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The class of integrable Non-Linear Sigma Models (NLSM) have many interesting

applications in Quantum Field Theory, Condensed Matter Physics and String Theory.

However, despite being integrable, their study still presents many challenges. In this

thesis the quantization of integrable NLSM is considered within the framework of the

Quantum Inverse Scattering Method (QISM). The main focus are the O(3) and O(4)

NLSM and their integrable deformations. On these examples, we will encounter and

discuss the long-standing conceptual challenges of quantizing NLSM in general. A

key technical tool, that will allow us to make progress, is the so-called ODE/IQFT

correspondence. Among the results presented in this thesis is a new approach to the

problem with non-ultralocality; a study of the integrable structures in the O(3) model

as well as its deformation; and a remarkable relation between the Casimir energies of

the deformed O(4) model and certain solutions of the modified sinh-Gordon equation.
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Chapter 1

General Introduction

The development of Quantum Field Theory (QFT) has been closely tied to the study

of the fundamental forces. Its early progress was motivated by the problem of quan-

tizing the electromagnetic field that would describe the quantum interactions of light

with matter. Despite that a perturbative treatement was mainly used, the approach

resulted in remarkable success. The agreement of the theoretical predictions for the

anomalous magnetic moment and the Lamb shift with experiments became a gold

standard for physics [1].

The subsequent discovery of non-Abelian gauge theories laid the foundation for

the Standard Model. However, unlike quantum electrodynamics, such theories can

exhibit asymptotic freedom. This happens in quantum chromodynamics – the theory

believed to describe the strong interactions. For asymptotically free theories, though

perturbation theory works well for high energies, the most interesting low energy

physics lies outside of its scope. This motivated the development of alternative meth-

ods such as the large-N expansion [2], instanton calculus [3], lattice simulations [4],

etc. However their applicability has been tough to assess and justify in the case of

realistic 4D non-Abelian gauge theories. This has led to a strong interest in studying

simplified models, where new methods can be understood and tested in full details.

Another perspective on QFT came from Condensed Matter Physics. Many impor-

tant concepts such as the renormalization group, spontaneous symmetry breaking and

asymptotic freedom were understood and developed independently in this context.
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As an example, asymptotic freedom in Condensed Matter Physics was encountered

almost ten years before the famous 1973 works of Gross & Wilczek [5] and Politzer

[6] on this phenomena in non-Abelian gauge theories. It was found by Kondo in his

study of the anomalous behaviour of the low temperature resistance in certain met-

als, now known as the Kondo effect [7]. Remarkably, one of the most powerful and

fundamental concepts in QFT – the renormalization group – was first applied in full

to the Kondo problem by Wilson [8].

Despite that the Kondo effect occurs in three dimensions, the essential physics

is captured by a one dimensional model. The latter turns out to be a quantum

integrable system, which was solved exactly in [9, 10]. The solution is obtained via

the Bethe ansatz approach, pioneered in the 1930’s by Hans Bethe in his study of the

Heisenberg spin chain [11]. Since then, a large variety of 1 + 1 dimensional models

have been solved using this method. Like the Kondo model, many of them describe

interesting physical phenomena in real systems. This includes the Lieb-Liniger Bosé

gas, which was recently realized in ultra-cold 87Rb atoms confined to a 1D optical

trap [12, 13]; and the Thirring model that describes electrons inside a one-dimensional

conductor (the Tomonaga-Luttinger liquid). The latter was experimentally realized

using carbon nanotubes at low temperatures [14].

The theory of quantum integrable systems has profited much from the deep con-

nection between QFT and statistical mechanics. Many of its fundamental concepts

arose from the study of exactly solvable 2D lattice models. The latter culminated

with the seminal works in the 60’s and 70’s [15, 16, 17, 18] that led to the discovery

of new mathematical structures now collectively known as the Yang-Baxter algebras.

Their study gave rise to the theory of quantum groups [19, 20, 21] and lead to remark-

able developments in many traditional areas of mathematics including representation

theory [22], geometry and topology [23, 24], combinatorics [25], etc.
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Until recently, the theory of quantum integrable systems itself could have been

regarded as a relatively isolated area of physics, though with interesting applications

to Condensed Matter Physics, but of limited applicability to realistic problems of

High Energy Physics. This situation is changing, however, with the discovery of

a remarkable series of links between supersymmetric gauge theories and quantum

integrability [26, 27, 28, 29, 30]. One area where these developments have been

keenly felt is in the study of the AdS/CFT correspondence. On the CFT side it was

observed that for every order in perturbation theory the computation of the scaling

dimensions in N = 4 super Yang-Mills theory in the t’Hooft limit could be reduced

to the eigenvalue problem of a certain integrable spin chain [31]. By adapting the

Bethe ansatz approach, the exact computation of the scaling dimensions was achieved

for all values of the t’Hooft coupling (see [32] for a review). On the AdS side, the

dual description involves type IIB superstring theory in the AdS5 × S5 background.

In the planar limit, the theory describes the propagation of a free string in this

background. The latter is essentially a 1 + 1 dimensional Non-Linear Sigma Model

(NLSM) on AdS5 × S5. This sigma model was shown to be classically and likely

quantum integrable [33]. However, the study of the quantum model has so far proven

difficult.

NLSM in 1 + 1 dimensions are an especially interesting class of theories, whose

applications range beyond the study of the AdS/CFT correspondence. In their orig-

inal setting, they were used as laboratories for better understanding aspects of non-

Abelian gauge theories in a simpler context including asymptotic freedom, confine-

ment [34], instanton counting [35] etc. Supersymmetric NLSM have important ap-

plications in Condensed Matter Physics, where they are used to model disordered

electronic systems like the integer quantum Hall effect [36]. Classical and quantum

NLSM are also studied by mathematicians as they provide a natural framework for

a large variety of geometrical problems such as the harmonic map [37] and geometric
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x ∼ x + R

t

Figure 1.1: The integration contour for the Wilson loop can be moved freely along
the space-time cylinder.

flows (see e.g. [38]). Because of the many applications of NLSM, the integrable cases,

where a detailed study is possible, have attracted a great deal of attention.

A unified and systematic approach to quantum integrability is the so-called Quan-

tum Inverse Scattering Method (QISM) [39, 40]. Its roots can be traced back to the

study of classically integrable 1+1 dimensional Partial Differential Equations (PDEs)

that typically occur in the theory of solitons. The most famous of these is the Ko-

rteweg de Vries equation that describes waves propagating in shallow water [41]. An

ingenious method for its solution was proposed in [42] that is based on the study of

the scattering problem for the 1D stationary Schrodinger equation. The generaliza-

tion of this approach to other integrable PDEs came following the work of Lax [43]

and became known as the inverse scattering transform method. In the contemporary

formulation of this method, the key ingredient is a Lie algebra-valued world sheet

connection whose flatness condition (Zero-Curvature Representation) is equivalent to

the classical equations of motion. For the flat connection the Wilson loops of the

form

T = TrP exp

∫
C

A (1.1)

remain unchanged under continuous deformations of the integration contour (see fig.

1.1) and generate an infinite family of conserved quantities. The latter can be used

to solve the field theory within the framework of the inverse scattering method [44].
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The bringing together of ideas from the inverse scattering transform and the Yang-

Baxter algebras triggered the development of the QISM. The approach is based on the

study of the common spectrum of the transfer-matrices (T -operators) – the quantum

counterpart of the classical Wilson loops. The original formulation of the QISM was

restricted to the so-called “ultralocal” models. In this case, the elementary transport

matricesMn =
←
P exp

∫ xn+1

xn
A commute for different segments of the discretized path,

while for the same segment they form a Yang-Baxter algebra. The most studied

class of integrable models is the one where the Yang-Baxter algebra of the ultralocal

operators Mn admits a finite-dimensional representation. In this case the discretized

quantum system can be interpreted as an exactly soluble lattice model whose solution

can be obtained by means of the Bethe ansatz method. The solution of the continuous

QFT is achieved by taking a proper scaling limit. An archetype of this scenario is

the sine-Gordon model, while the corresponding statistical system is known as the

inhomogeneous 6-vertex model [45].

In spite of its success, the QISM failed when it was applied to classically inte-

grable NLSM, including the simplest cases of the O(3) and O(4) models. The Zero-

Curvature Representation has been known for these theories since the seventies [46].

Nevertheless, it turned out to be problematic to trace the classical counterpart to the

Yang-Baxter algebras, which is a crucial ingredient for the quantization in the frame-

work of the QISM. The technical obstacle is that the elementary transport matrices

Mn are non-ultralocal, i.e., they no longer commute for different segments. These are

symptoms of the broader difficulty tied to the UV behaviour of the quantum model,

which exhibits effects such as asymptotic freedom and dimensional transmutation

that have no direct analogues in the classical counterpart.

For the O(4) model, an attempt to bypass the non-ultralocality problem was made

by Polyakov & Wiegmann [47] and later Faddeev & Reshetikhin [48]. In both works,
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the NLSM was replaced by a different model, which was free from the non-ultralocality

issue. Polyakov and Wiegmann considered a model with Nf fermion flavors, whereas

Faddeev and Reshetikhin focused on a certain spin-S chain. They studied the ther-

modynamics using the Bethe ansatz technique and gained valuable results for the

O(4) sigma model through the large Nf and S → ∞ limit, respectively. Both lim-

iting procedures yielded the same system of so-called thermodynamic Bethe ansatz

equations, which was then justified by a comparison with perturbative calculations

and the exact results from the S-matrix bootstrap [49]. Since that time, a number of

impressive results have been achieved for some particular NLSM. However, a deeper

understanding as well as a systematic approach to the quantization of NLSM so far

do not exist.

In the series of works [50, 51, 52], Bazhanov, Lukyanov and Zamolodchikov pro-

posed an alternative approach to the transfermatrices in integrable QFT (the so-called

BLZ approach). In the case of integrable Conformal Field Theories (CFT), it was

demonstrated that the T -operators can be constructed without any discretization

procedure. Later it was observed that many deep properties of representations of

Yang-Baxter algebras in integrable CFT can be encoded in the monodromies of cer-

tain linear Ordinary Differential Equations (ODE) [53, 54, 55]. These results were

extended to massive Integrable Quantum Field Theories (IQFT) [56]. The general

relation is referred to as the ODE/IQFT correspondence.

The ODE/IQFT correspondence means that, for a given integrable QFT there

exists a certain classically integrable field theory such that the eigenvalues of the

quantum T -operators coincide with the on-shell values of the Wilson loops calculated

on certain solutions of the classical equations of motion. For example, the classical

counterpart of the quantum sine-Gordon model is given by the so-called Modified

Sinh-Gordon (MShG) equation. The MShG equation is a classically integrable PDE
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which admits a Zero-Curvature Representation. According to the ODE/IQFT corre-

spondence, spectra of the quantum transfermatrices in the sine-Gordon model coin-

cide with a set of values of the Wilson loops calculated on a certain class of solutions

of the MShG equation [56].

Thus, the ODE/IQFT correspondence reduces the calculation of the spectrum of

quantum transfermatrices to a certain problem in the theory of classically integrable

equations. The latter can be effectively treated by the inverse scattering transform

method. This makes the ODE/IQFT correspondence a very powerful tool. In par-

ticular, it gives a practical way to make progress in the conceptual long standing

problem of the quantization of integrable NLSM.

This thesis is devoted to the study of integrable NLSM within the BLZ approach.

The main focus is on the O(3) and O(4) NLSM as well as their integrable deforma-

tions. The key technical tool, that has allowed progress to be made, is the ODE/IQFT

correspondence. The plan of this dissertation is as follows:

• Chapter 2 is preliminary. It gives a short review of NLSM in 1 + 1 dimensions.

First we consider the analogue of the O(4) model in classical mechanics. Next,

the NLSM action is introduced and its renormalizability in 1 + 1 dimensions is

discussed. The last part contains some specific examples. Among these are the

deformed O(3) (the so-called 2D sausage model) and O(4) NLSM (3D sausage)

that form the subject-matter of this thesis.

• In Chapter 3 some aspects of classical integrability for a 1 + 1 dimensional field

theory are discussed. This includes the Zero-Curvature Representation for the

classical equations of motion, which implies the existence of an infinite family

of conserved quantities. As an illustration, the Zero-Curvature Representation

is given for the Principal Chiral Field and its two parameter deformation, the
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so-called Klimcik model. The later part of the chapter considers the Poisson

commutativity condition of the conserved charges. For its proof, the central

rôle of the classical Yang-Baxter algebra, or equivalently the Sklyanin exchange

relations, are emphasized. Next, it is explained how the non-ultralocality prob-

lem creates difficulties with the derivation of the Sklyanin exchange relations.

It is shown how to bypass the problem for the case of the O(3) model and its

one parameter deformation.

• Chapter 4 deals with the problem of non-ultralocality in full and is based on the

work [57]. First the quantum Yang-Baxter algebras are introduced. To get some

intuition, we illustrate how they arise in a statistical mechanics system – the

six vertex model. It is discussed how the Yang-Baxter algebras can be consid-

ered as the quantum version of the Sklyanin exchange relations. Based on this

“correspondence principle”, we formulate a strategy for recovering the Sklyanin

exchange relations in a non-ultralocal theory. This is first demonstrated for a

non-ultralocal system based on the U(1) current algebra that is related to the

Korteweg de Vries equation. Then we carry this out for a more complicated

case, where the non-ultralocal system is based on the SU(2) current algebra.

It is explained how this last example is relevant to the 3D sausage model (two

parameter deformation of O(4) NLSM). With these results, we argue that the

Poisson commutativity condition of the conserved charges is satisfied in the 3D

sausage.

• Chapters 5, 6 and 7 consider the quantization of the 2D sausage model and

closely follow the work [58].

(a) In Chapter 5 we consider the CFT underlying the UV fixed point of the

2D sausage, the so-called cigar NLSM. Its quantum transfer-matrices are

constructed and their basic properties are outlined. Next we discuss some
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facts about the quantum cigar including its Hilbert space. The dual de-

scription of the cigar is presented. The chapter ends with a discussion of

the local integrals of motion in the theory.

(b) In Chapter 6, the quantum transfer-matrices are considered in the para-

meter domain that is unphysical for the cigar NLSM. It turns out that these

operators can be interpreted as the transfermatrices for the Zn parafermionic

models [59] that describe the scaling limit of the Fateev-Zamolodchikov Zn

spin chain. The transfermatrix is explicitly constructed on the lattice and

its scaling limit is discussed. The computation of the spectrum is achieved

via the ODE/IQFT correspondence. Using this correspondence, the eigen-

values of the transfermatrix are expressed in terms of certain connection

coefficients for a certain class of ODEs. These relations are extended to

the parameter domain that is physical for the cigar NLSM. Finally, a sys-

tem of non-linear integral equations are derived for the computation of the

vacuum eigenvalue of the transfermatrix for both the cigar NLSM and the

Zn parafermionic models.

(c) Chapter 7 is focused on the 2D sausage model. Its starts by recount-

ing some basic facts, including its dual description, the structure of its

Hilbert space, and its UV/IR behaviour. The non-linear integral equa-

tions for the cigar obtained in the previous chapter are generalized to the

2D sausage and a variety of checks are made to certify their validity. Next,

the algebraic structures in the sausage model are discussed and their main

properties are listed. The chapter ends by presenting the ODE/IQFT cor-

respondence for the sausage NLSM.

• Chapter 8 is based on the work [60]. It is devoted to a demonstration of the
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ODE/IQFT correspondence for the 3D sausage model. The correspondence pre-

dicts that the vacuum energies of the theory in finite volume can be expressed

in terms of certain solutions of the classical MShG equation. To provide sup-

port to this conjecture, numerical data for the vacuum energy obtained via the

solution of the PDE is compared with the UV and IR asymptotics taken from

field theory computations. Excellent agreement was found.

• Chapter 9 is devoted to a discussion.

The dissertation is based on the published works [57, 58, 60] and the recent pre-

print [61].
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Chapter 2

Non-Linear Sigma Models

2.1 The free top: a classical mechanics analogue of an NLSM

Before introducing the NLSM action, it is useful to gain some intuition by discussing

its equivalent in classical mechanics. A NLSM in “ 0 + 1 dimensions ” is a mechanical

system that has no potential energy term and where the non-trivial dynamics comes

from the presence of constraints on the motion. A famous physical example is the

free top, where the constraints correspond to the condition that it is rigid. Below

we will make a short digression into the theory of tops, which will help give us an

intuitive picture for a NLSM.

For the case of the free top, the motion of the center of mass is trivial. The

remaining rotational degrees of freedom can be described using a 3 × 3 rotation

matrix U(t) ∈ SO(3) that relates the orientation of the fixed frame to the laboratory

rcm

ez

ex

ey

e′3 e′2

e′1

Figure 2.1: In analyzing the motion of a rigid body it is convenient to work in the
co-ordinate system {e′1, e′2, e′3} which is fixed to the body and where the axes coincide
with the principal axes of inertia.
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Figure 2.2: Any rotation matrix U can be parameterized using the Euler angles
(α, β, γ).

frame (see fig. 2.1). The Lagrangian of the free top coincides with its kinetic energy

and is given by

L =
1

2

3∑
a=1

Ia ω
2
a . (2.1)

Here Ia are the principal moments of inertia and ωa are the components of the angular

momenta about the principal axes (see fig. 2.1). Note that the latter can be written

in terms of U (t) by using the infinitesimal rotation matrices ta:

ωa =
1

2i
Tr
(
U−1 U̇ ta

)
(a = 1, 2, 3) . (2.2)

In the simplest case of the spherical top, where all the moments of inertia are

equal, the Lagrangian (2.1) takes the form

L = − 1

2f 2

〈
U−1 U̇ , U−1 U̇

〉
, (2.3)

where f−2 ≡ I1 = I2 = I3 and 〈a, b〉 = Tr(ab). In fact, in this thesis, the field theory

version of a slightly different model will be important to us. We will take the matrix

U in (2.3) to be a 2× 2 unitary matrix, rather than an element of SO(3). Since the

combination U−1 U̇ lies in the Lie algebra, which is equivalent for SU(2) and SO(3),

the models are identical at the level of the Lagrangian. The difference is only in the

global aspects of the motion.



13

Any 2× 2 unitary matrix can be written in the form

U =

 n4 + in3 n2 + in1

−n2 + in1 n4 − in3

 , n2
1 + n2

2 + n2
3 + n2

4 = 1 , (2.4)

so that the group manifold of SU(2) is a three dimensional sphere. To write the

explicit form of the Lagrangian, it is useful to parameterize the unit vector n =

(n1, n2, n3, n4) by the three angles Xα = {θ, χ1, χ2} as

n1 ± in2 = e±iχ1 cos(θ) , n3 ± in4 = e±iχ2 sin(θ) .

