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ABSTRACT OF THE THESIS

Developing Messaging and Real Time Processing System
for Cloud Connected Cars

by Georgios Chantzialexiou

Thesis Director: Maria Striki

In the recent years, the interest in developing self driving cars, autonomous drones
and connected cars skyrockets. That is leading to the need to develop a cloud messag-
ing system with close to real time capabilities that enable vehicles share information to
each other in order to help them improve their navigation. Although, there are many
popular existing cloud messaging and processing solutions, these engines introduce di-
verse characteristics and runtime architectures, so there is a need to analyze not only
the resources they require but also the execution time they manage to achieve. The
complexity of the task, is also affected by execution parameters of the underlying algo-
rithm. The outcome of such analysis will provide us with the means to understand the
advantages and disadvantages of every execution engine under specific circumstances,
and also let us deploy user policies in cloud environments that relate to the cost and the
time restraints of the executions. For this purpose, we must conduct an experimental
analysis on those engines through a profiling process, where we will measure the usage
of the resources as well as the overall execution time. The results of this process will
enable us to construct static predictive models that could simulate the performance of
the engines for varying execution parameters.

In this thesis we used Kafka as our distributed messaging system and measured the

i



communication between cars. We choose Kafka instead of other messaging systems due
to its reliability, scalability, ease of use, proven success, and popularity across the big
data community.

Furthermore, we used Apache Spark as the real-time processing engine. We chose
Spark because it is easy to integrate it with Kafka, for its scalability, reliability, ease of
use and its popularity. Moreover, the Machine Learning library of Spark is widely used.
In order to analyze the suitability of the above system we developed mini applications
that simulate real-world scenarios to analyze the performance of the system. We run
experiments using different settings and different workloads and measure performance

that help us understand the behavior of the system.

Keywords: Apache Spark, Apache Kafka, Big Data, Autonomous Vehicles, Parallel

Processing, Real Time Processing, Robotics
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Chapter 1

Introduction

1.1 Motivation

An increasing number of vehicle related platforms are incorporating technologies that

would benefit from communication between central and connected cars.

e connected cars: would benefit from the data sharing in order to obtain infor-
mation that will improve their driving experience. For example, if all cars are
sharing their location it would be easier to detect the traffic jam and avoid them.
Another example would be collision avoidance. Cloud system could read the lo-
cation and the trajectory of each car on the road and if two car trajectories are
going to be met, which means that cars are going to crash, cloud will be able to
warm well in advance the drivers to take action to avoid the crash. Moreover,
cloud will be able to take control of the cars in order to avoid the crash. There
are dozen of examples and usecases for connected cars that would benefit from a

cloud-car communication.

e self driving cars: have a much broader range of usecases that would benefit from
such a system. I am going to provide a few important examples: Self-driving car
motion-planning, object detection algorithms can greatly improve from sharing
the predictions and the input back to the cloud. Cloud algorithms will utilize
their unlimited resource availability to improve their models. Collision avoidance
is mandatory in these type of cars because they don’t have real driver. Recently,
a Tesla car crashed to another car which lead to a fatal accident as the Tesla car
failed to detect the other car because of its white color. A cloud connected system

would be able to alarm both cars using the gps about the upcoming collision and



avoid the accident.

A cloud system is needed to establish communication between the cars. The system

should have the following capabilities:

e Reliability: The system should provide fault tolerance in data transfer and com-

puting. The system should be able to provide delivery guarantees.

e Availability: The system should have very high up-time. It shouldn’t crash, or

pause for maintenance

e Real time: For certain use-cases the system should be able to compute and provide

information in real time or close to real time.

e Scalability: The system should be able to scale in order to accommodate for users.

For example during peak hours.
e Security: Data should be safely transferred to and from the cloud to ensure no

privacy invasion.

1.2 Contribution

In this work I propose the development and characterization of a streaming system that

will be able to cover all the above requirements described at the introduction above.

As a messaging system I used Apache Kafka.

Kafka has the following claims:

e Security: Kafka is able to encrypt the data in order to safely transfer them.

e Scalability: Kafka is able to scale across many brokers without overhead thanks

to the help of zookeeper which is coordinating the Kafka brokers.

e Reliability: Kafka is able to replicate data across brokers. If one broker fails,

Zookeeper will make sure that another broker will take over as a new leader and



try to restart the failed broker. Zookeeper could be launched across many nodes

too to make sure that one zookeeper node is not a single point of failure.
e Real-time: Kafka can send messages with high throughput and low latency.

e Availability: As previously said, Kafka can have many brokers, which leads to high

availability. Each node could be paused for maintenance reasons and restarted.

As a processing engine I used Apache Spark. Spark claims that:

e Reliability: Kafka has implemented fault-tolerance using DAG (Direct Acyclic
Graph). If a node fails, another node will take over the work of the bad node

from the DAG and do it. It is also very efficient.

e Security: Data are read from Kafka[l] and kept in the cloud. Therefore, there is

no high risk for data attack on Kafka.

e Scalability: Spark can easily scale across many cores/node. Correct configuration

between Spark and Kafka will also improve parallelism.

e Availability: Spark;s architecture is master-slave, which means that if master
node fails the whole system will fail. To overcome this issue Spark is able to

spawn many master nodes. Therefore, chances of downtime are pretty low.

e Real time: Spark has developed a micro batch streaming system which is able to
compute data in close to second window time. Certain operations could also be

completed sub second.

Furthermore, I developed a few example applications that are representative of real
world usecases in order to measure the performance of the system and verify that it is
compliant with the aforementioned claims. Moreover, by developing the applications I
got to assess the level of difficulty to develop, and the resources required to maintain

streaming applications and system configurations.



1.3 How The Work Is Organized

e In chapter 2 : We present the general theoretical background, tools and applica-
tions associated with autonomous vehicles. The reader can familiarize themselves
with the frameworks and technologies used in the current work. These are con-

sidered necessary for the study that will follow in subsequent work units.

e In chapter 3: We describe the system’s design and implementation. We focus
on the study and analysis of each of the software components of the system.
We provide high-level overview of the system and its characteristics, followed by
detailed information for its components, including the data generation and input

part, the Kafka topic, spark streaming and Kafka - Spark connector.

e In chapter 4: We discuss applications that the system architecture will have to

support.

e In chapter 5: We explain the Experimental setup and the experiments that I per-
formed at the current project thesis and evaluate the performance of the system.
Firstly we describe the datasets used. Next, we perform experiments to evaluate

the performance and scalability of proposed system.

e In chapter 6: We summarize the conclusions drawn from my study and discuss

possible future steps.



Chapter 2

Theoretical Background

2.1 Overview

We present the general theoretical background, tools and applications associated with
autonomous vehicles. The reader can familiarize themselves with the frameworks and
technologies used in the current work. These are considered necessary for the study

that will follow in subsequent work units.

2.2 Messaging Systems

Messaging systems are all about data. Their goal is to transfer small and large amounts
of data in a reliable rapid and scalable way[2]. Most of the usecases that need to transfer
data require the messaging system to transfer large amounts of data fast ( which means
the system has to be High-Throughput), and usually they expect the system to send
and receive messages in a reliable way. That means the system has to be fault-tolerant
in order to meet the expectations of popular usecases.
What are the challenges in Messaging systems?

