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The first three chapters of this dissertation describe a novel Bayesian methodology which

uses random walk sampling for rapid inference of the statistical properties of undirected

networks with weighted or unweighted edges. The statistics of interest include, but

are not limited to, the node degree distribution, the average degree of nearest-neighbor

nodes, and the node clustering coefficient. Our formalism yields high-accuracy estimates

of the probability distribution of any network node-based property, and of the network

size, after only a small fraction of network nodes has been explored. The Bayesian

nature of our approach provides rigorous estimates of all parameter uncertainties. We

demonstrate our framework on several standard examples, including random, scale-

free, and small-world networks, and apply it to study epidemic spreading on a scale-

free network. We also infer properties of the large-scale network formed by hyperlinks

between Wikipedia pages.

During our analysis of complex networks, the connection between the frequencies of

codons and the first-passage dynamics on the underlying single-point mutational net-

work, which describes the evolution of gene sequences, was investigated. Viewing codon

evolution as a random walk with deleterious sequences representing absorbing states
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inevitably led to the development of a detailed biophysical model for the investigation

of codon usage bias. Frequencies of synonymous codons are typically non-uniform, de-

spite the fact that such codons correspond to the same amino acid in the genetic code.

This phenomenon, known as codon usage bias, is believed to be due to a combination

of factors including genetic drift, mutational effects, and selection for speed and accu-

racy of codon translation; however, its quantitative modeling has been elusive. Here

we develop a biophysical population genetics model capable of explaining genome-wide

codon frequencies. Our model implements codon-level treatment of mutations with

transition/transversion biases, and includes two contributions to codon fitness which

describe codon translation speed and accuracy. Furthermore, it allows wobble pairing

– codon-anticodon base pairing mismatches at the 3’ nucleotide position of the codon.

We find that the observed patterns of genome-wide codon usage are consistent with a

strong selective penalty for mistranslated amino acids. In contrast, the dependence of

codon fitness on translation speed is weaker on average compared to the strength of

selection against mistranslation. Although no constraints on codon-anticodon pairing

are imposed a priori, a reasonable hierarchy of pairing rates, which conforms to the

wobble hypothesis and is consistent with available structural evidence, is predicted by

the model. Finally, we estimate mutation rates per nucleotide directly from the coding

sequences by treating the translation process explicitly in the context of a finite ribo-

somal pool, and predict that mutation rates are inversely proportional to the number

of genes. Overall, our approach offers a unified biophysical and population genetics

framework for studying codon bias.
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Chapter 1

Introduction to Random Walks on Complex Networks

Over the past few years, our lives have become increasingly dependent on large-scale

networks, often available through our computers and smartphones. In addition to the

original computer-based networks such as the World Wide Web and the Internet, many

online social networks have emerged, notably Twitter and Facebook. Our professional

and personal activities are influenced daily by knowledge-sharing online services such as

Wikipedia and YouTube. More generally, complex networks describe a broad spectrum

of systems in nature, science, technology, and society [3]. Many of these networks are

large and constantly changing, making an investigation of their statistical properties

a challenging task. In particular, estimating the network size becomes non-trivial if

the network is too large to resort to brute-force methods such as visiting every node.

Consequently, predicting various network statistics, typically from random samples of

limited size, has attracted considerable attention in the literature [4–11].

Here we present the development of a Bayesian theoretical framework for network

sampling by random walks (RWs) [6, 9]. Unlike previous results, this framework can

be used to build posterior probability distributions for any network node-based quan-

tity of interest. This approach reproduces several previously known global network

statistics estimators within a single formalism, automatically removes statistical biases

caused by RW sampling [6,7], and yields standard results in the uniform sampling limit.

Surprisingly, accurate estimates of various network properties, including its size, are ob-

tained after examining only a small fraction of all network nodes. The effectiveness of

this formalism is demonstrated in Chapter 2 not only on standard in silico networks,

but additionally with applications in epidemiology, and has produced known and new

statistics of the network formed by links between pages on Wikipedia in Chapter 3.



2

Consequentially the network property estimators which are developed by this formal-

ism show faster convergence than their uniform sampling counterparts.

1.1 Formulation of the Mean Return Time

Consider a RW on a network of N nodes with weighted edges: {wji}, where wji is the

rate of transition from node i to node j. The number of edges or links connecting i to

neighboring nodes is denoted ki and is known as the node degree [3]. Such a network

is illustrated in Fig. 1.1.

Figure 1.1: Microscopic structure of a complex network of nodes and edges.
Node i has edge number ki = 4 and is connected to node j via the edge weighted wji.

At each step, the walker will transition to a neighboring node with a probability

given by the edges weights through

P (i→ j) =
wji∑

k∈{nn}i wki
, (1.1)

where the sum is over all nearest neighbors of node i. We subdivide all network nodes

into sets Sx based on the value of some property x, such as the number of links connected

to the current node, ki; there are Nx nodes in each set. We assume that the property

in question is either discrete or can be discretized by binning if continuous.
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Focusing on undirected networks with symmetric rates, wji = wij , the stationary

probability for the RW to occupy node i, πi, can be determined using the steady-state

master equation [38,39]:

∑
j∈{nn}i

[πjP (j → i)− πiP (i→ j)] = 0. (1.2)

Equation (1.2) is satisfied if πi ∼ wi =
∑

k∈{nn}i wki, where wi is the total outward

rate from node i. It follows that for unweighted networks, the node’s stationary prob-

ability is simply proportional to its degree ki [40]. With normalization, the stationary

probabilities become

πi =
wi∑N
i=1wi

. (1.3)

If the walker starts from a node with property x, the average number of steps between

subsequent visits to any node within the set Sx, also known as the mean return time

(MRT), is given by [41]:

〈`〉x =
1∑

i∈Sx
πi
. (1.4)

In the case of undirected networks this is

〈`〉x =
〈w〉

px〈w〉x
, (1.5)

where px = Nx/N is the fraction of nodes with property x, 〈w〉 = N−1
∑N

i=1wi, and

〈w〉x = N−1
x

∑Nx
i=1wi.

1.2 Return Time Distribution

To recover the full return-time distribution, we follow the approach of [42] and define

the jump matrix Q where the entries of this matrix are given by Eq. (1.1),

Qji = P (i→ j). (1.6)

Introducing the notation that |σi〉 is a column vector with a single non-zero entry at

tha ith position equal to 1, the probability that the RW process is found on node j
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after ` steps, or the occupation probability, is given by

P (`) = 〈σj |Q`|σi〉. (1.7)

To describe the return process to nodes with property x, we start the RW a single step

off a node from set Sx, |σ0〉 ≡ Q|σi〉, and replace the single destination node row vector

〈σj | with a sum nodes in Sx,

〈σx| =
∑
j∈Sx

〈σj |. (1.8)

To only treat first returns, the jump matrix must also be modified so that the nodes

in Sx act as absorbing states, Q → Qx. This is done by setting the probability to

transition out of any of these nodes to zero,

〈σj |Qx|σi〉 = 0,∀i ∈ Sx. (1.9)

Therefore the probability that a RW process will return on exactly the ∆`th step to

any node within Sx after starting from a node in this set is given by

P (∆`|Qx) =


〈σx|Q∆`−1

x |σ0〉, if ∆` ≥ 1

0, otherwise

(1.10)

Expanding |σ0〉 in the eigenbasis of Qx, the non-zero portion of Eq. (1.10) becomes

P (∆`|Qx) = 〈σx|Q∆`−1
x

∑
i

ai|ψi〉 =
∑
i

aiλ
∆`−1
i 〈σx|ψi〉, (1.11)

where each λi is an eigenvalue of Qx with corresponding eigenvector |ψi〉. If the eigen-

values are ordered from largest to smallest, λ0 > λ1 > ..., then after a sufficient number

of steps, ∆`∗, defined by

a1〈σx|ψ1〉λ∆`∗−1
1

a0〈σx|ψ0〉λ∆`∗−1
0

� 1, (1.12)
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the first term will dominate the sum in Eq. (1.11),

P (∆`|Qx) ≈ a0〈σx|ψ0〉λ∆`−1
0 . (1.13)

With the definition qx ≡ − lnλ0, this leads to our central ansatz,

P (∆`|qx) ∝


e−qx∆`, for ∆` ≥ 1.

0, otherwise

(1.14)

With the normalization condition
∑∞

∆`=0 P (∆`|qx) = 1, this yields exactly

P (∆`|qx) = (eqx − 1)e−qx∆` ≈ qxe−qx∆` for ∆` ≥ 1, (1.15)

where the approximation is valid for qx � 1. Note that with this condition, the average

number of steps between returns is simply

〈`〉x =
1

1− e−qx
≈ 1

qx
(1.16)

This exponential ansatz for the return time distribution is supported by several ob-

servations: The behavior of the solutions to the diffusion equation in d dimensions yield

a first-passage distribution with exponential long-time behavior for finite systems [43].

Additionally, the return-time distribution is known to be asymptotically exponential

in arbitrary finite networks [44]. We also find empirically that an exponential ansatz

for P (∆`|qx) is sufficiently accurate for our purposes (Fig. 2.1(a)–3.1(a)), although the

following analysis is not limited to it.

1.3 Bayesian Formalism

Equations (1.5) and (1.16) provide a connection between the RT distribution parameter

qx and several network properties: the average outward rate over all nodes, 〈w〉, over

nodes with property x, 〈w〉x, as well as the fraction of nodes with property x, px. It then

follows that predicting qx from the dynamics of a RW would provide some insight into
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these global network properties. We start this analysis by constructing the likelihood

function of qx given the characteristics of a RW on a complex network.

With the distribution given by Eq. (1.15), the survival probability, or the probability

to have no return events in ∆` consecutive steps, is given by

S(∆`|qx) = 1−
∆∑̀

∆`′=1

(eqx − 1)e−qx∆`′ = e−qx∆`. (1.17)

Therefore the likelihood that during a single RW of length ` steps the walker has visited

the nodes in Sx at intervals ∆`1 = `1,∆`2 = `2 − `1, ...,∆`Kx = `Kx − `Kx−1, and has

not returned to Sx for the remaining ∆`Kx+1 = `−
∑Kx

i=1 ∆`i steps, is

P ({∆`i}|qx) = e−qx(`−
∑Kx

i=1 ∆`i)
Kx∏
i=1

qxe
−qx∆`i = qKx

x e−qx`. (1.18)

Granted that this is independent of the intervals between returns, {∆`i}, it then fol-

lows that the likelihood of Kx visits to nodes in Sx for a RW with a total of ` steps

independent of the intervals between subsequent visits is

P (Kx|qx) =
∑

∆`1+∆`2+...∆`Kx+1=`

qKx
x e−qx` =

(
`

Kx

)
qKx
x e−qx`. (1.19)

This function has a maximum likelihood (ML) value of

q̂x =
Kx
`
. (1.20)

Assuming a uniform prior for qx in the [0, 1] range, the posterior probability for qx

becomes

P (qx|Kx) =
P (Kx|qx)P (qx)

P (Kx)
=

dqx
P (Kx)

qKx
x e−qx`. (1.21)

The evidence, P (Kx), can be determined granted that Eq. (1.21) must be normalized

over qx,

P (Kx) =

∫ 1

0
dqxq

Kx
x e−qx` =

Kx!

`Kx+1

(
1− e−`

)
− e−`

`

Kx−1∑
j=0

Kx!

(Kx − j)!`j

 . (1.22)
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The summation in the second term is bounded from above by

Kx−1∑
j=0

Kx!

(Kx − j)!`j
≤
Kx−1∑
j=0

(
Kx
`

)j
=

1−
(Kx
`

)Kx

1− Kx
`

, (1.23)

which approaches a nonzero constant value as ` increases given that Kx ≤ `. Therefore

Eq. (1.22) is well approximated by

P (Kx) ≈ Kx!

`Kx+1
(1.24)

even after a small number of steps. In this regime, Eq. (1.21) becomes a gamma

distribution,

P (qx|Kx) ≈ dqxΓ(qx;Kx + 1, `) = dqx`
(qx`)

Kx

Kx!
e−qx` (1.25)

which rapidly approaches a Gaussian as ` increases. This posterior probability distri-

bution is then completely characterized by a mean of q̄x = q̂x and standard deviation

of σqx = q̂x/
√
Kx.

1.4 Network Property Estimators

The resulting posterior probability distribution recovered in the previous section de-

fines an ML value and standard error for qx (Eq. (1.25)). This quantity is connected

to the fraction of nodes with property x, px, through Eqs. (1.5), (1.16), and (1.20).

Together this yields a maximum likelihood estimate (MLE) and a standard error for

the probability px of the property x:

p̂x =
Kx
`

〈w〉
〈w〉x

and σpx =
p̂x√
Kx

(1.26)

Generally, 〈w〉 and 〈w〉x are not known. However, imposing normalization recovers an

estimator which is independent of these two quantities,

p̂x =
Kx/〈w〉x∑
x′ Kx′/〈w〉x′

. (1.27)
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As an example: if the property x is the outward rate w, Eq. (1.27) yields

p̂w =
Kw/w∑
w′ Kw′/w′

, (1.28)

where Kw is the number of visits to nodes with total outward rate w.

For an arbitrary node property x, each set Sx can be additionally subdivided by the

values of w, such that

p̂x =
∑
w

p̂x,w =
∑
w

Kx,w
w

/
∑
w′

Kw′
w′

, (1.29)

where Eq. (1.28) was employed to compute p̂x,w. Here, Kx,w is the number of visits to

nodes with property x and total outward rate w. Thus, the knowledge of Kw, Kx,w, and

w is sufficient to reconstruct the MLE of the distribution of any property x, estimate

the error in this reconstruction (Eq. (1.27)), and compute moments to arbitrary order.

Note that the division by the outward rates in Eq. (1.29) naturally corrects for the bias

known to be introduced by RW sampling [6–8]. For unweighted networks (wij = 1, ∀ij),

p̂w reduces to p̂k, the network degree distribution [3].

