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ABSTRACT OF THE DISSERTATION
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by Eugene Geis

Dissertation Director: Gregory Camilli

The stochastic approximation EM algorithm (SAEM) is described for the estimation of
item and person parameters given test data coded as dichotomous or ordinal variables.
The method hinges upon the eigenanalysis of missing variables sampled as augmented
data; the augmented data approach was introduced by Albert’s seminal work applying
Gibbs sampling to Item Response Theory in 1992. Similar to maximum likelihood fac-
tor analysis, the factor structure in this Bayesian approach depends only on sufficient
statistics, which are computed from the missing latent data. A second feature of the
SAEM algorithm is the use of the Robbins-Monro procedure for establishing conver-
gence. Contrary to Expectation Maximization methods where costly integrals must
be calculated, this method is well-suited for highly multidimensional data, and an an-
nealing method is implemented to prevent convergence to a local maximum likelihood.
Multiple calculations of errors applied within this framework of Markov Chain Monte
Carlo are presented to delineate the uncertainty of parameter estimates. Given the
nature of EFA (exploratory factor analysis), an algorithm is formalized leveraging the
Tracy-Widom distribution for the retention of factors extracted from an eigenanalysis
of the sufficient statistic of the covariance of the augmented data matrix. Simulation
conditions of dichotomous and polytomous data, from one to ten dimensions of factor

loadings, are used to assess statistical accuracy and to gauge computational time of the
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EFA approach of this IRT-specific implementation of the SAEM algorithm. Finally,
three applications of this methodology are also reported that demonstrate the effective-
ness of the method for enabling timely analyses as well as substantive interpretations

when this method is applied to real data.
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engineering facility, and I felt blessed that he’d pay me a better hourly rate than my
teacher’s salary to do some of the coolest shit I've ever worked on.
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shows a lack of critical thinking skills: do more labs. Testing shows a lack of reading
comprehension: have them write more lab reports. I tried to coach two activities, and
the compensation amounted to an average increase of about $7 per hour, with an ag-
gregate non-negotiable investment of time that amounted to approximately 700 hours
each year. If one were to split this hourly wage by the number of students involved,
the rate would drop to a little less than 20 cents per student per hour. Please reflect
on that and reach your own conclusions about the economic sustainability of public
education and extracurricular programs, in general.

As a quantitative practitioner, my distrust of assessment metrics and the adminis-
tration’s reactivity to such measures became too much to bear. The president of our
local board advocated for intelligent policy, but seemed to have no perspective from
the boots on the ground. Our superintendent was the classic self-aggrandizing fiscal
conservative demanding a 20% increase in his own taxpayer-funded salary. I became
critical of the institution, the union, and the teachers who could afford to annex all of
the incremental salaried coaching slots since gym class required near-zero lesson plan-
ning, preparation, grading, and adaptability. We would train on fairness and equity,

but the hypocrisy of the unspoken rules of employment and fealty to the age-ism of



union leadership was beyond reproach.

It is an understatement that I am a passionate individual. I sought a window into
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to shift the educational policies of nation-states. Shanghai’s 9-year-olds may have out-
performed the rest of the OECD’s sample population on the math module of the PISA,
but their local emphasis on algorithmic problem solving of fraction-based arithmetic for
children between age 8 and 9 would undoubtedly play a role in univariate test scores on
an assessment from which a majority of items (nearly 60%) are comprised of questions
about fractions! Would it be of interest to policymakers if Russian students were the
best in the world at solving for an unknown variable? Did the OECD mention that
the German students scored the highest on items formulated around the skills of data
interpretation?

A methodology for extracting statistically significant factors has not been integrated
into the reporting of these global assessments, and it is highly likely that the validity
of these falsely univariate assessments will suffer. The work of this dissertation is an

attempt to make some headway into a statistical approach that subverts this pathology
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of psychometric imprecision and political near-sightedness that result in the impossibil-
ity of verifiable ex ante economic analysis; we cannot afford to make impulsive changes
driven by budgets only to check our work and massage the results at a later date... but
it is a near certainty that this is now the accepted mode of operation of our ivory tower
economists, many of whom are substantially incentivized by their funding institutions
rather than our children’s collective benefit.

As economists are always apt to push the objective fundamentals of marginal costs
and economies of scale, the quality of the human experience is rarely well-quantified nor
has an effort been mobilized to adequately measure outcomes ex ante of an economic
decision. Certainly ex ante evaluations are fraught with difficulties, especially as un-
predictable consequences arise from new policies or technologies (Marschak, 1974), but
the impacts on learning and higher order thinking from the digital transformation of
the classroom experience of college students cannot be understated. Having personally
been enrolled in several online courses with more than 280 aggregate college credits
across my transcripts, the experience of online education is very poor and quite inimi-
cal to critical thinking. It has been my experience that juvenile criterion measures are
employed ad nauseum and interactivity with higher order concepts is reduced to the
struggle of gleaning wisdom from an AOL chatroom. Harasim (2012) confirms that my
sentiment of substandard discussion in online learning is not unfounded.

Unfortunately, as our global policies further adhere to purely economic arguments,
it is also woefully clear that econo-misseds (especially in the United States) earn great
incentives for motivating policies of automation and scale that provide monetary re-
wards for capitalists while reducing the value provided to the proletariat; throughout
popular culture and the national news, there is a clear overarching theme of socioeco-
nomic decision-making based on elitist crony capitalism driven by economic math over
the interest of our society.
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Chapter 1

Introduction

Given the technical nature of this dissertation, an informal discussion of the landscape is
warranted for bridging mathematics and the blurry nature of reality. Statistical meth-
ods emerged as a byproduct of careful and sometimes predatory statesmanship and thus
derives its etymology. As the governing policy of a nation-state is required to increase
in its efficiency, therein emerges a natural motivation for predictability, and in its wake,
measurement. The motivations of the earliest trailblazers of statistical methods may
have been questionable, but those innovations continue to address features, appetites,
and behavior of living things; qualitative distinctions and their measurable artifacts are
indeed fuzzy. The Origin of Species inspired Francis Galton to apply Darwin’s concepts
to the measurement of differences in humans, going so far as to pioneer the question-
naire. The adjacent but separate investigation of psychology emerged from Herbart’s
measurement of sensation and became further crystallized under Wundt’s philosophical
outline of psychology as an empirical science. Inseparable from this historical context,
a system for measuring human faculties implied to many of these thinkers that there is
a potential for enhancing human behavior and development.

The ability of a human being to improve or progress, in a general sense, is implicit,
and both the philosophical and economic gains associated with the relative growth of
individual and collective human knowledge are intrinsic to the motivations behind our
efforts to refine our psychological measurement toolkits. As such, the implementation
of measurement in psychology straddles a rift between qualitative judgement and quan-
tification. Instruments of assessment must be applied with a predictable resolution of
these two criteria lest the validity of the instruments’ respective measurement goals

become too strongly characterized by frivolous whimsy or authoritarian determinism.



The design of educational assessments is required to adhere to the standards of a
meta-assessment defined within the rubrics of reliability and validity. Reliability is a
constraint enforcing consistency; a test’s scores should correlate with an expression of
a psychological characteristic, e.g. an examinee’s ability across a domain of knowledge
or skill. If a researcher creates items providing statistical information about a test pop-
ulation’s ability within a domain, reshuffling, choosing subsets, or replacing questions
designed to measure similar content should not result in scores that do not correlate
with the original assessment. Validity, within applications of psychological assessments
and their—potentially law-abiding definition of-quantitative and qualitative inferences,
seeks to constrain which inferences may be permissible as well as the uncertainties
of the inferences regarding test scores that may be concluded from such a test. As
measurement is the price for reducing uncertainty, psychometrics has emerged as the
quantitative application for control of statistical inference in measurement applied to
psychological characteristics. A test is reliable if it correlates with other administrations
of itself, subsets of itself, or other “parallel” tests, i.e. tests already shown to measure
what the new test claims to measure. The validity of a test requires a more rigorous
study as one must consider the decisions made as a result of a test score. Beyond
the informal discussion in this chapter, the argumentation of validity will largely be
ignored.

Administration of assessments are only pursued after thorough investigation of the
statistical properties of the test, and only after this quantitative investigation can the
test have the potential to withstand the rigors of a validity study. In general, while
a statistical estimate’s p-value may commonly be quoted, the quantitative interpreta-
tion constrains this numeric value’s application to measurements of randomness alone.
Mathematical models or logic structures that may be invoked to assess the quantitative
properties of psychological assessments, especially when applied to latent constructs!,
must first demonstrate robustness against randomness, i.e. the assessment must be

reliable. This management of entropy—by first asserting mathematical order and then

!The term ‘latent construct’ is loosely defined here as a logically independent psychological descrip-
tor, for example emotional intelligence, riskiness, or IQ. It is not reflective of its well-rehearsed definition
within the academic sphere of ‘construct validity.’



pressure-testing its organization of randomness—summarizes the intended goals of sta-
tistical modeling and simulation. From a bird’s eye view the process of (1) positing
a model, (2) simulating outcomes, and (3) verifying the outcomes reflect experimen-
tal results, is how phenomenology is tested by science. The domain of psychology is
firmly entrenched in this difficult niche, not only on a cultural macro-level but also
on a micro-level as a clinical practice, and none-the-least within the halls of our lo-
cal schools. Within the subdomain of an academic progression through educational
milestones, we surmise that a student’s thoughts and judgements are to become more
thorough, rigorous, logical, or refined in their recollections, reflections, predictions, and
decisions.

In the practice of educational assessment, content experts make decisions about test
design, psychometricians study the quantitative properties, and institutions administer
the tests. While being more politically and socially conspicuous than ever before,
the goals of assessment have also become more consequential, and thus the practice of
psychometrics must become more precise. This advancement of assessment in education
and psychology has motivated psychometricians to expand their methodologies, not only
in developing mathematical models for statistical measurement, but also in computing
the results of these estimation algorithms. Further, as a test item bank grows and
the tested populations increase, statistical computation becomes more difficult and
time-consuming, especially as our mathematical models are only an approximation;
stochasticity is inherent to measurement and can never be completely avoided. While
this work focuses on applied statistical methodology, the stated motivation for the
increase in precision not only relates to the applied statistics, but also to the pertinence
of construct validity and the interpretation of test scores.

Psychometrics hails from a statistical foundation that is firmly entrenched in the
quantitative disciplines. The dominant implementation is typically characterized by
suppositions of latent attributes as applied to measures of student performance for
the evaluation of relative outcomes, subject proficiency, and the attainment of specific
domains of knowledge or expertise. Psychology has also adapted this framework for

many purposes, a few notable instances include the Big Five personality tests, clinical



purposes such as assessments of social anxiety, fatigue, or stress, or in business ap-
plications such as management coaching and conflict resolution. Items, the individual
questions on a test, must undergo rigorous studies to ensure their applicability to the
domains being assessed as well as their consistency from one administration of the test
to another; another way of stating this, the items must show content relevance within a
construct. Towards this end, classical test theory evolved into more complex methods
such as IRT (item response theory) and CDM (cognitive diagnosis modeling). In other
words, test design has evolved from a narrow quantitative view of the entire assessment
to the piecewise construction of items (Loevinger, 1957) to form a measurement tool
used to compute informative profiles of the subjects being assessed. The estimation of
characteristics of items (like difficulty) and qualities of persons (like proficiency or level
of skill) in the framework of IRT is now a common practice within educational and
psychological assessments, notably for calibration and statistical information, as well
as test design and validity studies.

Univariate latent scales of psychological proficiencies such as mathematical ability
or anxiousness conjure an optimistic view of experts’ ability to craft an assessment
that measures one thing, and one thing alone. For example, many primary school
teachers may have the belief that a math quiz constructed with word problems assesses
mathematical ability, but a strong reading ability of the English language may be
implicit to success on such a quiz. The consequence of this realization enforces the
recognition that such an assessment is multidimensional, or it measures more than
just mathematical ability. Further, half of the word problems may focus on the rules
known as the ‘order of operations,” while the other items may focus on fractions; for
students to earn successful scores on a similar test structure, it would require them
to demonstrate (1) strong reading comprehension, (2) mastery of order of operations,
and (3) mastery of fractions. The first requirement is important for the entire test,
but the second and third requirements are only important for their respective items.
This type of assessment would be very different from a focused ‘order of operations’
assessment with very little required reading, as the former contains items dependent on

multiple latent proficiencies of each examinee while the latter is far more appropriate



to the application of a univariate latent scale. In the word problem assessment, one
dimension is important for the entire test, but a second dimension (order of operations)
is theoretically? required for the first half, and a third (fractions) for the second half.
This type of assessment is referred to as a ‘bifactor’ design where two dimensions load
on each item. If the test were redesigned using mathematical formulae rather than
framing each question as a word problem, the same test has a subscale design. In other
words, eliminating the necessity of reading comprehension, each item may be considered
to load on each dimension independently; fractions and order of operations do not
comingle within any single test item. The statistical machinery required to analyze
these multidimensional designs needs elaboration. Thus, there has been great interest
in estimation procedures for MIRT (Multidimensional IRT'). The extension of IRT into
a multidimensional latent space invokes a more nuanced approach to applications of
IRT, and while this is commonly implemented as a confirmatory analysis, exploratory
methods for assessing dimensionality should not require a significant investment of time
or dollars.

When transitioning from unidimensional to multidimensional calculations, imple-
mentations of MIRT can be fraught with computational difficulties. Traditional EM
(expectation-maximization) methods require integration and moving from unidimen-
sional EM into higher dimensions severely impacts the work required for accurate esti-
mation; using an integral by quadrature, the computation expands exponentially in the
number of grid points required. This problem is informally referred to as the ‘curse of
dimensionality.” With regards to the hypothetical test of word problems, this computa-
tional difficulty not only pertains to the extracting the statistical properties of the test,
but also to the statistical information that can be isolated to the content of each item.
This work proposes a set of statistical tools for assessing dimensionality, and while the

impact on computation is the primary focus, the results of its application also provides

2A test may be designed to assess a specific number of latent traits but may require domain expertise
not immediately apparent to the experts constructing the test; for example, our primary school teach-
ers overlooking reading comprehension as a necessary tool for solving a mathematical word problem.
Order of Operations inherently requires mastery of multiplication, division, addition, subtraction, and
exponents, thus helping elucidate the difficulties of good test design and the subsequent investigations
pertinent to make valid inferences of a test’s diagnostic implications.



quantitative metrics that can be used to inform the content as a test is constructed and
submitted for evidence of reliability.

The dominant approach to MIRT, in practice, is confirmatory in nature. Psycho-
metricians invoke an assumed structure, and estimation methods conforming to this
structure. In our word problem example, the mathematical formulae governing the
item structure contains a linear combination of latent abilities: all items would con-
tain a single ‘Language Ability’ parameter for the influence of reading comprehension,
half would contain a second ‘Order of Operations Ability’ parameter, and the other
half would contain a second ‘Fraction Ability’ parameter. There may be correlations
between these abilities, or more appropriately, a correlation matrix that describes the
relationship between these dimensions of ability. Thus, the psychometrician may pa-
rameterize these abilities to be orthogonal (or statistically independent), or to estimate
each dimension while accounting for a correlation between them. Whether simulating
test data or fitting to real data, each choice of an imposed ‘structure,’ e.g. orthogonal
abilities vs. correlated abilities, reflects a confirmatory approach over an exploratory
one. In the word problem example, we are ab initio invoking three separate abilities,
but in practice real data may reveal that there are two substantive dimensions, or
even five. The complexity of multidimensional structure and the expertise of the SMEs
(subject matter experts) that design such assessments are usually enough to constrain
certainty in making confirmatory assumptions. Modern test reports, further, may show
subscores that are estimates of an examinee’s ability on subsets of interrelated items.
While arguments can be made that there is a mathematical justification for report-
ing overall scores or subscores, it is incontrovertible that the complexity of inferences
increases dramatically as the dimensions of proficiency increase.

In measuring multidimensional assessments, MIRT is implemented as a mathemat-
ical model in which parameters may be estimated using a multitude of methods. As
the number of parameters increases, certain methods such as the EM (expectation-
maximization) algorithm can become computationally unfeasible. Specific to MIRT,
convergence to a solution can also be complicated by the indeterminacy of rotations in

the multidimensional latent space of abilities. As the number of items and dimensions



increase, the estimation of item parameters becomes unwieldy; for this reason many
researchers choose a confirmatory approach over an exploratory one, implementing pa-
rameterizations guided by the a priori test design rather than data. There is a wide
range of applications for MIRT models in the field of education, but for other fields as
well. For instance, there is currently much interest in understanding the structure of
quality of life assessments based on categorical item responses in the health sciences.
Other areas of application include clinical measurement related to anxiety disorders,
alcohol problems, and physical functioning. While many assessments are developed ac-
cording to a theoretical blueprint, it is often the case that the empirical item structure
diverges from the expected structure. Thus, exploratory, as opposed to confirmatory,
MIRT analysis is an important tool for critiquing assessments as well as for the theo-
retical development of the constructs targeted by those assessments.

Exploratory MIRT models only exist in the very specific sense in which (1) a num-
ber of factors is chosen, (2) an unrestricted factor model is obtained (that is, factor
loadings are freely estimated assuming uncorrelated latent variables), and (3) factor
loadings are rotated for the purpose of interpretation. The first and second steps above
are qualitatively different in a typical EFA (exploratory factor analysis) model for con-
tinuous variables (though rotation remains an important issue). For example, in EFA
maximum likelihood factor analysis, a series of factors are obtained in order of decreas-
ing eigenvalues (e.g., principal axis factoring) prior to rotation. Thus, information is
obtained to judge the number of factors as well as the relative strength of those factors.