A message broker could become a bottleneck in the scalability of the system. Common
issues that cause the broker to to lag is messages with big size. Big and small message
size is relative term. Each message system consider a message big different than the
others. For example for Kafka a message of 1 Mega Byte is considered big and it is not
recommended by the designers of the system. The biggest problem with big message
sizes is that the I/O of the filesystem that the broker is writing the data is not very
high. The last few years, CPUs have keep growing very fast, but the disk speed has

not followed the progress of the CPUs. As a result, sending many big messages usually



cause file-systems and therefore brokers to lag and become bottlenecks of the system.
Other problem that a system could face is when an application that is producing data
is using only one node. That could limit create both I/O issues similar to the one
I previously described but also it could create a network issue, because the network

bandwidth is limited within one host.

The same exact issue could happen if the consumer is slow. That happens usually
due to bad network connection or again if the consumer is using only one node. Low
data consumption could make the broker system flood with data and therefore fail. As
a result, data could be lost and the system will not be able to receive or send data.

Usually, messaging systems are expected to enable the data subscribers reprocess
data. There are multiple reasons that subscribers could need to reprocess data. Ex-
ample: subscriber could fail at some point and loose all the received data, or a bug
in the subscriber’s logic could invalidate all the received data and therefore the only
solution would be for the application to ask the data again from the messaging system.
Of course, every feature comes with a cost. Saving large amount of data for offline

processing means that the system requires large amount of disk space.

2.3 Zookeeper

2.3.1 Distributed File-Systems

The truth about cloud systems is that they have many file-systems. How cloud works?
There are many physical hardware drives that could be interconnected to other ma-
chines using high performance network systems. As a result, cloud has many file systems
that somehow should talk to each other in to develop distributed services. Many com-
panies and academics have developed their own distributed file system. For example:

The most popular distributed file system in academia is:

e Lustre[3], which is used by many supercomputers for large-scale computing.



e GFS[4]: Google file system which is developed and used by Google Inc.

e Azure[5]: which is developed by Microsoft Cloud Team.

How do these systems work?

These systems usually are usually the following architecture:

e They have A Name Node services, which should continuously run: to track meta-
data file. There is a very similar concept in Linux kernel, the inode, which is re-
sponsible for creating/updating/deleting file information such as size, read /write

permissions, time last created /updated.

e In the distributed system the name node should be able to tell you which node is

holding your data.

e System has a node which is responsible for load balancing the files between nodes.

e System has a node which should be able to replicate data for backup (if needed).

So, if a user needs to access a file, he has to query the inode and them the inode will

return the pointer that references that file. The benefit of this architecture is that:

e [t will make no difference to the user for Ul perspective.

e It is reliable (because it can replicate the data to many different nodes)

e Data shows that it able to successfully perform large reads/writes on large files.



On the other side:

e The master node is not able to handle many requests at once, especially if many
users are asking to write to the same files. That could lead to a node failure or a

denial of service.

e The NameNode if it is only one, will be a single point of failure, and a large

machine with thousand of nodes will fail because of one node.

e File-system is not able to perform real time (from streaming) large scale I/O [6]

Could a files-system be used to keep track of a distributed messaging
system like Kafka?

File-System have limitations that fail to meet the requirements of Kafka brokers.
Let’s consider the following approach:
Let’s consider that we deployed a Kafka system with 5 brokers and wee need to write
to a file the status of each broker such as: "uptime”, ”broker-crashed”. What would
happen if 2 nodes need to append data to the file at the same time? Some of the data
will be lost or get corrupted because there is no easy way to lock the file descriptor and
prevent the other file from writing data to it.
What is the root cause of this problem?
There is no detection of double writing attempts. One can’t put a lock to the file. Even
if that was true, it would cause other problems such as race conditions issues that would
kill the performance of the system, where you could have many users.
In a single node system that wouldn’t be an issue because it is easy to detect that
more than one user has requested the file descriptor from the file-system, but not
in distributed file systems. The main reason that we cannot add this feature to a

distributed system is that there are other protocols that would need to be extended to



do that and they have pretty bad performance. Therefore, adding that wouldn’t solve
anything.
In order to solve these issue Zookeeper has been developed, which is a

wait-free coordination for Internet-scale systems

2.3.2 Apache Zookeeper - Architecture

What is Zookeeper[7] It is a service for coordinating processes of distributed applica-
tions. Zookeeper is trying to provide simple and high performance kernel for building
distributed applications that need complex coordination primitives at the client. It
incorporates elements from group messaging, shared registers, and distributed lock ser-
vices in a replicated, centralized service. The interface exposed by ZooKeeper has the
wait-free aspects of shared registers with an event-driven mechanism similar to cache
invalidation of distributed file systems to provide a simple, yet powerful coordination
service. The ZooKeeper interface enables a high-performance service implementation.
In addition to the wait-free property, ZooKeeper provides a per client guarantee of FIFO
execution of requests and linearizability for all requests that change the ZooKeeper
state. These design decisions enable the implementation of a high performance pro-
cessing pipeline with read requests being satisfied by local servers. ZooKeeper can
handle tens to hundreds of thousands of transactions per second. This performance
allows ZooKeeper to be used extensively by client applications like Apache Kafka.
Where should I use Zookeeper?

By no means, Zookeeper should never be used to for storage instead of a file-system.
Zookeeper is good at active communication. The strong elements of Zookeeper are the

following:

e It is good at electing leaders. ( for example in kafka, electing one broker as the

leader)

e Group membership.
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e Active configuration management.

e Status monitoring.

e Implementing distributed locks.

Zookeeper saves all the data on znode, znode is an in-memory data node in the
zookeeper data. The system is following hierarchical node organization which is called
data tree. The main reason for this organization choice was made for simplicity and
commonality, because users are used to the tree logic from the filesystems. Most popu-
lar system that follows this structure is the UNIX system. Users can access data nodes
the same way they would access files in UNIX. Below we can see an illustration of the

hierarchical data tree structure of zookeeper znodes.

fapp2

fappl/p_1 fappl/p_ 2 /appl/p_3

Figure 2.1: Zookeeper Znode Data Tree Structure

Sessions. A client connects to ZooKeeper and initiates a session. Sessions have an

associated timeout. ZooKeeper considers a client faulty if it does not receive anything
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from its session for more than that timeout. A session ends when clients explicitly
close a session handle or ZooKeeper detects that a clients is faulty. Within a session, a
client observes a succession of state changes that reflect the execution of its operations.
Sessions enable a client to move transparently from one server to another within a
ZooKeeper ensemble, and hence persist across ZooKeeper servers

As far as znode is concerned, there are two different znode types:

e Regular: Clients can create and delete nodes explicitly.

e Ephemeral: Similar to regular znodes, but they are also linked with session. If a
session expires then the Ephemeral node gets deleted.

Both types have an increasing counter to their name.

How locks are implemented?

A) The leader would create a lock file. For example: leader/locker B) The leader
would use an ephemeral node to save the file. Why is that? If the node dies or finishes
it kills the session and then the node is automatically destroyed. As a result, other
nodes that needed the lock would automatically watch this change and create another
ephemeral node to acquire lock.

What are the limitations of Zookeeper?

Zookeeper is good at actively handling (reading, writing) events, so it can be used for
active configuration of systems, but it does not by design persisting data. If the system
shuts down completely the data will not be saved to the hard drive and probably lost
forever. Zookeeper has a check-pointing mechanism where the system can most most of
data ( not including the most recent though). That is a trade-off that was made by the
designers of the system to protect the performance of the system rather than providing

guarantees that the system has all the data.
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2.3.3 Zookeeper Popular Usecases

How is Zookeeper used today?

e It is used as a Naming Services: It is used to identify nodes in a cluster by name.

