
c© 2019

Chaozhang Huang

ALL RIGHTS RESERVED

A MODEL FOR CONCURRENT PRIORITY QUEUE ON MANY-CORE

ARCHITECTURES

By

CHAOZHANG HUANG

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Zheng Zhang

And approved by

New Brunswick, New Jersey

OCTOBER, 2019

ABSTRACT OF THE THESIS

A Model for Concurrent Priority Queue on Many-core Architectures

By CHAOZHANG HUANG

Thesis Director:

Zheng Zhang

The concurrent priority queue is one of the shared memory data structures that can be dynam-

ically maintained and updated for communication among co-running threads, which allows

data with high priority to be served before others in applications that require complex asyn-

chronous communication patterns. For instance, the following algorithms can take advantages

of a concurrent priority queue: Dijkstras shortest path algorithm, Prims minimal spanning tree

algorithm, data compression and A* search in artificial intelligence, which are building blocks

for complex system software including operating system scheduler, interruption handler, and

garbage collection. However, it is challenging to exploit the performance of heap-based priority

queue on many-core architectures like GPUs due to control divergence and memory irregular-

ity. This thesis focuses on the development and evaluation of a model for concurrent priority

queue on GPU. We present an efficient model for heap-based concurrent priority queue, called

the generalized heap, which exploits both inter-node and intra-node parallelism by incorporat-

ing with multi-state locking mechanism and batch processing on data nodes. The performance

of the concurrent priority queue based on the generalized heap model is thoroughly evaluated

against previous serial and GPU implementations. We show a maximum of 19.49X and 2.11X

speedup compared to previous serial and GPU implementation, respectively. We also apply our

generalized heap model in real-world applications such as single-source shortest path and 0/1

knapsack problem with up to 1.23X and 12.19X speedup, respectively.

ii

Acknowledgements

Throughout my study and the writing of this thesis, I have received enormous support and

assistance.

Foremost, I would like to express my deepest appreciation to my advisor Prof. Zheng

Zhang for her guidance and unwavering support throughout my study and research at Rutgers

University.

In addition, I would also like to extend my deepest gratitude to my parents, without whose

continuous support my study would not be possible.

I must also thank members of my committee: Prof. Desheng Zhang and Prof. Yongfeng

Zhang. Their help and advice are indispensable for the completion of this thesis.

Moreover, I am grateful for the help and motivation I received from my lab members:

Yanhao Chen and Fei Hua. Their companion and help are crucial to my research experience.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

1. Introduction . 1

2. Background . 3

2.1. Priority Queue . 3

2.1.1. Heap Data Structure . 3

2.1.2. Array Representation . 4

2.1.3. Basic Operations . 4

Insertion Update . 5

Deletion Update . 5

2.2. GPU: Modern Many-core Architecture . 6

2.2.1. The SIMT Model . 7

2.2.2. Real-World Applications . 10

The SSSP (Single Source Shortest Path) Problem 10

The Branch and Bound Algorithm for the 0/1 Knapsack Problem 12

2.3. Previous Work on Concurrent Heap Models 13

3. Methodology . 15

3.1. The Generalized Heap . 15

3.1.1. Generalized Heap Properties . 16

3.1.2. Array Representation of the Generalized Heap 17

3.2. Operations on Generalized Heap . 18

3.2.1. Insert Operation . 18

iv

Top-down Insertion . 18

Bottom-up Insertion . 19

3.2.2. Delete Operation . 20

3.2.3. Discussion . 22

3.3. Concurrent Generalized Heap . 22

3.3.1. Locking Mechanism . 23

3.3.2. TD-INS/TD-DEL Heap . 24

3.3.3. BU-INS/TD-DEL Heap . 26

4. Implementation . 32

4.1. Sorting Operation . 32

4.2. MergeAndSort Operation . 33

4.3. Optimization . 34

4.3.1. Remove Redundant MergeAndSort Operations 34

4.3.2. Early Termination . 34

4.3.3. Bit-Reversal Permutation . 34

5. Evaluation and Analysis . 36

5.1. Experiment Setup . 36

5.2. Concurrent Heap v.s. CPU Heap and GPU Baseline 37

5.3. Sensitivity to Number of Thread Blocks . 38

5.4. Sensitivity to Node Capacity . 39

5.5. Sensitivity to Percentage of Partial Batch Insertion 40

5.6. Sensitivity to Initial Heap Utilization . 41

5.7. Applications of Concurrent Heap . 41

5.7.1. SSSP (Single Source Shortest Path) Problem 42

5.7.2. 0/1 Knapsack Problem . 43

6. Conclusion . 46

References . 47

v

1

Chapter 1

Introduction

Not all data is created equal. Based on the application, it is often time worthy to process part of

the data before others to avoid redundant and unnecessary computation. For example, applica-

tions that are developed based on this idea include Dijkstra’s shortest path algorithm[1], Prim’s

minimum spanning tree algorithm[2], A* searching [3] and various branch-and-bound based al-

gorithm that solves different combinatorial optimization problems. Proper prioritization of data

allowed these applications to vastly prune the search space and delivers better performance.

This situation emerges even more often with the recent development of parallel computing

on many-core accelerators. For example, Nvidia GPUs are shown to achieve substantially

better throughput compared to Intel CPUs [4]. However, efficient concurrent data structures are

needed to integrate the raw throughput of hardware with parallel algorithms. A concurrent data

structure is a shared memory data structure that can be dynamically maintained and updated

for communication among co-running threads.

Traditionally, the priority of data can be utilized by maintaining data with a priority queue.

A priority queue is an abstract data type that functionally behaves like a regular queue or stack

structures, allowing insert and delete operations, but with the difference being each element is

associated with a priority. In a priority queue, an element with high priority is always served

before an element with low priority. The priority queue is often time implemented using the

heap, a tree-based abstract data structure that organizes elements in tree nodes based on its

priority. Though previous research on parallel priority queues [5][6][7][8] are available, their

implementation suffers from various limitations and bottlenecks as described in section 2.3.

This thesis focuses on the development and evaluation of a model for concurrent priority

queue for many-core architectures. We present an efficient model for concurrent priority queue

that is well-suited for many-core general purpose accelerators, the concurrent generalized heap.

2

Though the concurrent generalized heap is implemented and evaluated on GPU, it can be ap-

plied to other many-core architectures with vector processing unit as well. It is an efficient

concurrent implementation of the heap data structure. The concurrent generalized heap takes

advantage of the model presented by Deo and Prasaed [8], allowing multiple elements to be

stored in single tree node with two fundamental differences. Assume the node capacity is k,

the concurrent generalized heap provides partial operations while [8] only allowed operations

with exactly k elements. Moreover, while [8] only focused on intra-node parallelism, the con-

current generalized heap exploits both intra-node parallelism and inter-node parallelism. The

design and implementation of the concurrent generalized heap will be discussed in Chapter

3 and 4, respectively. We also perform a comprehensive evaluation of the concurrent gener-

alized heap. Signifying the relationship between heap performance and various parameters

including: node capacity, percentage of partial operations, number of concurrent thread blocks,

initial heap utilization. Experiments also show that the concurrent generalized heap has up to

19.49X and 2.11X speedup compared to sequential CPU and existing GPU implementation.

With simple integration, the concurrent generalized heap can improve the parallel SSSP (Sin-

gle Source Shortest Path) algorithm by up to 1.23X and the 0/1 knapsack by 12.19X. This

thesis shed lights on potential to integrate concurrent data structures with real-world applica-

tions to achieve substantial speedup and exploit parallelism for parallel computing algorithms

on many-core accelerators.

3

Chapter 2

Background

2.1 Priority Queue

Traditionally, to achieve the prioritization of data objects, we store and retrieve data using

a priority queue, which is a queue-like abstract data type that assigns priority to each data

element. In contrast to a queue, which serves data in a first-in, first-out manner, a priority

queue, on the other hand, has a special property that a data element with higher priority is

always served before an element with lower priority.

2.1.1 Heap Data Structure

In practice, we often implement priority queue and store data elements using the heap, a funda-

mental tree-based data structure that treat key value of each node as its priority. The resulting

tree of heap and must satisfy the heap property: if a node P is the parent of some node C, then

the key value of P must be greater or equal to (in the case of a max-heap) or less than or equal

to (in the case of a min-heap) the key value of C. The tree representation of a heap is often a

complete binary tree, i.e. it is always filled except the last level. An example of a min-heap can

be found in Figure 2.1.

Figure 2.1: An example of min-heap where numbers are keys of tree nodes

4

2.1.2 Array Representation

The most space-efficient way to store a heap is to treat it as an array instead of a linked list

since it not only neglect the space required to store various pointers but also provides O(1)

complexity for accessing any node, whereas with a linked list one must iterate from the root

every time to get to other nodes. The array representation of heap works as follows:

1. The root node will be stored at Arr[0], the first item in the array.

2. Suppose the total number of nodes is N , then for 0 ≤ i ≤ N , the parent and child nodes

of the ith node can be obtained through:

• Parent(i) = Arr[(i− 1)÷ 2]

• Left(i) = Arr[(2× i) + 1]

• Right(i) = Arr[(2× i) + 2]

Figure 2.2: Array representation of a min-heap

An example of the array representation of the min-heap presented in Fig. 2.1 is shown in

Fig. 2.2. Note that the dashed line in Fig. 2.2 (b) only resembles the tree edges in Fig. 2.2 (a)

while they are not physically stored in the memory.

2.1.3 Basic Operations

The heap has two fundamental operations: insertion update and deletion update. The insertion

operation inserts a new node to the correct location in the tree such that the heap property is

not violated. Similarly, the delete operation retrieves the node with either the smallest key (in

the case of a min-heap) or the largest key (in the case of a max-heap) and updates the tree

accordingly. Both operations take logarithmic time.

