (2.40)
—v/2 —v/2

where a, b are now SU(N) indices.

Here there is a SU (k) gauge symmetry that acts as

_ o d _
To — g 'Tog — ig 1%9 , Tur> g 'Tag . (2.41)

As in the case of the ADHM construction, it can be easily shown that the fields X, A,
constructed this way solve the Bogomolny equation and satisfy the asymptotic boundary

conditions (2.34).
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Generalizing to SU(N)

Now let us generalize this discussion to the case of G = SU(N) monopoles. Consider

the asymptotic data
Ym = Zn;HI , Xoo = diag(si,...,Sn) S < Siy1 - (2.42)
I

This choice of X, now gives us partition of the interval I = [s1, sy]:
N-1
I = U Ip ) IP = (Spasp+1) ) (243)
p=1

where 1, is the closure of the open interval I,. On each interval I, we have a set of four
matrices T,Ep ) I, — anxnp((C) that satisfy Nahm’s equations on the interval.
To connect these solutions across the disjoint intervals we must impose boundary

conditions at the s;. Near the boundary I, N I,11, we impose the conditions

_ L,(lp) _ (np—npr1—1)/2
Tép) — S—Sp+1 + O(l) O ((S Sp+1) P i ) , (2'44)

O ((s = spgr) " mer1=1)/2) T + O(s — spy1)

when n, > n,1 and

e _ (np1—np—1)/2
TP+ = sowprt T o) O ({5 = spp) o ) . (2.45)
O ((5 — sps1) w1 =1)/2) T + O(s — spr1)

when n, < npy1. When n, —npy1 = 0 we need to make a choice of “jumping data” to
specify the boundary conditions. The jumping data is given by a choice of a set of 2n,,
vectors {a&’f%} where a = 1,2 and r = 1,...,n, [34].

Given a choice of jumping data, the boundary conditions at a I, N I,4+1 when

Np = Np41 18

_ 1
TP (s,) ~ TP (5,) = Jaloja (2.46)

Now we again construct the same Dirac operator as before (2.38), solve for the kernel,
and construct the fields X, A, as in the case of G = SU(2).

The only difference occurs when we have n, = npy1. In this case, the boundary

condition from the jumping data (2.46) descends to the behavior of the solutions to the
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Dirac equation
N-1
W e =P su= Y [dsulmr Ysis. (ean
p=17Ip p

where Sép ) is a complex-valued matrix. In this case we must modify the construction

of the fields X, A,

-1

X = / sds i+ 5,878
I, >

p=1
N-1
Ap=—i)_ /dswauw —iy 519,85 .
p=1 P

Again, these fields are SU(N) valued, satisfy the appropriate asymptotic boundary

(2.48)

conditions, and solve the Bogomolny equation.

From Bogomolny to Nahm Data

We can also explicitly reconstruct the Nahm data from a monopole field configuration
of charge v, = >, mrH; with Higgs vev X, = diag(¢1, .., on). Consider the Dirac

operators coupled to a monopole field A, X
DP=i'D;~X+s) , D =i'Di+X—s), (2.49)
and their squares
P'H=-D}+(X—5)? , DD =-D?+ (X —5)> -0, F" . (2.50)

The explicit form of the /') implies that Ker[)] = 0 due to a non-trivial potential
(X — s)2. However, we also see that ]DZDT have zero-modes, and in fact through the

usual index computation see that

myp ey <s <P
dim [Ker[m] - (2.51)

0 else

Since there are a finite number of zero-modes, which form a finite dimensional vector

space of L? sections on R3, we can write a local basis for the kernel {wi}le where

Plyi=0 , 6= / Bl (z, s)0;(x, s) . (2.52)
RS
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Using this kernel we can construct the matrices

Ty(s) =~ [ d ail

dip

(2.53)
To(s) = i/R3 3z Yt 15

which satisfy Nahm’s equations and have the pole structure specified above.

2.3.3 Singular Monopoles and Kronheimer’s Correspondence

There also exists a construction for singular monopole configurations which is similar
to the ADHMN construction of smooth monopole solutions. The construction of sin-
gular monopole field configurations is derived from the one-to-one connection between
singular monopoles on R3 and certain instantons on the four-dimensional Taub-NUT
space [108]. Then by using the construction of instantons on Taub-NUT space called
the bow construction [37, 38, 41|, one can give an explicit construct singular monopole
configurations on R3 [19].

In this section we will review the construction of singular monopole field configura-
tions. We will begin by reviewing Taub-NUT spaces and Kronheimer’s correspondence
between certain instantons on Taub-NUT and singular monopoles. Then we will de-
scribe the bow construction and show how it can be used to give explicit constructions

of singular monopole configurations.

Taub-NUT Spaces

Taub-NUT is a 4D asymptotically locally flat (ALF) hyperkéahler manifold. Topologi-
cally it is homeomorphic to R*. Taub-NUT can be realized as an S' fibration over R3
where the restriction of the S fibration to any 2-sphere S? in the base R3 surrounding
the origin is the Hopf fibration of charge 1.

Taub-NUT has a metric which can be written in Gibbons-Hawking form as
ds®> =V (Z) dz - dz + V(%) 62, (2.54)

where

O=dé+w , dw = x3dV | (2.55)
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where ¢ is the S! fiber coordinate and x3 is the Hodge dual restricted to the base R3.
Taub-NUT has a natural U(1) isometry, denoted U(1) g, given by translation of the
fiber coordinate

fk:(f’ f) = (fv £+ 50) ) f*d52 =ds® . (256)

Taub-NUT has a single U(1)f fixed point where the S! fiber degenerates (in our con-
vention at Z = 0) called the NUT center. Thus, d¢ is not a globally well defined 1-form
while © = d§ + w is globally well defined.

Taub-NUT can be generalized to a manifold called multi-Taub-NUT (T'Nj). This
space is also a 4D ALF hyperkiihler manifold which can be described by a S! fibration
over R3. However, TN, has k points where the S! fiber degenerates. TN, also has
a natural U(1)x isometry which has k-fixed points where the S* fiber degenerates —
hence, there are multiple NUT centers at #; € R3. The metric on TN, can also be

written in Gibbons-Hawking form (2.54) where instead

k
1
V(7) +;2If—i‘i| , dw = x3dV (2.57)
Again, d€ is globally ill-defined while @ = d¢ + w is well defined.
Unlike Taub-NUT, T'Ny, is topologically non-trivial. It has a non-trivial (compact)

cohomology group: H2,(TNy,7Z) = I'[Ag_1] where I'[Aj_1] is the root lattice of the

cpt
Lie group Aj_1. By Poincaré duality, the generators of ngt(TNk;Z) correspond to
non-trivial 2-cycles in Ho(T Ny, Z) which is generated by cycles that are homologous to

the preimage of the lines running between any two NUT centers under the projection

7 : TN, — R3.

Review of Kronheimer’s Correspondence

Consider a monopole configuration with & irreducible singular monopoles at positions
#, € R? with charges P,. Kronheimer’s correspondence provides a one-to-one mapping
between such a singular monopole configuration and a U(1) g-invariant instanton solu-
tion on TNy [108]. Here, by a U(1)g-invariant instanton configuration we mean one

in which the lift of the U(1)x action to the gauge bundle P — T'Nj, is equivalent to a
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gauge transformation [61, 84]
[fA=g'Ag+igTtdg, (2.58)

where f generates translations along £ as in (2.56) and ¢ is a gauge transformation

that defines the lift of the U(1)x action to the gauge bundle. As shown in Appendix

B, the lift of the U(1)x action is specified by the collection of 't Hooft charges {P,}

which fixes the limiting behavior of the lift of the U(1)x action near the NUT centers
iPné

limz .z g=e" .

Away from NUT centers, the connection can be put in a U(1)x invariant gauge
A= Aps + () (dE +w) (2.59)

where Aps is a connection on the base TNy — R? that has been lifted to the full T'Ny.
Ffor A to describe an instanton, it must satisfy the self-duality equation: F = «F where
F' is the curvature of A. The curvature of A can be written as

A

F = (Fps — tpdw) — Dip A (d€ +w) (2.60)

where Fgs is the curvature of Ags. Using the orientation form © A dz! A dz? A da?, we

can then compute the dual field strength

*F:_*gFR3A<d5+”)—V*3D¢+¢*3de<d’5;“> . (2.61)
Now self-duality F = «F reduces to the equation
*3(Frs — pdw) = VD) | (2.62)
which can be re-expressed as the relation
x3Fps = D(V)) . (2.63)

Under the identification X = V), we can recognize this as familiar Bogomolny equation
(2.3).
As shown in Appendix B, the connection (2.59) can be extended globally iff Aps

and 1(z) have the limiting forms

lim Ags = P,w ,  lim ¢(x) = —P, . (2.64)

T—Tn T—Tn,
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In the setting of Kronheimer’s correspondence, this limiting form of the U(1) g-invariant
instanton configuration gives rise to the the limiting behavior of the monopole config-
uration

lim Fgs = %dﬂ ,  lim X = lim V(z)y(z) = Fn

Fip Frin Frin ST —Z| (2:65)
Therefore, since Ags, X both satisfy the Bogomolny equation (2.63) and have the lim-
iting behavior (2.65), a U(1) g invariant instanton on multi-Taub-NUT is in one-to-one
correspondence with a singular monopole configuration on R? where the 't Hooft de-
fects {P,,Z,} are encoded in the action of the U(1)x near the NUT centers (which

by extension specifies it everywhere on T'Ny). More technical details on Kronheimer’s

correspondence can be found in Appendix B.

2.3.4 Instantons on multi-Taub-NUT and Bows

Using Kronheimer’s correspondence we we can construct a singular monopole field
configuration from a U (1) g-invariant instanton on T'Ny. In [36, 37, 38, 41], the authors
provided a theoretical framework to find explicit instanton solutions on T'N (and indeed
for all gravitational instantons) that fundamentally relies on an object called a bow.
The bow construction effectively reduces to solving Nahm’s equations with a specific
set of boundary conditions which naturally encodes the effect of singular monopoles (or

NUT centers in the case of instantons on Taub-NUT).

Quick Review of Bows

A bow is a quiver where the nodes have been replaced by (wavy) intervals. These
intervals support a vector bundle that can change rank at marked points and connect
together along the quiver edges to form a connected space X. In our case X = S!.

To a given bow, we can associate a set of differential equations that are analo-
gous to the Nahm equations for the connection on E. It differs by including certain
boundary/matching conditions at edges of intervals and at marked points which encode
the data of the marked points and edges. A solution of the bow equations is called a

representation of the bow.
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The construction of an instanton configuration on multi-Taub-NUT requires two
representations of a bow: a small representation and a large representation. The small
representation encodes the geometry of multi-Taub-NUT and the large representation
encodes geometry of the gauge bundle. These two representations can be used to
construct a “Dirac-type” differential operator whose zero modes can be used to give an
explicit instanton solution in analogy to the ADHM/ADHMN constructions [10, 138].

Now we will give precise definitions of bows and their representations and review
how they can be used to give explicit instanton solutions on Taub-NUT space.

Bow Data: A bow is a directed linear (or ring) graph with nodes, where the nodes
are replaced by a wavy line segments which hosts a collection of marked points. These
marked points divide the wavy line segments into irreducible line segments. This is

specified by:

1. A set of directed edges, denoted £ = {e;}.

2. A set of continuous, irreducible wavy line segments, denoted Z = {¢;}. We will

additionally use Z; to denote the set of ( € Z in between edges e;,¢e;4+1 € €.

3. A set of marked points denoted A = {x;}. We will additionally use the notation

A; to be the set of marked points & € A which are at the end points of the { € Z;.

See Figure 2.1 for an example of a bow.

Bow Representations: A representation of a bow consists of the following data

1. To each wavy interval ¢ € Z, we associate a line segment o with coordinate s
such that o¢ = [0((),i(¢)] where o(¢) and i(¢) are the beginning and end of ¢
respectively. The intervals o¢ connect along marked points and edges to form a

single interval (or circle) X' = (J.c7 o¢ according to the shape of the bow.

2. For each x € A we define a one-dimensional complex vector space C, with Her-

mitian inner product ( , ).
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Ci G G & & Co

Figure 2.1: This figure is an example of a type A,, bow with edges {e;}, segments {(;},
and marked points {x,}.

. For each ¢ € Z, we assign a non-negative integer R(¢) € N and for each point
r € A we define AR(x) = |R(¢™) — R(¢")| where ¢(* are the segments to the left

and right of the point x.

1.2 .3

. For each e € &, we assign a vector 7, = (v}, v2,13) € R3.

. For each ( € 7, we define a vector bundle E; — o¢ of rank R(¢). And for
each © € A, we define an irreducible su(2) representation of dimension AR(z)

with generators {p;}. This gives a representation of (Eci‘x)J' C (quc)’x for

R(¢T) > R(¢*), where (T are the segments to the right/left of z.

. For each x € A where AR(z) = 0, we define a set of linear maps I : C, — E‘x

BEL . F

? e

and J : E‘x — C, and a set of linear maps BXF . F

t(e) - E‘h(e) ’h(e) -

for each e € £ where h(e),t(e) is the head, tail of the arrow e respectively.

t(e)

E

. Vs - a Hermitian connection % + Ty and skew-Hermitian endomorphisms {T;}3_;
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on E¢ over the interval o, which have the pole structure

18 s—ux)° s—x) 5
Tys) = [ 27 +O0((s—2)") O((s—z)" =) , (2.66)

AR—-1

O((s—z)"27) T;(A)+0(s—x)

near x € A.

8. As in the ADHM and Nahm construction, there is a gauge symmetry of the

instanton bundle £. These gauge transformations act on the various field as

Ty 97 (s)Tog(s) —ig~ 4 g(s)
T, 97 (5)Tg(s)
LR —
L seesmeo |
BEE g (t(e))BE g(h(e)
I, g Hx)I,
I ng(w)

9. If we reorganize these linear maps as

gl BLRt BRLYT
T (R L L R A
I, —BRE BLE
T=1Ty+id ®T; , T =10T)—ic' @T; ve = + vy,
(2.68)

then the linear maps are required to satisfy the “Nahm equation” [38]

1 =Im (CZT—z’T*-T+Z(5(s—x)Qz®QL

ved (2.69)

+ 3 (BZ @ (BD)a(s — te)) + B @ (BH)o(s — h(e))) ) ,

ec&

where p =}, v;i(s)o’ and 7(s) = 7.6(s — h(e)) + .6(s — t(e)) .
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This equation can be rewritten in a more familiar form as [36, 38, 37]
] ) ) 1
0=VTs+ [T +iT5, Ty —iTh] + 5 > (e = LI)(s — x)
e

5 S0 [((BER BER — BEBELY — us(s)) 8(s — t(e))
ec&

+ ((BEFY BEE — BER(BER) — vy(s)) 8(s = h(e))] .
(2.70)
0= V(Ty +iTy) +i[Ts, Ty +iTo] = > L Jo0(s — x)
zeA

+ 3 [ (BEEBER — ve(s)) 8(s — t(e))

ecf

+ (BERBEE — ye(s)) 6(s — h(e))} .

Note that this is simply the complexified Nahm equations with certain boundary terms.

Bow Construction of Instantons

Now, taking a small and large representation of a bow, we can construct instanton
solutions on T'N;. The small representation is that of an Ap_1-type bow (a circular
bow with k-edges and k-intervals) in which A = {0} and R, = 1, V¢ € Z. The small
representation specifies the geometry of T'Ny. Here, we will denote the triple of skew-
Hermitian endomorphisms of the small representation from condition (7.) as {¢;} and
the linear maps for each edge e € &, b1 Eiey = Ep(e) and bEL . Ene) = Eie)- In
each interval away from the marked points and boundaries, the t; satisfy % = 0 with
boundary conditions defined by the b2% b as in the Nahm equation (2.69).

The metric on the multi-Taub-NUT space can then be defined by reducing the “flat”

metric

1 1 .
ds? =" [2d(b£R)TdbéR + 5d(b§L)Tdb§L +(dtZ g +dt?)| (2.71)

by Nahm’s equations and gauge symmetry. Here, the angular coordinate on T'Nj is
determined by the gauge invariant data of to: log(P exp ¢ ds to) [36, 37, 38, 41].

Now we can construct the instanton configuration from the large representation.
The large representation is allowed to have non-empty A and generic data for the R(().

We will denote the maps of this representation as {7;}, BXF, BRL.
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Given a solution of the Nahm equations, we can define a Dirac operator

d . )
Dy = £+Ti®az—ti(l®az) . (2.72)

Then, as in the ADHM and ADHMN constructions, we find the kernel of this operator
Dypi =0, (2.73)

and use it to construct a matrix

V=1 || |y | > (2.74)

of the linearly independent solutions. Using this, we can reconstruct the self-dual gauge
field as in [36, 38, 37] by

A, = i/ds viDw (2.75)
where

R dEtw
mT e M T Ty

(2.76)

and V(Z) is the harmonic function for multi-Taub-NUT and w is the corresponding
Dirac potential:

dV = x3dw . (2.77)

As shown in [19], there is a special class of large bow representations, called Cheshire
bow representations, that give rise to U(1)g-invariant instantons on muti-Taub-NUT.

These bows have the special properties:
e A single sub-interval ¢ € Z such that R({) =0,

e R(Cr.e) = R(Cr,) where (1, (g are the intervals to the left and right of an edge

eecf.

These bows give rise to U(1) g instantons because the action of U (1) is determined by
a non-trivial shift in ¢ ds ¢y mod 27. In the case of a Cheshire bow representation, we
can use gauge symmetry to eliminate this shift since there is a ( € Z where R(¢) =0

which means that X has effective endpoints on which the gauge transformations of
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are unrestricted. Thus, any shift of the fiber coordinate can be compensated by a gauge
transformation resulting in U(1)g-invariant instantons [19, 37].

One such class bow and Cheshire representation that has a simple interpretation in
terms of the corresponding singular monopole configuration are those that correspond
to reducible monopoles. Given a bow which

e is circular,

e has p+1 wavy intervals separated by p = ) ; = pr edges (to which we will identify
J )

the same Fl-parameters /)

e has N marked points {z;} distributed such that there are p; edges in between

7,271 and no edges in between xy, x1,

we can construct a (reducible) singular monopole configuration from a small represen-
tation and a large Cheshire representation which has R({) = m; for wavy intervals

between xr, z741 and R(() = 0 for the interval between =y, z1 by
A, = z‘/ds viDw |, X = V(f)/ds wiD,w (2.78)

where V (Z) is the harmonic function of the T'Nj, determined by the small bow repre-

sentation. Such a singular monopole configuration will have
e Gauge group G = SU(N)
e Relative asymptotic magnetic charge 3

Ym =m — P~ =Y _miH, (2.79)
I

e |&| singular monopoles at &, = 7.

We will discuss the more general identification for irreducible monopoles later in Chap-

ter 5.

3Here, P~ is the representative of P in the completely negative Weyl chamber.
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2.4 Monopole Moduli Space

The set of solutions to the Bogomolny equation defines a smooth, finite dimensional
space known as monopole moduli space: M (ym; Xoo). This space notably has many

properties:

1. M is a hyperkahler manifold. This comes from the fact that we can combine A;
and X into a four-dimensional gauge field: A, = (4;, X) in which case the Bogo-
molny equation is equivalent to the self-duality equations for the four-dimensional
(z*-invariant) gauge field Ag:

o 1 ~
Fyj= 561-]-,6@1?“ . (2.80)

The space of tangent vectors T[ A]M at a point [A] € M is described by the

functions which satisfy the linearized self duality equations:
L 1 L
D64y = §eadeDC<5Ad : (2.81)

Since A, solves the self-duality equations, then a solution §A, of the linearized
self-duality equation will come with a triplet of such solutions ﬁgbéflb where 7"
are the anti-self-dual 't Hooft symbols. This gives us a triplet of endomorphisms

on T'M:
(@ 64)0 = (7)ar0 A" (M)ab = (R )ab (2.82)
where R, is some choice of SO(3) matrix. The endomorphisms satisfy the quater-

nionic algebra

J’I’JS = _§"1 4 ErstJt ’ (283)
and hence M is hyperkihler.*
2. M # {0} iff under a decomposition of 7, in terms of simple coroots °

Ym =Y m'Hp (2.84)
I

4This follows from to the algebra of the {7"}: 7' = —6"° — ", 7.

®We define the Cartan subalgebra t C g relative to the asymptotic Higgs vev X which we assume
to be generic. Here we then define t C g to be the set of commuting elements of g. Then we can define
the set of positive coroots by the set of coroots which have positive inner product with X, with respect
to the Killing form.
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then the m! > 0 for all I with at least one m! > 0. In this case, the dimension of

M is:

dimp[M] =4) “m' . (2.85)
X

3. The symmetry group of M is given by Ryans X SO(3)y0r x T. Here R}, . and
SO(3),ot are translation and rotation symmetry of the spatial R3 respectively.
The translation symmetry is generated by a triholomorphic killing fields while
rotation symmetry is generated by killing vector fields which rotate the complex
structures on M. The factor T of the symmetry group is generated by global

gauge transformations which is generated by triholomorphic killing vector fields.

4. We can separate out the orbits of the global symmetry, allowing us to realize the

moduli space as a quotient

R
M=RS, x %MO | (2.86)

The factor R3 is the orbit of translation and Ryx__ is the orbit of X, in T. Here,
D is the group of deck transformations acting on the universal cover and hence
D = m(M). My is called the strongly centered moduli space and is simply

connected. See [25] for more details.

ADHMN Construction of Monopole Moduli Space

The ADHMN construction of monopole solutions also gives us an algebraic description
of monopole moduli space. Given a solution of Nahm’s equations (2.36), we can con-
struct an explicit solution for the Higgs and gauge field describing the corresponding
monopole configuration. However, these are both acted on by gauge transformations.

In general, a gauge transformation is defined as an (N — 1)-tuple of of smooth maps

g = (917 "'7gN—1) , it -[Z — U(kz) ) (287)

that act as

To v g *Tog —ig-'dg , Tur g 'Tug, (2.88)



29

such that the boundary conditions (2.44) — (2.46) are preserved. This gives the descrip-

tion of monopole moduli space

(® i (p) p(p)
DoT™ + Lein [T, TP = 0| (2.44)
M(Ymi Xoo) = S g, (2.89)

where G is the group of gauge transformations as described above.

2.4.1 Singular Monopole Moduli Space

Similar to the case of smooth monopoles, the space of singular monopoles defines a
moduli space of singular monopoles M (P, Ym; Xoo). It also has many property similar

to M:

1. M(Pp,Ym; Xoo) is hyperkihler with singularities. The space is conjecturally non-
empty iff the relative magnetic charge ¥, = v, — >_,, P, is dominant. Here P,
is the image of P, under the Weyl group in the anti-fundamental chamber [131].

This means that under the decomposition
Ym =Y m'Hp (2.90)
X
m! >0 VI. If M # @, then the dimension of M is given by:

dim[M] =4 ' . (2.91)
X

2. M does not factorize as in (2.86) since singular monopoles break translation

Symmetry.

It will be useful for our purposes to differentiate between the moduli space of ir-
reducible and reducible singular monopoles. Consider a collection of minimal singular
monopoles {P; = h! (i),a_c'i(n)} whose coincident limits {:E’i(n)} — ¥, produces the set
of reducible singular monopoles {P,,¥,}. We will denote the corresponding singular
monopole moduli space

M({Pn}a Yms Xoo) = _’(Pm M({hl(l)}a Yms Xoo) . (2'92)
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Explicitly, the i*" minimal singular monopole of charge h!() is inserted at a‘:’i(") and

contributes to the reducible singular monopole at ¢, which has total charge

Po= Y KO, (2.93)

i:f;n)—@'n
Bow Construction of Singular Monopole Moduli Space

Kronheimer’s correspondence tells us that singular monopole moduli space is equivalent
to some moduli space of U(1)g-invariant instantons on multi-Taub-NUT. By using
the explicit construction of the moduli space instantons on multi-Taub-NUT from the
previous section, we see that singular monopole moduli space can be described as a
bow variety corresponding to Cheshire bow representations [19].

As we discussed, singular monopole configurations correspond to a large represen-
tation of a bow with respect to a small representation that specifies the geometry of
the Taub-NUT space. Thus, let us fix a type Ax_1 bow with a small representation
t. Further, fix the data of the instanton by choosing Z, A, £, {7.}, and E — X for the
large representation SR. The moduli space of singular monopoles is then given by set of

all large representations modulo gauge equivalence. This is given by

T c H® End(E) ,
Nahm’s Equations

Q.:C.xCp,— FE, X E,,
Mipow (R, ) = (2.69) g,
B : Ep(ey X Ep(e) = Eye) X Eyey

B : Eye) X Eye) = En(e) X Ene) >

(2.94)

where Q., BX, T are defined as in (2.68) and Es = E‘S is the fiber of E — X at
s € X. This describes the moduli space of instantons on multi-Taub-NUT with fixed

asymptotic data [36, 40].

Bow Variety Isomorphisms: Hanany-Witten Transitions

An interesting feature of bow varieties is that there are often many different, isomorphic

formulations of the same bow variety. One such isomorphism that will be useful for us
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is the Hanany- Witten isomorphism [142]. This allows us to exchange an adjacent edge
and marked point in exchange for modifying the local values of R(().

This isomorphism of representations is explicitly given by

R(&) R(&) R(&) HW Isom. R(E) R(€) R(¢
NANNeeeet  ANNASXANANANA - ANNANAANNN————ANS

where the R((;) obey the relation

R(G2) + R(C3) = R(C1) + R(C3) + 1. (2.95)

As we will see, this will be intimately related to Hanany-Witten transitions of brane

configurations.

Singularity Structure: Monopole Bubbling

The singular locus of M has the special interpretation of describing monopole bubbling
configurations. In the case of a single 't Hooft defect, singular monopole moduli space
M(P,vm; Xoo) has the stratification [142]

M(P i Xoo) = [ M™ (v, 79m: Xoc) (2.96)

lv|<P

where M(s) (V, Ym; Xoo) C M(V,¥m; Xoo) is the smooth component of M (v, Vm; Xoo)
[142]. Here each component B(S) (v, Ym; Xoo) describes the degrees of freedom of the
free (unbubbled), smooth monopoles in the bubbling sector with effective (screened) 't
Hooft charge given by v € A, + P. We will further denote the transversal slice of each
component B(S) (V, Ym; Xoo) € M(P,Ym; Xoo) by M(P,v). As shown in [142, 23], in
the case of reducible monopoles, M(P,v) is a quiver variety.®

Physically this should be thought of as follows. Singular monopole moduli space
M (P, ¥m; Xoo) decomposes into a collection of nested singular monopole moduli spaces

of decreasing charge and dimension: M (v, ¥m; Xoo) where |v| < |P|. Each lower-

dimensional component describes the singular monopole moduli space that results when

5See Section 5.1.2 for the quivers I'( P, v) corresponding to M (P, v) for the cases of reducible singular
monopoles.
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a smooth monopole is absorbed into the defect. This reduces the charge of the 't Hooft
defect and reduces the number of degrees of freedom in the bulk. The complicated
structure of M comes from how the nested components are glued together to form
the total moduli space. This is determined by the transversal slice of each component
which physically describes the moduli of smooth monopoles that were swallowed up by
the 't Hooft defect. In the case of reducible defects, the transversal slice is particularly
simple and is given by a quiver moduli space [142, 23, 24]. This indicates that quantum
mechanically, bubbling of the smooth monopoles induces a corresponding quiver SQM

on the world volume of the 't Hooft defect.

2.4.2 Triholomorphic Killing Vectors and Symmetries

A subject which will be crucial in later discussions is the realization of explicit tri-
holomorphic killing vector fields that generate symmetries of monopole moduli space
[75, 76, 77, 132, 133, 134]. Consider a local, real coordinate system {2} on M. These
coordinates parametrize a smooth family of gauge-inequivalent solutions of the Bogo-
molny equations given by A = (4;, X). We can describe the tangent space at [A] € M
by

T[A]M = spang {5mfla = OmA, — ﬁaem} , (2.97)

where €, : R? — g projects onto a representative in gauge orbit of [fl] € M which

implies that
DAy, =0 — D%, =0. (2.98)

The §,,A, form a local frame of TM. This naturally extends to a covariant derivative

on the moduli space

with curvature

Gmn = Omé€n — On€m + [€m, €] = [Dm, Dy] . (2.100)
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This connection is called the universal connection. We will discuss this in more detail
in the next section.

As we discussed above, the action of the torus 7" on the fields is generated by triholo-
morphic killing vector fields on M. Such vector fields and hence their corresponding

gauge transformations are generated by elements of the Cartan subalgebra t:

Gt — isompy(M) . (2.101)

For any H € {, there exists a unique solution to

N

D%y =0 , limey(z)=H. (2.102)

T—00

This generates a vector field G(H)™ by decomposing the derivative in terms of the

577114@

~ ~

Doen = —G(H)™8,, A, . (2.103)

By nature of being triholomoprhic killing vectors, translation along G(H)™ preserves
any complex structure

LI =0. (2.104)

Using the G-map, we can define a basis of the triholomorphic vector fields corresponding

to the group of gauge transformations’

(K" =GH)™ 1=1,..,rnk[g] . (2.105)

We will use the notation (K{)™ = Go(Hj)™ to denote the projection of the projection
of the triholomorphic field G(H;)™ onto the component orthogonal to G(X.)™ on
smooth monopole moduli space. This plays a special role in the analysis of smooth

monopole moduli space which splits into a center of mass and G(X,)™ orbit.

"We are ignoring the subtlety associated with the possibility of the m! = 0 for some I where
Ym = Z[ m! H;. In this case, one must first reduce to the “effective Lie algebra” and then follow a
similar story. For more details see [133].
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2.4.3 Universal Bundle

The connection introduced in the last section, D,,, naturally arises as the connection on
the universal bundle [11, 47] which parametrizes the principal G bundles over a space
U.

Suppose we want to consider a principal G bundle P — U with a family of con-
nections indexed by some continuous space 1. Let @@ be a principal G bundle over
U x T such that Q}UX , = P, vVt € T. If these conditions hold, any choice of connec-
tion on Q‘MX , which is continuous with respect to ¢t € T is induced by pulling back
the connection from a bundle Q, with canonical connection D,, through a bundle map
B : @ — Q. This bundle with connection (Q, D,,) is the universal bundle whose
connection is termed the universal connection.

We can define the universal bundle as follows. Let G be a compact, semisimple Lie
group with a trivial center® and let P — U be a principal G bundle and let G = {@ :
P— Prod=m, m:P — L{} be the group of gauge transformations. We want to
construct a bundle with the spirit of P x A — U x A/G. Naively one would expect this
to be a principal G x G bundle, however the action of G x G is generically not free and
does not act without fixed points.

The action of G on P x A is given by:

By (p, A) = (Py(p), g ' Ag+9~'dg) , P,€G (p,A)ePxA (2.106)

For generic A € A, the isotopy group I'4 = {®, € G|®4(A) = A} can be nontrivial. This
means that the subspace of (P x.4)/G along a slice [A] € A/G is given by P/I'4 x {[A]}.
Since G acts freely on P, (P x A)/G is a well defined, smooth space. However, this
means that the action of G on this space will generically have fixed points. This can be
solved by restricting to irreducible connections A* = {A € A|I'4 = C(G) = {lg}} or
to framed connections which we will define momentarily. In this paper, we will restrict
to the space of framed connections following [11].

A framing is a choice of base point z¢p € U and an isomorphism ¢ : G — Py, so

81f we were to include groups with a non-trivial center we would need to restrict P to be a principal
Go bundle where Gy = G/Z(G).
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that the set of gauge transformations are equivariant with respect to the G-action on
the fiber P,, under this map ¢. For our purposes we will pick xg to be the point at
infinity. This means we can write the space of framed connections as: B = A/Gy where
Go={g € Q‘ 9z, = li} is the space of gauge transformations which act trivially on the
space of framings. Therefore, instead of restricting to the space of framed connections,
we can equivalently restrict to the gauge connections to be the group Gy. The action
of G on (P x A)/Gy is free because VA € A, GoNI'4 = {lg}. Thus, the space
Q=(PxA)/Gy=P x B forms a principal G bundle over U x A/Go:

PxA
0

e

Q=PxA/G

T A

U x A/g()

x A (2.107)

NG

The universal bundle Q has a natural connection D, (called the universal connection)
which descends from tautological connection on P x A and is compatible with the
(G x Go)-invariant metric on T'(P x A). At (p, A) € P x A the metric on T), o(P x A)

is determined by the metric on I, killing form on g, and L? norm.

2.5 Rational Map Construction of Monopole Moduli Space

There is also an additional algebraic formulation of monopole moduli spaces [54, 92,
93, 108, 30, 102]. The core idea is to study monopole configurations by the scattering
of charged particles. Then, from studying the S-matrix, which relates a set of incoming
states to a nontrivial set of outgoing states, we can reconstruct the field configuration.
The physical data of the monopole configuration will be expressed in the structure of
the bundle of final states over the plane at outgoing infinity, which is further identified
as CP!.

Consider a gauge theory with gauge group G on spatial R? coupled an adjoint Higgs

field X and a particle in a faithful representation? of highest weight A corresponding

9Note that any representation will work for this construction as long as the corresponding field
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to a section of a vector bundle H — R3. Pick a background field configuration with
monopoles. This requires picking a connection V and Higgs field configuration satisfying
the Bogomolny equation

«F=VX , (2.108)

where F' is the curvature 2-form of V.

In order to examine the scattering of the charged particle along straight lines in R?
we will make use of the twistor method of [87] and work on the space of all oriented,
straight lines'® TP! — CPL,.

Given a point n € CPL, in the base space, there is an identification R? = C x R given
by the fiber TnCIPﬂ, which we will parametrize by the coordinates (z,,t,) where z, fixes
a line in R3 whose direction is specified by 1 and t, is the coordinate along this line.
In these coordinates, the covariant derivative splits as (Vy,, V., ,Vz ) on each fiber of
TP

Now we want to scatter a charged particle through the static monopole configura-
tion. This is described by parallel transport along the lines ¢ C R3, each of which is

defined by some (1, z,) € TP!, by the connection

Vi = (Vy, —iX)| (2.109)

Zn

Thus, let us consider scattering the charged particle of representation A, which takes
values in an associated vector bundle H — R3, through the monopole configuration
along a fixed line £ C R3. The set of covariantly flat sections Vs = 0 of H restricted

to ¢ defines a vector space:

E,={sel'((,H|;) | Vys=0}. (2.110)

couples to all of the W-bosons (that is it is a faithful representation) and hence will capture the
interactions with all monopoles.

0The space of oriented, straight lines in R® can be identified with TP! as follows. Fix the origin of
R3. A line in R? is then specified by a choice of direction and displacement from the origin along a
perpendicular plane intersecting the origin. Note that there is S? = CP., choices of directions in R3
and then there is an R? space of displacement from the origin. Since this R? is perpendicular to the
choice of v € §% 22 CP', we can associate this with the tangent space and hence the space of oriented
lines in R? is given by T'S? = TP*.
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Since (6, X) satisfy the Bogomolny equation, there is an operator relation
Vs, (Vi, —iX)] =0, (2.111)
for all n € CPL, [87]. Thus, E; extends to a holomorphic vector bundle over TP

E — TP | E

- {s € It Hlr.,) | Vieys =0, Vs = 0} L (2.112)

7,21
This bundle has a pair of natural flag structures determined by the asymptotics of
the set of solutions along the ¢, — £oo. Let the vev X, be a generic element of
t. Without loss of generality, introduce an ordering of the weights of Ay such that
x; = (pi, Xoo) € R are ordered: z; < xjy1 , Vi. Then the covariantly flat sections of
are of the form

s(t) ~ [t [T/ X0 f(1), 2,) as t — Foo (2.113)

where k, = (1tp, Ym). This allows us to define the two sets of subbundles

Epi = {3 €cFE ‘ tliin |t ERe/2 eETotg(t) is ﬁnite} CE, (2.114)
—4oo

for which rnk[E>] = p. These subbundles have a flag structure:
0O=FEf CEfCEfCc..CET=E, (2.115)

given by the asymptotic behavior of the sections, which is determined by the ordering
of the {x,}. This flag structure a gives clear way to visualize the natural G-action on E.
There is a maximal torus T that stabilizes the flag, and hence the space of inequivalent
flags at fixed (7,z2,) is given by G/T = G¢/B. Here T acts as a phase rotation of
the sections at infinity. This encodes the gauge transformations of the conserved gauge
group. Similarly, the action of B in the setting of G¢/B also corresponds to gauge
transformations.

Now in order to obtain the standard construction of monopole moduli space, we
can reduce this to a bundle over CP! from a bundle over TP! as follows [87]. First,
make a choice of complex structure by picking a point n € CP.,. Now define the
bundles Eﬂn — T,P! 2 C by restriction. These bundles can be canonically extended

to E;E\n — CP! by one-point compactification since the two flags of E‘n — C are trivial



38

and isomorphic in the limit |z| — oo for z € C. This is because physically, the scattering
is trivial at infinity.

Now choose a local framing of E, — CP! which trivializes the negative flag (E7)
as the standard flag of C¢ over CP!. Physically, this trivialization corresponds to
preparing the incoming scattering particle with no initial knowledge of the monopole

configuration. This trivialization gives the flag {E;r} the property
B /Bf, = Olky) @ T30 | (2.116)

where k; = (ur,vm) [92]. This is due to the fact that the asymptotic solutions of
(V¢ —iX)s = 0 are of the form s(r) ~ 7¥1/2¢=21" Thus, trivializing {E; } means that

k1e=21m and hence the leading term in E;“ but not

the terms of E} will go as s;(r) ~r
in B} | is a degree k; polynomial [93].

The key to this construction is that the data of the monopole is contained in the
flag structure of {E; }. This is because the flag structure encodes the amount to which
the fiber of E rotates as the charged particle scatters through the monopoles. This
non-trivial flag structure is expected because the non-trivial curvature of E can be
attributed to Hecke modifications of the vector bundle as it scatters past monopoles as
in [102].

Thus, we can associate the space of monopole configurations the space of flags {E;r}

subject to the condition (2.116). The space of these flags is described by the space of

rational functions of degree m = {m! }7_ into the flag variety
f:CP' - G¢/B, (2.117)

where r = rnkg and v, = > 74 m! H;. This function the scattering matrix of physics.

Remark

1. Since scattering at infinity is trivial, the flag structures should match there and

hence the rational functions are based at infinity: lim, o f(2) = 1. /B-

2. Since the bundle F ‘n — CP! descends from the bundle E — TP!, the rational
map f(z) descends from a rational map f: TP = Ge /B that is holomorphic

with respect to n € CPL: f(z,n). This encodes the hyperkiihler structure of M.
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2.5.1 Explicit Construction of Flag Data and Rational Maps

We will now explicitly construct the rational map which encodes the data of monopoles
and show how to explicitly give an algebro-geometric expression for monopole moduli
space.

Define a set of functions {fr(z)}7_; such that fr(z) is a rational function of degree
m!, r =k G, and

T
Ym =y m'Hy . (2.118)
I=1

Now define the map

@) =exp$ Y fa(2)Eap  fa= Y fi1(2), (2.119)

acdt I€Sa

where S, = {ag € @:Z.mple | @ =) jes, a1} is the decomposition of a in terms of simple
roots, and F, € g* are step operators: [Hy,, Eq,] = C1E,,. Clearly f(z) takes values
in G¢/B. Such a map defines a flag of subbundles {Ef} C FE by acting as an upper
triangular matrix on the E}F, mapping each factor E}F into the E}' for J > I. This
construction requires that f(z) is a rational map of degree » ;g m! for each E,. This
is equivalent to the condition that each pair f;(z) + fs(z) is of degree m! + m’ for
Cry # 0. This defines the space of flags, and hence monopole moduli space

M(Ym, o) = ﬂ {\AI,J! £0:C0715 # 0} , (2.120)
1

where Ay ; is the resultant of the rational function f7(z) + fs(2).

Remark

1. This space is naturally hyperké&hler. In the rational functions f7(z), which are

generically of the form

mli—1 (I)_j
S ol

fr(z) = B ’ [,)nI,i D 5 (2.121)
2Py bz

1

C.8?

the coefficients {agl), bl(»l)

} are holomorphic functions of n € CP, ., which parametrizes

the choice of complex structure on M. The function f has this property because

f(z) naturally descend from functions f : TP' — G¢/B. Note that the action
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of spatial rotations, SO(3),, changes the direction of € CPL, since it selects a
direction in R? and hence the action of S O(3)0t Totates the complex structure as

expected.

2. Since M is hyperkahler, it must have a real dimension which is a multiple of 4.

Since the rational functions are generically of the form (2.121), a simple counting

(1)

argument shows that specifying f(z) requires m! choices of by

(1)

of a;

and m! choices
subject to 2r — 1 constraint equations with 2r — 1 free parameters from

|Arg| # 0. Thus, the total dimension is
dime M (ym; Xoso —ZZm —  dimp M (ym; Xso —4Zm . (2.122)
in agreement with (2.85).

3. Note that due to the choice of complex structure, this formulation only explicitly
realizes SO(2),ot X Rx Cx U (1)" symmetry where SO(2),0t = U(1)rot is spacetime
rotation in the C-plane, R is translation in the R-direction, C is translation in the
C-plane, and U(1)" is a global gauge transformation along the unbroken maximal

torus.

A generic element (\, u,v,p) € U(1)pot x R x C x U(1)" where g = (p', ..., p"),

acts on the rational maps as

fi(z) » A2 2 (N 2 (T (=) (2.123)

These symmetries can be used to fix |A; j| = 1. The full SO(3),, group acts
by rotating the complex structure and hence is most natural in the setting of the

rational map f : TP' — G¢/B where SO(3),0 acts on CPL,.
4. In the case of G = SU(2), (2.120) simply reduces to the condition that fi(z) is a
rational function or that |A;| = 1 reproducing the result from [12].
2.5.2 Physical Interpretation of Rational Map

It is important to understand how the physical data of monopole moduli space is con-

tained in the rational map. Using the notation from before, we can decompose each
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fr(z) as

ml

fiz) =Y - (2.124)

)
z—b;
i=1 ¢

Fach term in the sum corresponds to a monopole of charge ~,, = Hj located at & =

(—%10g|a\, b) € R x C with phase arg(a) [12]. Physically, this interpretation only makes
sense physically as long as the monopoles are well separated as compared to the W-

boson mass my ~ /(X?).

Example: 2 SU(2) Monopoles

The classic example of how the rational maps reproduce monopole moduli space is in
the computation of the 2-monopole moduli space for G = SU(2) as studied in [12]. In
this case, monopole moduli space is determined by the condition that the rational map

a1z + ag

1) = 224+ biz+by’

(2.125)

has degree 2. The corresponding moduli space is given by |A¢| = 1 where we have used

some of the symmetries to fix the resultant. This gives the equation
2 2 _
a] — bg(lo — blaoal =1. (2.126)

We can now exploit the full symmetries of M to pick different coordinates so that the

strongly centered moduli space M is defined by the variety
{2 — 2z =1} cC?. (2.127)

This equation defines a 2-dimensional complex variety as a subset of C? which is the
famous Atiyah-Hitchin manifold [12]. Note that (2.127) defines a 4 complex dimensional
space with 2 coordinates unrestricted. This means that the moduli space will be locally
a direct product of this Atiyah-Hitchin space with a flat space describing the center of

mass degrees of freedom. This is the famous result of [12].

Example: 2 SU(3) Monopoles

Now consider the case of 2 monopoles with total magnetic charge v, = Hy, + Hy, in

an SU(3) gauge theory. This means that we should consider two functions

ai

fi(z) = ol fa(z) =

a2

: 2.12
o (2.128)
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Without loss of generality we can choose our coordinate center so that b; = 0. Then
we have that the monopole moduli space is defined by the condition that fi(z) + fa(2)
is a degree 2 rational map. Again we will fix the phases so that monopole moduli space
is described by |Aq o] = 1:

ajaghs = —1 . (2.129)

Relabeling into standard coordinates, we can rewrite this in the patch with by # 0 as
22+ +22=0, (2.130)

which is simply the unresolved A; singularity. This tells us that the strongly centered
charge (1,1)-monopole moduli space in SU(3) is topologically equivalent to Taub-NUT.
Restoring the center of mass degrees of freedom we removed by fixing |A; 2| = 1 and

b1 = 0 tells us that the moduli space should locally be of the form
MY = Hy + Hy; Xyo) ZR3 x ST x TN . (2.131)

This space is of the correct dimension and matches the result of [111].

Using this insight, we can see that the condition above is consistent with the general
asymptotic metric of [111]. Consider the asymptotic limit of monopole moduli space
where all monopoles are far separated relative to the W-boson mass my ~ y/u. Now
restrict to the subspace of M where the location and phases of all monopoles except
for two with non-trivial attractive magnetic force ((Wm,l,fme) < 0) are fixed. This
subspace is locally of the form R3 x S! x TN. This can be seen by separating the
function

ay agj

fite) + fa(e) = -+ o v Frizea(2) (2.132)

where frized(2) is a degree m! +m? — 2 rational function which has all fixed parameters
{a;,b;}. The rational map degree condition now becomes approximately that for the
case of the 2 SU(3) monopoles above so that the subspace of strongly centered moduli

space is approximately Taub-NUT, matching the behavior of the metric from [111].
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2.5.3 Rational Map Formulation of Singular Monopole Moduli Space

This formulation can be extended to include the existence of singular monopoles. These
correspond semiclassically to infinitely heavy magnetically charged particles and are
used to describe 't Hooft defects. Therefore, it is also important to understand the
moduli space of singular monopoles.

As pointed out in [108, 102], these are equivalent to having non-dynamical monopoles
which are at fixed position and phase. In these references it is explicitly worked out
that the flag {E; } should undergo a Hecke modification. This means

Naes
Ef = Ef' = Ef Q) 0.,(0}) (2.133)
n=1
where O, (1) is the sheaf of locally holomorphic functions with a simple pole at z, €

CP! [102] and

N
P, = Zp{zhl ) pqlz €Z, (2134)
I=1

where {hl }7_, form a basis of Acpener. This construction can further be motivated
in analogy to [132], where singular monopoles were introduced by taking the limit of
infinitely massive, fixed smooth monopoles.

Since we are simply adding magnetic sources without introducing additional moduli,

the functions f7(z) are modified:

Ndef

f1(2) = fi(2) = fi(2) + 3 £ (2) (2.135)

n=1

Here deg[f7(2)] = ! and deg[fl(z)mg(z)] = pl and has a p!-order pole at z, where
Y =m — Y _ Py =Y _m'Hp, (2.136)
n 1

and P, is the representative of P, in the completely negative Weyl chamber. We will
refer to f[(?m ,(#) as the part of f1(2) encoding the data of the singular monopole in
analogy with the physical interpretation of Section 2.5.2. Singular monopole moduli
space is then determined by the condition that

M({ P}, ym; Xoo) = ﬂ{lﬁm £0:Cry #£0}, (2.137)
1,J
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where Ay is the resultant of the rational function f7(z)+f;(z). This does not introduce
any new degrees of freedom in the functions and hence the dimension of the moduli
space is given by.

dimp M({Pn}, ym; Xoo) =4 !, (2.138)
I

matching the results of [132].

Example: Singular Monopoles in PSU(2)

Consider the example of a single monopole interacting with a singular monopole in a
PSU(2) theory. This can be constructed from SU(3) gauge theory with two monopoles
of charge Hi, Hy by taking the limit X2 — oo where Xoo = >, XI Hy [132]. It is
known from [25] that taking this limit M(v,, = Hy + Hz) — M(P = h';~,, = Hy)
will give rise to Taub-NUT space of charge 1. We will now show that this is exactly
what we get from the construction given above.

As in [132], the projection procedure gives the charges
- 1
m=H , P=cH, (2.139)

therefore as above, we simply have that the M is defined by the condition that the

rational map
~(n)
~ al aq
= + 2.140
f(z) 2 — bl o — Zn Y ( )

is of degree 2. Let us pick a coordinate system such that the line defect is at the origin
(that is z, = 0). Then, following the example above, we find that the space is given by
the variety

wvw? = —1 , (2.141)

which again is the relative moduli space of Taub-NUT. The difference between this and
the case of smooth monopoles in v, = 2H; is that there is no center of mass term since

the singular part of f does not provide additional degrees of freedom as expected.
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Chapter 3

Semiclassical BPS States

Now we will turn to the role of monopoles in supersymmetric quantum field theories
that have Lagrangian descriptions. Here, monopoles take a special role as “BPS states.”
BPS states are %—SUSY (multi-)particle states that saturate certain energy bounds.
Since BPS states partially break SUSY, they form short (sub-)representations of the
preserved SUSY (sub-)algebra. This property protects them from decay except along
special loci in the moduli space because decay requires the BPS states to combine to
form long representations of the full SUSY algebra. On these special loci, the BPS
states decay in a very controlled way that is known explicitly [106, 107, 67, 50, 99, 150].
Thus, by studying the spectrum of BPS states, we can learn about a quantum theory’s
strong coupling region.

Generically BPS states in the theories we are considering are dyons, which can
be described by non-trivial bosonic field configurations. These are non-perturbative
excitations that can be thought of as quantum lumps [43]. To describe the physics of
such states one must take into account both the perturbative quantum excitations in the
non-trivial bosonic background and the dynamics of the non-trivial bosonic background
field along the moduli space of non-trivial field configurations. Because of this, the study
of BPS states requires both a knowledge of perturbative and non-perturbative physics.

In this section we will discuss some of the basics of BPS states and derive an effective
action that describes their dynamics in the semiclassical, adiabatic limit of a Lagrangian
SUSY gauge theory. Specifically, we will show that they can be described by a SQM on

monopole moduli space which, a.) when in the presence of 't Hooft defects, is modified

This Chapter is based on material from my papers [22, 28].
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to an SQM on singular monopole moduli space, b.) when in the presence of Wilson
defects, couples to a vector bundle Ewilson, and c.) when coupled to 4D hypermultiplet

matter, couples to a vector bundle Enatter-

3.1 BPS States

A supersymmetric quantum field theory is one in which there is a conserved set of
fermionic “supercharges” ()4 which anti-commute up to a conserved quantity. In 4D,
the generators satisfy

{Qﬁa QaB} = 25ABU7ZaPm )

{Q2,QF} = 26asn™" 7, (3.1)

{Qa,4,Q5 3} = 2¢53m4B2
where P, is the momentum operator, Q is the complex conjugate of Q, v, /3, d,B =1,2
are indices for the 27, and 2 representations of SO(3,1), A, B = 1, ..., N where n4?
is an antisymmetric matrix, and Z is the central charge — an operator that commutes
with the Hamiltonian (and supercharges).

Here, the positive integer N’ = 1,2, 4 is often referred to as the number of supersym-
metries. This is because the supercharges are acted on by a SU(N') x U(1) symmetry
group which is called the R-symmetry group. We will focus on the case where N = 2
so that 7 is the standard epsilon symbol of the 2 representation of SU(2). Note that
we can only have non-trivial central charge when N > 2.

Now let us consider how the supercharges act on massive particle states [129].! In

this case, we can go to the particle’s rest frame so that the momentum operator acts

as
Pyly) = MoJy) - (3.2)
We can then reparametrize the SUSY algebra in terms of the linear combinations

R = (12Q4 + (2ol Q0
(3.3)
TA — <_1/2QA o CI/QO_O _ QdA 7

!The massless particle states will follow analogously. See [129] for more details.
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where ¢/? € U(1) which satisfy
In terms of the R, T, the SUSY anti-commutation relations acting on the single particle
state [1) is given by
{R&,RE} = 4(M +Re((T'Z))eape™” |
{T T3} = A(=M + Re(¢'2))eape™” (3.5)
{RG.TFY=0.

The Hermiticity conditions (3.3) then imply that
1 1) 2 2 vt 2 1
(Ri+®RDT) = (RI+(RD) = 4(M +Re(¢'2)) 2 0. (3.6)

This is referred to as the Bogomolny bound. The states that saturate this bound are
BPS states. Consequently a non-BPS state satisfies M > —Re(¢"12).
Consider a BPS state |¢)pps). The SUSY algebra then acts on this state following

the commutation relations

{Rév RB} =0,
o (3.7)
(T TP} = —8Meqpe” .
By rescaling 7,4 — TA = ﬁﬁf‘, we the commutation relations become
{Rév RB} =0,
g (3.8)

{7;,47 7163} — —EageAB )
We can now see that the state must form a representation of the fermionic harmonic
oscillator (generated by the 74) and is annihilated by the R2. Thus, a BPS state form

a multiplet:

T T2 dsps) (3.9)

T

T vBps) T2 |vBPs)

\>/

[YBPs
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where we used the Hermiticity condition (3.3) to eliminate the 75\, 7.

This differs from the case of a non-BPS (fully supersymmetric) state whose SUSY

algebra can be written

{ﬁéaﬁg} = faBEAB s
y 3 (3.10)
{7:1A>7-5B} = _60156AB s

where R4 = R4 and TA = #7:;1. Non-BPS states are then not annihilated by

T
either the R4 or 7,4 and thus form a long representation of the form
TITRRIR? )
TR M T
A e
RilY) Ril¥) T i)

—

Since the representation corresponding to a BPS state (short) and a non-BPS state

L

(3.11)

[¥)

(long) are of different dimension, a BPS state cannot become non-BPS unless BPS
states combine together to form a long representation of the SUSY algebra. This
general property protects the mass of such states from quantum corrections that would

potentially break the BPS bound

M > —Re(¢C12) . (3.12)

3.2 N =2 Supersymmetric Gauge Theory

For the rest of the paper we will consider N/ = 2 supersymmmetric gauge theories in
4D. Such a theory is specified by a gauge group G, some quaternionic representation of

G, with couplings, masses, and Higgs vevs.
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To the gauge group G we can associate a vectormultiplet superfield with fields
(A, va,®). Here A, is a Lie[G] = g-valued gauge field, 14 is an SU(2)r doublet
of complex Weyl fermions that are in the adjoint representation of G, and @ is a
complex, adjoint-valued Higgs field. To this vector multiplet we can associate the
complex coupling

4mi 0

where ¢ is the standard gauge field coupling and 6 is the associated theta angle (in-
stanton fugacity). Additionally, A, is uncharged under U(1)g while @ has charge 2.

To the quaternionic representation G we can associate a hypermultiplet superfield
field which has component fields (¢4, \) where g4 is in the quaternionic representation
of G which also furnishes a fundamental representation of SU(2)r and A is a Dirac
fermion which is uncharged under SU(2)g x U(1)g. The outer automorphism group of
the quaternionic representation which, commutes with the action of G, is a global
symmetry (which may or may not be anomalous) that is referred to as the flavor
symmetry group Gy. The hypermultiplet superfield comes with a specification of mass
parameters which is valued in a Cartan subalgebra m € t; C gy =Lie[G¢]. This breaks
the flavor symmetry group down to the normalizer subgroup of m in G; which we
generically take to be a maximal torus T7.

With this data one can specify the UV Lagrangian of the theory

i I _ 4
£ =Re / 20y I w4 B / d20d200" >V &
8 A7

(3.14)
41
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In components this can be written as

1 1 14 . o TA—
L= 5 Tr| = gFuF" +i(bac” Dy + 920" Dya) + (Mn)’
—i(e*Bpalypp, 9] + eap A [WP, B]) + id*[D, D]
1 - e
e Dug™ D qa + My DA — [Hal? +ig* (0™) ¥ Mg (3.15)

—Z'(qATWA)\ + X\@AQA) — 5\(@3 + mR))\ — ij\(@[ + mI)’y55\
+igAPH 4 — iHATQ*q:Z +mg Hy + m*qLHA*]

+@T7‘[6H,,UPFWFU”] ,
where M, is a triplet of auxiliary fields M,, = (g, f, D), m = mpr +im, & = & + 1Py,

and
Wy = ( Ya, eapth? ) ) (3.16)
is a Dirac fermion.

From this Lagrangian, one can show that the classical moduli space is described by

solutions to the equations

T |10, 01)] +¢*o% 5T =0 ¢Mofpe® =0, @-g4megt=0, (3.17)

where 03, 0% are the standard combinations of Pauli matrices. We can generically

distinguish between 3 different types of vacua: 1.) Coulomb-, 2.) Higgs-, and 3.)
mixed-type vacua. These are defined by taking the vev’s of @ and g4 at infinity be 1.)
(ga) =0, 2.) () =0, and 3.) (ga), (P) generic. We refer to the collection vacua in
each class the Coulomb, Higgs, and mixed branches respectively.

While each vacua has its own interesting properties and interesting physical phe-
nomena associated to it, we will only focus on the Coulomb branch here. For Coulomb

type vacua, the vacuum equations reduce to
(@, 01 =0, (3.18)

and thus the Coulomb branch B can be identified with B = (t@ C) /W, where W is the
Weyl group of t C g. Due to the quotient by the Weyl group, the Coulomb branch is

parametrized by the casimirs of the vev of the scalar field.
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At generic points on the Coulomb branch, the gauge group is classically broken to
a maximal torus T C G except along co-dimension > 1 loci where @ = 0 where the

Higgs vev decomposes into simple coroots as
Do => GLH, . (3.19)
I

Quantum mechanically, the gauge symmetry breaks down to a maximal torus T' C G

everywhere on B.

3.2.1 Low Energy Theory

The low energy effective theory of 4D N = 2 SYM theory can then be described as
a 4D gauged non-linear sigma model on B [155, 156]. A/ = 2 supersymmetry implies
that the metric on B is hyperkahler . In the N' = 1 notation of [171], the low energy

effective action can be written
L =Re { / d297iﬂ'(q§)wiawa,j} + / d*0 K (®,d) , (3.20)

where @ is a N/ = 1 chiral superfield with components (a, 12, F') and Wy, is the curvature
of the remaining massless vector superfield with field components (D,1,A,). Here,
7% is a holomorphic function of @ for each 4, j, and K(®,®) is the associated Kihler

potential

2
PK

da;0a; ’ (3:21)

where 4,7 = 1,...,rnk g run over the U(1) subgroups of T' = U(1)™k9,

The physical structure of this theory can be seen more clearly by defining coordinates

that are dual to a;

, 0K
i 3.22
aD 8(12 ) ( )
which is allows us to define 777 as
. 0db
i — D .2
T Ja; (3.23)

Under this choice of coordinates, the metric of the effective action and Ké&hler form

become
1 i 1 1 _ —17
ds® = %Im da'pda; , 2= ~%n (da)y A da; — da; A da'p) (3.24)
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Note that there is an action of SL(2;Z) that acts on the pairs (a;,a%,) by

a b a; a;
. — ' , (3.25)
c d al, a,
such that the metric and Kéhler form are preserved. Equation (3.22) then implies that
7% transforms under the same SL(2;7Z) as
at +b

7_7,] = — .
etV +d

(3.26)

We will identify the 7% that are related by SL(2;Z) transformations as physically
equivalent. Further, physical considerations require us to restrict us to the case where
g?> > 0 which implies that Im 7% > 0. Thus, 7% takes values in the upper half plane
quotiented by the action of SL(2;Z): Ht/SL(2;Z).

A holomorphic function that takes values in H*/SL(2;Z) where SL(2;Z) acts as
(3.26) (i.e. 77 is a modular form of weight 0) is uniquely specified. This function is
the j-function of a torus. This allows us to encode the data of all of the 7% in an
abelian variety X fibered over B with a globally defined 1-form. Specifically, given a
decomposition of the first homology group H;(X;Z) = span{a;, '} into symplectically
dual cycles, we can define the (a;, a%)) by

ai=| A, ap=[ A, (3.27)

@i Bi
where A is the globally defined 1-form which is often referred to as the Seiberg-Witten
differential. The abelian varieties above a point u € B can be encoded as the Prym

variety of an N-fold cover of a Riemann surface 2
Y, —C, (3.28)

fibered over u € B.
More generally, for a 4D theory with hypermultiplets, 3’ and C' are allowed to have

singularities at special points in B. In this case we consider only the periods of the

2That is to say the Jacobian variety X is encoded as the kernel of the map of Jacobian varieties
J(Xu) — J(C).
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Prym variety associated to the fibration of closure of X, (X,) over the closure of C
(©)
X, = Prym [Eu o, é} . uehB. (3.29)
The explicit forms of the pairs (X,,C) and the associated 1-form A\ are known in a
large number of cases. This allows one to explicitly compute the exact effective action
in terms of the a;,a’,. This was first done by Seiberg and Witten in their seminal
papers [156, 155].
BPS states also have a natural interpretation in this description of the data of
the 4D low energy effective theory. Specifically, they correspond to special closed 1-
dimensional submanifolds of Y. To each such submanifold P C X we can associate a

mass and central charge

Mp:/ Al Zp:/)\. (3.30)
P P

From this definition, it is clear that we have the identity
Mp > |Zp| . (3.31)

Thus, BPS states can be identified with 1-dimensional closed submanifolds P C X such
that

Mp = Zp . (3.32)

This description of the low energy effective theory of a 4D N = 2 gauge theory in
terms of abelian varieties may seem quite esoteric, but it actually comes from the string
theory construction of the 4D theory. This construction is called the class S construction
in which the 4D theory is given by wrapping M5-branes on X' producing an effective 4D
theory with A/ = 2 SUSY. The BPS states then come from the boundary of M2-branes
wrapping the one-dimensional submanifolds. We will discuss this construction further

in Chapter 5.

3.3 Vanilla BPS States

BPS states in a 4D N = 2 theory can generically be classified into two classes: smooth

(or “vanilla”) BPS states and framed BPS states. Framed BPS states are BPS states
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in a classical background with line defect insertions whereas vanilla BPS states are in
a classical background without line defects.

In this section we will describe the dynamics of smooth BPS states in N = 2
super-Yang-Mills theory.? Here we will take G to be a semisimple, compact gauge
group with trivial center. * The classical configurations of smooth BPS states are
generically described by smooth monopoles (which are allowed to additionally have
electric charge). This is clear because the bosonic part of the action of SYM theory
is identical to the Yang-Mills-Higgs theory studied in the previous chapter and hence
the non-trivial background configurations (which we assume to be bosonic) are given
by monopole configurations.

The bosonic part of the 4D A" = 2 SYM action is given by °

1
9%

1 1
Spos = — d'z Tr {2FWF’“’ + D, ®D"d — 4[@,@*]2} , (3.33)

where here we use gy (and later will use 6p) to denote the bare coupling. This is of the
same form as the YMH Lagrangian (2.1) with V(&) = [@, 7).
The bosonic part of the Hamiltonian of 4D A = 2 SYM theory can be written
1

1
Hyos = g2/d3x Tr {Ef + B} + |Do®|? + | D;®|* — 4[45,@*]2}
0

1 - ) L
= ? d3gj‘ Tr {| —FE; —1B; + CvalnDz'@’Q + ‘CvalnD()@ + 5[@’¢ ”2} (334)
0

~Re (Gah2?)
where (yqpn is some phase and

z¢ = 923 /S . Te{@GF - «F)} . (3.35)

Thus, BPS states, which saturate the bound M > —Re[¢;.L Z¢], must be solutions of

van

the equations [152, 21]:

3We will study the general case of N' = 2 SUSY gauge theories with matter in Section 3.6.
4We will for the remainder of the paper make these assumptions about the gauge group.

®We will adopt the conventions of [133].
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where (;.} ® =Y +iX. The solutions of these equations break % supersymmetry. The
choice of preserved supercharges is determined by the choice of (yan € U(1).

In the gauge where Ag =Y, the time-independent BPS equations simplify
E;=D)Y , Bi=D;X. (3.37)
The first equation can be combined with Gauss’s Law to
DY =0 , D?Ag=0. (3.38)

These equations have a unique solution once we specify asymptotic boundary conditions

g2 ,thys
Y =Yy — 4—02— + O(r—(1+9))
, phyz " (3.39)
_9p e N —(2+9)
i = o 7 + O(r )

The second equation is the Bogomolny equation which, after fixing the asymptotic

behavior

X = Xoo — 1™ 4 O(—0+9) |
2r (3.40)

has a moduli space of solutions given by monopole moduli space M (y; Xoo) as we
discussed in Chapter 2. Therefore, given the asymptotic boundary conditions (3.39)
and (3.40), the moduli space of BPS configurations is exactly the monopole moduli
space M (Vm; Xoo)-

It is clear from the pairing of E; with Y = Re[(,,.,®] and B; with X = Im[(,.} ],
that the choice of (yqn that decides this splitting is very important and seemingly
arbitrary. However there is a unique choice for (4, that maximizes the BPS bound for

BPS states with fixed magnetic charge and finite electric charge:

-1 . ’ch’
=— lim — . 41
Cvan golr—>n0 ch (3 )

Given the expansion of Z. in terms as asymptotic data,

_ 47 Y
(o g = — g2<7m,xm>+<7£hys,ym>} +z[92<vm,yoo>—<~yghys,xm> (3.42)
0 0
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where
1 2 0
P phys _ = F=—[~4+—
the choice (3.41) of (yqn implies that
47 phys
?<7m7Yoo) — ("%, Xoo) =0 . (3.44)
0

Here ~} is the dual element of the quantized electric charge. The shifted electric charge
is derived by choosing a duality frame for the charge lattice above the moduli space
and quantizing the electric and magnetic charges relative to this S-duality frame. See

[133] for more details.

3.3.1 Collective Coordinate Expansion

As shown in [124], the dynamics of BPS states in the slow moving, semiclassical limit
can be approximated by an SQM on the moduli space of BPS state configurations. The
reason is that slow moving BPS states remain approximately BPS. Thus, by taking the
fields to be functions of the coordinates on monopole moduli space, we can write the
action as a functional on M, thus describing an SQM on monopole moduli space.

In practice, we can reduce to the effective theory by perturbatively expanding the
fields in the small coupling parameter gy and demand that the additional fields Y, Ay,
A = pA 4 in? solve their equations of motion to order O(g3) in the monopole back-
ground.©

Here we will collect spatial gauge field and Higgs field X into a single four-index
vector field A, = (A;,X). The vector field A, can be associated with a self-dual
connection which is invariant under the a = 4 direction. Since the monopole background
is only determined by the fields in A,, we will assume that the first non-trivial term of
all other fields is at higher order in gg. The equations of motion then imply that the

lowest non-trivial order of the other fields are ¢4 ~ O(gé/z) and Ag,Y ~ O(go) [133].

5Here we have decomposed p,n* in terms of sympletic-Majorana-Weyl spinors.
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From the action

1 1
Svan = —— [ d'x Tr{iFWF“” +D,XD*X + D,YD"Y + [X,Y]?
90

—2ipDopa — 2in Dona — 202 0% Dipa + 200" Dina

(3.45)
+ 24 Y,ma] = pA1Y, pal) = 20(p X, nal + 77 (X, pal)}
to
+W Tr FAF
one can derive the equations of motion

DE, +[Y,[Y, A]] +i([p", pa] + [, ma]) = 0,

‘D2Y - D(%Y - Z([pAa PA} - [77Aa77A]) =0 )
(3.46)

~

i(Dona — [Y,na]) + T Dapa =0,
i(DopA + [Yv PA]) - TaDanA =0 ,

where 7¢ = (6%, —i1). Now let us consider the equations of motion. For p4, the they

are of the form
7' Dapa = i[Y — Ag,n4] , (3.47)
whereas those for n4 are of the form

TabanA = Z[Y + Ao, PA] . (3.48)

If we denote L = z'?af)a, the fact that Aa is anti-self dual implies that the kernel of L
is non-trivial whereas the kernel of LT = —ir®D, is trivial. This means that given a
solution of p4, Y, and Ay, there is a unique solution for 4. The equation of motion
then implies that 774 ~ O(g%/?) and hence will lead to terms in the effective Lagrangian
that are of higher order than we are considering.

However, there are non-trivial solutions for p4. As shown in [133], there is a 2-1
mapping between vector bosons and Weyl fermions

pA —>5121a = 2/€A7_'apA ,
(3.49)

5Aa —>pA = —méﬁaﬂ'aK/A s
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where k4 is a constant symplectic-Majorana-Weyl spinor characterizing the mapping

between bosonic and fermionic zero modes.” This mapping implies that [131]
1.
Ind[L] = idlmRM('Ym;Xoo) . (3.50)

We will introduce a (local) basis for the fermionic zero modes of p? by by {x™}.

This allows us to expand the first non-trivial solution to p# as

5, A KA
A n+la n
= — — " 5l
p Z 4detk X (3.51)

The fermionic zero modes x™ form a local frame for the spin-bundle over the moduli
space.

Using this form of p4, the solutions for Ag, Y are given by [133]

i
Ap = =" + Y+ ZhmnX "X+ O(g5)

. (3.52)
Y =6y, +Y9— i%nxmx" +0(g9)
where ¢y, is the curvature of the pullback of the universal connection ¢, and
Y =00(X —ex.,) - (3.53)
Here e for H € t is the unique g-valued function that satisfies
D%pg =0 , limeg=Het. (3.54)

=00

Note that Y is the unique solution to D2y = () with the appropriate pole structure
and lim, oo Y = 0.
Substituting these into the action and integrating over the spatial R3 reduces the

field theory to a particle moving on the spin bundle over M. This is described by the

Lagrangian
dm |1 M 2N om n m n i m.n
Lee. =—5 | 59mn (ZM2" +ixX"Dix" = G(Yoo) " G(Yoo)") = X" X" VinG(Yoo )
o . (3.55)
ﬂ- .
- 72('7m>Xoo) + igmnsz(Xoo)n .
95 27

"This choice of & is irrelevant as long as det k = 7%}{? /{g #0.
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where:

1

-

Jmn = % - d3z Tr {5mfla5nfla} , Iy /R3 d3z Tr {5mAaDp6nAa} )

Dix" = X"+ Ipp2™ X",

and

G(H)pm = 6mA®Doer , Het. (3.56)

See [133, 78, 22| for more details.

3.3.2 Universal Hilbert Bundle

To reduce the 4D dynamics of BPS states in a supersymmetric QFTs to a SQM on
monopole moduli space we are implicitly making use of a universal Hilbert bundle.
This is similar to the universal bundle in the sense that it parametrizes families of
Hilbert bundles of sections of a principal bundle over some Riemannian manifold.

Let P — U be a principal G bundle over some Riemannian manifold &/ and let
L?(U, P) be the Hilbert space of L? sections of P. Let A be the space of all connections
on P. There is an action of the gauge group Gy of framed gauge transformations (See

Section 2.4.3) on this space which gives rise to the diagram:

L2(U, P) L2U,P) x A

o

H=(L*U,P)x A) /G (3.57)

A/Go
Analogous to the case of the universal bundle, the bundle H can be thought of as a uni-
versal Hilbert bundle which has the universal connection induced by parallel transport
along A/Gy. Now since M injects into .A4/Gy we can pull back the universal Hilbert

bundle to a Hilbert bundle over the moduli space M:

*

H——1*(H)<— L*(U, P)

T



60

Now define a hermitian operator D[ Al with trivial cokernel which acts fiber-wise on
*(H) determined by [A] € M. We can then define the vector bundle K er[D[ A]] - M
which is the subspace of L? sections which are in the kernel of D[ Al The operator D[ Al
also defines a projection map P : .*(H) — Ker[D[A]}:

*

H—"5 *(H)—L~ Ker[D]
i l l (3.59)
A/Gy <M M
From this construction there is a connection on Ker [D[ A}] given by: Vierp) = P(t"V 4/6,)
which is the projected connection from t*(H).
Let us be more explicit. Consider a local basis of sections of K er[D[ A]] given by
{5m/1a}:i[f [A]]. Using the L? norm, Riemannian metric on ¢/, and Killing form on g

we can write the metric on Ker [D[ A}] as:

. W,
- 27r/ud o Tr {6, A0, ) . (3.60)

This metric gives rise to a projected connection of the form

m 1 mn n Aa 9 A
qu = %g Ld z Tr {(SnA (azp + [ﬁp, ]> (5(114(1} s (361)

where €, is the pullback of the universal connection form to ¢*(H). This can more gen-
erally be applied to associated bundles by changing the representation of the connection

form €, as we will see later.