It follows from the estimate of the outward rate distribution (Eq. (1.28)) that the

MLE of the average outward rate is given by

〈ŵ〉 =
∑
w

wp̂w =
`∑

w′ Kw′/w′
, (1.30)

where we used
∑

w Kw = `. Note that the imposed normalization in Eq. (1.29) is

identical to using this average outward rate estimator directly in Eq. (1.26) to find the

fraction of nodes with property x. The uncertainty of this estimate can be evaluated

in quadrature assuming independence in each pw,

σ2
〈w〉 =

〈(∑
w

wpw − 〈ŵ〉

)2〉
=
∑
w

w2σ2
pw , (1.31)

where the outer 〈...〉 represent an average of over the posterior probability distributions.
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This result in combination with Eqs. (1.27) and (1.28) yields σ〈w〉 = 〈ŵ〉/
√
`, in accor-

dance with the central limit theorem. For an arbitrary property, it follows similarly

that

〈x̂〉 =
∑
x

xp̂x and σ2
〈x〉 =

∑
x

x2σ2
px . (1.32)

1.5 Network Size Estimation

We will now focus on estimating a specific property: the full network size, N . Let us

suppose now that the network nodes are divided into two sets: Np randomly chosen

nodes, which we will refer to as pseudotargets, and all other nodes. The pseudotarget

nodes are drawn prior to exploring the network, so that the average pseudotarget out-

ward rate, 〈w〉p, is known. Equations (1.5) and (1.19) can now be used to construct the

posterior probability for the network size (assuming a uniform prior in the [Np, Nmax]

range, where Nmax denotes an expected upper limit on N):

P (N |Kp) =
N−Kp exp

{
−Np〈w〉p

N〈w〉 `
}

∑Nmax

Ñ=Np
Ñ−Kp exp

{
−Np〈w〉p

Ñ〈w〉 `
} , (1.33)

where Kp is the number of visits to pseudotargets. Note that using non-uniform priors

in Eqs. (1.21) and (1.33) will not significantly affect the results, as long as Kx and

Kp are sufficiently large. Similar to Eq. (1.21), we find that this posterior probability

quickly becomes Gaussian as Kp increases, with

N̂ =
`Np〈w〉p
Kp〈w〉

and σN =
N̂√
Kp

. (1.34)

Using Eq. (1.30), we obtain

N̂ =
Np〈w〉p
Kp

∑
w

Kw
w
. (1.35)

Note that the error in N̂ can be reduced either through increasing Np or assigning

highly-connected nodes (network hubs) to be pseudotargets. In the Np = 1 limit,

Eq. (1.34) recovers the network size estimator found in Ref. [9]. This process of counting

returns to pseudotargets is similar to the methods for computing network size estimators
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discussed in both [45] and [9].

An alternative approach is to start at the level of Eq. (1.26) where the property x

is either 1 or 0 if the node is or is not a pseudotarget, respectively. The fraction of

pseudotargets is then given by

p̂p =
Kp〈w〉
`〈w〉p

. (1.36)

Granted that Np is known, this estimate for the fraction of nodes which are pseudo-

targets can be used to estimate the network size: N̂ = Np/p̂p. Brief inspection of

Eq. (1.36) demonstrates that this yields an identical estimator to Eq. (1.34).
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Chapter 2

Validation and Synthetic Networks

We have implemented the above network statistics acquisition framework as follows

for several examples: for each network, Np pseudotargets are randomly drawn when

node sampling is possible, and their 〈w〉p is computed. Commencing the RW from one

of these pseudotargets, we record `, Kp, {Kw}, and {Kx,w} for a desired set of node

properties x. At any point during the RW, Eqs. (1.27)–(1.35) can then be used to find

various network statistics.

A minimal form of this RW sampling process could be followed in the case of only

computing 〈ŵ〉 and its standard error. Under this scheme, only two variables would

need to be saved in physical memory: the number of steps `, and the sum of the

reciprocal out rates seen thus far by the walker,
∑`

i=1w
−1
i . The estimator would then

be simply

〈ŵ〉 =
`∑`

i=1 1/wi
(2.1)

with standard error

σ〈w〉 =

√
`∑`

i=1 1/wi
, (2.2)

in contrast to Eq. (1.30) in which both the visits and outward rates are stored sepa-

rately. This formula is just the harmonic mean of the outward rates seen by the walker,

and is notably different from what might be the more intuitive choice of taking an

algebraic mean,

〈ŵ〉 =
1

`

∑̀
i=1

wi (2.3)
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2.1 Synthetic Network Examples

We have used this algorithm to study three unweighted, undirected networks: an Erdős-

Rényi (ER) random graph [46], a scale-free (SF) random graph [3], and a small-world

(SW) network [47]. Each network has N = 106 nodes. The ER network was constructed

by randomly assigning dN log(N)/2e edges between nodes, the SF network by the

preferential attachment method [3] with m = 2 edges attached to new nodes, and the

SW network as described in Ref. [48], with the shortcut probability p = 1/2.

For each network, Np = 103 pseudotargets were randomly drawn and the network

was subsequently explored with a random walk for ` = 105 steps, visiting at most

10% of all nodes. Besides network sizes and degree distributions, we tracked posterior

probabilities of the average degree of nearest-neighbor nodes,

〈knn〉i ≡ k−1
i

∑
j∈{nn}i

kj , (2.4)

the clustering coefficient [4],

Ci ≡
2y

ki(ki − 1)
, (2.5)

where y is the total number of links shared by the nearest neighbors of node i, and a

measure of the degree inhomogeneity [7]

ρi ≡
∑

j∈{nn}i

(
k
−1/2
i − k−1/2

j

)2
. (2.6)

This final quantity averaged over all nodes in the network is the heterogeneity index

defined in [7] from which each network’s Randić index can be determined.

A summary of the ER system statistics is provided in Fig. 2.1. Fig. 2.1(a) shows that

the exponential ansatz for the RT distribution, Eq. (1.15), is accurate for this system.

Fig. 2.1(b) demonstrates the convergence of the average degree and the network size

to the exact values during 5 representative runs. The predicted degree distribution,

pki , known to be Poisson [46], is shown in Fig. 2.1(c). Finally, in Fig. 2.1(d), we

demonstrate the evolution of the posterior distribution for the network size as more
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data is collected. Additional statistics for the ER, SF and SW systems are summarized

in Table 2.1. The reconstruction (red points with vanishingly small error bars) overlays

Figure 2.1: Erdős-Rényi network statistics. (a) Pseudotarget RT distribution (20
independent trials). Equation (1.15) parameterized by exact qp = 〈`〉−1

p (Eq. (1.5))
is shown in cyan. (b) MLEs for 〈k〉 and N (purple and red lines, respectively) for 5
representative trials, with envelopes representing ±2σ intervals and exact values shown
as dashed lines. (c) MLE for pki with ±2σ intervals (red circles with error bars) (single
trial); exact distribution shown in green. Exact 〈k〉 and its MLE shown is as dashed
and solid lines, respectively. (d) Posteriors for N at two Kp values (single trial). Exact
N shown as dashed line.

the true distribution (green line) almost exactly as these statistics converge long before

the error in the network size diminishes due to the choice of pseudotargets. This

point is further emphasized in Fig. 2.1(b) which shows that even early in the walk, the

estimate for 〈k〉 is close to its true value for all 20 trials shown, while N̂ is still variable,

although the true network values are well within the confidence intervals enveloping each

trajectory. Note that the assumed exponential form of the RT distribution does indeed

appear to be accurate for this system, as is evidenced by Fig. 2.1(c). Additionally,
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Table 2.1: Network statistics summary for the Erdős-Rényi, Scale-Free, and
Small-World systems. Shown are MLE and 95% confidence interval (2σ) for each
quantity, followed by exact values in parenthesis. All predictions are based on single
trials with ` = 105 steps.

Erdős-Rényi Scale-Free Small-World

N 1.25× 106 (106) 8.91× 105 (106) 9.48× 105 (106)
±.40× 106 ±1.65× 105 ±1.85× 105

〈k〉 13.8 (13.8) 4.00 (4.00) 4.01 (4.00)
±.1 ±.03 ±.03

〈〈knn〉〉 14.8 (14.8) 24.5 (24.5) 4.12 (4.12)
±.1 ±.6 ±.03

〈C〉 1.46× 10−5 (1.38) 9.05× 10−5 (9.89) .882 (.883)
±.45× 10−5 ×10−5 ±7.18× 10−5 ×10−5 ±.006

〈ρ〉 .0374 (.0373) .386 (.387) .0142 (.0141)
±.0005 ±.003 ±.0001

and to demonstrate a full application of Eq. (1.33), the posterior distribution for the

network size has been constructed at two separate times in Fig. 2.1(d). These two

times correspond to early in the walk, Kp = 15, and after the walk has completed,

Kp = 98. Further results calculated for this system as well as the SF and SW systems

are summarized in Table 2.1. Although the topologies of these three systems are quite

different, we recovered the network-wide averages with high fidelity.

2.2 Generalized Erdős-Rényi Network

Next, we have constructed a generalized ER network with N = 106 nodes and weighted

edges. After placing all the edges as in the unweighted ER network, a loop was added

to each node with probability p = 1/2. All loops and edges were then assigned a

symmetric weight wij = wji drawn from an exponential distribution with unit mean.

For this system, we have collected statistics on each node’s total outward rate, wi, loop

weight, wloop
i = wii (note that wii = 0 for nodes without loops), outward rate averaged
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Table 2.2: Network statistics summary for the Generalized Erdős-Rényi sys-
tem. Shown are MLE and 95% confidence interval (2σ) for each quantity, preceded
by exact values in parenthesis. All predictions are based on single trials with ` = 105

steps.

Generalized Erdős-Rényi

N 〈w〉 〈〈wnn〉〉 〈wloop〉 〈〈wloop
nn 〉〉

(106) (14.3) (15.3) (.501) (.519)
1.18× 106 14.3 15.3 .503 .518
±.26× 106 ±.1 ±.1 ±.006 ±.004

over all nearest neighbors of node i, 〈wnn〉i, and average nearest-neighbor loop weight,

〈wloop
nn 〉i.

We have explored the statistics of these quantities using a RW with ` = 105 steps

and Np = 103 randomly drawn pseudotargets (Table 2.2, Fig. 2.2). Note that the RT

distribution for this system deviates from purely exponential since many returns occur

after a single step due to loops (Fig. 2.2(a)). Nonetheless, all the network statistics

we have considered are predicted accurately (Fig. 2.2(b)–(d)), except for the tail of the

Fig. 2.2(d) distribution since those rare events were not observed. Thus our methodol-

ogy is equally applicable to studies of weighted networks with loops.

2.3 Traffic-Driven Epidemiological Model

After validating our approach on model systems, we have demonstrated its effectiveness

in a more realistic setting, by tracking an epidemic spreading on a scale-free network

in the traffic-driven epidemiological (TDE) model [49]. Following Ref. [49], we have

generated the underlying network using a hidden-metric approach, which employs a

tunable parameter α to control the degree of local node clustering [50, 51], and the

degree distribution follows a power-law, pki ∼ ki
−γ . For our network, we have chosen

N = 105, γ = 2.6, and α = 2 (which leads to significant clustering).
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Figure 2.2: Network statistics of a generalized Erdős-Rényi network. (a) Pseu-
dotarget RT distribution. Equation (1.15) parameterized by exact qp is shown in cyan.
(b) MLE ± 2σ (red circles with error bars) for the distribution of total outward rates;
exact distribution shown in green. Predicted average: solid line, exact average: dashed
line. (c) MLE ± 2σ (red circles with error bars) for the distribution of loop weights;
exact distribution shown in blue. (d) MLE±2σ (red circles with error bars) for the dis-
tribution of loop weights averaged over all nearest neighbors; exact distribution shown
in blue. In (b)–(d), all values were grouped into 100 bins.

2.3.1 Hidden-Metric Model

The hidden metric consists of a 1-dimensional circle [50]. After assigning each node

a uniformly drawn location on this hidden metric, θ ∈ [0, 2π), each node is given an

expected degree, κ, drawn from the power-law distribution, p(κ) ∼ κ−γ . Each pair of

nodes is then linked with a probability based on the node locations on the metric and

their expected degrees:

p ∼
(

1 +
d(θ, θ′)

ηκκ′

)−α
, (2.7)
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where η ≡ (α− 1)/2〈k〉, and d(θ, θ′) is the geodesic distance between the two nodes on

the hidden metric. This method of generation results in a network with not only the

Scale-Free and Small-World properties, but additionally develops local cluster struc-

tures through the parameter α. The resultant degree distribution has been shown to

asymptotically have the same power-law behavior as the expected degree distribution

with characteristic exponent γ. Figure 2.3(a) demonstrates that even with the local

structures present in this network, the RT distribution is very well approximated by

the exponential ansatz for our set of Np = 1000 pseudotargets.

Figure 2.3: Epidemic spreading statistics. (a) Pseudotarget RT distribution. Equa-
tion (1.15) parameterized by exact qp is shown in cyan. (b) MLE± 2σ (red circles with
error bars) for the node degree distribution; exact distribution is shown in blue and its
average is shown as a vertical line. (c) MLE ± 2σ (red circles with error bars) for the
fraction of infected nodes ρ(t) computed at unit time intervals, with the exact value
shown as a dashed blue curve. (d) Histograms of βc MLEs obtained using 104 inde-
pendent runs with ` = 102, 103, 104 steps. Exact value is shown as a vertical dashed
line.
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2.3.2 Epidemic Simulation

Epidemic propagation was simulated through the exchange of W contagion packets

between nodes (see Ref. [49] for details). Briefly, each node can be in either a susceptible

or infected state; the simulation starts with a single infected node. When a packet moves

from node i to node j on the network, node j becomes infected with the spreading

probability β if node i was infected; infected nodes can also recover with rate µ, set to

1 without loss of generality. We have focused on the case in which contagion packets

perform RWs between randomly assigned initial and destination nodes. Once a packet

reaches its destination, it is removed and a new packet is added to keep W constant.

