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Climate change critically affects both the atmospheric processes involved in the dy-

namics of air pollution systems and biogenic emissions including tree and grass pol-

lens and fungal spores. Synergistic action of allergenic pollen with air pollutants

like ozone and particulate matter has been reported as potentially exacerbating the

symptoms of allergies. This dissertation investigated the spatiotemporal distributions

predicted for allergenic pollen and ground-level ozone across the contiguous United

States (CONUS) in 2004 and 2047 reflecting the Representative Concentration Path-

ways (RCP) 8.5 scenario, and estimated human exposures to those pollutants. In

addition, Machine Learning (ML) methods were evaluated and applied to local-scale

prediction of airborne allergenic pollen concentration.

It was estimated that ragweed pollen season will start earlier and last longer in

2047 under the RCP 8.5 scenario across the CONUS, with increasing average pollen
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concentrations in most regions. The response of the oak pollen season varies across the

nine climate regions of the CONUS, with the largest increase in pollen concentration

occurring in the Northeast region. The oak pollen season length was estimated to

shorten by 1-2 days for most regions, except for the Southeast and Southwest regions.

Analyses of observed ragweed pollen counts and ozone concentrations from 1990

to 2010 indicate that the ragweed pollen season started earlier at 76% of the monitor-

ing stations, and the annual average number of co-occurrence of ragweed and ozone

exceedances (daily maximum 8-hour average ozone > 70 ppb) ranged between 0 to 17

days. Co-occurrences of ragweed pollen and ozone exceedances under climate change

were investigated based on simulated ragweed pollen and ozone concentrations. Al-

though the co-occurrence of ragweed pollen and ozone exceedances is scattered across

the CONUS, it influences a remarkable fraction of the population. Inhalation expo-

sures to ragweed pollen are higher outdoors than indoors, with significant correlation

with pollen concentration. Males tend to have higher inhalation exposures to ragweed

pollen and ozone than females. The inhalation exposure to ragweed pollen and ozone

per unit body weight decreases with age.

Prediction of ragweed pollen concentration at the local scale, based on meteoro-

logical factors and previous ragweed pollen observations, was conducted using ML

models including Support Vector Machine (SVM), Random Forest, XGBoost, Neural

Network, Decision Trees, and a Bayesian Generalized Linear Model. The model pa-

rameters were optimized and the final models were evaluated using a repeated 10-fold

cross-validation. Random Forest and XGBoost models outperformed other models,

and pollen concentration of the previous day is the most important predictor variable

for both models.
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Chapter 1

INTRODUCTION

1.1 Motivation

It has been established that climate change has broad impacts on human society and

natural systems, including the economy, human health, human behavior, agriculture,

water resources, ambient air quality, etc. Human activities such as burning of fossil

fuels and converting forests for agriculture have played a significant role in driving

climate change [4]. Ambient air quality has been substantially affected by climate

change over the past decades; these effects are expected to increase in the future.

Ambient ozone is an air pollutant of primary concern for public health in the United

States (U.S.) and many studies predict that its concentration patterns will be im-

pacted by climate change [5, 6, 7]. Climate change will affect atmospheric processes

involved in the dynamics of air pollution systems, potentially leading to increased

levels of ozone and other photochemical pollutants in certain areas.

In the U.S. Global Change Research Program (USGCRP)’s report [8], it is pro-

jected that the number and severity of wildfires in the U.S. are going to increase due

to climate change, leading to increasing emissions of particulate matter and ozone pre-

cursors. Climate change is also critically affecting emissions of natural pollutants such

as pollen and spores as well as biogenic gases which are components of atmospheric

photochemistry reaction systems. Another key findings of the USGCRP report is

that rising temperatures and changes in precipitation will also increase the levels of

aeroallergens including pollen. Like wildfires, the ragweed pollen season is another
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climate change indicator, and it has been observed (Figure 1.1) that the length of rag-

weed pollen season at various locations in the central U.S. and Canada has increased

by 6 to 24 days between 1995 and 2015 [9, 1]. The Asthma and Allergy Foundation of

America [2] reported that ragweed pollen production has been continuously increasing

with rising global CO2 levels since 1996 (Figure 1.2). Previous studies on nationwide

observations of airborne pollen counts of selected plant species and climatic factors

indicated that the start date and length of pollen season, the average peak value and

annual total of daily counted airborne pollen have been affected substantially by the

changing climate [3, 10, 11, 12, 13].

Figure 1.1: Changes in ragweed pollen season length (1995-2015) at 11 locations in
the U.S. [1]
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Figure 1.2: Observations of increased ragweed pollen production with rising global
CO2 level during 1996-2015 [2].

The prevalence of Allergic Airway Diseases (AAD) has grown globally in recent

years resulting in increased numbers of emergency department visits and hospitaliza-

tions [14]. Clinical studies have shown that AAD can be exacerbated by the syner-

gistic action of bioaerosols such as pollen and fungi, and atmospheric pollutants such

as ozone and PM2.5 [15]. According to the 2015 Natural Resources Defense Council

(NRDC) report [16], 275 counties, where 109 million people reside, had been exposed

to both ragweed pollen and unhealthy ozone levels in 2009 to 2013, and ozone concen-

tration and ragweed pollen count are likely to increase simultaneously in some areas

with climate change.

Climate change is affecting not only the ambient air pollutants, which is a major

source of indoor air pollution, but also indoor air quality by directly altering the

air pollutants produced indoors, including mold and volatile organic compounds [8].

Indoor exposures are critical in accessing public health since people in the U.S. spend

on the average 90% of their time indoors [17]. Although extensive research has been

done on the chemistry of indoor air pollutants and on impacts of climate change on

public health, not many studies have focused on the impacts of climate change on

indoor environments and associated public health impacts [18, 19].
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Exposures to ozone can cause a wide spectrum of acute and chronic health effects,

ranging from respiratory symptoms such as asthma and reduced lung function, to car-

diovascular disease and even possibly cancers [20, 21, 22, 23]. Correlations between

personal exposure and ambient air pollutant concentrations have been used to predict

human exposures over time. Differences in outdoor ozone concentrations can lead to

different ozone mortality coefficients among cities [24]. It has been reported that the

personal-ambient ozone correlation coefficients are in the range 0.3-0.8. Lower corre-

lations appear with increased time spent indoors and low indoor-outdoor air exchange

rates [25]. Ambient ozone resulting from photochemical reactions and injection from

the stratosphere, is transferred to indoor environment by ventilation and infiltration,

and acts as the main source of indoor ozone [26, 27, 28]. Other sources of indoor

ozone include photocopiers, laser printers, electrostatic air filters and electrostatic

precipitators, commercial ozone generators for air purification, etc. [26], but such

equipment are not commonly present in residential microenvironments. Indoor ozone

concentrations are usually lower than outdoor ozone concentrations due to ozone be-

ing a highly reactive compound. However, indoor exposures to ozone often account

for more than 50% of the total personal ozone exposure, since, as mentioned earlier,

people spend most of their time indoors [23].

Due to its strong oxidative properties, ozone can react with many indoor or-

ganic species and generate toxic byproducts including formaldehyde, acrolein, and

secondary organic aerosols (SOA), which also pose public health concerns [26, 29, 30].

Extensive studies on the reaction of limonene and ozone have been performed during

the past decades [31, 32, 33, 34, 35, 36, 37]. The reaction products include gaseous

species such as formaldehyde, hydrogen peroxide, and relatively short-lived reactive

oxygen species (ROS), such as hydroxyl radicals, ozonides, peroxyhemiacetals, and

hydroperoxides [38, 32, 33, 39, 40, 41, 42]. Although short-lived, many of these prod-

ucts exist long enough to be inhaled and transported into the respiratory tract. In
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addition, recent studies show that ozone can also react with human skin lipids form-

ing products that may be respiratory and skin irritants [43, 44, 45]. Squalene, the

most abundant unsaturated compound in human sebum, is the major precursor for

these oxidation products [46, 47, 48].

Climate change affects air quality in different ways, directly or indirectly. Meteo-

rological factors such as temperature, cloudiness, precipitation, wind speed, etc. will

influence air quality directly by affecting biogenic emissions, photochemical reactions

rates, and the transport and deposition patterns of air pollutants. Climate change

is also affecting human population activities, which leads to variations in emissions

and meteorology, then affecting air quality indirectly. Therefore, it is challenging to

model the impacts of climate change with all of the interacting variables. Researchers

have to isolate the impacts on air quality caused by climate-driven changes in me-

teorological factors and related natural emissions by keeping other factors (such us

anthropogenic emissions) unchanged. Changes of ozone concentrations under climate

change and emission controls have been modeled using the Community Multiscale

Air Quality (CMAQ) modeling system by many research groups. These studies dif-

fer in spatiotemporal resolutions and emission scenarios. It is known that surface

ozone levels have strong seasonal cycles which vary with latitude and altitude, with

the maximum usually occurring in spring to summer [49]. It is often projected that

the continued rise in anthropogenic emissions, especially from developing countries,

will have substantial impacts on the global surface ozone levels. Meanwhile, efforts

have been made by countries to decrease the greenhouse gases (GHG) emissions to

mitigate the impacts of climate change. Predicted changes in ozone concentrations

will vary, depending on the emission scenarios used in the simulation.

Although a number of studies have evaluated the effects of climate change on

ambient ozone concentrations, very few studies have been done for allergenic pollen,

or for simultaneous evaluation of impacts of climate change on ozone and allergenic

pollen and related human exposures. The co-occurrence of ozone exceedance and
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allergenic pollen under changing climate has not been investigated. There also exists

a major lack of assessment of population co-exposure to allergenic pollen and ozone

across the contiguous United States (CONUS). Factors affecting personal exposure

to allergenic pollen and ozone need to be identified.

1.2 Background

1.2.1 Modeling of future ozone concentration

Climate models are built with future scenarios of forcing agents, such as greenhouse

gases and aerosols, as input to make projections of future climate changes. The

Intergovernmental Panel on Climate Change (IPCC) developed a number of emis-

sion scenarios (A1, A2, B1, B2) based on different future socioeconomic conditions

[50]. For example, the A1 scenario assumes very rapid economic growth in the future

with global population peaks in mid-century and declines thereafter, and the rapid

introduction of new and more efficient technologies. The three A1 groups are dis-

tinguished by their technological emphasis: fossil intensive (A1FI), non-fossil energy

sources (A1T), or a balance across all sources (A1B) [50]. Table 1.1 lists selected

modeling efforts since 2008 for predicting ozone concentration across the CONUS in

mid-21st century with horizontal grid resolution of 36x36 km or higher. Using a cou-

pled global/regional scale modeling system, Nolte et al. [51] predicted that the mean

summertime daily maximum 8-hour average ozone (DMA8[O3]) in Texas and parts

of the eastern U.S. will increase by 2-5 ppb under the IPCC A1B greenhouse gas

scenario by 2050 if the anthropogenic emissions remain at 2011 levels. In contrast,

large decreases in the mean summertime DMA8[O3] were projected for the case when

anthropogenic emissions are reduced based on the A1B scenario. Tagaris et al. [52]

also found that emission reductions and climate change together will decrease the

mean summer DMA8[O3] (-11% to -28%) in 2050 across the U.S. under the IPCC

A1B emission scenario. Tagaris et al. [7] further investigated the health effects of
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ozone under the IPCC A1B emission scenario while keeping the emissions, popula-

tion, and pollution controls the same. They found that the annual mean ozone would

increase for the northern U.S., but decrease for the southern part of the U.S. They

also predicted that the additional annual premature deaths caused by ozone changes

due to climate change would be about 300. Also under the IPCC A1B emission sce-

nario, Lam et al. [53] found that by 2050 the DMA8[O3] would decrease by 5 ppb

in the eastern U.S. under the combined effect of climate change and emission reduc-

tions. Dynamical downscaling was applied in their study to improve the horizontal

grid resolution from 36x36 km to 12x12 km [53]. Modeling results from a study by

Gonzalez-Abraham et al. [54] suggested that DMA8[O3] will increase by 2-12 ppb

for most parts of the CONUS under combined effects of climate, biogenic emissions,

land use and anthropogenic emissions. Penrod et al. [55] examined the impacts of fu-

ture climate and anthropogenic emissions on ozone concentrations for 2026-2030 and

found that their levels will decrease due to reduction of anthropogenic emissions. The

increases in surface ozone in 2050s are largely driven by temperature, solar radiation,

and cloud fraction over most of the domain [56, 57, 58].

The projections of future ozone discussed above are all based on the IPCC A1B

emission scenario, which was commonly used before the introduction of the Represen-

tative Concentration Pathways (RCPs) [59]. Due to the fact that the RCP scenarios

apply different emission and climate models considering future socio-economic and

emission scenarios, the projections for future ozone based on them differ from those

based on IPCC A1B scenarios. Fann et al. [60] estimated the impacts of climate

change on the ozone-related health impacts in 2030 under two greenhouse gas forcing

scenarios, RCP 8.5 and RCP 6.0. Simulations for both scenarios projected that the

average daily maximum temperature will increase by 1-4 °C from base year 2000. The

RCP 8.5 scenario showed an increase of DMA8[O3] by 1-5 ppb all across the CONUS,

while the RCP 6.0 scenario projected decreases of ozone over the Pacific Northwest

and Gulf Coast areas and increases of ozone over other regions. The emissions for
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future year 2030 were based on the United States Environmental Protection Agency

(USEPA) estimates assuming the planned air quality policies were implemented. Gao

et al. [61] applied the RCP 8.5 and RCP 4.5 scenarios for projection of ozone levels in

2050 and compared them with a base year of 2000. They used a coupled global and

regional climate model to simulate ozone levels over the CONUS domain at 12x12

km spatial resolution. The results from both scenarios project obvious seasonal varia-

tions, with the RCP 4.5 scenario projecting a significant decrease (6-10 ppb) in ozone

concentrations during summer, while the RCP 8.5 scenario shows an increase of 3-7

ppb in ozone concentrations in winter. The 2005 emissions used for base years and

the future year emissions were projected based on RCP databases. Kim et al. [62]

further studied the ozone-related health impacts in the US based on the future ozone

levels simulated by Gao et al. [61]. They reported that the average ozone-related

excess premature deaths in 2050 compared with 2000 under RCP 4.5 and RCP 8.5

scenario would be -2118 deaths/year and 1312 deaths/year, respectively. Sun et al.

[63] estimated the future ozone levels and its impacts on mortality for 2050s under

RCP 8.5 scenario over the CONUS at a 12x12 km resolution. They found that the

annual mean DMA8[O3] will increase across the Western U.S., but decrease in the

Eastern U.S. Pfister et al. [64] simulated the summertime ozone across the U.S. in

2050 under RCP 8.5 scenario and A2 climate. The results indicated that the surface

ozone will increase for most of the U.S. and the 5th-95th quantile of DMA8[O3] will

increase from 31-79 ppb to 30-87 ppb. Nolte et al. [65] reported that DMA8[O3] is

predicted to increase during summer and autumn in the central and eastern US in

2030s under three RCPs. Temperature and isoprene emissions were found to be the

biggest contributors on changes of ozone concentrations.

It is generally desirable to have finer horizontal resolution when it comes to air

quality modeling because it gives more information on specific areas of interest. How-

ever, fine resolution modeling requires high resolution input data, high computational
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power and it is also very time-consuming for large domains. For instance, the compu-

tational requirements will increase 27 times when the horizontal resolution increases

from 36x36 km to 12x12 km [66]. Coarse spatial resolution might underestimate

the concentration of air pollutants in urban areas, causing biases in the estimation of

health impacts due to air pollution [67]. Dynamical downscaling techniques have been

used on outputs from global climate models to generate inputs for higher resolution

simulations. Gao et al. [68] developed the Community Earth System Model (CESM)

and applied the dynamical downscaling techniques on the CESM outputs for regional

WRF (Weather Research and Forecast) model inputs; they were able to downscale

the climate results from the 36x36 km North American domain to a 4x4 km Eastern

U.S. domain.

1.2.2 Modeling of allergenic pollen concentration

Synergistic action of allergenic pollen with air pollutants like ozone and particulate

matter has been reported and may exacerbate AAD symptoms [88, 15, 89, 14]. In

particular, the patterns of emission and transport of allergenic pollen and common air

pollutants are expected to be impacted by the changing climate [90, 61, 91, 92, 93, 12].

Studies on emission and transport of allergenic pollen from multiple taxa are needed in

order to estimate their spatiotemporal distributions and the potential consequences

for public health. Previous studies of emissions and transport of pollen are sum-

marized in Table 1.2. Pollen emissions have been simulated using mostly empirical

models [76, 77, 78, 72] and probabilistic models [81, 80, 79]. Pollen dispersion and

transport were predicted using Gaussian model [94, 74], Lagrangian model [75, 95],

Eulerian model [96] and chemical transport model such as CMAQ [3, 69, 85, 86, 87].

Kawashima and Takahashi [74] estimated the emission and dispersion of airborne

cedar pollen in Japan using a Gaussian model. This model took into account various

physical processes and spatial variation of flowering time using a flowering-time map.

However, it could not reproduce the pollen peaks in urban areas. Using the Fifth
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Generation Mesoscale Model (MM5) and the National Oceanographic and Atmo-

spheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Tra-

jectory (HYSPLIT) Model, Pasken and Pietrowicz [75] forecasted daily oak pollen

concentration with 30-min increments with inconsistent performance for each day.

Helbig et al. [76] proposed an emission model that takes into account meteorological

variables such as wind stress, temperature and humidity. This emission model was in-

corporated into a comprehensive modeling system (COSMO) to simulate birch pollen

concentration in Switzerland using COSMO-ART (Aerosols and Reactive Trace Sub-

stances) [77]. COSMO-ART was further applied for release and transport of ragweed

and birch pollen in central Europe by Zink et al. [78, 71, 72]. Sofiev and Bergmann

[80] developed a numerical model of birch pollen emission based on a double-threshold

temperature sum model, ambient humidity and precipitation rate, wind speed and

turbulence intensity. The emission model was evaluated by Siljamo et al. [79] with

System for Integrated modeLling of Atmospheric coMposition (SILAM) for birch

pollen dispersion in Europe. Most of the existing modeling studies have been de-

signed to provide operational forecast of airborne pollen levels in Europe. Large scale

deterministic emission and transport models need to be developed to investigate the

release, transport and health effects of allergenic pollen in the U.S.

CMAQ as a chemical transport model has gained more application in this field

since it can simultaneously calculate the concentrations of multiple air pollutants in

gaseous or particle phase [85, 84, 78]. Efstathiou et al. [85] modified the parame-

terizations developed by Helbig et al. [76] to predict the emission and transport of

birch and ragweed pollen over the northeastern U.S. using CMAQ and MM5. Jeon

et al. [69] employed the emission model based on the parameterizations described by

Efstathiou et al. [85] to simulate oak pollen emission in Southeast Texas and fed the

emissions into the CMAQ model to predict the oak pollen concentration. However,

the model underestimated the oak pollen concentration and was not able to capture

the peaks of oak pollen concentration. A modeling framework has been developed
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to incorporate WRF model and CMAQ model to study distributions of multiple al-

lergenic pollens in southern California under climate change scenarios [86, 87]. A

semi-mechanistic model has been developed for emission of airborne allergenic pollen

by Zhang [3] and Cai et al. [97]. Based on this pollen emission model, an adapted

CMAQ modeling system (CMAQ-Pollen) was used to simulate the spatiotemporal

distributions of allergenic pollen including ragweed, mugwort, birch, oak and grass

across the CONUS with 50x50 km grid resolution [3].



12

T
ab

le
1.

1:
R

ep
re

se
n
ta

ti
ve

m
o
d
el

in
g

eff
or

ts
on

fu
tu

re
oz

on
e

p
re

d
ic

ti
on

.

B
a
se

y
e
a
r

F
u

tu
re

S
p

a
ti

a
l

S
e
a
so

n
A

ir
q
u

a
li

ty
m

o
d

e
l

F
u

tu
re

e
m

is
si

o
n

R
e
fe

re
n

c
e

y
e
a
r

re
so

lu
ti

o
n

e
v
a
lu

a
te

d
sc

e
n

a
ri

o

19
99

-2
00

3
20

48
-2

05
2

36
x
3
6

k
m

S
u

m
m

er
,

fa
ll

C
M

A
Q

v
4
.5

IP
C

C
A

1
B

[5
1
]

20
01

-2
00

2
20

51
-2

05
2

36
x
3
6

k
m

S
u

m
m

er
C

M
A

Q
v
4
.4

IP
C

C
A

1
B

[5
6
]

20
01

20
50

36
x
3
6

k
m

S
u

m
m

er
,

a
n

-
n
u

a
l

C
M

A
Q

v
4
.7

IP
C

C
A

1
B

[7
]

19
99

-2
00

1
20

49
-2

05
1

36
x
3
6

k
m

A
n

n
u

a
l

C
M

A
Q

IP
C

C
A

1
B

[5
3
]

20
06

-2
01

0
20

48
-2

05
2

36
x
3
6

k
m

S
u

m
m

er
,

a
n

-
n
u

a
l

C
M

A
Q

v
4
.7

.1
IP

C
C

A
1
B

[5
7
]

19
95

-1
99

9
20

48
-2

05
2

30
x
3
0

k
m

S
u

m
m

er
C

M
A

Q
v
4
.6

IP
C

C
A

1
B

[5
8
]

20
01

-2
00

5
20

26
-2

03
0

36
x
3
6

k
m

S
u

m
m

er
,

w
in

te
r

C
M

A
Q

v
5
.0

IP
C

C
A

1
B

[5
5
]

19
95

-2
00

4
20

45
-2

05
4

36
x
3
6

k
m

A
u

n
n

a
l

C
M

A
Q

v
4
.7

.1
IP

C
C

A
1
B

[5
4
]

19
96

-2
00

8
20

46
-2

05
8

36
x
3
6

k
m

S
u

m
m

er
C

A
M

-C
h

em
&

N
R

C
M

-
C

h
em

IP
C

C
A

2
&

R
C

P
8
.5

[6
4
]

20
01

-2
00

4
20

57
-2

05
9

12
x
1
2

k
m

A
n

n
u

a
l

C
M

A
Q

v
5
.0

R
C

P
4
.5

&
R

C
P

8
.5

[6
2
]

20
02

-2
00

4
20

57
-2

05
9

12
x
1
2

k
m

A
n

n
u

a
l

C
M

A
Q

v
5
.0

R
C

P
8
.5

[6
3
]

19
95

–2
00

5
20

25
–2

03
5

36
x
3
6

k
m

A
n

n
u

a
l

C
M

A
Q

v
5
.0

.2
R

C
P

4
.5

,
R

C
P

6
.0

&
R

C
P

8
.5

[6
5
]

20
01

-2
00

4
20

57
-2

05
9

12
x
1
2

k
m

A
n

n
u

a
l

C
M

A
Q

v
5
.0

R
C

P
4
.5

&
R

C
P

8
.5

[6
1
]

19
95

-2
00

5
20

25
-2

03
5

36
x
3
6

k
m

A
n

n
u

a
l

C
M

A
Q

v
5
.0

.1
R

C
P

6
.0

a
n

d
R

C
P

8
.5

[6
0
]



13

T
ab

le
1.

2:
M

o
d
el

in
g

st
u
d
ie

s
on

p
ol

le
n

em
is

si
on

an
d

tr
an

sp
or

t.

S
tu

d
y

S
p

a
ti

a
l

S
im

u
la

ti
o
n

P
la

n
t

E
m

is
si

o
n

m
o
d

e
l

T
ra

n
sp

o
rt

m
o
d

e
l

R
e
fe

re
n

c
e

lo
c
a
ti

o
n

re
so

lu
ti

o
n

y
e
a
r

ta
x
o
n

T
ex

as
,

U
S

A
4x

4
k
m

20
1
0

O
a
k

E
m

p
ir

ic
a
l

m
o
d

el
C

M
A

Q
[6

9
]

C
O

N
U

S
50

x
50

k
m

20
0
1
-2

0
0
4
,

20
4
7
-2

0
5
0

O
a
k
,

ra
g
w

ee
d

,
b

ir
ch

,
m

u
g
w

o
rt

,
g
ra

ss
M

ec
h

a
n

is
ti

c
m

o
d

el
C

M
A

Q
[3

]

E
u

ro
p

e
50

x
50

k
m

20
0
0
-2

0
1
0

R
a
g
w

ee
d

C
L

M
v
4
.5

R
eg

C
M

4
[7

0
]

C
en

tr
al

E
u
ro

p
e

0.
06

°
x
0.