Collective Coordinate Symmetries

Since we are describing BPS particles in 4D, we expect that the symmetries of the
four-dimensional theory are preserved in our collective coordinate theory. This theory

has N = 4 supersymmetry with the fields transforming as

5,2 = —ivax(3)," + O(g3/?) (3.62)

X" = val (2P = G(Yao)") (I, Iigx ] + O(g0)

where

Jo=r1) , Jo=(-I,1), (3.63)
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and J" are a triplet of complex structures on M as defined earlier. This leads to the
supercharges

Q= ”;;xm@am(zn G(Yao)n) + O . (3.64)

There is also an SU (2) g symmetry of the four dimensional theory which is realized in the
collective coordinate theory. Recall that under this SU(2)g group, the p, n“ transform

as doublets whereas the bosons transform trivially. This leads to the variations
0™ =0, rx™ = ox"I)a" (3.65)

where we use 0r- to denote the transformation associated with the su(2) generators:
I". This leads to the conserved charges
I = ) X™X" (3.66)
90
where the w" are the triplet of Kéhler forms associated with the complex structures J".
Many of the symmetries of the four-dimensional theory can be expressed in the

SQM as being generated by Killing vectors. Such a Killing vector K generates the

transformations:
opz™ = (KEY™ | 6px™ = \"0.(KE)™ . (3.67)

This has a corresponding conserved Noether charge
. 1 i
NF = -— <(KE)mgmn(z" + 600G (X)) — 2(Vm(KE)n)men> + O(g0) - (3.68)
Specifically, as we discussed in Chapter 2, the action of global gauge transformations
on monopole moduli space is generated by triholomorphic Killing vectors. These are
explicitly generated by the G(Hy),,. When we quantize this theory, the operator asso-

ciated with this conserved quantity will be the Lie derivative along KF.

3.4 Line Defects

We would now like to generalize our discussion of vanilla BPS states to the framed

case. This requires first reviewing general Wilson-'t Hooft operators in four dimensional

N = 2 field theories.
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3.4.1 Wilson Lines

A Wilson line wrapped on a curve 7 can be thought of semiclassically as an infinitely
massive, charged particle which is coupled to the gauge (and Higgs) field whose world
line is given by . Here we will consider such line operators that wrap the time direction
at a fixed spatial coordinate which are called Wilson defects. Wilson defects source
electric charge that is labeled by a weight A € A,(G).

Wilson defects can be thought of as creating a Hilbert space of states that are
localized at the insertion point. These defect Hilbert spaces are isomorphic to the
highest weight representation V) corresponding to the A.

In order to describe the contribution of Wilson defects to the collective coordinate
theory it will be most convenient for our purposes to introduce spin impurity fields
whose Hilbert space is exactly V). Consider a four dimensional gauge theory with
gauge group G. Let this theory be coupled to an N-component complex, fermionic

field w, which is in a representation Ry : G — GL(V)) localized at ¥, with an action:
Sdef = /d4x 5(3)<f_ fn)inth , Dy =0+ R\(Ao) . (3.69)

This has the equations of motion

dw
L = —Ra(Ao)(t)w (3.70)
which has solutions
t
w(t) = P exp [—/ dt’ Ry(Ao(t"))dt' | w(ty) . (3.71)
to

To quantize this theory we need to impose
{wh, wp} = dap , (3.72)

where a,b are indices of the representation R). This leads to a Hilbert space H =
A*(Vy).

In order to describe a Wilson line in representation Ry we need to project onto
the first level of the tensor algebra. After this projection, the Lie group g acts on the
Hilbert space Hgep = {wl]0>|a = 1,..., N} by the matrices fob:l wlRA(T)abwb for

T € g where dim¢Vy, = N.
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Restricting the tensor algebra can be achieved by projecting onto the %—eigenstate

of the operator
N

Q= %Z(wlwa - wawl) . (373)

a=1

This can be accomplished by introducing an auxiliary scalar field «(t) to the action

Sdef = /d4x 53 (& — z, )iw] (Dt + ]V;—Qa(t)> We - (3.74)

Here, the auxiliary field a projects onto the Hilbert space A*(Vy) C A*(Vy).

Upon insertion into the path integral
Zges|Ao) = /DaDwaT wa(—l—oo)eisdefwg(—oo) , (3.75)

we can integrate out the w, fields using the propagator G(t — t') = 6(t — t')d4p with

midpoint regularization 0(0) = % The integration over the w, fields then yields

R(1)aq + / dt1 B (Ao)aat1) — / dt1dts R (Ag)ay(11)0(t1 — t2)Ra(Ao)pa(t2) + - |
(3.76)

which sums to

T, P exp (- / Ao(t)dt> — W, [Ao] - (3.77)

See [165, 13] for more details.

Coadjoint Orbit Quantization

Another, equivalent method we may use to describe electrically charged line defects
uses the geometric quantization of coadjoint orbits as in [5, 13]. This method relies on
the geometric restrictions on the space of holomorphic sections of a line bundle on a
certain flag manifold and the Borel-Weil-Bott theorem in order to construct the Hilbert
space of states localized on the line defect as the highest weight representation of the
gauge group.

The coadjoint orbit construction proceeds as follows. Consider a Wilson line inserted
at the origin in R3 with representation Ry where A\ € A,; is the associated highest

weight. We can define the coadjoint orbit Oy which is the image of A under the coadjoint
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action of G. By the canonical pairing ( , ) : g* x g — R, one can identify Oy = G/G)
where G, = {g € G|g- A\g~! = A} is the stabilizer of A\ under the coadjoint action. We
will restrict to generic A in which case Oy = G/T.8

Now consider a line bundle over G/T'. Such line bundles are classified by H?(G/T; 7Z).

Due to the short exact sequence
1-T—-G—-0)—1, (3.78)
there is an isomorphism
H*(G;Z) = HYT;Z) = Hom(T,U (1)) = Aehar(G) = Ay (3.79)

The Borel-Weil-Bott theorem then shows that the line bundle L) specified by A €
H?(0,;7Z), has vanishing cohomology groups except for Hg((’),\;Z) = V) which is the
representation space associated to the associated weight A € A;.

Therefore, consider the line bundle Ly — Oy. In order to construct a Hilbert space
Haep = Hg((?,\, L)), we must quantize Oy. This requires a choice of symplectic form on
O, and a choice of polarization of Oy to define a set of “coordinates” and “momenta”
and their commutation relations.

There is a natural choice of symplectic form coming from the a pre-symplectic form
Oq = —{a,0) =Tr(N\0) , (3.80)

where:

=g 'dg , geqG, (3.81)

is the Maurer-Cartan 1-form on G. Using this we can define the 2-form
1
Vo = dOy = 5(0(, [0,0]) . (3.82)

However, in order to define a symplectic form, v, must be non-degenerate. This re-
quires that on Oy C g* we take @ = A so that v, is the symplectic form defining the
commutation relation. These structures are compatible with the metric defined by the

Killing form on O, and hence defines a Kahler manifold.

8For generic A, Gy = T but more generally T C G and hence any line bundle over G/G can be
pulled back to G/T.
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We can now define a polarization by a choice of complex structure on Oy. This
can be achieved by making a choice of positive and negative roots for the lie algebra
g=1td g & g_ with respect to A € t which we assume to be a dominant weight.

With these structures in hand, we can now quantize O). From our choice of po-
larization, we allow our wavefunction to take values in the holomorphic line bundle
Ly — 0,.2 The Hilbert space of states is thus given by the space of holomorphic
sections of L)

H=H(Oy Ly) =V, . (3.83)

However, this line bundle L) has a non-trivial connection connection given by 160

which is subject to the restriction of the Bohr-Sommerfeld quantization condition

1
h% pidg; € N . (3.84)
H(p,q)=F

This is a consistency condition for defining a (projective) physical Hilbert space. It is
equivalent to restricting to a physical Hilbert bundle that has only trivial monodromy
around a closed paths of constant energy in phase space. Mathematically, this implies
that

de A — V) (3.85)
which is indeed the case for our Hilbert space.
Now that we have shown how to construct a defect Hilbert space we can use this
formalism to incorporate a Wilson line into our path integral. Let us introduce the 1D
Chern-Simons action component to the path integral:

Zdef = DU exp [z/ U*(@,\)] =
R

DU exp [2 / Tr(A-UldU)] ., (3.86)
LO)y, R

LOy,

where LO, is the “line-space” of Oy so that

U:R— 0, (3.87)

9The condition that the wavefunction is holomorphic comes from the fact that our polarization of
O, is the complex structure. We could equivalently consider the antiholomorphic line bundle, but this
choice is equivalent to picking coordinate versus momentum basis in the traditional construction of
quantum mechanics.
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is integrated over the space of maps from the world volume of the Wilson defect R into

O). The variation of the action is given by

ndU™
dr ’

5Ses — i / dr v (U)yundU (3.88)
R

where we have expanded in local coordinates on Oy where 7 parametrizes the R.
We can further couple this action to the gauge field as before by modifying the

presymplectic form

O3 =—(\04) , 0a=g 'dag, (3.89)

where dg = d + AA. This changes the action to:

S =i [ U@ =i [ T Ud) (3.90)
R R

Remark Note that this will lead to the same results as the quantization of the spin
defect fields (with slightly different definitions of the same tensor fields) so we will
continue with the spin defect fields since the formulas will be generally clearer.

SUSY Wilson Lines

In order to have a Wilson line that preserves maximal 1/2-supersymmetry, we must also
couple the impurity fields to the Higgs field. This comes with the data of ( € U(1) which
specifies the unbroken supersymmetry. Therefore in order to incorporate multiple line
defects and preserve supersymmetry all defects must have the same (. Supersymmetry

mandates the action:
Sies = / dha(iw! (Dy — Ry(Y))w) 6@ (2 — 2,) | (3.91)
which leads to supersymmetric Wilson lines of the form

Wg,[Ag — Y] = Trp, P exp <—/RA(A0 - Y)dt> . (3.92)

3.4.2 ’t Hooft Defects

't Hooft defects can be thought of semiclassically as infinitely heavy magnetically

charged particles, i.e. singular monopoles. In order to incorporate 't Hooft lines into
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a four dimensional A/ = 2 theory at a point Z,,, one must impose boundary conditions
on the fields at 7, just as in our discussion of singular monopoles. To make an 't Hooft
defect supersymmetric one has to couple the field to Im[¢(~1®] = X, complementary
to the case for Wilson lines.!® The data for these defects is also given by a choice
of ¢ and #,, but instead of a representation, comes with a choice of magnetic charge
P, € Acochar which by S-duality can be related to a weight of the Langlands dual group
L@oo, 102).

An ’t Hooft defect defined by the data (P,, ¥y, () has the corresponding boundary

conditions

(o

P, P, (3.93)
=" sin(0)do, A doy — o 055t A drm +O(r —3/2)
in local coordinates around Z,, as r, — 0. This can be expanded
7 Pn A% - 7 Pn A7 —
B' = 5afat O™ B'= —fog 57 + 0077,
P, (3.94)
X=_- r-1/2 Y — §o 172
2rn+0( ) ) OTn+O( )7
where 9~0 = ‘f’%.

In order to have a well defined variational principle with these boundary conditions,

we must include a boundary term in the Lagrangian

2
Sdef = Q/dtz Re{gl/ Tr{(z'F—*F)QS}}
90 n S2
7 ] 02 [ s
- dt TndQnT’:l Tr{XB;+YE;} ,
93 ; S2 { J

where S2 is the infinitesimal 2-sphere around the defect at Z,. Additionally, when

(3.95)

introducing 't Hooft lines, we must restrict to the gauge transformations that commute
with the 't Hooft charge at the insertion point. This leads to a reduction of the structure
group of the principal G bundle to Z(P,) = {g € G | g~ 'e!?g = €'? V¢ € [0,2n]}
at the defect at ,, € R3. We will denote the 't Hooft operator defined by (P, 7, () as

LS

(0] (7). We will often suppress the dependence on ¢ and .

0For 0y # 0, we also have take into account the Witten effect.
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't Hooft defects fall into three distinct classes: irreducible, minimal, and reducible
't Hooft defects as in the case of singular monopoles. An irreducible 't Hooft defect is
defined by the data (P, Z,() as discussed above. These are S-dual to the Wilson line
with irreducible representation of highest weight P € A,,:(GY) [102]. Minimal 't Hooft
defects are irreducible 't Hooft defects with minimal charge — that is irreducible 't Hooft
defects whose 't Hooft charge is a simple cocharacter P = h!. These are S-dual to the
Wilson line with the minimal irreducible representation of GV.

A reducible 't Hooft defect is specified by a charge P € Acochar, position & € R? and
a phase ¢ € U(1). Such defects are the coincident limit of Ngey = > ;p; minimal 't

Hooft defects, each of charge h!() such that

Ney - rnk G
P=> n'0=>"pn" ,  p>0,VI, (3.96)
i=1 I=1
where ¢ = 1,..., Ngey indexes the constituent minimal 't Hooft defects.!!  Thus, a

reducible ’t Hooft defect is the operator that results from taking the product of minimal
't Hooft operators. Consequently, they are S-dual to a Wilson line corresponding to a
reducible representation given by the product of minimal representations of GV. We

will write reducible 't Hooft defects as

rnk G

Lyo =[] (L[hI,O])pI : (3.97)

=1
In generic theories with matter in representations {R,}, we must further restrict that
(u, Py € Z for all highest weights p. This restricts P to take values in the mag-
netic weight lattice P € Ay C Acochar Which is defined as the restriction A, =
Acochar‘ (P)EL" We will more generally take h! to be the simple magnetic weights and
consequently we we generally use the notation

rnk G
pbr
Lo = H (L[;Lzm) . (3.98)
I=1

In many cases, (3.98) coincides with (3.97).

"Here we use the notation where the i*" monopole is of charge '@ That is, I(#1) = 1,...,mnk G
according to the charge of the i*" monopole.



69

In N/ = 2 supersymmetric theories, reducible 't Hooft operators are related to
irreducible 't Hooft operators by the corresponding products of their associated repre-
sentation of the Langlands dual group GV:

Lipo) Lipoy = Rep ' Liprgy + Rp®Rp =D Rpp Rpr . (3.99)
P P
Here Rp, Rpr, Rpr are representations of GV and Rp PI,D " are its structure constants

[102].

3.4.3 General Wilson-'t Hooft Defects

More generally, we can allow for the inclusion of Wilson-"t Hooft defects which source
both electric and magnetic charge [100]. In order to include such defects, we must
modify the boundary conditions of the 't Hooft defects to allow for an electric charge

Q... From the equations of motion

~ . . 7 a
DiE" +i([p?, pa] + MY, Aa]) = goszR (TYw;6® (z — ;) ,

(3.100)
N . 7 o
D% — DY —i([p", pa] — M, Aa)) = % N wlRy(T)w;6® (@ — xy) ,
J
we can see that the fields will have the local behavior
P, . 20% . 0P,
B =D opr) = B G W ooy
2r2 47 2r2 2r2
b s or dop. (3.101)
X — _1n —1/2 y — _90 =n 0 —1/2
2rn 00 ) A7 2r,  2rp, + 007

near the defect at &;. Such field configurations preserve %—SUSY.
Here Q,, € Awit(Z(P,)) C Ayt(G) is the highest weight of a representation of Z(F,)

12 hecause time independence of the background field implies
DyF;; =0 (3.102)

and hence [Q,,, P,] = 0. Again this restricts our space of gauge transformations which

leave the boundary conditions invariant and hence take value in the stabilizer group

'2Above we are using the notation Qj € t to denote the dual under the canonical pairing { , ) :
t* X t — R with respect to an embedding of Aw¢(Z(P)) — Awt(G).
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of (P,,Qy) at the defect at Z,. Further, gauge invariance imposes that the Wilson

and 't Hooft charges are only dependent on the Weyl orbit [P, Q] € <ACOChW(G) X
P))) / W.

In the case of multiple Wilson-'t Hooft defects, there is a non-trivial Dirac quanti-

zation condition. For any pair of of line defects with charges (P, Q) and (P’,Q’) the

Dirac quantization condition is
<P7 Q/> - <P/7Q> €z (3103)

Due to the singularity in the gauge field coming from the 't Hooft defect, we must

add a boundary term to the action to have a well defined variational principle

Sdef—/dtZ/ r2d* 02,7 Tr{(EiY—i—B,-X) g QQ”AO m} , (3.104)

which leads to the boundary variation

30
Shos = —5 /dtZ/ d* Qi Tr{(SAO< 98[;2031- jOQ”fm>

Y (DY —E)+Y (m + 25, ) (3.105)

—6X(D;X — B;) — 6AI(Fy; — e D X)}

This vanishes for the field configurations satisfying the BPS equations and Wilson-'t

Hooft boundary conditions (3.101).

3.5 Framed BPS States

The presence of line defects significantly alters the Hilbert space of states and the
spectrum of BPS states. These can be viewed in the “core-halo” picture where the
BPS states divide into two types: those which binds tightly to the line defects to form
a “core” and those which are only loosely bound to the line defects at large radius,
forming a collection of “halo” clusters around the core in analogy with galaxies [69].
We now want to know how to describe the moduli space of framed BPS states
in the semiclassical limit. We again have the same BPS equations as before, except

except with new local boundary conditions at the insertion points of the Wilson-'t
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Hooft defects. Thus we can conclude that the moduli space of framed BPS states is
given by the singular monopole moduli space M({P}, m; Xoo) defined by taking only

the magnetic part of all of the line defects.

3.5.1 Collective Coordinate Dynamics with Wilson-"t Hooft Defects

We now implement the same program as before, reducing the 4D description to a su-
persymmetric theory of collective coordinates. In addition to the Bogomolny equations,
we want to satisfy the equations of motion for Ag, Y, 1) and A4
;2
3 : S A A g
D*(Ag — 2™em) +i ([p*, pa] + N A4]) — 70 ZTaw;Rj(Ta)wj 5z —z;)=0,
]7(1/
;9
~ . 10,
D?Y — DY —i([p*, pal — M, M4]) — 70 > Tl Ry (T w; 6@ (z — 2) =0,
Ja
i(Don™ = [Y,n"]) + 7 Dapa = 0,
i(Dopa +[Y,pa]) = 7*Dana =0,
(3.106)
to order O(g3).

Note that this leads to the same equations of motion for the p, A4. Thus, the
moduli space will be M and the dynamics will again couple to its spin bundle. The
different solutions for Ay and Y will again generate a superpotential. Generalizing the
solution from earlier, the collective coordinate expansion for the fields above is given
by

i
Y =ty + YV = 2 omnX X" + O(g5) ,

i
Ap = = 26 + Y ZhmnX X" +O(G5)

1 (3.107)
A 1 . _ay, A.m 2
=—— 0 Ag(—iT)kK + 0 ,
3/2
i =0(g0%) .
where Y is the classical solution for the fields
D’v=0 , limY9=0, (3.108)

T—00

with the appropriate boundary conditions at the Wilson-"t Hooft defects (4.11).
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Here we are using the definition of e€f from the case of vanilla BPS states on M.
Specifically, to a generic point [121] € M we can identify a connection [As] € M by

subtracting the fields of the singular monopoles. Then we can define

ﬁieH =0 , limey=H, (3.109)

r—00
as in [133].
After integrating over R? the theory of collective coordinates can be described by

the Lagrangian

e =25 |G (757 + "D = GV "GV )") = X" T G(Yoc)
g O Yoc) 7 g (27 = G0 ) GKoe) = " TG Xoc))
i: Yy X -|-sz —EY + (;Smnx X" w;
(3.110)
where
th? = 8tw§ — R(e,(ﬂ;))bcw; , (3.111)
and e(J ) is the pullback of the universal connection evaluated at Z; € R3. The calculation

of L... is given in Appendix A.
There are a few notable differences from the case of vanilla BPS states that we wish

to comment on:

1. Note that upon integrating out the w; fields we get a Wilson line coupled to
the universal connection on the moduli space. This is to be expected by naively
plugging in the collective coordinate expansion of Ay — Y into the Wilson line in
the four-dimensional theory. The SQM Wilson line arises from the term Ag =

—Z"em + ...

TrpP exp '/ (Ao=Y)dt s Ty p P oxp o=@ emi™dit.
(3.112)

_ —4 ¢ emdz™+...
=TrrP exp e § em ,

where the ... is the supersymmetric completion. This means that the inclusion of

a Wilson line at 7; € R3 couples the SQM collective coordinate theory to a vector
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bundle which we will call the Wilson bundle Ewigson((;) which is an associated

vector bundle of the universal bundle.

2. There are new terms proportional to 8y in the Lagrangian. The most important
is
%

0 " G(Xoo ) 3.113
5 XX Vi G (Xoo) (3.113)

This term vanishes on M, but is non-vanishing in the case of 't Hooft defects

[133).

The SQM collective coordinate theory now couples to a vector bundle which we call

the Wilson bundle
Ewitson = Q) Ewitson (Q;) - (3.114)
J

This theory is again supersymmetric with the same supersymmetry transformations as

that of vanilla BPS states. This gives rise to the same supercharge

Q" = om0, (5 — C(¥ao)w) - (3.115)
90

The Wilson Bundle

The Wilson bundle, Ewison is different from bundle of vector multiplet zero modes in
that it does not come from some pull back of the universal Hilbert bundle. Rather the
Wilson bundle is roughly the pull back of the universal bundle, restricted to the defect
point Z; € R3. One can construct the Wilson bundle by pulling back the principal
G-bundle @ through the diagram:

Q=P x A/Gy 1" (Q) —% v, (1*(Q)) (3.116)
X x .A/g() . X xM ev; M

where Rg, is the representation of highest weight @; and ev; : M — X X M where

evj : 2™ — (Zj,2™). Then we can construct the associated bundle:
Ewitson(Qj) = €vjx (1°(Q)) X g, CV — M. (3.117)

This is why the connection on the Wilson Bundle Ewison(Q;) is given by the universal

connection evaluated at ;.
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Hamiltonian Dynamics

We can now convert our Lagrangian formalism to the Hamiltonian formalism in prepa-

ration for quantization. The conjugate momenta of our fields are given by:

47 ~ i
Pm = —59mn I:é'm + QG(Xoo)m + 7XquF;”)Z + qm
90 2

(3.118)
(pX)m = gﬁgmnx 9 (pw)a - Z(wj)a 5
0
where
qm = ’LZ w}Rj(e%))wj . (3.119)
Introducing the notation
271 P g
TTm = Pm — ?Fm,pqx X" —4qm , (3.120)
0

we can write the Hamiltonian as

47
He. = MCl g;)_‘_ {ng Tn + Gmn (yOO)mG(yOO) 3 X m TLV (yoo)n}
90

+ify (iG(X )™ T 42 2 X" X"V G (X > +12w - §¢mnXan)wj ,

where

47

M= 25 (s Xoo) + (G2, Vo) (3.121)
0
and the supercharge is given by:
Q" = X"(I") (7 — G(Voo)n) - (3.122)

3.5.2 Quantization

We now quantize the collective coordinate theory by elevating the coordinates and
conjugate momenta to operators and imposing canonical commutation relations:
% T b b
. a
[zmapn} = 2572” ) {va Xn} = E‘gmn ) {wj ,’UJ]} = fa (3123)
We also want to impose [z, x"'] = [z, w§] = 0. However, this implies that {x"", p,} #

0 and {w}l,pn} # 0. In order to extract the 2" dependence from x and w;, we will



75

introduce (co-)frame fields £,, = &0m (€™ = e5,dz"™) on the (co-)tangent bundle and

Wilson bundle with the standard properties
e = 0" "G, €% = 0DES fup . (3.124)
Now let us to redefine the fields

2
Vm:‘/g%emmxm 7 v]g:e%lw?’ (3.125)

such that they obey the relations

(2" pn] =i6y , {y™ "t =26"2 279" = [pm, Y] =0 (3.126)

Note that introducing the fields means that the connection term becomes the spin

connection 13

D pgXPXT — winpg VYL (3.127)
Using this convention, the operator corresponding to 7, becomes
m = —iVm — %wmmqyp’yq — m (3.128)
which can also be rewritten as
o = —ie /2D, el/? | (3.129)

where D,, is the spin covariant derivative coupled to the Wilson bundle. Using this we

can write the Hamiltonian operator as

) 2 1 '
= = P30 P+ g G GO+ 27" VnGO
(3.130)

.
cl L 190 t mn 2
+M + 190£G(Xoo) + 3277_‘_ ;%R((ﬁmn)’}/ vj + O(QO) )
where

1
£ye = (KEY"D,, + Z7’”"%”(}(’5),1 , (3.131)

13For the rest of the paper we will suppress the underline on the indices except when emphasizing
the difference.
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is the Lie derivative along K¥. Note that the defect degrees of freedom are missing
from the Hamiltonian as they are incorporated into the mass term M or are of higher
order.
The Lie derivative operator can be related to the N¥ which correspond to the
transformation generated by the killing vector K
4 . ~ /)
NP = -2 <(KE)mgmn(zm +00G(Xoo)™) — mexnvm(KE)n> : (3.132)
0
Upon quantization the Noeter charge becomes an operator associated to a conserved

charge

. 1
NE = <(KE)mDm + 47m"vm(KE)n> =ilgr . (3.133)

The Noether charges associated to the triholomorphic vector fields K* = G(Hy) are

related to the electric charge operator
NEW) = (Hp,3) @), K" =G(H)) . (3.134)

Thus, the Dirac quantization of electric charges then implies that if we expand .

rnk|g]
Yo = Z nlar, (3.135)
I=1
then
ne = —g(GV%). K) e Z (3.136)
where
4 0
V="V +2X. (3.137)
9 27

Upon quantization, the supercharge operators becomes

Aa__igo n/Jay m o cl
Q" =~ =" A (P = iG)m) (3.138)

which can be described as Dirac operators on the the bundle S ® Ewilgon — M coupled

to the triholomorphic killing field G(Y<). Using the SUSY algebra for SQM

[Q°.Q" = 20" (A + Re(¢™'2)) (3.139)
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and comparing with the above formula for the Hamiltonian, we can identify the central

charge operator

A 4
Re(C'2) = =M% = == (n, Xoo) — (APM°, Yao) . (3.140)

90
From (3.138), we now see that the stable BPS states (those which saturate M >
—Re(¢"1Z)) must be in the kernel of the supercharge operators. The SUSY alge-
bra implies that if a state is in the kernel of any one of the supercharge operators,
it is in the kernel of all of the supercharge operators. Therefore, we can without loss
of generality consider Q* in which case the BPS states are given by the kernel of the

twisted Dirac operator
Y™ (D — iG(YVL) )W =0 . (3.141)

Comparison with Low Energy Limit

The standard formula for the central charge is given by:

Z = (Ym,ap) + (Ye, a) - (3.142)

Upon identifying a with @, and ap with 70®@~ (where 79 = % + g—fr) in the low energy
0

limit (to first order in gp) [133, 134] this becomes:

N 0 4 0 47
—1 el * 0 0
4% = = mayoo maXoo o m,Xoo maYoo
¢ (% +5 7 ) — (7 ) i K +5.7 ) ) (v )}
47[- S S
- [ (s Xo0) + phy, ] [ (Yo Yoo) — (21 ,Xooﬂ |
90
(3.143)

which is consistent with the semiclassical computation above.

3.5.3 1-loop Corrections

Thus far we have only considered terms coming from the perturbation series in g
coming from the variation of the collective coordinates. However, in quantizing the
field theory, there are also loop corrections from the full quantum field theory. It has

been shown in [133] that these terms give order O(1) corrections to the effective SQM.
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If we restrict to the vacuum of the soliton sector so that there are no incoming or out-
going perturbative states, then the 1-loop corrections are given by a sum over zero-point
energies correcting the mass term. The correction is computed in [133] following [104]

and given here for completeness

2
AM, :% Z (o, ym) (@, Xoo) {ln <<OK2,‘)/(;O;>> + 1}
fem (3.144)
F2 3 (o) o Ve
acAt
where
(a, a) = (o, a) e . (3.145)

3.5.4 Extended Example

Now we will use the semiclassical analysis to compute the spectrum of framed BPS
states in an example. Consider N/ = 2 SYM theory with gauge group SU(2). Let us
try to use the formalism developed in this chapter to compute the spectrum of framed
BPS states in the presence of a single Wilson line in the spin-j representation. We will
restrict our attention to the framed BPS states with magnetic charge H,. Here we will
set Yoo = 0 and 0y = 0.14

As discussed above, the framed BPS states with magnetic charge H, are in the
kernel of a Dirac operator on M(Hy; Xoo) = R3 x S'. In this case, we can make a
special choice of gauge for the universal connection €,, = A,,. With this choice the

supercharge Dirac operator becomes

Q* = i7" D, +iqu | (3.146)
where
v 0
Xoo =i , (3.147)
0 —v

and q is the eigenvalue of the electric charge operator

1
g= -0y, (3.148)
(2%

This is the example considered in [165].
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lq]

j 0 1 2 3 4 5
1/2 1

1 2
3/2 4 3

2 6 4
5/2 9 8 5

3 12 10 6

-9
Table 3.1: This table displays the computed values of Ind[ﬂ)y]j\;@f: o Xoo)
Q(W;,v = Hy + 4a) from the index calculation as in [165, 133].

where ¢ is the coordinate on S'. Note that the Higgs vev leaves an unbroken U(1)
gauge symmetry which implies that framed BPS states are eigenstates of this operator.

Since A satisfies the Bogomolny equations, Q4 has a trivial cokernel. Therefore the
dimension of the kernel of Q* is given by the index of Q*. From a generalization of the
usual index computation [31, 56, 165, 131, 169], the index of Q4, and hence number of

framed BPS states, is given by

=5 Z m sign(m — q) . (3.149)
lm|<2j
me27+2;
Due to the Dirac quantization condition ¢ must take the values [69]
27 JEZ+1)2
q¢€ (3.150)

2+1 jEZ

This is to be expected since the dyon bound to a Wilson line always has even charge
when the Wilson line has odd electric charge (i.e. when j is half integer) [165].

This computation for the index gives the multiplicity of BPS states (given by the
framed BPS index 2(W;,v = Hy + ) is displayed in Table 1.
3.5.5 Sen Conjecture

We can also apply the identification of the supercharge with a Dirac operator on

monopole moduli spaces to extend Sen’s conjecture [158] to the singular space M [133].
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By the no exotics theorem, we know that (framed) BPS states form a trivial represen-
tation of the SU(2)r symmetry group. Thus, any BPS state ¥ should be annihilated
by the generators of the SU(2)g group.

In order to examine the consequences of this statement, it is perhaps easiest to
reformulate the wavefunction in terms of holomorphic differential forms. This makes
use of the isomorphism between the Dirac spinor bundle and the space of (0,)-forms
tensored with a square root of the canonical bundle [55]. In the case we are considering,
where M is hyperkéhler , the canonical bundle is trivial and hence that the Dirac spinor
bundle is simply isomorphic to the the space of (0, x)-forms on M.

Therefore, the wavefunction of a generic BPS state can be expressed as an L? section

of the anti-symmetric tensor algebra of the holomorphic cotangent bundle

2N
ve L | M PANTM) | . (3.151)

q=1
In terms of holomorphic differential forms, there exists a convenient choice of super-

charge operator

Q= Z\F (Q3 + Q4) =9, —iGYL)OD A (3.152)
where &1 = 0+ ¢®Y A which naturally gives rise to a cochain complex
LML A0~ 2 2 a0y 2y SV e 4028y (353
and an associated cohomology
HY(Q) = ker Qq/Im Qg1 - (3.154)

Now recall that the SU(2)g charges acting on the spinor bundle are given by
v
I, = ?(WT)mnXan . (3155)
0

On a (0,q)-form A, the SU(2)r generators act by [133]
R R - 1
Ld=iwy AN LA=—in X BA=3(q-N)]A, (3.156)

where I+ = I} +ily, we € A2(T*M), and dimc[M] = 2N. Thus, we immediately see

that the states that are annihilated by I, and hence BPS states must be described by
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primitive forms in the middle dimension: ¢ = N and I+A = 0. In fact, since the {I,}

0.N) the I must have only

form a representation of s{(2) and I+ maps AONF2) 5 A
non-trivial action on non-primitive states. Therefore, the BPS states must be given by

the subbundle of primitive states
Hpps = HY(Q) Nker[I4] . (3.157)

This proves the Sen conjecture and extends it to the moduli space of singular monopoles:

M. See [133] for more details.

3.6 BPS States and Hypermultiplets

Now we will turn to the general case of BPS states in N'= 2 SUSY gauge theory with
arbitrary matter hypermultiplets and arbitrary line defects. We will take a general
gauge group G and hypermultiplet with arbitrary quaternionic representation R =
P, R and flavor symmetry group Gp.

For the moment we will take the R = m; @ m; to decompose as a direct sum
of two real representations so that we can construct the hypermultiplets from N = 1
pairs of chiral superfields (Ql,Qz) We will endow these hypermultiplets that have
constituent fields (g%, A\?) with complex masses m;. Here the index (i) denotes the
flavor index which transforms under Gr. Note that g4 forms an SU(2)r doublet and

A is an SU(2)p singlet. The Lagrangian of the theory can be written as [110]
I .
£=TIm /dQGTWaWO‘ + mm/d49 ot eV @
4 4

N IH;TM {/d49 (QZTE%VQi n Qﬁe—%in) _ Re/d20 (Q@Qi +mg@jQi>} .

(3.158)

Note that that the mass matrix mi is generically a complex valued symmetric matrix.

However, SU(2)r symmetry implies that [m,m{] = 0 [162].'5 However, since Q° and

'5This can be checked by eliminating the auxiliary fields from the standard superspace Lagrangian.
There is also a quick way to see this by an argument attributed to Seiberg. We can treat the mass
matrix as the vev of a very weekly coupled scalar field which arises from gauging the flavor symmetry.
Then by sending the coupling of the gauged flavor symmetry, we restrict to the vacuum [m,m'] = 0
and the dynamics freeze out, leaving us with a Lagrangian of the form above.
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Q; transform in conjugate representations of the flavor group G, we can diagonalize
m'z . Hence we can generically take m to be diagonal. We will therefore suppress the
hypermultiplet index (i) and representation maps R : G — GL(N;C).

Following the same program as before, we will derive the BPS equations by consid-
ering the bosonic part of the action

1 1
Hpos = 7 /d3a: Tr {E} + B? + |Do®|* + |D;®|* — 4[@,@*]2}

+glg / d3$(’Do(IA\2 +|Diqal® + [mhal* — mg'®*qa — m*qMdqga (3.159)
+%q“‘{€15*, Dlga — %(QTAUZ BT’"QB)2> :

where we are using notation similar to that of [133]. See Appendix A for conventions.

The supersymmetry transformations of the hypermultiplet fields are given by
0eqa = 2(§a1 + GABEBXZ) ;
Sed = ioc"€" Dyga — i(0" — m*)Eae*Byp | (3.160)
55X2 = iJ“EADHqA — (P + m){AeABqB )

Using Gauss’s Law

([@, Do®*| 4 [@*, Dyd]) — % (qTAR(T’“)DOqA — qAR(T’")Dqu) . (3.161)

D,E* =

N

we can reduce the Hamiltonian to the form

1 . - - 1 * ’
Hios = 5 / d’z Tr{rEmBi—c 1D1¢12+‘< Do + 5 (9,07 = T7qMoh P p(17)as ) }
0

1 =1 * * —
+ 2 /d3$<|DiQA\2 +|Dogr + ¢ (2* — m*)q1|* + |Doga + ¢ HD + m)g|?
0

— @M p(T7)ap)?) + Ref( T Za)

(3.162)

where n = 1,2 and

2m 2 ~7 .
Za = —2/ d*z(q" Dog1 — Dog'?q2) + 2/ a'd*zTy [(B; —iB;)g] . (3.163)
9° Ju 9= Jou

The new BPS equations for ¢4 are given by

Diga=0 , Dogi +C P —m*)q1 =0 , Doga+ ¢ HP+m)ga=0, (3.164)
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which imply that ¢4 = 0. This is expected since we are considering the theory on the
Coloumb branch. In fact, we will see that when we solve g4 perturbatively in gg, we
find that g4 = 0 to the order we are considering.

Since bosonic zero modes only come from the vector multiplet, the moduli space
is the same as before. Again there are fermionic zero modes and electric line defects
leading to the spin and Wilson bundles over M respectively. However, now there are
additionally fermionic zero modes that will contribute an additional factor to the total
bundle over M that couples to the SQM which we will refer to as the matter bundle
Ematter- Because the hypermultiplets form a representation of the flavor group G, the
matter bundle will have a structure group Gr.

In order to realize the matter bundle, we must solve the equations of motion

D Eq + [V, Y, Ag]] + [0, Wa] + 26T Xp(T" )N =i Y T w! Ry(T"w; 6 (& — ;) ,
J

D% — DY —i[0" Wa] — 2T Ap(T")A =0 Y T wl Ry(Tw; 6@ (x — )
J

iI[DAN+ YN —iXysA] +my X —imxysA =0,

i(DWA — [V, 4] + iy5[X,W4]) = 0,

(3.165)
where we have used the Dirac basis for 4% and
P4 A1
pA = . A= . Clm=my +imx . (3.166)
7A —
(0 —A2

Note that these equations lead to the same solution for the p4. Here we take { to be
either determined by the data of line defects in the case of framed BPS states or by the

classical action in the vanilla case

zel VA
-2 _=_ lim — .
9] = g0 2]

Guan = (3.167)

Typically, upon introducing hypermultiplets there are extra terms in the central charge
Z, however they are not leading order in gy — 0 since classically ¢4 = 0.

We can now solve for the hypermultiplet zero modes from the fermionic equations
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of motion:

il +Y —iXys]A 4+ mr\ —impysA =0, (3.168)
which in components is given by

(Z?aba — imx))\l :i(AQ -Y + imy)UOXQ ,

(3.169)
(’iTaDa + Z‘mX)XQ Zi(Ao +Y — imy))\l .
Note that the equations of motion for A is now given by:
(779D, — imx ) Ao = i(Ag + Y — imy )Xy . (3.170)

Since /la is self dual, the kernel of i%“f)a — imx 1is non-trivial whereas the kernel of
it%D, + imyx is trivial. Hence, given Ay, Y, and Ay, there is a unique solution for
Xo. Again this implies that there are non-trivial zero modes associated to A; which
is O(gé/ 2) while Ay ~ O(g?/?) will contribute trivially to the effective action at order
O(g3)-

The non-trivial zero modes are thus described by solutions to the equation
LrAr=0 , Lg=1i7"D, —imx , (3.171)

where R is the full hypermultiplet representation. Self-duality of A, implies that
coker[Lr] = {0} and hence Ker[Lz] =Ind[Lgr]. Therefore the index of Lr deter-
mines the rank of the matter bundle bundle Enatter(R,m). A computation analogous

to before shows that

rnke [Ematter (R, m)]

n=1

) Ny (3.172)
=3 > nr(p) {(mm) sign((p, Xoo) + Re[('m]) + ) !<u,Pn>|}

HEAR
Here we employed an orthonormal basis of Vi associated with a weight space decompo-
sition: Vg = @, Vg[pn] where p € Agr C Ay C t* are the weights of the representation
and ng(u) = dim Vg[p]. In this decomposition, any vector v € Vg[u], is acted on by
X € taccording to iR(Xoo)v = (i, Xoo)v where ( , ) denotes the canonical pairing
t* ®t— R. See A for full details.
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Multiple Hypermultiplets

In the case of multiple hypermultiplets of varying representations, we know that the
mass can be chosen to be diagonal so that the hypermultiplet representation decom-

poses:
Ny
R =R (3.173)
=1

For generic values of m=diag[m, ...,me] flavor symmetry is broken to the maximal
torus U(1)N7. Under this decomposition the matter bundle decomposes as a direct

sum

Ny
gmatter(Ru m) = @ E(R(l)y mz) . (3174)
=1

where each subbundle has rank rnkc[E(R®, m;)] :Ind[inmmi].

Example

As a consistency check, consider the case of an SU(2) gauge theory with a single hyper-
multiplet in the fundamental representation (n,(x) = 1) in the k-monopole background.
Let us take X, = vH, where v > 0 and use the conventions , v, = kH, and sign(0)=0.

Then the rank of the matter bundle is given by

0 |u| < |mx]|
~ 1
Ind[L,] = 5 [sign(v + mx) — sign(—v + mx)| k = k' myx =4 (3.175)
E o Imx]| < |v|

This computation exactly agrees with [132, 125, 76].

Note that the index changes rank based on the relative size of mass and Higgs
vev. This change of the rank of the matter bundle is describing the phenomenon of
wall crossing where the number of BPS states changes along certain loci in moduli
space. We will discuss this further in the next chapter. In this scenario, it will have a
clear, geometric interpretation in the string theory constructions that we will discuss

in Chapter 5.
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3.6.1 Matter Bundle and the Universal Connection

As it turns out the matter bundle can be described as a sub-bundle of the pullback
of the universal Hilbert bundle to the moduli space M. As space-time fields, the
hypermultiplet fermions are sections of the bundle S ® Exr — R3 where Er = P xg
CN — R3 is an associated principal G bundle and we have restricted to only time
independent fields as per the collective coordinate prescription. This means that we
want to pull back the universal Hilbert bundle associated with sections L?(R3, S ® ER).

After pulling back this bundle to the moduli space M, we can define the operator:

L, =i7"D, —imr , (3.176)

and project onto its kernel.
Take a local trivialization of Ker[L,] — M over an open set U C M with local
coordinates {z"}. We can pick a local frame in which the fibers are spanned by local

sections {\,(x,2) € L*(U,S* @ E)|Ly\a(z,2) = 0,a = 1,..,Ind[L,]}. In this local

trivialization we can write the projected connection on Enpatter

Apab(2) z/ud?’x <)\a(x,z), (8 +R(em(x,z)>> )\b(:v,z)> . (3.177)

oz™m

where (, ) — R is the canonical hermitian connection on the fibers of S* ® E, — U in
this trivialization.

In the case of multiple hypermultiplets the bundle K er[IN/p] decomposes as a direct
sum

Ker[L, mx] = @KGT[ER(¢>,R6(C_1mZ-)] : (3.178)

(2
The bundle K er[f/p,mx] exactly corresponds to the bundle of hypermultiplet zero

modes: Ematter-

3.6.2 Collective Coordinate Dynamics

Now we need to solve the equations of motion for the vector multiplet fields to reduce

to the effective SQM theory. The equations of motion for the p, 7 are the same as
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before because the coupling to the hypermultiplet zero modes are accompanied by a
coupling to the hypermultiplet scalar which has trivial solution.
Thus, we only need to solve the equations of motion for Ag and Y:

D*(Ag — 2™) +i[p™, pal + 26T Xp(T")A — i Y T wl Ry (T )w; 6 (x — 25) =0,
j
D*Y — DY —i[p”, pa] — 2T Np(T")A — iy T"w! Ry(T")w; 6@ (z — 2;) =0 .
i
(3.179)

The equations of motion for all of the fields are solved by the collective coordinate

expansion
Ag = —2"em + %¢mnxmx" +Y< - ;TT/\aR(T’")/\bwawb ,
Vi=ev, - %QbmnXan +Y ;T’"/\GR(T)”/\bw“wb :
pt = ! Om Aa(—iTa)nAXm ,

2v/det # (3.180)
Ay= A, =(0) . ha=0 . pt=0(g,

AG (25 2(1))

— N (5 2(1))

While the formulas for Ag, Y appear nonlocal due to the é, here we simply use this

notation to mean the Green’s function as in [78].

By plugging in the solutions (3.180) into the action (3.15), we can reduce to the

collective coordinate theory which has a Lagrangian

471- 1 M 2N - m n m n Z m.,. n

Lec = 97 igmn (™" +iX"Dix" — G(Yoo) " G(Yeo) )+§X X"VinG (Yoo )n
0

. dm (. ) 1
T2+ (zhabw“wb — (my hay, + 20T )" + 2mebxmx“w%b>
0

4 «90

- %(VmaXm) + %(Vma Yoo) +

. j Z.
— AM, +1 Zw;(Dt - Egi) + §¢mnXan)wj )

o
J

90 -m n . m.n
%(gmn(z - G(Xoo)") —ixX"x va(XOO)n)

(3.181)
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where {¢*} are the hypermultiplet zero modes with Dy)* = P+ (Am)“bwb and

—_— /d X )\ )\b s Amab = % /d3f17 Xa(am +R(6m)))\b )

Top = 2 /dgx A R(EY ))\ s Fonap = 28[mAn]ab + AmacAfl b AnacAgn b

™

(3.182)

Here hgy, is the fiber metric and A,,,4p is associated the metric connection with curvature
Fnap o0 the matter bundle from the previous section and Ty, is the lift of the covariant
spin derivative V,,G(Yx)n to the matter bundle. Additionally AM, is the 1-loop

correction to the mass (similar to [104], see Appendix A) which is explicitly

AM, :% S () {m <<a2§1’2>2> 4 1} 4 71T S (), Yo )

acA+ acAt+

m 2
+417rue§A: nR(M)(<IU/’XOO>+mX)<M”7m>1n<(<M7X;O‘>/IT; X) > '

(3.183)

This theory again has N' = 4 supersymmetry with associated SUSY transformations

m

0,2 = —il/s(j]s)%xn
S X" = (I 0 (2" = G(Yoo)"Jws — ivsX* X" (3*)i L (3.184)
5V¢a — _ A9 b6 meb

whose associated, conserved supercharge is given by
Q° = X" (I)mn (2" — G(Yao)") (3.185)

It is important to note that as a consequence of N/ = 4 SUSY, this matter bundle is

hyperholomorphic: Fy,pqp is type (1,1) in all complex structures on M. [55].

Hamiltonian Formalism

Again we will need to convert to the Hamiltonian description in order to quantize the

theory. A straightforward calculation shows that the conjugate momenta are given by

47 ) {
Pm = g gmn |27 XX g + 1 AGY” 0|+ 2 G(X e+ g
0

41 47 .
(px)m = g—ggmnx" s (p¢)a = %habd)b 5 (pwj)a = Z(S(w;')a ’
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where
gm =1 wiR;(ed)w; . (3.186)
Again we introduce the notation j
- ‘;70; [;’prq I Ag¢a¢b] g . (3.187)

The Hamiltonian can then be written

2 A7
He. = Ml_lp T é%)r {ngmnﬂ'n + gmnG(yoo)mG(yOO)n + ngXHVmG(yoo)”}
0

= . 27 47 1
—+ 469 (ZG(Xoo)mﬂ'm + gQXanva(Xoo)n> + gig (mhazb - 2anameXn) WW’
0 0

#i3u] ( - o™y s
J
(3.188)

with associated supercharges

Q" = X"(J) i (mn — iG (Voo )n) - (3.189)

3.6.3 Quantization

Again we can quantize the theory by elevating coordinates and momenta to operators
and imposing canonical quantization conditions. As before we will need to introduce
(co-)frame fields for our spin, hypermultiplet, and Wilson bundles. Then scaling the
fields as

m gO m a go a
m o _ mo @ 0%, 3.190
X 2\/2777 v 2427 ( )

using the same notation from the previous section.

Now we quantize the fields 4™, 0%, and ,U]g by imposing the C¢(4N) algebra relations,

{ym 4y =20mn {92 9%} =262 | {vfT ot} =265 . (3.191)

Note that we have a C¢(4N) because dimr(M) = 4N for some N € N and the asso-

ciated moduli are fermionic. This implies that upon quantization we elevate from the

vector bundle Epatter — M to Spin(Ematter) — M. As before

1 1 1
T = —1 <am + §Fsm + Zwm,@ryﬂ + 2.Qm,ab9ab> —Aqm ,
(3.192)

— _ie 12D, (/2 .
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From hereon out we will suppress the underline on the coordinates except to emphasize

the flattened bundle. We can now write the supercharge operators as

Aa__igo m/Jgay n . cl
Q" = =5 =" (P — GO )m) (3.193)

Using the SUSY algebra
{Q", Q") = 20"(H + Re(¢™'2)) (3.194)
We see that the central charge operator is given by

~Re(¢'Zy) = M7 + my hapt°6° . (3.195)

We should expect this additional term because our flavor charge is exactly given by
hap026° which descends from the QFT flavor charge Q r=/ d3zA\. This reproduces

the standard low energy formula

Zrg = Gm,ap ) + (e, a) + mQy (3.196)

where @ is the flavor charge
Q= hapto} . (3.197)

As before the framed BPS spectrum with hypermultiplets is

HBPS = {LD S L2 (M» S® gWilson &® Spin(gmatter))‘ Z.’Ym (Dm - ZG(yoo)m) v = 0} .

(3.198)

3.6.4 Generalized Sen Conjecture

It is now straightforward to analyze the cohomology of the total bundle of the effective
SQM and relate it to the space of framed BPS states. From this we can derive a
generalization of the Sen Conjecture which we will refer to as the Generalized Sen
Conjecture. In fact, the proof follows nearly trivially because the new zero modes come
from hypermultiplet fermions which are SU(2)g singlets.

Again we will identify the spin bundle with the holomorphic differential forms. In

this language we can identify the differential operator coming from the suprcharges

VA

Q=5 (Q3 - iQ‘*) =8, —iG(YL)OV A, (3.199)
90



91

and construct an associated differential cochain complex

J— Q _ o Qan— -
L2M, A0 & 8, — L2(M, AOD © 8,) —s .. —— £2(M, 402N @ 5,.)

(3.200)

where we have denoted Spin(Ematter) as Sp,. From this complex we can define the

cohomology groups

HY(Q) = ker Qq/Im Qu1 . (3.201)

Since the hypermultiplet fermions are SU(2)g singlets, the SU(2)r generators act as

before
. R A 1
I A=dwr AN | T A=—i, A , I3h= 5(q—N))\ , (3.202)

on some Spin(Ematter) valued (0, ¢)-form A. The no exotics theorem implies that ¢ = N

and that BPS states must be primitive elements

Apps € A (M, Spin(Ematter)) . (3.203)

where

AN R Spin(Ematter)) = {X € AT M) @ Spin(Ematter) | ALLA = 0} . (3.204)

prim

Thus, the set of BPS states is given by

Hpps = Hp 2 (Q) (3.205)
where
HY. 12 (Q) =HY(Q) N ANN) (M, Spin(Ematter))| (3.206)

L2

are the L? sections of the elements of the cohomology group HY(Q) that are also
primitive.

Conserved Charges

The conserved charge related to a (triholomorphic) killing vector K4 [133]

NA = ifpa+0(gd) . (3.207)
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From the explicit form of the supercharge operators, it is easy to show that the charge

operators obey

N4,04) = 9y G, | 3.208
N2 Q) = Sy I GO (3.208)
where [ , | denotes the commutator of vector fields. When K4 is triholomorphic and

killing, [K4, G(¥<)] = 0. Thus, the electric charge generated by G(Y<) is conserved.
It is also easy to show that the flavor charge in the effective SQM is conserved
because it descends from a conserved charge in the full QFT. Therefore the L? kernel of
Q4 and hence the BPS Hilbert space Hppg is graded by the electric and flavor charges
MHpps = EPHELS (3.209)
ver

where we can identify (in the semiclassical limit) v = v, ® ve © 5.

3.6.5 Summary of Collective Coordinate Analysis

Let us briefly summarize the results of our lengthy collective coordinate analysis. Adi-
abatically evolving BPS states in the semiclassical limit of a 4D N = 2 theory with
gauge group G and hypermultiplets with a quaternionic representation R = €, R in
the presence of general Wilson-"t Hooft defects is described by N = 4 super quantum
mechanics in the bundle

Ny

Stot =S ® gWilson(Qi) ® Spin [gmatter(R(j)amj)] — B({Pn}a Ym Xoo) ’ (3'210)
i j=1

over singular monopole moduli space.'6

1611 the case of no magnetically charged line defects we take replace M — M (Ym; Xoo).
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The dynamics of this system can be described by the Lagrangian

4 .
Lece = 977 |:2gmn (Z 2+ 'LXthXn - G(Yoo)mG(Yoo)n) + ;XanVmG(YOO)n]
0

47’[’ ) 1 m.n,.a
+Z (h V08 Dty — (mPhG) + 20T Yyl w? R Fl) XX w(i)%))

471' Ao
(’Yma XOO) + 5

- o (g (2™ = G(Xoc)") = XX Vi G(Xc))

to
my Yoo a
(v )+ o

nwy
— AM, +iy wl(D; - 6§V + cbmnx X" )wj + 2" qm

j=1
(3.211)
where ny is the number of electrically charged line defects and:
1 - . 1 . .
gon = o= | o T {6,408, A%} | Dy = o [ dr T {omA® D0 A}
21 Jgs 27

DixX" = X"+ T 2™x" . Dy = % + (Anmw(i) . Db = 0puh — R(e§))’uf

i _ 1 (i) | (i i ) ; ;
hl) = 27T/d3a: oA Al = o /de A (O + RO (em))A?
i 1 ~() 1~ (i i 7 i i)c
1) = o [ @0 XROE@ON | Dy =20 Al, + ARl — Al
(3.212)
Upon quantization the superchage operators can be written
Na 190 m/Ta\ n
= — J m)(
Q Word (J%)
1 Y (3.213)
Om + 4wm7pq7pq + = Z Qm abG ZwTR ) Jwj —iG(Voo)m
They satisfy the N’ =4 SQM algebra
{Q%, Q" = 20""(H —Re(¢™'2)) (3.214)
where
Ny
Re(¢1Z) = M+ 3" mnlec b, . (3.215)
i=1

Therefore BPS states are L2-sections of the above bundle that are also in the kernel of
the operator
Q4 =" | Om + Wm,pq'ypq +5 Z n?abe ZwTR = 1G(Voo)m |
=1

(3.216)

and further are invariant under SU(2)g.
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3.7 Rational Maps and Hyperholomorphic Vector Bundles

We will now describe how the hyperholomorphic bundles Epatter, Ewilson have a natural

geometric interpretation in terms of rational maps.

3.7.1 Hypermultiplet Matter Bundle

Consider the matter bundle defined by the quaternionic representation R and real
mass tmy € tf.17 For generic values of im, (as we will generally consider below), the
flavor group is broken to a maximal torus Gy — Ty. In this case, the quaternionic
representation splits as a direct sum of quaternionic representations of the gauge group
G
R— PR, (3.217)
i

where each factor R corresponds to an eigenspace®® of im,. Thus, the matter bundle
splits as a direct sum over the eigenvalues of im,. We will consider a generic factor in
this sum.

Let us define the set of positive roots by X, € t. This specifies a splitting

RO =m0 &7l (3.218)

*

\(» have corresponding highest weight A and —A® where A\ is a

where m,) and 7
dominant weight. From hereon we will supress the index (i) when possible. As a warm
up, we will construct a factor of matter bundle where the eigenvalue of im, on the
factor corresponding to R is zero.

Recall that the correspondence between rational maps and monopoles was derived in
the previous chapter by studying the scattering of charged particles off of a monopole
configuration. This can be rephrased as studying the fermionic zero modes in the
presence of monopoles, similar to the semiclassical analysis of [22, 134, 133, 78]. The

advantage of this approach is that it has a clear generalization to hypermultiplet matter

zero modes.

'"Note that the the i is included here as naturally Lie(U (1)) = 4R.

18Note that there can be repeated factors of R(.



95

The hypermultiplet fermion zero modes are determined by the Dirac equation

. . Ve Vs U1
(0Vo+iX)Yp =0 =3 =0. (3.219)

V. *vf ¢2
where the spin covariant derivatives V, act in the R() representation. This means
that if we are to consider scattering a fermion of type 1, then the field satisfies the

conditions

Vipp =0 ,  Vzpp=0. (3.220)

And similarly for fermions of type 11, we have the complex conjugate equations. Note
that 11 couples to anti-monopoles while 9 couples to monopoles. Thus, as usual for
four-dimensions, only 5 will have zero modes in the presence of monopoles. Therefore,
we will only consider the flat sections of 5.

Recall that from the previous section that the flat sections of V,.+¢X are in general
of the form

sp(r) ~ e Pk 2 (0, 8, as 1 — o0, (3.221)

where ke = (0,vm), 0 € Ay, and ¥, is a vector in the weight space of corresponding
weight o in the R-representation. This means that after picking the trivialization from

before, the solutions of 19 are of the form:
Yo(t, 2) ~ e~ 2petyken ng as t— 400, (3.222)

where 0 < n < k,. This means that counting zero modes is the same as counting
holomorphic sections of a line bundle corresponding to the flat sections of V, with
exponential eigenvalue e~2%% in the in the limit as ¢ — oco. Since scattering is trivial
as z — 00, we can again trivially extend the line bundles to CP' at t — oc.

In order to extract the physical information, we must eliminate the gauge redun-
dancy given by the action of the Cartan subgroup 1" defined by X,. Due to the natural
G action with T redundancy, these line bundles have a natural construction as the pull
back a line bundle from G/T via a meromorphic map. Recall from the Borel-Weil the-
orem that there exists a line bundle Ly — G¢/B such that Hg(L)\; Z) = V). Again, we

trivialize the incoming hypermultiplet zero modes in the limit ¢ — —oo so that it is of
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the form Vy. Since f : CP'* — G¢/B is the scattering matrix which relates the trivial
incoming states at t — —oo to the non-trivial bundle of final states (Ematter — C]Pl) at

t — +00, a generic fiber of the matter bundle must be given by Hg(f*L/\; 7).

Matter Bundle Factor with Vanishing Mass

Formally, we can construct the factor of the matter bundle when img) = 0 as follows.
Consider the holomorphic line bundle Ly — G¢/B following from the Borel-Weil the-

orem, corresponding to the dominant weight . This line budle L) can be constructed

by the pullback of O(1) — CP! by the Pliicker embedding

hy:Gc/B — CP} |

(3.223)
gB—g-1, .
where 1) is a 1-dimensional representation of B where
b-1),=e 1, | b=¢ €B. (3.224)

~

Recall that locally, sections of Ly are equivalent to B-equivariant maps: I'(G¢/B, L)
{f:Gc —C| f(gb)=e*Vf(g),b=e' € B}. These can be expressed as sections of

the pullback bundle 2O(1) which can be written explicitly as

b5, (9) = (M (@) B) ,  pE Ay, (3.225)

where ¥ is the highest weight vector in the ) highest weight representation of G, Ay
is the set of weights of the ) representation, and w;l(g) = mx(g7!). Here the action

of B acts as
Vs, (gb) = e 2Dy, (g) (3.226)

as expected.

Now consider the pull back of this line bundle through the rational map

*

F(Ly) = 100 L Ly = no)2— o) |

l l i (3.227)

CP! Ge/B—;—CP}

~
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where py = f o hy. From this construction, it is clear that we are pulling back O(1) —

CP! via the rational map py. The sections of p;O(1) are of the form

s(2) = ¢(2)vg, (2) = $(2)(mH(f(2))T0, D) (3.228)

where ¢ : CP! — C such that s(z) is smooth and holomorphic. This is only non-zero
for components of f(z) such that (A — p, 71 (f(2))) # 0. Thus
deg p)\ Z Z n)\ )\ H, OU> <Oé[, '7m> = Z <M> '7m> ’ (3'229)
A+ I ueAj\L

and hence

722 = po) = @ 0fwm) " (3.230)

HEAN
Now we can identify the matter bundle Epatter — M with the space of holomorphic

sections of the bundle f*(L)). By expanding A in terms of fundamental weights we
can recover the dimension of the fiber of the matter bundle for m, = 0 from [22] by

counting the number of holomorphic sections

1

POCPL, F1(L2) = 2 mal) () = 5 D mai0) senl(p Xoo) )it} - (3.931)

+
HEAY HEAN

This gives the rank of a factor in the matter bundle with vanishing mass (3.172) [22].

Rational Map Formulation of Matter Bundle
With this inspiration we can recast the B-action of the line bundle Ly — G¢/B as
Vg (gb) =€~ 2oeay nA(U)SQn«U,Xoo))(H»t)wﬁ (g) . (3.232)
w w

This formulation is exactly identical to our previous definition. However, it is now clear
how we should modify this story to take into account zmx % 0. Specifically, if we
(4)

consider a component of R = @; R where im}’ is nonzero, we should define the line

bundle Ly (X, mg(f)) — G¢/B whose sections have the property
~ i)
,(/}ﬁu (gb) — 6_ ZueAx n%(ﬂ)39n(<ﬂvX00>+mz )t >wvu (g) . (3233)

This can be defined again as the pullback bundle from CP' where now we pullback by
a modified Pliicker embedding hy : G¢/B — CP! where

b- 1, = ezueAA ”A(H)39”(<#’X00>+m§c))<N7t>]l>\ . (3234)
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We refer to the pullback bundle under the modified Pliicker embedding B*;\O(l) =
L,\(Xoo,mgf)) and we will define the function py = f o hy. In this case the pullback
bundle will be of the form

FUInXeo,m@) = Q) O, ym)) ™)

MGA;L
{1, X o) |2 |m |

(3.235)

The bundle over M given by the space of holomorphic sections of p3O(1) to be

hS(CP', f*(Ly(Xoo, m{Y) Z > ) (s m)

peAT
|(N7Xoo>|>|m(i)| (3.236)
*Z Z nx () sgn((p, Xoo) —|—mg(f))<p,,’ym> :
i pEAN

This is indeed the rank of the matter bundle as in equation (3.172) [22].

However, in order to match the matter bundle, we need to demonstrate that this
bundle is given by the horizontal component of the universal connection acting in the
) representation. Since the gauge group is broken to 7' C G by X, we have that
gauge symmetry acts on sections of the matter bundle by phase rotation. This means
that the universal connection on &y atter Should project onto a single T-representative
in the flag manifold G/T (or B-representative in G¢/B).

Note that for the mg(ci) = 0, the connection on f*Ly — CP! pulls back from the line

bundle LA(Xoo,mgj)) — G¢/B:
Or=—-(\6) , =g ldg. (3.237)
We can see this by noticing the equivalence relation on the fibers
¥(bg) ~ ey (g) . (3.238)
After choosing a representative, this redundancy is removed by the choice of connection
Vi, =Wd(eV) = —\(g~'dg)|, = O, . (3.239)

This supports the fact that B acts on the line bundle L) as a gauge symmetry. This

means that the connection V, projects onto a single B-representative, or rather a
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single gauge representative of the zero mode bundle. Note that in the case of m;(,;i) #0
the connection is slightly modified to

Or=—>_ > m(wsgn({u Xoo) +m{)(u,dg™g) . (3.240)
i pEAy

This natural connection on f* L) lifts to a connection the bundle of sections over M
which projects on a gauge equivalence class. Therefore, this lifted connection is exactly
the parallel component of the unviersal connection and the bundle of sections of the
pullback bundle is the matter bundle.

An important consistency check is that the connection on the matter bundle is
hyperholomorphic. This can be seen as follows. Consider the connection on f*L) for
f € M. Using the choice of generic X, we have a canonical splitting of Lie|G] = g =
h@® g™ ®g~ which comes from the splitting of the root lattice & = &+ @ P~ into positive
and negative weights with respect to X,,. This splitting defines a complex structure
on Lie[G/T] and hence on G/T. In this setting the Killing form defines a Hermitian
metric which is only non-degenerate on ( , ): g~ x gt — R. Further, since we have
defined \ to be a dominant weight, [\, -] acts diagonally on the splitting g = g™ ® g~.

Using this and the explicit form of the curvature of L)
1 1

we see that Fr, must be a type (1,1)-form on G/T. Since G/T = G¢/B, this means
that this also defines a holomorphic connection on G¢/B. Since f : CP! — G¢/B is a
rational function, f*(Fy,) must also be a (1,1)-form on CP! and hence the connection
on f*Ly is hyperholomorphic.

We can now construct the connection on Hg (CPY, f*(Ly)) — M. Consider the map:
ev: CP! x M — G¢/B where ev : (2, f) + f(2). Using this map, we can pull back the
line bundle Ly

ev*(Ly) ~—— Ly . (3.242)
N
CP! x M =~ G¢/B
The connection on ev*(Ly) will also be a hyperholomorphic connection since pulling

back a (1,1)-form by a rational function will still be a (1,1)-form. We can formally
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construct the bundle of zero modes as follows

hol(CP') x A ——= HO(CP', f*(Ly)) —= HI(CP", f*(Ly)) (3.243)
A A . M

where A is the space of all meromorphic maps from CP* — G¢/B and hol(CP!) is the
space of all holomorphic functions on CP'.

We see therefore that the connection on Hg(C]P’l, f*(Lx)) — M is given by the
horizontal component of the connection on ev*(Ly) along M. Since CP!' x M is a
product space, we have that the parallel component of the connection will have a
curvature of type (1,1) and hence is holomorphic.

Recall that f : CP! — G¢/B descends from a rational map f: TP - Gc/B.
This means that the pullback connection f*(©,) varies holomorphically with respect
to n € CP. in the base and therefore that the holomorphic (1,1)-form curvature varies
holomorphically with respect to the n € CP., and therefore is a type (1,1)-form with re-
spect to all choices of n € CPL,. That is to say the connection on Hg (CPY, f*(Ly)) — M

is a hyperholomorphic connection.

Proof that Hg((CIP’l, f*(Ly)) has Hyperholomorphic Connection

Here we will summarize the details of the proof that Hg(CIP’l, f*(Ly)) has a hyper-

holomorphic connection worked out in the previous section.

Proof. From explicit construction, we can see that the line bundle Ly — G¢/B has a
holomorphic connection as in (3.241). By pulling back the bundle through the rational
map: ev : CP! x M — G¢/B, we know that the connection on ev*(L,) has a holo-
morphic connection. Therefore the component of the connection parallel to M, which
is the connection on Hg((C]P’l, f*(Ly)) = M, will be holomorphic. And since the map
f: CP' — G¢/B descends from a map f:TP! — Gc/B, ev : CP' x M — G¢ /B varies
holomorphically with respect to the complex structure by construction, and hence the

connection on Hg (CP!,7*Ly) — M must be hyperholomorphic. O
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Remark Note that the proof that @) is a hyperholomorphic connection follows with

trivial modifications.

By putting together all of the different components of the quaternionic representa-

tion R, we have that the total matter bundle is determined by that property that each

fiber
gmatter = @ Hg <f*L§:L) (Xoo, m(z))’ Z) 5 (3244)
feM ;
with connection
Vmatter = Z USYO) <€U*é)\(i)) ‘M . (3245)

7

Remark on N = 2* Theory

It is interesting to think about the case of the N' = 2* theory. In this theory if we take
the mass parameter m — 0, then the theory should have N/ = 4 SUSY. As shown in
the seminal paper by Sen [158], this means that space of holomorphic sections of the
line bundle L,qj(Xo0,0) = Gc/B should be associated with the holomorphic tangent

space so that the total bundle [133]
SM® Hy (M, Logj(Xo0,0)) 2 TM.. (3.246)

This implies that the spin bundle SM — M should be identified with the space of
holomorphic sections of L,4j(Xo,0). This means that SM should be realized in a
mathematically similar way.

In fact, because the coupling to the spin bundle comes from the zero modes of the
vector-multiplet’s (massless) adjoint fermions [22, 78], the above discussion shows that
spin bundle must be isomorphic to L4g4j(Xoc,0). Roughly, this can be attributed to
the correspondence between meromorphic functions on CP!, which is used to define the
geometry of M and hence SM, and sections of line bundles, which is used to define

Lgj( X, 0).
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3.7.2 Wilson Bundle

The Wilson bundle is similar, yet fundamentally different from the matter bundle. In
order to motivate the construction of this bundle, recall the essential properties of

Ewilson from [22]:

e The data of a Wilson line is given by (Rgq, ,Zn) where Rg, representation of the
Wilson defect with highest weight Q,, € A,; and #, € R? is the position of the

defect. The choice of ¢ will have no effect here.

e The Wilson bundle will have the form
Ewilson = ® g\({/bi)lson = ® gWilson(fna Qn) ) (3247)

where each factor describes the degrees of freedom associated to the n** Wilson

line.

e The rank of the Wilson bundle is fixed
rnke[Ewitson] = | [ dime[Rq, ] - (3.248)

e The connection on &y, is given by the universal connection in the representa-

tion Ry, evaluated at 7, € R3.

The fact that the dimension of the fibers does not change with -, demonstrates
that the Wilson defect zero modes are fundamentally different than the hypermultiplet

zero modes.

Coadjoint Orbit Quantization

In order to construct the Wilson bundle , we will give a construction of a generic factor
5\(7\71)15011' This will require the use of the coadjoint orbit quantization of Wilson lines as
we discussed earlier. In this construction we can identify the Hilbert space of defect

states H = Vp, associated to the Wilson line of charge @, € A, by looking at the

vector space of of holomorphic sections of the associated Borel-Weil line bundle

H=Vg, =H3(Lg,;Z) , Lg,— Gec/B. (3.249)
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We then parametrize the defect degrees of freedom by the pull-backs of the holomorphic
sections of Lq,

U:R— OQn = G(C/B , (3.250)

where R parametrizes the time direction.
In this formalism, the space of the maps into G¢/B captures the different field
configurations on the defect. Therefore, we can parametrize the space of fields on a

Wilson line in the direction 7 at a fixed point Z € R? by the set of maps
¢:R, xCP' xR — G¢/B (3.251)

where R, is line in R which is labeled by z, and parametrized by t, for the choice of
complex structure n € CP*.

We can then restrict to a particular (¢,, z,) to fix the location of the Wilson line
insertion. Thus, the Hilbert space of states of a Wilson line inserted at a point &, =

(ty, zy) is given by
H=¢"Hy(Lg,;Z) ,  Lg,— Gc/B, (3.252)

where ¢(z,t) = limy, o0 ¢(ty, 2y = 2,6 = 0) where ¢ parametrizes time (not to be
confused with ¢, which parametrizes lines in R3.
In our formalism, we are considering the time-independent configurations at ¢, —

+00. Thus, we are considering maps 9
¢:CP' - G¢/B . (3.253)

Since the Wilson defect can be realized as a collection of localized spin defect fields, we
can again describe the Hilbert space of states as in equation (3.252).

Using the fact that pulling back a line bundle L — G¢/B to CP! couples the
states in H = Hg(L; 7) to the gauge field, we can identify ¢ : CP! — G¢/B with
f: CP! — G¢/B. This leads to a Wilson bundle which has fibers of the form

(n) _ pxry0 .
sz/:Lilson feMm - f H(‘}(L/\aZ) . . (3254)

9Here we have implicitly extend the natural map d~> : C! = Gc¢/B to the map ¢ : CP* — G¢/B.
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We can explicitly check that this ansatz does indeed produce the Wilson bundle by
showing that construction defines a bundle which matches the dimension and connection
of the Wilson bundle. Specifically, the dimension is purely given by the dimension of
the representation with highest weight (),, and the connection will be the universal
connection evaluated at the insertion point in the representation Rg,. This can be
seen from the analysis of the rational map construction of the matter bundle from the
previous section. In the case of the matter bundle, the universal connection was given
by the pullback of the connection on Ly. In this case, the connection on Lg, is given
by

g, = —(Qn,0) , 0=gldg, (3.255)

so that

Vwilson = Rg, (f*0) . (3.256)

The formal construction of the connection and Wilson bundle is as follows. Let
Lg,, — Gc/B the Borel-Weil line bundle of highest, dominant weight Q,, € A, (with
connection g, = —(Qp, d)) and Hg(LQn; Z) = Vg, be the vector space of holomorphic
sections which is the representation of G with highest weight @,.

