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Computational models have seen widespread success in predicting fixation lo-

cations for visual search tasks that use artificial stimuli, such as Gabors in 1/f

noise (Najemnik & Geisler, 2005), but comparatively little in predicting fixa-

tion locations for visual search tasks with natural stimuli. Critically, previous

approaches have not accounted for the effects of our foveated visual system nor

implemented decision rules to actually select a sequence of fixations (Torralba,

Oliva, Castelhano, & Henderson, 2006; Ehinger, Hidalgo-Sotelo, Torralba, &

Oliva, 2009). Here we present a Bayesian model of fixation selection in visual

search tasks using natural images. The model used two known sources of infor-

mation to select fixations: scene context and features that look similar to the

target (termed target-relevant features here). Scene context functioned as a

prior over possible target locations, while target-relevant features acted as the

likelihood function (as in Ehinger et al., 2009). Scene context was measured

using GIST (Torralba et al., 2006) and target-relevant features were measured
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using Histograms of Oriented Gradients (Dalal & Triggs, 2005). We repre-

sented scene context with a mixture of Gaussians and target-relevant features

with a multivariate Gaussian distribution. The model selected new fixations

using either a maximum a posteriori (MAP) or entropy limit minimization

(ELM) rule. To compare the fixations selected by the models we tested hu-

man observers on a pedestrian search task in natural images. Prior to the

search task, a visibility map was measured using data from human observers

in detection task. The visibility map was then used to degrade the target-

relevant feature information in our model simulations, representing the effects

of foveation. We found evidence that human observers do use scene context

and target-relevant features as sources of information to guide their fixations

in natural scenes. Additionally, fixations selected by human observers were

more consistent with the ELM decision rule than the MAP decision rule. We

close by noting the limitations of the models and discuss potential extensions.
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Chapter 1

Introduction

Visual search, the act of making eye-movements (saccades) to find a target in

a visual environment is a ubiquitous and essential part of everyday life. This is

in large part because visual search subserves action, and is therefore a critical

subtask in achieving larger behavioral goals (Land, 2009; Hayhoe & Ballard,

2005). Everyday activities that involve visual search include reading, looking

for your car in a parking lot, deciding where to place your foot when walking

on uneven terrain, and guiding your arm/hand when reaching for your mug

to take a sip of coffee. To demonstrate the frequency with which we conduct

visual search, consider the simple task of making a peanut butter and jelly

sandwich (Land & Hayhoe, 2001). Doing this requires the following search-

action pairs:

1. Locate the bread and guide a slice to the plate
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2. Locate the peanut butter and collect some on a knife

3. Re-localize the bread to smear the peanut butter onto it

4. Locate the jelly and collect some on a knife

5. Re-localize the bread to smear the jelly onto it

6. Find and place the second slice of bread on top to complete the sandwich

Given that a relatively simple task like making a peanut butter and jelly

sandwich required six visual search subtasks, the number of searches required

for more complex behaviors such as driving a car will be extremely large. Vi-

sual search tasks can be either overt (with eye-movements) or covert (without

eye-movements). Interestingly, covert search tends to be part of overt search

tasks because humans use information from non-fixated locations to guide fu-

ture fixations. On the other hand, tasks that exclusively require covert search

are relatively rare in natural settings. Therefore, this study is restricted to

overt visual search tasks since they are more general than exclusively covert

search tasks.

Due to the prevalence of visual search in everyday life, completing searches

accurately and quickly should be of critical importance. In the context of

visual search, accuracy is often measured through detection (‘the target is

present/absent’) or localization (‘the target is at a specific location’). Two

measures of search speed are the number of fixations required for a search and

the amount of time spent on a search (often termed ‘response time’). Given
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similar task conditions, these two measures of speed will often be correlated.

The dual goals of maximizing accuracy and minimizing search time can be

in conflict, resulting in an antagonistic relationship referred to as the speed-

accuracy trade-off. If the visual system truly is trying to optimize for both

these quantities, then there should be features of human fixation patterns that

aid the optimization. Much of what we know about the features of fixations

patterns that might help maximize accuracy and/or minimize search time

comes from laboratory experiments using artificial search elements, such as

an array of letters or colored shapes presented against a grey background.

One particular feature of human scan paths is the tendency to fixate between

search elements, rather than foveating (fixating directly on) them (Coeffe &

O’Regan, 1987; Kaufman & Richards, 1969; He & Kowler, 1989; Findlay,

1997). Fixating between objects allows the observer to gain information about

multiple potential targets (Verghese, 2012), rather than just one, which can

reduce the number of eye-movements required to find the target (Najemnik &

Geisler, 2009) by allowing the observer to rule out multiple search elements at

once. Another persistent feature of human fixation patterns is the tendency

to avoid fixating the same locations twice (Klein, 1988, 2000; Tipper, Weaver,

Jerreat, & Burak, 1994). The benefit here should be obvious: if a search

element has already been classified as a distractor, then fixating it again would

be completely uninformative. Therefore, it seems that human fixation patterns

exhibit features that could be used to maximize accuracy and search speed.

Although the immediate goal of many visual search studies is to character-

ize search in artificial displays, as a field we would ultimately like to be able to



4

draw conclusions regarding search in the real world. Ideally, we would like to

be able to predict how humans will search given a particular target and scene.

Computational models provide a promising avenue of research in this respect

since they produce quantifiable, and therefore testable, predictions about how

humans search. Additionally, computational models can be used to evaluate

what sources of information humans use in visual search. If the behavior of a

model that uses a particular information source does not match human behav-

ior then it is unlikely that humans use that source of information. A related

concern is how humans actually make decisions once they have acquired the

relevant information. In computational models this takes the form of a deci-

sion rule, a theoretical computation that synthesizes the relevant information

to produce a behavior. Known constraints on visual processing can also be

incorporated into computational models. Comparing the performance of a

constrained model with an unconstrained model can tell us how the constraint

impacts search behavior. Unfortunately, as we move from artificial stimuli to

more naturalistic stimuli it becomes more difficult to measure or estimate the

various parameters of computational models. This makes it more difficult to

apply computational models to natural images than artificial stimuli. Deriv-

ing approximations that will work on natural images remains a challenge for

developing computational models of visual search.

Computational models can either be predictive or normative. Predictive

models of visual search seek to predict how observers will search when given

a particular target and scene. Importantly, it is not necessary for a predic-

tive model to perform the same computations as humans, all these models
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need to do is match human behavior. On the contrary, normative models

seek to predict how observers should search when given a particular target or

scene. The distinction here is that the primary goal for a normative model

of is to replicate the same computations that humans perform as closely as

possible. The primary question of this study is how humans should search,

therefore I will define a ‘good’ model as one that has a normative base and

incorporates as many known biological constraints and sources of information

as possible while still producing a close match to human behavior. This means

that computational models don’t only need to match human behavior, they

also need to do so with the same constraints that limit humans and the same

sources of information that humans use. Models that can match human per-

formance but don’t include important constraints and sources of information

will not be considered ‘good’ models of visual search because these models

are necessarily performing different computations than human observers, and

are therefore unable to make predictions about how humans should search.

For our purposes a ‘good’ computational model is one that provides norma-

tive predictions about how human observers search, given a defined task and

stimulus. Predictive models that only seek to predict human behavior without

incorporating known biological constraints or sources of information would not

be considered ‘good’ computational models because they are simply matching

observer behavior, not modeling the actual computations the observer is per-

forming. While normative computational models may not perform the same

exact computations as human observers they are far more likely to perform

similar computations than predictive models.
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In this paper I will first present biological constraints and sources of in-

formation that influence search performance. Next, I will critically examine

several computational models of visual search that incorporate some of the

biological constraints and sources of information discussed. I will then present

a Bayesian model of fixation selection that combines some of the strengths

of these computational models. Model predictions will be compared to eye-

movement data collected in a behavioral experiment where observers searched

for a natural target in real world images. Finally, I will discuss the implications

of these results.

1.1 Biological Constraints on Visual Process-

ing

When attempting to model the behavior of an organism, an important first

step is identifying the inherent limitations of the organism. If the organism’s

perceptual or behavioral systems are constrained in some way so that certain

tasks prove impossible, or exceedingly difficult, then a normative model of that

organism should not be able to complete those tasks with ease. For the task

of visual search the most important biological constraints to consider are the

degraded quality of information in the periphery due to our foveated visual

system and limitations on cognitive resources such as memory and attention.
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1.1.1 Degraded Peripheral Sensitivity

It is well known that the quality of visual information in the periphery is

greatly reduced when compared with the fovea. Although photoreceptors tile

the entire retina, the number of ganglion cells they project to changes dra-

matically as a function of eccentricity. Photoreceptors in the fovea have an

approximately 1 : 1 connection with foveal ganglion cells, but at greater ec-

centricities larger numbers of photoreceptors project onto the same peripheral

ganglion cells (Fischer, 1973). As a result, the receptive field size of ganglion

cells in the periphery is much larger than in the fovea. Smaller receptive field

sizes are associated with greater acuity and spatial resolution, so the qual-

ity of information transmitted by foveal neurons is greater than neurons in

the periphery. For visual search this means that the representation of search

elements displayed in the periphery will necessarily have more uncertainty

associated with them, which can reduce accuracy and increase search time

(Geisler & Chou, 1995; Scialfa & Joffe, 1998; Carrasco, Evert, Chang, & Katz,

1995). The eccentricity effect holds true regardless of whether search time is

quantified in terms of the number of fixations or response time.

Foveation also gives rise to the phenomenon known as crowding, where

recognition of search elements in the periphery is impaired by other nearby

search elements. Crowding has also been shown to have detrimental effects

on search accuracy and can increase search times (Vlaskamp, Over, & Hooge,

2005; Vlaskamp & Hooge, 2006; Rosenholtz, Li, & Nakano, 2007). Since

human performance is impaired as search elements become more and more
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peripheral, so should the performance of any computational model for visual

search. One method for controlling for the fall-off in peripheral acuity is by

constraining models with visibility maps that quantify this fall-off (e.g., Na-

jemnik & Geisler, 2005; Zelinsky, 2008; Zelinsky, Adeli, Peng, & Samaras,

2013). For well controlled stimuli (e.g. a Gabor in noise), visibility maps can

be measured for individual participants using psychophysics and signal detec-

tion theory (Najemnik & Geisler, 2005). This helps control for any differences

in target visibility across observers. Unfortunately, it is difficult to quantify

the visibility maps for natural scenes (e.g. a teddy bear in a bedroom). In

this case a common visibility map is often used across observers (Zelinsky,

2008; Zelinsky et al., 2013). Common visibility maps have the benefit of re-

quiring much less data collection, but come with the drawback of having worse

predictive power.

1.1.2 Limited Memory

There is little debate that visual memory (Miller, 1956; Brady, Konkle, &

Alvarez, 2011) is a limited resource, but it’s impact on visual search is still

an open question. Visual memory could theoretically be used for search in

a number of ways, such as storing target-relevant information (e.g. features

associated with the target) or tracking previously fixated locations. Most

studies on this issue have concluded that memory is either not involved in

search (Horowitz & Wolfe, 1998) or that it is not a limiting factor on search

performance (Najemnik & Geisler, 2005). Another study found that memory
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was only minimally required for storing target-relevant information (Woodman

& Chun, 2006). However, memory may also be required to store previously

fixated locations to avoid re-fixation. The fact that humans tend to avoid

fixating the same locations hints at the idea that memory may play a more

important role in visual search than previously thought. Additionally, memory

has been shown to be an important component of some saccadic targeting

models (e.g., Epelboim & Suppes, 2001; Aivar, Hayhoe, Chizk, & Mruczek,

2005), showing that memory can be used to guide saccades. Unfortunately,

due to the popular belief that memory is not a constraining factor in visual

search (e.g., Najemnik & Geisler, 2005; Horowitz & Wolfe, 1998) and lack of

agreement over how it should impact search there have been few computational

models explicitly developed for visual search including the influence of limited

visual memory.