5

Figure 2.3: Bottom-up Insertion Update, with key = 5 to be inserted

Insertion Update

An insertion update inserts a node with a new key-value to the correct location in the tree

through repeated propagation. Using the min-heap presented in Fig. 2.1 as an example, an

insertion update can be performed by repeatedly applying the following steps: first, the new

key node is appended to the last position in the tree. Then, compare the key value of the new

node with its parent’s key value, if the new key is smaller than its parent’s key value, swap this

node with its parent, otherwise, this node has reached the correct location and we can terminate.

An example of an insertion update using the above bottom-up insertion algorithm is shown in

Fig. 2.3 with a node with key = 5 is to be inserted. We show the bottom-up insertion algorithm

discussed above in Alg. 1.

Algorithm 1: Insertion Update

1 Procedure insert: (key)
2 last node = key
3 n = last node
4 while n != root do
5 if n < Parent(n) then
6 Swap(n, Parent(n))

7 else
8 break

Deletion Update

A deletion update retrieves the key at the root node and updates the heap to preserve the heap

property. Using min-heap as an example, the deletion procedure consists of three steps: (1) it

removes the current root node, which contains the minimum key, from the heap. (2) it moves

the node to the root position and starts a heapify process from the new root: it repeatedly

compares and swaps with its child with the smallest key until the heap property is preserved.

6

Figure 2.4: Deletion Update

(3) When the heap property is again preserved, we return the minimum key obtained from step

(1) and terminate. An example of the deletion update for min-heap is shown in Fig. 2.4. The

corresponding algorithm for deletion update is shown in Alg. 2

Algorithm 2: Deletion

1 Procedure delete: ()
2 min = root, n = root = last node
3 last node = null
4 while Left(n) != null or Right(n) != null do
5 c = min(Left(n), Right(n))
6 if n < c then
7 break
8 else
9 Swap(n, c)

10 return min

2.2 GPU: Modern Many-core Architecture

GPU (Graph Processing Unit) is an example of the modern multi-core accelerator. The differ-

ences in architecture between CPU (Central Processing Unit) and GPU is shown in Fig. 2.5 [9].

Traditionally, a CPU is consist of several ALUs (Arithmetic Logic Units) that performs arith-

metic and bit-wise operations, a control unit corresponding to the ALUs, fast but small cache

memories and a large DRAM (Dynamic Random Access Memory). In contrast, a GPU might

consist of hundreds or thousands of processing units and corresponding control units. The mas-

sive amount of physical cores provided by the GPU allows one to execute tasks in parallel to

achieve potential significant speedup. Fig. 2.6 [9] shows the performance advantages on Nvidia

GPUs over the years versus Intel CPUs where the X-axis corresponds to different years and the

7

Y-axis shows the theoretical throughput of GPU architecture at that year.

Figure 2.5: Architectural Difference between CPU and GPU

Figure 2.6: Performance Difference between CPU and GPU

2.2.1 The SIMT Model

Nvidia GPUs adopted SIMT (Single Instruction Multiple Thread) as the parallel execution

model [10][11]. In the SIMT model of Nvidia GPU, the basic unit of execution is a thread

warp, which is a collection of 32 threads (in the current implementation). Threads in the same

8

warp are executed simultaneously on an SM (Streaming Multiprocessor), which is a scalable

array of execution units that shares the same set of registers and shared memory. A thread block

is consists of multiple thread warps. When a GPU program starts, the host CPU invokes a ker-

nel grid, which contains a collection of thread blocks. The thread blocks then are distributed

to different SMs for execution. Threads in the same thread block are executed concurrently on

one SM and multiple blocks can be executed concurrently on one SM as well. A demonstration

of the SIMT model can be found in Figure 2.7.

Figure 2.7: The SIMT Model on Nvidia GPU [12]

The SIMT model provides a limited set of built-in synchronization primitives. For example,

invocation between kernels are serialized, which can be used as an implicit synchronization

among all threads. Also, barrier synchronization is provided to synchronize threads within

the same thread block. Although no built-in locking intrinsic is provided, workarounds that

utilize the built-in atomic CAS (compare and warp) operation to implement synchronization

mechanics exist.

As the name SIMT (Single Instruction Multiple Thread) implies, instructions on GPU are

executed by multiple concurrent threads in a lock-step manner. Threads belong to the same

warp can only execute one instruction at a time, which means if threads in a warp need to

process different instructions at the same time, these instructions will be serialized. This phe-

nomenon is called control divergence. An example of the potential hazard caused by control

9

divergence can be found in Figure 2.8 where T1 ... T4 are active threads within the same warp.

Figure 2.8(a) describes a situation when divergence does not exist, all threads within the warp

are assigned the same instructions, the utilization of threads can be maximized. However, if

threads are assigned different instructions, then the instructions will be serialized, cutting the

throughput of the application by half in the example showed in Figure 2.8(b). In practice, the

performance hazard caused by serious control divergence could be a lot worse, which makes

control divergence an important factor to be considered when implementing GPU programs.

Figure 2.8: Control Divergence on GPU

Figure 2.9: Optimized v.s. Poor Memory Locality

Another factor that needs to be considered when implementing GPU programs is memory

locality. As aforementioned, the basic execution unit on GPU is a thread warp. The execution

of a warp cannot be started unless all data required is fetched. However, the physical memory

is organized in contiguous blocks and data is fetched block by block. If threads in the same

warp require non-contiguous data access, then multiple data fetches need to be done, which

results in a poor memory locality and hinders the overall performance of the execution. On the

10

other hand, memory parallelism can be exploited by letting threads in the same warp to process

contiguous data, which minimized the number of memory fetches needed and thus maximizes

the performance. A comparison between optimized and poor memory locality on GPU can be

found in Figure 2.9.

2.2.2 Real-World Applications

Modern many-core architectures can be used to accelerate various real-world applications. To

unlock the full potential of parallel computing on such architectures, efficient implementation

of concurrent data structure is needed. This thesis propose a concurrent heap model that can be

applied to speedup real-world parallel computation. In this thesis, it is integrated and evaluated

with two real-world applications: the SSSP (Single Source Shortest Path) algorithm and the

branch and bound algorithm for the 0/1 knapsack problem. While the details of the concurrent

heap model and the result of the evaluation will be discussed in Section 3.3 and Section 5.7,

respectively. The two applications we integrated with will be briefly introduced in the following

section.

The SSSP (Single Source Shortest Path) Problem

The SSSP (Single Source Shortest Path) problem defined as a process to find the shortest dis-

tance between the source node and all other nodes in the graph given weights of all edges in

a graph. An example of the SSSP problem is shown in Figure 2.10. The program starts with

a distance array initialized to infinity. Through processing edges iterative, the distance array

gradually converges to the solution.

Figure 2.10: Sample SSSP Problem

The Bellman-Ford algorithm is widely used and studied to solve the SSSP problem since it

11

can be easily parallelized. The pseudo-code of the sequential Bellman-Ford algorithm is shown

in Algorithm 3. For example, the edge relaxing operation (line 6 to 8) can be easily parallelized

such that each thread is assigned to process a portion of the edges.

Algorithm 3: Sequential Bellman-Ford Algorithm

1 Procedure SSSP: (distance[], vertices, edges)
2 for each vertex v in vertices do
3 distance[v] = inf

4 distance[source] = 0
5 for i from 1 to size(vertices) - 1 do
6 for each edge (u, v) with weight w in edges do
7 if distance[u] + w < distance[v] then
8 distance[v] = distance[u] + w

9 return distance[]

Previous research has been done on concurrent implementation of the SSSP problem. Gun-

rock [13], a well known parallel iterative graph processing library on GPUs, implements a

compute-advance model to solve iterative graph processing problems like the SSSP. In the

compute-advance model, a node will be marked as an active node if a node is updated during

the current iteration. Then, only edges of active nodes will be processed concurrently in the

next iteration since edges of inactive nodes will not affect the distance[] array anyway.

Incorporation with Heap: For an edge (u, v) with weight w, assuming greedily that the

shortest destination distance[v] always comes from a smaller source distance[u] regardless of

the weight of the edge, then once we processed edges from active nodes with smaller distance,

the rest of the edges connects to the same destination node can be skipped. Using current

distance as key values, active nodes of current iteration can be stored to the heap and be deleted

from the heap for processing in the next iteration. In this way, edges of active nodes with smaller

current distance will be processed before other edges in the next iteration, which can avoid

unnecessary updates to the distance[] array. As a result, the overhead of making intermediate

updates and the number of nodes the algorithm needs to explore can be reduced, resulting in a

better performance. Details evaluation of solving SSSP with the concurrent generalized heap

will be presented in Section 5.7.1.

12

The Branch and Bound Algorithm for the 0/1 Knapsack Problem

Many real-world decision-making problems can be broke down to the knapsack problem. The

knapsack problem is defined as: given a knapsack with weight capacity W , weights and profits

for some items, find the maximum profit we can obtain by putting different combinations of

items in the knapsack while managing not to exceed to weight capacity. The 0/1 knapsack

problem is a category of knapsack problem where if an item were to be selected, it must be

selected in its entirety, no partial selection is allowed.

The branch and bound algorithm is one of the algorithms to solve the knapsack problem.

It models the knapsack problem as finding a path from the root node to a leave node in the

decision tree where the ith level of the tree denotes whether or not the ith item is selected. An

example of the Knapsack problem can be found in Figure 2.11. The sequential implementation

of the branch and bound algorithm first sort the items by the decreasing order of weight/profit

ratio. Then it traverses the decision tree starting at the root node and keeps track of global

maximum profit. At each node, situations of either select the item at the current level or not

will be considered, the corresponding cumulative weight and profit of the specific path from the

root to this node will be updated. A profit bound of the current node will also be computed. If

the profit bound of the current node plus the cumulative profit is less than the global maximum

or the cumulative weight exceeds weight capacity, simply discard this path. Otherwise, the

current node is enqueued into a priority queue with cumulative profit as the key value. The

traversal will continue at the node that has the largest priority until the queue becomes empty.