In this research, there are three specific goals: (1) to apply a novel method of
computational estimation of an MIRT model on highly multidimensional data, (2) to
demonstrate its utility in reproducing simulation parameters with accuracy and speed
comparable or better than the commercial software most oft used by psychometricians,
and (3) to detail the application of the Marchenko-Pastur law as a statistical test for
the multidimensionality of dichotomous and polytomous data.

Following this introduction, the first section of this dissertation is the presentation
of the SAEM (stochastic approximation EM algorithm) for MIRT building on the work

of Meng and Schilling (Meng and Schilling, 1996); they extended the gibbs sampling



method of the two-parameter ogive [2PNO] introduced by Albert (Albert, 1992). One
important aspect of the algorithm is its computational advantage; that the generation
of augmented data for estimation can be computed using “embarrassingly parallel”
backend sockets. As a consequence, the computational workload is easily parallelized
and computation time is reduced. A second important aspect of this algorithm is
the flexibility with which the sufficient statistics can be used for parameter estima-
tion. The innovation comes from the inclusion of the RM (Robbins-Monro) procedure,
demonstrated to further reduce computation time for stochastic approximation of mul-
tidimensional models applied to large scale assessment. The model used to explore this
algorithm has a closed form solution for the likelihood though there is no closed form
solution for the model parameter estimates.

In the second section, univariate and multidimensional dichotomous and polyto-
mous data are simulated and then estimated within the SAEM method. Simulation
conditions will include small and large numbers of items J = {30, 100}, small and
large numbers of examinees N = {5K, 10K, 100K}, and modifications to the RM gain
constant. Inclusion of a guessing parameter will also be implemented for a simulation
condition of dichotomous data. Small and large numbers of dimensions @ = {1, 3, 10}
are simulated in bifactor and subscale test designs. The indeterminacy for rotations
within the latent subspace allow for the novel solution of monitoring the convergence
of the covariance matrix of augmented data; a sufficient statistic of the gibbs sampler.
Computation time will be shown to increase only incrementally as dimensionality in-
creases. The studies will also explore the estimation of standard errors for the special
case of the univariate SAEM implementation. There are several options available with
which to implement the calculations for standard errors. As this approach uses gibbs
sampling, multiple approximations of MCMC sampling errors will be compared with the
error approximations obtained from the inversion of the Hessian. As the probit distri-
bution function is nearly identical to a special case of the logistic, 2PL (two-parameter
logistic) standard error approximations can also be calculated and compared. Empirical
standard errors can also be derived using samples from the converged posterior; this

estimate is accomplished in similar fashion to the methodology for sampling plausible



values in the reporting of NAEP (National Assessment of Educational Progress) results
(Mislevy, Beaton, Kaplan, and Sheehan, 1992). The SAEM-MIRT estimation will also
be applied to three real assessments, FCI (Force Concept Inventory), CCI (Chemistric
Concept Inventory), and QOL (Quality of Life) data.

In the third section, the application of random matrix theory to the augmented
covariance matrix will be explored. The Marcenko-Pastur law (Marc¢enko and Pastur,
1967) can be used to validate the eigenvalue distribution of this covariance validating
the dimensionality of the data. Simulated random numbers and simulated and real
data from the previous section will be used to examine the properties of the converged
eigenvalue distributions. Controlled adjustments to simulation conditions will also be
tested to provide sensitivity analyses, i.e., the relative magnitude of parameters and the
structure of the assessment will change the outcome of statistical tests of the eigenvalue
distribution of augmented data. The extent to which these perturbations are detectable
will constrain the utility of this analysis.

Finally, reviewing applications of this estimation procedure and related literature,
the research to be presented here is by no means closed. As implemented today, the
code created for this algorithm approaches the computational speed of FlexMIRT, the
industry standard for MIRT; as this code is written in R, there is ample opportunity
to enhance its speed. More obvious next steps should include a robust approach for
polytomous errors, simultaneous estimation of both dichotomous and polytomous data,
and missing data imputation. The algorithm’s ability to return the converged covari-
ance matrix also presents another opportunity for a didactic on rotations in the latent

subspace.
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Chapter 2

MIRT Estimation Approaches

2.1 Item Response Theory

Investigations into the extent to which a test measures what it is supposed to measure
motivates our statistical toolkit. From the perspective of the frequentist statistician,
Classical Test Theory posits a test score as a measurement that has properties of a
random variable; it is comprised of a true score T and some additive error E. This
model implicitly defines an assessment as the instrument of measurement. The sta-
tistical assumptions are convenient for providing mathematical properties of parallel
tests, reliability, and internal consistency (Allen and Yen, 2001). As the measurement
properties of a test need to be investigated, test construction and thus item analyses
inevitably follow. A large number of item formats are accessible to the researcher, but
we are primarily interested in the properties of the measures provided by test items. For
achievement tests, the properties of these test items typically correspond to our concep-
tions of difficulty and discrimination; while the ‘difficulty’ of a question is intuitive, the
discrimination can be less so. For illustrative purposes, the ICC (item-characteristic-
curve) is helpful.

For an arbitrary multiple-choice test consisting of several items, data can be used to
construct ordinal deciles of examinee scores. A bernoulli random variable, Y, is chosen
to represent a multiple-choice item; 1 indicates a correct answer and 0 is incorrect. An
ICC is constructed by plotting the conditional probability of achieving a correct answer
to a multiple choice question of the test P(Y = 1|decile). In Figure 2.1 four examples
of item characteristic curves are shown. Each point represents an overall probability of
a correct answer on a single item for a given decile. There are ten points in each plot

corresponding to ordinal deciles of lowest to highest scores. To maintain simplicity of
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Figure 2.1: The four plots show item characteristic curves with varying difficulty and
high or low discrimination. An ICC with low statistical information is also shown.

interpretation, achievement tests should imply that examinees with high scores have
higher probabilities of answering items correctly than examinees with low scores. In
general, the data for the four items in Figure 2.1 show that as an examinee’s score
increases, there is an increase in the probability for answering each item correctly. At
this point, only one assumption is being made about the inferences that can be applied
given this score-higher levels of ability correspond to higher probabilities of a correct
answers across the test; this score can be used to infer ability, or a single dimension of
6.

As intutition might suggest, if an item is considered ‘difficult’ the majority of exami-
nees will have less than a 50% chance to answer it correctly; this situation is represented
by the lower left plot in Figure 2.1. In contrast, if the majority of examinees have a bet-
ter than 50% chance to correctly answer an item, it is considered to be of low difficulty
and this is shown with the upper right plot in the same figure. In terms of discrimina-
tion, both plots on the left side of Figure 2.1 depict a large increase in the probability of
a correct answer; these ICCs denote items considered with a high discrimination. The

two plots on the right side of Figure 2.1 show much lower discrimination, and some
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might argue that the lower right plot shows no discrimination at all. In the context of
the discrimination shown in the top left plot, if a student were to correctly answer this
item it is highly likely that this student would fall in the upper half of examinee scores.
Similarly, if a student scored in the top two deciles of scores, it is highly likely that this
student correctly answered the item which has an ICC like the bottom left. In other
words, an item with high discrimination provides a strong statistical relationship with
the latent ability that the test is measuring. The ICCs on the right side of the figure
do not provide much statistical information in regards to whether an examinee with a
correct answer should fall in lower or upper deciles of the scores.

In moving to a psychometric methodology that more appropriately centers on the
functioning of an item, ICCs for items on achievement tests typically take the shape of
an S-curve as the aforementioned figure shows. Though there are multiple candidates
for mathematically approximating this S-curve, two commonly used functions in IRT
(item response theory) are the logistic and the normal ogive (the cumulative probability
for a normal distribution). If the S-curve is constrained such that it approaches zero at
the lowest ability, and one at the greatest ability, each of these cumulative probability
functions approach 1. One general form of the logistic is known as the 3PL (three-

parameter logistic) and is written as

l—~

P(Y:He):’y—i—m

(2.1)

In this equation, there is a straightforward interpretation; « is the discrimination
parameter, (§ is the difficulty parameter, v is a guessing parameter, and the constant of
1.7 is derived by attempting to equate this logistic to the normal cumulative distribution
function after setting v = 0, o = 1, and g = 0 (Camilli, 1994). To better understand
the form of this equation, one can attempt to fit this logistic to the data from Figure
2.1. In Figure 2.2, the deciles have now been converted to ten Z-scores corresponding
to p-values of .05, .15, .25, ..., .85, .95.

The results of the fit of the 3PL are illustrative of the values of the parameters of

the model; « increases as discrimination increases, 8 defines the point on the horizontal
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Figure 2.2: The four plots show the same simulation of data from Figure 2.1 with
the deciles converted to quantiles along a normal distribution. Item characteristic
curves with varying difficulty and discrimination are shown and fit with the 3PL from
Equation 2.1.

axis where the slope of the curve is the greatest!, and v approximates the chance of
randomly selecting the correct answer at the lowest ability. When v = 0, the logistic
would be constrained to approach zero at negative infinity and this special case of
Equation 2.1 is denoted as the 2PL (two-parameter logitistic). The 2PL is very useful
for interpreting the logistic function as 8 approximates the point at which the 2PL
intersects with a predicted probability of 50% and « is the slope of the logistic at
that point of intersection. In using the 2PL or 3PL, there are expedient features of
this mathematical convention for statistical calculations such as the likelihood and its
derivatives, but the integration of the logistic is not as convenient as as a function
that has a conjugate distribution. The 2PNO (two-parameter normal ogive) and three-

parameter normal ogive are alternatives to the 2PL and 3PL, written as

P(Y=10)=g+(1—g)-®(ab —D) (2.2)

In personality assessments and likert scale surveys a may have negative values, in which case the
S-curve is reversed. For the purpose of this dissertation and the intended inferences in educational
psychometrics, the approach will be constrained to a > 0.
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where @ is the cumulative normal distribution function. In this equation, a, b, and
c are the correlates of «, 3, and v in Equation 2.1. As with the logistic model, the

2PNO is a special case of the 3PNO where g = 0. This model will be expanded to

multidimensional latent traits and polytomous items in the next sections.

2.2 Multidimensional Factor Model for Item Responses

Assume a set, of test items j = 1,...,J and i = 1, ..., N examinees. For ease of presenta-
tion, item responses of a single assessment are assumed to be dichotomous with correct
responses scored as Y;; = 1 and incorrect responses labeled Y;; = 0. A more general
approach is presented in the next section that is applicable to polytomous? items, for
which dichotomous scoring is a special case of binary outcomes. Assume there is a
vector of () latent variables that account for an examinee’s observed item responses.
Demonstrated in previous research (Albert, 1992, Béguin and Glas, 2001, and Jean-
Paul Fox, 2010), the cumulative normal function (also termed the normal ogive) will
be used to model item responses rather than the logistic function; both give virtually
indistinguishable results when the parameters are properly transformed. In Figure 2.3,
the same simulated data is fit using a 3PNO and it may be seen that the curves only
differ in the concavity as they approach the horizontal asymptotes.

Normal ogive models like the 2PNO provide a more flexible tool for stochastic
methods than the 2PL due to the complexity of the posterior of the logistic prior; for
the 2PNO, a normal prior distribution results in a normal posterior distribution. Using
the cumulative normal distribution function ®, a multidimensional model for a correct

response on item j presented to examinee ¢ is given by

P (Yij = 1|nij) = @ (i) (2.3)

77,']‘ = Ajei — bj, (2.4)

where 0 is a () x 1 vector of latent factor scores or abilities for examinee ¢, and A ; is the

2Polytomous items are defined to allow for partial credit or likert responses, and thus can allow
for a more refined assessment of an examinee’s knowledge or preferences, respectively. In the case of
polytomous scoring, the psychometrician can avoid the troublesome ‘guessing’ parameter in Equation
2.1 and its equivalent form in the 3PNO.



15

3PNO: High Discrimination, Mean Difficulty 3PNO: Low Discrimination, Low Difficulty

1.0
1.0

0.6
06

1|Z-score)
1|Z-score)

PY=
04
PY=
04
@ T ws
T

whom
85 a

0.0
1
0.0

T T T T T T T T T T T T T T
-3 2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

score deciles as Z-scores score deciles as Z-scores

3PNO: High Discrimination, High Difficulty 3JPNO: Uninformative

10
1.0

1|Z-score)
06
L
1|Z-score)
06
L

P(Y=
0.4

Il

P(Y:
@ e
il
223

00
1
00

score deciles as Z-scores score deciles as Z-scores

Figure 2.3: The four plots show the same simulation of data from Figure 2.1 and 2.2
with the deciles converted to quantiles along a normal distribution. Item characteristic
curves with varying difficulty and discrimination are shown and fit with a univariate
3PNO from Equation 2.2.

1 x @Q vector of slopes or factor loadings, which signifies that an examinee’s observed
response may be affected by combinations of latent skills or abilities. The goal is to
discover the structure of the item responses as represented by A, rather than to assume
the structure as in confirmatory factor analysis. For the pedagogical development of
this arithmetic and estimations of simulations, there is an assumption that ) is known.
In later chapters, it will be shown that the formalism developed here can be used in
the estimation of Q.

In the latent space, the response process is represented as a multivariate regression

of missing item responses (also known as propensities) z on 6:

Zij = A]el — bj + €ij (25)
= Nyt €ij. (2.6)
This linear form is a factor model. For examinee i, z;; is a vector of missing item

responses now transformed to a continuous space. Let A; denote row j of the matrix

A of slopes (or factor loadings) for an item, and let the @ x 1 vector of (missing) latent
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abilities (or factor scores) for an examinee be specified with the prior 6; ~ N(0,I). The
J x 1 vector b holds the item intercepts b;, and £;; ~ N (0, 1) is a random measurement
error. Fox provides more details on related Bayesian item response modeling (Jean-Paul
Fox, 2010).

It should be noted that the augmented z’s are continuous response data sampled
from categorical responses. A linear combination of slopes and abilities collapses to
a univariate continuous propensity. This approach is mathematically convenient for
several statistical techniques, and it also provides an opportunity to exploit some exotic

new breakthroughs in random matrix theory as described at the end of this chapter.

2.3 Estimation Approaches

Given the model described in Section 2.2, its application necessitates an adequate for-
malism for estimation of item parameters given assessment data. One key takeaway
from Equation 2.4 is that a linear combination of independently distributed latent
traits (a vector of #’s), is analogous to a factor model (Spearman, 1904). Further, a
linear combination of normal random variables will yield a covariance matrix that can
be factor analyzed, whether by a Karhunen-Loéve transformation, widely known as a
principal component analysis, or a more general factor analytic formulation of the com-
ponent factors. The influence of each factor in the probability of an examinee correctly
responding to an item can be ascribed to the respective latent factor’s discrimination
parameter.

In a seminal paper, Bock and Aitkin (1981) proposed an EM (expectation maximiza-
tion) algorithm based on the work of Dempster, Laird, and Rubin (1977) and extended
this procedure to multidimensional item-response data. As they noted, this EM al-
gorithm has an alternative formulation according to the missing information principle.
However, Bock and Aitken also realized that numerical quadrature becomes impractical
for marginalizing across missing variables as the number of dimensions increases; this
is informally reffered to as the curse of dimensionality.

Until recently, estimation of factor coefficients, including loadings and thresholds,
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has been a major obstacle with categorical item responses, especially with high-dimensional
data or a large number of variables. A major trend in addressing computational chal-
lenges is the implementation of stochastic approaches to EM (e.g. Albert, 1992, Meng
and Schilling, 1996, Zhao, Philip, and Jiang, 2008, and Cai, 2010) for the E-step. In
this work, the goal is to contribute to this trajectory with the implementation of a new
algorithm for IRT factor analysis based on the SAEM (stochastic approximation EM)
algorithm of Delyon, Lavielle, and Moulines (1999).

The concept of missing data as introduced by Tanner and Wong (1987) provided
a conceptually important link between Monte Carlo methods and the EM algorithm.
Using this bridge, Béguin and Glas (2001) extended the gibbs sampling approach of
Albert (1992) to IRT factor models, while others have advanced stochastic versions of
the Newton-Raphson algorithm (Gu and Kong, 1998, Cai, 2010) in which Metropolis-
Hastings sampling is combined with the Robbins-Monro procedure (1951) for establish-
ing convergence.

Below, the EM algorithm is briefly described, followed by an outline of the general
SAEM procedure. After providing some background on the foundational work of Meng
and Schilling (1996), an algorithm is presented for the estimation of coefficients in
factor models for categorical data. Meng and Schilling proposed a gibbs sampling
approach to the factor analysis of dichotomous variables based on sufficient statistics.
Previously, Rubin and Thayer (1982) had described a highly similar approach for the
factor analysis of observed continuous variables. In the current work, several existing
strategies are added to the procedure of Meng and Schilling for carrying out factor
analysis of polytomous item responses. While none of these components are new, they

are assembled into a novel procedure that is efficient for large data sets.

2.4 The EM and SAEM Algorithms

Test data can be described as a set of random variables, conditionally dependent on

examinees’ knowledge and the items of the test. The mathematical model described



18

above is an attempt to describe such data, where responses to items adhere to a proba-
bilitistic function with parameters for item discrimination, difficulty, and the ability of
the examinee. Given a set of observed item responses, the goal of the psychometrician
is to estimate the value of the proposed parameters. In this model, the item parameters
are artifacts of the test structure while the ability of the examinees are missing data
also to be estimated. The model parameters and estimations of student ability should
converge to true values as the likelihood function is maximized given the observed test
data. This estimation problem is a multidimensional optimization problem.