1.1.3 Limited Attention

Limited attention has frequently been hypothesized to be a constraining fac-

tor for visual search. Attention can either be overt (attention that is di-

rected using eye-movements) or covert (attention that is directed without us-

ing eye-movements). Overt attention is necessarily limited since directing eye-

movements to different scene locations is a sequential process. Directing overt

attention to a location brings that location into the fovea, which improves the

quality of information we receive there. This means that overt attention is a

sequential process because of our foveated visual system. Therefore, the effects
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of limited covert attention are more relevant to the current study than those

of overt attention.

There are two particular types of covert attention that are relevant for vi-

sual search. The first is covert spatial attention, which consists of directing

attention towards a particular spatial location without moving one’s eyes. In

visual search tasks spatial attention is used for selecting spatial locations to

direct overt attention (eye-movements) towards. Laboratory tasks using arti-

ficial stimuli have shown that attention can help ameliorate the detrimental

effects of our foveated visual system. For example, applying covert attention

to peripheral search elements actually increases the spatial resolution of their

representation, thereby attenuating the eccentricity effect (Carrasco & Yeshu-

run, 1998). The second relevant type of attention is feature-based attention.

In feature-based attention, attention is covertly directed towards specific fea-

tures (e.g. color, orientation), regardless of their physical location. The role

of feature-based attention in visual search is relatively straightforward. If the

observer knows the target-relevant features then they can selectively direct at-

tention towards search elements that have similar features. For example, if the

observer is searching for a red baseball cap then feature-based attention would

be directed towards red objects. The utility of feature-based attention has

borne out in visual search as previous research has found that feature-based

attention can guide eye-movements towards and prioritize processing of search

elements with target-relevant features (Moore & Egeth, 1998; Shih & Sperling,

1996). Therefore, restricting attention to search elements with target-relevant

features can lead to reduced search times and improved accuracy.
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Although attention has been shown to play a role in visual search, in-

cluding limited attention as a constraint for computational models has so far

been difficult. A major hurdle is that there is no agreement on how attention

should influence search performance. In particular, two hypotheses about the

mechanism through which attention acts are information selection and infor-

mation enhancement (for a more thorough review of the different attentional

mechanism hypotheses, see Carrasco, 2011). These hypotheses are not ac-

tually mutually exclusive, meaning that attention may act through both of

these mechanisms. This lack of agreement regarding the attentional mech-

anism makes it difficult to generate quantifiable predictions for how limited

attention constrains search behavior. Additionally, there is some debate re-

garding whether effects on search previously attributed to limited attention are

actually caused by limited attention. Instead, set-size (the number of search

elements in a display) effects attributed to limitations on attention may actu-

ally result from the stochastic nature of visual processing (Palmer, Verghese, &

Pavel, 2000). Due to our inability as a field to agree on a mechanism through

which attention acts and the difficulty disentangling the effects of limited at-

tention and variability in neural firing rates, developing computational models

that include limited attention has not been especially fruitful.
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1.2 Sources of Information

There are several sources of information that humans seem to use to re-

duce uncertainty about target locations and guide eye-movements in search.

These include target-relevant features, saliency, scene context, and object co-

occurrence. Of these information sources, the most commonly used compo-

nents of computational models for visual search have been saliency (Itti &

Koch, 2000) and target-relevant features. In the following section I will briefly

discuss each of these four sources of information and what makes them a good

or bad candidate for use in a computational model of search. I will close this

section by describing two candidate decision rules for fixation selection.

1.2.1 Target-relevant Features

One reasonable source of information in visual search are features associated

with the target. The reasoning for this is intuitive: if you are searching for

a red apple you should direct your gaze towards things that look like the

target (e.g. red, circular objects). The evidence is quite strong that target-

relevant features provide information about the location of the target, and that

humans use this information to guide their search (Findlay, 1997; Eckstein,

Beutter, Pham, Shimozaki, & Stone, 2007; Ludwig, Eckstein, & Beutter, 2007;

Rajashekar, Bovick, & Cormack, 2006; Tavassoli, Linde, & Cormack, 2009).

In computational modeling, a popular approach to quantifying the effect of

target-relevant features is template matching. Template matching consists
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of computing a measure of similarity between a template of the target and

each search element in the display. For example, when searching for a Gabor

embedded in Gaussian white noise the template would be a copy of the target

itself. In practice template matching is carried out by convolving the target

template with an entire image, generating a ‘similarity map’. Regions of the

similarity map that respond most strongly (i.e. have features that are similar

to the target) will have the greatest activation following convolution, and will

therefore be most likely to draw the observer’s gaze.

Unfortunately, template matching has some limitations. First, it is surely

affected by the degraded resolution of information in the periphery. As such,

models that use target-relevant features are most successful when constrained

with visibility maps (Najemnik & Geisler, 2005; Zelinsky, 2008; Zelinsky et

al., 2013). Another limitation is that while template matching is easy to carry

out with artificial stimuli (e.g. natural objects on a roughly uniform back-

ground or Gabors embedded in noise) we don’t know what the template looks

like for real-world scenes. In part this is due to variations in pose, lighting,

and scale that occur naturally and are uncontrollable. Occlusions also present

a unique problem by hiding part of the target from view, meaning the tem-

plate must be flexible enough to compensate for only part of the target being

in view. Many real world searches are also categorical in nature, meaning

the task is to find an unspecified member of a category (e.g. find any mug).

In this case the template will almost never match the target exactly. These

variations in appearance and uncertainty about target parameters have been

shown to degrade search performance relative to tasks where the search target
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matches the template exactly (Eckstein & Abbey, 2001; Bravo & Farid, 2009;

Vickery, King, & Jiang, 2005; Wolfe, Horowitz, Kenner, Hyle, & Vasan, 2004;

Ludwig et al., 2007). However, humans are able to at least partially compen-

sate for variations in target appearance that reduce the match with the search

template (Bravo & Farid, 2009). This means humans can use target-relevant

features in a flexible manner to compensate for changes in pose, lighting, and

other sources of naturally arising variation. Any computational model of vi-

sual search that uses target-relevant features as a source of information should

also be able to account for this invariance to some degree. Some computational

modeling approaches have taken this into account by computing features that

are invariant to these naturally arising fluctuations in target appearance (e.g.,

Lowe, 1999; Dalal & Triggs, 2005). In these approaches, features are extracted

using linear filters that are selective for particular spatial frequencies and ori-

entations. Linear filters are considered a model of early visual neurons, so

this method of feature extraction has some biological plausibility. Each linear

filter essentially functions as a ‘feature detector’ for a given spatial frequency

and orientation. These approaches fare reasonably well, although their object

detection performance is still inferior to that of humans. This implies that

these approaches may not be using the same target-relevant features as hu-

mans, or that humans are better able to compensate for variations in target

appearance. However, these approaches do come close to human performance

and therefore may be a good approximation.



15

1.2.2 Saliency

Saliency in its original conception is essentially a measure of distinctiveness,

or how different the statistics in a local image region are given the statistics in

the rest of the image (Itti & Koch, 2000). In this sense, saliency matches the

intuitive definition of local image regions that stand out from their surround-

ings. Thinking of anecdotal examples where saliency might be informative

about probable target locations in visual search are extremely easy, such as a

red target embedded among blue distractors. This is an example of a pop-out

search, where targets are found so rapidly that search times do not increase

significantly as a function of the number of distractors. Regions where the

statistics match the rest of the image have low saliency (i.e. this region is not

‘distinctive’ given the rest of the image, like the blue distractors) while regions

where the statistics are unlikely given the rest of the image are highly salient

(i.e. this region is ‘distinctive,’ like the red target). For the purposes of this

review, I will use the original definition of saliency described in Itti & Koch

(2000).

The ease of its computation has made saliency a popular component of

computational models of visual search (e.g., Torralba et al., 2006; Parkhurst,

Law, & Niebur, 2002; Nakayama & Martini, 2011). The essential computa-

tion can be framed probabilistically as p (L|G)−1 where L corresponds to the

features in a local region of the image (obtained by linear filtering) and G is

the distribution of features measured over the entire image. The inverse of

p (L|G) is taken since saliency is a measure of how unlikely a set of features
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is, meaning local features that are more probable given the rest of the image

should have low saliency and vice versa. However, a fundamental problem

with saliency is that highly salient regions of an image are not necessarily

likely target locations. For example, saliency would not be useful if the task

was to find a blue target among blue distractors and one red distractor. In this

situation, saliency would guide the observer’s gaze towards the red distractor

rather than the target. Therefore, saliency is only informative when the target

is salient compared to the rest of the image, otherwise it can actually impair

search performance by drawing eye-movements to distractors. Critically, this

is because the computation of saliency does not include a term associated with

the target. While saliency has been shown to be a good predictor of fixations

in free viewing tasks (which do not have a target defined), it is a bad pre-

dictor for search tasks where a target has been defined (Torralba et al., 2006;

Einhauser, Rutishausher, & Kock, 2008; Foulsham & Underwood, 2008; Pom-

plun, 2006; Tatler, Hayhoe, Land, & Ballard, 2011). Therefore, although Itti

& Koch (2000) saliency is easily quantifiable it is a poor source of information

for visual search tasks.

1.2.3 Scene Context

Scene context refers to the structure of natural scenes. Scenes with similar

contexts (e.g. forest scenes) tend to have similar configurations of features,

such as orientations and spatial frequencies. However, instead of operating

over localized regions of the image like target-relevant features, scene context
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acts over the entire image. For example, forest scenes have many vertically

oriented edges (the trees) connected to horizontal edges (the grass), whereas

beach scenes have very few vertical edges and a few prominent horizontal edges

(denoting the divisions between the beach, ocean, and horizon). Importantly,

scene context often naturally reduces the set of probable target locations.

For example, when searching for an apple in a forest two highly probable

target regions would be tree branches and the forest floor, but in a kitchen

scene the highly probable locations would be on counter tops. Since scenes

with similar context often have extremely similar structures, the set of highly

probable target locations tends to be the same. There is strong experimental

evidence that scene context does guide eye-movements in search, as a wide

range of studies have consistently found effects of guidance by scene context

(e.g., Castelhano & Heaven, 2010; Ehinger et al., 2009; Hidalgo-Sotelo, Oliva,

& Torralba, 2005; Neider & Zelinsky, 2006; Torralba et al., 2006). These

studies find that scene context can greatly reduce search times by restricting

the set possible target locations, thereby reducing the number of image regions

that must be fixated.

Scene context also has the nice feature of being quantifiable in a measure

known as ‘gist’ (Oliva & Torralba, 2006). Scene gist is determined by using

computer vision methods to pool together the output of groups of linear fil-

ters at different scales and orientations. The computation of gist is closely

related to that of object detection algorithms in computer science, but has

an important distinction. Rather than being computed for a single object at

a time, gist representations are computed over an entire image. This means
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gist representations essentially consider an entire scene as one object made up

of different texture regions. One way to represent a forest scene is to use an

object-based representation where each individual object is represented (e.g.

trees, grass, animals, etc.) with a collection of filter outputs. Conversely, the

gist representation of that forest scene would consist of a few large texture

regions, with each texture region defined by a particular configuration of filter

outputs. It has been hypothesized that scene gist builds up rapidly over the

first few hundred milliseconds of viewing an image since research has shown

humans can reliably categorize scenes even when viewed for less than 200 ms

(Potter & Levy, 1969). This means it is more likely that humans represent

scene context using a representation similar to gist, as opposed to a collection

of objects representation. Additionally, since each fixation lasts approximately

200-300 ms, the fact that humans can reliably categorize scenes with less than

a full length fixation indicates that the perception of scene context may not

be impaired by our foveated visual system. Therefore, it is not necessary for

computational models to constrain gist representations with visibility maps.