The pseudo-code of the sequential branch and bound algorithm can be found in Algorithm 4.

Note that the priority queue can be implemented using the heap.

The branch and bound algorithm is also straight forward to take advantage of parallel com-

puting. The node exploration process can be parallelized using the concurrent generalized heap

model introduced in Section 3.3. Optimization can be integrated into the parallel version of the

branch and bound knapsack algorithm. Details of the integration and evaluation of the parallel

branch and bound knapsack algorithm with concurrent generalized heap will be discussed in

Section 5.7.2.

13

Figure 2.11: Sample 0/1 Knapsack problem with 0110 as the solution (items 2 and 3 are se-
lected).

2.3 Previous Work on Concurrent Heap Models

An intuitive idea to implement the parallel heap on a multi-core architecture is to lock the entire

heap while one thread is modifying it. This idea, though straight forward, is unfeasible since

that it only allows one access to the heap at a time, which is a waste to the massive paralleling

capability of modern multi-core architecture. Previous work by Nageshwara et al. [5] in 1988

made the parallel heap on CPU possible by applying the locking mechanism directly on the

node level while using a top-down insertion method to avoid the possible deadlock. However,

their locking mechanism did not solve the problem of contention on the root node. Later in

1996, Hunt et al. [6] further extended this locking mechanism by implementing a bottom-up

insertion method while keeping the top down locking order.

He et al. [7] proposed a GPU heap model based on ideas presented by [8] in 1992. It exploits

intra-node parallelism by increasing the node capacity in the heap where each node can store

k ≥ 1 keys. However, their implementation has limited support for inter-node parallelism. It

divides the heap into odd and even levels by barrier synchronization and allowing only one

operation to be processed between two consecutive levels, which severely limits the efficiency

of this implementation on GPU.

14

Algorithm 4: Sequential Branch and Bound Algorithm for Knapsack

1 Procedure knapsack: (profits, weights, w)
2 sort(profits, weights)
3 pq = new heap; pq.push(root), max profit = 0
4 while pq not empty do
5 u = pq.pop()
6 if u is last item then return
7 v = node(); v.level = u.level + 1
8 v.weight = u.weight + weights[v.level]
9 v.profit = u.profit + profits[v.level]

10 if v.weight < w and v.profit > max profit then
11 max profit = v.profit

12 v.bound = compute bound(v)
13 // select the item
14 if v.bound + v.profit > max profit then
15 pq.push(v)

16 // do not select the item
17 v.weight = u.weight; v.profit = u.profit; v.bound = compute bound(v)
18 if v.bound + v.profit > max profit then
19 pq.push(v)

20 return max profit

15

Chapter 3

Methodology

Conventional heap structure is inherently hard to take advantage of parallelism provided by

GPUs since contentions between parent and child nodes exist, which hinders the overall perfor-

mance of the heap. While existing work tried to tackle this issue, their solutions still suffer from

potential performance hazards such as control divergence and low memory locality. To fully

exploit the possible parallelism of heap operations, we propose a modified heap model that

supports concurrent insertion and deletion updates where each node in the tree is consists of a

batch of key values instead of only one in the traditional model. The proposed model is adapted

to exploit the parallelism of current many-core architectures like GPUs by enabling inter-node

and intra-node parallelism with minimal control divergence. In the following section, we refer

to the proposed heap model as the generalized heap and discuss its structure, sequential oper-

ations and concurrent operations based on a min-heap implementation. The max-heap version

of the generalized heap can be easily realized by negating a min-heap.

3.1 The Generalized Heap

Instead of storing a binary tree of key values in the conventional heap, the generalized heap

model consists of a binary tree of data batches. Each tree node is a data batch1 that contains

exactly k2 key values. While heap operations do not guarantee the number of items in the tree

is always equal to multiple of k, an extra data batch is used to handle these lingering items.

This extra data batch is called the partial buffer. The partial buffer store up to k− 1 key values

that are larger than the key values in the root node, which ensures that the smallest keys (those

1Since a data batch is a tree node in the generalized heap, we will use the word ”batch” and ”node” interchange-
ably throughout the dissertation.

2k is equal to the node capacity, which is the size of a data batch

16

with the highest priority) are always store at the root batch.

3.1.1 Generalized Heap Properties

Similar to the conventional heap, to correctly preserve the priority of the data, the resulting

tree of the generalized heap must follow the generalized heap properties which are formally

defined as follows:

Property 1. Given any node n in the generalized heap, the keys in n are sorted in ascending

order:

∀i ∈ [1, k) : node[c][i] ≤ node[c][i+ 1]

Property 2. Given any node n in the generalized heap and its parent node p, the smallest key

in n is always larger than or equal to the largest key in p:

min
i=1..k

node[n][i] ≥ max
j=1..k

node[p][j]

Property 3. Given a partial buffer b of size s, all the keys in b are sorted in ascending order:

∀i ∈ [1, s) : node[b][i] ≤ node[b][i+ 1]

Property 4. Given a partial buffer b of size s, all the keys in b are larger than or equal to the

largest key in the root node r:

∀i ∈ [1, s) : node[b][i] ≥ node[r][k]

The generalized heap is an intuitive extension of the conventional heap. For instance, when

k = 1, the generalized heap becomes a conventional heap where each batch contains exactly

one key value. Note that in this case, the generalized heap properties still holds: property 1 and

2 are inherently satisfied with the relationship between parent and child node, while properties

3 and 4 do not apply since the size of partial buffer, in this case, will be k − 1 = 0, which

means no partial buffer is needed for conventional heap.

17

3.1.2 Array Representation of the Generalized Heap

As the most space-efficient approach, an array is used to store and represent the generalized

heap in memory. Each slot in the array stores one key value and k consecutive slots constitute a

data batch. The generalized heap then can be represented using many consecutive data batches

stored in a linear array with the first k slots contain elements in the root batch, the next k slots

contain elements in the next batch, etc. Formally, the generalized heap can be represented by

array using the following rules:

1. The root batch will be stored at Arr[0] through Arr[k − 1].

2. Suppose the total number of batches is N , then for 0 ≤ i ≤ N , indexes of the parent

and child batches of the ith batch can be obtained through:

• Parent(i) = Arr[k × ((i− 1)/2)] through Arr[(k + 1)× ((i− 1)/2)− 1]

• Left(i) = Arr[k × ((2× i) + 1)] through Arr[(k + 1)× ((2× i) + 1)− 1]

• Right(i) = Arr[k × ((2× i) + 2)] through Arr[(k + 1)× ((2× i) + 2)− 1]

Therefore, the array representation store the underling binary tree implicitly using minimal

space. Array entries that are in the range of [i× k, (i+ 1)× k − 1] are stored in ith node in

the generalized heap. A comparison between tree and array representation of the generalized

heap with k=4 is shown on Fig. 3.1. Note that the partial buffer is stored separately in both

representations.

(a) Tree representation

(b) Array representation

Figure 3.1: Different representation of the generalized heap with k = 4

18

3.2 Operations on Generalized Heap

Resembling the conventional heap, the generalized heap allows two basic operations: insertion

operation that inserts at most k keys at once, and deletion operation that retrieves k keys from

the root node. In both insertion and deletion operations, a MergeAndSort process is used to

merge and sort key values in two different nodes. Assuming there are two nodes, l and r, it

takes 2k keys from these two nodes as input and returns 2k sorted keys where smaller half is

stored back to l while the larger half is stored back to in r. While the implementation of the

MergeAndSort process will be discussed in Chapter 4, the detailed description and examples

of the two operations are discussed in the following section.

3.2.1 Insert Operation

The insert operation inserts at most k keys at once, for input size larger than k, the operation

can be divided into multiple concurrent insertion operations. Each insertion starts by inserting

a new node at the first available position in the heap. This new node is called the target node.

Then the path from the root node to the target node, the insert path, can be found and utilized

to propagate the target node to the correct location.

Two types of insertions are allowed in the generalized heap: 1© top-down insertion, which

starts the insertion from the root node and propagates in a top-down manner along with the

insert path until the target node is reached; 2© bottom-up insertion, which starts the insertion

from the target node and propagates upward until the generalized heap properties are satisfied

or the root node is reached.

Top-down Insertion

The top-down insertion starts the process from the root node and propagates towards the target

node along the insert path. During the propagation, a MergeAndSort operation is performed

between the key values in the target node and each node it encounters in the insert path. The

MergeAndSort operation stores the smaller half of key values at the node in the insert path

while storing the larger half in the target node for further propagation. An example of top-

down insertion is shown in Fig. 3.2 and the pseudo-code is shown in Alg. 5. Note that the

19

Figure 3.2: Example: Top-down Insertion of [1,2,3,6] with k = 4

index of the root node stored in the underlying array is 1, thus the propagation starts with cur

= 1 (line 4).

Algorithm 5: Top-down Insertion on the Generalized Heap

1 define B[x] as heap.node[x]
2 Procedure insert top down: (ins items)
3 ins items = sort(ins items)
4 tar = heap size++; cur = 1; level = log2(tar) - 1
5 while cur != tar do
6 (B[cur], ins items) = MergeAndSort(B[cur], ins items)
7 cur = tar >> -- level

Bottom-up Insertion

The bottom-up insertion starts the process from the target node and propagates towards the root

node along the insert path. In contrast to the top-down approach, it is possible to terminate the

propagation process in the middle of the heap without traversing every node in the insert path

20

once the generalized heap properties are satisfied. During the propagation process of bottom-

up insertion, a MergeAndSort operation is performed between a node in the insert path and its

parent node until it reaches the root node or the generalized heap properties are satisfied in the

middle of the heap. The pseudo-code of the bottom-up insertion is shown in Alg. 6. Note the

cur stores the index of the current node and par stores the index of the parent node.