The EM algorithm as described by Dempster et al. (1977) can be described as a

generalized solution to this missing data problem. Given a set of observed data y, let

L(&ly) = log f (y| &) (2.7)

be the observed data log likelihood, where £ is a set of fixed parameters to be estimated.
In introducing a set of missing data v, the EM algorithm obtains an estimate of £ on
iteration ¢ by maximizing the conditional expected log likelihood, better known as the

Q function
Q=0 (¢164) = [og £y (wle) £ (wly, €4V av (28)

where log f,(¢|£) is the complete data likelihood. As Gupta, Chen, et al. (2011) de-
scribe, 9 is the data “you wish you had” (p226). In many situations, the maximization
of Q; is simpler than that of [({|y), and the EM algorithm proceeds iteratively in two

steps at iteration t:
1. E-step: Take the expectation Qy
2. M-step: Find ¢®) = arg mgax Q)

On iteration ¢t , Q; is evaluated in the E-step and then maximized in the M-step.
Among models of the exponential family, sufficient statistics exist for model parameters
(Pitman, 1936). In turn, if a sufficient statistic exists for a parameter, then the MLE
(maximum likelihood estimate) must be a function of it (Gupta, Chen, et al., 2011).
For exponential family distributions, Dempster et al. (1977) showed the E-step has

a particularly simple form of updating the sufficient statistic. Despite the advantage
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of monotone convergence, however, the EM algorithm can be very slow with numeri-
cal integration over the missing data. Efficiency diminishes rapidly as the number of
dimensions increases. Further, the choice of initial values for parameters can result
in convergence at local maxima in the hyperparameter space rather than the global
maximum of the likelihood function.

In the SAEM approach, the E-step is replaced by a stochastic approximation cal-
culated from multiple draws of the missing data, though a single draw can be used if

the E-step is computationally intensive. Let y be the observed data, then at iteration

t of SAEM:
1. Missing data. Obtain one draw from from the distribution f(t| €41, y).

2. S-step (stochastic approximation). Update Q; = Q;—1 + v {log fy (¢)|§) — Qi—1}.
3. M-step. arg mgx Q.

Here, v; is the current iteration’s value of the RM (Robbins-Monro) gain coefficient.
Implementation of SAEM (as well as EM) is highly simplified when the complete like-
lihood belongs to a curved exponential family. Using this result in Step 2 of the SAEM
algorithm, the vector of sufficient statistics s(y, ) is computed at iteration ¢ and then

updated according to
§O =80V 4y {s(y,9) — SV} (29)

In this equation, s(y, ) is the sufficient statistic calculated on iteration ¢. In the M-
step, € is updated as a function of S. Delyon et al. (1999) showed the SAEM algorithm

converges to the MLE under general conditions.

2.5 IRT Factor Analysis as a Missing Data Problem

The goal is to maximize the observed data log likelihood I (¢|y) = f (y|€) , but it is

often easier to work with the @ function used in EM estimation as shown in Equa-

t—1)

tion 2.8 . Given the current estimate of the fixed item parameters & ( , the posterior
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distribution f (1/1| -1, y) of the unobserved latent variable 6 is generated, and param-
eters are updated by maximizing Qy (5 | §(t_1)). In the case of the IRT factor model,

Equation 2.8 can be modified as

0 (€16 ) = [10g £, (2.01€) £ (61, 0) £ (sl V) oz (2.10)

Recalling that persons are indexed by ¢ and items by j, the complete data log likelihood

for the normal factor model can be expressed as

log f, (2,047 = exp {—; > {7 — (A0, — b)) [z - (A0; — b)] + e?ei}] .
(2.11)

The last term in Equation 2.11 represents the normal prior © ~ N (0,I), which has
the effect of fixing the latent scale for person parameters and the multivariate variance
term X = I constitutes an identification restriction. Calculations of model parameters

require the definition of the following conditional expectations

E[0i|z;] = A(zi+b) (2.12)
E[0;07|z;] = (I—ATA)™'+B(z +b)(z +b)T a7 (2.13)
= I—BA +j3(z; +b)(z +b)Tp7 (2.14)

B = (I+ATA)IAT (2.15)

= ATI+AAT) L (2.16)

As shown by Béguin and Glas (2001), once the z values are sampled from a truncated

normal distribution, 6 can be sampled as
0; ~ N{E[0;|z;], T+ ATA)™ "} (2.17)

Maximizing the complete data likelihood with respect to A and b using expected values

(as in standard EM factor analysis) results in

b=n""! (A Zz E[Bilz:] — Zl Zi) (2.18)
A= (Y (a0 ERT 12} (Y E0,67]]) (2.19)
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Next, define the sufficient statistic S; = n~! > ; z; and substitute into Equation 2.18.

Then it can be shown after simplification
b=-S. (2.20)
Now define the sufficient statistic
Sy =n"1 Zi (z; + b) (z; + b)" (2.21)

and substitute into Equation 2.19. After tedious but straightforward simplification, the
following is obtained

A=S,(I+AAT) A (2.22)
Rearranging and expressing 2.22 in terms of eigenvalues and eigenvectors gives
S, —1I = AAT =vDVT (2.23)

A = VD2 (2.24)

For any given confirmatory analysis, only the first ) eigenvalues and eigenvectors
are retained. Parameters are identified provided that each of the first () eigenvalues in
D is greater than zero. Zhao et al. (2008) provide a more detailed discussion of this
approach and several algorithms that may be useful for categorical data. While the
lower triangular restriction of Anderson and Rubin (1956) is popular for the identifi-
cation of A (and also requires a set number of factors), Conti, Frithwirth-Schnatter,
Heckman, and Piatek (2014) point out that “the choice and the ordering of the measure-
ments at the top of the factor loading matrix (i.e., the lower triangle) is not innocuous”
and may create additional identification problems (p32). The lower-triangle restriction
is essentially a confirmatory rather than an exploratory approach, and much slower
computationally than applying Equation 2.24. Note that parameter identification is a
separate issue from rotational indeterminacy, and rotation is generally required after

estimation of factor coefficients for practical interpretation.

2.6 SAEM Algorithm for Exploratory IRT Factor Analysis

Building on the previous work of Bock and Aitkin (1981), Takane and De Leeuw (1987),
Albert (1992), Meng and Schilling (1996), Fox (2003), and Cai (2010), the estimation
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procedure in this paper applies a variant of the SAEM method of Delyon et al. (1999)
as explained further by Kuhn and Lavielle (2005). The algorithm below is given for
polytomous items, of which the procedure for dichotomous items is a special case. For
K ordinal categories of an observed item response indexed by k, the normal ogive model
is given as
P (Yij < klnijr) = @ (ijx) (2.25)
where
Mijk = A;0; — (bj + 7jk) (2.26)
for k = 1,2,..,K — 1 with P(Y;; < K) = 1. In Equation 2.25, 7j; is a decentered
category threshold such that ¥;7;, = 0 and other parameters are described above. The

resulting probability of a response to category k is then given by
P (Yij = klnijk) = P (Yi; < klnige) — P (Yi; <k — 1niji) (2.27)
with the corresponding latent response process

Tijk = A 0, — b — Tjk + €ijk (2.28)

Nijk + Eijk- (2.29)

This is a variant of the graded response model of Samejima (1969).
To take advantage of the estimators in Equations 2.20 and 2.24, the estimation
procedure can be represented as a series of S-steps (the stochastic version of the E-

step) and M-steps based on the following functions:

step S1: [0z, Ab,T)
step S2: f(x|Ab,7,0,y)
step S3: £ (2|A,b,7,0,y)
step M1: f(b,7|x)

step M2: f(4]2)

In the sequence above, three missing variables (0, z, and z) are sampled in steps
S1, S2, and S3, and fixed item parameters are obtained by maximization in steps M1

and M2. For K = 2, note that x = z and there are no thresholds T; thus, step S2 is
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bypassed. For K > 2, x is used to estimate item thresholds T and b, while z is used to
estimate factor loadings A and sample the latent person parameter 0.

As shown below, z carries information about item thresholds, while z carries the
information in the observed categorical response of an examinee. The steps of the

algorithm are:

1. Sample 0.

2. Draw missing values x for estimating item thresholds: Option propensities = for

ordinal item responses 1 < y < K are drawn as

N(—oo,0) Mijrs 1) ifyi; <k

Nogoc) (Mijs 1) i yis > F,
for kK = 1,2,..., K — 1. Random values of x are independently generated for
each individual for each item from the truncated normal distributions in Equa-

tion 2.30. Item intercepts b; and decentered thresholds 7;; are obtained from

sufficient statistics derived from the x variables

Tij. = Zk: xzyk/(K — 1) (2.31)

bj = — Zl :Ew/n (2.32)

T = Y (~zir—b;)/n. (2.33)

3. Draw missing values z for estimating person parameters and factor loadings: For

dichotomous items K = 2, let z;; = x;;. For K > 2, draw z from the truncated

normal distribution

TN (4, ) (1) ifyy=K—1

Zij Nk ~ (2.34)
T'N(d;,,d;) (77/1‘3'7 1) ifyij =1

TN(sody) (ijs1) ifyy; =0

where djj, = bj+7;; and ngj = A;0;. In this sense, z carries the ordinal information

in the categorical item response.
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4. Update sufficient statistics:

h =l o (g = (2.35)

»® = 501 4 408, — (-1} (2.36)

where ; is the current value of the RM gain coefficient. Note that v, = v9 =1
until the MCMC (Markov chain monte carlo) chain exhibits stationary behavior

(Robbins & Monro, 1951).
5. Obtain {b, T} from u, and A = VD'/2 from X .
6. Repeat Steps 1-5 until convergence.

In Step 4, the original E-step is carried out by averaging over stochastically generated
missing data, and for this reason, it is sometimes referred to as an S-step. In the M-
step, factor loadings and thresholds are obtained through maximization. The proposed
algorithm shares a number of S-step features with the gibbs algorithm of Béguin and
Glas (2001). In Step 3, convergence is defined relative to the sufficient statistics rather
than values of fixed item parameters. For this purpose, the change in the trace of %
between iterations was used. In Step 4, the updated sufficient statistics are used in
Equations 2.20 and 2.23. In developing the operational code for this algorithm, it has
been noted that the steps of the algorithm can be rearranged to ensure a more robust
approach to the hyperspace of ergodicity, but keeping consistent with the literature in
grouping the S-steps and M-steps, the negligible difference in the outcomes from this
rearrangement will only be anecdotally noted in the following chapter.

To define a convergence criterion, a window size (say We = 3) is selected along
with a tolerance constant. Iterations are terminated when the maximum covariance
change for the trace of X is less than e for W iterations; € typically falls in the range
of [le-4, 1le-3|. See Houts and Cai (2015) for an example of this convergence strategy
with respect to individual parameters during MHRM (Metropolis-Hastings Robbins-
Monro) iterations. For step size, let v = (1/¢)%, t > 0, where ¢ = (1/t)°, ¢t > 0.
A larger step size (say a = 1) may accelerate the rate of convergence, but result in a

local maximum. A smaller step size a < 1 may allow the sequence of estimators to
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approach the neighborhood of the global maximum, but will slow convergence. Jank

(2006) provided a set of recommendations to monitor convergence to a global solution.

2.7 FError Estimation Methods for Structural Parameters

Given that the proposed algorithm has an analytic form for the likelihood function
(Equation 2.11), convergence to the parameters’ maximum likelihood estimate is ob-
tained and it is possible to simultaneously estimate the Fisher information matrix (De-

lyon et al., 1999). The Fisher information matrix is a function of &,

1(9) = -2P1(Ely). (2.37)

where the diferentials here and below are taken with respect to €. Due to the form of
the observed likelihood, I(#) has no closed form solution. However, with the complete
data likelihood estimation can be broken down into three pieces. For compact notation
define ¢ = (6,z) and let f; be the log likelihood function I ({]y, cp(t)) evaluated at £

Based on the Louis missing information principle (Louis, 1982)

%1 (¢ly) = B{O” fi} + Cov{0f;} (2.38)
Cov{df,} =B{0fi0f} + E{ofi }E{0fi}" (2.39)

which results in a representation of I() as a combination of conditional expectations.
After augmented values are drawn in Step 1 of the algorithm, the three differential

components of the equations above are stochastically approximated as

Diy1 = Dy+ 41 [0°fier — Dy (2.40)
Git1 = Ge+m [3ft+18ftj;1 - Gt] (2.41)
Atr1 = Ap 471 [0ftr1 — A (2.42)

The Hessian is then updated according to

Hipr = D1+ {Ge1 — A AL (2.43)
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For a given iteration, 92 f; for the complete data log likelihood has a particularly simple
form that is identical for all items. It should be noted, however, that 9% f; is only one
component of the final Hessian in Equation 2.40. Under general regularity conditions,
—Hy .1 converges to —021 (|y) at a limiting estimate of &, and the inverse of —Hyyq
converges to the asymptotic covariance of the estimators (Delyon et al., 1999). As the
chain converges, the RM procedure is applied and the Hessian is updated according to
the equations above. This calculation happens during convergence with the inversion of
the Hessian occuring at convergence. In Section 3.2.2 this error will be referred to as the
ICE (Iterative Converging Estimate). It is important to emphasize that the Hessian is
available upon convergence and needs to be inverted just once. In contrast, the Hessian
in the stochastic version of Newton-Raphson must be inverted in each iteration cycle.

If the RM is engaged too aggressively (o = 1) and there has not occured some
method similar to simulated annealing forcing the parameters into the region of maxi-
mum likelihood, it is possible that the inverted Hessian results in a negative eigenvalue.
It is also possible in low sample simulations H can be unstable in situations where
many parameters are being estimated. For this reason, a number of other approaches
to standard error estimation will be explored. Stochastic approaches to error estimation
can leverage properties of the MCMC chain using several variations both during and
post-convergence; knowledge of the converged parameters and abilities allows for draws
from the estimated posterior conditional on the observed data and missing data via the
Markov chain.

Two variations use the Hessian described above and can be implemented at and after
convergence. As the Hessian is defined as a function of the converged parameters é , in
the first variation one draw of 6 from the posterior, using the conditional distribution in
Equation 2.17 samples the convex hyperspace of the structural parameters and allows
an estimate of the standard errors upon inversion of —H. This first variation will
be referred to as the SPCE (Simple Post-Convergence Error). A second variation
of a stochastic error approximation is based on the idea the RM procedure on the
Markov chain of sufficient statistics yields parameter estimates much more quickly than

traditional MCMC approximation methods. In this second variation, 2000 gibbs cycles
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Error Acronym Description
ICE TIterative Converging Estimate; inversion of Hessian at con-

vergence
SPCEp Simple Post-Convergence Error; single sample of © post-
convergence, ogive form
SPCE;, Simple Post-Convergence Error; single sample of © post-
convergence, logistic form
IPCEp Iterative Post-Convergence Error; chain of gibbs cycles post-
convergence, ogive form
IPCE;, Iterative Post-Convergence Error; chain of gibbs cycles post-
convergence, logistic form
CLTr Asymptotic variance in MCMC central limit theorem during
burn-in gibbs cycles; all chains
CLT; Asymptotic variance in MCMC central limit theorem during
burn-in gibbs cycles; chains independent within items
MCMC Simple variance in the Markov chain with thinning param-
eter; burn-in gibbs cycles

Table 2.1: These error estimation methods will be referenced in later sections. For
any estimation, the ¢ iterations of burn followed by Robbins-Monro squeeze {Brp,( —
Br} iterations of the SAEM-IRT algorithm used here is understood as a sequence
of phases; initialization, burn-in, pseudo-annealing, Robbins-Monro, and convergence.
Iterations {1, .8 By, .2Br,( — By, W} comprise the lengths of the logical phases of gibbs
conditioning. The 20% of burn-in iterations prior to the psuedo-annealing phase are
used in CLT and MCMC errors.

are reinitialized starting at the converged estimates of the parameters and abilities.
The RM procedure in Equations 2.40 is applied while the chain evolves, but is not
applied to the chain’s sufficient statistics; the Hessian is iteratively updated following
each draw, and then —H is inverted. This second variation will be referred to as the
IPCE (Iterative Post-Convergence Error).

The Hessian is a function of the likelihood which is a function of the ogive item re-
sponse function, and the second derivatives of the ogive are complicated by the asymp-
totic behavior at the extrema. As aforementioned, the Hessian may have instabilities
in the hyperspace as the MCMC chain oscillates, resulting in negative eigenvalues or
infinite error terms after inversion. In addressing the convexity of the Hessian, a com-
parison of the 2PL and 2PNO is in order. A slope and intercept are sampled and shown
in Figure 2.4. Setting a = o = 1.3 and b = .692, and 8 = b/a, the two probability func-

tions can be overlaid. Two points should be noted about the difference between these

logistic and ogive item response functions: 1) even at the maximum, the difference in
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Figure 2.4: The two parameterizations of item characteristic curves are nearly iden-
tical. The dotted line represents a magnified difference of the calculate probabilities,

Popno(0) — Popr(0).

probability between the two curves is less than 1%, and 2) the logistic curve approaches
its asymptotic limits of 0 and 1 more gradually than the normal ogive. The latter point
is computationally significant. When compared to the logistic response function, the
instability in the Hessian is exacerbated by the asymptotic behavior at the tails of the
normal ogive. For this reason, it is reasonable to attempt to calculate the error terms
from the inverted Hessian in these three post-convergence error estimations using the
logistic as an approximation to the ogive. This is accomplished by transforming the
ogive’s structural parameters; the scale of the slope is reduced by the scaling constant
1.7 with the intercept scaled down by the same factor and the discrimination parameter.
The acronyms above (SPCE, IPCE) will be used in Section 3.2.2 in conjunction with
a hyphenated suffix of O or L to indicate an ogive or logistic item response function is
being used in the calculation of the Hessian.