1.2.4 Object Co-occurrence

Object co-occurrence refers to the fact that certain objects tend to consistently

be located near each other in natural images. The presence of a particular ob-

ject can then act as a cue that a search target is nearby. For example, pencils

may tend to be located near notebooks. If you are given the task of finding a

pencil then locations adjacent to notebooks are highly likely to contain the tar-
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get. Indeed, research on object co-occurence has shown that humans use it to

guide their searches towards expected target locations (Castelhano & Heaven,

2011; Eckstein, Drescher, & Shimozaki, 2006; Mack & Eckstein, 2011). The

differences between object co-occurrence and scene context are subtle. Scene

context describes information obtained from representations of the scene as a

whole, whereas object co-occurrence describes a spatial relationship between

objects in space. Object co-occurrence is more similar to the ‘collection of ob-

jects’ representation of a scene described in the Scene Context section. This

means that information from object co-occurrence will operate at a finer scale

than information from scene context.

Although object co-occurrence provides information about highly proba-

ble target locations, it has so far not been integrated into a computational

model of visual search. This is in large part because object co-occurrence is

difficult to quantify explicitly. Quantifying the effects of object co-occurrence

requires measuring the conditional distribution of target locations given asso-

ciated objects (e.g. p (Pencil|Notebook)). However, measuring the conditional

distribution for even one target requires an immense amount of training data,

both in the number of images needed and the number of associated objects that

must be conditioned on. Additionally, object co-occurrence is only discussed

on the level of object-to-object relationships, but it could actually be that

features associated with co-occurring objects are the true guiding force here.

This would mean that rather than measuring the conditional distributions be-

tween associated objects and the search target, we would need to measure the

conditional distributions between features of associated objects and the search
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target. Finally, it is also possible that gist measurements of scene context

include the effects of object co-occurrence as well. Since scene context is a

larger scale source of information it may already capture the effects of object

co-occurrences. Given particular configurations of features in an image, a gist

representation can tell us which locations are more likely to contain the search

target. Since particular contexts tend to have a set of objects that frequently

appear there, it may be that part of the gist representation is actually feature

configurations arising from frequently co-occurring objects. So although mea-

suring the information present in object co-occurrence is difficult, it may be

unnecessary.

1.2.5 Decision Rules

Decision rules for fixation selection in visual search tasks tend to fall into

two classes: maximum a posteriori (MAP) decision rules and information gain

decision rules. MAP decision rules are based around the idea that the best

strategy is to fixate the location that has the highest probability of containing

the target (e.g., Beutter, Eckstein, & Stone, 2003; Zelinsky, 2008; Zelinsky et

al., 2013). If the target is not there, an observer using a MAP decision rule

would fixate the next most likely location, and so forth. Some models make use

of an averaged-MAP decision rule, where the posterior is thresholded and the

average of the remaining locations is used instead of the true MAP (Zelinsky

et al., 2013), but the main idea is the same.
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Information gain decision rules, also known as uncertainy reduction deci-

sion rules, take the long-view and instead try to maximize the information

gained on each fixation (e.g., Najemnik & Geisler, 2005, 2008; Vincent, 2011).

There are many situations where the two decision rules select similar locations

for fixation, in large part because ruling out highly probable locations often

substantially reduces uncertainty. One major difference is that uncertainty re-

duction decision rules also produce ‘exclusion’ fixations, which are fixations to

locations with high uncertainty. The largest deviations between the two deci-

sion rules are seen in situations where the signal-to-noise ratio in the periphery

falls off gradually compared with the fovea (Zhang & Eckstein, 2010).

Research on which decision rule humans use has been mixed, with some

studies finding support for uncertainty reduction decision rules (Najemnik &

Geisler, 2005, 2008, 2009; Ghahghaei & Verghese, 2015) and others finding

support for MAP decision rules (Verghese, 2012; Ghahghaei & Verghese, 2015).

Additionally, this topic has only been investigated using artificial stimuli and

carefully constructed trade-offs between the rules. This means that using

natural stimuli may actually be the best way to resolve this debate.

1.3 Previous Approaches

In the subsequent section I will examine some of the more successful approaches

to modeling visual search in natural images. Although these models are quite

different from each other, one commonality is they all have some conception of
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an ‘activation map,’ where with higher activation are more likely to be fixated.

These models fall into several different classes. The first class is saccadic tar-

geting models which begin with the theory that eye-movements are directed

towards search elements that contain features similar to the target (e.g., Eck-

stein et al., 2006; Findlay, 1997; Pomplun, 2006; Rao, Zelinsky, Hayhoe, &

Ballard, 2002; Zelinsky, 2008; Zelinsky et al., 2013). Naturally, these mod-

els tend to place an emphasis on target-relevant features. The second class

of models are those that emphasize scene context as a source of information

(e.g., Torralba et al., 2006; Ehinger et al., 2009). The final class of models

are uncertainty reduction models, which select fixations based on how much

they will reduce the uncertainty about the target location (e.g., Najemnik &

Geisler, 2005, 2008; Vincent, 2011). Similar to the saccadic targeting models,

uncertainty reduction models place a large emphasis on target-relevant fea-

tures. The main distinction between these two approaches is how they select

fixations. Saccadic targeting models operate by fixating near highly probable

target locations, while uncertainty reduction models fixate locations that will

maximally reduce the model’s uncertainty about the target location. Models

that exclusively place an emphasis on saliency as a source of information (e.g.,

Itti & Koch, 2000; Nakayama & Martini, 2011) will not be discussed here since

they are not normative and can’t account for human search behavior.
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1.3.1 The Target Acquisition Model

One of the more successful saccadic targeting models is the Target-Acquisition

Model (TAM) (Zelinsky, 2008; Zelinsky et al., 2013). The TAM primarily

takes advantage of target-relevant information. It also attempts to model the

degraded quality of peripheral information that results from our foveated visual

system. In order to search for the target, the TAM passes through several

phases of processing. First, it computes an activation map of image locations

where greater activation corresponds to greater likelihood of the target being

present. The activation map is then thresholded and averaged. Based on the

revised activation map, the TAM then generates an eye-movement towards a

highly probable target location. Once a search element is brought within the

region defined as the TAM’s fovea it can either be rejected as a distractor or

reported as the target. This process iterates until either all search elements

have been examined and rejected, or the target is found.

The authors evaluated the TAM’s performance by comparing it with human

observers on several tasks: search in natural scenes (helicopters or tanks in

landscape scenes), search for natural targets in sparse backgrounds (teddy

bears in crib scenes) and artificial targets (Q’s and O’s on a monochromatic

background). Subjects were first given either an exact image of the target

they were searching for (Zelinsky, 2008) or were simply told the category of

object to search for (Zelinsky et al., 2013). In this paper I will restrict my

discussion to results obtained from the first two tasks since the third task is

not naturalistic.
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The TAM is able to produce some features of human scan paths, including

fixating between search elements and not fixating previous visited locations.

Fixating between search elements is a natural consequence of how the activa-

tion map is spatially averaged. However, avoiding previously visited locations

is included as a heuristic in the model and is therefore not normative. When

the TAM fixates a location and rejects it as a distractor that location is tagged

with Gaussian distributed inhibition. If the TAM were normative this feature

would not need to be added and should instead fall out of the model.

Additionally, the TAM still falls far short of actually matching humans in

search. One shortcoming is that the TAM produces significantly more detec-

tion errors when compared with human observers, meaning humans outper-

form the TAM. This indicates that the TAM is either too constrained, or does

not have access to the same information observers are using. Additionally,

the TAM is only able to qualitatively match the scan paths of a subset of ob-

servers, and tends to make larger amplitude saccades. The mismatch between

model and human scan paths is likely the result of using a common visibility

map across all participants. Two human observers will not have the same

visibility map, so assuming a common one can result in a significant mismatch

with other observers. It is difficult to determine whether the TAM’s tendency

towards large amplitude saccades is due to the visibility map used or the im-

position of a minimum saccade amplitude. It may be that the visibility map

used by the authors results in a shallower falloff than actual human observers

experience, meaning the model would have less blurring in the periphery than

humans. Alternatively, the minimum saccade amplitude for the model may be
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too high relative to human observers.

A final consideration is that the TAM does not include the effect of scene

context, which can be quantified and is known to be informative in visual

search. Scene context would likely have been a good source of information in

the natural image search (helicopters or tanks in terrain). It’s exclusion from

the TAM may have hurt the model’s performance in this condition. However,

in searches for natural targets on sparse backgrounds scene context most likely

would not be very informative due to the sparsity of the search displays. Due

to its flaws, the TAM leaves significant room for improvement.

1.3.2 Contextual Guidance Model

The Contextual Guidance Model (CGM) is one of the few models that ex-

plicitly includes the effect of scene context (Torralba et al., 2006). Although

it also uses saliency as a source of information I will discuss it here because

the majority of its performance is derived from its use of a gist measure of

scene context as a source of information. In its original conception, the CGM

quantifies saliency and scene context as probabilistic sources of information

(Torralba et al., 2006). Using probabilistic sources of information allows the

authors to apply the normative framework provided by Bayes rule to optimally

combine saliency and scene context information.

In the CGM, saliency corresponds to the likelihood and a gist representa-

tion of scene context corresponds to the prior distribution. The CGM then
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constrains the possible fixation locations based on the resulting posterior dis-

tribution. The CGM’s posterior distribution functions in a similar manner

to the TAM’s activation map where highly probable locations are selected for

fixation. Locations with a high posterior probability tend be ones that are

both salient and likely to contain the target based on the scene gist.

To evaluate the performance of the contextual guidance model (Torralba

et al., 2006) conducted a visual search experiment. Participants were tasked

with finding all the pedestrians, mugs, or paintings in a set of natural im-

ages. Targets could be present or absent, and there could also be more than

one target present. Torralba (2006) simulated the CGM on the same images

and compared the pattern of observer fixations to the regions selected by the

CGM. The CGM was able to predict the first 1-2 fixations well above chance

levels, regardless of target type (pedestrian, mug or painting) although there

should be some skepticism regarding this result. Rather than selecting a single

location for the next proposed fixation (as the TAM does), the CGM selects

20% of the image. If participants’ fixations are within this 20% of the image

then they are counted as a correctly predicted. When the CGM is limited to

selecting only 10% of the image performance drops precipitously (Ehinger et

al., 2009). Even when 20% of the image is selected the CGM still does a poor

job for certain classes of targets (e.g. mugs).

Additionally, there is no analysis examining whether the CGM can predict

features of human scan paths. It is highly unlikely that the CGM would fixate

between search elements or avoid refixating previously visited located. This is
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because the CGM simply highlights a section of an image and has no means

for ruling out previously fixated locations. This means the CGM would be

unable to prevent itself from examining previously fixated locations. Similarly

the CGM would not necessarily select locations between search elements for

fixation since it selects salient image regions, which tend to be objects. It

also turns out that bulk of the model’s performance is a product of the use

of scene gist. Analysis of model predictions with only saliency (no scene gist)

consistently do a poor job predicting human fixation locations (Torralba et

al., 2006). Later implementations of the CGM (Ehinger et al., 2009) have

attempted to rectify this deficiency by also including a term associated with

target features in the form of a computer vision algorithm (Dalal & Triggs,

2005). In this implementation the likelihood comprises both saliency and

target relevant features. This only produces marginally improved performance,

so there is significant room for the CGM to be improved.

1.3.3 Uncertainty Reduction Models

A third class of models selects fixations based on how much they will re-

duce the observer’s uncertainty about the target location. The ideal observer

framework, which posits a theoretical machine that achieves the best possible

performance on a specified task given known constraints, is one such model

that has been applied to visual search tasks (Najemnik & Geisler, 2005, 2008;

Vincent, 2011). Since the ideal observer makes predictions on how to achieve

optimal performance it is an example of a normative model. The ideal ob-
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server uses template matching constrained by a visibility map, similar to the

approach taken by the TAM. However, there are two critical differences. The

first is that the visibility maps used to constrain the model are measured for

the ideal observer, but not for the TAM. The second difference is how fixa-

tions are selected. Rather than directing gaze towards search elements with

target-like features, the ideal observer selects the location that will maximally

increase the probability of localizing the target. The difference here is sub-

tle, but it causes the ideal observer to occasionally make ‘exclusion’ fixations,

fixations in image regions that have a high degree of uncertainty.