The rate of packet movement, ν, is set such that on average each packet moves once per

unit simulation time. Under this choice of packet dynamics, the mean-field equation

for the relative fraction of infected nodes with degree k at time t, denoted ρk(t), in the

simulation is given by [49]

∂tρk(t) = −µρk(t) +Wν
k

〈k〉N
[1− ρk(t)]Θ(t)β, (2.8)

where Θ(t) is the probability that a packet is transferring from an infected node and is

given by

Θ(t) =
∑
k

k

〈k〉
pkρk(t) (2.9)

At steady-state, ∂tρk(t) = 0, this probability can be shown, through Eqs. (2.8) and

(2.9), to follow the consistency equation

Θ =
∑
k

Wν k2pk
〈k〉2NΘβ

µ+Wν k
〈k〉NΘβ

, (2.10)

which has a solution for Θ if

d

dΘ

∑
k

Wν k2pk
〈k〉2NΘβ

µ+Wν k
〈k〉NΘβ

∣∣∣∣
Θ=0

> 1. (2.11)
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Table 2.3: TDE model statistics summary. Shown are MLE and 95% confidence
interval (±2σ) for each quantity, followed by exact values for the TDE model system.
All predictions are based on a single representative RW with ` = 104 steps corresponding
to the unit time interval in the TDE model.

TDE Model Network

N 〈k〉 〈〈knn〉〉 〈C〉 W/N

1.01× 105 (105) 8.02 (8.14) 64.6 (67.1) .251 (.255) 2.00 (2.00)
± .08× 105 ±.16 ±4.2 ±.011 ±.05

This defines a critical value of the infection probability given by

βc =
〈k〉2

〈k2〉
N

W
, (2.12)

above which a sustained epidemic outbreak is possible [49]. We have set W = 2N and

β = 7× 10−1 � βc = 6.24× 10−2 in the simulation.

2.3.3 Random Walk Sampling and Epidemic Tracking

We have used a single RW with ` = 104 steps and Np = 103 pseudotargets to verify the

validity of our exponential ansatz (Fig. 2.3(a)) and predict the node degree distribution

(Fig. 2.3(b)); several other statistics relevant to the study of epidemics on networks [52]

are listed in Table 2.3. In addition, we have tracked time-dependent evolution of the

fraction of infected nodes ρ(t) (Fig. 2.3(c)). We have assumed that nodes can be queried

much faster than the time scales on which the epidemic spreads, and thus matched `

steps of our RW sampling to the unit time interval in the TDE model (Fig. 2.3(c),

Table 2.2). Finally, we have predicted βc using the evolving system’s snapshot, again

under the assumption that RW sampling is fast compared to the time scales of the

epidemics (Fig. 2.3(d)).

The MLE and 95% confidence intervals for the network size, average degree, average

nearest-neighbor degree, clustering coefficient, and average packet occupancy from a

single representative sampling of ` = 104 steps are displayed in Table 2.2 with the full
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degree distribution shown in Fig. 2.3(b). Additionally the estimation of ρ(t) at the end

of each of the intervals alongside the true simulation value are shown in Fig. 2.3(c).

Note that during the interval t = 4...8 when the epidemic spread is the most rapid, the

estimation is below the true value as the statistic is based on a range of values of ρ(t).

As a final observation, we have computed βc by sampling nodes uniformly for a

sample of size ` and noted the slow convergence when compared to RW sampling. For

uniform node sampling, the estimates for 〈k〉, 〈k2〉, and W/N are given by the algebraic

mean:

〈x̂〉 =
1

`

∑
x

Kxx, (2.13)

where Kx is the number of occurances of nodes with property x in the sample of size

`. The histograms of β̂c values obtained from uniform sampling with the same three

sample sizes as in Fig. 2.3(d) are shown in Fig. 2.4. For all three cases, the histograms

are clearly more sharply peaked around the true value of βc for RW sampling.

Figure 2.4: Comparison of RW to uniform-node sampling.Histograms of βc MLEs
obtained using 104 independent runs with ` = 102, 103, 104 steps. Exact value is shown
as a vertical, red dashed line. Also included (dashed curves) are the histograms of βc
MLE values for the same three sample sizes obtained through uniform node sampling.
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2.4 Modular Network

As an extreme example of network size inference in a highly disjoint system, we have

considered two clusters connected by a single link. Accurate prediction of the total

network size is still possible in such a system if (i) pseudotargets are chosen as a random

subset of all network nodes to minimize correlation effects and (ii) 〈k〉 is similar in each

cluster. The latter requirement can be relaxed if pseudotargets are chosen e.g. among

network hubs within a narrow range of k.

Figure 2.5: Inference of the network size in a two-component system. Distri-
bution of N̂ , the MLE of the total network size, for 104 RWs on an unweighted network
composed of two clusters that are connected by a single link. Both clusters were gener-
ated using a hidden-metric approach (Ref. [50,51]), and contain 1×105 (〈k〉 = 8.14) and
7× 104 (〈k〉 = 8.54) nodes, respectively. Np = 1.7× 103 pseudotargets were uniformly
distributed in both clusters. Each random walk had ` = 1.7×104 steps. Exact network
size is shown as a dashed red line, average predicted value is shown as a purple line.

2.4.1 Two Disconnected Cliques

Taking the case of a highly modular network, and assuming the initial pseudotargets can

still be drawn uniformly from the full network, the number of returns to pseudotargets
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will tend towards

Kp →
`N ′p〈w〉′p
N ′〈w〉′

, (2.14)

where the primes indicate that these are local rather than global quantities. Additionaly

〈ŵ〉 is also being computed from local statistics, and so this estimate will tend towards

〈w〉′ rather than the global 〈w〉. The estimator for the full network size will then yield

N̂ =
`Np〈w〉p
Kp ˆ〈w〉

= N ′
Np〈w〉p
N ′p〈w〉′p

. (2.15)

Provided that enough pseudotargets are placed on the network uniformly, the local

fraction of pseudotargets is close to the global fraction, N ′p/N
′ ≈ Np/N . This leaves

Eq. (2.15) only biased by the pseudotarget outward rates,

N̂ = N
〈w〉p
〈w〉′p

. (2.16)

If then the average outward rate in this region is close to the global average, the estima-

tor will provide the correct answer for the full network size for `� 1, even if this region

is completely disconnected from the network. If this is not the case, the estimator will

remain biased. Fortunately this error can be detected if more than a single RW is used.

Starting each RW from a random pseudotarget will result in a variety of values for the

estimations of each statistic examined in this latter case.

To illustrate this point, we ran 104 RWs each of length ` = 105 steps with Np = 103

pseudotargets on a network consisting of two cliques joined by a single link. To capture

the case in which 〈w〉p 6= 〈w〉′p, the two clique sizes (which determine the two average

outward rates) were set to N ′ = 2 × 105 and N − N ′ = 8 × 105. The values obtained

from Eq. (2.15) at the end of each walk formed a bimodal distribution shown in Fig. 2.6

demonstrating that the value of the estimate is highly dependent on which clique the

RW started from. As a contrast, we repreated this sampling on a network with equal

clique sizes, N ′ = N − N ′ = 5 × 105, leading to 〈w〉 = 〈w〉′ such that the network

size was obtained accurately. This can be seen in Fig. 2.7 where the distribution is no

longer bimodal.
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Figure 2.6: N̂ distribution for 104 RWs on the unequal clique network.

Figure 2.7: N̂ distribution for 104 RWs on the equal clique network.
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Chapter 3

Random Walk Sampling of Wikipedia

Finally, we have examined the network formed by hyperlinks between English articles

on Wikipedia. Links connecting an article to itself were disregarded, multiple links

between articles were counted as one, and automatic redirects were disallowed, resulting

in an unweighted, undirected, loopless network consisting of all English articles, redirect

pages, and disambiguation pages [53]. To assign pseudotargets, the first 5000 pages

were drawn from Wikipedia’s static HTML dumps. A single randomly chosen link

was then taken from each of these pages and the node it pointed to was designated

as a pseudotarget, resulting in Np = 4769. This procedure increases the likelihood

that the pseudotargets are hubs with a large number of links, facilitating collection

of the network statistics since Kp grows more rapidly [5, 9, 40]. Artificially increasing

〈k〉p in this way significantly augments the rate of Kp accumulation and so causes the

error in the network size estimate to diminish rapidly. In theory, further hubs could

be sought to increase the rate at which σN → 0. However, eventually this would lead

to the exponential approximation of the RT distribution to break down. Even so, a

pseudotarget set with qp close to 1 would still yield an accurate network size estimate

as is clear upon examination of Eq. (1.34).

We have focused on several statistics that facilitate comparison with known prop-

erties of Wikipedia: the size of each page in bytes, ν, and two variables χr, χd ∈ {0, 1}

representing whether a page is a redirect or a disambiguation page, respectively. The

quantities 〈χr〉, 〈χd〉, 〈χrχd〉, and 〈νa〉 ≡ 〈(1 − χr)ν〉 then give the fraction of redirect

pages, disambiguation pages, both redirect and disambiguation pages, and the average

storage space in bytes of English articles (Wikipedia excludes redirect pages from its

estimates of the number of articles [53]), respectively. The RW was run for ` = 5× 104
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Table 3.1: Wikipedia statistics. Shown are MLE and the 95% confidence interval
(2σ) for each quantity. All predictions are based on a single trial with ` = 5×104 steps.

N 〈k〉 〈χr〉 〈χd〉 〈χrχd〉

13.4× 106 47.7 .6009 .0399 .0165
±1.2× 106 ±.4 ±.0197 ±.0047 ±.0059

〈νa〉 〈ν〉 N(1− 〈χr〉) N〈χr〉 N〈νa〉

2670 2720 5.35× 106 8.05× 106 35.8
±40 bytes ±40 bytes ±.56× 106 ±.79× 106 ±3.3 GB

steps, with the resulting predictions shown in Table 3.1 and Fig. 3.1.

We find that Wikipedia contains 13.4 million pages, each of which is connected

to 48 other pages on average. The majority of Wikipedia pages, 60%, are redirect

pages, and 4% are disambiguation pages. We estimate the total number of English

articles (including disambiguation pages) to be 5.35 million, and the total number of

redirect pages to be 8.05 million, within the confidence intervals of the values reported

by Wikipedia: 5.5 and 8.0 million, respectively [54]. We find the total size of English

articles in Wikipedia to be 35.8 gigabytes (GB), in reasonable agreement with the

Wikipedia statement that text alone accounts for 27.6 GB of the storage space of

English articles [55].

Fig. 3.1(a) demonstrates that the assumption of the exponential RT distribution

is reasonable for Wikipedia, with some enrichment for short RTs due to the choice

of network hubs as pseudotargets. Fig. 3.1(b) shows how the estimate of the total

number of Wikipedia pages evolves as Kp increases. As in many other Internet-based

networks [56], the degree distribution of Wikipedia pages is scale-free (Fig. 3.1(c)). In

contrast, the distribution of page sizes is not scale-free, and the size of an average

Wikipedia page is only 2.7 kB (Fig. 3.1(d), Table 3.1).
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Figure 3.1: Wikipedia network statistics. (a) Pseudotarget RT distribution. Equa-
tion (1.15) parameterized by q̂p is shown in cyan. (b) MLE± 2σ for N as a function of
Kp. (c) MLE ± 2σ for the degree distribution of Wikipedia pages of all types. Power-
law fit, pki ∼ ki

−γ , is shown as a green dashed line. Average degree shown as vertical
line. (d) MLE± 2σ for the distribution of Wikipedia page sizes. Average size shown as
vertical line.
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Chapter 4

Concluding Remarks for Random Walk Sampling on

Complex Networks

In conclusion, we have presented a general Bayesian approach to collecting various net-

work statistics, including the size of the network, using RWs that visit only a small

fraction of all network nodes. Our approach works for both weighted and unweighted

undirected networks, and remains accurate in the presence of loops. Our main assump-

tion, that of the exponentiality of the RT distribution, appears to hold in all the cases

we have examined explicitly, and can be relaxed if necessary. Our future work will focus

on extending this methodology to directed and time-dependent networks.
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Chapter 5

Introduction to Codon Usage Bias

A further application of random walks on networks in the life sciences arises in our

investigation of the codon bias. The central dogma of molecular biology states that

consecutive triplets of nucleotides called codons are translated into amino acids during

protein production [12,13]. As there are 64 codons and 20 amino acids, the translation

code is degenerate, with as many as 6 codons translated into a single amino acid.

Pronounced differences in synonymous codon usage are observed in any organism for

which protein coding sequences are available and therefore codon frequencies can be

reliably computed. These genome-wide differences are known as codon bias [14–18].

Since codon usage is one of the most fundamental features of genomes, a quantitative

understanding of its evolution is critical to molecular biology.

Because the function of a protein is determined solely by its amino acid sequence,

arguably the most basic mechanism for dictating the choice of synonymous codons is

neutral evolution on the network formed by single-point mutations between codons

subject to a fitness landscape shaped by selective penalties for amino acid mistrans-

lation [19, 20]. The codons which translate into a suboptimal amino acid then act as

absorbing states in this first-passage process of sequence evolution. In this approach,

non-uniform codon frequencies are produced due to mutational robustness [21] and

transition/transversion mutational biases [22].

Another popular explanation for the global codon bias involves selection and postu-

lates that certain codons are translated more efficiently than others, resulting in higher

protein production rates and therefore higher cellular growth rates or fitness [20,23–25].

This translation efficiency can be characterized as a balance between translation speed

and accuracy [26]: a particular codon may be more rapidly translated due to a higher
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concentration of the corresponding tRNAs (a hypothesis supported by the correlation

between tRNA gene copy numbers and codon frequencies [27]), but may also cause more

translation errors. The translation errors can be viewed through the lens of the wob-

ble hypothesis, which states that each codon can be recognized by non-cognate tRNA

species, with mispairings that occur at the 3’ nucleotide position in the codon [28,29].

Codon bias has been previously examined through population genetic models which

incorporate mutation, selection, and drift in a system of two codon types [23, 30–33].