We can now construct a holomorphic vector bundle over M. First choose a point
f € M. Above this point, we have a vector space given by the pull back of the
holomorphic sections of Lg, evaluated at the the corresponding insertion point z, € C.
This then extends to a vector bundle over M where each factor of the fiber is of the

form

EWilson (fnv Qn)

— (Hg(LQn; Z)) . (3.257)

2=2n

fem
This vector bundle describes the Wilson bundle with connection given by Rq,, f*(6) -
From the construction of the matter bundle, we know that this connection is the uni—i '
versal connection evaluated at 7, in the Rg, representation and hence will again be
hyperholomorphic.
The fact that Rq, f*(0) - is hyperholomorphic can be seen by the fact that Lg,

is a holomorphic line bundle with (1,1) curvature. This means that the pullback by a

rational map, f*Lg, will also be a holomorphic line bundle. Since the pull back of the
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sections will take value in f*Lq,: f* (Hg(LQn;Z)) C Hg(f*LQn;Z), the connection
on f* (Hg(LQn;Z)) will also be holomorphic. Further since f(z) descends from a
hyperholomorphic map f : TP! — Gc¢/B where, this connection will naturally be
hyperholomorphic.

We can directly construct the sections of Lo, — G¢/B,

bilg) = (RoL(9)7,7q,) »  ¥w€ Hy(Lo,;Z) (3.258)

where v, is the highest weight vector and v € Vg,. In this case, shifting the B-

representative of g acts as

valg) = Ya(b-g) = e @RS ()0, 7p,) . b=€€B. (3.259)

n

Thus, the connection on f* (Hg (Lg,; Z)) is given by
Vwilson = Rg, (f70) , (3.260)

and hence that the curvature of f* (Hg(LQ”;Z)) is given by
* 1 * *
Fwiison = Rq, (df"0) = §RQn([f 0,f*0]) . (3.261)

As before, we can realize this in terms of G/T = G¢/B. Since [, ]: g X g is degenerate
on gt x g™ and g~ x g~, we have that [f*6, f*0] € t and is a type (1,1) form. Therefore,
Fwilson is a type (1,1)-form and by the same logic as before, and therefore Vyison =
Rg,, (f*0) is a hyperholmorphic connection.

By allowing for the insertion of multiple line defects, we get the complete Wilson

bundle

gWilson

- o _ * (HO(Tm -
fem = @E‘Wllson,(xn,Qn) fem @f (HQ(LQ”’Z))zzzn s (3262)

with the connection

Vwilson = Z Rg, (f*QQn) o (3.263)

—~n
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Remark

1. The different points z € CP' encode the data of how the system is affected by hav-
ing a Wilson line at different points in space. In essence the bundle f* (Hg(L Al Z))
contains all of the information of having Wilson lines in the presence of BPS

monopoles.

2. An important question to ask is how this formalism encodes the information
along the scattering direction. This can be answered by considering the action of
translation on the rational maps. Translation in the plane perpendicular to the
scattering direction is given by shifting z — z + 2. By using the identification in

Section 2.5.2, translation along the scattering direction is given by
tst+ty = z ey, (3.264)

This suggests that there is an equivalence of insertion positions for the Wilson
defects. However, this is not surprising as the moduli space encodes all possible
positions of the monopoles and hence only the difference in positions of fixed
defects, such as Wilson-, 't Hooft-, and Wilson-'t Hooft defects, are physically

relevant.

3.7.3 Rational Maps and General Bundles for Framed BPS States

The hyperholomorphic bundles from the previous section also exist as bundles over
singular monopole moduli space. They are defined similarly to the case of smooth

monopoles.

Matter Bundle for Framed BPS States

In this case we again define the matter line bundle by pulling back the Borel-Weil line
bundle Ly — Gg¢/B via the rational map f : CP' — G¢/B. However, the framed

case is slightly different from the vanilla case. This is because the singular part of each
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rational map f~1 has no moduli. This means that

Hg(f*(L)\)a Z) = Vi-frivial S gmatter (3265)

i

M
where Vi, ivia 18 a trivial vector bundle. This trivial factor exists because of the holo-
morphic sections coming from the singular components of the rational map. This trivial

factor is not an element of the bundle for several reasons
1. I"Ilk[Hg(f*LA; Z)] = I'nk[fi‘matter] + rnk[v;frivial] where rnk[%rivial] = Zn,[ prlm
2. There are generically no trivial factors of Enatter,

3. Physically, the factor Vi.wia corresponds to the collection of zero modes that
are removed when we construct a singular monopole by taking the infinite mass
limit of a smooth monopole. This comes from the fact that our construction of
singular monopole moduli space is effectively taking the singular limit of a smooth

monopole moduli space. See [131] for more details on this decoupling.

As before, this bundle will be a hyperholomorphic vector bundle over (singular)
monopole moduli space of the appropriate rank

kg [Ematter] = Z n(u) {(u,’ym>sgn(<u,Xoo> + m:(ci)) + Z |, Pn>‘} . (3.266)

HEAN

Wilson Bundle for Framed BPS States

In the case of singular monopoles, we can have two types of electrically charged defects:
Wilson defects and Wilson-"t Hooft defects. These both give rise to Wilson bundles as
both require the insertion of a Wilson line into the path integral. In both cases, the
Wilson bundle is again defined by the analogous construction where a generic fiber of

a factor of Ewilson — M is of the form

5Wilson (fnv Qn)

— 7 (HAL ;Z) . 3.267
o= (B Lanm) (3.267)
This will be a hyperholomorphic vector bundle over singular monopole moduli space of

the appropriate rank, rnk 5\%35011 = dim[Vyp, ].
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Chapter 4

Wall Crossing of Semiclassical Framed BPS States

We have now shown how BPS states in the semiclassical, adiabatic limit of a supersym-

metric gauge theory can be described as solutions of the Dirac operator
D =i (B+i¢O)) (4.1)

on monopole moduli space. However, using this property to study the spectrum of BPS
states is in general very difficult. The reason is that solving for the states in the kernel
of lDyO requires solving the Dirac equation on a 4N-dimensional manifold M coupled
to gauge fields and bundles of generic rank. This task is functionally impossible.
However, we can still learn something about BPS states by considering the Dirac
operator in a certain asymptotic region. There the form of the metric simplifies to
subleading order. While this does not allow us to determine the spectrum of BPS
states in the asymptotic limit, it allows us to study primitive wall crossing which can
be described simply as 2-body decay of cluster of BPS states. By studying lDyO in this
limit, we find that primitive wall crossing has a universal behavior that is controlled by

a Dirac operator on single centered Taub-NUT.

4.1 Asymptotic Regions Of Moduli Space

Here we will consider a special subregion of the asymptotic region of monopole moduli
space. This region is called the two-galary region in which the cluster of monopoles
roughly separates into two, widely separated subclusters.

The two galaxy region can be defined as follows. The asymptotic region M?S is
region of monopole moduli space where all monopoles are widely separated relative to

the mass of the lightest W-boson. Here we can identify the coordinates (Z;, ;) with a
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collection of positions and phases that we can associate to individual monopoles. The
two-galaxy region is then defined by the region in which we can partition the Z; into

two sets S1, 52 representing the two distinct galaxies of size N1 and No
(T, =508, S'ns*=0, (4.2)

with

S1={Za}alr,  S2={&}2, (43)
with N1 + Ny = N, such that ming, ¢{res} > max{max, p{rep}, max,{rs}}. We will
additionally use the notation <;,, to denote the total magnetic charge of all of the
monopoles in S;. Here we will use the length scale A >> 1/my to denote the scale of
the separation ming s{r, s} ~ O(A).

As in [25], we conjecture that the lDyO on the asymptotic region, M%®  of monopole
moduli space is a Fredholm perturbation of the true Dirac operator on the full monopole
moduli space. The reason is that wall crossing occurs where the Dirac operator fails to
be Fredholm. This property is controlled by the subleading term in an expansion in 1/A.
Thus, on the asymptotic region of monopole moduli space, higher order perturbations
are suppressed to O(1/m,,A) and the Dirac operator is well approximated by its sub-
leading order.

In the asymptotic region of monopole moduli space, there exists a local, canonical
splitting of the electromagnetic charge lattice so that every particle can be assigned a
charge

yel=TyaT,. (4.4)

The metric on M?® is given by the Lee-Weinberg-Yi/Gibbons-Manton metric [111, 79]

ds? = My;di" - d? + (M~ 1Y0,0; , (4.5)
where
O; = d¢; + Z Wij -dil (4.6)
J#i
with
D . N .
m; — ik =g . — DjpWi , 1=17,
M;; = D,Z , 2ok i o & Wi = Zf#z Y o
SR i FE 7, Dy i FJ

(4.7)
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Here m; is the mass of the " monopole, (75,05, ¢;j) are standard spherical coordinates
on R3 centered on Tij = Z; — ¥j, Wi; is the Dirac potential in terms of the relative

coordinates 75; which is of the form
. . 1
wij - dTi; = Q(il — cosb;;)ddij (4.8)

and ¢; is an angular coordinate of periodicity p; = 2/ a%(i), which is the ratio of the
length-squared of the long root to that of the root associated with monopole i. Note
that the term V_Vij -d# can be rewritten as
Wy it =S 2 0,))d 4.9
D Wi -diF = 37 ST (1~ cos(0))do; - (49)
J J#i
The mass and coupling parameters in the above formulas are

mi = (Hl(z)7XOO) ) Dij = (Hl(z)aH](])) ) (410)

where to each constituent fundamental monopole we associate a simple co-root i — Hrp;
describing its magnetic charge and the brackets ( , ) are a Killing form on g, g* such
that the length-squared of long roots is two. These masses are related to the physical
mass by a factor of 47/g3, and the basis of simple co-roots is defined by X, such that
X is in the fundamental Weyl chamber.

Now let us consider the asymptotic metric in two-galaxy region of monopole moduli

space. Let us introduce the center-of-mass coordinates

> mex o wa -

Xlzz;; =, ge=7° -7 a=1,...,Ny -1,
gall

v ZP mpfp =p _ =2p+l _ 2pt2

XQZ?, y:.%' — X 7Z):]\fl,...,]\f—Q7 (411)
gal2

where mga11 = Y, Ma = (71,m, X) is the mass associated with galaxy 1, etc. The indices
a,b and p, g run over the relative coordinates within galaxies 1 and 2 respectively, and
we’ve built in a shift in the numerical values that p, ¢ run over so that these coordinates

can be grouped together,
gi:(ga,gp)7 i:jzla"'7N_2> (412)

as will be convenient below. The inverse transformations to (4.11) are denoted

—a =S

Ee=n| ). w@m=nl . (413

Xl X2
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There is a corresponding change of phase variables given by

c=an "), e =an [ 7). (4.14)

X1 X2

and we will denote by ¢; = {14, } the collection of relative phases. See Appendix C
for further details including the explicit form of the matrices J o.

Let us consider, for the moment, galaxy one in isolation. There is an associated mod-
uli space M1 = M(ym,1,X). The coordinates {7, 1),} parameterize the asymptotic
region of the strongly centered space Mj g = Mo(Ym,1, X ), while {)?1, X1} parameterize
the R* of the universal cover le = ]R‘(ll) X M. A similar story holds for galaxy two.

Now we return to the full picture where these two galaxies are interacting with
each other. Using the center-of-mass coordinates for each galaxy we can construct the

overall center-of-mass coordinates { X, y} and the relative-galaxy coordinates {R,} as

follows:
e X X — — —
§ _ Meall 13:mga12 2 , ReX - %,
Hgalt T Heal2 (4.15)
X = X1+ X2 P — Tleal2X1 T Mgall X2

Mgall + Mgal2
Then it is the collection of position coordinates {3?, ﬁ} and phase coordinates {i;, {}
that parameterize the strongly centered space Mo(7Vm, X) for the whole system.
By rewriting the metric (4.5) in terms of these new coordinates and expanding
perturbatively in 1/R to order O(1/R), where R ~ |rys| is the distance between the
center of masses of the two galaxies and Rmy, >> 1, we will find that the metric to

order O(1/R) can be written in the form

oy 1 . .\ [ C+LiiCc  LL ay
ds? .= MdX? + 7 =24 (dy.,dR.) R R )
+LT pH(R) dR
1
C++i6C  LiL Ay
+ (60, Ov) ) " , (4.16)
#L7T uH(R) Oy
where
My My

M =M, + M (417)

M:Ml—i—Mg’
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are the total and reduced mass of the two galaxies.

2 7S

Here we use the notation ¥ = (g%, 7°) for the R? coordinates for the constituents

relative to the center of mass of each respective galaxy with respective phases

O) = (Oa, 05) = (dtba + > Wap - A, dips + > _ W - dist) (4.18)
b#a t#s
and
é y QW =d¥ + (’Yl,mv’YZ,m)u_;(R) : dﬁ ) (419)

are the coordinates for the relative moduli space, and ()Z' , =) are the moduli coordinates

for the center of mass. Further, the terms

H(R) = <1—(71’Z’;2’m)> , C= (C;)“b (CO) : (4.20)
2)st

can be interpreted as describing the product LWY/GM metric of strongly centered
moduli spaces of the different galaxies and the relative term: Mg 1 X M2 x Mg e
All of the other terms can be thought of as the O(1/R) constant corrections which couple
the different factors together. Note that the final term in the 4.16 has infinitely many
terms in the expansion in 1/R, however we only believe them to hold to order O(1/R).
See the Appendix C for the definition of the coordinates and undefined matrices.
Note that since the above metric is in Gibbons-Hawking form to O(1/R) it is hy-

perkiihler to order O(1/R?).

4.1.1 Triholomorphic Killing Vectors

In order to study the BPS spectrum we need the explicit form of lﬁyo. This re-
quires the definition of the triholomorphic Killing field G()y),, in terms of the co-
ordinates in the above metric on M%3. This will have a decomposition in terms of the
Killing fields of the LWY/GM metric: {0/0%°}. In the two galaxy limit these become
{0/0¢*,0/0¢*,0/0W,0/0=}.

The triplet of Kahler forms on M? are given by

1
w® = O; Adx? — iMijeabcdxf A da . (4.21)
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From this form it is clear that

Lo, w' =0, (4.22)

and hence the vector fields 9/0¢? and their linear combinations {9/0v%,8/0v*,0/0W,0/0=}

are triholomorphic Killing fields.

Remark In general, quantum corrections break the property that the {9/9¢!} are
triholomorphic Killing fields. However there are rnk[g] linear combinations which will

remain triholomorphic and Killing. They are the vector fields described by

n[
N 9
K;=pr E 3751 , (4.23)
k=1 "k

where there are n! fundamental monopoles charged along H; with corresponding an-

gular coordinates £,€ .

4.2 The Asymptotic Dirac Operator

Now we can compute the explicit form of the twisted Dirac operator on monopole
moduli space. Because of the splitting (2.86), the spin bundle splits as a tensor product
of the center of mass and the strongly centered part. This means that we can simply
consider the kernel of the Dirac operator on the strongly centered moduli space which

is of the form

P> =D +i¢) . (4.24)

Here G())m is a vector field which enacts a non-trivial gauge transformation along

(y“”XO")XOO . Voo =Im[¢ tap], (4.25)

yO - yoo - (Xoo,Xoo)

which is the projection of YV along the strongly centered moduli space. See [133, 134]

for more details. This has the form:

G(Vo) = {ar, Yo)K; PIZ el (4.26)

1

After changing coordinates to those suitable for the two galaxy limit, we have that

0

G(Do) = (7, ’mvyﬂ) 0 + (Bas Vo) 5= gy

+ (Bs: Vo) 55 (4.27)

('M)a
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where (3;, Vo) = |Li|. See Appendix C for more details.
Now, using the spin connection (see Appendix C), we can construct the full Dirac

operator. It is mostly simply written as

pP =4 (P1g + Pra) A, (4.28)

where A is a frame rotation that absorbs most of the non-diagonal terms of the spin
connection. See Appendix C. Here )15 and Py, is the splitting of ]ﬁyo with respect
to the splitting of the spin bundle.

Since the Hilbert space is graded by electric charge, we will consider the correspond-

ing L2-harmonic spinors that are eigenvectors of the U (1) symmetry:

v = lVa’ll)a—‘rll/‘s’lf)s-‘rllI/l/WLWY (429)

(1) 1/(2) v °

We will now solve for the w1V (1) ,(2),, O O(1/R?). Due to the fact that the inter-cluster
forces are suppressed by order O(1/R) relative to the intra-cluster forces, we can make
a Born-Oppenheimer type approximation for the BPS state dynamics. This leads us to

make the ansatz
VY, = (7 + G + O] (430
where we further assume that Wi has the form
What = ¢ FR? (o + O(RT)) (4.31)

where lf/Rel is independent of R.

With this ansatz, 1015 and Dr. acting on !Z/VL(‘Q;X(Q)W takes the form

v - (0) 1«
D1y =1y + *lpm +O0(1/R?)

Dy = rﬂi{(c Y2Yi84; — (WoC Y2 + wedCC™Y2) 045 — wo (LT C712)04p+

1 -
- M(Cl/QL)z‘f)aR}Jr

+F41i{(01/2)ii84i —Z( 1/2) (61 ) (Vm/jj;iyO)( 1/2L) }

iz

1
+ 4]140““,] ka

(4.32)
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and
prl:L 1+M By, p—ip Fﬁwa—ifﬁ(x _&) +
+O(1/R?). (4.33)
where
Pp = — [('Ym,la'ym,Q)V — L — LSVS] = <<’71’72>> )
4.34)
<’Ye7Xoo> * (
Ty = (Ym,1, Y0) — ¥ = (Ym,1, J0) + <’Ye,1 - m%n,lv Xoo )

where (y1,72)) is the DSZ pairing of v; with 2 and the ]uﬂi(;) and ]}512) and luD Rel act
only on the W5 and Yg, parts respectively. Note that now lvD Rel 18 now exactly the
Dirac operator on Taub-NUT coupled to a vector field which can be translated to the
Dirac operator from [131].

There are two types of terms that are affected by our ansatz 1.) the terms with
angular derivatives and 2.) a term in ]uDlg proportional to J,g. Since the angular
coordinates are completely universal, we are allowed to replace all 04 and O4p terms

by their eigenvalues. Similarly the term in ]bm is of the form

1 L.
Dig=...— M—Rfﬂ(c_l/QL)@gR . (4.35)

However, this only acts on the exponential W%\;?;@)W ~ e R RP to order O(1/R) rela-
tive to the leading term. Therefore, this term can be replaced by %F “—i(é*l/ 2L); %.

With these simplifications, we see that
{ P2 Dra | = 001/RY). (4.36)
This implies that LPVL(Y[)/’ZT@)’V must satisfy
D@ =0 Dpag@i Y., =0, (4.37)
separately. Additionally, since the spin representations decouple and

. 1
reio, (v + ) ) =0/m). (439)
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the separate factors of the wave function must also each satisfy a separate Dirac equa-
tion
Dy (‘%(g) + ;%@) =0 DraPra =0 . (4.39)
Since the leading term of the metric splits diagonally on Mg x Mg, the lead-
ing term in the two galaxy Dirac operator, llez, also respects this splitting. Thus,
the leading term Wl(g) is simply the product of L? harmonic spinors for the separate
galaxies. The O(1/R) correction Wl(%) is then determined by the leading order terms
using degenerate perturbation theory. Therefore, we can say that the wavefunctions
(and hence the degeneracies) are given by the product of L2-harmonic spinors for the
separate galaxies with O(1/R) corrections coming from interactions with the opposite

galaxy.

Now using the calculations from [131, 133], we see that

{(Ves Xoo)

VN . ) X > )
(/yvaoo)’Ym,l 00

a =2z, = (Ymz1,Y0) + <7e,1 — (110)
4.40

p={m.72)
This tells us that the relative wave function fails to be renormalizable exactly when «

vanishes or when

e Xoo)
(’Ym,lay[)) + <’Ye,1 - MWm,h XOO> =0 ) (441)

which we interpret as the location of the walls of marginal stability. This matches
exactly with the field theory calculation from [133, 134].

Near the walls of marginal stability we can clearly see that the spectrum of lvD Rel
degenerates. Specifically, if we were to solve instead for the spectrum of L2-normalizable
spinors solving

jDReleel,E =iE YRa,E , (4.42)

k

we would see that the exponential behavior is now dictated by ¥ge g ~ e "F" where

kp = /2% — E?. (4.43)

The L? normalizable spinors of this inhomogeneous Dirac equation are labeled by a
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positive integer n which satisfies

(71,m7 72,m)

2 /7% — B2

Conversely the states which have E > x, have no solution to (4.44) and reside in a

pu+1+ (22 — (1,Y0)* — E*) = —n . (4.44)

continuum of scattering states. However, as we approach the wall of marginal stability
by z, — 0, we see that the energy gap to the continuum of scattering states goes to
zero: Eeons. = x, — 0. Thus we see at the wall of marginal stability where z, = 0 the
gap to the continuous spectrum vanishes and ]Dyo is no longer Fredholm. This implies
that the spectrum of BPS states can change across such walls as we would expect from
field theory.

The computation from [133] additionally shows that the space-time spin of the

relative factor of the wavefunction is determined by the quantity p,:

J=5 U e)-1) . (4.45)

N |

This reproduces the expected BPS degeneracies from field theory [133, 134].
Putting all of this together, we can conclude that a subspace of the L? kernel which
disappears when we cross the wall of marginal stability has the form H; ® Ho ® H;.

And further that the change in degeneracies are of the form

AL +725Y) = X120 (%) L(159) 2723 9) (4.46)

where X|(y, 4.)((¥) is the character of the SU(2) representation of dimension |{v1,72)]

Y172
as a polynomial in y. This is exactly the primitive wall-crossing formula of [50]. It is
also pleasing to note that the formulas for the walls of marginal stability and change

in BPS index exactly match with the results of [161].

4.3 Framed BPS States and Haloes

We can now apply this analysis with some simple modifications to the study the wall
crossing behavior of framed BPS states. This follows the construction of singular
monopoles presented in [133, 134, 22]. In these papers, the authors showed that one

can construct a singular monopole by sending the Higgs vev to infinity along a specific
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direction in the Cartan subalgebra. This limiting procedure effectively reduces the rank
of the gauge group and takes the mass of smooth monopoles to infinity, thus turning
them into singular monopoles. Using this limiting procedure we can determine the met-
ric in the asymptotic region of singular monopole moduli space from the metric in the
asymptotic region of smooth monopole moduli space. This will allow us to generalize
the above semiclassical analysis to the case of framed BPS states in the presence of

pure magnetically charged line defects.

4.3.1 Pure ’t Hooft Defects

In [132], the authors showed how one can obtain singular monopoles as a limit of
smooth monopoles. This was motivated by using the string theory interpretation of
SU(N) smooth monopoles as (p, q)-strings stretched between N D3-branes and singular
monopoles as semi-infinite D1-branes. We will discuss this procedure in the context of
string theory later in Chapter 5.

In the context of quantum field theory, the procedure of [132] is as follows. Embed
SU(N) SYM theory with Ng. s singular monopoles into an U (N +1) theory with smooth
monopoles where the Ny, ¢ defects are represented by smooth monopoles of charge along
the Hy simple co-root whose charge we will denote by {Pn}gflf . Without loss of
generality, we will take these to be the negative Weyl-chamber representative (all other
choices will be related by a hyperkédhler isometry). Now restrict to the locus of far
separated, fixed location and phase of the Hy-charged monopoles and then take the
limit of Xéév ) — 00 where

N
Xoo =Y _XOn" (W' Hy) =06 (4.47)

I=1
This maps sends the U(N + 1) theory to a U(N) theory and corresponds to making the
smooth monopoles charged along N** simple coroot infinitely heavy, thereby producing
singular monopoles in the U(N) theory which we can then project to an SU () theory.

However, there is a subtlety to this construction in projecting from U(N) — SU(N).
Recall that in a U(N) gauge theory, there is an extra U(1) degree of freedom that

usually trivially decouples from the dynamics of the system. However, in the presence
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of singular monopoles, this decoupling is no longer trivial. In order to project out the

center of mass properly, one must construct a map:
IT :u(l) @ su(N +1) = u(l) ® su(N) (4.48)
such that the diagram:

u(N + 1) u(N) (4.49)

iﬂ I

u(l) ®su(N +1) n >u(l) @ su(N)

commutes where C is the natural projection and p is the natural splitting. This map is
given explicitly as:

H; I#N
I1(Hy) = (4.50)

Hy - N8N =N
where hV is the N cocharacter which satisfies (h!, H;) = 6%.

Now since U(N) fits into the short exact sequence:
1—-Zny—U(1)xSUN)—=U(N)—1 (4.51)

we have that projecting out the U(1) degree of freedom in this way results in a theory
whose gauge group is PSU(N) = U(N)/U(1) = SU(N)/Zy. See [132] for further
details.

For our purposes, we will only need to know how to compute the coupling between
the defect charges, {P,, = II(Hy)}, and the smooth monopoles. These couple by terms

proportional to

N+1
(Pny Hyy) = (II(HN), I (Hy;))) = (Hn, Hy)) — T(hN’HI(z’))

(4.52)
= (Hn, Hypy)

for defects charged along a simple co-root. Therefore, the coupling is unchanged under
the projection from su(N+1) — su(N).

Now we will apply this limiting procedure to determine the metric on the asymptotic
region of singular monopole moduli space from the smooth LWY/GM metric. First,

let us embed singular monopoles in an SU(N) theory with fundamental charge into an
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SU(N + 1) theory as smooth monopoles charged along the coroot Hy. Then, restrict

to the subregion of fixed location and phase of the monopoles charged along Hy. Then

take the limit as Xc(év ) — oo. This can be written as

ds> = i ds> 4.53
& ngvl)”ioo< - <)> | (4:53)

Ngey
n=1 "

where the defects are located at {Z,}

A priori, it is not guaranteed that this procedure induces a well defined metric. Due
to the restriction before taking the limit, any singular behavior that may arise from
taking the limit would necessarily be contained in M;; and (M_l)ij. Let Ssing denote
the set of indices that correspond to line operators in the projection. Since we will be
restricting to the subspace ; = 0 for 7 € Syipng, we only need to consider the behavior
of Myj, (M~—YHY4 for 4,5 ¢ Ssing- By the form of M;; in equation 4.7, this clearly be
well defined in the limit. We can now examine the form of (M~1)% by computing the
cofactor matrix. If we use A,, to denote the mass scale which we take to approach
infinity, ¢;; ~ O(A%W)) for i, ¢ Seing and det(M) ~ O(A%(m) where ¢;; is the matrix
of cofactors and NV is the number of monopoles charged under the Nth simple coroot.

Therefore (M~1)% ~ O(1) for i, ¢ Ssing and the limit of the metric is well defined.

The resulting metric is given by

ds?; = Mydit - dil + (M ')79,0; , (4.54)
where
Ng
_ D P, H;
0; =d& + Z TJ(il — cos(0;5))dei; + Z (2])(i1 —cos(0in))ddi ,  (4.55)
j#i n=1
and
i Py, Hy; . .
— mi—Zk#%—Zﬁf;# , 1=
M;; = (4.56)
Dy; .
T , 1F

Tij

Note that this construction implies

—1
lim (M~1)¥ = lim My (4.57)
™) 7z ™) Tam —z
Xso ' —00 def—*m Koo ' —00 def—om
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This means that the analysis used to write down the two galaxy limit of the smooth
monopole moduli space can be implemented directly by substituting different values for
C as in Appendix C.

We conjecture that this metric is the analog of the GM/LWY asymptotic metric
for singular monopole moduli space. And similarly, inspired by Bielawski [17, 18] and
Murray [137], and following the conjecture of Lee, Weinberg, and Yi in [111], we con-
jecture that this metric is exponentially close to the exact metric with corrections of
order e~ ™i"ii for those i, j such that I(z) = I(j). In particular, if we have no more than
one smooth monopole of each type, we conjecture that this asymptotic metric is the
exact metric on the moduli space of singular monopoles.

We then may then go to two galaxy region of monopole moduli space. Collecting
all of the line charges into a group we will call the core and the remaining into a group

we will call the halo, two galaxy asymptotic metric may be written as

. .\[C+iiCc 1iL 4y
a5 = (dV", i) n " e
LT MH(R) R
~ 1
o C+ LsC 1T O
+ (60,6w) 1 e e e (4.58)
1T M,H(R) Oy
where
— - (’Yh ms Ve m)
= asZs , H =1- ; : >
0 = (0.8, . H(R) v
— (’Yh,ma')/c,m)
Op = d¥ + 5 (£1 — cos(©)d®) (4.59)
Ny
_ Dy (P, Hs)
Os = dips + ; 5 (£1 — cos(0s;))dpst + Zl T(il — cos(0sp,))dos

and My = (Yhm, Xoo) is the mass of the halo galaxy. Here 6 is still the diagonal
singular metric on Bo,h X Bo,c but has additional dependence on the {P,}. And
similarly L and §C are both still constants with additional dependence on the {P,}.
This additional dependence is given in Appendix C.

The picture of this physical set up is very similar to before, but with a slightly
different interpretation. Recall that in the case of framed BPS states, BPS states

bound to a line defect, there is a generic core-halo structure. As discussed in the
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previous chapter, this means that there is a “core” of “vanilla” BPS states which are
tightly bound to the line defect and a second cluster or “halo” of vanilla BPS particles
which are weakly bound to the core cluster, mirroring atomic and galactic structures.
This halo is generally made up of many different constituents which bind together to
form multiple different clusters which can be thought of similar to solar systems rotating
around a galactic center. The physical picture we are investigating is the case with a
single cluster of BPS states orbiting this core.

As we can see from of this metric, the Dirac operator will be of an identical form to
the Dirac operator on the strongly centered moduli space for the case of vanilla BPS

states which, by performing the same frame rotation, can be written
PP =24 (512 + ERel) A7t (4.60)
Again we make the same ansatz for the wavefunction, ¥, as before
T, = (2 + 528 + 0 ) 9T (461
with

Q — eilja¢a+iy5’lﬁs+ikpl/glll‘y¥)?;j(2>71/ , QRe] — e*aRRp (@Rel + O(R*l)) ) (462)

Again all of the same separability arguments hold. This again tells us that the wall
crossing behavior is controlled by the relative part of the Dirac operator acting on the

relative part of the moduli space which is given by:

1 ('Yh,ma 'YC,m) aR . aR - 4R p N
\/m <1 + W F*@QR - zpuffwg - ZFL (ﬂj‘u - i) gRel =0 (463)

where

Ppi=— [('Yh,m7707m)y — LoV — Ls®] = (Y, ve))
(4.64)

Ty = (Ynm Yo) — Mpv = (Vam Yo) + (Vhes Xoo) -
Again the location of the walls of marginal stability and change in BPS spectrum are
controlled by z, and p, respectively. This gives the locus for the walls of marginal
stability

(’Yh,m,y()) + <’7h,ea Xoo> =0 5 (465)
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which directly agrees with the computation from [133]. Note that this formula is simply
the same as the vanilla case in the limit Xéév) — oo with the restriction (A, 5;.) =0
for (A, o) = 07;.

In the the core-halo configuration of framed BPS states, the coordinate R has the
interpretation of the distance from the center of mass of the halo-galaxy to the core-
galaxy and line operator(s). Thus, the asymptotic form of the wave-function on the

relative moduli space can be used to study what happens to the halo-galaxy near the

walls of marginal stability. Using the form of the wavefunction
U per(R) ~ ()PP RPve= ol (4.66)

we can see that near the wall of marginal stability (when x, — 0), the peak goes to
infinity and broadens out. While the state is not itself decaying, this broadening comes
from the halo-galaxy experiencing a weaker and weaker effective potential confining the
center of mass to a single radius (where the binding energy balances with the rotational
energy) as the center of mass goes out to infinity. This gives us the picture that as we
cross a wall of marginal stability, BPS bound states go out to infinity and then come
back to a stable boundstate radius as a (possibly) different state.

As before, in studying the solutions to the non-homogeneous Dirac equation
mRelgRel - iEQRel ) (467)

we see that there is again an exponential dependence ¥ ., ~ e *F with k = | [x2 — B2

Similarly there is an analogous bound state condition

(7h,m7 ’Yc,m)

2Mp, /22 — E?

Again we see that as we approach a wall of marginal stability, z, — 0, the gap to the

put+ 1+ (2 — (Yhm, Yo)> — E*) = —n. . (4.68)

continuum of scattering states comes down to zero where the Dirac operator becomes
non-Fredholm.
Analogous to the smooth case, we see that the same BPS degeneracy conditions

hold for the framed case with degeneracy

5= 2 — 1) (469
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Again the wall crossing for framed BPS states is of the form

AL(Vh + 763 Y) = X|(yne)| W2 (703 ) 2(Ves y) (4.70)

thus reproducing the primitive wall crossing formula from [69].

4.3.2 Including Wilson Defects

Now we can consider coupling the theory to line defects that also carry electric charge.
This couples the SQM on monopole moduli space to the Wilson bundle Ewigon — M
whose rank is given by the product of the dimensions of the highest weight represen-
tations associated to each Wilson defect’s charge A. Each factor of the Wilson bundle
has a structure group SU (r) with representation py : SU(r) = GL(Ewilson) and hence,
the fiber of Ewison at a generic point [A] € M decomposes

. _ ® @ Vﬂ@@(#) ’ (4.71)

n peEAy

EWilson

as a sum over weight spaces where d (u) is the degeneracy of the weight space associated
to a weight p € Ay.

Further, this vector bundle naturally has a connection given by the universal con-
nection restricted to monopole moduli space. By supersymmetry this connection is
hyperholomorphic.

As in [79], we can derive the asymptotic form of this connection by analyzing the
Lagrangian for the associated SQM which is given in [22]. This Lagrangian encodes
both the metric and connection, the latter of which describes the force of the Wilson-
type defects on the BPS particles. Therefore, we can determine the hyperholomorphic
connection from the quadratic contribution of the electromagnetic force between the
Wilson line and distant dyons to the classical Lagrangian as in [79].

Consider the interaction between a pure Wilson line of charge @, € Ayt C t* at
Z, € R? and a dyon (labeled by %) of magnetic charge H Gy electric charge ¢; € Ay, at
position f%, with velocity

-
-,

[ [
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where the electric background field is produced by the vector potentials

A= A_@ga@-z), A=0, Ah=0. (47

2|17 — 2|
Here ﬁ, /Tg are the dual vector potential. We can without loss of generality couple

this to all dyons by summing over the index i, leading to the contribution to the full

Lagrangian

= —Z< % @) —(Qn Hy ;) tﬁ(f%—fn)w?;) : (4.74)

2|7 — |

Now if we make the replacement as in [79] !

g = (M YI(E + @@ — 7,) - T) (4.76)

then we get the contribution

L=..

@ns Z 1) |~ (M_1>”(53 (T — ) - T;) — Hy) (T — T) - T,

This can be written in the form

—(Qn,d™ (@) (4.78)
where
o =3 Hy ey |, ey = ed ]
; |7 — | ’ | — Ty
(4.79)
This leads to the connection on Ewjiison
4(Z") = paq.(a™ (@) , (4.80)

where each factor of ¢(Z %) describes the connection on the corresponding factor of (4.71).
This connection is indeed hyperholomorphic and is reminiscent of the hyperholomorphic

connections on Taub-NUT written down in [19, 37, 38, 41, 125].

'In going from the Lagrangian above to the metric we use an effective Lagrangian where there are
N constants of motion o N
¢ = Hy) (M ™)V (& + (@ —3p) - 75) , (4.75)

which upon substitution into the Lagrangian, we get the full result of 4.74.
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4.3.3 Wilson-"t Hooft Defects

We can now consider the case of general Wilson-’t Hooft defects. In this case we will
again have a core-halo system as smooth monopoles will be required to screen the
infinite self-energy of the magnetically charged defects. In order to study this system,
we will couple the Dirac operator on singular monopole moduli space to the connection
(4.79).

In the two galaxy limit the hyperholomorphic connection (4.79) projected onto the

strongly centered moduli space takes the form

= = - _
- 2a _ 7 9 P ) _T . _ ’ ‘
|$ l‘n‘ R %L mhaloH(R) @lb
where
- m ~  Hiy
By(z) = Z . Z = _q_»
- Mhalo _ ’xq -Tn|
p=q+1 q=Ncore+1 (4 82)
P N—-1 H '
X Y
q=Ncore+1 Mhalo g=p+1 |:Eq N ':UTL|
See Appendix C for more details.
This couples to the Dirac operator on ST ® Ewilson — M as
Dy = ..+ TE 1q,; (4.83)

Now the full twisted Dirac operator coupled to Ewison can be written in the form

~ Yo ~ Vo
Dy =A <]Z)12,W + D Rel,w> AT (4.84)
where
> Vo 1 (Yesm> Yhom) R . aR 4R p
- 1 e Th, ek, — Fa—a—r—( ——) :
lDRel,W \/ﬁh < + 2M,R aﬁR tp Wa — 1 v 2R
(4.85)

and

=" ) Fipa(Yhm) T = (Vhms J0) + (Yher Xoo) - (4.86)
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Again since the spin bundle and coordinates split according to M = Mg x M1 2 X Mpge,

the separation of variables ansatz holds and hence the wave function can be written as

W%V)imw = V12 @ Ugel = (Yﬁ(g) + %Wg) + (’)(R2)> @ VRel (4.87)
where
Ibfg,wwlz =0 I%ZLWLT/REZ =0, (4.88)
separately.

Now since all of the 3;,v;m € t and we have that the Wilson vector bundle splits as

a direct sum of weight spaces, on each factor, V},, the Dirac equation is of the form

-~ Vo 1 (’Yhma')/cm) R . R . 4R Pu
= 1 o e, TRy, n —ip, M %Baw, — il (2 — 22) L (4.89
]pRel, N7 < + 2R oR — Pu a — ¢ (a: 2R> ( )
for
P = (" ) + () (4.90)

This tells us that the walls of marginal stability are again at the same locations:

x, = 0. This is explicitly written as

(Vhmy Vo) + (Yner Xoo) =0, (4.91)

reproducing the results from [133, 134].

We now have to explain how wall crossing works for this situation — it is not so
straight forward. The key is that the kernel of the Dirac operator is graded by the
electric charge of the halo and the core

R
KerL2 [lDRel,W:| = @ %Vc,ev7h,e ‘ (492)

Yh,e Ye,e

Here because of the Wilson bundle decomposition we have a further decomposition

/}-['Yc,e:’yh,e = @ H'Yglecmo:Vh,e [,LL] . (493)
#EA)\’,\/;?}eO‘nOGFe

mono _—

PV =T e
where p,, is a constant value on each factor of H,, , -, .. Therefore, we have that across
each wall of marginal stability, a spin-j multiplet on the relative moduli space Mg,

decays where

(I{ve; )l = 1) (4.94)

N

] =
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Thus, across walls of marginal stability, we reproduce the primitive wall crossing formula
of [69]:

AL(Vh + Ye: Y) = X(mre) W L20003 9) L2(Ves y) - (4.95)

Pure Wilson Defects

In the case of pure Wilson lines, we have a fundamentally different physical picture as
compared to the pure 't Hooft defects. Although the Wilson defects break translation
invariance, they will not “freeze out” the center of center of mass component of smooth
monopole moduli space. This is because they do not have an infinite self-energy. This
additionally means that there is no core-halo system since the infinite self-energy does
not conjure a core out of the vacuum to screen the defect. Rather we should consider
the case of a single galactic halo far away from a (collection of) Wilson line(s).

An important feature of this system is that we cannot capture all of the bound
states or wall crossing dynamics of this system. This is because by construction we
assume that all states have magnetic charge and hence neglect all bound states of pure
electric charge. However, it does mean that we can capture the bound magnetic states
described in [69, 165].

The relevant Dirac operator for this system is the center of mass component of the

full Dirac operator. This is given explicitly in the asymptotic limit by

1 —_ - — —
09 = p(m) <2Rd: +(R) -dx) , (4.96)
where |X| = R, which is exactly the Dirac monopole connection on R? x S!. This

directly reproduces and generalizes the results of [165]. In this case the entire twisted
Dirac operator can be written as

By, = i, — ipriwy(X) —ir* (a? - %)} , (4.97)

where

SUUSIE SR S s Al v s BN

This is again the Dirac operator studied in [131].



129

As before, the walls of stability for these magnetic bound states are defined by the

x = 0 locations and hence at the locus defined by
(7% Xoo) + (Yms Voo) =0 . (4.99)

Again from the splitting of the Wilson bundle, the Dirac equation on each factor
V, is of the form

By = [0~ i, I'Wi(X) =il (a = 2] (4.100)

where

Pu = (1, Ym) - (4.101)

Since p,, is independent of 7., we have that the dimension of the kernel does not
change across the walls as we can always find a unique 7, such that x > 0 and the

quantization condition

('Ymayoo)Q

= — . 4.102
(7m7X00)2> n n €N (4.102)

plL + +
] - xr —
21:

This tells us that as we cross a wall of marginal stability, some states decay but then
states come in from infinity with different electric charge. This reproduces exactly the

results of [69].
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Chapter 5

BPS States in String Theory

In this chapter we will study some string theory descriptions of BPS states in 4D
N = 2 SU(N) gauge theories coming from certain brane configurations. Fundamen-
tally, the brane constructions we will consider are primarily based on the embedding
of 4D SU(N) N = 2 SYM theory into the world volume theory of D3-branes. This
construction is as follows.

Take a stack of N parallel D3-branes that are localized at 25789 = 0. The world
volume theory of this stack is described by U(N) N = 4 gauge theory. Generally, the
center of mass degree of freedom decouples so we can project to an SU(N) N = 4
gauge theory. By turning on a mass deformation via an 2-deformation in the 26789-
directions we can break the N/ = 4 SUSY down to AN/ = 2. The resulting theory is
described by the N' = 2 SU(N) gauge theory with a massive adjoint hypermultiplet.
Then by sending the mass to infinity (making the {2-deformation infinitely strong), the
adjoint hypermultiplet is integrated out and the resulting theory is N' =2 SU(N) SYM
theory.

This brane configuration allows for a simple interpretation of BPS states. In the
semiclassical limit of the N/ = 2 gauge theories that are engineered by this brane
configuration there is a non-trivial Higgs vev X, of one of the (real) scalar fields.
This corresponds to separating the D3-branes in the z*-direction. Specifically, given a

decomposition

I

This chapter is based on material from my papers [22, 23, 24, 27].
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the I*" D3-brane is localized at % = x? such that x?ﬂ —:c? = v!. In this configuration,

W -bosons can be interpreted as fundamental strings stretching between the D3-branes.
We can then see by an S-duality transformation that smooth monopoles/magnetically
charged BPS states can be identified as D1-branes stretched between pairs of D3-branes
[52] — or more generally that BPS states are described by (p, q)-strings stretched between
D3-branes. Specifically, a (p, q)-string stretched between the I** and (I +1)!* D3-brane
has a charge

VY =Ym D Ye =pHr Dqay . (5'2)

In [52] it is shown explicitly that the space of supersymmetric vacua is isomorphic to
monopole moduli space. Further, in [132] it is shown that this brane configuration can
be used to understand the wall crossing of these BPS states.

In this section we will study the more general brane configuration of [23, 35] which
describes reducible 't Hooft defects and their associated framed BPS states. This brane
configuration differs from the brane configuration of [52] for smooth monopoles by the
inclusion of transverse NS5-branes. We will show that the introduction of these NS5-
branes both gives rise to a singular monopole in the low energy effective theory on
the D3-branes and that the supersymmetric vacua of the entire brane configuration is
given by the appropriate singular monopole moduli space. We will show how this brane
configuration can be used to study monopole bubbling, thereby allowing us to derive
the singular geometry of ﬁ This will be crucial for computing the expectation value

of 't Hooft defects in the next section.

5.1 Reducible ’t Hooft Defects in String Theory

Now we will describe the brane configuration for reducible 't Hooft defects in a 4D
N =2 SU(N) SYM theory.
Consider flat spacetime R = R13 x RS with N D3-branes localized at 256789 = 0

and 2% = vy for vy € Rand I =1, ..., N such that

N
vy < V41 ZU[ =0. (5.3)
=1
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The low energy effective world volume theory of these branes is that of 4D N = 4
U(N) gauge theory. We then project to a 4D N = 2 SU(N) gauge theory with two real
Higgs fields X, Y (corresponding to displacement in the x*, 2%-directions respectively)
by projecting out the center of mass degree of freedom and adding a sufficiently large
mass deformation as in [132, 156].

As we discussed, a smooth monopole with charge Hy is described by a D1-brane
between the I** and (I + 1)** D3-brane, localized at >%7%9 = 0 and fixed location in
2123, For our purposes, we will consider the case of a general configuration with m?!
smooth monopoles of charge Hr at distinct fixed points in the 2%?3-directions. This is
the standard construction of smooth monopoles in SU(N) SYM theory with

Ym = ZmIHI , Xoo = Z(vprl —wvr)Hy . (5.4)
I I

Now introduce k NS5-branes (indexed by o = 1, ..., k) localized at ¥, = (xl,22,23)
at distinct points between the I(c)" and (I(c) + 1)** D3-branes.! As argued in
[35], these NS5-branes introduce minimal/reducible singular monopoles and shifts the
asymptotic magnetic charge so that the 't Hooft and relative magnetic charges are given
by

Po= S WO =N"pnl 5, =N mlH; (5.5)
I I

0 To=Tn

See Figure 5.1.

To show that the NS5-branes introduce an ’t Hooft defect into the D3-brane world
volume theory we need to show that: 1.) it sources a magnetic field in the world volume
theory of the D3-brane at a fixed location and 2.) it does not introduce any new degrees
of freedom in the low energy theory. This brane configuration can be seen to reproduce
these properties in the following manner.

As we know from [52], D1-branes ending on D3-branes source magnetic charge in
the world volume theory of the D3-branes. While our brane configuration does not
have any D1-branes connecting the NS5-branes to the D3-branes, it is Hanany-Witten

dual to such a configuration. This can be seen as follows.

"Here we index the NS5-branes by o. To each NS5-brane we associate o + I(c) to specify which
pair of D3-branes it is sitting between in the z*-direction.
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Il

Figure 5.1: This figure shows the brane configuration of a single, reducible 't Hooft
defect with 't Hooft charge P = ), prh!, relative magnetic charge ¥, = >_ I m!Hyp,
and Higgs vev Xoo = >, (vi41 — vr)Hy.

The D1/D3/NS5-brane configuration is the T-dual (along the x%7-directions) to
a brane configuration consisting of D3/D5/NS5-branes where D1-branes become D3-
branes, D3-branes become D5-branes and NS5-branes are unaffected [33]. In the T-dual
configuration, we can perform a Hanany-Witten transition which allows us to pull NS5-
branes through an adjacent D5-brane and creating or destroying D3-branes connecting

the D5-brane and NS5-brane so that the linking numbers

Lnss = —(I‘ight)D5 + (left)D3 — (right)D3 s (5 6)

Lps = (left) ys5 + (left) ps — (right) p3 ,

are preserved. Here we used the convention of [177] where (left)ngs5/ps, (right)yss/ps
are the number of NS5/D5-branes to the left, right of the given brane and (left)ps,
(right) ps are the number of D3-branes that end on the left, right side of the given
brane respectively [83].

Similarly, Hanany-Witten transitions can be realized in the D1/D3/NS5-brane sys-
tem by first T-dualizing to the D3 /D5/NS5-brane configuration, performing the Hanany-
Witten transformation, and then T-dualizing back to the D1/D3/NS5-brane configu-
ration. The resulting transformation in the D1/D3/NS5-brane configuration allows us

to pull an NS5-brane through a D3-brane while additionally changing the number of
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connecting D1-branes to preserve the analogous linking numbers

Lyss = —(right) p3 + (left) p1 — (right)py , 57)

Lps = (left)nyss + (left) p1 — (right)py -

Thus, by performing a sequence of Hanany-Witten transformations (for example
sending the NS5-branes to positions 22 < v;), one can transform to a dual frame where
there are D1-branes connecting the NS5-branes to the D3-branes. There it is clear that
the NS5-brane sources magnetic charge in the world volume theory of the D3-brane by
nature of D1/D3-brane intersections.

Let us further consider the dual Hanany-Witten frame where D1-branes connect the
D3- and NS5-branes. Here it may appear that the D1-branes can support local degrees
of freedom, thereby introducing undesirable features to the low energy effective theory.
However, the D3- and NS5-branes impose “opposite” boundary conditions on the D1-
brane. This prevents the D1-brane from supporting any massless fields and hence
does not introduce any new quantum degrees of freedom in the low energy theory [83].
Additionally, since the NS5-brane is heavy compared to all other branes in the system,
its relative position in the 21?2 directions will be fixed and hence will source magnetic
charge will be sourced at a fixed location. Therefore, the NS5-brane configuration we
have presented reproduces the “minimal” properties of a 't Hooft operator in the world

volume theory of the D3-branes.

Remark One may be curious how the phase ¢ € U(1) of a 't Hooft defect operator
is encoded in the geometry of this brane configuration. As shown in [22], this choice
of phase is equivalent to a choice of direction in the R, 4 + iR s-plane in which to
separate the D3-branes. Thus, the requirement that mutually supersymmetric 't Hooft
defects have the same choice of { is equivalent to the requirement that all NS5-branes
be parallel to each other and are perpendicular to the separation of the D3-branes in

the 2*?-directions. This is the geometric requirement for preserved supersymmetry.

Remark Note that this construction is fundamentally different from that of [83, 132]
in which singular monopoles are obtained by taking an infinite mass limit of smooth

monopoles — that is by sending a D3-brane with attached D1-branes off to infinity.
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This procedure corresponds to embedding the SU(N) SYM theory with singular
monopoles as the worldvolume theory of the first NV D3-branes in a stack of N 4+ 1 D3-
branes where the singular monopoles are identified with D1-branes stretched between
the N and (N + 1) D3-brane. The limit then corresponds to taking an outermost
D3-brane in a stack of N + 1 D3-branes off to infinity. This creates a brane configura-
tion with semi-infinite D1-branes that are connected to a stack of N D3-branes whose
world volume theory is then described by SU(N) SYM theory with singular monopole
insertions at the semi-infinite D1-brane intersections. This process can be used to con-
struct line defects with arbitrary charge, by taking the limit as multiple defects become
coincident.

As we will discuss, the utility of this construction is that it is especially nice for

studying monopole bubbling [23].

5.1.1 SUSY vacua

Now let us study the supersymmetric vacua of this brane configuration. We will take
an approach similar to that of [57, 52] by analyzing the world volume theory of the

D1-branes. See [40, 38] for similar analysis of a T-dual configuration.

Low Energy Effective Theory

Consider the brane configuration in the Hanany-Witten dual configuration in which D1-
branes only end on NS5-branes.? This brane configuration has p NS5-branes which we
will index by . These are localized at distinct points s, in the z*-direction and at points
a?'i(a) in the x1»3-directions. We then have m, D1-branes (indexed by i = 1,...,m,)

stretching between the NS5-branes at s, and s,41. Each interval in between pairs of

NS5-branes contains some number of D3-branes (indexed by I = 1, ..., N) which lie at

%It was proven in [23] that this frame exists if we satisfy

pI > 2m1 s Pr= Zp(ln) 3 pgn) = Z(HI7P7L) = Z 1 ) (58)
" " nI D _pt

While this is not a necessary condition, it will make the following analysis easier when considering
monopole bubbling. For the rest of this paper we will specify to the case where this condition is
satisfied.
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Figure 5.2: This figure illustrates the Hanany-Witten frame of the brane configuration
in which we are studying the space of supersymmetric vacua of the wold volume theory
of D1-branes. Here there are m, D1-branes (red) that end on the NS5-branes (®) at
1% = s5,5,41 and the D3-branes (black) give rise to fundamental domain walls at the

intersection with D1-branes z* = s;.

distinct points 2 = s7. See Figure 5.2. We will also use the notation g, to denote the
number of D3-branes in between the o* and (o 4 1) NS5-branes. This is summarized
in Table 5.1.

For purposes that will become clear later, we will wrap the z*-direction on a circle
so that the D1-branes stretch along the circle direction but do not wrap all the way
around. Thus, we will identify o ~ o 4 p where my,—, = 0.

We want to study the low energy effective theory on the D1-branes. This theory
is a two-dimensional NV = (0,4) quiver gauge theory with domain walls coming from
the interactions with D3- and NS5-branes. The D3-brane intersections will give rise
to fundamental walls, which introduce localized fundamental hypermultiplets from D1-
D3 strings. Similarly, the NS5-brane intersections will give rise to bifundamental walls,
which introduce localized bifundamental hypermultiplets from D1-D1 strings across the
NS5-brane as in [83]. Here the data of the brane configuration maps to the 2D SUSY

gauge theory as
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0[1]2]3 4 516[7]8]9
R, R3 St R®
Coordinates | " z S g
D3 -1-1-1- S1 0
my D1 — fi(a) [Sos Sot1] 0
NS5 | = | % W - -T-1-

Table 5.1: This table specifies the brane configuration whose moduli space of super-
symmetric vacua is described by singular monopole moduli space.
e Gauge group: G =[], U(my) where each factor corresponds to an interval in the

x*-direction bounded by NS5-branes,
e Fl-parameters in each interval are given by the U,

e The Higgs vevs for the U(m,) factor is given by
f(U )

70) — ) (5.9)

up to a choice of ordering.

The action of the D1-brane world volume gauge theory is of the form
S = Spur. + Sk + Sy + Spy (5.10)

where Sy is the bulk theory of the D1-branes, Sp; are Fl-deformations, Sy is the
contribution of fundamental walls (D3-branes), and Sy is contribution of bifundamental
walls (NS5-branes).

The N = (0,4) SUSY of the theory comes from the fact that the bulk theory of
the D1-branes (with the mass deformation) is described by a N/ = (4,4) theory which
is then broken to N' = (0,4) by the boundary conditions of the D3- and NS5-branes.
The fact that the resulting SUSY is /' = (0,4) rather than A" = (2,2) can be deduced
by noting that the truncation breaks the R-symmetry of the D1-brane theory from
Spin(8)r — Spin(4)r = SU(2)r1 x SU(2)r2 along the x1*3°-directions. Then the
introduction of D3- and NS5-branes breaks Spin(4)r — Spin(3)r = SU(2)r along the
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x1?3-directions. Then, since theories with A" = (2,2) SUSY have U(1)g1 x U(1)g2
symmetry whereas N' = (0,4) has SU(2)r symmetry, we can conclude that the total
theory has N' = (0,4) SUSY. See [165] for a review of N' = (0,4) SUSY.

The bulk theory of the D1-branes is described by 2D N = (4,4) SYM theory. This
is composed of a N = (0,2) vector-superfield V' with superfield strength X, a Fermi
multiplet ¥, and two chiral multiplets in the adjoint representation (515,43). Here the
vector and Fermi multiplets combine as a ' = (0,4) vector multiplet and the (&, ®)
combine into a N' = (0,4) twisted hypermultiplet. These supermultiplets can be written

in terms of the component fields
V= (1)071)87)\171)) ) ¥ = ()‘27F7El1/<¢)) )

¢ = (¢17¢1aG1) ) 52(652’1;2762) ’

(5.11)

where A4, and ¢4 are SU(2)g doublets and M* = (Re[F|,Im[F], D) is a real SU(2)r
triplet. Here Ey(®) is a superpotential which is a holomorphic function of all chiral
superfields of the theory. It receives the contribution Ey = ... + [@, @] from the twisted
N = (0,4) hypermultiplet (&, ).

The bulk contribution to the total action is

1 o S
Stk = 55 / dt ds d20 T {22 I+ B(D_)D + @(D_)gb} . (5.12)
g

where

D=8y — 0 —iV | (5.13)
and the superfields are written explicitly as [165]

V = (vo—v1) — i A =i A\ + 60701 D |

0Ly v,

U= )y + 0T F — i9+§+(D0 + Dl))\g — éJrEg/((ﬁ) +0t0" -
0¢* (5.14)

=g+ 0" —i0T 6 (Dy+ D1)o
P =@ + 0T 1py — i60T0F (Do + D1)¢?
Under N = (4,4) SUSY, these fields reorganize themselves into a single N = (4,4)

vector-multiplet V = (vg, vs, X )i, x4, F, D) where the x 4 are a doublet of Dirac fermions
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and X; (for i = 1,2,3,5) are real scalar bosons that encode the fluctuations of the D1-

brane in the z* direction. The SUSY transformations of these fields are given by [29]

0A, = iEA’yMXA - i)’(A'yueA ,

5X0« = 7:EA(O—OL)AB XB - XA(O—a)AB GB ) a = 17 27 3 )

(5.15)
6X5 = Xavee — eavex?

5XA = 7WF“”6A — i’ycv“eADqu) + ’y“(a“)AB eBDuXa + Ma(U“)AB B .

Here v, are the gamma matrices for Dirac fermions in 2D with 7. = iypy and (0%)%

are the Pauli matrices for SU(2)g1 C Spin(4)g. See [29] for a review on 2D N = (4,4)
SYM.

In order to determine the vacuum equations of this theory, we will need to eliminate
the auxiliary fields M,, which are dependent on the interaction of the N' = (0,4)
vector multiplet with all hypermultiplets in the theory. Here the NV = (0,4) (twisted)
hypermultiplet in the N = (4,4) vector multiplet (@, Qg), has a non-trivial coupling to
the F- and D-fields given by

0 Shulk
oM,

=2M, + Eabc[Xba XC] . (516)

Now we will consider the contribution to the action Sgy, which encodes the super-

symmetric FI-deformations to the theory. This is given by

Spr = /dtds Tr {Vg(s) /d29V + V(S)/d(9+ v+ c.c.} , (5.17)
where v(s) = v1(s) +iva(s) € C are constant on the interval (s,, sy+1). These couple
to the F- and D-terms:

OSFr 0SFr
5D =u3(s)1 , a =v(s)l . (5.18)

Now let us consider the contributions to the action from the fundamental domain
walls Sy. This contribution gives rise to N' = (0,4) hypermultiplets restricted to the
world volume of the domain walls. By nature of preserving the Spin(3)g symme-
try associated to the rotations of the z'?3-directions, this boundary theory preserves

the SU(2)g,1 R-symmetries. Take the ' = (0,4) hypermultiplet describing the I
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fundamental domain wall theory to be described by a doublet of fundamental chiral su-
perfields in conjugate gauge representations, (Q1r, Q2r), with constituent bosonic fields
(Q11,J1r) and (Q2r, Jor) respectively. The corresponding contribution to the total ac-

tion is
1 _ _
Sy = 2Z/dt/d29 (Q11D¢ Q11 + Q2rDi Qar) (5.19)
=1

where Dy = 0y + ¢V where V acts in the appropriate representation.
The localized hypermultiplet fields additionally contribute to the E-term for the

Fermi superfield ¥ as

N
1
EW—...+2;5(8—81)Q11Q2[ . (5.20)

The hypermultiplet fields also couple to the F- and D-terms as

N

> (Q2rQar — QuQi)d(s — s1)

I=1

95p _ 1
5D 2

05; _

N
SFy ; QurQ2r16(s —s1) ,  (5.21)

which have the effect of adding boundary terms to the supersymmetry transformations
and vacuum equations.

Now consider the contribution of bifundamental domain walls Sy¢. In analogy with
the fundamental domain walls, bifundamental domain walls give rise to N' = (0,4)
bifundamental hypermultiplets on a domain wall preserving the same supersymmetry.
This can be written in terms of two chiral superfields in conjugate representations
(Bio, B2y) with constituent bosonic fields (Biy, L1,) and (Bas, Loy). These are de-

scribed by the action
1 - .
Syy = 22_:1 / dt Tr / d2 (BlthBlg +ngz>t320) , (5.22)

where D; = 8, + i(V(sf) — V(sk )) as appropriate to the representation. Here we use
the notation A(sg™) = lim__, & A(s) for any superfield A.
The bifundamental hypermultiplets additionally contribute to the E-term for the

Fermi superfield ¥ as

p
Ey=..+ % > BioBasd(s — si 1) + BagBisd(s — s%) (5.23)
o=1
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and couple to the F- and D-terms as

8Sh; 1<, - - L
ﬁ = 5 le(BlaBla — BQO—BQO— — Vgg)é(s — SU)
+ (Blo'Bla - BQUB2J + VSO')(S(S - Sc}rz—l) ’ (524)
5Sbf P R L
W = Jzz:l 310320(5(8 — 8071) + B20'B10'5(S — SU) .

Again, these contributions can be interpreted as adding boundary terms to the super-

symmetry transformations and vacuum equations.

Vacuum Equations

Now we can determine the vacuum equations by examining the SUSY variations of the
bulk fields as in (5.15). Since the domain walls break SUSY to N = (0,4), we only
impose half of supersymmetries of the bulk theory. The conserved supercharges are
those generated by

ed = et (5.25)

For these transformations, the contribution to the SUSY variation of the action from

the Fl-parameters away from the boundaries can be absorbed by making the shift
So+1 So+1
X3 X3 —/ dswvs(s) , X'4+iX?— X! 4iX? —/ dsv(s).  (5.26)
So So

This transformation, as in [40, 38], shifts the bulk dependence of the FI-parameters to
boundary dependence at the bifundamental domain walls where the FI-parameter is
discontinuous. By choosing the axial gauge Ay = 0, the stationary vacuum equations
become

(0“) pe® (D1 Xo + M,) =0 . (5.27)
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By integrating out the auxiliary fields we see that this reduces to a triplet of equations

which can be written as a real and complex equation:

) N
0=D; X5+ %[X, X+ % ;(QQIQH — Q1rQ11)0(s — s1)

12
52 (BioBis — BaoBay — 1§)8(s — s£) + (Bis Biy — Bay Bag +v§~1)i(s — sf,) |
0=D1X +i[X3, X Z Q11Q210(s — s1)
I=1
P
+ (BigBay — v°)8(s — sL) + (BagBis — 17)8(s — si )
o=1
(5.28)
where X = X7 +1X5.
Under the identifications
Ta = Xa y Ix = Qll 3 Jx = QQI )
(5.29)
ﬁe:ﬁa ’ BeLR:Bla ’ BEL:BQUa

the SUSY vacuum equations (5.28) can be rewritten as the Nahm equations for the
bow construction of instantons (2.70). Therefore, we can identify the moduli space of
supersymmetric vacua M, with a moduli space of instantons on multi-Taub-NUT
Mpow-

Now by studying the identification (5.29), we can determine the data of the corre-
sponding bow variety. The ranks R(() can be read off from the ranks of the {X,} = {7, }
which correspond to the ranks of the gauge group of the 2D theory in the different
chambers. Further, we can identify the fundamental walls with z € A and similarly
the bifundamental walls with e € £. By identifying the bow variety My, with the
moduli space of instantons on Taub-NUT, we see that the number of fundamental
walls correspond to the rank of the 4D gauge group and the number of bifundamental
walls correspond to the number of Taub-NUT centers. In this identification, the FI
parameters are mapped to the position of the positions of the NUT centers.

In summary, we can match the data of the brane configuration to that of instantons

on multi-Taub-NUT by specifying (£, 4,Z,{7.},{R(¢)}) by identifying:
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e The number of edges, |£| = p, with the number NUT centers on multi-Taub-NUT:

p= Zangn) where pgn) = |{ec(,l) €& | 7o) = Tn},

e The total number of marked points, |A| = N, with (one plus) the rank of the

gauge group G: SU(N),

e The numbers R(Cgi)) = m, with the Chern classes of the instanton bundle (note

that one of the R(C,(,i)) =0),

o) ) )

e The hyperkéhler moment parameters 7, = ( Vo ',V ) with the positions of

the different NUT centers: Z,,

e The holonomy of the gauge field exp {% fsl A} = exp {%}, where R is the

radius of the S' at infinity and R’ = 1/R.

Note that this is simply the bow variety specified by identifying marked points x;
with D3-branes, edges e, with NS5-branes, and the wavy lines Cc(,i) (i=1,...,14q,)
with (stacks of) D1-branes in the dual Hanany-Witten frame. Further, the positions of
the NS5-branes in the z'?3-directions are identified with the FI parameters 7, = &,
and the numbers of D1-branes {m, }, are identified as the R(C((Ti)) = m,. In this setting,
Hanany-Witten bow isomorphisms correspond to Hanany-Witten transformations of the
brane configuration. Thus, as we would expect, the bow variety that we have derived
describes the moduli space of supersymmetric vacua of the original brane configuration
as in Figure 5.1.

This bow variety is also the same bow variety derived in [23] that describes (re-
ducible) singular monopole moduli space from using Kronheimer’s correspondence.
Therefore, we can indeed identify the moduli space of supersymmetric vacua of the

brane configuration with reducible singular monopole moduli space with the data
Po=Y"p"nl . Fn = mlH, (5.30)
I I

where the Higgs vev is defined by the holonomy

1 X
— AS = o 31
exp{%r?iéo } exp{zﬂR,} , (5.31)
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where R’ = 1/R is the dual radius of S.. This leads us to the conclusion that the
brane configuration we have presented does indeed describe 't Hooft defects in 4D

SU(N) N = 2 gauge theories.

5.1.2 Monopole Bubbling

Thus far we have presented analysis showing that the moduli space of supersymmetric
vacua of the brane configuration matches that of the moduli space of reducible singular
monopoles. However, since there is very little known about the singularity structure
of singular monopole moduli space, it is difficult to see that this analysis extends to
include the bubbling configurations describing such singular configurations.

In this setup, monopole bubbling occurs when a D1-brane becomes spatially coin-
cident with and intersects an NS5-brane. One may be worried that at the intersection
with NS5-branes, the interpretation of the brane configuration breaks down. However,
there are several reasons that suggest the opposite. First, the bubbling locus reproduces
the correct effect on the bulk dynamics. Specifically, as argued in [23], one can adapt
the computation from [39] to show that the 't Hooft charge is appropriately screened
during monopole bubbling.

Additionally, although bubbling involves an intersection of a D1-brane with an NS5-
brane, the bubbling configurations are actually non-singular. Specifically, we can go to
the Hanany-Witten frame in which all of the NS5-branes are localized at distinct x3 <
v1. In this case, bubbling D1-branes will at most make them coincident with another
D1-brane created by pulling NS5-branes through a D3-brane. See Figure 5.3. Further,
notice that in studying the supersymmetric vacua, there is no obstruction to describing
the singular locus of monopole moduli space. Therefore, it is not unreasonable to
conjecture that this brane configuration gives a good description for monopole bubbling.

In fact, this brane configuration has actually been shown to reproduce some key data
of singular monopole moduli spaces. In [23] it is shown that this brane configuration
reproduces the structure of the bubbling locus (2.96) of reducible singular monopole
moduli space ﬁ [142]. This can be seen as follows.

Consider the case of the N'= 2 SU(2) SYM theory. This can be described by the
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Figure 5.3: This figure describes a Hanany-Witten dual frame of the brane configuration
in which monopole bubbling appears to be a non-singular process. In this figure we
can see that bubbling of the finite D1-branes (blue) occur when they become spatially
coincident with the NS5-brane (and associated D1-branes in red) in the z1?-3-directions.
Here, one can see that in this frame, bubbling is non-singular as it corresponds to at
most coincident D1-branes.

above brane configuration as explained above by adding a large mass deformation. Now

consider adding a single reducible 't Hooft defect localized at the origin with charge
P =pht, (5.32)

where there are k! < m! bubbled Dl-branes such that 2k! < p;. Now to study
monopole bubbling, consider only the bubbled D1-branes in addition to the D3- and
NShH-branes. We can now perform a sequence of Hanany-Witten moves to go to the
dual frame in which D1-branes only end on NS5-banes.? See Figure 5.4.

Now the D1-brane world volume theory is given by a quiver SQM described by the
quiver I'(P,):

where the node of degree k! is repeated p; — 2k' 4 1-times. This SQM has a moduli

3Note that this exists because 2k' < p1. See [23] for a proof.
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space of supersymmetric vacua given by Mgon (I'(P,v)). *

Similarly, one can go through the exercise to determine the quiver SQM for monopole
bubbling in N' = 2 SYM theory. Let us consider monopole bubblng of the 't Hooft defect
with charge

P = prhf , (5.33)
I

in the case where the magnetic charge of the bubbled monopoles is given by
\pubbled) — P —~v = " kH . (5.34)
I

This brane configuration corresponds to a stack of N (separated) D3-branes with py
spatially transverse NS5-branes in between the D3j- and D37, -branes. The bubbling
corresponds to setting k; D1-branes that run between the D3;- and D3y, 1-branes to
be spatially coincident (in the z!*3-directions) with the NS5-branes. In this case, the
bubbling SQM can be determined by going to the dual Hanany-Witten frame in which
the bubbled D1-branes only end on NS5-branes. In this frame the SQM is again a quiver
gauge theory describing the effective world volume theory of the D1-branes given by

the quiver I'(P,v):

OO0 OO O

where the sub-quivers X are given by

4There is also an additional special consideration when p; = 2k'. In this case the quiver is given by

Y
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wr, -1 Wr 141

where X7 is of length

| Xl =nr+1—|pry1 —prlwri+1 — [pr—1 — prlwrr—1 , wij = (5.35)
1 pr>pj

while the sub-quiver I 741 is given by (with po = 0 and py = 0)

c

when p; < pr41 and

c

when p; > pr41.°

Here the subquivers I'7 741 come from NS5-branes that change chambers in going
to the magnetic Hanany-Witten frame and the subquivers X correspond to the NS5-
branes which do not. Moving NS5-branes to the left or right across the D37 q-brane

(determined by the ordering of pr,pry1) will give rise to an increasing or decreasing

5There are again some special cases for the above quiver:

e p;r = pr41: there is no I'r 141 quiver connecting Xy and X741, but rather the last node of X7 is
identified with the first node of ¥'111. Note that in this case | X1 + Xr41| = | X1| 4+ | 4| — 1.

e pr =pr41 £ 1: I'7 141 is omitted and Xy is directly connected to Xyy1.

e |X;| = 1: there is a single gauge node of magnitude p; with two fundamental hypermultiplets.
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Figure 5.4: This figure shows the two Hanany-Witten frames of our brane configuration
that we are considering: (a) the standard frame and (b) the Hanany-Witten “dual
magnetic” frame (with the unbubbled monopoles removed).

I't 141 respectively and additionally endows the X711 or X; subquiver respectively with
a fundamental hypermultiplet on the gauge node of the adjacent end. This combination
of the ordering of pr,pr+1 and pr,pr—1 and their corresponding hypermultiplet nodes
give rise to 4 different types of X; subquivers.

Thus, this brane configuration shows that there is a SQM of bubbled monopoles
living on the world line of the 't Hooft defect which indicates how the singular strata
in (2.96) are glued into the full moduli space. Specifically, the moduli space of super-
symmetric vacua of this 1D quiver SQM Mgga (I'(P,v)) defines the transversal slice
of each singular strata M(P,v) in (2.96).

Additionally, this construction has also been shown to reproduce exact quantum
information about monopole bubbling by using localization. We will discuss the details
of this computation in Chapter 6. However, the results therein provide a powerful
verification that this brane configuration can be used to generally study monopole
bubbling and further, it also suggests that monopole bubbling is itself a semiclassical

effect.

5.1.3 Kronheimer’s Correspondence and T-Duality

Notice that the above identification of singular monopole moduli space with the mod-
uli space of the supersymmetric vacua of the D1/D3/NS5-brane configuration relies
crucially on Kronheimer’s correspondence. This suggests an interesting relationship
between Kronheimer’s correspondence and T-duality which we will now explore.

Consider a general reducible singular monopole configuration with a reducible 't



149

Hooft defect in N' = 2 SU(N) SYM theory subject to the constraint (5.8). Now
“resolve” the configuration by pulling apart all of the defects into minimal 't Hooft
defects localized at Z, € C which are indexed by o.