The first step in the ideal observer framework is to define the task so that

the optimal decision rule can be derived. In Najemnik & Geisler (2005) the

task was localizing a target signal (Gabor) in a field of 1/f noise. Although

this task is not strictly natural, the background was naturalistic since the

frequency spectrum of natural images falls off roughly 1/f. In this search

task the optimal method of detecting the target is template matching through

convolution. Since the visibility map in 1/f noise is not flat, the similarity

measure generated by template matching must be weighted by the visibility

map. The result of this computation is the posterior probability distribution of

the target being at any location in the image. Again, the posterior probability

distribution can be thought of as similar to the activation map in the TAM.

For each subsequent fixation the ideal searcher again convolves the target

template with the entire image and then integrates the result with the current

posterior distribution. The optimal next fixation is then the location that

will maximize the probability of correctly identifying the target, thereby also
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maximally reducing uncertainty.

The ideal observer developed by Najemnik & Geisler (2005) was evalu-

ated by comparing the fixation locations selected by the model with those of

human observers. Firstly, the ideal observer replicated important features of

human scan paths such as fixations falling between search elements and not

fixating the same location twice. The ideal observer is also able to match the

number of saccades humans require to find the target as well as the distribu-

tion of saccade amplitudes. Additionally, most of the ideal observer’s fixations

are concentrated in a donut-shaped region around the image center, with the

greatest concentration occurring directly above and below the image center.

Humans tend to fixate the same image regions, although with slightly greater

frequency than the ideal would predict. Unlike the results from the TAM and

CGM, results from simulating the ideal searcher don’t warrant much skepti-

cism. The lack of skepticism is motivated by the ideal observer framework

being parameter free. This is important in that it allows us to draw more gen-

eral conclusions about the sources of information humans use in search tasks

since we can be assured that model performance is not overfit. Given that hu-

mans track the ideal relatively well, a good general conclusion is that in this

task humans are using some form of template matching, and select fixation

locations in a similar manner as the ideal observer.

One potential drawback of the ideal searcher is that the decision rule for

selecting the next fixation location is quite complex. This calls into question

how likely it is that humans are actually using this decision rule (Najemnik &
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Geisler, 2008). To that end, the entropy-limit minimization (ELM) model was

developed to provide a heuristic approximation to the ideal fixation selection

rule (Najemnik & Geisler, 2009). Here, uncertainty is quantified in terms of

Shannon entropy (Shannon & Weaver, 1949). This approach has been suc-

cessful for tasks that are closely related to to classical visual search, includ-

ing reading (Legge, Klitz, & Tjan, 1997) and object recognition (Renninger,

Coughlan, Verghese, & Malik, 2005; Renninger, Verghese, & Coughlan, 2007).

The only difference between the ELM model and ideal searcher is the selection

of fixation locations on the basis of maximizing entropy reduction rather than

the probability of correctly localizing the target.

Given the same task as the ideal observer, the ELM model proves to be

a good approximation since it produces performance almost indistinguishable

from that of the ideal (Najemnik & Geisler, 2009). The ELM model predicts

almost exactly the same features of scan paths as the ideal observer, however

the ideal tends to have a slightly greater bias towards the center of the image

than the ELM model (Zhang & Eckstein, 2010). Since both models have the

exact same prior and information this minor difference is a result of how they

select fixations (the ideal seeks to maximize localization accuracy after the next

fixation, whereas the ELM seeks to maximally reduce uncertainty regarding

the target location).

One potential problem with the ideal observer and ELM model approaches

is that they have not yet been extended to include the influence of scene

context. Additionally, the ideal searcher has only been derived for tasks where
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the target is a Gabor embedded in a region of 1/f noise. Although 1/f noise is

naturalistic it is still a far cry from real world images. Unfortunately, extending

the ideal observer or ELM model to natural scenes may be quite difficult.

Using Gabors embedded in noise for stimuli allows us to derive a closed form

expression for the ideal fixation selection rule, but in natural scenes this would

not be possible. Instead, the ideal fixation selection rule would need to be

approximated. Therefore, in order to integrate the influence of scene context

into these uncertainty minimization models an approximation for the ideal

fixation selection rule in natural images must first be developed.

1.4 Conclusion

In the previous sections I discussed constraints on visual processing and sources

of information that are relevant for visual search tasks. I also described some

of the more successful computational models for predicting fixations in these

tasks. In the following section I will detail a Bayesian model of fixation selec-

tion in real-world scenes. The model incorporates scene context and target-

relevant features, which are known important sources of information for visual

search but have not been combined in any model of fixation selection. The

model is constrained by a measured visibility map, a practice used in Najem-

nik & Geisler (2005; 2008; 2009) but not in Zelinsky (2013) or Torralba et al.

(2006). Finally, the model is normative and is able to generate a sequence of

fixations, unlike Torralba et al. (2006).
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After detailing our Bayesian model of fixation selection, I will then present a

visual search experiment conducted with human observers and compare model

performance to human fixation patterns. Finally, I will discuss the implications

of the results of the experiment and modeling simulations.
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Chapter 2

A Bayesian Model of Fixation

Selection

Here I present a Bayesian model of fixation selection for categorical target

searches in images of real-world scenes. The model uses two sources of infor-

mation: Scene context and target-relevant features. Scene context acts as the

prior distribution and is measured with GIST features, while target-relevant

features act as the likelihood function and are measured using Histograms

of Oriented Gradients (HOG). The model is constrained by a visibility map

which adds noise to the likelihood function. New fixations were selected using

either a MAP or ELM decision rule. In the following sections, I describe the

computation of the prior distribution, likelihood function and posterior distri-

bution. I also detail the decision rules for the MAP and ELM observers and

how the posterior is integrated across fixations. For details about the training
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the likelihood function and prior distribution refer to Section 6.1, Section 6.2

and Section 6.3.

2.1 Computing the Likelihood Function

The effect of target relevant features was modeled using Histograms of Oriented

Gradients (HOG). HOG features provide a fine-grained representation of the

dominant orientations and scales over a specified subsection (referred to as a

window) of an image. If the window closely matches the size of the target then

HOG features provide a explicit representation of the target. All of the targets

in this experiment were at most 2.25◦ × 1.13◦ so we selected used a window

size of 3.0◦ × 1.5◦ to extract HOG features. This window size was selected to

match the buffer between pedestrian and window edge used in Dalal & Triggs

(2005). To compute the likelihood function for an image we extracted the

HOG features within 3.0◦× 1.5◦ windows centered at each pixel in the image.

The extracted features were projected onto the 230 most informative principal

components, producing the HOG representation H for each pixel in the image.

Next we computed the likelihood ratio as in Equation 2.1:

LR =
L (X = 1|H)

L (X = 0|H)
(2.1)

where L (X = 1|H) is the likelihood of the target being present at each

location in the image X given the HOG features there, and L (X = 0|H) is
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the likelihood of the target not being present at each location in the image X

given the HOG features there. This equation can be re-written as:

LR =
p (H|X = 1)

p (H|X = 0)
(2.2)

where the numerator represents the probability of obtaining the HOG fea-

tures at a location given that the target was present and the denominator

represents the probability of obtaining the HOG features given that the target

was not present.

We represented the likelihood functions for the signal and noise distribu-

tions multivariate-Gaussians. The mean µ and variance σ2 of these distribu-

tions were fit using maximum likelihood (for more details see Apendix!!!!!!).

This equation can be re-written as Equation 2.3:

LR =
N (H ;µs, σ

2
s)

N (H ;µn, σ2
n)

(2.3)

where µs and σ2
s are the mean and variance of the target present distribu-

tion, and µn and σ2
n are the mean and variance of the target absent distribution.

This likelihood ratio was then used as the likelihood function for the image.

This is equivalent to classifying each pixel as a target or distractor. Pixels with

values greater than 1 are classified as targets, and those with larger likelihood

ratios are more likely to be targets. Examples of the likelihood ratio for several

images used in the natural search can be seen in Figure 2.1. In general, the
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Figure 2.1: Results of applying the HOG classifier to several images used in
the natural search task. Purple pixels correspond to those with a likelihood
ratio greater than 1.

likelihood function accurately classifies the target but also classifies too many

distractors as targets.
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2.2 Learning the Scene Context Prior Distri-

bution

The effect of scene context was modeled using GIST features (Oliva & Tor-

ralba, 2006). GIST features provide a coarse representation of the dominant

orientations and scales in an image by pooling together the responses of filter

outputs. Since the GIST representation of an image is a coarse representation

features of the target will only be explicitly represented if the target is very

large. In our case the target always took up 2.25◦ of visual angle or less and was

therefore too small. However, the GIST of an image can still be predictive of

target position. This is because scenes that have similar GIST representations

tend to be similarly structured. Since target position is at least somewhat

dependent on image structure targets are likely to appear in similar locations

for images with similar GIST representations. Mixture models can take ad-

vantage of this fact by ‘clustering’ GIST representations according to their

similarity. This allows for different prior distributions according to the scene

context. We take a similar approach here, representing the prior distribution

as a mixture of regressions as in Torralba et al. (2006). Equation 2.4 shows

the equation for the prior distribution:

p (X, G) =
M∑
n=1

p (n) p (G|n) p (X|G, n) (2.4)

where X is the same as before, G is the GIST representation of the im-
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age and n indexes the mixture component. The first term p (n) is the mixing

coefficient, or the prior probability of each mixture component. The second

term p (G|n) is the probability of the GIST representation given the mixture

component. Finally, the last term p (X|G, n) represents the probability of the

target being at any locationX given the GIST representation of the image and

the mixture component. The mixing coefficient was represented using a multi-

nomial distribution and the other two terms were represented as multivariate

Gaussians. We now re-write Equation 2.4 as Equation 2.5:

p (X, G) =
M∑
n=1

πnN (G; ζn,Λn)N (X;µn,Σn) (2.5)

where πn is the mixing coefficient, ζn and Λn are the mean and covariance

of the distribution GIST features for component n, and µn and Σn are the

mean and covariance of the distribution of target locations for component n.

There is an improvement in predictive performance if the the distribution of

target locations is made to also depend linearly on the GIST representation

G. The mean of p (X|G, n) is then given by Equation 2.6:

Ωn = µn +W nG (2.6)

where W n is the regression matrix for mixture component n. Using this

form allows target location to depend linearly on the GIST representation of

the image.
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The scene context prior was fit using Expectation Maximization (EM)

(Dempster, Laird, & Rubin, 1977). EM consists of two steps performed it-

eratively, an expectation step and a maximization step. In the expectation

step, the expectation of the posterior distribution is computed for the current

parameter values. Then in the maximization step we compute the parame-

ters that maximize the expectation. Since the likelihood is maximized at each

iteration, EM guarantees that the likelihood will increase monotonically and

therefore converge to a maxima. Examples of the prior distribution for sev-

eral images used in the natural search experiment can be seen in Figure 2.2.

Overall the scene context prior selects relatively reasonable locations in the

image.

To select the number of regression components, we performed 10-fold cross

validation on the training images, which helps prevent over-fitting. The metric

used to select the number of components was the proportion of times the

target was in the top K of prior probability. We evaluated this for the top

5%, 10% and 20% of the prior probability. The results of this analysis can

be seen in Figure 2.3. Localization accuracy continues to increase with model

complexity, but only marginally after 10 regression components. Therefore,

we used 10 regression components to represent the scene context prior.
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Figure 2.2: The GIST prior distribution for several images used in the natural
search task. Yellow regions correspond to the top 5% of the prior probability
and green corresponds to the top 10%.