06
°

20
1
2

B
ir

ch
E

m
p

ir
ic

a
l

m
o
d

el
C

O
S

M
O

-A
R

T
[7

1
]

F
ra

n
ce

N
A

20
1
2

R
a
g
w

ee
d

E
m

p
ir

ic
a
l

m
o
d

el
C

O
S

M
O

-A
R

T
[7

2
]

S
p

ai
n

50
x
50

k
m

19
9
2
-2

0
0
4
,2

0
2
5
,

20
5
0
,2

0
7
5
,2

0
9
9

O
a
k

S
te

p
w

is
e

re
g
re

ss
io

n
S

te
p
w

is
e

re
g
re

ss
io

n
[7

3
]

J
ap

an
10

x
10

k
m

19
9
0

C
ed

a
r

M
et

eo
ro

lo
g
ic

a
l

p
a
-

ra
m

et
er

iz
a
ti

o
n

G
a
u

ss
ia

n
m

o
d

el
[7

4
]

C
O

N
U

S
12

x
12

k
m

20
0
0

O
a
k

U
n

if
o
rm

d
iu

rn
a
l

p
ro

fi
le

H
Y

S
P

L
IT

[7
5
]

G
er

m
an

y
4x

4
k
m

20
0
0

H
a
ze

l,
a
ld

er
E

m
p

ir
ic

a
l

m
o
d

el
D

R
A

lS
C

T
M

[7
6
]

S
w

it
ze

rl
an

d
7x

7
k
m

20
0
6

B
ir

ch
E

m
p

ir
ic

a
l

m
o
d

el
C

O
S

M
O

-A
R

T
[7

7
]

C
en

tr
al

E
u
ro

p
e

7x
7

k
m

20
0
6

R
a
g
w

ee
d

E
m

p
ir

ic
a
l

m
o
d

el
C

O
S

M
O

-A
R

T
[7

8
]

E
u

ro
p

e
0.

25
°
x
0.

25
°

20
0
6

B
ir

ch
P

ro
b

a
b

il
is

ti
c

m
o
d

el
S

IL
A

M
[7

9
,

8
0
]

E
u

ro
p

e
M

u
lt

ip
le

re
so

lu
-

ti
on

an
d

la
ye

rs
20

1
0
-2

0
1
3

B
ir

ch
P

ro
b

a
b
il

is
ti

c
m

o
d

el
M

u
lt

ip
le

E
n

se
m

b
le

M
em

b
er

s
[8

1
]

F
in

la
n

d
1x

1
k
m

20
0
2
-2

0
0
4

B
ir

ch
A

er
o
b

io
lo

g
y

o
b

se
r-

va
ti

o
n

s
S

IL
A

M
[8

2
]

G
er

m
an

y
50

0x
50

0
m

20
0
0

O
a
k

M
et

eo
ro

lo
g
ic

a
l

p
a
-

ra
m

et
er

iz
a
ti

o
n

M
E

T
R

A
S

[8
3
]

E
u

ro
p

e
0.

25
°
x
0.

25
°

20
0
5
-2

0
1
1

R
a
g
w

ee
d

E
m

p
ir

ic
a
l

m
o
d

el
S

IL
A

M
[8

4
]

N
or

th
E

as
te

rn
U

S
A

12
x
12

k
m

20
0
2

B
ir

ch
,

ra
g
w

ee
d

E
m

p
ir

ic
a
l

m
o
d

el
C

M
A

Q
[8

5
]

C
al

if
or

n
ia

U
S

A
12

x
12

k
m

,
4x

4
k
m

19
9
5
–
2
0
0
4
,

20
4
5
–
2
0
5
4

M
u

lt
ip

le
T

a
x
a

S
T

a
M

P
S

C
M

A
Q

[8
6
,

8
7
]



14

1.2.3 Exposures to allergenic pollen and ozone

Pollen exposure is typically calculated based on measurements at monitoring stations

[98]. Peel et al. [99] investigated the relation between grass pollen dose and pollen

concentration at pollen monitoring station and observed a median ratio of dose rate to

background concentration of 0.018. Riediker et al. [100] reported an average indoor-

outdoor ratio of 0.2 for pollen when considering personal activity patterns. However,

the accuracy of exposure assessments can be limited by the availability of pollen

monitoring stations and the distances between the subjects and the stations. Per-

sonal pollen samplers have been proposed to measure the actual pollen concentration

people are exposed to [101, 102, 103]. Yamamoto et al. [102] developed the Per-

sonal Aeroallergen Sampler (PAAS), a passive sampler for aeroallergens, for personal

exposure assessments of cedar and cypress pollens. They found that the seasonal

peak of the personal pollen exposures was not consistent with the outdoor concen-

trations, which indicates insufficiency of the stationary pollen outdoor monitoring.

Myszkowska et al. [104] compared pollen counts from personal pollen sampler and

stationary pollen monitoring and found that results differed for varied conditions.

The average inhalation exposure to ragweed pollen during a typical ragweed season

in Baltimore was estimated to be 960 pollen grains/day for an average 11 year old

child and 1536 pollen grains/day for an adult [105]. Driessen and Quanjer [106] re-

ported that personal pollen inhalation exposure ranged from 2,500 to 20,000 pollen

grains/day when pollen concentration are 250-1,000 pollen grains/m3. Zhang [3] sim-

ulated population exposures to five taxa of pollen with observed pollen counts across

the CONUS. The changes of exposures to pollen between 1990s and 2000s in the nine

climate regions of the CONUS were also compared. It was found that inhalation

and dermal deposition were the dominant exposure routes for allergenic pollen. The

average inhalation exposure to oak pollen varied from 42 pollen grains/(day kg BW)

in the Southwest region to 1,073 pollen grains/(day kg BW) in the South region. The

aggregated exposure to allergenic pollen in outdoor environments was estimated to
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be about three to four times of that in indoor environments.

Compared with pollen, ozone has a higher penetration rate and the indoor ozone

concentration can be a significant fraction of ambient ozone concentration [27]. There-

fore, ozone exposures indoors and outdoors are both important. The indoor-to-

outdoor (I/O) ratios of ozone concentration range from < 0.1 to 0.9 depending on

indoor environments and ventilation rates [27]. Ozone concentration at monitoring

stations is a common surrogate for outdoor ozone concentration. Personal ozone mon-

itoring is also used for ozone exposure assessment as the ozone concentration has a

large variation in different micro-environments. Brauer and Brook [107] compared

personal and stationary ozone monitoring with a passive sampler and found that

ozone exposure based on ambient monitoring would be misclassified because time-

activity patterns have significant impacts on ozone exposure. Total personal ozone

exposure is affected by ozone concentration and time spent indoors and outdoors

[26, 23]. Weschler [23] reported that the daily inhalation intake of ozone indoors is 25

to 60% of total daily ozone intake. The total personal daily ozone intake varied from

100 µg/day to 700 µg/day [23, 108, 109, 110, 111, 107, 112, 107]. Geyh et al. [109]

measured personal exposure to ozone of approximately 200 school children 6-12 years

old in Southern California for a year using personal samplers and ozone monitors at

homes, and found that personal exposure to ozone differed by location and gender,

but not by age group. Lee et al. [110] studied outdoor/indoor ozone exposures of

10-12 year old children in Tennessee. The results showed that personal ozone expo-

sure has a positive correlation with time spent outdoors. Liu et al. [111] assessed

personal exposure to ozone of 23 children in Pennsylvania using indoor, outdoor and

personal ozone measurements and found that personal activity data are crucial inputs

for ozone exposure.
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1.2.4 Machine Learning for pollen prediction

Most of the studies on modeling and forecasting of allergenic pollen concentration

under changing climate fall into two categories: numerical and statistical models.

Numerical models, mostly regional-scale, can predict pollen concentrations based on

mathematical equations, plant distributions, phenological, aerobiological, and mete-

orological data [81, 79]. Statistical models are mostly local-scale and try to predict

pollen concentrations based on statistical relations between airborne pollen concen-

tration and independent variables such as meteorological factors and previous pollen

observations [113]. Machine Learning (ML) methods, a family of statistical techniques

that originated from the field of artificial intelligence, have drawn increasing attention

in this field due to their flexibility and capability to handle complex problems with

multiple interacting elements [114, 115, 116].

ML algorithms can be divided into the following four categories according to their

purpose:

� Supervised Learning algorithms deal with datasets that have both inputs and

outputs. In other words, the outcomes are labeled. They can solve both clas-

sification and regression problems, and are mainly used in predicting modeling

[117, 118].

� Unsupervised Learning algorithms take a dataset that contains only inputs (out-

comes not labeled) and try to find structure in the data, by clustering or group-

ing of data points. They are generally used for descriptive modeling [119].

� Semi-supervised Learning is in-between supervised and un-supervised learning.

It is important for problems in which the data are a combination of labeled and

unlabeled data.

� Reinforcement Learning algorithms use observations collected from the interac-

tion with the environment to make a specific decision. They are often used in
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game theory, control theory, simulation-based optimization, etc. [120, 121].

Some of the commonly used Supervised Learning algorithms are Support Vec-

tor Machines (SVM), Decision Trees, Artificial Neural Networks (ANN), k-nearest

Neighbor Algorithm, Naive Bayes, Logistic Regression, Linear Regression etc. SVM

maps the input vectors to a high-dimension feature space, in which a hyperplane is

constructed to separate or classify the data points [122]. Decision Trees predict the

value of a target variable based on several input variables [123]. Based on the type

of outcome variables, there are classification trees and regression trees. Classification

and Regression Tree (CART) analysis refers to both types of Decision Trees [124].

ANN are computing systems that mimic biological Neural Networks [125]. They are

a set of connected neurons organized in input, hidden and output layers. Random

Forests or random decision forests are an ensemble model made of many Decision

Trees constructed based on random subsets of features for classification or regression

[126, 127]. They were developed to resolve the dilemma between over-fitting and

achieving maximum accuracy in Decision Trees algorithm.

Several studies have applied ML methods such as Neural Networks [113, 128, 129]

and Random Forest [114, 115] for pollen concentration prediction. However, the input

variables and model validation methods all differ between these studies and therefore

it is hard to compare these models against each other.

1.3 Main Hypotheses and Objectives

Based on the review above, the following hypotheses are proposed:

� Hypothesis 1: Climate change will affect the onset, duration and spatiotem-

poral distribution of allergenic pollen across the CONUS.

� Hypothesis 2: High ozone and high allergenic pollen concentrations are likely

to occur at the same time, affecting human health in a synergistic manner.
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� Hypothesis 3: Population exposures to ozone and ragweed pollen vary by age,

gender and location.

� Hypothesis 4: Daily mean pollen concentrations can be predicted using me-

teorological parameters via ML methods.

The overarching goal of this dissertation is to investigate the patterns of co-

occurring pollen and ground-level ozone across the CONUS under changing climate,

and to estimate human exposures to those pollutants. In addition, ML methods

will be evaluated for local-scale prediction of allergenic pollen concentration. The

proposed hypotheses will be tested by addressing the following objectives:

� Objective 1:Examine spatiotemporal distributions of allergenic pollen and

ozone concentrations across the CONUS in 2004 and in 2047 under the RCP

8.5 scenario.

� Objective 2: Examine how climate change may affect patterns of co-occurring

pollen and ground-level ozone across the CONUS.

� Objective 3: Simulate population exposures to allergenic pollen and ozone em-

ploying results from Objective 1, human behavior characteristics, demographic,

housing, and activity databases available at the Computational Chemodynam-

ics Laboratory (CCL).

� Objective 4: Test different ML methods for prediction of allergenic pollen

concentrations in local scales and find the best fit model.

1.4 Dissertation Overview

The overall modeling framework (Figure 1.3) of the present study is constructed

with main components such as the WRF, Sparse Matrix Operator Kernel Emissions
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(SMOKE), CMAQ, exposure models, and ML models. Multiple databases are avail-

able to be used as input to drive these models. The major databases used in this

study are summarized in Table 1.3. Meteorology is being downscaled with WRF from

the Community Earth System Model (CESM) following Representative Concentra-

tion Pathway (RCP) 8.5 scenario for the CONUS. The WRF outputs are processed

with Meteorology-Chemistry Interface Processor (MCIP) to provide inputs for the

CMAQ-Pollen modeling system (a customized version of CMAQ 4.7.1 extended with

pollen modeling components), that has been developed by CCL [3] to model the spa-

tiotemporal distributions of allergenic pollen. Observed daily allergenic pollen counts

are collected from certified monitoring stations of the National Allergy Bureau (NAB)

of the American Academy of Allergy, Asthma & Immunology (AAAAI) across the

CONUS and parts of Canada. Historical ozone concentrations for the pollen monitor

stations are available through the EPA air quality databases [130]. Population ex-

posure to pollen and ozone are simulated with the Modeling Environment for Total

Risk Studies (MENTOR) system developed by CCL, employing demographic, hous-

ing, and activity databases available as components of the MENTOR system [131].

In Chapter 1, the motivation and background of this study are introduced. Cur-

rent status and progress of studies on impacts of climate change on ambient air quality

are reviewed. Different air quality models are compared. Research on application of

ML methods in air quality monitoring and forecasting are summarized. Then the

hypotheses, objectives and organization of this dissertation are outlined.

Chapter 2 presents the spatiotemporal profiles of simulated allergenic pollen (oak

and ragweed) concentration in a historical year (2004) and s future year (2047).

The CMAQ-Pollen model was evaluated using various metrics. The changes of pollen

indices (mean/maximum pollen concentration, pollen season start date/season length,

pollen concentration exceedance hours) for each of the nine climate regions between

historical year and future year are examined.
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Chapter 3 presents analyses of the observed ragweed pollen and ozone concen-

trations. The changing patterns of ragweed pollen indices are investigated. The

co-occurrence of ragweed pollen and ozone exceedances at selected locations are re-

ported. The spatiotemporal distribution of simulated ragweed pollen and ozone con-

centrations in 2004 and 2047 are presented and compared. The co-occurrence of rag-

weed pollen and ozone exceedances across the CONUS and its impacts on population

are then evaluated. Inhalation exposures to ragweed pollen and ozone are simulated

based on CMAQ model outputs, demographic, human activity and exposure factors.

In Chapter 4, six ML methods are tested for prediction of ragweed pollen con-

centration at Newark, NJ. Five ML techniques are assessed for ragweed pollen level

classification. The performances of each model were compared and the best model is

reported. Limitations and advantages of ML techniques are presented.

In Chapter 5, the major findings of this dissertation and recommendations for

future research are summarized. Applications of the research results from this study

are also suggested.
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Chapter 2

ALLERGENIC POLLEN CONCENTRATION

UNDER CLIMATE CHANGE

Material in this chapter has been previously published or submitted for publication

as:

Ting Cai, Yong Zhang, Xiang Ren, Leonard Bielory, Zhongyuan Mi, Christopher G.

Nolte, Yang Gao, L. Ruby Leung, and Panos G. Georgopoulos. Development of a

semi-mechanistic allergenic pollen emission model. Science of The Total Environment,

653:947957, 2019.

Ting Cai, Yong Zhang, Xiang Ren, Zhongyuan Mi, Leonard Bielory, Christopher G.

Nolte, Shan He, and Panos G. Georgopoulos. Modeling spatiotemporal distributions

of airborne alergenic pollen in the CMAQ-Pollen modeling system. Science of The

Total Environment (In preparation).

2.1 Abstract

This chapter studies the impacts of climate change on the concentrations of allergenic

pollen in the 2050s based on the RCP 8.5 scenario. A modeling system incorporating

pollen emission and transport has been used to simulate the 2004 and 2047 spa-

tiotemporal distributions of allergenic pollen of oak and ragweed, which are two of

the top allergens in the North America. It is found that oak pollen emissions start

from the Southern part of the CONUS in March and then shift gradually toward

the Northern CONUS. On the other hand, ragweed pollen emissions start from the

Northern CONUS in August and then shift gradually toward the Southern CONUS.
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Process analysis revealed that dry deposition, emission and vertical eddy diffusion

are the dominant processes determining the ambient pollen concentrations. The im-

pact of climate change on oak pollen season varies in the nine climate regions across

the CONUS. The mean and maximum hourly concentrations of oak pollen were pre-

dicted to increase in the Northeast, South and Southeast regions, but to decrease in

the Northwest, East North Central, and West North Central regions. The oak pollen

season was estimated to start earlier in the Central, Northeast, South and Southeast

regions. The oak pollen season length was estimated to shorten by 1-2 days for most

regions, except the Southeast and Southwest regions. It was estimated that ragweed

pollen seasons will start earlier and last longer for all the nine climate regions. The

mean and maximum hourly concentrations of ragweed pollen were predicted to in-

crease significantly in the Northwest, Southeast, Southwest and West regions. The

number of hours in which the ragweed pollen concentrations exceed the threshold

value (30 pollen grains/m3) were estimated to increase by 1.2%-34.3% in most re-

gions, except the Central, East North Central and the West North Central regions.

2.2 Introduction

Airborne allergenic pollen from trees, weeds and grass is one of the main triggers

of AAD affecting 5% to 30% of the population in industrialized countries [132, 133,

134, 80]. It has been estimated that pollen-related asthma emergency department

visits across the CONUS will increase by 14% in 2090 under a high greenhouse gas

emission scenario [135]. Climate change is critically affecting emissions of natural

pollutants such as pollen and spores as well as biogenic gases which are components of

atmospheric photochemistry reaction systems. The rising temperature and changes in

precipitation will also increase the levels of aeroallergens including pollen [8]. Studies

on impacts of climate change on emission and transport of allergenic pollen from

multiple taxa are needed to estimate the potential consequences for public health.
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Duhl et al. [136] studied the impact of climate change on pollen season under the

IPCC SRES A1B scenario as simulated by the fifth-generation atmospheric general

circulation model (ECHAM5). Meteorological inputs of current (1995–2004) and

future (2045–2054) years downscaled using the WRF model were used to drive the

Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model to estimate

the relative magnitude and timing of pollen season for six tree genera (Betula, Juglans,

Morus, Olea, Platanus and Quercus) and one grass genus (Bromus) in California and

Nevada. It was found that pollen season will start an average of 5-6 days earlier under

predicted future climatic conditions, while the changes of pollen production varied by

species. Zhang [3] used a WRF-SMOKE-CMAQ-Pollen modeling system to simulate

the changes of pollen season and pollen concentration under the IPCC A2 scenario.

It was estimated that the regional average pollen concentrations will decrease in the

majority of climate regions during the period of 2047-2050 for ragweed, mugwort and

grass. But the population will potentially have increased number of AAD attacks

from oak and birch pollen in most area. The pollen season of oak was found to

start earlier in recent years in Spain [73], and will continue to increase under the

meteorological data forecast using the Regional Climate Model (RCM).

In RCP 8.5 scenario, future anthropogenic greenhouse gas emissions are assumed

to rise continually throughout the 21st century. The goal of this study was to in-

vestigates impacts of climate change on the concentrations of allergenic pollen in the

2050s across the CONUS based on the RCP 8.5 scenario. Two of the top allergens

in the North America, oak and ragweed were selected. The changes of pollen indices

(Start Date, Season Length, etc.) in the nine climate region of CONUS were exam-

ined. The simulation results are evaluated using the observed pollen count from the

monitor stations of the National Allergy Bureau (NAB) of the American Academy

of Allergy, Asthma, and Immunology (AAAAI) across the CONUS. Process analyses

are conducted to investigate the contribution of each physical process on airborne

pollen concentrations.
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2.3 Methods

2.3.1 Model configuration

The configurations of each component model are listed in Table 2.1. The meteorology

inputs are derived from a climatological simulation of the year 2004 and 2047 by the

Community Earth System Model (CESM), which was downscaled using the WRF

model [65, 137]. The future meteorology in 2047 was simulated based on the RCP

8.5 scenario, which is the pathway with the highest greenhouse gas emissions [138].

The pollen emission model was developed by Zhang [3] and Cai et al. [97], and the

details of the emission model development are provided in Appendix B. The pollen

transport model CMAQ-Pollen was developed by Zhang [3] and Cai et al. [139]. It was

adapted from the existing CMAQ modeling system (v4.7.1) [140]. Pollen grains were

treated as inert coarse mode aerosol. Physical properties such as density, diameter and

diameter distributions and other related information (e.g. cutoff maximum aerosol

diameter) of coarse mode were adapted in relevant CMAQ modules (AERO5), so that

the adapted CMAQ-Pollen model could handle the simulation of spatial and temporal

distributions of pollen. The CMAQ-Pollen model was run for 2004 and 2047 covering

the CONUS with 36 km horizontal grid spacing, temporal resolution of one hour,

and 34 layers in the vertical direction. The simulation results for 2004 were evaluated

using the observed pollen counts from the monitor stations of the NAB of the AAAAI

across the CONUS.

Table 2.1: Configuration of the meteorology, emission and transport model for
studying distributions of airborne allergens.

Model Resolution, Period Domain Reference
Layers

Meteorology WRF v3.4.1 36x36 km, hourly 2004, CONUS [65, 137]
34 2047

Pollen Semi-mechanistic 36x36 km, hourly 2004, CONUS [3, 97]
emission model 1 2047

Pollen Adapted 36x36 km, hourly 2004, CONUS [3, 139]
transport CMAQ v4.7.1 34 2047
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2.3.2 Initial and boundary conditions

For oak, the simulation for the CONUS domain was run from 00:00 of March 1st

through 23:00 of April 30th of 2004 and 2047. For ragweed, the simulation was run

from 00:00 of August 1st through 23:00 of September 30th of 2004 and 2047. March

1st and August 1st generally precede the earliest flowering day of oak and ragweed

across the CONUS, respectively. Therefore, the simulations were initialized with no

existing pollen.

For simulation on the CONUS domain, Boundary Conditions (BC) of pollen were

set to zero with the eastern and western boundaries of simulation domain border-

ing the Atlantic and Pacific oceans, and northern and southern boundaries adjoining

Canada and Mexico. To investigate the influence of BC on airborne pollen concen-

trations, one additional simulation on the CONUS domain was run for oak pollen

between March 1st and April 30th, 2004 by prescribing the BC values for all four lat-

eral boundaries as 10 pollen grains/m3 at each time step of the CMAQ-Pollen model.

The difference of simulated airborne pollen concentrations in the lowest layer between

the simulations with the two BCs was calculated to examine the impact of BCs on

airborne pollen concentrations.

2.3.3 Process analysis of pollen transport model

The physical processes governing the transport and removal of pollen grains from air

include cloud processes, dry deposition, horizontal and vertical advection, and hori-

zontal and vertical diffusion. Dry deposition process is treated in the vertical diffusion

process as a flux boundary condition at the bottom of the model layer. It includes

the effect of gravitational settling. Wet deposition is simulated in cloud processes,

which include both in cloud and below cloud scavenging. Wet deposition depends

on the precipitation rate and concentration in cloud water. Effects of convection on

pollen transport are treated separately through modules of horizontal and vertical
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advection.

The Process Analysis Preprocessor (PROCAN) was compiled together with an

adapted CMAQ model to activate the process analysis function in the CMAQ-Pollen

modeling system [140]. The process analysis was conducted to identify the contri-

butions of each physical process on airborne pollen concentrations. The physical

processes incorporated into the process analysis included cloud process, dry deposi-

tion, emission, horizontal and vertical advection, and horizontal and vertical diffusion.

Process analysis was carried out using the time series of simulated hourly concentra-

tions of allergenic oak pollen during the pollen season in 2004 in the grid cell that

contains the pollen monitoring station at the Atlanta Allergy and Asthma Clinic

(coordinates: 33.97°N, 84.55°W). This area has an elevation of 366 m, annual mean

temperature of 16.8 °C, and annual mean precipitation of 1,286 mm.

2.3.4 Evaluation of model performance

Due to the fact that the meteorology data used in the study are downscaled from

a global climate model without assimilating weather observations, the day-to-day

weather variability cannot be represented [65]. Therefore, it is hard to compare the

simulation results with the pollen observation on a daily basis. Instead, the evalu-

ation is focused on seasonal and monthly temporal scales. Correlation analysis of

the observed seasonal mean pollen concentrations at pollen monitoring stations with

the corresponding simulated seasonal mean pollen concentrations was conducted with

normalized pollen data (mean zero and unit standard deviation). The observed pollen

concentrations at a monitor station are paired with the simulated pollen concentra-

tions in a grid cell that contains the corresponding pollen monitoring station. The

simulated pollen concentrations are derived from the simulated hourly concentrations

in the model’s lowest layer (i.e., layer 1) because observations of pollen counts are

generally made near the surface. The model’s lowest layer on average extends from 0

to 60 m above the ground. Fractional bias (FB) of simulated seasonal pollen counts
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(sum of daily pollen concentration) are reported:

FBi = 2
SCSim,i − SCObs,i

SCSim,i + SCObs,i

(2.1)

where FBi is the fractional bias of simulated seasonal pollen count at station i, SCSim,i

is the simulated seasonal pollen count of station i, SCObs,i is the observed seasonal

pollen count of station i. Hit and false rates are common indexes to evaluate the

simulated daily pollen concentration. Procedures from the literature are followed to

calculate the hit and false rates at three different concentration levels [84, 78], which

are 10, 50 and 100 pollen grains/m3, respectively. The details of the calculations are

presented in Appendix B.

2.3.5 Uncertainty analysis

Uncertainties generally pervade the entire modeling process [141]. They may result

from different components and modules of the modeling framework [142]. In the

current study, we made qualitative judgment on the relevance of uncertainty sources

for each modeling component, and the general procedures to diagnose and reduce

uncertainty.

