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Due to the increasing number of orthopedic injuries occurring each year, there is a 

critical need for better treatments of improperly healed fractures. Today’s treatments, 

such as autografts, allografts, and biocompatible ceramics, all have their own drawbacks, 

including donor site morbidity, disease transmission, and poor degradation rates. To 

circumvent these problems, bone tissue engineering utilizes various biocompatible 

materials and cells to mimic native bone while new tissue is created. We have developed 

a prevascularized tissue-engineered scaffold that combines two stereoisomers of 

polylactic acid and hydroxyapatite to simultaneously entice osteogenic and vascular 

differentiation of mesenchymal stem cells. In this study, we have implanted these 

scaffolds into a radial defect model in New Zealand white rabbits for 8 weeks. 

Radiographic images at 4 and 8 weeks have shown considerable remodeling occurring at 

the implant site and stable implants throughout the study. Results from micro computed 
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tomography showed a large amount of new bone growth into and around the scaffold, 

both quantitatively and qualitatively. Mechanical testing resulted in similar amounts of 

force required to remove the scaffold from the implant site when compared to the 

allograft control. Finally, histological analysis showed collagen deposition into and 

around the scaffolds with many cells present throughout. Signs of vasculature can be seen 

in the osteons but there is little evidence of angiogenesis. The tissue-engineered scaffold 

used in this study was comparable to an allograft, one of today’s gold standards, and 

shows potential to be a clinically useful alternative. 
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Chapter 1 – Introduction 

Orthopedic injuries are among some of the leading causes for mortality, 

morbidity, and hospitalization in both developed and developing countries (1). While the 

more severe cases that involve multiple fracture sites and soft tissue injuries are generally 

caused by high energy trauma, fractures can also occur due to minor accidents such as 

falls. This is especially prevalent in the growing elderly population that is currently 

experiencing an increase in age-related fractures due to diseases such as osteoporosis (2). 

Bone tissue can be divided into two primary types: dense cortical bone and 

spongy trabecular bone. Highly organized collagen fibrils, mainly type I collagen, are the 

primary component of both types of bone. These fibrils are interconnected and 

strengthened by calcium phosphate nanoparticles (3). Cortical bone is the dense outer 

layer that is important for mechanical support and is also home to osteons and the 

haversian canal, where the blood vessels and neurons are located. Trabecular bone is less 

dense and is much more metabolically active, seeing as it is the location of hematopoiesis 

in humans. As an organ, bone is responsible for calcium homeostasis, provides 

mechanical support for soft tissues, and acts as a lever for muscle action (4). For these 

reasons, it is essential that bone tissue functions normally throughout the body. 

When a fracture occurs, the body’s natural healing response is initiated and 

various cells are recruited to begin remodeling the site of injury. These cells include 

mesenchymal stem cells, osteoblasts, osteoclasts, and chondrocytes (5). This process 

tends to be incredibly reliable and effective; however, it can have disastrous effects when 

it fails to successfully heal the tissue. Of the 5.6 million fractures that occur in the United 
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States each year, it is estimated that 5-10% of patients will require additional surgery to 

correct for improper healing (6). Given that the risk of experiencing a traumatic fracture 

throughout the lifetime of both males and females is roughly 50%, there is a critical need 

for better treatment (7). 

When surgical intervention is needed to correct improper healing, bone grafts are 

often used in the process. Bone grafts are generally derived from autologous tissue, 

allogeneic tissue, or ceramic materials. Autologous bone grafts are composed of bone that 

has been harvested from the patient’s own body, often taken from the iliac crest, and have 

excellent compatibility with a very low chance of infection. However, the amount of 

material available for an autograft is severely limited and there is a potential for donor-

site morbidity (8). Allografts are samples of bone that have been harvested from a donor, 

generally a cadaver. After terminal sterilization, allografts have been shown to be 

effective bone grafts with limited osteoinductive capabilities and are much more 

available when compared to autografts. However, there is a much higher chance for 

disease transmission (9). Despite some of its drawbacks, allografts are still one of the 

favored choices for bone grafts. The incorporation of ceramic materials has become very 

common for certain grafts as well. These materials tend to have a wide range of 

properties and can be bioinert, bioactive, or bioresorbable (10). One of the primary 

ceramics that is used is hydroxyapatite due to the fact that it is naturally found in bone 

tissue and has favorable mechanical and osteoinductive properties (11). Despite these 

benefits, ceramics tend to resorb very slowly and are difficult to handle in a clinically-

relevant manner. 
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To alleviate many of the drawbacks associated with autografts, allografts, and 

biocompatible ceramics, many researchers have begun to explore the field of tissue 

engineering to restore bone. Tissue engineering combines the practices of biology, 

materials science, and engineering to modulate and regenerate various cells and tissues 

throughout the body (Figure 1). By providing cells with the appropriate physical and/or 

chemical cues, the function of tissues and organs can be restored or improved (12). To 

date, clinical success has been shown with regenerating flat organs such as skin and 

cartilage and tubular structures such as blood vessels and tracheas (13, 14, 15). Solid, 

more complex organs, such as the heart and kidneys, are much more difficult to engineer. 