In terms of these, the Lagrangian takes the form

L =
1

2
Gαβ Ẋ

α Ẋβ , (2.5)

where

Gαβ dXα dXβ =
4

f 2

(
(dθ)2 + cos2(θ) (dχ1)2 + sin2(θ) (dχ2)2

)
. (2.6)

The latter is immediately recognized to be the standard sphere metric. This way, the

Lagrangian (2.5) with U ∈ SU(2) coincides with that of a free particle moving on

the round three-sphere.

As was already mentioned, the Lagrangian (2.3) with U ∈ SO(3) is identical

with that when U ∈ SU(2). Indeed, using the Euler angles (see fig. 2.2) and taking

θ + π−β
2

, χ1 = 1
2
(α − γ), χ2 = 1

2
(α + γ), one arrives at eqs. (2.5) and (2.6) for the

spherical top Lagrangian. However, the problem of the spherical top and the problem

of a free particle moving on the three-sphere correspond to different compactification

conditions. Namely,

Spherical top : χ1 ± χ2 ∼ χ1 ± χ2 + 2π

Particle on three sphere : χ1 ∼ χ1 + 2π , χ2 ∼ χ2 + 2π .

The Euler top, i.e., eq. (2.1) with all the Ia different, is a deformation of the

spherical top. The Lagrangian still has the same form (2.5) and the model can be
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regarded as a free particle moving on a manifold that is topologically the same as

the three-sphere. However, the metric is no longer that of the round sphere but is a

certain deformation of eq. (2.6).

2.2 Principal Chiral Field and general NLSM

The first NLSM to appear was the four dimensional field theory version of the spherical

top (2.3). The theory was proposed in the 1960’s in a paper by Gell-Mann and Levy

[62] to describe the low energy physics of the strong interactions in the chiral limit.

For this reason models of this type have become known as the Principal Chiral Field

(PCF). The phenomenological approach to the strong force, initiated by Gell-Mann

and Levy, has culminated in the development of chiral perturbation theory (see e.g.

[63]).

In d+ 1 space-time dimensions the PCF action takes the form

A = − 1

2f 2

∫
W

dt ddx
√
−η

〈
U−1 ∂µU , U

−1 ∂µU
〉
. (2.7)

Here U(t,x) should be considered to be a map from the Minkowski space world-sheet

to the group manifold. Notice that this formula makes sense for U an element of any

Lie group G. Since U−1 ∂µU takes values in the Lie algebra, the angular brackets

〈· , ·〉 should be interpreted to be the Killing form.

A NLSM is the field theory generalization of the mechanical system (2.5). Its

configuration space consists of maps from the world sheet to a Riemannian manifold

known as the target space. In a co-ordinate frame the maps are given by a set of

functions {Xa(t,x)}. The NLSM action, in the simplest set-up, reads as

A =
1

2

∫
W

dt ddx
√
−η Gαβ(X) ∂µX

α ∂µXβ . (2.8)

Field configurations that minimize this action are harmonic maps, that satisfy a
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generalized version of the Laplace equation

∂µ∂
µXγ + Γγαβ ∂µX

α ∂µXβ = 0 . (2.9)

2.3 Renormalizability of NLSM in 1 + 1D

Four dimensional NLSM are non-renormalizable and can only be treated as effective

field theories. It turns out that renormalizability occurs for NLSM only in the case of

1 + 1 space-time dimensions. Tied to this are many interesting quantum phenomena

such as dimensional transmutation and asymptotic freedom. Below we’ll start by

considering the renormalizability of the PCF using perturbation theory. It will mainly

follow the discussion given in [64].

2.3.1 One-loop renormalizability for the PCF

The starting point is the action functional for the PCF. Since we will be doing explicit

perturbation theory computations, it is convenient to work in the Euclidean picture

with t substituted by the imaginary time x2 = it. The Euclidean action is given by

A
[
U(x)

]
= − 1

2f 2
0

∫
d2x

〈
U−1∂µU , U

−1∂µU
〉
, (2.10)

where f0 stands for the bare coupling.

Our focus is the wave functional within the one loop approximation:

Ψ
[
U (x1)

]
=

∫
U(x)|x2=0=U(x1)

DU(x) e−A[U(x)] . (2.11)

In the zeroeth order, which corresponds to the classical limit, one takes into account

the path that minimizes the action (2.11). This path is the solution to the classical

equations of motion,

∂µJµ = 0 , Jµ = U−1∂µU (2.12)
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x2 = 0

U (x1)

x2

Figure 2.3: A depiction of the boundary conditions entering into the definition of the
wave functional (2.11). The space co-ordinate x1 in this figure has been compactified.

that obeys the Dirichlet boundary condition U(x)|x2=0 = U(x1) (see fig. 2.3). We

will denote this classical solution by U0. The quantum fluctuations can be included

by writting U as

U = U0 h (2.13)

and integrating w.r.t. the field h. Clearly the boundary conditions should be such

that

h(x)|x2=0 = 1 . (2.14)

Considering only small fluctuations about the classical solution, one can expand

h in terms of the infinitesimal field φ

h = eiφ = 1 + iφ− 1

2
φ2 + . . . . (2.15)

To express the action functional in terms of U0 and φ, a useful formula is that

〈
Jµ, Jµ

〉
=
〈
J0
µ, J

0
µ

〉
+
〈
h−1∂µh, h

−1∂µh
〉

+ 2
〈
J0
µ, h

−1∂µh
〉
, (2.16)

where J0
µ = U−1

0 ∂µU0. Substituting the expression (2.16) into the action functional

yields that

A
[
U(x)

]
= A

[
U0(x)

]
+

1

2f 2
0

∫
d2x

〈
∂µφ, ∂µφ

〉
+

1

2f 2
0

∫
d2x

〈
J0
µ,
[
∂µφ, φ

]〉
+O(φ3) .

Here the term containing J0
µ ∂µφ has not been included since it vanishes due to the

equations of motion (2.12). Integration over the field φ leads to a term quadratic in
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p p

q

p + q

Figure 2.4: The Feynman diagram that gives the contribution to δA in eq. (2.17)

the currents J0
µ that is given by the Feynman diagram depicted in fig. 2.4. For our

purposes, only the divergent part of this expression is required:

δA =

∫
d2p

(2π)2
Jaµ(p) J bµ(−p) × 1

4
fac

d fbd
c

∫
d2q

(2π)2

qµqν
2q4

+ finite

=
1

4π
log(Λ)

∫
d2x

1

2

〈
J0
µ, J

0
µ

〉
+ finite , (2.17)

where Λ is the UV cut-off. Here we have used the notation J0
µ = i Jaµ ta, where ta

are a basis of the Lie algebra satisfying the commutation relations [ta, tb] = i fab
c tc.

Also, we have chosen the normalization for the Killing form to be such that 〈ta, tb〉 =

−1
4
fac

d fbd
c. Eq. (2.17) implies that if the renormalized coupling f is introduced via

1

f 2
=

1

f 2
0

− 1

4π
log(Λ/E) (2.18)

the effective action remains finite at the one-loop order. Here E is some typical energy

scale that has been included in order to make the argument of the logarithm finite.

The above formula requires some explanations. The analogous expression in [64]

involves the group dependent factor C2(G), the value of the quadratic Casimir in the

adjoint representation. Eq. (2.18) does not contain any group dependent terms due to

our different normalization for the trace. The Killing form is usually understood to

be the matrix trace over the fundamental representation such that Tr(tatb) = 1
2
δab.

This is related to our definition as 〈a, b〉 = 1
2
C2(G) Tr(ab).

It is illuminating to re-write eq. (2.18) in the form

2

f 2
= − 1

4π
log(E∗/E) , (2.19)
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where

E∗ = Λ e
− 4π

f2
0 .

For a consistent removal of the cut-off Λ, the bare coupling must be given a cut-

off dependence f0 = f0(Λ) such that E∗ is held fixed in the Λ → ∞ limit. The

parameter E∗ has the dimensions of mass and sets an RG scale for the problem.

Thus, although the classical Lagrangian is scale invariant, the quantum fluctuations

cause the bare coupling to transmute into an energy scale E∗. This mechanism of

dimensional transmutation also occurs in gauge theories.

Equation (2.19) implies that for a compact Lie group the renormalized coupling

tends to zero when the typical energy scales become large. Hence, as the curvature of

the target space is proportional to f 2 (see e.g. eq. (2.6) for the case G = SU(2)), the

theory asympotically approaches a free theory on flat space in the high energy limit.

Conversely, at low energies, the PCF becomes strongly interacting and perturbation

theory breaks down. This is the hallmark of asymptotic freedom.

2.3.2 One-loop renormalizability of a general 1+1D NLSM and Ricci flow

equations

We have just discussed renormalization in the PCF. What about a general NLSM of

the form (2.8)? The renormalizability of these field theories was studied by Friedan

in [65]. He found that the class of NLSM is closed under the RG flow. Further he

computed the RG flow equations up to second order in perturbation theory. To the

lowest order they read as

∂τGαβ = −~Rαβ +O(~2) , (2.20)

where τ ≡ − 1
2π

log Λ stands for the RG time and Rab denotes the Ricci tensor built

from the metric. Note that for the PCF the metric and Ricci tensors coincide up to

an overall constant factor so that (2.20) reduces to a differential equation for the bare
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coupling, which can be integrated to yield (2.18).

The formula (2.20) is somewhat famous. In string theory it has the interpretation

that the conformal (Weyl) invariance of the string is equivalent to the vanishing of

the Ricci tensor. The latter is none other than Einstein’s gravitational equations in

the vacuum. According to string theory, quantum corrections to these gravitational

equations can be obtained by computing higher order terms in the r.h.s. of (2.20).

In mathematics, eq. (2.20) is identical to the Ricci flow, a sort of heat equation

that tends to make the geometry more smooth and symmetric. It was the main

tool that was used by Perelman to prove the geometrization conjecture. Its corol-

lary the Poincaré conjecture, that every simply connected closed three manifold is

homeomorphic to the three-sphere, was unsolved for over 100 years.

2.4 Examples

2.4.1 Anisotropic SU(2) PCF

The anisotropic SU(2) PCF is the field theory version of the symmetric top; the

model defined through eq. (2.1) with I1 = I2 6= I3. Introduce the notation Jaµ =

1
2i

Tr (U−1∂µU σa) where U is a 2 × 2 special unitary matrix and σa are the usual

Pauli matrices. Then the Lagrangian density is given by

L =
2

f 2
⊥

(
(J1
µ)2 + (J2

µ)2
)

+
2

f 2
‖

(J3
µ)2 . (2.21)

Notice that (2.21) breaks the SU(2)×SU(2) symmetry of the original PCF Lagrangian

down to U(1)×SU(2). This model can be interpreted as an NLSM on the three sphere

with a one-parameter deformed metric. Remarkably, the metric satisfies the RG flow

equations (2.20). The dependence of the bare coupling constants f⊥ and f‖ on the
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cut-off is given by

∂τf⊥ = ~
f 3
⊥

4f 2
‖

(
2f 2
‖ − f 2

⊥
)

+O(~2)

∂τf‖ = ~
f 4
⊥

4 f‖
+O(~2) . (2.22)

2.4.2 O(N) model

Recall that any 2× 2 unitary matrix U can be expressed as

U = n0 1 + in1 σ
1 + in2 σ

2 + in3 σ
3 , n2

1 + n2
2 + n2

3 + n2
4 = 1 . (2.23)

Setting n0 = 0 identically and substituting U into the PCF Lagrangian yields that

L =
1

2 f 2
∂µn · ∂µn , (2.24)

where the vector n = (n1, n2, n3) is constrained to lie on the two dimensional sphere

n · n = 1. Resolving the constraint n1 = sin θ cosw , n2 = sin θ sinw , n3 = cos θ,

eq. (2.24) takes the form

L =
1

2 f 2

(
∂µθ ∂

µθ + sin2(θ) ∂µw ∂
µw
)
. (2.25)

The resulting NLSM has target space the round two sphere. It is known as the O(3)

model since it possesses global O(3) symmetry. The O(3) NLSM satisfies the one-loop

RG flow equations and the Λ-dependence of the bare coupling reads as

∂τf =
~ f 3

2
+O(~2) . (2.26)

The Lagrangian (2.24) can also be considered for the case when n = (n1, . . . nN)

is an N -dimensional unit vector. The corresponding NLSM is the O(N) model whose

target space is the N − 1 sphere. The RG flow equations for the bare coupling still

take the form (2.26). Note that the O(4) model and the SU(2) PCF coincide.
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2.4.3 2D sausage model

A fruitful approach to constructing deformations of NLSM has been to study the

RG flow equations (2.20) directly. These constitute a complicated system of non-

linear differential equations whose solutions typically develop singularities. However,

it turns out that they possess so-called ancient solutions that exist for the RG time

τ ≡ −2π log(Λ) → −∞ and where the curvature remains small everywhere up to

τ = −∞. The target space metric corresponding to an ancient solution can be used

to define an NLSM, at least perturbatively, through the action (2.8). The short

distance physics is captured entirely by perturbation theory. However, at large scales

corresponding to τ → +∞ the ancient solutions typically develop singularities where

the curvature blows up so that the perturbative approach is no longer valid.

For a two-dimensional target space the RG flow equations were studied in [66]. In

this case one can always choose a set of conformal co-ordinates {Xα}, at least locally,

for which Gαβ = eΦ δαβ. Then eq. (2.20) becomes a non-linear PDE for the single

function Φ:

∂τ eΦ =
1

4π

(
∂

∂Xα

)2

Φ . (2.27)

In [66] a family of solutions was found. The corresponding metric is given by

Gαβ dXαdXβ =
2
(
(dφ)2 + (dw)2

)
κ−1 + κ+ (κ−1 − κ) cosh(2φ)

, (2.28)

where 0 ≤ w < 2π is an angular co-ordinate and −∞ < φ < +∞. The coupling κ

here lies in the interval κ ∈ (0, 1). Its dependence on the cut-off is given by:

∂τ κ = ~ (1− κ2) +O(~2) . (2.29)

The target space of the NLSM corresponding to (2.28) is topologically the two-

sphere. To get a better understanding of its geometry, it is instructive to make the

change of variables from φ to the co-ordinate u, defined through the relation

cn(u|κ)

dn(u|κ)
= tanhφ . (2.30)



22

φ

w

∼ log
(

1+κ
1−κ
)

Figure 2.5: A depiction of the target manifold of the NLSM (2.31) for 1− κ� 1.

In this thesis, the functions sn(u|κ), cn(u|κ) and dn(u|κ) will always denote the

standard Jacobi elliptic functions with κ being the modulus (κ2 sn2(u|κ)+dn2(u|κ) =

1). In terms of the variable u, the Lagrangian is equal to

L =
κ

2

(
∂µu ∂

µu+ sn2(u|κ) ∂µw ∂
µw
)
. (2.31)

In the limit κ → 0 the function sn(u|κ) becomes the regular sine function so that

the Lagrangian (2.31) becomes the O(3) model Lagrangian (2.25) up to an overall

multiplicative constant. Hence, the model is a one parameter deformation of the O(3)

sigma model. It is colloquially known as the “sausage model” since for κ → 1− the

target manifold can be pictured as a long sausage with length ∝ log(1+κ
1−κ) (see fig. 2.5).

Since the co-ordinate transformation (2.30) depends on the running parameter

κ = κ(Λ), the metric (2.31) does not satisfy the RG flow equations (2.20). An

infinitesimal, coupling dependent reparametrization of the fields leads to a change in

the metric

δGαβ =
(
∇α Vβ +∇β Vα

)
δτ

with some vector Vα. Thus the general form of the RG flow equations, that admits

the possibility of a coupling dependent co-ordinate transformation, reads as

∂τ Gαβ = −~
(
Rαβ +∇α Vβ +∇β Vα

)
+O(~2) . (2.32)
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2.4.4 Cigar NLSM

In the high energy limit, it follows from eq. (2.29) that the coupling constant κ→ 1−.

In this limit most of the sausage asymptotically approaches the flat cylinder, while the

curvature becomes concentrated at the tips corresponding to φ = ±∞ (see fig. 2.5).

Near, say, the right tip the metric can be obtained from the sausage one (2.28)

by shifting the field φ → φ + 1
2

log
(

1+κ
1−κ

)
and then taking the limit κ → 1. The

Lagrangian of the corresponding NLSM is given by

L =
1

2 (1 + e2φ)

(
∂µφ ∂

µφ+ ∂µw ∂
µw
)
. (2.33)

Notice that for φ→ −∞, eq. (4.66) becomes the free Lagrangian describing the fields

in the asymptotically flat domain.

The target space of the NLSM (4.66) coincides with the Hamilton’s cigar [67].

Clearly, the sausage target space for 1− κ� 1 can be approximated as two of these

cigars glued together, separated by a distance ∝ log(1+κ
1−κ). Thus, in the κ → 1 limit

the sausage model breaks down into two independent copies of the cigar NLSM.

The cigar model is a scale invariant theory. Its target space metric satisfies the

RG flow equations (2.32) with the l.h.s. set identically to zero, i.e.,

Rαβ +∇αVβ +∇βVα = 0 . (2.34)

It turns out that the vector Va can be expressed as the gradient

Vα = ∂αΨ, with Ψ = −1

2
log
(
1 + e2φ

)
. (2.35)

2.4.5 3D sausage model

The anisotropic SU(2) PCF, the analogy of the symmetric top, explicitly breaks the

SU(2)× SU(2) global symmetry of the PCF down to U(1)× SU(2). Is it possible to

further break this symmetry down to U(1)× U(1) similar to the Euler top? Naively

introducing an extra parameter into the Lagrangian (2.21) so that the coefficients of
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(J1
µ)2 and (J2

µ)2 differ results in a QFT that is not closed under the RG flow equations.

This makes the deformation not particularly interesting.

A suitable deformation was found by Fateev in the work [68]. The approach was

to substitute an explicit ansatz for the metric containing free parameters into both

sides of eq. (2.20) and then to choose the parameters such that the RG flow equation

is satisfied. The resulting NLSM is a two parameter deformation of the SU(2) PCF

known as the 3D sausage, in analogy to the 2D sausage previously discussed. The

action reads as:

A =

∫
d2x

uTr(∂µU ∂µU−1) + 2l (L3
µ)2 + 2r (R3

µ)2

4(u+ r)(u+ l)− rl
(
Tr(U σ3U

−1 σ3)
)2 , (2.36)

where (u, l, r) are the parameters of the model, while L3
µ, R3

µ stand for the σ3 com-

ponents of the left and right currents

L3
µ =

1

2i
Tr
(
∂µU U

−1σ3
)
, R3

µ =
1

2i
Tr
(
U−1∂µUσ

3
)
.