The most similar service could be DNS but for nodes.

e (Cluster management: This is how also Kafka is using Zookeeper. It is responsible
to add or remove a node from a cluster and also update the status of a node in

real time. For example if it is active, pause, resume, cancel state.

e Leader election: Kafka is also using this feature. Zookeeper is responsible for
keeping track of the nodes and electing a leader. The leader in Kafka case is a
broker. If a broker fails then Zookeeper is responsible for electing the next leader.
There are many ways to choose your leader but Zookeeper is using a quorum

algorithm to do that.

e It is used for implementing locks and taking care of the synchronization of dis-

tributed systems.

2.4 Distributed Messaging Systems

Nowadays, there a great number of tools and frameworks designed to send and receive
messages distributed. The majority of these tools are open-source and the development
started after the start of the Hadoop project, which was the beginning of the new big
data era.

What problem do they solve?

Distributed Message Brokers are typically used to decouple the communication of data
with the processing of data. They typically follow the publish-subscribe design pattern.

A classic system has a data producer, a data consumer and a storage system(broker).
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The producer is writing the data to the storage system, and then asynchronously a
consumer could request data from the broker and pull the data that are written to it.
The storage system of the broker could be anything from a simple hard drive, SSD,
ram, database. It is more common to use a ram first if the requirements and the size
of the ram is big enough to save the data and then an SSD because of the high I/0
performance. Database is the least used system since it has high latency which against
the requirements of a streaming system. The most popular systems that follow the
aforementioned pattern are Kafka[l], AMQP[8], ActiveMQ[9], Facebook Logdevice[10],
Google Cloud Pub-Sub[11], Amazon Kinesis[12]. All these are alternatives to Apache
Kafka and each system has advantages and drawbacks in comparison with Kafka.

For example:

e ActiveMQ : is very fast and it is easy to use with Java based ( JVM) applications.

e Amazon Kinesis: is very good at processing large amount of requests in parallel.
It is able to write applications that process data in real-time and scale across
thousands of nodes. On the other hand, it is a fully managed services which can

be used through AWS and there is no open source version to it.

e Facebook’s Logdevice has a very rich API and provides improved guarantees com-
pared to Apache Kafka with similar throughput, but there is no open source ver-
sion to it and there is no really community that is using this tool. The interest

in Logdevice is very low there the trend is definitely not going upwards.

2.5 Apache Kafka

Apache Kafka is a distributed, partitioned, replicated commit log service, that provides
the functionality of a messaging system. It is used for collecting and delivering high
volumes of data with low latency. Apache Kafka was originally developed by LinkedIn,

and was subsequently open sourced in 2011. LinkedIn is using Kafka in production for
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some years already and the system is processing hundreds of GB successfully everyday.
At Kafka[l] they compared the system against the most popular messaging systems
and the experimental results showed the superiority of Kafka in terms of throughput
(messsages/second). In 2012 Kafka became an Apache Top-Level Project. The basic

concepts of Kafka are the following:
e Topic: It is a stream of messages of a particular type.

e Partitions: Each topic is divided into multiple partitions. This design choice was
made in order to enable a distributed Kafka system to be able to achieve load

balancing.
e Producer: A producer is able to publish messages to a particular topic.
e Brokers: Set of servers that pub-messages are saved.

e Consumer: A consumer can subscribe to one or more topics from brokers pull the

data from the brokers.

producer producer
BROKER | BROKER 2 BROKER 3
topic 1 /part] topicl/partl topic1/partl
/part2 /part2 /part2
topic2/part] topic2/partl topic2/partl
consumer consumer

Figure 2.2: Kafka Architecture
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2.5.1 Kafka Architecture And Design Principles

Kafka is a distributed messaging system. A Kafka cluster consists of the following:
Brokers: A typical cluster consists of multiple brokers. To balance load the workload,
each topic is divided into multiple partitions. The user is responsible for deciding how
many partitions each topic should have. Each broker is storing one or more partitions
of each topic.

Producers - Consumers At each topic a system the system can support multiple
producers and multiple consumers.

Consumer Group Kafka, has also designed consumer group. A consumer group
is a set of consumers where each of them consume data from different partition. That
makes data pulling faster and also it avoids the consumers from pulling the same data
twice (data duplication).

Kafka has made a few choices to improve the throughput of the system. First, they
decided to use segment files to append to new data first, and then flush the segment
file to the disk. The data is available for consuming only after Kafka has flushed the
data to the disk. Moreover, Kafka decided to reduce the information sent by every
message. Unlike typical messaging systems, a message stored in Kafka does not have
an explicit message id. Instead, each message is addressed by its logical offset in the log.
This avoids the overhead of maintaining auxiliary, seek-intensive random-access index
structures that map the message ids to the actual message locations. Note that our
message ids are increasing but not consecutive. To compute the id of the next message,
we have to add the length of the current message to its id. Below we can see the layout
of a Kafka log and the in-memory index is shown in the next figure. Each box shows
the offset of a message.

Another choice that was made by Kafka designers in order to keep reducing com-
plexity and overhead at the broker. Kafka has a Stateless Broker. That means that
Kafka is not keeping track of how much data each consumer has consumed. The draw-
back at this design is that the broker does not know when it is okay to delete consumed

information. If the broker does not delete information the system will reach a point
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segment file |
In-memory index mse=-00000000215
delete =" | mse-00000000000
msg-00014517018

msg-00030706778

reads : msg-00014516809

append——p{ msg-02050706778

sepment file N

msg-02050706778
msg-02050706945

map=-0126145164809

Figure 2.3: Kafka Log

where no more messages will be able to be written to the system. The solution to
this problem is to delete messages based on a simple time based policy. The broker
will delete information after a time period which is decided by the maintainer of the
system. The default time right now is 7 days. At this point it is important to note
that the system’s performance does not depend on the size of messages that are saved
in the broker. Therefore, the performance of the system will note degrade even if we
keep data for a longer period.

Last but not least, Kafka decided to decentralize the consumer of the system. That
means that Kafka does not follow the popular architectural design pattern in Big Data
system ” Master - Slave” because adding a master would complicate the system in terms
of failures. Failures in master node would take the whole system down and as it will

be discussed further more extensively at least one time guarantees would make things
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more complicated. Kafka used Zookeeper in order to decentralize their architecture.

Kafka uses Zookeeper for the following tasks:
e detecting the addition and the removal of brokers and consumers,
e triggering a re-balance process in each consumer when the above events happen,

e maintaining the consumption relationship and keeping track of the consumed

offset of each partition.

2.5.2 Delivery Guarantees

Kafka offers at least once guarantees. Exactly-once guarantee does not allow duplicates
but on the other hand it makes the communication much slower because it requires two-
phase commits. Given Kafka’s architecture, if a consumer crashes, the other consumer
that will handle the incoming messages may get duplicate messages.

The problem could be solved on the application level. The application should be able
to handle the duplicate messages by removing them, or by restarting the application.[1]

Kafka guarantees that messages from a single partition are delivered to a consumer
in order. However, there is no guarantee on the ordering of messages coming from
different partitions. To avoid log corruption, Kafka stores a CRC for each message
in the log. If there is any I/O error on the broker, Kafka runs a recovery process to
remove those messages with inconsistent CRCs. Having the CRC at the message level

also allows us to check network errors after a message is produced or consumed.