The field has seen many incredible advances within the recent decades and there is still 

an enormous amount of untapped potential waiting to be fostered.  
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Figure 1. Schematic of various approaches for tissue engineering. Implanted materials and growth factors provide 
cues for the host tissue to infiltrate and begin to regenerate the tissue at the implant site (16). 

In addition to the previously mentioned focuses of tissue engineering, bone tissue 

engineering has made significant progress in the nearly three decades since it has been 

established. Researchers have utilized numerous materials to achieve adequate bone 

regeneration such as polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), 

polycaprolactone (PCL), and many others. A common method used for fabricating these 

polymers is electrospinning. Electrospinning is a technique that uses electrostatic forces 

to weave polymer solutions into nanofibrous sheets (Figure 2). These electrospun sheets 

have been shown to mimic the microstructural features of native tissues and can help 

guide cell growth and migration (16). In addition to synthetic polymers, ceramics and 

advanced hydrogels are being combined to provide the scaffold needed for cells to grow 



5 
 

 
 

and differentiate accordingly (17). Scientists have successfully shown new bone growth 

both in vitro and in vivo using a wide variety of different materials with the capability to 

support natural loads (18, 19).  

 

Figure 2. Schematic of the electrospinning process. A solution is pushed through a charged needle and an 
electrostatic field causes the solution to flow onto a collector. The rotating collector creates a nanofibrous sheet of 
spun fibers (20). 

One of the biggest hurdles to developing functional tissue engineered bone 

scaffolds has been the inability to introduce vascularization. Vascularization of tissue 

engineered constructs is critical for the successful integration of the implants into the 

surrounding tissue and is necessary to support the growing cells throughout the entire 

scaffold. In order to increase the amount of vascularization that occurs within these 
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scaffolds, scientists generally utilize two main approaches: the first being a cell-based 

approach and the second using biomaterials with manufactured microchannel networks 

(21). Cell-based approaches involve the naturally occurring extracellular matrix (ECM) 

and microenvironment produced by cells. Endothelial cells are commonly used to create 

a vascular network in tissue engineered constructs which results in better vascularization 

when implanted in vivo. The materials-based approach promotes vascularization by 

manufacturing these microchannel vascular networks in the scaffolds themselves to help 

guide the networks as the cells grow. This can be accomplished by techniques such as 

soft lithography, photo-patterning, and 3D printing. 

To address these unmet clinical needs, we have developed a tissue-engineered 

scaffold that combines biodegradable polymers, bioceramics, and a cell-based 

prevascularized lumen in order to regenerate new bone and vascular tissue. In this study, 

the scaffold is evaluated in a load-bearing in vivo model.  The scaffold’s ability to 

withstand natural loading, regenerate bone, and develop vascularization in vivo is studied.  
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Chapter 2 – Scaffold Fabrication and In Vivo Study 

2.1. Materials and Methods 

2.1.1. Electrospinning 

In order to accurately mimic the various structures of bone tissue, nanofibrous 

sheets of polylactic acid (PLA) were electrospun and assembled accordingly. PLA was 

used as the base material for this scaffold due to its favorable biological and mechanical 

properties (22). Two stereoisomers of PLA, poly-l-lactic acid (PLLA) and Poly-d-lactic 

acid (PDLA) were used in this study. PLLA was chosen to be the main structural 

component of the scaffold while PDLA was used to adhere the surrounding layers of 

PLLA together due to its low glass transition temperature (60℃). A 22% (w/v) PDLA 

solution was made by dissolving PDLA (MW=124,000, Evonik Birmingham 

Laboratories) in a 3:1 solution of tetrahydrofuran (THF) and dimethylformaldehyde 

(DMF), respectively. A 7% (w/v) PLLA solution was made by dissolving PLLA 

(MW=152,000, Sigma Aldrich) in an 11:4:1 solution of dichloromethane (DCM), DMF, 

and 10% gelatin solution (Type B, Sigma Aldrich). Gelatin was added to the solution to 

increase the biocompatibility of the scaffold and enhance cell proliferation. 