Under the RG group flow the following combinations of the parameters turn out to

be RG invariants:

a1, a2 > 0 : a1 a2 =
π2

4
√

(u+ r)(u+ l)rl
, a2

1 − a2
2 =

π2

4

u(r − l)
(u+ r)(u+ l)rl

.(2.37)

Then, the cut-off dependence of the couplings is described by

∂τu = 2 ~ (u+ r + `)2 +O(~2) . (2.38)

2.4.6 Klimč́ik model

The Klimč́ik model is a two parameter deformation of the PCF for any group G [69]

that contains all of the models discussed previously as special cases. Its construction

uses the so-called Yang-Baxter operator R̂. This is a linear operator acting in g that

satisfies a skew-symmetry condition

〈
a, R̂(b)

〉
= −

〈
R̂(a), b

〉
(2.39)
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as well as the so-called modified Yang-Baxter equation

[R̂(a), R̂(b)] = R̂
(
[R̂(a), b] + [a, R̂(b)]

)
+ [a, b] , a, b ∈ g . (2.40)

In this thesis we will take the operator R̂ to be as follows. Using the root decomposi-

tion of the Lie algebra w.r.t. a Cartan subalgebra h, any element of g can be written

as a sum of e± ∈ n± from the nilpotent subalgebras and h lying in the Cartan. Then,

the action of R̂ is defined by the relations R̂
(
e±
)

= ∓i e± and R̂(h) = 0.

The Lagrangian of the Klimč́ik model with deformation parameters ε1, ε2 is given

by

L = − 2

f 2

〈
U−1∂+U ,

(
1̂− iε1 R̂U − iε2 R̂

)−1(
U−1∂−U

)〉
, (2.41)

where the action of R̂U is defined as

R̂U (a) = U−1 R̂
(
U aU−1

)
U for ∀ a ∈ g (2.42)

(the symbol U (. . .)U−1 denotes the adjoint action of the group element U on g).

Due to the skew-symmetry of R̂ (2.39) the Lagrangian density (2.41) is not parity

invariant. In a co-ordinate system {Xα} it has the general form

L = 1
2

(
Gαβ(X) ∂µX

α ∂µXβ +Bαβ(X) εµν ∂µX
α ∂νX

β
)
, (2.43)

where ε01 = −ε10 = 1 and ε00 = ε11 = 0. The tensor Bαβ is known as the torsion

potential. Notice that the addition of the total derivative term ∂t
[
Wβ(X) (∂xX −

∂tX)
]

to the Lagrangian density, which can have no effect on the equations of motion,

leads to a change in the B-field as Bαβ 7→ Bαβ + ∂αWβ − ∂βWα. Hence, the torsion

potential is a gauge dependent term. The torsion tensor, however, which is defined

as

Hαβγ = ∂γBαβ + ∂αBβγ + ∂γBβα , (2.44)

is gauge independent. For the case G = SU(2) the B-field is a total derivative that

can be ignored and the model coincides with the 3D sausage [70].
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The RG equations are also known to two loops for the general NLSM with B-field

(2.43). They form the following system of coupled PDEs [71, 72]

∂τGαβ = −~
(
Rαβ −

1

4
Hα

γηHγηβ +∇α Vβ +∇β Vα

)
+O(~2)

(2.45)

∂τBαβ = −~
(
− 1

2
∇γ H

γ
αβ + VγH

γ
αβ + ∂αWβ − ∂βWα

)
+O(~2) .

Here the vector Vα takes into account a coupling dependent co-ordinate transforma-

tion of the metric. Similarly Wα corresponds to a coupling dependent gauge trans-

formation of Bαβ.

The one-loop renormalizability for a general class of field theories that contain

the Klimč́ik model as a special case was demonstrated in the work [73]. It turns out

that the RG flow equations for the Klimč́ik model couplings depend very little on

the group. In fact, they practically coincide with those derived by Fateev for the 3D

sausage in the much earlier work [68]. The RG flow equations describing the cutoff

dependence of the bare coupling constants are given by [74] (see also Appendix B for

some details)

∂τε1 = −1
2
~ f 2ε1

(
1− (ε1 − ε2)2

) (
1− (ε1 + ε2)2

)
+O(~2)

∂τ (ε2/ε1) = O(~2) (2.46)

∂τ (g
2ε1) = O(~2) .

The second equation in (2.46) shows that

ν2 =
ε2

ε1

(2.47)

is an RG invariant and the third equation is fulfilled if we choose

f 2 =

∣∣∣∣ε1 + ε2

ε1ε2

∣∣∣∣ . (2.48)

This way in the quantum theory there is only one Λ-dependent bare coupling. Within

the domain

0 < ε1, ε2 < 1
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which will be considered in this thesis, it is convenient to use the parameterization

ε1 =
1√

(1 + κ−1 ν2)(1 + κν2)
, ε2 =

ν2√
(1 + κ−1 ν2)(1 + κν2)

(2.49)

where ν2 > 0 and

κ = κ(Λ) : 0 < κ < 1 . (2.50)

It follows from the RG flow equations (2.46) that a consistent removal of the UV

cutoff Λ requires that

lim
Λ→∞

κ(Λ) = 1− . (2.51)

Thus in the high energy limit the renormalized running coupling will tend to one from

below.
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Chapter 3

Classical Integrability

It turns out that all of the 1 + 1 dimensional NLSM discussed before are classically,

and likely quantum integrable models. Here we will discuss their classical integrability

in the context of the inverse scattering method.

3.1 Zero-Curvature Representation

The solving of concrete mechanical models was a major preoccupation in 18th and

19th century physics. Obtaining a solution to a new and non-trivial problem was

considered an achievement of applied mathematics and was usually associated with

the development of a new mathematical technique. At the end of the 19th century it

was realized that solvability was connected with the presence of a sufficient number

of Integrals of Motion (IM) in the theory that allow one to solve the differential

equations. This gave rise to the notion of a Liouville integrable system in which the

number of isolating and Poisson commuting IM is equal to the number of degrees

of freedom. For such a system, it was proved that the equations of motion can be

solved in quadratures, that is, the solution is expressible in terms of integrals over

elementary functions.

In the context of 1 + 1 dimensional field theory, where the number of degrees of

freedom is infinite, a suitable paradigm of integrability was discovered in the mid 20th

century. The key ingredient in this case is a Lie algebra-valued world sheet connec-

tion that depends on an analytic spectral parameter such that the Zero-Curvature
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Representation (ZCR)

[
∂x −Ax(λ), ∂t −At(λ)

]
= 0 (3.1)

is equivalent to the classical equations of motion. Since the Wilson loops

T (λ) = Tr
←
P exp

∫
C

dxµAµ(λ) (3.2)

remain unchanged under continuous deformations of the integration contour (see

fig. 1.1), they generate an infinite family of conserved quantities. These can be used

to solve the field theory within the framework of the inverse scattering method.

Let’s consider the ZCR for some of the integrable NLSM discussed in the previous

chapter.

3.1.1 PCF

The Lagrangian of the PCF in 1+1 space-time dimensions can be conveniently written

using the light cone co-ordinates

L = − 2

f 2

〈
U−1∂+U , U

−1∂−U
〉
, (3.3)

where ∂± = 1
2
(∂t±∂x). The equations of motion coincide with the continuity equation

for the currents J± = U−1 ∂±U , i.e.,

∂−J+ + ∂+J− = 0 . (3.4)

In addition, these currents satisfy a set of Bianchi type identities

∂−J+ − ∂+J− +
[
J+, J−

]
= 0 , (3.5)

which are purely kinematic relations that do not make use of the equations of motion.

Combining eqs. (3.4) and (3.5) enables one to express the derivatives of J± in terms

of their commutators

∂−J+ = −1
2

[
J+, J−

]
, ∂+J− = +1

2

[
J+, J−

]
. (3.6)
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Recall that J± take values in the Lie algebra. A natural guess for the world sheet

connection is

A± = λ± J± , (3.7)

with some constants λ±. A simple computation of the ZCR (3.1) using eq. (3.6) yields

that [
∂+ −A+, ∂− −A−

]
=
(
λ+λ− −

λ−
2
− λ+

2

) [
J+, J−

]
, (3.8)

The r.h.s. of this equation can be made to vanish by choosing the parameters λ+ and

λ− to satisfy the constraint

1

λ+

+
1

λ−
= 2 , i.e., λ± =

1

1± λ
. (3.9)

This flat connection (3.7), (3.9) was originally obtained in the work [46].

Apart from the local integrability condition – the zero curvature representation

– proper global requirements need to be specified. In this thesis, we will consider

the spacetime to be a cylinder with the space co-ordinate compactified x ∼ x + R

(see fig. 1.1). A natural choice for the boundary conditions for the PCF are periodic

boundary condtions, so that

J(t, x+R) = J(t, x) . (3.10)

Choosing some matrix representation R for the Lie algebra, one can introduce the

monodromy matrix at the time slice t0 as

MR(λ) = πR

[
←
P exp

(∫ R

0

dx Ax(t0, x)
)]

, (3.11)

where Ax = A+ −A−. It follows from the ZCR that

∂tMR =
[
πR
(
At(t0, 0)

)
,MR

]
, (3.12)

so that the trace TR(λ) = Tr
(
MR(λ)

)
is a conserved quantity. The dependence on

the arbitrary variable λ ensures that TR(λ) generates an infinite family of IM and not

just a single conserved charge.
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3.1.2 Klimcik model

We will now turn to the construction of the flat connection for the Klimč́ik model. The

latter contains all of the integrable NLSM discussed before as special cases. Hence,

the flat connection for any of these models can be obtained from the Klimč́ik one via

a specialization of the parameters.

The currents that are the analogue of J± in the PCF are given by

I± = −2i
(
1̂± iε1 R̂U ± iε2 R̂

)−1(
U−1∂±U

)
. (3.13)

Similar to eq. (3.6), the equations of motion together with the Bianchi type identities

imply the following relations for I±:

∂+I− = +
i

2
ε2

[
R̂(I+), I−

]
+

1

4
(1− ε2

1 + ε2
2) [I+, I−]

∂−I+ = − i

2
ε2

[
R̂(I−), I+

]
+

1

4
(1− ε2

1 + ε2
2) [I−, I+] .

To write down the explicit formula for the connection, it is convenient to use the root

decomposition of the Lie algebra g = n+ ⊕ h ⊕ n− and express the currents in the

form

Iσ(x) = I+
σ (x) + I0

σ(x) + I−σ (x) : I±σ (x) ∈ n± , I0
σ(x) ∈ h . (3.14)

With this notation, the connection components for the Klimč́ik model read explicitly

as

Aσ = − i ε2

1− ρ2
σ

(
(ρσ)1−σ I+

σ + (ρσ)1+σ I−σ + 1
2

(
1 + ρ2

σ

)
I0
σ

)
(σ = ±) , (3.15)

where the auxiliary parameters ρ2
± are subject to the single constraint1

(ρ+ρ−)2 =
(1 + ε1 − ε2)(1− ε1 − ε2)

(1− ε1 + ε2)(1 + ε1 + ε2)
. (3.16)

1Eq. (20) from ref.[69] is equivalent to (3.15) with Lα,β± (ζ) = A± provided the following identifi-

cations are made α = i ε1, β = i ε2 and the spectral parameter ζ =
ρ2++ρ−2

− −2

ρ2+−ρ
−2
−

.
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In this thesis, we will always take ρ ≡ ρ+ as the spectral parameter, and consider ρ−

to be expressed in terms of ρ+ through eq. (3.16).

Having discussed the connection, let’s turn to the construction of the Wilson loops

(3.2). The Klimč́ik model Lagrangian is invariant w.r.t. the left and right rotations

by constant elements of the Cartan subgroup U 7→H1UH2. Hence, a natural choice

for the boundary conditions is

U(t, x+R) = H1U(t, x)H2 , (3.17)

With these conditions, the flat connection (3.15) becomes a quasiperiodic 1-form:

Aσ(t, x+R) = H−1
2 Aσ(t, x)H2 . (3.18)

The monodromy matrix is defined similarly to before via eq. (3.11). However, due to

the quasiperiodicity (3.17), the explicit computation of its time derivative yields that

∂tMR = πR
(
H−1

2

) [
πR
(
Ax(t0, 0)

)
, πR

(
H2

)
MR

]
. (3.19)

The infinite family of conserved chrages for the Klimcik model is introduced via a

slight modification of eq. (3.2):

TR(ρ) = Tr
[
πR
(
H2

)
MR(ρ)

]
. (3.20)

3.1.3 3D sausage

The flat connection for the 3D sausage was originally found in [75]. In fact, this

work constructs a more general classically integrable NLSM with torsion that is a

four parameter deformation of the SU(2) PCF and contains the 3D sausage as a two

parameter sub-family. Its flat connection is explicitly given using a parameterization

in terms of elliptic theta functions. The formulae are too complicated to be reproduced

here, however, the specialization of this connection to the 3D sausage is given in

appendix C.
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Another connection for the 3D sausage can be obtained by setting U ∈ SU(2) in

the Klimč́ik connection (3.15). It was shown as a result of work done for this thesis

that this connection is equivalent to the one found by Lukyanov in [75] specialized to

the 3D sausage. The explicit relation between Lukyanov’s elliptic parameterization

and the parameters {ε1, ε2, ρ±}, together with the matrix S entering into the gauge

transformation

A± 7→ S−1A± S − S−1∂±S (3.21)

is described in the appendix C.
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3.2 Sklyanin exchange relations

In the previous section we discussed the rôle of the Zero-Curvature Representation in a

classically integrable field theory. Provided that suitable boundary conditions are im-

posed, the ZCR implies that the trace of the monodromy T (λ) = Tr
←
P exp

∮
dxAx(λ)

is a conserved quantity in the theory, i.e., ∂t T (λ) = 0. The dependence on the auxil-

iary parameter λ ensures that T (λ) generates an infinite family of IM. As in Liouville

integrability, the next question regards the Poisson commutativity of these conserved

charges. Using the canonical Poisson structure induced from the Lagrangian, one

must show the following condition

{T (λ), T (µ)} = 0 . (3.22)

The proof of (3.22) requires the study of the Poisson brackets of the connection

components Ax. It was found by Sklyanin, by considering specific examples such

as the non-linear Schrodinger equation and the sine-Gordon model, that in certain

classically integrable field theories these Poisson brackets obey the general structure

[76]

{
Ax(x|λ1) ⊗

,
Ax(y|λ2)

}
=
[
Ax(x|λ1)⊗1+1⊗Ax(y|λ2), r(λ2/λ1)

]
δ(x−y) . (3.23)

In this formula, with a slight abuse of notation, we assume that some representation

for the Lie algebra has been chosen so that Ax denotes a finite dimensional matrix.

The quantity r is the so-called classical r-matrix and it lies in the tensor product of

the representations r = r12. As a consequence of the skew-symmetry and the Jacobi

identity of the Poisson brackets, the classical r-matrix must satisfy the following

conditions

r12(−λ) = −r21(λ) , (3.24)

and [
r12(λ/µ), r13(λ) + r23(µ)

]
+
[
r13(λ), r23(µ)

]
= 0 . (3.25)
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The latter is known as the classical Yang-Baxter equation and plays a fundamental

rôle in the Hamiltonian approach to classically integrable field theory [77]. Moreover

its quantum counterpart is central to the study of quantum integrable systems and

has inspired developments in many areas of mathematics, as was mentioned in the

introduction.

An important feature of the Poisson structure (3.23) is that it contains only the

δ function and none of its higher derivatives. Relations of this type are known as

“ultralocal” to indicate that they are well behaved for vanishing (x − y). With the

ultra-local Poisson brackets at hand, it is possible to show by direct computation that

the monodromy matrix

M(λ) =
←
P exp

∫ R

0

dxAx(λ) , (3.26)

satisfies the Sklyanin exchange relations

{
M (λ1) ⊗

,
M(λ2)

}
=
[
M(λ1)⊗M (λ2), r(λ2/λ1)

]
. (3.27)

The Poisson commutativity of the conserved charges (3.22) immediately follows from

the above by taking the trace of both sides.

To see how (3.23) leads to the Poisson bracket relations (3.27) one can discretize

the path ordered integral in (3.26) onto N segments ∆n. Then the monodromy matrix

is given as the ordered product over the elementary transport matrices

M =
←∏
n

Mn , Mn = 1 +

∫
∆n

dxAx +O(∆2) . (3.28)

By repeated use of the Leibniz rule, the Poisson brackets on the l.h.s. of (3.27) can

be expressed in terms of {Mn ⊗
,
Mm}. For the case when n 6= m this gives zero as

it leads to the vanishing integral
∫

∆n
dx
∫

∆m
dy δ(x − y). Here it is crucial that the

r.h.s. of (3.23) contains only the δ-function and none of its higher derivatives. The

presence of a δ′(x− y) would contribute boundary terms to the integral when ∆n is
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adjacent to ∆m. For the same segment one can show that the elementary transport

matrices satisfy the relation similar to (3.27), so that

{
Mm(λ1) ⊗

,
Mn(λ2)

}
= δmn

[
Mm(λ1)⊗Mn(λ2), r(λ1/λ2)

]
+O(∆2) . (3.29)

With (3.29) at hand, a direct computation of the Poisson brackets of the monodromy

for different values of the spectral parameter gives that

{
M (λ1) ⊗

,
M(λ2)

}
=
∑
n

MN ⊗M ′
N . . . Mn+1 ⊗M ′

n+1

×
[
Mn⊗M ′

n, r(λ1/λ2)
]
Mn−1 ⊗M ′

n−1 . . .M 1 ⊗M ′
1 +O(∆2) ,

where the shortcut notationsMm = Mm(λ1) andM ′
m = Mm(λ2) are being used here.

It follows from this and elementary identities for the commutator that eq. (3.27) is

satisfied up to corrections of order O(N∆2), which vanish in the N →∞ limit.

3.2.1 Non-ultralocality problem

For many models, and NLSM in particular, the Poisson brackets of the connection

components do not obey the ultra-local structure (3.23). Together with δ(x−y), they

contain terms proportional to the derivative of the delta function and possibly its

higher derivatives as well. Such singular terms in the Poisson brackets are symptoms

of the strongly divergent behaviour in the OPE of the fields in the quantum theory.