Since a complete treatment of a multi-allelic mutation-selection-drift model is pro-

hibitively complex, especially in the polymorphic limit [34], previous work has at-

tributed the difference in codon frequencies to a balance between selection and drift,

with mutations playing a subordinate role [14]. However, because selection strength

has to be inversely proportional to the effective population size to reproduce the ob-

served genomic codon frequencies, this approach leads to the “fine-tuning” problem in

which selective advantages of the preferred codons have to vary through many orders

of magnitude in order to reflect a broad range of effective population sizes [35]. It is

challenging to provide a biophysical explanation for this behavior.

In contrast, our model focuses on the interplay between mutational and selective

forces acting on individual codons: the observed codon frequencies emerge as a steady-

state balance between mutational forces on one hand, and selection on translation speed

and accuracy on the other. We explicitly modeled the evolutionary process on the full

64-codon mutational network in a population of organisms whose fitness is determined

by genomic codon content (multi-allelic mutation-selection-drift models are in any case

prohibitively complex in the polymorphic limit [34]). Our approach is based on a

realistic codon-level mutation model which includes transition/transversion biases and

mutational robustness, and allows for non-cognate tRNA-mRNA pairings consistent

with the wobble hypothesis. The full model details, as well as our model selection

process, is presented and concluded here and in Chapter 6.

Using this selection-mutation framework, we are able to accurately predict genome-

wide codon frequencies in a variety of organisms spanning both prokaryotic and eu-

karyotic domains (Chapter 7). Our predictions of the codon-anticodon pairing rates
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are largely consistent with previously postulated wobble rules [28] and with the crys-

tallographic analysis of wobble base pairs in the context of the ribosomal decoding

center [36]. In Chapter 8, we incorporate Bulmer’s biophysical model, which explicitly

describes the details of the translation process given a finite ribosomal pool [23], into

our approach, and estimate single-nucleotide mutation rates using biophysical model pa-

rameters such as ribosomal on-rates and codon translation times. Finally, in Chapter 9

we present the fitting algorithm used to determine the unknown biophysical parameters.

5.1 Biophysical Model of Codon Evolution Overview

We consider the fitness of each organism, w, given the presence of a codon c at a

particular genomic location and the optimal amino acid or STOP instruction j at

that location, as the product of two terms modeling translation speed and accuracy,

respectively (see Section 5.2):

wj(c) =

(
1− T0

Ceff
c

)
(1− sj(c)) ' 1− T0

Ceff
c

− sj(c), (5.1)

where T0 sets the overall scale of the selection coefficient in the first term, which pe-

nalizes for slow codon translation, and Ceff
c is the effective tRNA gene copy number.

The approximation in Eq. (5.1) is valid when the two selection terms T0/C
eff
c and sj(c)

are small, as is generally expected for selection on a single codon. Since, according to

the wobble hypothesis, non-cognate codon-anticodon pairing is allowed at the 3’ codon

position, Ceff
c is computed as a weighted sum over all possible codon-anticodon pairings,

Ceff
c ≡

∑
n′∈{A,U,C,G}

rn′/nCc(n
′), (5.2)

where rn′/n is the codon-anticodon pairing rate associated with the nucleotide pairing

n′/n at the 5’ anticodon and 3’ codon positions, respectively, and Cc(n
′) is the corre-

sponding anticodon tRNA gene copy number, which we assume is proportional to the

total number of tRNA molecules in the cell. For brevity, we shall refer to rn′/n as “pair-

ing rates” from now on. Note that the pairing rates are defined to be dimensionless
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and unnormalized.

In the second term on the right-hand side of Eq. (5.1), sj(c) is the amino-acid-level

selection coefficient which penalizes for incorrect amino acid translations due to wobble

pairing:

sj(c) =

∑
n′∈{A,U,C,G} rn′/nCc(n

′)s̄cj(n
′)∑

n′∈{A,U,C,G} rn′/nCc(n
′)

, (5.3)

where s̄cj(n
′) is either zero when the tRNA bound to codon c is charged with the optimal

amino acid j, or a constant penalty, s, for any other amino acid. Thus, our model

assumes that all codons in the genome evolve under purifying selection at the amino

acid level: as a result, all amino acid substitutions are considered to be deleterious.

In other words, each codon position is assigned either an optimal amino acid given by

cognate tRNA pairing with the codon currently observed at that genomic position, or

a STOP instruction, such that j = 1, . . . , 21. According to Eq. (5.3), even codons that

predominantly produce the optimal amino acid will be penalized if there are non-zero

pairing rates for translation into suboptimal amino acids. Similarly, a mutation into

a codon for which the rates for translation into suboptimal amino acids are enhanced

(for example, mutations of a codon which predominantly produces arginine (Arg) into

a predominantly non-Arg codon at a position where the optimal amino acid is Arg)

is considered deleterious. Since at each codon position evolutionary dynamics depends

on the optimal amino acid, we obtain 21 distinct diagonal matrices containing fitness

values for each codon, for 20 amino acids and the STOP instruction (i.e., translating

stop codons into amino acids is also considered deleterious in our model).

Equation (5.1) implements the idea that additional tRNA gene copies should in-

crease the available pool of tRNA molecules which can be paired with the codon c,

reducing translation times and therefore increasing the fitness of the organism (i.e., as

Ceff
c increases, wj(c) also increases). However, changes in the tRNA pool may also result

in more translation errors, which will be reflected in the increased sj(c) (Eq. (5.3)).
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5.2 Connection Between Fitness and Codon Content

We model the cell’s fitness, w, as proportional to the product of its total protein pro-

duction rate, Ptot (c, q, `), which depends on the presence of codon c at location ` on

gene q (explicit dependence on all the other codons is suppressed for brevity), and a

mistranslation penalty:

wj(c, q, `) ∝ Ptot (c, q, `) (1− sj(c)) , (5.4)

where sj(c) is the selection coefficient for codon mistranslation, which we assume to

be dependent on the codon’s genomic location only through the optimal amino acid or

STOP instruction, j, at that location (Eq. (5.3)).

The change in Ptot upon mutating the current codon, c, at genomic coordinates

(q, `) into codon c′ is expected to be small compared to the total protein production

rate. The new protein production rate, Ptot(c
′, q, `), can then be approximated by a

first-order expansion,

wj(c
′, q, `) ∝

[
Ptot(c, q, `) +

dPtot

dtc(q,`)

(
tc
′ − tc(q,`)

)] (
1− sj(c′)

)
, (5.5)

where the single-codon translation time tc
′

is assumed to be independent of the codon’s

location, and tc(q,`) is the translation time of codon c at genomic coordinates (q, `).

Next, Eq. (5.5) is averaged over all codon positions for which sj(c
′) is the same (that

is, over all positions which have the same optimal amino acid or STOP instruction j

and therefore evolve under the same fitness matrix):

wj(c
′) =

1

G

G∑
q=1

1

|Sjq |

∑
`∈Sj

q

wj(c
′, q, `) ≡ 〈wj(c′, q, `)〉, (5.6)

where G is the total number of genes, Sjq is the set of codon locations with the same

optimal amino acid or STOP instruction j on gene q, and |Sjq | is the number of such

locations. Note that all instances for which |Sjq | = 0 are excluded from the average. We

obtain
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wj(c
′) ∝

[
1 + tc

′
〈
d logPtot

dtc(q,`)

〉
−
〈
tc(q,`)

d logPtot

dtc(q,`)

〉] (
1− sj(c′)

)

=

(
1−

〈
tc(q,`)

d logPtot

dtc(q,`)

〉)1− tc′
〈
d logPtot

dtc(q,`)

〉
〈
tc(q,`) d logPtot

dtc(q,`)

〉
− 1

(1− sj(c′))

∝

1− tc′
〈
d logPtot

dtc(q,`)

〉
〈
tc(q,`) d logPtot

dtc(q,`)

〉
− 1

(1− sj(c′)) . (5.7)

We model the translation time, tc
′
, as inversely proportional to the tRNA cellular

counts:

tc
′

=
τ∑

n∈{A,U,C,G} rn/c′3Vcell

[
tRNAn+c̄′23

] , (5.8)

where Vcell is the cell volume, τ is the characteristic time scale for tRNA molecules to

be acquired by the ribosome for translation, rn/c′3 are the pairing rates at which tRNAs

with n as their 5’ anticodon nucleotide bind to the 3’ nucleotide of codon c′, denoted

c′3 (the other two anticodon nucleotides are always cognate to c′), and
[
tRNAn+c̄′23

]
are concentrations of tRNAs with anticodon n+ c̄′23, where c̄′23 denotes the second and

third nucleotides of the reverse complement of c′. We assume that the tRNA gene copy

number, denoted as Cn+c̄′23
, is proportional to the tRNA cellular counts:

Vcell

[
tRNAn+c̄′23

]
= αCn+c̄′23

, (5.9)

where α is a proportionality constant, leading to

tc
′

=
τ

αCeff
c′
, (5.10)

with the effective gene copy number Ceff
c′ given by Eq. (5.2). Finally, with

T0 =
τ

α

〈
d logPtot

dtc(q,`)

〉
〈
tc(q,`) d logPtot

dtc(q,`)

〉
− 1

(5.11)
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Eq. (5.7) reduces to Eq. (5.1). The 64 fitness values for each codon, computed using

Eq. (5.1) and conditioned on the optimal amino acid or STOP instruction j, provide

the diagonal entries of the fitness matrix Wj .

5.3 Codon Mutational Network

To describe mutations between codons, we have adapted the model of [57]. To determine

the mutation rates between codons, we assume that detailed balance has been reached

in intergenic regions, which are considered to evolve under the influence of mutational

forces only [22,57]:

µc′cπc = µcc′πc′ , (5.12)

where µc′c is the mutation rate per generation from the nucleotide trimer c to c′, πc

is the steady-state frequency of the nucleotide trimer c, and β is a scale factor. The

no-selection assumption is supported by the observation that trimeric nucleotide fre-

quencies are very similar in the intergenic regions of all the species we have examined

(Fig. 5.1).

Additionally, two transition/transversion rate biases are included when the trimer

substitution involves a pyrimidine-to-pyrimidine (C ↔ T ) exchange (κ1), or a purine-

to-purine (A ↔ G) exchange (κ2). For example, the mutation rate from codon CGT

to codon CGC is given by βκ1πCGC, whereas the CGA→CGC mutation rate is given

by βπCGC. Mutation rates corresponding to multiple nucleotide substitutions are set

to zero. Our codon mutational model is an adaptation of the nucleotide substitution

model of [57].

5.4 Population Genetics Model

Our selection-mutation approach allows us to predict genome-wide codon frequencies

through a steady-state population genetics model. The major features of the approach

are illustrated in Fig. 5.2 using Escherichia coli as an example. Figure 5.2A shows three

initial E. coli populations which are genetically identical except for a single codon:
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Figure 5.1: Covariance matrix of nucleotide trimeric frequencies in intergenic
regions for all pairs of organisms considered in this study. Each entry in this
matrix shows the Pearson correlation coefficient between pairs of species-specific trimer
frequencies. The lowest entry in this matrix, with the Pearson correlation coefficient
ρ = 0.57, corresponds to the S. enterica – M. musculus pair.

one population contains the wild-type codon ATA at position 101 in the thrA gene

(position 1 is the start codon), whereas the other two contain codons with single-

nucleotide mutations: ATG and AAA, respectively. After a fixed period of time, the

three progeny populations have different sizes due to differences in their growth rates

(Fig. 5.2B). The thrA codon under consideration is at a location which, according to the

genetic code and the fact that the wild-type codon is ATA, codes optimally for isoleucine

(Ile). Figure 5.2C shows mRNA transcripts produced in the three E. coli strains, with

colored boxes around codons corresponding to the predominantly translated amino

acid in each case: Ile (green), Met (blue), and Lys (red). The lowest-fitness strain has
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Figure 5.2: Illustration of the biophysical fitness model on E. coli populations.
(a) Three initial E. coli populations: one wild-type and two with a single-nucleotide
mutation (ATA→ATG, ATA→AAA) at codon 101 in the thrA gene. (b) The same E.
coli populations after a fixed period of growth. (c) RNA transcripts of the thrA gene
from all three strains. Each colored box around the codon in question indicates the
amino acid that is primarily translated, with green, blue and red corresponding to Ile,
Met, and Lys, respectively. (d) An E. coli cell with the tRNA gene copies for Ile (green)
and Met (blue) shown as colored rectangles. (e) A magnified portion of the cell with
three tRNA molecules charged with Ile (green) and three more charged with Met (blue).
The proportions of each type of tRNA molecule roughly match the proportions of gene
copies in (d), as assumed in our model. (f) A further magnification of (e) with two
representative tRNAs shown in molecular detail. The two tRNA molecules shown, one
charged with Met and the other with Ile, are present in the K-12 MG1655 E. coli and
can bind AUA through wobble pairing, with wobble rates rC/A and rG/A, respectively.
Note that there is no cognate tRNA for this codon.
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experienced an ATA→AAA mutation, resulting in a codon which cannot be translated

into the optimal amino acid, Ile, even through wobble pairing. In comparison, the ATG

strain has higher fitness since it can produce Ile through wobble pairing: however, the

ATG codon is primarily translated into Met through cognate pairing. The wild-type

ATA strain has the highest fitness as it predominantly produces Ile, even though the

cognate tRNA of ATA is in fact not present in E. coli (Fig. 5.2D-F).

In order to predict genome-wide codon frequencies, we have employed a mutation-

selection population genetics model. We represent codon counts in a population of N

organisms as a vector with 64 entries, |N(t)〉, and evolve the state of the population

from one generation to the next using the deterministic equation:

|N(t+ 1)〉j = (I + M)Wj |N(t)〉j , (5.13)

where Wj is a diagonal matrix of fitness values conditioned either on the optimal amino

acid or the STOP instruction (i.e., j = 1, . . . , 21), M is the mutation matrix, and I

is the identity matrix. The off-diagonal entries of the mutation matrix, Mc′c, are the

mutation rates from codon c to c′, and diagonal entries are fixed through
∑

c Mc′c = 0.