By Kronheimer’s correspondence this is dual to U (1) g-invariant instantons on Taub-
NUT where the lift of the U(1)x action to the gauge bundle around any NUT center
is given by
— 7w e UMk, B9 € Awehar (5.36)
where P, = h!(®). Further, the first Chern class of the gauge bundle is given by

Ym =Y m'Hj (5.37)
I

and the Higgs vev is given in terms of the holonomy of the gauge field around the circle

1 - X
— Ap = > .
exp{zﬂ 7{%0 } exp{zﬂR,} , (5.38)

where R’ = 1/R is the dual radius of SL .

at infinity%

This gauge theory configuration can be embedded in the world volume theory of
D4-branes wrapping T'N,,. Having resolved the singularities coming from the coincident
NUT centers, we can study the behavior of the T-dual brane configuration. T-dualizing
along the circle fiber of T'N,, then takes this configuration to a theory describing the
world volume of D3-branes with some collection of NS5-branes (from NUT centers) and
D1-branes from the D0-brane instantons. in the presence of D1- and NS5-branes.

We can then take the coincident limit of the NUT centers. Assuming that T-duality
commutes with the resolving and taking the coincident limit of the NUT centers, we
find that the T-dual brane configuration of D1/D3/NS5-branes coincides with the brane
configuration that we have presented for reducible singular monopoles. However, before

proceeding with the technical details of this calculation, we will first motivate this result.

5 Here this equation is only strictly true if we take X to be a periodic scalar field, which in
decompactifying the T-dual S — R we allow to be a t-valued scalar.
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Action of T-Duality on Fields

Let us consider the action of T-duality on gauge field configuration describing a U (1) k-
invariant instanton on T'N, in the 4D A = 2 SYM theory. Near each NUT center, the

gauge field can be written in the U(1)g-invariant gauge

A= Aps +¥(d€ +w) | (5.39)
where
lim Ags = Powg, , lim ¢ =-F,. (5.40)
T—To T—To

Again we will use the notation
ds? = V(Z)dZ - dZ + V(&) (d¢ + w)? | (5.41)

where

1

- 1
V(@) =1+ Z m y dw==x3dV , dwg, ==*3d <2|$_,_f|> . (5.42)

In T-dualizing, Buscher duality tells us that the term V~1(%)(d¢ + w)? in the metric
generates a non-trivial B-field source at the positions of the NUT centers. This indicates
the existence of NS5-branes in the transverse space at the position of the NUT centers in
the z123-directions. Additionally, since the S! fiber has radius 1/ V'V, under T-duality,

the one form roughly transforms as

Y(B)dE = P(@)WVV (j%) — (T)Vde = Xde' . (5.43)

This leads to the standard Higgs field X and connection Ags in (3+1)D that satisfy the
Bogomolny equation. Additionally, from the limiting forms of (Ags,?) in (5.40) and
the form of the harmonic function (5.42), one can see that these fields have the limiting
form

Py
lim Ags = P,w lim V(Z)y(7) =

- 5.44
F—io Ty 2|1% — Zo| ’ (5:44)
which is exactly the 't Hooft boundary conditions at Z,. Therefore, from the field
perspective, it clear that T-duality maps U(1)g-invariant instanton configurations on

T'N,, to singular monopole configurations on R3.
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Note that the other bosonic fields of the (3+1)D theory Ag,Y (where (71¢ = YV +iX
is the standard complex Higgs field) come from the five-dimensional gauge field along
the z¥-direction and the 5D Higgs field describing the D4-branes in the z°-direction

and hence do not play a role in T-duality.”

String Theory Analysis

As described in [177], instantons in the world volume theory of a stack of D4-branes
wrapping T'N, are T-dual to a brane configuration described by D1-, D3-, and NS5-
branes. Here we will apply the analysis of [177] to the D1/D3/NS5-brane configuration
to study how it behaves under T-duality. Here we will find that the brane configuration
of D1/D3/NS5-branes proposed above is T-dual to the corresponding U (1) x-invariant
instanton configuration on T'N,, given by Kronheimer’s correspondence [108].

Consider the D1/D3/NS5-brane configuration in the Hanany-Witten duality frame
where D1-branes only end on NS5-branes as in Figure 5.2. 8 In this case we have p
NS5-branes (indexed by o) with m, D1-branes running from the o'* to the (o + 1)
NS5-brane and g, D3-branes in between the o and (o+1)"* NS5-branes. Now wrap the
x*-direction on a circle. T-duality along the z*-direction then maps: 1.) the collection
of p NS5-branes into a transverse T'N,, [147, 82], 2.) the stack of D3-branes to a stack of
D4-branes wrapping the T'N,,, and 3.) the D1-branes to some instanton configuration
of the gauge bundle living on the D4-branes.

In order to specify the T-dual brane configuration we need to specify how the num-
bers and positions of the branes are reproduced by the instanton brane configura-
tion. The number and positions of the NS5-branes are encoded in the B-field of the
D1/D3/NS5-brane configuration. Since the NS5-branes are charged under the B-field,
T-dualizing them give rise to a NUT center (due to Buscher duality) at the previous

location of the NS5-brane in the x!?3-directions. Thus, the relative positions of the

"Note that we are truncating the standard 5D A" = 2 SYM theory to a A/ = 1 theory by projecting
out fluctuations in the %789 directions by including a large mass deformation as before.

8Recall that we are imposing the condition (5.8) so that there exists a magnetic Hanany-Witten
duality frame.
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NS5-branes on the T-duality circle is encoded by the cohomology class of the B-field.”

This can be measured by its period integrals

00— 0, — / B (5.45)
o 2w

where 6, is the position of the o' NS5-brane along the z*-direction [147, 82]. Here
we have identified the homology cycles C,,s as follows. Given an ordering of the NS5-
branes, there is a natural basis of Hy(T'Np; Z) given by {Cyy41} where Cppqq is defined
as the preimage under the projection map m : TN, — R3 of the line running between
the NUT centers corresponding to the NS5,-brane and NS5, 1-brane in the base R3.
Here we identify o ~ o 4+ p. We then define C,,/ as the homology cycle

Coor = Y Copi1 (5.46)

p=0
where we have assumed o > ¢’. This is topologically equivalent to the cycle defined
by the preimage of the line running between the NUT centers corresponding to the
NS5,-brane and the NS5,/-branes.

The rest of the data of the brane configuration is encoded in the gauge bundle
through the instanton configuration [177]. In order to specify the class of the instanton
bundle corresponding to the T-dual brane configuration, one must specify the first
Chern class, second Chern class, and the holonomy of the connection.'® The first Chern
class is valued in prt(TNp;Z). These elements can be understood in the following
fashion. HZ,(TNy;Z) is naturally isomorphic to Ha (T Ny; Z) by Poincaré duality. Using
the basis of Hy(T'N,; Z) above, we can identify the homology cycles {Cys41} with basis
elements {bys41} of HZ)

{fs : 0=1,...,p} to an element of H2,(T'Ny;Z) as

g

B =) (for1— fo)boos1 - (5:47)

(I'Np;Z). We can then identify a sequence of p numbers,

In this setup, [177] determined that the first Chern class of the instanton bundle is

given by the corresponding element of H?

ept(T'Np; Z) determined by the sequence of p

9Note that this is the relative positions as the absolute positions along the T-duality S is a gauge
dependent.

"That is to say, we specify the data of the relevant instanton moduli space. See [177] for more
details.
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numbers given by the linking numbers of the p NS5-branes: {¢, : 0 = 1,...,p} where
by =g —Mg_1+qo - (5.48)

In [177], the author also computed the 2nd Chern character of the instanton bundle
V — TN,

/ cha(V) = mg | (5.49)

where my is the number of D1-branes running between the NS5,-brane and the NS5;-
brane (recall that the NS5-branes are separated along a circle). In our case, we have
mg = 0.

In order to completely specify the instanton bundle, we also need to specify the
holonomy of the gauge connection. In the 5D gauge theory, the monodromy along the

S1 fiber at infinity encodes the positions of the D3-branes: !

U = diag (exp(is1/R), exp(isa/R), ...,exp(isy/R)) . (5.51)

Given this data of the instanton bundle and B-field configuration, we can completely
determine the T-dual brane configuration of D1/D3/NS5-branes. Now by taking the
coincident limit of the appropriate NUT centers, we arrive at the T-dual brane config-
uration for reducible 't Hooft defects.

In order to complete this discussion, we need to understand the action of U(1)x on
the T-dual instanton configuration. Under T-duality, translation along the T-duality
circle (the action of U (1) k) maps to non-trivial abelian gauge transformations in the D1-
brane world volume theory along the x*-direction in D1/D3/NS5-brane configuration.
However, since the branes do not wrap all the way around the z%-direction, any such
gauge transformation can be undone by a trivial gauge transformation. Therefore, this

brane configuration will be dual to a U(1)g-invariant instanton configuration on T'N,,.

"Here when we take the decompactification radius we take R — oo and the s; — oo such that
si/R — vr where the Higgs vev of the 4D theory is given by

N-1

Xoo = Z_(’U1+1 — U])H[ . (550)

I=1
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T-duality and Line Bundles

We will now show explicitly that T-duality exchanges singular monopole configurations
with the U(1)g-invariant instanton solution given by Kronheimer’s correspondence.

Consider SU(N) N =2 SYM theory with a collection of reducible 't Hooft defects
{P,,Z,} such that

Po=>"p"nt, (5.52)
1

where h! are simple cocharacters. Additionally, let us allow for some collection of far

separated smooth monopoles with total charge
Ym =Y m'Hp (5.53)
I

that are indexed by ¢ = 1,...,>; m! with fixed positions Z; € R? and charges H 1(3)
where Hy, Hy;) are simple coroots.

Now let us resolve the defects by pulling them apart into constituent minimal ’t
Hooft defects index by o = 1,....,p = Zn,[ pgn) with charges h!(@) located at Z,. The
corresponding brane configuration is T-dual to a gauge theory on multi-Taub-NUT
with p NUT centers located at {Z#,}Y_; and U(1)k invariant instantons that are far
separated at positions {Z;}. Due to the holonomy of the gauge bundle, the Chan-Paton

bundle asymptotically'? splits as a direct sum of line bundles

N
T=PR:. (5.54)
I=1

These line bundles can be decomposed as a tensor product of line bundles that are each
individually gauge equivalent to a canonical set of line bundles which can be defined as
follows.

Choose the NUT center at position Z,. Now choose a line L, from Z, to oo which
does not intersect any other NUT centers. Define C, = 7~!(L,) to be the preimage

of this line. To this infinite cigar we can identify a complex line bundle Lz with

12Here by asymptotically we mean at distances sufficiently far from any instanton. Specifically, we
are interested in the behavior at infinity and arbitrarily close to the NUT centers. This can be seen
from the perspective of singular monopole configurations because the gauge symmetry is broken at
infinity by the Higgs vev and at the 't Hooft defects by their non-trivial boundary conditions [100].
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connections

|Z — &y

d 1 1
Npy == B0 g, = xed <H> . (5.55)

This family of line bundles can be extended to include connections associated to arbi-
trary points 7; # Z,
d +w 1 1
A = ————">—— 4+ —wz , dwg =%3d| —— ) . 5.56
TR —EvE et R ( > (5:%0)

Under a B-field gauge transformation, the Chan-Paton bundle 7 transforms as
T=TLs B~ B+dA, (5.57)

where £, is the line bundle with connection given by A.

These connections have the property that

dAs,
/ =Gy (5.58)

where C,, is the Cartan matrix of A,_;.

We can additionally define the topologically trivial line bundle

P
=)Lz, (5.59)
o=1

where Lz is a line bundle with connection which is gauge equivalent to Az as above.
This line bundle is topologically trivial because its periods are trivial due to the prop-
erties of the Cartan matrix.

Since this is a topologically trivial line bundle,'3 we can also define £ with connec-

tion

zp: d5(+)w , teR/2nZ. (5.60)

These connections have the hmltmg forms

1
lim A, — 0 , lim Az, — —-wz, lim Az — —-wz
TF—T; F—T; 2 ’ T—To 7 277
1 1 (5.61)
lim A, — (d¢ +w) , lim Az, - -~w lim Az — ——w
F—00 T—00 2 T—00 7 2

13This is trivial in the sense that the canonical pairing of the curvature with any closed 2-cycle is
trivial.
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where all other limits are finite. Here wg, is the Dirac potential centered at &;. This

tells us that /L(,f) has non-trivial holonomy along the asymptotic circle fiber

f{ A Zort | t~t41. (5.62)
ST,

Therefore, this component of the Chan-Paton bundle describes the Higgs vev X, of
the T-dual brane configuration (5.68). Additionally, these asymptotic forms tell us that
Az, is an asymptotically flat connection except near ¥; € R3 where it can be smoothly
continued in exchange for inducing a non-trivial first Chern class.

Using this, the factors of the Chan-Paton (gauge) bundle of the T-dual brane con-
figuration are given by

Ri=L2 & ' Q Lz, & £3', (5.63)
o:I(o)=I GI(G)=I k:I(k)=I+1
where here the j = 1,..,m! and k = 1, ..., m'*! index smooth monopoles with magnetic
charge H; and Hj,; respectively where m" = m® = 0. Note that this reproduces the
expression (5.51) where again s; is the position of the i** D3-brane along the z* circle
before decompactifying.

The above decomposition of the Chan-Paton bundle is non-trivial and can be de-
duced by studying Hanany-Witten transformations. Consider the brane configuration
where there is a single D3-brane localized at s = 0 along the z# circle with p NS5-branes
at distinct, non-zero positions {s = y, # 0} along the x* circle direction. We can choose
a background B-field such that the Chan-Paton bundle of the D3-brane is trivial. Now
move the D3-brane around the circle in the clockwise direction. Before the D3-brane

intersects an NS5-brane, the Chan-Paton bundle is trivial and of the form
R = L* R (5.64)

As shown in [177], when the D3-brane intersects an NS5-brane at s = y,, the Chan-
Paton bundle can jump by a factor of E;j This reflects the fact that the Hanany-Witten
transition creates a D1-brane which ends on the D3-brane (thus inducing the factor of
E;al) Thus by moving the D3-brane around the circle to the point s, the Chan-Paton

bundle is of the form

R=r" K 7! (5.65)

0 Yo<S
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Note that when the D3-brane moves around the entire circle, the Chan-Paton bundle is
again trivial because the s — s+ 27 R is canceled by the overall factor of &), E;jal = L,.
Therefore, each D1-brane that ends on a D3-brane contributes a factor of (Lz )*!
to its Chan-Paton bundle depending on orientation. This decomposition allows us to
determine the cohomology classes of the line bundles in the asymptotic decomposition
of the Chan-Paton/gauge bundle, thus giving the result (5.63).

This form of the Chan-Paton bundle corresponds to an instanton configuration with
connection that is asymptotically of the form

A= diag(/ll, ...,AN) 5 (566)
where
Ap= AT N Ay - Ag+ Y Ay (5.67)
o:1(o)=I jI(5)=I jI(G)=I+1

up to gauge equivalence. Because the connections are hyperholomorphic, this connec-
tion indeed describes an instanton configuration.

Now we can take the coincident limit of the appropriate NUT centers — this cor-
responds to reconstructing the reducible 't Hooft defects in the D1/D3/NS5-brane
configuration. Since T-duality commutes with the movement of the NUT centers or
NSb5-branes appropriately, we can conclude that the coincident limit of NUT centers
is the T-dual configuration corresponding to the D1/D3/NS5-brane configuration with
reducible 't Hooft defects.

Using the asymptotic forms of the individual connections, we see that the connection

A has the limiting form exactly given by

A=A+y(x)(de +w), (5.68)
such that
P, . m
dA=wsd(VY) ,  lim V(epi(z) = g 0 Am V) = Xe - 727 :
(5.69)

to leading order.!* This is an exact match with Kronheimer’s correspondence [108].

14 Note that we had to take the decompactification limit as described in Footnote 6 which requires
scaling the s; with R’ = 1/R — oo.
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Therefore, Kronheimer’s correspondence for our brane configurations acts as T-duality.

5.2 Irreducible Monopoles

Now by using the fact that Kronheimer’s correspondence is equivalent to T-duality in
the previous section, we can try to generalize this picture to include a description of
non-minimal irreducible 't Hooft defects.'® The idea will be to first describe irreducible
singular monopoles as U (1) g-invariant instantons on Taub-NUT through Kronheimer’s
correspondence, embed it into string theory as in the previous section, and then T-
dualize to arrive at a brane configuration describing singular monopoles in R3.

We expect this to work a priori because the field theoretic arguments we made
before in Section 5.1.3 made no reference to whether the 't Hooft defect in question
was reducible or irreducible. Thus we can expect that T-duality will more generally
map U (1)g-invariant instantons with U(1)g-lift defined by P € Acpehar to singular
monopole configurations with ’t Hooft charge P. Further, the fact T-duality maps be-
tween families of configurations with isomorphic moduli spaces matches the fact that
Kronheimer’s correspondence states that the moduli space of U(1)g-invariant instan-
tons whose action is defined by P € Acpchar is isomorphic to the singular monopole
moduli space defined by the 't Hooft charge P.

However, we expect this to produce a different brane configuration as compared to
reducible 't Hooft defects because U(1)g-invariant instantons on multi-Taub-NUT can
differentiate between irreducible and reducible 't Hooft defects through the combined
data of the U(1) g action and the NUT charge. The NUT charge is defined as the Hopf
charge of the TNp‘ g2 Sig over an infinitesimal 2-sphere of radius € around a NUT
center at &, which can additionally be determined by the coefficient of the term m
in the harmonic function of the metric. Note that this changes as we take the limit as
Ty — Ty as in the case of reducible 't Hooft defects.

Now we can use the framework from the previous section to explicitly construct the

Chan-Paton bundle in the case of an irreducible 't Hooft defect. This allows us to easily

5Here we mean 't Hooft defects associated to a 't Hooft charge P € Acochar which are S-dual to a
Wilson line of irreducible representation of highest weight P € A,:(G").
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- P2 Ps Pn-1

Figure 5.5: In this figure we show how to construct the string theory embedding of a
SU(N) irreducible 't Hooft operator of charge P = 3", prh!.

control the lift of the U(1) x action and NUT charge separately and distinguish between
the reducible and irreducible cases. This will allow us to give a complete description of
the instanton configuration and its T-dual brane configuration for the case of generic
NUT charge and U (1) x-action.

In summary, we will find that in a particular Hanany-Witten frame, an irreducible

singular SU(N) monopole at Z,, € R with 't Hooft charge
P=> ph', (5.70)
I

will be given by a single NS5-brane connected to the (I 4+ 1)* D3-brane in a stack of

N D3-branes by py D1-branes as in Figure 5.5.

5.2.1 SU(2) Irreducible 't Hooft Defects

First let us consider the case of a single irreducible 't Hooft defect at the origin in
SU(2) N =2 SYM theory with 't Hooft charge, relative magnetic charge, and Higgs
vev given by

P=ph' |, Apn=mH , X, =vH;. (5.71)

By Kronheimer’s correspondence this is dual to a U(1)g-invariant instanton on
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Taub-NUT where the lift of the U(1)x action to the gauge bundle is given by

lim g(#a) = PV | acU()g, (5.72)

Z—0
the first Chern class of the instanton bundle is given by (mH; — ph'), and the Higgs

vev is given in terms of the holonomy of the gauge field around the circle at infinity

1 A Xoo
exp{%?igo A} = exp{27rR/} , (5.73)

where R’ = 1/R is the dual radius of S1 . As in Section 2.3.3 we can locally write the

connection A as

A=A+ p(z)(dE +w) , (5.74)
such that
P m
dA=xd(Ve) , lmV(p()=—2 , lim V(@) = Xe— 2% . (5.75)

Again, consider embedding this configuration of U(1)g-invariant instantons into

172737

string theory by wrapping a pair of D4-branes on Taub-NUT in the x 4_directions

5,6.7:8.9 — () with fractional DO-branes.

(localized at =
As before consider the Chan-Paton bundle of the D4-branes. Due to the non-trivial

holonomy, this splits asymptotically as a direct sum of line bundles
R=Ri1 DRy . (5.76)

Since the R; describe an instanton background in the D4-brane world volume theory
along the Taub-NUT direction, the connection of these line bundles is hyperholomorphic
(the curvature is a (1,1)-form in any complex structure).

As before, on Taub-NUT there are two families of U(1)g-invariant hyperholomor-

phic connections

_détw
- V()

dé +w 1

A __wtw 1
27— V() 2

Az, = w; | (5.77)

where w; is the Dirac potential centered at Z; which solves

ds; — 3 (1> | (5.78)

2|7 — T
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(t)

Again we can define a line bundle with connection A;”’ = tA, which is asymptotically

flat and has non-trivial holonomy at infinity
; (t) .
¢t A = g2mit (5.79)

while Az sources a non-trivial first Chern class centered around ;.

Now since there is a nontrivial Higgs vev X, the connection A has nontrivial
holonomy and hence asymptotically decomposes into two connections A; on the R;
factors of the Chan-Paton bundle respectively. This can be written

i A+Y(x)(dé+w) a=1 (5.50)

—A—Y(x)(dé+w) a=2

such that
dA = x3d(VY) , lim V(z)p(z) = — 2 lim V(2)y(z) =v— — .  (5.81)
T 50 dr 7 roo 2r
Using this, we can write down the connections A, in terms of the Az, Ay as
A= 7/1 —pAp + Z Az, , Ag= 27TR Z A:& R (582)

in a certain choice of gauge where s; — so = v. This gives rise to the decomposition of
the Chan-Paton bundles as
m m
Ri=L* ot @zl Ri=L2PR) Lz (5.83)
i=1 '

(t)

where as before £, is the line bundle with connection tA., Lz is the line bundle with
connection that is gauge equivalent to Az, and we have taken the positions of the
monopoles to be at {Z;}. Here we used the fact that flat gauge transformations of the

B-field, B —+ B + dA act on the Chan-Paton bundle as [177]
R>R® Ly, (5.84)

to make a choice of gauge such that 0 < s1 < s2 < 2R and Ly only appears in R
with integer power.
Now we wish to T-dualize this configuration along the S* fiber of Taub-NUT. Fol-

lowing the identification from the previous section, we can see that this configuration
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R=

Figure 5.6: This figure shows the brane configuration for a reducible SU(2) 't Hooft
defect with charge P = ph'.

will be T-dual to the brane configuration in Figure 5.6. This brane configuration is

56,789 — () and at definite values of

described by a pair of D3-branes localized at x
zf, 23 > 0 so that Az = v with an NS5-brane localized at 4 = 0 and 2223 = 0. There
are then m D1-branes running between the D3-branes localized at positions Z,, € R3
and p D1-branes connecting the NS5- and the D3;-brane. These D1-branes emanating
from the NS5-brane and ending on the D3-brane source a local magnetic charge which

we identify with the 't Hooft defect. We will describe the 't Hooft charge P as specified

by this configuration shortly.

5.2.2 SU(N) Irreducible Monopoles

This story has a clear and straightforward generalization to the case of irreducible
singular monopoles in an SU(N) theory. Consider a single irreducible monopole con-

figuration with 't Hooft charge, relative magnetic charge, and Higgs vev
P=>"ph' |, Fm=> m'H |, Xo=> v'H. (5.85)
I T I

By Kronheimer’s correspondence, this can be described by U(1)g-invariant instantons

on Taub-NUT where the lift of the U(1)x action to the gauge bundle is given by

lim g(Z;0) =™ | acUQ1)k, (5.86)

7r—0
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the first Chern class is given by v, = 4, — P~. Again the holonomy of the gauge field

around the S' fiber at infinity is dictated by the Higgs vev

1 A Xoo
exp{%%géo A} —exp{%R/} , (5.87)

where R’ = 1/R is the radius of S!. Now embed this configuration into string theory
by wrapping N D4-branes on Taub-NUT along the z'>3# directions (that is they are

localized at x with fractional DO-branes.

56,789 = ()
Now the Chan-Paton bundle of the D4-branes is a rank N bundle which asymptot-

ically splits as the direct sum of line bundles:

N
R=EPR:. (5.88)
I=1
Again, the Chan-Paton bundles must decompose as a tensor product of line bundles
with connections of the form Agf) and Az :

mI I—1
Ri=L o Q Lz, & £zb (5.89)

Iy
n1:1 TLI,1:1

where {n;} indexes over the smooth monopoles with charge along Hy, py = m® =0,
and 0 < sy < syy1. Notice here that we have completely gauge fixed the B-field to a
choice which is very convenient for matching to physical data.

T-dualizing this configuration will produce a configuration of D1/D3/NS5-branes
as in Figure 5.5. In words, it will have a stack of N D3-branes separated at points

4 4

Tiy > x} > 0 such that xq —a] = vl, 16 localized at 256789

= 0 with a single
NS5-brane localized at 4 = 0 and at the origin in R?. There will also be m! D1-branes
stretching from the D3;- to the D3r-brane and p; D1-branes stretching from the NS5-
brane to the D3;-brane. Again, the D1-branes emanating from the NS5-brane that end
on the D3r-brane will source a local magnetic charge in the world volume theory of the

D3-branes.

16566 Footnote 14.
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5.2.3 Physical 't Hooft Charges

This construction of singular monopoles is similar to that of [132] in the sense that
they both introduce a Dirac monopole by having D1-branes in a way that couples to
the center of mass of the stack of D3-branes which we have already projected out in
going from a U(N) — SU(N) gauge theory. Thus, we also need to project out the part
of the physical charges that couple to this center of mass degree of freedom. We take

the natural projection map, given by:
II(h) =h— (Tryh) - 1n , (5.90)

for h an element of the Cartan subalgebra h € .
Now let us consider some example brane configurations to show that the 't Hooft

charges match the field configurations we claim to describe.

Example 1 Consider again the case of SU(2) singular monopoles as in the previous
subsection. In this case, the brane configuration is described by the U(2) 't Hooft

charge

- 0
p=|" . (5.91)
0 0

Under the projection map II : u(N) — su(N), the 't Hooft charge becomes

- 1({p O
P=1(P) = . =pht. (5.92)
—p

This is exactly the charge of the field theory configuration (5.71).

Example 2 Now consider the case of singular monopoles in SU(N) gauge theory. As
in the previous subsection, take the brane configuration of Figure 5.6. This is described
as follows.

56,789 — () and at distinct values in

Consider a stack of N D3-branes localized at x
the x*-direction which we will give an ordering from left to right. Now consider a single
NS5-brane localized to the left of all of the D3-branes in the z*-direction and localized

at @, € R®. Now add p; D1-branes which run from the NS5-brane to the D3;-brane
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() (b)

Figure 5.7: In this figure we show how to relate the (L1 o)) reducible 't Hooft operator
(a) to the Lipq) irreducible 't Hooft operator (b). This suggests that the tail of the
reducible singular monopole configuration is analogous to the subleading terms in the
OPE.

for I # N. This configuration will have a U (V) 't Hooft charge

I
p:pIZeJJ, (5.93)
J=1

where ey ; is the diagonal matrix with a single 1 in the (I, J)-component. Under the
projection to SU(N), this becomes
. ! 1 s
P =1II(P)=p; (;eJ,J—21N> = prht . (5.94)

This matches the charge of the corresponding field configuration in (5.85).

Remark It is also interesting to note that heuristically one can think of irreducible 't
Hooft defects as reducible defects where we have removed the “subleading terms” from
the OPE. There is similarly a geometric interpretation to this procedure in terms of
the brane construction. If we consider a reducible 't Hooft defect in SU(2) SYM theory
where we move all of the NS5-branes to distinct points to the left of the D3-branes,
then we can think of removing the subleading terms of the OPE as removing all but the
right most NS5-brane and the D1-branes connecting it to the D3-branes as in Figure

5.7.

Remark From this construction it is also clear how to insert multiple irreducible
't Hooft defects since the brane configuration only include local brane interactions.
Therefore, this brane configuration can be used to describe general 't Hooft defect

configurations in 4D N = 2 supersymmetric gauge theories.
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Figure 5.8: This figure illustrates the configuration of D-branes in Type IIB string
theory corresponding to an SU(3) gauge theory with total magnetic charge =, =
mi1H1 + moHs coupled to a single hypermultiplet in the fundamental representation
with mass (~'m = mpg + im;. Here have identified the Ry @ iR5 = C. Here there are
my D1-D7 strings which gives rise to vanilla BPS states that are charged under the
flavor symmetry associated to the D7-brane.
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5.3 Including Fundamental Hypermultiplets

We can also consider the case where we add fundamental hypermultiplets to the 4D
N =2 SU(N) SYM theory. Coupling to 4D fundamental matter changes the charge
quantization of these theories satisfy p; € 2Z, where P =), p 7h! for simple cocharac-
ters p! .17 This can be achieved in the brane configuration by adding D7-branes at fixed
locations z? + iz® = m() where i indexes the fundamental hypermultiplets and m(
is the complex mass of the corresponding fundamental hypermultiplet. This picture
can be used to geometrically determine the spectrum of vanilla BPS states and its wall
crossing as in [22]. See Figure 5.8.

As shown in [165], this couples the quiver SQM describing the low energy effective
theory of the D1-branes to a short N' = (0,4) fundamental Fermi-multiplet. The quiver

gauge theories are then of the form

Ny

OO0 OO O OO GO0

where the length of the quiver is n — 1 with k occuring n — 2k + 1 times where
P=nh' |, P—0=kH, , ne2Zy , h'€ Awenar - (5.95)

and the N; fundamental Fermi-multiplets are coupled to the (n/2)!" gauge node. Ad-

ditionally, when n = 2k, I'( P, V) takes the special form

T This is a consequence of the fact that in a theory with fundamental matter Amw/Acochar = Zo.
Hence, we will have 2p; = n; in these theories where the 't Hooft charge can be writtenas P =", prh!

or P=5%"; nrh! where hf € Ay and AT € Avochar.
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Ny B =(1,0)

OO0 OO0 OO0

See Figure 5.9 for examples.

5.3.1 Fundamental Hypermultiplets and Brane Webs

When we consider framed BPS states in the presence of fundamental hypermultiplets
there are also interactions between NS5-branes and D7-branes in the full string theory
[9]. Specifically, D7-branes are distinguished in type IIB string theory in that they
are sources for the axio-dilaton. Thus, the holonomy around a D7-brane is exactly
equivalent to an S-duality transformation 7' € SL(2;Z). This means that picking a
fixed S-duality frame requires a specification of branch cuts in the transverse space.
For a generic choice of branch cuts they will intersect the NS5-branes causing them to
undergo an S-duality transformation.

To study the implications of this branch cut, we will have to first review some

technology of (p, ¢)-Brane webs.

Brief Review on (p, ¢)-Brane Webs

A (p, g)-brane is a certain type of 5-brane in type IIB string theory that has p-units of
NS-charge and g-units of RR-charge. This means that we can identify a (1,0)-brane
with an NS5-brane and a (0,1)-brane with a D5-brane. As one would expect, the
charge vector (p, q) of a (p, q) b-brane transforms as a vector under the S-duality group

SL(2;7Z). Further a tension of such a 5-brane is given by
Tip.q) =P+ 74| TDs , (5.96)

where 7 is the expectation value of the axio-dilaton and Tps is the D5-brane tension.
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Figure 5.9: This figure shows many facets of the brane configuration describing singular
monopoles and monopole bubbling in 4D A" = 2 gauge theory with Ny fundamental
hypermultiplets for (a) the example of SU(2) gauge theory with ~,, = 3H; and P =
4h'. (b) displays an example of monopole bubbling where 2 monopoles have bubbled,
screening the defect. By performing the Hanany-Witten transformations (c), we can
see that the SQM living on the D1-branes is given by a quiver SQM (d).



170

(LD

(1,0)

(0,1)

(a) (b)

(c) (d)

Figure 5.10: This figure shows two examples of (p, ¢)-brane webs in (a) and (b). (a) is
the fundamental trivalent junction including an NS5- and D5-brane. (b) is an example
of a generic (p,q) 5-brane web. Additionally, this figure shows in (¢) and (d) how
D7-branes can be combined with (p,q) 5-brane webs. (c) the brane web can end on
them or (d) they can act on the brane web via the S-duality branch cut. These two are
related by a Hanany-Witten-type transformation where the D7-brane is pulled through
the 5-branes.
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(1.0) Lo 10

Figure 5.11: This figure shows the example of the improved brane configuration for the
fundamental 't Hooft defect in SU(2) N; = 4 gauge theory. On the right is the resolved
brane configuration suggested by [9].

Such (p, q) 5-branes can intersect in interesting ways to form a sort of web by taking
their world volume to span the z%1234_directions and wrap straight lines in the 2°+ix°
C-plane. See Figure 5.10.

(p, q)-brane webs can be realized as the T-dual of M-theory compactified on a Calabi-
Yau 3-fold with toric singularities [114]. More straightforwardly, they can be fundamen-
tally constructed from trivalent brane intersections. Charge conservation implies that

for any trivalent vertex of (p, q)-branes with charges (p;, ¢;), that the charges satisfy

3 3
> pi=> a=0. (5.97)
i=1 i=1

Preserving supersymmetry implies that up to an overall rotation, a (p,q)-brane must
have a slope given by [1]
Azt +iA2® || p+7q . (5.98)

In the semiclassical limit we take 7 =~ ¢ so that D5- and NSb5-branes are essentially

perpendicular and a (p, ¢) brane has slope in the z* + iz® plane given by m = ¢/p.
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(1,0)

Figure 5.12: This figure shows the brane configuration for the bubbling locus of the
L1 't Hooft defect in in SU(2) Nt = 4 gauge theory. Here the red line is a D1-brane,
the black wavy lines are D1-D7 strings which give rise to fundamental Fermi multiplets,
and the blue wavy lines are the D1-D5 strings that give rise to additional fundamental
hypermultiplets.

Improved Brane Configuration

Now let us return to the D1/D3/NS5-brane configuration with additional D7-branes
added in. It is pointed out in [9] that there is a non-trivial interaction between the
NS5-branes that give rise to the 't Hooft defect and the D7-branes that give rise to
the fundamental hypermultiplets. This implies that 5-brane webs are needed to fully
realize monopole bubbling when coupling to fundamental hypermultiplets. The reason
is that when the NS5-branes intersect the branch cuts from the D7-branes that they
undergo an S-duality transformation to become a (1, £1)-brane. See Figure 5.10.
Preserving SUSY then implies that these transformed NS5-branes bend so that their
world volume is along a sloped line in the z* + iz plane. This means that the NS5-
branes are no longer asymptotically parallel but rather intersect at some point along
the z°-direction. This gives rise to the brane configuration on the left of Figure 5.11.

It is then shown in [9], that the resulting vertex in the brane-web configuration can
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be “resolved” via a D5-brane as in the right side of Figure 5.11. However, by resolving
the vertex of the 5-brane web via a D5-brane, one allows for D3-D5 strings that give rise
to a Fermi-multiplet that is localized on the world volume of the 't Hooft defect. This
Fermi multiplet is coupled to the 4D gauge field and Higgs field of the N/ = 2 vector
multiplet in the fundamental representation. This Fermi-multiplet can be thought of as
a spin defect field that gives rise to a Wilson line as shown in [165]. Thus, resolving the
D5-brane interaction adds electric charge to the 't Hooft defect. This will be important

in the next section for computing the expectation value of 't hooft defect operators.

Example Consider the example of the minimal 't Hooft defect Ly in SU(2) N = 2
gauge theory with Ny = 4 fundamental hypermultiplets. This can be described by a
brane configuration realized by two parallel D3-branes, 4 D7-branes and 2 NS5-branes.
Introducing the D7-branes requires Ny = 4 branch cuts which intersect the NS5-branes.
The NS5-brane intersections can then be resolved as in [9] by introducing D5-branes
such that there the D1-, D3-, and D7-branes are contained in an octagon.

The bubbling SQM can be read by going to the bubbling locus where we send a D1-
brane to run between the NS5-branes as in Figure 5.12. The SQM is again a N' = (0, 4)

theory that is described by the quiver:

5.4 The Class S Construction

Another brane configuration that can be used to study 4D N = 2 gauge theories is
called the class S construction. This brane configuration goes back to the work of
[155, 156, 176, 66, 68], explaining the geometric origin of Seiberg-Witten theory. There
has been a great deal of technology for understanding 4D N = 2 theories that have been

developed via the class S construction. In fact, this technology will be fundamental to
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understanding our later chapters on localization and comparing the expectation values

of line defects.

5.4.1 The 6D N = (2,0) Theory

6D theories with A = (2, 0) supersymmetry have o0sp(6,2|4) superconformal symmetry
which has a bosonic subgroup SO(5,1) x Spin(5)g of Lorentz and R-symmetry [138].
The field content is that of tensor multiplets which are comprised of a self-dual 2-
tensor By, 4 fermions ¥“, and 5 scalar fields ¢ where a = 1,...,4and i = 1,..,5. As

representations of SO(5,1) x Spin(5), the fields transform as
B,ul/ : (37 1) 1) ’ ¢a : (2, 174) ’ SOZ : (17 1?5) . (599)

The 6D N = (2,0) theory can be constructed from string theory by compactifying
type IIB on a K3-manifold [175].® Consequently a corresponding 6D A/ = (2, 0) theory
is labeled by an ADE Lie algebra g corresponding to the singularity structure of the
K3-manifold.

In this construction, D3-branes that wrap non-trivial 2-cycles of K3 give rise to
strings in the 6D theory that are charged under the B-field. Thus, a 6D N = (2,0)
theory of type g and has has a spectrum of charged objects classified by elements of the
integer lattice A = A,:(g). The tension of the strings is proportional to the volume of
the 2-sphere [175]. At singular point in K3 moduli space, where the non-trivial 2-cycles
degenerate, the tension of these strings is identically zero. These are the “tensionless
strings” in the (2,0) theory.

There is also another construction of the 6D N = (2,0) theory of type g = A, as
the low energy effective theory of a stack of Mb5-branes wrapped on Mg C X11. Here
the Spin(5)r symmetry is manifest as symmetry group of the transverse 5-directions
and allows us to identify the normal bundle of the world volume of M5-branes with the
R-symmetry bundle in 6D R — Mg.

In this construction, the B-field can be seen as the boundary field that trivializes the

bulk 3-form gauge field C. When the M5-branes wrap a topologically trivial manifold

8 This requires some subtlety with decoupling gravity. See [157] for more details.
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Mg, the B-field arises as the trivialization of the bulk C-field restricted to the world
volume of the M5-branes Mg:™

dB =Cl,, . (5.101)

The scalar fields of the 6D N = (2,0) describe the transverse fluctuations of the
Mb5-branes in 11D space time. Because the Mb-branes are indistinguishable, there is
an S, exchange symmetry when they are coincident. This acts as the Weyl group on
the lattice of charged objects. Thus, the 6D N = (2,0) theory has a moduli space of
supersymmetric vacua (sometimes called the tensor branch or Coulomb branch) that is
parametrized by the independent Weyl-invariant operators constructed out of the vevs

of scalar fields

M =R"/W . (5.102)

Since the strings of the 6D N = (2,0) theory are sources for the B-field, the fact
that it descends from the bulk C-field implies that the strings arise from the ends of M2-
branes that between Mb-branes. These strings have a tension given by the separation
between M5-branes which in the 6D theory is proportional to the vev of the scalar fields.
Thus, at the singularity of the tensor branch where the Mb5-branes are all coincident
the strings are “tensionless”.

In the M-theory construction of the 6D N = (2,0) theory of type A,,, compactifying
the stack of M5-branes on a circle then produces a stack of D4-branes in type IIA. These
branes have a world volume theory is U (/N) maximal supersymmetric Yang-Mills theory
(MSYM). Thus, we can conclude that the compactification the 6D N = (2,0) theory is

described by 5D non-abelian MSYM.

9Defining the precise relation between the bulk C-field and the B-field on the world volume of the
M5-branes requires the use of differential cohomology.?° Let us take the world volume of the M5-branes
to be Mg and the 11-dimensional spacetime to be X1 which locally forms a non-trivial R® bundle over
Meg which we can identify with the normal bundle of Ms. We can then identify the normal bundle
with the R-symmetry bundle R — Ms. From this we can construct the associated sphere bundle
S(R) — Ms. As shown in [135] the curvature of the B-field H can be explicitly written as

C1 . .
dH = 571}(05(}{) UCs(ry) - (5.100)

Here H is the lift of H to a differential coycle and C is the restriction of the lift of C' to a differential
cocycle that is further restricted to the sphere bundle S(R). The map 7. is then integration over the
fibers of the map m : S(R) — Ms. This shifts the cocycle és(R) by a representative of the Wu-class
As(r) = 31 (TS(R)). See [135, 136] for more details.
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5.4.2 The Class S Construction of SU(N) Theories

Let us take spacetime to be R” x @ where @ is a hyperkihler four-manifold. As is
convention, we will take the flat directions to be the z%123789 directions and Q is
spanned by the coordinates 45610 Let us endow Q with a complex structure where
v =2a%+iz® and s = 2% + i2'0 are holomorphic and let X C Q be a complex Riemann

surface in Q. Presently we compactify the z'0-direction, so we will more generally

define the complex coordinate t = e~ = e~ (@ +ix'")/R

Theories of class S with 4D gauge group G = [[;_; SU(N;) can be described by
compactifying the 6D N = (2,0) type Ay theory onto a Riemann surface C. Equiv-
alently we can consider wrapping a single M5-brane on an N-branched cover Y — C

which we take to be defined by a polynomial:

r

F(tv) =[]t~ fi(v)) (5.103)

i=1
where each f;(v) is a polynomial of order N;.

Upon compactification along the z'° direction, we produce the type IIA brane con-
figuration from [176] where there are r parallel NS5-branes localized 27%? = 0 and
certain values of 2% (encoding the gauge coupling of the 4D theory) and N; parallel
D4-branes runing between the NS5; and NS5, 1-branes that are localized at 2789 =0
and specific values of 4 (encoding the Higgs vev). Specifically, if we hold v fixed and
vary t, we will see that the roots are exactly the positions of the NS5-branes. Similarly
if we hold ¢ fixed and vary v, the roots will give us the position of the D4-branes. Here
the SU(NV;) gauge theory lives on the world volume theory of the stack of D4-branes
stretched between the NS5; and NS5;,1-brane. See Figure 5.13.

So let us consider the 6D N = (2,0) theory of type Ay_1 compactified on the Rie-
mann surface C' (with punctures). Since Riemann surfaces generally have a holonomy
group containing SO(2), we can construct a 4-dimensional N' = 2 theory by topologi-
cally twisting the compactified theory. In the 6-dimensional theory, the superconformal

algebra is given by o0sp(6,2|4) which has bosonic part so(5,1) @ s0(5)g. Under this
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NS5, NS5, NS5, NS5,

N D4
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Figure 5.13: This is a figure of a system of D4- (red) and NS5- (black) branes as
considered by Witten [176]. This brane construction arises as the compactification of
an Mb5-brane wrapped on a Riemann surface in the class S construction and describes
a 4D N = 2 quiver gauge theory with gauge group SU(N)".

compactification the algebra decomposes as

s0(1,5) @ s0(5)r — 50(1,3) B s0(2)c ® s0(3) D so(2)p , (5.104)

which we can further twist by projecting to the diagonal component of s0(2)c @

50(2)p — 50(2);:
50(1,3) ®50(2)c ®s50(3) ®so(2)gr — s0(1,3) B so(3) ®so(2)cr . (5.105)
Under this process, the 6-dimensional supercharges decompose:

Under compactification, only the terms (1,2;2)y and (2, 1;2)¢ survive, thus producing
a 4D theory with N' = 2 SUSY.

The theory on such a Riemann surface can be understood more generally as follows.
First consider a pants decomposition of such a theory given by a series of cuts {%}f’i I“”"
that are not homotopic to the boundary components. For each cut ~; there is an
associated SU(N) factor of the gauge group in 4D. Additionally, to each puncture,

there is an associated hypermultiplet in 4D with representation specified by additional

data at the puncture. See [162] for a full review of this identification.
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The curve defined by (5.103) determines the entire brane configuration and in fact
corresponds to the Seiberg-Witten curve that we discussed in Chapter 2 [176]. The
corresponding Seiberg-Witten differential is given by the trivialization of the holmorphic

symplectic form (2 = dx A dz restricted to X:
A=z ANdz . (5.107)

In this setting, the closed one-dimensional submanifolds corresponding to BPS states
are M2-branes wrapping non-trivial cycles in 3 as it stretches between different sheets

of X.

5.4.3 ’t Hooft Defects in Theories of Class S

The brane construction of theories of class S also have a natural construction of 't Hooft
defects in the resulting 4D N = 2 theories. In such theories, a 4D line operator descends
from a %—SUSY surface defect/string operator in the 6D theory. Such a surface defect

operator can be written in terms of the B-field and scalar field ¢’ as

W(X;n;) = exp {/PXRt (B + nip'vol(P x Rt))} , (5.108)

where X is the world volume of the surface defect/string operator and n’ € S* is a
vector determining the preserved SUSY. The surface defect/string operators of the 6D
N = (2,0) theory descend from the intersection of the M5-branes with M2-branes.

To produce a line operator in the 4D theory of class S, we wrap the string operator
on a 1-cycle P C C and the world volume of the line operator in 4D. Then by performing
the topological twist along C' and compactifying to 4D, this line operator becomes a

line operator:
L = Pr,[W(P x Ry;n;)] = exp {/ (B + niYivol(P))} : (5.109)
P

where Py, is the projection to the 4D theory. Therefore, the line defects can be labeled
by Lp where P is a smooth one-dimensional submanifold of C.
Isotopy classes of such submanifolds can be conveniently labeled, given a pants de-

composition of C' in terms of Dehn-Thurston parameters: 2!

2 The importance of being careful about connected components in the Dehn-Thurston theorem was
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Theorem (Dehn-Thurston): [48, 164] Let C' be an oriented Riemann surface
with negative Euler characteristic that has genus g and n punctures. Let {’yi}?iI3+"
be a maximal set of non-intersecting curves defining a pants decomposition of C' and

let {%}?i gg’fgﬁn 41 be a collection of simple closed curves near the punctures. There is

a mapping

D : Z(C) — 73,3+ x g3 +2n

)

(5.110)
e (<77 ’Yi)) (T)

where Z(C') is the set of isotopy classes of closed one dimensional submanifolds, ¢; is
the twisting number with respect to v;, and (, ) is the intersection number. Elements

in the image of D are denoted (p,¢) and are called Dehn-Thurston parameters.

The choice of {%}f’i I3+” above correspond to a weak coupling decomposition of the
UV curve C, and specifies a Lagrangian duality frame with gauge algebra su(2)®" with
h = 3g — 3+ n. Each curve corresponds to a weakly coupled SU(2) gauge group in the
4D theory.

Now consider the line defect associated to a generic 1D submanifold ~; 7 with Dehn-
Thurston (DT) parameters (p,q) = (p1, .. Ph,q1, -, qn). This submanifold will have a

k ()

set of connected components 57 = @, _; To.q

Dehn-Thurston parameters: (5%, @) = (pga), ...,pl(la),q§a), ...,q,(La)). The line defect

labeled by «, each of which has its own

L(v5.4,¢) then decomposes as a product of line defects

Lyse =1L . (5.111)

In [58] it is conjectured that the line defects L(P) are the same as the 't Hooft-
Wilson line defects of the Lagrangian theory with gauge algebra su(2)®". Moreover, it
is proposed that the Dehn-Thurston parameters should be identified with the 't Hooft-

Wilson parameters characterizing the magnetic and electric charges. This cannot be

first made clear to us in joint work with Anindya Dey while checking predictions of S-duality in class
S theories of type A;.
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true in general, but it seems highly plausible for those Dehn-Thurston parameters that
correspond to one-dimensional submanifolds 7 s with only one connected component.
In this case the proposal of Drukker-Morrison-Okuda is that L(P) corresponds to the

4D line operator L[ JOR10) which has 't Hooft-Wilson charges
P=Pp' . Q=P g, (5.112)
j=1 j=1

where h1U) is the simple magnetic weight, ') is the simple weight of the j* factor
of the gauge group, and h = 3g — 3 + n. It should be stressed that some more work is
needed to make use of this conjecture: In mathematics it is not known what conditions
one should put on the Dehn-Thurston parameters (p,q) in order for vzz to have a
single connected component! The only case where this is known is the once-punctured
torus (corresponding to the G = SU(2) N = 2* theory) and the four-punctured sphere
(corresponding to the G = SU(2) Ny = 4 theory) [121]. In that case there are only
a pair of DT parameters (p,q) and 7, ) has g connected components, where g is the
greatest common denominator of p and q.

For example, in the case where the four-dimensional gauge group is G = SU(2) we
have only a pair of DT parameters (p,q). Here the minimally charged 't Hooft defect

corresponds to the line with DT parameters (1,0)
L7(1,0) = L[hl,o] ) (5.113)

which can be identified with the highest weight representation Rj: of SU(2)". Following
the decomposition above, a line defect corresponding to DT parameters (p, 0) is the pt*

power of the simple 't Hooft defect

Ly = (L))" - (5.114)

Thus, we see that the ‘t Hooft defect corresponding to L is reducible. This is the

V(p,0)

origin of our notation from (3.98)

Lpo:=1L (5.115)

T(p,0) ~

By contrast L1 o) corresponds to a trace in the representation Rp:.



181

Chapter 6

Expectation Value of 't Hooft Defects

In this section we will continue our discussion of 't Hooft defects. Again we will
consider 4D N = 2 gauge theories that have a Lagrangian description that are also the-
ories of class S§. Theories that live in this intersection are amenable to many different
techniques for studying ’t Hooft defects, and in particular to compute their expecta-
tion values. In this chapter we will review the computation of the expectation value
of 't Hooft defects in these theories by two such techniques: spectral networks and

localization.

6.1 Line Defects in Theories of Class S

In general, the expectation value of the supersymmetric line operators we are consid-
ering (L) is a holomorphic function on M, the Hitchin moduli space, in a complex
structure determined by the supersymmetry preserved by L. The preserved supersym-
metry can be characterized by a phase (, which may be viewed as an element of the
twistor sphere: ( also determines a complex structure on M. We will denote the space
M with complex structure determined by ¢ as M. (L({)) on M, can be computed,
exactly, by using class S techniques.

For theories of class S, one exact method for computing the expectation value of
L(¢) expresses (L(()) in terms of “spectral network coordinates” on M, [69, 71, 70].
These coordinates are generalizations of well-known cluster, shear, and Fock-Goncharov

coordinates. They are functions on the twistor space and, restricted to a fiber M, are

This section is based on material from my papers [23, 26, 27].
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holmorphic Darboux coordinates in complex structure (. We refer to the exact result
for (L(¢)) in these coordinates as the “Darboux expansion.”

The collective work of [67, 68, 69, 70, 71] develops a technology to compute this
expectation value. This relies on the fact that the expectation value of such a line
operator can be computed by the trace of the holonomy of flat gauge connections along

a path on the associated UV curve C

(Lp) = Trg Holy,,, P exp (ﬁ A) . (6.1)

This can be expressed as a Laurent polynomial in Darboux coordinates which is sub-
ordinate to a cell decomposition of C'

(Lp)= > Q2(Lp,v;u)Yy, (6.2)

vl

where I, is the local charge lattice above u € B, 2(Lp,~;u) is the framed BPS in-
dex corresponding to the state with charge + bound to the operator Lp, and ), are
“Darboux coordinates” on the moduli space of flat connections with the complexified
gauge group Gc: Myq:(C; Ge). These coordinates have the physical interpretation of
the expectation value of a line defect of charge « in the IR limit. Further, they satisfy
the Poisson algebra

Vg = (_1)<<%7/>>y7+7, 7 (6.3)

where (-,-) : I' x I' = 7Z is the DSZ pairing on I

The main tool for computing this holonomy of the flat connection on a vector
bundle for generic Riemann surfaces is the method of spectral networks [70, 71]. This
technique generalizes the method of trivializing the vector bundle over a triangulation
with gluing conditions at the edges. And further, it makes use of a map between a
vector bundle on C' and a line bundle on the multi-sheeted cover X' (the Seiberg-Witten
curve). Each spectral network introduces a natural set of coordinates on the moduli
space of flat connections, M f,:(C; Gc) corresponding to the Darboux coordinates of

the above expansion ).
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6.1.1 Theories of Class S and Spectral Networks

As we discussed in Chapter 5, theories of class S are constructed by taking the six-
dimesional ' = (2, 0) theory and compactifying it along an oriented Riemann surface C
with a topological twist [68, 66, 176]. For the type An_1 theories of class S, this can be
described by string theory as the low energy effective action of a stack of N Mb5-branes
wrapped on C' x My with the same topological twist where M, is our 4D spacetime.
In going to the low energy limit, the M5-branes wrap a Riemann surface X' which is
an N-branched cover Y — C. The vacuum equations describing the four-dimensional

physics in My are given by Hitchin’s equations' on C
Fo+le,9'1=0 ,  Oagp=0, (6.4)

with gauge group G = SU(N). Given a solution of these equations, we can identify the

Seiberg-Witten curve and differential as
Y ={det(xzdz —p) =0} CT*C Asw = zdz (6.5)

where (z, z) — xdz are coordinates on T*C.
In these theories, a 4D line operator comes from an M2-brane whose boundary wraps
a closed 1-cycle P C C times a path v C My. These M2-branes couple to the 4D gauge

field A associated flat G¢ connection
A=(o+Ac+ e, (6.6)

so that their expectation value is given by the trace of the holonomy A along + times
the holonomy of A along P. Since this theory is topologically twisted, all supersym-
metric quantities are independent of the sizes of My, 2. Therefore, we can see that the
expectation value of the 4D 't Hooft defect is given (semiclassically) by the holonomy
of the flat complexified connection A along P by taking the limit where X' is small so
that there is no fluctuations in these spacetime dimensions [68, 69].

Spectral networks are a technique constructed in [67, 68, 69, 70, 71] which can be

used to compute the trace of the holonomy of a complexified flat connection and hence

'Here we use the notation Ac the G-connection on C.
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the expectation value of 4D line operators in theories of class §. Here we will only
consider the case of 2-fold coverings which corresponds to the case of G = SU(2) and
Gc = SL(2;C). In this case we will label the sheets by an index i = 1, 2.

We define a spectral network VV subordinate to the covering ) — C' to be an oriented

collection of open paths w on C called walls with the following properties:

e Generic walls, w, begin at branch points of 7 : X — C and end at punctures of

C.
e Three walls begin at each branch point.
e Walls carry an ordered pair of the sheets of 2’ — C — in our case: 12 or 21.
e Walls do not intersect, except at branch points.

e Each puncture of C has a decoration which encodes a trivialization and orientation

of the covering 3) — C' over the puncture.

e Walls can also end on other branch points in which case they pair with another

wall to form a double wall.

e Each network comes with a resolution convention of double walls — American or
British. These describe in which direction the walls are infinitesimally displaced

in order to compute parallel transport across double walls.

A special class of spectral networks which arise naturally in theories of class S are called
WKB spectral networks. These are defined by a meromorphic, quadratic differential @9

on the closure C of C. Locally, this is of the form
o = u(z)(dz)? . (6.7)

We can now use o to define a spectral network as follows. Pick? a 9 € R/27Z. Now

consider the foliation of C' by curves v which satisfy

, 4 d~\ 2
o) eRy or e 2Pu(x(t) (dj) eR, (6.8)

2For our case we will want to pick e®” = ¢ where  is the phase of the line defect.
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where we use the notation of 2¢ following that of [89].
The spectral network W(y2, ) is then defined by the critical graph of the foliation
—i.e. the limiting set of 7 which divide the foliation into distinct sectors. In the class

S construction, this is given by the square of the scalar field in the Hitchin system
2 = My (6.9)

Spectral networks allow one to define a trivialization of the SL(2;C) vector bundle
over the complement C'\WW and give gluing conditions across the walls. Consider the
rnk = 2, SL(2;C) vector bundle 7 : EF — C with connection V. On each connected
component o € C\W, we can trivialize the bundle E — C such that E‘U = LD Ly
where L; are line bundles on patches of C'. Since the spectral network is subordinate
to the covering X — (', the trivialization of the vector bundle F over a connected

component o C C\W lifts to a GL(1;C) line bundle over X
E=nl, (6.10)

where £ is a line bundle on X such that the connection V on FE lifts to an abelian

GL(1;C) connection V® on £ V = 7,V%. This can also be written as

E =L

z

: (6.11)

(oo

2(1) 2(2)
where z € C and 77 (2) = 2() @ 2. This compatibility leads to the isomorphism
[70, 71]

Miiar (¥, GL(1;C)) = Mfiar(C; SL(2;C)) - (6.12)

This can be understood as a reflection of gauge group enhancement in a stack of D-
branes.

This isomorphism allows us to compute holonomies of the non-abelian vector bundle
E — C in terms of holonomies of the connection of a flat line bundle on X'. This moduli

space has a natural set of coordinates®:

X, =Hol,V® € C* |  V[y]e€ H(X:;Z). (6.13)

3Here we use the notation A, for the Darboux coordinates where v € H;(X;Z) while we use Y. for
the Darboux coordinates where v € I' (the charge lattice).
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These coordinates follow the multiplication rule
Ay Xy = Xy (6.14)

and satisfy

Xy=—1 ,  Xpn=1, (6.15)

, =
where 7, is a small loop around a branch point b. Let us define X = X\ {branch points}.
For generic W, we can fix a basis of {y;} € H1(X';Z)/(y+ w*y) to form our coordinate
system on M(X,GL(1)). These X, are the Darboux coordinates related to the spectral
network W.

To each [y] € H1(X';Z) we can associate a physical, conserved charge in the four
dimensional theory v € I'. In order to relate these to the physical charges of the 4D
theory, these charges must be chosen so that the oriented intersection number of two

curve classes is given by the charge DSZ pairing on the physical charges:

[(nl#ve] =<y, > . (6.16)

In general, there is not necessarily a unique choice of charge identification. These
different choices correspond to different duality frames of the 4D theory.
After identifying the physical charge associated to [y] € H1(X;Z), the corresponding

Darboux coordinate is of the form [67]

TR _ . non-perturbative
—Zy+TR(Zy + 00 - Qy + , (6.17)

log X, =
¢

n gap
where Z, is the central charge evaluated on the charge associated to v and 6 - (), is the
Cartesian product of the vector of electric and magnetic theta angles with the vector of
electromagnetic charges associated to (). It is important to note that these coordinates
generically have non-perturbative corrections which, while complicated, are known and
given in explicit formulas in [67].

We can compute the holonomy of the flat non-abelian gauge connection by decom-
posing the closed 1-cycle into open paths and computing the product of their associated

holonomies. Since the spectral network provides a trivialization of the connection in
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each of the cells, the holonomy along a path in a single cell can be written as

Xp 0 _ 0 X
Dp=| "7 and  Dp P (6.18)

—1 -1
0 A N

where Dp corresponds to when the path crosses a branch cut since the sheet order
switches. Then in making a convenient choice of localization, we can write the holonomy

across a a generic wall [69, 70, 71]

(

1 Sy
for w of type 21,
0 1
Sy = : (6.19)
1 0
for w of type 12,
Sw 1

To compute the parallel transport across a double wall, one must infinitesimally dis-
place the phase ¢ (according to the resolution convention) so that the double wall is
replaced by a pair of generic walls; then one can compute the holonomy using the rules
above. These rules allow one to compute the holonomy of a complexified flat gauge
connection along any path in terms of Darboux coordinates defined by the spectral
network (spectral coordinates).

There are several consistency conditions that restrict the number of free spectral
coordinates. These come from abelian gauge symmetry on open path segments and
from imposing monodromy conditions around branch points and punctures. This gauge
symmetry acts by rescaling the spectral coordinate ), by a function corresponding
to the end points of the curve ;; with beginning and end points labeled by ¢ and j
respectively

Xy = 995" (6.20)
so that the trace of the holonomy around closed paths are gauge invariant.

The consistency conditions we impose for monodromy around a branch point b and

puncture p is that

-1 0 Xm, 0
Hol,,V = , Hol,, V = ) (6.21)

0 -1 0 Xt
P



188

which come from the condition in 6.15 and the trivialization of the vector bundle at
the punctures given in the data specifying the spectral network. Note that the data m,,
associated to a puncture p is the mass parameter of the corresponding matter multiplet

as in [66, 68, 69).

6.1.2 Wall Crossing in Spectral Networks

An important feature of spectral networks is that they give us an excellent tool for
understanding wall crossing. In this setting, wall crossing is realized by changes of
topology of the spectral network W(yps,9) as we scan the phase ¢ = e*¥ which can be
lifted to é e C*.

The locations of the critical phases ( = (. where the spectral network undergoes
topology changes lift to a co-dimension-1 “walls” in C* called and are called K-walls[70].
Physically, each KC-wall corresponds to a wall of marginal stability W('yk) where ( is
aligned with the phase of Z,,. Here, the change in topology of the spectral network

causes the Darboux coordinates to undergo a cluster-like transformation [69]

Ky o Xy, = (14 0(7)X,) <2y - yer, (6.22)

k

where

o(y) = (=1)=m> (6.23)

is a particular choice of quadratic refinement with respect to a choice of splitting of the
charge lattice and v = 7, ® Y2

However, since the expectation value of a line operator Lp is defined by a path
P C C which is independent of the topology of the spectral network, the expectation

value

(Lp)=> 2(v,Lp)Yy , (6.24)

yerl

is wall crossing invariant. This means that the ), undergo coordinate transformations

which exactly cancel the wall crossing of the framed BPS indices. Thus, by studying

4We will be working in the semiclassical limit so that there is always an almost canonical choice of
charge lattice splitting.
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Ye J;”:J Ye

E, E',

Figure 6.1: This figure shows the flip of an edge in a triangulation (left flips to right)
giving rise to a Fock-Goncharov (shear) coordinate inside a quadrilateral with edges
FEy, Es, Fs, E4. This figure also demonstrates the projection of the paths in X — C
corresponding to the Darboux coordinates Xg and Xgr.

the wall crossing properties of the ), one can infer the wall crossing of framed BPS
states.

A nice feature of generic WKB spectral networks is that the walls provide an ideal
triangulation of C'. In these networks, the associated Darboux coordinates have a
natural identification with the edges of the triangulation. These coordinates are given by
the holonomy along the lift under the projection 7 : X — C of a path running between
the branch points of different triangles through a given edge of the triangulation. See
Figure 6.1. We will use the notation where the Darboux coordinate associated to the
edge FE is denoted X'p.

In such spectral networks, the fundamental topology shift that occurs in wall cross-
ing is a flip of the triangulation . See Figure 6.1. Explicitly, in a generic WKB spectral
network and consider a quadrilateral with edges F1, Fo, F3, B4 with diagonal edge F,

a flip on the edge F +— E’ acts on the corresponding Darboux coordinates by:
Xg — X , Xp, o Xp, = Xg, (14 Xg) ,
X, = Xp, = Xp,(1+ X570 X, X, = Xp,(1+ Xp) (6.25)
Xp, = Xp, =X, L+ X507

where the signed intersection pairing of the edges is (E;, E;) = di41,j — 0i—1,;-
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(a) (b) (© (d)

Figure 6.2: This figure shows how a wall running to a puncture (a) twists around the
puncture in a sequence of flips (b),(c) and approaches the juggle in which the wall runs
completely around the puncture (d).

In the case where there are punctures on C spectral networks can also undergo a
topology change called a juggle.> This can be understood as an infinite sequence of
flips involving a puncture that has the effect of twisting a wall that runs to a puncture
until it completely encircles it [68]. See Figure 6.2.

The juggle can be understood as follows [68]. Consider an annulus surrounding a
puncture, P (which we replace by a disk with a marked point), with a single vertex
V' of the triangulation on the outer boundary. Now consider lifting the configuration
to the simply connected cover which is a triangulated infinite strip as in Figure 6.3.
In this covering there are an infinite number of images of the interior marked point
(P — {PB;}), exterior vertex (V — {V;}), and edges indexed by i € Z. We can define
Darboux coordinates on the annulus as the Darboux coordinates on the triangulated
strip corresponding to the different edges in the same preimage under the projection to
the annulus.

If we choose an ordering of the lifted images of the vertices, we can define a winding
number of an interior edge by the difference of the image number of the end points.
Further, we can iteratively increase (decrease) the winding numbers of the interior edges

by performing a sequence of simultaneous flips on all of the preimages of the the interior

5There is another transformation called a “pop” which has to do with changing the decoration of a
given puncture, but this will not be important for our story. See [68] for more details.
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V., Vo Vv, v,

Figure 6.3: This figure shows how to lift a spectral network on an annulus surrounding
a puncture on C' to the simply connected cover. The puncture P, and exterior vertex
V lift an an infinite number of seperated points, denoted {F;} and {V;} respectively,
connected by interior edges giving a triangulation of the strip.

edge with the lowest (highest) winding number. See Figure 6.4. After n such flips, the

0" exterior vertex preimage to the n! and (n — 1)*

interior edges run between the
interior preimage. We can now make sense of the corresponding Darboux coordinates
in the limit as n — oo. First note that as n — oo the interior edges approach a parallel
line to the interior and exterior edges. This corresponds to a spectral network where
there is a single, double wall circling the puncture of C' under consideration. If we define

yi”) and y(_”> to be the edges with higher and lower winding number respectively after

n flips, then in the n — oo limit we can construct the well defined coordinates:

ViU = lim PV 9 = i )T (626)

There exists an analogous coordinate system {yﬁf), yfg)} for the limit of sending the

winding to —oo which is related

YO =T L Y = - ) (6.27)
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(a) (b)

P, P, P, P, P, P, P, P,

/-

©

P, P, P, P,

Figure 6.4: This figure demonstrates how flips in the spectral network on the annulus
corresponds to increasing winding number by considering the flips of all of the preimages
in the triangulated strip. Here the processes of going from (a) — (b) and (b) — (c)
requires a sequence of 2 flips where the red edges undergo the flip.

where &1, £_ are the positive and negative eigenvalues of the monodromy matrix around

the given puncture.

6.1.3 Line Defects and the AGT Correspondence

The expectation value of line defects in theories of class S can also be exactly computed
by using what is known as the AGT correspondence [3, 4].

Recall that theories of class S are constructed by compactifying a corresponding
6D N = (2,0) theory on a Riemann surface C' with a topological twist that makes the
theory independent of the scale of C. Because of this, the expectation value of SUSY
operators in the 4D theory, which descend from SUSY operators in the 6D theory, are
equal to the expectation value of a corresponding operator in the 2D theory on C' [3, 4].

For theories of class S with SU(N) gauge group, the above construction is equivalent
to wrapping a stack of N Mb5-branes on C' with a topological twist. In this case, the
corresponding 2D theory is Ay_; Toda theory on the closure of C, denoted C. Here,
punctures of C are associated with a flavor symmetry of 4D hypermultiplets and come

with the data of a mass parameter specifying the 4D flavor symmetry. In the associated
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2D Toda theory, each puncture corresponds to a vertex operator insertion in the path
integral whose weight is determined by the associated mass parameter [69, 4, 59, 58].

We are interested in computing the expectation value of magnetically charged line
defects in the 4D theory. Again, recall that in theories of class S, line defects descend
from strings in the 6D theory that wrap the 2-manifold v x S} C C x (R3 x S}) where
~v is a closed 1-dimensional submanifold of C' that does not go into the punctures.
The electromagnetic charge of the associated 4D line defect in an S-duality frame is
determined by the homology class of v C C with respect to the weak coupling cut
decomposition of C' corresponding to the S-duality frame [69, 58, 59, 4].

In the 2D Toda theory, a line defect associated to a closed curve ~ corresponds to a

loop operator £,. This can be computed by [4, 168, 126]

(Lgo)myisu(ny,c] = < Hme £75> , (6.28)

I Toda[An_1,C]
where Ty[SU(N),C] is the type SU(N) 4D theory of class S corresponding to the
Riemann curve C, the {V,, f} are the vertex operators corresponding to the punctures

of C' with mass parameters {my}, and 7 is the curve corresponding to the operator

Lo [4, 58, 59].

Complexified Fenchel-Nielsen Coordinates

The expectation value of 4D line defects computed using the AGT correspondence is
naturally expressed in terms of Fenchel-Nielsen coordinates a,b. These can be defined
as follows.

Choose a weak coupling region of the Coulomb branch. This defines a complex
structure and comes with a maximal set of non-intersecting curves {%}?i 13+n that are
not isotopic to punctures on the UV curve C which correspond to weakly coupled gauge

groups indexed by .5 Each +;, corresponds to an SU(N) factor of the gauge group of

g, to which we can define the associated holomorphic coordinates {a;} € tc defined by

(Ly,) = Trye® . (6.29)

SHere we are restricting to the case of Lagrangian theories of class S with SU(N) gauge group.
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The {a;} are Poisson commuting with respect to the standard, symplectic (2, 0)-form

27 on Seiberg-Witten moduli space [53, 102]

o 0
;| —,— | =0 6.30
J <6ai’8aj> ) ( )

and form a maximal set of Poisson commuting holomorphic functions.
Now we can define a set of symplectically dual coordinates {b;} € tc with respect
to {25 such that

1
2 = h;T‘rN(dai A db;) . (6.31)

We can then fix the redundancy b; — b; + f;(a) where Oy, f; = Ou; fi by specifying the

semiclassical limit:

a=i0) —2x8Y ) + ...
Y | (6.32)
b =io® + P x ) _gpy® ¢
g

where 97(,? and 99 are the magnetic and electric theta angles of the i factor of the gauge
group, ¢ *1@5}2 = Yo(g) + iXé? are the real and imaginary parts of the phase rotated vev
of the adjoint-valued Higgs field &) of the A = 2 vectormultiplet corresponding to the
ith factor of the gauge group, and 1J, g define the real and complex part of the complex
gauge coupling 7 which we assume to be the same for all factors of the gauge group.
Note that we will generally take @, to be fixed so that the a,b have (-dependence via
Xoo, Yoo. Additionally, here 3 is the radius of the thermal circle and (...) correspond to
non-perturbative corrections, which we will discuss later in Section 7.1.1.

For example, in the case of a single SU(2) gauge group, the above discussion reduces

to a single pair of Fenchel-Nielsen coordinates a, b.

6.2 Localization for Z,,,,,(P,v)

Now we will discuss how to compute the expectation value of 't Hooft defects by using
localization. To facilitate discussion, let us consider the the example of the 4D N = 2

SU(N) gauge theory on R? x S! with N ¢ fundamental hypermultiplets.”

"The analysis follows similarly for theories with higher rank gauge groups.
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In such theories, the expectation values of line defects, and in particular 't Hooft
defects, are holomorphic functions on Seiberg-Witten moduli space. In a weak coupling
domain, the expectation value can be written in terms complexified Fenchel-Nielson co-
ordinates a, b which are holomorophic, Darboux coordinates on Seiberg-Witten moduli
space. Here, a is canonically defined and its symplectic dual b, while not canonically
defined is uniquely fixed via the weak coupling expansion as in the previous section.

From general principles, the expectation value of the 't Hooft defects can be ex-
pressed in these coordinates as a Fourier expansion in b. In general, this can be ex-
pressed as [97, 81]

(Lpo) =Y cosh(v,b)(F(a)) Zpono(a,m, € P,v) (6.33)
v<P
where the sum is over v =173, vrh! such that v; < py for all I where P = Z[pjhl.

The expectation value above is expressed as a sum over monopole bubbling configu-
rations where cosh(v, b) F'(a) encodes the contribution of bulk fields and Zy,ono(a, m, €; P, v)
describes the contribution from the SQM that arises on the ’t Hooft defect from bub-
bling [23].