While the cheapest® approach does not require post-convergence computations, the

SPCE requires only a single draw of 6, ICE requires many draws of 6 as the chain

3Computationally, any work that can be accomplished simultaneously with the convergence of
the estimation algorithm is far less expensive than initiating a ‘post-convergence’ round of iterative
calculations.
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converges, and [PCE is clearly the most expensive requiring a restart of the chain. All
three variations apply to this implementation of the SAEM method in high dimensional
exploratory factor analysis and should be compared as an analysis of generalizability of
the properties of the MCMC chain given that it is converging or has already converged
prior to their application.

Other stochastic error estimation methods include the empirical estimation of the
Markov chain’s properties. The option is available to approximate standard errors using
the chain itself, as well as using the asymptotic variance in the Markov chain central
limit theorem. Geyer (1992) explains that sums of adjacent pairs of autocovariances of
a stationary, irreducible, reversible Markov chain are positive and have regularity prop-
erties that can exploited. This theory allows for the construction of adaptive window
estimators which should be constrained to the sequence of lags until the autocovariance
of a single parameter’s chain decays to the noise level. This method is noted to have
a positive bias (Geyer, 1992), but the resulting standard error estimates may be prac-
tically useful within SAEM as it is applied here. In this method, the autocovariances
of the structural parameters are measured and a lag is chosen to ensure an indepen-
dent sample from which to calculate the chain’s variance from each converged estimate.
The asymptotic variance error estimate will be referred to as the ‘CLT’ (Central Limit
Theorem), and the errors derived from the chain itself will be noted as ‘MCMC’ errors
and will be calculated during multiple windows in the parameters’ respective chains.
Within the ‘CLT’ approximation, two approaches are used; the CLT; will run the
MCMC central limit theorem across the chains of structural parameters specific to the
item (assuming “mutual independence”), while the CLT p will be run on the full chain

(all chains of all structural parameters).

2.8 Factor Score Estimation Methods

FExaminee Factor Scores can be computed via traditional techniques such as the MLE,
EAP (Expected A Posteriori), and MAP (Modal A Posteriori) estimation using con-
verged parameters. The MLE of an examinee’s ability can be analytically calculated

in this approach by taking derivatives of the likelihood function given the examinee’s
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response pattern. It is also possible to numerically solve for the MLE using gradient
descent such as the Newton-Raphson method or other optimization algorithms like co-
ordinate descent (though grid-search algorithms become extremely expensive as dimen-
sionality increases). The EAP is easily accomodated given the nature of this algorithm,
both through calculations of the expectation of 6§ and sampling from the posterior as
in Equation 2.17. In this work, 6 uses a conjugate prior that is symmetric; while each
calculation can be applied to the posterior at convergence, the analytic expecations of
the MLE, EAP, and MAP are identical.

This formulation of SAEM also allows exploration of iterative techniques for esti-
mating factor scores. Recall that the gibbs draw for 6 in each iteration is given in
Equation 2.17. At convergence, it is possible to run additional iterations for generat-
ing a chain for each vector of factor scores. However, fixing ¢ = £ during iterations
would generate estimates of 0; with too little variation; that is, the error in estimating
é would not be reflected in the standard error of 6;. Denote the MLE estimator of £ at

convergence as {b.The following method is proposed to address this issue:

1. Setting ¢ = éo, run each of the steps of the algorithm with the gain constant
~ = 1. This obtains an MCMC value of 51 on Step 4.

2. Run one additional draw of § with & = §A1 to obtain a new estimate of 6;.

3. Repeat the two steps above ¢ times to obtain a chain of ;. Apply standard

methods to compute the mean and standard deviation of this chain.

The latter statistics represent 6; and its standard error appropriately inflated by
estimation error in £. Note this is essentially using data augmentation for missing value
imputation (Little & Rubin, 2002) with one important exception: in this proposed
method fixed parameters are reset to £ = 50 on each iteration based on the rationale

that in practice & does not drift too far from the converged value &.
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2.9 Formulations of Dimensionality Using Random Matrix Theory

The algorithm proposed offers an opportunity to utilize recent research in RMT (Ran-
dom Matrix Theory). Wishart (1928) first formalized random matrix ensembles con-
sistent with the properties of covariance and correlation matrices of random variables.
Wigner (1955) more than seventy years ago, proposed his theory that the interactions
of atomic nuclei could be encapsulated by the formulation of a Hamiltonian composed
of a high dimension random Hermitian matrix; in attempting to describe the energy
levels of nuclei, Wigner detailed many properties of a few forms of matrix ensembles,
including reduced forms of their eigenvalue distributions. Historically, Wigner’s work
encouraged a deeper interest in the properties of real-symmetric and Hermitian ran-
dom matrices as these matrices hold significant applications in mathematical physics
and probability theory. It also led to the formulation of free probability theory and the
spectral theory of random matrices. The empirical spectral limit, noted the semicircle
distribution, of Wigner matrices was derived by Eugene Wigner.

Applicable to the current work, Marcenko and Pastur (1967) solved for the limiting
distribution of eigenvalues of a subset of Wigner matrices, namely sample covariance
matrices as defined by Wishart (1928). This algorithm exploits the properties of the
random variables implicit to the augmented data (Meng & Schilling, 1996); the aug-
mented data matrix is an assembly of random gaussian variables conditional on items,
examinees, and observed data. When centered and scaled, the sufficient statistics used
to extract item discriminations is a GOE (gaussian orthogonal ensemble). The asymp-
totic properties of the covariance of GOEs and their eigenvalues becomes remarkably
useful for the purpose of measuring the statistical significance of these item discrimina-
tions.

The augmented data sampled using Equation 2.34 gives rise to the covariance matrix
defined in Equation 2.21. The structure of the distribution of 8 in Equation 2.17 results
in the covariance Sg satisfying the definition of a Wishart matrix. When applying a
measuring instrument such as a psychological assessment, the algorithm in this work

is modeled such that the convergence of parameter estimation uses empirical spectral
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analysis of the covariance matrix of augmented data.

In this section, the notation of J items and N examinees play a significant mathe-
matical role and will be used to appropriately connect the conceptual framework of the
augmented data matrix of this algorithm to results derived from RMT. In the interest
of parsimony, applications of this RMT will be restricted only to normalized Wishart
matrices where N > J. Complex Hermitian matrices, unitary ensembles, and symplec-
tic ensembles do not apply to this treatment of assessment data, but the reader can be
directed to the work of Freeman Dyson and Madan Mehta for a thorough discussion on
foundational RMT (Dyson, 1962b; 1962c; 1962d; 1962a; Mehta, 1967).

Spectral analyses are commonly used for tests of equality between population co-
variances and a scaled identity matrix; i.e. if a set of J-dimensional zero-mean gaussian
random variables are sampled N times, the population covariance (a J x J matrix) is
structured as ¥ = 02I3.3. Denoting each draw of the gaussian vector as vy, v2, ...vN,

the resulting real-valued normalized random Wishart matrix will be defined as

1 T
Sy =+ Z vv) . (2.44)

Note that this formula only implies a transpose rather than the Hermitian conjugate
typically used in the treatment of Wigner matrices. The eigenvalues of this matrix will
be rank-ordered from largest to smallest and labeled as A1 > Ao > ... > A;. This matrix

has N degrees of freedom and an average trace
1
A= jTr(SN) (2.45)

which is equal to the average eigenvalue %Z j Aj.
In this formulation, the resulting matrix adheres to the assumption of sphericity
of the covariance matrix, and is known as a real white Wishart matrix. In another

interpretation, a spectral analysis of this matrix,
det(A—AI)=0 (2.46)

where A is a central Wishart distribution and X is its covariance, will have a result
that its J dimensions are rotationally invariant and there is no statistically significant

principal component that can be extracted from it.
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Stepping back for a more qualitative interpretation that applies to the current use
case for the proposed algorithm, a J-item assessment with probabilities of success that
are not dependent on a latent ability of an examinee would result in discrimination
parameters that are not significantly different from zero; this implies that the covari-
ance matrix of such an assessment’s centered (zero-mean) augmented data obeys the
sphericity assumptions of a random Wishart matrix. Stated differently, and this is the
main idea, a null hypothesis can be defined such that no eigenvalue of the
covariance matrix of zero-mean augmented data is significantly greater than
the expectation of the largest eigenvalue of a random Wishart matrix of the
same number of dimensions (J) and degrees of freedom (NNV), Hy : ¥ = I. The
Tracy-Widom distribution provides the means for us to produce such a test. Practically,
if a psychometric assessment was designed to contain J items that obey structural prob-
ability functions that are conditional on, say, three latent dimensions, the eigenanalysis
of the augmented data covariance should result in three eigenvalues significantly greater
than the expectation of the largest eigenvalue A;. In other words, an assessment de-
signed to measure three latent factors is expected to result in a spectral analysis of So
that will negate this null hypothesis given that three eigenvalues should be significantly
greater than the distribution of the largest eigenvalue A; given N examinees and J
items of test data.

Given that the calculation of discrimination parameters in this application of SAEM
are coming from a principal components analysis, this probabilistic treatment of a com-
ponent’s significance is important. Informally, most statistical coursework advocates
that it is sufficient to cut off significant eigenvalues at an “elbow” in a scree plot, or
to study principal components with eigenvalues greater than one. Worse, in many
large scale psychometric analyses of real data, dimensionality may be dictated by test
design rather than empirical calculations or statistically motivated justifications. The
nature of the algorithm being proposed here offers an opportunity to study the signal-
to-noise ratio arising from an assessment’s measurement, removing intuition and “rules

of thumb” altogether by leveraging the advances of RMT.
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2.9.1 Marchenko-Pastur Law

Before introducting the Tracy-Widom distribution, it is useful to discuss the result of
Marcenko and Pastur (1967). The investigation of the eigenvalue distribution of GOEs
was important for physicists who were interested in the energy levels of atomic nuclei.
In reference to experimental observations, spacings between such levels could provide
empirical proof that the mathematical formalism applies to nuclear scattering and other
observable phenomena. The derivation of analytical forms for these solutions also allow
for inferences about the mathematical and physical properties of the eigenvalues of
ensembles of random variables; to this end, the trailblazers of RMT were able to extract
many features of these covariance matrices, and these will prove useful for assessing the
statistical properties of the sufficient statistic So.

First, it is for clarification that specific terms are defined with respect to the simu-
lations below. The augmented data matrix has dimension N x J. Mapping assessment
data to the concept of RMT, this augmented matrix is thought of as J measurements or
possible dimensions of the latent scores of NV examinees. When J < N, the eigenvalues
of the resulting covariance matrix Sy as defined in Equation 2.44 prove to be con-
fined to a sequence of values or states with non-zero positive upper and lower bounds
called the empirical spectral distribution.* The probability space near the bounds of the
eigenvalue distribution are called the spectral edges with the region between the bounds
labeled the bulk spectrum. As the eigenvalues are confined to this space between the
edges and have a specific number of values (J), the spacings or gaps between the finite
positions of these values on the real line satisfy the definition of a DPP (determinantal
point process). DPPs are probabilistic constructs that describe a fixed set of potential
arrangements of states.

Wigner (1955) and Mehta (1967) derived terms demonstrating that the individual

energy levels described by their Hamiltonian operators were sparsely spaced in the bulk,

“Typically this result is written in one of two ways, (1) as a statement that denotes the counting
of a number of distinct values, specifically ux(A) = %#{J < N;\; € A}, where A C R, or (2) as a
point process representation, i.e. px(A) = + Zf\;l 0x; where ¢ is a Dirac measure. When J > N for
this GOE, the distribution is still confined to a region A C R with a finite upper limit, but the lower

bound is at zero with a probability mass at zero of Jf] .




35

and became spaced further apart at the edge furthest from zero. To solve for the distri-
bution of the spacing, a series of mathematical transforms must be performed, and the
determinantal form invokes the use of a Fredholm determinant with an integral oper-
ator sine kernel to describe the gap probability distribution in bulk, while at the edge
the solution involves the Airy kernel as it necessitates a vanishing boundary condition.
For the work here, the main point of interest concerns the limiting spectral edge.
Before assessing the distribution of the largest eigenvalue of a random Wishart
matrix, a pedagogical approach motivates first the introduction of its asymptotic limit.
For a random GOE with E(Sy) = I, Marcenko and Pastur (1967) derived the formula
for the distribution of A in the limit as J — 0o, N — oo, and J/N — c¢. In contrast
to Wigner’s semicircle distribution, the form of the equation defining the asymptotic
distribution is sometimes referred to as the quarter circle law when ¢ < 1. In the

derivation, the distribution of the point process spectra is written

J
1
p=—=> b, (2.47)
j=1

<

where d,; are the count of the distinct eigenvalue spacings, and the bounds of this
distribution have deterministic values in the asymptotic case. In physics this is known
as a density of states. The cumulative distribution function, or integrated density of
states, when described in analytical form is differentiable and gives rise to the limiting

probability density known as the Marchenko-Pastur law,

dj_ 1
dx  27mex

V=)t — o) (2.48)

where /o = (1 4+ /c)?. In the asymptotic limit, A\ — ¢, and A\; — ¢_. When

¢ > 1, this implies J > N and the covariance matrix becomes singular, resulting in
P — N eigenvalues at zero and a finite probability of non-zero eigenvalues described by
Equation 2.48 with £_ = 0.

To demonstrate the utility of the Marchenko-Pastur law, 500 GOE are sampled,
and the eigenvalues of their covariance matrices can be histogrammed and scaled to
a probability density. This exercise is shown in Figure 2.5. In the top row, a J = 4

dimensional vector of i.i.d. (independent and identically distributed) gaussian random
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500 samples - J =4, N =400 500 samples - J =4, N = 4000

20 3.0
2.0 30

Density
Density

0.0 1.0
0.0 1.0

500 samples : J =40, N = 4000 500 samples : J =40, N = 40000

20 3.0
2.0 3.0

Density
Density

0.0

10
0.0 10

Figure 2.5: The histograms show the distributions of 500 samples of eigenvalues for
four configurations of J and N. The left panels produce the proportional constant
¢ = .01 with the right panels set to ¢ = .1. In proceeding from the top panels to the
bottom, both J and N are multiplied by a factor of ten to demonstrate the empirical
convergence of the eigenvalues to the Marchenko-Pastur probability distribution (Pyp),
which is overlaid in blue.
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variables are drawn for N = 40 and N = 400 cases, and J x J covariance matrices
are produced; the proportion % = ¢ = .01 and .1, respectively, also produce the blue
overlaid limiting distribution of the Marchenko-Pastur law. This is repeated 500 times
and the eigenvalues are bucketed into 100 bins from 0 to 2.5. In the bottom row, the
same exercise is repeated for 10 times as many random dimensions (J = 40) and cases
(N = 400 and 4000), covariances calculated, followed by an eigenanalysis; preserving the
ratio ¢ in both configurations. The eigenvalues of 500 instances of these 100 extracted

eigenvalues are more clearly confined to the shape of Equation 2.48 overlaid again in

the lower histograms.

2.9.2 Tracy-Widom Distribution

For the statistician looking to measure a “signal,” interest lies in the nature of the
distribution of A\; when spectral analyses are performed. As it is impossible that mea-
surements are performed under the conditions J — oo and N — oo, practical use
of this it is important for researchers to understand the probability that one or more
eigenvalues constitute a significant signal within an eigenanalysis. To visualize the be-
havior of A1, and taking the same proportions of items to examinees (¢ = .01, .1) chosen
in the four plots from Figure 2.5, ten increasing sets of item and examinee configura-
tions are sampled 500 times and the largest eigenvalue from each sample is shown in
the distributions plotted in Figure 2.6. These plots provide direct observation of the
limiting distribution of the largest eigenvalue of a GOE. This problem was solved by
Tracy and Widom (1996) and is thoroughly explored within a later article by Johnstone
(2001). The TW (Tracy-Widom) distribution is here introduced summarizing a small
section of the latter work which studies its application to the covariance derived from
rectangular random gaussian matrices. The covariance of this N x J GOE is Wishart
Wjy(I,N) of J dimensions and N degrees of freendom; again, J and N continue to be
used here because this is a direct representation of the augmented data simulated in

this application of SAEM.
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Figure 2.6: The densities of the largest eigenvalue for several configurations of J and
N. The left panels produce the proportional constant ¢ = .01 with the right panels set
to ¢ = .1. Three choices of items {100, 200, 300} demonstrate the convergence to the
asymptotic limit (Ay;p = argmax Pysp) defined by the Marchenko-Pastur law.

First, centering and scaling constants are calculated,
2
wy = <\/N 1+ \/j) , (2.49)

oy = (M+ \/j> <\/]% + \/13> 1/3. (2.50)

There are three orders of the Tracy-Widom law, but only the first order is applicable

for this use case. This distribution function is written as

1 o0
Fi(s) = exp {—2/ q(z) + (afs)qZ(x)dx} ,s€R (2.51)
S
and the limiting law of the largest eigenvalue of a J x J gaussian symmetric matrix is
A\ —
Ppw, ~ F. (2.52)
oy

This invokes the use of the aforementioned Airy function, Ai(z), which is a solution to

the nonlinear Painlevé II differential equation.