These UV divergences are related to those we discussed in the computation of the

effective action in the PCF (see sec. 2.3.1). In the classical theory, the non-ultralocal

form of the Poisson brackets creates serious problems with the proof of the Poisson

commutativity of the conserved charges for different values of the spectral parameter.

In turn, this makes the quantum counterpart to T (λ) difficult to define.
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Though the conserved charges are, of course, gauge invariant quantities the Pois-

son brackets of the flat connection are sensitive to the gauge transformation

A± 7→ S−1A± S − S−1∂±S . (3.30)

Thus it is sometimes possible to recover the key relations (3.23) for a non-ultralocal

flat connection by finding an appropriate gauge. This can be demonstrated on the

example of the O(3) model. The usual form of the connection, obtained as a reduction

of the PCF one, reads as

A± =
[∂±ň, ň ]

2 (1± λ)
, (3.31)

where ň = n1σ1 + n2σ2 + n3σ3. It is simple to check that the Poisson brackets of

Ax = A+ − A− contains a term proportional to δ′(x − y). However, applying the

gauge transformation (3.30) with S = λ1 + ň yields the connection

A± = − λ

(1± λ)2

(
∂± ň± 1

2

[
ň , ∂±ň

])
. (3.32)

The latter has ultralocal Poisson brackets.

The ultralocal connection (3.32) and its extension to the 2D sausage was found in

the work [58].2 It arises in a certain limit of the Klimč́ik model flat connection defined

through eqs. (3.15) (3.16). To take this limit, one should re-write the deformation

parameters ε1, ε2 in terms of κ and ν using eq. (2.49) and then set ν → 0. Though

the overall factor ε2 multiplying the connection goes to zero as ν2 (see eq. (2.49)), the

result is finite and non-zero since the currents I± tend to infinity.

To perform the computation, it is convenient to use the co-ordinate frame based

on the Euler decomposition of U ∈ SU(2):

U = e−
iv
2
h e−

iθ
2

(e++e−) e−
iw
2
h . (3.33)

2It should mentioned that the connection (3.32) appeared earlier in the overlooked paper [78],
The result in [58] was obtained independently from this work.
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Here h, e± are the generators of the Lie algebra sl2 satisfying the commutation rela-

tions

[h, e±] = ±2e± , [e+, e−] = h .

In fact, it is useful to substitute the angle θ ∈ (0, π) for φ ∈ (−∞,∞) such that

tan( θ
2
) = eφ−φ0 , eφ0 =

√
1 + κ

1− κ
, (3.34)

which will become the φ from eq. (2.28) for the 2D sausage. Taking the limit of the

Klimcik connection described above, yields that

A+ =
i Π+

1− ρ2
+

(
ρ+ e+(φ+iw) e+ + ρ+ e−(φ+iw) e− + i

2
(1 + ρ2

+) h
)

(3.35)

A− =
i Π−

1− ρ2
−

(
ρ− e−(φ−iw) e+ + ρ− e+(φ−iw) e− − i

2
(1 + ρ2

−) h
)
,

where

Π+ =
2
(
∂+φ− i ∂+w

)
κ−1 + κ+ (κ−1 − κ) cosh(2φ)

Π− =
2
(
∂−φ+ i ∂−w

)
κ−1 + κ+ (κ−1 − κ) cosh(2φ)

.

The constraint (3.16) with ν set to zero becomes

ρ+ ρ− =
1− κ
1 + κ

. (3.36)

It follows from the canonical structure induced by the 2D sausage Lagrangian that

{Π+(x), Π+(y)} = {Π−(x), Π−(y)} = {Π+(x), Π−(y)} = 0 .

Hence the Poisson brackets of the connection (3.35) can not contain a δ′(x − y). A

direct computation yields that

{
A±(x|ρ1) ⊗

,
A±(y|ρ2)

}
= ±

[
A±(x|ρ1)⊗ 1 + 1⊗A±(y|ρ2), r(ρ2/ρ1)

]
δ(x− y)

{
A±(x|ρ1) ⊗

,
A±(y|ρ2)

}
= 0 . (3.37)
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Here the classical r-matrix turns out to be the trigonometric one, given by

r(ρ) =
1

ρ− ρ−1

(
e+ ⊗ e− + e− ⊗ e+ + 1

4
(ρ+ ρ−1) h⊗ h

)
. (3.38)

Of course, for a given model, an “ultralocal gauge” may not exist. Neverthe-

less, one can ask whether the Sklyanin exchange relations may still be present even

without the ultralocal structure (3.23). To give a definite answer, a straightforward

approach is to compute the Poisson brackets
{
M (λ1) ⊗

,
M (λ2)

}
following, say, the

discretization procedure outlined before. Due to the non-ultralocal Poisson brackets,

one would encounter ambiguous integrals of the type
∫ b
a

dx δ(x − a). To give them

meaning, some sort of regularization would need to be introduced that could precisely

define the value of the delta-function at the endpoints of the integration limit. This

was attempted in a number of works.

In [79] a certain “equal-point” limiting prescription was put forward to handle

the ambiguities, which enabled the introduction of a commuting family of conserved

charges. However this lead to a modification of the Sklyanin exchange relations and

the rôle of these “new integrable canonical structures” is unclear both for the classical

as well as the quantum theory. Another type of regularization was put forward in

the work [80] for the case of the PCF. With this approach, it was found that the key

relations (3.27) remain unchanged.

In this thesis we will follow the method of [57]. The approach is to start with

an explicit realization of the quantum counterpart to the Sklyanin exchange relations

and to take the classical limit. This allows one to trace the emergence of the classical

Poisson structures in a non-ultralocal system. We will demonstrate this in the next

section.
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Chapter 4

The Yang-Baxter algebras

4.1 Introduction

4.1.1 Yang-Baxter algebras in statistical mechanics

A fundamental rôle in the theory of quantum integrable systems is played by the

algebraic structures collectively known as the Yang-Baxter algebras. These take the

general form

R(λ2/λ1)
(
M (λ1)⊗ 1

) (
1⊗M (λ2)

)
=
(
1⊗M (λ2)

) (
M (λ1)⊗ 1

)
R(λ2/λ1) , (4.1)

where M is an operator valued matrix, while R = R12 is the R-matrix that acts in

the tensor product and satisfies the Yang-Baxter relation

R12(λ2/λ1)R13(λ1)R23(λ2) = R23(λ2)R13(λ1)R12(λ2/λ1) . (4.2)

The above equations first appeared in the context of exactly soluble lattice systems

[81]. Subsequently, it was realized that many integrable field theories possess Poisson

bracket algebras that can be considered the classical limit of (4.1). This triggered the

development of the Quantum Inverse Scattering Method (QSIM) for the quantization

of an integrable model. Within its framework, eq. (4.1) plays a rôle similar to the

canonical commutation relations for a quantum mechanical system. Whereas the

correspondence principle prescribes the replacement of the canonical Poisson brackets

with commutators, the “first principles” quantization in integrable models starts with

the formal substitution of the Sklyanin exchange relations (3.27) by the quantum
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Yang-Baxter algebra. The next and most difficult step is to construct a suitable

representation of (4.1).

To see how (4.1), (4.2) reduce to eqs. (3.27), (3.25) in the classical limit, one should

take ~ → 0 with R(λ) = 1 + i~ r12(λ) + O(~2). It is easy to see that the classical

Yang-Baxter equation appears in eq. (4.2) at second order in ~. For the classical limit

of eq. (4.1), one should keep in mind that the matix M(λ) is operator valued so that

its matrix entries do not commute. Using the correspondence principle to write

[
M (λ1)⊗ 1,1⊗M(λ2)

]
= i~

{
M (λ1) ⊗

,
M(λ2)

}
+O(~2)

and equating the coefficient of ~ in eq. (4.1) yields the Sklyanin exchange relations

(3.27).

In this chapter we will use this “correspondence principle” in order to investigate

the Poisson structures in a non-ultralocal theory. Starting with an explicit quantum

field theory realization of eq. (4.1) we will take its classical limit and trace the emer-

gence of the monodromy matrix satisfying the Sklyanin exchange relations. However,

to get some intuition, it is useful to first illustrate the Yang-Baxter algebras in the

original context where they appeared, i.e., 2D exactly soluble lattice models.

4.2 Yang-Baxter algebra in the 6-vertex model

The 6-vertex model, originally introduced to describe a two dimensional sheet of ice,

is a classic theory in exactly solvable lattice systems. Here we will focus on the model

defined on an N ×M square lattice, as in fig. 4.1. The degrees of freedom are the

spins “±”, which lie on the edges joining the sites and are represented by the arrows

in figure 4.1. The problem is to compute the partition function, where the Boltzmann

weight of each configuration of spins on the lattice is given by the product over the

local Boltzmann weights at each site.
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Figure 4.1: A possible configuration for the six-vertex model on an N ×M square
lattice that respects the toroidal boundary conditions. The spins on each edge are
depicted graphically by the arrows with “+” corresponding to an up/right arrow and
“−” corresponds to a down/left arrow.

a b c

Figure 4.2: The six possible types of vertices in the six-vertex model. The parameters
a, b and c label the Boltzmann weights associated to each vertex.
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In the six-vertex model the spins are constrained to satisfy the so-called ice rule,

that the sum of all spins around a vertex is equal to zero. This means that of the

24 = 16 possible configurations of spins around a site only six are allowed, which

are depicted in fig. 4.2. Assuming that the model is symmetric w.r.t. the reversal

of all arrows, the six configurations are characterized by three distinct Boltzmann

weights {a, b, c} (see again fig. 4.2). Ignoring an overall normalization factor, these

can be parameterized by two variables q and λ as a = q−1 λ − q λ−1, b = λ− λ−1,

c = q−1 − q. It is convenient to represent them as entries of a 4× 4 matrix R12(λ)βjαi :

R12(λ)βjαi =
α β

i

j

The resulting matrix explicitly reads as

R12(λ) =



q−1 λ− q λ−1 0 0 0

0 λ− λ−1 q−1 − q 0

0 q−1 − q λ− λ−1 0

0 0 0 q−1 λ− q λ−1


. (4.3)

The R-matrix is usually considered for arbitrary complex values of q and λ as an

operator acting in C2⊗C2. The first factor C2 in the tensor product is known as the

auxiliary space and accounts for the spins lying on the horizontal edges, while the

second factor, corresponding to the vertical edges, is called the physical space (see

fig. ??). By multiplying the R-matrices over the auxiliary space, one constructs the

monodromy matrix

M(λ) = R12(λ)R13(λ) . . . R1N(λ) , (4.4)

which is an operator in C2 ⊗ C2N . Schematically, the monodromy matrix can be

represented as
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M(λ)β j1j2... jMα i1i2...iM
= . . .

i1 i2 i3 iM

j1 j2 j3 jM

α β

where the greek indices (α, β) label the auxiliary space, while the latin ones (ik, jk)

correspond to the physical space.

Imposing periodic boundary conditions and summing over the two possible con-

figurations is equivalent to taking the trace over the auxiliary space. As a result, one

has the transfer-matrix

T (λ) = Tr
(
M(λ)

)
. (4.5)

Starting from the transfer-matrix for the bottow row, each subsequent row of the

lattice is added via matrix multiplication with the transfer-matrix over the physical

space. This way, the partition function of the lattice for toroidal boundary conditions

is given by

Z = Tr
(
TM(λ)

)
. (4.6)

The above formula reduces the computation of the partition function to an analysis

of the spectrum of T (λ).

The transfer-matrix is a 2N × 2N dimensional matrix and the direct computation

of its spectrum using numerical methods is impractical even for N ∼ 30 let alone

in the thermodynamic limit with N → ∞. However, the six vertex model contains

some underlying algebraic structures that make this calculation possible. The basic

building block is the remarkable relation (4.2) satisfied by the R-matrix. In this

context, the lower indices label the spaces upon which the R-matrices act, while the

arguments λ1,2 parametrize the Boltzmann weights. Note that q is the same for all

three operators in eq. (4.2). A graphical representation of the Yang-Baxter equation

is given by the following figure:
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By the repeated use of the Yang-Baxter equation one can prove the relation (4.1) for

the monodromy, whose graphical representation is:

1

2

1

2

In eq. (4.1) the matrix M (λ) is viewed as a 2×2 matrix in the auxiliary space, whose

entries are 2N × 2N dimensional matrices acting in the physical space. By taking

the trace over the auxiliary space, eq. (4.1) immediately implies that the transfer

matrices for different values of the parameter λ form a commuting family. This

greatly simplifies the eigenvalue problem for T (λ) and enables one to compute the

partition function (4.6) in the thermodynamic limit.

4.3 From quantum universal R-matrix to U(1) current alge-

bra realization of the Sklyanin exchange relations

The algebraic structure underlying eq. (4.1) was clarified within the theory of quasi-

triangular Hopf algebras by Drinfeld [20]. A basic example is when the rôle of the

Hopf algebra is played by Uq(ĝ) – the quantum deformation of the universal enveloping

algebra of the affine algebra [19, 20]. In this case a crucial element is the universal
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R-matrix which lies in the tensor product Uq(ĝ)⊗ Uq(ĝ) and satisfies the relation

R12R13R23 = R23R13R12 . (4.7)

An important feature of R is that it is decomposed as R ∈ Uq(b̂+) ⊗ Uq(b̂−) where

Uq(b̂±) stand for the Borel subalgebras of Uq(ĝ). If we consider now the evaluation ho-

momorphism of Uq(ĝ) to the loop algebra Uq(g)[λ, λ−1] and specify an N -dimensional

matrix representation π of Uq(g), then

L(λ) =
(
π(λ)⊗ 1

)
[R] , (4.8)

is a Uq(b̂−)-valued N ×N matrix whose entries depend on an auxiliary parameter λ.

In its turn, the formal algebraic relation (4.7) becomes the Yang-Baxter algebra (4.1)

with M substituted by L while

R(λ2/λ1) =
(
π(λ1)⊗ π(λ2)

)
[R] .

For the purposes of this thesis we take g = sl2. In this case, the Borel subalgebra

Uq(b̂+) is generated by four elements, {y0, y1, h0, h1} and its evaluation homomor-

phism is defined by

y0 7→ λ q−
h
2 e+ , y1 7→ λ q

h
2 e− , h0 7→ h , h1 7→ −h , (4.9)

where {h, e±} are the generators of Uq(sl2), subject to the commutation relations

[h, e±] = ± 2 e± , [e+, e−] =
qh − q−h

q − q−1
. (4.10)

Below, with some abuse of notation, we will not distinguish between the formal gen-

erators of Uq(sl2) and their matrices in a finite dimensional representation. Explicitly,

using the formula for the universal R-matrix given in [87], one can obtain L(λ) as a
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formal series expansion in powers of the spectral parameter λ,1

L(λ) =

[
1 + λ (q − q−1) (x0 q

h
2 e+ + x1 q

− h
2 e−) + λ2 (q − q−1)2

1 + q2

×
(
x2

0 (q
h
2 e+)2 + x2

1 (q−
h
2 e−)2 +

q2 x0x1 − x1x0

1− q−2
(q

h
2 e+)(q−

h
2 e−)

+
q2 x1x0 − x0x1

1− q−2
(q−

h
2 e−)(q

h
2 e+)

)
+ . . .

]
q−

1
2
hh0 . (4.11)

The expression in the square brackets contains only the generators x0, x1 ∈ Uq(b̂−)

satisfying the Serre relations

x3
ixj − [3]q x

2
ixjxi + [3]q xixjx

2
i − xjx3

i = 0 (i, j = 0, 1) , (4.12)

where [n]q ≡ (qn − q−n)/(q − q−1). Note that the two remaining generators h0, h1,

which obey

[h0, x0] = −[h1, x0] = −2x0 , [h0, x1] = −[h1, x1] = 2x1 , [h0, h1] = 0 ,

(4.13)

appear only in an overall factor multiplying the square bracket [ . . . ] in (4.11). In

fact, since h0 +h1 is a central element, for our purposes and without loss of generality

we have set it to be zero.

Until this point there was no need to specify a representation of Uq(b̂−) – the

Yang-Baxter relation (4.1) is satisfied identically provided (4.12), (4.13) hold true. In

ref.[52], a representation of Uq(b̂−) was considered in the (extended) Fock space of a

single bosonic field. The Borel generators x0, x1 were given by the integral expressions

x0 =
1

q − q−1

∫ R

0

dz V +(z) , x1 =
1

q − q−1

∫ R

0

dz V −(z) . (4.14)

Here the vertex operators

V ±(z) = e∓2iβϕ(z)

1 In fact, eq. (4.11) follows from an expression of the R-matrix which is equivalent to the one
in [87] (and used in [52]) upon the substitution q 7→ q−1 (see eq. (4.18)). This is to keep with the
conventions of [58].
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are built from the bosonic field

ϕ(z) = ϕ0 +
2πz

R
p̂+ i

∑
n6=0

an
n

e−
2πin
R

z (4.15)

whose Fourier coefficients satisfy the commutations relations of the Heisenberg algebra

[an, am] = n
2
δn+m,0 , [ϕ0, p̂] = i

2
. (4.16)

The remaining generator h0 = −h1 coincides with the zero mode momentum p̂ up to

a simple factor:

h0 =
2

β
p̂ . (4.17)

The parameter β appearing in the above formulae is related to the deformation para-

meter q as

q = e−iπβ2

. (4.18)

Defining the Fock space Fp as the highest weight module of the Heisenberg algebra

with highest weight vector |p〉: p̂ |p〉 = p |p〉, it easy to see that the generators (4.14)

act as

x0 : Fp 7→ Fp−β , x1 : Fp 7→ Fp+β

and hence that the matrix elements of L(λ) (4.11) are operators in the extended Fock

space ⊕∞n=−∞Fp+nβ.

It was observed in [52] that using the commutation relations,

V σ1(z1)V σ2(z2) = q2σ1σ2 V σ2(z2)V σ1(z1) , z2 > z1 (σ1,2 = ±) (4.19)

the monomials built from the generators x0, x1 can be expressed in terms of the

ordered integrals

J(σ1, . . . , σm) =

∫
R>z1>z2>...>zm>0

dz1 . . . dzm V
σ1(z1) . . . V σm(zm) , (4.20)
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which yields the following expression for L(λ)

L(λ) =
∞∑
m=0

λm
∑

σ1...σm=±

(
q

h
2
σ1eσ1

)
. . .
(
q

h
2
σmeσm

)
J(σ1, . . . , σm) eiπβ p̂ h . (4.21)

The latter is recognized as the path ordered exponent

L(λ) =
←
P exp

(
λ

∫ R

0

dz
(
V + q

h
2 e+ + V − q−

h
2 e−

))
eiπβ p̂ h . (4.22)

It should be emphasized that since the OPE of the vertex operators is singular,

V ±(z2)V ∓(z1)
∣∣
z2→z1+0

∼ (z2 − z1)−2β2

,

the ordered integrals are well defined only for 0 < β2 < 1
2
. However, each term in the

formal series expansion (4.11), being expressed in terms of the basic contour integrals

x0, x1, is well defined for all values of β except the cases when β2 = 1 − 1
2n

with

n = 1, 2, 3, . . . . In fact, the series expansion (4.11) can be thought of as an analytic

regularization of the divergent path-ordered exponent (4.22) within the domain 1
2
<

β2 < 1.