2.3.6 Impacts of climate change on spatiotemporal distribution of aller-

genic pollen

To examine the impact of climate change on pollen season and pollen levels across

the CONUS, five metrics were evaluated: the mean hourly concentration, maximum

hourly concentration, Start Date (SD) of pollen season, pollen Season Length (SL),

and the number of hours exceeding the pollen threshold concentrations during pollen

season. Figure 2.1 shows the procedures for calculating the pollen indices for the nine

climate regions (Figure 2.2). The climate regions are classified according to the long

term observed temperature and precipitation based on the database of the National
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Climatic Data Center of the National Oceanic and Atmospheric Administration [143].

The threshold concentrations for calculating the number of exceedance hours are 13

pollen grains/m3 for oak and 30 pollen grains/m3 for ragweed. These threshold values

were chosen based on the clinical symptoms of allergic disease in sensitive patients

[80, 144, 145].

Spatiotemporal 
Profiles of 

Pollen Conc., 
SD, SL:  

2004/2047

9 Climate 
Regions

Preprocess

Pollen Indices:
Mean & Max Hourly 

Conc,
SD, SL, 

Exceedance Hours

Statistical 
Analysis

Pollen Indices 
for 9 Climate 

Regions

Changes of 
Pollen Indices 
for 9 Climate 

Regions 

Figure 2.1: Calculation of pollen indices to assess climate change impacts on allergenic
pollen.

Only the simulated hourly pollen concentrations in the first layer of the mod-

eling grid (up to 60 meters above the ground) were analyzed because people are

mainly exposed to allergenic pollen is this layer. The mean hourly pollen concen-

trations (Chr,Mn(i, j)), the maximum hourly pollen concentrations (Chr,Mx(i, j)), and

the number of exceedance hours (NExd(i, j)) in each cell of the modeling grid were

calculated according to Equation 2.2,


Chr,Mn(i, j) =

∑
hr C(hr,i,j)

Nhr

Chr,Mx(i, j) = maxhr C(hr, i, j)

NExd(i, j) =
∑

hr 1C(hr,i,j)≥CThr

(2.2)

where Nhr is the number of simulation hours in each grid. 1 is the indicator function;

it takes 1 as its value when the hourly concentration C(hr, i, j) is greater or equal to
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the threshold concentration CThr, otherwise takes 0 as its value. The pollen indices

for 2004 and 2047 were calculated, and then the changes of each index between 2047

and 2004 were calculated using Equation 2.3,



∆Chr,Mn(i, j)/C2004
hr,Mn(i, j) =

C2047
hr,Mn(i,j)−C2004

hr,Mn(i,j)

C2004
hr,Mn(i,j)

∆Chr,Mx(i, j)/C2004
hr,Mx(i, j) =

C2047
hr,Mx(i,j)−C2004

hr,Mx(i,j)

C2004
hr,Mx(i,j)

∆SD(i, j) = SD2047(i, j)− SD2004(i, j)

∆SL(i, j) = SL2047(i, j)− SL2004(i, j)

∆NExd(i, j)/N
2004
Exd (i, j) =

N2047
Exd (i,j)−N2004

Exd (i,j)

N2004
Exd (i,j)

(2.3)

Figure 2.2: Distribution of the 58 studied pollen stations across the nine climate
regions in the contiguous US.

The mean and standard deviation of the change of a pollen index(e.g, SD) in a

climate region were the average value of the pollen index in the grids of that region. As
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an example, Equation 2.4 shows how to calculate the mean and standard deviations

of changes in SD in climate region k :


∆SDk =

∑
(i,j)∈Regionk ∆SD(i,j)

Nk

∆SDk,Std =
∑

(i,j)∈Regionk(∆SD(i,j)−∆SDk)2

Nk

(2.4)

where Nk is the number of grid cells in climate region k. The mean and standard

deviation of other indices in other climate regions were calculated similarly.

2.4 Results and Discussion

2.4.1 Vegetation coverage

Figure 2.3 presents the percentage of the area occupied by oak and ragweed in each

cell of the modeling grid covering the CONUS. The distributions of oak and ragweed

are kept as constant for 2004 and 2047. Oak trees are distributed mostly across

eight of the nine climate regions of the CONUS with the highest area coverages

(36%-58.8%) in the West, South, Central and Southeast climate regions. Ragweed is

mainly distributed in the western US, with the highest area coverages (60.1%-74.3%)

in the South and the West North Central climate regions. The classification of the

nine climate regions across the CONUS is illustrated in Figure 2.2. These vegetation

coverage maps are important inputs to the pollen emission model to calculate the

pollen emission fluxes in each cell of the modeling grid covering the CONUS.

2.4.2 Spatiotemporal distribution of airborne pollen concentration

To examine the temporal distribution patterns of the simulated airborne pollen, the

monthly mean oak/ragweed pollen concentrations at ground level during their early

and late flowering season are plotted in Figure 2.4. The overall patterns are consistent

with their emission patterns shown in B.1. Oak pollen only appeared in the Southern
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Figure 2.3: Area coverage of: (a) oak and (b) ragweed with 36-km horizontal grid
spacing over the CONUS.

CONUS in March, then occurred in the Northern CONUS in April. The maximum

mean oak pollen concentration is 4,500 pollen grains/m3. Ragweed pollen appeared
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first in the Northern CONUS in August and then shifted toward the Southern CONUS

in September. The distribution pattern also follows its emission pattern. The mean

ragweed pollen can reach up to 2x104 pollen grains/m3 during its peak season. Figure

2.5 displays simulated average oak and ragweed pollen concentrations for different

hours of the day. The oak pollen concentration in each cell of the modeling grid at

11:00 UTC is higher than that at 18:00 UTC (averaged over April 21-April 30, 2004),

and the ragweed pollen concentration in each cell of the modeling grid at 14:00 UTC

is higher than that at 18:00 UTC (averaged over September 21-September 30, 2004).

Figure 2.4: Spatial patterns of mean concentration of (a) oak pollen in March 2004;
(b) oak pollen in April 2004; (c) ragweed pollen in August 2004; (d) ragweed pollen
in September 2004.
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Figure 2.5: Time slices of spatiotemporal concentration profiles of (a) oak pollen at
11:00 UTC (averaged over April 21-April 30, 2004); (b) oak pollen at 18:00 UTC
(averaged over April 21-April 30, 2004); (c) ragweed pollen at 14:00 UTC (averaged
over September 21-September 30, 2004).

2.4.3 Evaluation of model performance

As shown in Figure 2.6, there is statistically significant correlation between observed

seasonal mean concentrations with the corresponding simulated seasonal mean con-

centrations for both oak and ragweed pollen. The Pearson correlation coefficient is

0.345 (p-value 0.0252 < 0.05) for oak pollen based on data from 42 monitoring sta-

tions, and 0.399 (p-value 0.0055 < 0.05) for ragweed pollen based on data from 47

monitoring stations. The data points for oak pollen are evenly distributed around

the 45-degree line. Three ragweed monitoring stations have larger deviations from

other stations that our model was not able to capture. The statistical distributions



36

of the daily simulated pollen concentrations at each pollen monitoring station dur-

ing pollen season compared with corresponding observation data are shown in Figure

2.8. For each pollen monitoring station, similar distribution between simulation and

observation data indicate good model performance. Our model was able to capture

the distribution of observed pollen concentration for most of the stations. For oak

pollen, the model was also able to simulate the extreme data points at the stations

with high concentration outliers.

Figure 2.7 shows the fractional bias of simulated seasonal pollen count. The

fractional bias for seasonal oak pollen count was mostly greater than 0, indicating

overestimation of the pollen concentration. The fractional bias for ragweed pollen

concentration was also greater than 0 for most stations, suggesting overestimation

in the model performance. However, the model was able to capture the variation of

the pollen observation as shown in the correlation analysis in Figure 2.6. Hit and

false rates are metrics to check whether the simulated and observed exceedances are

consistent and co-located. Figure B.8 and Figure B.9 present the hit rates and false

rates for predicted and observed daily oak and ragweed pollen concentrations for

three pollen levels at the studied stations during 2004 across the CONUS. The hit

rates for airborne oak and ragweed pollen levels of 10, 50 and 100 pollen grains/m3

were all between 70% and 100% for most of the studied stations. This indicates that

the observed exceedances of three thresholds were mostly correctly predicted by the

modeling system of pollen emission and transport. The false rates for airborne oak

pollen level of 10 pollen grains/m3 were between 0 and 30% for most of the studied

stations, but the false rate increased at levels of 50 and 100 pollen grains/m3. The

false rates were over 30% for most stations, which indicates that the CMAQ-Pollen

model overestimated the ragweed pollen concentration.
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Figure 2.6: Scatterplots of normalized observed seasonal mean concentrations and
simulated seasonal mean concentrations in 2004 for oak and ragweed pollen at selected
pollen monitoring stations with 45-degree line.

Figure 2.7: Fractional biases of predicted pollen concentration during 2004 across
the CONUS. (a) Fractional bias of seasonal oak pollen counts; (b) Fractional bias of
seasonal ragweed pollen counts.
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Figure 2.8: Seasonal box plots of normalized simulated daily concentrations of oak
pollen (top) and ragweed pollen (bottom) compared against observed pollen concen-
trations in 2004 at pollen monitoring stations. Boxes range from the 25th to 75th
percentiles with the dark line denoting the median and the dark dots denoting the
outliers.
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2.4.4 Process analysis

Figure 2.9 presents the contributions of advection, diffusion, dry deposition, emis-

sion and cloud processes on the hourly oak pollen concentrations between local time

00:00 UTC April 1 to 23:00 UTC April 10, 2004 in Atlanta, Georgia. Dry deposition,

emission and vertical eddy diffusion were the dominant processes determining ambi-

ent concentrations of oak pollen. The emission process continuously released pollen

grains into the air following a regular diurnal pattern. The two emission and concen-

tration peaks at around local time EST 5 AM and 5 PM reflect the diurnal profiles

of oak pollen emission due to different meteorological conditions in early morning

and late afternoon. The majority of ambient pollen grains were removed from the

air through dry deposition. Generally, the pollen concentration near the surface rep-

resents a balance between emission and dry deposition. However, vertical diffusion

may dominate the transport of ambient pollen grains when there is strong turbulent

atmospheric movement. For example, pollen grains might be lifted up by turbulence

at neighboring locations (e.g., during a frontal passage) and subsequently transported

horizontally to Atlanta where vertical diffusion could bring them down to the low-

est layer under special weather conditions, and increase the pollen concentrations in

the lowest layer. The cloud process also played an important role through in-cloud

and below-cloud scavenging during rainy time (red line between April 6 and April

8 in Figure 2.9). Hence, depending on the meteorological conditions and emissions,

both varying diurnally and seasonally, different processes can play important roles

in determining the pollen concentrations near the surface, and influence the model

prediction skill.
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Figure 2.9: Contributions of advection, diffusion, dry deposition and cloud process on
the hourly oak pollen concentrations between 00:00 UTC April 1 to 23:00 UTC April
10, 2004 in Atlanta, Georgia. (Sim. Conc.: Simulated Concentration, Cloud Proc.:
Cloud Processes, Dry Deps.: Dry Deposition, Horiz. Adv.: Horizontal Advection,
Vert. Adv.: Vertical Advection, Horiz. Diff.: Horizontal Diffusion, Vert. Diff.:
Vertical Diffusion)

2.4.5 Influence of boundary conditions

Figure 2.10 displays the difference in ambient oak pollen concentration due to differ-

ent boundary conditions. In the majority of the grid cells, the mean hourly pollen

concentrations seem not to be remarkably influenced by the boundary conditions.

In some area of the west coast, such as California, Nevada, Arizona, Utah, Oregon

and Washington, the mean hourly concentrations increased by 1-2 pollen grains/m3

because of the changes in boundary conditions. These areas appear to have relatively

low oak area coverage and low emissions, so transport of pollen from the boundaries

may be a dominant source of oak pollen in those regions. In the current study, the
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simulated pollen concentrations were only mapped within the CONUS boundaries,

which are different from the model boundaries. An early study in some regions of

California has reported that dynamic BCs had barely improved the model perfor-

mances, and that perturbations in emissions significantly influenced the simulated

pollen concentrations [87]. Further investigations are needed to identify the impact

of BC on simulated pollen concentrations.

Figure 2.10: The difference in mean hourly concentrations of oak pollen between two
different boundary conditions (BC). The default BC was set as 0 pollen grains/m3,
and the other BC was set as 10 pollen grains/m3.

2.4.6 Impact of climate change on allergenic pollen

Distributions of allergenic pollen during 2004 and 2047

Figure 2.11 and Figure 2.12 show the spatial distribution of the mean and maximum

concentrations of oak and ragweed pollen in 2004 and 2047, which were calculated

based on Equation 2.2. The distribution patterns of oak and ragweed pollen both

follow the patterns of their area coverage as shown in Figure 2.3.
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The mean and maximum concentrations vary across the nine climate regions. For

oak pollen, the highest mean and maximum hourly concentrations occurred in the

Central, Southeast and South regions. For ragweed pollen, the highest mean and

maximum hourly concentrations occurred in the West North Central, South, and

Southwest regions. The mean hourly concentrations of oak pollen went up to 2,442

pollen grains/m3 and the maximum hourly concentrations of oak pollen can reach

up to 29,175 pollen grains/m3. The mean hourly concentrations of ragweed pollen

ranged from 1-12,187 pollen grains/m3, and the maximum hourly concentrations of

ragweed pollen varied from 23-3x106 pollen grains/m3.

 

Figure 2.11: Mean (Fig. a and b) and maximum (Fig. c and d) simulated hourly
concentrations of oak pollen in 2004 and 2047.

Figure 2.13 and Figure 2.14 present the simulated start date and season length of
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Figure 2.12: Mean (Fig. a and b) and maximum (Fig. c and d) simulated hourly
concentrations of ragweed pollen in 2004 and 2047.

oak and ragweed pollen season in 2004 and 2047. The oak pollen season in 2004 and

2047 started around March in the Southern US, around April in the Northern US.

While the ragweed pollen started from the Northern US in August, and then shifted

toward the Southern US in September. The oak pollen season length ranged from 10

to 46 days, and the ragweed pollen season length varied between 30 to 58 days across

the CONUS.

Figure 2.15 and Figure 2.16 display the number of hours in which oak and ragweed

pollen concentration exceeded the threshold values (13 pollen grains/m3 for oak and

30 pollen grains/m3 for ragweed) in 2004 and 2047 across CONUS. The exceedances

were calculated based on Equation 2.2. The oak pollen exceedances ranged from 0 to

1,462 hours, with the highest numbers appeared in the South, Southeast, Southwest
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Figure 2.13: Start date (Fig. a and b) and season length (Fig. c and d)) of oak pollen
season in 2004 and 2047.

and the West climate regions. The ragweed pollen exceedances ranged from 0 to 1,234

hours, with the highest numbers in the West North Central, the Southwest, West,

and the Northwest climate regions.
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Figure 2.14: Start date (Fig. a and b) and season length (Fig. c and d) of ragweed
pollen season in 2004 and 2047.

 

Figure 2.15: Number of hours in which oak pollen concentration exceeds 13 pollen
grains/m3 during 2004 and 2047.
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Figure 2.16: Number of hours in which ragweed pollen concentration exceeds 30 pollen
grains/m3 during 2004 and 2047.

Changes of allergenic pollen season between 2004 and 2047

Figure 2.17 presents the changes of the five pollen indices for oak: mean hourly

concentrations, maximum hourly concentrations, start date, season length, and ex-

ceedance hours, which were calculated based on Equation 2.3. Table 2.2 summarized

the regional mean and standard deviation of the changes in each pollen index for oak

pollen. As shown in Figure 2.17 and Table 2.2, the impact of climate change on oak

pollen season varies in the nine climate regions. The mean and maximum hourly

concentrations of oak pollen were predicted to increase in the Northeast, South and

Southeast regions, but to decrease in the Northwest, East North Central, and West

North Central regions. The Northeast region was estimated to experience the highest

increase in mean and maximum hourly concentrations on average for oak pollen. The

oak pollen season was estimated to start earlier in the Central, Northeast, South and

Southeast regions. The oak pollen season length was estimated to shorten by 1-2

days for most regions, except the Southeast and Southwest regions. The number of

hours in which the oak pollen concentrations exceed the threshold value (13 pollen

grains/m3) were estimated to increase most in the Northeast region by 31.6%.

Similarly, Figure 2.18 presents the changes of the five pollen indices for ragweed:
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mean hourly concentrations, maximum hourly concentrations, start date, season

length, and exceedance hours. Table 2.3 summarized the regional mean and stan-

dard deviation of the changes in each pollen index for ragweed pollen. As shown in

Figure 2.18 and Table 2.3, the response of ragweed pollen season to future climate

in 2047 varies in the nine climate regions. The mean and maximum hourly concen-

trations of ragweed pollen were predicted to increase significantly in the Northwest,

Southeast, Southwest and West regions. The ragweed pollen season was estimated

to start 1-3 days earlier in all the climate regions with longer pollen season. The

number of hours in which the ragweed pollen concentrations exceed the threshold

value (30 pollen grains/m3) were estimated to increase by 1.2%-34.3% in six regions,

while there was a decrease in the Central, East North Central and the West North

Central regions.

Table 2.2: Regional average and standard deviation of the changes in mean and
maximum hourly concentrations, start date, season length and exceedance hours for
oak pollen. (mean ± standard deviation).

Climate Region Mean Hourly 
(%) 

Max Hourly 
(%) 

Start Date 
(day) 

Season Length 
(day) 

Exceedance 
Hours (%) 

Central 5.0 ± 43.4 -7.8 ± 23.9 -1.6 ± 4.0 -0.4 ± 1.0 2.2 ± 17.3 
East North Central -63.2 ± 24.7 -38.8 ± 73.9 3.1 ± 3.8 -1.5 ± 1.0 -32.7 ± 48.4 
Northeast 89.7 ± 117.2 85.0 ± 193.6 -2.2 ± 1.2 -0.6 ± 1.2 31.6 ± 71.7 
Northwest -59.3 ± 39.4 -30.2 ± 54.9 2.9 ± 2.2 -2.1 ± 2.0 -60.7 ± 33.1 
South 3.0 ± 28 18.6 ± 39.6 -1.4 ± 3.4 -0.2 ± 1.2 1.1 ± 24.9 
Southeast 13.2 ± 37.7 5.2 ± 24.6 -7.7 ± 2.5 1.0 ± 1.4 9.4 ± 21.3 
Southwest 5.9 ± 31.3 -0.2 ± 35.7 0.5 ± 3.3 1.4 ± 1.2 7.0 ± 30.1 
West -5.6 ± 31.7 3.0 ± 40.1 4.1 ± 2.8 -0.2 ± 1.1 -0.3 ± 22.9 
West North Central -52.4 ± 41.8 -45.8 ± 32.0 6.8 ± 2.8 -1.4 ± 1.1 -66.6 ± 30.1 

 

 

 

 

 

 

 



48

 

Figure 2.17: Changes in oak pollen season between 2004 and 2047. (a) Mean
hourly concentrations, (b) Maximum hourly concentrations, (c) Start date, (d) Season
length, and (e) Exceedance hours
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(a) (b) 

(c) (d) 

(e) 

Figure 2.18: Changes in ragweed pollen season between 2004 and 2047. (a) Mean
hourly concentrations, (b) Maximum hourly concentrations, (c) Start date, (d) Season
Length, and (e) Exceedance hours
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Table 2.3: Regional average and standard deviation of the changes in mean and
maximum hourly concentrations, start date, season length and exceedance hours for
ragweed pollen. (mean ± standard deviation). 

Climate Region Mean Hourly 
(%) 

Max Hourly 
(%) 

Start Date 
(day) 

Season Length 
(day) 

Exceedance 
Hours (%) 

Central -2.1 ± 23.3 -1.2 ± 38.1 -2.8 ± 0.7 1.8 ± 0.6 -0.6 ± 28.9 
East North Central -12.5 ± 18.5 2.3 ± 32.3 -2.0 ± 0.8 1.4 ± 0.7 -19.7 ± 9.7 
Northeast -0.6 ± 25.1 0.1 ± 53.5 -1.8 ± 0.7 0.7 ± 0.5 11.9 ± 26.9 
Northwest 19.3 ± 40.7 18.6 ± 50.7 -0.7 ± 0.9 0.9 ± 0.8 34.1 ± 195.1 
South 0.5 ± 14.3 -5.3 ± 24.1 -3.3 ± 1.0 2.0 ± 0.6 1.8 ± 9.7 
Southeast 22.7 ± 21.0 12.4 ± 43.2 -2.9 ± 0.9 1.4 ± 0.6 34.3 ± 36.5 
Southwest 10.7 ± 14.6 3.7 ± 33.7 -3.1 ± 0.9 2.1 ± 0.7 1.2 ± 4.8 
West 11.4 ± 23.2 9.0 ± 33.6 -1.5 ± 0.8 1.0 ± 0.8 3.9 ± 6.6 
West North Central -2.5 ± 12.0 2.7 ± 25.2 -1.1 ± 1.2 0.8 ± 0.8 -3.8 ± 8.3 

 

 

 

 

 

 

 

2.4.7 Uncertainty analysis

There are substantial uncertainties in each of the components and modules of the

developed modeling system of pollen emission and transport. For each of the model

components and its modules, the uncertainty has mainly resulted from the model

formulations, parameters and the input data. In the current study, great efforts have

been made to identify and reduce the uncertainties in each of the model components

and modules based on different methods.

For the meteorology simulations from the WRF model, quality control measures

have been applied by a modeling group at USEPA to evaluate the quality of the

archived meteorology data [65, 137]. The pollen counts themselves may also be subject

to large uncertainties [146]. The observed pollen counts from NAB-AAAAI stations

were examined carefully according to quality control measures to ensure data quality

[10, 12].

For the developed pollen emission model, global sensitivity analysis was conducted

to identify sensitive and interactive input parameters based on Morris’ design [147,

97]. The values of highly sensitive and interactive parameters were carefully chosen

from the literature or parameterized using literature data. Many iterations of the



51

emission model have been tried to ensure the consistency and quality of the simulated

pollen emission data. For the pollen transport model, process analysis has been

conducted to identify the contributions of each physical process on the airborne pollen

concentrations.

2.5 Summary

A modeling system incorporating pollen emission and transport has been applied to

simulate the spatiotemporal distributions of allergenic pollen of oak and ragweed un-

der impacts of climate change. The simulation domain covers the CONUS with 36 km

horizontal grid spacing, temporal resolution of one hour, and 34 layers in the vertical

direction. The results were evaluated with correlation analysis, fractional bias, hit

and false rates. This model was able to capture the distribution of observed pollen

concentration. Process analyses indicate that dry deposition, emission and vertical

eddy diffusion were the dominant processes determining the ambient pollen concen-

trations. Uncertainty analyses were conducted to identify the sources of uncertainties

in each of the components of the pollen emission and transport system. The bound-

ary condition of airborne pollen concentration exerted remarkable influence on mean

pollen concentrations at locations with small emission sources.

Five pollen indices (mean hourly concentrations, maximum hourly concentrations,

start date, season length, and exceedance hours) were reported and compared for each

pollen species across the nine climate regions. It was estimated that ragweed pollen

season will start earlier and last longer under the RCP 8.5 scenario for all the nine

climate regions, with increasing average pollen concentrations in most regions. The

response of oak pollen season varies across the nine climate regions, with the largest

increase in pollen concentration in the Northeast region.
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Chapter 3

CO-OCCURRENCE OF ALLERGENIC POLLEN

AND OZONE EXCEEDANCES UNDER

CLIMATE CHANGE

3.1 Abstract

Prevalence of Allergic Airway Disease (AAD) is growing globally, resulting in in-

creased numbers of emergency department visits and hospitalizations. Clinical stud-

ies show that AAD can be exacerbated by the synergistic action of aeroallergens such

as pollen and spores, and atmospheric pollutants such as ozone. The present study

investigates changes of ragweed pollen indices (start date, season length, etc.) and

ozone indices (standard exceedances) during 1994-2010 in the nine climate regions

of the CONUS. Analyses of observed pollen counts and ozone concentrations at the

locations of 58 pollen monitor stations were conducted. The simultaneous impacts

of climate change on ragweed pollen and ozone concentration were studied. The

co-occurrence of ragweed pollen and ozone standard exceedances during historical

and future periods were investigated. It is predicted that the ragweed pollen and

ozone concentrations in 2047 under RCP 8.5 scenario will simultaneously increase for

the Southwest and West regions, but decrease for the Central, East North Central

and West North Central regions. The co-occurrence of ragweed pollen and ozone

exceedances will affect a remarkable fraction of population. Inhalation exposures to

ragweed pollen are higher in outdoor environments compared with indoor environ-

ments. Male and younger population groups tend to have higher exposures to ragweed

pollen and ozone.
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3.2 Introduction

Ambient air quality has been substantially impacted by climate change over the past

few decades. In fact, climate change critically affects both the atmospheric processes

involved in the dynamics of air pollution systems and the dynamics of biogenic emis-

sions, including tree and grass pollens and fungal spores. Synergism of allergenic

pollen with air pollutants like ozone and particulate matter has been reported and

can exacerbate the AAD of allergy sufferers [88, 134, 89, 14]. In particular, the pat-

terns of emission and transport of allergenic pollen and common air pollutants are

expected to be impacted by the changing climate [90, 61, 91, 92, 93, 12, 148].