"(x) = zq(x)+2¢%(x), (2.53)
q(x) ~ Ai(x) as x — +o0. (2.54)
While the full derivation is beyond the scope, a few remarks should be made. The

joint density of the Wishart matrix is transformed through the clever use of a Vander-

monde determinant identity and a Laguerre expansion that Mehta (1967) shows can be
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Figure 2.7: 500 samples of the largest eigenvalues of GOEs sampled with the configu-
rations of J = 10, N = 100 and J = 100, N = 10000 are shown. After centering and
scaling according to Equations 2.49, the densities are well described the Tracy-Widom
distribution.
rewritten as a determinant of the Airy kernel. A Fredholm determinant identity is then
applied and the result yields the Tracy-Widom distribution. The Painlevé forms are a
series of nonlinear differential equations studied at the turn of the twentieth century
with movable singularities at the poles of their complex form. The Airy function, as
a solution to the form in 2.53, has oscillatory behavior up to a turning point at which
there is an exponential decay; the solution at this pole gives rise to the centering and
scaling factors in Equations 2.49 (Johnstone, 2001). The TW distribution is a statement
of the variation at this point and this Airy function is reflective of the properties of the
eigenvalues in the bulk as it approaches the limiting edge of the maximum eigenvalue.
The variability of the largest eigenvalue is well-described by the TW distribution. In
continuing with the configurations used above, another 500 samples of A\; are sampled,
centered, scaled, and plotted with the TW distribution Fjg—; overlaid in Figure 2.7. As
it is successfully being used in signal processing applications (Wax and Kailath, 1985;
Bianchi, Debbah, Maida, and Najim, 2009), portfolio management (Laloux, Cizeau,
Potters, and Bouchaud, 2000; Avellaneda and Lee, 2010), and quantum information
processing (Zyczkowski & Sommers, 2001), this utility allows for a statistical treatment

of the psychometric measuring instrument’s assessment of examinees’ abilities. For the
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simulations in chapter 3, an exposition of the performance of the SAEM algorithm and

the Tracy-Widom test will be delineated.
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Chapter 3

Simulation Studies

To properly describe the performance of the algorithm, it is necessary to build incre-
mentally, starting from simple foundations of a one-dimensional dichotomous response
assessment up to a large-scale polytomous test of many dimensions. The recovery of
generated parameters is pertinent for a thorough discussion of the capabilities of SAEM
as it converges to a reconstruction of the simulated test design. This includes the es-
timation of latent factors as they compare to the simulated abilities. The validity of
the mechanism of the algorithm requires that a researcher can make inferences from
well understood quantitative outputs, and a thorough examination of the properties of
SAEM’s operation, estimates, and their respective errors are to follow. The algorithm
will also be applied to three instances of real response data; each is multidimensional

and will assist in the application of the Tracy-Widom test described in section 2.9.2.

3.1 Simulations, Estimations, and Diagnostics

The goal of this study is intended to provide proof of concept, applying the above
algorithm to conditions that provide insight into its utility as well as limitations. Several
Monte Carlo approaches to multivariate normal probit algorithms have been advanced
in the past two decades (Meng and Schilling, 1996; Chib and Greenberg, 1998; Patz
and Junker, 1999; Song and Lee, 2005). The probit link function exhibits behavior
at the tails that is less tractable than the logit link as the ogive CDF more rapidly
approaches the lower and upper asymptotes of large absolute values of §. Computation
of the derivatives for the Newton-Raphson cycles in traditional EM estimation are also
computationally intensive.

Given the variation in the draws of 0, the updates to the gradient and Hessian
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in 2.40 and 2.43 may be inflated by orders of magnitude that are not typical of the
convex region of the hyperspace where the true value of the parameters are located.
However, calculating standard errors with post-convergence chains should provide at
least a partial solution to this source of instability. To examine this issue, several
approaches to SE (standard errors) calculation are to be explored. To establish a
baseline for comparison, the RMSE is easily obtained for all configurations of tests,
examinees, and dimensionality of latent factors. Any post-convergence method for
obtaining standard errors are calculated by restarting the chain for 1000 iterations with
converged estimates of random and structural parameters keeping v = 1. Thinning will
be applied using autocovariance diagnostics.

Specific to this research, key improvements are expected to be made in computa-
tional efficiency. Exploratory factor analyses on large scale assessment take a significant
investment in time and are rarely evaluated, as the dimensionality of these exams are
typically prescribed a priori. Further, as latent factors increase in dimensionality, tra-
ditional methods become cumbersome; thus, computational time becomes a key metric

for simulations in this research.

3.1.1 Simulation Conditions

In Table 3.1 conditions for simulations are expressed in terms of numbers of items, or-
dinal categories, examinees, and dimensions. As this code was developed to process the
current algorithm, it does not depend on other IRT packages or software; thus statisti-
cal effects of multiple parameters on small and large assessments are to be investigated
and clocked. The code is programmed using R (Team, n.d.) and is made publicly avail-
able, along with the simulations and their fits at Geis (2019). In gauging performance,
standard questions are to be answered around ability estimates, parameter estimates,
rotational indeterminacy, convergence criteria, and computational speed. Significance
of dimensionality will also be explored given the results of RMT in Section 2.9.

To study the accuracy of reconstruction of coefficients and their respective standard
errors, fifty replications of the first five simulation conditions are performed. Condition

1 and Condition 2 are base case dichotomous univariate assessments, without and with
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Condition Guessing Items (J) Options (K) Examinees (N) Dimensions (Q)

1 (50) No 100 2 5,000 1

2 (50) Yes 100 2 5,000 1

3 (50) No 100 4 5,000 1

4 (50) No 30 4 5,000 3 (bifactor)
5 (50) No 30 4 5,000 3 (subscale)
6 (5) No 100 4 10,000 5 (bifactor)
7 (5) No 100 4 10,000 5 (subscale)
8 (5) No 100 4 100,000 10 (bifactor)
9 (5) No 100 4 100,000 10 (subscale)

Table 3.1: The simulation conditions that have been generated and estimated for this
work. The number of replications is noted in parentheses within the Condition column.

a guessing parameter, respectively. Condition 3 enhances the item information with 4-
category ordinal polytomous response data. In these first three conditions, there are 100
items and 5,000 examinees. Conditions 4 and 5 aim to explore the differences between
bifactor and subscale items within a small multidimensional assessment of the same
sample size as the univariate benchmarks. In these conditions, the exam is 4-category
ordinal polytomous and there are 30 items and 5,000 examinees.

Conditions 6-9 probe the computational effects for large scale assessments as well
as the rotational complexity using the converged estimates of factor loadings. In Con-
ditions 6 and 7, five dimensions and 4-category polytomous items will be simulated in
bifactor and subscale structure using 100 items and 10,000 examinees. In Conditions 8

and 9, the dimensions are doubled and the number of examinees scales to 100,000.

3.1.2 Parameter Distributions

The parameters of the simulation conditions necessitate distributional parameteriza-
tions that are visualized in Figure 3.1. In the 1D simulations the slope or discrim-
ination parameters were drawn from a 4-parameter beta, i.e., B4(2.5,3,.2,1.7). In
the subscale multidimensional simulations, the loadings from all dimensions in A are
also sampled from By(2.5,3,.2,1.7). In the bifactor multidimensional simulations, the
loadings from the first dimension in A are sampled from B4(2.5,3,.2,1.7) while the
higher-dimensional items load on a second latent factor with slopes sampled from a

more constrained B4(2.5,3,.1,.9) to constrain individual item reliability. All but two
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latent factors are set to zero in the bifactor simulations, while subscale conditions load
on only one dimension for each item. The lower magnitude second-factor discrimina-
tions in the higher dimensions are intended to create a challenging situation for the
bifactor MIRT condition.

The b parameters are sampled from a N(0,1) to assess the tails of the hyperspace.
If the assessment items imply a partial credit model, the K — 1 thresholds are drawn
from a N(0, 1) distribution and sorted such that 7 < 79 < 73. The guessing parameter
in Condition 2 is drawn from a uniform distribution, ¢ ~ U(.05,.3). The abilities of the
examinees were sampled from a N(0,1) and @Q-dimensional MV N(0,1I). In Figure 3.1,
the distributions are overlaid on top of a sample of 100 parameters from each item-
specific structural parameter distribution. The final bottom right plot shows 5000

draws of abilities from a single normal latent factor.

3.1.3 Pseudo-Annealing and Activation of Robbins-Monro Iterations

The stochastic approximation updates were initiated once several iterations of burn-in
were completed for each simulation condition. For simulations with only 5000 exam-
inees, a longer burn-in period was set so that the parameters were expected to be
traversing the convex hyperspace of the MCMC chain. For every condition above, the
exponent in the gain constant of Equation 2.9 was set to 1. Following the discussion at
the end of Section 2.6, the larger step size, « = 1, was used to maintain the highest rate
of convergence. An enhancement akin to simulated annealing was also implemented
in a small window of x iterations where W; = 1,2, ..., W,. This to prevent the acti-
vation of the Robbins-Monro gain constant from forcing a parameter’s estimate from
prematurely converging to a local maximum in the hyperspace.

Before the RM gain constant is engaged, this window of W, = .2 x By or 20% of
the burn-in iterations is defined for stochastically leaking statistical information into
adjacent iterations, breaking the axiomatic rule of a Markov process. In this window,
the gain constant is effectively throttled such that the amount of statistical information
retained from iteration to iteration is small, oscillating, and dynamic. Several modifi-

cations to the imposed variation in the upper and lower bounds of stochasticity may
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Figure 3.1: Simulated parameter densities are shown above along with their source
distribution overlaid with one exception: the polytomous thresholds consist of K — 1
draws from N (0, 1) and ordered from smallest to largest. All item parameters are drawn
100 times, reflecting the variation of the majority of the simulation conditions. The
abilities are sampled 5000 times from the normal distribution. The upper left and right
panels represent the distributions of discriminations for the primary dimension of each
item in the simulations and the more constrained magnitude of the second dimension in
bifactor conditions, respectively. The middle left and right panels are the difficulties and
polytomous thresholds. The bottom left plot shows the density of guessing parameters.
The bottom right is a visualization of the normal latent factor, our bell-curve.
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Figure 3.2: The gain constant from Equation 2.9, when engaged, decreases rapidly
when a = 1. The exponential decrease to the right of iteration 1000 shows this simple
Robbins-Monro decay of the gain constant. To mitigate the potential for the hyper-
parameters to get stuck in a local maximum of the likelihood function, this oscillatory
stochastic regime (seen in iteration 800 to 1000) is developed to use stochastic noise to
allow a gradual but random leakage of statistical information during the final 20% of
burn-in iterations of the MCMC chain.
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be allowed. As shown in Figure 3.2, the amplitude of the oscillatory function increases
linearly as the window evolves, thus allowing random fractional volumes of statistical in-
formation to be retained from iteration to iteration until the Robbins-Monro sequence
in Equation 2.9 is fully engaged starting from ~ = %, %, ... until convergence. This
pseudo-annealing technique is visualized in Figure 3.2; it shows a plot of the possible
values for 4 between the start and end of this window, before the RM gain constant

is turned on in its deterministic geometric sequence. Effectively, v is sampled from a

U (1 — I‘//VV; cos?(W;), 1) in the first half of the window, and the second half of iterations

in the window are to be sampled from U (% — XVV; cos?(W;), 1 — I‘//I[,/; COSQ(W7;>>. For a
hypothetical MCMC chain with By = 1000 burn-in iterations, Figure 3.2 shows the
gain constant’s state space visualized along with a random sequence of v being sampled
from that space defined in the upper plot. The vertical lines at iteration 800 and 1000
are the edges of this pseudo-annealing window. Note again that the first value of ; at
iteration 1000 is % so as not to reinstate a Markovian draw.

In Figure 3.3, a parameter was selected from the first replication of the first sim-
ulation condition in Table 3.1. The difficulty parameter for item 12 was chosen for
the convenience of visualizing its MCMC chain simultaneously with the gain constant’s
sequence of recorded values. At the beginning of the burn-in of the MCMC chain, the
difficulty parameter quickly converges towards the true value shown as the dotted line.
As the gain constant enters the pseudo-annealing window, a large amount of the vari-
ation seen in the parameter’s chain remains intact as only a very small amount of the
statistical information may pass from one iteration to the next when the gain constant
remains close to one. Immediately after iteration 1000, the Robbins-Monro sequence

begins and the variation in the chain quickly diminishes.

3.2 Simulations of Probit Model Convergence of SAEM in One Di-

mension

The performance of the SAEM algorithm is first benchmarked for one dimension of

latent factor. Condition 1 from Table 3.1 contains 100 dichotomous items and 5000
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Figure 3.3: The gain constant recorded from a simulation in Condition 1 is shown here
(bottom line) along with a sequence of draws of a difficulty parameter for a single item
(upper line) as well as the parameter’s true value (dotted line). The choice of the item
parameter plotted is for convenient visualization purposes only. In the upper plot is
the entire sequence of iterations of the MCMC chain, from the start until convergence.
The lower plot shows the same three lines centered on the pseudo-annealing window.
It is clearly visible that the variation in the chain is significantly suppressed once the
Robbins-Monro updates are initialized at iteration 1000.
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Paramater bias RMSE
Aq 0.0002 0.0052
b 0.0042 0.0068

Table 3.2: Over 50 replications, Condition 1 showed no bias in the slope’s estimates nor
as a function of the generated value. The intercept showed no bias when calculating the
mean and its standard deviation, but there was a very small but significant systematic
bias in the intercept as a function of the generated value (approximately .004 at b =0
and .014 at b = 2.5). A p-value less than .001 is denoted by ***.

examinees without a guessing parameter. Condition 2 contains the same configuration,
but with guessing allowed for each item. Condition 3 differs from Condition 1 in that
it is now a polytomous 4 category test. Once Condition 1 is assessed, it should be
expected that Condition 2’s inclusion of a guessing parameter will increase the RMSE
for the reconstruction of the slope and intercept parameters, and Condition 3 should
decrease the RMSE of the slopes but increase the RMSE of the first order intercept.
It should also be expected that Condition 3 recovers examinee abilities better than
Condition 1, and Condition 2 will underperform Conditions 1 and 3 in its estimation

of examinee abilities.

3.2.1 Simulation and Estimation of the 2PNO

The plot of the results of the most parsimonious simulation condition are shown in
Figure 3.4. The generated values of slopes and intercepts are on the horizontal axis
with the mean and variance of their 50 replications of residuals plotted on the vertical
axis. An OLS (ordinary least squares) simple regression of the bias on the generated
value was also fit for diagnostic information. Bias and RMSE are listed in Table 3.2.
The only semblance of a systematic error is seen in the OLS fit of the intercept; in the
region of very low difficulty there is a bias of approximately -.1%, while in the region of
high difficulty there is an expected positive bias of approximately +.3%; for simplicity,
only the mean estimates of bias are shown in the table.

In Figure 3.4, the scale of the y-axis demonstrates the very small RMSE resulting
from this simulation. The few slopes with sizable RMSE can be seen in Figure 3.5; the

items with large RMSE in the slope are sampling the statistical information from the
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Figure 3.4: Condition 1 shows the results of 50 replications of parameter estimation
using the SAEM algorithm coded in Geis (2019). The means of all 50 estimates minus
the actual values are plotted along with error bars representing a 95% confidence interval
calculated from the RMSE. Note that axes are not on the same scale. The results are
in Table 3.2.
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Figure 3.5: Visualization of the RMSE for each of the structural parameters is useful
for understanding the statistical information available in the parameter space. The
RMSE for the slopes and intercepts of each of the 100 items is plotted against its
generated value in the upper left and right plots, respectively. Points in the slopes plot
are shaded as the item difficulties approach large relative absolute values. In the upper
right intercepts plot, the points are shaded darker as slopes increase in value. Items 11
and 47 are singled out to demonstrate the effects of an extreme intercept on the RMSE
of both the slope and intercept.

tails of the prior distribution of abilities. Further, the large RMSEs in the intercepts
are from these same long-tail items J = {11,47} of extremely low difficulty. There is
not only a general increase in the RMSE of the slope as the generated slope increases,
but there is a steeper increase in the uncertainty of the slope as the intercept extends
into the tails of the ability of our examinees, and this is to be expected because there
is far less available statistical information from the examinee pool in this region. in
Figure 3.5, the right-hand plot also shows that higher values of slope influence the
RMSES of the intercepts; the shading of the points are darker as the slope increases.
The behavior of the MCMC chain can also be instructive via a visualization of the
parameter estimates for each iteration as one or more replications evolve through the
gibbs cycles. Six items were chosen for investigation based on their location in their
generated parameter space as seen in Figure 3.6; the six items were strategically chosen
as they land on the edges of the joint distribution of structural parameters: two items
are of central difficulty but high and low slopes (37 and 53), two items have slope nearly
1 but very high and low difficulties (5 and 11), and two items are at the corners of this

parameter space (38 and 63).
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Figure 3.6: The item parameter space of all 100 items of Condition 1. Surrounded with
a square are the 6 items chosen to visualize the chains and their drift in Figures 3.7
and 3.8.