2.3 Computing the Posterior

With the likelihood function and prior distribution computed, we turn to the

posterior distribution give in Equation 2.7:
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Figure 2.3: Proportion of targets selected by the top 5%, 10% or 20% of the
GIST prior distribution as a function of the number of regression components.

P = p (X|G)L (X|H) (2.7)

where P is the posterior distribution. The first term p (X|G) reflects the

influence of scene context and gives the probability of the target being at any

location in the image X given its GIST representation. The second term

L (X|H) represents the likelihood of the target appearing at any location in

the image X given the HOG features at that location. The posterior distri-

bution can also be re-written as Equation 2.8:

P (X|G,H) = p (X, G)
p (H|X = 1)

p (H|X = 0)
(2.8)



42

Figure 2.4: The posterior distribution for several images used in the natural
search task. Purple pixels correspond to those with a positive log-posterior
probability.

Examples of the posterior distribution for several images used in the natural

search experiment can be seen in Figure 2.4. After incorporating the influence

of scene context the classifies fewer distractors as targets but retain much of

the ability to correctly classify targets.
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2.4 Decision Rules

After computing the posterior distribution the Bayesian observer must select

a location to fixate. Two model observers were used, one that made fixations

on the basis of a MAP rule and one that made fixations on the basis of an

ELM rule. Here we describe the computation of these decision rules.

To select a new fixation (denoted k (T + 1)) the ELM observer considers

each possible next fixation and the expected resulting visibility map. Here, k

represents a location in the image and T represents the fixation number. The

location kELM (T + 1) that will maximally reduce it’s uncertainty about the

target’s location is then selected for fixation. This is computed according to

Equation 2.9.

kELM (T + 1) = arg max
k(T+1)

N∑
i=1

Pi (T ) d′
2
i (k, T + 1) (2.9)

where Pi (T ) is the posterior at location i and d′2i (k, T + 1) is the visibility

map at fixation T+1. Equation 2.9 is exactly the ELM decision rule presented

in Najemnik & Geisler (2009).

Conversely, the MAP observer simply selects the maximum of the poste-

rior distribution for fixation kMAP (T + 1) and does not consider any changes

in the visibility map. The decision rule for the MAP observer is given in

Equation 2.10.
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kMAP (T + 1) = arg max
i

Pi (T ) (2.10)

2.5 Updating the Posterior

After a new location has been fixated, it is necessary to re-compute the pos-

terior distribution. To update the posterior across fixations at time T , we use

the sequential updating framework developed by (Najemnik & Geisler, 2009)

and presented in Equation 2.11.

PT (X|G,H) = p (X, G)
T−1∑
t=1

d′
2
tL (X|H) (2.11)

This updating rule has the effect of weighting the likelihood function ac-

cording to how detectable the target is at each location. Locations where the

target is more detectable are given more weight since the fidelity of informa-

tion is greater (uncertainty is lower), while locations where the target is less

detectable will be pushed towards 0, indicating greater uncertainty.
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Chapter 3

Methods

3.1 Participants

Data were collected from five participants. All participants had normal or

corrected-to-normal vision and were paid $10 per hour for their participation.

3.2 Apparatus

Stimuli were presented on a 22in Philips 202P4 CRT monitor at a resolution of

1280 x 1024 pixels and a frame rate of 100 Hz. Participants were seated 70 cm

from the display such that the display subtended 24.1◦ x 30.1◦ of visual angle.

Stimuli were generated and presented using MATLAB software (Mathworks)

and the Psychophysics Toolbox extensions (Brainard, 1997). Head position
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was fixed using a forehead and chin rest. Participants’ right-eye was tracked

using an Eyelink 1000 infrared eye tracker (SR Research, Kanata, Ontario,

Canada). Gaze location was sampled from the eye tracker at 500 Hz in the

detection task and 1000 Hz in the search task.

3.3 Stimuli

All images of real world scenes used in this experiment, including cropped

images of pedestriations, were obtained from the LabelMe Database (Russell,

Torralba, Murphy, & Freeman, 2008).

3.3.1 Detection Task Stimuli

The stimulus for the detection task consisted of a random crop taken from an

image of a natural scene in the LabelMe database. The random crop was then

added to a circular region of 1/f filtered noise (the noise mask). The diameter

of the natural scene patch was 6◦. If the patch contained a pedestrian, the

pedestrian size was approximately 2.25◦ x 1.5◦. The noise mask had a diameter

of 24◦ and 7.5% RMS contrast. The area surrounding the noise mask was set

to the mean luminance of the display (40cd/m2). Example signal and noise

trials can be seen in Figure 3.1.

Before adding the natural scene patch to the noise mask we first multiplied

the crop by a hanning window centered on the patch itself:
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Ī = w (x, y) I (x, y) (3.1)

where I is the natural scene patch, w (x, y) is the value of the hanning

window at pixel coordinates (x, y) and Ī is the resulting image patch. The

value of w (x, y) was entirely dependent on the radius of the hanning window

ρ, which in this case was equal to the radius of the natural scene patch. For

pixels where
√
x2 + y2 < ρ the value of the hanning window is:

w (x, y) = 0.5 + 0.5 cos
(
π
√
x2 + y2/ρ

)
(3.2)

For all other locations the value of the hanning window is set to 0. Prior

to adding the natural image patch to the noise mask, the noise mask was also

multiplied by an inverse hanning window with the same radius ρ and centered

on the location of the natural scene patch. The inverse hanning window is

defined as:

Ī = (1− w (x, y)) I (x, y) (3.3)

This process removes edge effects as it causes the luminance of the pixels in

the natural image patch to approach the mean with increasing distance from

the center. It also increases the strength of the noise mask as distance from

the center increases. Sample target present and target absent stimuli can be
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Figure 3.1: Examples of signal and noise trials used in the detection task.

seen in Figure 3.1.

3.3.2 Search Task Stimuli

The stimulus for the search task was a cropped image of a natural scene from

the LabelMe database. The diameter of the cropped natural scene patch was

24◦. If the patch contained a pedestrian, the pedestrian size was approxi-

mately 2.25◦ x 1.5◦. The area surrounding the noise mask was set to the mean

luminance of the display (40cd/m2).

For target present images, the location of the crop was chosen randomly

from a set of valid locations for that image. We defined the set of valid

locations as those that maintained a buffer of 1.88◦ between the upper and

lower edges of the pedestrian, and 1.41◦ between the left and right edges and

the pedestrian. Examples of target present images are show in Figure 3.2. To

select a random crop for target absent images, we first selected an image size

from the distribution of target present images. The target absent image was

re-sized to match the size of the sampled target present image, and then a
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Figure 3.2: Example target present images used in the natural search task.
Targets are outlined with a red box, which did not appear in the actual ex-
periment.

crop was chosen randomly from the same set of valid locations. Examples of

target absent images are shown in Figure 3.3.

3.4 Procedure

Participants ran 10 blocks of 100 trials each for 1000 total trials during each

laboratory visit for the detection task. In the search task participants ran 9

blocks of 50 trials each for 450 total trials during each laboratory visit. At



50

Figure 3.3: Example target absent images used in the natural search task.

the start of each block, participants completed a five-point (detection task)

or nine-point (search task) calibration routine. The calibration was repeated

until the average test-retest measurement error across all gaze points fell below

0.25◦.

3.4.1 Detection Task

Detection performance was measured before the search task. Prior to the start

of each trial participants fixated a central marker. A stroked circle cued the

location to where the natural scene patch would appear. On each trial it was
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randomly determined whether a target scene patch (pedestrian) or noise scene

patch (background) would be presented. If a target scene patch was presented

the pedestrian was always centered on the cued location. Participants initiated

each trial with a button press. After a stimulus onset asynchrony (SOA) of

100 − 400 ms (chosen randomly) one 250 ms interval of the stimulus was

presented. Participants then indicated whether a target was present or not

with a button press. Auditory feedback was also presented. If participants

blinked or moved their eyes at any time during the trial they were notified and

the trial was discarded. Natural scene patches were always presented along the

horizontal meridian, moving from the center of the display to the right. The

eccentricity was either 0◦, 3◦, 6◦, 9◦ or 12◦, with trials blocked by eccentricity.

At the start of a block of trials, participants completed one practice trial

in which the natural scene patch was presented at its original contrast (ap-

proximately 20% RMS contrast). Data from this trial was not recorded. For

the remaining trials in the block, target contrast was selected using an inter-

leaved, adaptive procedure (Kontsevich & Tyler, 1999). To avoid clipping, the

contrast of a patch was never increased above it’s initial value. Participants

completed the detection task in 2-3 sessions.

Target patches were selected from a set of 481 natural scene patches and

their left-right reflections, for a total of 962 target patches. Noise patches

were selected from a set of 634 natural scene patches and their left-right re-

flections, for a total of 1268 noise patches. Scene patches were never presented

more than once at each eccentricity, but were sometimes presented at different
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eccentricities.

3.4.2 Search Task

Prior to the start of each trial participants fixated a marker that was 14◦ to

the left or right of center. On each trial it was randomly determined whether

the target would be present or absent from the cropped scene. Participants

initiated each trial with a button press. After a SOA of 100− 400 ms (chosen

randomly) the stimulus was a presented from 2000 ms. During this time,

participants were free to move their eyes around the image. Participants could

report at any time whether the target was present or absent using a button

press. If they did not respond within 2000 ms, the stimulus was removed

from the screen. Even if the stimulus was removed subjects still responded.

Auditory feedback was also presented. If participants blinked or moved their

eyes at any time during the SOA they were notified and the trial was discarded.

At the beginning of each session, participants completed a practice block

of five trials for them to get accustomed to the procedure. All participants

completed the search task in one session.

Target present scenes were selected from a set of 222 images. Target absent

scenes were selected from a set of 347 images. Scenes were presented at most

once.
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3.5 Simulation of the ELM and MAP Observers

The ELM and MAP observers were simulated on all target present images

that the human observers ran on. Model observers were not simulated on

target absent images as there was no way to assess their performance without

a target. The first step in the simulation process was to compute the posterior

distribution. We first extracted the GIST and HOG features from the image.

We then computed the prior probability of the target being at any pixel in

the image according to the previously measured prior distribution, and the

likelihood according to the likelihood ratio of the signal and noise distribution

of HOG features. The likelihood and prior were then combined to produce

the posterior distribution as in Equation 2.7. The maximum of the posterior

distribution only coincided with the bounding box of the target on 77% of the

test images. As the goal of this experiment was to make normative claims

about human search, we chose to only simulated the model observers on the

images where the maximum of the posterior coincided with the target.

At the beginning of each simulated trial, we randomly selected a point 14◦

to the left or right of center as for the human observers. The next step was to

apply the visibility map to the likelihood function. Due to the computation

time required to simulate the ELM observer the visibility map was fit by

aggregating the data from all human observers in the detection task. The

d′ at each point in the image was computed, and a corresponding sample of

noise ε was drawn from the distribution defined in Equation 4.4. We then

multiplied the likelihood function by the sample of Gaussian noise. Once the
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noise was applied to the likelihood function, the posterior distribution was

re-computed. Finally, the ELM and MAP observers selected the next fixation

location according to Equation 2.9 and Equation 2.10, respectively. After

selecting a new fixation location, the visibility map and posterior were updated

again. Search was terminated either when the maximum of the posterior

distribution coincided with the bounding box of the target or when 16 fixations

had been simulated. The threshold of 16 fixations was chosen because it was

the maximum number of fixations made by a human observer across all target

present trials. Therefore, it represents an upper bound on the number of

fixations that a human observer would be able to make in a given trial.
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Chapter 4

Results

4.1 Estimating the Visibility Map

Visual sensitivity for the human observers was characterized using a visibility

map, which specifies the signal-to-noise ratio, or d′, as a function of target

contrast and c and eccentricity ρ. Due to the computational complexity of

simulating the ELM observer, we computed a common visibility map by aggre-

gating all human observers’ detection data. The visibility map was computed

by taking the standard normal integral of the observers’ expected accuracy

given in Equation 4.1:

d′ (c, ρ) =
√

2Φ−1 [PC (c, ρ)] (4.1)
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where Φ represents the standard normal integral and PC (c, ρ) represents

the observer’s expected detection accuracy given the target contrast c and

psychometric function at eccentricity ρ. Detection accuracy was modeled using

a cumulative Weibull function defined in Equation 4.2:

PC (c, ρ) = 1− 0.5e
− c
αρ

β

(4.2)

where β controls the steepness of the psychometric function and αρ is the

contrast threshold at eccentricity ρ. Individual estimates of β did not differ

significantly as a function of eccentricity, so we assumed a common steepness

parameter.