Figure 3.3: Example: Bottom-up Insertion of [1,2,3,6] with k = 4

Algorithm 6: Bottom-up Insertion on the Generalized Heap

1 define B[x] as heap.node[x]
2 Procedure insert top down: (ins items)
3 ins items = sort(ins items)
4 cur = heap size++; par = cur� 1
5 while cur != 1 do
6 if B[cur][0] ≥ B[par][k-1] then
7 break
8 (B[cur], ins items) = MergeAndSort(B[cur], ins items)
9 cur = par; par = cur� 1

3.2.2 Delete Operation

The delete operation retrieves k keys stored in the root node and remove the root node from

the heap. A heapify process is needed after deletion since the root node is removed. This

process is necessary since the generalized heap properties are violated after removing the root

node. To make the heap obey the generalized heap properties again, the heapify process first

moves key values stored in the last leaf node to the root node. Followed by propagating the

values in the root node in a top-down manner. During the propagation, it will first perform

the MergeAndSort operation on two child nodes l and r. The output of the MergeAndSort

operation consists of 2k sorted key values from l and r. After the MergerAndSort operation,

21

the k smallest keys will be placed back to the child node that has a smaller largest key, and the

k largest keys will be placed to the other child node. Then, another MergeAndSort operation is

performed between the current node and l, the k smallest keys from the output will be placed

in the current node and the k largest keys will be place in l. The propagation process continues

until the generalized heap properties are satisfied or it reached the leaf node. An example of

deletion operation can be found in Fig. 3.4. The pseudo-code of deletion operation can be

found in Alg. 7. Note the values in the last node are re-initialized to MAX value after it is

moved to the root node to make sure the old keys are covered (line 6).

Figure 3.4: Example: Deletion Operation

22

Algorithm 7: Deletion on the Generalized Heap

1 define B[x] as heap.node[x]
2 Procedure delete: (del items)
3 if heap.size == 0 then return
4 del items = B[1]
5 tar = heap.size-- ; cur = 1;
6 B[1] = B[tar]; B[tar] = MAX VALUE
7 if tar == 1 then return
8 while 1 do
9 l = Left(cur); r = Right(cur)

10 (B[l], B[r]) = MergeAndSort(B[l], B[r])
11 if B[cur][k-1] ≤ B[l][0] == 0 then break
12 (B[cur], B[l]) = MergeAndSort(B[cur], B[l])
13 cur = l

3.2.3 Discussion

The bottom-up insertion approach has a few advantages over the top-down approach: 1© the

number of nodes need to be traversed during the insertion process using the bottom-up approach

might be less than its top-down counterpart since it can terminate earlier. 2©When implemented

in parallel, locks of nodes are required for each operation. The bottom-up implementation

reduces lock contentions on higher-level nodes as the workload is distributed to lower-level

nodes. However, while implementing the bottom-up approach in parallel, one must pay more

attention to the potential deadlock caused by the opposite propagation direction of insertion and

deletion. The concurrent design of insertion and deletion is discussed in the following section.

3.3 Concurrent Generalized Heap

Concurrent insertion and deletion are possible on the generalized heap. The parallel insertion

and deletion algorithms presented in this thesis are inspired by the methods discussed in [5] and

[6], which introduce concurrent insertion and deletion on the conventional heap with top-down

and bottom-up insertion, respectively. In the following sections, we present and discuss the

concurrent algorithms of insertion and deletion operations on two types the generalized heap:

23

concurrent generalized heap with 1© Top-Down Insertion and Top-Down Deletion, the TD-

INS/TD-DEL Heap and 2© Bottom-Up Insertion and Top-Down Deletion, the BU-INS/TD-

DEL Heap, respectively.

3.3.1 Locking Mechanism

To allow the concurrent insertion and deletion operations while ensuring the correctness of the

heap, an effective locking mechanism is needed. Instead of locking the entire heap, [5] and

[6] applied a simple locking mechanism on the conventional heap where each node in the heap

is associated with an individual lock. Thus, multiple propagation flows of heap operations

can exist simultaneously, exploiting the inter-node parallelism. We adapt and extend a similar

locking mechanism to the concurrent generalized heap. In our locking mechanism, the partial

buffer shares the same lock with the root node while other nodes are protected by their own

lock. Fig. 3.5 shows the detailed locking mechanism of concurrent heap operations of the

concurrent generalized heap. Nodes in the insert/delete path are marked N1, N2, ..., Nk where

Ni is the parent of Ni+1. All three operations follow the same parent-child locking order, thus

avoids having deadlock.

Figure 3.5: Locking Mechanism

The top-down insertion starts the propagation at the root node N1 and propagates along with

nodes on the insert path. It first locks N1 to process the partial buffer, then it locks Nk to insert

key values to the target position and start the top-down propagation. During propagation, it ac-

quires the lock of Ni+1 before releasing the lock of Ni, which follows the parent-child locking

24

order. Though the bottom-up insertion has a different propagation direction, it is implemented

in a way to follow the same locking pattern as well. Lock of N1 and Nk are acquired to process

partial buffer and insert key values to target position before the propagation starts. During the

propagation, it must obtain locks of both Ni and its parent before it starts doing heapify works,

so there is no deadlock between threads. The locking order of deletion operation is similar

to that of the top-down insertion, with the difference being that the delete operation needs to

acquire locks for both children of Ni when propagating down. When heapification of Ni is

finished, the control of Ni+1 will remain in the same thread while the lock of Ni and the other

child is released. Since all operations follow the same parent-child locking order, there will be

no conflict in acquiring locks between different threads, thus no deadlock will happen.

Algorithm 8: Macros for Locking on the Concurrent Generalized Heap

1 define MS LOCK(x, s old, s new) as while CAS(state(x), s old, s new)) != s old
2 define MS TRYLOCK(x, s old, s new) as return CAS(state(x), s old, s new)
3 define MS UNLOCK(x, s old, s new) as CAS(state(x), s old, s new)

Locks in the concurrent generalized heap are implemented as multi-states locks. Each lock

can represent different states of corresponding nodes. Note that the locks of top-down insertion

and bottom-up insertion will have different states due to algorithmic differences. The details of

TD-INS/TD-DEL Heap and BU-INS/TD-DEL Heap will be discussed in the following section.

The multi-states locks are implemented using atomicCAS, a well-optimized intrinsic atomic

operation on NVIDIA GPUs [14]. The locking related macros presented in the algorithms is

shown in Alg. 8.

3.3.2 TD-INS/TD-DEL Heap

The TD-INS/TD-DEL heap supports two operations: top-down insertion and top-down dele-

tions. The operations are implemented based on the locking mechanism described in Fig. 3.5.

The lock states and corresponding meaning of the insert operation on the TD-INS/TD-DEL heap

are:

• AVAIL: This node is available for operations.

• INUSE: This node is currently locked by an operation.

25

• TARGET: This node is the target node of an insertion operation.

• MARKED: This node is needed by a delete operation for cooperating insertion and

deletion.

The FSA (Finite-State Automata) of the TD-INS/TD-DEL heap is shown in Fig. 3.6. Both

insertion and deletion operations are able to lock the control of a heap node by changing its

node state from AVAIL to INUSE.

Figure 3.6: FSA of the TD-INS/TD-DEL Heap

Note that MARKED is a special node state of the TD-INS/TD-DEL heap where deletion

and insertion can cooperate to speed up the overall propagation[5]. After the deletion process

removed the root node, it first checks if the last node is locked by an insertion process as target

node, if so, it changes the state of the target node from TARGET to MARKED. When an in-

sertion operation finds that the state of the target node is changed to MARKED, it immediately

knows that a deletion operation is trying to move the key values in the last leaf node to the root

node. It then terminates the insertion propagation and directly move the keys in the last node to

the root node where the deletion operation takes over the control and continues executing. This

early termination of the top-down insertion operation is valid since the generalized heap prop-

erties are kept valid except for the target node during the insertion propagation. As a result,

the overall performance of deletion propagation can be improved by early termination of an

in-progress insertion. The pseudo-code for concurrent top-down insertion operation is shown

in Alg. 9 and the pseudo-code for concurrent deletion operation is shown in Alg. 10.

Note that the partial buffer and the root node are deliberately designed to share the same

lock. Since any operation that utilized the partial buffer will require access to the root node for

comparison, using the same lock guarantees only one thread will work on the partial buffer and

the root node at the same time.

For deletion operations, the partial buffer is used only when the heap is empty, i.e. the total

26

number of key values is less than k, where all keys are stored in the partial buffer. By the fourth

property of the generalized heap, the smallest k keys of the generalized heap must be stored in

the root node, which means key values stored in the partial buffer will not be the smallest items

unless the heap is empty.

On the other hand, to correctly process partial batch insertion, it first applies the Merge-

AndSort operation between the partial buffer and items to be inserted. If the result of the

MergeAndSort operation can not be stored entirely back to the partial buffer, i.e. size of partial

buffer plus insert size is greater than k. Then the k smallest keys from the result of the Merge-

AndSort operation will be inserted to the heap as a full batch and propagate downwards, while

the rest of the keys will be stored back to the partial buffer (Fig. 9 line 5). Otherwise, the result

of the MergeAndSort operation will be stored back to the partial buffer and another MergeAnd-

Sort operation is applied between the new partial buffer and the root node (line 9), after which

the generalized heap properties will be satisfied. Though supporting partial batch insertion

introduces extra overhead, by maintaining the partial buffer, memory locality and intra-node

parallelism can be exploited since the majority of Insert/Delete operations are processing the

regular-sized input i.e. a full batch with k keys.