Equation (5.13) can be rewritten in terms of the codon frequencies in a population

evolving under the same fitness matrix, |p(t)〉j = |N(t)〉j/〈1|N(t)〉j (|1〉 is a vector with

1 in every entry),

|p(t+ 1)〉j =
|N(t+ 1)〉j
〈1|N(t+ 1)〉j

=
(I + M)Wj |N(t)〉j
〈1|(I + M)Wj |N(t)〉j

=
(I + M)Wj |N(t)〉j
〈1|Wj |N(t)〉j

=
(I + M)Wj |p(t)〉j
〈1|Wj |p(t)〉j

. (5.14)

Eventually these frequencies will reach a steady-state |pss〉j determined by

(I + M)Wj |pss〉j = w̄j |pss〉j , (5.15)

where w̄j = 〈1|Wj |pss〉j is the average fitness of the corresponding population.

Finally, if each fitness matrix Wj operates at Cj codon locations in the genome,
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steady-state codon frequencies are given by the genome-wide average:

|pss〉gen =

∑
j Cj |pss〉j∑

j Cj
, (5.16)

where each |pss〉j is found using Eq. (5.15) with the corresponding Wj . Note that

the mutation rates are assumed to be independent of the fitness matrix j, yielding a

universal M for each species.

5.5 Exact Solution in the Two-Codon Case

In order to gain insight into our biophysical model and its dependence on the various

model parameters, here we provide an exact solution for a simplified system which

consists of two codons, each of which corresponds to a distinct optimal amino acid.

With 2 fitness matrices, Eq. (5.15) yields

(I + M)Wi|pss〉i =

1− µ21 µ12

µ21 1− µ12

wi1 0

0 wi2

pi1
pi2



=

(1− µ21)wi1 µ12w
i
2

µ21w
i
1 (1− µ12)wi2

pi1
pi2

 = w̄i

pi1
pi2

 (5.17)

where wic and pic denote the fitness and the steady-state frequency of codon c ∈ {1, 2}

evolving under fitness matrix Wi (i ∈ {1, 2}), respectively, and w̄i = wi1p
i
1 + wi2p

i
2 is

the corresponding mean fitness. The steady-state frequencies are then given by

pi1 =
1

2
− µ21w

i
1 + µ12w

i
2

2∆wi

+
1

2∆wi

√
(∆wi)2 − 2(µ21wi1 − µ12wi2)∆wi + (µ21wi1 + µ12wi2)2 (5.18)
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and

pi2 =
1

2
+
µ21w

i
1 + µ12w

i
2

2∆wi

− 1

2∆wi

√
(∆wi)2 − 2(µ21wi1 − µ12wi2)∆wi + (µ21wi1 + µ12wi2)2, (5.19)

where ∆wi = wi1 − wi2.

If there are Ci genomic locations evolving under fitness matrix Wi, the genome-wide

frequencies for each codon c are given by Eq. (5.16):

pc,gen =
C1p

1
c + C2p

2
c

C1 + C2
. (5.20)

To examine the dependence of steady-state frequencies on the model parameters β,

κ, s, and T0, the following fitnesses and mutation rates are assumed:

µ21 = βκπ2, µ12 = βκπ1,

w1
1 =

(
1− T0

Ceff
1

)
, w1

2 =

(
1− T0

Ceff
2

)
(1− s) ,

w2
1 =

(
1− T0

Ceff
1

)
(1− s) , w2

2 =

(
1− T0

Ceff
2

)
, (5.21)

where πc is the steady-state frequency of codon c in the absence of selection. Note

that mutations between the two codons are assumed to be transitions. With these

specifications, p1
1 in Eq. (5.18) becomes

p1
1 =

1

2
−

βκ
(

1− T0π2

Ceff
1
− T0π1

Ceff
2

)
2
[
T0

Ceff
1 −Ceff

2

Ceff
1 Ceff

2
+ s

(
1− T0

Ceff
2

)]

+
1

2

√√√√√√1− 2
βκπ2

(
1− T0

Ceff
1

)
− βκπ1

(
1− T0

Ceff
2

)
(1− s)

T0
Ceff

1 −Ceff
2

Ceff
1 Ceff

2
+ s

(
1− T0

Ceff
2

) +

 βκ
(

1− T0π2

Ceff
1
− T0π1

Ceff
2

)
T0

Ceff
1 −Ceff

2

Ceff
1 Ceff

2
+ s

(
1− T0

Ceff
2

)
2

.

(5.22)
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To O(β), O(s), and O(T0), Eq. (5.22) simplifies to

p1
1 ≈

1

2
− κ/2

T0
β
Ceff

1 −Ceff
2

Ceff
1 Ceff

2
+ s

β

+
1

2

√√√√1− 2κ(π2 − π1)

T0
β
Ceff

1 −Ceff
2

Ceff
1 Ceff

2
+ s

β

+
κ2[

T0
β
Ceff

1 −Ceff
2

Ceff
1 Ceff

2
+ s

β

]2 . (5.23)

A similar expression can be obtained for p2
1, from which p1

2 = 1−p1
1 and p2

2 = 1−p2
1 follow

by normalization. Note that under this approximation all steady-state frequencies,

including the genome-wide frequencies pc,gen in Eq. (5.20), only depend on the ratios

s/β and T0/β.
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Chapter 6

Model Selection

To determine which biophysical factors contribute most to the codon bias and what level

of detail is necessary to predict genome-wide codon frequencies, we have constructed

a hierarchy of models which include from 3 to 19 free parameters (see Table 6.1 for

detailed descriptions), and fit the models to E. coli (K-12 MG1655) genomic data.

Specifically, each model was fit to minimize the L1 distance:

L1 =
1

2

64∑
c=1

|p̂c − pc|, (6.1)

where p̂c and pc are predicted and observed genome-wide codon frequencies, respec-

tively (see Chapter 9 for a detailed description of the global optimization algorithm).

Each model was subjected to 5-fold cross-validation: all genomic codons were randomly

divided into 5 subsets of equal size, and the model was fitted separately on each subset,

with L̄1 denoting the average L1 distance resulting from these 5 fits. For the purposes

of cross-validation, L1 distances were computed between codon frequencies predicted

by each of the 5 fits and codon frequencies observed in each of the other 4 codon subsets

which were not used to fit the model in the current round. The cross-validation score,

L̄1
CV, was then computed by averaging first over the other 4 subsets left out of the

current fit and, finally, over the 5 independent fits.
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6.1 Codon Bias from Mutational Network Structure

The first model we have examined is a minimal model which does not consider wobble

pairing or the fitness penalty for slow translation and therefore only includes transi-

tion/transversion mutational parameters κ1 and κ2 and the amino acid selection param-

eter s/β. Note that the codon frequencies are affected only by the ratio of the amino

acid selection coefficient s, which penalizes translation into suboptimal amino acids,

and the overall mutation scale β (see Section 5.5 for an additional discussion). Under

this 3-parameter model, genome-wide codon frequencies are determined by a combi-

nation of mutation rate biases and mutational proximity to deleterious sequences (i.e.,

mutational robustness). We illustrate this point using 6 Arg codons as a representative

example (Fig. 6.1A,B). Under the 3-parameter model there is a marked enrichment of

the frequencies of CGC, CGG, and CGT codons and a suppression of AGA and AGG

codon frequencies, even though all 6 codons have the same fitness. These trends, with

the exception of the CGG enrichment, match genome-wide codon frequency data, and

are not present in the intergenic regions (Fig. 6.1A).

6.2 Addition of Selection for Translation Speed and Accuracy

Next, we examined a family of models which, in addition to κ1, κ2, and s/β, include

a fitness penalty for slow codon translation, T0/β, with T0 defined in Eq. (5.1). In

addition, each model in the hierarchy includes an increasingly diverse set of pairing

rates (Table 6.1). Specifically, the 5-parameter model has a single parameter describing

all non-cognate pairing rates. In this model, cognate pairings are assumed to occur

at a rate of rn′/n = 1, while four pairings are suppressed (rn′/n = 0) based on the

crystallographic analysis of wobble base pairs in the context of the ribosomal decoding

center [36]. The remaining 8 rates are described by a single free parameter, r. The

7-parameter model replaces this single parameter with three rates: r0, which accounts

for pairings across nucleotide types (purine to pyrimidine) expected to be closest to

cognate pairing; r1, which characterizes all same-base pairings that are not already

suppressed on the basis of crystallographic evidence; and r2, which accounts for the two
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remaining pairings. In the 12-parameter model, rates for 8 pairings that are neither

cognate nor suppressed are allowed to vary individually. In the 16-parameter model,

the assumption that some of the wobble pairings are suppressed is relaxed, resulting in

4 additional pairing rates. Finally, in the 19-parameter model the assumption that all

cognate pairings have a rate of rn′/n = 1 is relaxed, and each of the possible 16 pairings

is assigned an individual rate. Since there is now a degeneracy in the model related to

the fact that the T0/C
eff
c ratio remains invariant in Eq. (5.1) if both T0 and all wobble

rates are scaled by the same factor, we have chosen to set T0/β = 1, resulting in 19

independent parameters. An alternative approach in which one of the cognate rates

was set to 1.0 and T0/β was allowed to vary yielded numerically inferior solutions.

6.3 Model Selection Procedure

Since 63 independent codon frequencies are fit to models containing from 3 to 19 inde-

pendent parameters, it is important to ensure that there is no overfitting. Figure 6.1C

demonstrates the quality-of-fit scores L̄1 and L̄1
CV for each of the models described

above. A standard way of checking the extent of overfitting, 5-fold cross-validation, has

limited applicability here since codon frequencies are very similar in all 5 subsets, as

manifested by the high degree of similarity between L̄1 and L̄1
CV in all Fig. 6.1C fits.

Thus, to investigate the issue of overfitting from a different angle, we have carried out

model fits not only on genomic codon frequencies (blue lines), but also on synthetically

generated data for which models previously fit on genomic data were used to generate

artificial codon counts. These counts were then used in a subsequent round of model

fitting (red lines). The idea is to provide a score baseline in which a given model type

is employed to both generate the synthetic data and carry out subsequent parameter

inference. This two-step procedure leads to consistent recovery of all model parameters

used in generating the synthetic data (Table 9.1). As can be seen in Fig. 6.1C, there is

no trend in the model scores of fits on synthetic data as the model complexity increases,

and for each model type genomic fit scores are significantly above synthetic fit scores,

indicating the absence of overfitting. Furthermore, model scores of fits on genomic data
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improve with model complexity, suggesting that overall increasing the model complex-

ity is beneficial. Note however that the genomic scores become worse in going from the

3- to 5-parameter model, showing that an increase in the number of model parameters

does not necessarily guarantee an improvement in fitting performance.

We have also investigated the effects of intentional overfitting on synthetic data.

To this effect, an “old” model with lower complexity, previously fit on genomic data,

was used to generate the codon counts, which were subsequently used to fit a “new,”

higher-complexity model (red bars in Fig. 6.1D). Surprisingly, this overfitting always

resulted in worse model scores, again underscoring that increasing model complexity

does not necessarily lead to better scores, due to both essential differences in model

parameterization and the lack of numerical convergence. However, this effect becomes

very slight on the higher-complexity end of the model spectrum. To investigate this

issue further, we have generated synthetic data using the 7-parameter model, and fit

all model types to it (Fig. 6.2). We observe that, as expected, lower-complexity models

are not able to fit the synthetic dataset as well as the “native” 7-parameter model.

Furthermore, fitting more complex models does not offer any marked improvements in

model scores.

In contrast to the results based on synthetic data, there is a significant improvement

in model performance on genomic data with each increase in model complexity (blue

bars in Fig. 6.1D), with a sole exception of the 3- and 5-parameter model pair. However,

the gains in model scores diminish gradually, indicating that increasing the number of

parameters beyond 19 is unlikely to lead to further significant improvements in model

performance. Given that the 19-parameter model yields the best performance, we have

chosen it for all further analysis carried out in this study. The model’s predictions in

E. coli are shown in Fig. 6.3 and Fig. 7.3A, indicating that our approach is capable of

reproducing all the major features observed in genome-wide codon frequencies in this

organism.
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Table 6.1: Hierarchy of models fit to E. coli genomic data. All models share
the same three parameters κ1, κ2, and s/β, and all except the 3-parameter model also
include T0/β. The pairing rates are parameterized according to various categories of
nucleotide base pairing: Watson-Crick (Cognate); disallowed according to [36] (Sup-
pressed); different in type, purine or pyrimidine, and are not disallowed or cognate
(Alternate); and two nucleotides of the same type that are not disallowed (Same base).
ρ: Pearson correlation coefficient between predicted and observed frequencies, p: the
corresponding p-value.

Parameter Description
κ1 Pyrimidine transition/transversion rate bias (T→C and C→T).
κ2 Purine transition/transversion rate bias (G→A and A→G).
s/β Ratio of amino acid selection coefficient to mutation scale.
T0/β Ratio of translation speed selective penalty to mutation scale.

# model Wobble Nucleotide Paired nucleotides Model prediction
parameters rate pairing (anticodon 5’/codon 3’) ρ (p-value)

3 1 Cognate: A/U, C/G, G/C, and U/A. 0.79 (1.1× 10−14)
0 All else.

5 1 Cognate: A/U, C/G, G/C, and U/A. 0.79 (6.2× 10−15)
0 Suppressed: C/C, C/U, G/A, and G/G.
r All else: A/A, A/C, A/G, C/A,

G/U, U/C, U/G, and U/U.

7 1 Cognate: A/U, C/G, G/C, and U/A. 0.76 (1.9× 10−13)
0 Suppressed: C/C, C/U, G/A, and G/G.
r0 Alternate: A/C, C/A, G/U, and U/G.
r1 Same base: A/A and U/U.
r2 All else: A/G and U/C.

12 1 Cognate: A/U, C/G, G/C, and U/A. 0.86 (1.6× 10−19)
0 Suppressed: C/C, C/U, G/A, and G/G.

rA/A All else: A/A
8 parameters

rA/C A/C
...