Let’s consider the classical limit where β → 0 so that the deformation parameter

q tends to one. The commutation relations (4.10) turn into

[h, e±] = ±2e± , [e+, e−] = h , (4.23)

while φ ≡ β ϕ becomes a classical quasiperiodic field,

φ(R)− φ(0) = 2πP , (4.24)

satisfying the Poisson bracket relations{
φ(z1), φ(z2)

}
= −1

4
ε(z1 − z2) (4.25)

with ε(z) = 2m + 1 for mR < z < (m + 1)R (m ∈ Z). Since for small β there is no

convergence issue the β → 0 limit of (4.22) is straightforward, yielding the classical

path-ordered exponent of the form

Lcl(λ) =
←
P exp

(
λ

∫ R

0

dz
(
e−2iφ e+ + e2iφ e−

))
eiπP h . (4.26)
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Here, abusing notation for the sake of readability, we denote the classical counterparts

to the quantum operators by the same symbols, in particular, e± now fulfill relations

(4.23) and φ is the classical field satisfying (4.24), (4.25). Next we will show howLcl(λ)

is related to the monodromy matrix for the classically integrable mKdV hierarchy.

4.3.1 Relation to the mKdV equation

The KdV equation was originally proposed to describe waves propagating in shal-

low water. Since then it has become the archetype of a classically integrable PDE,

exhibiting many of their characteristic features such as solitons solutions. The KdV

equation takes the form

∂t u− 6u ∂zu+ ∂3
zu = 0 . (4.27)

In fact, for our purposes, we will be considering a closely related PDE known as the

modified KdV equation

∂tj − 6j2 ∂zj + ∂3
zj = 0 . (4.28)

The latter can be obtained from eq. (4.27) through the Miura transform [88]

u = j2 + ∂z j . (4.29)

It turns out that the mKdV equation can be expressed in the Hamiltonian form

∂t j = {H, j} . (4.30)

with

H =

∫
dz
(
j4 +

(
∂z j
)2
)
, (4.31)

while the Poisson structure is defined by

{j(z1), j(z2)} = −δ′(z1 − z2) . (4.32)
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The components of the flat connection for the mKdV equation are given explicitly

by [43]

Az = j h + λ (e+ + e−) (4.33)

At =
(
2j3 − ∂2

zj − 4λ2 j
)
h + 2λ

(
j2 + ∂z j − 2λ2

)
e+ + 2λ

(
j2 − ∂z j − 2λ2

)
e−

A simple computation yields that the monodromy matrix is related to the path or-

dered exponent from eq. (4.26) as

Lcl(λ) eiπP h = Ω−1

[
←
P exp

(∫ R

0

dzAz(z|λ)

)]
Ω (4.34)

As it follows from eqs.(4.32) (4.33), the connection is a non-ultralocal one so that

the computation of the Poisson brackets for the monodromy is inevitably met with

ambiguities in treating the contact terms. Nonetheless, the classical limit of the

Yang-Baxter algebra (4.1) unambiguously yields that (3.27) is satisfied with M (λ)

substituted by Lcl(λ) from (4.26), while r(λ) = r−(λ), where

r−(λ) = − 1

λ− λ−1

(
e+ ⊗ e− + e− ⊗ e+ + 1

4
(λ+ λ−1) h⊗ h

)
. (4.35)

Thus we see that starting from an explicit realization of the quantum algebra (4.1)

and taking the classical limit is a clear-cut way of obtaining the monodromy matrix

satisfying the Sklyanin exchange relations for a non-ultralocal flat connection.
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4.4 From quantum universal R-matrix to SU(2) current alge-

bra realization of the Sklyanin exchange relations

It is known [89, 90] that the Borel subalgebra Uq(b̂−) ⊂ Uq(ŝl2) admits a realization

with x0 and x1 given by (4.14), where the vertices V ± are built from three bosonic

fields ϕ1, ϕ2, ϕ3:

V ± =
1

2b2

(
ib ∂ϕ1 + α2 ∂ϕ2 ± α1 ∂ϕ3

)
e±

ϕ1
b . (4.36)

The expansion coefficients of ϕi, defined by the formula similar to (4.15), generate

three independent copies of the Heisenberg algebra (4.16). The relation (4.17) is

replaced now by

h0 = −h1 = −4ib p̂3 , (4.37)

where p̂3 is the zero mode momentum of the field ϕ3. It should be highlighted that

the parameters α1, α2, b appearing in eq. (4.36) are subject to the constraint

α2
1 + α2

2 − b2 = 1
2

(4.38)

and b is related to the deformation parameter q as

q = e
i~
2 with ~ =

π

2b2
. (4.39)

The set of generators {x0, x1, h0, h1} defined by (4.14), (4.36), (4.37) fulfill the

Serre and commutation relations (4.12), (4.13). In consequence, L(λ) (4.8) derived

from the universal R-matrix by taking this realization of Uq(b̂−) satisfies the Yang-

Baxter algebra (4.1). The formal power series expansion in λ (4.11) is still applicable

however eq. (4.21), which expresses L(λ) in terms of the ordered integrals, turns out

to be problematic because of an issue with convergence. Indeed, the OPE

V σ2(z2)V σ1(z1) ∼ (z2 − z1)−2−σ1σ2/(2b2) (σ1,2 = ±)
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is more singular now and the ordered integrals (4.20) in general diverge. Thus the

path ordered exponent expression forL(λ) (4.22) that was obtained from recasting the

contour integrals into the ordered integrals using the commutation relations (4.19)

(which are still valid) is ill defined. When taking the classical limit b → ∞ it is

essential to keep this in mind.

To study the classical limit, it is convenient to work with φi ≡ ϕi/(2b) which

become classical quasi-periodic fields

φi(R)− φi(0) = 2πPi (i = 1, 2, 3) (4.40)

satisfying equations similar to (4.25). As it follows from (4.14), (4.36), (4.38) the

classical counterparts of x0 and x1 are given by

χ0 = lim
b→∞

(q − q−1)x0 =

∫ R

0

dz V +
cl (z) , χ1 = lim

b→∞
(q − q−1)x1 =

∫ R

0

dz V −cl (z) ,

(4.41)

where

V ±cl =
(
i ∂φ1 + 1√

1+ν2 ∂φ2 ± ν√
1+ν2 ∂φ3

)
e±2φ1 (4.42)

and

ν ≡ lim
b→∞

α1/α2 .

Since the expression (4.11) for L(λ) does not have problems with convergence, we

will use it for taking the classical limit. Each term in the series (4.11) is a polynomial

w.r.t. the non-commutative variables x0 and x1 with coefficients depending on the

deformation parameter q. To take the ~ → 0 limit one should expand q (4.39) for

small ~, express the result in terms of commutators and then replace the commutators

with Poisson brackets using the correspondence principle [ . , . ] 7→ i~ { . , . }. It is easy

to see that with this procedure the first few terms shown in (4.11) become

lim
~→0

L(λ) =

[
1 + λ (χ0 e+ + χ1 e− ) + 1

2
λ2 × (4.43)

(
χ2

0 e2
+ + χ2

1 e2
− +

(
χ0χ1 + {χ0, χ1}

)
e+e− +

(
χ0χ1 + {χ1, χ0}

)
e−e+

)
+ . . .

]
e−πP3 h
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where h, e± satisfy the commutation relations of the sl2 algebra (4.23).

The calculation for higher order coefficients quickly becomes cumbersome. For

example, the formal expansion of R q
h0⊗h0

2 ∈ Uq(b̂+) ⊗ Uq(b̂−) contains the term

y1y
2
0y1 ⊗ P (1001)

4 (x0, x1) with

P
(1001)
4 (x0, x1) =

q6(q − q−1)2

[4]q [2]q

(
x2

0x
2
1 − [3]q x0x1x0x1 + x0x

2
1x0 + [3]q x1x

2
0x1

− [3]q x1x0x1x0 + x2
1x

2
0

)
which makes a fourth order contribution to the series (4.11) once the evaluation

homomorphism (4.9) of y0, y1 is taken. Expanding q for small ~ in P
(1001)
4 (x0, x1)

yields

P
(1001)
4 (x0, x1) = −1

8
~2
(

1 +O(~)
)
×
(

[x0, [x0, x1]]x1 + x1[x0, [x0, x1]]− [x0, x1]2

+ ~2
(
x0x1x0x1 + x1x0x1x0 − x1x

2
0x1

)
+O(~4)

)
.

Now, replacing x0, x1 by their classical counterparts (4.41), using the correspondence

principle and taking the limit ~→ 0 gives

lim
~→0

P
(1001)
4 (x0, x1) = 1

8

(
2χ1{χ0, {χ0, χ1}} − {χ0, χ1}2 + χ2

0χ
2
1

)
.

For the full contribution to the fourth order of (4.43) one should take into account

all sixteen polynomials P
(i1i2i3i4)
4 (x0, x1) with i1, i2, i3, i4 = 0, 1 corresponding to the

terms yi1yi2yi3yi4 ⊗ P
(i1i2i3i4)
4 (x0, x1) in the expansion of the universal R-matrix.

Our calculations to fifth order in λ support the existence of the limit

lim
~→0

L = Lcl . (4.44)

By construction, Lcl is a formal series expansion in λ whose coefficients are built

from χ0, χ1 and their Poisson brackets.2 To proceed further, the latter need to be

2Note that the elements χ0 and χ1 satisfy the classical analogs of the Serre relations (4.12),

{χi, {χi, {χi, χj}}} = χ2
i {χi, χj} (i, j = 0, 1) .
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computed explicitly. This can be carried out along the following lines. Starting from

the relations {
φi(z1), φj(z2)

}
= −1

4
δij ε(z1 − z2) (4.45)

it is easy to show that V ±cl (4.42) and

V 0
cl = −2

(
1√

1+ν2 ∂φ1 − i ∂φ2

)
(4.46)

form a closed Poisson algebra

{V 0
cl(z1), V 0

cl(z2)} = − 2ν2

1 + ν2
δ′(z1 − z2)

{V 0
cl(z1), V ±cl (z2)} = ± 2√

1 + ν2
V ±cl (z1) δ(z1 − z2) (4.47)

{V +
cl (z1), V −cl (z2)} = − ν2

1 + ν2
δ′(z1 − z2) +

V 0
cl(z1)√
1 + ν2

δ(z1 − z2) + V +
cl (z1)V −cl (z2) ε(z1 − z2)

{V ±cl (z1), V ±cl (z2)} = −V ±cl (z1)V ±cl (z2) ε(z1 − z2) .

Recall that χ0 and χ1 are given by integrals over the classical vertices (4.41) so that

these relations are sufficient for the explicit calculation of any of the Poisson brackets

occurring in the r.h.s of (4.43). However, due to the presence of the derivative of the

δ-function in (4.47), ambiguous integrals occur in the computations. For instance:

{χ0, χ1} = c1 ν
2/(1 + ν2) + . . . with

c1 = −
∫ R

0

dz1 dz2 δ
′(z1 − z2) =

∫ R

0

dz
(
δ(z −R)− δ(z)

)
. (4.48)

In general, one is faced with many other sorts of integrals involving δ′(z1− z2). How-

ever, they are not all independent and their number can be reduced if, before perform-

ing explicit calculations, one uses the Jacobi identity and skew-symmetry to bring the

Poisson brackets to the form

{χσ1 , {χσ2 , {χσ3 , {. . . , {χσm−1 , χσm} . . .} (σ1, . . . , σm = 0, 1) (4.49)

(e.g., {{χ0, χ1}, {χ0, χ1}} = {χ0, {χ1, {χ1, χ0}}}+ {χ1, {χ0, {χ0, χ1}}}). This way, in

our fifth order computations we were met with only two more types of ambiguous
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integrals. The first is of the form

I1 =

∫ R

0

dz1 . . . dz4 δ
′(z1 − z3) ε(z2 − z3) ε(z3 − z4) F (z2)G(z4) ,

where F and G are some functions. Formal integration by parts w.r.t. z3 yields

I1 = c1

∫ R

0

dz1 dz2 F (z1)G(z2)

with c1 as in (4.48). The other ambiguous integral is

I2 =

∫ R

0

dz1dz2dz3 F (z2) ε(z2 − z3) δ′(z1 − z3) .

In this case, integration by parts leads to

I2 = 2 (c2 − 1)

∫ R

0

dz F (z) with c2 =
1

2

∫ R

0

dz
(
δ(z −R) + δ(z)

)
. (4.50)

We explicitly computed the expansion of Lcl to fifth order and found that all the

ambiguities are absorbed in the two constants c1 and c2 (4.48), (4.50). Furthermore,

if c1 = 0 and c2 is arbitrary, the series can be collected into a path-ordered exponent

Lcl =
←
P exp

(∫ R

0

dzB

)
e−πP1 h (4.51)

with

B = f
(
V +

cl (z) e+ + V −cl (z) e−
)

+ 1
2
g V 0

cl(z) h (4.52)

and

f = λ
√

1 + ν2
(

1 + (1 + ν2 (c2 − 1))λ2 + (1 + 4ν2(c2 − 1) + 2ν4(c2 − 1)2)λ4 +O(λ6)
)

g = λ2
√

1 + ν2
(

1 + (2ν2 (c2 − 1) + 1)λ2 +O(λ4)
)
.

That c1 (4.48) vanishes seems to be a natural requirement as, in the problem at hand,

the δ-function should be understood as the formal series 1
R

∑∞
m=−∞ e

2πim
R

z and hence
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δ(z − R) = δ(z). Note that for the periodic δ-function the constant c2 in (4.50)

becomes

c2 =

∫ R

0

dz δ(z) . (4.53)

Unfortunately there is no proof that the limit (4.44) exists and can be represented

by eq. (4.51) and (4.52) with some functions f and g – this has been checked pertur-

batively to fifth order only. However, if this is accepted as a conjecture then f and g

should have the form

f =
ρ
√

1 + ν2

1− ρ2
, g =

ρ2
√

1 + ν2

1− ρ2
, (4.54)

where ρ = ρ(λ) solves the equation

λ =
ρ (1− ρ2)

1− (1 + (1− c2) ν2) ρ2
. (4.55)

This follows from an analysis of the simplest matrix element of Lcl for which the

series (4.43) can be obtained to all orders in λ.

To summarize, we expect that the limit (4.44) exists and results in (4.51), where

B is given by

B(z|ρ) =

√
1 + ν2

1− ρ2

(
ρ
(
V +

cl (z) e+ + V −cl (z) e−
)

+ 1
2
ρ2 V 0

cl(z) h
)

(4.56)

and with ρ = ρ(λ) defined through the relation (4.55). By construction Lcl must

satisfy the classical Yang-Baxter Poisson algebra,

{
Lcl(ρ1) ⊗

,
Lcl(ρ2)

}
=
[
Lcl(ρ1)⊗Lcl(ρ2), r(λ1/λ2)

]
(4.57)

with ρ1,2 = ρ(λ1,2) and3

r(λ) = +
1

λ− λ−1

(
e+ ⊗ e− + e− ⊗ e+ + 1

4
(λ+ λ−1) h⊗ h

)
. (4.58)

3 Note that here the classical r-matrix differs from the one in (4.35) by an overall sign.
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Eq. (4.47) implies that the Poisson brackets of B (4.52) are not local in the sense

that apart from the δ-function and its derivative they contain terms with the ε-

function. Nevertheless, a simple calculation shows that the Lie algebra valued 1-form

B(z|ρ) is gauge equivalent to

A(z|ρ) =
ρ
√

1 + ν2

1− ρ2

(
j+(z) e+ + j−(z) e−

)
+

1

2

(
ρ2
√

1 + ν2

1− ρ2
+ ξ

)
j0(z) h (4.59)

and the fields

j± =
(
i ∂φ1 + 1√

1+ν2 ∂φ2 ± ν√
1+ν2 ∂φ3

)
e±2ξ(φ1+iφ2)

j0 = −2
(

1√
1+ν2 ∂φ1 − i ∂φ2

)
satisfy the classical current algebra

{
j+(z1), j−(z2)

}
= − ν2

1 + ν2
δ′(z1 − z2) + j0(z1) δ(z1 − z2)

{
j0(z1), j±(z2)

}
= ±2 j±(z1) δ(z1 − z2) (4.60)

{
j0(z1), j0(z2)

}
= − 2ν2

1 + ν2
δ′(z1 − z2)

{
j±(z1), j±(z2)

}
= 0 .

The constant ξ in the above formulae is given by

ξ =

√
1 + ν2

1 +
√

1 + ν2
.

It follows from eq. (4.60) that the ε-function is not present in the Poisson brackets

of A (4.59) so they are local, although not ultralocal. In terms of the 1-form A,

eq.(4.51) can be re-written as

Lcl(ρ) e((2ξ−1)P1+2iξP2)πh = Ω−1

[
←
P exp

(∫ R

0

dzA
(
z|ρ
))]

Ω , (4.61)

where Ω = exp
(
(ξ − 1)φ3(R) h + i ξ φ2(R) h

)
and Pi are defined by eq. (4.40). The

r.h.s. of (4.61) is the monodromy matrix for the linear problem

(
∂z −A

)
Ψ(z) = 0 (4.62)
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with A given by (4.59) and ρ playing the rôle of the auxiliary spectral parameter.

Despite that the Poisson brackets of the 1-form A are non-ultralocal for ν 6= 0,

Lcl(ρ) in (4.61) obeys the Sklyanin exchange relations (4.57). The δ′-terms introduce

an ambiguity in taking the classical limit which is manifest in the arbitrary constant

c2 (4.53). The effect of this is observed in the finite renormalization of the spectral

parameter λ 7→ ρ(λ) (4.55). Notice that for the ultralocal case, i.e., ν = 0, the

dependence on c2 drops out and ρ = λ.