3.3.3 BU-INS/TD-DEL Heap

In the TD-INS/TD-DEL heap, all heap operations follow the same top-down direction, which

results in a considerable contention on the top level of the heap, especially the contention on the

root node. In order to alleviate this situation, [6] introduced an insertion algorithm that starts the

insertion process from the bottom of the heap while maintaining the same parent-child locking

order. Their implementation allows the inserting thread to temporarily release the control for

items to be inserted and labeled the corresponding inserting thread and items by storing an

extra tag. We applied a similar approach to implement the concurrent bottom-up insertion for

the generalized heap. However, our concurrent bottom-up insertion implementation does not

need to store the extra tag.

Our concurrent bottom-up insertion implementation follows the same parent-child locking

order described in Fig. 3.5. In contrast to the top-down insertion, the bottom-up insertion

27

Algorithm 9: Top-down Insertion on the TD-INS/TD-DEL Heap

1 Procedure concurrent insert top down: (ins items, ins size)
2 ins items = sort(ins items)
3 MS LOCK(1, AVAIL, INUSE)
4 if pBuffer.size + ins size ≥ k then
5 (ins items, pBuffer) = MergeAndSort(ins items, pBuffer)

6 else
7 (pBuffer, ins items) = MergeAndSort(ins items, pBuffer)
8 if heap.size != 0 then
9 (B[1], pBuffer) = MergeAndSort(B[1], pBuffer)

10 MS UNLOCK(1, INUSE, AVAIL)
11 return
12 target = heap.size++; cur = 1; level = log2(tar) - 1
13 if target != 1 then
14 MS LOCK(tar, AVAIL, INUSE)

15 while cur != target do
16 if state(tar) == MARKED then break
17 (B[cur], ins items) = MergeAndSort(B[cur], ins items)
18 cur = target� -- level
19 if target != cur then
20 MS LOCK(cur, AVAIL, INUSE)

21 MS UNLOCK(cur�1, INUSE, AVAIL)

22 tstate = MS TRYLOCK(target, TARGET, INUSE)
23 target = (tstate == TARGET ? target: 1)
24 B[target] = ins items
25 if target != cur then
26 MS UNLOCK(target, state(target), AVAIL)

27 MS UNLOCK(cur, INUSE, AVAIL)

operation has the following node states:

• AVAIL: This node is available for operations.

• INUSE: This node is currently locked by an operation.

• INSHOLD: This node is temporarily released by an insertion process.

• DELMOD: This node is originally in INSHOLD state and has been modified by a dele-

tion process.

The FSA of node states of the BU-INS/TD-DEL heap is shown in Fig. 3.7. Similar to the

both TD-INS/TD-DEL operations discussed in the last section, both insertion and deletion op-

erations for the BU-INS/TD-DEL heap can change the state of a node from AVAIL to INUSE

28

Figure 3.7: FSA of the BU-INS/TD-DEL Heap

and the other way around. However, the concurrent bottom-up insertion algorithm requires

different node states since it will temporarily release the control of the nodes to guarantee the

parent-child locking order. After the insertion process finished modifying Nk and try to prop-

agate upwards, it will temporarily unlock Nk and change its state from INUSE to INSHOLD.

Then, the insertion operation will acquire the control of Nk−1 before re-acquiring Nk again to

perform the bottom-up propagation. When it successfully re-acquire control of Nk, the state of

Nk can be in three different cases:

1. DELMOD: Nk has been modified by one or more delete operations, the heap properties

between Nk and Nk−1 are satisfied, skip this level and perform MergeAndSort operation

between Nk−1 and Nk−2.

2. AVAIL: Nk is deleted by other processes while it is released, release Nk−1 and terminate

the insertion process.

3. INSHOLD: Nk has not been modified by other operations, continue the insertion prop-

agation and the MergeAndSort operation can be performed between Nk and Nk−1.

The partial buffer in the BU-INS/TD-DEL heap is handled in the same way as we mentioned

in Section 3.3.2. It shares the same lock with the root node and both insertion and deletion

operations process the data in the partial buffer while the root node is locked.

29

Algorithm 10: Deletion on the TD-INS/TD-DEL Heap

1 Procedure concurrent delete: (delete items)
2 MS LOCK(1, AVAIL, INUSE)
3 if heap.size == 0 then
4 if pBuffer.size != 0 then
5 delete items = pBuffer[1:pBuffer.size]

6 MS UNLOCK(1, INUSE, AVAIL) return
7 delete items = B[1]
8 target = heap.size--; cur = 1
9 tstate = MS TRYLOCK(target, TARGET, MARKED)

10 if tstate == MARKED then
11 while (state(target != AVAIL))

12 else
13 MS LOCK(target, AVAIL, INUSE)
14 B[1] = B[target]; B[target] = MAX VALUE
15 MS UNLOCK(target, INUSE, AVAIL)

16 (B[1], pBuffer) = MergeAndSort(B[1], pBuffer)
17 while 1 do
18 l = Left(cur); r = Right(cur)
19 lstate = INUSE; rstate = INUSE
20 while lstate == INUSE do
21 lstate = MS TRYLOCK(l, AVAIL, INUSE)

22 if lstate != AVAIL then
23 // cur has no child
24 MS UNLOCK(cur, INUSE, AVAIL)
25 return
26 while rstate == INUSE do
27 rstate = MS TRYLOCK(r, AVAIL, INUSE)

28 if rstate != AVAIL then
29 // cur only has left child
30 (B[cur], B[l]) = MergeAndSort(B[cur], B[l])
31 break
32 // Suppose right child has the largest item
33 (B[l], B[r]) = MergeAndSort(B[l], B[r])
34 MS UNLOCK(r, INUSE, AVAIL)
35 if (B[cur][k - 1] ≤ B[l][0]) then break
36 (B[cur], B[l]) = MergeAndSort(B[cur], B[l])
37 MS UNLOCK(cur, INUSE, AVAIL)
38 cur = l

39 MS UNLOCK(cur, INUSE, AVAIL)
40 MS UNLOCK(l, INUSE, AVAIL)

30

Algorithm 11: Bottom-up Insertion on the BU-INS/TD-DEL Heap

1 Procedure concurrent insert bottom up: (insert items, insert size)
2 ins items = sort(ins itmes)
3 MS LOCK(1, AVAIL, INUSE)
4 if pBuffer.size + ins size ≥ k then
5 (ins items, pBuffer) = MergeAndSort(ins items, pBuffer)

6 else
7 (pBuffer, ins items) = MergeAndSort(ins items, pBuffer)
8 if heap.size != 0 then
9 (B[1], pBuffer) = MergeAndSort(B[1], pBuffer)

10 MS UNLOCK(1, INUSE, AVAIL)
11 return
12 cur = heap.size++; parent = cur� 1
13 if cur != 1 then
14 MS LOCK(cur, AVAIL, INUSE)
15 MS UNLOCK(1, INUSE, AVAIL)

16 B[cur] = ins items
17 while cur != 1 do
18 MS UNLOCK(cur, INUSE, INSHOLD)
19 pstate = INUSE; cstate = INUSE
20 while pstate == INUSE ‖ pstate == INSHOLD do
21 pstate = MS TRYLOCK(parent, AVAIL, INUSE)

22 if (pstate != AVAIL) then return
23 while cstate == INUSE do
24 cstate = MS TRYLOCK(cur, INSHOLD, INUSE)

25 if cstate == DELMOD then
26 MS UNLOCK(cur, DELMOD, AVAIL)

27 else if cstate == AVAIL then
28 MS UNLOCK(parent, DELMOD, AVAIL)
29 return
30 else
31 if B[cur][0] ≥ B[parent][k - 1] then
32 MS UNLOCK(parent, INUSE, AVAIL)
33 break
34 B[parent], B[cur] = MergeAndSort(B[parent], B[cur])
35 MS UNLOCK(cur, INUSE, AVAIL)

36 cur = parent; parent = cur� 1

37 MS UNLOCK(cur, INUSE, AVAIL)

31

Algorithm 12: Deletion the BU-INS/TD-DEL Heap

1 Procedure concurrent delete: (delete items)
2 MS LOCK(1, AVAIL, INUSE)
3 if heap.size == 0 then
4 if pBuffer.size != 0 then
5 delete items = pBuffer[1:pBuffer.size]
6 pBuffer = MAX VALUES

7 MS UNLOCK(1, INUSE, AVAIL)
8 return
9 delete items = B[1]

10 target = heap.size--
11 MS LOCK(target, AVAIL, INUSE)
12 B[1] = B[target]; B[target] = MAX VALUES
13 MS UNLOCK(target, INUSE, AVAIL)
14 (B[1], pBuffer) = MergeAndSort(B[1], pBuffer)
15 cur = 1; cstate = INUSE
16 while True do
17 l = Left(cur); r = Right(cur)
18 lstate = INUSE; rstate = INUSE
19 while lstate == INUSE do
20 lstate = MS TRYLOCK(l, state(l, INUSE)

21 while rstate == INUSE do
22 rstate = MS TRYLOCK(r, state(r, INUSE)

23 lstate = (lstate == INSHOLD ? DELMOD : lstate)
24 rstate = (rstate == INSHOLD ? DELMOD : rstate)
25 // Suppose the right child batch has the largest item
26 (B[l], B[r]) = MergeAndSort(B[l], B[r])
27 MS UNLOCK(r, INUSE, rstate)
28 if B[cur][k - 1] ≤ B[l][0] then
29 MS UNLOCK(cur, INUSE, cstate)
30 MS UNLOCK(l, INUSE, lstate)
31 return
32 B[cur], B[l] = MergeAndSort(B[cur], B[l])
33 MS UNLOCK(cur, INUSE, cstate)
34 cur = l; cstate = lstate

32

Chapter 4

Implementation

In our implementation, the concurrent generalized heap is based on thread-block-level paral-

lelism since block-level barrier synchronization is natively supported in NVIDIA GPUs while

no built-in thread-level synchronization is provided and synchronization between thread blocks

introduce extra overhead. Threads in one thread block can cooperate for one insertion or dele-

tion operation. Since threads within the same block have accesses to the same shared mem-

ory space, block-level operations can exploit the performance of shared memory through data

reusing during propagation. Furthermore, since key values of heap node are stored consecu-

tively in the memory, block-level operations also take advantage of memory coalescing. The

multi-state lock introduced in Section 3.3.1 is safer to implement as a block-level lock since

explicit block-level synchronization is available while desynchronization within thread warp

might result in deadlock[15].