...
rU/U U/U

16 1 Cognate: A/U, C/G, G/C, and U/A. 0.93 (2.0× 10−29)
rA/A All else: A/A

12 parameters
rA/C A/C

...
...

rU/U U/U

19 rA/A A/A
16 parameters

0.97 (4.4× 10−41)

rA/C A/C
...

...
rU/U U/U
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Figure 6.1: Prediction of genome-wide codon frequencies in E. coli. (a) Codon
frequencies of the arginine (Arg) group predicted by the 3-parameter model (black)
and found in coding regions (grey), and nucleotide trimer frequencies in the intergenic
regions (red). (b) The single-point mutational network formed by the codons which
translate into Arg according to the standard genetic code. The width of each line is
proportional to the mutation rate, with an arrow indicating the direction of mutation.
The fading lines represent all mutation rates from Arg to the corresponding non-Arg
codons. The size of each circle indicates the frequency at which each codon sequence
occurs in intergenic trimers (red) and when mutation and selection against non-Arg
codons are taken into account (3-parameter model; black). (c) Model scores L̄1 (solid
lines) and L̄1

CV (dashed lines) as a function of model complexity. Each model was fit
to genomic data (blue lines) and synthetic data (red lines). (d) Normalized difference
of L̄1

CV model scores, ∆L̄1
CV = (L̄1

CV(new) − L̄1
CV(old))/(Nnew − Nold), in going from

a less complex (“old”) to a more complex (“new”) model. Nnew and Nold denote the
number of model parameters in the old and new models, respectively.
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Figure 6.2: Model scores for all model types in the hierarchy fitted to syn-
thetic data generated by the 7-parameter model. Fitting scores L̄1 (solid lines)
and cross-validation scores L̄1

CV (dashed lines) are shown as a function of model com-
plexity. All model parameters in the 7-parameter model used to generate the synthetic
data were set to values previously found in fitting the model to the codon frequencies
from the E. coli genome (Table 9.1).

Figure 6.3: Prediction of codon frequencies in E. coli. Codon frequencies pre-
dicted using the 19-parameter model (blue), and genome-wide frequencies observed in
E. coli (grey). All codons are sorted by the absolute magnitude of the prediction error,
defined as the absolute magnitude of the difference between predicted, p̂c, and observed,
pc, frequencies of each codon c: |p̂c− pc|. The Pearson correlation coefficient ρ between
predicted and observed frequencies is also shown, along with the corresponding p-value.
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Chapter 7

Multispecies Analysis

We have fit the 19-parameter model to 20 organisms spanning both unicellular and

multicellular life forms (Fig. 7.1; see Section 7.5 for details of genomic data acquisition).

A representative subset of these organisms is displayed in Fig. 7.2 where a metric for

codon bias has been computed on 50 randomly selected genes following the style of

Ref. [24]. The metric, known as the relative synonymous codon usage (RSCU), is

defined for each codon, c, as [58]

RSCUc ≡
Cc

1
n

∑
c′ Cc′

, (7.1)

where Cc is the number of occurances of codon c, n is the number of synonymous codons

according to the standard genetic code, and the sum is over all synonymous codons.

For each of the 20 species, the model fits the data to a high degree of accuracy, with

the Pearson correlation coefficients in the [0.80, 0.98] range, with an average of 0.91

(Fig. 7.3). Distributions of these parameters are summarized in Fig. 7.4.

7.1 Consistencies in the Transition/Transversion Rate Biases

As might be expected, the values of the two transition/transversion rate biases, κ1 and

κ2, are fairly conserved, especially in eukaryotes, with larger values generally found

in bacteria (Fig. 7.5, Fig. 7.4A). This observation is consistent with the fact that

trimeric nucleotide frequencies found in intergenic regions, which on average are likely

to evolve only under the influence of mutational forces, are nearly organism-independent

(Fig. 5.1). The values of the κ1 and κ2 biases are strongly correlated with each other,

with κ1 > κ2 in all cases. Note that the biases are not always > 1, in agreement with
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Figure 7.1: Phylogenetic relationships between all organisms included in this
study. The divergence times between all species examined in this study were set to the
estimated values reported in the TimeTree database [59, 60]. These divergence times
were then used to construct the phylogenetic tree via the Interactive Tree Of Life [61].

a previously reported result [62].

7.2 Comparison of Codon Usage Bias Influences

We observe strong selection against missense mutations (s/β = 5.84 on average), indi-

cating that amino acids translated from the genomic codons on the basis of the standard

genetic code are generally optimal and their mutations are deleterious (Fig. 7.4B). The

value of the selection coefficient s is closely correlated with the distribution of sj(c) val-

ues in each organism (Fig. 7.6A), indicating that it is a good measure of the strength

of selection against amino acid mistranslations. Moreover, the strength of selection

for the speed of codon translation is generally weaker than the strength of mutational

forces, as measured by the overall mutational scale β, although there are notable excep-

tions (Fig. 7.6B). Correspondingly, in the majority of cases, selection for mistranslation
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dominates selection for translation speed (Fig. 7.6C).

7.3 Trends in Wobble Rate Numerical Results

We have found that in all organisms the rates corresponding to the A/G, C/A, C/C,

G/A and G/G pairings are vanishingly small compared to all other rates (Fig. 7.4C).

According to crystallographic evidence [36], C/U, C/C, G/A, and G/G pairings should

be sterically disallowed, which is consistent with our findings except for C/U, for which

only 3 out of the 20 organisms yield non-vanishing rC/U rates: S. pombe, V. cholerae,

and A. thaliana. Additionally, purine-pyrimidine pairings are consistently assigned

higher rates than purine-purine and pyrimidine-pyrimidine pairings, with cognate pair-

ings being predominant compared to non-cognate pairings: for example, averages across

all species of the rA/A, rA/C, rA/G, and rA/U pairing rates are 0.9, 3.3, 0.3, and 8.7, re-

spectively. However, a notable exception is the rG/U rate, which is considerably higher

than rG/C and in fact assumes unrealistically large values for ∼ 50% of the species

considered. We do not have a satisfactory explanation for this finding at the moment.

7.4 Correlations Between Various Biophysical Parameters

Finally, we have examined a matrix of correlations among 19 model parameters and sev-

eral additional key values characterizing either the genome (genome size, total number

of codons, total number of genes) or the population (effective population size) (Fig. 7.7).

We find that, as expected, the genome size, the total number of codons and the total

number of genes are all correlated with each other and anti-correlated with the effective

population size and the κ1, κ2 mutational biases, the latter observation being consistent

with the fact that these biases are higher in prokaryotes (Fig. 7.5). In contrast, the

selection coefficient s/β is not strongly correlated with any other parameter, including

the effective population size. Finally, we observe that some of the pairing rates (e.g.

rA/A and rA/G) are strongly correlated with each other, reducing the effective number

of model parameters.
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7.5 Genome Sequences and Annotation

All genomic codon, amino acid, and intergenic nucleotide trimer frequency information

was extracted for each species from sequence and annotation data in the GenBank

file format, downloaded from the NCBI database on 07.13.2018. tRNA gene copy

numbers were obtained from the GtRNAdb database [68, 69]. To compute intergenic

trimer frequencies, we have removed all nucleotide sequences corresponding to known

features, leaving only DNA segments with no currently known functions.
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Figure 7.2: Codon bias diversity across 10 representative species. The value
of RSCU computed for each codon in 50 randomly selected genes (red entries) and for
the genome-wide frequencies of codons (green entries). Brighter entries correspond to
more bias as indicated by the colorbar. A value of 1 for RSCU corresponds to no bias.
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Figure 7.3: 19-parameter model performance on genomic data. (a) Predicted
versus genomic codon frequencies for E. coli, with the Pearson correlation coefficient and
the corresponding p-value. (b) Distribution of Pearson correlation coefficients between
predicted and observed genome-wide codon frequencies for all 20 species included in
this study (Fig. 7.1).
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Figure 7.4: Distributions of inferred biophysical and population genetics pa-
rameter values across 20 organisms. All models are fitted separately on 5 codon
subsets and the resulting parameters averaged, as indicated by the overbar. For each
parameter averaged in this way, median values across all organisms as well as the first,
Q1, and third, Q3, quartiles are plotted using box-and-whisker plots. The locations of
upper and lower whiskers are given by the largest data point below Q3 + 1.5(Q3 −Q1)
and the smallest data point above Q1 − 1.5(Q3 −Q1). Data points which extend out-
side of this range are considered outliers and plotted explicitly using species-specific
symbols. (a) Transition/transversion rate biases κ̄1 and κ̄2, (b) amino acid selection
coefficients (s/β), and (c) wobble rates rn′/n. The wobble rates are separated into four
sets by vertical dashed grey lines, one for each anticodon nucleotide. The cognate pair-
ings are highlighted in solid cyan, and non-cognate pairings with alternate nucleotide
types (purine to pyrimidine pairings) are highlighted in faded cyan.
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Figure 7.5: Correlation between transition/transversion rate biases. Transi-
tion/transversion rate bias parameters κ̄1 and κ̄2 inferred by fitting the 19-parameter
model to genome-wide codon frequencies from 20 species and averaged over 5 distinct
subsets of codons. Blue dots: prokaryotes, red dots: eukaryotes. Also shown is the
Pearson correlation coefficient ρ and the corresponding p-value.
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Figure 7.6: Comparison of selection strengths for speed and accuracy of codon
translation. All selection coefficients have been computed by fitting the 19-parameter
model to genomic data from 20 organisms. (a) Ratios of the selection coefficients for
amino acid mistranslation, sj(c) (cf. Eqs. (5.1) and (5.3)), averaged over optimal amino
acids/STOP instruction as indicated by angle brackets, to the overall mutation scale β,
shown as box-and-whisker plots for each organism. Horizontal dashed red lines indicate
the corresponding value of s. (b) Ratios of the selection coefficient for the speed of codon
translation, T0/C

eff
c (cf. Eqs. (5.1) and (5.2)), to the overall mutation scale β, shown

as box-and-whisker plots for each organism. (c) Ratios of the two selection coefficients
from (a) and (b), shown as box-and-whisker plots for each organism. Horizontal dashed
grey lines in panels (a)-(c) indicate where each quantity equals 1.



57

Figure 7.7: Covariance matrix between various model and additional param-
eters. Each entry in the matrix shows the Pearson correlation coefficient between
a pair of parameters, with each parameter available for all 20 species included into
this study (Fig. 7.1). In addition to the 19 model parameters (Table 6.1), the total
number of codons, C, genome size in nucleotides, n, effective population size, Ne, the
cross-validation model score, L̄1

CV, the total number of genes, G, and the domain label,
D ∈ {Bacteria,Eukarya}, are included. Ne estimates have been obtained from Refs. [35]
(C. elegans, C. remanei, D. melanogaster, E. coli, H. sapiens, P. troglodytes), [63] (C.
briggsae), [64] (B. subtilis), [65] (M. musculus), [66] (S. enterica), and [67] (A. thaliana,
C. trachomatis, D. sechellia, D. simulans, L. monocytogenes, S. cerevisiae, S. pombe,
V. cholerae, V. parahaemolyticus, X. tropicalis). All parameters were hierarchically
clustered using the linkage package from the SciPy Hierarchical clustering library with
the ‘single’ method and default settings.
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Chapter 8

Estimation of the Genome-Wide Mutation Rate

Our biophysical approach has also enabled us to estimate the genome-wide mutation

rate per nucleotide per generation as an average over all codon types:

〈µ〉 =
1

3

∑
c

∑
c′ 6=c

µc′cpc. (8.1)

Indeed, following the approach developed by [23], we can estimate T0 in Eq. (5.1)

directly from the explicit biophysical model of ribosome-mediated translation. Here, we

have focused our attention on E. coli and S. cerevisiae, for which all the requisite values

of biophysical parameters are available in the literature. For both of these organisms,

we find that

T0 ≈
τ

α

Ptotγ

GtIkI
, (8.2)

where Ptot is the total protein production rate in the cell, G is the total number of

genes, tI is the average ribosome initiation time, kI is the average initiation on-rate per

free ribosome, and τ and α are defined in Eqs. (5.8) and (5.9), respectively.

Using Eq. (8.2) and our assumption of T0/β = 1 in the 19-parameter model, we can

estimate β and, consequently, 〈µ〉 via Eq. (8.1), using intergenic trimer frequencies and

predicted values of κ1 and κ2. Note that although the T0 = β assumption is arbitrary,

we estimate τ/α from the predicted pairing rates in a way that makes our procedure

invariant with respect to rescaling both T0 and all pairing rates by an arbitrary factor

(cf. Eqs. (5.1) and (5.2), (8.2)). We have estimated the value of β using both the most

up-to-date data available in the literature and Bulmer’s original data (see Table 8.1 for

input parameter values). Both sets of parameters yield very similar estimates for the

average effective mutation rate: 2.4 × 10−6 and 1.1 × 10−6 mutations per nucleotide
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per generation, respectively. These estimates differ from independent estimates of the

genomic mutation rate in E. coli [37, 70], which yield values on the order of 10−10

mutations per nucleotide per generation.

The same calculation in S. cerevisiae, which has a similar effective population size

(Table 8.1), has resulted in 〈µ〉 = 7.1× 10−7 mutations per nucleotide per generation,

which is also higher than the independently estimated mutation rate of 3.3 × 10−10

mutations per nucleotide per generation [71].

A possible explanation for the observed discrepancy, which is reminiscent of the dif-

ficulties encountered by Bulmer in trying to reconcile a population genetics model with

the biophysics of mRNA translation [23], is that the codon diversity seen in E. coli and

S. cerevisiae genomic data is affected by linkage and may require an explicit treatment

of genetic drift, as µNe � 1 for both organisms (Table 8.1). Indeed, genetic drift can

contribute to allele diversity observed across multiple sites, even if each individually

evolving site is in the monomorphic regime [72,73]. Note that our model describes the

frequencies of Nc ' GL/20 = O(105) codon sites per individual for each fitness land-

scape, where L is the average gene length in codons (494 in S. cerevisiae and 319 in E.

coli), and 20 accounts for the number of distinct amino acid types (positions where the

STOP instruction has the highest fitness are excluded from the estimate), so statistical

noise is likely not a strong contributor to diversity.