Since participants made saccades in the search experiment, it was necessary

to compute a continuous representation of the visibility map. To that end, we

modeled contrast thresholds αρ as a log-linear function of eccentricity:

αρ = α0e
τρ (4.3)

where α0 is the contrast threshold at the fovea and τ is a log slope param-

eter that controls the increase in contrast threshold as a function of eccentric-

ity. This function has been shown to accurately describe the rise in contrast

thresholds with increasing eccentricity for various tasks (Peli, Yang, & Gold-

stein, 1991). The resulting psychometric function has three parameters: α0, β

and τ . These parameters were jointly fit to the detection data using maximum
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likelihood. Combined parameter estimates, as well as individual estimates, can

be seen in Table 4.1. Overall there was little variability in parameter estimates

across participants.

Table 4.1: Visibility Map Parameter Estimates for Each Human Observer and
for the Combined Visibility Map

Observer β α0 τ
PE 0.9396 0.0238 0.2108

AWA 0.6855 0.0195 0.3689
MS 1.0923 0.0282 0.1468
CG 0.5521 0.0150 0.3199
RS 0.7918 0.0268 0.1871

Combined 0.7442 0.0237 0.2232

To determine how much noise to add to the likelihood function we first

computed the d′ of the likelihood function over all training examples. We then

estimated the amount of Gaussian distributed noise that needed to be added

to the log-likelihood function to reduce classification performance to the d′

for human observers at the given contrast and eccentricity. The noise was a

randomly sampled Gaussian distributed variable as in Equation 4.4:

ε ∼ N (0, δ) (4.4)

To estimate the variance δ for each potential d′ we simulated 10, 000 random

draws of ε per training example and computed the resulting d′ of the likelihood

function. We then selected the value of δ that produced the minimum deviation

from the desired d′. This allows us to compute a noise-map, which consists of
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random draws of ε at each location in the image. The value of ε was dependent

on the contrast and eccentricity of the pixel relative to the currently fixated

location. Contrast was computed over the same 3.0◦ × 1.5◦ window used to

compute HOG features. ε was then added to the log-likelihood function could

then to produce the constrained log-likelihood function and the posterior could

be re-computed.

4.2 Model Localization Accuracy

We computed the localization accuracy of each component of the Bayesian

model. This allowed us to quantify the performance of the model, as well as

evaluate how much of the performance is due to each component. To this end,

we computed the proportion of times the center of the target was in the top 5%,

10% or 20% of prior probability, posterior probability and likelihood function.

Localization accuracy was computed using 10-fold cross-validation to ensure

that estimated model accuracy was not a result of over-fitting. The results of

this analysis can be seen in Figure 4.1. The combined posterior distribution

achieves the highest localization accuracy, indicating that both scene context

and target-relevant features are informative for this task. Interestingly, the

localization accuracy of target-relevant features alone was quite close to the

posterior distribution. However, the localization accuracy of scene context

alone was much lower. This means that target-relevant features are providing

the bulk of the information, but scene context does provide some additional
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Figure 4.1: Proportion of training image targets selected in the top 5%, 10% or
20% of the prior distribution, likelihood function, and posterior distribution.

information.

We also computed localization accuracy for each image used in the search

experiment. The results of this analysis are presented in Figure 4.2. We

find marginally reduced accuracy for the posterior and target relevant features

alone, but the localization accuracy of scene context alone decreases signifi-

cantly. This indicates that the trained GIST prior generalizes poorly. This

could be for several reasons, which will be discussed in detail in Section 5.4



60

Figure 4.2: Proportion of search experiment targets selected by the top 5%,
10% or 20% of the prior distribution, likelihood function, and posterior distri-
bution.

4.3 Human Search Performance

In this section we analyze the fixations made by human observers in the natural

search task. The most important metrics in determining the performance of

the human observers are the proportion correct, mean number of fixations,

and mean response time. We also compute the mean saccade amplitude and

mean fixation duration for each human observer. For all analyses, the first

fixation was discarded as it was off-image and therefore would give observers

minimal information, and arbitrarily increase mean saccade amplitudes.

The proportion correct for the human observers is presented in Figure 4.3.

All human observers were more accurate on target absent trials than on target
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Figure 4.3: Proportion correct for each participant on target present and target
absent trials. Error bars represent 95% confidence intervals.

present trials. This difference was significant for observers PE, MS and RS,

but not for the other observers. Proportion correct on target present trials

ranged from 80.18% to 92.63%, while accuracy on target absent trials ranged

from 94.90% to 97.89%. Some of the target present trials included images

where significant portions of the target were either occluded or shaded, which

may explain why participants were less accurate.

The number of fixations each human observer made before responding is

presented in Figure 4.4. All human observers made fewer fixations on target

present trials than on target absent trials. This difference was significant for

all observers except one (PE). The average number of fixations each observer

made on target present trials ranged from 4.43 fixations to 7.36 fixations. For
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Figure 4.4: Average number of fixations for each participant on target present
and target absent trials. Error bars represent 95% confidence intervals.

target absent trials, the average number of fixations ranged from 4.78 fixations

to 10.02 fixations. Observers that made more fixations tended to have higher

accuracy, regardless of whether the target was present or not.

A similar pattern appeared in the average response time for each human

observer, presented in Figure 4.5. Response time was defined as the time

between stimulus presentation and when the stimulus was removed. If the

observer used more than the 2000 ms of search time then the response time was

2000 ms since the stimulus was removed then. All human observers responded

faster on target present trials than on target absent trials. This difference was

significant for all observers. The response time for target present trials ranged

from 804 ms to 1570 ms, while the response time for target absent trials ranged
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Figure 4.5: Average response time for each participant on target present and
target absent trials. Error bars represent 95% confidence intervals.

from 883 ms to 1993 ms. Again, observers with higher response times tended

to be more accurate and make more fixations. Observers that had higher

response times also made more fixations, which is expected. Interestingly,

observer CG chose to use the full search time on almost every target absent

image, as opposed to only 1500 ms on the target present images.

The average saccade amplitudes for each human observer are presented in

Figure 4.6. The amplitude of a saccade was computed by taking the Euclidean

distance between neighboring fixations in a sequence. The average saccade

amplitude was significantly smaller on target present trials than on target

absent trials for all human observers. For target present trials, the average

saccade amplitude ranged from 2.83◦ to 3.74◦, but for target absent trials, the
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Figure 4.6: Average saccade amplitude for each participant on target present
and target absent trials. Error bars represent 95% confidence intervals.

average saccade amplitude ranged from 3.73◦ to 4.54◦. This discrepancy could

be because observers made more fixations on target absent than on target

present trials. In fact, When the order of fixation this effect disappeared,

indicating that the cause of this difference between target present and target

absent trials was due to the late sequence larger amplitude saccades on target

absent trials.

The average fixation duration for each human observer is presented in

Figure 4.7. For each human observer, the average fixation duration was greater

on target present trials than on target absent trials, but this difference was

only significant for subject CG. On target present trials the average fixation

duration ranged from 146 ms to 174 ms, while on target absent trials the
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Figure 4.7: Average fixation duration for each participant on target present
and target absent trials. Error bars represent 95% confidence intervals.

average fixation duration ranged from 142 ms to 155 ms.

The results presented in this section indicate that human observers were

more accurate on target absent than target present trials, but made their

decision faster for target present trials. There were only minor differences

between the average saccade amplitude and average fixation duration, meaning

that the features of each observers’ saccades were roughly similar regardless

of whether the target was present or absent. Therefore, although subjects

were less accurate and faster on target present trials, it seems there were no

differences in how they selected their fixations.
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4.4 Model Simulation Results

The ELM and MAP observer were simulated on all images used in the search

experiment where the maximum of the posterior coincided with the bounding

box of the target. This only accounted for 77% of the images used in the search

task. We chose to only simulate the model observers on these images because

the goal of this study was to make normative claims about humans should

search. Similar to the human observers, we computed localization accuracy,

average number of fixations per trial and mean saccade amplitude. Mean

fixation duration and response time were not computed, as there was no time

component to the simulated searches.

4.4.1 Model Search Performance

Localization accuracy was computed as the proportion of trials where the

maximum of the visibility map constrained posterior distribution coincided

with the bounding box of the human on at least one fixation. As a baseline,

the localization accuracy of ELM and MAP observers was compared to several

sampling based decision rules:

• Sampling with replacement from a uniform distribution

• Sampling with replacement from the prior distribution

• Sampling with replacement from the likelihood function
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• Sampling with replacement from the likelihood function with a visibility
map

• Sampling with replacement from the posterior distribution

• Sampling with replacement from the posterior distribution with a visi-
bility map

All of the sampling based decision rules performed extremely poorly, with

localization accuracy ranging from from 5% to 13%. By contrast, the MAP

and ELM observers correctly localized the target on 43% and 80% of images

they were simulated on. The large gulf in performance between the sampling

rules and the MAP and ELM decision rules indicates that the decision rules

are a critical component of the model’s performance. Additionally, the ELM

observer was significantly more accurate than the MAP observer. However,

both model observers were less accurate than the human observers, as can be

seen in Figure 4.8. The ELM observer was significantly less accurate than two

human observers (AWA and CG), while the MAP observer was significantly

less accurate than all human observers.

When looking at the features of the fixations themselves, we found that the

ELM observer made fewer, larger amplitude saccades than the MAP observer.

Both differences can be explained by the fact that the MAP observer almost

always became stuck at one location if it didn’t find the target on one the first

few fixations. This artificially reduced the mean saccade amplitude for the

MAP observer. Additionally, because the MAP observer found the target less

frequently it necessarily made more fixations since it had more trials where

it reached the upper limit of 16 simulated fixations. Comparing these results
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Figure 4.8: Proportion correct for each participant and model observer on
trials where the posterior correctly localized the target. Error bars represent
95% confidence intervals.

to the human observers in Figure 4.9, we found that the ELM and MAP

observer both made more fixations than all but one human observer (CG). The

ELM and MAP observer were also significantly more variable in the number

of fixations they made. This is because the models either found the target

quickly or were unable to find the target and therefore simulated 16 fixations.

In terms of saccade amplitude, we found that the mean saccade amplitude

was lower for the MAP observer and higher for the ELM observer, relative

to the human observers. These results are presented in Figure 4.10. Both of

these results are expected. The MAP observer should make smaller saccades

on average as it frequently selected the same location for fixation when it

couldn’t find the target. Larger average saccade amplitudes are expected for

the ELM observer are consistent with previous work on the topic (Najemnik
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Figure 4.9: Average number of fixations per trial where the posterior cor-
rectly localized the target for each participant and model observer. Error bars
represent 95% confidence intervals.

& Geisler, 2005, 2008). Taken together, these results indicate that the MAP

observer was outperformed by the ELM observer, and both model observers

were outperformed by the humans.