4.4.1 The case ν = 0: monodromy matrix for the cigar NLSM

For ν = 0 the monodromy matrix Lcl takes the form

Lj(ρ) =
←
P exp

(
iρ

1− ρ2

t0+R∫
t0

dz
(
V +e+ + V −e−+ iρ (∂φ1 − i ∂φ2) h

))
e−πP1h , (4.63)

where

V ± = (∂φ1 − i ∂φ2) e±2φ1 (4.64)

and

P1 =
1

2π

(
φ1(t0 +R)− φ1(t0)

)
. (4.65)

Below we will discuss how this operator is related to the mondromy for the cigar

NLSM.

The cigar NLSM was touched upon in section 2.4.4. Its Lagrangian is obtained

from the sausage one (see (2.28)) by shifting the field φ 7→ φ + 1
2

log
(

1+κ
1−κ

)
and then

taking the limit κ→ 1. This yields that

L =
1

2 (1 + e2φ)

(
∂µφ ∂

µφ+ ∂µw ∂
µw
)
. (4.66)

Here we consider the theory with twisted boundary conditions corresponding to (3.17)

for the general Klimcik model. For the cigar, these conditions become

φ(t0, x+R) = φ(t0, x) , w(t0, x+R) = w(t0, x) + 2πk , (4.67)
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0 R
t0

t

x

Figure 4.3: The integration contour along the time slice t = t0 (black arrow) in
eq (4.68) can be replaced by an integration contour along the characteristics: x− = t0
with 0 < x+ < t0 + R (red arrow) and x+ = t0 + R with t0 < x− < t0 − R (blue
arrow).

where k is the twist parameter such that −1
2
< k ≤ 1

2
.

To obtain the monodromy matrix for the cigar, we will start with the sausage one

and take the limit κ→ 1. Recall that the sausage monodromy matrix is defined as

M (ρ) =
←
P exp

∫ R

0

dxAx(t0, x) , (4.68)

where Ax = A+ − A− and the connection components A± are defined through

eqs. (3.35)-(3.36). Using the magic of the ZCR, it is useful to re-express M(ρ) in

terms of the light cone values of the connection. Indeed, the original integration

along the time slice t = t0 in (4.68) can be replaced by the path-ordered integral

over the contour glued from two light-cone segments as shown in fig. 4.3. Using the

notation

A+(x+) = A+(t, x)|x−=t0 , A−(x−) = A−(t, x)|x+=t0+R , (4.69)

one can rewrite eq.(4.68) in the form

M =
←
P exp

(∫ t0−R

t0

A−(x−) dx−

)
←
P exp

(∫ t0+R

t0

A+(x+) dx+

)
. (4.70)
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This formula is a convenient starting point for taking the limit κ→ 1. Since the

product ρ+ ρ− vanishes as (1− κ) for κ close to one, we will keep ρ ≡ ρ+ fixed with

ρ− tending to zero. Taking the limit in this way yields that

e+ 1
2

(φ−iw)h
(
∂+ −A+

)
e−

1
2

(φ−iw)h =
iρ
(
∂+φ− i ∂+w

)
1− ρ2

(
e+2φ e+ + e−2φ e− + iρ h

)
e−

1
2

(φ+iw)h
(
∂− −A−

)
e+ 1

2
(φ+iw)h = 0 . (4.71)

In taking κ → 1 in the above formulae, we did not perform the shift φ 7→ φ +

1
2

log
(

1+κ
1−κ

)
. Hence, the fields in (4.71) take values in the asymptotically flat domain,

where the cigar NLSM target-space approaches the cylinder. In this domain, the

equations of motion become the d’Alembert equations, whose solution is expressed in

terms of four arbitrary functions

φ(t, x) = φ1(x+) + φ̄1(x−) , w(t, x) = φ2(x+) + φ̄2(x−) , (4.72)

where x± = t ± x. The fields φ1,2 and φ̄1,2 should be understood as the asymptotic

fields in the cigar NLSM.

Up to a gauge transformation, the connection component A+ can be expressed

entirely in terms of the “holomorphic” components of the fields φ and w as:

S−1
(
∂+ −A+

)
S =

iρ
(
∂φ1 − i ∂φ2

)
1− ρ2

(
e+2φ1 e+ + e−2φ1 e− + iρ h

)
, (4.73)

where S = e
1
2

(φ̄1−φ1+iφ2+iφ̄2) h. Using this result, it follows that the monodromy matrix

(4.70) can be brought to the form

M = Ω−1
←
P exp

(
iρ

1− ρ2

t0+R∫
t0

dx+

(
∂φ1−i ∂φ2

)(
e+2φ1 e++e−2φ1 e−+iρ h

))
e−2π(P1−k)h Ω

with Ω = e−
i
2
ω0h and

ω0 = w(t0, R) + iφ1(t0 +R)− iφ̄1(t0 −R) . (4.74)
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Here we have used the notation

P1 ≡ 1
2π

(
φ1(t0 +R)− φ1(t0)

)
= − 1

2π

(
φ̄1(t0 −R)− φ̄1(t0)

)
. (4.75)

The equality follows from the fact that φ � φ1 + φ̄1 is a periodic field (see eq. (4.67)).

The asymptotically flat domain corresponds to taking φ to be large and negative

in the cigar Lagrangian (4.66). In this case, it is easy to see that it becomes the

Lagrangian of a free field theory with φ and w being canonically normalized fields.

It follows from this that the Poisson bracket relations of the asymptotic fields φi, φ̄i

can be chosen to be as follows

{φi(x+), φj(x
′
+)} = −1

4
δij ε(x+ − x′+) (4.76)

with i, j = 1, 2. This implies that

M(ρ) = Ω−1 Lcl(ρ) e−πP1h e+2πikh Ω , (4.77)

where Lcl(ρ) is defined by eqs. (4.63)-(4.65).

The ultralocal structure (3.37) implies that the monodromy for the 2D sausage

satisfies the Sklyanin exchange relations. Since the classical r-matrix does not depend

on κ, these relations still hold true in the limit of the cigar with κ→ 1. Starting from

the Sklyanin exchange relations for M(ρ), and using

{
Lcl(ρ), πP1

}
= 1

4

[
h,Lcl(ρ)

]
,

{
Lcl(ρ), ω0

}
= i

4
hLcl(ρ) ,

{
ω0, πP1

}
= i

4
,

which follow from eqs. (4.74) (4.75) and (4.76) as well as

[
1⊗ h + h⊗ 1, r(λ)

]
= 0 , (4.78)

one finds that Lcl satisfies the Poisson bracket algebra (4.57) with ρ1,2 = λ1,2. This

independently confirms the conjecture that Lcl obeys the Sklyanin exchange relations

in the case of ν = 0.
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4.5 Monodromy matrix for the 3D sausage

The conserved charges for the 3D sausage were introduced in sec. 3.1.2. Starting from

the flat connection defined through eqs. (3.15) and (3.16), we defined the monodromy

as the path ordered exponent (3.11) of a matrix representation R of the component

Ax = A+−A−. It was shown that its appropriate trace, see eq. (3.20), is a conserved

quantity in the theory ∂tTR(ρ) = 0 and hence generates an infinite family of IM.

However, up till now, we have neglected to discuss the Poisson commutativity

{TR(ρ), TR′(ρ
′)} = 0 (4.79)

of the conserved charges, which is an important ingredient for integrability. We return

to this problem here.

The proof of (4.79) requires the study of the Poisson structure of the theory. It

turns out that a crucial rôle in the Hamiltonian formulation of the Klimcik model is

played by the currents I± defined in eq. (3.13). A straightforward calculation yields

that the Hamiltonian is given by

H =
1

2g2

∫
dx
(
〈 I+, I+ 〉+ 〈 I−, I− 〉

)
. (4.80)

It is more difficult to extract the Poisson structure from the Lagrangian (2.41). Nev-

ertheless one can show that I± are related by a linear transformation to the currents

J±(x) =
∑
a

Ja±(x) ta , [ta, tb] = i fab
c tc , (4.81)

which generate two independent copies of the classical current algebra:

{
Jaσ(x), J bσ′(y)

}
=

1

g2ε1

δσσ′ σ q
ab δ′(x− y) + δσσ′ f

abc qcd J
d
σ(y) δ(x− y) . (4.82)

Here σ, σ′ = ± and

qab = −1
4
fac

dfbd
c = 〈 ta, tb 〉 . (4.83)
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For an explicit description of the linear relation between Iσ and Jσ (σ = ±), it is

convenient to use the root decomposition of the Lie algebra and represent the currents

in the form

Iσ(x) = I+
σ (x) + I0

σ(x) + I−σ (x) : I±σ (x) ∈ n± , I0
σ(x) ∈ h (4.84)

and similarly for J±. Then the relation is given in terms of three 2× 2 matrices

I+
σ =

∑
σ′=±

X+
σσ′ J

+
σ′ , I−σ =

∑
σ′=±

X−σσ′ J
−
σ′ , I0

σ =
∑
σ′=±

X0
σσ′ J

0
σ′ (4.85)

whose matrix entries XA
σσ′ (A = ±, 0) are given in Appendix A.

It is evident from formulae (4.81)-(4.85), that the Poisson brackets relations

{Ax(x1), Ax(x2)} will have a complicated, non-ultralocal form. This makes the Pois-

son commutativity conditions (4.79) difficult to prove.

For ε1 = ε2 = 0 (which corresponds to the PCF) the computation of the Poisson

brackets of the monodromy matrix was discussed in ref. [80]. In this case, the formula

(3.13) for the currents becomes I± = −2iU−1∂±U . Assuming that ρ± = 1−ε2 ζ± and

ζ± are kept fixed as ε1,2 → 0, eq. (3.15) turns into the Zakharov-Mikhailov connection

[46]

lim
ε1,ε2→0

A± = −ζ−1
± U−1∂±U , (4.86)

while the constraint (3.16) boils down to the relation ζ+ + ζ− = 2. The monodromy

matrix for the PCF can be defined by taking the limit of (3.11):

M (0)(ζ) = lim
ε1,ε2→0

M (ρ)
∣∣
ρ=1−ε2ζ+

, where ζ± ≡ 1± ζ . (4.87)

In ref.[80], for overcoming the non-ultralocality problem, the authors proposed a cer-

tain formal regularization procedure which results in the Yang-Baxter Poisson algebra

{
M (0)(ζ1) ⊗

,

M (0)(ζ2)
}

=
[
M (0)(ζ1)⊗M (0)(ζ2), r(0)(ζ1 − ζ2)

]
(4.88)
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with

r(0)(ζ1 − ζ2) = −f
2

2

qab ta ⊗ tb

ζ1 − ζ2

. (4.89)

Of course, eq. (4.88) complemented by
[
H2 ⊗H2, r

(0)(ζ)
]

= 0, immediately im-

plies the desired commutativity conditions (4.79) specialized to the PCF. However,

for the general Klimč´ik model it is uncertain whether the classical Yang-Baxter Pois-

son algebra emerges, even at the formal level. Below we’ll try to unravel this problem

for G = SU(2) by using results obtained in Section 4.4.

4.5.1 Monodromy matrix for the 3D sausage

To make connection with the results of sec. 4.4, we need to take the limit κ → 1 of

the Klimcik model. For this purpose, it is convenient to use the gauge A(ω), which

is defined as follows. The equations of motion imply the conservation of the current

I0
σ,4

∂+ I
0
− + ∂−I

0
+ = 0 , (4.90)

which allows one to introduce the dual field ω

∂+ω = −1
2
ε2 I

0
+ , ∂−ω = 1

2
ε2 I

0
− , (4.91)

taking values in the Cartan subalgebra h. Then,

∂± −A(ω)
± = e+iω

(
∂± −A±

)
e−iω . (4.92)

To perform the κ → 1 limit, we use the co-ordinate frame defined through

eqs. (3.33), (3.34). In this frame, the symmetry U 7→ H1UH2 (H1,H2 ∈ H) of

4In the limit ρ+ →∞ and ρ− → 0 the connection (3.15) becomes upper triangular, Aσ ∈ n+⊕h,
so that eq. (4.90) immediately follows from the zero curvature representation.
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the general Klimč´ik model is manifested as the invariance of the 3D sausage w.r.t.

the constant shifts

v 7→ v + v0 , w 7→ w + w0 . (4.93)

The corresponding Noether currents will be denoted by j(v) and j(w) respectively.

With the continuity equations

∂+j
(A)
− + ∂−j

(A)
+ = 0 (A = v, w) (4.94)

one can introduce the dual fields ṽ, w̃ through the relations

j
(v)
± = ± ∂± ṽ , j

(w)
± = ± ∂± w̃ . (4.95)

It turns out that the dual field ω defined by eq. (4.91) coincides with

ω =
1

2

[√
1 + ν2 w̃ +

i

2
log

(
cosh(φ0 + φ)

cosh(φ0 − φ)

)]
h . (4.96)

The boundary conditions (3.17) specialized for the SU(2) case with

H1 = e−iπk1h , H2 = e−iπk2h , (4.97)

imply the following conditions imposed on the fields (φ, v, w):

v(t, x+R) = v(t, x) + 2πk1 , w(t, x+R) = w(t, x) + 2πk2 , (4.98)

while φ is the periodic field

φ(t, x+R) = φ(t, x) . (4.99)

Also we will focus on the neutral sector of the model, which means that the dual

fields also obey the periodic boundary conditions

ṽ(t, x+R) = ṽ(t, x) , w̃(t, x+R) = w̃(t, x) . (4.100)
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Taking into account that

R̂
(
h
)

= 0 , R̂
(
e±
)

= ∓i e±

and using the parameterization (3.33), (3.34) the Lagrangian (2.41) with f 2 as in

(2.48) can be expressed in terms of three real fields (φ,w, v) and two real parameters

κ and ν (2.49). Here there is no need to present the explicit formula, we just note

that for |φ| � φ0 the 3D sausage Lagrangian can be approximated by (up to a total

derivative)

L � 2
(
∂+φ ∂−φ+

1

1 + ν−2
∂+v ∂−v +

1

1 + ν2
∂+w ∂−w

)
. (4.101)

This implies that as κ→ 1−, i.e., φ0 →∞ most of the target manifold asymptotically

approaches the flat cylinder with metric Gαβ dXαdXβ = (dφ)2 + (1 + ν−2)−1(dv)2 +

(1 + ν2)−1(dw)2 while the curvature is concentrated at the tips corresponding to

φ = ±∞. In the asymptotically flat domain, the general solution to the equations of

motion can be expressed in terms of six arbitrary functions φi and φ̄i:

φ(t, x) � φ1(x+) + φ̄1(x−)

w(t, x) �
√

1 + ν−2
(
φ2(x+) + φ̄2(x−)

)
(4.102)

v(t, x) �
√

1 + ν+2
(
φ3(x+) + φ̄3(x−)

)
,

while for the dual fields one has

w̃(t, x) � φ2(x+)− φ̄2(x−) , ṽ(t, x) � φ3(x+)− φ̄3(x−) . (4.103)

Having clarified the geometry of the target manifold for κ → 1− one can turn to

the form of the flat connection (3.15) in this limit. We assume that the co-ordinates

(φ,w, v) are kept within the asymptotic domain where eqs. (4.102), (4.103) are valid.

Also, since the product ρ+ρ− (3.16) vanishes as 1−κ, we keep ρ+ fixed while ρ− → 0.
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Then a direct calculation shows that

lim
κ→1−
ρ+−fixed

(
∂+ − (ρ+/ρ−)+ h

4 A
(ω)
+ (ρ+/ρ−)−

h
4

)
= e+2iω+(x+)

(
∂+ −B(x+|ρ+)

)
e−2iω+(x+) ,

(4.104)

where we have used the gauge A
(ω)
+ from eq. (4.92). The 1-form B in this equation is

defined by (4.56), (4.42), (4.46) and

ω+(x+) = 1
2

(√
1 + ν2 φ2(x+) + iφ1(x+)

)
h . (4.105)

For the other connection component one finds

lim
κ→1−
ρ+−fixed

(ρ+/ρ−)+ h
4 A

(ω)
− (ρ+/ρ−)−

h
4 = 0 . (4.106)

We now turn to the monodromy matrix that was introduced previously in (3.11).

In light of eqs. (4.104), (4.106) we express M (ρ) in terms of A(ω)
σ :

M (ρ) = e−iω(t0,R)
←
P exp

(∫ R

0

dx A(ω)
x

)∣∣∣
t=t0

eiω(t0,0) (ρ ≡ ρ+) . (4.107)

Since the connection A(ω)
σ is flat, the integral over the segment (0, R) can be trans-

formed into the piecewise integral over the light cone segments as shown in fig. 4.3.

The monodromy matrix is then expressed in terms of the light cone values of the

connection as

M (ρ) = e−iω(t0,R)
←
P exp

(∫ t0−R

t0

A
(ω)
− (x−) dx−

)
←
P exp

(∫ t0+R

t0

A
(ω)
+ (x+) dx+

)
eiω(t0,0)

where

A
(ω)
+ (x+) = A

(ω)
+ (t, x)

∣∣
x−=t0

, A
(ω)
− (x−) = A

(ω)
− (t, x)

∣∣
x+=t0+R

. (4.108)

For κ close to 1 the instant t0 can be chosen such that the values of the fields lie in

the asymptotically flat region of the target manifold where formulae (4.102), (4.103)

are applicable. Then with eqs. (4.104), (4.106) at hand, it is straightforward to show

that the following limit exists

lim
κ→1−
ρ+−fixed

(ρ+/ρ−)+ h
4 M (ρ) (ρ+/ρ−)−

h
4 = M (1)(ρ) . (4.109)
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Explicitly, M (1)(ρ) can be expressed in terms of Lcl(ρ) previously defined in (4.51)

and (4.56):

M (1)(ρ) = Ω−1 Lcl(ρ) eπ(2i
√

1+ν2P2−P1) h Ω . (4.110)

Here we take into account that φ(t0, x+R) = φ(t0, x), w̃(t, x+R) = w̃(t, x) and use

P1 ≡ 1
2π

(
φ1(t0 +R)− φ1(t0)

)
= − 1

2π

(
φ̄1(t0 −R)− φ̄1(t0)

)
(4.111)

P2 ≡ 1
2π

(
φ2(t0 +R)− φ2(t0)

)
= + 1

2π

(
φ̄2(t0 −R)− φ̄2(t0)

)
and

Ω = e−
i
2
ω0h : ω0 = w(t0, R) + i

(
φ1(t0 +R)− φ̄1(t0 −R)

)
. (4.112)

It follows from the Lagrangian that the chiral fields φi can be chosen to satisfy

the Poisson bracket relations

{φi(x+), φj(x
′
+)} = −1

4
δij ε(x+ − x′+) (4.113)

and hence, using the results of the previous section, Lcl(ρ) obeys the Sklyanin ex-

change relations (4.57). In the Hamiltonian picture the twisted boundary condition

w(t, x+R) = w(t, x) + 2πk2 with k2 a non-dynamical constant is a constraint of the

first kind à la Dirac which should be supplemented by a gauge fixing condition. Con-

sidering the fields in the asymptotically flat domain where formulae (4.102), (4.103)

hold true leads to the relation

P2 =
k2

2
√

1 + ν2
(4.114)

and the gauge fixing condition can be chosen as w(t0, R) = 0 . This way ω0 in (4.112)

becomes ω0 = i
(
φ1(t0 + R) − φ̄1(t0 − R)

)
. Similarly, we supplement the periodic

boundary condition φ(t0, x+R) = φ(t0, x) by the constraint φ̄1(t0 −R) = 0, so that

ω0 = iφ1(t0 +R) . (4.115)
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The Poisson brackets of M (1)(ρ) = Ω−1 Lcl(ρ) eπ(ik2−P1) h Ω are obtained by using

(4.57) and the simple relations

{
Lcl(ρ), πP3

}
= 1

4

[
h,Lcl(ρ)

]
,

{
Lcl(ρ), ω0

}
= i

4
hLcl(ρ) ,

{
ω0, πP1

}
= i

4
.