2.5.3 Kafka Fault Tolerance

There is room for improvement in Kafka’s fault tolerance architecture. If a broker
crashes and there are messages stored on that broker which are not consumed yet, they
become unavailable. The problem is that if the storage system which the data are
stored becomes permanently damaged all unconsumed messages are lost forever. Kafka
development team plans to extend the architecture of the system by automatically
replication messages on multiple message brokers. In that way even if a server goes bad

then data will not be lost.
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2.5.4 Common Kafka Deployment

After explaining the challenges of a messaging system and the Kafka Architecture I
am going to explain how a Kafka system should be deployed in order to tackle the
challenges discussed above. The following explanation will be a general rule of thumb
which could be used as an tutorial for most of the use cases that is required. Every
application has different requirements and therefore, if someone knows the need of the
application that he is supporting he will be able to optimize/ fine tune Kafka in order
to get the maximum performance from the system.

How to solve reliability availability and scalability with Kafka:

Apache Kafka has already implemented, as described above fault tolerance in its
architecture. The only way to make sure that the system will be reliable and also avail-
able ( available means that the system does not go down often, due to maintenance
and broker failures) is to have a big number of brokers spawned across many different
nodes. As a result, even if a broker fails, then zookeeper will elect a new leader imme-
diately and then the system will never stop operating normally. The broker that failed
will restart automatically and if the problem persist then an engineer will have to see
the root cause of the issue the resolve it. Moreover, scaling brokers horizontally across
multiple nodes will help the system provide high-throughput data transfer that could
be sizes from bytes to Terabytes. Adding more machines seamlessly share the load
across hosts. In order to share the loads evenly among nodes, a load balance system is
required. That could be developed either along with the messaging system or it could
also be part of the application that is sending messages to Kafka. Being part of the
application, usually increases the overall performance of the system because there is no
need for middleman to orchestrate the data between the application and the messaging
system. From the consumer’s side there is no need to add any load balancer because
Kafka has already implemented a consumer group which allows multiple consumers
to receive data from the same topic without any extra overhead from the application
developer.

Furthermore, multiple Zookeeper instances are required in order to make sure that
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system will not fail. Brokers are orchestrated by zookeeper so if Zookeeper fails then
the whole system will go down. The good thing about ZK is that it is very reliable and
it is able to handle many instances without introducing any bottleneck to the system.
That being said, 1 instance of zookeeper every a few brokers is sufficient to ensure that

the system will be operating normally without issues.

2.6 Distributed Data Streaming Processing Engines

2.7 Apache Spark

2.7.1 Introduction

Apache Spark[13] is a computing platform specifically designed for computer cluster
(cluster computing platform) materialized in the programming language Scala . Built
to support distributed general purpose applications is generally based on processing
large volumes of data with a high degree of efficiency and speed. In a context of
the Spark is an extension developer MapReduce model, with the main difference that
supports most types of calculations, such as interactive queries (interactive queries)
and processing streaming data (streaming data processing). Another difference with
the work (jobs) that can be d to Spark in connection with embodiment of MapReduce
in other systems is the ability to provide data storage in the memory of each node in
the cluster during the execution of the job . This latter property described as caching
and is probably one of the most important features introduced by Spark in developing
distributed systems and gives advantage in speed over the Hadoop MapReduce even
achieved up to 100 times better time performance.

The Spark structure is best described as a single stack of subsystems cooperate and
provide each of these services separately. Specifically, the "heart” of the system is the
Spark core. The core module is the computational engine system that is responsible for
routing, sharing and monitoring applications which are detailed in individual computing
units (tasks) and assigned to the cluster nodes. To core is also what provides interfaces
for building programmatic elements of the system such as, for example Resilient Dis-

tributed Datasets (RDD) that we will analyze later. It is also the basis on which the
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subsystems based Spark Sql, Spark Streaming, MLLib and GraphX. Briefly mention
here that the Spark Sql offers potential for cooperation with the Spark structured data
via Sql language and variant that offered by Apache Hive. The Spark Streaming is what
gives the possibility to store and stream data in real time. The GraphX is a special
library designed to provide support for jobs and algorithms that process graphs. Fi-
nally MLIib the library a collection of machine learning algorithms. MLIib is a powerful
Machine Learning Library which give competitive advantage to Spark in contrast with
other distributed data processing frameworks.

Spark as mentioned above is implemented entirely in the Scala programming lan-
guage, a multi-language paradigm with strong evidence for Functional and Object-
Oriented programming. The scala uses the JVM environment for the execution of its
programs, and is designed so that it can import and use libraries of Java. Like the Spark
naturally supports application development in any of the Java and Scala language while
outside these supports and the Python language. This makes the Spark platform in-
dependent (platform independent) while with Python provides great freedom of choice

from the users point of view.

2.7.2 Apache Spark’s Architecture

Spark architecture which is based on the famous map-reduce paradigm, follows the
architectural master / slave model. More specifically in Sparks terminology there are
the master and the workers entities. When you start a Spark cluster one master process
is running on the node from where the start command is given, while workers processes
are executed on slaves nodes. In order to run a Spark application you need compute
resources from the cluster, translated into main memory and cpu cores. A supervisor of
the available resources of the cluster provides Spark the choice among Standalone, Yarn
and Mesos cluster resource managers. The standalone which is one that we will use
in this work, and an integrated implementation resource manager that provided from
Apache Spark. Master and worker processes belong are controlled from the standalone
resource manager which has the supervision of all the processes and the resources a

stock of the given cluster. Besides that, we need to maintain continuous communication
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between workers nodes and master node not only to run the application successfully,
but also to be able to identify any problems. Finally these processes set up servers at
each node in order to provide useful information of their operation via the http protocol.
The main components of a Spark application are the driver the executor and the cluster

manager.

Worker Node

Executor | Cache

Task Task

Driver Program

F 3
»

SparkContext Cluster Manager

Worker Node

Executor | Cache

Task Task

Figure 2.4: Spark Cluster Overview

1. Executors

The executors[13] are Java processes that start the workers in the cluster nodes. The
executor initiated from the master node at the beginning of each job and the duration
life is as much and the lifetime of the job. The executors are those who take part to the
calculation needed for the job. This is done by assigning independent calculation units
(tasks) in each executor. Specifically sending each executor is to commit the necessary
resources, memory and CPU cores, and perform specific operations laid down by the
code of the job on a track (partition) of data processed by the job. The results of
their work vary depending on the type of task. These either communicated back to the
driver to monitor the implementation process, as we shall see, either stored in the cache
or disk as intermediate results that will be consumed by another operation in a future
task. This storage is undertaken by a service called BlockManager and cooperates with

the executor and the driver. Finally it is important to emphasize the fault tolerance of
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Sparks Architecture. Each task is an independent compute unit, which means that if
for any reason a task fails to complete, that does not affect the ongoing execution of
the job only because another identical task will be be re-initiated.

2. Driver

Driver is the process which controls the main method of the client application. In
this there is the object SparkContext represents and encapsulates all selected settings
and parameters for a particular job. The two main obligations driver process can be
summarized as follows: Driver process is responsible for breaking the application into
smaller tasks/pieces. When the application starts running , the drivers responsibility
is to convert the code into tasks and delegate them to executors that are available to
the workers of the cluster.

In the beginning, the driver draws a logical plan of job , which has the form of
directed acyclic graph, (Directed Acyclic Graph - DAG) of the procedures to be ex-
ecuted. After that, the logical execution plan needs to be translated into physical
execution plan. At this stage undertaken various optimizations in the way of execution
that can be made by the driver. Finally translate the logical implementation plan in
natural execution plan which consist of multiple tasks. The second step is to schedule
the tasks to the executors. The routing of tasks to the executors take place right after
the output from the physical execution plan driver for the job.