The interaction between airborne pollen and gaseous pollutants, such as ozone,

has been investigated by some studies to evaluate the impacts of exposures to these

pollutants on pollen [149, 150, 151, 152, 153]. High ambient ozone levels have been

found to be a critical factor for enhanced allergenicity of birch pollen [154, 155].

It was revealed that ozone exposure triggers changes in both the chemotactic and

the immune modulatory potential of the pollen. Increased ozone exposure generated

enhanced allergen content and skin prick test reactivity. With increasing ozone levels,

the symptoms of pollen allergic patients will also increase. Experiments demonstrated

that elevated ozone exposure during the growth phase of plants will lead to increased

protein and allergen content of rye grass pollen [156]. Similar results were found

with another allergenic species, Arizona cypress, by skin tests and in vitro tests [157].

These findings indicate that with expected increase in air pollutants under climate

change, the airborne allergens and associated allergies are likely to increase. It was

estimated that 77 million people in Europe will have sensitization to ragweed pollen

by 2041–2060 under RCP 4.5 and 8.5 scenarios, which is double the current number

[148, 158].

The goal of this study was to investigate the changes of ragweed pollen indices

(start date, season length, etc.) and an ozone index (standard exceedances) during
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1994-2010 in the nine climate regions of the CONUS. Analyses of observed pollen

counts and ozone concentrations at the locations of 58 pollen monitor stations were

conducted. The spatiotemporal distribution of ozone concentration in 2047 under

RCP 8.5 scenario is compared with predicted ragweed pollen concentration under the

same climate scenario. The simulated co-occurrence of ragweed pollen and ozone ex-

ceedances in 2004 and 2047 were also compared. In addition, population exposures to

ragweed pollen and ozone were simulated with a virtual population. Factors affecting

people’s exposure to pollen and ozone were identified.

3.3 Methods

3.3.1 Analysis of historical ragweed pollen observation and ozone ex-

ceedances

Data sources

Observed daily airborne ragweed pollen counts were obtained from all available mon-

itoring stations of the National Allergy Bureau (NAB) at the American Academy of

Allergy, Asthma and Immunology (AAAAI) during the period of 1994-2010 across

the CONUS (Figure 2.2). Fifty-seven NAB-AAAI stations were selected, because

they recorded valid data for at least four years, for performing further analyses and

modeling parameterization. The main climate characteristics and geographical loca-

tions of the studied stations are listed in Table C.1. Observed daily temperatures,

precipitation and other climatic factors were obtained from the National Oceanic

and Atmospheric Administration (NOAA) meteorology stations nearest to the corre-

sponding NAB-AAAAI pollen stations.

Observed daily maximum 8-hour average ozone (DMA8[O3]) data were down-

loaded from EPA website [130] and matched with the ragweed pollen data according

to the longitude and latitude of the pollen monitoring stations and observation dates.

The closest ozone monitoring station to each pollen monitoring station was selected.
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Pollen indices

Four pollen indices were examined in this study: Start Date (SD), Season Length

(SL), Peak Value (PV ), and Annual total Production (AP ) of daily counted airborne

pollen. The pollen season start date and end date (days from January 1st of the

year) are defined as the days when the cumulative pollen count reaches 5% and 95%,

respectively, of the annual total pollen count. Season length (days) is defined as the

duration between the start date and end date. Peak value (pollen grains/m3) is the

maximum daily pollen count recorded during the pollen season. Annual production

(pollen grains/year) is the sum of daily pollen counts of a pollen season. Pollen data

with SL of less than 7 or greater than 80 days are assumed to be unreasonable and

excluded from analyses.

Changes of mean pollen indices between two periods: 1994-2000 and 2001-

2010

To investigate the changes in ragweed pollen indices in the past two decades, the pollen

data were divided into two periods: 1994-2000 and 2001-2010. There are limitations

in data availability as most of the pollen monitoring stations do not have a full record

of data during the two periods. Stations that have at least three years of data in

each period were selected for further analyses. Student’s t tests were performed to

check the significance of changes in pollen indices during the periods of 1994-2000

and 2001-2010.

Changes in pollen indices at station i were calculated using Equation 3.1,



∆SDi = SDi,P2 − SDi,P1

∆SLi = SLi,P2 − SLi,P1

∆AP i/AP i,P1 = (AP i,P2 − AP i,P1)/AP i,P1

∆PV i/PV i,P1 = (PV i,P2 − PV i,P1)/PV i,P1

(3.1)
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where SDi,P1, SLi,P1, AP i,P1 and PV i,P1 are the mean SD, SL, AP and PV , re-

spectively, during the period of 1994-2000 at station i ; and SDi,P2, SLi,P2, AP i,P2

and PV i,P2 are the mean SD, SL, AP and PV , respectively, during the period of

2001-2010. All the statistical tests are performed using R version 3.5.2 [159].

Co-occurrence of ragweed pollen and ozone exceedances in 1994-2010

After the observed ozone and ragweed data had been collected for each pollen moni-

toring station and matched according to observation date, the number of days when

both ragweed pollen concentration is greater than or equal to 1 and ozone exceedances

(DMA8[O3]>70 ppb) occur, are summed for each station and each year during 1994-

2010. Then the annual average number of days for co-occurrence of ragweed pollen

and ozone exceedances was calculated for each station. The pattern of this co-

occurrence is analyzed in the following.

3.3.2 Spatiotemporal distribution of ozone concentration under climate

change

The spatiotemporal distributions of ozone concentration in 2004 and 2047 were sim-

ulated by our collaborator Dr. C. Nolte’s group at the USEPA. The meteorology

inputs are the same as those used for the ragweed pollen concentration simulation,

which were downscaled from the CESM using WRF model. Only the meteorological

conditions and the methodologically dependent emissions are changed between 2004

and 2047 for the CMAQ simulations. All other inputs, such as the anthropogenic

emissions, chemical lateral boundary condisions, and land use and land cover clas-

sifications etc. were kept the same for the two simulations. The simulation domain

covers the CONUS with 36 km horizontal grid spacing, temporal resolution of one

hour, and 34 layers in the vertical direction.
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3.3.3 Spatiotemporal distribution of ragweed pollen concentration under

climate change

The simulations of spatiotemporal distributions of ragweed pollen concentration in

2004 and 2047 were discussed in Chapter 2. The monthly mean ragweed pollen

concentrations are presented in Figure 2.4. The seasonal mean and maximum ragweed

pollen concentrations are displayed in Figure 2.12. The results will be analyzed in

this chapter to compare with ozone concentration under climate change.

3.3.4 Co-occurrence of ragweed pollen and ozone exceedances under cli-

mate change

Based on the simulated ragweed pollen concentration and ozone concentration in 2004

and 2047, the regional changes of mean ragweed pollen concentration and DMA8[O3]

during August and September between 2004 and 2047 in each of the nine climate

regions were calculated. The number of days when both ragweed and ozone ex-

ceedance occur during the pollen season (August and September) in 2004 and 2047

were summed in each cell of the modeling grid and then plotted. The difference of the

number of days between 2004 and 2047 were calculated. These changes are calculated

based on Equation 3.2,


∆Chr,Mn(i, j)/C2004

hr,Mn(i, j) =
C2047

hr,Mn(i,j)−C2004
hr,Mn(i,j)

C2004
hr,Mn(i,j)

∆DMA8[O3]/DMA8[O3]2004(i, j) = DMA8[O3]2047(i,j)−DMA8[O3]2004(i,j)
DMA8[O3]2004(i,j)

∆NCo−oc(i, j) = N2047
Co−oc(i, j)−N2004

Co−oc(i, j)

(3.2)

where C2004
hr,Mn(i, j) and C2047

hr,Mn(i, j) are the mean ragweed pollen concentration (pollen

grains/m3) for cell (i, j) of the modeling grid during the pollen season in 2004 and

2047, DMA8[O3]2004(i, j) and DMA8[O3]2047(i, j) are the average daily maximum 8-

hour average ozone for cell (i, j) of the modeling grid during August and September

in 2004 and 2047, N2004
Co−oc(i, j) and N2047

Co−oc(i, j) are the number of days when both
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ragweed and ozone exceedance occur in cell (i, j) during the pollen season (August

and September) in 2004 and 2047.

3.3.5 Exposures to ragweed pollen and ozone

The exposures to ragweed pollen and ozone are estimated with a probabilistic model

based on the simulated ragweed pollen and ozone concentration in 2004, the demo-

graphic data and human activity patterns. Figure 3.1 presents the diagram of the

exposure modeling system. Because allergenic airway disease is caused by inhalation

exposure to allergens, only inhalation exposures to ragweed pollen and ozone are

considered.

Figure 3.1: The schematic illustration of exposure modeling system.

The exposures were simulated for 3000 “virtual subjects” in each of the nine

climate regions. The subjects were sampled from the demographic data for 2000 in

each region from the US Census Bureau [160] so that they can represent the population

in the region. Each subject was chosen randomly and assigned an age and gender.

The ragweed pollen/ozone concentrations are derived from the CMAQ simulation

results in 2004. Outdoor daily ragweed pollen/ozone concentrations (Cout(i, j)) for

a “virtual subject” on day i in climate region j are sampled from the simulated
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daily pollen/ozone concentration on day i in climate region j. The indoor daily

ragweed pollen/ozone concentrations (Cin(i, j)) for a “virtual subject” on day i in

climate region j is a ratio of the outdoor daily ragweed pollen/ozone concentrations

(Cout(i, j)), and the ratio is assumed to be uniformly distributed within a range as

reported in the literature [24, 27, 26, 161, 3].

The exposure time indoor and outdoor for each subject varies with his/her age,

gender, climate region and day of the year. The outdoor exposure time tout(i, j)

(hours) for a “virtual subjects” on day i in climate region j was sampled from the

observed outdoor exposure times based on his/her age and gender, which are retrieved

from the Consolidated Human Activity Database (CHAD) [162].

Exposure factors, including inhalation rates, are derived from the EPA Expo-

sure Factor Handbook [163]. The inhalation rate indoors, IRin(a, g) and outdoors,

IRout(a, g), depend on the subject’s age a, gender g and activity level as shown in

Equation 3.3 and 3.4,

IRin(a, g) = IR(a, g, LP )fP,in + IR(a, g, LL)fL,in+

IR(a, g, LM)fM,in + IR(a, g, LH)fH,in

(3.3)

IRout(a, g) = IR(a, g, LP )fP,out + IR(a, g, LL)fL,out+

IR(a, g, LM)fM,out + IR(a, g, LH)fH,out

(3.4)

where LP , LL, LM and LH indicate passive, low, moderate and high activity levels,

respectively; and fP,in, fL,in, fM,in and fH,in are fractions of time spent in indoor

environments at passive, low, moderate and high activity levels, respectively, fP,out,

fL,out, fM,out and fH,out are fractions of time spent in outdoor environments at passive,

low, moderate and high activity levels, respectively. The inhalation rates for different

ages, genders and activity levels, and the fractions of time spent at the corresponding

activity level are derived from data in the EPA Exposure Factors Handbook [163].

The inhalation exposures (Einha(i, j, a, g)) to ragweed pollen/ozone for a “virtual
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subject” with age a and gender g on day i in climate region j is calculated based on

Equation 3.5,

Einha(i, j, a, g) = IRin(a, g)Cin(i, j)tin(i, j) + IRout(a, g)Cout(i, j)tout(i, j) (3.5)

3.4 Results and Discussion

3.4.1 Historical ragweed pollen observation and ozone exceedances

Mean ragweed pollen indices across latitude

In order to investigate the spatial patterns of ragweed pollen across the CONUS,

the mean pollen indices for each pollen monitoring station during 1994 to 2010 are

calculated and plotted against the latitude of each station. As shown in Figure 3.2,

the ragweed pollen season starts earlier in areas with higher latitude and then shifts

to lower latitude areas. But the pollen season lasts longer at lower latitudes. The

peak pollen concentration and annual production both decrease as latitude increases.

Statistical tests shows that there is significant correlation (p-value < 0.05) between

start date/season length/annual production and latitude as shown in Figure 3.2.

Correlation between pollen indices and meteorological factors

Figure 3.3 presents the Pearson correlation heat map for the ragweed annual pollen

indices during 1994 to 2010 and the following factors: mean precipitation (PRCP),

mean wind speed (WDSP), minimum temperature (TMin), maximum temperature

(TMax), mean temperature (Temp) during pollen season, and the elevation and lati-

tude of the monitoring stations. Dots indicate significant correlation (p-value < 0.05)

between two variables, while an “x” indicates that the correlation was not statis-

tically significant. Start date has significant correlation with all the factors except

mean temperature. Season length has significant correlation with all the factors ex-

cept mean wind speed. Peak value is mainly affected by mean temperature, while
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Figure 3.2: The mean pollen indices (1994-2010) for each station across latitudes.
The pollen season start dates are represented as the number of days from January
1st of the year.

annual production is influenced by mean temperature, mean wind speed, maximum

temperature and latitude. Multiple linear regression was performed for each pollen

index and the factors above, and the coefficients are shown in Table 3.1. It is shown

that maximum temperature and elevation contribute significantly to start date in the

multiple regression model; maximum temperature, minimum temperature, elevation

and latitude are major contributors to Season Length; wind speed and latitude are

the significant contributors to Annual Production in the model.
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Figure 3.3: Pearson correlation heat map (with hierarchical clustering) for the pollen
indices and meteorology indices.

Table 3.1: Coefficients for the multiple linear regression between pollen indices and
meteorological and geological factors. Asterisk (*) indicates significant estimate
(p<0.05). Temp: mean temperature; PRCP: mean precipitation; WDSP: mean wind
speed; TMax: maximum temperature; TMin: minimum temperature. 

Pollen Index Temp PRCP WDSP Tmax Tmin Elevation Latitude 

Start Date 1.75 -7.87 -2.21 -3.74* 0.65 -0.02* 0.28 

Season Length 0.95 9.18 -0.31 2.90* -1.86* 0.02* -1.31* 

Peak Value 4.08 332.96 30.26 0.11 4.19 -0.02 -8.47 

Annual Production 80.92 917.28 357.59* -7.00 -29.15 -0.71 -145.93* 

 

 

 

 

 

 

 

Changes of mean pollen indices between periods 2001-2010 and 1994-2000

To analyze the changes in mean pollen indices for each station, there must be at least

three years of ragweed pollen data at each monitoring station in both periods: 2001-

2010 and 1994-2000. Therefore, only 17 stations are qualified. Table 3.2 displays

the differences of mean pollen indices for each station between periods 2001-2010
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and 1994-2000. The changes in start date and season length are visualized on the

maps in Figure 3.4 and Figure 3.5. The ragweed pollen season tends to start earlier

at most of the monitoring stations (13 of the 17 stations). The pollen monitoring

stations in the Central climate region all experienced earlier onset of pollen season

with the biggest change of 30 days. Changes in season length vary across latitudes

and climate regions (-8 days to +8 days). Nine of the seventeen stations experienced

a longer ragweed pollen season. Changes in peak value and annual production both

have very big variation. Changes in peak value vary from -84% to 258.9%, while

changes in annual production range between -89.8% to 148%. When examining the

changes in four pollen indices across latitude, it is found that the changes in peak

value and annual production decreased with latitude, while the changes in start date

and season length increased with latitude. This might be caused by the changes in

meteorological factors such as temperature, precipitation, humidity etc.
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Table 3.2: Changes of mean pollen indices for each station between periods 2001-2010
and 1994-2000. Asterisk (*) indicates significant changes (p<0.05).

Pollen 
Station 
ID 

Start 
Date 
(days) 

Season 
Length  
(days) 

Peak Value  
(%) 

Annual 
Production 
(%) 

Latitude 
(ºN) 

Longitude  
(ºW) 

25 1.5 -2.9 2.4 9.1 34.7 86.6 
26 5.3 4.5 121.3 148.0* 34.8 92.4 
28 -0.3 -0.5 20.6 1.3 35.3 80.8 
32 -30.3* -6.5 258.9* 67.9 35.9 84.0 
42 -9.2 6.7 -84.0* -89.8* 38.0 84.5 
47 3.3 -2.7 61.9* 24.1 39.4 76.5 
50 -1.0 -2.8 -20.9 -48.8* 39.9 86.2 
51 -4.6 7.6 -11.4 -44.0 39.9 74.9 
53 -7.2* 7.1 42.7 -25.4 40.0 75.2 
58 -2.5 -3.3 -59.3 -55.2* 40.7 74.2 
62 -2.5 -8.3* 26.6 24.2 41.5 73.1 
65 1.1 2.3 -57.2* -66.7* 42.1 78.4 
66 -1.9 1.4 -21.0 -13.6 42.1 80.1 
67 -8.4 4.5 -38.9* -33.7* 42.5 70.9 
68 -3.0 -0.3 -4.6 8.2 42.5 82.9 
70 -12.2 6.5 9.3 -17.8 42.6 71.4 
76 -1.7 7.7* 19.2 81.6* 43.1 77.6 
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Figure 3.4: Changes in mean ragweed pollen season start date between periods of
2001-2010 and 1994-2000.

Figure 3.5: Changes in mean ragweed pollen season length between periods of 2001-
2010 and 1994-2000.
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Figure 3.6: Changes in mean ragweed pollen indices between periods of 2001-2010
and 1994-2000 across latitudes.
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Co-occurrence of ragweed pollen and ozone exceedances during 1994-2010

Figure 3.7 depicts the average number of days when ragweed is greater or equal to

1 and DMA8[O3] is greater than 70 ppb for the location of each pollen monitoring

station during 1994-2010, except 2001, 2002 and 2009 when there are no ragweed

pollen observation data. The number of co-occurrences ranged from 0 to 17 days.

The largest number of co-occurrences appeared in the West, Southwest, Southeast

and South regions. The changes in ragweed pollen season length and ozone exceedance

days across the nine climate regions between 2001-2010 and 1994-2000 are shown in

Figure 3.8. The median ragweed pollen season lengths in each climate region for the

two periods are displayed. The size of the the dots indicates the fraction of ozone

exceedance days during the ragweed pollen season. The pollen season length has

increased after 2000 for the East North Central, South, Southeast, Southwest, and

West North Central regions. The fraction of ozone exceedance days during ragweed

pollen season also increased for the Southwest and Northeast regions after 2000. The

Southwest region has experienced increase in both ragweed pollen season length and

ozone exceedances.
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Figure 3.7: Annual average number of days when both ragweed pollen ≥1 and ozone
exceedances (DMA8[O3]>70 ppb) occur for 58 pollen stations during 1994-2010 (ex-
cept 2001, 2002, and 2009).

Figure 3.8: Changes in ragweed pollen season length and ozone exceedance days
across the nine climate regions.(Ozone ratio: the fraction of ozone exceedance days
during ragweed pollen season)
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3.4.2 Distributions of ozone and ragweed pollen concentrations during

2004 and 2047

The simulated mean DMA8[O3] across the CONUS during August to September in

2004 and 2047 is displayed in Figure 3.9. The mean DMA8[O3] in 2004 ranged from

22 ppb to over 70 ppb. It is relatively higher in the West, Southwest, South and

West North Central regions, and relatively lower in the Northwest and the Southeast

regions in 2004. The main pattern of mean DMA8[O3] did not change significantly in

2047. Figure 3.10 shows the changes in mean DMA8[O3] during August to September

between 2047 and 2004. The mean DMA8[O3] will increase in most areas of the West,

Southwest, South and Northeast regions, but decrease in most parts of the Southeast,

Central and East North Central regions. When looking at the average changes across

each climate region in mean DMA8[O3] and mean ragweed pollen concentration in

Figure 3.11, there is simultaneous increase in both of them for the Southwest and

the West regions, while the Central, East North Central and West North Central

regions will experience decreases in both mean DMA8[O3] and mean ragweed pollen

concentration. The Southeast region has the highest increase in mean ragweed pollen

concentration in 2047, followed by the Northwest region, but both of the two regions

will expect decrease in mean DMA8[O3] in 2047.

(a) (b)

Figure 3.9: Average DMA8[O3] during August to September in 2004 and 2047.
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Figure 3.10: Changes in DMA8[O3] between 2004 and 2047.

Figure 3.11: Average changes in DMA8[O3] and ragweed pollen for the nine climate
regions between 2047 and 2004.

3.4.3 Co-occurrence of ragweed pollen and ozone exceedances

The simulated ozone standard exceedances (DMA8[O3]>70 ppb) during August to

September in 2004 and 2047 are shown in Figure 3.12. The ozone exceedances mainly

occur in the West, West North Central, Southwest and Central regions in both 2004
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and 2047. The South region is expected to have more ozone exceedances in 2047 com-

pared with 2004. The number of ozone exceedances ranged from 0 to 21 days in 2004,

and 0 to 25 days in 2047. Figure 3.13 displays the co-occurrence of ragweed pollen

and ozone exceedances in 2004 and 2047. The pattern of co-occurrence is similar to

that of ozone exceedances, which implies that the co-occurrence is predominantly in-

fluenced by ozone concentration. The changes in co-occurrence of ragweed pollen and

ozone exceedances between 2047 and 2004 (Figure 3.14) vary from -9 to 14 days. The

increase in co-occurrence mainly appears in the West, Southwest and South regions,

while the co-occurrence will decrese in the Central region.

Although the co-occurrence of ragweed pollen and ozone exceedance scatters over

the CONUS, it influences a remarkable fraction of population, as shown in Figure

3.15. Most of the heavily populated areas are predicted to have ragweed pollen and

ozone exceedances in 2004 and 2047. Among them, five of the top 10 largest cities

by population are included in 2004: New York, NY, Los Angeles, CA, Chicago, IL,

Dallas, TX, and Detroit, MI. San Diego, CA will be added to the list in 2047.

Figure 3.17 illustrates the trend of DMA8[O3] and daily average ragweed pollen

concentration for two representative cities: Los Angeles (LA) and New York City

(NYC), which are the top two largest U.S. cities by population. The co-occurrence of

ozone exceedance and ragweed pollen is highlighted with red dots in the figure. Both

LA and NYC will experience increased number of co-occurrence in 2047 compared

with 2004. It is predicted that LA will have 17 days of co-occurrence in 2047, which

is 10 days more than 2004, while NYC will have 20 days of co-occurrence, compared

with 9 days in 2004. Some of the co-occurrences will happen consecutively for four

or five days as shown in Figure 3.17.
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(a) (b)

Figure 3.12: Simulated ozone exceedances during August to September in 2004 and
2047.

(a) (b)

Figure 3.13: Co-occurrence of ragweed pollen and ozone exceedances in 2004 and
2047.
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Figure 3.14: Changes in co-occurrences of ragweed pollen and ozone exceedances
between 2047 and 2004.

Figure 3.15: Co-occurrences of ragweed pollen and ozone exceedance in 2004 and
2047 and cities with population larger than 100,000 which are represented with red
circles in the figure.
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Figure 3.16: Co-occurrences of ragweed pollen and ozone exceedance in 2004 and
2047 and top 10 largest cities in the U.S.

Figure 3.17: Time series plot of DMA8[O3] and ragweed pollen concentration during
August and September in 2004 and 2047 for Los Angeles (LA) and New York City
(NYC). The red dots in the figures indicate the co-occurrence of ozone exceedance
and ragweed pollen. The red dashed line indicates the ozone standard of 70 ppb.
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3.4.4 Simulated exposures to ragweed pollen and ozone

The mean daily inhalation exposures to ragweed pollen and ozone in the nine climate

regions have been compared by microenvironment (indoor/outdoor, Figure 3.18), gen-

der (Figure 3.19) and age group (Figure 3.20). In general, ragweed pollen inhalation

exposures outdoors are higher than its indoor inhalation exposures across the nine cli-

mate regions, which is the opposite of what happens for ozone exposures. Although

people spent most of their time indoors, the pollen concentration is much higher

outdoors. The ratios of indoor to outdoor ragweed pollen concentration and ozone

concentration vary significantly. In this study, the ratios of indoor to outdoor ozone

concentrations are assumed to vary from 0.05 to 0.7, whereas the ratios of indoor

to outdoor ragweed pollen concentrations were bounded between 0.006 to 0.2, based

on data from various studies [24, 27, 26, 161]. Due to lack of data on the ratios of

indoor to outdoor ozone across the nine climate regions, the same ratios were ap-

plied to all regions. The inhalation exposure to ragweed has a large variation across

different regions mainly due to ragweed coverage (Figure 2.3) and ragweed pollen

concentration (Figure 2.12). The West North Central region has the highest popula-

tion inhalation exposure to ragweed pollen (total of about 250 pollen grains/(day kg

BW)), followed by the South, Southwest and West regions. The inhalation exposure

to ozone has less variation across the CONUS compared with ragweed, and the ozone

exposures indoors are higher than those outdoors. The mean calculated total daily

ozone inhalation exposure is about 10 µg/(day kg BW), which is comparable with

that reported by Weschler [23]. The outdoor ozone inhalation exposure is about 1/2

to 2/3 of indoor ozone inhalation exposure.