Finally, our analysis yields an inverse relationship between 〈µ〉 and the total number

of genes G, which in turn is strongly correlated with the total number of nucleotides

in the genome (Fig. 7.7). This is consistent with Drake’s rule, which states that organ-

isms with larger genomes tend to have smaller mutational rates [37]. Multiple-species

biophysical data of the type displayed in Table 8.1 will be required to confirm the trend

and estimate its significance quantitatively.

8.1 Translation Speed Penalty Connection to Biophysical Quantities

In order to estimate the average mutational rate 〈µ〉 (Eq. (8.1)), we first need to de-

termine the mutational scale parameter β. Recall that in the 19-parameter model,
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we have set T0/β = 1 without loss of generality because all wobble rates are free pa-

rameters not constrained by normalization. Therefore, using Eq. (5.11) to estimate T0

automatically determines β. Specifically, to compute the right-hand side of Eq. (5.11)

we have followed a biophysical approach originally developed by Bulmer [23]. In this

approach, ribosome translation kinetics are modeled explicitly under the assumption of

steady-state translation of each mRNA transcript. We start by evaluating

〈
d logPtot

dtc(q,`)

〉
=

〈
G∑
i=1

Pi
Ptot

d logPi

dtc(q,`)

〉
, (8.3)

where Pi is the protein production rate of gene i, Ptot =
∑G

i=1 Pi is the total protein

production, G is the total number of genes, and tc(q,`) is the translation time of codon c

found in gene q at position `. The 〈. . . 〉 average is over all codon positions which evolve

under the same fitness matrix. For a single mRNA transcript, the total ribosomal

on-rate will be equal to the total ribosomal off-rate, or the rate at which ribosomes

complete translation, in steady-state. If the average time for translation initiation for

the ith gene is tIi, the rate at which translation is completed and proteins are produced

is given by 1/tIi per mRNA. If there are mi mRNA transcripts per cell for gene i, the

protein production rate for this gene is Pi = mi/tIi, yielding

d logPi

dtc(q,`)
= − 1

tIi

dtIi
dtc(q,`)

. (8.4)

Further noting that the initiation time, tIi, is the sum of the time for a single ribosome

to bind to the transcript and the time for this ribosome to translate far enough for

another ribosome to bind, we obtain

tIi = (kIiRf )−1 +
L∑
j=1

tc(i,j), (8.5)

where Rf is the number of free ribosomes in the cell, kIi is the on-rate per free ribosome

for gene i, and L is the ribosomal footprint. Substitution of Eq. (8.5) into Eq. (8.4)
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yields

d logPi

dtc(q,`)
=

1

tIikIiR2
f

dRf

dtc(q,`)
− 1

tIi
δiqδ`≤L. (8.6)

The number of free ribosomes, Rf , can be expressed as

Rf = Rtot −
G∑
i=1

miRbi, (8.7)

where Rtot is the total number of ribosomes in the cell (assumed to be constant), and

Rbi is the number of ribosomes bound to a single mRNA transcript of gene r. If tT i is

the average time for a single ribosome to translate,

tT i =

Li∑
j=1

tc(i,j), (8.8)

where Li is the total number of codons in gene i, then Rbi/tT i is the total ribosomal

off-rate, and therefore

Rbi
tT i

=
1

tIi
⇒ Rbi =

tT i
tIi
. (8.9)

under the steady-state assumption in which the ribosomal on and off rates are equal.

The derivative of Rf in Eq. (8.6) is then given by

dRf

dtc(q,`)
= −

G∑
r=1

mr
dRbr
dtc(q,`)

= −
∑
r=1

mr

[
1

tIr

dtTr
dtc(q,`)

− tTr
t2Ir

dtIr
dtc(q,`)

]

= −
G∑
r=1

mr

[
δrq
tIr
− tTr
t2Ir

{
δrqδ`≤L −

1

kIrR2
f

dRf

dtc(q,`)

}]

= (Rbqδ`≤L − 1)Pq −
1

R2
f

dRf

dtc(q,`)

G∑
r=1

RbrPr
kIr

, (8.10)

yielding

dRf

dtc(q,`)
=

(Rbqδ`≤L − 1)Pq

1 + 1
R2

f

∑G
r=1

RbrPr

kIr

, (8.11)

where δ`≤L = 1 if 1 ≤ ` ≤ L, and 0 otherwise.
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Using this result, Eq. (8.6) becomes

d logPi

dtc(q,`)
=

(Rbqδ`≤L − 1)Pq[
R2
f +

∑G
r=1

RbrPr

kIr

]
tIikIi

− 1

tIi
δiqδ`≤L. (8.12)

Finally, Eq. (8.3) can be written as

〈
d logPtot

dtc(q,`)

〉
=

〈
G∑
i=1

Pi
Ptot

 (Rbqδ`≤L − 1)Pq[
R2
f +

∑G
r=1

RbrPr

kIr

]
tIikIi

− 1

tIi
δiqδ`≤L


〉
. (8.13)

To evaluate Eq. (8.13) numerically, we have replaced all single-codon translation

times and gene-specific initiation rates with typical values, tc(q,`) → t and kIq → kI .

Equation (8.13) now simplifies to

〈
d logPtot

dtc(q,`)

〉
≈ − Ptotγ

GtIkI
+

G∑
q=1

Pq(RbqγPtot − kI)
G|Ssq |tIkIPtot

∑
`∈Ss

q

δ`≤L, (8.14)

where

γ =

(
R2
f +

G∑
r=1

RbrPr
kI

)−1

. (8.15)

We have evaluated the final expression in Eq. (8.14) to estimate T0 and subsequently

the average mutational rate for two organisms where data is available.

8.1.1 Modern E. coli Dataset.

Protein production rates Pq were assumed proportional to the relative cellular abun-

dance of proteins produced from gene q (see Ref. [74] for protein abundance data).

Using t = 0.12 s, tI = 62 s from the Transimulation Web Server (Ref. [75]; E. coli K-12

MG1655) and L = 10 codons (Ref. [76]), we obtain

kIRf =
1

tI − Lt
= 1.6× 10−2 initiations per second (8.16)

for each mRNA using Eq. (8.5). The number of ribosomes in a single cell of E. coli K-12

is Rtot ∼ 55 × 103 (Ref. [77]) 85% of which are bound to mRNA (Ref. [23]) such that

Rf = 8300 and kI = 2.0× 10−6 initiations per ribosome per second for each mRNA.
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According to Ref. [75], there are on average 47 proteins produced per mRNA, which

each have an average lifespan of 7.5 minutes, and 3.6 mRNAs per gene are present in

the cell. With G ' 4300 genes in the E. coli K-12 MG1655 reference genome, we obtain

Ptot =

(
3.6 mRNAs

gene

)
×
(

47 proteins
mRNA

)
(7.5 mins )×

(
60 secs

min

) × 4300 genes ' 1600 proteins/sec. (8.17)

With a constant translation time per codon and a gene-independent initiation time,

Eq. (8.9) becomes Rbr = tLr/tI , where Lr is the number of codons in gene r. Then

Eq. (8.15) yields

γ =

(
R2
f +

G∑
r=1

tLrPr
tIkI

)−1

= 2.5× 10−9 (8.18)

and, consequently, the first term on the right-hand side of Eq. (8.14) is estimated as

− Ptotγ

GtIkI
= −7.5× 10−6 s−1. (8.19)

Since the value of the second term changes depending on the fitness matrix, this term

has been evaluated for all 20 amino acids, with an average value of O(10−8) s−1 and a

standard deviation of O(10−8) s−1.

Consistent with the expectation that T0 should be independent of amino acid selec-

tion, the first term dominates in E. coli, yielding

〈
d logPtot

dtc(q,`)

〉
≈ −7.5× 10−6s−1. (8.20)

Next, we focus on estimating the τ/α prefactor in Eq. (5.11). We have averaged

Eq. (5.10) over all codons using the tRNA gene copy number data from Refs. [68] and

[69], in combination with the pairing rates fit using the 19-parameter model (Table 9.1),

and set this average equal to t = 0.12 s (Ref. [75]): t =
∑

c t
cpc, resulting in

τ

α
= t

(∑
c

pc∑
n∈{A,U,C,G} rn/c3Cn+c̄23

)−1

' 1.2 s. (8.21)
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Finally, the denominator in Eq. (5.11) is approximated by

〈
tc(q,`)

d logPtot

dtc(q`)

〉
− 1 = t

〈
d logPtot

dtc(q`)

〉
− 1 ≈ −1, (8.22)

such that the predicted value for the mutation scale is

β = T0 ≈
τ

α

Ptotγ

GtIkI
= 8.8× 10−6. (8.23)

This result can be used to estimate the average mutation rate per nucleotide per

generation:

〈µ〉 =
expected # nucleotide mutations per generation

# nucleotides

=

∑
c

∑
c′ 6=c µc′cCc

3
∑

c Cc
=

1

3

∑
c

∑
c′ 6=c

µc′cpc = 7.8× 10−7. (8.24)

where Cc is the total number of codons of type c. For ease of reference, key biophysical

parameters discussed above have been summarized in Table 8.1.

8.1.2 Bulmer’s Original Dataset

To examine the robustness of our findings, we have repeated the mutation rate cal-

culation using the values of biophysical quantities originally reported by Bulmer [23]

(Table 8.1). Following the above analysis and using the additional assumption that

Pr = mr/tI (Ref. [23]), where mr is the average number of mRNAs for gene r, we

obtain

γ =

(
R2
f +

Rtot −Rf
kItI

)−1

' 3.3× 10−8, (8.25)

leading to −Ptotγ/GtIkI ' 7.3× 10−6 s−1.

Next, we follow Bulmer in replacing gene-specific average numbers of bound ribo-

somes with an average over all genes, Rbr → G−1
∑G

r=1Rbr. This simplification leads

to 〈
d logPtot

dtc(q,`)

〉
≈ − Ptotγ

GtIkI
+

(RbγPtot − kI)L
GtIkIL

, (8.26)
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where L = 1
G

∑
r Lr is the average gene length in codons, and the approximation

G∑
q=1

Pq
|Ssq |

∑
`∈Ss

q

δ`≤L ≈ Ptot
L

L
(8.27)

has been made. Equation (8.26) can be evaluated directly, resulting in

〈
d logPtot

dtc(q,`)

〉
≈ −8.2× 10−6 s−1, (8.28)

in close agreement with Eq. (8.20). Next, we use the same effective gene copy numbers

Ceff
c and codon frequencies pc as before to find τ/α = 0.56 s via Eq. (8.21). This leads

to β = 4.6 × 10−6 and 〈µ〉 = 1.1 × 10−6, close to the estimate in Eq. (8.24) which

employed more up-to-date parameters.

8.1.3 Modern S. cerevisiae Dataset.

For baker’s yeast, an estimate of Rf = 2.8 × 104 ribosomes per cell was obtained by

taking 15% (Ref. [78]) of Rtot, reported to be 18.7× 104 ribosomes in Ref. [79]. Next,

Eq. (8.5) was used with t = 0.10 s (Ref. [80]), L = 10 codons (Ref. [81]), and tI = 54 s

(Ref. [75]) to find kI = 6.7 × 10−7 initiations per ribosome per mRNA per second.

According to Ref. [79], Ptot = 1.3 × 104 proteins per second, and G ' 6000 genes in

the S. cerevisiae reference genome downloaded from NCBI. These values were used

in conjunction with the S. cerevisiae protein abundance data from Ref. [74] to find

γ = 6.2 × 10−11 (Eq. (8.15)). The first term on the right-hand side of Eq. (8.14) was

estimated to be−Ptotγ/GtIkI = −3.7×10−6 s−1, and once again was found to dominate

the second term. Finally, just as before, Eq. (5.10) was used in combination with the

wobble rates predicted by the 19-parameter model to yield τ/α = 2.6 s, resulting in

β = 9.7×10−6 (Eq. (8.23)) and 〈µ〉 = 7.1×10−7 mutations per nucleotide per generation

(Eq. (8.24)). For ease of reference, key biophysical parameters have been summarized

in Table 8.1.
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Table 8.1: Summary of key quantities used in mutation rate estimation.

t tI L Rf kI Ptot Rtot G Ne

This study
E. coli 0.12 62 10 8300 8.2 1600 55000 4300 2.5

×10−5 ×107

S. cer. 0.10 54 10 2.8 6.7 1.3 18.7 6000 107

×104 ×10−7 ×104 ×104

Bulmer [23]
E. coli 0.056 2.0 10 2800 3.6× 10−4 680 18700 − −
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Chapter 9

Numerical Determination of Model Parameters

9.1 Global Optimization Algorithm.

To fit codon frequencies, we have developed a heuristic optimization algorithm whose

objective is to minimize the L1 distance between model predictions and data. The

algorithm proceeds as follows:

1. Initialize a set of random model parameters: ~x = (κ1, κ2, s/β, ...), where all pa-

rameters are drawn from a uniform distribution in the [0, 102] range.

2. Generate a list of all possible moves through parameter space, ~x′i = ~x + ∆~xi,

in which two changes to parameter values are applied simultaneously as shown

below:

~x′1 = (κ1 + 2∆, κ2, s/β, ...),

~x′2 = (κ1 − 2∆, κ2, s/β, ...),

~x′3 = (κ1 + ∆, κ2 + ∆, s/β, ...),

~x′4 = (κ1 −∆, κ2 + ∆, s/β, ...),

. . .

In each move, wobble rates are enforced to be in the [0, 102] range and all other

parameters in the [0, 106] range, with all moves resulting in out-of-range values

excluded from subsequent evaluation. Initially, ∆ = 10.