In this phase each executor has made his presence known to the driver and expects
it to be assigned a task to start computing. The driver makes smart choices assigning
as much as possible task nodes that are stored locally and the data will need to edit
this task. These may concern either data stored in the local node disk and accessed for
the first time or even data stored in the cache node by earlier task performed there. In
either of the above two cases, the driver will always prefer the particular node that meets
these criteria. This of course is not always possible because it only has to think about
the case where no such nodes in our cluster, but at this moment is busy performing
another task. However, it is more preferable to select such a node in connection with
any other, the spark and provide relevant regulation specifying the number of seconds

that can expect the driver to be released as a node eventually to delegate the task.
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2.7.3 Resilient Distributed Datasets (RDD)

Resilient Distributed Datasets (RDD) is a fundamental data structure of Spark. It is an
immutable distributed collection of objects. Each dataset in RDD is divided into logical
partitions, which may be computed on different nodes of the cluster. RDDs can contain
any type of Python, Java, or Scala objects, including user-defined classes. Formally, an
RDD is a read-only, partitioned collection of records. RDDs can be created through
deterministic operations on either data on stable storage or other RDDs. RDD is a
fault-tolerant collection of elements that can be operated on in parallel.

There are two ways to create RDDs parallelizing an existing collection in your
driver program, or referencing a dataset in an external storage system, such as a shared
file system, HDFS, HBase, or any data source offering a Hadoop Input Format. Spark
makes use of the concept of RDD to achieve faster and efficient MapReduce operations.
Let us first discuss how MapReduce operations take place and why they are not so
efficient.

Data sharing is slow in MapReduce due to replication, serialization, and disk 10.
Most of the Hadoop applications, they spend more than 90% of the time doing HDFS
read-write operations. Recognizing this problem, researchers developed a specialized
framework called Apache Spark. The key idea of spark is Resilient Distributed Datasets
(RDD); it supports in-memory processing computation. This means, it stores the state
of memory as an object across the jobs and the object is shareable between those jobs.

Data sharing in memory is 10 to 100 times faster than network and Disk.

2.7.4 Caching

As we have seen so far in Apache Spark[13] introduces the field of distributed computing
machines some very interesting facts, such as RDD we analyzed in the previous section.
What I generally do it very attractive for data analysis applications (data analytics
jobs) is the feature that allows stored during execution of a job intermediate results
(which are themselves in turn RDD) in the main memory of the nodes the cluster,

which is called caching. Traditional computing models such as MapReduce, which
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follow a similar philosophy of execution can only preserve data in the main memory
within which they are processed by a given task at a given time. If the same data are
needed from a next task to be executed in the same node then those provided by the
disc. Obviously it creates a weak point (bottleneck) in carrying out the task as the data
access speed of the main memory in comparison to the disk are hyperproliferative. Very
significant benefits from caching reap the jobs those using iterative algorithms (iterative
algorithms), processing at each iteration the dataset which are powered. The k-means
belonging to this class of algorithms and appropriate in this section to look in a little
more detail the concept of caching and how it is implemented in Spark. As we have
already seen the executors are those java processes running on each node of the cluster
and make the core of calculations each job. Since it is java processes running in a Java
Virtual Machine (JVM) that provides the memory piece known as heap, which is the
available process interface (workspace). To heap is divided into partial memory pieces
which serve to store different kinds of data related to the process. Spark has a default
size of 512MB for each executor which can be tuned using spark.executor.memory
configuration, based on our needs. Spark expresses its memory size based on the total

workspace of each JVM[14] executor. We have the following regions:

e Safe Region: This region accounts for 90% of the total heap and so called
precisely because it sets an upper limit which can engage the heap to avoid low-

memory exceptions. (Out of Memory Error - OOM)

e Shuffle Region: Occupies 20% of the safe as shown in the figure and is designed
to store data which will shuffle. The procedure takes place when shuffle data
produces a task that must be consumed by another node that runs another task
in the cluster. Usually these data are required to be classified and so this part

fulfills the memory requirements for such classification.

e Storage Region: Accounts for 60% of the safe region is what serves the storage
partitions an RDD at a node. From here they can access the data much faster

than any task.

e Unroll Region: Spark also provides the ability to store data in serialized form



25

in memory or on disk. This data format required by distributed systems such as
Spark in order to move data over the network. In serialized form data but can not
be used immediately, but first a de-serialization process has to take place. These

operations fills the unroll region which is 20% of the storage region.

2.7.5 Spark Streaming

Spark Streaming extends Spark’s API to stream processing which let you develop
streaming jobs the same way that you would write batch jobs. That makes the tran-
sition from batch to stream pretty easy and it also enables code reusability because a
developer can develop only one software for two different purposes.

Fault Tolerance: Furthermore, Spark Streaming is also Fault Tolerant. The sys-
tems requires exactly one semantics from every state. In case of a failure the system
is able to recover from it automatically and execute again the faulty state. This is
extremely important for close to real-time processing where you need to detect and fix
the error immediately.

Deployment Options: Spark Streaming[15] is able to read data from many differ-
ent data sources such us HDFS[16], Flume[17], Kafka[l], Twitter[18] and ZeroMQ[19].
Furthermore, a developer can also define his/her own custom data sources. Therefore,
integration with Apache Kafka which is used at the current project is extremely easy

and well supported by the community.

2.8 MapReduce

MapReduce[20] was presented by Google in 2004. It is a programming model and
an associated implementation for processing and generating large data sets. Users
specify a map function that processes a key/value pair to generate a set of intermediate
key/value pairs, and a reduce function that merges all intermediate values associated
with the same intermediate key. Many real world tasks are expressible in this model.
Programs written in this functional style are automatically parallelized and exe-

cuted on a large cluster of commodity machines. The runtime system takes care of
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the details of partitioning the input data, scheduling the programs execution across a
set of machines, handling machine failures, and managing the required inter-machine
communication. This allows programmers without any experience with parallel and
distributed systems to easily utilize the resources of a large distributed system.

The computation takes a set of input key/value pairs, and produces a set of output
key/value pairs. The user of the MapReduce library expresses the computation as
two functions: Map and Reduce. Map, written by the user, takes an input pair and
produces a set of intermediate key /value pairs. The MapReduce library groups together
all intermediate values associated with the same intermediate key I and passes them to
the Reduce function.

map (k1,v1) list(k2,v2)

The Reduce function, also written by the user, accepts an intermediate key I and a
set of values for that key. It merges together these values to form a possibly smaller set
of values. Typically just zero or one output value is produced per Reduce invocation.
The intermediate values are supplied to the users reduce function via an iterator. This
allows us to handle lists of values that are too large to fit in memory.

reduce (k2 list(v2)) list(v2)

2.9 Spark Streaming - Architecture

In general, modern distributed stream processors take three steps in order to do stream-

ing.

e Step A: Receive data.

e Step B: Process data.

e Step C: Emit result.
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Spark Streaming[21] which is mini-batch streaming does not process the data imme-
diately after receiving them. Spark first splits the data into batches and convert them
to RDDS. Spark then every few seconds, which is user defined, (it is called streaming
window) takes the collected RDD and process it. That helps spark to process many
data in parallel and also re-use the existing spark software for batch processing. There-
fore, spark can perform better load-balancing and also recover fast for failure in nodes.
Moreover, the main reason that Spark has very high throughput compared to direct
streaming systems is that Spark is processing data in micro-batches. The drawback of
this method is that latency is higher compared to direct streaming frameworks.