The inhalation exposures to ragweed pollen and ozone for males are higher than

females due to the fact that males in general have higher inhalation rates [163] and

spend more time outdoors (Figure 3.23). The variations between the nine climate

regions are similar to those observed in Figure 3.18. The West North Central region

has the highest mean inhalation exposure to ragweed pollen for males, which is about
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260 pollen grains/(day kg BW). The population in the South West region have the

highest mean daily inhalation exposures to ozone, which are 11.2 µg/(day kg BW)

for males and 10.5 µg/(day kg BW) for females.

The Physiological Daily Inhalation Rates (PDIRs) per Unit of Body Weight

(m3/(hr kg BW)) decrease by age (Figure 3.21). Therefore, the inhalation exposures

to ragweed and ozone also decrease from younger populations to older populations as

shown in Figure 3.20. The most susceptible population is the 1-4 years old population

group, especially for the West North Central region, where the mean daily inhalation

exposure to ragweed pollen could reach up to 750 pollen grains/(day kg BW). The

patterns of mean time spent outdoors for each age group are similar between differ-

ent regions (Figure 3.22). Even though the 1-4 years old population group spends

less time outdoors, their high inhalation rate per unit of body weight results in the

highest inhalation exposure to ragweed. The 1-4 years old population group also has

the highest mean inhalation exposure to ozone among the whole population across

the nine climate regions. The population in the Southwest region has slightly higher

exposure to ozone than people in other regions due to its high ozone concentration

(Figure 3.9).

To show the changes of inhalation exposure to ragweed pollen and ozone with

time and related factors, Figure 3.24 and Figure 3.25 illustrates the profiles of sim-

ulated daily ragweed pollen/ozone concentration, exposure time, inhalation rate and

inhalation exposure to ragweed pollen/ozone for a simulated “virtual subject”, who

is a 3 years old male in the West region. The simulation period is from August 1st

to September 30th in 2004. The inhalation exposure to ragweed pollen for the sub-

ject follows the patterns of ragweed pollen concentration, which starts to increase in

late August and peaks in mid September. The inhalation exposure to ozone indoors

and outdoors changes with ozone concentration and exposure time. The inhalation

exposure to ozone indoors overall is higher than that outdoors.
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Figure 3.18: Mean daily inhalation intakes of ragweed pollen (top figure) and ozone
(bottom figure) in indoor and outdoor environments in the nine climate regions in
August 2004 and September 2004.
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Figure 3.19: Mean daily inhalation intakes of ragweed pollen (top figure) and ozone
(bottom figure) by gender in 2004.
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Figure 3.20: Mean daily inhalation intakes of ragweed pollen (top figure) and ozone
(bottom figure) by age group in 2004. Age group 1: 1-4 years old, Age group 2: 5-11
years old, Age group 3: 12-17 years old, Age group 4: 18-64 years old, Age group 5:
>64 years old.
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Figure 3.21: Mean inhalation rate indoors and outdoors by age group.
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Figure 3.22: Mean time spent outdoors by age group.

Figure 3.23: Mean time spent outdoors by gender.
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Figure 3.24: Time series of daily ragweed pollen concentration, exposure time, inhala-
tion rate, and inhalation intakes of ragweed pollen. The simulated virtual subject is
a 3 years old male in the West region.
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Figure 3.25: Time series of daily ozone concentration, exposure time, inhalation rate,
and inhalation intakes of ozone. The simulated virtual subject is a 3 years old male
in the West region.
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3.5 Summary

The changes in ragweed pollen indices during 1994 to 2010 were examined based

on observation data. Ragweed pollen season tends to start earlier for the Northern

CONUS and shifts to the Southern CONUS. Ragweed pollen season lasts longer in

the Southern CONUS. The peak pollen concentration and annual pollen production

decrease from lower latitudes to higher latitudes. Correlation analysis reveals that

start date is significantly affected by climate factors such as maximum temperature,

precipitation, wind speed, while season length is mainly affect by precipitation, mean

temperature, maximum temperature and minimum temperature.

The simulated ragweed pollen and ozone concentrations in 2047 and 2004 were

compared and it is predicted that the Southwest and West regions will experience

simultaneous increases in ragweed pollen and ozone concentrations in 2047, while

the Central, East North Central and West North Central regions will have decreased

ragweed pollen and ozone concentrations. Although the co-occurrence of ragweed

pollen and ozone exceedance scatters across the CONUS, it influences a remarkable

fraction of population. Five of the 10 largest cities by population are affected by the

co-occurrence of ragweed pollen and ozone exceedance in 2004, and one more city will

be added to the list in 2047.

The simulated exposures to ragweed pollen and ozone have distinct patterns by

microenvironment, gender and population age group. Exposures to ragweed pollen

outdoors is higher than indoors, with significant correlation with pollen concentration.

Males tend to have higher inhalation exposures to ragweed pollen and ozone than

females. The inhalation exposure to ragweed pollen and ozone per unit body weight

decreases with age. Individual exposures to both pollutants follow the main patterns

of the pollutant concentration during the whole simulation period.
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Chapter 4

PREDICTING RAGWEED POLLEN

CONCENTRATION USING MACHINE

LEARNING METHODS

4.1 Abstract

Prediction of ragweed pollen concentration based on meteorological factors and pre-

vious ragweed pollen observation was conducted using Machine Learning (ML) mod-

els that included Support Vector Machine, Random Forest, XGBoost, Neural Net-

work, Decision Trees, etc. Two types of prediction models were applied: regression

models and classification models, which predict ragweed pollen concentration (pollen

grains/m3) and pollen levels (low, medium, high), respectively. The model parame-

ters have been optimized and the final models were validated using a repeated 10-fold

cross-validation. The performances of regression models were evaluated based on

coefficient of determination (R2), Root Mean Square Error (RMSE) and Mean Ab-

solute Error (MAE), while classification models were evaluated based on accuracy

and F1 score. The variable importance of predictors in the best models was calculated

and compared. Random Forest and XGBoost outperformed other models for both

regression and classification. The XGBoost model had the lowest RMSE (22.99 ±

7.48) and shared the same R2 (0.58 ± 0.12) with Random Forest model in regression.

The accuracy and F1 score of the XGBoost model were 0.77 ± 0.05 and 0.90 ± 0.03

in classification, which are similar to Random Forest. Pollen concentration of the

previous day is the most important predictor variable in both Random Forest and

XGBoost models.



86

4.2 Introduction

Modeling and forecasting of pollen concentration a few days ahead could help in-

dividuals avoid exposures or take preventive medicine to reduce the adverse health

effects of allergenic pollen [164]. Numerical and statistical forecasting models are the

two most popular models [81, 165, 84, 76]. Numerical models are capable of pre-

dicting pollen concentrations for large areas based on mathematical equations, plant

distributions, phenological, aerobiological, and meteorological data [81, 79]. Statis-

tical models are mostly local-scale and do not depend on the knowledge of physical

processes of pollen emission and dispersion, but aim to predict pollen concentrations

based on numerical relations between pollen and independent variables [113]. The re-

lations can be built using various statistical methods that include Multiple Regression

[116, 166], Discriminant Linear Analysis [129], Random Forest [114, 115], Artificial

Neural Networks [128, 113], gaussian, gamma and logistic distribution models [167],

etc. There are quite a few requirements regarding the analyzed data when applying

some of these statistical models. For example, (muti-)linear regressions assume linear

relationships between the outcome variable and the independent variables, residuals

are normally distributed, and the independent variables are not highly correlated with

each other [168]. Log-transform of pollen concentrations is usually needed to meet

the normal distribution requirements [169, 170].

ML techniques have drawn increasing interest in pollen concentration prediction

in recent years due to their powerful algorithms and fewer restrictions regarding the

input data. ML methods are able to find patterns in nonlinear and high dimensional

data, and make predictions with relatively high accuracy [171]. ML models work well

in both regression and classification problems. Some of the representative ML meth-

ods include nonlinear models such as Support Vector Machine (SVM), Artificial Neu-

ral Networks (ANN), K-Nearest neighbors, and tree-based models such as Random

Forest, boosting, bagged trees [172]. Studies of pollen concentration prediction using
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ML methods have been conducted for some pollen species. Castellano-Mendez et al.

[113] used Neural Networks to forecast birch (Betula) pollen levels in a city of north-

west Spain based on three input variables: daily pollen concentration, daily rainfall,

and daily mean temperature. Puc [128] also applied Neural Networks to model daily

birch pollen concentrations with meteorological data in Szczecin (Poland). Nowosad

[114] predicted pollen levels of Corylus, Alnus, and Betula in Poland using Random

Forest based on gridded meteorological data. Nowosad et al. [115] compared several

modeling techniques in linear regression models, nonlinear regression models, and

regression trees and rule-based models for prediction of Corylus, Alnus, and Betula

pollen concentrations in nine cities in Poland. Mesa et al. [129] found that Neu-

ral Networks performed better than linear models for forecasting the severity of the

Poaceae pollen season in a region with a typical Mediterranean climate. However,

there is no study focusing on a comparison of different ML techniques for ragweed

(Ambrosia) pollen prediction in the CONUS.

The main goals of this study were to compare selected ML modeling techniques

for regression analysis of ragweed pollen concentration and classification of ragweed

pollen levels and to assess the variable importance for the best models. Six ML

techniques were used to predict pollen concentration and five were used in pollen

level classification.

4.3 Methods

4.3.1 Study area and predictor variables

The pollen monitoring station located in Newark, New Jersey (coordinates: 40.74°N,

74.19°W) was chosen for this study. There are in total 12 years of observed rag-

weed pollen data from the NAB. This area has an elevation of 43 m, annual mean

temperature of 13.0 °C, and annual mean precipitation of 1,213 mm. Twelve me-

teorological parameters from the same day as pollen concentration and the pollen
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concentration/level of previous day were used as independent variables (Table 4.1),

and the daily pollen concentration was used as the dependent variable in the re-

gression model, while the daily pollen level was used as the dependent variable in

the classification model. The meteorological factors (except cumulative temperature

and cumulative precipitation) are retrieved from the nearest meteorology station (co-

ordinates: 40.68°N, 74.17°W) from NOAA [173]. The distance between the pollen

monitoring station and the meteorology station is 6.4 km. The pollen concentration

on the previous day will have lag effects on the pollen concentration on the next day,

therefore, it is added into the model as an input variable.

Table 4.1: Input variables for the ML models. 

Predictor variable name Abbreviation Unit  

Mean temperature for the day TEMP ºC 

Mean dew point for the day DEWP ºC 

Mean station pressure for the day STP Millibars 

Mean visibility for the day VISIB Miles 

Mean wind speed for the day  WDSP Knots 

Maximum sustained wind speed for the day  MXSPD Knots 

Maximum temperature during the day MaxTemp ºC 

Minimum temperature during the day MinTemp ºC 

Total precipitation during the day PRCP Inches 

Mean relative humidity for the day RH % 

Cumulative temperature since the first day of year CumTemp ºC 

Cumulative precipitation since first day of year CumPRCP Inches 

Mean pollen concentration/level on previous day PollenDay_1 Pollen grains/m3 

 

 

 

 

 

 

 

In the classification models, the dependent variable is pollen level of the day. In

most of the ambient air quality monitoring systems, pollen levels are reported as

absent, low, moderate, high or very high [174, 175]. In this study, the ragweed pollen
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levels are classified into four categories based on threshold values as below,

Pollen Level =


1 (Low), if C < 10

2 (Medium), if 10 ≤ C < 30

3 (High), if C ≥ 30

(4.1)

where C is the daily ragweed pollen concentration (pollen grain/m3). Ragweed pollen

concentration below 10 pollen grain/m3 is considered low level by NAB [174]. The

threshold concentration, 30 pollen grain/m3 was chosen based on the health effects

of ragweed pollen in sensitive patients, at which concentration they started to have

allergy symptoms [80, 144, 145].

4.3.2 ML models

Six ML techniques were used for prediction of ragweed pollen concentrations:

� Support Vector Machine (SVM) [176]

� Random Forest [177]

� eXtreme Gradient Boosting (XGBoost) [178, 179]

� Bayesian Generalized Linear Model (BayesGLM) [180]

� Neural Networks [181]

� Classification and Regression Tree (CART) [124]

Five of these methods (except BayesGLM) are also used in the pollen level clas-

sification models. All the statistical analyses are conducted using R version 3.5.2

[159] and R packages caret, ggplot2, e1071, doSNOW, etc. [182, 183, 184, 185, 186].

Models were built using the following methods in caret: Support Vector Machines

with Linear Kernel (method = ‘svmLinear’) [187], Random Forest (method = ‘rf’)

[188], eXtreme Gradient Boosting (method = ‘xgbTree’) [189], Bayesian Generalized
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Linear Model (method = ‘bayesglm’) [190], Neural Network (method = ‘nnet’) [191],

CART (method = ‘rpart’) [192].

4.3.3 Workflow of modeling tasks

The main goal of this study is to evaluate ML methods for the prediction of ragweed

pollen concentration/level in Newark, NJ. The workflow is as following:

(1) Ten meteorological variables are retrieved from the nearest meteorology sta-

tion. In addition, cumulative temperature and cumulative precipitation since January

1st to the observation date in each year are calculated.

(2) Pollen concentrations on each day are transformed into pollen levels based

on Equation 4.1 for classification models. The dependent variable (pollen concentra-

tion/pollen level) and independent variables are combined into one dataset.

(3) Different ML techniques are applied to predict ragweed pollen concentra-

tion/level. Models are validated using a repeated (three times) 10-fold cross validation

procedure [172].

(4) The ML models are compared based on predictive performance. Regression

models are evaluated using the coefficient of determination (R2), Root Mean Square

Error (RMSE) and Mean Absolute Error (MAE), while classification models will be

evaluated based on accuracy and F1 score.

Figure 4.1 presents the processes for ML.

An R2 value is the squared correlation coefficient between the observed and pre-

dicted value. It ranges between 0 and 1. RMSE is the standard deviation of the

prediction errors, namely residuals. RMSE is a measure of how spread out these

residuals are and tells us how concentrated the data are around the line of best fit

[193]. MAE is the average of the difference between the original values and the
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Figure 4.1: The schematic illustration of ML modeling system.

predicted values as represented in Equation 4.2.

MAE =
1

N

N∑
i=1

|yi − ŷi| (4.2)

The definition of accuracy, precision P , recall R and F1 score is based on confusion

matrix (Table 4.2) [194, 195]:

Table 4.2: Confusion matrix for pollen level classification models.

Level i 
Actual level 

Positive Negative 

Predicted level 
Positive True Positive (TPi) False Negative (FNi) 

Negative False Positive (FPi) True Negative (TNi) 
 

 

 

Accuracy =
∑|C|

i=1 TPi+TNi∑|C|
i=1 TPi+FPi+TPi+FNi

P = 1
|C|

∑|C|
i=1

TPi

TPi+FPi

R = 1
|C|

∑|C|
i=1

TPi

TPi+FNi

F1 = 2PR
P+R

(4.3)
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where |C| = 3 is the number of classes of pollen levels.

4.4 Results and Discussion

4.4.1 Description of observed ragweed pollen concentration

Figure 4.2 presents the distribution of ragweed pollen concentration in Newark be-

tween 1994 to 2009 except 1998, 1999, 2000, and 2001. The pollen concentration

(pollen grain/m3) are mostly between 0-100. The pollen concentrations in 1994 and

1995 are higher than the other years. The cumulative pollen count for each year is

displayed in Figure 4.3. The pollen season start date is defined as the the day when

the cumulative pollen count reaches 5% of annual total count, and the end date is

the day when the cumulative pollen count reaches 95% of annual total count. The

pollen season started around the 230th day (green dots in Figure 4.3) in each year

with a standard deviation of 2.4 days, and ended around the 272th day (red dots

in Figure 4.3) every year with a standard deviation of 6.4 days. The pollen season

length, which is the duration between start date and end date, has an average of 41

days in Newark with a standard deviation of 5.6 days.

Ragweed pollen concentration is transformed into pollen levels and displayed in

Figure 4.4. Pollen levels are distributed predominantly at low level for years 2002,

2003, 2005 and 2008, while in other years, the pollen levels are almost evenly dis-

tributed at low, medium and high levels.
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Figure 4.2: Observed ragweed pollen concentration in Newark, NJ during 1994-2009.

Figure 4.3: Cumulative observed ragweed pollen concentration in Newark, NJ during
1994-2009. The green dots indicate the start dates of ragweed pollen season, the red
dots indicates the end dates.
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Figure 4.4: The cumulative number of days with pollen level in each year.

4.4.2 Correlation between pollen concentration and predictor variables

The correlation between pollen concentration and meteorological factors is illustrated

in Figure 4.5. The pollen concentration is significantly (p-value < 0.05) correlated

with mean temperature, mean dew point, mean visibility, maximum temperature,

minimum temperature, relative humidity and cumulative temperature of the day.
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Figure 4.5: Pearson correlation heat map (with hierarchical clustering) for ragweed
pollen concentration in Newark, NJ and 12 meteorological factors.

4.4.3 Performance of regression models

The performances of six regression models for estimation of ragweed pollen concen-

tration were compared using RMSE, R2 and MAE in Figure 4.6. The XGBoost

model had the lowest RMSE and MAE. The Random Forest model gave similar

R2 (0.58 ± 0.11) to the XGBoost model, which is the highest among the six mod-

els. Figure 4.7 displays scatterplots of observed and predicted daily ragweed pollen

concentration during 1994-2009 in Newark, NJ for the six regression models. The

Spearman coefficients (Table D.2) ranged from 0.62 with Neural Network model to

0.86 with Random Forest. Some extremely high ragweed pollen concentrations are

under-predicted, but they might be outliers in the observation data. Overall, all the

models capture the distribution of observed ragweed pollen concentration in Newark,

NJ.
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All the models were cross-validated and their parameters were optimized as shown

in Figure 4.8 to Figure 4.12. The performances of the models are affected significantly

by the setting of parameters. The Random Forest model gave the lowest RMSE when

there are three randomly selected predictors in the model. The number of boosting

iterations (nrounds) has significant effects on the performance of the XGBoost model.

The XGBoost model had best fit when the maximum tree depth is 4 and the shrinkage

(eta) is 0.025. The structure of the boosting tree and the decision tree (CART) are

shown in Figure 4.13 and Figure 4.14.

Both Random Forest model and XGBoost model perform better than the other

models based on R2 and RMSE. Therefore, these two models were selected as the

best two models for further analysis. The variable importance for each of them was

estimated and presented in Figure 4.15. Pollen concentration of the previous day

is the most important variable in both models. The other variables have distinctly

lower importance. In the Random Forest model, cumulative temperature is the sec-

ond most important variable, followed by cumulative precipitation and mean daily

visibility. Cumulative precipitation is the second important variable in the XGBoost

model. Mean station pressure and mean daily precipitation for the day are the least

important variables in both models. The variables with higher importance part a

bigger prediction power in the model. Nowosad et al. [115] also found that Random

Forest model had the best overall performance for all the pollen species they tested.

But the cumulative growing degree days (GDD) and daily maximum temperature

were the most important predictor variables in their model.

Figure 4.16 shows a comparison between observed and predicted time series of

daily pollen concentrations during ragweed pollen season in 1995 and 1996 in Newark,

New Jersey using Random Forest and XGBoost models. Both models captured the

trend of observed ragweed pollen very well, with a few days of underestimation.
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Figure 4.6: The performance metrics (mean ± standard deviation) of ML models on
estimates of daily ragweed pollen concentration.
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Figure 4.7: Scatterplots of observed and predicted daily ragweed pollen concentration
with 45-degree line using six models: SVM, Random Forest, XGBoost, BayesGLM,
Neural Network and CART.
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Figure 4.8: Cross-validated RMSE profile for the SVM model. The optimal model
parameter is Cost = 9.24.

Figure 4.9: Cross-validated RMSE profile for the Random Forest model. The final
model was fit with mtry = 3.
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Figure 4.10: Cross-validated RMSE profile for the XGBoost model. The final model
parameters are listed in Table D.1.
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Figure 4.11: Cross-validated RMSE profile for the Neural Network model. The
optimal model used decay of 0.5 and 9 hidden units.

Figure 4.12: Cross-validated RMSE profile for the CART model. The complexity
parameter (cp) of the final model is 0.01.
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Figure 4.13: Structure of the boosting tree for prediction of ragweed pollen concen-
trations. The nodes represent the conditions and input variables, the leaves represent
ragweed pollen concentrations.
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Figure 4.14: Structure of the Decision Tree for prediction of ragweed pollen concen-
trations. The nodes represent the conditions and input variables, the leaves represent
ragweed pollen concentrations.



104

Figure 4.15: Importance of each predictor variable in the Random Forest model and
the XGBoost model for ragweed pollen concentration estimation in Newark, NJ.
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Figure 4.16: Simulated and observed time series plots of pollen concentration in
Newark, NJ in 1995 and 1996.
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4.4.4 Performance of classification models

Five ML models including SVM, Random Forest, XGBoost, Neural Network and

CART were tested for classification of pollen levels and their performances are sum-

marized in Figure 4.4.4. The XGBoost model gave the best performance based on

both accuracy (0.7740) and F1 score (0.8973). The Random Forest model has very

close performance to the XGBoost model. SVM and CART had similar accuracy and

F1 score. The Neural Network did not perform well for this case. All the models

have been optimized and the profiles of the cross-validated accuracy are shown in

Figure 4.18 to Figure 4.22. The method used in the XGBoost model is xgbTree in

R and it has the highest number of parameters and its tuning is a little more com-

plicated than for the other models. First, Boosting Iterations (nrounds), Max Tree

Depth (max depth) and Shrinkage (eta) were tuned with the other parameters fixed

and the optimal values were obtained. Then the three parameters were fixed with

their optimal values and Subsample Ratio of Columns (colsample bytree) and Mini-

mum Sum of Instance Weight (min child weight) were tuned. Lastly, Minimum Loss

Reduction (gamma) and Subsample Percentage (subsample) were optimized. All the

final parameters for each model is listed in Table D.3.

Figure 4.23 presents the model structure of a Neural Network for prediction of

ragweed pollen levels. The first layer is the input layer consisting of all the thirteen

input variables in Table 4.1. The second layer is the hidden layer of 9 units, and the

third layer is the output layer consisting of three pollen levels. The model structure

for CART is shown in Figure 4.24.

To find out which variables contribute most to the XGBoost model and the Ran-

dom Forest model, the scaled variable importance is compared for each variable in

Figure 4.25. Pollen concentration on previous day is the predominant contributor in

both models, followed by cumulative temperature. Maximum wind speed and precip-

itation is negligible in the XGBoost model, while mean wind speed and cumulative

precipitation had least impacts in the Random Forest model.
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Figure 4.17: The performance metrics (mean ± standard deviation) of ML models
on estimates of daily ragweed pollen levels.

Figure 4.18: Cross-validated accuracy profile for the SVM model. The optimal model
parameter is Cost = 4.4.
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Figure 4.19: Cross-validated accuracy profile for the Random Forest model. The final
model was fit with 12 predictors.
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Figure 4.20: Cross-validated accuracy profile for the Boosting model. The final model
parameters are listed in Table D.3.
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Figure 4.21: Cross-validated accuracy profile for the Neural Network model. The
optimal model used decay of 0.5 and 9 hidden units.

Figure 4.22: Cross-validated accuracy profile for the CART model. The complexity
parameter (cp) of the final model is 0.025.
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Figure 4.23: The structure of Neural Network model for prediction of ragweed pollen
levels.
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Figure 4.24: The structure of the Decision Tree for prediction of ragweed pollen levels.
The nodes represent the conditions and input variables, the leaves represent ragweed
pollen levels.
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Figure 4.25: Importance of each predictor variable in the Random Forest model and
the XGBoost model of pollen levels.
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4.5 Summary

This chapter explored different ML techniques for prediction of ragweed pollen con-

centrations/levels with 12 meteorological factors at a local scale. Newark, NJ was

selected as the sample location. The ML model performances were compared based

on various metrics. All the models were cross-validated and the optimal parame-

ters were obtained. The results showed that Random Forest and XGBoost models

performed better than other models in both regression and classification problems.

Direct comparison of the observed and predicted ragweed pollen concentration con-

firmed the good performance of the models obtained and the ability to recreate most

of the variation. Only some extreme values of pollen counts were underestimated.

Random Forest and XGBoost models predicted 77% of the pollen levels correctly

with F1 score of nearly 0.9. The ML methods can be used in local-scale estimation

of pollen concentration/level; however, the models need to be trained and optimized

for best performance at different locations. Forecasting of pollen concentrations a few

days in advance can help reduce the adverse health effects of allergenic pollen with

pre-emptive medication and behavioral adaptation.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Main Findings

This dissertation investigated the impacts of climate change on air quality and as-

sociated human exposures based on mechanistic modeling, statistical analysis and

data-driven ML modeling. The key findings and conclusions are summarized below:

(i) The CMAQ-Pollen modeling system was able to simulate the spatiotempo-

ral distributions of oak and ragweed pollen concentration in 2004 across the

CONUS with relatively good performance based on results from correlation

analysis, fractional bias, hit and false rates. This regional modeling system

has 36 km horizontal grid resolution, which is the highest spatial resolution

employed across the CONUS using the CMAQ-Pollen modeling system. Dry

deposition, emission and vertical eddy diffusion are the dominant processes de-

termining ambient pollen concentrations. The boundary conditions of airborne

pollen concentration exert remarkable influence on mean pollen concentrations

at locations with small emission sources.