The field content of this theory consists of a ' = 2 vector multiplet (@, 14, A,) with
gauge group SU(N) and Ny fundamental hypermultiplets (qgf), M) with masses m f
where f = 1,...,N;. We will express these hypermultiplets as a single hypermultiplet
(ga,A) that transforms under the bifundamental representation of G x Gy = SU(N) x
SU(Ny) with a single mass parameter m € ty C g¢. Here g4, 14 are a scalar- and Weyl
fermion-doublets transforming under the spin-3 representation of SU(2)g and A is a

Dirac fermion.
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This theory is described by the Lagrangian [133, 22]:
L= Lvec + Lhyp )

1 1 1
L'UBC = ? /d3.’I] Tr <2FMVF#V + ‘D/,L@P - Z[@,QST]Z

——%&A6“DuwA—-mwﬂ@t¢m]+i@A@%&4)

¥
+W TI"(F/\F),

Liyp = ;/d% (]DquF + 2D + [mqa|? — imgADTqq — im*q Dy,
— 2mRAN + 2imiAyP N — iIABN — iINT BTN
+2¢4 N4 + 204N\ + %QA{Q Pl + glg(qTATa(Ts)ABqB)2> ;
(6.34)

where s = 1,2, 3 is summed over, (75) £ are the SU(2)g generators, 1 = (¥4,104) is
a Dirac fermion, and m = mpg + imj.

The supersymmetry transformations of these fields are
Sl = —i0" Fyufa +i0" Dy + S0
6D =264 0eA, = 0 ha + 045,04 (6.35)
0eqa = 254N, Oe = iy“:;ADMqA — (i@T + m*)qA(E*)A ,

where E}Z = (£4,€4) is a Dirac-fermion doublet of SUSY transformation parameters
that transforms in the spin i-representation of SU(2)x.

As in the case of Seiberg-Witten theory, the space of SUSY vacua is given by the
complexification of a Cartan subalgebra modulo the action of the Weyl group which
is again parametrized by the vev of the complex scalar field. This generically breaks
the conserved global symmetry group down to T = Tgauge x U(1)e x Ty where Tyauge
is the maximal torus of the 4D gauge group, which describes the group of global gauge
transformations, and 7'y is the maximal torus of the flavor symmetry group.

Now let us include a (reducible) 't Hooft operator specified by the data (P, Z = 0, ().

The gauge field singularity at & = 0 requires adding a local boundary term to the action
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specified by ¢: 8

1
_ L T -1 -1 _
Shnd 7 ll_r% - r (Im[('P|F + Re[(™'®] « F) , (6.36)

where S2(0) is the 2-sphere of radius € centered at & = 0.
This insertion manifestly breaks %—supersymmetry. The choice of ¢ € U(1) defines

the conserved symmetries to be generated by a parameter p that is defined by
e = 2 (pt +im) (6.37)

A

where p?, 74 are symplectic-Majorana-Weyl fermions.” The conserved supercharges

are given by the real combination
Q=p"Qa+paQ", (6.38)

where Q4 is the complex supercharge of the full N' = 2 SUSY algebra. Specifically,

this means that L, is a Q-invariant operator. This Q satisfies the relation
Q?=H+aQq+erJ +m-F (6.39)

where H is the Hamiltonian, @, is the charge associated with global gauge transforma-
tions with fugacity a, J, is the charge associated to supersymmetric rotations'? in R3
that we associate with €4 in a %—Q background, and F' is the set of conserved flavor

charges.

6.2.1 Localization

Now we will compute the expectation value of the 't Hooft defect by using localization.
The localization principle states that the expectation value of a Q-invariant operator is

invariant under a Q-exact deformation of the Lagrangian

Lo L+t0-V. (6.40)

8Really we must take a sum of p boundary terms (where the charge of the reducible ’t Hooft defect
is P = ph'), each centered at Z%_ and then take the limit as & — 0. Each of these corresponds
to the boundary condition for a constituent minimal 't Hooft defect inserted at Z*. To represent a
single reducible ’t Hooft defect, we require taking the limit (", ¢ — 0 such that ||/} — 0 where
the physical boundary term for each minimal 't Hooft defect is inserted on a 2-sphere of radius e
surrounding #9. For simplicity, we will ignore this subtlety in the main discussion.

AB

9Symplectic-Majorana-Weyl fermions satisfy: p?* = ¢425%55.

0These are spatial rotations with an R-charge rotation.
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Then, by studying the limit as ¢ — oo, we see that the path integral localizes to the

zeros of V that are fixed under the action of T'. As in [97, 81], if we make a choice
V=(2 X0 +(Q ¢a "), (6:41)

then the path integral localizes to the zeros of Q - A and Q - ¢A. This reduces the
path integral to an integral over (the T-invariant subspace of) the moduli space of
BPS equations. Note that since shifting ¢ is a 9O-exact deformation of the action, the
localization behavior of the path integral is independent of the value of t.

In our case, the associated BPS equations (before %Q—deformation) are given by !

D;X =8B, |, E; =D;Y
DY =0 , DX-[V,X]=0, (6.42)
D,g=0 , Dog+ (Y +mp)g+i(X —mp)g=0,

where B;, F; are the magnetic and electric field respectively and m is rotated by the
phase (: ("'m = mp + 9m;. The solutions to these equations with respect to the
't Hooft defect (3.94) and asymptotic boundary conditions (3.39) — (3.40) are given
exactly by singular monopole moduli space [97, 81, 23].

Thus, the expectation value of the 't Hooft defect localizes to an integral over the
T-fixed locus of singular monopole moduli space with measure determined by the 1-loop

determinant times the exponential of the classical action.'? In this integral, the classical

"To regularize the path integral, we will need to turn on a %—.Q—deformation that modifies the BPS
equations. However, the T-fixed locus of the moduli space of the deformed BPS equations will be
identical to the T-fixed locus of the moduli space of the undeformed BPS equations. See [81, 23] for
the explicit form and more details.

12T6 be precise, we are computing the expectation value of the 't Hooft defect with fixed electric and
magnetic theta angle 6., 0,,. The electric theta angle is defined by fixing the holonomy of the gauge
connection along the circle at infinity
Adt =0, . (6.43)
RE
The magnetic theta angle is defined as the Fourier dual of path integral with fixed magnetic charge
<L1770>’Wn : )
(L50)om = D> (Lpo)yme ™0 (6.44)
Thus, by saying that the path integral “localizes to singular monopole moduli space”, we mean that
each term in the Fourier sum (6.44) reduces to an integral over the reducible singular monopole moduli
space M(P, ¥m; Xoc). Due to the universality of the geometry of the transversal slices/bubbling SQMs,
we will find that this subtlety is irrelevant for the calculation of Zmono(P,v). See [23] for more details.
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action is determined by the effective bulk charge sourced by the 't Hooft defect. Since
singular monopole moduli space decomposes as the disjoint union of bubbling sectors
with different effective charges, the expectation value of the line defect reduces to a
sum of integrals over the T-fixed locus of different strata of the bubbling locus. Thus,
the expectation value is of the form

(Lyo) = Y. Z(a,b,myseq;Pv), (6.45)

[vI<|P|
VEACT+P

where Z(a,b,m¢, e;; P,v) is the reduction of the localized integral over E(P, Ym; Xoo)
to the strata ﬁ(;) (v, Ym; Xoo) and the corresponding transverse slice M(P,v).

By integrating over the T-fixed subspace of each ﬁgj) (V,Ym; Xoo), the computa-
tion for Z(a, b, my, e4; P,v) can be further reduced to a T -equivariant integral over the
transversal slice of each strata, M(P,v) [97, 81, 23]. As shown in [23], we can identify
the universal coefficient of the integrand with e(“b)Zl_loop(a, my,e4;v) and the remain-
ing, integral dependent part as Zmono(a, m¢, €45 P, v). This will lead to the form of the
expectation value of the 't Hooft defect

(Lyo) = Z e(v’b)Zl,loop(a, My, €45V) Zmono(@, My, e4; P,v) | (6.46)
i
where, Z,0n0(P, V) can be identified as:
Zomomo(@y s, €43 Pov) = / e A (TM) - Cx(V(R)) | (6.47)
M(P,v)
Here, A-Tv is the T—equivariant A genus, Cz is a T -equivariant characteristic class that
depends on the matter content of the theory, e*T#7 is the equivariant volume form, and

a,my, e enter the expression as the equivariant weights under the T-action. It will be

crucial to us that Zono(P,V) is independent of 3.3 See [127, 97, 23] for more details.

6.2.2 Bubbling SQMs

As shown in [23], Zyono(P,v) can be physically interpreted as the contribution of an

SQM localized on the 't Hooft defect of charge P that has an effective charge v. This

134 is treated as independent of 3.
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Figure 6.5: This figure illustrates which strings give rise to the various fields in the
bubbling SQM. (a) describes the D1-D1 strings that give rise to a N' = (0,4) vector
multiplet with fields (v, o, A4), (b) describes the D1-D3 strings that give rise to N/ =
(0,4) fundamental hypermultiplets with fields (¢%,7), (c) illustrates D1-D1’ strings
that give rise to N' = (0, 4) bifundamental hypermultiplets with fields @A, ¥,), and (d)
describes D1-D7 strings that give rise to the short N' = (0,4) Fermi multiplets with
fields (1, G).

leads to the interpretation of the integral in (6.47) as the localized path integral of the
bubbling SQM. Then, since the (twisted) path integral of a SQM is formally equal to
its Witten index, the monopole bubbling contribution, Z,,no(P, V) can be expressed as

the Witten index of the corresponding bubbling SQM specified by the quiver I'(P,v)

as in Section 5.1.2:
Zmono(P,v) = Iy (I'(P,v)) := Tra (—1)F e 8{QQ1+aQute, QetmF (6 4g)

where @, is the charge for the flavor symmetry associated with 4D global gauge trans-
formations, Q)¢ is an R-charge associated to the %Q—deformed background, ' and F is
the set of conserved flavor charges.

The bubbling SQM specified by the quiver I'(P,v) is given by compactifying the

2D N = (0,4) quiver gauge theory. Let us use the notation G = H?Z_ll U(k@) for

Q. can also be understood as an R-symmetry charge in the bubbling SQM. The A" = (0,4) bubbling
SQMs we are consider have an SU(2) g R-symmetry and an SU(2), outer-automorphism “R-symmetry”.
Here the Q. is diagonal combination of the Cartans: Qe = Qr — Q». See [165] for more details.
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the gauge group of the SQM such that the corresponding Lie algebra g decomposes as
g=@"'g® = @ u(k®) and its Cartan subalgebra t = @7t = @I~ u(k®)
where P =n ﬁl, Wl e Acochar-*°

Each gauge node corresponds to a N/ = (0,4) vector multiplet with constituent fields
(a(i), )\A(i),vgi)), where ¢ = 1,...,n — 1 indexes the gauge nodes. In the string theory
interpretation of Section 5.3, these vector multiplets arise from the D1;-D1; strings on
the stack of D1;-branes stretched between the NS5;- and NS5, 1-branes. Additionally
there are N’ = (0,4) fundamental hypermultiplets with constituent fields (¢, ) @
((;NS(i), i(i)) that come from D1;-D3 strings and N = (0, 4) bifundamental hypermultiplets
with constituent fields (Q(i),g(i)) @ @(i),@(i)) that come from the D1;-D1;4 strings
at NSh-branes. Also, in the case of theories with 4D fundamental hypermultiplets,
there are additional N = (0,4) short Fermi-multiplets with constituent fields (7", G(*))
coming from D3-D7 strings. See Figure 6.5. Additionally, see [165, 90] for more details
on N = (0,4) SQMs.

The bubbling SQM has a Lagrangian that decomposes as a sum of terms
L= Lvec + LFermi + Lf + Lbf y (649)

which describe the contributions from vector multiplets, Fermi-multiplets, fundamental
hypermultiplets, and bifundamental hypermultiplets respectively. These contributions
can be found in Appendices D.1 and D.2. Here we will pick the convention where the
gauge couplings for each factor in the gauge group are equal to e? by fixing a universal
normalization of the Killing form for the SQM Lie algebra.

Now we wish to compute the Witten index of the bubbling SQM. This requires an
understanding of the spectrum of the bubbling SQM. We can infer an approximate

version of the spectrum from the classical moduli space and its surrounding potential.

5Recall that here we use the notation Ly for P = phl7 At € Apmw.
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In this SQM, the potential energy is of the form

:;g§:<wm.¢mgﬁwg@.$mP)
62 Z ( (i+1) ) ’ ‘( (i+1) _ (7,)) . é(1)|2>

e | ez (650
222(|¢ 602 — g0 +167 2 + 1oV - 16 V)

L L Z“b(l () _ gt 4050 Q(iq)é(i—l) 2 7

where here we are using scalar contraction. Thus, the moduli space is defined by the

solutions to the equations:

0= |o@p®? . 0= ]o®g02
0=V U(i))é(i”? , 0= |(c+D) - U(Z-))é(i)‘Q 7
0= @2 — |02 — @(i)‘z " @(i)‘Q N @(i_l)P - @(i_l)P | (6.51)
0=¢®pd ?(i)é(i) _i_?(i—l)é(i*l)

for each .

The solutions of these equations can be divided into Coulomb, Higgs, and mixed

branches

M’UCLC = MC U MH U Mmzx ) (652)
where

Mo = {J(i) c ’ o ” o+ ’ ¢(i),$(i)7¢(i)’a}(i) — 0},

@2 _ 1502 — |62 1 ~(i)2+ (i-1)12 _ ~(i—1)2:0 4
MH_{¢ = BOR —9OF + BT+ 160 -8 ’U@_O}/g’
=0

POPIONEPOPAC SIS Pt

(6.53)

and G is the group of gauge transformations. The mixed branch is significantly more
complicated to write down in full generality, but it should be thought of as having
asymptotic directions as in the Coulomb branch for some subset of directions of o € t
and some hypermultiplet scalars with non-zero expectation value. Because of this hybrid
quality, the mixed branch, like the Coulomb branch, is non-compact and, like the Higgs

branch, is a singular manifold.
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We can additionally add an FI-deformation to the theory
Lir==(&D) ==} D" (6.54)
This contribution changes the potential to
U — 6122 <|J<i> L2 4 |0 ggm,z)
* Z (14D = 00) - g2 1|0 4D) — o) . V2)

- o | . ., (655)
_}_2762 (|¢z |2_|¢z)|2_|é(z)‘2+‘? ’2+’?(1_1)|2_|é |2_62€(z)>

2

L1 Z‘gb(l (i) 7‘& Q(iq)é(i—l 2

This lifts the classical vacua associated to the Coulomb branch along with certain non-
compact directions in the mixed branch by modifying the D-term vacuum equation

to

i i (i i 7(@=1)2
260 = |§02 — [§O — 902 1+ 137 + g2 16" VR (6.56)
Consequently, when &) = 0, the hypermultiplet scalar fields cannot all simultaneously
Additionally, the FI-deformation resolves the singularities of the mixed and Higgs

branches and lifts certain directions in the mixed branch. Now the Higgs branch can

be written as a (resolved) hyperkahler quotient

M =i €) [ . €= (E)=(260), (6.57)
where
g =602 = |60 — |p@2 1+ 13712 4 |02 - gV |

¢ = P30 — g0gW 4 -1

- (6.58)

Now in order to couple the Witten index to flavor fugacities, let us add masses for
the hypermultiplet fields. These can be defined as flat connections coming from an
associated flavor symmetry. We will choose to turn on mass parameters corresponding

to the 3-2 deformation with a mass parameter e, = Im[e; /3] and to a fugacity for 4D
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global gauge symmetry with mass parameter a = Im[a/f3]. '® These mass deformations

modify the mass terms in the potential (6.55):

2 1 . g2
t3 ‘(U(l) +aQa + €1 Qc) -

1 . .
U= Z o) ‘(U(Z) +aQa+€4Qc) - oV

12

1 . , NE: , , e
+ 2 Z ‘(0(”1) — oW 4 aQ, + Q) -@(Z) + )(0(’“) — oW 4 aQq + e+ Q) ~Q( )

1 i (i i 7 (@ i 7 (=1 \>
55 0 (18912 = 1602 — |62 4 57 + |tV — 37712 — e20)

1 i) 7 i) 7 i—1)7 (=1
+22’¢<>¢(>_Q(>Q<>+@ Dgt—h

‘2
(6.59)

where @QQq - @ and Q. - ? encode the @, Q. charges of the field @. See Appendices D.1
and D.2 for details about the charges of the fields.

The mass deformation lifts most of the Higgs and mixed branch vacua except at
a collection of intersecting hyperplanes where hypermultiplet scalars become massless.
This reduces the Higgs branch to a collection of points while reducing the mixed branch
so that it only has non-compact directions coming from vector multiplet scalars. The
mass deformations additionally give a mass of 4e to the fermionic component A\? which
breaks SUSY N = (0,4) — N = (0,2) under which the N' = (0,4) vector multiplet
decomposes as a NV = (0,2) vector multiplet (v¢,0,A', D) and a N = (0,2) Fermi-
multiplet (A2, F'). With this choice, Q = p2Q 4 is the preserved complex supercharge.

Due to the form of (6.59), the potential around each of the vacuum branches is
quadratically confining. In the limit e — 0, this potential becomes infinitely steep
and states become exactly localized on the moduli spaces. Since the Higgs branch is
given by a collection of points, in the limit e? — 0, this supports an infinite, discrete
spectrum of harmonic oscillator-like states. However, the mixed branch, which has non-
compact directions, supports both a discrete spectrum of bound states and a continuum
of scattering states.

In addition, there are also states localized on the classically lifted Coulomb and

mixed branches. Even though the potential energy on these branch is no longer zero, it

16This identification allows us to work with a unitary theory. We can then derive the full Witten
index by analytic continuation. See [60] for more details.
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is bounded. Again the potential in the normal direction is quadratically confining such
that in the limit €2 — 0, the states become exactly localized on the lifted branches.
Thus, the the Coulomb and lifted mixed branches constitute non-compact directions in
field space with finite potential energy which can also support both a discrete spectrum
of bound states and a continuum of scattering states. See Section 6.2.4 for further

discussion of Higgs, mixed, and Coulomb Branch states.

Localization

Now we will attempt to compute the partition function of this theory by using localiza-
tion. While parts of the following analysis have also been done using similar methods in
[14, 90], we will find it instructive and physically insightful to present the full derivation
of the localization computation.

The key to using localization in this setting is that the action of these theories is

Q-exact. That is to say, we can rewrite the Lagrangian

1 1
L= *2@ * Vvee + 7@ * Vinatter (660)
(& (&

with

Viee =Y (Q : S\S)’A(i)A> ’

(2

Vinatter = Y _ [(Q . @E(i),@b(i)) + (Q : J(i>7¢<i)) i <Q _ ﬁ(i)’n(i))] '

)

(6.61)

Thus, shifting the value of e is a supersymmetric deformation of the theory. This means

that the result of localization should be independent of e and therefore we will take e

to be generic and strictly positive.!”

Now by the localization principle, the partition function reduces to an integral over

the the moduli space of the time independent BPS equations: 8

lo,u] =0 , M, =0, (6.62)

'"Note that these are actually dimensionful quantities in the 1D SQM. These have dimension [e*] =
£73. Thus to take the “e — 0”7 limit, we must take £32 — 0 where ¢ is some fixed length scale. In our
discussion we will use the Fl-parameter £ as our fixed length scale since in the upcoming discussion we
want 8 to be variable.

18See (D.10)-(D.11) for the full SUSY transformations.
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These BPS equations have a moduli space of solutions given by *

Maps = {p = Blo + ivn)| _ € (Lx T)/W } = (te/Ar) /W = M/W . (6:63)

where t is the Lie algebra corresponding to the torus T' of the SQM gauge group as
defined by the quiver I'(P,v). Note that this ¢ is not to be confused with the hy-
permultiplet fields ¢;, &i, Qi, él Now as in [90, 14], the Wick rotated path integral is

reduced to

dQTQO d27”
7 (Loc) :/ T Z et () / Zaet(p) (6.64)
Mpps (27”)7" ’W‘ 27”

where r = rnk g and g is the Lie algebra of the gauge group of the quiver SQM. The 1-
loop determinant Zg.; can now be computed in the background given by the zero-mode

¢. For quiver SQMs this is of the form [90]

wB(D, D)
o2

Zar() = /t &' D Zon (5, D) exp{— +2m’ﬁ(§,D)> C(6.65)

where

Zint (@ D) = Zvec(9) * ZFermi(p) * Znyp(p, D) (6.66)

Here Zyec, ZFermi, and Zp,y, are the 1-loop determinants from the vector-, Fermi-, and
hyper- multiplet fields respectively.

First consider the vector multiplet contribution. This term originates solely from
vector multiplet fermions. The reason is that there are no propagating modes of ¢ due
to Gauss’s law and there are no propagating modes of D due to the lack of a kinetic
term [90]. Thus, the contributions to Z,e. come from integrating over the non-zero
modes of M. Note that A2 does not have any zero modes because it has a generic,
non-zero mass due to the §2-deformation.

Explicitly, the vector multiplet fermions give the contribution

n—1
ZUGC:H H sinh(a(p'™) 4+ @) H sinh(« ), (6.67)

(%) (1)
EAadj ozEAaZd]

az#0

9Note that this rescaling enforces the periodicity condition ¢ ~ ¢ + 2miX for A € Aey.



207

where Al(lgj are the weights of the adjoint representation of the i*" simple summand of
the gauge group and ¢; represent the coupling to all global charges associated to the
N = (0,2) Fermi-multiplet of the N' = (0,4) vector multiplet (since only N' = (0,2)
SUSY is preserved).

Similarly, the contribution from the Fermi-multiplet is given by only by the 1-loop

determinant of the fermions which can be written as

Ny
Zpami= [ ]I sioh(ue") +q) , (6.68)
=1 peaf).
where gy encodes the coupling to all global charges and go(f ) is the complex vector
multiplet scalar that couples to the f* Fermi multiplet.
Now consider the contribution from hypermultiplets. This term can be divided into
two parts
Dhp =Ty Ty (6.69)

(Yuk)

where Z,g’;;") comes from kinetic terms of the hypermultiplet fields and Zhyp comes

from integrating out Yukawa interactions. Explicitly, these are of the form

in) (mm — w(s@(”) —iq;)
Ay’ =11 1111 ) + a5+ in(D)

: ™ + 1
J MGA(]) meZ | ,u

sinh(u ) qj
_ H H ) +aj) (6.70)

)
 eal) sinh(« M) sinh(a; )

Yuk a
Zir ) = det K (i, D) |

where j indexes the set of fundamental and bifundamental ' = (0, 2) chiral multiplets
making up the N' = (0,4) hypermultiplets and (p(j) is the complex vector multiplet

scalar that couples to the j** hypermultiplet where

aj;:zlm[ (¢9) + gj) £ \/Re[u(p) + g1 + (D),

<:U7 HI(a)><:u7HI(b)>
hab QD, X A B - . )
Zj: g: mZGZ (Iem + ip(pW)) +igj|? + ip(D)) (wm — ip(pW)) — igy)
0

(6.71)

and Hp(, runs over the simple coroots of g.
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Although the Yukawa coupling of is order O(e), it is required to soak up the A! zero
modes. Thus, all other contributions from expanding the exponential of the Yukawa
term will be suppressed by additional positive powers of e. Since these higher order
terms do not contribute in the limit e — 0, they must evaluate to zero by the localization
principle.

Therefore, putting all of these elements together, the total 1-loop determinant is

given by

Zger (0 /er H [T sinh(u(e") +4qy) exp{ ﬁ(fD) +2miB(€, D)}

F=1 e n)

fund
n—1
xH H sinh(a (™) 4 ¢) H sinh(a(¢™))
Afz(zg EA(Ld)]
a#0

sinh(u(¢) + ;) b
~det h*(p, D) .
8 H H sinh(« )smh( ) ¢ (7, D)
J EA( 7) Jrbs Jobt
hyp

(6.72)
Regularization

As it turns out, this integral is singular and requires regularization. Physically, this

arises because the bosonic part of the Euclidean action is of the form

S = 75 [ <¢|at+so+m|¢+m<|¢12 2¢) + D?), (6.73)

for a generic bosonic hypermultiplet field phi where m is its mass which is generically
dependent on a,e;. Thus, there is a bosonic zero mode when ¢ = —m, D = 0. This
makes the path integral infinite due to the co-dimension 3r singularity.

Therefore, consider the local behavior near finite singularities. These singularities
come from the hypermultiplet contribution to the 1-loop determinant where m = 0 and

are given by the a collection of intersecting singular hyperplanes in t¢/A. located at
Hyj = {cp Etc/Ae | D=0, p(eYW)+¢ =0, pe Aﬁl;p} . (6.74)

In order to see that this singularity leads to a divergent integral, it is sufficient to study

the singularity from a single hyperplane in a transverse plane. In a local coordinate z
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centered at the hyperplane, this singularity is of the form

L
1
d? dr ——— .
Jou &= | i (6:75)

where z = (DY) and B is an 2D ball of radius R around the origin and L is some
finite cutoff. This integral is singular. Therefore, we need to regularize this integral.
One way we can regulate this expression is by shifting the contour of integration for

D by t — t+in for n € t. In this case the singular integral becomes

L+iy 9
d d°z d 6.76
/Bz Z/Lﬂy |z] +1ix)? /B2 / v (|z)% — y—i—wc)2 ’ (6.76)

where y = u(n¥)). This resolves the singularities where u(n')) < 0. However, the

integrand is still singular along a circle in the complex plane for the case for those
such that p(nU)) > 0. This can further be regulated by cutting out the disks Bésmg)
of radius /|u(n®)| + 6 around the ring singularity and then send § — 0 . There are
subtleties associated with taking the limit § — 0 which will also require taking n — 0,

however we will postpone a discussion until later. Now the regularized path integral is

given by

2r
= | o | dTDthexp{ mD-D) | o, D)},
(te/Ae\BE™ (270)" Jypan e?
(6.77)

where Bésmg ) is a union of d-neighborhoods of the singularities of the integrand.

There can also be singularities arising from the infinite volume over t and tc/A..
Thus, let us examine the behavior of the integrand at D — Ot. Here, the Gaussian
factor will exponentially suppress the integrand and hence there will be no singularity
from the D-field.

Now let us examine the behavior of the integrand near 0(tc/Acr)). Consider the

integrand in the limit
T —00 where p=7u , uct (6.78)

where t is the Lie algebra of g which itself decomposes as t = @!_; '+ As shown in

Appendix D.3, the integrand Z;,; has the limiting form

n—1 k()
| Zint] Téoo H exp{27 (s(z) — 2= 2043),1 — 40501y 2 + - “m> Z ]u } , (6.79)

Y=Tu =1
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where

s(i) = 2@ — gD _ G0 =2 (6.80)

n
2
Using the fact that s(i,,) = 0 or 2 and the fact that Ny < 4, we see that the exponential
factors can at most completely cancel as 7 — oo. In this case, the behavior of the 1-
loop determinant at infinity will be polynomially suppressed by the Yukawa terms for
the hypermultiplet fields to order O (HiT*Bkm). Therefore, since the measure goes
as [, T2k(i)_1, we have that the product of the integrand and measure will vanish as
O (HZ T_k(i)_1> and does not contribute infinitely to the localized path integral.
Therefore, excising the d-neighborhoods Bésmg) clearly resolves all singularities in
the integrand and renders its integral finite. However, since we are making a choice of
regularization, it is unclear how the resulting integral is related to the true path integral.

Therefore, we will refer to this as the localized Witten index, I&EOC), to emphasize how

it is distinct from the true Witten index.

Remark The D-contour deformation is physically well motivated because introducing
a Fl-parameter is equivalent to shifting the saddle point of the D integral to ie?¢. In
our regularization prescription, the localization result will generically be dependent on
7n,&. This dependence even persists in the limit n — 0, /8 — 0 as the dependence on
the chamber of n,& € t* defined by the charges of the hypermultiplet scalars p; € t*
as in the Jeffrey-Kirwan residue prescription.?? This dependence encodes wall crossing
in the SQM as studied in [90]. Thus, since the saddle point occurs at 1 = €2¢, we will
restrict n,£ € t* to be in the same chamber. This is most easily achieved by assuming

n = ¢ for some positive constant ¢ € RT.

6.2.3 Reduction to Contour Integral

Now that we have a well defined volume integral over tc/Aq X (t+in), we can utilize

the identity

9 ,
%Z;LZZL) = ~iDyh® Znyy , (6.81)
a

208ee 21 for more details.
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where a, b are indices for a basis of simple coroots, to reduce the volume integral to a

contour integral. This allows us to write the 1-loop determinant as a total derivative

1 - ) ) )
Zint = <H Z.Daagoa> Zl(»,lfzn) ) Zl(jjtln) = Zvec : ZFerm'i : Z[(J;;n) ’ (682)

a

such that the volume integral over t¢ /A can be reduced to a contour integral over the

boundaries of the excised J-neighborhoods and boundary dtc/ A,

oc 2 D,D
II(/IE ) _ / _ LSOT d"D Zipy exp {_W +27T2ﬂ(§,D)} ,
(fc//lcr)\Bésmg) (ZWZ) t+in e
'y dDa () ( ,(kin) m8(D,D) . .
/(%/ACT)\Bgsmg) <2m')r /t+in1;[ iD, ap ( int ) exp o2 + mﬁ(f, ) ,

+2m’,8(§,D)} ,

oB"9) (27i)" iD, ~

doy A ... Ade, dDy (ki 78(D,D
1 o /w' PG )exp{_ 5(62 )
U(-0(te/Aer)) va

(6.83)

where r = rnkg and a indexes the simple coroots of t. Here B(gsmg) is the neighbor-

hood of radius \/W + ¢ surrounding each ring singularity in the integrand (where
w(n) > 0) and Otc/ A,y is the (asymptotic) boundary of t¢/Ag.. The identity (6.81) is
a consequence of supersymmetry [127, 128, 90, 14, 16, 15].

Consider the contributions from the contour integral around the excised Bésmg).

These terms are non-zero due to the poles in the 1-loop determinant from the bosonic

fields of the hypermultiplets which are of the form:

1
Zint ~ - : ) D/:D+i77¢ 6.84
~I 1 Gy am s s momr o

hyp()
for u(n) > 0. In this case, the contour integral over the excised disk of radius +/|u(n)|+
d =71+ 8 where D' = 0 is of the form

7{ @dp o (r+9)?
0

s lplT—r2 = ey (6.85)
Now we need to take § — 0 as a regulator of the singularity at |¢|? = |u(n)|. Note that
the integral above is infinite unless we take \/|p(n)| — 0 faster than 6. Therefore, we will
define the regularization of the localized path integral with \/W — 0, 6 — 0, such
that \/m /0 — 0. In this limit, we find that the boundary integrals are equivalent

to computing the residue at the singularity with /|u(n)|, D = 0.
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Now we can evaluate the terms in the integral (6.83) attributed to the poles 8B§3m9 ),
By using the fact
lim # =P <1> —imsign(ng)d(Dy) , (6.86)
Inal=0 Daq + i1q D,
we get
I%Oc)asmg _ 72 o e (AQ ﬁ )/: dipy /t . 1:[ dD,§(D,) Zi(:tm)
X exp {—WB(Z’D) + 2mip(&, D)} (6.87)

+ {Principal Terms in 1/ D} ,
where principal terms are those that have a principal value of some D,. Here, the
principal value term vanishes because integrand does not have a singularity of suffi-
ciently high codimension in ¢ and hence the contour integral over ¢ is identically zero.

Therefore, we find that the terms coming from the excised disks is exactly

; dpr Ao Ndpr | (kin)
I{Eeersing — f A D D=0 6.88
1%74 aB(gSi"g) (27”1)7- mnt (SO? ) 9 ( )
which reduces to a sum over residues of Zl-(qlfzn)(w, D =0).

This sum over residues is equivalent to the Jeffrey-Kirwan residue prescription [98].
The reason is that the contour integral simply picks out tuples of poles for which
wu(n) > 0 — or equivalently it picks poles corresponding to given tuples of {up};;flg such
that u,(n) > 0, Vp. By mapping n € t to n¥ € t* by the Killing form, this is equivalent
to the statement that the contour integral includes tuples of poles such that 7" is in the
positive cone defined by the {y,}. This is the definition of the JK residue prescription
[98].21

21 The Jeffrey-Kirwan residue prescription selects a contour that such that the integral evaluates to
a sum of residues corresponding a particular set of poles specified by a parameter E € t*. These are
selected as follows. Consider a contour integral over an r-complex dimensional space. The poles of the
integrand are solutions of the equations

Qi(p) + filg) =0, (6.89)

for some set of Q; € t* and f;(¢) functions of some parameters ¢;. Each of these poles defines a
hyperplane in t along which the integrand is singular. To each hyperplane specified by the solution of
(6.89), we associate the charge @; € t*. Any set of r linearly independent {Q;} € t* defines a positive
cone in Cyg,3 C t*. Each such cone corresponds to the intersection of r hyperplanes, which has a
non-trivial residue.

The Jeffrey-Kirwan prescription specified by the £ € t* picks a contour such that the contour integral
evaluates to the sum of residues associated to all cones C{q,} such that £ € C{p,} weighted by the sign
of the determinant sgn(Qi; A ... A Qi,.).
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Boundary Terms at Infinity

Now consider the contributions to the contour integral from the boundary Otc/Ac.
For simplicity we will consider only the case of a U(1) gauge theory as it is our main
example. However, the following analysis in the next two sections generalizes to generic
gauge groups. We will comment more on this later and continue to use notation that
accommodates this generalization.

Here we are considering the integral

d dD (ki _ =BD2 .
and _% ot/ 2::; s D Z’(nzn)((p’ D)e 2 +27miBED (690)
C cr m
where 22
Ny
Zl.(nzn)(@, D) =2sinh(2¢) H sinh(pf(p) —my)x
f=1

ﬁ sinh(u;(p) + @) '
cosh(2i Im[u(¢) + q;]) — cosh(2/Re[u;j(¢) + ¢;]2 + ip; (D))

(6.91)

j=1

Here j indexes over the representations of the 4 different N' = (0,4) fundamental chiral
multiplets making up the two N' = (0,4) fundamental hypermultiplets.

In the limit Re[y] — £o0, the function Z (km)(gp, D) is independent of D and is the

th order coefficient of the Laurent expansion in e®. Thus, the boundary integral, which

is evaluated in the limit Re[p] — £o00, is given by

Zond = Z lim (:EZZ(:ZR)) (0(77) —erf (M%)) ,

T Re[p]—+o00

— Z +  lim (2 sinh(2e, )e(Zr s 1=%; \ujl)\RE[sO]I) o X g sign(u)ar F; sign(u;)g;
T Re[p]—+o00

x (eln) —exf (Vmdeg) )
(6.92)
where we have applied the formula in for the integral in Appendix D.4 and erfct(z) is
the error function

2

erf(e) = — / du e (6.93)

22Note that the contribution from the vector multiplet fermions is only given by sinh(2¢, ) since the
adjoint action is trivial for a U(1) gauge group.
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Here
c(n) = : (6.94)

See Appendix D.4 for more details.

By using the fact that in our models

D gl = Il =Ny -4, (6.95)
f i

we see that this boundary term is only non-zero when Ny = 4.23
In summary, by carefully performing the localization computation of Iy — II(/‘%OC)

by regularization, we find that
185 = 275 4 Zya (6.97)

where Z7K is the result from the Jeffrey-Kirwan residue prescription and Z,q is the
boundary computation computed in (6.92).

Note that Z,q has explicit 3,e,¢ dependence. Generically one would expect that
the answer is independent of these parameters since the Lagrangian is (Q-exact and
hence variations of f3,e,& are supersymmetric deformations of the action. However,
this dependence can arise from a continuous spectrum of states which allows for a spec-
tral asymmetry between bosonic and fermionic states [2]. As we previously discussed,
our models have such a continuous spectrum of states arising from the non-compact

directions in the mixed and Coulomb branches.

Remark Note that if we had instead identified n = €2, regularity would have required
us to take the limit e2 — 0. Then we would find that II(/IEOC) = 77K + Zya(B = 0).
This matches with the analysis of [113] in which the authors found that the localization

computation of the Witten index, under a specific choice of regulator, can be identified

with the computation of the Witten index in the limit g — 0.

2We can additionally consider the effect of including Chern-Simons terms as in Section 6.4. A
Chern-Simons term with level k shifts the argument of (6.92) by a factor e2*F¢[¥]. Thus we have that
this boundary term is only non-zero when

S lusl =3 luil 42k = Ny —4 42k =0. (6.96)
f i
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Comparison with Literature

Let us take a moment to compare our results with that of the literature [14, 15]. In these
papers, the authors give a physical derivation of the Jeffrey-Kirwan residue prescription
for the elliptic genus of 2D N = (0,2) gauge theories. Here the authors consider the

localized path integral in the limit e — 0 over (tc/A,) x t which they decompose as

= _pB8D% o
7 = / /A (271_:;,. /dTDZlnt(SO,D)e ) +27iBED
to/Acr ¢

_ / dQTQO
(te/ A \BS"9) (270)7

dQT(p i D2 9miBED
d"DZ; D)e™ oz T2miBE
g oy D e ,

77r[3D2 .
/ A" D Ziny (0, D)e ™ e T2TED (6.98)
t

where B(gsmg ) is the collection of d-neighborhoods of the singularities as before.
After dropping the singular term, which the authors argue can be regularized to

zero, the path integral to

g / d2r90
(tC/ACT')\B(gSing) (27"1)7‘
which is the same as (6.77). The authors then also deform the D-contour and reduce the

(

path integral to a contour integral around 9B ;mg ), They then show by contour integral

71'BD2 .
/dTDZint(%D)e_ e? +27r1ﬁ£D, (699)
t

methods that (6.99) reduces to a sum of residues according to the Jeffrey Kirwan residue
prescription as above.

In our analysis we also take into account the possibility of an additional contribution
coming from the asymptotic boundary of 0(tc/Ac), while the models studied in [14, 15]
have a compact target space so such terms do not arise. Similar boundary terms are
also discussed for some models in [90, 16]. However, the analysis of these papers is not

directly applicable to our model.

6.2.4 Coulomb and Higgs Branch States

In our discussion we often use the terminology such as “Higgs branch states” and
“Coulomb branch states.” Here we will define this terminology precisely.
Pick a bubbling SQM and consider the family of quantum systems defined by the

varying with respect to e, 8,£. Due to the localization principle, the states that survive
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My,

Figure 6.6: This figure illustrates the behavior of the potentials on the Higgs (blue)
and Coulomb (red) branch.

in the limit €2|¢[> — 0 should be the only ones that give non-canceling contributions to
the Witten due to the localization principle.?* As we monotonically approach e?|¢[> — 0
with ¢ fixed, the potential energy function of these families approaches an infinite value
on all of field space except along the Higgs, Coulomb, and mixed branches as discussed
in Section 6.2.2. See Figure 6.6.

As we decrease €2|¢|> — 0, the potential around each component of the Higgs branch
(which is topologically a collection of points) approaches an infinitely steep harmonic
oscillator potential for all fields. In this limit, the potential additionally becomes flat
along the Coulomb and mixed branches (which are non-compact) while simultaneously
approaching an infinitely steep harmonic potential in the transverse directions.

Now consider the spectral decomposition of the Hilbert space defined by the family
of Hamiltonians parametrized by e, £. Due to the behavior of the potential function near
the different classical vacua, there will be orthogonal projection operators P, P¢, pmi®
onto a space of eigenstates of the Hamiltonian such that the wave functions of states

in this subspace have support localized near the classical Higgs, Coulomb, and mixed

24Here we are taking our fixed length scale to be set by & in anticipation of the next section where
we allow S to vary.
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vacua respectively. We will refer to states in the image of P¥ as “Higgs branch states,”
those in the image of P¢ as “Coulomb branch states,” and those in the image of P™®
as “mixed branch states.”

In fact, we believe there are projectors PS¢+ > PC and Pt > P tg a subspace
on which the Hamiltonian has a continuous spectrum but such that all the states in the
image have wave functions with support localizing to a neighborhood of the Coulomb
branch or mixed branch respectively.

Of course, in the spectral decomposition of the Hilbert space defined by the Hamil-
tonian, there will additionally be a projection operator PM to a subspace on which the
spectrum of the Hamiltonian is continuous and bounded below by a large constant M
such that states in the image of PM will have support throughout field space and are
not in any sense localized near either branch. However, the mass gap M to the unlo-
calized, continuum of states goes to infinity as e?¢|> — 0 and hence gives vanishing

contribution to the Witten index.

Physical Interpretation of Jeffrey-Kirwan Residues

The Jeffrey-Kirwan prescription for computing the path integral counts the BPS states
that are localized on the Higgs branch. The reason is that the residues that are summed
over in the JK residue prescription are in one-to-one correspondence with the unlifted
Higgs branch vacua.

Consider the integrand Z;,; in (6.66). This has poles along the hyperplanes

Hyj={p€tc/le | pj(0) +a5 =0} , pj €AY (6.100)

where ¢; is the global charge for the j* hypermultiplet (or equivalently its mass). The
JK residue formula specified by the Fl-parameter £ € t* then selects the residue given
by r-tuples of poles corresponding to a codimension r intersection of r hyperplanes H,, ;
such that

(&, p5) > 0, for each p; . (6.101)
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Physically, the hyperplanes H), ; define the locus in field space where the corre-

sponding hypermultiplet field becomes massless:

0 =[(1(0) + aQa + €4 Qc) - &5 (6.102)

where j indexes over the fundamental and bifundamental scalar fields &; € {gzﬁ(i), (5("), Q(i) , é(i)}
that have charge ;1; and (2, (lg]) forms an SU(2)r doublet. Since rnkg = r, and each &;
has a different mass, there can only be r simultaneously massless hypermultiplet fields.
This corresponds to the statement that there are at most codimension r intersections
of the hyperplanes H, ;.
Now consider the D- and F-term equations for the Higgs branch. These can be

written as

0=— > P+ D (@ + )

71 (69 ,15)>0 31 (60 ,15)<0 (6.103)
0= > &di- Y ;.
3+ (€W,u5)>0 7+ (€W, pu5)<0

As in the JK-prescription, the solutions of these equations where at most r @; are

massless are enumerated by an r-tuple @; which obey
(&, 1) > 0 for each j . (6.104)

This enumerates the entire resolved Higgs branch with respect to an Fl-parameter
¢ € t*. Therefore, the JK-residues are in one-to-one correspondence with the points on
the Higgs branch.

Now note that the Jeffrey-Kirwan residue computation is independent of the value

of 2.

Thus, in the limit e? — 0, we can identify states as being localized to a single
vacuum branch in field space. Thus, we can identify each residue of the JK-prescription
as counting the states that are localized on the corresponding point of the Higgs branch
in the limit e? — 0:

77K = TIntiggs - (6.105)

Remark Note that the interpretation of the Z7K as an object counting the contri-

bution of Higgs branch states matches with the previous analysis by taking a limit of
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e2B3 — 0, /B — oo with 3 fixed such that e2¢ = ¢’ is constant.?® In the effective SQM

on the non-compact branches, the mass of the ground states is given by
m~ e[| o0 as €283 5/ =0, with e?¢ = ¢, j fixed . (6.106)

Thus in taking this limit, all states on the non-compact branches are killed and Iysymp —
0. Similarly, if we were to compute the standard Witten index, taking this limit kills
the boundary terms. Thus
lim Ty = Igiggs = 275 . 6.107
230 w Higgs ( )
&/B—o0
efe=¢/
We stress that this is not the appropriate limit for computing Z,on0(P, v). See [90] for

more details regarding the computation of the Witten index in this limit.

6.2.5 Ground State Index

As shown in [160, 2, 178], the Witten index has to be handled with care in the case of
a SQM with a continuous spectrum. As in our case, we have found that when there
is a continuous spectrum, there can be a spectral asymmetry that gives rise to non-
trivial 8, e, and £ dependence. Note that in order to compute the Witten index, we
introduced the Fl-parameter £&. In the 4D picture this corresponds to separating the
insertions of the minimal 't Hooft defects that make up the reducible 't Hooft defect.
Thus, to compute Z,ono(P,Vv), we want to take the limit “¢ — 0” which is formally
given by the limit £/8 — 0. However, this is computationally indistinguishable from
taking 5/ — oo with £ fixed. Thus, Zyon0(P,Vv) can be identified with the Witten

index in the limit “8 — co:”
Zmono(P,v) = Iy = lim Try (—1)F e~ 3{QQ HaQuterJrdmF (6.108)

In the limit 8 — oo, contributions from all non-BPS states are completely sup-
pressed. This effectively restricts the Witten index to a trace over the Hilbert space of

BPS ground states. We will refer to the Witten index in this limit, Iy, as the ground

25Note that this is different from the rest of our analysis where we take & to be the fixed length scale.
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state index. This matches with the fact that the result computed via AGT [3, 4] is
independent of 3, suggesting that we should only have contributions from BPS states.

As in the case of the Witten index, the ground state index can be computed as
(the limit of) a path integral. Thanks to supersymmetry, one can attempt to compute
that path integral by using localization. Again, using localization requires a choice of
regularization®® and hence we will refer to the result of the localization computation as
I;_LLOOC) to distinguish it from the true ground state index.

This limit of the Witten index can be easily computed using our analysis from the

II(/‘%OC) = 7K 4+ Z;,.4. Since the Z7X term is independent

previous section. Recall that
of 3, taking the limit 8 — oo only affects Zj,,4. The limit of the boundary term can be

computed

Bli_{go Zpnd = lim Z lim (:l:Zf,’on)> <C(77) + erf <\/7T7ﬁe§>) =0, (6.109)

B—ro0 n Re[p]—+o0
where
1 n>0
c(n) = : (6.110)
-1 n<0
Using the fact that
0 Exn>0
lim (c(n) —erf (\/ﬂﬂe§)> =¢-2 £€>0>n - (6.111)
B—00
2 n>0>¢
we see that
0 Exn>0
ﬂllrgo Zpnd = 2sinh(2e, ) sinh ;mf Xq-2 £€>0>1n - (6.112)
2 n>0>¢
\
By identifying 1 ~ e2¢, we find that
lim Zp,q =0, (6.113)
[B—r00

26We will be taking the same choice of regularization as in the case of the Witten Index.
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and hence that the localization computation of the ground state index is given by

I;lLOoc) —z7/K (6.114)
Remark  Although we have only shown that the boundary contribution vanishes
for a SQM with a U(1) gauge group, this result holds in general. One can see that
the boundary contributions vanish more generally in the limit 3 — oo as follows.
Decompose OM into a disjoint union of open sets of increasing codimension OM =
Otc/ A = [1;(0tc/Ae ). For each boundary component, the contour integral is of

the form the contour integral is of the form

)e——”ﬂf}m +2mif(€,D)
)

70 :j{ dpy A ... Adwr/ dDq 20
bnd (Ot Aer)® (27”')7” ttin D, int
(6.115)
where a indexes over the simple coroots of t. On each component, there exists a simple
root o € &F such that |(a, )| — oo on (dtc/Aer). Thus, in each such integral, Zélgn)

will be independent of {«, D) for some positive root a € . This means that each

boundary integral will be proportional to a factor of

2y~ (ellasm)) = ext (VaBe(a,©))) (6.116)

for some positive root a € & where c¢({,n)) is defined in (6.110). By identifying
n ~ e2¢, this factor completely suppresses all boundary terms in the limit 8 — oo.
Thus, the boundary terms vanish in the localization computation of the ground state
index

lim z) =0 Vi, (6.117)

B—00
and therefore the ground state index is generally given by the Jeffrey-Kirwan residue
formula

Loc
L) = 27K (6.118)

6.2.6 Summary

In this section we reviewed the localization computation for the Witten index of bub-

bling SQMs. In summary, we found:
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1. The localized integral over the BPS moduli space is not well defined: it requires

)

regularization. In general, the regularized Witten index, II(,(;JOC , will differ from

the true Witten index, Iy .

2. Under the choice of regularization we have presented, one arrives at the JK residue
prescription plus a 8-dependent boundary term that indicates the existence of a

continuous spectrum of excited states: I‘(,IEOC) =75 4 Zya.

3. Since the AGT computation shows that Z,ono(P,v) is independent of g, we
conjecture that Z,ono(P,v) should only count contributions from BPS states.
Therefore, we identify Z,,ono(P,v) as the ground state index Iz, which elimi-
nates contributions from non-ground states by taking the limit as § — oo of the
Witten index. By direct computation, we find that in this limit, the localization
computation of the ground state index is given by the Jeffrey-Kirwan residue
prescription:

(Loc) _

L;,"? = lim (275 + Zyna) = 275, (6.119)

B—00

which we identify as counting the states localized on the Higgs branch

Dy = Z75 = Inigys - (6.120)

After regularization with n ~ e2¢, we have

(Loc) _j{ dpi A ...doy - (kin)
I = ———————Zyec 2 ZFermi v A er\¥P) 6.121
Ho TK(E) (27”)1” ( ) ( ) hyp ( ) ( )
where
n—1 ‘ -
Zue=T1 TI sinhla®) +a) [ sinhta®)
a#0
Ny
ZFermi = H H Slnh(,u(go(f)) + qf) , (6122)
= eall,
5(kin) 1
Zkm) _ , ,
w — 1 1L Gy
J ueAﬁjy)p
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6.2.7 Examples: SU(2) Ny =4 Theory

Now we have eliminated the 8 dependence of the localization computation of Z,,n0 (P, V)
by identifying Z,,ono = I7,. Nevertheless, in general, the localization computation
17(_{;06) still does not generically agree with Z,,on0(P, v) as computed from AGT. We will
now illustrate this claim with several non-trivial examples in the SU(2) Ny = 4 the-
ory to show that the localization calculation for the ground state index I;LOOC) = 7K
does not match with the results from the AGT computations [97]. These examples are

an explicit realization of a generic feature of 't Hooft defects in N' = 2 SU(N) gauge

theories with Ny = 2N fundamental hypermultiplets.

Zmono(L 0)

Consider the L1 (minimal) 't Hooft defect in the SU(2) Ny = 4 theory. This has 't

Hooft charge
P=n'=2h" =diag(1,-1) , h'€Anw , h'€ Awechar - (6.123)
From general considerations, the expectation value of Lj g is of the form
(Lio) = (e" n e_h> F(a,my,e4) + Zmono(1,0) , (6.124)
where Zpono(1,0) corresponds to the bubbling with v = diag(0,0). Here

1
4 . 2
[ [ [T7— sinh(a=£my) ‘ (6.125)
sinh?(2a) [ sinh(2a & 2¢)

F(a,my,eq) = (

In this example, the monopole bubbling contribution can be computed as the Witten

index of the V' = (0,4) SQM described by the quiver:
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Now the path integral from the previous section reduces to the contour integral

d
Zgﬁfﬁ()}(l O) % Ttp.Zvec((Pv a, €+)Zhyper((pa a)ZFermi((pv €4+, mz) . (6126)
JK(g) <T

where JK () is the Jeffrey-Kirwan residue prescription specified by a choice of £ € t* &
R [98, 113, 90].

The general contributions of the different ' = (0, 2) multiplets for a SQM labeled
by gauge nodes (), ..., k1) and fundamental hypermultiplet nodes (w1, ...,wp) are

given by [94, 23]

Zyec(ps €4) = H H 2sinh(p, ;) X H H sinh( Soab +2,) ,
=1 [a#b=1 i=1 a7#b=1
4 k)

ZF@TW”(@? mfg, €+) = H H QSIDh(gpgf) — mf) ,

o (6.127)

k() w;
Zatpra.c) = THTTTTT |

i a=l¢—1 + 2sinh(x —a4)+e+)

n—1 kG+1) k()

szfund ¥, a, E+ H H HH 1+11) i ’

i1 a=1 b1 + 2sinh(E 901()))+6+)

where the product [HI’J] omits factors of 0, a = diag(a, az) € Lie[SU(2)], the funda-
mental Fermi-multiplets couple to the f* gauge group, and j indexes over the funda-

mental hypermultiplets (which couple to ¢()). For our SQM, this reduces to

4 .
_isinh(¢p —m
Z,(,LLOO,;Q(LO):% —d¢,2sinh(2e+) L=y sinh( = my) . (6.128)
JK(

¢) 2mi [[.sinh(p+a+eq)sinh(—p ta+e;)
Here the JK residue prescription is determined by a choice of £ € R which corresponds
to introducing an Fl-parameter in the SQM. As shown in [90], the Witten index of an
SQM can generically have wall crossing as ¢ jumps between £ € R and £ € R™.

Using this, the localization computation becomes

[I;sinh(a—msFep) [I;sinh(a+my+ey)

7(Loc) (q _
(1,0) = ~ “sinh(2a) sinh (2a T 2¢,) sinh(2a) sinh (2a + 2¢4.)

mono

+££>0.
(6.129)
This function is not symmetric under the action of the Weyl group of the flavor sym-

metry group 27 and is not invariant under the choice of ¢ € R. Therefore, this cannot

2"The Weyl group under the SO(8) flavor symmetry is generated by m; ¢ m;i1 and m3 < —ma
[97, 156].
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be the correct form of Z,,on0(1,0).

From the AGT result presented above, we know that the correct Z,,on0(1,0) is given

by
p Lo [[;sinh(a —my Fey) [I;sinh(a+my+ey)
mono(1,0) = sinh(2a)sinh(2a F 26, ) sinh(2a) sinh(2a 4 2¢)
(6.130)
+2cosh [ > mpH2 | ££>0.
f
This answer for Z,,on0(1,0) is surprisingly independent of the choice of &:
Zmono(1,0;€ > 0) — Ziono(1,0;£ <0) =0 . (6.131)

Clearly the AGT result for Z,,0n0(1,0) in (6.130) does not match the localization result
(6.129) due to the “extra term” 2 cosh <Zf my £ 2e+>. Therefore, as noted in [97],

there is a discrepancy between the localization and AGT computation for Z,,on0(1,0).
Zmono(27 1)
Now consider the Lo line defect. This defect has 't Hooft charge

P =2h' = 4h' = diag(2,—-2) , h'€ Apw , h' € Acochar - (6.132)

The expectation value of this line defect has two different monopole bubbling contribu-

tions:

(Lag) = (e% + e*2b> F(a, mf)2 + (eb + e*b> F(a,mf) Zmono(2,1) + Zmono(2,0) ,
(6.133)
where Zmono(2,v) i8 Zmono(a, my, €45 P,v) for v = diag(v, —v). Here we will only be

interested in the term Z,,on0(a, my, €4;2,1). In this case, the relevant SQM is given by
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The contour integral from localization of this SQM is of the form

3 4 .
1 dy; _,sinh —-m

Z‘]K(Q, 1) = 7{ H 4,01‘ sinh3(26+) . Hf_l (SOQ /) %
2 JK(§) \j_ <™ sinh(£@21 + €4 ) sinh(fp32 + €4)

1

Sinh(:l:((pl - az) + €+) sinh(:t(g03 — Cll) + €+) ’

(6.134)

Evaluating the above contour integral requires a choice of parameter E € R3? that
specifies the JK residue prescription. Due to the intricate dependence on the choice of
5, we will examine this in the simple sectors of £ > 0 and &; < 0.

For the choice of & > 0, the Jeffrey-Kirwan prescription sums over the residues

associated to four poles specified by the triples:

L pr=-a—€e @pa=-a—-2¢ pz3=a+tey
II. g01=a—3€ (pgza—QE Y3 =0a—¢€
- - " (6.135)
III.  p1=—a—€ex @a2=0a—2¢4 p3=0a—€q
IV. op1=—a—€ @po=—-a—2e4 (p3=—a—3et
Summing over the associated residues, the above contour integral evaluates to:
2009 (3. 1) = _4Hf sinh(a +my + 2¢ey) B 4] sinh(a —my — 2¢;4)
monoiT sinh(2a + 2e4)sinh(2a)  sinh(2a — 2e4) sinh(2a — 4e4) (6.136)

4] sinh(a —mys — 2¢4) B 4] sinh(a +my + 2¢4)
sinh(2a) sinh(2a — 2e)  sinh(2a + 2 ) sinh(2a + 4ey)

for & > 0. Similarly, for & < 0, the Jeffrey-Kirwan prescription sums over the residues
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associated to the poles

I. pr=—-a4+er poa=—-a+2e p3=0a—e€y4

1L p1 =a+ 3e P2 =a-+ 2e p3=a-+e
- " " (6.137)

I11. Y1 = —a-+ €4 <p2:a+26+ p3 =a+ e

IV. p1=—-a+er @a=—-a+2e p3=—a+3eys

In the case & < 0, summing over the residues associated to these poles computes the
contour integral to be

4]]sinh(a+my — 2¢e;) 4]]sinh(a —my + 2¢;)
~ sinh(2a — 2¢, )sinh(2a)  sinh(2a + 2¢ ) sinh(2a + 4e; )
4], sinh(a —my + 2ey) B 4], sinh(a+my — 2ey)
sinh(2a) sinh(2a + 2¢,)  sinh(2a — 2¢) sinh(2a — 4e)

Z{kee)(2,1) =

mono

(6.138)

Now we can make use of the fact that the expectation value of line defects form a ring

under the Moyal product [97]

<L270> = <L170> * <L170> s (6.139)

with respect to the (2,0) symplectic form (2;:

(f * g)(a,b) = e~ (@0 =) f(a b)g(a/, V) |4.0'=a - (6.140)

b,b' =b
to compute Zpono(2, 1) from the AGT computation for (L ). This gives the result
4] sinh(a £ my + 2¢4) 4] sinh(a £ my + 2¢4)
Zmono(Qa 1) = . - N
sinh(2a 4 2e4) sinh(2a)  sinh(2a + 2¢ ) sinh(2a + 4ey)

4] sinh(a Fmys — 2¢;4) B 4] sinh(a Fmys — 2¢;4)
sinh(2a) sinh(2a — 2e;)  sinh(2a — 2e, ) sinh(2a — 4ey)

+ 2 cosh meﬂ:66+ + 2 cosh me:t26+ , & >0, Vi
f f

(6.141)
As before, this answer is independent of the choice of sign of &;.2%

Again, we see that this does not match the localization computations for Z,,on0(2, 1)
for either choice of £ due to the “extra term” +2 cosh (Zf my + 6€+> +2 cosh (Zf my =+ 2e+) .

Further, the localization result is not independent of the choice of 5 and for both choices

281n fact, this is independent of the choice of £ € R*\{0}.
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of £ (and indeed for all other choices of £), Zmono(2, 1) is not invariant under Weyl sym-
metry of the SO(8) flavor symmetry group. Therefore, as in the previous example, we

find that the localization computation cannot be correct.

6.3 Proposed Resolution: Coulomb Branch States

As we have shown, there is a discrepency between the localization and AGT result for
the expectation value of 't Hooft defects in SU(2) Ny = 4 supersymmetric gauge theory.
Let us write the AGT result for the expectation value as
<L[P,0]>AGT = Z e(V’b) (F(a))MZmono(aa My, €43 P, V) )
[vI<IP] (6.142)

. _ Loc . extra .
Zmono(aa mg, €43 Pv V) - Zr(nong(av mg, €43 Pa V) + Zr(nono )(a7 Mg, €43 P7 V) )

where Zﬁ,ﬁfﬁfﬁ = Iq({LOOC) is the localization computation for Z,,on.(P,v) and Zﬁ,‘fiﬁ@“) (P,v)
is some extra term that is the difference between Z,,on0(P,v) and Z,%,O,f(), = Z/K,

We now would like to understand what is the origin of the extra term Zﬁﬁiﬁ@“) (P,v)
that we must add to the localization computation to give the full result for Z,,on0(P, V).

As we will now show, these extra contributions come from states that are not counted

by localization.

6.3.1 Witten Indices with Continuous Spectra

As shown in [160, 2, 178, 113], computing the Witten index is much more subtle for
theories with a continuous spectrum of states. In that case, the supercharges are non-
Fredholm operators and thus the Witten index, which is still well defined, cannot be
understood as the index of a supercharge operator. In order to illustrate some features
of the computation of the Witten index in these cases, we will take a brief aside to

study a toy model that is closely related to the bubbling SQMs we are studying.

Toy Model on Semi-Infinite Line

Here we will examine a simplified model of the effective SQM on the Coulomb branch.

Consider a supersymmetric particle on a semi-infinite line with a smooth potential h(z).
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This theory is described by the Hamiltonian [2, 90]

2,2 2

2
H ="+ Sh@) + S vl (@) (6.143)

where x, v are superpartners that satisfy the commutation relations

[z.pl=i , {vho}=1. (6.144)
These fields satisfy the supersymmetry transformations
1 1
Spr = —=n + —=n'yl
\? V2 (6.145)
8ot = —n'(ip + h(z)) ,
¥ Nok (ip + h(z))

which are generated by the supercharge
1
V2

Let us consider a toy model of the effective SQM on an asymptotic Coulomb branch

Q=—=Yi(ip+h). (6.146)

where h(z) = ho + £ where ¢ # 0. In our applications, 2¢q will be an integer.

Generic states in this theory are described by wave functions of the form

() = f+(2)|0) + f-(2)¥"|0) (6.147)

where we define the Clifford vacuum by |0) = 0.
We are interested in computing the ground state index of this theory. This can be
derived from the spectrum of the Hamiltonian. The Hamiltonian can be written as a

diagonal operator

2 2(,.2 2 2
ety e Etq)  e*qho e,
H=—> 0% + ot T (6.148)

on a basis of states {1 ()[0), f—_(x)¥7]0)}. Thus, eigenstates of the Hamiltonian solve

the differential equation

2
q¢ *£q 2qhg 2F
(‘33 + 2 + 7@, +h§ — oz fe(z)=0. (6.149)

The L?-normalizable solutions of this equation are given by 2

s2/q| |hol

fs(x) = ce "yl | Ry <j31 + ,251]'81,2/@3:) , 8,8 ==*1, (6.152)

2%Note that we could also solve for the space of BPS states by writing

W) = £ (2)]0) + f-(@)e'[0) — wx):( A ) 7 (6.150)



230

where c is a constant, k = /h2 — i—f, s1 = s x sign(q), s2 = sign(q) x sign(ho), and

1+ s
5 .

or Js; = —lql + (6.153)

Further, due to the large z-behavior of the confluent hypergeometric function of the

first kind
xm—n
x
1F1(m,n, ) o I'(n)e Tm) mé¢Z,, (6.154)
L?-normalizability implies that
‘ 1 . s h
]sl>—§ ; ]31—1—2’({!0‘:—71 , nmely. (6.155)

The first condition comes from imposing regularity at z = 0 whereas the second condi-
tion comes from imposing regularity at x — oco. Together, these conditions imply that
there is a global minimum of the potential energy at some x > 0 that supports a bound
state.

From regularity at x — oo, we can solve for the discrete spectrum of the Hamiltonian

for generic hg, q

4q> th(Q)
E,=(1- . 1
( (1+2n+2|q|+81)2> 2 (6.156)

In the case of BPS ground states (E = 0), the L?-normalizability constraints imply

that the ground states of this theory solve
1
(L+s2)lgl + 5L +s1) = —n, (6.157)

or

1 1
(s2 —1)|g|l + 5(1 +s1)=-n and |¢| < 3" (6.158)

This implies that the allowed solutions are those with s1,s9 < 0 or s1 < 0 < so with
gl < 3
As in the case of the Coulomb branch, this theory has a continuum of scattering

states. These occur due to the non-compact direction in field space where the potential

so that the real supercharge Q = (Q + Q) acts as the differential operator

- L 0 Ot hi@) Y _ L ag 1y
Qi\/i( —0z + h(x) 0 )7\/5( Oo + o' h(x)) . (6.151)

It is now straightforward to solve for the kernel of Q and impose normalizability. When one further
takes into account boundary conditions, equation (6.163) is reproduced.
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272
e“hg

energy approaches a finite value lim, ;oo U(z) = —5°. In this case, the gap to the
212
continuum is given by Egap = = 2h 0. Thus, the full spectrum of states is similar to that

of the Hydrogen atom. There is a discrete spectrum of states for energies £ < Eg,,
that accumulate at Eg,p, and a continuous spectrum of states for energies £ > Egyp,.

However, there is an additional subtlety to this model. Due to the presence of the
boundary at x = 0, we additionally have to worry about the real supercharge Q = Q+Q
being Hermitian:

(W1 | QW) = (QU1[¥s) . (6.159)

If we consider two generic states

%) = fi(2)[0) + gi(2)Y'|0) — [¥;) = : (6.160)
9i()
then the real supercharge operator Q acts as
0 Oy + h(x
0- ) (6.161)

V2 —0y + h(z) 0

The constraint that Q be Hermitian (6.159), then reduces to

[fig2 —g1fa] ,_y =0 . (6.162)

There are 3 different types of restrictions we can impose on the Hilbert space so that

Q is Hermitian:

1. Impose f(z) = 0, Vo € RT. In this case the Hilbert space is reduced so that wave

functions are only of the form H = spaan(RJr){z/JT]O)}.

2. Impose g(z) = 0, Vo € RT. In this case the Hilbert space is reduced so that wave

functions are only of the form H = spanj»g 1{|0)}.

3. Impose f(0) =0, g(0) =0 or f(0) and g(0) = 0. In this case we restrict the form

of the wave functions allowed in the Hilbert space % = span 1, g+, {[0), ¥10)}.
(@[} |le=0=0
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These three different choices give the different answers. They are each given by

.
—1 hy<0,qg>-1 1 hog>0,q<3

1) Iy, = 2.) Iy, =

0 else 0 else

0 hoxgqg>0 (6.163)

3.) Iy =49 -1 q>0>hg

1 ho >0>¢q

Now let us try to use localization to compute the ground state index. This SQM

can be described by the Lagrangian
L=t (a‘cz + T + D2) + Dh(z) — ejh’(x)[q/ﬂ ] (6.164)
2¢2 2 T

on the half space z > 0. As before, this Lagrangian is Q-exact. Thus, by studying the
limit e — 0, we see that the path integral localizes to the @-fixed points @ = 0. This

reduces the path integral to an integral over the line 3°

_ =S
Z /R an | ds / [dypdpte s . (6.165)

In this case, the 1-loop determinant comes from integrating over the fermion zero modes.

The partition function then reduces to
/ _mBD? | 5ri8Dh
Z=- A dD - dx fh'(x)e e . (6.166)

This can be evaluated by first integrating over D:

2 212
7 = —/ dz B (z)y | Se PR @) (6.167)
R+ B

We can then evaluate the partition by making a change of variables. This produces the

result
1 | —1+erf (\/7T562h0) qg>0
7 =— (6.168)

1+ erf (W%) qg<0

39Here we fix the normalization of the path integral so that the ground state index is an integer.
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Now we can compute the ground state index by taking the limit as 8 — oo. In this
case we find that the localization computation for the ground state index is exactly
given by
0 hgxq>0

Loc
LY =48 1 g>0> h (6.169)

1 ho >0>¢q

Which matches with the explicit computation in the SQM for the third choice of bound-
ary condition. Note that in the case ¢ = 0 the Witten index is identically zero because
the fermionic fields are non-interacting and massless. This is also reflected in the identi-
cally vanishing of the path integral since there are no fermion insertions. However, any
correction can lift this exact degeneracy and give rise to a possibly non-trivial Witten

index.

Effective Coulomb Branch SQM

Now let us apply this computation to the effective SQM on the Coulomb branch for the
bubbling SQM of the minimal 't Hooft defect in the SU(2) N' = 2 gauge theory with
N; = 4 fundamental hypermultiplets. See Section 6.3.3 and Appendix D.1. We will
refer to this theory as T),. This theory is again a supersymmetric particle moving in

a potential

2
1 1 1

h(o) = (D = = —— = . 6.170

@= w0 =¢+33 (5 5) (6.170)

However, we are now taking the theory on two semi-infinite intervals Iy = {o > a + €}

and I_ = {0 < —a — €} where w;,®; are the effective masses of the integrated out

hypermultiplet fields
wi=lo+ (-'at+e , @=lo+(-Da—¢, (6.171)

for parameters a,e € Ry. On each of these intervals, the vacuum state has Fermion
number —1 and has flavor charges +1 on Iy and —1 on I_. Note that this differs

slightly from the effective SQM in Appendix D.1. They are related by a different choice
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of normalization for the wave function describing the matter fields.?!

The localization computation of the ground state index proceeds as before except
that there are now two boundary contributions at o = £(a + €). Due to the limiting
behavior of h(o), the localization result for the ground state index, analogous to (6.168),

is given by
17(11—;06) (Tam) = — lim sinh(2e; )e>r ™ (1 —erf (\/77565»
B—o0

— lim sinh(2ey)e” 25 ™ <1+erf (\/7?,866)) :

B—00

(6.172)

Here, the factor of 2sinh(2¢,) comes from the decoupled Fermi-multiplet in the N =
(0,4) vector multiplet described by A2, Ao and the et 25 ™5 comes flavor charge of the
ground state on I and I_ respectively. By using the explicit form of h(o) (6.170), we

obtain the result

I(Loc)

19 (Tae) = —2sinh(2e,)eT 2™ ££> 0. (6.173)

Solving for the entire spectrum of this theory is much more difficult than in the
previous example. However, only the BPS states contribute to the ground state index.
These are computed in the Born-Oppenheimer approximation in Appendix D.1. In
summary, we find that there are over 10 different types of restrictions on the Hilbert
space in each interval that make @ Hermitian: we will make a symmetric choice. Two

distinguished choices lead to

1) Ipy (Tame) =2cosh | Y myd2e, | , ££>0,
f (6.174)

2.) Iy (Tamg) = —2sinh(2e, )eT25™ | 46> 0.
Now we see that the localization computation matches the explicit computation for the
second choice of boundary condition.
However, now recall the localization expression for Z,,on0(1,0) in the SU(2) Ny =4

theory in the expectation value of Lig from Section 6.2.7. There we showed that

31Gee Appendix D.1 for more details.
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ZT(,LLOOHC())(l7 0) # Zmono(1,0) as computed via AGT. In fact, they differed by a term

Z(extm)(l O) Zmom(l’()) Z(LOC)(I 0) = 2cosh me + 2ey , E£>0.

mono mono

(6.175)

However, this is exactly the computation of the ground state index of the BPS states

localized on the Coulomb branch with the first choice (6.174). As it turns out, there

is a unique choice of boundary conditions if we restict to the case of pure Neumann or
Dirichlet.

This result is in fact very natural. Recall that in Section 6.2.4 we explained that

the Hilbert space of BPS states of a generic bubbling SQM theory can be decomposed

into states localized on the Higgs, Coulomb, and mixed branches:
HBPS _ H(Bhlf:z,g'gs) ® /Hgg oulomb) ® H(g};ﬁged) ) (6176)
Thus, the ground state index should similarly decompose as

I’Ho = IHiggs + ICoulomb + Imixed . (6177)

In our case there is no mixed branch so that the summand Hﬁgﬁged) is trivial and

Lnizeda = 0. However, since we have identified the Jeffrey-Kirwan residue, Z JK — T Higgs»

(Loc)

as counting the Higgs branch states, we have that I, ™ = Ig;g4s has no contribution

from Coulomb branch states. Therefore, it is clear that we need to add a term

Iasymp = ICoulomb + Imixed 3 (6'178)

which counts the BPS ground states on the non-compact Coulomb and mixed branches.

6.3.2 Proposal

Thus far we have been able to show that the localization computation of I3, 1.7(_[1;0@)

)

reproduces the JK-prescription for the path integral, but that this does not correctly

reproduce Zpono( P, V) at least with the regularization procedure for localization that

ZJK

we have adopted. Further, by identifying as counting Higgs branch states, we were

Loc)

able to conclude that I, ( does not count any contributions from the ground states

along the Coulomb and mixed branches.
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Therefore, we propose that Zr(,ffff;a) (P,v) is the contribution of BPS states along

the non-compact vacuum branches in the bubbling SQM. Mathematically, this can be

phrased as
L
Zmono == IHO — I’;—[OOC) =+ Iasymp == ZJK + Iasymp 5 (6179)
where Iysymp = Icoulomb + Imizea 15 the ground state index evaluated on the states

localized along the Coulomb and mixed branches and Z7/

= Imiggs is the Jeffrey-
Kirwan sum over residues [98].