Heap operation of the generalized heap is implemented through the following basic build-

ing blocks: 1© parallel sorting operation; 2© the MergeAndSort operation. We will discuss these

building blocks respectively in the following sections along with some optimization techniques

that apply to the implementation of the concurrent generalized heap.

4.1 Sorting Operation

Both top-down and the bottom-up the insertion operation will sort the input values before initi-

ating the propagation process. We refer to this sorting operation as the local sorting since it is

independent of the heap nodes. To perform the local sorting, input values are first loaded to the

shared memory for efficient manipulation and movement. Since the capacity of shared memory

per thread block is limited by the hardware, the input size of each insertion operation is also

33

limited (no more than 1K pairs in our test case). By setting the node capacity, k (recall that

input with more than k values will be divided into multiple insertions with at most k values),

the shared memory can be fully utilized by setting the right k.

The local sorting on the shared memory is implemented using parallel bitonic sorting.

Bitonic sorting is a comparison-based sorting algorithm optimized for parallel computing.

While the analysis of bitonic sorting is beyond the scope of this thesis, it can be found in

[16]. In comparison with other efficient sorting algorithms on GPUs such as the parallel radix

sort, the complexity of bitonic sort only related to the number of input items instead of the

size(length) of data. Moreover, other sorting algorithms like the radix sort require the data to

have the same lexicographical order as integers, which makes it less generic for different cases.

Since the input size of the insert operation is limited by k, which is upper-bounded a relatively

small number, and the fact that it supports any generic data types, parallel bitonic sorting al-

gorithm whose complexity depends on the number of input items is more suitable for the local

sorting in the generalized heap.

4.2 MergeAndSort Operation

The MergeAndSort operation is extensively used in both insertion and deletion operations to

heapify the sub-heap. The MergeAndSort operation merges 2k items from two lists of size

k, l and r, and store the k smallest items back to l and k largest items back to r. List with

a size smaller than k will be appended with MAX VALUE to extend the list to size k. Since

key values stored within a node are already sorted by the local sorting operation, the Merge-

AndSort operation does not need to explicitly sort the lists again. Instead, the GPU merge-path

algorithm[17] can be used to merge two sorted lists. The merge-path algorithm takes advan-

tage of GPU architecture by distributing workload evenly to threads, minimized the overhead

of load-imbalance. Moreover, it was implemented with low-latency and high-bandwidth shared

memory usage which is suitable for our concurrent insertion/deletion operations as data will be

loaded to shared memory in both operations. Detailed description and analysis for the GPU

merge-path algorithm can be found in [17].

34

4.3 Optimization

Various optimization techniques are applied to the concurrent operations of the generalized

heap:

4.3.1 Remove Redundant MergeAndSort Operations

The heapify process through repeatedly applying MergeAndSort operations contributed heavily

to the overhead of the algorithm. Through propagating with the MergeAndSort operation,

the generalized heap properties are guaranteed to be satisfied at each level of propagation.

Fortunately, it is possible to reduce the number of MergeAndSort operations performed. In

our implementation, a comparison is made between keys in the nodes before a MergeAndSort

operation is performed. If the largest key in a node is smaller than the smallest key of the other

node, instead of performing a MergeAndSort operation, a simple swap between two nodes is

sufficient since items in the nodes are already sorted. As a result, the number of MergeAndSort

operation performed is reduced within every insertion and deletion operations.

4.3.2 Early Termination

Early termination can be applied to operations of both TD-INS/TD-DEL heap and BU-INS/TD-

DEL heap. For the BU-INS/TD-DEL heap, both the deletion and the bottom-up insertion op-

eration can terminate before it traverses through all nodes in the Insert/Delete path when the

generalized heap properties are satisfied. On the other hand, only deletion operation for the

TD-INS/TD-DEL heap can terminate early since top-down insertion requires the algorithm to

propagate the key values through the whole insert path to the target node. This optimization

reduces the number of heap level each operation will propagate through. Thus increases the

throughput of the model.

4.3.3 Bit-Reversal Permutation

Each insertion operation starts with deciding a target node. If consecutive insertions choose

a neighboring target node, their insert path will be highly overlapped, which might result in

serious contention during propagation. To avoid this situation, a bit-reversal permutation[6]

35

technique is applied to make sure that the insert path of two consecutive insertion operation

will share no common nodes except the root node. This technique can also be applied to

deletion operation where a target node is selected to be moved to the root position after the

root is removed. The target node of deletion operation is selected following the bit-reversal

permutation in insertion operation but in the reverse order.

36

Chapter 5

Evaluation and Analysis

A comprehensive evaluation is performed on the concurrent generalized heap. Experiments

regarding the performance of the model are conducted focusing on six perspectives:

• How does the concurrent generalized heap performs compared to sequential CPU heap

and a previous implementation of GPU heap [7] under different access patterns.

• How does the different number of active insertion or deletion operations (in terms of the

number of active thread blocks) affect contention levels and scalability of the model.

• How does the node capacity k affect the performance of each operation with respect to

different block size.

• How does the percentage of partial batch insertion affects the overall performance.

• How would the performance of concurrent operations varies under different heap utiliza-

tion.

• How does the model perform on real-world applications: SSSP(Single-Source-Shortest-

Path) and 0/1 knapsack problems.

5.1 Experiment Setup

The experiments are conducted on an Nvidia TITAN X GPU with an Intel Xeon E5-2620

CPU. The Xeon E5-2620 CPU is working on 2.1 GHz frequency. The TITAN X GPU has 28

streaming multi-processors (SMs) with 128 cores, for a total of 3584 cores. Every thread block

can allocate at most 48 KB of shared memory and 64K available registers. The maximum

number of active threads per block is 1K, the maximum number of active threads per SM is 2K.

37

Table 5.1: Comparison of Heap Performance on CPU v.s. GPU

Method
Input Type

Randomized(ms) Ascending(ms) Descending(ms)
STL Heap 1,959,550 1,214,906 1,898,015

P-sync Heap 209,648 201,66 205,761

TD-INS/TD-DEL Heap 112,090 99,082 100,163

BU-INS/TD-DEL Heap 104,417 96,247 97,593

Test Configurations: Number of Thread Blocks: 128,
Size of Thread Block: 512, k = 1024, Number of Keys: 512M

5.2 Concurrent Heap v.s. CPU Heap and GPU Baseline

The performance of the concurrent generalized heap is compared with a CPU heap imple-

mentation and a GPU baseline implementation. We use C++ STL priority queue library as

the baseline CPU heap, which is referred to as the STL Heap. We use previous GPU heap

implementation by He, Deo, and Prasad [7] as the GPU baseline, which is referred to as the

parallel synchronous heap or in short, the P-Sync Heap. Note that the insertion operation of

the P-Sync Heap is implemented in s top-down manner while the STL Heap is implemented in

a bottom-up approach. A synthetic test of inserting 512M keys to an empty heap then deleting

all 512M keys from the heap is performed. The following input key types are generated and

tested: 1© randomized 32-bit integers; 2© randomized 32-bit integers sorted in ascending order;

3© randomized 32-bit integers sorted in descending order.

The test result is shown in Table 5.1. The concurrent generalized heap achieved an average

16.59x speedup compared to the STL Heap and 2.03x speedup compared to the P-Sync Heap.

The best performance of all heap models can be observed when the input keys are sorted in

ascending order. This is because for models implemented with bottom-up insertion, the STL

Heap and BU-INS/TD-DEL Heap, the insertion operation only needs to place the new item to

the target node, no propagation is needed since the input is already sorted. While for models

implemented with top-down insertion, the P-Sync Heap and the TD-INS/TD-DEL Heap, since

the input is sorted, the number of merging operations can be reduced as it can be replaced with

simple swap operations between nodes. Both TD-INS/TD-DEL Heap and BU-INS/TD-DEL

38

Heap perform better than the P-Sync Heap. One of the main difference between P-Sync Heap

and the concurrent generalized heap is that the P-Sync Heap only allows one insertion or dele-

tion operation to work on the same heap level whereas our implementation of the concurrent

generalized heap supports concurrent insertion and deletion operations to work simultaneously,

which exploits inter-node parallelism. In the following experiments except for integration with

real-world applications, randomized 32-bit integers will be used as input to the test.

4 8 16 32 64 128

Thread Block Number

0

5

10

15

T
im

e
 (

m
s
)

10
4

top-down insertion

bottom-up insertion

deletion

Figure 5.1: Heap Performance w.r.t Number of Blocks

5.3 Sensitivity to Number of Thread Blocks

The performance of the concurrent generalized heap is evaluated against a different number of

thread blocks. Since threads in one thread block can cooperate on one operation at a time, the

number of thread block determined the maximum number of concurrent operations possible.

However, when the concurrency is increased, the contention level of the heap is also increased.