The goal of this paper is to make normative claims regarding how humans

should search. Therefore, we also computed the mean number of fixations

and mean saccade amplitude for the MAP and ELM observers using only the

trials where they successfully found the target. These analyses are presented

in Figure 4.11 and Figure 4.12. When the either model observer found the

target they did so using fewer fixations than the human observers. In fact, the

MAP observer now made significantly fewer fixations than the ELM observer,

meaning it found that target faster. In terms of saccade amplitudes, the MAP

observer made significantly larger saccades but the ELM observer remained
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Figure 4.10: Average saccade amplitude on trials where the posterior cor-
rectly localized the target for each participant and model observer. Error bars
represent 95% confidence intervals.

virtually unchanged. Taken together these results indicate that when the

model observers found the target they did so using fewer fixations and larger

saccades than the human observers.

4.4.2 Similarity Between Model and Human Observer

Fixation Sequences

To quantify how similar the ELM and MAP observers’ fixation sequences were

to the human observers a natural choice is to compute the average Euclidean

distance or L2 norm between correspoding fixations in model and human ob-

server fixation sequences. However, since the number of fixations for a given

image differs between the models and human observers we needed a method
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Figure 4.11: Average number of fixations per trial for each participant and
model observer when the target was found. Error bars represent 95% confi-
dence intervals.

Figure 4.12: Average saccade amplitude for each participant and model ob-
server when the target was found. Error bars represent 95% confidence inter-
vals.
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to align the fixation sequences. We take advantage of a modified form of

the Needleman-Wuncsh algorithm to accomplish this task. The Needleman-

Wuncsh algoritm has previously been used to align protein sequences in bioin-

formatics research (Needleman & Wunsch, 1970) and as part of the Scan-

Match algorithm for computing fixation sequence similarity (Cristino, Mathot,

Theeuwes, & Gilchrist, 2010; Mathot, Cristino, Gilchrist, & Theeuwes, 2012).

The Needleman-Wuncsh algorithm represents the problem of protein se-

quence alignment as a dynamic programming problem. It evaluates each pos-

sible alignment of the two sequences and gives a score to each. In a given

alignment each protein in a sequence A will either be paired with a protein

in sequence B or is left unpaired. If a pair of proteins are the same they are

considered a ‘match,’ otherwise they are considered a ‘mismatch.’ Interest-

ingly, leaving a protein unpaired (a ‘gap’) can sometimes be advantageous as

it can setup a better match later in the sequence. In the standard Needleman-

Wuncsh algorithm there are two free parameters: the score for a match and

the score for a gap or mismatch. The algorithm then computes the score for all

possible alignments and selects the minimum cost alignment as the one that is

most likely. The decision for the value of these free parameters is subjective,

so domain knowledge is usually required to select reasonable values.

Our modification of the Needleman-Wuncsh algorithm removes the need

for a subjective decision about the score for a match or mismatch. Rather

than having sequences of categorical variables (proteins), our sequences are

fixations represented in Euclidean coordinates. Therefore, we simply used the
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Euclidean distance between fixations that are paired together as the score.

This leaves only the cost of a gap as a free parameter. Rather than selecting

an arbitrary number for the cost of a gap we allowed it’s value to range from

1◦ to 34◦ to evaluate its effect on the alignment score. The gap cost was

capped at 34◦ since the images in the search experiment were 24◦ × 24◦, and

34 =
√

242 + 242 is therefore the maximum Euclidean distance between two on-

image fixations. The modified Needleman-Wuncsh algorithm simultaneously

aligns the fixation sequences and computes their similarity to each other, so

used the smallest score from this algorithm as our similarity metric.

The average similarity score for the smallest gap cost (1◦) and largest gap

cost (34◦ are plotted on Figure 4.13. Regardless of gap cost, we find that

the human observers’ fixation sequences are more similar to the ELM observer

than the MAP observer. This is reflected in the lower similarity score for every

human observer when paired with the ELM observer. However, when only

considering the images where the MAP and ELM observer found the target

this relationship flips and the MAP observer now has the lower similarity

score regardless of gap cost. Similarity scores for each model observer and

human observer are plotted on Figure 4.14 for gap costs of 1◦ and 34◦. The

similarity scores for each model and human observer also decrease, meaning

that the human and model observers are more similar on images where the

model observers found the target.

Finally, we also computed the average similarity score between each human

observer and the ELM or MAP observer, the average similarity score between
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Figure 4.13: Average similarity score for each observer compared to the MAP
and ELM observers when using a gap cost of 1◦ (left) and 34◦ (right).

Figure 4.14: Average similarity score for each observer compared to the MAP
and ELM observers when using a gap cost of 1◦ (left) and 34◦ (right) on trials
where the target was correctly localized.

each human observer, and the average similarity score between the ELM and

MAP observers. The results of this analysis for gap costs 1◦ and 34◦ are

presented in Figure 4.15. Unsurprisingly, we found that the human observers

are more similar to the ELM observer on average than the MAP observer,
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Figure 4.15: Average similarity score for each aggregated pairing when using
a gap cost of 1◦ (left) and 34◦ (right).

regardless of gap cost. Additionally, we find that the MAP and ELM observer

were the most similar to each other out of all the pairings. This is expected

since the two model observers used the exact same posterior distribution to

select fixations. The most surprising aspect is that on average the human

observers are less similar to each other than they are to the model observers.

Most of these relationships hold true when we only consider trials where the

target was correctly localized. These results are presented in Figure 4.16 for

gap costs 1◦ and 34◦. The one exception, of course, is that the human observers

become more similar to the MAP observer than the ELM observer.

Examples of representative model and human observer fixations sequences

are presented in Figure 4.17. These examples show the larger amplitude sac-

cades made by the model observers, as well as instances where the MAP ob-

server became stuck. Additionally, this examples also show the ELM observer

making exclusion fixations, or fixations to highly uncertain image regions.
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Figure 4.16: Average similarity score for each aggregated pairing when using
a gap cost of 1◦ (left) and 34◦ (right) on trials where the target was correctly
localized.

4.5 Conclusion

In this section we presented the results of the natural search task and compared

the fixations simulated by the MAP and ELM observers with those of the

human observers. Human observers were more accurate on target absent trials

than target present trials, but also were slower as measured by number of

fixations and response time. The MAP and ELM observer were less accurate

than human observers, however when they did find the target they did so much

faster than human observers did. We also computed the similarity between

fixation sequences generated by human and model observers. Human observers

were more similar to the ELM observer over all trials, but when we only

analyzed trials where the target was correctly localized they were more similar

to the MAP observer. Interestingly, we also found that human observers are

less similar to each other than they are to the model observers.
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Figure 4.17: Representative fixation sequences generated by MAP (green),
ELM (red) and human observers (blue) on target present images in the natural
search experiment.
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Chapter 5

Discussion

In the current paper we developed a Bayesian model of fixation selection for

images of real world scenes. This model used of two sources of information:

scene context, which is used for the prior distribution, and target-relevant fea-

tures, which are used for the likelihood function. Unlike previous approaches

that use these sources of information, we constrained the posterior by adding

noise to the likelihood function via a measured visibility map. Additionally,

the model actually selected image locations for fixation, on the basis of either

a MAP or ELM decision rule. We then compared fixations simulated by the

model observers to those made by human observes in a natural search task.

In the following section, we discuss the implications of this work as well as its

limitations and suggestions for future research.
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5.1 Human Search Data

This study replicated many of the results of previous work on visual search.

First, we found that human observers make more fixations and take longer to

respond on target absent trials compared with target present trials, similar to

others (Wolfe, 1998; Townsend, 1990; Townsend & Wenger, 2004). We also

found evidence for a speed-accuracy trade-off as participants who made more

fixations and took longer to respond had higher accuracy in the search task.

Localization accuracy was lower for target present trials, which is most likely

because some targets were quite difficult to find (e.g. they were significantly

occluded or shaded). Finally, there was no difference between fixation dura-

tion or saccade amplitude on target present and target absent trials. This

may mean that human observers select their fixations in a similar manner,

regardless of whether a target is present or not. This result is intuitive since

the human observers don’t know a priori whether a target is present or not.

Overall, human search data are consistent with the established literature on

visual search.

5.2 Sources of Information for Fixation Selec-

tion

The Bayesian model developed in this paper used two sources of information

to guide fixations: scene context and target relevant features. Scene context
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was measured using GIST features and modeled as a mixture of linear regres-

sion, and target-relevant features were measured using HOG and modeled as a

multivariate Gaussian distribution. Information from scene context was used

as for the prior distribution, and information from target-relevant features was

used for the likelihood function. We simulated two models, one that selected

fixations on the basis of a MAP decision rule and one that selected fixations on

the basis of an ELM decision rule. Model accuracy in the search task was lower

than for the human observers, regardless of decision rule. Human observers

also found the target faster on average than the model observers. This could

either mean that scene context and target-relevant features are not norma-

tive sources of information or that the representations used for scene context

(GIST) and target-relevant features (HOG) don’t represent this information

with enough fidelity.

To make truly normative claims, we only considered trials where the model

observers found the target. On these trials, the model observers found the

target significantly faster than the human observers, regardless of whether the

ELM or MAP decision rule were used. Based on these results, we can say that

scene context and target-relevant features most likely are normative sources

of information. This fact indicates that the poor localization performance

may be a result of GIST and HOG features not representing their respective

information sources accurately enough. In sum, target-relevant features and

scene context are normative sources of information, but better methods for

representing these information sources must be developed.
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5.3 Decision Rules

We evaluated whether human observers should use a MAP decision rule or

ELM decision rule to find categorical targets in natural scenes. The results

seemingly demonstrate that the ELM decision rule is the more normative

approach, as it significantly outperformed the MAP decision rule in terms

of both localization accuracy and speed. In fact, the MAP observer often

became stuck in one image region and was unable to explore new parts of the

image, which manifested itself as a low average saccade amplitude. This may

be due to the integration rule for computing the posterior distribution. If the

MAP observer made a saccade to a location with a high posterior probability,

the only way for the MAP observer to select a new location would be for the

reduction in noise from the visibility map to significantly reduce the posterior

probability at the fixated location. If the posterior probability remained high

after the new fixation the integration rule almost ensured that it will remain

high. One possible solution would be to impose memory constraints, either

to make the MAP observer memory-less so that there was no integration or

to impose a decay function on previous fixations to weight them progressively

less. However, due to the uncertainty surrounding how memory impacts visual

search, and the inability to quantify its impact we chose not to impose memory

constraints on the MAP or ELM observers. Additionally, there is no guarantee

that imposing memory constraints would result in the posterior probability

dropping. Another way to help the MAP observer become unstuck would be

to apply inhibition of return to locations it had already visited. However, since
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the purpose of this paper was to make normative claims, we chose not to use

a heuristic like inhibition of return.

Broadly speaking, the fixations made by human observers are more similar

to those made by the ELM observer than the MAP observer. The modified

form of the Needleman-Wuncsh algorithm produced smaller scores when align-

ing the fixations made by the ELM and human observers than when aligning

the MAP and human observers, regardless of the gap cost used in the algo-

rithm. However, when we restricted our analysis to only images where the

MAP and ELM observer localized the target we found that MAP decision rule

is now the more normative approach since it found the target faster on aver-

age. Additionally, human observers were more similar to the MAP observer

on these trials than they were to the ELM observer. Combined with the pre-

vious result, this indicates that human observers may flexibly switch between

decision rules. Humans could use an ELM decision rule until the probability

of the target being at a given location exceeds a threshold. Once this occurs,

they could switch to a MAP rule to fixate the potential target location. Alter-

natively, humans could also start by selecting fixations according to a MAP

decision rule, but then switch to an ELM decision rule when the maximum of

the posterior distribution changes minimally from one fixation to the next. A

hybrid decision rule would be consistent with the results of Verghese (2012),

who found evidence that humans may flexibly switch between the two strate-

gies based on task constraints. Future research will be required to determine

if this is indeed the case.
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5.4 Limitations and Future Directions

There are several relevant limitations of the current approach. The most ob-

vious one is that the Bayesian model developed here was less accurate and

slower than human observers. The two most likely possibilities are that hu-

mans use additional sources of information or that the representations of scene

context and target-relevant features are missing information that is present in

the humans’ representations. To investigate the first possibility, future work

could incorporate other sources of information such as object co-occurrence

or saliency. Saliency seems unlikely to improve model performance, especially

as it has been shown to not be a normative source of information. Object

co-occurrence seems more useful, but aspects of this information source may

already be captured by scene context.