Note that I,symp is fundamentally distinct from the defect term ¢13,, which similarly
can be appended to limg_, I‘%OC) to correct the localization result [160, 178, 113]. As
shown above, our computation of Iq({LOOC) has already taken the defect term into account.
Rather, we propose that one must add an additional term Iy, that corrects for the
omitted ground states localized on the non-compact vacuum branches.

These states can be computed in the effective theory on the relevant vacuum branches
in the Born-Oppenheimer approximation. As we will see, this definition is independent
of the choice of ¢ in all known examples. Since the Born-Oppenheimer approxima-
tion is only valid for |o/al,|o/ey| >> 0, we must make a choice of effective boundary
conditions at |o| = |a| + |e4|. Unitarity then restricts the types of allowed bound-
ary conditions. In each of the following examples, there exists a (sometimes unique)

_ yleatra)

boundary condition such that Issymp mono - We have chosen to use this boundary

condition in all cases. The cases in which I4symp = 0 do not require such a choice.

Relation to Defect Contribution

The correction of the ground state index by I,symp at first glance appears to be similar
to the work of [178, 160] in which the authors compute the ground state index by adding
a “defect term” or “secondary term” to the Witten index. However, the two stories are

quite different. The definition of the “defect term” relies on rewriting

Iy = 135 (B0) + 613, (Bo) (6.180)
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where
Igé‘lk = Iy (Bo) = Try(—1)F e Potlt+

01y, =/ dp g (TrH(—l)Fefg{Q,Q}Jr...) ’

Bo

(6.181)

which we will call the bulk and defect terms respectively. This is a trivial rewriting by
making use of the fundamental theorem of calculus. When we write the path integral
as an integral over field space, we can use supersymmetry to rewrite the dg in the defect

term as

s <T1"H(—1)F€_§{Q’Q}+'") = —Try(-1)F Q% 22+
(6.182)

= Try Q(~1)F Qe 212+

Then by integrating by parts inside the path integral [2, 160], this is equal to a derivative

on field space
Ty Q(—1)F Qe H1OQ o = Tuyy (—1)F Qe M 4 Tigyd (i (—1)F Qe 2(0O+)

1 i FA -2
~ Urua, (wi(-1)F Qb0 |

(6.183)

where wia@ are the derivative terms in the supercharge which in turn can be written
as a boundary integral in field space. One might therefore hope that the defect term is
a feasible computation.

The utility of this rewriting is in the fact that the bulk term Iﬁ;‘lk can be computed
exactly in the limit as Sy — 0 by heat-kernel techniques. In this way, one might try to
compute the ground state index Iy, .

In this paper we are using a different decomposition of I,,. Here, we want to
compute the ground state index directly by using localization. Since we can compute
the Witten index via localization for generic 8, we find that we can simply take the

limit as 8 — oo to obtain the ground state index

(Loe) _ ma I‘(/IEOC) (8) . (6.184)

Ho —00

Unfortunately, once we have used what appears to be the most natural way of regular-

izing the localized integral, we find that the localization expression for the ground state
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index does not agree with AGT. Further, we find that this can be corrected by adding
the contribution from BPS states that are localized along non-compact directions in
field space with finite asymptotic potential.

In summary, the difference between our proposal and the defect term of [160, 178] is
that the defect term 1y, is the difference between the Witten index at 8 = 0 and the
ground state index whereas the asymptotic contribution I,sym, counts the BPS states
that are omitted in the implementation of localization to compute the ground state

index.

6.3.3 Examples

In this section, we will provide several non-trivial examples to show that Zﬁﬁiﬁ’;“) (P,v)

is indeed reproduced by the ground state index of the Coulomb and mixed branch BPS
states. In these examples we will study components of the expectation value of two
line defects: L1 and L. Specifically, we will be again interested in Z,,on0(1,0) and
Zmono(2,1).

Although we are only performing the computation for examples of abelian gauge
groups, there is no fundamental obstruction for performing the analogous computa-
tions for non-abelian gauge groups. The computation would be analogous to that of
Appendices D.1 and D.2 with increased computational complexity. We believe that in
the case of a non-abelian bubbling SQM, I,symp may have a more interesting form and

could potentially depend on the gauge fugacity a.

SU(2) Ny =4 Theory

In this theory we will study components of the expectation value of two line defects:

Lqp and Lojg. Specifically, we will be interested in Zpono(1,0) and Zeno(2, 1).

Zmono<17 0)

In the full expression for the expectation value of the L1 o 't Hooft line defect, there
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are two terms that contribute to Z,on0(1,0):

Zmono(1,0) = ZtL09) (1 0) + zleztra) (1 ) . (6.185)

mono mono

As shown in the previous section, the localization result for this Z,,on0(1,0) is given by
(6.129) whereas the full expression for Z,on0(1,0), as we know from AGT, is given by
(6.130). This means that Z$2®(1,0) is given by

2 cosh (mef —|—2€+) >0

2 cosh <mef — 2e+> £<0

Z(ewtra) (1, O) _

mono

(6.186)

We conjecture that this should be exactly reproduced by the Witten index of the ground
states on the Coulomb branch.
As we have shown in Appendix D.1, this is indeed exactly reproduced by the Witten

index of the asymptotic states on the Coulomb branch:

2 cosh (mef +2e+> >0

ZL2ta) (1,.0) = Ligymp(1,0) =
2 cosh (mef — 2€+) £<0

mono

(6.187)
Zm0n0(27 1)

Again by comparing the localization expressions (6.136)-(6.138) with the full ex-
pression from AGT (6.141) for Z,,ono(2,1), we find that

ZW ) (2,1) = 2cosh [ > mypE6ey | +2cosh [ D mpE2ey |, £&5>0, Vi

mono
f !

(6.188)
As shown in Appendix D.2, Z,(,ffflza)(l 1) is exactly reproduced by the ground state

index of the effective super quantum mechanics on the Coulomb branch (Zysymp):

Tosymp = 2cosh | Y “my+6e; |+2cosh | Y mypt2e, | , ££ >0, Vi. (6.189)
f f

By explicit computation, one can see that the Coulomb branch terms restore Weyl-

3

invariance®? and invariance of Zmono(2,1) under the choice of &.

32The Weyl group under the SO(8) flavor symmetry is generated by m; <> mit+1 and ma < —ma.
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Note that the bubbling SQM for this example has a non-trivial mixed branch. How-

ever, we conjecture that there are no states localized there. See D.2.3 for more details.

SU(2) Ny =2 Theory

Now consider the L; ¢ (minimal) 't Hooft defect in the SU(2) Ny = 2 theory. As in the

case of the SU(2) Ny = 4 theory, this has 't Hooft charge
P=h'=2h! =diag(1,-1) , h'€ Apw , h'€ Acchar - (6.190)
Similarly, the expression for its expectation value is of the form
(Lio) = (e" n e_h> F(a,my) + Zmono(1,0) , (6.191)

where

2 . 3
Il. Hle sinh (a £ my) ) ‘ (6.192)

F =
(a,my) <sinh(2a) [[ sinh (2a & 2¢.)
The monopole bubbling contribution can be computed as the Witten index of the

N = (0,4) SQM described by the A = (0,2) quiver:

The Witten index of this quiver SQM reduces to the contour integral

d
Zr(iz)?zcc))(lao) = % T?ZveC(Sov a, €+)Zhyper(907av €+)ZF67"mi(907a7 €+) ’ (6'193)
JK(g) 2Tt

which is explicitly given by

2 .
1 _, sinh(p —m

240.0) = 5 § 32 sinh(2en) 17—y sinb(p —my) |
2 Jik(e) 2m [[.sinh(p +a+e;)sinh(—p+a+ey)

(6.194)
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This integral evaluates to 23

[I;sinh(a —my Fey) [I;sinh(a+my+ey)
sinh(2a) sinh(2a F 2¢4)  sinh(2a) sinh(2a £ 2¢4)

Z(Loc) (1’ O) _

mono

+£>0.
(6.195)
From carefully taking the limit of (L1 o) in the Ny = 4 theory to the Ny = 2 theory®4,

we can see that the correct Z,ono( P, v) contribution is given exactly by

[I;sinh(a —my Fey) [[;sinh(a+my+ey)

Z 1,0) = +££>0.
mono(1,0) sinh(2a) sinh(2a F 2¢4)  sinh(2a) sinh(2a + 2¢) §
(6.196)
Thus, we see that
zleztra) (1 0y =0 . (6.197)
As seen in Appendix D.1, there are no Coulomb branch states and thus:
Zra) (1,0) = Lgymp(1,0) = 0 . (6.198)

Note that the fact that Zy(,'fféza)(l,()) = 0 is consistent with the fact that Z,,on0(1,0)
is actually invariant under the choice of £ and under the Weyl symmetry of the flavor

symmetry group.

SU(2) SYM Theory

Here we will again be interested in the expectation value of the minimal 't Hooft defect

that experiences monopole bubbling. This line defect has 't Hooft charge
. 1 .
P=2n' =2h! = 5diag(z, —2) , hteApw , A€ Acochar (6.199)

and hence is the next to minimal 't Hooft defect: Lo .

Its expectation value takes a similar form to (L; ) of the SU(2) Ny = 4 theory:

<L270> = (6% + 67%) F(a, mf) + Zmono(zy O) s (6.200)

33Note that this required fixing the overall sign of the Jeffrey-Kirwan residue computation. The
reason is that the JK prescription does not give a derivation of the overall sign.

34This requires taking Re[ma], Re[ms] — oo such that sgn(Re[mas]/Re[ms]) = —1. This is a very
subtle point that we will discuss in section 6.4. See [96] for more details about the analogous issues in
5D SYM.
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where

1 3
Fla,my) = <sinh(2a) 8 sinh(2aj:26+)> ‘ (6.201)

The monopole bubbling contribution (Z,,one) can be computed as the Witten index of

the N' = (0,4) SQM described by the N' = (0,2) quiver:

The Witten index of this quiver SQM reduces to the contour integral

d
729 (2,0) = 74 9 e, e4) Zngper (910,64 (6.202)
JK(&) 27'('1

which is explicitly given by

1

1
z{ked) (2,0 f —~ sinh(2 . (6.203
mono(2,0) = 8 TK(€) 2772 sinh(2e4 1;[ sinh(p +a+ey)sinh(—p +a+ey) ( )
This integral evaluates to
1 1

Z(LOC) 2.0 — +£>0.

mono(2,0) = ~ 4sinh(2a)sinh(2a T 2e,)  4sinh(2a)sinh(2a + 2¢, ) .
(6.204)

From carefully taking the limit of (Lo o) in the N = 4 theory to the Ny = 0 theory3®

we can see that the correct Z,on0(2,0) contribution is given exactly by

1 1
Zmono(2,0) = — - ££=>0.
mono(2,0) 4sinh(2a) sinh(2a F2¢;)  4sinh(2a) sinh(2a £ 2¢) &>
(6.205)
Thus, we see that
Zr(sgflza)(Q 0)=0. (6.206)

35 As before, this requires a bit of care by taking Re[m;] — oo such that two masses go to oo and
two go to —oo.
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As seen in Appendix D.1, there are no Coulomb branch states and thus

Z8a) (20) = Lgymp(2,0) =0 . (6.207)

mono

This is again consistent with the fact that Z,%f,fg(Q, 0) is independent of the choice of £

and invariant under the action of the Weyl symmetry of the flavor symmetry group.

SU(2) N =2* Theory

Here we will again be interested in the expectation value of the minimal 't Hooft defect
that exhibits monopole bubbling. As in the case of SU(2) SYM theory, this line defect

has 't Hooft charge
. 1 .
P=2n' =2p! = 5diag(z, -2) , k'€ Apw , A E Acochar (6.208)

and hence is the next to minimal 't Hooft defect: L. As in the case of the SU(2)

SYM theory, this is of the form
<L270> = (6% + 6_%) F(a7 mf) + Zmono(2a O) s (6209)

where

1
_ o sinh(2a + sym + sg¢€ 2
F(a) = (Hsm‘i (3a+ aum + 2 +>> (6.210)

[ 1. sinh?(2a) sinh(2a + 2¢)
The monopole bubbling contribution (Z,,on0) can be computed as the Witten index of

the (mass deformed) N = (4,4) SQM described by the quiver:

The Witten index of this quiver SQM reduces to the contour integral

d
Zr()fc%g(270) = % inec(@; a, 6+)Zhy7767"(907a7 6+) ’ (6'211)
JK(§)

211
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where the contributions of the different A' = (0,2) multiplets for this SQM are given

by
Z{Le) (2,0) = f dp ___sinh(2c;)
TK(¢) 2mi 2] [ sinh(m £ ey) 6919
" H sinh(£(¢ + a) + m) sinh(+(p — a) + m) (6.212)
- sinh(£(p + a) + €4.) sinh(£(p — a) +€1)
Using this we can compute
721992, 0) = H‘S:jE sinh('2a +sm+€4) Hte:i sinh(‘2a +sm —eq) R
sinh(2a) sinh(2a + 2¢.) sinh(2a) sinh(2a — 2¢,.)
(6.213)
As shown in [97], the AGT computation produces
_ sinh(2a + + _. sinh(2a + -
Zinono(2,0) — =z bGabom +e) | [log snhi®abom Z )
sinh(2a) sinh(2a + 2¢,) sinh(2a) sinh(2a — 2¢;.)
(6.214)
and therefore that
zlewtra) (2 0) = 0 . (6.215)

As shown in Appendix D.1, there is a complete cancellation between Coulomb branch
(extra)

states such that Zpyono ' (2,0) is reproduced by the Witten index of the asymptotic

Coulomb branch states:

ZE8ra) (20) = Lgymp(2,0) =0 . (6.216)

mono

This is again consistent with the fact that Zﬁ,ﬁffg(Q, 0) is independent of the choice of £

and invariant under the action of the Weyl symmetry of the flavor symmetry group.

Remark In general, the “extra” terms can be dependent on a as well as my and €.
The reason is that because for non-abelian SQM gauge groups, there are generically non-

trivial contributions from mixed branches which we expect can give rise to a dependence.

6.3.4 Comment on 4D N =2 SU(2) Quiver Gauge Theories

It is interesting to ask how this analysis applies to 4D N = 2 quiver gauge theories with

gauge group SU(2) at each node.3® We believe there is no fundamental obstruction to

36Here we consider only SU(2) gauge groups due to additional subtleties with higher rank simple
gauge groups with Ny > 4 fundamental hypermultiplets. See upcoming work for additional details.
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applying this analysis to such theories beyond increasing computational complexity.
There is also the additional complication that the brane configuration presented here
does not simply generalize to the case of quiver gauge theories and hence can not be
used to derive the quivers for the bubbling SQM.

However, the bubbling SQM can be deduced from the following arguments. Consider
the bubbled defect in a quiver gauge theory with gauge group G = [[, SU(2); specified

by the data (P,v) € Ay X Amyw which decomposes as a sum over gauge group factors

r=Pr. . v=EPv:. (6.217)

Further, let us define the quiver I; which specifies the bubbling SQM associated to
the pair (P;,v;) with appropriate matter interactions. The full bubbling SQM is then
derived by taking into account the 4D bifundamental hypermultiplets which lead to
extra fermi and/or chiral multiplets connecting nodes between different I;. The precise
couplings can be obtained from demanding U (1) g-invariance of the full quiver.3”
Unfortunately, testing our hypothesis in this setting would be quite difficult as the
necessary AGT computations also become increasingly difficult with increasing gauge
group rank. The computation of the bubbling contribution to the expectation value of
't Hooft defects in quiver gauge theories is of interest for many reasons. One reason is
the potential utility in exploring the deconstruction of the 6D N = (0,2) theory [8].
Consider a N/ = 2 superconformal ring quiver gauge theory with G = Hf\; 15U (2);.
The deconstruction hypothesis conjectures that in the limit N — oo and gy — oo,
the UV completion of this 4D theory is that of the 6D A; N = (0,2) theory. In this
limit the 't Hooft defects become surface defects that interact with tensionless strings
[157]. Thus, the correct computation of expectation 't Hooft defects in quiver gauge
theories can be used as a probe for understanding the 6D N = (0, 2) theory.
Therefore, let us demonstrate that our analysis applies to the computation of the
monopole bubbling contribution of an 't Hooft defect in the simplest example of quiver
gauge theory of higher rank. Consider the case of a superconformal N' = 2 quiver gauge

theory with G = SU(2); x SU(2)2 with fundamental matter:

37See upcoming work for additional details.
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Now consider the bubbling sector where

2 2
P = @ P, v= @V’i ) (Piavi) = (dlag(lv _1)7d1ag(070)> : (6218)
i=1 i=1

In this case, the N' = (0,2) bubbling SQM is of the form

The localization contribution t0 Zmono((1,0) @ (1,0)) is then given by the contour

integral

Z5ia((1,0) @ (1,0)) =

mono

dprdp,  sinh?(2ey) H?‘:l sinh(yp1 — my) sinh(ga — myi2)
] (6.219)

K(ere) (2T TTL, [Ta sinh(£(pi — @) + 1) sinh(£(p; + a5) + €4)
[1.sinh(—¢1 &+ az +m + ey ) sinh(p2 £ a; +m +€4)
4sinh(ps — 1) sinh(p1 — w2 + 2€4) '
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Let us choose &1, &2 > 0. In this case there are 8 poles contributing to this path integral:

Lipr=a1—ey  , pa=0az—€q,

H:g01=a1—6+ s Yo = —02 — €4,

HI: o1 =—a1—€4 , @pa=az—€4,

IVipr=-m—er , p2=—-az—€;,

(6.220)

Vipr=a—e  , pa=m —€4,

VI:QDl:—Cll—€+ s Yo = —01 — €4,
VII: o1 =az -3¢, , p2=as—¢€,

VIII:@12—02—36+, Y2 = —0g — €.

See Appendix D.5 for the full expression of Zr(nLoC;f())((l, 0)&(1,0)) computed with &;,& >
0.

One can check that the localization result for Z,,on0((1,0) @ (1,0)) from residues
associated to these poles is not invariant under the Weyl symmetry of the SU(2) x SU(2)
flavor symmetry group. Therefore, this cannot be the full, correct monopole bubbling
contribution Zono((1,0) @ (1,0)) for this 't Hooft defect. Thus, we expect that the
true Zmono((1,0) & (1,0)) has an extra contribution coming from Coulomb and mixed

branch states that are missed in the standard localization computation.

6.4 Decoupling Flavors

Another way we can check our hypothesis is to see whether it is compatible with decou-
pling matter from N = 2 theories. Consider decoupling fundamental hypermultiplets
from the SU(2) Ny=4 theory. The expressions for (L, 0)N,<4 can be obtained by taking
the limit as m; — oo while holding a, b fixed, provided we allow for a multiplicative
renormalization of (Ly0)n,=4. This kind of limit was described in [69] Section 9. Note
that this limit is not the decoupling limit in [156].38

This allows us to compute the expectation value of the line defects in 4D SU(2) gauge

38The limit from [156] takes
Anj=3 = 64¢"*my (6.221)
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theories with Ny < 3 fundamental hypermultiplets by taking the decoupling limit of the
Ny = 4 theory. However, in order to use our prescription to compute Iggymp, we must
take into account the effect of the decoupling limit on the bubbling SQM. When we
decouple the fundamental hypermultiplets we are integrating out fundamental Fermi-
multiplets coupled to the gauge field in bubbling SQM. This will generically introduce
a Chern-Simons term (or in this case a Wilson line) determined by the way we decouple
the masses [153, 154, 146, 6]

4

qg=—- Z sgn(Re[my]) . (6.223)
f=Ns+1

This means that the Ny = 1,3 theories must necessarily have a Chern-Simons term

2n+1

5—, n € Z to be well defined.?® The necessity of these half integer Chern-

of level
Simons terms is reflected in bubbling SQMs as a gauge anomaly for ¢ € Z. In general,
the allowed values of the Chern-Simons levels is consistent with the condition that the

bubbling SQM be anomaly free ¢ € Z + % as noted in [90].

6.4.1 Examples

Now we can determine the value of Z,,0n0(P,v) in the general Ny theory by taking
certain limits of Zp,ono(P,v) in the Ny = 4 theory. This also gives an additional check
of our hypothesis as we will now demonstrate in the case of the Ny = 2,3 theories.

Similar results also hold for the Ny = 0,1 theories.

fixed with u, m — oo with

uNF =4 %mi : (6.222)

held constant where An,=3 is the UV cutoff of the Ny = 3 theory. Further decoupling to the Ny <2
proceeds analogously. The limit from [156] is different from the limit we take here because in their
limit, the expressions for a, b from (6.32) diverge (and non-perturbative corrections are small).

39 An analogous system was studied in 5D in [96].
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(L1,) in the Ny = 3 Theory

Recall that for the expectation value of the (L) 't Hooft defect in the Ny = 4 theory,

Zmono(1,0) is of the form

ZNf:4(1 0) = _4 [[;sinh(a —my; Fey) Ly [[;sinh(a+my+ey)
mone A sinh(2a)sinh(2a F2¢;)  sinh(2a)sinh(2a + 2¢,)

(6.224)

+2cosh me + 24 |,
f

for £& > 0. Note that this actually invariant under the choice of £ € R..
By taking the limit Re[m4] — +00 we can decouple the 4" fundamental hypermul-

tiplet and find a result for the Ny = 3 theory. This produces the result

N;=3 s ,
Zm{mO (1’ O; q= 7) = lim esm4Zmono(Nf = 4)
2 Re[my]—soco
Py [[;sinh(a —my Fey) _ gty [I;sinh(a+myp+ey) (6.225)
sinh(2a) sinh(2a F 2¢.) sinh(2a) sinh(2a 4+ 2¢) ’
+ S LpmyE2ser +£>0.

N¢=3 N¢=3
Note that Zmono (1,0;q9 = %) # Zmibmo (1,0, = _%)

S

In this case we see that Re[my] — £oo corresponds to ¢ = 5. This modifies the

localization integrand by including a factor of e24¢:

dop 2e°? sinh(2e 3_ sinh(p —m
Z{E9(1,0,q = 2) :7{ & ( +)Hf‘1 lo=ms) (6.226)
2 JK(¢) 2misinh(p £ a+ ey )sinh(—p £ a+ey)
As before, this can be evaluated as
sinh(a —m¢ Fe
ZTS:L]OIE&(L 0;q = f) —9geSatset Hf ( / +)
2 sinh(2a) sinh(2a F 2¢4.) (6.227)
— 9geSutset 1_[f sinh(a + my =+ €+)
sinh(2a) sinh(2a 4 2¢) ’

where s = sign(q).** This means that we have

s Sy mytes) £>0
) = (6.228)

Z(eactra) (1, 0; ¢
2 s(Oo,mp—ey)
e\ < ()

mono

This is exactly given by Iusymp(q = 5) as shown in Appendix D.1.

40 Again this required fixing the overall normalization of the path integral.
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(L1,) in the Ny = 2 Theory

Now we can go to the Ny = 2 theory by decoupling the 37 fundamental hypermultiplet.
This can be done in two ways (Re[ms] — £oo) which can induce a Wilson line of
charge ¢ = —1,0,1. The result for ¢ = 0, which can be achieved by taking Re[ms] —
—sgn(gN f:4) X 00, is given in the previous section. In the case of ¢ = +1, we have that

Zmono(1,0) is given by

Zmono(Nf = 2) = lim e_sm4_8m3chmo(Nf = 4)
Re[ma],Re[ms]—qoo
o daakges [I;sinh(a —my Fey)  aekges [I;sinh(a+my+ey) (6.229)
sinh(2a) sinh(2a F 2¢4) sinh(2a) sinh(2a £ 2¢4)

s m¢t2se
+e Zf f +’

where s = sign[g]. Again, by introducing the Wilson line in the SQM, this changes the

localization computation to give

1 d €24 ginh(2e¢ 2 sinh(p —m
TR St s Gl 2N (R0
2 Jik(e 2mi [[osinh(p £ a+ey)sinh(—p & a+ey)
As before, this can be evaluated as 4!
ZUK) (1 0) = — ¢~2a0E20+ [I;sinh(a —ms F€;)
menot sinh(2a) sinh(2a F 2¢4) (6.231)

 2at2es [I;sinh(a+my+ey)
sinh(2a) sinh(2a 4+ 2e)

e LMt €5
Zr(rfgflga) _ , §= Sjgn(q) . (6.232)
eszfmf—256+ 5 <0

Note that as shown in the previous section, Iysymp(¢ = 0) = 0. This is exactly given by

Iosymp(q) as appropriate as shown in Appendix D.1.

4! Again this required fixing the overall normalization of the path integral.
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Chapter 7

Index Theorems on M and Characteristic Numbers on

Kronheimer-Nakajima Spaces

Thus far we have discussed how the expectation value of an 't Hooft defect operator
can be computed in theories of class S by using spectral networks or in weakly coupled
Lagrangian theories using localization. The class S technique of spectral networks
expresses the expectation value as a Laurent series in certain holomorphic “Darboux”
coordinates on the Hitchin moduli space M whose coeflicients are framed BPS indices
for IR framed BPS states. By the results of Chapter 2, we know that this can be related
to the index of a Dirac operator

— (ve)
2(y,u; L(P,¢)) = Ind [pr}mp7 ) (7.1)

where v = v, ® 7. can be identified in the semiclassical limit via its Lagrangian de-
scription.

On the other hand, localization of the weakly coupled Lagrangian description of 't
Hooft defects computes the expectation value to be some rational function of the (expo-
nentiated) complexified Fenchel-Nielsen coordinates a, b. These expressions encode the
characteristic numbers of certain Kronheimer-Nakajima quiver varieties in the terms
that we have thus far called Z,,on0-

Thus, by comparing the line defect vev’s computed by spectral networks and local-
ization, we can derive unusual expressions for the L?-index of certain Dirac operators in
terms of characteristic numbers of Kronheimer-Nakajima varieties. This can be used to

yield an index theorem. In this chapter we will illustrate this principle in the example

This chapter is based on material from my publication [27].
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of 4D G = SU(2) N =2 SUSY gauge theories.

In the case of 4D G = SU(2) N = 2 supersymmetric gauge theories, there are two
complexified-Fenchel-Nielsen coordinates a, b. From general principles, the expectation
value of the 't Hooft defects can be expressed in Fenchel-Nielsen coordinates as a Fourier
expansion in b. More precisely, this can be written as [97, 81]

(Lpo(Q) = > cosh(v,b)(F(a))" Zmono(a,m, € P,v) | (7.2)
vEZ 1 v<p
where v = diag(v, —v) and P = diag(p, —p). On the right hand side the {-dependence
is captured by the use of complexified Fenchel-Nielsen coordinates on Mg.l

Here the expectation value above is expressed as a sum over monopole bubbling
configurations where cosh(v, b)F'(a)" encodes the contribution of bulk fields and Z,on0
describes the contribution from the SQM that arises on the 't Hooft defect from bubbling
[23]. See [23, 24, 26] for more background and explanation of notation.

In the localization computation of (L), Zmono(P,V) is given by a characteristic

number of a certain resolved Kronheimer-Nakajima space 2

Zimono(a,m, & P,v) = lim [ _ e Ap(TMY ) - Crsre(V(R)) . (7.3)
§20 JME, o (P)

Here /T/l/% N (P,v) is a certain resolved Kronheimer-Nakajima space determined by the
line defect charge (P) and core magnetic charge (v), e“T#T induces the T-equivariant
volume form on ./K/lv% N(Pv), ET(T.K/IV% n) is the T-equivariant A-genus that describes
the contribution from the N' = 2 vectormultiplet and Crx7.(V(R)) is a characteristic
class related to the matter hypermultiplets where 7" is the conserved global symmetry
group of flavor, R-, and global gauge transformations. The equivariant integral can then
be evaluated as a contour integral in an algebraic torus whose poles are enumerated by

Young tableaux [143, 127, 128].

!Usually complexified Fenchel-Nielsen coordinates are introduced as holomorphic coordinates, de-
pending on a cutting system, of the character variety X = Hom/(m1(C), Gc)\conj. for some complex
gauge group Gc. In our case, M is isomorphic to X for all ¢ # 0,00 as a complex manifold, but not
canonically. Our Fenchel-Nielsen coordinates will therefore also be functions on the twistor space of
M which, when restricted to a fiber M, are holomorphic Darboux coordinates. It is in this way that
they become comparable to spectral network coordinates.

2As discussed in Chapter 6, there is an additional subtlety with 4D A = 2 SU(N) theories with
Ny =2N.
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On the other hand, using the class & technology, the expectation value of a super-
symmetric line defect can be computed by the trace of the holonomy of a flat SL(N;C)
connection along a corresponding curve - in an associated Riemann surface C. Spectral
networks express the expectation value of such 4D line defects as

<LP70>U€B = Z Q(V) Lp,O; u)yv ) (74)
yel’

where 2(v, Ly 0;u) are framed BPS indices, ), are Darboux functions on the moduli
space of flat SL(N; C) connections on C' associated to the physical charge v = v, ®7.®
v¢ € I', and I' is a torsor of the IR charge lattice [69]. Locally on moduli space we can
decompose 7 non-canonically into magnetic, electric, and flavor charge v = 7, 7. ®y.

In the semiclassical limit of the theories we are considering, the framed BPS indices
of 't Hooft defects can be identified with the index of a twisted Dirac operator on

singular monopole moduli space [124, 22, 133, 134, 165, 77, 78, 125]:

e} V17e®
Q(’Y’ LP,O; U) = IndL2 [w ];ma;zgr@SM(P,’Ym,u) . (75)

Here the superscript 7. @© v denotes the associated eigenspace of the L? index of ]ﬁy,
a Dirac operator modified by adding Clifford multiplication by a hyperholomophic
vector field defined by ) € tc. The Dirac operator acts on sections of Epatter ®
SM(P,ym,u) where SM(P, v, u) is the spinor bundle on the singular monopole mod-
uli space M(P, Y, u) and Ematter — M(P, Ym, u) is a vector bundle over it related to
hypermultiplet zero-modes. Additionally we take v = ~,, ®v.® to be the asymptotic
charge of the BPS state.

Thus, by comparing the expectation value of 't Hooft defects computed via localiza-
tion and spectral network techniques in a weak coupling limit, we can derive a relation
between characteristic numbers of Kronheimer-Nakajima spaces and indices of Dirac
operators on singular monopole moduli space:

Z 2(7, Lp,oi u) Yy
ver

= > O(F@) im [ e AN (TMiey) - Cray (V(R)
vI<IP] Mien (F)

(7.6)
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Since the formula is valid for an infinite number of line defects, we can use it both to
express )y in terms of a,b (or vice versa) and to determine relations between Dirac

indices and characteristic numbers on certain Kronheimer-Nakajima spaces.

7.1 Fenchel-Nielsen Networks

Generally, we will find that the coordinate transformations are quite complicated. How-
ever, as it turns out, there is a special class of spectral networks called Fenchel-Nielsen
networks which is especially well suited to comparing with the localization results of
(Lp,o) in terms of Fenchel-Nielsen coorcinates [89]. Roughly, this is because the Darboux
coordinates for Fenchel-Nielsen spectral networks exactly coincide with the Fenchel-
Nielsen coordinates from localization.

These spectral networks have only double walls corresponding to a set of minimal
cuts necessary to decompose the Riemann surface C into a disjoint product of punc-
tured discs and annuli. This is a WKB spectral network where @2 is a Jenkins-Strebel
differential — o gives a foliation of C by closed paths. Another way of saying this
is that a Fenchel-Nielsen spectral network is given by a pants decomposition of C' in
which on each pair of pants, the spectral network is one of the two networks in Figure
7.1.

These spectral networks are referred to as Fenchel-Nielsen-type because the a-type
Fenchel-Nielsen coordinate has a straightforward interpretation in terms of the associ-
ated spectral network coordinates. associated to these networks have a straightforward
interpretation as complexified Fenchel-Nielsen coordinates.

Let us take a maximal set of non-intersecting curves {%}?i;%n that define a pants
decomposition of C. On each pair of pants, there are classes of curves which are

homotopic to a subset of the {7;}. The holonomy around a curve that is homotopic to
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(¢ To) &—®

Figure 7.1: This shows the two possible types of Fenchel-Nielsen spectral networks on
a single pair of pants where the dotted orange lines are a branch cut. These spectral
networks are called “molecules” in [89].

such a 7, is given in terms of the spectral network coordinates >

y%
0 Y

(Ly;) = Tro =V, + Vb (7.7)

However, we see from before, that this is simply the definition of the Fenchel-Nielsen
coordinate a:

Yy + y:l = Troe" . (7.8)

Wilson line vevs for a fundamental representation of a factor in the (four-dimensional)
gauge algebra are usually expressed as three-term expressions in the functions ). (See
e.g. (10.33) from [69].) The relation to the above two-term expansion is clarified in
equation (7.36) above.

In a large class of theories, such as the ones we study here, Fenchel-Nielsen spectral
networks can be obtained from a generic WKB spectral network by performing a juggle.
This requires changing ¢ such that we cross an infinite number of K-walls. In the
theories we consider, there are infinite number of such walls which accumulate along
co-dimension 1 “accumulation points” in the (-plane. See Figure 7.2. In our setting,

sending ¢ to an accumulation point is equivalent to undergoing the infinite number of

3Note that ), are defined for v € H1(X;Z) while L. is defined for v C C. Here we use the loose
notation where Y, for v C C'is defined as V-1, the lift under the projection 7 : X' — C' onto one of
the sheets. Due to (6.15), the two choices of lifting are related by inverses and thus are merely a choice
of convention.
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1

|

|

Figure 7.2: This figure shows the structure of the K-walls in the (-plane. There are
accumulation points (red) on the imaginary axis where the associated WKB spectral
network becomes a Fenchel-Nielsen spectral network.

flips that occur in a juggle, leading to a Fenchel-Nielsen spectral network. See Section

7.1.1 for further discussion.

Remark Recall from the discussion of Section 6.2, that the spectral network coordi-
nates Y, is given in (6.17) and has a semiclassical expansion with an infinite number of
non-perturbative corrections. Since, as we showed above, we can identify the complexi-
fied Fenchel-Nielsen coordinates with spectral network coordinates, the Fenchel-Nielsen
coordinates a, b must similarly have an infinite number of non-perturbative corrections
to their semiclassical value. We will demonstrate this in the example of the SU(2)

Ny = 0 theory in Section 7.2.2 by computing the leading non-perturbative corrections.
7.1.1 Fenchel-Nielsen Spectral Networks and The Semiclassical Re-
gion

Now we can connect the formalism of semiclassical BPS states and spectral networks.

Recall that the the expectation value of line defects is determined by the framed BPS
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index as in (6.2). Therefore, the index of the Dirac operator from the previous section
can be used to determine the expectation value of an ’t Hooft defect in the semiclassical
limit.

Since we want to compare to the localization computation, which is naturally ex-
pressed in terms of Fenchel-Nielsen coordinates, one would hope to use Fenchel-Nielsen
spectral networks and the associated Dirac operators. In order to implement this we
need to know: 1.) if there exists Fenchel-Nielsen spectral networks in the semiclassical
limit and 2.) where in parameter space these spectral networks exist so that we can
compare to indices of Dirac operators. In this section we will show that such spectral
networks exist in the semiclassical limit, but that they only exist in parameter space
where the moduli space approximation breaks down.

The question of whether or not a Fenchel-Nielsen network exists is equivalent to
the question of whether or not there exists a Jenkins-Strebel differential on C' that
encodes the data of the theory in some semiclassical limit. The data of the differential
is (u,{,m) € Bx U(1) X tp.

The existence of Jenkins-Strebel differentials on a Riemann surface C' with punctures
are studied by Liu [117, 116]. There, Liu shows that given a decomposition of C' into a
collection of punctured disks { D, } and annuli { Ry}, there exists a uniquely determined
real Jenkins-Strebel differential with closed trajectory o with fixed monodromy m; € R
around each puncture and height h; € R around each annuli where the height is defined

as
hp = Inf,Yk?{ Imy/p2]| (7.9)
Vie

where the infimum is taken over all paths that run between the boundaries of Ry.
Note that the Fenchel-Nielsen spectral network is exactly given by the union of the
boundaries of these component disks and annuli.

Now consider as an example the case of the 4D SU(2) N = 2* theory. This theory
is constructed as a theory of class S by taking C to be a torus with a single puncture.
This theory comes with a complex 2-dimensional parameter space defined by u € B = C
and the complex mass parameter of the hypermultiplet. C' can be decomposed as an

annulus R, and a punctured disk D,,. See Figure 7.3 for the example of the 4D SU(2)
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Figure 7.3: This figure shows the explicit decomposition of the UV curve C' = T2\ {0}
into disks and annuli for the 4D SU(2) N = 2* theory in two different ways. Note that
the boundary of these components give rise to the Fenchel-Nielsen spectral networks
corresponding to both types of fundamental molecules. The type of Fenchel-Nielsen
molecule describing the spectral network depends on the relative holonomies of the
cuts. See [89] for details.

N = 2* theory where C' = T2/{0}.* Thus, there is a 3 dimensional family (specifying
m, 7, and () of Jenkins-Strebel differentials which forms a real co-dimension 1 subspace
of parameter space. This suggests that there could exist a Jenkins-Strebel differential in
the semiclassical limit (Ju| — oo ) and therefore that there could exist a Fenchel-Nielsen
spectral networks in the semiclassical limit. This has been confirmed by numerical

computations.®

4We would especially like to thank Pietro Longhi for providing these figures.

5We would like to thank Pietro Longhi for sharing his numerical computation for the SU(2) N =2*
theory and for making the authors aware of Liu’s work on Jenkins-Strebel differentials.
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Now recall that for a WKB Fenchel-Nielsen spectral network, the real Jenkins-

Strebel differential is related to the Seiberg-Witten differential as

P2 = Ay (7.10)
Asking that @9 as defined by this equation is a Jenkins-Strebel differential defines the
Fenchel-Nielsen locus in B* x C*.
As usual in Seiberg-Witten theory, the periods of Agy give the vev’s of the Higgs
field and mass parameters. In our case the UV curve is given by C' = T2\{0}. This
means that if we pick a basis of Hy(X;Z) = spany{A, B},

7{ Asw =a f Asw =ap 7{ Asw =my , (7.11)
A B D

P

where D), is a loop circling the puncture and my is the mass of the adjoint hypermulti-
plet. In this notation, the condition that 9 is a Jenkins-Strebel differential (and hence

gives rise to a Fenchel-Nielsen-type WKB spectral network) is that

félkweR, (TAsw €R, (7.12)
A D,

which can be rewritten as
Im[¢'a] = Xoo =0 Im[C_lmf] =m,=0. (7.13)

This locus in parameter space, which we will call the Fenchel-Nielsen locus, is an ac-
cumulation point of -walls in the (-plane and we will denote the associate phase in
U(1) as ¢rn-

Unfortunately, the Fenchel-Nielsen locus is exactly where the moduli space approxi-
mation, which gives the identification between the framed BPS index and the index of a
Dirac operator on singular monopole moduli space, breaks down. In the limit X, — 0,
the space M(Py, Ym; Xoo) (and M (qm; Xoo)) are not defined. The reason is that the

semiclassical expression for the central charge is given by

7, = - ‘;(%,Xoo)—m,yooﬁ+z[‘;§<fym,yoo>+<%,xoo> AT

Thus the BPS mass Mpps = Re[("!Z,] for a monopole goes to zero as we scan

such that X, — 0. However, we know that monopoles do not become massless in
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the semiclassical limit. Thus, we can deduce that the non-perturbative quantum effects
must become large and therefore the effective SQM description above must break down.

However, by taking | X!, |Yoo| = 00 as | Xoo|/|Yoo| — 0, we can still identify framed
BPS indices with the index of a Dirac operator for phases which are arbitrarily close
to the Fenchel-Nielsen locus. This will allow us to give an index theorem for the
supercharge Dirac operators almost everywhere on the (-plane. See Figure 1 of [134]
or Figure 4. of [133] for more details.

The above analysis makes it clear that there always exists SU(2) Fenchel-Nielsen
networks (and in fact all SU(N)-type Fenchel-Nielsen spectral networks) in the semi-
classical limit. These exist on the locus where all of the masses and a; = f A, Asw have
the same phase. Such a spectral network can be constructed by gluing together pairs
of pants with semiclassical Fenchel-Nielsen spectral networks on them by the procedure
of [89]. The only condition here is that the Fenchel-Nielsen spectral networks all have

the associated phase.

Remark Recall that a Fenchel-Nielsen spectral network corresponds to a WKB spec-
tral network with a Jenkins-Strebel differential. This is defined by decomposing the
Riemann surface C into a collection of annuli and punctured disks. On each compo-
nent, the flow lines of ¢ give a foliation of curves that are homotopic to the boundary
components. If we consider infinitesimally deforming the phase ( associated to the
quadratic differential, we find that the flow lines on each component are no longer ho-
motopic to the boundary components, but rather spiral into them with a very large
winding number. Thus, as we send ( — (rpy the flow lines of o twist around the
boundary components infinitely many times until they form closed paths, producing a
Fenchel-Nielsen spectral network. This infinite spiraling indicates that Fenchel-Nielsen
spectral networks can be achieved by performing a juggle on a WKB spectral network
where all physical parameters have aligned phases. Using the procedure from Section
8.4 of [89], one can identify the limiting coordinates (6.26) with the Fenchel-Nielsen

coordinates yﬁf) = e%, while yf;) defines a choice of .6

5Note that we could also approach the Fenchel-Nielsen locus in the opposite direction. The procedure
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Thus, the Darboux coordinates associated to Fenchel-Nielsen spectral networks in
the cases we are studying can be obtained by acting on a generic set of spectral network
coordinates by an infinite number of cluster coordinate transformations. The resulting
spectral network coordinates are those that result from the flip (6.26). This gives
a recursion formula for the Darboux coordinates that can be “integrated” to give a
relation between the Darboux coordinates of a spectral network in any chamber and
the Fenchel-Nielsen coordinates which are used in localization computations. This will
be the primary computational tool that we will use to construct an index theorem and

give a formula for the characteristic numbers in the next section.

7.2 Index Theorem and Characteristic Numbers

In this section we will compare the different methods of computing the expectation
value of 't Hooft defects in 4D N = 2 G = SU(2) asymptotically free theories with
fundamental and hypermultiplet matter. We will outline how this comparison can be
used to give an index theorem for Dirac operators on singular monopole moduli spaces
and give the characteristic numbers of certain Kronheimer-Nakajima spaces’. We will

explicitly show these for the SU(2) Nt = 0 theory.

7.2.1 General Theory

Consider an N' = 2 SU(2) Lagrangian theory of class & with mass parameters of
identical phase. Now pick a point in the semiclassical limit of the Coulomb branch
away from the Fenchel-Nielsen locus. We are interested in computing the expectation
values of a 't Hooft defect which is specified by an integer p and a phase (.

Now consider comparing the localization and spectral network result for the ex-

pectation value of 't Hooft defects. Localization requires introducing an IR regulating

from [89] in conjunction with the relation between the two limiting coordinates (6.27), correspond to
two different choices of Fenchel-Nielsen coordinates. Equation (7.52) of [68] shows that a is well-defined
and Y define two choices of b that are related by (6.27).

"These are the transversal slice to the stratum of the bubbling locus of singular monopole moduli
spaces. See [23, 142] for details.
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%Q—deformation and expresses the expectation value in terms of Fenchel-Nielsen co-
ordinates. This coordinate expansion is well defined almost everywhere in a simply
connected region on the Coulomb branch and is independent of the phase of { there
due to trivial monodromy. The spectral networks computation however, is not inde-
pendent of the phase (. Rather, it is different in each chamber ¢, C C; of the ¢-plane.®
The reason is that the spectral network undergoes topology change at each X-wall and
hence has a different set of associated Darboux coordinates in each chamber ¢, C C.

Away from the Fenchel-Nielsen locus, the spectral network coordinates are not
Fenchel-Nielsen coordinates, but rather are Darboux coordinates which are related
to the localization Fenchel-Nielsen coordinates by an infinite sequence of Kontsevich-
Soibelman transformations.

Due to the “simple” transformation properties of the spectral network coordinates,
these coordinate transformations can be integrated to determine the mapping between
Fenchel-Nielsen coordinates and the Darboux coordinates in every chamber. This can
be achieved as follows. First, solve for the expectation value of the minimal Wilson
and 't Hooft defects in a generic WKB spectral network of choice. We will assign the
chamber in the (-plane in which we have computed these as the ¢y chamber. Now by
tuning the phase of ¢, we will cross walls of marginal stability which takes us from the
¢, chamber to the ¢,4+1 chamber depending on the direction we tune (.

Now we can solve for the expectation values in all chambers by solving the recursive

KC-wall crossing formulas [69]:

(L1o)ceen (Wyi) = (Lro)ceca—s (Kyy - Vi) 0 (Loa)ceen (Vy) = (Loa)ceen i (Ky, - V)

(7.15)

where (L)¢c, is the expectation value of L computed using the WKB spectral network
associated to ¢ € ¢, and the K-wall between the ¢, and ¢,_1 chamber is /I/I7('yn)

After we set the %Q deformation parameter e, — 0, we can then compare the

localization expression of the expectation value of the Wilson and ‘t Hooft defects to

their expression in terms of the spectral network coordinates in a generic chamber

8Here ¢ changes the decomposition of v into Xeo, Yo.
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chamber ¢;. Inverting these formulas allows us to solve for (a, b) in terms of the Y, in
some fixed chamber c;.

Then, by combining this with the solution with the KS-wall crossing formulas, we
then have an expression for the Fenchel-Nielsen coordinates (a,b) in terms of the ),
in all chambers ¢,. Inverting the formulas, one obtains an (admittedly complicated)
expression for the a, b in terms of the ).

We can then take these expressions and substitute the expression for a,b in terms
of the )Y, into the localization expression above. By identifying the coefficients of
the Laurent expansion with that of the spectral network computation we arrive at an
expression for the framed BPS indices in every chamber. Then by using the relation
of the index of the Dirac operator to the framed BPS indices in the semiclassical limit

away from the Fenchel-Nielsen locus

Z Ind [ﬁy} IZE(B;J; X )ya, = ZQ (’Y; L[P,o},cn) Yy
~yerl e ver

=33 I (Fa)” [hl%/~s et Ap(TMicn) - Crer (V(R)) :
WI<IP] 70 Ml () o)
v

(7.16)
we get an index formula for the associated Dirac operator in all chambers arbitrarily
close to the Fenchel-Nielsen locus.

Similarly, we can substitute the expression for the Darboux coordinates ), in the
¢n chamber in terms of the Fenchel-Nielsen coordinates a, b into the spectral network
computation. Then, identifying the coefficients of the Laurent expansion in terms of
the exponentiated Fenchel-Nielsen coordinates on both sides

S E(F@)™ Zinonola,ms Pv) = 37 2y Lipgp, en) V5 (a,b)

visP el (7.17)

Zmono(@,m; P,v) = lim | e Ap(TMgn) - Crxr (V(R))
§20 JME, ()

allows us to express the characteristic numbers that determine Z,,on0(a, m; P,v) as a

rational function of exponentiated Fenchel-Nielsen a-coordinates, masses, and framed

BPS indices.
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Remark Note that there is an additional subtlety in the case of the N’ = 2 SU(2) Ny =
4 theory. The reason is that Z,,ono(a, m; P,v) is not entirely given by a characteristic
number but rather has an additional contribution from states on the Coulomb branch

of an associated SQM [26].

7.2.2 Example: SU(2) Ny =0 Theory

Now we will apply the above, discussion to determine the framed BPS indices for
the SU(2) Ny = 0 theory. This will produce an index-like formula for a Dirac operator
coupled to a hyperholomorphic vector field G, (V) on singular monopole moduli space.

The expectation value of the 't Hooft defect in the Ny = 0 theory is given in terms

of Fenchel-Nielsen coordinates as

(Lpo) Loc = Z cosh(v, b) (F(a))" Zmono(a; P, v) | (7.18)
0<v<p
where
P = diag(p,—p) , v =diag(v,—v). (7.19)

In the case where e, = 0, which is necessary for comparing with the Fenchel-Nielsen
and Dirac operator expressions, these have the simple form

eb + e b

2sinh(a) (7.20)

(Loa)roc =€ +e (L1,0) Loc =

As shown in [69, 133], the expectation value of the 't Hooft defect of minimal charge

in terms of Darboux coordinates in the chamber ¢, is given by ?

(Laslces, = o (Un(h) = 3 0na(i) o (Bodee, =260 (12)
where
fo= % <Xe + ; (1 + X%X3"+2)> : (7.22)
and
Xn =Dy, » Xe=Vi, - (7.23)

“Recall that L1 is the minimal 't Hooft defect and Lo, is the minimal Wilson defect.
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Here we take n € Z, to denote the chamber ¢, in the (-plane and the notation U, to
denote the Tchebyshev polynomial of the second kind:

U1 (cos(z)) = S;‘n(g”)) | (7.24)

In this theory, the Fenchel-Nielsen locus is given by (a, Xoo) = 0.10 Let us pick a u € B
such that &, = +i X when ¢ € R and @, = £Y,, when { € iR. We can now identify
the imaginary axis as the Fenchel-Nielsen locus.

The spectrum of the vanilla BPS states in the semiclassical region are given by

y=4a , YE=+H,®na ,nez, (7.25)
with BPS indices )
-2 7=+«
Mviu) =81 y=~F (7.26)
0 else

\

Thus, the phase of the central charge corresponding to a state with charge v = v, & e

is given by

(Ym; Yoo) 92
)

|
7 N\

<’7e> XOO> ('Yma Yoo)('}’ea Yoo>
(Ym> Xoo) (’YmaXoo)Z >:| +O(g4) ’

B (B ) o

phase(Z,) = — arctan [

_|_

(7.27)

Without loss of generality, we can restrict to the case { in the positive real half-
plane (the other cases follow analogously). We are now only concerned with the phase
of BPS states whose K-walls are in the positive real half-( plane. These BPS states

have charges v,, with K-walls along the phases

)= wetan { e [y (e s G} o

phase(Z,

to order O(g*). Note that the phases of the central charges are ordered

phase(Z, -) > phase(Z - ), (7.29)

n n—1

10Note, that here we have defined X, € t to lie in the positive chamber. We will thus assume that
(o, Xoo) > 0.
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in the positive real half-plane. We can now define the chambers ¢, C C* as

Cp = {C eC* | phase(Z,, ) > phase(¢) > phase(Z7n71)} . (7.30)

—

At the K-wall defined by W(~;, ), the X;,_1 mutate as:

K -Xin-1=(1+ Xin1X8 1) " X1
(7.31)

K -Xon1=(1+ X1,n—1X2n7n,1)2X2,n—1 :

By comparing with the computation of (L; o) and (Lg 1) using localization, we can
determine the coordinate transformation relating the Fenchel-Nielsen coordinates to

the spectral network coordinates in the ¢, chamber:

b(a® — 1)(1 + a®>" 22" a(l + a®™v?
%, = - )(2 IvEs] r Xe:%, (7.32)
a(l+ a?"b?)n+ (14 a?72p2)

where

a=e" , b=¢el. (7.33)

We can now invert the expressions (7.32) to get

o= fa V-1, b=

\/a2n+1 (aX, —1) ’

7.34
1 1 2 p2n+l1 ( )
fn:§ Xe+2+XmXe .

Note that both of these pairs of expressions requires matching the semiclassical expres-
sions for X1 g, X2, €", eb.

This can be used to show explicitly that the spectral network coordinates approach
the Fenchel-Nielsen coordinates as we approach the Fenchel-Nielsen locus. Sending
the phase ( — (pny can then be achieved by sending n — oo or n — —oo. Going
to the Fenchel-Nielsen locus rotates the phase of @ = ((Y + iX) so that, in the
limit n — 400, £(,Ys) > 0. Then from the expression for ), (6.17), we see that

lim, 4o ), is exponentially suppressed

ngr:iloo Vo ~ nh_%lo e~ (In+D7R[(a,Yoo)| o O(e—4ﬂ2R/92) -0. (7.35)

Thus, sending ¢ — (gn reduces the standard three-term expansion of the value of the
Wilson line to

lm (Lyohn =V, +V 1, - (7.36)

n—+oo
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This allows us to identify V1 , = eta 1
2

The coordinate identification above can also be seen from taking limits of the coor-
dinate transformation expressions (7.32). As ( — (rn, we pass through chambers with

n — £oo. From the semiclassical expression for a in (6.32), we see that in this region

(ei<ava> <1. (7.37)
Therefore:
+a
Jm Ae= lm Vi = - (7.38)

Similarly we can apply this method to X, = y% g, to find

lim ylH = —sinh(a) (7.39)

:i:b‘
n—+oo ¢=CrnN ~

Using the identification of the Fenchel-Nielsen coordinates with spectral network
coordinates in ¢, (7.34), it is possible to compute explicitly the non-perturbative correc-
tions to a, b. From the results of [67], we know that the corrections to the semiclassical

contribution of ), is given by solving the recursive formula

log Yy (u,0,¢) = log Y3/ (u,0,¢)

() [ odd ¢ +¢ , (7.40)
+ZQ iy, ?C_Clogu—yv,(u,a,g)) ,

where yf,f is the semi-flat term which is the semiclassical expression in (6.17) and £,/
is the ray in the ¢-plane along the K-wall X,/

To compute the first order non-perturbative corrections to a, b, we need to use the
fact that the semi-flat expressions for X,, X,, are of order X o O(1) while Xl ~

4‘rr
O (e 9 ) Using this, we can expand the expressions for a, b as a Laurent series in X},

2n+1
et =X, [14—_1/)(/’\,’31%—0(2(4)} ,
o Xm X2n+1X2 A (741)
= [ e £ o)
where
falX) = X4 n(X, —1/X,) . (7.42)

1 As we will see below, the signs are correlated with the different limits n — +oo.
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Then by taking into account the non-perturbative corrections to X,, A}, and comparing

4m

orders in e ¢%, we can compute the first order non-perturbative corrections to the

leading (semiclassical) expression for a, b as

sfy2n+1/ psfy2
) _ np.(1) (Xe”)= ™ (Xw')
a,., = log| X, +log |1+ ,
.p. g[ } g Xesf_l/Xesf
n X1y x .
b, = log[A (] + (Xesf ey log[az» (V] (7.43)
(Xesf)Qn—i—l ()(Sf)

+log |1

_4()(5]0_1/)(5]0) fn( )] )

Here asl ;3 , b(l) are the first of an infinite series of non-perturbative corrections to the

semiclassical values of a, b

a=dasc + Z Clgf)p ) b= bs.c. + Z bg:)p ) (744)
=1 =1

and X."? '(1), xmr ‘D are the leading order non-perturbative corrections to the semi-flat

expressions for A,,,, X, which are given by [67]:

xm Wy, 0,¢) = Z (v 7’2 o) 10’ dﬁwe—%mz (C+1/¢)
¢ 471 R, ¢! ¢! — Ce i

3Ha)
np-(1) — << 10
Wrwe.0=" 3 o0sw g
y=E ta
ﬁwgzwmzym(cm/c') ’
R+ C/ C/ _ Ce—l&,yl
(7.45)
Using the BPS indices (7.26), these integrals simplify to
sin(0p, 4+ 1) (¢ + ¢?) + 2¢'¢ cos (0, + nb.) sin(a
praay Z/ dg/ )(Ca(l ¢'C cos( )sin(a+)
o, C 7+ C2 — 2 cos(az)

Y

« =2 RIZy|C1/C)

" ¢’ sin(0m + nbe) (¢ + ¢*) + 2¢'¢ cos(Oy, + nb,) sin(a, +)
A Z 27 /R+ ¢! P+ -2¢ cos(aﬁ)

—2mR|Z,0|(¢"+1/C)

X e

N 2i [ d¢ sin(e)(C” + ¢*) + 2¢'¢ cos(6e) Sin(%)e—27rR|z¢|(<'+1/</>
R, ¢ (" + (% — 2(¢ cos(aq) '

(7.46)
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where above we have used the notation where the integral over {’ has been mapped to
the integral over the positive reals by the phase rotation e’* = phase(Z,/) and (7,7")
is the DSZ pairing of charges.

Note that the ), are functions of u, 0., 0,,,( on the Hitchin moduli space. Because
of the relation between the a, b and the X,, X, in (7.32) and (7.34), we clearly see that
the a, b must also be functions of u, 0., 0,,, (. The explicit dependence of a, b on ¢ can be
seen first fixing a point in Hitchin moduli space with fixed coordinates (u, 0, 6,,), and

then studying the Fenchel-Nielsen coordinates as functions of the complex structure (.

Index Theorem

We can now use these coordinate transformations to determine an index formula as

follows:

1. Calculate the localization computation for the expectation value of the given line

operator:

(v,b) .
<Lp,O>Loc = Z 67 - lim /N €w+‘uTA(TM) ) (747)
iz sinh (@) €50 /%Py

where ./{/lv% NPv) = Mv% N(E, w) is the corresponding Kronheimer-Nakajima
quiver variety as described in Section 5.1.2. In this example it evaluates to

b —b\P
cte ) (7.48)

(Lp0)Loc = <2Slnh(a)

2. Perform the change of coordinates:

a—log(fn—Vf2-1) bb—>log<\/ @ X >, (7.49)

a2 (X, — 1)

in the localization result, where f, is given in equation (7.22) and a = €® as a

function of X,,, X,.

3. Expand the (L, 0)roc as a Laurent series in X, Ae:

(Lpo)Loc = Z Crpr o Xm X0 (7.50)

ni,n2
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4. Identify the coefficient of the X X' term, C,,, n., with the index:

Ind [zz)yrj = Cppoms (7.51)

MCn

where

C€en , M=MPym) . 'y:%a@ana , P=pH,. (7.52)

After performing the Laurent expansion for (L, o) given in (7.48) in terms of the
Darboux coordinates in the ¢, chamber, we have an expression for the graded index of

the twisted Dirac operator ﬁy on singular monopole moduli space:

j+m~+q+i
) ne o P 2 oo oo k +(]2n+1 )(p—Fk) [d1/2] oo p+m—1
Ind| 1 Mm DI NI Z Z >
M(PyymiXoo) m=0 j=0 k=0 ¢=0 i=0 q=0 d1=0 =0 d3 m
2p p+l—1 k+i—1 D k
X
k l ) j q
j+m+qg+i+(2n+1)(p—k) |dy/2] 2d3 '\ (—1)itatd2-2
X
dq do ds (1 —2ds)
20 — 2dy — 2d3 ,
()" An, {—dy—ds >0
i1+i2=20—2d2—2d3 ..
11,12
X
0o i1 i1+ 2dy + 2d3 — 20 — 1 21 )
Z Z (_1)11Ane,nm {—dy—d3s <0
11=012=0 . .
A 12
(7.53)

where Ay, 5, is a delta function that restricts the sum over the {m, j, k,¢,i,q,d;, ;}
such that

12 E—dz—d3>0

Nym =

2(£—d2—d3)—i1 e—dg—d3<0

21’1+(2n+2)i2—I—2(d2—|—d3—€)+i+j+k‘—m—p E—dz—d3>0

Ne =

—(2n 4 2)i1 4+ 20y —22n + 1)(dy +d3s — ) +i+j+m—p L—dy—d3 <0

(7.54)
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are fixed. Additionally,
P = diag(p,—p) CE€cn Ym = NmHa (7.55)

This index formula for the case of SU(2) SYM theory is also found in [133].

Characteristic Numbers

Now by expressing ), in terms of Fenchel-Nielsen coordinates, we can perform a Laurent

expansion with respect to the exponential Fenchel-Nielsen coordinate €. This will

allow us to isolate the characteristic number. By using the equations for the Darboux

coordinates in terms of Fenchel-Nielsen coordinates (7.32), we get the expansion

lim e AT Mg y) = Z {Q(nm,ne;cn) gnm’ne)(a;cn)

Vi3
£20 S Mien (P) 0<nmne<p

+ Q= e ) Q8" (a3 ) + 2A=1m, = ) Q5" (a5 ¢4)
+ (N, —ne; cn)Qinm’ne) (a;cn) } .
(7.56)
where
P = diag(p,—p) , v =diag(v,—v),

(7.57)

_ _ 1
Q(nmvne;cn) = Q(’Y; Cn) , Y =nnHy @neia ,
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and the anm’ne)(a, v; ¢p,) are different rational functions of a, defined as

|:2nm+v i1j|

2nNm / .
(R me) Ne 19+ ne—1
i) =YY >

11=0 71=0 12+jo= 11 12
T i —j1
2n, n ) 2np(n+1) —1 L
% m J2+ 2nm(n +1) (—1)2nmtizti
J J2

a2n(i1+j2)+(2n+2)(i2+j1)+ne—2(nm—v) (1 _ a2)2(nm+v)

)

|:2nyg+u i
Ne Qnm(n+1):| / .
Ne 19 —Ne — 1
Q" @ ven) =3 D] > | |
i1=0 J1=0 i2+j2= 11 12
mmtl iy —j
x Qnm(n + 1) J2 +2nmn —1 (_1)i2+j2+2nm
J J2
a2n(i1+j1)+(2n+2)(i2+j2)+ne+2nm—2v(1 - a2)2(v—nm) ’
7.58
|:27Ln21+'u Z1:| ( )
ne [2nm(n+1) / .
Ne 19 — Ne — 1
Q" @ vien) =3 7 > | |
i1=0 Jj1=0 t2+j2= 11 12
"Tn2+’v 774'17]'1
« 20 (n + 1) J2 +2n,n —1 (_1)i2+2nm+j2
it J2

a2n(i1+j1)+(2n+2)(i1+j2)+2nmfn672v (1 . a2)2(vfnm)

2
|: nrg+v _7fl:|

Y

2nnm ! ; _
Q(nm Me) a v Cn Z Z Z Ne 29 + Ne 1
11=0 71=0 i2+jo= il Z.Q
g —iy —j1
2Ny n ] 2nm(n+1)—1 o
% m J2 + m( + ) (_1)12+32+2nm

J1 J2

a2n(i2+j2)+(2n+2)(i1+j1)—2nm—ne—2v(1 _ a2)2(nm+v) .
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Here we use the notation

Ziz-ﬁ-jz:--- Ne, Nun, 7 0

[77?] min[mm’] _1 / 2_]2: ne = O 9 nm 7é 0

S S Sy

i=0 i=0 0 i2+jo=... Zizz--- Nm =0, ne #0
Jj2=0

\Zi2,j2:0 Ne ="Nm =0 .
(7.59)

and the sums are restricted such that Z?L:a is identically zero for b < a.

Note that in both the formulas for the index of lDy and the characteristic numbers
on Mgpn, there is a clear mixing of framed BPS states of magnetic charge v, among
many characteristic numbers for different. This suggests that there is a very non-trivial
relationship between framed BPS states and the geometry of singular monopole moduli
space since the Mg are transversal slices to singular strata in M(P, Ym; Xoo). It is

an interesting challenge to differential geometers to try to prove such relations.

Explicit Example: (L) in SU(2) SYM

We can illustrate the above formulas for the index of lDy and the characteristic numbers
on Mgy (P,v) with the non-trivial example of the next-to-minimal 't Hooft defect: Lo .
Let us first demonstrate the index theorem by calculating the index of lDy. In our

example, the expectation value from localization can be written

2 cosh(2b
<L2,0>Loc = # + Zmono(a; 2, 0) > (760)
sinh*(a)
where
Zmono(®:2,0) = lim [ T A(TM) | (7.61)
£€=0 J Mé(2,0)

is the characteristic number on the Kronheimer-Nakajima space defined by the quiver
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as described in Section 5.1.2.

For this example, the characteristic number evaluates to [23]

2

Zmono(a;QaO) = m .

(7.62)

Let us compute the index theorem for the chamber ¢;. In this chamber, the coordinate

transformation is of the form

[0 1 1 a2 xntd
_a _ _ 2_ — m° e
a=e _fl fl 1 ) fl 2X6+2X6+ 2 )

(7.63)
S e
(fi= V-1 — (i —Vff-1)?
Plugging this into the full expectation value
(L2.0) Low = 2 cosh(2b) N 1 (7.64)
207 koe = sinh?(a) 2sinh?(a) ’ .
yields the Darboux expansion
1
(L2,0) Loc 7 T XX+ 2K (7.65)

Gbs X, X X2

in terms of the spectral network coordinates in the ¢; chamber. Note that this matches
the direct computation from spectral networks (7.21) [133].

From this expansion we can read off the indices of the Dirac operator:

1 v=H,® 2

=" 1 Y= _Ha
Ind | 19 }1 2 - (7.66)
2 y=«a
0 else

where P = %diag(Q, —2) and ¢ € ¢;.
Now let us perform the inverse coordinate substitution to derive the characteristic
number from the spectral network computation. Let us start with the expectation value

of Ly from the spectral network associated with ¢ € ¢;:

1
(Loo)ceer = 3 + X2 4 ox? . (7.67)
m
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The coordinate transformation (7.32) now takes the form

2 _ 1)(1 412 1 212
Xm:_b(a )(1 + a*b?) , Xe:a( + a®b?) (7.68)
a(l+ a?b?)? (14 a*b?)
Plugging this into (7.67) we find
(b+1/b)?
Loo)cee _ 0T ) 7.69
< 2,0>C€ 1 Xy Xorsab (CL — 1/&)2 ( )

which indeed matches with the localization computation. Expanding this in powers of

Oth

b= e’ we see that the order term (Zmono(a;2,0)) is given by

2 2

Zmono(8; 2, = = .
(92,0) (a—1/a)®>  4sinh?(a)

(7.70)

We can also derive this result from the full formula for the characteristic number.

Using the data
2(-1,0;c1) =21, 4;¢1) =1 , £2(0,2;¢1) =2, (7.71)

the characteristic number formula (7.56) reduces to

lim [ e A(TMcy) =
§20JME v (2,0) (7.72)

2(1,4;e0)Q (@ ¢1) + £200,2;)Q% (a5 ¢1) + 2(-1,0,¢1)QV " (s ¢1) -

Evaluating the polynomials, we find

Qi (@) =0,

a 61 Z Z Z ‘ (_1)z2+J2a2(zl+]z)+(4(12+31)+2 _ a2 7
11=071=012=0 11 19
1 0) Z Z 4 Jo+1 ( 1)j2 a2t t2 946 4 g4
(a;c _ —
1 . . (1 _ a2)2 (1 o CL2)2
7J1=0j2=1—71 I 72

(7.73)

Combining these results with the framed BPS indices (7.71), the full formula for the
characteristic number evaluates to

~ —2a% + 4a* 2
lim e THT A(T M =2a° + = , 7.74
&5 Jo o0 (TMgn) a2 ~ (a1jap? (7.74)

matching the result from direct computation.
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E;

E,

E,

Figure 7.4: This figure shows a generic WKB spectral network (blue) on the punctured
torus. This corresponds to the triangulation given by the (black) edges Ej 23 where the
rectangle is periodically identified and the puncture is located at the identified corners.

7.2.3 Comments on the N = 2* Theory

Here we would like to make some clarifying comments on the SU(2) N' = 2* theory and
the Fenchel-Nielsen locus in this theory. In the case of the N/ = 2* theory the UV curve
C' is given by the once punctured torus. The algebra of line operators of this theory
L and L

can be generated by the three simple line operators L Note

7(1,0)7 ~(0,1)° RICHON

that there are three generating operators because the homology lattice is generated by
a cycles that wrap the A-cycle, B-cycle, and the puncture.

A generic spectral network associated to the SU(2) N = 2* theory is given by an
ideal triangulation of C' as in Figure 7.4. In each chamber of the {-plane ¢, the charge

lattice is spanned by three simple elements 7;[c] for i = 1,2, 3 such that
(vilel, viraleh) =2, mlel +2ld +3ld = ¢ - (7.75)
Given a particular choice of chamber ¢y we can identify
Tl = —a@&vr . elol=-Ha ., mlo]=Ha®oa. (7.76)

In such a chamber, the expectation values of the line operators can be expanded in
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Figure 7.5: This figure shows a generic WKB spectral network on the punctured torus.
The punctured torus is presented as a trinion with two boundary circles identified.
These are the two lower circles in the above figure. We choose the A-cycle to be defined
by the boundary of these circles. Here the lines are the walls of the corresponding
WKB spectral network. While it is not drawn here due to computational limitations,

the walls corresponding to the open paths run to the (upper) puncture.

terms as

1 Vs
L 1,0/ — ViuVys + ———=—=+ )
o) e \/ywy% Vi
Y

L 01/ — VsV + ——==
< ’Y(’)> el \/y’ygy’ﬂ y’Ys
y“/2

<L“/(1,1)> = VIV + ==

vV yvzy% y"fl

Here ), is the spectral network coordinate corresponding to the edge E;.

In the SU(2) N' = 2* theory, the Fenchel-Nielsen locus is defined by

m/AsweR , /c—lAsweR,
A A

(7.77)

(7.78)

where ( is the phase defining the line operator (and corresponding WKB spectral net-

work). As it turns out, this coincides with the exceptional locus

&= U&‘ , Ei={ueB| Z(visu)/m >0, ArglZ(vit1;u)] < Arg[Z(vi—1;u)]}

(7.79)
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Figure 7.6: This figure shows the behavior of the generic WKB spectral network on the
punctured torus from Figure 7.5 as it approaches the Fenchel-Nielsen spectral network
(left in Figure 7.1). Again, while it is not drawn here due to computational limitations,
the walls corresponding to the open paths run to the (upper) puncture.

from [120]. Here mathematical simplifications arise that allow for the exact computation
of the spectrum generator which encodes the entire spectrum of BPS states.

As we approach to the Fenchel-Nielsen locus, we cross an infinite number of K-walls
in passing through the chambers ¢, with increasing n. Mathematically, crossing the K-
wall going from chamber ¢,, — ¢,41 corresponds to mutating along one of basis elements
of the charge lattice in ¢, 7;[c,]. As discussed in [69], this transformation keeps the
three-term expansion of the (L,) that have explicit ), dependence but increases the
complexity of the (L,) that are independent of J,,. This leads to a fairly simple change
of variables between the complexified Fenchel-Nielsen coordinates and the )., given by

[53]

. B—p! BA— (BN A

ea+m — e~ a—m

(7.80)
— — 2 _ b
A=e* |, 4=€" |, B=e prer———.