(4.116)

The latter follow from eqs. (4.111), (4.113), (4.115). Also, taking into account that

[
1⊗ h + h⊗ 1, r(λ)

]
= 0 , (4.117)

one arrives at

{
M (1)(ρ1) ⊗

,
M (1)(ρ2)

}
=
[
M (1)(ρ1)⊗M (1)(ρ2), r(λ1/λ2)

]
, (4.118)

where recall that ρ1,2 depend on λ1,2 via the relation (4.55).

It should be highlighted that the Poisson algebra (4.118) was obtained for a cer-

tain choice of the time slice t0 when the fields take values in the asymptotic region.

The validity of this equation for an arbitrary choice of t0 is debatable, since the mon-

odromy matrix itself is not a conserved quantity. However that eq. (4.118) holds true

even for a particular value of t0 is sufficient to prove the commutativity condition

{T (1)(ρ1), T (1)(ρ2)} = 0 with

T (1)(ρ) = Tr
[
e−iπk2hM (1)(ρ)

]
= lim

κ→1−
ρ+−fixed

Tr
[

e−iπk2hM(ρ)
]
. (4.119)

In view of the above, it makes sense to reconsider our definition of the monodromy

matrix for the 3D sausage model and introduce

M (κ)(ρ) = (ρ+/ρ−)+ h
4 M (ρ) (ρ+/ρ−)−

h
4 (ρ ≡ ρ+) . (4.120)

We’ve just seen that in the κ → 1− limit, the matrix M (κ)(ρ) obeys the Sklyanin

exchange relations (4.118). On the other hand, the redefinition (4.120) has no effect

on the monodromy matrix as κ→ 0 and both ρ± → 1 so that the Sklyanin exchange



71

relations are still satisfied but in the form (4.88). Finally the case ν = 0 with κ ∈ (0, 1)

was already considered before, where it was shown that

{
M (κ)(ρ1) ⊗, M

(κ)(ρ2)
}

=
[
M (κ)(ρ1)⊗M (κ)(ρ2), r(λ1/λ2)

]
(ν → 0) (4.121)

with ρ1,2 = λ1,2. All this suggests that the key relations (4.121) may extend to the

parametric domain ν2 > 0 and κ ∈ (0, 1) with some function ρ = ρ(λ|ν, κ) (which is

unknown in general).
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Chapter 5

Transfer-matrices for the sausage model

5.1 Introduction

When faced with the problem of quantizing the 2D sausage model, one may try to

follow the approach based on discretization. Due to ultralocality, the N elementary

transport matrices πj

[←
P exp

∫ xn+1

xn
dxAx

]
satisfy the same type of Poisson bracket

relation as (3.27) and Poisson commute for different segments. These relations can

be formally quantized leading to a certain quantum Yang-Baxter algebra. The major

problem now is to construct a suitable representation of this abstract algebraic struc-

ture. In the case under consideration, the representation is, in all likelihood, infinite

dimensional even for finite N . At this moment, it is not clear for us how to construct

and handle such representations, let alone take the scaling limit with N →∞.

We will try to avoid discretization as much as we can and mostly follow the

so-called BLZ approach – the variant of the QISM developed in the series of works

[50, 51, 52]. For integrable Conformal Field Theories (CFT), it was demonstrated that

the T -operators can be constructed without any discretization procedure. Later it

was observed that many deep properties of representations of Yang-Baxter algebras

in integrable CFT can be encoded in the monodromies of certain linear Ordinary

Differential Equations (ODE) [97, 98, 53, 54, 99, 55, 100]. These results were extended

to massive Integrable Quantum Field Theories (IQFT) [56] (for recent developments,

see also refs.[101, 102, 103, 104, 105, 106, 107, 108]). The general relation of this type

will be referred to in the paper as the ODE/IQFT correspondence.
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Broadly speaking, the ODE/IQFT correspondence means that for a given IQFT

the eigenvalues of the quantum T -operators are identified with certain connection

coefficients for the system of equations,

D(θ) Ψ = 0 , D(θ) Ψ = 0 , (5.1)

whereD(θ) andD(θ) stand for (singular) differential operators depending on the aux-

iliary parameter θ which is found to be a function of the original spectral parameter

from the quantum theory. The system of ODE can be then interpreted as an auxil-

iary linear problem, whose compatibility condition, [D(θ), D(θ)] = 0, coincides with

the zero-curvature representation for some classically integrable field theory. Thus

the ODE/IQFT correspondence reduces the calculation of the spectrum of quantum

transfer-matrices to a certain problem in the theory of classical integrable equations.

The latter can be effectively treated by the inverse scattering transform method. This

makes the ODE/IQFT correspondence a very powerful tool. In particular, it gives

a practical way to make progress in the conceptual long standing problem of the

quantization of integrable NLSM.

5.2 Chiral transfer-matrices for the cigar

The BLZ approach [50, 51, 52] begins with an analysis of the RG fixed point which

controls the ultraviolet behaviour of the integrable QFT. With this in mind, let’s

take a quick look at the sausage NLSM. In the traditional path-integral quantization,

the model should be equipped with a UV cutoff Λ. A consistent removal of the

UV divergences requires that the “bare” coupling in the Lagrangian (??) be given a

certain dependence on the cutoff momentum. To the first perturbative order the RG

flow equation is given by [66]

Λ
∂κ

∂Λ
=

~
2π

(1− κ2) +O(~2) , (5.2)
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where ~ stands for the (dimensionless) Planck constant. Integrating this equation

leads to

1− κ
1 + κ

= (E∗/Λ)η , (5.3)

where η = ~
π

+ O(~2). The energy scale E∗ is an RG invariant (i.e., it’s kept fixed

with changing Λ), so that κ→ 1 as Λ→∞. Having in mind the quantization of the

model, this simple analysis shows that 2D sausage NLSM deserves special attention

when κ is close to one.

5.2.1 Quantum transfer-matrices for the cigar NLSM

Their construction of the quantum transfermatrices for the cigar NLSM almost iden-

tically follows the steps elaborated in refs. [50, 52] in the context of the quantum

KdV theory. Here we present them very briefly, referring the reader to those works

for detailed explanations.

First of all we should “quantize” the Lie algebra sl(2), so that h, e± are understood

now as the generators of the quantum universal enveloping algebra Uq
(
sl(2)

)
:

[h, e±] = ±2 e± , [e+, e−] =
qh − q−h

q − q−1
, (5.4)

where q = e
i~
2 . Consequently the symbol πj will stand for the (2j+1)-dimensional rep-

resentation of the quantum algebra. Instead of the Planck constant ~, for convenience

we will use the parameter n:

~ ≡ 2π
n
, q = e

iπ
n . (5.5)

The quantum operator Lj is the following (2j + 1) × (2j + 1) operator valued

matrix

Lj(λ+) = πj

[
←
P exp

(
iλ+

∫ t0+R

t0

dx
(
V + q

h
2 e+ + V − q−

h
2 e−

))
e−πP1h

]
. (5.6)
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The vertex operators V ± are defined by the set of relations:

V ±(x) =
(

1
2
c± ∂x − i

√
n+2
n

ϑ′+(x )
)

e
± 2ϕ+√

n (x) , (5.7)

where c± are some constants and

ϕ+(x) = Q1 +
2πx

R

√
nP1 + i

∑
m6=0

am
m

e−
2πim
R

x (5.8)

ϑ+(x) = Q2 +
2πx

R

√
n+ 2P2 + i

∑
m 6=0

bm
m

e−
2πim
R

x ,

with

[ am, al ] = [ bm, bl ] = m
2
δm+l,0 ,

[
Q1,
√
nP1

]
=
[
Q2,
√
n+ 2P2

]
= i

2
. (5.9)

Let Fp1,p2 ≡ Fp (“Fock space”) be the highest weight module of the Heisenberg

algebra (5.9) with the highest weight vector |p 〉 defined by the equations

P1 |p 〉 =
p1

n
|p 〉 , P2 |p 〉 =

p2

n+ 2
|p 〉 . (5.10)

It is easy to see that

V ±(x) : Fp1,p2 7→ Fp1∓i,p2 , (5.11)

and therefore the matrix elements of Lj(λ) are operators in ⊕∞m=−∞Fp1+im,p2 . The

expression (5.6) contains the ordered exponential which can be formally written in

terms of a power series in λ as

Lj(λ+) = πj

[ ∞∑
m=0

(iλ+)m
∫
t0+R>xm>...x1>t0

dxm · · · dx1 K(xm) · · ·K(x1) e−πP1h

]
,

(5.12)

where

K(x) = V + q
h
2 e+ + V − q−

h
2 e− . (5.13)

However, since

V ±(x2)V ∓(x1)
∣∣
x2→x1+0

∼ a

2n2
q−1

(
x2 − x1

)−2(1− 1
n

)
, (5.14)
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where a = n+ 2 + (n− 2) c+c−, the integrals in (5.12) diverge. As explained in [52],

the commutation relations

V σ1(x1)V σ2(x2) = q2σ1σ2 V σ2(x2)V σ1(x1) , x2 > x1 (σ1,2 = ±) (5.15)

allow one to re-express the integrals in (5.12) in terms of two basic contour integrals

X0 =
1

q − q−1

∫ t0+R

t0

dx V −(x) , X1 =
1

q − q−1

∫ t0+R

t0

dx V +(x) . (5.16)

This procedure yields an unambiguous definition of the ordered exponential in (5.6)

for n 6= 2, 4, 6 . . . . The case of even n needs some special attention and we will

return to it later.

The operator valued matrices Lj (5.6) are designed in such a way that, for arbi-

trary chosen constants c± and t0, they obey the quantum Yang-Baxter algebra

Rjj′(λ
′
+/λ+)

(
L(λ+)⊗1

)
(1⊗L(λ′+)

)
=
(
1⊗L(λ′+)

) (
L(λ+)⊗1

)
Rjj′(λ

′
+/λ+) , (5.17)

where the matrix Rjj′(λ) is the trigonometric solution to the Yang-Baxter equation

which acts in the space πj ⊗ πj′ . In particular

R½½(λ) =



q−1 λ− q λ−1 0 0 0

0 λ− λ−1 q−1 − q 0

0 q−1 − q λ− λ−1 0

0 0 0 q−1 λ− q λ−1


. (5.18)

The proof of eq.(5.17) follows that from the work [52].

The chiral transfer-matrices, defined as

τj(λ+) = Tr
[
Lj(λ+) e−πP1h

]
, (5.19)

satisfy the commutativity condition

[ τj(λ+), τj′(λ
′
+) ] = 0 , (5.20)
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as a simple consequence of (5.17). Notice that the chiral transfer-matrices act inside

a single Fock space, whereas the same is not true for an arbitrary element of Lj(λ).

Furthermore, the Fock space Fp naturally splits into the finite dimensional “level

subspaces”

Fp = ⊕∞L=0F (L)
p : LF (L)

p = LF (L)
p , (5.21)

where the grading operator is given by

L = 2
∞∑
m=1

(
a−mam + b−mbm

)
. (5.22)

Using the relation,

V ±(x+R) = q2 e±4πP1 V ±(x) (5.23)

one can show (see Appendix C from [52]) that the τj(λ+) commute with the grading

operator, and therefore, act invariantly in each finite-dimensional level subspace:

τj(λ+) : F (L)
p 7→ F (L)

p . (5.24)

The Fock space Fp can be equipped with an inner product consistent with the Her-

miticity conditions a†m = a−m , b†m = b−m imposed on the Heisenberg operators (5.9).

It is not difficult to show that for real p2
1, p

2
2 and λ2

+, τ(λ+) is a Hermitian operator

and

[
τ(λ+)

]†
= τ(±λ∗+) . (5.25)

Notice that the commutativity with the grading operators can be interpreted as

the independence of the chiral transfer-matrix on the arbitrary chosen constant t0.

It turns out that they further do not depend on the constants c± appearing in the

definition of the vertex operators V ± (5.7). Also, a simple dimensional analysis shows

that the spectral parameter λ+ and R occur in the chiral transfer-matrix through
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the combination λ2
+R

2
n only. It is convenient to introduce a dimensionless spectral

parameter λ by means of the relation

λ2 = Γ2
(
1 + 1

n

) (
nR
2π

) 2
n λ2

+ (5.26)

and treat the chiral transfer-matrices as functions of this variable rather than the

dimensionful λ+.

The chiral transfer-matrices are not independent operators for different values of

j = 1
2
, 1, . . . . They can be expressed through the “fundamental” transfer-matrix

τ 1
2
(λ) by the so-called fusion relation [111, 112, 113]

τj
(
λ qj+

1
2

)
τ 1

2
(λ) = τj+ 1

2

(
λ qj
)

+ τj− 1
2

(
λ qj+1

)
, (5.27)

supplemented by the condition τ0 = 1. In what follows, we will mostly focus on the

fundamental transfer-matrix and use the notation τ ≡ τ 1
2
. The integrable structures

associated with the commuting family of operators τj(λ) were already studied in

the context of the so-called paperclip model – an integrable model with boundary

interaction [115]. Here for convenience we make a short summary of some basic

properties of the operator τ(λ).

For arbitrary complex p = (p1, p2), the operator τ(λ) ∈ End
(
Fp

)
is an entire

function of λ2 in the sense that all its matrix elements and eigenvalues are entire

functions of this variable. Thus the power series

τ(λ) = 2 cosh
(

2πp1

n

)
+
∞∑
m=1

tm λ2m (5.28)

converges in the whole complex plane of λ2 and defines an entire function with an es-

sential singularity at λ2 =∞. The asymptotic expansion near the essential singularity

is of primary interest. It can be written as

τ(λ) = exp
(

2π
sin(πn

2
)
(−λ2)

n
2

)
τ̃
(

i (−λ2)−
n

2(n+2)

)
, (5.29)
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where τ̃ is a formal power series of the form

τ̃(λ̃) � 2 cos
(

2πp2

n+2

)
+
∞∑
m=1

t̃m λ̃2m . (5.30)

This asymptotic expansion can be applied for arbitrary complex p = (p1, p2) and

n 6= 2, 4, 6 . . . . Furthermore, in the case n ≥ 1 it holds true for | arg(−λ2)| < π.

The expansion coefficients in (5.28) and (5.30) form two infinite sets of mutu-

ally commuting operators. Using the terminology of the work [51], we will refer to{
tm
}∞
m=1

and
{
t̃m
}∞
m=1

as the nonlocal and dual nonlocal Integrals of Motions (IM),

respectively. Remarkably, the formal power series τ̃(λ̃) can be written in a form

similar to (5.19). Namely [115],

τ̃(λ̃) = Tr

[
←
P exp

(
iλ̃+

∫ t0+R

t0

dx
(

Ψ+ σ+ + Ψ− σ−
))

e−2πiP2σ3

]
, (5.31)

where σ3, σ± = 1
2

(σ1 ± iσ2) are the conventional Pauli matrices and the vertex

operators Ψ± are given by

Ψ±(x) =
( √

n
n+2

ϕ′+(x) + 1
2
∂x
)

e
± 2iθ+√

n+2 (x) .

The scale dimension of Ψ± is equal to 1 + 1
n+2

and we assume here that they are

normalized in such a way that

Ψ±(x2) Ψ∓(x1)
∣∣
x2→x1+0

∼ 2
(n+2)2

(
x2 − x1

)−2(1+ 1
n+2

)
. (5.32)

Because of the divergencies, the path ordered exponential in (5.31) should be under-

stood in the same manner as (5.6), i.e., the formal expansion in a power series of λ̃+

should be rewritten in terms of the basic contour integrals similar to (5.16). With

this analytical regularization the r.h.s. of eq. (5.31) becomes a formal power series in

λ̃2
+R
− 2
n+2 with unambiguously defined expansion coefficients. Up to a factor similar

to that in (5.26), this combination can be identified with λ̃2 in eq. (5.30):

λ̃2 = Γ2
(
1− 1

n+2

) ( (n+2)R
2π

)− 2
n+2 λ̃2

+ . (5.33)
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For future reference we present here explicit formulae for the “vacuum” eigenvalues of

the operators t1 and t̃1 corresponding to the highest weight vector |p 〉 ∈ Fp (5.10):

t1(p1, p2) =
( 2

n

) 2
n Γ(1

2
+ 1

n
)

√
πΓ(1 + 1

n
)

(n+ 2

n− 2
+

4p2
2

1 + 4p2
1

) π2

Γ(1+2ip1

n
)Γ(1−2ip1

n
)

(5.34)

and

t̃1(p1, p2) =
(n+ 2

2

) 2
n+2 Γ(1

2
− 1

n+2
)

√
πΓ(1− 1

n+2
)

( n

n+ 4
− 4p2

1

1− 4p2
2

) π2

Γ(−1−2p2

n+2
)Γ(−1+2p2

n+2
)
.

(5.35)

An efficient integral representation for calculating the vacuum eigenvalue t̃2(p1, p2)

can be found in Appendix A of ref.[115].