The input data stream is represented at spark by a high level abstraction called dis-
cretized stream or DStream|[21]. Each RDD contains data from the same time interval.
Any operation applied on DStreams are converted to operations applied on RDDs as
shown to the following image.

Developers perform operations on the DStreams, which are represented as I said
earlier with RDDs. Re-using RDDs does not benefit only the developers of spark,
which let them re use the same code they developed for batch processing but also the
application developers which can do both batch and stream processing with very small

changes in their code base.

lines lines fram lines fram lines from lines from
DStream timeOto 1 time 1to 2 time 2 to 3 time 3 to 4
flatMap
operation
words words from words from words from words from
DStream time0to1 time 1to 2 time 2 to 3 time 3to 4

Figure 2.5: Operations on DStreams are converted to RDDs at each window time
interval

Spark Streaming can ingest data from many different sources. The most popular
sources are: Kafka, Flume, HDFS/S3, Kinesis[12] and Twitter. Any TCP socket can be
used to send data to Spark. The benefit of using one of the aforementioned messaging

systems is that people have already implemented connectors with Spark which makes
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the integration super easy. After finishing the data processing Spark can emit data to

file-systems, HDF'S, databases dashboards.

Kafka

Flume JY HDFS
HDFS/S3 Spork Databases

Kinesis Stfeoming Dashboards

Twitter

Figure 2.6: Spark Streaming input and output to various sources

2.9.1 Spark Structured Streaming

Structured Streaming[22] is Apache’s Spark for continuous low-latency Streaming. Spark
developed a new High-level API which is now part of the Spark core engine. Structured
Streaming was first introduced in version 2.2.0. Looking at the programming guide of
structured streaming one could easily understand that data processing is mainly done
using the Spark SQL engine. The idea behind this choice was made in order to enable
users to still process streams with classic database processing operations (like filter,
group, aggregate) in a continuous manner but the information would be processed by
Spark Engine using micro-batch style operation. Spark really improved Structured
Streaming in 2.3.0 version where they achieved end-to-end latency less than 1 ms.
Streaming could be considered low latency and it could compete with other low-latency
Continuous Streaming Engines like Twitter’s Storm[23], Heron[24] Flink[25] etc. At the
following figure we can see Spark’s architecture of Structured Streaming with a quick
example.

Spark is appending data to a table continuously. Every millisecond new data is
appended to the table and the user can immediately process the data. Moreover, Spark
extended its API by including DataFrame and Datasets API. That will make developing

applications for Data Scientist much easier than it used to be with Spark.
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Figure 2.7: Spark Structure Streaming Quick Example
2.10 Integration Of Spark Streaming With Kafka Broker

Since at this work we are using Spark Streaming with Kafka, I am going to highlight
the different ways of integration only with Kafka. There are two main Approaches in

Integrating Spark Streaming with Apache Kafka:

e Approach 1: Receiver-based Approach

e Approach 2: Direct Approach ( No Receivers are used in this approach)

Fach method has different advantages and drawbacks. What is common about these

methods is that the Spark stores the data in both cases in Spark executors.
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2.10.1 Receiver-Based Approach

This approach is using a Receiver to get data. The drawback about using a receiver is
hte fact that under default configuration system might data under failures. Spark in
future versions added the capability to write-ahead logs in Spark Streaming which will
ensure that no data will be lost. How does Spark do that? It saves in a synchronous
manner all the logs that are received from Kafka on a distributed file-system, and data

will be retrieved on failure.
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Figure 2.8: Spark Receiver based architecture

At this point it is important to highlight some points about Kafka and Spark Stream-

ing:

e There is no correlation between Kafka Partitions and RDD Partitions generated
in Spark Streaming. That means that by increasing the number of Kafka parti-

tions will increase the number of threads where data are consumed but it will not
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increase the level of parallelism that Spark will use to process the data.

e For parallel Receiving of data one could send data over different topics, because

each receiver is receiving data from one 1 specific topic.

2.10.2 Direct Approach (No Receivers)

The Direct Approach was developed after the receiver-based approach. It was intro-
duced in Spark 1.3 and its main goal was to to ensure better end-to-end guarantees.
At this approach Spark is not waiting to receive data from but it is polling periodically
data by querying the latest offsets from Kafka. This approach is considered much more
advanced and it will be the one that I am using at the applications and experiments
that I developed for this thesis. The main metrics that the receiver-less approach is

doing better are the following:

e a) Automatic Parallelism: This method will automatically query the number of
Kafka partitions and create equal number of spark RDD partitions in order to
do one-by-one mapping. This method is not always the most efficient, but this
mapping makes it much easier for the developer to understand what is happening
within the system and it will be easier for him to improve and fine-tune the

system.

e b) Efficient Fault Tolerance: Direct approach does not need write ahead logs but
spark is able to query the lost data directly from Kafka. The main advantage of
this method is that the Spark does not have to use the write-ahead log method
which saves data to the disk and save both cpu cycles that write data to the disk

and disk size.

e c) Exactly-once semantics: The first approach uses Kafkas high-level API to store
consumed offsets in Zookeeper. This is traditionally the way to consume data

from Kafka. While this approach (in combination with-write-ahead logs) can
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ensure zero data loss (i.e. at-least once semantics), there is a small chance some
records may get consumed twice under some failures. This occurs because of
inconsistencies between data reliably received by Spark Streaming and offsets
tracked by Zookeeper. Hence, in this second approach, we use simple Kafka API

that does not use Zookeeper.

Offsets are tracked by Spark Streaming within its checkpoints. This eliminates inconsis-
tencies between Spark Streaming and Zookeeper/Kafka, and so each record is received
by Spark Streaming effectively exactly once despite failures. In order to achieve exactly-
once semantics for output of your results, your output operation that saves the data to
an external data store must be either idempotent, or an atomic transaction that saves
results and offsets. (see Semantics of output operations in the main programming guide
for further information).

Drawback:

Direct Approach does not update offsets in Zookeeper as most of the traditional system.
As a result, all the Kafka monitoring tools that are developed based on that logic are
useless. That is not very important though, because the developers could manually
update the zookeeper offsets and get reliable data from the tools and also tools are be-
ing developed continuously therefore, soon there will many tools that does this process

automatically.
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Figure 2.9: Spark Direct Approach (Receiver-less )based architecture
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2.10.3 Receivers

The above information for receivers refer specifically to the Kafka integration but the
idea is the same for all receiver based systems. For example: a receiver will never ensure

data fault tolerance unless another subsystem will take care for that.
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Chapter 3

Applications

3.1 Applications On Connected Cars

What applications could benefit from the architecture that I developed at
the current thesis?
Could the cloud provide information to help the car to break and prevent an acci-

dent? What is the requirement for that?

The brake reaction time is the amount of time that elapses between the recognition
of an object or hazard in the roadway and the application of the breaks from the driver.
Based on the research that was performed at the Idaho university[26] the length of the
brake reaction time is different from driver to driver. They clustered the drivers into

two different categories:

e The alert driver: which is able to react in less than a second.

e The average driver: which usually need from 1 to 3.5 seconds to react.
There are many reasons that could make the reaction time vary:

e Driver characteristics: Such as the level of fatigue, experience, age, alcohol con-

sumption.

e Environmental conditions: Such as weather and visibility, lightning conditions

etc.

In general, 90% of the population is able to react in less than 2.5 seconds. The

system that I designed will be need at least a second to make a decision. Therefore,



35

more than 10% of the population will be able to benefit from such a service but it can
only be auxiliary to the driver. A system that can perform computations in sub-second
manner will be able to solve this problem reliably.