Sending ( — (pn acts on the corresponding spectral network as in Figure 7.6. This

makes it obvious that the Wilson line (L which is the holonomy around one of

7(1,0)>’
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the resolved punctures, keeps a three term expansion. And further, from the properties
of a Fenchel-Nielsen spectral network, we see that the expression for (L7(1,0)> becomes
a two term expansion in the limit { — (pn. We believe mirrors the same behavior of
the expectation value of the Wilson line in the SU(2) Ny = 0 theory as discussed in

the previous section.
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Appendix A

Semiclassical Framed BPS States

A.1 Collective Coordinate Calculation for SYM

In this appendix we perform the calculation to reduce the four dimensional theory

to the theory of collective coordinates. We will begin by expanding the fields:
Y =y, +V9 - £¢mnxmx”
Ay = —"em + Y + igbmnxmxn , (A1)
Fa = (Dado — 00Aa) = ~2"6nAa + DaY 4 | Daur™x"

and plugging them into the Lagrangian

1 . o
L= & Tr{E2 — 2D X)? — (DiY)? — 2ip™(Dopa + [Y, pa]) + 200EiB’}
%

2

+ / d*Q% Te{E,Y + B X} + > j/d% 0@ — a;)iw! (Dy — R(Y))w; |
90 52 ,
n n N

(A.2)
which can be rewritten as
L= gl d*x T {(Dy = dyAdn)? = 2ADX)? = (DY)? + 2ip™(Dopa + Y, pal) }
2
200 d*z Tr {B'E;} +2Z/ d? Q2,127 Tr{(EiY—l—BZ-X) — ﬁ%%fﬁl}
+ % ;/dgl‘ 63 (z — xj)z'wjﬂ])twj +0(gp) -
(A.3)

This Appendix is material from my publication [22].
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The result is given by

2L = / B Tr{z"mz'"émfl“&nfla _2sms, AD, Y — %zmam,aiabmmnxmxn

1

- c a m.n a c L=
=D,Y 'D Gmn X X" + (DaY Z)Z - E(Da¢mn)X4

[\

. N 1
— (Daey)? — (DY )2 + E(

+ %f)admnﬁ%YmeXn - %DaYdDaqsmnXan - 2(ﬁaX)2

ﬁa¢mn)2X4 - 2Da5Yoo ﬁaycl

—~

+ 10 A% Ag XX + iX ™0 AV D0, Ay 2P X"
i «
_ 5 <€Yoo 4 2ycl) D2¢mnXan
# 200X (<270 A0t DY+ Da™" ) }

+23° 5 d202° ﬁ{XDaX
n n

2 .

g * . ¢

o 47;;’2 Qn <_Zm6m + YCZ + 4¢mnXan>
n

+ (GYOO + YCZ - Zqﬁmnxmxn)(_zm(smAa

+ DY + ZDaqunx’”x")}

gy Y whi +igh Y wi(—E"em — evie + S max "X -
J J

(A4)
For the rest of the calculation we will use the asymptotics and identities:
=2 Db = 200 A% 50ds) . Duert = —G(H) "5 ds |
G~ Oe(1/1).0u(1) . X ~ On(1,0u(1/r) o ¥~ One(1/1), 0u1/12)
SmAa ~ Oco(1/1%), On(ry /%) ; i ~ Oson(1)
(A.5)

where O, and Ooo are the behavior as r — oo and r — r, respectively. Using these we
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can rewrite the Lagrangian:

oL = 27 Gmn (373" — G(Yoo) ™G (Yoo )™ + ixX™ Dy x™)

1. A 1 A
~ D%y, Dypmn + 5D“Ycha¢mn

1 o
—|—7j/ A3z Tr{ — 2" Au D by +
y 2 2

+ %ewa?%mn + Y4 D%y, + %D“X Daqunx’”x"}
DY / P05 T L2 Ay’

-5 L (DaY by — v Dabrun — YD) XX |
+ [ @b {276, 40D, Y — 2Dy, DY ne)
— 200D X,y Agi™ + 200D X DY — Q(DaX)2}

+22/ d20e Tr XDoX + ey, DY + YD,V
M, ALY — zmamAaeym}
4777“2 Z/ d?° Tr{Qn <—z em + Y+ gi)mnx X )}
+igs Zw}th]’ +igl Zw; ( -+ ¢mnX X )
J

J

where we have used:

1 - 1 A )
G = —— / &3z Tr {5mA“5nAa} , Tupe= — / &3z Tr {5nAaDp5qAa}
27T u ’ 27T u (A?)

Dix" = X"+ 153X, Diwj =1j — R(e¥)zmw;
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This can be reduced to the following by canceling terms using asymptotics:

gSL =27gmn (22" — G(Yoo)"G(Yoo)" +ix" Dix™) + iw! Dyw + 4W§0Gm(Xoo)z'm

14 ~
/ dg.%' Tr {YCIDQQbmn + HODaXDa(bmn QDGYCZDa¢mn} men

+22/ d2Qng‘r{ YCl a¢mn_

+ 2/ d3z Tr {eyoo ﬁ2¢mn} X"+ [ dz Tr {—Qﬁaeym ﬁaYCl}
u u

d¢mn} men - ('Yma Xoo)

L\’JM—A

A 2 =
j j

+ / &z Tr {25015“X15ayd } +3 / d20° Tx {2Ydf)ayd}
u n JS2

2 A~ .
90 2 Ha T'n,a m._m cl ¢ m.n
_M;/S;ﬁdgnTr{QnT% <—z €'+Y +Z¢mnx X>}

A . , i .
+ /52 d?0Q% Tr {QeyooDaYCl} —1 Z(zw}erwj) + = Z(zw}qﬁmnwj)xmxn

(A.8)

By construction the purely classical components cancel which reduces to:

=271 Gy (272" — G(Xoo)"G(Xoo)" +ix" Dix") + i Z w}thj + 2" qm
J

+ 4700G (X s0)m 2™ — (Y Xoo) + 0 Z szgbg,]mw] IX"x" — g6 Z w! eY wj)
- 2/ & Tr {I)aeyoof)aycl} + 22/ 4200 Tr {ewa)ayd}
u n /S
+ ) / @0 Tr { ey D2 fmn p XX + i / d*x T {Y D2 mn | X"
u u
(A.9)

We are now reduced to solving for the last two lines. The last line will turn out being

related to identities equivalent to those in [133]. Consider the penultimate line:

—2 /M &’z Tr {DaeyooD“Yd} +2 Z / POy {eyw[)ayd}

(A.10)
_ 2 NHa _ 0090 m n
= -2 < d .Q Tr {EYOOE } T((’YmaXoo) _gmnG(Xoo) G(YOO) ) .
This makes use of the identities:
% 0 4 m n
'thys =Y — ivm ) <7€; hA> = _TgmnG(yoo) G(KA)
90 (A.11)

E, = D.Y% + Dyey..
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We can now use the same computation as in [133] to reduce the penultimate term:
;/ud?’x Tr {erﬁQQbmn} = 27V G(Yoo)n - (A.12)
The final term then evaluates to:
i/ud?’x Tr {Ydﬁ2¢mn} x"x" . (A.13)

This results in the same collective coordinate Lagrangian as in [133] with additional

terms for the defect degrees of freedom:

Lo =13 | o (737 4 DA = GV GY)") = XN TGV,
0
9 -m m n -.m._n
o (gmn (27 = G(Yo)™) G(Xoo)" — iX™X VinG(Xoc)a)
Arm 0
g ('Yvaoo)'f‘ 'Yma +sz _ey + ¢mnX X)
0

(A.14)

Note that upon integrating out the w; fields we again arrive at a Wilson line but this
is on the moduli space. This is to be expected by naively plugging in the collective
coordinate expansion of Ag — Y into the Wilson line in the 4-dimensional theory. This

can be seen to be a Wilson line by looking at the term —2™¢,, in Ag:
’I‘I'RP exp ei f(Ao—Y)dt N T‘I'RP exp e—ifEmémdt-i-... — ’I‘I'RP exp e—ifemdzm-i-... , (A15)

where ... refers to the supersymmetric completion.

A.1.1 Wilson-’t Hooft Collective Coordinate Supersymmetry

It was shown in [133] that the supersymmetric variation of the first two lines of (A.20)
are invariant under the supersymmetry transformations:
5uzm = iVaXn(ja)nm )

(A.16)
Sy X™ =va(2" — G(Yoo)")(I")," — ivaX?(J%) " IrigX?

Therefore we only need to examine the supersymmetric variation of the terms containing

the fields w;. It is important to note that these w; are sections of a associated principal

G-bundle over M with representation ;. Note that we have been suppressing an index
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for this representation which we will now include as w®. This comes with a fiber metric

fap for which (e%))ab is the metric connection. This induces a supersymmetric variation:

o (wf) = (e%))“bé,,zmw? . (A.17)
The computation of the supersymmetric variation of action is now identical to that of

hypermultiplets:
0 i fapw™ Dew® | =2i fop6, (W) Dyw® — iw“Téyzmam(fab(en)bc),é"wc
. at b m, . C . m t,:b
— i fapw (€0,)°.00 2" WS — 10,2 O (fap)w'w

=2i a0 (W) Dyw® — iw™ 6, 2™ O (fap(€n)5) 2™

(A.18)
+ 2m0m(fab(em)bc)5;‘w“Twc — iél,zm@m(fab)wwa
= i(g{)mn)abéyzmz'”w“wa —0,2"(2(em)ab + anfab)w“wa
= - z-(stmn)abéuZmz'f'nwaﬁ'wb s
where we used the identities:
wT“Dt(é,,wb) = s,w*Dyaw’ |
(A.19)

8nfab = _(en)ab - (En)ba s
from [133] and [78] respectively. We also have from [78] that the variation of the ey,

term will be given by:

Sy (W™ ey )apw?) = 6,2 WV (v )ap® = —(Gmn)ap0r 2" G (Yoo ) "wTw? . (A.20)

This uses the identity

1. 1 o
Vv, = =3 D>V ,ney, = = (DavaaeKm + Da[5mAa,€yoo]>

) (A.21)
= —2G(Ym)”§[5m/1“, oAy = —mnG(Yoo)" .

Additionally, the variation of the ¢,,,-term is given by

n m.n, at, b n

Oc (¢mn)ameX wlw?| = (5VZPVp(¢mn)abX X whw +2(¢mn)abxm5VX wwb
2 (G I)P — GV 0
(A.22)

which exactly cancels the other terms provided:

(¢mn)ab(aﬂ(s))r;7 = _Fpnab(q]](s))nm 5 (A23)

which is exactly the condition that the Wilson bundle Ewison(Q;) is hyperholomorphic.
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A.2 Hypermultiplet Index Calculation

In this appendix we will compute the index of the operator which determines the rank
of the hypermultiplet matter bundle over the BPS moduli space. Consider the Dirac

operator
L, =i7"D, +imx , (A.24)

acting on a fermion in the representation p where mx is a real scalar.

A.2.1 Reduction to Boundary

Following [133], we will assume that p : g — gl(V},) to be a Lie algebra representation

of g. We want to compute the index of IN/p given by

- z z
Ind[L,] = lim_ treegy, or2@) { — o = lim B, ,
20+ ’ LWL, +2 L,Lhi+z]| =20t "
e e (A.25)
B,. = limt z -
= lim tree 2 — — = :
S R A U7 T
Writing
0 L
ib, = y o (A.26)
L, 0
where again we use the convention
0o ¢ o—i
= , 17v= (07", —ily), (A.27)
=a
the index can be expressed as
~ . z —
Ind[L,] = Jim tresgv,erzw) ﬂf ;
(A.28)

-1 0

T:HFZ’:

0 1
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If we now consider the Green’s function
Gy = (z'i)p + )\)_1 ,
Gin = (i, i) (-b"+ >\2)_1 :

. (A.29)
—ix L} (LbE, +2) 0
- ~ —1
L, —ix 0 (LoL)+?)
Using this operator, one can express
Bp,z = _i\/gtrC4®Vp®L2(u) {pr,z\/E} . (A.30)

However, we can also compute G, . by using the fact that it is the inverse of a differential
operator. Specifically G, . solves

0

it ((‘33:“ + P(Au)(l’)> Gpr(x,y) + il p(X)(2)Gpa(,y)

+(F4mX + )‘)Gp)\(x7y) =0 )

i(fi]Gm @, y) T 4Gy (2, ) (I p(A) (y) + To(X)(y))

(A.31)

+G o (x, y)F4mX +AG (2, y) =0.

where we used the fact that G; (T, y) = GP)\T(y, x) and that G is the Green’s function
for I}L + A*. We can now combine these equations as in [133]:

0 0

2)\trc4®vp®L2(u) {TGp})\} =—1 (axu + 8y”> tr(c4®vp {TF“GPJ\}

— itrcagy, {TT"(p(A4,)(x) = p(A4,) () Gpa(@. )}
(A.32)

Following [31] we can write
1

I,(2) = trr2q) Bz 5 /Zldi’*:c@ijzyz(a:,a:) = ;/ud?’xf* . fp7z(x,x) ( |
A.33

J;Z(x,y) = t1‘((:4<zz>1/,,<z§>L2(u) {TfiGi\/z(%y)}
This implies:
0 —&-7 —ivz L} (R,.+ AR,)™" 0

G- 0 L, —iyz 0 R;!

)
Bz,p = Qtr

(A.34)
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where the trace is over C* @ V, ® L?(U) and we have defined
R.,= f/pf/; = —D? — p(X)® +m% + 2imxp(X) + 2

= —0% — p(Xoo)? + m%k + 2imxp(Xoo) + O(r™ 1Y),
(A.35)

=

|
e
B

|
DN
=
>
8
|
N
3
>
+
@)
&

where B is the magnetic field and lim, ,,, = Xo. We will begin by computing the

index at » — oo. In this case

AR, =G - f”’(;m) +O(r @)y (A.36)

Note that at r — oo, AR, can be used as an perturbative expansion coefficient so we

can simplify

B, = -t {(f &) (L — LR, L — (7 - a)LpR;;AR,,R,;;} +O0(r~ ) . (A37)

Pz 2 P
It is clear that the first term will vanish in summing over the C? representation since
the term is proportional to & - # which is of course traceless. We now have

i 3
e == S [ [

HEA,

o L) (=X + imx) (i@ - 7p(Ym)
20V, r2(k2 — p(Xso)? + ’m_%( +2imxp(Xoo) + 2)?

= d’k (i Xoo) + mx) (s Ym)
- #g,, () /sgo d2[2/ (21)3 (k2 + (1t Xoo)? + m% + 2mx (11, Xoo) + 2)2

_ LN G Xoo) 4 mad) (i )
2 ugp p('u) \/(<:U’a Xoo> + mX)2 +z ’

(A.38)

which agrees with [131] in the limit of mx — 0. Here we employed an orthonormal
basis of V, associated with a weight space decomposition: V, = @,V,[u] where p €
A, C AY, C t* are the weights of the representation and n,(u) = dim V,[u]. In this
decomposition we have Vv € V,[u], that ip(Xs)v = (i, Xoo)v where (, ) denotes
the canonical pairing t* ® t — R. Note that our representation p is a quaternionic
representation since it acts on the h, fields. This means it splits: p = 7w @ 7" which

has a quaternionic structure coming from SU(2)r symmetry.
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Contribution from Defects

Now we can calculate the contribution from the defects and [56] in the case of no defects.
As in [131] we can do this by using a spectral representation. This is nearly identical
to the case as in [131] which includes a constant term for the scalar field X except that
we will impose that this has a constant weight mx in each weight space. This has the

effect of modifying the solution

MZIJ(Z;;L)S(E,Q:) — Lﬁ;’i‘g)’s(\/EQ +m%;z) , sgn(E) — phase(E —im) . (A.39)

It is important to note that the normalization of the Dirac fermions in [131] will be

unchanged. Because of this, the only difference is in the integrals:

o rlE
M (a) _/ dE—— _| Z_C’L/TJV(,/E2 +m3er)?

—00

= 2ia /OO £dg JV(§)2 s

mr (52 - m?X'TQ + a2)

° r(E +imx)|E|dE
L(a) = /OO B — im|(E +)§\/z+d(x))‘]”(\/m7“)*7”+l(\/m>

=2 /OO d¢ 62 — mr? J (g)JV+1(§) - 9mra /oo Ju(f)J,,H(g)dg

Y .
mnr 52 - m%({r‘Q + a2 mr (€2 - m%{rrz + a2)

(A.40)

It is clear that for a # 0 that all of these integrands are bounded. We can evaluate
these integrals by taking the limit inside the integral of » — 0 and find that these all
have bounded integrals. Then we have that a — 0 in this limit so Iy) — 0. And
similarly the second term in I,E2) vanishes. However we find that the first term in I,Sz)
is non-vanishing and in fact approaches the value in [131] and hence we end up with

the same result for the singular monopole contribution to the zero modes.

Therefore we have that the number of zero modes for the hypermultiplet fermions

is given by
- 1 Na
d(L,] = 5 3 ny(n) {sgn«u, KXoe) 1) (1, V) ‘f‘ZRMan)’} (A
HEA, n=1

Thus, the rank of the matter bundle is given by

Ng
rnke[Ematter] = % Z np (1) {Sgn(<ﬂaX00> + mx ) (@, Ym) + Z |<N7Pn>|} - (A42)

HEA, n=1
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A.3 Hypermultiplet Collective Coordinates

Coupling to hypermultiplets in the quaternionic representation p give rise to the addi-
tional terms in the vector multiplet bosonic fields
j 2i
Ay == 2" = ~hmnX™X" + Y = T Xap(T" )N
4 D2
; 0 (A.43)
Y =ev,, + 0maX"X" + v 4 ET’“AW(T?‘)AMW :
where {\,} are the Dirac spinors which span the kernel of L, and 7" span the lie algebra
g. Since these terms mirror the ¢,,, terms, we only need to worry abouta subset of the
terms from (A.4). By asymptotic analysis, the only nonzero terms are of the form
2Z b
Bz Naplev.)ho p ¥4 (A.44)
go u
which is the analogous term to the covariant derivative of the triholomorphic killing

vector field: V,,,G(Y)n. More concretely, we are looking at the terms
2 3 [~ ~ .~ ~
== [ (mm CNY N — ima s — my)\/\> . (A.45)
g
This gives the collective coordinate Lagrangian

Lferm = himn (w)mDﬂbn + m¢m¢n) + Lint - (A~46)

We now need to consider the interaction terms (that is terms with Y and Ag). Specifi-

cally we get term

1
Top = 2 d x )\ap(€Yoo))\b ) (A47)
T

which upon comparing with the calculation in Appendix A is the term analogous to

the covariant spin derivative of G(Ys).

A.4 1-Loop Mass Contribution from HM

Here we calculate the 1-loop mass contribution to the BPS states from the hypermul-
tiplet fields. The key assumption we make is that we restrict to the “vacuum” of the
solitonic sector (the vacuum of the quantum excitation Fock-space) so that there are no

perturbative excitations in the incoming and outgoing states. Because of this, the 1-loop
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contribution is simply the sum of the zero-point energies whose quadratically divergent
parts we expect to vanish due to supersymmetry. We can calculate this following [104].
We will begin by considering the hypermultiplet Lagrangian
92 L =D, ADPhy — i(Ara" Dyhr + Aa* Do)
+ 20 (WA + MO ha — WY g + A ha)
— 2i( A2 1 — A2 A1) — 2mA2 A1 — 2m A1 Ay (A.48)
+ imhT ¢ ha + im*h A pha + |m|*hi4h 4
— PG 6 Y+ (WAL T g
Since we are expanding around the classical solution: hg = A\j = ¢4 =Y = Ay =

my = 0 we can reduce this using Dirac spinors to

9L =D, 0hTADFSh g — ST X25h o + 2imx Sh1A X 5ha 4+ m3%6hT4h A A9)
A.49
— 2(z6X]D<5)\ + (SX’}%X(S)\ — imX(SX%(S)\) ,

where we used dhy and 6\ to denote the quantum fluctuations about the classical

solution. Using an eigen-function decomposition of the equations of motion

(—=D? — X2 + 2imx X +m%)0ha = widhya ,

. (A.50)
(iv'Di + 75X —imxys5)A = wpyo -
The fermionic equation of motion squares to
(—D? ~ X2 4 m% 4 2imyx X — ivsy Bi + io" @ ]1QBk) A=0. (A.51)
This can further be decomposed as
(=D? — X2+ m% + 2imxX)n = w%n ,
(A.52)

(*Di2 — X2 + m?X +2tmx X + QUkEOBk)X = w>2<X .

This means when we add the vacuum fluctuation energies

Mictoop =03 = 2 S = 2 3 oy (A.53)

this reduces to

Ml—loop = E Z(wx - wn) : (A54)
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This simplification occurs because the dh 4 are superpartners to the y. Thus the spec-
trum of frequencies for wy,w, match exactly. Note that the above quantity is non-zero
because of the difference in the density of states between x and 7. This this is exem-
plified by the fact that x has zero modes while 1 does not. Following [104], we can use

the index computation

z z
I(z) =T -
(2) r{DTD+z DDT+Z}

,Z { s X. >+mX N’Ym Z|M, }7
n=1

= V(n Xoc) + mx 2

(A.55)

(where DD = —D? — X% + m% + 2imx X + 403,6° By and DD = —D? — X2 + m% +

2imx X) to find this difference in the density of states

1(2) — I(0) = /0 Tt (dgg] - dﬁ?) . (A.56)

w2+ z
From these equations (drawing inspiration from [104]) we can see that the difference in

the density of states is given by

dnlx] dnln] _
dw? dw? (A57)
(1) ({11, Xoo) + mx ) (1, Ym) 2 2 :
— 0 — X .
Z 27rw2 (w? (<N,Xoo> + mx)?)L/2 (w ((u, ) +mx) )
HEA,
Which we can use to evaluate the 1-loop contribution to the mass:
h 2 (dn[x] dn[n]
Mi-to0p = /d < dw? dw? (A58)
oo .58
h dk
— e 3 ) Xec) + ) ) | ,
2 ,U«GAp . 0 \/k2+(<:u’7XOO>+mX>2
which is logarithmically divergent.
We can regularize this by using a cutoff in the integral:
h Le dk
My _joop = —— n (M)(</L7XOO> +mX)<,u,7m>
"o 2 0 VR (X T x P

= e 3 () (s Xoc) + mx) (1 o (
nedp

h

=5 2 () ({1, Xoo) +mx) (1, vm) (~log(€) —log(({n, Xoo) +1mx)/2))
ned,

+ O(e) .

L+ /1 + (i, Xoo) + mx)2e
(1, Xoo) +mx)e

(A.59)
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In renormalizing, we expect to keep the non-divergent term

((Wa Xoo) +mx)?

h
N ) . (A.60)

Ml—loop = E Z np(ﬂ)(<#aXoo> + mX)(:ua'Vm)lOg
nedp

where A is the dynamically generated scale.

A.5 Hypermultiplet Collective Coordinate Supersymmetry

Here we compute the supersymmetry transformation of the collective coordinate La-
grangian following [78]. Since the collective coordinate theory for the supervector field
has been shown to be supersymmetric [133, 78], we will only show that the hypermul-

tiplet terms are supersymmetric:

5™ — _iesj%s)mxn 7
O™ = IO (2 — G(Yoo))es — iesx*x IV (A.61)

S = — AL 62" = i ALY T P
Since the hypermultiplet bosonic field is vanishing, the supersymmetry transformations
for the vectormultiplet fields will be the same as those from [133]. We simply need

to derive the collective coordinate Lagrangian for the hypermultiplet fermionic fields.

Since hy = 0, the supersymmetric variation of A is given by
SA=0. (A.62)
Plugging in the collective coordinate expanded field
A= (H)Aa(, 2(1)) (A.63)
we have the supersymmetry transformation
SA = MO0 + O Aadez™p® =0 . (A.64)
After taking the L?(U) inner product with A, we get

Sp® = —A% 5 20 (A.65)
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We can now calculate the supersymmetric variation of the Lagrangian. We will start
with the variation of the kinetic term:
Oc(hayb™Det)”) = 2hapdep* D)’ + ez O (hap Ajye) ™YY + hapt)® Ap ez
+ 0e2™ Oy
= 2hap0e " Dit)’ + 62" O (hap Arye) """ — 27O (hap Apc)0e2™ "9
+ 0e2™ O gy Y

= nmabdeznémwawb - 6ezn(2Anabwa¢b - 8nhabwa¢b)

= nmab(seznémwawb 5
(A.66)
where we used the identities
waDt (5€wb) = 5€¢apt¢b ) 8'nhab = Anab - Anba 5 (A67)

from [133] and [78] respectively. We also have from [78] that the variation of the Ty

term will be given by

Se(Tap ™) = 82V i Tupth™ 0’ = Frrnap0ez™ G (Yoo )"0 (A.68)

where here V,, uses the connection A,,q;. Finally we need to show that the variation

of the mass terms is zero:
Se(haptp®b) = 2hap 0" + 32" Omhapth®® = 52" Y (—2Amab + Omhap)

=0.

(A.69)

Therefore in order for our theory to be supersymmetric, we need to add a term which
contains Fnqp. This term has to be FppapX™x" % following [78]. Computing the
supersymmetric variation we find
Oe(FrnnapX "X " $*9") = 62"V FrnapX " X" V%" + 2Eanap X "Sex" 4" + O(g”%)
= 26, Frnap IS (2 — G(Yoo)PX ") 9" .
(A.70)

Where we used the Bianchi identity in going from the first to the second line and again

Vo is with respect to A,,qp not I ;Z. We now have the condition on Fj,,,qp:

anabvﬂ};s)n = - pnabjL(erL)n s (A?l)

for s = 1,2,3. This equation implies that A, is a hyperholomorphic connection.
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A.6 Conventions for Hypermultiplets

In this paper we use the following conventions from [133, 171] where the signature of

the metric is given by (—, +, 4+, +) and Weyl fermions obey the relations
¢a = Gaﬁlbﬁ y Yo = 6a5¢6 s e? = €21 =1,
PX = Y"Xa = X"a =XV, (A.72)
YX = daX® = Xad = X0
and
v 1 —UV UV —
o = —(otc" — a”a") ,

_ 1 _ _
oM = 5(0“0” —a’ct)

(A.73)
fuuapaap = Ouv »
e,u,l/opaﬁp =—0Ouw ,
as in [171]. We also have the identities
pad . _af dB H
o ey,
1
0abp = 5%92 : (A.74)
. 1
0t —5%59 ,
which imply
o 1 .-
00"000"0 = —S0%0"n™"
1
(09)(ON) = =507, (A.75)

o 1.
(0)(ON) = —ie%x :
We will take the notation that complex conjugation does not change the order of the

fermions but rather acts as

W) =—%a » @) =9 . @a) =—Ya , @) =9, (A.76)
This is chosen to preserve the inner product of two fermions and is used so that the

complex conjugation does not affect the representation of the gauge group. Similarly

when we have an SU(2) doublet of fermions will transform as

WY =04 , @Wa)' =01, @Wa) =y, @) =-va. (AT
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These are chosen to be an involution, and we have associated the complex conjugate
space of the spinor representation with the dual representation. Whenever spinor indices
are suppressed we adopt canonical notation where contractions between spinor space
and dual spinor space have the raised index first whereas contractions between complex

conjugated spinor space and its dual space have the lowered index first:
UX =9 X = vax” (A.78)
This notation also generalizes to the hypermultiplet scalar bosons as
(WM =nly ()t ==nt Gl =ht L (T =—ha (AT9)
This means that we will follow the notation
hal® = (ha)(ha) = =h*ha . (A.80)

Note that since the hypermultiplet bosons form a complex doublet under SU(2)g, the

index of h* can be raised and lowered with the €45 tensor.

A.7 SU(2)g Invariance of Hypermultiplets

Consider a single hypermultiplet in a representation p = # ®7* coupled to a gauge field
with gauge group G. Since we are dealing with a single hypermultiplet with a single

representation, we will suppress p. The Lagrangian for this theory is given by:

. . |
L=-" /dQGWaWa Foee 42T /d40 T2V
47 47

Im 7

T {/d49 (QTe%vQ + Qe*%VQT) + /d29(iQ<15Q +mQQ) + c_c,} .

(A.81)
Note that Q and Q are in conjugate representations of the gauge group (m vs. ) so

that Q®PQ and QQ are gauge invariant. If we denote the components of V = (D, %4, Au),
& = (¢,99, F), Q = (h1, M1, Hy), and Q = (—h'2, Xy, H'?). Here hy and 14 are SU(2)p
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doublets. As in the notation of [171], the superfields can be written:
V = —05"0v, — 020" + 620y + % 2D — 9, A" %0
Wo = 1o+ [05D — i(0"0" )30, A)05 — i6°0h0,0"*
® = ¢ +i00"00,¢ + 392§2D¢ + 2009 — 020,900 + 6°F | (A.82)
Q = h1 +i00"00,hy + 2920‘2@“ + 20\ — 020, 0" 0 + 60°Hy |
Q = —h'? +i0c"00,h1? — %92§2th2 +20)g — 029, M00"0 — 02 HT? .

The different terms of the Lagrangian can be written in terms of component fields as

_ 1 ;
= 2in0" Dy + D — JFME,, + ieﬂpr’“’FU" :

¢T62iV@‘62§2 = —D,¢' Dy + |F|? +i6* D, ¢

W, We

92

+i(a0t Dyp? + P25 Dyabe) — (AP alvop, ¢*] + eantd? WP, ¢])

OtV = Db DPRy — i(AMo* DA + MDA — ik Dhy
+ 2i(hM i + M ) — HIYH,
Qe—ZiVQT o _ D#hTzDMhQ _ Z'(/\QUMD“/_\2 + 5\2&MDH)‘2) + thfQth

+ 2i(Agtrho + A2t Ny) — H2Hy |

iQ@Q‘GQ = —ih2¢H, — iHRohy — 2i(MadM1 + Aotboht — o)1) — ih12Fhy

QQ o= —h2H, — Hhy — 2000
(A.83)
where the covariant derivatives are given by:
Dud" = 0ud" + [ ALY Dyl = O + [T ALY (A84)

D,uhA = 8,uhA + TaAzhA s Dﬂ)\] = 8# + TaAZ)\] s

Here we used A, B as indices for the fundamental representation of SU(2)g and I, J as
uncharged indices. We also assume that the representation of our gauge group is real

(and hence elements of the lie algebra g are antisymmetric):

[T7,T%] = frs'1t | Te[T"T%) =6"* (1" = —17 . (A.85)

)
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Putting everything together we can write the Lagrangian:

1 _%FMVF#V - Du¢*D#¢ + Z‘(wAO"uD;ﬂEA + &Aé’uDud}A)
E — 72TI' _ B
90 +D% + |F[> — i(e"Pyalop, ¢*] + eapt WP, ¢]) + i¢*[D, ¢]
0 S
+ 32?’]:‘1' {e;ujapFu F p}
D hADHKh g —i(Ajo*DyAr + A6 DyAp) — HAH 4 — ihT0 BM,, hP
+2i(hT AN + MpAha — WA adg + Aot Aha)
90 —i(H¢hy + hT2pH| + hT1¢* Hy + HT ¢ ho) — 2i(AadpA1 — Aad* A1)
—im(hY2Hy + H2hy + 2X9\1) + im* (H ™ he + AT Hy + 200 )09)

(A.86)

where the F- and D-terms have been rewritten as M,, = (f,g, D) where F = f + ig.
This demonstrates the hyperkahler property of this theory. The auxiliary F- and D-
terms can be eliminated from their equations of motion:
2D +i[¢, ¢*] — iT" (W03 BT hg) =0 ,
29+ iT" (W 464 BT hg) =0,
of +4iT" (W e Y PThp) =0, (A.87)
Hy+i¢*hg —im*he =0,
Hy +iphy +i1mhy =0 .
In order to emphasize the holomorphy of hypermultiplet fields we can write the equa-

tions for f, g as:

o
f+ig= —%(h“‘o—j; Brrhg) , of =o' +io?. (A.88)
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This is the complex moment map. Now, by eliminate D, f, g, and Hj, and combining

h' and h? into an SU(2)r doublet h* we can express the Lagrangian

r— Lt —3Fu F* + (Y a0 Dyp® + A5+ Dyipa) — Dy DFo*
g —2 T _ _
90 —i(eBYalp, ¢*] + eapp D8, ¢]) + Lo, ]2
0 Vo
+ mTr {€uopF* FP}
DuhtA DIy —i(Aro* DuAr + A15#DyAr) (A.89)
+2i(WAY AN + ApAha — WP ANy + MapAha)
1 o o
+ ? —2i(AadA1 — A2d* A1) — 2imAa Ay + 2im* A\ Ao
0
—thAgf)*hA + m*hTA¢hA + |m’2hTAhA
—3ht 4, ¢*tha + (K140 BT hp)?

where n = 1,2,3. Note that this Lagrangian is manifestly SU(2)g invariant.
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Appendix B

Kronheimer’s Correspondence

In this appendix we will give a more in depth review and proof of Kronheimer’s
correspondence. This correspondence gives a one-to-one mapping between singular
monopole configurations on R? with U (1) invariant instantons on (multi-)Taub-NUT.
Therefore, for completeness, we will first give a brief review of Taub-NUT spaces and

their general properties.

B.1 Review of Taub-NUT Spaces

Taub-NUT is an asymptotically, locally flat (ALF) space. It has the natural structure
of a circle fibration over R3, 7 : TN ﬂ R3 whose fiber degenerates at a single point
(the NUT center), which we will take to be at the origin in R3. For any finite, positive
value of 7, the restriction of the S' fibration of Taub-NUT to a 2-sphere of radius R, is
the Hopf fibration of charge £ =1, TN|p = S3 il) S%,.
This space has a metric which can be expressed in Gibbons-Hawking form as

ds* = V(%) dz - dZ+V~1(Z) 6%, (B.1)
where

V(f)zl%—% , O=df+w, (B.2)
where ¢ is the S! fiber coordinate with periodicity 27 and |Z| = r is the radius in the

base R? space. Note that V(Z) is sometimes called the harmonic function. Further,

w € NYTN) is a 1-form on Taub-NUT and solves the equation

dw = x3dV | (B.3)

This Appendix is based on material from my publication [24].
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where #3 is the Hodge-star on the base R? lifted to TN. Note that while w and d¢ are
not globally well defined 1-forms, © is globally well defined. Additionally, Taub-NUT

is homeomorphic to R* under the coordinate transformation
: 0 Liore) : i (2 eito-0)
21 + iTy = /7 cos 3¢ , T3+ ixy = +/rsin )¢ ) (B.4)

This space comes with a natural U(1) action (which we will refer to as the U(1)x
action) given by translation of the £ coordinate. This means Vk € U(1) g, there exists a
fi € diff(T'N) such that in local coordinates fy : (Zgs, &) — (Zgs, & + k) for k € R/2nZ.

Note that the metric is invariant under this action
fi(ds?) = ds* . (B.5)

Taub-NUT can also be extended to have multiple NUT centers, called multi-Taub-
NUT (or T'Nj, for k-NUT centers). This space is also naturally a circle fibration over
R3: TN, ﬂ R? where the S fiber degenerates at k-points {fi}f’:l in the base R?. This
space has a non-trivial topology given by ngt(TNk,Z) = I'[Ag_1] where I'[Aj_q] is
the root lattice of the Lie group Ap_i. These non-trivial 2-cycles are homologous to

the preimage of the lines running between any two NUT centers under the projection

7 : TNy, — R3. This space has a metric given by

ds* = V(%) dz - dZ + V(%) 6%, (B.6)
where!
U
Vi(Z) =1 e — 6 =d B.7

and again dw = x3dV. Again O is a globally defined 1-form and there is a natural

U(1)k action given by translation along the S! fiber coordinate &.

B.2 Kronheimer’s Correspondence for a Single Defect

Now we will derive Kronheimer’s correspondence for the case of a single 't Hooft defect.

Our setting is U(1)g-invariant instantons on single centered Taub-NUT space, T'N.

"More generally we can have V(r) =1+ 3" | ﬁ where ¢; € Z. We can think of this as taking
the case above and taking the limit &; — &; for some set of combination of ¢, j. Having ¢; # 1 leads to
orbifold-type singularities in the metric at the NUT centers.
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Let us introduce a gauge field on Taub-NUT by introducing a principal G bundle,
o : P — TN with a connection 121, for G a compact, simple Lie group. In order to
study U(1) g-invariant instantons, we must first define a lift of the U(1)x action to P.
Due to the degeneration of the S! fiber, this must be defined on local patches and then
extended globally by demanding U(1)x equivariant transition functions for P.

In each simply connected patch U, C R3\{0} not containing the origin which lifts
to a patch U, = 7~ 1(U,) not containing the NUT center. In this patch, the lift of the
U(1)k action is defined by a pair of choices (f,p) : U(1)g — Aut(TN) x Aut(g) such

that in local coordinates {x*},

k- (@, g) = (ful@), (ra@) " gon(a") (B.8)

and
o(fe(z"), py; tapk) = fr(a") € Ua , (B.9)

where 7 : TN — R3. This means that a U(1)g-invariant connection A in a patch U,

must satisfy f,;‘fl >~ A up to a smooth gauge transformation
fiA =p  App +ip;0 (B.10)

where 6 is the Maurer-Cartan form [61, 84].

Now consider a self-dual, U(1) x-invariant connection above the patch U, = 7=(U,),
for U, C R*\{0} simply connected. Without loss of generality, this can be written in
the form [108]

A=n"A—(x)(d +w) , (B.11)

where A is a g valued 1-form on the base R3. We will refer to the form (B.11) of the
connection as the U(1)g-invariant gauge.

Dropping the 7* notation, the curvature can be written as

F =DA=DA—dw— Dy A (df +w) ,
(B.12)

= (F —¢dw) — DY A (d§ + w) ,

where D and D are the gauge-covariant derivatives with respect to the connection A

and A respectively.



303

Using the orientation form? © Adz! Adz? Adx3, we can compute the dual curvature

*F:—*gFA<d§+w>—V*3D¢+¢*3de<d§;w> . (B.13)
Self-duality F = %F then reduces to the simple equation
k3(F —dw) =V Dy, (B.14)
which can be written
x3sF' = D(Vv) (B.15)

which is equivalent to the Bogomolny equation under the identification X = V.

Therefore a U (1) g-invariant connection on the patch U, in Taub-NUT is self-dual if
and only if, the associated three dimensional connection and Higgs field A (A, X =
V1)) satisfies the Bogomolny equation on U, C R3.

Now that we have shown that there is a local correspondence between U(1)x-
invariant instantons on Taub-NUT and monopoles on R3, we need to show that these
solutions can be smoothly extended over all patches U, = 7~ }(U,,) for U, C R3\{0}.

Recall that in order to have a well defined principal G-bundle over a generic manifold
M, on any two patches U,,Us with non-trivial intersection, the gauge fields must be
related by some gauge transformation g,g. This is the data of the bundle and encodes
its topology.

Let us define Uy, U = 71 (Uy), 7 1(Up) for Uy, Ug C R3\{0}. By comparing the

definition of U(1)g-invariance in each patch with the gluing condition, the p, satisfy

pa (T, k)gap(k - ) = gap(T)pp(Z, k) , (B.16)
or rather

gap(k - T) = pg ' (7.k)gap(D)ps (7. k) | (B.17)
and hence the transition functions are U(1)g-equivariant with respect to the lifted
U(1)k action.

Now we want to extend the action over the NUT center where the S* fiber degener-

ates. Consider a generic open set U, = 7~ 1(U,) where 0 ¢ U, C R3. As before in this

2Note that this orientation form is the natural choice as d¢ is not globally well defined.
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patch we can write the connection A, in a U(1) g-invariant gauge (where po(; k) = 1¢).
Now take Uy = 7~ 1(B2) where B3 is the three dimensional e-ball around the origin.
Since the S! fiber degenerates at the origin, the U(1) action has a fixed point in Uy
and hence Ay cannot be written in the U(1) g-invariant gauge (B.11) in that patch .

However, we can determine the form of Ay in terms of a gauge transformation of
a connection fla in the U(1)g-invariant gauge. Consider a U, as defined before such
that U, NUy # 0. The transition function go, between the U(1)g-invariant connection
A, on U, and Ag on Uy has the limiting form limz_, g(Z,€) — e ¢ for some choice
of P € Acochar [108], and hence limz_,q g~ 'dg = —iPd¢.

The reason we have this limiting form of the gauge transformation is as follows. The
component of any smooth gauge field along the fiber direction must go to zero at the
NUT center. However, the U(1)g-invariant gauge is generically non-zero. Therefore,
we must have that the transition between these two gauges must have the limit of a
constant function

lim g~ 'dg = —iPd¢ , (B.18)
r—0

which cancels the non-zero value of ¥(0). Further since we must have a well defined
gauge transformation, P is restricted to lie in Aqpepar = {P €t| Ezp)2rP] = ]1@} and
hence the condition that A be U (1) g-invariant and smooth requires that limz_, 1 (Z) €
Acochar- This results in the limiting form described above. Note that this gauge trans-
formation goo (7, &) is smooth for neighborhoods arbitrarily close to the NUT center,
but is not globally smooth because of the degeneration of the &-fiber.

Using the limiting form of the gauge transformation above, the gauge field on Uy
is of the form Ay = go_alflago(x + z'go_aldgga. It is clear from this form that we should
identify po(Z; k) with go, (Z, k) since A, is U(1)g-invariant and all of the ¢-dependence
of 1210 is in the goo gauge transformation. Therefore, fixing the lift of the U(1)x action
at the NUT center fixes the action globally in the case of a single singular monopole
by gluing across the patches using (B.17) which is trivial due to the trivial topology of
Taub-NUT (H(T'N;Z) = 0). Hence, gauge inequivalent U(1)g-invariant connections

are defined by a choice of P € Acochar-
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Using this we can see that the connection A has the limiting form

lim Ay — [A 4 Pw] — [¢ + P)(d€ + w) . (B.19)

Z—0
By Uhlenbeck’s Theorem, the gauge bundle can be smoothly continued over the NUT

center if the action of the field Ay is finite [166]. This implies that

lim ¢(Z) = —P 4+ O(r%) lim A = —Pw+ O(r~119) (B.20)
T—>

Z—0
and that all apparent singularities arising from higher order terms (as in § > %) can
be gauged away. This means that the corresponding monopole solution will have the

asymptotic behavior
P,
Fs = 7’%19 +0(0r™ 2% | X=-2400 ), (B.21)

in the limit » — 0 for some ¢ > 0.

Note that near r — oo, V' = 1 and hence X — (). This means that the Higgs vev
X is encoded in the holonomy of A along the S! fiber at infinity — i.e. by the value
of ¥ as r — oo.

Therefore, by using the global lift of the U(1)x-action to the gauge bundle, lo-
cal Kronheimer’s correspondence can be extended globally. Hence, general singular
monopoles configurations in R? with one defect are in one-to-one correspondence with
U (1) g-invariant instantons on Taub-NUT where the lift of the U(1)x action is defined

by the ’t Hooft charge of the singular monopole.

Remark It is worth commenting on the admissibility of subleading terms in the asymp-
totic behavior of the gauge/Higgs fields in the instanton/monopole solutions. From the
analysis from [133], locally solving the gauge covariant Laplacian in the presence of a

singular monopole imposes that

P, _
FRS = ?d() —+ O(?" 2+5) % 3 % c A’I—j—t s.t. <ILL’P> =1

K , 0= , (B.22)
b = —?: + O(r~119) 1 else

where Af, is the positive root lattice of the gauge group relative to X, € t. The

O(r~1/2) behavior can be explained by 1(r) having a subleading term going as O(r'/?).



306

This is in fact the only subleading term allowed by the requirement of finite action by

integrating
1

Se=——y
4¢2

. Tr {F/\*F} , (B.23)

in the singular gauge as in (B.19) where B2 is the solid 2-ball of radius € > 0 around
the origin.

This fractional subleading behavior simply allows for the existence of non-smooth
instantons which we should generally expect to contribute to any physical processes.
The subleading behavior also seems to be a manifestation of the fact that singular
monopoles with charge P ¢ A.. cannot be fully screened by smooth monopoles which

generally have charge in A,.

B.3 Generalization to Multiple Defects

Now we can ask how this generalizes to the case of multiple defects. This is accom-
plished by considering U(1) g-invariant instantons on multi-Taub-NUT, T'Nj. Since the
metric for this space can again be written in Gibbons-Hawking form as in (B.6), again
locally self-dual U(1) g connections on T'Nj, are in one-to-one correspondence with local
solutions of the Bogomolny equations on R3. This follows from an identical calculation
as in the previous section for a single defect by substituting the harmonic function and
corresponding 1-form (V,w) for those in the multi-Taub-NUT metric.

The proof of Kronheimer’s correspondence for multiple defects is thus reduced to
understanding how the U(1)x action extends across different patches. Due to this non-
trivial topology, fixing the lift of the U(1)x action of a single NUT center does not
specify the action completely as there are infinitely many gauge inequivalent ways to
glue this action across different patches approaching different NUT centers.

Rather, the topology of the gauge bundle can be specified by the lift at a single
NUT center and by a choice of Dirac monopole charge for each non-trivial homology
2-sphere — or equivalently one can specify the lift of the U(1)x action at each NUT
center. However, we should ask whether or not specifying the topological class of the

bundle in addition to the lift of the U(1)x action at a NUT center fixes the global lift of
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the U(1)x action. We will momentarily argue that this is indeed the case. If this is true,
then the set of all inequivalent choices of U(1)x action on the principal G-bundle on
multi-Taub-NUT is in one-to-one correspondence with the set of all possible choices of
't Hooft charges in the corresponding singular monopole configuration. Together with
local Kronheimer’s correspondence, this global lift of the U(1)x action would imply
that Kronheimer’s correspondence also holds globally.

The question of whether or not we can construct this correspondence is now reduced
to the question of whether or not there exists a gauge transformation on the intersection
of different patches which is U(1)g equivariant such that the U(1)x action has the
proper limiting form at the various NUT centers. As we reviewed in the previous
section, in order to have a well defined principal G-bundle with U (1) x action, on any two
intersecting patches U, ,Ug, the gauge fields are related by some gauge transformation

Jap Which satisfies the equivariance condition

gap(k - @) = p5' (2, k)gap(z)ps(z, k) . (B.24)

The new complication of defining the U(1)x action on multi-Taub-NUT is how it
glues across patches containing different NUT centers. So, let us consider U,,Us =
7Y (Uy), 71 (Up) for U,,Us C R? containing NUT centers at &, Zs respectively such
that U, NUg # (. Using the limiting forms of the p,, we can explicitly solve for the

form of gog(x) in the patch U, NUp:

gaﬁ(x) = Exp [Z(P,B - Pa)w] ) (B'25)

up to a trivial gauge transformation, and hence specifies a class in H?(TN,,Z).
The physical argument that this must be the correct class for the transition function

is as follows. Consider a line ¢;; from Z; to Z; (two NUT centers). We know that the

U(1)k action on a patch U; near the &; goes as p;(k) ~ el* and similarly on U; near

Zj, pj(k) ~ ek This means that on the transition U; N U; along the line ¢;;, the
transition function must be in the same cohomology class as Exp [i(P, — P3){] because
the winding number of P — 7~1(¢;;) & S? is P; on one hemisphere and P; on the other

hemisphere.
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This is exactly analogous to the translation function along the equator on the sphere
at infinity for a monopole in R3. These transition functions, as in the picture of
monopoles in R3, have the interpretation of the gauge field having non-trivial flux
on these spheres. This is necessary for the consistent lift of the U(1) x action across the
entire space and in the corresponding singular monopole configuration on R3, this flux
is literally the physical magnetic flux between two singular monopoles (in the absence
of smooth monopoles).

Therefore, the U(1)k action can be globally lifted to the gauge bundle over multi-
Taub-NUT which can be used to globally extend local U(1)g-invariant instanton so-
lutions. Hence, general singular monopole configurations in R3 are in one-to-one cor-
respondence with U(1)g-invariant instantons on multi-Taub-NUT where the collection
of 't Hooft charges specifies both the topology of the gauge bundle and the global lift

of the U(1) g action.
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Appendix C

Wall Crossing

C.1 The Two-galaxy Region for Smooth Monopoles

In describing the two-galaxy limit of the asymptotic region of monopole moduli space,
we introduce center of mass and relative coordinates. Note that the difference of any
two £%’s can be expressed as a linear combination of center of mass coordinates §%’s
only. The coordinate transformations between the Z% (absolute coordinates) and 7"

(relative coordinates) from (4.13) - (4.14) are given explicitly by

fa:)zl"‘(jl)abgb ; fp:)?z-i-(jQ)pquq - (C.1)
where
ap az --- ANy —1 anN; AaNy+1 c GN-2
b]. a2 alel le a/N1+1 a/N72
jl - bl b2 te aN1—1 ) j2 - le bN1+1 e anN_—2 5 (02)
bl b? te lefl le bN1+1 s bN*Q
with
aa:ma+1+...+le’ ba:_(ml—l—...—i—ma)’ (a:L...,Nl—l),
mgall mgall
Mpy2 + -+ My MN 41+ + Mp
ap = —* L b= M pr) Ny N —2) (C3)

Mgal2 Mgal2

This Appendix is based on material from my publication [25].
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These fit into square Jacobian matrices that give the map ({7}, X)T — {&} as follows:

4

X . ] (T
(@)= @G1 | 10) | Jil , (C4)
X, X1
. v* yP
(@) =G2 | 12) | _ | =J2| . (C.5)
Xo X5

Here 14, 15 denote a length N;, Ny column vector with all entries equal to 1 respectively.

Similarly the angular coordinates transform as

d )
<a>:J1 o (8>:Jz ov*
oga ) ’ oE* 0
Ix1 Ox2

And finally we implement the global center of mass and relative coordinates (4.15).

(C.6)

In the limit that R is much greater than all of the y, the matrix M;; has the structure

M, Das 1 O(%
My={ i OG) ) (C.7)
T?b + O(%) Mpq
where
1 Y
Mg, = (Ml)ab - ﬁéab(HI(a)>7m,2) +0 (ﬁ) ,
1 y
Mpq = (M2)pq — E(Spq(’Ym,laHI(p)) + O <ﬁ) ) (C.8)
with
ma_zc;éa?:ccu a:b7 mp_Zfr?ﬁp%p:7 p:q7
(M1)ap = b (MZ)pq — P
b a#b, T, p#aq.

(C.9)
The latter are the matrices that would appear in the GM/LWY metrics for galaxies one

and two in isolation. Thus in the two-galaxy limit, the “mass matrix” takes the form

Mij (Ml )ab 0 n l _6ab(HI(a)7 7111,2) Daq

0 (M2)pq R Dbp

—6pq(Ym,1, Hyp)) (C.10)
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which we will write as

M M; 0 1 ( Du -Dp +O<y>,

0 My R —D21 Do

where Dy; and Dgs are diagonal matrices and Do = (Dy2)?.
Then within each galaxy we make the change of variables (C.4). The relevant

quantities to be computed are, at leading order,

c, o0 C, 0
vy = . ITMLL, = | , (C.12)

0 Mgall 0 Mgal2

where C; = jTMij1, etc. The O(1/R) terms are

ITDLT, — iTD1ujr (Bayyom)

<ﬂb7 72,m> ('Yl,m, 72,m)

T .
jaD22je (B V1m)
IDydy = | 72 g : (C.13)

<5q7 '71,m> ('71,m7 '72,m)

iTD1sjo  {Bayy2m)

JTDJ, = ;
(Bg:11,m) (Y1,m>V2,m)
where
a N,
/BGZ (J?)abH}k(b) :aaZH}k(c)+ba Z H;(C) y a = 1,...,N1 —1 N (014)
c=1 c=a+1
and similarly
p+1 N
Bp=I3) Hyy=0ap > Hi,y+b, > Hi,, p=DN,....N-2, (C15)
r=Ni+1 r=p+2

with the a and b coefficients given in (C.3). The key property to note of the j, , is that
they have zero pairing with X’; for example we have (8,, X) = —a,b, + bga, = 0.
Thus far we have described the transformation of the quadratic form M;; from the
basis of differentials d? to the basis (dif “,d)_fl,dgj“p,d)_fg)T. Next we implement the
transformation (X1, Xs) — (X, R) to center of mass coordinates. One finds that the

quadratic form diagonalizes with respect to the overall center of mass coordinate. Then
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collecting the remaining differentials into the block structure (dy, dé) = (dy*, dy?, d]:f),

one obtains the first line of (4.16) with

& C: 0 o —iTD1j1 T Disjo |
0 Gy iTDoji —jiDasjo
- Bcu ,m m m
Lo | Vel ) gy - - imem) = ) (C.16)
<6p571,m> a

Note that §C and L are coordinate independent.

Now we turn to the connection one-forms on the N-torus, ©;. We change variables
in the fiber coordinates according to (4.14). Denoting J = diag(Jy,J2), the quantity
we want to investigate therefore is JTWJ , Where W is the matrix with components
VT/Z-j given in (4.7). The reason for the J7 on the left is that we want ©; to transform
like the legs along the fiber directions, (4.14). The overall factors of J7 will then be of
the right form to transform the inverse quadratic form, (M ~1)¥, to the y-X basis. The
reason for the J on the right of W is that we will put a JJ~! between Wij and di7,
using the J~! to map the dz? to (dy?, dX1,di, dXQ)T.

However we only need V_Vij through O(1/R), which takes the form

- (Wl)ab 0 _6ab(HI(a)77m,2) Daq =
(Wij) = . - W(R)
0 (W2)pq Dy, —0pq(Ym,1, HI(p))
Y
+0 () -
(C.17)

where Vf/l,z are the corresponding Ws for galaxies one and two in isolation. Wrapping

the JT-J around the first term, we observe that

TXXT ¢
- i1Wii1 0
JIw,J, = ) (C.18)
o 0
and similarly for 1 +— 2. In the text we denoted the upper-left (Ny2 —1) x (Nj2 — 1)

corners of these expressions by Wi 2 respectively:

Wi=jWiji, Wy=3iWajs. (C.19)
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For the J-transformation of the O(1/R) terms we can make use of (C.13). We then
make the final transformation to the center of mass coordinates on the relevant two-by-
two block of JTWJ — that is, the block whose rows correspond to x1, x2 and whose

columns correspond to X1, Xs. Making use of the definitions (C.16), one eventually

finds
~ 1 1 -
- 2 C+ +6C iL O

0;(M~1i0; = ax + (6o, Ow) " § ’

(mgall + mgal2) %LT ,uH(R) Oy

Yy
+0(53)
(C.20)

with (©p, Op) defined as in (4.18), (4.19).

C.1.1 Hyperkahlerity of the metric

Here we address the hyperkéhlerity of the asymptotic metric (4.16) in the two-galaxy
region of the strongly centered moduli space. We collect the position and phase coor-

dinates using indices 7,7 = 1,..., N — 1 and writing

§l= @9 R = 3R, b= ety ?) (C.21)
the metric has the form
dsf = Gz - ! + (G (dus + Vig - dig* ) (dwy + V- dif') (C.22)
where the matrices G, V are given by

C+46C  LL

+LT  pH(R)
(C.23)
G W + 0C @ W(R) L ® W(R)
LY@ d(R)  —(y1m, Yom)T(R)
where W = diag(wl, WQ) Note that G,V are of the form
- 1 L = .
G:G—FEA, V=V+Au(R), (C.24)

—

where G = diag(é,,u), V= diag(W, 0), and A is a constant matrix.



314

A metric of the form (C.22) is hyperkéhler iff (letting o, 8,y = 1,2, 3)

0 Vaih — 9 =Voik = Eaﬁ’yiﬁGﬁl} & iva; = iG;,; - (%)
8y‘” ] ayﬁﬂ 8y'yz J ayaz J 8yoéj

These equations are satisfied on the leading order pieces, (G, V) — (G, V) because
this just gives a direct product metric on My x Mag x Rfel with the corresponding
GM/LWY hyperkéhler metrics on the first two factors, (the strongly centered moduli
spaces for galaxies one and two in isolation), and a flat metric on the third. Since A
is constant, the only derivatives that do not annihilate the correction term are those
involving derivatives with respect to the components of R. Tt follows that the equations
are indeed satisfied to order O(1/R?), and hence the metric (4.16) is hyperkéhler to the

relevant order.

C.2 The Dirac Operator in the Two-galaxy Region

Now we will construct the asymptotic Dirac operator based on the metric (4.16) to order
O(1/R). We will employ the coordinates (yo‘;, 1) as in (C.21), and we will sometimes
combine these together into y“g, introducing pu,v = 1,...,4 with y4Z = 1;. We refer to
the components of the hatted metric on Mg with respect to these coordinates as G i

so that

ds2 = G - ~dytidy”i . (C.26)
0

M,V ]

We will use underlined indices to refer to the corresponding tangent space directions.

C.2.1 Vielbein

. . wi
The nonzero components of the vielbein, e are taken to be

eafi .= (526!6;; 647% -~ = (ea)% 5 eﬂ T = (64)7% ) (027)

i i’ ai
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where the matrices are given by

P 1 - 1—
. Cl/2 4+ LC1/25C LC1/2L
0 MI/Q (1 - ﬁ(Vm,l»VmQ))
(CV/2 = JHCV25CC ) Wa + waC1/25C woC12L
€qn — )
,u_l/QwaLT _M_I/Q('Vm,la’Ym,Q)wa
Cc-1/2 _ %6—1/2506—1 RC 1/21,
e4 = /.L (028)
0 p 12 ( + %(Vm,lﬁmz))
Similarly, the components of the inverse vielbein, E* iﬁ’ are given by
BB B afm B =), (2
with
- C-12 - Lc-lscc 12 —C 'L
0 /1!71/2 <1 + ﬁ(Vm,l; 7m,2))
S A C— IWoC'L _ w.L
. W, < —-1/2 _ 1 LC 15CC 1/2) — wadCC1/2 gL
—’waLTéfl/Q Mfl/Q(Vm,I;’Ymﬁ)wa
GV2 ¢ 1 5CE1? )
E, = 28 u!/2R . (C.30)
0 Ml/z (1 - m(va?me,Q))
These satisfy the necessary relations to the order we are working:
B e = 00,05+ O(1/R?) . Gl et eﬁ =G, -+O0(1/R%) . (C.31)

Wi vj J we N g

C.2.2 Spin connection

Using the vielbein above, one can compute the spin connection. The discussion is
organized according to how many of the .7, k indices take the last value, N — 1, corre-

sponding to ¥ !

= R. By a slight abuse of notation we will refer to this index value as
“i = R” rather than 1 = N — 1. The remaining indices running over the N — 2 relative
positions ¥ = (7%, 4?)" are i,j,k = 1,...,N — 2. We give the expressions below with

all indices referred to the frame on the tangent space.
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When there are no R indices, there is a leading O(1) piece and O(1/R) corrections
to it:
Wivjph = Qpivi pk + 0Wpivjph + -+ (C.32)

where dw = O(1/R). Explicitly, the nonzero leading-order spin connection is found to

be

N 1 o ot 1y _ ~
Gaigjok = 5(CAHCTHH/(C2), ! (5@%5%0% - %%aamcjk) -

)

1 ~_ ~ ~_ ~_ ~
— 30030, (E V) E [0 8T - E 0,80

. 1o~ o i 1o oA
Waigjok = 5(C )i 1/2)1](0 1/2)!5@65{ (98 Wik — OviWaij)

~ 1 ~_ ~ ~ ~ -
Waidjyk = — 5(0 1/2)Ek517 {(&ykclﬂ)c 12 _ & 1/2(8’%01/2)]

- 1 ~ - o o
Waifj ak = _E(C 1/2), (C 1/2)~j(0 1/2)5’@5g 5@/3’ (aaiwﬁkj _aﬁjwaki) 7

z J
Baitjax = 5(C V3T I(CTV2),F 00 Cl (C.33)

T

4

This is the spin connection on Mg X M2 o X R7,

with the My factors equipped with
their respective GM/LWY metrics. The O(1/R) corrections to the above components

are captured by the simple replacement rule
~ ~ 1
C—>C:C+E50, (C.34)

leaving W,, unchanged, (and expanding the result to first order in 1/R). The reason
this captures all O(1/R) corrections to these components of the spin connection is that
the contributions from the w, terms in the vielbein cancel.

Note that the components involving the W,;; can be simplified using relations
(C.25):

" " 1 ~ i . ~
Daij pr = Gaipj ak = —5(C e 1/2)5(0 1/2);@1517&”0%. (C.35)

Furthermore, this relation can be extended to the O(1/R) corrections to these com-

ponents using the replacement (C.34). The reason is that (C.34) is simply a shift of

C by a constant as far as the y®* are concerned, and C is always differentiated in the

relations (C.25).



317

Next we consider the components of the spin connection with one R index that have
a non-vanishing O(1/R) piece. With some effort they can all be related to the (C.33)
in a rather simple way:

1

WaiBjyR = — TEH(C‘—l/?L)EJJ%ﬂ +O0(1/R?) ,
1 ~—1/27\j ~ 1 ~—1/2\ k ~—1
i = - Llai' - / 5a5’y /2Lz
WaiBRyk \/ER(C )L @aigj vk \/ﬁR(C )i 0ap0y " 03k (C™ /7 L)
+0(1/R?)
1~ -
wagin = = 7 (C V2L Gigj gk + O(1/R?)
1 i , (C.36)
1~ .
WaiBRAk = — ﬁ(c 1/2L)1w%@ +O(1/R?)
1~ -
W4iBR Ak = — ﬁ(cfl/%)jﬁw@,@ +O0(1/R?) |
1~ -
W4idj AR = (0_1/2[4)&(.«)%7% + O(l/R2) .

ViR
Finally, one can show that components of the spin connection with two or three R
indices start at O(1/R?), and thus we can neglect them to the order we are working.

Now introduce gamma matrices I i satisfying the Clifford algebra
(e rvd), = 251vsi (C.37)

and define T'“%J — s “—z, I ”—5] as usual. When we contract the spin connection compo-
nents with the gamma matrices to construct the Dirac operator, we can absorb almost

all effects of the w with one R index by introducing shifted gamma matrices:

T < S . . . 1 ~ ~
TO80 5 il M2 = TP T80 = ATIEDER o 0o (O712),10,10,0 (O L)

+O(1/R?) (C.38)

with
1
ViR

We also account for the O(1/R) corrections to the Wyivj,pk Dy working with the corrected

o — pai (C~V2L)irek — phi_ ph (C.39)

C as we discussed around (C.34). So above we account for both types of O(1/R)
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corrections to the spin connection by working with waig;j vk Which is expressed in terms
of C rather than (Nj, and working with the "%,

These hatted gamma matrices can be realized by a frame rotation on the spin
bundle. To do so we first complete the definition of the et by setting

1 -~ )
el — pak 4 ﬁ(C‘lﬂL)iF% , IR iR (C.40)

Then I = Rﬂyjf ”—3, where the rotation is given by

R=[[RY. (C.A41)

where Réff) is a local rotation in the e - e2f plane by angle

0t = fR(c—WL) (C.42)

and we work to linear order in the 6. This rotation on the frame index can in turn be

implemented through an adjoint action on the spinor indices,

with
A =[] exp (alfO'T* ) = 1 + al f0* T TE + O(67) . (C.44)

C.2.3 Dirac operator

To construct the Dirac operator, lDyO, on Mg we will also need (#()p). We first have

rnkg nh

G(W) = Z(al,y@G(h]) = Z(Oél,yo> Z 6{6 + {exp. small}
=1 I k=1 ""k1

I
m

= Z(H,,yo) Z 0 + {exp. small}

~

n

I kr=1 gkl
N1 9 N

= (Hrw) M) 5ea T > (Hip), ) 367 + {exp. small} , (C.45)
a=1 p=N1+1

where we used that the exact triholomorphic Killing vectors G(h!) approach the linear

combinations of those in the GM/LWY metric exponentially fast (in the same sense
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that exact metric approaches the GM/LWY metric exponentially fast). Then using
(C.6), (C.14), (C.15), followed by the change to center of mass coordinates (4.15), we
find

0 0
G(W) = Z(ﬁa,yo Bw“ + Z Bp, Vo) aWD + (Y, 1,370) + (m, 273)0)872 + exp. small

= s m,1, + H
= 2 () gy + (i 05+ (C.46)

where in the last step we also used that (ym,)o) = 0, or equivalently (ym,1,M0) =
—(Ym,2, Vo).

Now we can compute

T 7. 1 T i
pr = B R0, + 172,55 4T pke GO (C.47)

to O(1/R?) using (C.28), (C.30), (C.38), and (C.46). Given the simplifications in the
spin connection afforded by (C.38), the goal will be to express everything in terms of
the rotated I”s and then use (C.43). The final result will be an expression for Eyo,
through to O(1/R?), in terms of the A-conjugation of another Dirac-type operator.
The advantage of this approach is that the A-conjugation, which implements the frame
rotation on the spin bundle, is sufficient to block-diagonalize the Dirac operator with
respect to the '™ - P decomposition of the Dirac spinor bundle. A key point
is that the ‘extra’ term on the right-hand side of (C.38), which originates from the
inhomogeneous term in the second line of (C.36), is exactly what is needed to account

for the action of the derivative on A:
A [FﬁEﬁW@w A7t = MEE o,

1 1 _ -
karmﬁRfR(san(c 2),6.00,,(C7 L)+ O(1/R?) .

(C.48)

Thus, suppressing the details, we are able to bring the Dirac operator to the form

quoted in the text:

DY = AP35 + DY+ O(L/R) ) A7 (C.49)



320

where wfg consists of terms involving only pi-type gamma matrices, and I, consists

of terms involving only pR-type gamma matrices. For the first operator we have

Dra = D3, orntye + (7)) (C.50)

where the first term is precisely the G()p)-twisted Dirac operator on Mj g x May,
where each factor equipped with the GM/LWY metric, and the second term contains

the O(1/R) corrections. Explicitly,

li oXMa g = F%(S “ [(5_1/2)28&2 - (Wa5_1/2)ig’a4i:| + F£(61/2)1184’L

+ F‘W,MV] pk FWV] F4z( 1/2) (BlayO) (051)

and
) 1 ~ ~ . ~ ~ .
BV = Fmaaa{ - ﬁ(c—lacc—m)gam + (5EWalC ™! — wa1)5CCTY2)! 0y,
~ 1 ~
— wy (LT —1/2i _ —1/2Lia
wo(L"C™7);04p uR(C )iOaR

wi] L m1psonis L a5 a1y
# 8f (EC) 00— 5 (EASCEY (50 0

-(’Ym,l:y()) ~—1/2 71y . 1 pk Hivj

Meanwhile the second operator takes the form

= + M) {FaR%a [Oar + (Y1, Ym,2)WaOir — WaL'Oy;)

Vi <1 2uR

m,1, /m Ll .
+ e K,u - W) Osr + E@M - Z(’Ym,lyy()):| } . (C.53)

(Strictly speaking, this expression contains some O(1/R?) terms when the R~! multi-

plies w,, which should be dropped.)

C.3 Singular Monopole Moduli Space

In the case of singular monopoles, we have a core-halo system. Here we can choose our
origin to be anywhere in the core, but to be explicit we choose it to be centered on one
of the singular monopoles. In this case we need only go to center of mass and relative

coordinates in the halo galaxy. We let indices a,b =1, ..., Ncore run over fundamental
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(mobile) constituents in the core and indices p,q = Neore + 1, .. ., Neore + Nhalo = N,

run over fundamental constituents in the halo galaxy. We set

’ gP = 7P — Pl (C.54)
Mhalo
where mpalo = Zp m, and we have introduced indices p,q = Neore +1,..., N — 1 that

run over the relative positions of halo constituents. The inverse is given by

P = ﬁ + (jh)png ) (055)

where j;, has an identical form to jo with the galaxy-two constituent masses replaced

by halo constituent masses. Constructing Jy, by appending a column of 1’s in the same
way, we introduce the halo fiber coordinates

Up

= Jg(gp) .
'4

(C.56)
Note that (ﬁ, V) play the role here that was previously played by (XQ,XQ). They

parameterize the position of the center of mass of the halo galaxy relative to the fized
core.

The large R expansion of the quadratic form Mij» can be written in block form

o (M)ab Dag + O (%)
M)y =| ) ) i f (C.57)
T? +0 (ﬁ) (M)pq )
with
Vi =7 (HI a 7'7h,m) 1
(M)ap = (Mc)ap — 5ab% +0 (32) , (C.58)
where
- Ma = Vopa o0 = Lo 71 a=b
(Me)ap = 7 T " : (C.59)
o ab
and similarly
(HI y Y ,m) 1
(M)pq = (Mh)pq - 5pq% +0 <Rg> ) (C.60)
where
D
mp - Zu rp: p =u
(M) =y APy . (C.61)
-~ PFq
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In these expressions the core and halo magnetic charges are given by

Ncore Nget N
Yem= Y Hi@+> Poy  Yam= Y Hyp. (C.62)
a=1 n=1 p=Ncore+1

Therefore in the limit of large R we can write (M);; as

N Mc 0 _6a ms H a Da
7, = (Mec)ab +% b(Yhms Hr(a)) q
0 (M) pg Dy, —0pg(Ye,ms Hl(p)) (C.63)
+0(1/R?) .

As before, we will write this as

_ M 0 1 D _Dc
Mo | ¢ - e ") ro/ry (C.64)
0 My —Die D

Now we make the similarity transformation to the center of mass and relative coor-

dinates in the halo, defining C;, with components (C},)p, such that

i ML) 0 C 0
Mg, = [ T —( " . (C.65)

T T
0 Mhalo 0 Mhalo

We combine Cy, with the leading order core matrix, writing

[ M. 0
C= . (C.66)
0 G

The first order corrections to this are captured by

[ -D..  Duj
5C — a L (C.67)

jiDne  —jl Dunjn

Finally the vector L and the harmonic function H(R) appearing in (4.58) are

— —(Hr(a)> Yh,m) — ( (Vi )>
L= ’ 7 H(R) = (1 - Y jom/ g
( ) Mhalo

</Bp7 7c,m>

(C.68)

Here (3, is defined as in (C.15) but with Jy replaced by Jy,.
The terms in (4.58) involving the connection one-forms (g, Oy) can be obtained

by following analogous steps to those in the case of smooth monopoles.
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Appendix D
SQM Localization

D.1 U(1) N =(0,4) SQM Analysis

In this appendix we will present a general analysis of the N' = (0,4) SQM with a U(1)
gauge group coming from monopole bubbling in 4D SU(2) N = 2, asymptotically free,
supersymmetric gauge theories. See [165] for a review of N' = (0,4) SUSY.

The N = (0,4) SQM we are considering consists of a U(1) vector multiplet, two
fundamental hypermultiplets and up to four N' = (0, 2) Fermi-multiplets () that have
02 @\?:(0,4) as

short /' = (0,4) Fermi-multiplets or by combining <WJ(\?)=(0,2) @ @/(\?2%2]’2)) = 43’/\/:(0,4) to

been embedded into the N' = (0,4) theory by either embedding l[lj(\j.):

make long A = (0, 4) Fermi-multiplets. In the case of a 4D theory with N fundamental
hypermultiplets we will have N short N' = (0,4) fundamental Fermi-multiplets. In the
case of the 4D SU(2) N = 2* theory, the multiplets form N = (4,4) SUSY multiplets
which are then mass deformed to the N' = (0, 4) theory. This means that in studying the
N = 2* theory, we must include a massive N' = (0,4) adjoint (twisted) hypermultiplet
I' and two long fundamental Fermi-multiplets in the SQM.

In general, these SQMs have a Lagrangian given by
L= Lum'v + Ltheory . (Dl)

Here Lipeory is the part of the Lagrangian that is dependent on the details of the 4D

N = 2 theory, and Ly, is the universal part of the Lagrangian that does not change

This Appendix is based on material from my publication [26].
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with the matter content of the 4D Theory. Here we have

Lum'v = Lvec + Lhyp + Lpr 5 (D2)
where
1 1 2 Y A 1 2 2
Lyec = 672 i(ato') 4+ IA40N +§D +‘F‘ ,
1 _
Ligp = =5 (1De™ 2 = 0™ 2 = 610" )M, 07 )

+ é (&{(Dt +i0)P1,f + wa(Dt - iG)”LZJ{ + zﬁg(f)t —i0) o, + b2 (D + ZU)@%)

7

+ 2(€5A,f)\A'¢{ — 01 Aad™ + a AL — o pAad™)
V2e
Lp;=—-ED ,
1 _ 1 _
M,=(f,g9,D) , r=123 |, f:\ﬁ(F‘*‘F) ) QZE(F—F)

(D.3)
Here A = 1,2 is an SU(2)g index, f = 1,2 is an index for the global SU(2) flavor

r=1,2,3

symmetry, e is the gauge coupling, and o are the Pauli matrices acting on the

SU(2) g indices. Here we use the convention
0" =da , da=capd® |, en=e?=1. (D.4)
We additionally have that Ljeory can have contributions from terms

Ltheory = LFermi + Ladj hyp » (D'5)
which are of the form
1 T, _ . N _
LFermi = ? Z |:2(77J(Dt + 20')77]' + nj(Dt - 10')77j) + |C;’j|2 + my [nﬁ ﬁj] ;
’ (D.6)

2
I=1

)
1 ) _ _
Ladj hyper — 672 [’atpAF + 5 Z(XfatXI + XlatXI)] ’
where in the case of a 4D theory with Ny fundamental hypermultiplets, we only include
Ny fundamental Fermi multiplets and in the case of the " = 2* theory we include both

the adjoint hypermultiplet and 4 (short) fundamental Fermi multiplets.!