In Figure 3.7 the MCMC chains of the structural parameters of these six items
from the first replication of Condition 1 are shown. In the first iteration the slopes are
fixed to 1 and the intercepts are estimated by converting the probability of a correct
value into an estimate of the difficulty, e.g. if only 10% of the examinees correctly
answered an item its initial estimate for the intercept would be near the value X for
P(# > X) = .10 given 6 ~ N(0, 1); the solid points in the figure at iteration ¢t = 1 are
those initialized values. Also important for the interpretation of the plots, the dotted
lines show the point when the pseudo-annealing window is activated at iteration 800
and the Robbins-Monro is engaged at iteration 1000; the extreme drop in the variation
of the chain is clearly recognized after iteration 1000.

The chain of the slopes in items 5 and 11 stand out from the other chains as they
traverse a large range of values from their initial burn-in phase of estimates as the
difficulty parameters are at the extremes of the bell-curve of abilities of our examinees.
For these items, each change in direction in the intercept’s chain has a notable autoco-
variance with its paired slope and there is very little demonstrable stability until about

iteration 600. Further, the slope of item 11 has a large error in the positive direction
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Figure 3.7: Six items were chosen due to their visual separation in the parameter space,
and the MCMC chain for each pair of slope and intercept are plotted and labeled. The
points at Iteration 1 are also shown as the initial values where the slopes are set to
1 and the difficulties of each item are estimated from the simulated responses. The
dotted line represents the generated parameter and the line with stochasticity shows
every estimate at each iteration in the estimation. Note that the pseudo-annealing
window is activated at iteration 800, and the Robbins-Monro is engaged at iteration
1000; this window is shown with dotted vertical lines. It is notable how the slope of
item 11 shows the strongest deviation from its generated value as it is paired with a
large absolute value of the intercept.
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Item Cov(flr, l;T)tzlogo COV(AT, BT)Converged
s .0008 .0001 .0006 .0001
| .0001 .0004 | | .0001 0004 |
. [.0033 .0010 | [ .0024 .0007 |
| .0010 0014 | | .0007 0013 |
- [ 0058 .0070 | [ 0054 .0068 |
| .0070 0113 | | .0068 0105 |
" [ 0164 —.0262 ] [ 0162 —.0265 ]
—.0262  .0511 —.0265  .0505
" [ 0027 —.0030 ] [ 0024 —.0026 ]
—.0030  .0050 —.0026  .0040
" [.0021 .0012 ] [.0019 .0013 ]
0012 .0029 0013 .0025

Table 3.3: The variance of the 50 replications of estimates at the end of the annealing
window and at their converged values are produced and shown in this table. The
subscript of r denotes that the parameter estimate data used in the covariance (/lr, BT)
are from each replication.

at its convergence; the horizontal dotted line at A = .827 being its generated value.
The variability in the chains of the slopes of items 53 and 63 are instructive as they
demonstrate the effect of a central difficulty as opposed to a large absolute value of
difficulty.

In Figure 3.8, the iterations of the estimates for the same six items from Figure 3.7
are shown so as to demonstrate the progressive movement towards the region of highest
likelihood. The parameters begin at the initialized points, and in the burn-in iterations,
progress from the initialized values into the region of highest likelihood. When the
pseudo-annealing window is engaged, the parameters are already in the vicinity of
their true value, plotted as a triangular point and labeled for each of the six items
of interest. The plots on the right are heatmaps with the darkest regions indicating
strong localization of the estimates; it can be seen that these parameter estimates are
highly localized in the region of highest likelihood before the Robbins-Monro sequence
is engaged.

To assess whether the Robbins-Monro iterations have some structural drift towards
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Figure 3.8: The same six items from Figure 3.7 are also visualized in their joint param-
eter space, and the MCMC chain of all 50 replications for each item’s pair of slope and
intercept are plotted and labeled along with their starting points (dark circle), with
lines showing the MCMC path to their true value (six triangular points). The plots on
top show the burnin phase of the gibbs cycles, i.e. the gain constant 44+ = 1. In the
bottom plots the stochasticity within the annealing iterations are shown to be quite
stable. The plots on the left show the paths while the plots on the right are a heatmap,
darker where the iterative estimates are well localized.
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or away from the generated structural parameters, snapshots of variances of the 50
replications of estimated parameters at different points in the MCMC chain can be
produced. From this effort, it is notable that the variation of the estimates about the
true values did not decrease over the span of the annealing window. In contrast, dur-
ing the RM iterations each diagonal element of the variance among the 50 replications
decreased from the initialization to the convergence of the algorithm. These covari-
ances are shown in Table 3.3. After observing the parameter drift and this decrease
in the covariance of the converged parameters, it is evident that the RM method fa-
vors a direction that nudges the stochastic estimates towards a converged estimate that

approaches the generated parameters.

3.2.2 Error Estimation of the 2PNO

As important as the model’s estimation of the parameters, is the model’s ability to
explicate the precision of those values. SAEM poses a distinct challenge in using tradi-
tional diagnostics as the computational problem it attempts to solve precludes the use
of many of the accepted diagnostic criteria associated with convergent MCMC chains;
the Robbins-Monro algorithm accelerates convergence to bypass typical time and mem-
ory requirements of MCMC. Error estimation in MCMC methods at first glance seems
simple as the samples of the chain are confined to the hyperspace of the parameters
and seem to reflect the variability of the estimates themselves, but any application of
the CLT (central limit theorem) under the assumptions of MCMC requires that the
chain be stationary which is not easy to verify (Geyer, 1992). This difficulty is more
pronounced as stochastic approximation is implemented since the chain is ‘’squeezed”
before errors are estimated in the traditional fashion. Consequently, standard error es-
timation is as challenging with the SAEM approach as the accuracy of the parameters
themselves.

In order to confidently work with the variation within the MCMC chains, autoco-
variance should be properly analyzed to infer a lag for trimming. As shown in Fig-
ure 3.9, the autocovariances of the structural parameters for the first two items are

shown during the 20% of iterations of burn-in, as well as during the 200 iterations of
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Figure 3.9: The autocovariance plots for the slopes and intercepts of the first two items
during the final 200 iterations of the burn-in and the 200 iterations of the pseudo-
annealling window.

the pseudo-annealing window. The autocovariances are better behaved during the an-
nealing window as the number of lags to confidently extract independent draws have
substantially decreased. Looking across the items, the thinning of the chain of the
slopes allowed a modulus of 8, while the thinning of the intercepts will use a modulus
of 5. This choice of trimming is used for the MCMC errors. The CLT calculations of
the MCMC chains incorporate the autocovariances and cross-correlations of the chains,
thus eliminating the need for trimming.

In Section 2.7 the error estimation methods were introduced. The parameters’ RM-
SEs over the 50 replications are the gold standard and will serve as the reference value
for all error estimates; each error calculation shown in Figure 3.10 are plotted as ra-
tios to the RMSEs. The estimates of the calculated errors shown in the figure are
simple averages of the calculated error estimates for each structural parameter from

all 50 replications. The five plots of slope errors and intercept errors are calculated
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using the five separate estimates of the Hessian. The ICE (Iterative Converging Er-
ror) is calculated during convergence where the RM gain constant is applied to the
Louis missing information equations given in the Equations in 2.40; it approximates
the errors relatively well at low slopes and near the center of the intercept distribution,
but then overestimates large slope errors and underestimates extreme intercept errors.
The SPCE (Simple Post-Convergence Error) was calculated using the 2PNO and 2PL
formulations as discussed in the previous chapter. The SPCE;, best approximates the
RMSE of the intercepts when compared to all five Louis missing information methods
in that the errors have the closest ratio to 1. The SPCEq is very close to its 2PL
approximation and the ICE for both slopes and intercepts. The IPCE (Iterative Post-
Convergence Error) was also calculated using both the 2PNO and 2PL formulations.
For a conservative measure, the IPCEg could be used for either the slopes or intercepts
as it does not underestimate either parameter, though the overestimation of intercept
errors far from the mean are quite large approaching a factor of two.

Unfortunately, the IPCE errors require the reinitialization of the chain after conver-
gence, thus making it the most expensive of the Hessian approximations. As mentioned
in Section 2.7, the Louis missing information Hessian calculations have the potential to
produce instabilities resulting in negative errors if the gibbs cycles sample the tails or
edges of the hyperspace of the parameters. It is not visualized on the plots of errors,
but several of the post-convergence (IPCE) error estimates resulted in a negative error
calculation for the parameters of some items. In more than 50% of the replications,
specifically items 5, 11, 47, and 88, the instabilities of the tails of the convex hyperspace
resulted in negative terms; the source of the instabilities can be seen in Figure 3.6 and
are clearly associated with extremes of difficulty, or high magnitudes of intercept. The
ICE estimation showed some negative errors, but was much more stable as only 1 or 2
replications for nearly each item resulted in a negative term. The SPCE calculations
did not result in a negative error, and this is explained by the calculation taking place
at the converged estimates using only a single sample of the abilities; thus this sample
occurred at the point of maximum convexity. For the practical use of these error calcu-

lations, it is useful to quote the results of the ICE and SPCEg as they are inexpensive
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Figure 3.10: The error estimates derived from the Hessian of the methods described in
Table 2.1.
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to calculate, not requiring the reinitialization of the MCMC chain.

In Figure 3.11, the three plots specific to the slopes and intercept to the left of both
summary plots on the right, are derived from the MCMC chains. Geyer (1992) explains
the asymptotic variance in the central limit theorem and these estimates are calculated
during the burn-in phase (iterations 600-800 in condition 1; 20% of the burn-in phase,
before the annealing iterations are engaged). The MCMC errors are the standard
deviations of the chains each structural parameter, thinned using the inspection of the
autocovariances as described above. The CLTF is derived from the covariance of all of
the structural parameters’ chains in totality. The CLTy is derived from the covariance
of the chains of each item’s structural parameters, thus obeying the assumptions of
mutual independence.

It must be noted that the variances of the chains of each parameter significantly
underestimate the errors of their parameter; this suggests that a significant proportion
of variation is shared between chains, especially as the mutually independent item errors
are estimated to be extremely large when the intercept parameters approach the tails of
their prior. When comparing the errors that are derived from all chains (CLTF) to the
errors derived from the chains of each item (CLTj), the “mutually independent” errors
significantly overestimate the errors. The covariation of structural parameters between
items may play a significant role in the Bayesian approach used here. Remarkably, the
diagonal elements of the covariance of the entire MCMC chain performs better than

every other estimate shown in Figures 3.10 and 3.11.

3.2.3 Factor Score Estimation

With symmetric priors, the EAP, MAP, and MLE of the factor estimates are equal. An
alternative of restarting the MCMC chain from converged parameters and sampling 6
100 times is also performed; the mean of these 100 samples is used as the alternative
factor estimate. In Figure 3.12, the heatmap of EAP estimates are first shown against
the generated abilities. In the middle and right plots, the EAP and the alternative
measure are plotted for each percentile of generated ability along with a 95% confidence

interval.
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Figure 3.11: The figure shows the error estimates derived from the MCMC Chains
during the 20% of burn-in iterations prior to the pseudo-annealing phase. Each method
is as described in Table 2.1; CLT; and CLTf are standard deviations derived from the
variance of the final 20% of cycles prior to the pseudo-annealing phase, where the chains
of structural parameters are trimmed and taken within items independently, and the
full chains of all structural parameters are taken together, respectively. The estimates
labeled as the MCMC estimates are the independent standard deviations of each chain

of its respective structural parameter.
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Figure 3.12: A heatmap of the 50 replications of 5000 examinees’ abilities is shown in
the first plot. The following two plots show the bias and 95% confidence intervals of
the factor estimates of 100 percentiles of the generated abilities. In the middle plot,
the EAP is shown. In the right plot, samples of ability are taken using a single post-
convergence gibbs cycle starting from the converged estimates of the parameters; this
is done 100 times and a mean ability for each examinee is calculated along with its 95%
confidence interval for each of the 100 percentiles of generated abilities.
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In the EAP, there is a slight bias in underestimating and overestimating the abil-
ities of those examinees from the lower and upper regions of the prior distribution,
respectively. Starting from converged estimates, the sampled 8 estimates show a rever-
sal in the relationship of the EAP and a more significant bias as the generated ability
approaches the tails. In the center quintile, the mean of the estimates is significantly
non-zero at a value of .003 for both methods, showing positive bias but at only at 1%

of the 95% confidence interval which is approximately .33 in the center.

3.2.4 Simulation of the 3PNO

It is trivial to expand the approach of the 2PNO to guessing in the manner described
by Béguin and Glas (2001). The model for the 3PNO involves a binary classification
where we assign the students to either knowing or not knowing the correct response.
This model is designed such that a student who knows the correct response is expected

to have 100% probability for answering correctly and 0% chance to answer incorrectly.
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Paramater bias RMSE

Ay .0020  .0187
b -.0032  .0302
g 0002 .0326

Table 3.4: Over 50 replications, the mean of parameter estimates’ residuals is shown
along with RMSE.

If the student does not know the correct response, there is a finite probability that the
resulting choice is correct or incorrect. In relation to our augmented data, the following

assignments are:

Y;; =1 — Wi =1 with probability ®(r;) (3.1)
Yij =1 — W,;; =0 with probability g;(1 — ®(n;)) (3:2)

Next, instead of choosing z from the side of the truncated normal determined by Y;;,
the determination is now a result of the stochastic variable coded as the examinee’s
knowledge of the answer, W;;. The itemized choices for assigned W;; become the in-
termediate step before the augmented z is drawn. The value for g; becomes another

sufficient statistic calculated at the end of each iteration; it is defined as a sum con-

Yij
iWij=0 Nw,—o"

ditional on examinees’ not knowing the correct answer, g; = ) When
the Robbins-Monro is invoked, this guessing parameter converges along with the other
parameters.

Figure 3.13 shows the RMSEs of the structural parameters and the mean of the
50 replications of estimates with the generated parameters subtracted. The guessing
parameter shows a significant bias with the large RMSE estimates being overestimated
and underestimated at smaller and larger guessing values, respectively. In Figures 3.14
and 3.15, the RMSEs are further inspected against the values of the other generated
structural parameters. A few relationships are notable. The greater the generated slope
the more accurate the estimate of the intercept, which is consistent with the results of

the 2PNO, but this effect becomes much more pronounced as the guessing parameter

increases. The intercepts’ errors also increase as the item difficulty increases in general,
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Figure 3.13: This figure shows the results of 50 replications of parameter estimation of
Condition 2 using the SAEM algorithm coded in Geis (2019). All 50 structural param-
eter estimates minus the actual values are plotted along with error bars representing
a 95% confidence interval calculated from the RMSE. Mean estimates for detection of
bias results are in Table 3.4. Note that axes are not on the same scale. Relationships
between errors and simulated values are shown in Figures 3.14 and 3.15.
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Figure 3.14: The RMSE for the slopes and intercepts of each of the 100 items is plotted
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slopes, points are shaded as the item difficulties approach large relative absolute values
to demonstrate the effects of an extreme intercept on the RMSE of the slope. In the
right plot of intercepts, points are shaded as the slopes or factor loadings increase in
value.
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Figure 3.15: The RMSE for the guessing parameter is first shown against its simulated
value with the points shaded as the generated slopes are increased. In the middle and
right plots, the RMSEs of the slope and intercept are shown against a scaled two-
dimensional Euclidean distance; dag = [|[{|A — A, |g|}||z, and dby = [{|6],|9|}]|L,- In
the slopes plot, the points are shaded as the slope gets larger. In the right plot of
the RMSEs of the intercept, the points are also shaded darker as the generated slopes
increase.
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which is an unexpected result, though the relationship can also be seen in Béguin and
Glas (2001) where the errors of their intercept parameters were largest at high difficulty.
The slopes RMSE increases much more quickly at large absolute values of the intercept
and large values of guessing. The errors of the guessing parameter are significantly
worse as the slope decreases but were less affected by the generated intercept.

Error estimates of the 3PNO are best approximated by the analytical results of
the Hessian approximations. Unlike the 2PNO, the CLT approximations of the MCMC
chains heavily overestimate the errors of the structural parameters, regardles of whether
the items are treated independently or all chains are considered in the covariance of the
hyperspace of the gibbs cycles. The SPCE method underestimates the errors, especially
at large difficulty as the guessing parameter strongly influences both the discrimination
and difficulty parameters when these parameters are less than one or less than zero,
respectively.

Another approach that is very practical, especially in this Bayesian framework, is to
restart the chain at converged estimates and investigate the Bayesian posterior densities
of the structural parameters. Assuming the simulations have converged to a reasonable
model, the chains of the stationary process can be compared to the generated parame-
ter and its 95% confidence interval of the RMSE. When restarting the first replication
of this simulation at converged parameters and continuing the gibbs process for 2000
iterations, the slopes were within the bounds of twice the RMSEs in 94.3% of the it-
erations, intercepts were within their 95% confidence interval in 91.6% of all samples,
and the 90.9% of the posterior distribution of sampled guessing parameters were within
the bounds of twice their RMSEs. In this run, item 86 (a = 1.33, b = .424, g = .276)
showed the worst performance in the posterior with the slope and intercept in the 95%
confidence interval defined by their RMSEs 18.2% and 28.8% of the iterations, respec-
tively. Of the 100 items, 51 had greater than 95% of all three parameters’ posterior
samples coming from within their respective 95% confidence intervals over the 2000
iterations.

The factor estimates produced are quite consistent with the 2PNO factor estimates

in the previous subsection. The differences between the two estimates provided by the
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Figure 3.16: Condition 3 shows the results of 50 replications of parameter estimation
using the SAEM algorithm coded in Geis (2019). All 50 structural parameter estimates
minus the actual values are plotted along with error bars representing a 95% confidence
interval calculated from the RMSE. Note that axes are not on the same scale. Mean
estimates for detection of bias and the results are in Table 3.5.