 The desired solution was placed in a 5 mL syringe with an 18 gauge needle 

attached to it. 1 mL of PDLA solution was electrospun on a mandrel rotating at roughly 

2000 RPM by applying a voltage gradient of +10 kV/-5 kV at a working distance of 10 

cm. 5 mL of PLLA was then electrospun directly onto the previously spun PDLA layer 

using a voltage gradient of +15 kV/-10 kV at a working distance of 15 cm. Finally, 1 mL 

of PDLA was spun on top of the PLLA to create an aligned nanofibrous sheet of PDLA-
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PLLA-PDLA. This was chosen because of the fact that PDLA solidifies after it is heated 

to its glass transition temperature of 60℃, thus acting as an adhesive to hold the various 

forms of PLA together.  

A 10% (w/v) Polyethylene oxide (PEO) solution was made by dissolving PEO 

(Sigma Aldrich) in 90% ethanol. The PEO solution was then electrospun onto a rotating 

mandrel by applying a voltage gradient of +10 kV/-3 kV at a working distance of 10 cm. 

2.1.2. Cortical/Trabecular Assembly 

To mimic the cortical section of bone, a thin sheet of electrospun PEO was first 

tightly wrapped around a 22 gauge needle. The PDLA/PLLA sheet was cut into thin 

sheets at 45º to mimic the orientation of collagen fibers in natural bone. These strips were 

wrapped tightly around the PEO and subsequently sintered at 60℃ for 45 minutes to 

sinter the PDLA and create a solid cylinder. The PEO layer was then leached away by 

soaking the cylinders in deionized (DI) water for 30 minutes and the cylinders were 

removed from the needles. By leaching away the PEO layer, the inner portion of the 

PDLA/PLLA cylinder was not damaged during removal. The hardened PDLA/PLLA was 

created to mimic the cortical portion of bone while the hollow inner channel allowed for 

inclusion of the haversian canal. 

To recreate the porous trabecular section of bone, the same method for 

electrospinning the cortical bone was used. However, salt was added intermittently onto 

the nanofibrous sheets as they were being electrospun, allowing salt crystals to be 

embedded within the sheets throughout the process. At the end of electrospinning, pieces 

of the sheets were cut into 1.5 cm wide strips and wrapped tightly around a 2.5 cm wide 
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piece of cardboard and sintered at 60℃ for 45 minutes to allow the material to harden. 

Once sintered, the pieces were submerged in DI water for 30 minutes to leach out the salt 

crystals that were embedded in the structure, thus resulting in a porous, electrospun 

material that is similar to trabecular bone. After electrospinning, both the cortical and 

trabecular pieces were placed in 12% microbial transglutaminase (mTG) for 5 hours at 

37℃ to crosslink the gelatin (23). 

 

Figure 3. Rolled and sintered PLLA/PDLA osteon structures (A). Sintered and leached PLLA/PDLA 
trabecular structure (B). 

2.1.3. Hydroxyapatite Columns 

The final component of the scaffolds was the addition of hydroxyapatite (HAp) 

columns. As the main inorganic mineral found in bone, these ceramic columns served as 

structural supports to help the scaffold bear appropriate loads and to provide a more 

natural biological environment for cells. These HAp columns have also been shown to 

help with osteogenic differentiation (24). HAp nanopowder (<200 nm particle size, 
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Sigma Aldrich) was packed tightly into a 1.5x14 mm cylindrical channel and a small 

amount of water was added intermittently. Once the channel was filled with packed HAp 

powder, 44 MPa of pressure was applied for 10 minutes using an Instron (Model 5869, 

Norwood, MA). The columns were then carefully removed from the channels and 

sintered at 1200℃ for 5 hours to harden the ceramic columns.  

 

Figure 4. Sintered hydroxyapatite post. 

2.1.4. Scaffold Assembly 

The HAp columns and osteons were then positioned around the trabecular section 

and wrapped with a thin sheet of PDLA to hold the structure together. The entire scaffold 

was then sintered at 60℃ for one hour to allow the surrounding PDLA to harden and 

create the final stable scaffold (24, Figure 5).  
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Figure 5. Completed scaffolds. 6 hollow osteons and 2 HAp columns surround pieces of the 
trabecular portion. The entire scaffold is held together by sintered sheets of PDLA (25). 