Note that four short fundamental Fermi-multiplets is equivalent to two long fundamental Fermi-
multiplets.
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In the following analysis we will decompose the N' = (0,4) hypermultiplet that
transforms in a quaternionic representation R into two N = (0,2) chiral multiplets

transforming in conjugate representations R @ R:

Fundamental Hypermultiplet & = (¢?,v;)r = 1 & d:ﬁg = (¢, V)R & (o, @Z’)R , (D.7)

where [ =1, 2.

In this notation, the field content of this theory is given by

Lagrangian Term Multiplet Fields | QGauge | Qa | Qe | F
Universal N = (0,4) Vector- o 0 0] 010
Al 0 010
A2 0 0| 4
Universal N =(0,4) o1 1 -1 110
Fund. Hyper- (51 -1 1 1 0
s 1 111]o
b2 -1 101700
b 1 [-1]1]o0
1 -1 1 {110
o 1 11110
Vo -1 110
4D Ny Fund. Hyper- | A" = (0,4) Fund. Fermi- 7; 1 0] 0 |-2
N = 2* Theory N = (0,4) Adjoint p 0 0] 1|1
Twisted Chiral p 0 0 |-111
X 0 0] 01
X 0 0] o0 |-1
N = 2* Theory N = (0,4) Fund. Fermi m 1 -1 1]0
i 1 1110
- 1 111]o
i 1 o [al1]o
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This non-SU(2)r invariant notation is explicitly related to the SU(2)g-invariant nota-

tion by
¢! ! p X
(bA’f = :f s ¢{ = :f ) pA = _ , XTI = _ . <D8)
o (0 p X
12

Here we will use the convention €' = €97 = 1 and will use a notation that is not flavor

SU (2)-invariant by mapping

Y YR PSP (D.9)

so that the {¢y, QNS HUs, 1/; 7} should be understood as normal complex valued scalar and
fermion fields. It should be understood that all flavor and SU (2) r indices are contracted
properly in the upcoming analysis. Additionally, note that in these theories, there are
only J-type Fermi-multiplet interactions. See [90, 165] for a more complete discussion
about this Lagrangian and the corresponding field content.

These fields transform under supersymmetry as

145 1 1 4- 1
vy = ——=€"Xg — —=&a\ | do=—e' A+ —=ea\t,
v2 V2 V2 V2 (D.10)
1 1 :
(5)\A EEADtO' + @EB T-(O'T)AB s
and
T — i (Aol 4 A3
7 = 7
oyl =2 (Dt - 20) oM = —ea(Dy - o)™
‘ . ¢ X (D.11)
om; =ie1Gj + €1Fj , 0G; = —§€1(Dt + ia)nj — 561(Dt — ig)ﬁj ,
5PA =i (GAX1 + EAXQ) , 0x1= EAatpA , Ox2 = —eAﬁtpA ,

The supercharges generating the supersymmetry transformations for the vector multi-

plet fields (o, A*) and hypermultiplet fields (¢, ), (¢, 1) are given by
1

—uf io < ’ —fﬁijfiij\ _; 1 ™ BX . M.

Qa=1 (WA,fJF 62¢A,f) + vy (WA 2% 7 A(—ips) + ﬁ€2(0 Ja A M, .
(D.12)

Additionally, when considering the 4D A = 2* theory, we must add another hypermul-

tiplet (p?, x7) which contributes

m m
Qa=..+ X1 <7Tp,A + GQPA) + X2 <7Tp,A - 62/)14> 3 (D13)
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where we have included possible mass terms.

Now consider adding the masses: 2

mg, = —Im(a/B] +Imle /f] = —2a + 2,

mg, = —Imla/B] —Imley /f] = —2a — 2,

ma, = Im[a/B] + Im[e, /8] = 2a + 2¢ , (D.14)
mg, = Im[a/B] — Ime, /8] = 2a — 2,

my2 = 4dlmley /B] = 4e

Additionally, in the case of 4D theories with matter, we will add the masses

m,1 = Re[m/f] + Rele; /8] = 2m + 2¢ ,
m > = Re[m/fB] — Re[ey /f] = 2m — 2¢
(D.15)
my,; = £Re[a/B] + Re[m/B] = £2a + 2m ,
mg ) = 2Re[my/f] = 2my ,

as appropriate. These masses break SUSY down to AN/ = 2 where Q1,Q" are the
conserved supercharges. Since we know that the Witten index depends holomorphically
on the masses [60], we will take the mass parameters to be real and positive with a > €

for simplicity and analytically continue in the final answer.?

2These masses come from turning on a flat gauge connection for a flavor symmetry — a, and for a
U(1)r symmetry — e. The U(1)g symmetry comes from the diagonal combination of SU(2)r x SU(2),
where SU(2)r is an R-symmetry and SU(2), is an outer automorphism symmetry. Turning on the e
mass corresponds to gauging the combination Q. = Qr — @, where Qr, Q. are the generator of the
Cartan for SU(2)r, SU(2), respectively.

3The analysis changes slightly for the case of mass parameters and when € > a, but the answer will
be independent of these choices.
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In terms of component fields, the universal Lagrangian is given by

11 L < - - 1
Luniv = — [2(8t0)2 + % (MO + MO + X (0 — die) N — 5D2 — |F|2]

+ 5 (1D + Do + 1D + Dol
—;%ko—a+@%@ﬁ+«a—a—@ﬂ%ﬁ+«a+a+d%@ﬁ+«a+a—@ﬂ@?}
+ % (JH(Dt +i(c —a+ €)Y +1(Dy —i(o —a+€))h

+ ho(Dy +i(0 + a+ €))ha + o(Dy —i(o + a + €))ths

+91(Dy —i(0 — a— )i+ u(Ds +i(o —a— )

+ Da(Dr — (0 +a— ) + da(Di +i(0+a— )i
F
P2

622(‘@’2 + [ d2]? = |¢1)? — |pal® — €26) + = (d11 + dad2) + g(gbl@ + o)

- ﬁ > (ng‘)\l”%‘ + GiNi + dihd; — didat

— Pididi — idag — VX' i + 1@')\2@) ;
(D.16)
where D; = 8, + iv; and Dy = 8y — ivy.
Similarly, the Lipeory Will be of the form
1 LT
1 [ . = . _
Ltheory = 672 Z |:2 (nj(Dt + ZU)nj + Uj(Dt - ZU)UJ’) - |Gj‘2 + mj[ﬁh ﬁj]] ) (D17)
j=1
in the case of 4D SU(2) with Ny-fundamental hypermultiplets and

1 - -
Ltheory = ? [|atp|2 + |6tp|2 - (m + 6)2|p|2 - (m - 6)2|p|2

N | =

+ —(XOX + XOX + XOrX + XOX) — %([)@ x| — X 5(])]

1
€2

% <771(Dt +i(c—a+e)m+m(Dy—i(oc—a+e)n

+ 71 (Dy —i(o — a— €))i + 71 (Dy + (0 — a — €))in
+ (f2(Dy +i(o + a+ €))no + n2(Ds — i(o + a + €))is

)

+ ﬁg(ﬁt — i(U +a— 6))772 + ﬁz(Dt + i(a +a— 6))772) — |G1|2 — |G2|2

(D.18)
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for the case of the 4D SU(2) N' = 2* theory.

By defining the conjugate momenta to the elementary fields

1 1 < 1 - N 1 =
Do = 76150 y Prxa = 72)‘14 y  Dyi = 7¢z y  Dyi = jwl 5
e e e
1 5 1 = T _
Ur 72 t¢l ) U 7Dt¢l ) p??j = ?77] ) (Dlg)
7 7 1. 1 -

Px 2X7 px—*g?z szejatpa Wp:?&tp,

we can compute the Hamiltonian and integrate out the auxiliary fields (D, F, G):

62 4€,
H = Epg - 672>\2)\2 +U + Hmatter —+ HI —+ UtQGauge , (D20)
where
1 - - 2 1, - ~
U=sa ("W + |gal® = |d1]* — |a]* — 625) + 5161 + padha? (D.21)
and

Hpatter = € [|m[* + |m2|* + |71]* + [7a]]
o [0 —at PP+ (0 —a= B + (0 +at OPloaP + (0 +a— Pl
+oeg (0 —at O] + (0 +at Il ]

(0 —a— W]~ (0 +a ), i)

+ Hiheory
(D.22)
and
Hj = —\/;62 zZ: (951')\1%' + i+ Gidedh; — didat D23
— ik — Didadi — BN Gi + 1[%‘)\2@) :
where

_ ~ = _ 1 - 1 = =
Qcauge = Qtheory + ZZ: (Wﬂﬁ' — 1T — QT + 1T — @[%7 i) + @Why 1/%]) .
(D.24)

Here, Hipeory is of the form

cheory % 5.2 Z 2m] 77]777J] 9 (D25)
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for the 4D theory with Ny-fundamental hypermultiplets and

m . ~ m-+ e 2 m—e€ 2 ~
Heory = aoglX1, 1)+ lrgl? + 2 4+ B2 B2 g
(c —a+m), _ (c—a—m) - _ D.26
(c+a+m), _ (c+a—m) - _
202 [7727 772] + 262 [772> 772] ’
for the N' = 2* theory. Additionally,
1
cheory = _5 Z[ﬁjﬂ?j] ’ (D27)
j=1
or
1 — = ~ — = ~
Qtheory = —5 (70, m] — [0, 7] + [72, m2] = [, 702)) (D.28)

2
for the Ny-fundamental hypermultiplet and A' = 2* theory respectively. By Gauss’s

law we have that QGauge must annihilate all physical states.

The classical vacuum equations for this theory are given by*

(61 + [02f® — [01* — |62l —€*6 =0, $161 +¢2g2 =0,
(0 —a+ g1 + (0 —a— |1’ + (0 + a+ )|g2f* + (0 +a — )| =0..
(D.29)
The classical vacua of this theory are described by a Coulomb and Higgs branch
which are defined by
Mc={oeR, ¢;,¢; =0} =R,
oc=2dat'e,
|61 + [@af® = |61]* = |02 = —€*¢ , 3101 + P22 = 0 /U(l) ' (D-30)
(0 —a+e)?p1]> + (o — a — €)?|p1|?

+(o+a+€)?|ga?+ (0 +a—e)?[pe>=0

My

/

Note that in this case, the Higgs branch is given by a disjoint union of 4 points given
by the 4-different choices of (£, +’) in (D.30).
Now if we rescale the fields v;, 1/~Ji, iy A

~ 1 1- 1 N 1 1 1.
wiawivni — 71/%7 7wi7 /A AA;XvX — 7)\A7 —X5> =X > (D31)
e e e e e e

4There is an additional vacuum equation for the A" = 2* theory, however it has only trivial solutions:
A
pt=0.
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such that the commutation relations become

(i} =6 {dudiy =65 » {mmiy=065 , K ={L=1,
(D.32)

[¢i7 ﬂ—j] = 152] ) [¢Z7 ﬁ]] - 15Zj ) [p7 7.rp] =1 y [/)7 Wp] =1i.
with all other commutation relations (or anticommutation as appropriate) are trivial,

we can define the oscillators

ie2ﬁ'p> 1 < ie27rp (D.33)

e Wy 2e \/&Tp
where
wi=lc—a+e , wa=|lo+a+e , wi1=loc—a—¢ , G2=|lc+ta—¢,
wp=|m+e , @=[m—¢,

(D.34)

and all other (anti-) commutation relations have zero on the right hand side. Using

this we can define a Fock space vacuum
a;|0) = @;|0) = a;|0) = @;|0) = a,|0) = a;|0) = a,|0) = az|0) =0,
' P p P P (D.35)
¥il0) = i]0) = A*0) = 1;/0) = x|0) = X|0) =0 .

Using these creation and annihilation operators, Hy,qtter and QGauge can be written

- 1
Hpatter = Wl(a-{al + &J{dl + 1) + (0' —a+ 6)(¢11/11 - 5)
- 1
+ walalas + abag + 1) + (0 + a+ €)(Parhy — 5)
i ; (D.36)
+ (@ +ala; +1) — (0 —a—e)(drihy — 5)
~ s~T~ =T = ~ ~ 1
+ (,UQ(CL-|2-CL2 + aga’Q + 1) - (U +a+ 6)(7#21/12 - 5) + cheory )
and
QGauge = - [a]ial + a£a2 - dial - dgaz — C~L11-€L1 — d;dg + 5{51 + é;ég]
(D.37)

—% V11 + Porhy — J)ﬂ/;l - 7,!:)21/;2} + Qtheory »
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where
i
cheory = 5 Z(U - 2mj)[77j7 TIj] ) (D38)
j=1
or
H oo s < t to+ 1] v latar + atas + 1
theory = E([)ﬁ x] =[x, x]) + Wp |ayap +azas + 1| +wp azap + azas +
1 1 = .
+5 (0 —a+m)m,m] = 5(o —a—m)i, n] (D.39)
1 1 = .
¥ 50 +at m)i, el — 2 (0 + 0~ m)li, ]
and
1ot 1
cheory = _5 Z[ﬁjaﬂj} or cheory = _5([771»7]1] - [ﬁlaﬁl] + [7727772} - [77/27772]) )
j=1

(D.40)

for the Ns-fundamental hypermultiplet and A" = 2* theory respectively.

D.1.1 Matter Ground States

We we can determine the asymptotic ground states by applying the Born-Oppenheimer
approximation. In this approximation, we divide our fields into “slow” and “fast” fields.

We then decompose the wave function as

’W> = ’wslow> & ’wfast> 5 (D41)

and solve for the ground state of the fast degrees of freedom in the background deter-
mined by the slow degrees of freedom. This is described by [i.st). Then we solve for
the ground state of the slow degrees of freedom in the effective potential created by
integrating out the fast degrees of freedom.

For our purposes, we want to study Coulomb branch states that stretch out into the
asymptotic region of the Coulomb branch. Here, the fast degrees of freedom are de-
scribed by the matter fields (the fundamental hypermultiplets and fundamental Fermi-
multiplets) while the slow degrees of freedom are then described by the vector multiplet

fields.> Now determining the vacuum state of the fast fields requires minimizing H,qtter

°In the case of the 4D N = 2* theory, the slow degrees of freedom include the adjoint valued twisted
hypermultiplet.
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and U subject to the the constraint that Qgauge|¥) = 0. In order to construct a basis

of states for the fast fields, let us define the operators

(D.42)

=N
w
Il
N
el

ag=a, , az=a; , a3=4a, ,
and similarly
w3 =Wwp , @3 = (;)p . (D.43)

Now, Hpatters QGauge can be written in terms of the in terms of the complex creation
and annihilation operators a;, a;, az, C_LI, ;, a;, dj, aj and the fermionic creation and an-

nihilation operators ;, ¥;, i i, JJZ', i, Xi, Xi- Now let us pick a basis of states

|(nia ﬁiaﬁivﬁiamia mia fj)>

2 . . - = _ 4 (D.44)
n; My o/ aNT fa\Tw — <o - £
=TI ()™ (al)™ (a)™ (@)™ dpeaxrox™ Tl o)
i=1 Jj=1
in the case of fundamental 4D matter and
|(nis T, Ry g, Mg, 1, f5))
(D.45)

3 _ ~ = 2
ng ng ~ ng ~ ng _— _:~__ > __:‘_
=L (al) " (al)™ (@) (@) " ororacx™ [Tt o)
i=1 j=1

for the case of the N’ = 2* theory. Note that this means that the quantum numbers are
constrained

ni,m,ﬁi,ﬁi €cly mi,rhi,fj,fj =0,1. (D.46)

These quantum numbers have the interpretation of the eigenvalue of the number

operator associated to the given fields. In this case, we have that the eigenvalues of
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Hpnatter, @Gauge Of these states are given by

1
Ermatter =w1 (N1 + 701 + 1) + (0 —a +€) <m1 - )

+wa(ng+n2+1)+ (0 +a+e) <m2—;>
G (1) —(c—a—e) <m1—;>
+ @ (g +ng+1) — (0 +a—c¢) <m - ;) + Etheory »
Gmatter = —(N1 — T + ng — fig — My + Ny — Ng + Ng — My — Mg + My + M)
+ Qtheory -
(D.47)
Note that the m;, m; are quantum numbers and not masses. Here
I\ )
By = Yo = 2m) s =) (D.48)

or

. _ - - 1
Etheory = mim3 —m3] +w3(ng +n3 +1) + @3(n3 +ng3 +1) — (0 —a+m)(f1 — 5)

2
-1 1 =1
Flo—a-m)(fi—3)~ (o tatm(fr— )+ +a-m(h-3),
(D.49)
and
I\ )
cheory = - Z(fj - 5) or cheory = _(fl + f2 - fl - f2) ) (D50)
j=1
for the Ny-fundamental hypermultiplet and ' = 2* theory respectively.
Here we also need to define the flavor charges
heor 1 - 1= - 1 - 1= -
Qo= Q4" + lbr, ] — 5[, v = 3 [, el + S laln, )
9 |wilgr]? + @11 — wolgol? — @alde> o >a+e (D.51)

2
. o o
—wi|p12 — D1]d1]? + waldo|? + @o|po|* o< —a—c¢

where Qﬁ”‘e”’”y) =0or

Q) = 2 ({mn, m] [, ] — (2] + [, 2] (D-52)
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and
_ )(theory) *21* 1:~ 1— 1:~
Qe = Q: + 40N+ S [P ] + Sl 1] + S, Yo] + 502, v
2 & (wi|¢i|2—@i|¢3il2) o>a+te (D.53)
> N
| = (@il - @ildiP) o< -a-e

and Qﬁt’w‘”"y) =0or

2 o 1 _ = .
QUheory) — 67( — wplpl* + @A) + 3 > (ol + dil) , +o>0. (D.54)

)

In our basis of states, these can be written as

Qu = l(ltheov"y)

ni+ny+n+ny—ng —ng—Ng—ng+mjp —m3 —mo + Moy o>a+e€

+
—nl—T_Ll—le—7§Ll+n2+ﬁ2+7~l2+ﬁ2+m1—Thl—mz—l-ﬁlg o< —a—¢€
(D.55)
with Qﬁf’“’”’"y) =0or
QM = (fi-Fi- fat o) (D.56)

and
Q. = Qgtheory) + 45\2)\2

Ny =+ T —Ne—TNe+ T FRe+mi M +Fme+my o>a+te
+

ni+mny—ny—ni+ng+n9—ng—ng+mq+mg + mo + me o< —a—c¢€

(D.57)
where Qﬁt’w‘””y) =0or
QUIeers) — — (ng + g — g — i) + (1 + i + o+ f2) - (D.58)
The constraint for a supersymmetric ground state is now
(Homatter + €Qc +aQa+ Y mpFp)[#) =0, Qcauge|?) =0 (D.59)

f
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There are 5 distinct regions in ¢ space in which we can impose these conditions. The
physically relevant ones are those for which |o| > |a| + |¢|. Therefore we will restrict to
the regions in which 0 > a + € and 0 < —a — € where we are assuming a > € > 0.

It is actually more convenient to solve the equations

(Hmatter + €Q€ + CLQa + Z mfFf + UQGauge)|u7> =0 ) (DGO)
f

and then solve Qgauge|¥) = 0.
As it turns out there are only solutions only for the case of Ny =4 and the N = 2*

theory. For the general theory, the zero energy condition (D.59), can be written as

2 nz—{—ﬁl—{—ml—}—(l—ml) o>a-+e€

0=> (D.61)

i=1 —'in—ni—fni—(l—mi) o< —a—¢€

For N; fundamental hypermultiplet theories, the gauge invariance condition can be

written

m+ﬁ2+m+ﬁ2+(2—%)+Z§:fl(1—fj) o>a+te
(D.62)

_nl—ng—nl—n2—< —7>—2j:1fj o< —a—¢€

while for the N’ = 2* theory, it can be written as

g+t +2— (fi+fo—fi—fa) o>a+te
0= (D.63)

—nl—n2—7:7,1—7:12—2—(f1+f2—f1—f2) o< —a—¢€

These equations clearly have no solution for Ny = 0,1, 2, 3.

The ground state solutions for N' = 2* and the Ny = 4 theory are given by:

c>a+e€e :n;n; =0, {fj:101"f172:1, fLQZO},
(D.64)

a<—a—e:n,~,7:1i:0, {ijOOI‘_]ELQ:l, f172:0}.

Now we can solve for the matter ground states in the regions o > a+¢€and 0 < —a—e.
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We will define the matter ground states in these regions as ©

|+) = O(0 — a — €)|(ni, i, gy niymi =0, =1, {fi=1or fia=1, fia=0}),
|-) = O(a+ e —0)|(ni, g, g, niy i =0, my=1, {fi=0o0r fia=1, fia=0}).

(D.65)

D.1.2 Asymptotic States

Thus far we have computed |i)f.s) = |£) for 0 > a + €. Now we must find the state
|tslow) that is dependent on the adjoint valued fields only, such that the entire state
|¥) = |tglow) ® |£) is annihilated by the conserved supercharge operators Q1, Q. To

this effect, we can apply the Born rule to get an effective supercharge

Q A= — <¢fast’QA|wfast>
o <¢fast|¢fast>

— —(Qa) - (D.66)

Using the fact that |F) is in the harmonic oscillator ground state of all bosonic, hyper-

multiplet fields, ” we find that (F) = 0 and that the effective supercharges are of the

form
1 _
Qef'f,A = i <_7'<pa> o — <D>(03)AB> AB s
‘f 162 ' (D.70)
d= 55 (108 - S0N08) A
where
) 1 1 1
(po) ——’Lag—i-in: <0:|:a—|—e +O':]:a—€> ’
(D.71)

e? 11
o= 535 5)

5Note that we do not need to worry about the normalization of |£), so long as it is normalizable.
The reason is that the only physically relevant thing is for the total wave function to have unit norm.

"Due to the form of the oscillators (D.33):

e (._, w,)\_ e W
a~ = (m T €7¢) == (a¢ +5 ¢) 7 (D.67)
the wave function |£) is of the form
w 2
|4£) ~eezlel (D.68)

Note that this implies
2

(= 161°12) = o . (D.69)
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Explicitly, the complex supercharges are given by

(

1
. <8+U+ae Ua€+)a>a+e
Qeff 1= 7)\
V2
( 8+o+a+e Ja+e+> o< —a—¢€
(D.72)
(S ( 8 +a+a+e Ua—&-e_g) og>a+te
Qeff 2 = ﬁ)ﬂ
< 8+0'+a €+O'7}176_€) o< —a—€
with similar expressions for the complex conjugate supercharges.®
Using these complex supercharges, we can construct the real supercharges
Q1= Qe + Qlg —i(Qefr — Qo) »
(D.73)
QS = QeH,Q + Qgﬂr ; _i(QeH,Q - Qgﬂ”) )
Since we are deforming by a mass parameter ¢, SUSY is broken from N = (0,4) —

N = (0,2) such that Q1, Qs are the conserved real supercharges. Therefore, supersym-
metric ground states are in the kernel of Q1, Q2 or equivalently in the kernel of Qe 1
and its complex conjugate operator.

Now let us consider the states that are killed by Qeg,1 and its complex conjugate

on the semi-infinite interval o > a + €.

Here the relevant supercharges are given by

s = 5 (6 +G+a€+o_}z_e+§) o>a+te
eff,l \/5 1 .
( 8 +U+a+e+a—a+e+£) o< —a—e€
(D.74)
1
Ql = ! (0 = e — i +€) o>t
eff \/i 5 . .
(P~ oqa=e ~oma=e T§) o<-a—e

Since the e-mass deformation breaks SUSY from N = (0,4) — N = (0,2) we have that

only the Qeq 1 supercharge is preserved. These supercharges satisfy the supersymmetry

algebra

{Qeff,h

eff} Heff

(D.75)

8Note that if we had normalized the matter wave functions |+) such that (£|£) = 1, then we would
have (p,) = —id,. However, we have made this choice of normalization such that when restricted to
the Coulomb branch, all of the o dependence is manifested in |tagjoint). This will make the discussion
of normalizability of the state along the Coulomb branch simpler.
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where
7 =—€Qc—aQq— Yy mysF . (D.76)
J
This corresponds to the effective Hamiltonian
2 2 ~
Hop = S0 4 (D) 4 0, (DM A (0.77)

The wave functions dependent on the Clifford algebra spanned by the {1, A2} that
are killed by both Qe and Qéﬁ span a 4-dimensional Fock space dependent on the

vector multiplet zero fields

lsusy)
D1@2€%7 (a1]+) + Brda|+)) + wiwae 7 (aahi|+) + Bedido|+)) o >a+e
wiwaet? (o | =) + Brda]|—)) + @102 (a1 | =) + BadiXa|—)) o< —a—¢
(D.78)
where the «;, 8; are undetermined coefficients and w;, @; are given by (D.34).

There are some additional considerations for the case of the N/ = 2* theory. The
reason is that there is a decoupled NV = (0,4) adjoint valued hypermultiplet field that
pairs with the A/ = (0,4) vector multiplet to make a N/ = (4,4) vector multiplet.
Because of the representation theory of the supersymmetry algebra, the Witten index
is identically zero.

This can be seen as follows. Since the NV = (0,4) adjoint valued hypermultiplet is

completely decoupled, the vector multiplet state splits

|7;Z)slow> = |1;Z)vector> ® |1,[}hyper> . (D79)

Since we can write the Hamiltonian for the adjoint hypermultiplet fields in terms of
simple harmonic oscillators, we can pick a basis of states for the hypermultiplet wave

functions
Ins, ng, ig, N3 , M3, m3) = (ai,)”**(dé)ﬁ

where

a3|0>hyp = a3|0>hyp = C~L3|0>hyp = a3|0>hyp = X|O>hyp = >~(|0>hyp =0. (D~81)
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Because the hypermultiplet fields are completely decoupled (up to flavor symmetries),

there are no constraints on the values of the n’s and m’s except
’I’Lg,ﬁg,ﬁg,ﬁg € Z+ , mg,m3=0,1. (D82)

These states have definite charge under @, and Q.. The eigenvalues of these charge

operators is given by
ge = (ng — iz — N3 +n3) ,  Gum = 2m(m3 —m3) +m(ng —nz +n3 —nz) . (D.83)

Now pick a state |o) = |nf, n%, 7%, 1% , m§,m4). Now to this state we can identify
another state with the same charges under Q),, and ). with different fermion numbers.

Specifically, we can make a shift depending on the value of (m} — mj})

(m3 —m3) = (my —mgy) = (my —m3)+1 ,  (75,05) = (ng,75) = (75 + 1,75 + 1) ,
(D.84)

or

(m3 —m3) = (my —mgz) = (mj —m3) —1 ,  (n3,n3) = (ng,75) = (nj + 1,75 + 1) ,
(D.85)

depending on the value of (m% —mj) where we only shift one of the mj, mj. The state
[0h) = |nk,ny, s, 7 , mh, M%) will then have the same eigenvalues ge, ¢ with different
fermion number by 41, hence canceling the contribution of |¢)y) to the Witten index.
Therefore, there is no contribution to the Witten index from asymptotic Coulomb
branch states in bubbling SQM for the case of the 4D N = 2* theory. Thus, from
hereon out, we will only consider the bubbling SQM for the N; = 4 theory.

It is a subtle point to define the fermion number of these states. As explained in
[72], the bosonic Fermi vacuum should be defined relative to the lowest energy state
of the fermions. The Fermi vacuum of the Fermi-multiplet and multiplet fermions is
defined by their bare mass terms in the full Hamiltonian. However, since the fermions
in these multiplets come in pairs, the fermion number (—1)% is only dependent on the
vector multiplet fermions that do not come in a symmetric pair.

In our Born-Oppenheimer approximation, the vector multiplet fermion A\? is given
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a bare mass while \! is given a mass from 1-loop terms. The mass terms are given by

_ 1 1 _
Hipgss = —4eda\? F €2 — —— | DEA + ) D.86
g ;eZ:(w? ?)[ A, to>a+e (D.86)

Since w; > @; for 0 > a+ € (w; < @; for 0 < —a —¢€) for € > 0 and similarly w; < &;

for o0 > a+¢€ (w; > w; for 0 < —a — €) for € < 0, the physical, bosonic vacuum state is

defined by
3 1
)\2‘O>phys =A ‘O>phys =0 , e€>0, (D'87)
A2(0)prys = A1[0)prys =0, €<0,
which differs from our e-invariant choice of Fock vacuum is defined in (D.35):
A0Ypurs = 0 . (D.88)

These two choices are related by

5\2’0>0urs e>0
10) phys = . (D.89)

A|0)ours €< 0

Thus, the fermion number of our vacuum states are given by

Do) =~10) = (DE) =5 . (D.90)

D.1.3 Hermitian Supercharge Operators and Boundary Conditions

Note that the real supercharge operators defined in (D.73) are not actually self-adjoint
on the relevant semi-infinite interval because integration by parts picks up boundary
terms. Therefore, we must restrict the Hilbert space of BPS states to those on which the
above supercharges are self-adjoint. It will be sufficient to impose that Q1 = Qeg 1 —|—Qéﬂ

is Hermitian. In the seminifinite interval o > a + ¢, this has the form

e _
e ; 1 1 ! !
— A+ - -
Jr\/5( " 1>(|0'+a+€|+|0'—a+6| lo+a—¢ |‘7—a_€|Jr£> 7

where D, = (ip,).
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Since this only has A\; and A! Clifford elements, it is natural to divide the Hilbert
space as

H = span{l, A2} @ {|+) , Mi|+)} . (D.92)
Now consider a generic state that is annihilated by A\%:
) = f(o)|+) + g(o)M]+) - (D.93)

In this subspace, the supercharge Q; (which we choose to be our localizing supercharge)

is the form of a Dirac operator:

0= € 0 Do+ Alo) where |) = flo) , (D.94)
V2 \ _p, + A0) 0 9(0)
and
1 1 1 1
Afo) = (ya+a+ey o Tatd ora—d o_ad +5> : (D.95)

On these states, we have that

(U1|Q1¥) = (Q¥n[¥) — [flgz - §1f2} oare (D.96)
And therefore, for the Q; to be self-adjoint, we must impose
flge — g =0. D.97
[f192 g1f2] I (D.97)
A similar argument holds for the pair of states
2) = f(o)dal+) + 3(0) Aol +) - (D.98)

Now we see that there are more than 10 different restrictions we can impose on the
Hilbert space such that (D.97) is satisfied. We will impose the same condition on the
Hilbert space for ¢ = a + € and ¢ = —a — €. These choices are given by a combination
of restricting wave functions and completely eliminating all wave functions in different

factors of the Hilbert space under the decomposition
H = ®nyno=01Mniny = Bnyma=0,15panye {5‘7111 5‘32|0>} : (D,99)

These different conditions that we can impose are:
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e Type I: restricting the wave functions in a factor of H,,, », such that (c|t) ’Jzi(aJre) =

0 for |¢) € Hnyno
e Type II: eliminating a factor of H,, n,

We will choose either purely Type I or Type II conditions.
Given our assumptions that the boundary conditions are symmetric and purely Type

I or Type II, there is a unique such choice such that I,symp = Z,(,ff,iza). If we choose any

other boundary condition, then we have that I,symp # Zr(,fﬁza). Therefore, we believe

that the physics of relating Igfooc)

with a counting of Higgs branch states suggests that
we we should choose boundary conditions that restrict our wave functions to be of the

form |&y):

HIe = span {Nl wiwoeS Mol +) | Na wlajge*ﬁﬂlm} . (D.100)
A similar computation shows that

M55 = span {Nl D125 Na| =), Na w1w2e*5°X1\—>} : (D.101)

Thus, what we have really shown is that in the Born-Oppenheimer approximation, there
is a suitable boundary condition so that Iosymp = Zﬁﬁiﬁﬁ“). Clearly this aspect of our

proposal needs to be improved.

D.1.4 Extra Contribution to the Witten Index

Now we have found the BPS states for the semi-infinite intervals ¢ > a + € and ¢ <
—a — €. Interestingly, these states undergo wall crossing with the sign of £. Essentially,
as is evident from equations (D.100)-(D.101), as one approaches the wall of marginal
stability at & = 0, the states contributing to the Witten index go off to infinity as 1/¢
and become non-normalizable at £ = 0. Then as we again increase || from 0, another
state comes in from infinity.

By using the results of (D.100) and (D.101), we have that there are only 2 normaliz-

able BPS states for a given choice of £ > 0 or £ < 0. The corresponding (unnormalized,
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but normalizable) states are given by:

@1@2€_§US\1|+> £E>0
‘g/1> = )
wiwee Xl +) €< 0
(D.102)
(:)1(:)2650;\2’—> f >0
W) = )
wiwee TN =) €<

Now we can ask how these contribute to the Witten index. Here the flavor charges
associated to a, € are given by equations (D.51) and (D.53). For our cases, these reduce
to

Qa=0 , Qc=2—4x\. (D.103)

and similarly
Qmy = [77,77] - (D.104)

This means that the flavor charges of the ground state are given by

Qa Qe Fj
+) |0 |42 | +1

=)0 | +2]-1

Then, using the fact that Ay has charge —4 under Q. with all other charges an-

nihilating A1, A2, we see that the charges evaluated on the different states are given

by

aQq 0 aQyq 0

m¢F _ +mf _ mfFf _ —my _

N DY ES M Nl ) = X))
€Qe +2¢ €Q. —2¢

(-1)F +1 (-1)F +1

aQq 0 aQq 0

m¢F _ —|—rnf _ mfFf _ —my _

T el = ) Ml-) = e
€Qe —2e €Qe +2e

(-1)F +1 (-)F +1

(D.105)
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We are interested in the contribution of these states to the ground state index:

: F_—5{0, o e F
Iy, Me = lasymp = ,Bh—{go IHMC(_l) ¢ 2 (@A HeQurer Qo ymeky (D.106)

By using the fact that BPS states are annihilated by Q and the charges (D.105), the
asymptotic Coulomb branch states as in (D.102) give a contribution to the Witten
index:

— > myp—2e Do pmypt2e < )

e~ =f + et 2cosh (Y- pmy + 2€ £>0:Z(extra)

Iasymp = mono *

e~ Lpmyt2e | 3 pme=2¢ _ 9 oogh <Zf my — 26) £E<0
(D.107)

This is exactly the contribution Zﬁfi@a)(l, 0).

D.1.5 1D Wilson Lines

We can additionally add supersymmetric Wilson lines to the SQM. These are labeled by

a parameter g that is quantized q € Z+ % This adds a term to the total Lagrangian:
Lwitson = _q<'Ut + U) . (D108)

Note that this is supersymmetric due to the fact that dv; = —do. This only changes
the above analysis by changing the gauge invariance condition (recall that we solved

the condition (H + Z + 0Qgauge)|¥) = 0):

(QGauge - Q)|'17> =0. (D109)

This only changes the choice of matter ground states. Let us consider the N; funda-

mental hypermultiplet theory. Here the gauge invariance condition is given by equation

; ﬁ1+ﬁ2+ﬁ1+ﬁ2+< —%)Jrz?zfl(l—fj) o>a+te D10
~ ~ N
_nl—ng—nl—n2—< _%)_ijflfj o< —a-—¢€

Therefore, for Ny < 4, we only have solutions for ¢ = j:4_2N L = 4qeip in the 0 > a+e

region.
Once we have the existence of the matter ground states, the analysis for the vector-

multiplet part of the states carries over from the Ny = 4 theories. This leads to the
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contribution to the ground state index (D.106) from the asymptotic states

e Mg = gy
Tosymp = R e~ 225 M~ 26+ 4= —qerit (D.111)
0 else
for £ > 0 and )
XTI g = gy
Tosymp = R e~ 225 Mst+2es 4= —qerit (D.112)
\0 else
for £ < 0.

Note that here the fermion number is always even due to the sign of the mass term
of the Fermi-multiplets which is determined by the sign of ¢. This relies on the fact

that we are working in the limit where o >> m¢, Vf.

D.2 U(1)) N =(0,4) SQM Analysis

In this appendix we will analyze the ground states on the Coulomb branch of the N =
(0,4) SQM with gauge group U(1); xU(1)2 xU(1)3 corresponding to the monopole bub-
bling term Zy,ono(a, my, €;2,1). Here we have three U(1) vector multiplets (o, A M)
where i = 1,2, 3, two fundamental hypermultiplets (d)f‘,z/)i’ 1) where i = 1,2, and two
bifundamental hypermultiplets (Q;‘,gz I) where ¢ = 1,2. Additionally, dependent on
the specific 4D theory, we have up to 4 fundamental (short) Fermi-multiplets (n;, F;)
and 3 adjoint valued hypermultiplets (p:, x; 7). The quivers for the bubbling SQMs are

given by:
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Ny

lfil:l\l 101
POTY TG

in the case of the theory with Ny fundamental hypermultiplets (given by a N = (0,4)

quiver SQM) and the N = 2* theory (given by a N' = (4, 4) quiver SQM).

The total Lagrangian again decomposes as
L = Luyniv + Ltheory ) (D113)

where Ly, is the universal term describing 4D SYM field content and Lipeory depends

on the matter content of the 4D theory. The universal term decomposes as
Luniv = Lyec + Lhyp + Lbf + Lpr - (D114)

After introducing notation analagous to that of Appendix D.1, the field content of this

theory and their charges are given by
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108 | QE | Qa | Q| Fy

Q4

Fields

01

2
2

M
02
03
A3

b1

Y1

(0,4) Multiplet

Vector-

Fund. Hyper-

Bifund. Hyper-

Lag. Term | N

Universal

Universal

Universal
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Lag. Term

N = (0,4) Multiplet

Fields

QY

Q¥

Qa

Qe

Ny Fund. Hyper-

Fund. Fermi-

nf

@)

N = 2* Theory

Twisted Chiral

P1
1
X1
X1
P2
p2
X2
X2
p3
p3
X3

X3

o o o o o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o o o o o

o o o o o o o o o o o o

N = 2* Theory

Fund. Fermi

m
m

72

o o o o

o o o O
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In terms of these component fields, the Lagrangian terms can be written as

3
1 _ _
Lyec + Lpr = Z — [(@01‘)2 +i (>\i,13t>\il + A%@M,l)

= 2
+2i%i2(0 — 40N} — (M;)? — 276 My
ethyp = |Dt,1¢14‘2 - |01¢14’2 + &17A(O-T)ABM1,’I‘¢]_B + %(1/_}1(Dt,1 +i01)
+4p1(Dy1 — o) + 121([7@1 —io1)h1 + 1 (Dyg + i01)121>
+ \Z@ (ﬁgl,A)\fld)l — it + P — 151)\1,A¢’14)
+ Dy 303 |? — 031 |? + doa(0") 5 Ms 05 + %(&Q(Dt,?) +i03) 12
+ 1po(Dy 3 — io3)iha + 122(11,3 —i03)2 + a(Dy 3 + i03)122>
+ \;5 (732,,4)\34@/}2 — a3 405 + qu,A/_\?i/:Jz - &2)\3,,4%4) ;
€2Lbf = |Dt,21@‘14!2 - ]02@’14\2 —i—éLA(UT)ABMgLTQf + %(1/_}1(Dt,21 + 1021 )1
+ 1 (Dy o1 — io21 )1 + 1;1([)1521 — i1 )1 + 1;1<Dt,21 + 1'021)1Z1>
+ \Z@ (ém)\?ﬂh — P1ha1,40] + éLAS\?ﬂ/Zfl - 1,131)\21,149?) + | Dy 320 |

- T - .
— |os20l |* + Q27A(UT)ABM32¢QQB t3 (¢2(Dt,32 + i032) 12

+ ¥2(Dy 32 — io32) 1 + QQ(Dt,SQ - i032)@2 + 1, (Dy 32 + i032)@2)

i /- o _ = -
+ % (?2,A)\§42¢2 - wQ)‘?’QM@IQLX + QQ,A)\?Q%Q - ﬁ2)\32¢@2‘4) :
(D.115)
where we used the notation
(Dt,ij + iUij) = 8t + 2i(7ji,t — Uj’t) + i(Ui — O’j) s )\2 = Af — )\34 . (D.116)

Lipheory can have contributions from terms of the form

Ltheory = LFermi + Ladj hyp - (D117)
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In components, this can be written

7 . ~ . _ _
e’ Lpermi = Z {2 (ﬁi(Dw +i02)n; + i (Dy2 — 202)%) +|Gil* + m; [nj,nj]} )
J

1 -
Ladihgy =D, 3 [wtp;“r? + (m+ )| pif? + (m — €)% 52
7
7 _ m,
+ 21: <2(Xi,18th’,I + X0, 10:Xi1) — 5[)@,1, Xi,I]) ] ,
(D.118)

where x; 1 = (xi Xi) -
Now we can go to the Hamiltonian formalism and integrate out the auxiliary fields.
We will again scale our fermionic fields such that they obey anti-commutation relations

of the form
{ihy =65 Ay}t =0y - (D.119)

Now the total Hamiltonian will be form the form

H = Hym + U + Hypateer + Hr + > 04iQC hge - (D.120)

7

where

2,2 2.2 2,2
€1Ps1 |, €2P52 | €3Ps3 T \2
va = 20 + 20 + 20 —4e EZ Ai,QAi + Hadj hyp >

Huatter = € [|m* + ma|* + [71* + [7af® + |z * + mo* + |21 * + |75 ]
+ 5 (1617 +<Bloal? + G + 1Bl + i P+ s, + Rl 2 + BR3P
5 (01— a+ I, il - (o1 — 0 — [0, )
+ (03 + at Oliha, ] — (o3 +a+ )l V]
— 5 (21 + T, = (021 = Ny, B,) + (o1 + iy ) — (052 — )l )
+ Hrermi »

(D.121)
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where
wi=|lo1—a+e , O1=|lo1—a—€ , wi=lost+a+e , @Wa=lozta—¢l,
wy=|oa+e€ , @ =|oa—€ , wy=|ozatel , @y=|o32—¢€,
wita = m+e€l , Dipalm — ¢ , fora,e>0.
(D.122)
and
1t
HFermi - 5 2(02 - 2mf)[ﬁ]777j] 3 (D123)
j=1
or
Hpermi =(01 —a + m))[ﬁb?h] — (o1 —a— m))[ﬁlaﬁl]
(D.124)

+ (03 + a+m))[iz, 2] — (03 +a —m))[72, 2] ,

for the 4D theories with Ny-hypermultiplets or for the N' = 2* theory respectively and

H 4j hyp is only included for the N = 2* theory and is given by

3 ~
Hadj hyp = Z [€2|7ri+2|2 + *|Figa|* + WEJQFQ pil* + wj‘f i + % Z[fci,la Xi,I)
- ! (D.125)
Additionally,
U =g (1618 ~ 11~ Io, P +13,* - %)’
+ oo (18,2~ 18,1 ~ 18,2 +13, - &) -

1 P! ~ 2
t 502 (|?2|2 — 16,1 + [2l® — |2]” — 6253)

1 ~ ~ 1 ~ ~ 1 ~ -
+ 510101 = 6,0, P + 50,0, — 6,0,° + 16,0, + d262” |
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(e + 30+ B~ dihuad
— 1 A1101 — 1/;15\17251 _ 121)\%;1 + @;1)\%1)

+ % (52)‘%)% + G2 A3 + ¢~525\3,11Z2 - &25\3,21;2

— A3 102 — 1;2/_\3,252 — 1/;2)\%(;2 + &2/\%%)

. D.127
+—= (0,0, + 6,710, + b Rar1®, — 6 Non ¥ e
\/5 Y1721 P12117q PiA211Yy P1A21,2Y4
_ @15\21,1?1 — @15\217Qé1 — %1)\%1%1 + él)él?l)
’i — ~ ~ _ = _ _ =
- V2 (92)‘%)2ﬂ2 + ?2)\§2£2 + P, A32,10, — P, X322,
- @25\32,1% - Q25\32,2é2 - @2)\%2@2 + @2)\32@2) )
Now by identifying ¢;12 = p;, we can define the operators
1 ie’7; 1 _delm
a; = —= | Wi®; + ——— y Q= — |wip;i + — | ,
ver < "l ) vae < " ) (D.128)
. 1 (qu N ileu) - 1 <~ 5 N iezfri> '
i = = | wi®i v A= = | Wi ;
V2e i V2e Wi
fori=1,...,5 and
1 . 27 ) 1 _ . 2 .
QZ = ﬁ <wl¢z + e 71—1,) , Q@ —_ <wz¢z + € Trl) ,
¢ =i 2e ¢ (D.129)
. 1 <~ 3+ ie27:rl> = 1 /. g N iezfri> '
a’i = = Qz ) Qz = = gz ) 3
O V2e w; V2e w;

fori=1,2.
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Now we can write the matter Hamiltonian as

- 1
Hpatter = wi(ala; +ala +1) + (o1 — a+ ) (1) — =)

2
+ @ (@lar +ala +1) — (01— a — ) (i — %)
+ wg(agag + dgdg + 1)+ (03 + a+ €)(Wharhs — %)
+ @y(@ban + dbas + 1) — (03 + a — €)(thathy — %)
+wi(ayay +a1a, +1) + (02 — o1 +¢) (¢, 9 %) (D-130)
+ @1((11&1 + 5}&1 +1)— (02 — 01 —¢) (@1@1 — %)
+wy(abay +aba, +1) + (03 — o2 + €) (1,1, — %)
+ @y (agas + agas + 1) — (03 — 02 —€) (@2@2 - %)

+ HFermi .
here again Hperm; is given by (D.123) or (D.124) for the case of the corresponding 4D
theory having Ny fundamental hypermultiplets or being the ' = 2* theory respectively.

These operators also allow us to write Q((nge simply as
1 —T = ~T ~ =T = -1 = ~T ~ =T=
Q(G;uge = - (aial - aial - a1a1 + aial - QIQl +QIQ1 + CLICH - CLICM)

- <1Z1¢1 - @/:111;1 - @191 + Qlél) + Qﬁ,ilmy ;

(2) = T *T* "T‘“’ :T: =1 = ~T ~ =T =
CgGauuge - <Q1Q1 —Q;0y — aqa1 + a1a1> + (Qggg - QQQQ - a;ag + a;ag) (D131)
_ = ~ _ = . 9
o (%1%1 - 91%1) + (Q2g2 - %2%2) + Qgh)eory )
Qg;uge == <a£a’2 - @;dg - ang + 5;&2) - <Q£Q2 - Q;QQ — EL;ZLQ + C:L;(:Ig)
— = ~ _ = . 3
— (P2tho — hatha) — (Y00, — ¥,0,) + Qih)eory .
where
1
(2) 7 _o®  _
cheory - _5 Z[nﬁ 77j] ) cheory chem‘y (D132)
j=1
for the theory with N; fundamental hypermultiplets and
(1) 1 1.-
cheory - 75[771’7]1] + 5[7717771] )
3 L 1=
Qghz:ory = *5[77277]2] + 5[772,772] ) (D.133)

cheory =
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for the case of the N/ = 2* theory.

Let us again pick a basis of states for our Hilbert space

(nuﬁluﬁuﬁ’umuml) 7 (ﬂw@wﬁzvﬁz) 7 (fj)

(10" (a)" ()" 31" i) » s

\/
I

for the case of 4D fundamental matter or

(n“ﬁ,,ﬁ“’r:z“m“ﬁlz) ) (ﬂzaﬂzaﬁwﬁz) ) (fj)

(TG ()" )" ()" o) w159

\/
I

i=1
()" )" )" " i) « (110 ) )
i=1 Jj=1

for the case of N’ = 2* theory where we have identified x1; = ;42 and x2,; = 1@42 and

the vacuum state is defined as

ail0) = a;|0) = @;]0) = @[0) = a;0) = g;|0) = 4,;[0) = &]0) =0,

. 5 (D.136)
$il0) = 1i0) = ©,|0) = ¥,]0) = 1;0) = 7;]0) = 0.
Thus, the quantum numbers are constrained
nivﬁhﬁiaﬁi?ﬂiﬂﬁivﬁiaﬁi € Z+ y muml’fj = 071 . (D137)

Now as before we want to solve for gauge invariant BPS states. These satisfy

(H=2)¥)=0 , QGangel¥) =0, (D.138)
where
Ny
Z=—aQq — Q. — mF, — ijFj , (D.139)
j=1

where Iy, and F} are the flavor charges associated with the 4D adjoint hypermultiplet

and 4D fundamental hypermultiplets respectively.
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As in the U(1) case, there are unique matter ground states for the regions”

Sy ={o1>a+e,03>—-a+¢e, 09>01+€, 03 >02+¢€}. (D.140)

and

S_.={o1<a—-€,03<—-a—¢€, 09<0]—¢€03<09—¢€}, (D.141)
which have the quantum numbers

Sy o Ni,NiaNiaﬁiamia@hm2 =0, mj,my,my =1, f; =0,
(D.142)

S_ Ni7NiaNiaNiam’iam17@2 =0 ; mi,@17m2 =1 ’ fj =1 ’

where here we use the notation {V;, N;, N;, ]ffi, M;, Mi}?zl to collectively refer to the
quantum numbers of all hypermultiplets where ¢ = 1,2 correspond to the fundamental
hypermultiplets and i = 3,4 correspond to the 1% and 2"? bi-fundamental hypermulti-
plets respectively.

We will denote the matter ground state wave functions in these regions as

U

) = 5S+\N1,N¢,Ni, My, mg =0, my,my,my =1, f;=0),
B (D.143)
|W,> :557|Ni7NiaNiaNiamiam1>@2:0 ) mia@th:l ; f]:1> ;

where dg is the indicator function for the set S.

D.2.1 Effective Hamiltonian

In analogy with the procedure in Appendix D.1 we can compute the effective Hamil-
tonian by integrating out the fundamental hypermultiplet and Fermi-multiplet matter.

In this SQM, the supercharge is of the form:

QA = Qmatter,A - Qvec,A )
3. . ) B (D.144)
Qvec,A = Z = (_ipai)\i,A + MT(UT)AB)‘B) 5
i=1 V2
and Qmatter,A4 18 analogous to the first terms of (D.12) which annihilate the harmonic

oscillator wave functions of the matter fields. Now the effective supercharge is of the

9Recall that we are assuming a, e > 0.
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form

Qeff A= <Qvec A> =

g;j2< o Vit~ (D)3 —é&ﬂﬂﬁ%ﬁ&—zf@wwﬂf%%7
(D.145)
where
Fi=(0161-0,0,) » Bo=(0,0,-6,8,) . Fy= (0,9, +2d2) .
Dy = (Jof” wu? 0, + 18, - 1) Dot
Dy = (18, =18, = 18,* + 18, - ©%€2)

= (16,2 = 18, + |al? — 9o — €263 .
Now by using the form of (D.146), we see that (F;) = (F;) = 0, Vi. Again, due to
having a non-zero €, a, we have broken SUSY to N = (0, 2), preserving the supercharges

Qeffl ’ Qéff

We can now compute the effective Hamiltonian by squaring the supercharges

#={Qs Qein} — Z . (D.147)

Using the fact that Gauss’s law imposes Qg)auge = 0, V4, we have that only flavor charges

contribute to the central charge. This gives rise to the central charge:
B 4
Z =4y Xiahi —6e— Y my[ng,ny] - (D.148)
i f=1

This gives us the full effective Hamiltonian:

Heg = Z e2<p0’i> + i<l)>2 - 1[/_\i,h Azl]am, <Dz>

- 2 2e2 2
(D.149)
—462)\22)\ +66+22mf77f nf]
f=1
where
1 1 1 1
2
Ve _2e )0 1 1
(D) ==+ T8 L_ L 11 iy (D.150)
1 1 1
b D T m 0T
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and

1 1 1 1 i=1

o1—a-+te€ o1—a—¢€ o21+€ 021 —€

i{Poi) = Ovi — & 1, 1 1 _ _1 i=9 (D.151)

2 o21+€ 021 —€ o32+¢€ 032—€

1 1 1 1 S
o3+a-+e€ + o3+a—e + o32+¢€ + 032—€ i=3

where the s; = sign(arg(w;)), §; = sign(arg(®;)) where w;, @; are treated as the absolute

value function of its argument. This gives rise to the effective supercharges:

e 1 1 e 1 1
i1 = A (=0, — — + — SN (00— — + —
Qefr,1 1< 1 @1—1_@ +§1>+ﬂ 2< 2 ®1+@2+§2>

1 1
+\%>\§ (303—03—@-1—55)
=2 (D.152)
g = A\ (—81+1—1+£1>++€)\1 <82+1—1+§2>
eff \/5 1 o w1 w; \/i 2 (ol w, W,
e - 1 1
g (st —+ — 16,
T (ot Gy )
for S} and:
e _ 1 1 e - 1 1
il = =M1 |0+ ———+& |+ —F=X 1|02+ ———+
Qeff 1 NG 1,1< o o §1> 7 2,1( 2 0wy £2>
< 1 1
+%)\3,1 (803+w+w) ;
w2 (D.153)

~1 e 1 1 )
e =—=A aa—T—f—f"F +
i \/il( 1 o 51

e 1 1
+>\1<80'_~_~+ >,
V2T T G, Oy S

for S_.

D.2.2 Ground States

Unfortunately, solving for the ground states of this system is significantly more com-
plicated than the last section. We have to balance an unknown choice of boundary
conditions, Born-Oppenheimer approximation, and solving a system of partial differen-
tial equations.

Recall that in the Born-Oppenheimer approximation, we can only truly make sense

of the quantum physics away from the boundaries. Thus, we are working in the limit

€/o1, €/os, €/oa1 , €/o3a << 1. (D.154)
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Therefore, we will solve for ground states that are to first order in these parameters.

In order to study this differential operator, we will introduce a basis for the Clifford

algebra:

fi
f2
f3
o | AR+ Al
f5 - +) + frdeadsa|E) + fsA 121 A3 1| E)
e
f7
Js

+

In this basis, the Dirac operator Q1 = Qefr,1 + Qiﬁ, can be written as

0O Dy D 0 Dy 0 0 0
Dy 0 0 D, 0 Dy 0 0
Dy 0 0 Dy 0 0 Dy 0
0O Dy Dy 0 0 0 0 Dy
DY 0 0 0 0 Dy Dy 0
o Df 0 0 Df 0 0 Dy
0 0 Dy 0 Df 0 0 Dy

0O 0 0 Df 0 Dy Dy 0

where

D= ~ilps;) , Di=(D;) , D =+D;+D;.

Now by taking wave functions that are functionally of the form

H wiw;@; | x)

1) + fadiadea|E) + fsAsa]E)

(D.155)

(D.156)

(D.157)

(D.158)
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we can simplify the Dirac operator to

0 -0 -9, 0 -9y 0 0 0
95 0 0 -9, 0 =9y 0 0
9 0 0 -95 O 0 -9y O
. 0 af o5 0 0 0 0 -o7
Q1 = : (D.159)
a0 0 0 0 —93 —9; O
0 o 0 0 of 0 0 -0y
o o0 o9 0 8 0 0 —05
0 0 o of 0 o8y of
where 0?[ =0, £ D;.
Ground States in S
Now we can try to solve the equations
O1|x)=0. (D.160)

Let us consider states in S for which & > 0, Vi. First let us restrict to & < &1,&3. In
this case the only states that are normalizable have exponential dependence that goes

as e %% Therefore let us consider states on which d; + D; vanishes:

(01 —a+e€)(o3+a+e) (021 —€)(o32 +¢€)
(01 —a—¢€)(o3+a—c¢) (o2 +€)(o32 —¢€)

) = e GofrBog)  (D.161)

Now Q; acting on |Y) is of the form

0 2D3 2Dy 0 2Dy O 0 0
0 0 0 2Dy, 0 2Dy O 0
0 0 2D3 0 0 2D; O
3 — 0 0 0 0 0 0 0 2Dy (D.162)
0 0 0 0 0 2D3 2Dy O
0 0 0 0 0 0 0 2Dy
0 0 0 0 0 0 0 2Ds3
0 0 0 0 0 0 0 0
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Now we are reduced to finding zero-eigenvectors of this matrix.

Recall that

1 1 1 1 I3
—1——~1——1+—~1—|——21 1=1
J— 1 1 1 1 13 M . .
D; 2 71_71_72_1_72_1_?2 7 2 (D163)
1 1 1 1 13 —
—2——~2+—2— 2—1—23 1=3

Using the properties of the w;’s, we have that

1 Ni ~O(e/d%) ~0 . (D.164)

w; W
Therefore, in our approximation, we only need to cancel the §;’s which are not para-
metrically small and hence we can effectively replace D; by &;.

We see that (1,0,0,0,0,0,0,0) is clearly a 0-eigenvector and hence is a normalizable
SUSY ground state. Now by rescaling our basis of eigenvectors by factors of &, we
can see that there are additional approximate 0-eigenvectors such that the full space of

ground states is given by

spanc {[o{™), |07y, [b§)}
= spanc{(1,0,0,0,0,0,0,0)" , (0,1,-1,0,0,0,0,0)" , (0,1,0,0,-1,0,0,0)"} .

(D.165)
Ground States in S_

We can similarly perform the same analysis in the negative wedge. Here the analysis
changes by looking for states that are annihilated by 9; — D;. These states are of the
form

) = (c1—a—¢€)(os3+a—c¢) (021 +¢€)(o32 —€)

§101+E€200+€303 |.¢
e . D.166
(Ul_a+€)(03+a+6) (021_6)(032+6) ‘X> ( )




362

Acting on these states, the supercharge operator Q; is of the form

0 0 0 0 0 0 0 0

2D3 0 0 0 0 0 0 0

2Dy 0 0 0 0 0 0 0
o, — 0 2Dy 2D3 0 0 0 0 0 (D.167)

2D; 0 0 0 0 0 0 0

0 2D; 0 0 2Dz 0 0 0

0 0 2Dy 0 2Dy O 0 0

0 0 0 2Dy 0 2Dy 2D3 O

Again we find 3 approximate BPS states

{‘”1 ‘”2 ’”3 >} (D.168)

={(0,0,0,0,0,0,0,1)" , (0,0,0,0,0,-1,1,0)* , (0,0,0,-1,0,0,1,0)"} .
Hermiticity

Again we have to impose boundary conditions so that the supercharges are Hermitian.
The minimal boundary conditions to impose hermiticity allows us to keep all BPS states
in both sectors. We will make a choice that is symmetric between exchange of A 71 and
5\172 in analogy with the U(1) case, and that is symmetric under 5\171 and /_\3,1.

So let us define the (unnormalized) states

:<Z%ﬁwﬁ>,MWN=@W+%W>

W) =TT Rezlol ™), 1957) = Madaalvs ) + Aaghsalol ) .

(D.169)

Then it is consistent to pick boundary conditions such that the supersymmetric ground

states are given by

(o 1Sty 1) 1 ey U L), [0Sy 190 195 s, (D170)

where

[5) = Plet™) | replace & ¢ —&) P =] (' +aa) - (D.171)
i,A
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Under this choice of boundary conditions, the normalizable asymptotic Coulomb

branch states for £ > 0 and & < 0 are given by

W sy & >0, i
{¥Bps)} = e e =) Z (D.172)

{98 195y & <o, vi
D.2.3 Mixed Branch

As it turns out, there are no mixed branch states in this theory. The reason is the
following. The localization principal states that only finite energy states that survive
in the limit e? — 0 contribute to the Witten index. Due to the form of the potential

(6.59), we must simultaneously solve the mass equations

0= (01 —a+e?g]> = (01 — a—€)?|d1]* = (021 + €)*|9, [ = (021 — €)*[,*
0= (03 +a+€)?gal” = (03 + a— €)?|gof* = (032 + 6)2@2\2 = (032 — 6)2@2\2 )
(D.173)

the F-term equations

é éQ ’ (D.174)

0= @2@ + pada

and the D-term equations

0= g — g1 — o, |* + |¢,I* — €61,
0=g,1> = [8,1* — o, * + |, * — €% , (D.175)
0= [0,[> = 12, |° + |@al” — |da]” — €% ,

to order O(e).

Let us consider the case where & > 0 or & < 0, Vi. Here there are only solutions to
the D-term equations when there are light fundamental hypermultiplet fields with non-

zero expectation value due to the repeated appearance of bifundamental hypermultiplet
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fields. Therefore the mixed branches are
Iy : oy=a—c¢, |og|,|o3| >>0,

Iy : oy=09—€e=a—c¢, |o3] >>0,

I, : o3 =—-a—¢, |oa],|o1]| >>0, (D.176)
IVy : o3=09—e=—-a—c¢€, |o1|>>0,
Vy i op=a—€,03=—a—¢, |o3] >>0,

for & > 0 and the mixed branches

I_ : o1=a+e¢€, |og|,|o3] >>0,
II_ : oy=094+€e=a+e, |03 >>0,
- : o3=—a+e, |oa],|o1] >>0, (D.177)
IV_ : o3=0y+e=—-a+e, o1 >>0,
Vi :o1=a+¢€,03=—a+e, |03 >>0,

for & < 0. We conjecture that there are no BPS states localized on these vacuum

branches.1Y

D.2.4 Contribution to the Witten Index

It follows from our conjecture in Section D.2.3 that in the U(1)? bubbling SQM, only
Coulomb branch states contribute to the non-compact index I4gymp. These states give

rise to the results

Iasymp(é.i > 0) — ezfmf+6€+ +e—szf—6€+ +ezfmf+25+ +€_zfmf_26+

(D.178)
= 2cosh me+66+ + 2 cosh me+26+ )
f f
or
Iasymp(gz‘ < 0) = ermf—66+ + e—zfmf+6e+ + ezfmf—26+ +€—mef+26+
(D.179)

= 2cosh me—ﬁq + 2 cosh me—26+
f f

108ee upcoming dissertation of the first author for more details.
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D.3 Behavior of Localized Path Integral at Infinity

In this appendix we will consider the behavior of the integrand of the localized path
integral (6.66), Zint(¢), at ¢ — dMc/Ae. Let us take G = ]I U(k®) to be the
gauge group of the SQM such that the corresponding Lie algebra g decomposes as
=" !'¢% = @' u(k®). Consider taking the limit

T—00 where o=7u , uet (D.180)

where t is the Lie algebra of g which itself decomposes as t = @7 u(k®)) = @I~ .

The element u can be written with respect to this decomposition as

n—1 E®
i=@u L WO =30, Cu) O = spang (W)
=1 a=1

(D.181)
and as a matrix e((f) = 0a,0- The matter content of a generic bubbling SQM transforms

under the representations

n—1

bifundamental hyper : @ [k(z’) ® k(iH)} @ [E(i) ®E(i+1)} ’

i=1
n—1 ‘ ’ B

fundamental hyper : @ [55(1,),11((1‘) @ K(Z)] @9 [58(%)’21{(%) ® k(zm)] ’ (D.182)
i=1

fundamental Fermi : N fk(im) :

where
. , ‘ 1
s(i) = ok _ p(i+1) _ p(i-1) o, = 5” 1. (D.183)

Using this, we can compute the limiting form of the different terms in Zy.; as 7 — oo.

Using (6.67), we can see that

n—1 n—1
Zocel 5 [Tep32r D0 la@) b =[Jexp{dr D7 a@®)
p=Tu j=1 anAS(gj =1 aeAfﬁf (D.184)
n—1
_ H 647',0(1) u ’
=1

where AS{; are the set of positive weights of the adjoint representation with respect
to the splitting of the weight lattice where u is in the fundamental chamber and

n—1
p= % Z o= Zp(i) , pW = % Z a, (D.185)
=1

acA+(g) aEAT(g®)
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is the Weyl element of g and g9 respectively. Then using the form of

k(2)
A 1 A A
P =3k — 20 + 1)el!) (D.186)
a=1

we can rewrite the limiting form as

n—1
, (i) _ (@)
|Zoeel _~_ ] ¢* C k20 1u? (D.187)
p=Tu =1

The contribution from the bifundamental hypermultiplets (6.69) has the limiting form

n—1 i
o (=1 D) RO O
- H o 2r (RO +EOFD) S0 ug”| (D.188)
p=Tu =1

| Zhyper;bf|

Similarly, the fundamental hypermultiplets (6.69) and (6.68) contributions have the

limiting forms

n—1

_ k@ )
| Zhyperfl | | e~ 27 (85,11 205(5),2) a1 ua |
R (D.189)
E\tm) (i)
‘ZFermi;f| ~ eTNf Za 1 | Uqg | .
ey

Putting these factors all together, we find that

k(l) k.(zm)
| mt|7—> Hexp{élTZ z)_2a+1) l)—i-TNf Z ’ulm)‘

TU =1
o o (D.190)
= 2r (KO + R 5,01+ 205,2) Y |u£:‘>|} :
a=1
This is bounded from above by
k() k(im)
\th\ < Hexp{llTZ —1)[ul |+TNf Z ulim
p=ru i1 ot , (D.191)
k 1
— 27’(]{(1 DRy A 53(1 L+ 25 Z ’u } ,
which can further be simplified to
n—1 k(2)
yzmt\ ps H eXp{QT < (1) — 2 — 20,031 — 4055)2 + ”m) Z [u®| } . (D.192)
90 ’TU. =1

Using the fact that s(i,,) = 0 or 2 and the fact that Ny < 4, we see that the exponential
factors can at most completely cancel as 7 — oo. In this case, the behavior of the 1-

loop determinant at infinity will be polynomially suppressed by the Yukawa terms for
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the hypermultiplet fields to order O(Hi7_3k<i)). Therefore, since the measure goes
as [[, TQk(i)*l, we have that the product of the integrand and measure will vanish as

Oo(11; T_k(i)_l) and the integral is convergent.

D.4 A Useful Integral

Often in the text we make use of a non-standard integral identity which we will now

precisely derive. Consider the integral

dD ,
F(a, b, ’I’]) = / 6€_QD2+ZI)D N (Dlgg)
R+in

where

a>0 , beC , neR*. (D.194)

We claim this integral is just

b
F(a,b,n) = +imerf <2\/6> — imsign(n) , (D.195)

where we choose the positive square root of a and

erf(z) = \/277_ /096 dye " . (D.196)

Proof: F(a,b,n) is an entire function of b. Moreover, it satisfies the differential

oF . |=m v?
Ob_l\/;eXp{_éLa} , (D.197)

b 2
F(a,b,n) :/ i\/;exp{—m}d8+F(a,0,n)
0 (D.198)

b
= F(a,o,n) + i7TeI'f <2\/a) .

equation

SO

It thus remains to determine

F(a,0,n) = H(n/Va) , (D.199)

where

H(n/+/a) = /R . %e_DQ. (D.200)
in
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Now by contour integration arguments H(n) only depends on the sign of 7. Let Hy
be the value for n > 0 and H_ the value for n < 0. We can take the limit as n — 0T

and use

1 I
o <D> —in8(D) , (D.201)

for D real, where P is the principal part. But

dD _D2 . —€ dD _D2 OOdD _D2
P | — =1 — — =0. D.202
[T =am | G [T =0 (D-202)

Moreover, H* = H,, so

—ir >0
H(n) = (D.203)

+ir <0
D.5 Bubbling Contribution in the SU(2) x SU(2) SCFT

Consider the case of a superconformal N = 2 quiver gauge theory with G = SU(2); x

SU(2)2 with fundamental matter:

Now consider the bubbling sector where

P:@B , 5:@@ . (P, %) = (diag(1, —1), diag(0,0)) . (D.204)
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The localization contribution t0 Zyono((1,0) & (1,0)) is then given by the contour

integral

7o) — ginh?(2¢,.)

mono

y ]{ dp1deps [17_, sinh(o1 — my) sinh(ps — my o)
J(ge) (2702 T TT sinh(£(0i — a7) + e ) sinh(£(p; + a;) + €4)
[L;sinh(—¢1 £ az +m + ey ) sinh(pr a1 + m +e;)
4sinh(pe — 1) sinh(p1 — 2 + 2€4) ’

(D.205)

Let us choose &1,& > 0. In this case there are 8 poles contributing this to this path

integral:
Lipr=m—er  , pa=a2—€4,
Hipr=0a1—€4 , @a=—a3—€y,
I: 1 =—a;—€y , @w2=az—e€y,
IVipr=—-m—er , pa=—-az—€;4,
(D.206)
Vipr=a—€ex , pa=0a1—€q,
VIZ@12—01—€+ ) Y2 = —0a1 — €4,

VII: o1 =az -3¢, , @p2=as—¢€,

VIII: ¢y = —as —3e1 , wo2=—ag—¢€.
Using this set of poles as defined via the Jeffrey-Kirwan residue prescription, we find

that the localization computation of Z,(,fo"ﬁg((l, 0) ® (1,0)) is given by
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- H?@:l sinh(a; —my — €4 ) sinh(ag — mpi0 —€4)
sinh(2a;) sinh(2a; — 2e4 ) sinh(2az) sinh(2a; — 2e4)
sinh(az — a; + m + 2e4 ) sinh(a; + ag — m — 2e)

sinh(ag — ap) sinh(a; — ag + 2¢4)

Z5ana((1,0) @ (1,0)) =

mono

x sinh(ag — a; + m)sinh(ay + a3 + m)

chzl sinh(a; —my — ey ) sinh(az + mypi0 +€4)
* sinh(2a;) sinh(2a; — 2¢. ) sinh(2az) sinh(2as + 2€ )
sinh(az + a; — m — 2e4 ) sinh(a; —ag — m — 2¢e4)
sinh(ag + a;) sinh(a; + ag + 2¢4)

x sinh(ag + a; —m)sinh(ag — a3 — m)

chzl sinh(a; +my + €4 ) sinh(ay — mypi0 —€4)
* sinh(2a;) sinh(2a; + 2¢. ) sinh(2as) sinh(2ay — 2€)
sinh(ag 4+ a; +m + 2¢e4 ) sinh(a; — ag +m + 2¢4)
sinh(ag + a;) sinh(a; + as — 2¢4)

x sinh(ag + a; + m)sinh(ay — a3 + m)

H?”:l sinh(a; +my + ey ) sinh(az + mypi0 +€4)
sinh(2a;) sinh(2a; + 2e4 ) sinh(2as) sinh(2as + 2¢,)
" sinh(az - a;—m— ZETL) sinh(a; + ag +m + 2¢e4) (D.207)
sinh(ag — ap) sinh(a; — ag — 2¢4)

x sinh(az — a; — m) sinh(az + a; — m)
H?Zl sinh(a; —my — e;)sinh(a; — mpi0 —€4)

sinh(2a;) sinh(2a; — 2e4)

. sinh(a; & ag —m — 2¢, )
h(2
x sinh(2a; + m) 1;[ sinh(a; 4 ag) sinh(a; 4+ as — 2¢4)

— sinh(m)
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sinh(2a; ) sinh(2a; + 2¢4)

« sinh(2a )H sinh(a; + as +m + 2¢e4)
in —m
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+ sinh(m)
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One can check that the localization result for Z,0n0((1,0) @ (1,0)) from residues as-
sociated to these poles is not invariant under the Weyl group of the flavor symmetry
groups which is generated by the elements W = (a1, ag, b1, ba) that act on the masses

in the previous formula as

ay : (my, mg, m3, my) = (mz2, m1,m3, my)
as : (ml,mz,mg,m4) — (m1,m2,m4,m3) )
(D.208)

bl : (mlam27m3am4) = (—’I’I’LQ, _m17m37m4) 5

b2 : (mlam25m37m4) = (m17m2a 7m477m3) .
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