(ii) Considering solely the single impact of meteorological conditions simulated un-

der the RCP 8.5 scenario, the ragweed pollen season in 2047 will start earlier

and last longer for all the nine CONUS climate regions, with increasing av-

erage pollen concentrations in most regions. The mean and maximum hourly

concentrations of oak pollen were predicted to increase in the Northeast, South

and Southeast regions, but to decrease in the Northwest, East North Central,
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and West North Central regions. The oak pollen season was estimated to start

earlier in the Central, Northeast, South and Southeast regions. The oak pollen

season length was estimated to shorten by 1-2 days for most regions, except the

Southeast and Southwest regions.

(iii) Statistical analysis of observed pollen observation from 1990 to 2010 at 56 pollen

monitoring stations across the CONUS indicates that the ragweed pollen season

starts from higher latitudes and then shifts to lower latitudes, while the pollen

season lasts longer at lower latitudes. The peak pollen concentration and annual

production both decrease as latitude increases. Comparisons of mean pollen

indices between periods 2001-2010 and 1994-2000 showed that the mean ragweed

pollen season from 2001 to 2010 tends to start earlier at 76% of the monitoring

stations, with the biggest shift being 30 days earlier. Changes in season length

do not have significant correlation with latitude or climate regions. The annual

average number of days when both ragweed pollen ≥1 and ozone exceedances

(DMA8[O3]>70 ppb) occur for 58 pollen stations during 1994-2010 ranged from

0 to 17 days, with the the largest number of co-occurrence appearing in the

West, Southwest, Southeast and South region.

(iv) Co-occurrence of ragweed pollen and ozone exceedances under climate change

were investigated based on simulated ragweed pollen and ozone concentrations.

The co-occurrence of ragweed pollen and ozone exceedances ranged from 0 to 21

days in 2004, and is predicted to be 0 to 24 days in 2047. The spatial distribution

pattern of the co-occurrence is similar to that of ozone exceedances. Although

the co-occurrence of ragweed pollen and ozone exceedances does not appear

across a large area of the CONUS, it influences a remarkable fraction of the

population, including five of the 10 largest cities by population in 2004 and six

of the 10 largest cities in 2047.
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(v) Population inhalation exposures to airborne ragweed pollen and ozone were sim-

ulated with a probabilistic model based on CMAQ estimated ragweed pollen

and ozone concentrations in 2004. Inhalation exposure to ragweed pollen is

higher outdoors than indoors across the CONUS. On the contrary, people in

general have higher inhalation exposures to ozone from time spent indoors than

outdoors. There is distinct variation in inhalation exposures to ragweed pollen

among the nine CONUS climate regions due to the large differences in rag-

weed coverage and ragweed pollen concentrations. The inhalation exposures

to ragweed pollen and ozone also vary by age and gender. Males have higher

inhalation exposures to ragweed and pollen because they have higher mean

inhalation rates and generally spend more time outdoors. The inhalation expo-

sure to ragweed pollen and ozone per unit body weight decreases with age due

to decreased physiological daily inhalation rates and increased weight.

(vi) Local scale statistical modeling of ragweed pollen was conducted using ML

methods. The models only need as inputs meteorological variables and previ-

ous day pollen concentration. Compared with regional deterministic models,

such as the CMAQ-Pollen modeling system, statistical models have much less

demand in computational power and input data. Six regression models and five

classification models were tested for prediction of pollen concentration (pollen

grains/m3) and pollen levels (low, medium, high), respectively. Random Forest

and XGBoost outperformed other models for both regression and classification

problems with the lowest RMSE and the highest F1 score. Pollen concentra-

tion of the previous day was found to be the most important predictor variable

in both the Random Forest and XGBoost models.
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5.2 Future Research Directions

There are certain limitations in this study that can be addressed with the following

recommendations. Focus of future research work is also suggested.

(i) Improve the performance of the CMAQ-Pollen modeling system using high qual-

ity and high resolution meteorological inputs. The meteorology data used in

this dissertation were downscaled from a global climate model without assimi-

lating local weather observations, therefore, the day-to-day weather variability

could not be represented, which leads to discrepancies in daily observed and

simulated pollen concentrations for 2004. The CMAQ-Pollen modeling system

has been proven to be applicable at 50 km and 36 km horizontal grid resolu-

tions, and this can be expanded to 12 km, 4 km or even 2 km, if the required

meteorology data become available.

(ii) The performance of the CMAQ-Pollen modeling system is also partly deter-

mined by the accuracy of the pollen emission model. Vegetation coverage is an

important input to the pollen emission model. In this study, ragweed coverage,

which was not available in the BELD3.1 database, was estimated using rag-

weed pollen counts and vegetation coverage information from BELD3.1. This

model can be further improved with updated information from satellite data,

local observations, and knowledge of ragweed ecology. The emission model can

also be parameterized for other pollen species to expand the application of the

CMAQ-Pollen modeling system.

(iii) Due to year-to-year variations in meteorological conditions, the spatiotemporal

distributions of allergenic pollen predicted in the 2050s can not be well repre-

sented by a single year. Multiple years of simulation need to be conducted to

get reasonable estimates of average metrics of pollen season and pollen concen-

tration in the future. Due to limitation in meteorology data, it was not possible
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to complete this task in this study. Future research work on this topic should

take this into consideration.

(iv) The health impacts of co-occurrences of ragweed pollen and ozone exceedances

could be evaluated with data on asthma from the National Health and Nutri-

tion Examination Surveys (NHANES), National Asthma Survey (NAS), Na-

tional Survey of Children’s Health (NSCH) etc. Statistical relationships be-

tween asthma and the co-occurring allergenic pollen and air pollutants could

help predict the potential consequences of climate change for public health.

(v) The exposure model can also be improved to better assess exposures to ozone

and allergenic pollen. The indoor-to-outdoor (I/O) ratio of air pollutant is a

critical parameter in our exposure model. It varies with indoor environments

and ventilation rate. So far, to our knowledge, there is no statistical distribution

of I/O ratio of ozone available for each climate region in the CONUS. Therefore,

the same uniform distribution was assumed for I/O ratios for each CONUS

climate region in this study. It is expected that people will adapt to climate

change with new behavioral and building design strategies. All the exposure

factors need to be adjusted or re-evaluated to reflect exposures expected in the

future.

(vi) The rapid development of ML methods is bringing more powerful data-driven

techniques for prediction of air pollutants. This study only explored several

ML methods for local scale pollen prediction with meteorological factors. With

growing databases, including remote sensing data, fine-scale geographic infor-

mation systems (GIS) data, satellite image data, mobile phone big data, etc.,

the inputs to the ML models could be substantially expanded to achieve pre-

diction with improved spatiotemporal resolution and high accuracy.
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forecasting of long-range air transport of birch pollen: theoretical considerations
and a feasibility study. International Journal of Biometeorology, 50(6):392–402,
2006.

[83] Silvio Schueler and Katharina Schlünzen. Modeling of oak pollen dispersal
on the landscape level with a mesoscale atmospheric model. Environmental
Modeling and Assessment, 11(3):179–194, 2006.

[84] Marje Prank, Daniel S. Chapman, James M. Bullock, Jordina Belmonte, Uwe
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Appendix A

LIST OF ACRONYMS

AAAAI American Academy of Allergy, Asthma & Immunology

AAD Allergic Airway Diseases

ANN Artificial Neural Networks

BayesGLM Bayesian Generalized Linear Model

BC Boundary Condition

BELD3.1 Biogenic Emissions Landuse Database, version 3.1

BEIS Biogenic Emission Inventory System

CART Classification and Regression Tree

CESM Community Earth System Model

CCTM CMAQ Chemical Transport Model

CHAD Consolidated Human Activity Database

CMAQ Community Multiscale Air Quality

CONUS CONtiguous United States

DMA8[O3] Daily Maximum 8-hour Average Ozone

GCM General Circulation Model

GDD Growing Degree Days

GHG GreenHouse Gases

IC Initial Condition

IPCC Intergovernmental Panel on Climate Change

LULC Land Use and Land Coverage

MCIP Meteorology-Chemistry Interface Processor

MENTOR Modeling Environment for Total Risk studies
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MM5 The Fifth Generation Mesoscale Model

MAE Mean Absolute Error

NAB National Allergy Bureau

NJDEP New Jersey Department of Environmental Protection

NOAA National Oceanic and Atmospheric Administration

PDIRs Physiological Daily Inhalation Rates

PM Particulate Matter

RCPs Representative Concentration Pathways

RMSE Root Mean Square Error

SD Start Date

SL Season Length

SMOKE Sparse Matrix Operator Kernel Emissions

SVM Support Vector Machines

WRF Weather Research and Forecasting model

USEPA US Environmental Protection Agency

XGBoost eXtreme Gradient Boosting
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Appendix B

SUPPLEMENT DATA FOR CHAPTER 2

B.1 Pollen Emission Model

The pollen emission flux in a modeling grid with area of Sg was calculated through

Equation B.1,

Fg = FeSgPc (B.1)

where Pc (%) is the percentage of area coverage of allergenic plants in the correspond-

ing modeling grid. The upward emission flux Fe on a unit surface is derived using

mass balance of pollen grain fluxes in the near surroundings of allergenic plants [97].

It is formulated using Equation B.2,

Fe =
qpLdLh(KeLAI + CrKr(1 + LAI))

1 + vd(1 + LAI)/u∗
(B.2)

where qp is the annual total emission flux. Ld and Lh are the daily and hourly flow-

ering likelihood, respectively.Ke and Kr (dimensionless) are the lumped meteorology

adjustment factors for direct emission and resuspension fluxes, respectively. LAI is

leaf area index. Cr is a proportional factor to relate the resuspension to direct emis-

sion flux. u∗ and vd are characteristic velocity and deposition velocity, respectively.

All these terms on the right side of Equation B.2, can either be measured, or param-

eterized and approximated through measurable factors. Details of the derivation and

parameterization of the emission model are presented in Cai et al. [97]. The emission

fluxes occur only in the first model layer, up to 60 meters above the ground.
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B.1.1 Coverage of oak and ragweed

The coverages in 2004 and 2047 were considered the same for each of oak and rag-

weed. The area coverage for oak was derived from the Biogenic Emissions Land Use

Database, version 3.1 (BELD3.1) [196]. The area coverage for oak across the CONUS

was generated using Spatial Allocator to redistribute the BELD3.1 data with 1-km

grid resolution into 36-km grid resolution [197]. The area coverage for ragweed was

generated using an algorithm developed on the basis of observed ragweed pollen counts

and vegetation coverage information from BELD3.1 [97]. It was found that the mean

annual production of ragweed pollen was mainly relevant to area coverages of grass

land, crop grass land, and savanna land. The estimation of ragweed plant coverage

in a cell of the modeling grid was generated using:

PR = bGPG + bCGPCG + bSaPSa (B.3)

where PG, PCG and PSa (%) are the area coverage of grass land, crop grass land, and

savanna land, respectively. bG, bCG and bSa (dimensionless) are the corresponding

coefficients (Table B.1). The coefficient bG represents roughly the fraction of grass

land area occupied by ragweed plants, likewise for other coefficients.

Table B.1: Coefficients used to calculate the area coverage of ragweed.

Land Class Grass Crop Grass Savanna
Coefficient bG (unitless) bCG (unitless) bSa (unitless)

Ragweed 0.7684 0.5000 0.7497

B.1.2 Sensitivity analysis

Global sensitivity analyses were performed to test the sensitivity of the pollen emis-

sion model to multiple inputs and parameters based on Morris’s design [147]. This

design estimates the main effect of a parameter by computing a number of local sen-

sitivities at random points of the parameter space. The mean of these randomized
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local sensitivities indicates the overall influence of a given parameter on the output

metric, while the corresponding standard deviation indicates the effects of interaction

and nonlinearity [198].

The regional mean hourly emission (FhrMn) was selected as a metric for testing

the emission model’s sensitivity to multiple inputs and parameters. The definition of

this metric is presented in Equation B.4,

FhrMn =

∑
i,j,t Fg(i, j, t)

NiNjNt

(B.4)

where Ni and Nj are the values of spatial indices i and j, respectively.

In the current study, each of the 23 parameters (Table B.2) was sampled 6,000

times according to Morris’ method from 250 random trajectories (each has 24 steps)

in the parameter space [147, 198]. Each of the parameters was perturbed between 50%

and 150% of its base value or distribution while keeping other parameters unchanged.

Equation B.5 was used to calculate the Normalized Sensitivity Coefficient (NSC) for

regional hourly mean emission at a local point:

NSChrMn =
∆FhrMn/FhrMn

∆P/P
(B.5)

where FhrMn and P are the regional mean hourly emission flux and the input param-

eter, respectively; and ∆FhrMn and ∆P are the perturbations in the emission flux

and input parameters, respectively.

The global NSC of a parameter, NSCg, is defined as the mean of the correspond-

ing local sensitivities. The average absolute global NSC, |NSCg|, for each parameter

and pollen taxon can be derived based on means of the absolute NSCg. Similarly,

the standard deviations averaged over each parameter and pollen taxon (STD) can

be obtained to evaluate the interaction and nonlinearity effect of input parameters

on modeling output.
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Table B.2: Parameters for pollen emission model. These parameters were derived
from the literature, and also used for global sensitivity analysis.

Tables

Table 1 Parameters for pollen emission model. These parameters were derived from the literature, and also used for global sensitivity analysis.

Parameter and ID Oak Ragweed
1 Hc, plant height (m) 30 a 0.69 b

2 Cr, proportional factor (unitless) 0.7 c 0.7 c

3 qp, annual emission flux ( pollen grain /(m2 yr) ) 1.0×109 d 2.8×109 e, f

4 LAI, leaf area index (m2/m2) 3.4 h 1.2 i

5 u*,  friction velocity (m/s) WRF data j WRF data j

6 cTe, cUe, cVe, correction factor for direct emission (unitless) 1 c 1 c

7 cUr, cVr, correction factor for resuspension (unitless) 1 c 1 c

8 Tte, threshold temperature for direct emission (ºC) 10 c 0 k

9 Ute, threshold relative humidity for direct emission (%) 60 c 60 c

10 Vte, threshold velocity for direct emission (m/s) 2.65 c 2.9 k

11 Utr, threshold relative humidity for resuspension (%) 85c 85 c

12 Vtr, threshold velocity for resuspension (m/s) 0.9 c 0.9 c

13 ra, aerodynamic resistance (hr/m) calculated l calculated l

14 rb, quasi-laminar resistance (hr/m) calculated l calculated l

15 vs, settling velocity (m/s) calculated l calculated l

16 Pc, percentage of area coverage (%) BELD 3.1 calculated l

17 Ld, daily flowering likelihood (%) calculated l calculated l

18 Lh, hourly flowering likelihood (%) calculated l Literature m

19 u*t, threshold friction velocity (m/s) calculated l calculated l

20 z0, surface roughness (m) 10 n 0.1 n

21 dp, diameter of pollen grain ( m) 28 p 18 p

22 p, density of pollen grain (kg/m3) 1200 p 1280 p

23 Cc, slip correction factor (unitless) 1.008 p 1.008 p

aBrose et al. [199], bChamecki et al. [200], cHelbig et al. [76], dSchueler and Schlünzen [83],
eFoster et al. [201], f [202], hWang et al. [203], iDeen et al. [204],
jNolte et al. [65], Spero et al. [137], kZink et al. [78], lCai et al. [97],
mMartin et al. [205], nSeinfeld and Pandis [206], pDavis and Brubaker [207]

B.2 Spatiotemporal Distribution of Pollen Emission

To examine the temporal pattern of pollen emissions, the mean hourly emission fluxes

over the early and late flowering period for oak and ragweed are plotted in Figure

B.1. Oak pollen emissions started from the Southern CONUS in March and then

shifted gradually toward the Northern CONUS in April. In contrast to oak, ragweed
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pollen emissions started from the Northern CONUS in August and then shifted grad-

ually toward the Southern CONUS in September. This pattern is consistent with

long term observations [10, 208], and is simulated for the first time in this study.

It has been identified that summer-flowering ragweed has earlier flower initiation at

high latitudes than lower latitudes, which is a typical adaption to the environment to

maximize reproductive success [209]. The time slices of pollen emissions in Figure B.2

display the diurnal variation of pollen emission. In general, the oak pollen emission

flux in each cell of the modeling grid at 11:00 UTC is higher than that at 18:00 UTC

(averaged over Apr 21-Apr 30, 2004), and the ragweed pollen emission flux in each

cell of the modeling grid at 14:00 UTC is higher than that at 18:00 UTC (averaged

over Sept 21-Sept 30, 2004), which is mainly caused by variation of hourly flowering

likelihood. The emission model developed in this study demonstrated the daily and

hourly variation of pollen emission flux due to the intrinsic physiological characteris-

tics of the plants and influences of meteorological factors such as temperature, wind

velocity and relative humidity.

Figure B.3 depicts the spatial patterns of oak pollen emissions during the entire

pollen season in 2004. The spatial patterns were examined for four metrics: mean,

maximum, seasonal total, and standard deviation of hourly emissions at each cell of

the modeling grid covering the CONUS. These four metrics were calculated based on

the simulated hourly emissions of oak pollen between 1 March 2004 and 30 April 2004.

The spatial patterns of mean, maximum, seasonal and standard deviation of hourly

emission flux all roughly follow the pattern of area coverage of oak trees shown in

Figure 2.3. The oak pollen emissions varied substantially in different climate regions.

The seasonal total oak pollen emissions in the Southeast, South and Central climate

regions were higher than those in other regions in the CONUS. The mean hourly

oak emission flux can increase up to 9x105 pollen/(m2 h). The maximum hourly oak

pollen emission flux was 5.8x106 pollen/(m2 h). As shown in Figure 7, the spatial

patterns of ragweed emission flux also follow the patterns of ragweed area coverage.
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Figure B.1: Spatial patterns of mean hourly emission of (a) oak pollen in March 2004;
(b) oak pollen in April 2004; (c) ragweed pollen in August 2004; and (d) ragweed
pollen in September 2004.

The South and West North Central climate regions had the highest ragweed seasonal

total emission of 4x109 pollen/m2. The standard deviations of the hourly pollen

emission flux throughout the season were caused by variations in daily and hourly

flowering likelihood, and the meteorological factors contributing to pollen emission.

The mean hourly ragweed pollen emission can reach up to 2.4x106 pollen/(m2 h). The

magnitude of the simulated pollen emission flux is comparable to that reported by

Šikoparija et al. [210], which were obtained through an empirical study. The observed

average hourly ragweed pollen emission flux were derived from direct measurements

of airborne pollen concentrations in the field and ranged from 2.7x106 pollen/(m2 h)

to 3.2x108 pollen/(m2 h).
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Figure B.2: Time slices of spatiotemporal emission profiles of (a) oak pollen at 11:00
UTC (averaged over April 21-April 30, 2004); (b) oak pollen at 18:00 UTC (aver-
aged over April 21-April 30, 2004); (c) ragweed pollen at 14:00 UTC (averaged over
September 21-September 30, 2004); and (d) ragweed pollen at 18:00 UTC (averaged
over September 21-September 30, 2004).

B.2.1 Sensitivity Analysis of the emission model

The global sensitivity of the simulated regional mean hourly pollen emissions to differ-

ent parameters is presented in Figure B.5. The global NSC of all parameters, except

the density of oak pollen grain (ρp), varied within -0.1 and 0.1 for pollen emissions

from oak. The average absolute global NSC of density of oak pollen grain (ρp) is

0.1311. The ragweed pollen emission model is also robust to 22 of the 23 parameters

(-0.1 < global NSC < 0.1), but more sensitive to diameter of pollen grain (dp), with

an average absolute global NSC of 0.1438.
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Figure B.3: Spatial patterns of mean, maximum, seasonal total and standard devi-
ation of hourly emission of oak pollen. (a) Hourly mean, (b) Hourly maximum, (c)
Seasonal total, and (d) Standard deviation.

The standard deviations of NSCs for pollen emissions of oak and ragweed were

between 0.4626 and 0.6836. This indicated low interaction and nonlinearity effects

among parameters for pollen emissions of oak and ragweed.

Uncertainties in sensitive and interactive input parameters can result to large devi-

ations of model predictions. In particular, we acknowledge that there are substantial

uncertainties in dry deposition velocity, plant area coverage, flowering likelihood, and

our assumptions of quasi-steady state and quasi-equilibrium balance of pollen fluxes.

A new parameterization of deposition velocity has been developed similar to that in

Zhang and Shao [211] and Zhang and He [212]. Particularly, deposition velocity for

large particles such as pollen still has substantial uncertainties, and will need to be
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Figure B.4: Spatial patterns of mean, maximum, seasonal total and standard devia-
tion of hourly emission of ragweed pollen. (a) Hourly mean, (b) Hourly maximum,
(c) Seasonal total, and (d) Standard deviation.

further investigated. Plant area coverages calculated using land use data in combi-

nation with annual pollen counts seem more reasonable than those calculated based

on plant inventory or ecological model [72].

B.2.2 Evaluation of the emission model

To investigate the accuracy of the simulated pollen emissions with respect to plant

coverage, scatterplots of normalized coverage and seasonal total emission for oak

and ragweed pollen are shown in Figure B.6. The Pearson correlation coefficients

for oak is 0.813 (p-value < 0.0001), and 0.892 (p-value < 0.0001) for ragweed. The

data points should fall on or near the 45-degree line in Figure B.6 if there is linear
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Figure B.5: Mean and standard deviation of Normalized Sensitivity Coefficient (NSC)
for each parameter for the pollen emission model of oak and ragweed. All parameters
are described in Table B.2.

relationship between the two normalized variables. The deviations from the diagonal

line are caused by various factors such as temperature, humidity, wind speed, etc. that

were fully considered in the emission model. The correlation of observed annual total

pollen counts at selected pollen monitoring stations with the corresponding simulated

seasonal total emission is illustrated in Figure B.7. Due to the incompleteness of

pollen observations at the monitoring stations in 2004, only stations with more than

20 days of valid observations were selected. Data from 36 monitoring stations for oak

show a Pearson correlation coefficient of 0.421 (p-value is 0.0105), while data from

34 monitoring stations for ragweed result in a Pearson correlation coefficient of 0.787

(p-value < 0.0001). Pollen counts at monitoring stations are affected not only by

pollen emission, but also by atmospheric transport of pollen, which is incorporated
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Figure B.6: Scatterplot of normalized coverage and normalized seasonal total emission
in 2004 for oak and ragweed pollen with 45-degree line.

and simulated in the new pollen transport model that was developed and tested by

our group.
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Figure B.7: Scatterplot of normalized annual pollen counts observation and normal-
ized seasonal total emission in 2004 for oak and ragweed pollen with 45-degree line.

B.3 Pollen Transport Model

B.3.1 Calculation of hit and false rates

The simulated daily pollen concentrations, and sum of daily pollen concentrations dur-

ing the pollen season (hereafter referred as seasonal count) in 2004 were first paired

with corresponding observations. For example, the observed daily pollen concentra-

tions at a monitor station was paired with the simulated daily pollen concentrations in

a grid cell that contains the corresponding pollen monitoring station; similar pairings

were performed for seasonal count. As shown in Equation B.6,

C(Day, i, j) =

∑
hr∈Day C(hr, 1, i, j)

24
(B.6)

the simulated daily pollen concentration at a given day in a grid cell (i, j), C(Day, i, j)

is defined as the daily average concentrations derived from the simulated hourly con-

centrations on the model’s lowest layer (i.e., layer 1) because observations of pollen

counts are generally made near the surface. The model’s lowest layer on average

extends from 0 to 60 m above the ground. Hit and false rates were calculated for
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Table B.3: The confusion matrix for calculating hit rate and false rate.

Greater or equal to concentration 
level i (i.e., ≥  CLi ) 

Observation 
True False 

Prediction 

True TPi FPi 

False FNi TNi 
 

 

evaluation of the simulated daily pollen concentration. Procedures from the litera-

ture were followed to calculate the hit and false rates at three different concentration

levels [84, 78], which are 10, 50 and 100 pollen grains/m3, respectively. Table B.3

lists the confusion matrix representing the number of cases of True Positive (TP ),

True Negative (TN), False Positive (FP ) and False Negative (FN) of observed and

predicted pollen concentrations for a given concentration level. The hit rate (Hi) and

false rate (Fi) for a given pollen concentration level CLi are defined using Equation

B.7 ,  Hi = TPi

TPi+FNi

Fi = FPi

TPi+FPi

(B.7)

Both hit and false rates are defined based on observations and simulations day

by day. If both the observation and simulation for a given day at a given station

are equal to or higher than threshold value level i (i.e., CLi), it is counted as a hit

(i.e. True Positive) for level i at this station. If the observation is below CLi and the

simulation is equal to or greater than CLi, it is counted as a false (i.e., False Positive).