2.1.5. Mineralization 

To help induce osteogenic differentiation of stem cells (25), the completed 

scaffolds were mineralized using a solution of 10x simulated body fluid (SBF). SBF 

solution consisted of sodium chloride, potassium chloride, calcium chloride dihydrate, 

magnesium chloride hexahydrate, sodium phosphate monobasic, and sodium bicarbonate 

dissolved in DI water. In order to prevent mineralization of the inner portions of the 

osteons, 8% sodium alginate (FMC BioPolymer) solution was injected directly into the 

channels and subsequently submerged in a 0.1M calcium chloride solution to crosslink 

the alginate. Once crosslinked, the scaffolds were placed in a solution of SBF and gently 

agitated for a total of 10 hours. Throughout the process, fresh SBF solution was added 

every 2 hours to allow for complete mineralization. After 10 hours, the scaffolds were 

submerged in phosphate-buffered saline (PBS) to help uncrosslink the alginate, which 

was then physically removed from the osteons using a blunt needle. 
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2.1.6. Vascularization 

In order to induce vascular differentiation of stem cells (25), the inner portions of 

the osteons were prevascularized using human dermal microvascular endothelial cells 

(HMEC-1, ATCC). HMEC-1s were cultured on tissue culture polystyrene (TCP) in 

MDCB-31 media (Gibco) supplemented with 10% fetal bovine serum (FBS), 1% 

Penicillin/Streptomycin, 10 mM L-Glutamine, 1 µg/ml Hydrocortisone, and 10 ng/ml 

Human Epidermal Growth Factor. Cells were grown in a sterile incubator at 37℃ and 5% 

CO2. Upon reaching roughly 80% confluency, cells were detached using TrypLE Express 

Reagent and were seeded inside the osteon channels at a density of 50,000 cells/cm
2
. The 

HMEC-1s were allowed to grow inside the osteons for a period of 14 days, with fresh 

media being added every 2 to 3 days. 

 After 14 days, the scaffolds were decellularized using a freeze-thaw method to 

remove the cells while preserving the extracellular matrix (26). Scaffolds were placed at -

80℃ for 30 minutes and then immediately placed in a 37℃ water bath to lyse the cells. 

After 10 minutes, the scaffolds were rinsed with sterile PBS and the process was repeated 

for a total of 3 cycles for full decellularization. 

2.1.7. rbMSC Seeding 

Rabbit Mesenchymal Stromal Cells (rbMSCs, Cyagen) were cultured on TCP in 

rbMSC media (Gibco) supplemented with 10% FBS, 1% Penicillin/Streptomycin, and 

1% L-Glutamine. The cells were allowed to reach roughly 80% confluency and were 

subsequently detached using TrypLE Express Reagent. 24 hours prior to implantation, 3 

to 5 million rbMSCs were seeded inside of the osteon channels and in the trabecular 

sections of each scaffold.  
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2.1.8. Surgical Procedure 

In order to test the efficacy of the scaffolds in a load-bearing environment, 

prevascularized, mineralized scaffolds were implanted in adult female New Zealand 

white rabbits obtained from Charles River Laboratories and Robinson Services Inc. 

Rabbits were anesthetized and a radial defect was created by removing a piece of the 

radius that matched the size of the implant (Figure 6A). The scaffolds were implanted 

into the defect and secured using a 2-0 Ethibond suture (Ethicon). After wound closure, a 

cast was made around the surgical arm of the rabbits to ensure the stability of the 

scaffolds. Proper application of the cast proved to be critical in the first 4 weeks to 

stabilize the surgical leg and ensure the rabbits did not damage the implants. The rabbits 

were allowed to roam freely in cages and apply pressure on the cast for 4 weeks before 

the cast was removed. After cast removal, the implants were kept inside the rabbits for an 

additional 4 weeks. After 8 weeks of implantation, the rabbits were sacrificed and the 

implants were harvested along with the surrounding radius and ulna. Radiographic 

images were taken using a Gierth RHF 200 ML X-Ray machine (44 KVp and 5mAs) 

with dicomPACS DX-R Version 6.0.42-1895 software at weeks 4 and 8 to confirm that 

the implants were intact and there was no damage to any of the surrounding anatomy. 

2.1.9. Allograft Preparation  

After 8 weeks, the non-surgical radius was removed in order to procure bone to be 

used as an allograft control for the study. Allografts were prepared by cutting the radius 

into 8mm sections and scraping away any excess tissue surrounding the bone. The inner 

section of the bone was thoroughly rinsed with PBS. After cleaning the sections, the 
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allografts were exposed to ethylene oxide gas to completely sterilize the samples (27). 

After sterilization, allografts were implanted in New Zealand White Rabbits using the 

same method as the experimental scaffolds. 

 

 

Figure 6. Size comparison of the excised radial segment (left) and the scaffold to be 

implanted (right) (A). Harvested implant (arrow) with native radius on each side. 

The scaffold is secured with a suture (blue) (B). 

2.1.10. Micro CT 

Harvested scaffolds were prepared for micro computed tomography (Micro CT) 

by removing most of the remaining native bone and surrounding tissue and soaking in 

isotonic saline for one day. Samples were scanned using the Bruker Skyscan 1272  (90 

kV, 111 µA, 1.5 k camera, 8.5 µm pixel size, and a rotation step of 0.4 degrees). 