3. From top to bottom of the list, sequentially evaluate the L1 score of each move

until L1(~x′i) < L1(~x) is obtained for ith move; accept this beneficial move.
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4. If a beneficial move is found in step 3, attempt to move in the direction defined by

∆~xi = ~x′i − ~x repeatedly until no further gain is observed. Specifically, consider

~x′new = ~x′i +m∆~xi,

where m is initialized to 106 and subsequently reduced by a factor of 10 for each

L1 evaluation which does not result in a score improvement. If an improvement is

found, the move is accepted and the evaluations continue from the new position,

starting with the same value of m that led to the score improvement. The entire

process is terminated when m = 1 and subsequent evaluations of ~x′new yield no

further gains. The algorithm then goes back to step 3 and continues the search

from the next entry in the move set listed in step 2, but with the new ~x resulting

from all the beneficial moves accepted during the extended search in the ∆~xi

direction (note that m = 1 at this point).

5. If no score improvement is found after a full iteration through the set of moves

listed in step 2, the step size ∆ is reduced by a factor of 2 and the search procedure

described in steps 3 and 4 is repeated. When this reduction results in ∆ < 10−4,

the step size is reinitialized to the initial value, ∆ = 10, and the algorithm restarts

from step 2.

6. The run is terminated after 103 evaluations of the L1 score.

Throughout the run, the average rate at which L1 decreases per function evaluation

is computed using a list of 25 most recent L1 function evaluations (computations of the

average rate commence when at least 25 function evaluations have been performed).

This average rate is used to estimate the final expected L1 score by linear extrapolation,

given the remaining budget of function evaluations. Note that the minimum L1 score

is 0. Thus, if the extrapolated estimate of L1 becomes greater than 0 as a result of

accepting the latest (slightly) beneficial move, the algorithm is no longer expected to

find an optimal set of parameters in the remaining allotted time. Then the algorithm

executes step 5, clears the L1 history list, and proceeds to the next move in the list
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shown in step 2. This allows the algorithm to avoid repeating moves which result in

very small score improvements.

The algorithm described above was independently run 103 times starting from ran-

domized initial conditions, and the set of parameters with the lowest L1 was selected.

These parameter values were then uniformly randomized by ±5% to generate another

103 starting points, and the algorithm was run again for 103 evaluations of the L1 score.

This process was repeated until no further improvement in the L1 score was observed,

at which point the best parameter set recorded throughout the run was reported. A

set of representative global optimization runs for our hierarchy of models, using E. coli

genome-wide codon frequencies as input, is shown in Fig. 9.1.

The average optimal score, L̄1, and cross-validation score, L̄1
CV, (both averages

over the 5 data sets) as functions of the total number of function evaluations for this

algorithm is shown in Fig. 9.1 for all models considered. To compute L1
CV for each

data set so as to determine L̄1
CV for this figure, the optimal parameter set found after

each 1000 function evaluations is used to make a prediction on the other 4 data sets.

These predicted frequencies are then scored and the scores averaged to compute L1
CV.

We compute the L1
CV as a metric of over-fitting: if the recovered parameter values

perform poorly on the other 4 data sets, this is taken as an indication of over-fitting.

For all cases considered, the comparative difference between L1 and L1
CV is small with

L1 < L1
CV indicating only small overfitting, although this is not considered substantial

as there are minor differences between the data set frequencies given that each data set

consists of a large number of data points.

The algorithm was constructed and its auxiliary parameters fine-tuned empirically

using E. coli codon frequency data set as input; the same procedure has been used in

all subsequent fitting.

Once the algorithm completed on all 5 data sets, the optimal parameters for each set

are averaged and the RMS deviations from these average values are computed. Since

the RMS deviation is calculated from only 5 numbers for each parameter, it should

therefore only be interpreted as a way to quantify the variation between the fitting

results and not as an estimate of the standard deviation or a confidence interval.
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9.2 Algorithm Validation.

To validate our global optimization procedure, we have generated 5 synthetic data sets

with sizes equal to those of the E. coli genomic data sets by multinomial sampling of

the codon frequencies predicted using model parameters obtained by fitting to E. coli

genomic data. These synthetically generated counts were then used as input data in

a subsequent optimization run. The convergence of the algorithm on synthetic data

is demonstrated in Fig. 9.2 for our hierarchy of models, and the parameters recovered

during these subsequent optimization runs are compared with the original parameters

in Table 9.1.
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Figure 9.1: Convergence of the algorithm fitted to the codon frequencies from
the E. coli genome. Model scores L̄1 (solid lines) and L̄1

CV (dashed lines) are shown
vs. the total number of function evaluations in the 3-parameter (a), 5-parameter (b),
7-parameter (c), 12-parameter (d), 16-parameter (e), and 19-parameter (f) models.
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Figure 9.2: Convergence of the algorithm fitted to the codon frequencies
based on synthetic datasets. Model scores L̄1 (solid lines) and L̄1

CV (dashed lines)
are shown vs. the total number of function evaluations in the 3-parameter (a), 5-
parameter (b), 7-parameter (c), 12-parameter (d), 16-parameter (e), and 19-parameter
(f) models. Each fit was performed on synthetic data generated by the same model,
with all the model parameters set to values previously found in fitting the model to
codon frequencies from the E. coli genome (Table 9.1).
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Table 9.1: Sets of parameters used to generate synthetic datasets, and sub-
sequent parameter predictions. Each parameter set was obtained by fitting the
corresponding model to E. coli genomic data (first row in each model subsection).
Second and third rows show the average and the RMS deviation of model parameters
obtained by re-fitting the same model on 5 synthetic datasets which were independently
generated using the values in the first row.

3-parameter model

κ1 κ2 s/β
4.18 3.44 644
4.16 3.42 2.00× 105

.0478 .0502 3.87× 105

5-parameter model

κ1 κ2 s/β T0/β r
3.38 .211 .581 .237 .659
3.41 .214 .633 .230 .650
.0901 .0192 .0105 2.62× 10−3 1.45× 10−3

7-parameter model

κ1 κ2 s/β T0/β r0 r1 r2

6.59 4.74 868 .0702 .702 .000 .000
6.65 4.76 1.39× 104 .0712 .708 .000 .000
.222 .160 7360 1.54× 10−3 .0151 .000 .000

12-parameter model

κ1 κ2 s/β T0/β rA/A rA/C rA/G rC/A

5.23 2.85 644 .139 .216 .490 .000 .000
5.23 2.85 8980 .139 .209 .487 3.00× 10−3 .000
.0553 .0357 6480 1.25× 10−3 7.42× 10−3 .0124 5.56× 10−3 .000

rG/U rU/C rU/G rU/U

1.01 .000 .605 .000
1.00 .000 .603 .000
.0145 .000 .0105 .000

16-parameter model

κ1 κ2 s/β T0/β rA/A rA/C rA/G rC/A

5.47 3.49 22.8 .0997 .114 .348 .000 1.22× 10−5

5.45 3.46 20.5 .0999 .114 .355 1.96× 10−3 6.10× 10−5

.0898 .0950 1.39 1.40× 10−3 4.20× 10−3 8.07× 10−3 2.85× 10−3 1.22× 10−4

rC/C rC/U rG/A rG/G rG/U rU/C rU/G rU/U

.000 9.05× 10−5 1.10× 10−3 .0126 1.48 5.40× 10−4 1.26 .000

.000 1.40× 10−4 1.18× 10−3 .0138 1.46 6.20× 10−4 1.24 .000

.000 8.18× 10−5 1.94× 10−4 1.28× 10−3 0.0527 4.32× 10−5 .0385 .000

19-parameter model

κ1 κ2 s/β rA/A rA/C rA/G rA/U rC/A

4.90 2.73 12.6 1.08 1.68 8.06× 10−3 2.38 8.80
4.92 2.78 8.41 1.13 1.72 .0127 2.42 6.81
.0650 .0272 .301 .0751 .0459 8.51× 10−3 .0878 1.81× 10−3

rC/C rC/G rC/U rG/A rG/C rG/G rG/U rU/A

1.80× 10−3 4.26 .000 .000 18.6 .313 12.0 8.19
.000 4.37 8.17× 10−5 1.92× 10−3 18.5 .470 12.0 8.11
.000 .157 1.63× 10−4 1.95× 10−3 .834 .0381 .207 .122

rU/C rU/G rU/U

.0559 21.3 .000

.0838 20.5 .000

.0117 1.03 .000
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Chapter 10

Concluding Remarks on Biophysical and Population

Genetics Model for the Analysis of Codon Usage Bias

We have developed a population genetics treatment of the biophysical model of codon

bias. We assume that genome-wide codon frequencies have reached steady state and

model the codon population using a selection-mutation framework in which codons

evolve independently of one another. Our model includes a detailed description of

codon-level mutations which takes transition/transversion biases into account [22, 57].

Furthermore, there are two kinds of selective forces in the model. We assume that

most protein coding regions in the genome evolve under purifying selection and that

for each codon, translation into amino acids different from the optimal one (which

corresponds to the codon in the standard genetic code) carries a selective penalty. Thus

our model incorporates mutational robustness, in which steady-state allele frequencies

in a polymorphic population of equal-fitness alleles can be non-uniform, with more

robust alleles, separated on average by a higher number of mutational steps from the

deleterious alleles, being relatively enriched [21]. Interestingly, even the minimal 3-

parameter model, which takes only mutation and selection against mistranslation into

account and considers only cognate codon-anticodon pairings, is capable of reproducing

genome-wide codon frequencies with ρ = 0.79 in E. coli (Table 6.1).

In addition to the factors described above, we assume that cellular fitness is propor-

tional to the total protein production rate, which leads to selective penalties for codons

with longer translation times. A major factor which determines translation speed is

the cellular tRNA concentration, which in our model is assumed to be proportional

to the tRNA gene copy numbers in the genome [27]. Finally, codon-anticodon pairing

rates are computed on the basis of the wobble hypothesis, such that a mutation in the
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3’ nucleotide of a given codon may bring about a complicated set of changes in which

the effective tRNA gene copy number may increase or decrease simultaneously with

the change in the codon’s mistranslation rate. Thus the final contribution of the codon

to the total cellular fitness depends on the delicate balance between speed and accu-

racy of the codon’s translation, and the genome-wide codon frequencies depend on the

steady-state balance between selection and mutation forces. While we have neglected

other possible mechanisms of selection on codon usage, such as mRNA toxicity [82],

mRNA transcription [83], translation initiation [84], and co-translational folding [85],

the ability of our model to empirically explain observed patterns of codon usage across

many organisms suggests that these mechanisms, while undoubtedly important in some

cases, do not play a dominant role in shaping genome-wide codon usage.

We have fit our biophysical model to genomic codon frequencies from 20 organisms.

Overall, the model reproduces observed genome-wide patterns of codon usage to a high

degree of accuracy (Fig. 6.3). When codons are ranked based on the accuracy of the

model prediction, the codon CTA appears in 8 of the 20 organisms as one of the top 4

least accurately predicted codon frequencies. No such pattern emerges for amino acids.

In terms of the predicted model parameters, the values of mutational biases κ1 and

κ2 are fairly conserved as expected, with larger values typically found in prokaryotes

and with κ1 > κ2 in all organisms. The universality of mutational rate biases across

organisms is consistent with the fact that nucleotide trimer frequencies are strongly

conserved in the intergenic regions (Fig. 5.1).

Furthermore, we observe that codons are under strong selection against mistransla-

tion, with s/β = 5.84 when averaged over all organisms (Fig. 7.4B), and s/β < 1 only in

S. pombe, C. remanei, and A. thaliana. We have found that in each organism the fitted

value of the selective penalty s, introduced in Eq. (5.3), is nearly equal to the mean

of the corresponding distribution of the sj(c) selection coefficients, defined in Eq. (5.1)

(Fig. 7.6A). On the other hand, in both E. coli and S. cerevisaie β is several-fold larger

than 〈µ〉, the genome-wide mutation rate per nucleotide per generation averaged over

all codon types. Thus we expect s/〈µ〉 to be > 1 in all organisms, making selection

against mistranslation a dominant evolutionary force in comparison with mutational
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effects.

In contrast, the ratio of the selection coefficient associated with the translation

speed to the mutation scale, T0/(βC
eff
c ), is < 1 on average (Fig. 7.6B). Thus our model

predicts that fitness costs associated with slow translation are often subordinate to the

mutational effects, and are much less pronounced than selection against mistranslation

(Fig. 7.6C). Nonetheless, we expect T0/(〈µ〉Ceff
c ) to be > 1 for a nonzero fraction of all

codons, indicating that at least in some cases selection against slow translation is an

important factor which shapes observed codon frequencies.

Finally, despite the fact that pairing rates are unrestricted in the 19-parameter

model, the rates follow well-established patterns consistent with both empirical rules

of the wobble hypothesis [28] and atom-level details of codon-anticodon binding on the

ribosomal template [36]. For example, rates of cognate pairing are much higher than

rates of wobble pairing (Fig. 7.4C), with the sole exception of the G/U pairing whose

rates are predicted to be anomalously large. Note that in our framework the first two

codon positions are assumed to have no effect on the pairing rates.

As an additional test of our approach, we have estimated T0, defined in Eq. (5.1),

directly using an explicit biophysical model of ribosome-mediated translation originally

developed by [23]. Bulmer’s model relies on biophysical parameters such as single-

codon translation times and translation initiation rates, whose values are available in

the literature for E. coli and S. cerevisaie (Table 8.1). Estimating T0 has enabled us to

find the average mutation rate per nucleotide, 〈µ〉, in the coding regions, and compare

it with previously published estimates of genome-wide mutation rates [35, 37, 67, 70,

71]. Our estimates of 〈µ〉 are several orders of magnitude higher than the values of

µ available in the literature. A model of codon evolution which includes genetic drift

and linkage between multiple codon loci is necessary to investigate these discrepancies

further. Additional refinements of the model could also replace s with several fitness

penalties which would depend on the physicochemical similarity of the mistranslated

amino acid to the optimal one.

Finally, we note that according to our biophysical framework, 〈µ〉 is inversely pro-

portional to the number of genes (Eq. (8.2)). This is reminiscent of the observation,



77

due to Drake, that organisms with larger genomes tend to have smaller mutational

rates [37]. We intend to extend our mutation-selection model to all conserved and

non-conserved regions of the genome in order to study this correlation in more detail.
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