The hit rate indicates among the observed airborne concentrations greater than or

equal to CLi, how many are correctly predicted. The false rate indicates among the

predicted airborne concentrations greater than or equal to CLi, how many are falsely

predicted.
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Figure B.8: Hit and false rates for predicted and observed daily oak pollen concen-
tration during 2004 across the CONUS. The size of the circle indicates the oak pollen
abundance at that station. (a1-a3): Hit rates for 10, 50 and 100 pollen grains/m3,
respectively; (b1-b3): False rates for 10, 50 and 100 pollen grains/m3, respectively.
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Figure B.9: Hit and false rates for predicted and observed daily ragweed pollen con-
centration during 2004 across the CONUS. The size of the circle indicates the rag-
weed pollen abundance at that station. (a1-a3): Hit rates for 10, 50 and 100 pollen
grains/m3, respectively; (b1-b3): False rates for 10, 50 and 100 pollen grains/m3,
respectively.
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Appendix C

SUPPLEMENTARY DATA FOR CHAPTER 3
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Table C.1: Coordinates, elevations, main climate characteristics and years of data for
the pollen stations in this study.

ID Station Name Latitude 
(°N) 

Longitude 
(°W) 

Elevation 
(m) 

Mean 
Temp. (°C) 

Annual 
Precip. (mm) 

Years of Data (Yrs.) 
Oak Ragweed 

1 Seattle, WA 47.66 122.29 20 11.9 603 13 - 
2 Fargo, ND 46.84 96.87 277 5.9 569 11 12 
3 Vancouver, WA 45.62 122.50 89 12.3 960 4 - 
4 Eugene, OR 44.04 123.09 129 11.3 1065 13 - 
5 LaCrosse, WI 43.88 91.19 216 9.0 905 10 9 
6 Rochester, NY 43.10 77.58 148 9.3 878 14 14 
7 Niagara Falls, ON , CA 43.09 79.09 188 9.3 893 - 4 
8 Madison, WI 43.08 89.43 263 8.7 909 7 7 
9 Waukesha, WI 43.02 88.24 270 9.6 557 6 6 

10 London, ON, CA 42.99 81.25 250 8.3 476 4 4 
11 Albany, NY 42.68 73.77 72 9.4 992 5 - 
12 Chelmsford, MA 42.60 71.35 37 10.0 814 9 8 
13 St. Clair Shores, MI 42.51 82.9 180 9.8 863 6 7 
14 Salem, MA 42.50 70.92 42 10.9 1082 10 10 
15 Erie, PA 42.10 80.13 215 10.1 1002 9 13 
16 Olean, NY 42.09 78.43 433 7.3 974 8 14 
17 Chicago, IL 41.91 87.77 189 11.0 617 7 7 
18 Waterbury, CT 41.55 73.07 140 11.8 665 10 10 
19 Omaha, NE 41.14 95.97 305 10.9 854 12 13 
20 Armonk, NY 41.13 73.73 187 11.1 865 7 7 
21 Lincoln, NE 40.82 96.64 371 11.0 699 4 5 
22 Newark, NJ 40.74 74.19 43 13.0 1213 10 12 
23 Pittsburgh, PA 40.47 79.95 287 11.2 858 5 7 
24 Philadelphia, PA 39.96 75.16 12 13.5 1106 11 10 
25 York, PA 39.94 76.71 195 13.0 948 6 7 
26 Cherry Hill, NJ 39.94 74.91 13 12.7 550 13 14 
27 Indianapolis, IN 39.91 86.2 254 12.0 1095 11 11 
28 New Castle, DE 39.66 75.57 3 13.5 1106 4 5 
29 Reno, NV 39.56 119.77 1382 12.1 195 6 - 
30 Baltimore, MD 39.37 76.47 36 13.3 1117 6 10 
31 Kansas City, MO 39.08 94.58 288 13.9 750 8 8 
32 Colorado Springs 1, CO 38.87 104.82 1867 9.8 346 5 4 
33 Roseville, CA 38.76 121.27 57 17.0 637 10 - 
34 Lexington, KY 38.04 84.5 299 13.1 1225 8 9 
35 Pleasanton, CA 37.69 121.91 100 14.2 256 10 - 
36 San Jose 1, CA 37.33 121.94 35 15.7 234 10 - 
37 San Jose 2, CA 37.31 121.97 47 15.7 234 6 - 
38 Durham, NC 36.05 78.9 110 15.7 1160 9 8 
39 Tulsa 1, OK 36.03 95.87 207 16.2 1072 4 5 
40 Knoxville, TN 35.95 84.01 305 15.0 1285 13 12 
41 Los Alamos, NM 35.88 106.32 2227 11.8 323 6 - 
42 Oklahoma City, OK 35.61 97.6 340 15.9 886 7 6 
43 Fort Smith, AR 35.35 94.39 186 16.5 1149 4 - 
44 Charlotte, NC 35.3 80.75 229 16.0 1097 8 7 
45 Little Rock, AR 34.75 92.39 115 17.3 1198 8 8 
46 Huntsville, AL 34.73 86.59 191 16.3 1325 12 13 
47 Santa Barbara, CA 34.44 119.76 57 14.9 354 7 - 
48 Atlanta, GA 33.97 84.55 366 16.8 1286 14 - 
49 Orange, CA 33.78 117.86 53 17.9 170 4 - 
50 Dallas, TX 33.04 96.83 207 19.3 912 7 7 
51 Waco, TX 31.51 97.2 185 19.4 945 4 - 
52 Georgetown, TX 30.64 97.76 269 20.3 1009 7 7 
53 College Station, TX 30.64 96.31 91 19.5 509 10 10 
54 Tallahassee, FL 30.44 84.28 62 19.7 1478 6 6 
55 Tampa, FL 28.06 82.43 12 22.7 1101 7 - 
56 Corpus Christi, TX 27.80 97.4 2 22.2 794 7 6 
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Appendix D

SUPPLEMENTARY DATA FOR CHAPTER 4

Table D.1: The performance metrics (mean ± standard deviation) and model param-
eters of ML models used to develop estimates of daily ragweed pollen concentration.

Model R method RMSE R2 MAE Parameters 
Support Vector 
Machine “svm” 26.06 ± 7.99 0.50 ± 0.10 11.88  ± 2.00 C= 9.24 

Random Forest “rf” 23.06 ± 8.19 0.58 ± 0.11 11.59 ± 2.70 mtry=3 

XGBoost “xgbTree” 22.99 ± 7.48 0.58 ± 0.12 11.49 ± 2.15 
eta=0.025, nrouds=150, max_depth=4, 

min_child_weight=3, colsample_bytree=0.4, 
gamma=0.5, subsample=0.75 

BayeGLM  “bayesglm” 25.30 ± 9.93 0.49 ± 0.10 13.53 ± 2.24 n/a 

Neural Network “nnet” 27.21 ± 7.58 0.42 ± 0.13 14.98 ± 1.74 size=9, decay=0.5 

CART  “rpart” 26.49 ± 8.02 0.45 ± 0.12 12.92 ± 2.56 cp=0.01 

 

Table D.2: The Spearman coefficient of ML models on estimates of daily ragweed
pollen concentration.

Model Spearman coefficient 
Support Vector Machine 0.83 
Random Forest 0.86 
XGBoost 0.84 
Bayesian Generalized Linear Model 0.78 
Neural Network 0.62 
Classification and regression tree 0.74 

 



160

Table D.3: The performance metrics (mean ± standard deviation) and model param-
eters of ML models on estimates of pollen level.

Model R method Accuracy F1 score Parameters 
Support Vector 
Machine “svm” 0.7494 ± 0.0423 0.8826 ± 0.0388 C = 4.4154 

Random Forest “rf” 0.7731 ± 0.0530 0.8926 ± 0.0382 mtry = 12 

XGBoost “xgbTree” 0.7740 ± 0.0479 0.8973 ± 0.0317 eta=0.05, nrouds=50, max_depth=3, min_child_weight=4, 
colsample_bytree=1, gamma=1, subsample=0.5 

Neural Network “nnet” 0.7219 ± 0.0447 0.8703 ± 0.0453 size=9, decay=0.5 

CART “rpart” 0.7410 ± 0.0484 0.8934 ± 0.0281 cp=0.025 
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Appendix E

R CODES FOR CHAPTER 4

1 #NOTES: #### indicates section , ### indicates subsection , #

indicates notes and comments

2 # Scripts used to build regression models for pollen concentration

prediction in Newark , NJ

3 setwd(’C://Users/Ting Cai/Documents/PhD dissertation/MachineLearning

/figures ’)

4 library(ggplot2)

5 #package to use SVM and SVR

6 library(’e1071’);

7

8 #### Step1. load input data processed from ML_data_preprocessing.R

9 model_data=read.csv(’C://Users/Ting Cai/Documents/PhD dissertation/

MachineLearning/model_input_variables.csv’,header=TRUE)

10 # Subset data to features we wish to keep/use.

11 features <- c("PollenConc", "TEMP", "DEWP", "STP", "VISIB",

12 "WDSP", "MXSPD", "MaxTemp", "MinTemp","PRCP","RH","

CumTemp","CumPRCP",

13 "PollenDay_1")

14 data_input <- model_data[, features]

15 #summary(data_input);

16 #I’m doing 10-fold cross validation in each method

17 set.seed (148000515)

18 library(caret)

19 # to report the F1 score

20 ctrl <- trainControl(method = "repeatedcv",

21 number = 10,
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22 repeats = 3,

23 savePredictions = TRUE)

24

25 ctrl_cv10 <- trainControl(method = "cv",

26 number = 10,

27 savePredictions = TRUE)

28

29 #### Step2. fit SVM model

30 ### base model

31 modelSVM <- train(PollenConc ~ ., data = data_input ,

32 method = "svmLinear",

33 trControl = ctrl)

34 print(modelSVM)

35 modelSVM$finalModel

36

37 ### TUNE SVM

38 modelLookup(’svmLinear ’)

39 set.seed (148000515)

40 mygrid <- expand.grid(C = seq(0.1, 10, length = 40))

41 modelSVM <- train(PollenConc ~ ., data = data_input ,

42 method = "svmLinear", tuneGrid=mygrid , trControl =

ctrl ,preProcess = c("center","scale"))

43 modelSVM$finalModel

44 (SVM_results=modelSVM$results)

45 png(filename = "SVM_tuning_regression.png",width = 15, height = 15,

units= "cm", res = 300)

46 plot(modelSVM)

47 dev.off()

48

49 ### Final model: to get performance metrics

50 modelSVM$bestTune

51 mygrid <- expand.grid(C = 9.238462) ## best C

52 modelSVM <- train(PollenConc ~ ., data = data_input ,

53 method = "svmLinear", tuneGrid=mygrid ,
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54 trControl = ctrl_cv10)

55 (SVM_results=modelSVM$results)

56

57 ConcPredictSVM=modelSVM$pred

58 # report Spearman coefficient

59 (corSpearmanSVM=cor(cbind(ConcPredictSVM$pred ,ConcPredictSVM$obs),

method=’spearman ’)[2,1]);

60

61 # scatterplot SVM

62 gg_svm <- ggplot(ConcPredictSVM , aes(x=obs , y=pred)) +

63 geom_point()+

64 geom_abline(linetype =’dashed ’, slope=1, intercept=0,color="red",

size =1)+

65 ylim(-10, 400)+

66 labs(x=expression(’Observed Pollen Concentration (pollen/’~m^3~’)’

),

67 y=expression(’Predicted Pollen Concentration (pollen/’~m^3~’)

’),

68 title="svm") +

69 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

70

71

72 #### Step3. random forest

73 ### base model

74 modelRF <- train(PollenConc ~ ., data = data_input ,

75 method = "rf",

76 trControl = ctrl)

77 print(modelRF)

78 modelRF$finalModel

79

80 ### Tuning

81 modelLookup(’rf’)

82 set.seed (148000515)
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83 mygrid <- expand.grid(.mtry=c(1:13))

84 modelRF <- train(PollenConc ~ ., data = data_input ,

85 method = "rf", tuneGrid=mygrid , trControl = ctrl)

86 png(filename = "RF_tuning_regression.png",width = 15, height = 15,

units= "cm", res = 300)

87 plot(modelRF)

88 dev.off()

89

90 ### Final model: to get performance metrics

91 modelRF$bestTune

92

93 mygrid <- expand.grid(.mtry =3)

94 modelRF <- train(PollenConc ~ ., data = data_input ,

95 method = "rf", tuneGrid=mygrid , importance=TRUE ,

96 trControl = ctrl_cv10)

97 (RF_results=modelRF$results)

98

99 ConcPredictRF=modelRF$pred

100 # report Spearman coefficient

101 (corSpearman=cor(cbind(ConcPredictRF$pred ,ConcPredictRF$obs),method=

’spearman ’)[2 ,1]);

102

103 # scatterplot RF

104 gg_rf <- ggplot(ConcPredictRF , aes(x=obs , y=pred)) +

105 geom_point ()+

106 geom_abline(linetype =’dashed ’, slope=1, intercept=0,color="red",

size =1)+

107 ylim(-10, 400)+

108 labs(x=expression(’Observed Pollen Concentration (pollen/’~m^3~’)’

),

109 y=expression(’Predicted Pollen Concentration (pollen/’~m^3~’)

’),

110 title="rf") +
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111 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

112

113

114 ### variable importance

115 Imp_RF=varImp(modelRF , scale = TRUE)$importance

116 Imp_RF$variable=row.names(Imp_RF)

117 Imp_RF=Imp_RF[order(Imp_RF$Overall , decreasing = TRUE),]

118 plot(varImp(modelRF , scale = TRUE))

119

120 Imp_RF_gg <- ggplot(Imp_RF , aes(x = reorder(Imp_RF$variable , Overall

), y = Overall)) +

121 geom_bar(position=position_dodge(), stat="identity", fill="

slateblue") +

122 coord_flip() +

123 labs(x=expression(’Independent variable ’),

124 y=expression(’Scaled variable importance ’),

125 title="Random Forest") +

126 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

127

128

129 #### Step4. xgbTree

130 ### base model

131 modelxgbTree <- train(PollenConc ~ ., data = data_input ,

132 method = "xgbTree",importance=TRUE ,

133 trControl = ctrl)

134 print(modelxgbTree)

135 modelxgbTree$finalModel

136 (xgbTree_results=modelxgbTree$results)

137

138 xgbTree_results[xgbTree_results$nrounds ==50&xgbTree_results$max_

depth ==1&xgbTree_results$eta ==0.3&
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139 xgbTree_results$gamma ==0&xgbTree_results$colsample

_bytree ==0.6&xgbTree_results$min_child_weight

==1&

140 xgbTree_results$subsample ==0.5 ,]

141 ### tuning xgbtree

142 library(doSNOW)

143 cl <- makeCluster (6, type = "SOCK") # I have 8 in total on my PC

144

145 # Register cluster so that caret will know to train in parallel.

146 registerDoSNOW(cl)

147 modelLookup(model=’xgbTree ’)

148

149 # tune eta , nrouds , max_depth first

150 tune.gridxgb <- expand.grid(eta = c(0.025 , 0.05, 0.1, 0.3), # 0.025

151 nrounds = seq(from = 50, to = 1000, by =

50), # 150

152 max_depth = 1:4, # 4

153 min_child_weight = 1,

154 colsample_bytree = c(0.6),

155 gamma = 0,

156 subsample = c(0.75))

157 modelxgbTree <- train(PollenConc ~ ., data = data_input ,

158 method = "xgbTree",importance=TRUE , tuneGrid=

tune.gridxgb ,

159 trControl = ctrl)

160 png(filename = "xgbTree_tuning_regression_part1.png",width = 15,

height = 15, units= "cm", res = 300)

161 plot(modelxgbTree)

162 dev.off()

163

164 print(modelxgbTree)

165 # tune the min_child_weight and colsample_bytree

166 tune.gridxgb <- expand.grid(eta = 0.025, # best 0.025
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167 nrounds = seq(from = 50, to = 1000, by =

50), # best 150

168 max_depth = 4, # best 4

169 min_child_weight =c(1, 2, 3,4,5),

170 colsample_bytree = c(0.4 ,0.6 ,0.8 ,1),

171 gamma = 0,

172 subsample = c(0.75))

173 modelxgbTree <- train(PollenConc ~ ., data = data_input ,

174 method = "xgbTree",importance=TRUE , tuneGrid=

tune.gridxgb ,

175 trControl = ctrl)

176 png(filename = "xgbTree_tuning_regression_part2.png",width = 15,

height = 15, units= "cm", res = 300)

177 plot(modelxgbTree)

178 dev.off()

179

180 print(modelxgbTree)

181 # tune gama and subsumbple

182 tune.gridxgb <- expand.grid(eta = 0.025, # best 0.05

183 nrounds = seq(from = 50, to = 1000, by =

50), # best 50

184 max_depth = 4, # best 3

185 min_child_weight =3, #best 3

186 colsample_bytree = 0.4, #best 0.4

187 gamma = c(0, 0.05, 0.1, 0.5, 0.7, 0.9,

1.0), # best is 1

188 subsample = c(0.5, 0.75, 1.0)) # best

is 0.5

189

190 modelxgbTree <- train(PollenConc ~ ., data = data_input ,

191 method = "xgbTree",importance=TRUE , tuneGrid=

tune.gridxgb ,

192 trControl = ctrl)

193 print(modelxgbTree)
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194 png(filename = "xgbTree_tuning_regression_part3.png",width = 15,

height = 15, units= "cm", res = 300)

195 plot(modelxgbTree)

196 dev.off()

197

198 ### Final model: to get accuracy and its SD and F1 score and SD

199 modelxgbTree$bestTune

200 finalGrid <- expand.grid(eta = 0.025, # best 0.025

201 nrounds = 150, # best 150

202 max_depth = 4, # best 4

203 min_child_weight =3, #best 3

204 colsample_bytree = 0.4, #best .4

205 gamma = 0.5, # best is .5

206 subsample = 0.75) # best is 0.75

207

208 modelxgbTree <- train(PollenConc ~ ., data = data_input ,

209 method = "xgbTree",importance=TRUE , tuneGrid=

finalGrid ,

210 trControl = ctrl_cv10)

211 modelxgbTree$results

212 stopCluster(cl)

213

214 (xgbTree_results=modelxgbTree$results)

215 ConcPredictxgbTree = modelxgbTree$pred

216 # report Spearman coefficient

217 (corSpearmanxgbTree=cor(cbind(ConcPredictxgbTree$pred ,

ConcPredictxgbTree$obs),method=’spearman ’)[2,1]);

218

219 # scatterplot

220 gg_xgbTree <- ggplot(ConcPredictxgbTree , aes(x=obs , y=pred)) +

221 geom_point ()+

222 geom_abline(linetype =’dashed ’, slope=1, intercept=0,color="red",

size =1)+

223 ylim(-10, 400)+
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224 labs(x=expression(’Observed Pollen Concentration (pollen/’~m^3~’)’

),

225 y=expression(’Predicted Pollen Concentration (pollen/’~m^3~’)

’),

226 title="xgbTree") +

227 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

228

229

230 ### plot xgbtree

231 library(xgboost)

232 #xgb.plot.multi.trees(modelXgbtree$finalModel , feature_names =

modelXgbtree$finalModel$feature_names , features_keep = 10)

233 xgb.importance(modelxgbTree$finalModel$feature_names , modelxgbTree$

finalModel)

234 #install.packages(’DiagrammeR ’)

235 #install.packages(’rsvg ’)

236 library(DiagrammeR)

237 library(rsvg)

238 gr <- xgb.plot.tree(feature_names = modelxgbTree$finalModel$feature_

names , model = modelxgbTree$finalModel ,

239 trees=1,render=FALSE) #must add "render=FALSE"

for export_graph to work!!!!!!!!!!

240 export_graph(gr, ’xgbtree_regression.png’, width =1500)

241

242

243 ### variable importance

244 Imp_xgbTree=varImp(modelxgbTree , scale = TRUE)$importance

245 Imp_xgbTree$variable=row.names(Imp_xgbTree)

246 Imp_xgbTree=Imp_xgbTree[order(Imp_xgbTree$Overall , decreasing = TRUE

) ,]

247 #plot(varImp(Imp_xgbTree , scale = TRUE))

248
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249 Imp_xgbTree_gg <- ggplot(Imp_xgbTree , aes(x = reorder(Imp_xgbTree$

variable , Overall), y = Overall)) +

250 geom_bar(position=position_dodge(), stat="identity", fill="

slateblue") +

251 coord_flip() +

252 labs(x=expression(’Independent variable ’),

253 y=expression(’Scaled variable importance ’),

254 title="xgbTree") +

255 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

256

257 library(gridExtra)

258 g <- grid.arrange(Imp_RF_gg ,Imp_xgbTree_gg , nrow = 1,ncol =2)

259

260 ggsave("variable_importance_RF_xgbTree_regression.png", g, device =

png(), path = ’C://Users/Ting Cai/Documents/PhD dissertation/

MachineLearning/figures ’,

261 width = 25, height = 20, units = "cm", dpi = 300)

262

263

264 #### Step5. bayesglm

265 ### base model

266 modelbayesglm <- train(PollenConc ~ ., data = data_input ,

267 method = "bayesglm",

268 trControl = ctrl)

269 print(modelbayesglm)

270 modelbayesglm$finalModel

271 modelbayesglm$results

272 modelbayesglm$bestTune

273

274 modelbayesglm <- train(PollenConc ~ ., data = data_input ,

275 method = "bayesglm",

276 trControl = ctrl_cv10)

277 print(modelbayesglm)
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278 ConcPredictbayesglm=modelbayesglm$pred

279 modelbayesglm$finalModel

280 (bayesglm_results=modelbayesglm$results)

281

282 # report Spearman coefficient

283 (corSpearmanbayesglm=cor(cbind(ConcPredictbayesglm$pred ,

ConcPredictbayesglm$obs),method=’spearman ’)[2,1]); # 0.7765936

284 # scatterplot

285 gg_bayesglm <- ggplot(ConcPredictbayesglm , aes(x=obs , y=pred)) +

286 geom_point ()+

287 geom_abline(linetype =’dashed ’, slope=1, intercept=0,color="red",

size =1)+

288 ylim(-20, 400)+

289 labs(x=expression(’Observed Pollen Concentration (pollen/’~m^3~’)’

),

290 y=expression(’Predicted Pollen Concentration (pollen/’~m^3~’)

’),

291 title="bayesglm") +

292 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

293

294

295 #### Step6. nnet

296 ### base model

297 modelnnet <- train(PollenConc ~ ., data = data_input ,

298 method = "nnet",

299 trControl = ctrl)

300 print(modelnnet)

301 modelnnet$finalModel

302

303 ### TUNing

304 modelLookup(’nnet’)

305 set.seed (148000515)

306 nnetGrid <- expand.grid(size = seq(from = 1, to = 10, by = 1),
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307 decay = seq(from = 0.1, to = 0.5, by = 0.1)

)

308

309 modelnnet <- train(PollenConc ~ ., data = data_input ,

310 method = "nnet",maxit =1000, linout = TRUE ,

311 tuneGrid=nnetGrid , trControl = ctrl)

312 png(filename = "nnet_tuning_regression.png",width = 15, height = 15,

units= "cm", res = 300)

313 plot(modelnnet)

314 dev.off()

315 modelnnet$results

316

317 ### Final model: to get performance metrics

318 modelnnet$bestTune

319 mygrid <- expand.grid(size = 9, decay = 0.4)

320 modelnnet <- train(PollenConc ~ ., data = data_input ,

321 method = "nnet", tuneGrid=mygrid ,

322 trControl = ctrl_cv10)

323 (nnet_results=modelnnet$results)

324 ConcPredictnnet=modelnnet$pred

325 ConcPredictnnet=ConcPredictnnet[ConcPredictnnet$decay ==0.2 &

ConcPredictnnet$size ==9 ,][c(1:736) ,]

326 modelnnet$finalModel

327 (nnet_results=modelnnet$results)

328 # Spearman coefficient

329 (corSpearmannnet=cor(cbind(ConcPredictnnet$pred ,ConcPredictnnet$obs)

,method=’spearman ’)[2,1]); #0.6216421

330 # scatterplot

331 gg_nnet <- ggplot(ConcPredictnnet , aes(x=obs , y=pred)) +

332 geom_point ()+

333 geom_abline(linetype =’dashed ’, slope=1, intercept=0,color="red",

size =1)+

334 ylim(-60, 400)+
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335 labs(x=expression(’Observed Pollen Concentration (pollen/’~m^3~’)’

),

336 y=expression(’Predicted Pollen Concentration (pollen/’~m^3~’)

’),

337 title="nnet") +

338 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

339

340

341

342 #### Step7. rpart (CART)

343 ### base model

344 modelrpart <- train(PollenConc ~ ., data = data_input ,

345 method = "rpart",

346 trControl = ctrl)

347 print(modelrpart)

348

349 ### TUNE rpart

350 modelLookup(model=’rpart’)

351 set.seed (148000515)

352 mygrid <- expand.grid(cp=seq(0, 0.5, 0.005))

353 modelrpart <- train(PollenConc ~ ., data = data_input ,

354 method = "rpart", tuneGrid=mygrid , trControl =

ctrl)

355 print(modelrpart)

356 modelrpart$finalModel

357 png(filename = "rpart_tuning_regression.png",width = 15, height =

15, units= "cm", res = 300)

358 plot(modelrpart)

359 dev.off()

360

361 ### Final model:

362 mygrid <- expand.grid(cp =0.01) ## best C

363 modelrpart <- train(PollenConc ~ ., data = data_input ,
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364 method = "rpart", tuneGrid=mygrid ,

365 trControl = ctrl)

366 (rpart_results=modelrpart$results)

367 ConcPredictrpart=modelrpart$pred

368 ConcPredictrpart=ConcPredictrpart[ConcPredictrpart$cp==0.01 ,][c

(1:736) ,]

369 modelnnet$finalModel

370 (nnet_results=modelnnet$results)

371 # Spearman coefficient

372 (corSpearmanrpart=cor(cbind(ConcPredictrpart$pred ,ConcPredictrpart$

obs),method=’spearman ’)[2,1]); #0.7386159

373

374 #install.packages(’rattle ’)

375 library(rattle)

376 png(filename = "rpart_tree_regression.png",width = 20, height = 20,

units= "cm", res = 300)

377 fancyRpartPlot(modelrpart$finalModel ,caption = "")

378 dev.off()

379

380 # scatterplot

381 gg_rpart <- ggplot(ConcPredictrpart , aes(x=obs , y=pred)) +

382 geom_point ()+

383 geom_abline(linetype =’dashed ’, slope=1, intercept=0,color="red",

size =1)+

384 ylim(-10, 400)+

385 labs(x=expression(’Observed Pollen Concentration (pollen/’~m^3~’)’

),

386 y=expression(’Predicted Pollen Concentration (pollen/’~m^3~’)

’),

387 title="rpart") +

388 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

389

390
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391 # combined all the scatterplots

392 library(gridExtra)

393 g <- grid.arrange(gg_svm , gg_rf ,gg_xgbTree ,gg_bayesglm ,gg_nnet ,gg_

rpart , nrow = 3,ncol =2)

394 ggsave("scatterplot_ML_regression.png", g, device = png(), path = ’C

://Users/Ting Cai/Documents/PhD dissertation/MachineLearning/

figures ’,

395 width = 25, height = 35, units = "cm", dpi = 300)

396

397

398 #### plot results (RMSE , R2 , MAE):

399 # save prvious results in csv file first.