Vivoquant software was used to segment the various components of the scaffold based on 

differences in attenuation. A sample size of 4 was used for each group. 
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2.1.11. Mechanical Testing 

In order to indirectly test the amount of fusion with the surrounding native bone, a 

mechanical push-out test was performed on the implants. The connected ulnas were 

carefully cut axially next to each insertion point to ensure the movement of the implants 

was not restrained by the ulna. Samples were hydrated in PBS for 30 minutes to 1 hour 

and then secured at each end by vises placed directly under an Instron. The suture in each 

sample was also cut before testing. Metal bars were customized to fit the radius and 

length of the implants and were secured to the Instron using pneumatic grips. These bars 

applied a perpendicular force to the implants at a rate of 1 mm/min until the implants 

were dislodged from the radius. The ultimate stress was recorded to compare the amount 

of fusion between groups. A sample size of 4 was used for each group. 
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Figure 7. Experimental setup for the mechanical push-out test. The scaffold was secured between two 
vises and the customized metal bar was secured using pneumatic grips. The adjacent ulna was cut at 
each insertion point of the scaffold and force was applied perpendicular to the scaffolds. 

2.1.12. Histology 

To prepare the harvested implants for histology, samples from each group were 

fixed in 10% neutral buffered formalin for 48 hours and then placed in 10% EDTA 

solution and gently agitated for 25 days to allow for decalcification. The solution was 

changed every 2 to 3 days and decalcification was complete when two successive 

chemical endpoint tests were positive. Fresh decalcification fluid was allowed to soak the 

implants for roughly one hour. 5 mL of used solution was then taken from the sample and 

was brought to a pH between 3.2 and 3.6 to dissociate any chelated calcium ions from the 

EDTA. 5 mL of 3% ammonium oxalate solution was added and allowed to sit for roughly 

30 minutes. If calcium is present in the decalcification solution, a precipitate will form 
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and the solution will become cloudy or turbid. If no precipitate forms, there is no calcium 

present in the solution. After the first successful test with no precipitate forming, fresh 

decalcification solution was added to the implants and the same chemical test was 

performed 24 hours later. Two successful tests in a row resulted in complete 

decalcification of the samples. 

Decalcified samples were frozen in optimal cutting temperature (OCT) fluid and 

cut in half using a surgical blade to section the middle of the implants and the ends near 

the insertion points. Each region of interest was sectioned at 15 µm using a cryotome and 

sections were placed on charged microscope slides. Verhoeff-Van Gieson (VVG) stain 

was used to highlight any elastic fibers present in newly formed blood vessels. Collagen 

would be stained red, cells would be stained blue, elastin would be stained black, and 

other tissue would be stained yellow. For the VVG stain, Weigert’s iodine solution was 

prepared by dissolving 0.2g of potassium iodide in 400 µL of distilled water. Once 

dissolved, 0.1g of iodine was added and allowed to dissolve. Once the iodine was 

dissolved, 9.6 mL of distilled water was added to dilute the solution. 10% aqueous ferric 

chloride was prepared by dissolving 1g of ferric chloride in 10 mL of distilled water. 

Verhoeff’s working solution was prepared by combining 5 mL of 5% alcoholic 

hematoxylin, 2 mL of 10% aqueous ferric chloride, and 2 mL of Weigert’s iodine 

solution. 2% aqueous ferric chloride was prepared by diluting 1 mL of the previously 

made 10% ferric chloride in 5 mL of distilled water. Van Gieson’s counterstain was made 

by mixing 0.5 mL of 1% aqueous acid fuchsin with 10 mL of saturated aqueous picric 

acid. 



18 
 

 
 

Slides were brought to room temperature and hydrated in distilled water. 

Verhoeff’s working solution was then applied to the sections for 1 hour. After 2-3 

changes of tap water, sections were differentiated in 2% ferric chloride for 1-2 minutes. 

Differentiation was stopped with several changes of tap water. Slides were then treated 

with 5% aqueous sodium thiosulfate for 1 minute and subsequently washed in running 

tap water for 5 minutes. Van Gieson’s solution was used to counterstain the samples for 

3-5 minutes before the slides were quickly dehydrated through 95% alcohol and 2 

changes of 100% alcohol. Slides were finally cleared in 2 changes of xylene for 3 

minutes each. Resinous mounting medium was applied and a coverslip was placed on top 

of the slides. 

2.1.13. Statistical Analysis 

All quantitative data was subjected to a paired Student’s T Test. KaleidaGraph 

Synergy Software was used for statistical analysis.  