EAP and sampling method were negligible. In both conditions, the EAP outperforms

the implementation of the fixed parameter draws as the tails are well-behaved.

3.2.5 Simulation of the Polytomous 2PNO

In moving to the polytomous condition, the intercepts are split. Further, the guessing
parameter is removed as polytomous scoring is typically applied in items for which
guessing is expected to be a phenomenological rarity, i.e. the probability, P(Y;; >
0|W;; = 0) is very close to zero. Four ordinal polytomous categories were chosen with

all other parameters remaining the same.
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Paramater bias RMSE

Ay —0.0063 0.0057
b —0.0016  0.0030
T 0.0008 0.0046
T2 —0.0015 0.0034
T3 —0.0041 0.0054

Table 3.5: Over 50 replications, Condition 3 showed statistically significant bias in
multiple parameters, but the deviation from zero is negligibly small in comparison to
the values of the parameters.

In Figure 3.16, the 95% confidence intervals from the RMSEs are overlaid on the
mean difference of estimates from true values for 50 replications. It is notable that
extreme errors in the slope no longer seem affected by large intercepts. This may
occur as the three thresholds separating the four categories are drawn from the same
normal distribution and the average of these three values is the average difficulty by
default, which has an expected standard deviation of %; thus, the greater stability of
the slope RMSEs. In Figure 3.17, the RMSEs of condition 1 are overlaid on those of
condition 3. The polytomous nature of this simulation demonstrates that the RMSEs
are considerably better across all structural parameters.

The error estimates are well approximated by the MCMC CLT approach during the
burn-in iterations in this polytomous simulation. The mutual independence assumption
(CLTY) causes errors to be slightly underestimated as opposed to relative overestimation
of errors in the 2PNO, but the full covariance of the MCMC chains gives estimates of
errors of the structural parameters that are quite consistent with the RMSEs as with
the 2PNO. The Bayesian draws were also performed on a single replication prior to
convergence; the chains of 53 items having all five structural parameters (a, b, 71, 72, 73)
pulled from their 95% confidence intervals at least 95% of the time, and 91 of the items
having at least four of the parameters drawn from their confidence intervals more than
95% of the time.

The factor score estimates, again, showed strong consistency with the 2PNO and
3PNO. The EAP estimates also outperform the sampled estimates, specifically at the
tails as in previous cases. It is worth noting that the bias in the sampled estimates has

an inverse relationship to the bias of the EAP at the tails. Were the researcher forced
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Figure 3.17: Here the RMSEs of Condition 1 and Condition 3 are superimosed across
all 100 item slopes and difficulty parameters. There is a significant reduction in the
uncertainty of the converged parameters in Condition 3. The points are not overlaid in
the bottom plot as the visualization of the differences near the center become invisible.
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to choose, the results from all three univariate conditions demonstrate that the EAP
outperforms the stochastic estimate of the latent factors. For both methods of factor
estimation, the uncertainty of the abilities are reduced with the increased granularity
of the response categories; the 95% confidence intervals are about 80% of the size of the
results of the dichotomous 2PNO from Condition 1 (in the center bucket of abilities,

RMSE;_, = .25 as compared to .33).

3.2.6 Tests of Multidimensionality for Univariate Simulations

In keeping with the goal of exploratory factor analysis, each simulation condition should
be run with alternate choices of dimensionality. With the 2PNO, the dimensions can
only be increased. Each replication was fit setting the number of factors to two and five.
The eigenvalues of the matrix So from Equation 2.21 are to be studied at convergence to
address relationships that indicate the dimensionality of the underlying response data.

In Figure 3.18, the top seven eigenvalues for three separate fits of the first replication
of response data are shown; the second plot is a zoom of the second through seventh
eigenvalues as it is known this is a one-dimensional fit, and the focus is on the effect
of these alternate configurations on the second eigenvalue. The squares, triangles, and
diamonds are fits using a configuration of one, two, and five dimensions. The horizontal
dotted line is the overlay of the maximum eigenvalue expected from the Tracy-Widom
distribution when % = .02 with a p-value of .1% (Ap=.999(T'W1)); the points are solid
when greater than this value. Solid lines connect the eigenvalues of So and dotted
lines connect the values of the eigenvalues of So converted to a correlation matrix. It is
obvious from these plots that the use of the Tracy-Widom test explained in Section 2.9.2
must be supplemented with other heuristics.

In the first plot, it is clear that the first eigenvalue explains the dominant amount
of variation described by the augmented data, the mean of the eigenvector’s loadings is
also significantly non-zero (p-value < 1x10716). Based on rules of thumb and the law of
parsimony, most would venture to agree that the second eigenvalue is extremely weak in
@ =2 and @ = 5 converged fits. For the ) = 1 configuration, only the first eigenvalue

is significant according to the TW test on both the covariance and correlation matrices.
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Figure 3.18: In these plots, the largest eight eigenvalues, not including the first, are
shown for alternate specifications of the fit to the first replication from the univariate
simulation conditions. The square, triangle, and diamond points are the results from
the specification of one, two, and five dimensions. The point is solid when it is greater
than the TW prediction at a p-value of .001%. The covariance of Sg is also transformed
to a correlation and subjected to an eigenanalysis; those points are shown connected

with a dotted line.
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For the @) = 2 configuration, the second eigenvalue survives the TW test, while the
mean of the second eigenvector’s loadings is not statistically different from zero. In the
(@) = 5 configuration, the same properties hold true on the second thru fifth eigenvalues
and vectors until the sufficient statistic is transformed to a correlation matrix; then,
only the second eigenvalue survives the TW test.

While it is common to argue away the artifact as noise, it may be the case that
the correct choice of factors results in a strong divergence from the TW distribution
or higher moments about the transformed values uy and o; from Equation 2.49; the
amount of statistical information, in this case from the first eigenvalue, pushes down
the values of the other 99 components of the 100 x 100 So sufficient statistic. Thus,
it is worth noting other empirical methods employed to justify statistical decisions in
factor analysis for the univariate case.

In studying the univariate latent factors, it is important to also review a similar
analysis for conditions 2 and 3. The converged estimates show nearly identical results
for the polytomous configuration of condition 3, and a slightly noisier third, fourth, and
fifth eigenvalue in the five-dimensional analysis of the 3PNO of condition 2. In general,
there is very little difference from the conclusions about dimensionality derived from
the eigenanalysis of the 2PNO. As the simulations move into higher dimensions, it will
be informative to see the behavior of the TW test as the number of fit dimensions are

decreased to a configuration of lower dimensionality than the generated parameters.

3.2.7 Review of Heuristics on Factor Selection

Two tests, in particular, have been suggested to be used in evaluating whether it is
useful to pursue a factor analysis. First, Bartlett (1951) proposed that a correlation
matrix is distributed as chi square if it were not different than an identity matrix;
dubbed the “sphericity test”, the null hypothesis of the Bartlett test states the residual
correlations are not significantly different from zero. This is a statistical test that is
useful for pedagogy, but the tetrachoric or pearson correlation of bernoulli response
patterns with items hinging on a particular knowledge domain will show significant

residual correlations, and the response data from these simulations result are significant
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at a p-value less than one in the number of subatomic particles in the universe.

The KMO (Kaiser-Meyer-Olkin) test was described in Dziuban and Shirkey (1974)
and is used to indicate suitability for factor analytic methods. The formula ranges
in value from 0 to 1 with values greater than .5 considered essential for attempting a
factor analysis, but preferably greater than .8. This statistic is a proportion of common
variance among variables (or in this case, items) to total variance. The calculation of
this criterion statistic on the correlations of Sg from the univariate simulations above
results in values greater than .99 for each replication of each simulation condition.

Having motivated sufficiency for employing factor analysis, several methods have
been advanced to motivate the deductive decisioning for retaining the number of fac-
tors, eigenvectors, or principal components derived from factor analytic methods. In
Chapter 2, the scree plot elbow is covered as a qualitative approach. A more robust
attempt at an estimator for this elbow method comes first from Onatski (2010). An
estimator § is chosen such that the researcher must compare the adjacent eigenvalue
difference at suspected threshold to a prediction (J) from an OLS regression of the next
four eigenvalues. In relation to the eigenanalysis above, all of the values shown to be
significant in Figure 3.18 survive this test as well.

In Ahn and Horenstein (2013), the authors supplement the estimators put forward
by Onatski by choosing the maximum ratio of the tested eigenvalue and its adjacent
lower eigenvalue. This is performed in Figure 3.19, and gives plenty of confidence in
the choice of one dimension.

Two more measures used for assessing eigenvalue thresholds are the empirical Kaiser
criterion (H. F. Kaiser, 1958; Bracken and Van Assen, 2017) and the “parallel test”
(Horn, 1965; Hayton, Allen, and Scarpello, 2004). Using the EKC (empirical Kaiser
criterion), a reference value is calculated using the limit of the Marchenko-Pastur law,
and the eigenvalues from the correlation matrix are compared to these reference values.
For the parallel test, several samples of data of the same number of variables (J)
and degrees are freedom (V) are randomly drawn, correlation matrices are derived,
and eigenvalues are extracted and rank-ordered for comparison to the real data. It is

noteworthy that both methods use random matrix theory to motivate their applicability
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Figure 3.19: In these plots, the ratios of the largest seven eigenvalues to their lower
adjacent value are shown for alternate specifications of the fit to the first replication
from the first simulation condition. The square, triangle, and diamond points are the
results from the specification of one, two, and five dimensions. The point is solid when
it is the greatest ratio. The covariance of Sg is also transformed to a correlation and
subjected to an eigenanalysis; the ratios of the eigenvalues from these transformations
are shown connected with a dotted line.

to our problem.

In reference to the simulations above, the EKC does not provide a silver bullet.
When configured for one dimension, the EKC applied to the correlation of the aug-
mented data matrix yields one dimension. When increasing the dimensions configured
for estimation, the EKC increases the number of retained factors. For the estimation of
two dimensions, the EKC returns two dimensions; in the five dimension configuration,
the EKC dictates that we retain four.

One last qualitative “rule of thumb” worth mentioning is the explanation of variance
as derived from the eigenvalues. The law of parsimony states the goal to explain the
largest amount of variance by the least number of factors. The sum of the eigenvalues
can be thought of as 100% of the variation in multidimensional data. As factor analysis
is a form of dimension reduction, the simplest approach is the choice of retaining any

factor with an eigenvalue greater than one; this implies the factor explains more than a

single variable and is known as the Kaiser-Guttman criterion (Guttman, 1954; Henry F
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Kaiser, 1960). Monte carlo studies (Zwick and Velicer, 1986; Cliff, 1988) have demon-
strated that this rule can under and overestimate the number of factors, and some
have gone as far as to say that it is the most inaccurate approach available (Velicer &
Jackson, 1990).

From a psychometric perspective, the factors are meant to enable interpretation of
the statistical information garnered from items used to measure the sample population’s
ability distribution. In the univariate simulations tested above, the first factor explained
47% at most and 40% at the least. When focusing on the second component and the
results of the eigenanalyses of the correlation matrix, the largest amount of variation
explained is 1.9% and comes from the 5-dimensional fit of the 3PNO of condition 2.
The second component of the eigenalysis of the covariance matrix comes from the
5-dimensional configuration of condition 1 and shows up as 2.7%. In practice, it is
unlikely that the explained variation derived from these configurations would motivate
the researcher to attempt more than a second dimension of loadings; under this case,
a confirmatory analysis of two dimensions would give a maximum of 1.65% of the
variation explained by the second dimension of the covariance matrix of condition 1. A
2-dimensional configuration of condition 2 and 3 gives 1.51% and .97%, respectively.

In Chapter 4, it will be seen that one or more of the methods described here have

been tried on real response data from assessments such as the Force Concept Inventory.

3.3 Simulations of Probit Model Convergence of SAEM in Multiple

Dimensions

The next four conditions are different than the previous conditions in that the loadings
are now spread across several dimensions. In conditions 4 and 5, the number of items
are decreased to assess convergence. In conditions 6 and 7, the number of items are
equivalent to the number in the univariate conditions. In these multidimenstional sim-
ulations, two primary test conditions are explored: bifactor and subscale item loading.

For condition 4, there are 30 items and the bifactor loadings are imposed such that

the first 10 items only load on the first latent factor, while items 11-30 load on the first
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factor and another factor. The second and third factors load on items 11-20 and 21-30,
respectively, along with the first factor. In condition 5, it is a subscale configuration;
the first factor does not load on items 11-30 as it does in condition 4. In the bifactor
configurations of conditions 4, 6, and 8, the value of the slope of the second factor from
each bifactor item are all sampled from B4(2.5,3,.1,.9) rather than the first factor’s
distribution of By(2.5,3,.2,1.7), thus decreasing the statistical information in the upper
dimensions.

In conditions 6 and 7, there are response patterns for 100 items loading on five
dimensions in bifactor and subscale confiurations generated for 10,000 examinees. In
condition 6, loadings are in a bifactor structure with the first factor loading on all 100
items and the other 4 factors loading on 20 items each. In condition 7, loadings are
subscale and each of the five factors are exclusively loaded on 20 items. In conditions 8,
the simulation is scaled to 10 dimensions and 100,000 examinees with the same bifactor
and subscale structure imposed such that condition 8 has one factor loading on all
100 items and the other nine dimensions loading on 10 items each. Condition 9 is the

subscale configuration of condition 8; 10 items load on each of the 10 dimensions.

3.3.1 Structural Parameter Estimates for Conditions 4 and 5

The benchmark plots demonstrating the RMSE and reconstruction accuracy of the 50
replications are shown in Figure 3.20 and 3.21 along with the mean estimates of bias
in Table 3.6 to demonstrate quantitative assessments of these structural parameters.
Following the target rotation (see Section 3.3.2), the reconstruction of the generated
loadings is accurate with very little relative bias. Though it is not listed, the first order
OLS coefficient from a simple regression of bias on the simulated paramater in the first
factor demonstrates statistically significant bias, but this effect is negligibly small with
respect to the absolute value of the loadings.

For condition 5, the benchmark plots demonstrating the RMSE and reconstruction
accuracy of the 50 replications are shown in Figure 3.22 and 3.23 are in Table 3.6.
In extracting the final rotation required to target the generated loadings, the factor

estimates can also be rotated to extract the examinee abilities.



77

Condition 4 : A, : Bias & Error

n
A-Ay

010 -005 000 005 0.10
|
e
b.

0.05
|

"
Az-A

-0.05

Condition 4 : A5 : Bias & Error

000 005 010
|

"
Az—As

10

-0

Figure 3.20: The results of 50 replications of parameter estimation using the SAEM al-
gorithm coded in Geis (2019) show the three bifactor dimensions after a target rotation.
All 50 structural parameter estimates minus the actual values are plotted along with
error bars representing a 95% confidence interval calculated from the RMSE. Note that
axes are not on the same scale. Mean estimates for detection of bias are in Table 3.6.
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Figure 3.21: The results of 50 replications of parameter estimation using the SAEM
algorithm coded in Geis (2019) show the intercepts and thresholds of the polytomous
structure. All 50 structural parameter estimates minus the actual values are plotted
along with error bars representing a 95% confidence interval calculated from the RMSE.
Note that axes are not on the same scale. Mean estimates for detection of bias results
are in Table 3.6.
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Figure 3.22: The results of 50 replications of parameter estimation using the SAEM al-
gorithm coded in Geis (2019) show the three subscale dimensions after a target rotation.
All 50 structural parameter estimates minus the actual values are plotted along with
error bars representing a 95% confidence interval calculated from the RMSE. Note that
axes are not on the same scale. Mean estimates for detection of bias are in Table 3.6.
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Figure 3.23: The results of 50 replications of parameter estimation using the SAEM
algorithm coded in Geis (2019) show the intercepts and thresholds of the polytomous
structure. All 50 structural parameter estimates minus the actual values are plotted
along with error bars representing a 95% confidence interval calculated from the RMSE.
Note that axes are not on the same scale. Mean estimates for detection of bias results
are in Table 3.6.
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Condition Paramater bias RMSE

4 (Bifactor) Ay .0014  .0036
4 (Bifactor) As .0007  .0033
4 (Bifactor) As .0010  .0037
4 (Bifactor) b -.0004  .0038
4 (Bifactor) T1 -.0018  .0052
4 (Bifactor) To -.0003  .0043
4 (Bifactor) T3 .0010  .0035
5 (Subscale) Ay .0005  .0029
5 (Subscale) As .0011  .0041
5 (Subscale) As .0007  .0034
5 (Subscale) b -.0002  .0037
5 (Subscale) T1 -.0012  .0064
5 (Subscale) T2 -.0003  .0035
5 (Subscale) T3 .0010  .0045

Table 3.6: Over 50 replications, condition 4 showed statistically significant bias in the
first slope, but the deviation from zero is negligibly small in comparison to the values of
the parameters. Condition 5 showed statistically significant bias in two parameters, but
the deviation from zero is negligibly small in comparison to the values of the parameters.

Error estimates are not straightforward with multidimensional slope parameters;
two problems arise in this approach, (1) is the rotational indeterminacy of the factors,
and (2) the power iteration algorithm for eigenanalysis. Both issues can be resolved by
forcing a target rotation in each iteration. This is not very pragmatic during estimation,
but after convergence a reinitialization of the MCMC chains at converged parameters
is shown to perform well.