Problems that the current architecture will be able to support:

e Providing real time information to the users about road conditions. Hazard could
be identified by one car( example: potholes) and will be shared to the cloud, so
the pathplanner will be able to take that into consideration and other cars might
avoid to pass from the same spot. For example: If one car falls in a pothole the
others could drive there very slow with caution or take an alternative router to

avoid it.

e Cars that have many sensors like cameras, could use a cloud system to update
their machine learning models. For example: A trained model will be able to use
the input from the camera sensors, make decisions and then compare the decisions
of the model with driver’s decisions. As a result, the car will learn the habits of
the driver and try to drive like him. That means that the system will help develop
a personalized self driving software.

Let’s remember a problem of Tesla’s self-driving car that lead to a fatal accident.
the car did not manage to see that it was driving towards another object which
happened to be a car with a human in it. The problem was that the light exposure
was so high that the vision algorithm failed to detect it and Tesla crushed on it.
The result was that both drivers died. It would be very easy for the platform
that I am proposing to detect the accident, by using simple information, like the

geolocation and help avoid the accident.

e Another problem that could be solved using this architecture is the traffic conges-
tion. Cars could share their location and their speed and then the system would
gather the information and use some techniques ( the most accurate techniques
are machine learning models today) to predict in real time the traffic. Again, this

will help cars make better decisions for their routes.

The aforementioned applications have the following requirements:
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Figure 3.1: Data from autonomous car

e The cars need an internet connection and a reliable messaging system to send and

receive data from the cloud.

e a cloud system which is going to gather all the data from the cars, process the

data in real time and send results back to the cars if asked.

e Make sure that the data will be transferred safely to the cloud. This is very im-
portant because if a hacker takes control of this system it will be able to influence

the decisions of the cars on the road and create fatal accidents.

e The system should be able to handle large amount of data. Based on Intel[27],
just one autonomous car will produce more than 4TB of data/day. Therefore,

large scale computing and processing is a really important requirement.
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Chapter 4

System Overview

The system that I propose to solve the problem of communication between Internet

Connected cars will be based on two components:

e Apache Kafka: Which is going to be used for publishing and consuming messages

from the cars to the cloud and vice-versa.

e Apache Spark: Spark will be used for processing the consumed messages from

Kafka in real-time.
The goal of these architecture is to achieve the following:

e Make sure that data will be sent and received in a fault tolerant way. ( Kafka can

guarantee that with the correct setup.)

e Make sure that the system will have adequate throughput to send are receive
messages from many cars in the same area. This is something that Kafka always
promises that it does. Later, I will do experiments with realistic applications that

will show that this is feasible using Kafka.

e Make sure that messages will be processed in realtime in order to pass information

fast back to the cars and help them make the right decisions.

e The system will be able to process the data in a fault tolerant way, to ensure that
it will not lose important data from the cars. This is something that Spark also

guarantees.

Spark and Kafka seems to cover the requirements of a broad range of internet

connected cars applications and they will be able to serve them well. Moreover, as I
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mentioned earlier there are already implemented connectors between Spark and Kafka

and therefore these two tools are already tested in production and are ready to use.

Bellow we can see in the Diagram the architecture that I built for the current thesis.

Amazon Web Services

Broke |

r(1)

| Broker(
n):
leader

\

| Spark Processing Nodes

™

Zookeeper(s)

Connected Cars

Figure 4.1: System Architecture

Amazon Web services hosting all the software Stack, which is Kafka, Zookeeper and

Spark. Ideally, all the hardware nodes are positioned really close to each other. That

will help reduce the latency between the communication between the different nodes,

but especially between Kafka, and Spark which latency is really important. Latency

between Zookeeper and Kafka could be a little higher without affecting the performance

of the whole pipeline.

Kafka will be responsible for communicating with the "rest of the world”. Connected

cars will be sending and receiving messages to Kafka. Kafka will talking to the Spark

Nodes whenever is required.
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4.1 Monitoring Tools

Monitoring A Spark-Kafka Zookeeper architecture is not a very easy job. The pipeline
has a very big number of different parameters that need monitoring. The most diffi-
cult part is the monitoring of the end-to-end architecture because everything should be
working in in perfect harmony. That means that Kafka should be producing data in

order to monitor the performance of the Spark Nodes.

To help mitigate this problem, Amazon Web Services have developed their own
monitoring tool which helps measuring the performance of the pipeline. The name of
this tools is Amazon Cloud Watch [28].

Amazon MSK is offering three different monitoring levels:
e The default monitoring level, which provides information for the whole system.

e The PER-BROKER monitoring level, which is able to provide different statistics

for every broker of the system.

e The PER-TOPIC-PER-BROKER monitoring level, which is able to provide all

the above metrics, but also it is able to provide isolated statistics per topic.

The default monitoring system is free of charge at AWS, but the other two levels
come with some extra cost. Usually, using the default monitoring setup is enough to

characterize a system. It is also the most popular choice for the following reasons:
e The cost for using the extra service is very high.

e When characterizing the performance of the whole pipeline, I do not need to
understand the performance of each broker, but I indent to understand the per-
formance of all the brokers today. In the future, if the brokers are not able to
scale (based on the results of strong and weak scaling experiments), it would make

sense to measure the performance of each broker separately.

e Similar the above is true for the per topic performance. At first I need to complete

the initial experiments which are going to show the performance of the whole
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system because trying to analyze the details of Kafka.

e Usually it is enough to measure the performance of the whole pipeline.

e With the right set of experiments, usually it is enough to deduce information that

you would have to pay a premium to acquire.

For the purpose of this thesis I developed my own monitoring tools that measure
similar metrics as I would do with amazon. The benefit of developing you own moni-
toring tools is that it comes free of charge and also you can use them in different cloud
providers. In case you want to test in a localhost system, or you want to switch to

another cloud provider you don’t have to learn new monitoring tools.
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Chapter 5

Experimental Setup And Evaluation

5.1 Overview

In this chapter we present how we designed the experiments to study the performance
of the three different parallel techniques that we are studying. We start the chapter
describing the whole experimental procedure that was followed to extract the data that
we relied for the stages of analysis and modeling.

In order to understand the performance of the system I have designed the following

experiments:

5.1.1 Kafka Producer Experiments:

1st set of experiments

The first experiment that I conducted was to understand how many connected cars a
Kafka broker would be able to sustain. To do that I developed a simple application
which what it does is to send a message with the x,y coordination of a pothole that
detected on the street. The message size for this particular experiment is pretty small.

I measured the total time to send a message to the broker, and I increased the num-
ber of different cars that were sending this message. The results from this experiment
are discussed after the following plot:

In the plot we have the following observations: The production rate does not change
if we increase the number of partitions. Higher number of partitions is expected to
increase the parallelism on the consumer side. Therefore it is positive the fact that it
does not reduce the producer rate. The throughput rate is not very high. It is 120

messages/sec per producer. It is sufficient to send the data to the system because each
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message is 60 bytes. Therefore the system will be sending 5 messages per second. A car
that is moving at a speed of 60 miles per hour is traveling 28meters/second. Therefore
the system will be able to update its position 5 times every meter of motion.