 2.2. Results  

2.2.1. Radiographic Images 

The x ray images obtained at 4 and 8 weeks post-op show stable implants in both 

the experimental and control groups. At 4 weeks, although there is obstruction from the 

cast, both groups appear to be stable with no damage to the implants or the surrounding 

tissue. Signs of remodeling are evident at each end of the implant site and there appears 

to be callus formation next to the adjacent ulna in the allograft group. At 8 weeks both 

groups remained intact as well as the surrounding structures. Signs of remodeling and 

calcification are more evident at each end of the implant site in both groups and callus 

formation appears to be on both adjacent ulnas. 
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2.2.2. Micro CT 

Micro CT analysis of the harvested implants showed a considerable amount of 

bone growth into and around the implants. Remodeling has occurred at each end of the 

implant site and on the adjacent ulna. Due to the density of the allografts, it is difficult to 

determine the amount of new bone growth that is taking place inside the allografts 

themselves. A large portion of the developing new bone seems to be at each end of the 

implant site and next to the adjacent ulna. 

Figure 8.  X ray images of the scaffold at 4 weeks post-op (A) and 8 weeks post-op (B). X ray 
images of the allograft at 4 weeks post-op (C) and 8 weeks post-op (D). Signs of remodeling can 
be seen at each end of the implant and along the nearest part of the ulna in both groups (*). 
Implants from both groups were intact and secured at the implant site throughout the study. 
The arrows indicate the location of the implants through the obstruction of the cast at 4 weeks 
post-op.  
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Figure 9. Micro CT images of a harvested allograft (A) and scaffold (B). Old native bone is 

highlighted green, new bone is highlighted lavender, the allograft is highlighted yellow, and 

the HAp posts are highlighted red. There is a large amount of bone growth at each end of 

the implant site and with the adjacent ulna in both groups. Bone is also seen growing into 

and around the scaffold. 

Utilizing the differences in attenuation between old bone and new developing 

bone, the total volume of new bone that developed in each sample was quantified. The 

average volume of new bone in the scaffolds was 68.27 (±38.55) mm
3
 while the average 

volume of new bone in the allografts was 76.40 (±51.38) mm
3
. Although the allografts 

had slightly higher bone growth than the scaffolds, there is no statistical significance 

between the two groups (t=0.71). 
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Figure 10. Average volume of new bone growth in the scaffold and allograft groups. The scaffolds had an 

average growth of 68.27 (±38.55) mm
3 

while the allografts had an average growth of 76.40 (±51.38) mm
3 

(n=4). 

2.2.3. Mechanical Testing 

Compressive forces were recorded by the Instron 5869 throughout the duration of 

the mechanical push-out test. Force was applied axially onto the scaffolds until they were 

visibly dislodged from the implant site or the recorded force-displacement curve dropped 

significantly. The ultimate push-out stress was calculated by dividing the ultimate force 

for each sample by the cross-sectional area. The average push-out stress for the scaffolds 

was 0.783 (±0.491) MPa while the average push-out stress for the allografts was 2.044 

(±1.584) MPa. Despite the higher stress required to remove the allografts from the 

implant site, it was not statistically significant when compared to the scaffolds (t=0.28). 
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Figure 11. Average push-out stress for the scaffold (blue) and allograft (red) groups (n=4). The large standard 

deviation of the allograft group did not allow for a statistically significant difference between the groups. 

2.2.4. Histology 

Histological images of sections stained with VVG stain were obtained using a 

light microscope. Allografts sectioned closer to insertion points showed a considerable 

amount of remodeling taking place. This was evident by the number of holes and areas of 

apparent new collagen present in the images. Allografts sectioned from the middle of the 

implant stained much more intensely for collagen and there seemed to be considerably 

less remodeling than at the ends. Scaffolds sectioned at the ends also showed remodeling 

occurring in the scaffolds and the adjacent ulna. There is also evidence of collagen 

deposition and integration between the implants and the surrounding native bone. 

Scaffolds sectioned in the middle of the implant showed remodeling as well as collagen 

deposition within the scaffold. There is also evidence of revitalization of the 
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prevascularized lumens throughout some parts of the scaffold. However, it is difficult to 