400 regression_metrics=read.csv(’C://Users/Ting Cai/Documents/PhD

dissertation/MachineLearning/ML_regression_results.csv’,header=

TRUE)

401 library(data.table)

402 regression_metrics$Spearman.coefficient.SD=0

403 regression_metrics$Method_short=c("SVM","RF","xgbTree","bayesglm","

nnet","rpart")

404

405 library(ggplot2)

406

407 ### three plots in one figure

408 regression_metrics_long=melt(regression_metrics[,c(2,6,4,10)],

variable.name="Method_short")

409 regression_metrics_long[c(13:18) ,2]= as.factor(as.character("R2"))

410 regression_metrics_long2=melt(regression_metrics[,c(3,7,5,10)],

variable.name="Method_short")

411

412 regression_metrics_new=cbind(regression_metrics_long ,regression_

metrics_long2)

413 regression_metrics_new=regression_metrics_new[,-4]

414 colnames(regression_metrics_new) <- c("Method","Metrics","Metrics_

value","Metrics_SD","SD_value")



176

415

416 gg <- ggplot(regression_metrics_new ,aes(x=Method ,y=Metrics_value ,

fill=Metrics)) +

417 geom_bar(width = 0.5, position=position_dodge(), stat="identity",

color="black") +

418 geom_errorbar(aes(ymin=Metrics_value -SD_value , ymax=Metrics_value+

SD_value), width =.2, position=position_dodge (.9)) +

419 labs(y = "Value", x = "Method",

420 title = "")+

421 theme(legend.position = "none")+

422 #theme(legend.position = c(0.9, 0.9))+

423 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size=12,face="bold"))+

424 theme(strip.text = element_text(face="bold", size =12))+

425 facet_grid(Metrics ~ ., scales = "free_y")

426

427

428 ggsave("ML_regression_results.png", gg , device = png(), path = ’C://

Users/Ting Cai/Documents/PhD dissertation/MachineLearning/figures

’,

429 width = 15, height = 20, units = "cm", dpi = 300)

430

431

432 #### Time series for predicted and observed pollen concentration

433 ConcPredictxgbTree = ConcPredictxgbTree[order(ConcPredictxgbTree$

rowIndex) ,]

434 ConcPredictRF = ConcPredictRF[order(ConcPredictRF$rowIndex) ,]

435 data_time_series = cbind(model_data$YEARMODA , ConcPredictRF[,c

(1,2,3)],ConcPredictxgbTree [,1])

436 data_time_series = data_time_series[,-4]

437 colnames(data_time_series) <- c("YEARMODA","RandomForest","

Observation","xgbTree")

438 data_time_series$YEARMODA

439 data_time_series$PollenConc
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440 data_time_series$PollenAllPredictRF

441

442 library(data.table)

443 data_time_series_long <- melt(data_time_series [46:94,], id="YEARMODA

") # convert to long format , year 1995

444 #data_time_series_long <- melt(data_time_series [95:141 ,] , id="

YEARMODA ") # convert to long format , year 1996

445 data_time_series_long$day=as.numeric(as.Date(data_time_series_long$

YEARMODA)-as.Date("1995 -08 -04")+1)

446 #data_time_series_long$day=as.numeric(as.Date(data_time_series_long$

YEARMODA)-as.Date ("1996 -08 -11") +1)

447

448 g1995 <- ggplot(data_time_series_long , aes(x=day , y=value , colour=

variable)) +

449 geom_line(size =0.5, linetype = "dashed")+

450 geom_point(size =2)+

451 ylim(0, 200)+

452 theme(legend.position = c(0.9, 0.8))+

453 theme(legend.title=element_blank())+

454 #geom_smooth(method=lm , fill = "salmon", color=’salmon3 ’)+

455 labs(x=expression(’Days since August 04, 1995’),

456 y=expression(’Pollen Concentration (pollen/’ ~m^3~’)’),

457 title="") +

458 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

459

460 g1996 <- ggplot(data_time_series_long , aes(x=day , y=value , colour=

variable)) +

461 geom_line(size =0.5, linetype = "dashed")+

462 geom_point(size =2)+

463 ylim(0, 170)+

464 theme(legend.position = c(0.9, 0.8))+

465 theme(legend.title=element_blank())+

466 #geom_smooth(method=lm , fill = "salmon", color=’salmon3 ’)+
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467 labs(x=expression(’Days since August 11, 1996’),

468 y=expression(’Pollen Concentration (pollen/’ ~m^3~’)’),

469 title="") +

470 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

471

472 library(gridExtra)

473 g <- grid.arrange(g1995 , g1996 , nrow = 2,ncol =1)

474

475 ggsave("ML_time_series_RF_xgbTree.png", g, device = png(), path = ’C

://Users/Ting Cai/Documents/PhD dissertation/MachineLearning/

figures ’,

476 width = 15, height = 20, units = "cm", dpi = 400)

1 #NOTES: #### indicates section , ### indicates subsection , #

indicates notes and comments

2 # Scripts used to build classification models for pollen level

prediction in Newark , NJ

3

4 #package to use SVM and SVR

5 library(’e1071’);

6 #package to provide commonly used function such as

creatDataPartition for regression and classification

7 library(’caret’);

8 #load ggplot for visualization

9 #library(’ggplot2 ’);

10 setwd(’C://Users/Ting Cai/Documents/PhD dissertation/MachineLearning

/’)

11

12 #### load the input data

13 model_data=read.csv(’C://Users/Ting Cai/Documents/PhD dissertation/

MachineLearning/model_input_variables.csv’,header=TRUE)

14

15 #### Step 1: preprocessing the data
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16 model_data$Pollen_level=NA

17

18 # divide the pollen conc into three levels: <10, (10 ,30) ,(30,100)

,>100

19 library(data.table)

20 model_data$Pollen_level[model_data$PollenConc < 10]=1

21 model_data$Pollen_level[model_data$PollenConc >= 10 & model_data$

PollenConc < 30]=2

22 model_data$Pollen_level[model_data$PollenConc >= 30]=3

23

24 table(model_data$Pollen_level)

25 YR=substring(model_data$YEARMODA ,1,4)

26 model_data$Year=as.factor(YR)

27 model_data$Pollen_level=as.factor(model_data$Pollen_level)

28

29 #### ggplot of pollen levels for each year

30

31 gg <- ggplot(model_data , aes(x = Year , fill = Pollen_level)) +

32 #theme_bw() +

33 geom_bar(width = 0.5, color = "black") +

34 theme(legend.position = c(0.1, 0.9))+

35 labs(y = "Pollen levels counts", x = "Year",

36 title = "Pollen level counts in each year")+

37 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

38

39 ggsave("Pollen_level_counts_by_year.png", gg , device = png(), path =

’C://Users/Ting Cai/Documents/PhD dissertation/MachineLearning/

figures ’,

40 width = 20, height = 15, units = "cm", dpi = 300)

41

42 # Subset data to features we wish to keep/use.

43 features <- c("Pollen_level", "TEMP", "DEWP", "STP", "VISIB",
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44 "WDSP", "MXSPD", "MaxTemp", "MinTemp","PRCP","RH","

CumTemp","CumPRCP",

45 "PollenDay_1")

46 data_input <- model_data[, features]

47

48 # I’m doing 10-fold cross validation with 3 repeats in each method

49 set.seed (148000515)

50 library(caret)

51

52 ## to report the F1 score

53 library(MLmetrics)

54 f1 <- function(data , lev = NULL , model = NULL) {

55 f1_val <- F1_Score(y_pred = data$pred , y_true = data$obs , positive

= lev [1])

56 c(F1 = f1_val)

57 }

58

59 ctrl <- trainControl(method = "repeatedcv",

60 number = 10,

61 repeats = 3,

62 savePredictions = TRUE)

63

64 ctrl_F1 <- trainControl(method = "repeatedcv",

65 number = 10,

66 repeats = 3,

67 summaryFunction = f1 ,

68 savePredictions = TRUE)

69

70 #### Step2. SVM

71 ### base model

72 modelSVM <- train(Pollen_level ~ ., data = data_input ,

73 method = "svmLinear",

74 trControl = ctrl)

75 print(modelSVM)
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76 modelSVM$finalModel

77 m <- svm(Pollen_level~., data = data_input)

78

79 plot(m, data_input , CumTemp ~ CumPRCP)

80 confusionMatrix(ConcPredictSVM$pred , ConcPredictSVM$obs)

81 modelSVM$finalModel

82 (SVM_results=modelSVM$results) ## gives F1 and its SD

83

84

85 ### TUNE SVM

86 set.seed (148000515)

87 mygrid <- expand.grid(C = seq(0.1, 10, length = 40))

88 modelSVM <- train(Pollen_level ~ ., data = data_input ,

89 method = "svmLinear", tuneGrid=mygrid , trControl =

ctrl ,preProcess = c("center","scale"))

90 modelSVM$finalModel

91 (SVM_results=modelSVM$results)

92

93 png(filename = "SVM_tuning_classification.png",width = 15, height =

15, units= "cm", res = 300)

94 plot(modelSVM)

95 dev.off()

96

97 ### Final model: to get accuracy and its SD and F1 score and SD

98 mygrid <- expand.grid(C = 4.4154) ## best C

99 modelSVM <- train(Pollen_level ~ ., data = data_input ,

100 method = "svmLinear",

101 trControl = ctrl)

102 (SVM_results=modelSVM$results)

103

104 modelSVM <- train(Pollen_level ~ ., data = data_input ,metric = "F1",

105 method = "svmLinear", tuneGrid=mygrid , trControl =

ctrl_F1,preProcess = c("center","scale"))

106 modelSVM$finalModel
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107 (SVM_results=modelSVM$results)

108

109

110 #### Step 3. random forest

111 ### base model

112 modelRF <- train(Pollen_level ~ ., data = data_input ,

113 method = "rf",

114 trControl = ctrl)

115

116 print(modelRF)

117 modelRF$finalModel

118

119 ### TUNE RF

120 modelLookup(model=’rf’)

121 set.seed (148000515)

122 mygrid <- expand.grid(.mtry=c(1:13))

123 modelRF <- train(Pollen_level ~ ., data = data_input ,

124 method = "rf", tuneGrid=mygrid , trControl = ctrl)

125 print(modelRF)

126 modelRF$finalModel

127 (RF_results=modelRF$results)

128

129 png(filename = "RF_tuning_classification.png",width = 15, height =

15, units= "cm", res = 300)

130 plot(modelRF)

131 dev.off()

132

133 ### Final model: to get accuracy and its SD and F1 score and SD

134 mygrid <- expand.grid(.mtry =12) ## best C

135 modelRF <- train(Pollen_level ~ ., data = data_input ,

136 method = "rf", tuneGrid=mygrid ,

137 trControl = ctrl)

138 (RF_results=modelRF$results)

139 modelRF <- train(Pollen_level ~ ., data = data_input ,metric = "F1",
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140 method = "rf", tuneGrid=mygrid , trControl = ctrl_F1

)

141 modelRF$finalModel

142 (RF_results=modelRF$results)

143

144

145 ### variable importance

146 Imp_RF=varImp(modelRF , scale = TRUE)$importance

147 Imp_RF$variable=row.names(Imp_RF)

148 Imp_RF = Imp_RF[,c(3,4)]

149 colnames(Imp_RF) = c("Overall", "variable")

150 Imp_RF=Imp_RF[order(Imp_RF$Overall , decreasing = TRUE),]

151 plot(varImp(modelRF , scale = TRUE))

152

153 Imp_RF_gg <- ggplot(Imp_RF , aes(x = reorder(Imp_RF$variable , Overall

), y = Overall)) +

154 geom_bar(position=position_dodge(), stat="identity", fill="

slateblue") +

155 coord_flip() +

156 labs(x=expression(’Independent variable ’),

157 y=expression(’Scaled variable importance ’),

158 title="Random Forest") +

159 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

160

161 #### Step 4. xgbTree

162 ### base model

163

164 modelxgbTree <- train(Pollen_level ~ ., data = data_input ,

165 method = "xgbTree",importance=TRUE ,

166 trControl = ctrl)

167

168 print(modelxgbTree)

169 modelxgbTree$finalModel
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170 (xgbTree_results=modelxgbTree$results)

171

172 xgbTree_results[xgbTree_results$nrounds ==50&xgbTree_results$max_

depth ==1&xgbTree_results$eta ==0.3&

173 xgbTree_results$gamma ==0&xgbTree_results$colsample

_bytree ==0.6&xgbTree_results$min_child_weight

==1&

174 xgbTree_results$subsample ==0.5 ,]

175

176 ### tuning xgbtree

177 library(doSNOW)

178 cl <- makeCluster (6, type = "SOCK") # I have 8 in total on my PC

179

180 # Register cluster so that caret will know to train in parallel.

181 registerDoSNOW(cl)

182 modelLookup(model=’xgbTree ’)

183

184 ## tune eta , nrouds , max_depth first

185 tune.gridxgb <- expand.grid(eta = c(0.025 , 0.05, 0.1, 0.3), # 0.05

186 nrounds = seq(from = 50, to = 1000, by =

50), # 50

187 max_depth = 1:4, # 3

188 min_child_weight = 1,

189 colsample_bytree = c(0.8),

190 gamma = 0,

191 subsample = c(0.75))

192 png(filename = "xgbTree_tuning_classification_part1.png",width = 15,

height = 15, units= "cm", res = 300)

193 plot(modelxgbTree)

194 dev.off()

195

196 ## tune the min_child_weight and colsample_bytree

197 tune.gridxgb <- expand.grid(eta = 0.05, # best 0.05
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198 nrounds = seq(from = 50, to = 1000, by =

50), # best 50

199 max_depth = 3, # best 3

200 min_child_weight =c(2, 3,4,5), #best 4

201 colsample_bytree = c(0.4 ,0.6 ,0.8 ,1), #

best 1

202 gamma = 0,

203 subsample = c(0.75))

204 png(filename = "xgbTree_tuning_classification_part2.png",width = 15,

height = 15, units= "cm", res = 300)

205 plot(modelxgbTree)

206 dev.off()

207 ## tune gama and subsumbple

208 tune.gridxgb <- expand.grid(eta = 0.05, # best 0.05

209 nrounds = seq(from = 50, to = 1000, by =

50), # best 50

210 max_depth = 3, # best 3

211 min_child_weight =4, #best 4

212 colsample_bytree = 1, #best 1

213 gamma = c(0, 0.05, 0.1, 0.5, 0.7, 0.9,

1.0), # best is 1

214 subsample = c(0.5, 0.75, 1.0)) # best

is 0.5

215

216 modelxgbTree <- train(Pollen_level ~ ., data = data_input ,

217 method = "xgbTree",importance=TRUE , tuneGrid=

tune.gridxgb , #metric = "F1",

218 trControl = ctrl)

219

220 print(modelxgbTree)

221 png(filename = "xgbTree_tuning_classification_part3.png",width = 15,

height = 15, units= "cm", res = 300)

222 plot(modelxgbTree)

223 dev.off()
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224

225

226 ### Final model: to get accuracy and its SD and F1 score and SD

227 finalGrid <- expand.grid(eta = 0.05, # best 0.05

228 nrounds = 50, # best 50

229 max_depth = 3, # best 3

230 min_child_weight =4, #best 4

231 colsample_bytree = 1, #best 1

232 gamma = 1, # best is 1

233 subsample = 0.5) # best is 0.5

234

235 modelxgbTree <- train(Pollen_level ~ ., data = data_input ,

236 method = "xgbTree",importance=TRUE , tuneGrid=

finalGrid ,

237 trControl = ctrl)

238 modelxgbTree$results

239

240 modelxgbTree <- train(Pollen_level ~ ., data = data_input ,

241 method = "xgbTree",importance=TRUE , tuneGrid=

finalGrid , metric = "F1",

242 trControl = ctrl_F1)

243

244 stopCluster(cl)

245

246 print(modelxgbTree)

247 modelxgbTree$finalModel

248 (xgbTree_results=modelxgbTree$results)

249 plot(modelxgbTree)

250

251 ### variable importance

252 Imp_xgbTree=varImp(modelxgbTree , scale = TRUE)$importance

253 Imp_xgbTree$variable=row.names(Imp_xgbTree)

254 Imp_xgbTree=Imp_xgbTree[order(Imp_xgbTree$Overall , decreasing = TRUE

) ,]
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255 #plot(varImp(Imp_xgbTree , scale = TRUE))

256

257 Imp_xgbTree_gg <- ggplot(Imp_xgbTree , aes(x = reorder(Imp_xgbTree$

variable , Overall), y = Overall)) +

258 geom_bar(position=position_dodge(), stat="identity", fill="

slateblue") +

259 coord_flip() +

260 labs(x=expression(’Independent variable ’),

261 y=expression(’Scaled variable importance ’),

262 title="eXtreme Gradient Boosting") +

263 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size =12))

264

265 library(gridExtra)

266 g <- grid.arrange(Imp_RF_gg ,Imp_xgbTree_gg , nrow = 1,ncol =2)

267

268 ggsave("variable_importance_RF_xgbTree_classification.png", g,

device = png(), path = ’C://Users/Ting Cai/Documents/PhD

dissertation/MachineLearning/figures ’,

269 width = 25, height = 20, units = "cm", dpi = 300)

270

271

272 #### Step5. nnet

273 ### base model

274 modelnnet <- train(Pollen_level ~ ., data = data_input ,

275 method = "nnet",trControl = ctrl)

276 print(modelnnet)

277 modelnnet$finalModel

278 (nnet_results=modelnnet$results)

279

280 ### tuning nnet

281 library(doSNOW)

282 cl <- makeCluster (6, type = "SOCK") # I have 8 in total on my PC

283 # Register cluster so that caret will know to train in parallel.



188

284 registerDoSNOW(cl)

285

286 modelLookup(model=’nnet’)

287 nnetGrid <- expand.grid(size = seq(from = 1, to = 10, by = 1),

288 decay = seq(from = 0.1, to = 0.5, by = 0.1)

)

289

290 modelnnet <- train(Pollen_level ~ ., data = data_input ,

291 method = "nnet",maxit =1000, linout = TRUE ,

292 tuneGrid=nnetGrid , trControl = ctrl)

293

294 print(modelnnet)

295 plot(modelnnet)

296 modelnnet$finalModel

297 (nnet_results=modelnnet$results)

298

299 png(filename = "nnet_tuning_classification.png",width = 15, height =

15, units= "cm", res = 300)

300 plot(modelnnet)

301 dev.off()

302

303 library(devtools)

304 source_url(’https://gist.githubusercontent.com/fawda123/7471137/raw/

466 c1474d0a505ff044412703516c34f1a4684a5/nnet_plot_update.r’)

305 png(filename = "ModelStructure_neuralnetwork.png",width = 25, height

= 20, units= "cm", res = 300)

306 plot.nnet(modelnnet);

307 dev.off()

308

309 ### Final model: to get accuracy and its SD and F1 score and SD

310 finalGrid <- expand.grid(. decay =0.4, .size =9)

311

312 modelnnet <- train(Pollen_level ~ ., data = data_input ,
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313 method = "nnet",importance=TRUE , tuneGrid=

finalGrid ,

314 trControl = ctrl)

315 modelnnet$results

316

317 modelnnet <- train(Pollen_level ~ ., data = data_input ,

318 method = "nnet",importance=TRUE , tuneGrid=

finalGrid , metric = "F1",

319 trControl = ctrl_F1)

320 modelnnet$results

321 stopCluster(cl)

322

323

324 #### Step6. rpart (CART)

325 ### base model

326 modelrpart <- train(Pollen_level ~ ., data = data_input ,

327 method = "rpart",

328 trControl = ctrl)

329 print(modelrpart)

330

331 ### TUNE rpart

332 modelLookup(model=’xgbTree ’)

333 set.seed (148000515)

334 mygrid <- expand.grid(cp=seq(0, 0.5, 0.005))

335 modelrpart <- train(Pollen_level ~ ., data = data_input ,

336 method = "rpart", tuneGrid=mygrid , trControl = ctrl)

337 print(modelrpart)

338 modelrpart$finalModel

339

340 png(filename = "rpart_tuning_classification.png",width = 15, height

= 15, units= "cm", res = 300)

341 plot(modelrpart)

342 dev.off()

343
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344 ### Final model: to get accuracy and its SD and F1 score and SD

345 mygrid <- expand.grid(cp =0.025) ## best C

346 modelrpart <- train(Pollen_level ~ ., data = data_input ,

347 method = "rpart", tuneGrid=mygrid ,

348 trControl = ctrl)

349 (rpart_results=modelrpart$results)

350

351 modelrpart <- train(Pollen_level ~ ., data = data_input ,metric = "F1"

,

352 method = "rpart", tuneGrid=mygrid , trControl = ctrl_

F1)

353 modelrpart$finalModel

354 (rpartresults=modelrpart$results)

355

356 #install.packages(’rattle ’)

357 library(rattle)

358 png(filename = "rpart_tree_classification.png",width = 20, height =

20, units= "cm", res = 300)

359 fancyRpartPlot(modelrpart$finalModel ,caption = "")

360 dev.off()

361

362 #### Step7. PLOT THE RESULTS

363 # save results from previous section first

364 classification_metrics=read.csv(’C://Users/Ting Cai/Documents/PhD

dissertation/MachineLearning/ML_classification_results.csv’,

header=TRUE)

365 library(data.table)

366

367 library(ggplot2)

368

369 classification_metrics_long=melt(classification_metrics[,c(2,4,1)],

variable.name="Method")

370 classification_metrics_long2=melt(classification_metrics[,c(3,5,1)],

variable.name="Method")
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371

372 classification_metrics_new=cbind(classification_metrics_long ,

classification_metrics_long2)

373 classification_metrics_new=classification_metrics_new[,-4]

374 colnames(classification_metrics_new) <- c("Method","Metrics","

Metrics_value","Metrics_SD","SD_value")

375

376 gg <- ggplot(classification_metrics_new ,aes(x=Method ,y=Metrics_value

, fill=Metrics)) +

377 geom_bar(width = 0.6, position=position_dodge(), stat="identity",

color="black") +

378 geom_errorbar(aes(ymin=Metrics_value -SD_value , ymax=Metrics_value+

SD_value), width =.2, position=position_dodge (.6)) +

379 labs(y = "Value", x = "Method",

380 title = "")+

381 theme(plot.title = element_text(hjust = 0.5),text = element_text(

size =12),axis.text = element_text(size=12,face="bold"))

382

383

384 ggsave("ML_classification_results.png", gg , device = png(), path = ’

C://Users/Ting Cai/Documents/PhD dissertation/MachineLearning/

figures ’,

385 width = 20, height = 15, units = "cm", dpi = 300)
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