In this experiment, all parameter except the number of blocks is fixed: We set the block size

to 512, k = 1024. For top-down insertion in TD-INS/TD-DEL Heap and bottom-up insertion

in BU-INS/TD-DEL Heap insertion, 512M keys is inserted into the heap. Since both variants

of the generalized heap implement top-down deletion, only deletion operation from the BU-

INS/TD-DEL Heap is tested as all keys are deleted from a heap containing 512M keys. The

result is shown in Figure 5.1.

All heap operations tested exhibit performance increase as the number of blocks increases

since more concurrent operations are made possible. However, the increase of performance

will be capped as the number of blocks keeps increasing as more contention on the heap nodes

are introduced. Note that the deletion operation is always slower than insertions because at

every level of the delete path, the process needs to lock three nodes (the parent node and two

39

child node) and perform at most two MergeAndSort operations compared to two nodes and at

most one MergeAndSort operation for the insertion operations. The deletion operation is on

average 2.6x slower than insertion operations. Note that the bottom-up insertion operation is

always faster than top-down insertion since the bottom-up insertion incurs less contention on

higher-level of the heap and it might terminate the propagation process earlier than top-down

insertion as the described in Section 4.3.2.

5.4 Sensitivity to Node Capacity

The performance of the concurrent generalized heap is evaluated against a different number of

node capacity k with a different number of thread blocks. Due to hardware limitation to the

size of shared memory per block, the maximum k is set to be 1K. Furthermore, since it does not

make sense to have more than one thread processing one key in the node, the number of threads

per block needs to greater than the node capacity. In this experiment, we test the performance

of the concurrent generalized heap with different node capacity and different thread block size

via inserting 512M keys into an empty heap then deleting all keys from the same heap. The test

result is shown in Figure 5.2.

128 256 512 1024

Node Capacity

0

0.5

1

1.5

2

T
im

e
 (

m
s
)

10
5

thread block size = 128

thread block size = 256

thread block size = 512

thread block size = 1024

(a) top-down insertions

128 256 512 1024

Node Capacity

0

0.5

1

1.5

2

T
im

e
 (

m
s
)

10
5

thread block size = 128

thread block size = 256

thread block size = 512

thread block size = 1024

(b) bottom-up insertions

128 256 512 1024

Node Capacity

0

1

2

3

4

T
im

e
 (

m
s
)

10
5

thread block size = 128

thread block size = 256

thread block size = 512

thread block size = 1024

(c) deletion operations

Figure 5.2: Heap performance w.r.t Node Capacity and Thread Block Size

As illustrated in Figure 5.2, when the size of the thread block is fixed, the performance of

the heap increases as the node capacity k increases. This is because 1© for the same number

of keys, a larger node capacity means that the heap has fewer levels since each node could

store more keys, thus the length of insert/delete path would be shorter, result in faster heap

operations; 2© increasing node capacity also provides more intra-node parallelism on local

40

operations like the sorting operation. However, Figure 5.2 also shows that it is not always good

to increase the thread block size as it could increase the overhead of synchronization within a

thread block. We will use thread block size = 512 and k = 1024 for later experiments as they

yield the best performance for both insertion and deletion operations.

5.5 Sensitivity to Percentage of Partial Batch Insertion

The heap performance is evaluated with different percentages of partial batch insertions. In this

experiment, 512M keys are inserted into an empty heap. A portion of 512M keys is inserted

as full batches (repeatedly inserting nodes of size k), while the rest of the keys are inserted as

partial batches with randomly generated sizes. The test result is shown in Figure 5.3. The per-

centage of full batch insertions can have up to 4x impact on the heap performance. Compared to

full batch insertions, inserting with partial batch will need to invoke more insertion operations

to insert the same amount of keys, which intensify the contention on the root node since in both

top-down and bottom-up implementation requires the root node to be locked by each insertion

process before the corresponding partial batch can be inserted. This phenomenon implies that

even though partial batch insertion is allowed in the concurrent generalized heap, it would be

a nice practice pre-process input with a buffer and avoid frequent partial batch insertion when

applying the concurrent generalized heap to real-world applications.

0 20 40 60 80 100

Percentage of Full Batch Insertion (%)

2

3

4

5

6

7

8

T
im

e
 (

m
s

)

10
4

GPU TD-Heap

GPU BU-Heap

Figure 5.3: Heap Performance w.r.t Percentage of Full Batch Insertion

41

5.6 Sensitivity to Initial Heap Utilization

The performance of heap operations is related to the level of the heap, which determines the

length of the insert/delete path. In this experiment, we evaluated the difference of performance

for the concurrent generalized heap with different initial utilization. Dummy keys correspond-

ing to each heap levels are pre-inserted into the heap. For example, k × 26 dummy keys are

pre-inserted to the heap for an experiment with 6-level initial heap utilization. We use 128

thread blocks to insert 256M items then delete 256M items from a given heap with different

utilization. We show the heap performance with respect to different initial heap levels, ranging

from 6 to 18, which corresponds to 64K to 256M initial items, in Figure 5.4. It demonstrated

that the initial level of the heap will affect the performance of insertion and deletion of the

same number of items as both insertion and deletion operations need to traverses more nodes

along the insert/delete path, and more MergeAndSort operations are performed before the gen-

eralized heap properties get satisfied. Again, the BU-INS/TD-DEL Heap performs better than

TD-INS/TD-DEL Heap under the same workload.

6 7 8 9 10 11 12 13 14 15 16 17 18

Initial Heap Level

5.5

6

6.5

7

T
im

e
 (

m
s
)

10
4

GPU TD-Heap

GPU BU-Heap

Figure 5.4: Performance w.r.t Initial Heap Size

5.7 Applications of Concurrent Heap

The performance of the concurrent generalized heap is evaluated under two real-world applica-

tions: the SSSP (Single Source Shortest Path) and the 0/1 Knapsack Problem. Both applications

rely on an efficient implementation of the priority queue to solve the underlying problem. By

processing items higher priority first, the search space of the problem can be reduced thus result

42

in better performance. Though we only apply the concurrent generalized heap to two applica-

tions, there are many real-world applications can take advantage of this technique to speed up

computation. The purpose of is section is to show the potential of applying the concurrent

generalized heap to speed up real-world applications on many-core architectures. Further opti-

mization and integration of application-specific heap operations such as asynchronous updates

are possible, however, we will leave it as future work.

5.7.1 SSSP (Single Source Shortest Path) Problem

As described in Section 2.2.2, the compute-advance model to solve SSSP requires that in every

iteration of the SSSP algorithm, nodes are classified as active nodes and inactive nodes based

on a comparison between the new distance and the old distance of the node. If the new distance

is smaller than the old distance, the corresponding node will be classified as an active node, oth-

erwise, it will be classified as an inactive node. After that, only active nodes will be processed

in the next iteration since the distance of inactive nodes will not affect the final result.

We use Gunrock [13], a reputable parallel iterative graph processing library on GPU, as the

baseline of this experiment. Gunrock applied the compute-advance model described above to

solve for SSSP. We implemented the SSSP solver in the same way with the difference being

that after each iteration, active nodes are stored in the concurrent generalized heap with their

current distance as key values, then the nodes are deleted from the heap in the next iteration

for processing. Doing such imposes a relationship between the processing order of each active

node where active nodes with shorter distance will be processed before others. Thus the number

of active nodes being explored and the overhead spend on unnecessary updates can be reduced.

Since incorporating the heap incurs overhead for heap operations, it is only beneficial to

use the heap when a certain threshold is met. In this experiment, we set the threshold N =

10K such that only when the number of active nodes in the current iteration is greater than N ,

will we apply the concurrent generalized heap to the SSSP algorithm. 14 real-world graphs

are chosen for this experiment and the corresponding graph properties are listed in Table 5.2.

The test result is shown in Table 5.3. On average, the heap-based SSSP solver achieve 1.13X

speedup for all the graph we tested compared to the baseline. Note that Stanford Berkeley is a

43

relatively small graph where the number of active nodes in each iteration is not large enough

for the improvement in performance to cover the overhead of heap operations.

Timing for different components of the SSSP algorithm is also shown in Table 5.3. The

compute time includes the time spend on SSSP computations such as node expanding, distance

updating and edge filtering. The heap time includes the time spend on heap operations. The

number of nodes visited showed the total number of nodes expanded during the SSSP com-

putation. It is clear that for large-scale applications, applying the concurrent generalized heap

to the SSSP algorithm reduces the number of nodes expanded significantly, which leads to a

reduction in compute time. Even though the incorporation of the concurrent generalized heap

incurs overhead, the improvement provided by the heap can easily cover the heap overhead

with speedups.