tell whether or not any new blood vessels began to develop.  
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Figure 12. Histological images of the allograft sectioned at the end near the insertion point. There is 
a large amount of potential remodeling occurring based on the large gaps present in the collagen (*) 
and the deposition of new collagen (C). There are also signs of vascularization (Arrow). 
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Figure 13. Histological images of the allograft sectioned in the middle. The strong staining of collagen 
(C) with a limited amount of deterioration or new collagen deposition indicates there was limited 
remodeling in the middle of the implant. The osteons (triangle) maintained their structure as well as 
the trabecular bone (T). 
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Figure 14. Histological images of the scaffold sectioned at the end near the insertion point. There is a 
considerable amount of remodeling occurring both in the adjacent ulna and the scaffold itself (*). 
The presence of collagen (C) integrating into the scaffold indicates the infiltration of surrounding 
cells. Collagen is also present deeper into the scaffold. 
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Figure 15. Histological images of the scaffold sectioned in the middle. Remodeling is occurring in the 
surrounding native bone as well as in parts of the scaffold itself. There is considerable collagen 
deposition (C) in the scaffold and tissue from the ulna seems to be integrating with the scaffold. The 
surrounding layer of PDLA had a large amount of collagen deposition (star) . This indicates the 
infiltration of cells into the scaffold from surrounding tissue. There are also signs of vascularization in 
various parts of the scaffold (arrow). 
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2.3. Discussion 

The purpose of this study was to characterize a tissue-engineered scaffold for 

bone regeneration in a load-bearing, in vivo model. Scaffolds consisted of two 

stereoisomers of PLA (PLLA and PDLA) that were electrospun and fabricated in such a 

way to mimic the cortical and trabecular sections of bone. Sintered HAp columns were 

included in the scaffolds to provide compressive strength as well as a more biologically 

natural environment for cells to grow. Scaffolds were mineralized by submerging them in 

a SBF bath for a total of 10 hours with fresh solution added every 2 hours. 8% alginate 

solution was added to the cortical sections of the scaffolds prior to soaking in order to 

block mineralization. After mineralization, scaffolds were prevascularized by seeding 

HMEC-1 cells inside the cortical sections and allowing them to grow for a period of 14 

days. The scaffolds were then decellularized using a freeze-thaw method which allowed 

for the deposited ECM to remain inside the osteons. Allografts were prepared by 

stripping tissue from segments of radial bone and thoroughly rinsing the trabecular 

section with PBS. Allografts were then sterilized using ethylene oxide gas. 

A radial defect was created in adult female New Zealand white rabbits by 

surgically removing a piece of the radius that matched the size of the implant. The fused 

ulna was left intact to provide support throughout the study. 24 hours prior to 

implantation, scaffolds were seeded with 3-5 million rbMSCs in both the trabecular and 

cortical sections. Implants were secured in place with a suture and a cast was made 

around the surgical legs of the rabbits to provide stability for the first 4 weeks. The casts 

were removed after 4 weeks and the rabbits were allowed to apply normal load to the 

surgical leg for 4 more weeks until sacrifice.  
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X-ray images taken at 4 and 8 weeks post-surgery showed stable, intact implants 

for both the scaffold and allograft groups throughout the entire study. The surrounding 

anatomical structures also remained completely intact with no swelling around the 

surgical site. At 4 weeks there appears to be slight remodeling at each end of the implant 

site and some callus formation next to the adjacent ulna. At 8 weeks there is more 

evidence of remodeling around the implant and even more callus formation next to the 

ulna. There did not appear to be a noticeable difference between groups in the amount of 

remodeling or callus formation occurring from the x rays. It is evident that the scaffolds 

are able to withstand the amount of stress applied during normal load and do not entice 

any considerable immune reaction. 

Micro CT analysis of the harvested implants allowed for visualization and 

quantification of the volume of new bone growth that occurred at the surgical site. The 

scaffold images showed a large amount of bone growth around the edges of each implant 

site and next to the adjacent ulna. Some samples showed new bone forming inside the 

scaffolds as well. The allografts mainly showed bone growth next to the adjacent ulna 

and at each end of the implant. Due to the density of the allografts, it was difficult to 

determine whether or not bone was developing inside of them. Both the scaffold and 

allograft groups showed a comparable quantitative volume of bone growth and there was 

no statistical significance between the groups. However, multiple factors may have lead 

to the large standard deviations seen within each group. First, one of the scaffold samples 

had the adjacent ulna removed after harvesting and one of the HAp columns was 

subsequently damaged in the process. This automatically diminished the amount of new 

bone that was detected during the micro CT process. Second, the preparation of the 



30 
 

 
 

samples after harvest may have altered the density and surface of the surrounding bone. 

Due to excessive scraping with a surgical blade to remove fibrous tissue, the native radius 

and ulna may have been scratched. This is apparent in the image of one of the samples 

that has a large number of divots and marks along the bone and an unusual pattern of new 

bone growth. Despite these discrepancies, the scaffold group shows its ability to promote 

bone growth into and around the implant at the same level as an allograft. 