Moreover, we should take into account the network speed. A good internet connection
has a latency of 19 ms and a speed higher than 6MB/s. A small overhead connection is
added to the system even if the connection is fast and stable. As a result, the system
cannot be used reliably for vital car decisions that need to be addressed in sub second

time.
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2st set of experiments
In another use-case a car would have to send a bigger message, for example a camera
image from the street. Would Kafka this time with a bigger message size be able to
sustain the throughput rate? At this set of experiments I did exactly the same setup
with the above, but the only difference is that I changed the message from text to
image. The size of the image is 335KB. The image that I used for this experiment is

the following:

[T/ E—

Figure 5.2: Image from the camera of the Car

At the following graph there are some notable observations:

Sending an image, which is a much larger message still is not affected by the number
of partitions. We observe the same behavior with the above experiments. The number
of images this number is significantly lower. The system is able to send 60images/second

which is equivalent to 2MB/second. Compared to the above experiments we can see
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Figure 5.3: Producer Throughput of images. Data size is: 33Kbytes/message)’

that the throughput rate is much higher. 2MB/second is not enough to send all the data
back to the cloud that Intel is expecting to be produced by a camera. As a reminder,
each car is expected to produce around (20-40) MB/s. Therefore a single producer is
not enough to sustain the future traffic.

Another option is to try simulations producer processes. From the experiments that
I ran T found that the system can speedup up x16 without any issue by running 16
producer processes. If the car is able to utilize the method of parallel producers it will

be able to sustain the required throughput.
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3rd set of experiments

At this experiment I am measuring the time that it takes Kafka to consume the
string messages that the producer sent at the 1st experiment. From the plot we can

make the following observations:

e The consumer does not scale at this experiment. I do not have enough data points
to understand the root cause but it seems that if the message size is very small,

Kafka has a hard time scaling across consumers.

e The consumer throughput is higher than the producer’s throughput. Therefore,

consumer will never be a bottleneck even if it does not scale across consumers.
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Figure 5.4: Consumer Throughput of (x,y) coordinates. Data size is: 61bytes/message
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4th set of experiments

At the following graph there are some notable observations:

e Increasing the number of partitions seems to improve the performance of the
system. The system scales linearly from 1 to 4 partitions. Performance is still
improving up to 16 partitions but the rate is sub-linear. The different at this

experiment is the message size, which is 33KB.

e Consumer with 1 partition has similar performance with the producer. Con-

sumer’s throughput is much higher though if it has higher number of partitions.
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Figure 5.5: Consumer Throughput of images. Data size is: 33Kbytes/message)’
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5.1.2 Kafka Consumer Experiments

How fast can the cars pull data from the Kafka?
In order to answer this question I am performing similar experiments to the two that I

discussed above but this time cars should pull data from Kafka and not send.
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3rd set of experiments The setup that I followed is the following:
I pull from data x,y coordinates and measured the total time to receive one message. |
kept the message size constant and I varied the number of cars pulling data from the
cloud.

4th set of experiments I performed similar experiments but this time I changed
the size of the message that I was pulling from the cloud to the image that I uploaded

above. I varied the number of cars that were pulling data from the system.

5.1.3 Kafka Spark Streaming Experiments As A Pipeline

Now that we have a basic understanding about the performance of the first component
of the system, I am going to perform end to end experiments to understand the perfor-
mance of the whole system as one. To do that I developed the following application.

I developed Traffic Congestion application. The application does the following things:
e Cars send using Kafka and speed and their location.
e Kafka is collecting the data.

e Spark is consuming data in a window time of one minute defined by the user and

processes the data.
e Every window time spark is updating the traffic congestion status of each area.

e The application classifies traffic as low - medium - high based on user defined

rules.

Experiment Setup At this experiment I setup 20 parallel producers(cars) that
would generate string messages with their location and speed ( I ran tests up to 60
producers ).

The average rate of each producer is (according to experiment No. 1) 120 mes-

sages/second. Therefore the system will be consuming 20*120 2500 messages/second.

Spark Configurations:

Spark Cores : 12
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Executors: 1
Streaming Window: 1 second

Application: Traffic Congestion
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Figure 5.6: 'Spark Streaming Statistics’

From the figure above we have the following observations:

Spark has no problem processing the workload in only 214ms, which is a lot less
than the 1 second window that I defined for the application.
Increasing the number of records ( by increasing the number of producers) did not
affect the processing time. On the other hand, this is very application specific. If the
application is computationally expensive it could delay the whole system.

Even when I increased the number of producers the scheduling delay didn’t change. It
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stayed zero ms. The average scheduling delay is the time that the incoming records
should wait before being accepted by the engine for computation. The Delay could be
affected by 2 main causes: 1) If the number of records is very high and it takes time
to convert them to RDDS. 2) if the previous batch did not finish on (window) time,
because processing takes longer and as a result the system will delay the next batch.
From the figure, we can also observe that during the 10 minutes of execution, there was
only one time there was a scheduling delay. That was probably caused by high number
of error messages. The system recomputed some data and as a result there is a spike
in Processing Time too.

To conclude, the system seems to be able to easily handle all 60 producers using

only 1 node with 12 cores.
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Chapter 6

Conclusions And Future Work

6.1 Conclusion

The aforementioned system will be able to support real-time streaming applications
that produce a very large amount of data. This capability is very important because
the amount of data that we produce every day are growing exponentially. As Intel[27]
discusses in their report, one self driving car alone will be producing more than 400000
GB of data within a day. We should manage to filter out and process the data in order
to extract the useful information because it is already a very profitable business which
is going to keep growing over the next few years, we saw that a streaming system has
so many distinct variables that could affect the performance of the system. Optimizing
one component will then move the bottleneck on another part of the system. It is im-
portant, a streaming system to analyzed as one pipeline, in order to make sure that the
performance of the whole pipeline is increasing. Moreover, for the same reason, due to
the very big number of parameters of the system, it is not going to be easy to charac-
terize it. Therefore, it would be useful if researchers could identify the most important
parameters that affect the performance of a system and publicly /openly /officially doc-
ument them, so that the research community will be able to use it as base guidelines

in optimizing their system and extending the understanding of such a software pipeline.

This work is only a starting point in data management of real time streaming sys-
tems. There is a number of suggestions that could be analyzed and implemented in the

future as an extension to this work. For example it would be interesting to:

e Develop scenarios where the system will have multiple cloud consumers of data.



51

A good use case that would serve that is the following:

Imagine a car that would be able to send data in real-time to the tire manufac-
turer. The car automatically can gather data from the sensor and send them
back to the tire company. Their cloud system will be able to analyze the data
from their tires and provide useful insights to their customers. The car should
have the capability to connect to multiple servers, each server will provide data

for different part of the car.

Analyze the capabilities of different streaming processing system. I think Apache
Storm[23] would be a good system to analyze because it has the ability to perform
continuous streaming is sub-second manner which is something that Spark[15] is

not able to do.

Have another device other than the filesystem taking over the read and write job of
the broker. The drawback of the filesystem is that it has limited I/O performance.
As a result, it could easily become the bottleneck of a system especially if the rate

of data production is growing.

Explore the performance of the system will different machine learning algorithms.
That would be extremely useful since nowadays the popularity of Machine Learn-
ing and Deep Learning algorithms is constantly increasing. Moreover, there are

multiple ML algorithms that are used especially in the self driving car industry[29].

Run experiments with much larger hardware systems. Due to financial limitation

that would be something difficult to be examined in the current work.

Explore the usage of GPUs to process the data in real-time. There is already
a tensorflow([30] plugin[31] that could be integrated to Spark, and it could serve
as an extension to the current system. GPUS are extremely useful in matrix

computations[32] and therefore in ML applications.
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