Table 5.2: Graph Information

Graph Name # Nodes # Edges Type of Graph
AS365 3,799,275 22,736,152 2D FE triangular meshes

bundle adj 513,351 20,721,402 Bundle adjustment problem
coPapersDBLP 540,486 30,491,458 DIMACS10 set
delaunay n22 4,194,304 25,165,738 DIMACS10 set

hollywood-2009 1,139,905 115,031,232 Graph of movie actors
Hook 1498 1,498,023 62,415,468 3D mechanical problem

kron g500 logn20 1,048,576 89,240,544 DIMACS10 set
Stanford Berkeley 685,230 7,600,595 Berkeley-Stanford web graph

Long Coup dt0 1,470,152 88,559,144 Coupled consolidation problem
M6 3,501,776 21,003,872 2D FE triangular meshes

NLR 4,163,763 24,975,952 2D FE triangular meshes
rgg n 2 20 s0 1,048,576 13,783,240 Undirected Random Graph

Serena 1,391,349 65,923,050 Structural Problem

5.7.2 0/1 Knapsack Problem

The knapsack problem also appears in many real-world applications such as the selection of

investments. The knapsack problem is defined as: given a knapsack, weights, and profits for

some items with a weight capacity W , find the maximum profit we can obtain through putting

different combinations of items in the knapsack. The 0/1 knapsack problem is a category of

knapsack problem where one must either pick the full item or discard it, no partial selection

is allowed. As described in Section 2.2.2, a simple sequential implementation of the knapsack

44

Table 5.3: Parallel Single Source Shortest Path Performance

Baseline Heap Based SSSP w/ N=10K

Graphs
Computate # Nodes Heap Compute Total # Nodes

Speedup
Time(ms) Visited Time(ms) Time(ms) Time(ms) Visited

AS365 654.44 19,664,769 193.43 422.12 615.55 11,843,368 1.06
bundle adj 144.54 903,097 11 126.48 137.48 877,675 1.05

coPapersDBLP 46.13 981,876 12.52 25.46 37.98 710,794 1.21
delaunay n22 1125.93 29,832,633 283.04 647.61 930.65 18,607,590 1.21

hollywood-2009 100.17 2,007,447 14.22 74.35 88.58 1,370,459 1.13
Hook 1498 233.76 2,786,271 31.39 182.52 213.91 1,756,776 1.09

kron g500 logn20 117.79 2,590,570 28.72 73.1 101.82 860,552 1.16
Long Coup dt0 190.06 2,699,927 43.46 116.77 160.23 1,571,565 1.19

Stanford Berkeley 55.3 530,294 5.17 52.54 57.71 462,860 0.96
M6 677.95 20,972,903 161.88 472.67 634.56 16,126,697 1.07

NLR 894.71 29,583,224 318.35 439.61 757.96 16,123,803 1.18
rgg n 2 20 s0 920.27 7,112,685 46.44 701.78 748.22 5,871,411 1.23

Serena 124.16 2,594,858 27.98 84.94 112.93 1,498,836 1.1

problem is to enqueue to-explore items into a priority queue with a calculated profit bound as

key and explore those with higher priority first. If the global maximum is updated by a high

priority item, then we can ignore those items with a profit bound that is lower than the global

maximum, thus reducing the search space and speeds up the algorithm. We implemented a

parallel algorithm based on the sequential branch and bound algorithm to solve the knapsack

problem. Since parallel exploration might result in unnecessary growth to the heap size, we

also implemented a technique that filters and discards invalid items in the heap when the heap

size is greater than a threshold. We refer to this optimized knapsack solver as knapsack with

garbage collection (GC).

S. Martello et al. [18] defined and evaluated different categories of the knapsack prob-

lems. Using the same generator, we generate 12 knapsack instances that correspond to three

strongly correlated, three almost strongly correlated, three even-odd strongly correlated, and

three subset-sum instances. The properties of these instances are presented in Table 5.4.

In this experiment, we compared the performance between the sequential (CPU) branch and

bound algorithm and GPU knapsack algorithm with the concurrent generalized heap. The test

result is shown in Table 5.5. On average, there is a 2.31X speedup for GPU knapsack and 2.48X

for GPU knapsack with GC. Note that GPU knapsack with heap performs especially well on

sumset sum (ss) instances with a maximum speedup of 12.19X. Since the branch and bound

45

algorithm is a greedy algorithm, it is possible for it to encounter several local maxima before

reaching the global one. Performing parallel exploration alleviates this issue by simultaneously

exploring multiple solutions to the problem, which can lead to faster convergence to the global

optimum solution.

Table 5.4: Datasets for 0/1 Knapsack Problem

Dataset Type Size Range
ks sc 700 18k Strongly Correlated 700 18000
ks sc 800 18k Strongly Correlated 800 18000
ks sc 200 7k Strongly Correlated 200 7000

ks asc 750 16k Almost Strongly Correlated 750 16000
ks asc 1300 6k Almost Strongly Correlated 1300 6000
ks asc 500 7k Almost Strongly Correlated 500 7000
ks esc 900 18k Even-odd Strongly Correlated 900 18000

ks esc 1200 13k Even-odd Strongly Correlated 1200 13000
ks esc 400 8k Even-odd Strongly Correlated 400 8000
ks ss 100 18k Subset Sum 100 18000

ks ss 1250 12k Subset Sum 1250 12000
ks ss 1300 14k Subset Sum 1300 14000

Table 5.5: 0/1 Knapsack Problem with the generalized heap

CPU w/ GPU w/ concurrent GPU w/ concurrent
Priority Queue heap heap and GC.

Dataset
Time # Nodes Time # Nodes

SpeedUp
Time # Nodes

SpeedUp
(ms) Explored (ms) Explored (ms) Explored

ks sc 700 18k 825.70 782802 670.57 813089 1.23 595.58 810717 1.39
ks sc 800 18k 977.49 923255 757.06 955374 1.29 708.02 956514 1.38
ks sc 200 7k 202.40 243106 199.76 249373 1.01 205.27 249935 0.99

ks asc 750 16k 757.17 709267 722.90 389249 1.05 566.17 445231 1.34
ks asc 1300 6k 5239.97 4934552 5118.03 2832737 1.02 4115.55 2404241 1.27
ks asc 500 7k 502.37 475402 549.10 296824 0.91 499.03 295951 1.01
ks esc 900 18k 1128.4 1080182 848.65 1123920 1.33 796.58 1124880 1.42

ks esc 1200 13k 2013.06 1950260 2066.64 2002002 0.97 1357.75 1770747 1.48
ks esc 400 8k 355.25 399185 346.53 418925 1.03 348.52 421504 1.02
ks ss 100 18k 42.38 54278 3.55 55 3.48 11.92 55 12.19

ks ss 1250 12k 20.27 23886 4.30 94 4.12 4.72 94 4.92
ks ss 1300 14k 25.02 25305 19.64 9452 1.27 18.01 8528 1.39

46

Chapter 6

Conclusion

Parallel computation on many-core architectures benefit various applications. However, ar-

guably the only way to unlock the full potential of many-core architecture for applications that

require complex asynchronous communication patterns is through efficient implementation of

concurrent data structures. In this thesis, we present a model, the concurrent generalized heap,

for building concurrent priority queue on many-core architectures and perform thorough evalu-

ations. The concurrent generalized heap exploits both intra-node and inter-node parallelism of

its underlying tree-based structure. It supports concurrent execution of insertion and deletion

operations. Furthermore, any comparable generic data types can take advantage of the con-

current generalized heap. Experiments show that the concurrent generalized heap is capable

of 19.49X speedup compare to the sequential heap on CPU, and 2.11X speedup compared to

existing GPU implementation [7]. We also apply the concurrent generalized heap to two real-

world applications: SSSP and knapsack, which shows an average speedup of 1.13X and 2.48X,

respectively.

This thesis sheds light on the potential of incorporating concurrent generalized heap with

many-core architectures to solve real-world applications. For example, Prim’s spanning tree

algorithm, data compression and A* search in artificial intelligence which are building blocks

for complex system software such as operating system scheduler, interruption handler, and

garbage collection. Moreover, since the concurrent generalized heap model shares the same

operations (insertion and deletion) with the conventional heap, it can be easily integrated into

existing frameworks. The future work remains to be integrating the model into more real-world

applications. The model presented in this thesis is just a prototype. Application-based opti-

mization can be done to adapt the model case by case such as the garbage collection technique

we presented when applying the model to solve the knapsack problem.

47

References

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-
matik, vol. 1, pp. 269–271, Dec 1959.

[2] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell System
Technical Journal, vol. 36, pp. 1389–1401, Nov 1957.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
pp. 100–107, July 1968.

[4] I. Buck, “Gpu computing: Programming a massively parallel processor,” in International
Symposium on Code Generation and Optimization (CGO’07), pp. 17–17, March 2007.

[5] R. Nageshwara and V. Kumar, “Concurrent access of priority queues,” IEEE Transactions
on Computers, vol. 37, no. 12, pp. 1657–1665, 1988.

[6] G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott, “An efficient algorithm for
concurrent priority queue heaps,” Information Processing Letters, vol. 60, no. 3, pp. 151–
157, 1996.

[7] X. He, D. Agarwal, and S. K. Prasad, “Design and implementation of a parallel priority
queue on many-core architectures,” in High Performance Computing (HiPC), 2012 19th
International Conference on, pp. 1–10, IEEE, 2012.

[8] N. Deo and S. Prasad, “Parallel heap: An optimal parallel priority queue,” The Journal of
Supercomputing, vol. 6, no. 1, pp. 87–98, 1992.

[9] N. Corporation, “Cuda c programming guide, version 9.1,” NVIDIA Corporation, Santa
Clara, CA, 2017.

[10] N. Corporation, “Nvidia fermi compute architecture whitepaper,” 2009.

[11] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified graphics
and computing architecture,” IEEE micro, vol. 28, no. 2, pp. 39–55, 2008.

[12] W. Commons, “File:software-perspective for thread block.jpg — wikimedia commons,
the free media repository,” 2016. [Online; accessed 23-April-2019].

[13] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock: A high-
performance graph processing library on the gpu,” in ACM SIGPLAN Notices, vol. 51,
p. 11, ACM, 2016.

[14] N. Corporation, “Nvidia’s next generation cuda compute architecture: kepler gk110: The
fastest, most efficient hpc architecture ever built.”

48

[15] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demystifying gpu
microarchitecture through microbenchmarking,” in 2010 IEEE International Symposium
on Performance Analysis of Systems Software (ISPASS), pp. 235–246, March 2010.

[16] H. W. Lang and F. U. of Applied Sciences, “Sorting networks,” Jun 2018.

[17] O. Green, R. McColl, and D. A. Bader, “Gpu merge path: a gpu merging algorithm,” in
Proceedings of the 26th ACM international conference on Supercomputing, pp. 331–340,
ACM, 2012.

[18] S. Martello, D. Pisinger, and P. Toth, “Dynamic programming and strong bounds for the
0-1 knapsack problem,” Management Science, vol. 45, no. 3, pp. 414–424, 1999.