Mechanical studies were performed to measure the amount of force needed to 

remove the implant from the surgical site; thus indirectly measuring the amount of fusion 

with the surrounding native bone. A metal bar was custom made to generally match the 

radius of the scaffolds and allografts and was secured in place using pneumatic grips on 

an Instron 5869. The implants were secured in place with bench-top vises and the metal 

bar was used to apply an axial force onto the implant at a rate of 1 mm/min. Force was 

applied until the implant failed or the force-displacement curve dropped substantially. 

The allograft group had a higher average ultimate push-out stress when compared to the 

scaffold group but both values were comparable. There was a high standard deviation that 

did not allow for any statistical significance between groups.  Similar to the variations 

present in the micro CT data, there were many factors that lead to differences in push-out 

strength. First, the adjacent ulnas were left attached to the radius to avoid damaging the 

implants while trying to remove them. To account for this, the ulnas were cut axially at 

each insertion point to reduce the affect it had on mechanical strength as much as 

possible. Despite attempting to cut as close to the radius as possible, it was difficult to 

determine whether or not the ulna was completely cut. Also, the scaffold sample that had 

its ulna removed and was damaged during harvest had an extremely low value compared 
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to most of the others. This is likely due to the lack of support from the ulna and the 

damage done to the scaffold. One of the allograft groups had a much higher value than all 

other samples in the study which may have been due to insufficient cutting of the ulna. If 

this value is removed from the data, the average between the two groups is much more 

similar (1.28 MPa for the allografts and 0.78 MPa for the scaffolds). Regardless of these 

discrepancies, the mechanical stress needed to remove the implants from the surgical site 

was comparable between both groups. 

Histology using the VVG stain was performed to assess any differences between 

the scaffold and allograft groups. The sections taken from the ends of each group showed 

remodeling occurring in the implants themselves and the adjacent ulna. New collagen 

formation occurred for both groups and the scaffold showed integration with the 

surrounding native bone. When sections were taken from the middle of the implants, the 

allograft seemed to have much less remodeling occurring than the scaffolds. The 

allografts stained a dark red with less signs of new collagen formation which indicates 

less remodeling and infiltration of surrounding cells. The scaffolds showed clear signs of 

integration with surrounding bone and new collagen deposition. The PDLA layer used to 

secure the scaffold had collagen deposited throughout and collagen was present in the 

inner portions of the scaffold as well. There are also signs of revitalization of the 

prevascularized lumens throughout the scaffolds. However, it was difficult to obtain 

clean sections of the scaffolds due to the differences in modulus of the various tissues and 

polymers in the sample. Many of the osteons seemed to have collapsed during sectioning 

of the scaffolds and it was difficult to fully visualize what was being stained. Also, with a 

higher number of rbMSCs seeded prior to implantation there may have been considerably 
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more collagen deposition and vascular development throughout. Despite these problems, 

these results show the ability of the scaffold to promote bone growth and potentially 

allow for vascularization. 
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Chapter 3 – Conclusions and Future Directions 

The tissue-engineered bone scaffold that was evaluated in this study successfully 

showed its comparability with an allograft. The structural integrity of the implant was not 

damaged throughout the 8-week, load-bearing in vivo study and it was not rejected by the 

animal. The amount of new bone growth and the mechanical properties of the scaffolds 

and allografts were comparable as well. These data show the viability of our scaffold as a 

reproducible and marketable alternative to many of today’s current treatments for bone 

fractures.  

Before making it to the market, however, more work must be done to the 

scaffolds. The current manufacturing techniques, such as electrospinning and compacting 

HAp powder, tend to be difficult to reproduce and time consuming. Our lab is in the 

midst of developing a method to 3D print the scaffolds that will eventually include the 

ceramic portion as well. In addition to ease of manufacturing, 3D printing will allow for 

enhanced customizability to the patients. The implant site can be directly modeled using 

various imaging techniques and the scaffolds can be printed to match the exact shape of 

the site. Also, the number of cells seeded on the scaffold prior to implantation can be 

greatly increased to promote more complete and rapid bone development and 

vascularization. Finally, an alternate method to promote vascularization is currently being 

studied in our lab. Seeding the scaffolds with endothelial cells for 2 weeks proves to be 

inefficient for mass production and does not allow for scaffold manipulation while the 

cells are alive. To circumvent this issue, we are developing an injectable ECM solution 

that will have a similar capacity to entice vascular differentiation of stem cells as the 

prevascularized lumen. Once these studies have been accomplished, the next step would 
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be to examine the scaffolds in a larger animal model, such as sheep. Although the 

scaffolds were exposed to natural loads in the rabbit model, the fused ulna withstood a 

significant amount of force as well. A larger animal model will test just how much force 

the scaffolds can actually bear in vivo. There is a large amount of potential with these 

tissue-engineered scaffolds and, with successful future studies, they can prove to be 

extremely useful in a clinical setting. 
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