For condition 4, 1000 iterations with target rotations were run for the first replication
after convergence. For 25 of the 30 items, at least 5 parameters were drawn from their
95% confidence interval more than 95% of their respective samples. Two items showed
only three parameters satisfying the 95% benchmark. Item 1 (A = [.36,0,0],b =
91,7 = [-.37,.30,2.81]) has a discrimination that is very small at .36, as well as a
very high 73 parameter; overall, the four difficulty parameters failed to achieve the 95%
even though the mode of each posterior was within .2 of the generated values. Item
23 (A = [.56,.50,0],b = .27, 7 = [—.47,—.10,1.39]) also reveals a similar difficulty with
small discriminations with misses in the non-zero discriminations and the highest and
lowest 7 parameters, though the mode of the posterior distributions are no more than

.2 from the generated values for all of the parameters.
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The same exercise was run on the first replication of condition 5. Overall, 25 items
showed five or more of the seven parameters satisfying the 95% benchmark. Item 14
(A =10,1.23,0],b = —.07,7 = [—.47,.04,.22]) failed for four parameters, including all
three slopes. Despite this miss, the modes of the posteriors were less than .1 from the
generated value. The calculated RMSEs of the first and third slopes of item 14, given

all 50 replications, is less than .02 which makes for a small target.

3.3.2 Notes on Factor Analysis and Factor Rotation Methods

The reader may find several thorough treatments of factor analysis (B., 1978; Gorsuch,
1988; Floyd and Widaman, 1995; Osborne, Costello, and Kellow, 2008) and rotational
considerations in factor analysis (Fabrigar, Wegener, MacCallum, and Strahan, 1999;
Schmitt, 2011; Osborne, 2015) in the literature. For the purpose of the analyses in this
research, a few important details should be reviewed. Key to the interpretation of the
converged estimates applied within the context of factor analysis are the goals of the
research. In this effort, loadings and eigenvectors extracted from S, require rotations for
different purposes. For these simulation conditions, the goal is to recover the simulated
slopes. With real response data, the goals may include inferences about the information
within psychological or knowledge domains measured via an assessment.

With respect to the simulation studies in this chapter, the loadings were sampled
independently for each dimension. This implies orthogonality of the dimensions, and the
priors and variance calculations used within the gibbs cycles conditional on the examinee
population are consistent with this orthogonal treatment. In the GPArotation package
(Bernaards, Jennrich, & Gilbert, 2015), orthogonal and oblique rotation functions are
available for evaluation of a targeted rotation. Orthogonal rotations, sometimes called
rigid rotations, are intuitive axis-angle rotations in a euclidean space where the vectors
describing the orientation of each factor have a dot product of zero; statistically, the
covariance of input factor loadings do not change under orthogonal rotations. Within
an oblique rotation, the axes of the reference frame are not constrained to remain
perpendicular (see Figure 3.24.

Target rotations require a designation of the elements that should be constrained to
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Figure 3.24: The figure on the left demonstrates an orthogonal rotation with fictitious
loadings in two dimensions, while the figure on the right shows an oblique rotation.

zero, all other unspecified parameters are expected to be non-zero. To reconstruct the
orientation of the vectors of factor loadings extracted from the simulations in this chap-
ter, the GPArotation: :targetQ function (Bernaards et al., 2015) is employed where
the target matrix is defined to be unknown in each instance that an item loading is
generated. This is the oblique form of the target rotation and thus allows for tests of
systematic shifts in the non-zero loadings; an orthogonal target rotation is rigid and
may conceal slight shifts in the factor space.

In condition 4, there are 50 loadings and thus the target matrix is defined such
that the second dimension has items {1-10,21-30} defined to be zero, with the third
dimension specifying items 1-20 also set to zero; all other loadings are initialized as NA.
The targetT function will not favor positive or negative loadings, thus it is also possible
that the loadings have a reversed sign. This rotational indeterminacy is a common issue
in factor analytic approaches to multidimensional data.

As the number of dimensions increases, the difficulty of recovering the original slopes
increases and necessitates a novel approach for allowing multiple initializations of the
loading matrix that is derived from the eigenanalysis of So. For the purposes of this
dissertation, the nuances of high dimensional rotations are beyond the scope of the
current analysis. To control for the difficulties of high dimensional rotations, the code

in Geis (2019) includes a routine that samples 8 random angles and 8 random pairs of
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dimensions to impose 8 random two-dimensional rotations of the input loading matrix.
If the researcher passes the simulated loadings object into the function call of estimation,
the rotation process will retain the output with the smallest difference from the target
loading matrix.

In the following chapter, several functions of the GPArotation package can be uti-
lized in exploratory approaches to real response data. Three types of rotations will
be employed on real response data, varimax, infomax, promax, and oblimin rotations.
The varimax rotation optimizes for the smallest number of elements with the largest
loadings; it is named appropriately as it maximizes the sum of the variances of the
rotated squared loadings (H. F. Kaiser, 1958). The infomax rotation is named as it
maximizes entropy; statistically this is similar to a varimax but it meant to maximize
the statistical information of the data (Bell & Sejnowski, 1995). The promax rotation
is the oblique version of the varimax in that it allows for correlations in factors if it
increases the sum of the variances of the rotated squared loadings. The oblimin rotation
is an oblique rotation that allows for factors to correlate in order to allow a “simpler”

structure, i.e. larger loadings on fewer factors for each item (Katz & Rohlf, 1975).

3.3.3 Factor Estimates of Conditions 4 and 5

Several methods are available for factor estimation once the structural parameters of
the items have converged. In the case of real response data treated with MIRT and fac-
tor analysis methods, confirmatory analysis allows for a target rotation of the extracted
loadings as discussed in 3.3.2. In the exploratory case, the researcher would first invoke
a choice of the number of dimensions, followed by a rotation that enables the contex-
tual inferences implied by the items of the exam; the researcher may employ varimax,
infomax, oblimin, or any other variation of roatation that enables the interpretation of
the item structure. Examinee abilities would be estimated after the rotation of item
loadings is decided.

Using an MLE or EAP of the final structural parameters requires a multidimensional
grid of likelihood calculations conditional on the response pattern of the examinee. This

type of search, while more robust in the univariate cases as shown in previous sections,
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is computationally expensive, and becomes exponentially more complex as the number
of dimensions increases. For this reason, only the 100 bayesian samples will be employed
for the multidimensional cases simulated in conditions 4 thru 7. Were the MLE or EAP
calculated, the researcher has the choice to do the grid search before or after the loading
matrix was rotated to a chosen interpretable orientation; running the ability estimation
prior to rotation would involve a more complex calculation of errors as those, too, would
require proper treatment in the rotation.

For the multidimensional cases shown here, only the bayesian factor estimates are
shown. In the plots shown in Figure 3.25, 100 multivariate samples of latent factors are
taken at converged structural parameters and averaged, then compared to the generated
values. Note that the uncertainties of the estimates are substantially wider than the
univariate cases as there are only 30 items. For condition 4, the loadings on the first
factor occur in all 30 items, with 10 items loading on the second and third factors at a
substantially smaller value of the slope as the higher dimensions are all sampled from
B4(2.5,3,.1,.9) rather than the first factor’s distributions of B4(2.5,3,.2,1.7). In the
subscale configuration of condition 5, all three dimensions are sampled from the wider
Beta distribution.

It is striking how the bayesian method of sampling the latent factors is influenced
by the central tendency of the prior, considerably overestimating low abilities and un-
derestimating high abilities in all conditions. As the statistical information available
increases, for example the 30 items loading on the first factor in condition 4, the bias in
the ability estimates is decreased; the first dimension of ability in condition 4 is more
accurately approximated than any other latent factor from either condition 4 or 5. It is
also notable how the increased range of the factor loadings in condition 5 significantly
increases the statistical information available for factor reconstruction; the discrimi-
nations come from a distribution allowing much higher values, further improving the
estimation of the examinee abilities even though there are only 10 items loaded on each

dimension in the subscale configuration.
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Figure 3.25: Heatmaps and residuals of the 50 replications of 5000 examinees’ abilities
is shown for all three dimensions of the multivariate bifactor polytomous configuration.
Estimates of ability come from samples taken using a single post-convergence gibbs
cycle starting from the converged estimates of the parameters; this is done 100 times
and a mean ability for each examinee is calculated. The solid line represents a simple
regression of the predicted to the simulated value. The dotted line shows a slope of 1.
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Figure 3.26: The eigenvalues arising from the augmented data’s covariance matrix
at convergence is plotted for five configurations of dimensions imposed on the SAEM
algorithm. The true number of dimensions of the generated item loadings is three. In
the upper left plot, the natural log of the eigenvalues is plotted to enable visualization.
The eigenvalues of So are shown with a solid line, while those of the correlation matrix
of Sy are shown with a dotted line. When the point is significant at a p-value of .001
(the horizontal dotted line), the point is shaded.

3.3.4 Tests of Multidimensionality for Multivariate Simulations

In testing the Tracy-Widom distribution’s application for the multivariate simulations,
the same analyses from Section 3.2.6 are performed on fits performed using one, two,
three, four, and five dimensions; the true value of three dimensions is altered to assess
the performance of the eigenvalue tests. No rotations are performed, just a simple eige-
nanalysis of the covariance matrix So. The results of the analysis of the first replication
of simulated data are shown in Figure 3.26.

At first look, condition 5 (subscale) shows a clear spike in the eigenvalue ratio
heuristic seen in the lower right plot; for condition 5, the same sampling mechanism

was applied to all dimensions, each loading independently on 10 items of this 30 item
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assessment. It may be the case that the statistical information derived from these three
independent and orthogonal dimensions of item loadings allow for a strong signal using
this ratio. Notable evidence for the applicability of the Tracy-Widom test also is evident
in condition 5; the significance of the first three eigenvalues for the one, two, and three
dimensional configurations of the estimation algorithm is visible and provides a strong,
consistent signal in the correlation matrix regardless of the dimensionality imposed on
the SAEM iterations. It is worth noting the augmented data matrix retains a signal
of the second and third dimensions when the algorithm is constrained to retain only
the first eigenvalue in each gibbs cycle, and further, the correlation matrix only shows
three significant eigenvalues when five dimensions are retained at each gibbs iteration.

A tighter analysis is required of the bifactor configuration (condition 4) and this
should be expected as all 30 of the items most strongly loaded on the first dimension with
the second and third dimensions being applied with a lower discrimination on a third
of the item set; a lower discrimination directly correlates to less statistical information.
In the upper left plot, the logarithm of the eigenvalues is employed to enable better
granularity in the visibility on the graph. Similar results to condition 5 are noticeable
but with some notable differences. First, the eigenanalysis of the covariances of the one,
two, and three dimensional cases show three significant eigenvalues; the only ambiguity
to this rule is the insignificance of the third eigenvalue when running the eigenanalysis
of the correlation matrix in the one and two dimensional configurations. Again, in
both the four and five dimensional configurations, the fourth and fifth eigenvalues of
the correlation matrix are insignificant although the eigenvalues of the covariance are

significant. It is also clear that the ratio-tests are not useful for these estimations.

3.3.5 Structural Parameter Estimates for Conditions 6 and 7

For the next two conditions, the bifactor and subscale configurations are imposed on
10000 examinees and 100 items using five dimensions to demonstrate the decrease in
the RMSE of all structural parameters as the statistical information available is at
the minimum, doubled. Only the first dimension in the bifactor structure loads on

all 100 items, and the number of items assigned to every other latent factor in both
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Condition Paramater bias RMSE

6 (Bifactor) A 0008 0080
6 (Bifactor) Ay 0010 .0065
6 (Bifactor) As 0008 0072
6 (Bifactor) Ay -.0002  .0065
6 (Bifactor) As -.0001  .0065
6 (Bifactor) b -.0031  .0068
6 (Bifactor) T1 -.0041  .0096
6 (Bifactor) T2 -.0033  .0070
6 (Bifactor) T3 -.0019  .0100
7 (Subscale) Ay -.0001  .0054
7 (Subscale) Ay -.0002  .0051
7 (Subscale) As -.0006  .0065
7 (Subscale) Ay .0015  .0064
7 (Subscale) As -.0006  .0066
7 (Subscale) b .0041  .0080
7 (Subscale) T .0033  .0094
7 (Subscale) T 0044 0086
7 (Subscale) T3 .0046  .0109

Table 3.7: Over 5 replications, condition 6 showed statistically significant bias in one
slope and each of the difficulty parameters. Condition 7 showed statistically signi
cant bias in two slope parameters and all diffculty parameters.

the bifactor and subscale configurations is 20. Again, in the bifactor configuration
the second loading is sampled from a As opposed to the previous conditions, only five
replications are performed. The tests performed on conditions 4 and 5 are repeated.

The structural parameters’ residuals are displayed along with their RMSEs over 5
replications for condition 6 in Figures 3.27 and 3.28. With the 100 items being sampled
and the five dimensions of bifactor loadings, the slopes, intercepts and thresholds are
quite stable. All estimates of bias at an item level indicates a negligible deviation
from the generated parameters. In comparison to the plots in Figure 3.20, the RMSEs
of condition 6 are about 35% smaller in the first dimension and 45% smaller in the
bifactor dimensions. The uncertainty in the intercepts and thresholds have dropped by
one-third.

For subscale simulations, Figures 3.29 and 3.30 show the diagnostics of the residuals
and RMSEs of slopes, intercepts, and thresholds. As compared to condition 5, the
uncertainties in the slopes are decreased by an average of 38% with the uncertainties

of the difficulties a little more than 25% smaller. Though it is not in the table of bias
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Figure 3.27: The results of 5 replications of parameter estimation using the SAEM
algorithm coded in Geis (2019) show the five bifactor dimensions after a target rotation.
Each of the 5 replications of structural parameter estimates minus the actual values are
plotted along with error bars representing a 95% confidence interval calculated from
the RMSE. Note that axes are not on the same scale. Mean estimates for detection of
bias are in Table 3.7.



91

Condition 6 : b : Bias & Error

b
-002 004
Ll

08

-0.

w
o
(=]
T8
< G
o
o
o
o 4
=
S T
I o
<& 9
=
o
T T T T T T T
15 1.0 05 0.0 0.5 10 15
Condition 6 : <3 : Bias & Error
o
o 4
(=]
< o
] (=)
P
o
o

Figure 3.28: The results of 5 replications of parameter estimation using the SAEM
algorithm coded in Geis (2019) show the intercepts and thresholds of the polytomous
structure. Each of the 5 replications of structural parameter estimates minus the actual
values are plotted along with error bars representing a 95% confidence interval calcu-
lated from the RMSE. Note that axes are not on the same scale. Mean estimates for
detection of bias results are in Table 3.7.
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Figure 3.29: The results of 5 replications of parameter estimation using the SAEM
algorithm coded in Geis (2019) show the five subscale dimensions after a target rotation.
Fach of the 5 replications of structural parameter estimates minus the actual values are
plotted along with error bars representing a 95% confidence interval calculated from
the RMSE. Note that axes are not on the same scale. Mean estimates for detection of
bias are in Table 3.7.

and errors, 3.7, the fourth dimension slope of condition 7 had a significant bias when
regressed on the simulated parameter along with all of the difficulty parameters. Again,
while statistically significant, these errors are a negligible proportion of the parameters
being estimated, and the overall mean bias is not significant.

For condition 7, the benchmark plots demonstrating the RMSE and reconstruction
accuracy of the 5 replications are shown in Figure 3.29 and 3.30 with the statistics of

the bias of these structural parameters in Table 3.7. In extracting the final rotation

required to target the generated loadings, the factor estimates can also be rotated to
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Figure 3.30: The results of 5 replications of parameter estimation using the SAEM
algorithm coded in Geis (2019) show the intercepts and thresholds of the polytomous
structure. Each of the 5 replications of structural parameter estimates minus the actual
values are plotted along with error bars representing a 95% confidence interval calcu-
lated from the RMSE. Note that axes are not on the same scale. Mean estimates for
detection of bias results are in Table 3.7.
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extract the examinee abilities.

3.3.6 Factor Estimates of Conditions 6 and 7

As with the previous five conditions, 100 post-convergence gibbs cycles are continued
skipping the maximization steps as the structural parameters have converged with
slopes already rotated to the target configuration of positive non-zero slopes where
discrimination parameters were generated. Examinee abilities are estimated from the
mean of the 100 sampled multivariate latent factors.

As with condition 4, the errors in the first dimension of condition 6 significantly
outperforms the reconstruction of the second thru fifth latent dimensions of abilities;
all 100 items load on this first discrimination parameter from the larger space of absolute
values of the Beta distribution. The bias that was also quite noticeable in Figure 3.25
is consistent in all of the four bifactor dimensions. Given that the bifactor dimensions
load on twice the number of items in this condition, the slope of the bias decreased
to approximately -.28 as compared to -.45 in condition 4; thus the underestimation
and overestimation at low and high true abilities, respectively, is less severe but is still
occuring. Condition 7’s factor estimations are quite consistent with the behavior seen in
condition 5 (Figure 3.25), but the bias at the tails is slightly more than half the under-
and overestimations as low and high abilities, respectively. The errors are decreased by

a little more than 20% throughout the range of each latent factor.

3.3.7 Multidimensional Inferences from Alternate Configurations of

Conditions 6 and 7

As with the previous multidimensional conditions, an eigenanalysis of alternate con-
figurations of spectral dimensions is explored. Three through seven dimensions are
estimated and plotted in Figure 3.31. The Tracy-Widom test of the correlation matrix
is proving to be robust against the choice of dimensionality when guessing is not an
aspect of the simulated data. There is no aberrant behavior that differs from the re-
sults of the bifactor and subscale structures of conditions 4 and 5. This analysis will

be explored further in the 10-dimensional conditions in the next section.
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