The second point seems more fruitful. Poor representations of scene con-

text and target-relevant features could be due to lack of representative train-

ing data or because the features themselves don’t actually correlate with these

sources of information. The most likely explanation is that the poor localiza-

tion accuracy was due to both lack of training data and feature representations.

The large discrepancy between accuracy of the scene context prior on train-

ing and search experiment images indicates that the model may have over-fit.

However, reducing the complexity of the model by decreasing the number of

regression components didn’t improve localization accuracy. Therefore, it is

likely that the training data used for the scene context prior was not repre-

sentative enough of the search images. This is because the images used for
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training data had an unconstrained number of pedestrians in them while im-

ages used in the search experiment could only have one. It may be that there

are fundamental differences between images with few pedestrians and those

with many. Unfortunately, the number of training images were quite small

(around 1700), so restricting training to only single-target images would have

reduced the size of the training set significantly. In terms of feature choices,

other options for representing scene context are scant. Possibilities for target-

relevant features include methods like Sift (Lowe, 1999) and convolutional

neural networks (CNNs) (Hinton, Osindero, & Teh, 2006). Sift features are

similar to HOG features, but CNNs may provide a better representation of

target-relevant features. Most research with CNNs has been on classifying

images (Krizhevsky, Sutskever, & Hinton, 2012; Simonyan & Zisserman, 2014)

but they can also be used for target localization (Redmon, Divvala, Girshick,

& Farhadi, 2016). CNNs have been shown to fit fine grained features of images

so they may produce a better of target-relevant features. Improving methods

for representing information sources and increasing the size of annotated, nat-

ural image databases are the most important areas to improve the power of

computational models in natural images.

One other limitation was the implementation of the visibility maps. The

relationship between eccentricity, contrast and detectability is relatively well

understood for simple stimuli like Gabors in white noise. Unfortunately, the

factors that influence detectability when it comes to natural images are less

clear. Therefore, it is unlikely that the visibility maps estimated here take

into account all of the factors that influence detection in natural scenes. A
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better understanding of how visibility changes as a function of eccentricity in

natural images, which factors influence it, and how to measure their influence

would certainly improve the accuracy of visibility maps used here. Sebastian,

Abrams & Gesiler (2017) conducted one such study that examined the im-

pact of luminance, contrast, and similarity (as measured by cosine similarity)

on detection thresholds in natural scenes. They found these three factors ex-

plained a significant portion of detection performance, but the target was a

Gabor rather than a natural, categorical target. Future work is required to

specify which factors influence the detectability of natural targets in natural

scenes, and how they influence detectability.

Finally, the model presented here was missing one key component that is

present in human visual search: a threshold for deciding when to stop search-

ing because the target was found. In simulating the MAP and ELM observer

we terminated the simulations when the maximum of the posterior distribu-

tion was inside the bounding box of the target. By contrast, when human

observers are searching they use a decision threshold to decide when to stop.

Once this threshold is passed the observer enters their response. Including

a decision threshold would likely improve the performance of the ELM and

MAP observers since they would sometimes mistakenly classify the wrong lo-

cation as a target. Additionally, implementing a decision threshold would also

allow us to compute the performance of the model observers on target absent

images.
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5.5 Conclusion

Here we described a Bayesian model of fixation selection for categorical tar-

get searches in images of natural scenes. The model uses scene context and

target-relevant features as sources of information. Scene context information

was used as the prior distribution and target-relevant features were used as the

likelihood function. The likelihood function was also constrained by a visibil-

ity map, estimated using data from human observers in a detection task. Two

models were simulated and compared to human observers on a natural search

task: one that selected fixations using a MAP decision rule and one that made

fixations using an ELM decision rule. We found evidence that target-relevant

features and scene context are indeed normative sources of information for

fixation selection. Additionally, it seems that human observers may switch

between MAP and ELM decision rules rather than using one exclusively. Fu-

ture work should continue to develop the tools required to develop improved

computational models of visual search in real world scenes.
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Chapter 6

Appendix

6.1 Images for GIST and HOG Computations

To compute the prior distribution and likelihood function it was necessary

to estimate the distribution of GIST and HOG features in images of natural

scenes. The GIST feature distribution was estimated using 1710 images from

the LabelMe database (Russell et al., 2008). Many of these images had more

than one pedestrian, producing a total of 3692 pedestrian locations across all

training images. The LabelMe database was used since it was necessary to

have ground truth labels of the true positions of pedestrians in the images.

HOG feature distributions were estimated using 6255 positive examples and

25036 negative examples obtained from the LabelMe database and from Dalal

& Triggs (2005). Positive examples were cropped images of pedestrians and
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their left right reflections. Negative examples were cropped images of natural

scenes where no pedestrian was present, and their left right reflections. All

the images used for training were grayscale.

6.2 GIST and HOG Feature Computation

In this section we discuss how the HOG and GIST features were extracted from

images of natural scenes. The basis for both features is to use linear filters

to compute features over local (HOG) or global (GIST) regions of the image.

Rather than using the raw HOG and GIST features we computed their princi-

pal components via principal component analysis (PCA). Using PCA allowed

us to reduce the dimensionality of the HOG and GIST features and guaranteed

that the features in our model would be orthogonal and Gaussian distributed.

Therefore, using the principal components rather than raw features satisfies

the assumptions implicit in multivariate Gaussian models.

6.2.1 GIST Feature Computation

We computed the GIST features in an image as in Torralba et al. (2006)

and Ehinger et al. (2009). The image was first decomposed using a bank

of steerable pyramid filters (Simoncelli & Freeman, 1995). We used filters at

four scales and six orientations, for a total of 24 filters. Therefore, there are 24

filter responses per pixel in an image. Next we subsampled the filter responses
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by dividing it into a 4 x 4 grid, resulting in 16 distinct blocks. Finally, the

responses for each filter were averaged within each of the 16 blocks. This

average operation smooths the output of the linear filters, producing a coarse

representation of the scene. The resulting GIST representation G was a 384

dimensional vector (4 scales × 6 orientations × 16 blocks = 384).

6.2.2 HOG Feature Computation

The HOG features were extract in the same manner as Dalal & Triggs (2005).

We first computed the gradient of the image. This was done using a simple

[-1,0,1] derivative filter. The derivative filter was convolved in both the ver-

tical and horizontal directions to compute the gradients in both the x and y

directions. Next the image was divided into overlapping ‘cells’ of 8 x 8 pixels

and a histogram of the gradients within each cell was computed. We used nine

orientation bins, evenly spaced over the interval 0◦ to 180◦. The weight added

to each histogram bin was computed by bilinearly interpolating the magnitude

of the gradients in both position and orientation. Using bilinear interpolation

preserved some orientation tuning since intermediate gradients will contribute

to two bins. Additionally, it ensured that the most important pixels, those at

the center of the cell, were weighted more heavily.

In the next stage, cells were combined into 2 x 2 non-overlapping ‘blocks,’

such that each block consists of four cells (16 x 16 pixels). The histograms

within each block were then concatenated and normalized. Finally, blocks were
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combined to form ‘detection windows.’ Each detection window was centered

on one pixel in the image, consisting of 4 x 8 non-overlapping blocks (64 x

128 pixels). The HOG representation H at each pixel was the collection of

normalized block vectors aggregated over the detection window, resulting in a

3780 dimensional vector.

6.3 GIST and HOG Feature Selection

Both the GIST G and HOG H feature vectors were so high dimensional that

representing them with multivariate Gaussian distributions resulted in a loss of

machine precision. Therefore, we reduced the dimensionality of both of these

representations using Principal Component Analysis (PCA). The output of

PCA is a set of basis vectors (Principal Components) that can be linearly

combined to reproduce any point in the original data set. Basis vectors are

ordered according to their eigenvalue, which indicates how much variation in

the original data can be explained by the corresponding basis vector. Addi-

tionally, all basis vectors are orthogonal to each other, meaning they represent

independent pieces of information.

Typically, PCA is applied when one wants to reconstruct a data set in a

lower dimensionality, while still preserving as much information as possible.

The top 64 or 100 principal components are usually selected for these purposes

since they explain the most variability. However, just because a principal com-

ponent explains a large amount of variation does not mean that it is diagnostic
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for the desired task. For example, in the case of HOG features we would like

to be able to distinguish between two classes: targets and non-targets. It is

possible, and even likely, that some principal components with large eigen-

values correspond to features that are highly variable for both targets and

non-targets. Principal components like this will not be useful for differenti-

ating the two classes. Alternatively, there will be some principal components

that have small eigenvalues because their within class variability is low, even

though their between class variability is high. Principal components like this

would be useful for differentiating between the two classes, but would not be

used if we only took the top 64 or 100 principal components.

Here, we take the approach of computing the most informative principal

components for the search task. In the case of the GIST representations this

means finding the principal components that are most predictive of target

position, while for the HOG representations this means finding the principal

components that are best for distinguishing between targets and non-targets.

For both GIST and HOG representations we use 10-fold cross validation to

select how many principal components to use in the model.

6.3.1 GIST Feature Selection

For the GIST representations G, we wanted to select the principal components

that were most informative about target position. We assumed that target

position was linearly dependent upon the GIST representation G such that:
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ŷ = WG (6.1)

where ŷ is the estimated target position and W is the regression matrix.

For each principal component, we compute Ŵ , an estimate for W , using:

Ŵ =
(
GTG

)−1
GTy (6.2)

where GT is the transpose of the GIST principal component vector and y

is the true target position in the image. We then computed a t-statistic for

each GIST principal component:

t =
SSreg
SSres

(6.3)

where SSreg and SSres are the sum of squares for the regression and resid-

uals, respectively. Larger values of t correspond to principal components that

explain more variability, and are therefore more informative about target lo-

cation. The 32 principal components with the largest values of t were used to

compute the prior distribution.
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6.3.2 HOG Feature Selection

For the HOG representations H we wanted the best principal components clas-

sifying targets vs. non-targets. For each individual principal component, we

computed the mean and variance of the signal (µs,σ
2
s) and noise (µn,σ2

n) distri-

butions over all training examples. For each test example we then computed

the likelihood ratio:

LR =
L (X = 1|H)

L (X = 0|H)
(6.4)

where L (H|X = 1) is the likelihood of obtaining HOG features H given

that a target was present (X = 1), and L (H|X = 0) is the likelihood of ob-

taining H given that target was absent (X = 0). We can rewrite Equation 6.4

as:

LR =
p (H|X = 1)

p (H|X = 0)
(6.5)

or alternatively as:

LR =
N (H ;µs, σ

2
s)

N (H ;µn, σ2
n)

(6.6)

where µs and σ2
s are the mean and variance of the target distribution, and

µn and σ2
n are the mean and variance of the non-target distribution.
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We then classified the sample as a target if the likelihood ratio is greater

than 1 or a non-target if the likelihood ratio is 1 or less. Once this was done

for all samples we computed the d′ or signal-to-noise ratio (SNR) according

to:

d′ = Φ−1 (hr)− Φ−1 (fa) (6.7)

where Φ−1 is the inverse of the cumulative normal integral, hr is the hit rate

and fa is the false alarm rate on all samples. The 230 principal components

with the largest d′ were chosen for inclusion in the likelihood function. Using

more principal components resulted in a loss of machine precision. To evaluate

the performance of the likelihood function we used it to classify each training

example using 10-fold cross-validation to prevent over-fitting. Classifying each

training example we found a d′ of 3.7, which indicates that the likelihood

function differentiates target present and target absent image crops quite well.
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