For even n, the chiral transfer-matrices require some careful handling. In this case

τ(λ) can be defined through the limiting procedure

τ(λ)|n=2l = lim
ε→0

exp
(
− 4

ε
λ2l
)
τ(λ)

∣∣
n=2l+ε

(l = 1, 2, 3 . . .) , (5.36)

so that the asymptotic formula (5.29) should be substituted by

τ(λ)|n=2l = exp
(

2λn log(−λ2)
)
τ̃
(

i (−λ2)−
l

2(l+1)

)∣∣∣
n=2l

. (5.37)

The formulae (5.29), (5.30) are not valid for positive real λ2. In order to describe

the asymptotic behaviour for λ2 → +∞, it is convenient to substitute the set of dual

nonlocal IM (5.30) by the set
{
g̃m
}∞
m=1

which are algebraically expressed in terms of

the former through the relation

2 cos(2πP2) +
∞∑
m=1

t̃m zm = 2 cos(2πP2) exp
( ∞∑
m=1

g̃m zm
)
. (5.38)

Then, for arbitrary complex p = (p1, p2), n 6= 2, 4, 6 . . . , n ≥ 1,

τ(λ) = 4 cos
(

2πp2

n+2

)
eH(λ2) cos

(
G(λ2)

)
as λ2 → +∞ , (5.39)

where

H(z) � 2π cot
(
πn
2

)
z
n
2 +

∞∑
m=1

g̃m cos
(

2πm
n+2

)
z−

nm
n+2 +O(z−∞)

G(z) � 2π z
n
2 +

∞∑
m=1

g̃m sin
(

2πm
n+2

)
z−

nm
n+2 +O(z−∞) . (5.40)
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P
(in)
1

P
(out)
1

Figure 5.1: The classical scattering problem in the cigar NLSM. From the asymptoti-
cally flat domain the string approaches the tip, scatters and then escapes back to the
flat region. After the scattering process the zero mode momentum changes sign.

For even n, the first term in the formal power series H(z) should be replaced by

2z
n
2 log(z).

5.2.2 Basic facts about the quantum cigar

In the previous subsection, we described the formal algebraic construction of the chiral

transfer-matrices. Here we briefly discuss how τj(λ) can be understood as operators in

the quantum cigar NLSM (for more details on the quantum cigar see, e.g., ref.[116]).

The cigar NLSM was introduced before at the classical level by means of the

Lagrangian (??). In the classical field theory, it is natural to consider the following

scattering problem. Suppose that at t → −∞ we are given the field configuration

within the asymptotically flat domain of the target manifold, i.e.,

φ(t, x)|t→−∞ � φ
(in)
0 +

4π

R
P

(in)
1 t+

∑
m 6=0

i

m

(
a(in)
m e−

2πim
R

(t+x) + ā(in)
m e−

2πim
R

(t−x)
)
(5.41)

α(t, x)|t→−∞ � α
(in)
0 +

2π

R
(kx+ k̃t) +

∑
m 6=0

i

m

(
b(in)
m e−

2πim
R

(t+x) + b̄(in)
m e−

2πim
R

(t−x)
)
.

In writing this equation, we took into account the boundary conditions (??). Also,

the constant k̃ is the conserved charge for the Noether U(1)-current associated with

the Lagrangian (??). The set, A(in) = {φ(in)
0 , P

(in)
1 , α

(in)
0 , k̃, a

(in)
m , b

(in)
m }, can be in-

terpreted as a classical “in-state” for a string propagating on the target manifold

(see fig. 5.1). The nontrivial interaction occurs at some finite time when the fields

take values in the vicinity of the tip of the cigar. After scattering at the tip, as

t→ +∞, the field configuration returns to the asymptotically flat domain and takes



82

the same form as in the r.h.s. of (5.41) with the in-stateA(in) replaced by the out-state

A(out) = {φ(out)
0 , P

(out)
1 , α

(out)
0 , k̃, a

(out)
m , b

(out)
m }.1 The classical scattering problem can

be formulated as the problem of finding the canonical transformation which maps

A(in) to A(out). It turns out that the theory possesses two infinite sets of left- and

right-currents [117], i.e.,

∂−Ws = 0 , ∂+W s = 0 , (s = 2, 3, . . .) , (5.42)

so that the classical dynamics of the fields are strongly constrained. In particular,

the magnitude of the zero-mode momentum remains unchanged after the scattering

(see fig. 5.1),

P
(out)
1 = −P (in)

1 . (5.43)

Consider now the quantum theory. First of all we note that the value of the U(1)

charge is quantized so that (n + 2) k̃ = m ∈ Z. Thus the space of states of the

quantum theory splits into orthogonal subspaces Hk,m labeled by the twist parameter

k and the integer m. The quantum theory still possesses the chiral currents satisfying

eqs. (5.42). As a result, Hk,m can be decomposed into the highest weight irreps of

the W -algebra, W⊗ W̄ generated by the fields Ws and W̄s [117]. Let Vh (V̄h̄) be the

highest weight representation of the chiral W -algebra W (W̄) labeled by the highest

weight h (h̄). Then, schematically,

Hk,m = ⊕
{h,h̄}

Vh ⊗ V h̄ . (5.44)

The highest weight h can be chosen to be a pair of numbers (∆, w), where ∆ coincides

with the conformal dimensions of the highest weight vector, while w is the eigenvalue

1Strictly speaking, the winding number k is only conserved modulo an integer, i.e., k(out)−k(in) ∈
Z. Here we ignore this and assume that k(out) = k(in) ∈ (− 1

2 ,+
1
2 ].
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of the dimensionless conserved charge R2
∫ R

0
dxW3(x), and similar for h̄. Let us first

focus on the “left” component Vh in the tensor product Vh ⊗ V h̄.

It should be clear that the quantum counterpart to the left components of the

in-asymptotic fields (5.41) can be identified with the fields ϕ+ and ϑ+ given by (5.8).

Since the quantum fields Ws are chiral currents, i.e. Ws(t, x) = Ws(t + x), they can

be expressed in terms of the asymptotic fields ϕ+ and ϑ+. Indeed, for given s, Ws

is a certain order-s homogeneous polynomial with constant coefficients w.r.t. the

fields ϕ′+, ϑ′+ and their higher derivatives (in other words, any monomials appearing

within Ws contains exactly s derivative symbols). This implies that the Fock space

Fp, which is the space of representation for the fields ϕ′+, ϑ′+, possesses the structure

of the highest weight representation of the chiral W -algebra. It turns out that for

real p, the Fock space Fp coincides with irrep Vh as a linear space, provided that

h = (∆, w) is related to p = (p1, p2) as follows

∆(p1, p2) =
p2

1

n
+

p2
2

n+ 2
+

1

4n
(5.45)

w(p1, p2) = p2

(
p2

1 +
3n+ 2

3(n+ 2)
p2

2 −
2n+ 1

12

)
.

In fact, one can use these formulae to conveniently parameterize the highest weight

h by the pair (p1, p2): Vh ≡ Vp1, p2 . With this notation, a more accurate version of

eq. (5.44) reads as

Hk,m =

∫
p1<0

⊕
Vp1, p2 ⊗ Vp1, p̄2 , (5.46)

where

p2 = 1
2

(
m+ (n+ 2) k

)
, p̄2 = 1

2

(
m− (n+ 2) k

)
. (5.47)

The direct integral in (5.46) does not include the domain with positive p1, since, as

follows from eqs. (5.45), Vp1, p2 ≡ V−p1, p2 .

A basis of in-asymptotic states in Hk,m is formed by

a
(in)
−m1

. . . a
(in)
−mN ā

(in)
−m̄1

. . . ā
(in)
−m̄N̄ b

(in)
−m1

. . . b
(in)
−mM b̄

(in)
−m̄1

. . . b̄
(in)
−m̄M̄ | vac 〉 (5.48)
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and can be identified with the states from the tensor product of the Fock space

Fp1, p2 ⊗ F̄p1, p̄2 :

a−m1 . . . a−mN ā−m̄1 . . . ā−m̄N̄ b−m1 . . . b−mM b̄−m̄1 . . . b̄−m̄M̄ | p1, p2 〉 ⊗ | p1, p̄2 〉 . (5.49)

Similarly for the out-states, one has

a
(out)
−m1

. . . a
(out)
−mN ā

(out)
−m̄1

. . . ā
(out)
−m̄N̄ b

(out)
−m1

. . . b
(out)
−mM b̄

(out)
−m̄1

. . . b̄
(out)
−m̄M̄ | vac 〉 ∼ (5.50)

a−m1 . . . a−mN ā−m̄1 . . . ā−m̄N̄ b−m1 . . . b−mM b̄−m̄1 . . . b̄−m̄M̄ | − p1, p2 〉 ⊗ | − p1, p̄2 〉 .

Usually, the S-matrix is introduced as a unitary operator which relates the in- and out-

asymptotic bases. In the case under consideration, the S-matrix can be interpreted

as the intertwiner acting between the Fock spaces:

Ŝ : Fp1, p2 ⊗ F̄p1, p̄2 7→ F−p1, p2 ⊗ F̄−p1, p̄2 . (5.51)

It turns out that the operator Ŝ has the following structure

Ŝ = S0(p) ŜL ⊗ ŜR , (5.52)

where ŜL intertwines the level subspaces, ŜL : F (L)
p1, p2 7→ F

(L)
−p1, p2

, and is normalized

by the condition ŜL | p1, p2 〉 = | − p1, p2 〉, and similarly for ŜR. For a given level `,

the construction of the operators ŜL,R is a straightforward algebraic task. The more

delicate problem is finding the overall scalar factor S0(p). It was obtained in the

minisuperspace approximation in ref. [118]. The exact form of S0(p) has been known

since the unpublished work of the Zamolodchikov brothers [119].

Returning to the chiral transfer-matrices, let us note that these operators should

act in the Hilbert space of the quantum cigar, and therefore their action should

commute with the intertwiner Ŝ:2

Ŝ τ(λ) = τ(λ) Ŝ . (5.53)

2The intertwiner Ŝ should not to be confused with the so called “reflection” operator R̂ : Fp1, p2⊗
F̄p1, p̄2 7→ Fp1, p2 ⊗ F̄p1, p̄2 , and [R̂, τ(λ)] = 0. Note that R̂ = σ̂ ◦ Ŝ where σ̂ = σ̂L ⊗ σ̂R and the

chiral intertwiners σ̂L : F (L)
p1, p2 7→ F

(L)
−p1, p2 are defined by the conditions σ̂Lam = −amσ̂L, σ̂Lbm =

+bmσ̂L, σ̂L | p1, p2 〉 = | − p1, p2 〉, and similar for σ̂R (see, e.g., [116]).
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In practice, this condition implies that all matrix elements of the (dual) nonlocal

IM in the basis of Fock states (5.49) are even functions of p1 (for illustration see

eqs. (5.34), (5.35)).

The quantum cigar also possesses an infinite set of the so-called local IM acting

in Hk,m. To get some feeling for these operators, we need to remind ourselves of an

important feature of the model. Namely, it admits an equivalent “dual” description

in terms of the so-called sine-Liouville model. The dual Lagrangian is given by [119]

L(dual) = 1
4π

(
(∂σϕ)2 + (∂σϑ)2

)
+ 2M e−

√
nϕ cos

(√
n+ 2ϑ

)
, (5.54)

with the sine-Liouville fields satisfying the boundary conditions

ϕ(t, x+R) = ϕ(t, x) , ϑ(t, x+R) = ϑ(t, x) +
2πm√
n+ 2

. (5.55)

Notice that the “coupling” M is a somewhat fake parameter of the Lagrangian – by

an additive shift ϕ 7→ ϕ+ const the value of M can be chosen to be any real number.

Nevertheless, it is convenient to keep it unspecified.

To understand the relation between the fields in the NLSM and its dual descrip-

tion, let us take the “zero-mode” of the field ϕ

ϕ0 =

∫ R

0

dx

R
ϕ(x) , (5.56)

and consider the region ϕ0 → +∞ in configuration space. In this asymptotic domain,

the potential term in the action (5.54) can be neglected and ϕ√
n
� φ + const, while

ϑ√
n+2

can be identified with α̃ – the field from the cigar NLSM defined by the relation

Jµ = εµν∂να̃, where Jµ stands for the Noether U(1)-current.

The twist parameter k has a natural interpretation in the dual description – it

can be identified with the so-called quasimomentum. The sine-Liouville Lagrangian is

invariant under the transformation ϑ 7→ ϑ+ 2π√
n+2

. Due to this periodicity, the space

of states of the theory with the boundary conditions (5.55), splits on the orthogonal
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subspacesHk,m such that for any state |A 〉 ∈ Hk,m, the corresponding wave functional

ΨA[ϕ(x), ϑ(x) ] transforms as

ΨA

[
ϕ(x), ϑ(x) + 2π√

n+2

]
= e2πik ΨA[ϕ(x), ϑ(x) ] . (5.57)

Let Ps(∂+ϕ, ∂+ϑ, . . .) be a local field of spin s, and a polynomial of ∂+ϕ, ∂+ϑ and

their higher derivatives. All such fields are periodic in x, so that one can introduce

the integral,

is−1 =
( R

2π

)s−1
∫ R

0

dx

2π
Ps(∂+ϕ, ∂+ϑ, . . .) . (5.58)

It turns out that for any even s = 2j there exists a local density (defined modulo the

addition of a total derivative and an overall multiplicative constant) such that i2j−1

is an integral of motion and satisfies the commutativity conditions

[ i2j−1, τ(λ) ] = [ i2j−1, i2j′−1 ] = 0 . (5.59)

These operators are referred to as the (chiral) local IM. They were studied in ref.[114],

where the explicit form for the first local IM and their vacuum eigenvalues, i2j−1(p1, p2)

for j = 1, 2, 3, can be found. Here we only note that for any j = 1, 2, . . .

P2j =
∑
l+m=j

C
(j)
lm (∂+ϕ)2l(∂+ϑ)2m + . . . , (5.60)

where the dots stand for monomials which include higher derivatives of ∂+ϕ and ∂+ϑ

and the numerical coefficients C
(s)
lm can be written as

C
(j)
lm = C2j−1

(−2)j+1(2j − 2)!

(j + 1)!

(
(n+ 2)(1

2
− j)

)
l

(
(−n)(1

2
− j)

)
m

l!m!
(−n)l−1 (n+ 2)m−1 .

(5.61)

Here (a)m =
∏m−1

i=0 (a + i) is the Pochhammer symbol. The overall normalization

constant C2j−1 is usually set to

C2j−1 =
2−3j (j + 1)! n(n+ 2)(

(n+ 2)(1
2
− j)

)
j

(
(−n)(1

2
− j)

)
j

. (5.62)
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Chapter 6

Chiral transfer-matrix for Zn parafermions

While quantizing the sausage model within the BLZ approach, we have run into the

problem of finding the spectrum of the chiral transfer-matrices for the cigar NLSM.

As it has been explained, we can consider τ(λ) as an operator acting in the Fock

space Fp with real p = (p1, p2). From the formal point of view, the same spectral

problem can be posed for any complex values of p. Notice, that for real p2, λ2 and

pure imaginary p1, the operator τ(λ) is Hermitian. The spectral problem in this case

(except for p1 = 0) is not directly related to the quantization of the sausage model,

however for n = 2, 3, . . . and a certain discrete set of p1 and p2, it gives a better

understanding of the interplay between the BLZ approach and that based on the

discretization of the quantum system. It will be the subject of our study here.

6.1 Bosonization of Zn parafermions

Let us take a closer look at the vertex operators V (±) (5.7), which appear in the

construction of the chiral transfer-matrices τj. As it was already mentioned, the

constants c± can be arbitrarily chosen. Let us set c± = 1 and assume that n ≥ 2 is

a positive integer. Then, eq. (5.7) can be recognized as the bosonization relations for

the Fateev-Zamolodchikov Zn parafermions [120]. More precisely, as follows from the

normalization condition (5.14), the chiral nonlocal fields

ψ± =
√
n q−

1
2 V ± (6.1)
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can be understood as canonically normalized parafermion currents,

ψ±(x2)ψ∓(x1)
∣∣
x2→x1+0

∼ 1×
(
x2 − x1

)−2∆ψ (6.2)

of the conformal dimension ∆ψ = 1− 1
n
.

The chiral algebra of parafermion currents was introduced by Fateev and Zamolod-

chikov in ref.[121], in the construction of the Zn CFT models with central charge

cn =
2(n− 1)

n+ 2
, (6.3)

describing the multicritical points of the Zn statistical systems (certain generalizations

of the Z2 invariant Ising model) [59]. The chiral component of the Hilbert space of the

Zn CFT can be decomposed into irreps Vj of the chiral algebra. Here, the subscript

j stands for the highest weight of the irrep with highest weight vector |σj 〉 having

conformal dimension

∆j =
j (n− 2j)

n (n+ 2)
. (6.4)

The admissible values of j are given by non-negative integers and half-integers re-

stricted by the condition

j = 0, 1
2
, 1, 3

2
, . . . , 1

2

[
n
2

]
, (6.5)

where
[
n
2

]
is the integer part of n/2. The fundamental parafermion currents ψ+ and

ψ− act in Vj and carry the Zn-charges +2 and −2 respectively:

Ωψ±Ω−1 = ω±2 ψ± , where ω = e−
2πi
n . (6.6)

Note that 2j can be identified with the Zn-charge of the highest weight vector:1

Ω |σj 〉 = ω2j |σj 〉 . (6.7)

1To be more precise, the chiral component of the Hilbert space of the Zn CFT contains, together

with the irrep V(+)
j ≡ Vj, the irrep V(−)

j whose highest weight vector has the same conformal

dimension (6.4) but carries the Zn-charge ω−2j. For even n, V(−)
n
4

= V(+)
n
4

. The chiral transfer-matrix

(6.13) is a Z2-invariant operator which does not distinguish between the irreps V(+)
j and V(−)

j .
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The irrep Vj naturally splits on the subspaces V(m)
j characterized by a definite value

of the Zn-charge,

Vj =
[
⊕2j
s=0 V

(2j−2s)
j

]
⊕
[
⊕n−2j−1
s=1 V(2j+2s)

j

]
: ΩV(m)

j = ωm V(m)
j . (6.8)

The lowest possible conformal dimension in the subspace V(m)
j is given by ∆j,m for

m = −2j, −2j + 2, . . . , 2j, and ∆j,m + 1
2

(m− 2j) for m = 2j + 2, . . . , 2n− 2j− 2. Here

we use the notation

∆j,m =
j(j + 1)

n+ 2
− m2

4n
. (6.9)

In what follows |σj,m 〉 will denote the state from the subspace V(m)
j with m = 2j, 2j−

2, . . . ,−2j of the lowest conformal dimension ∆j,m.

From the mathematical point of view the bosonization of the algebra of parafermion

currents implies that the subspaces V(m)
j with m = 2j, 2j − 2, . . . ,−2j can be under-

stood as a cohomology of the Fock space Fp1,p2 where

p1 = i
2
m , p2 = j + 1

2
, (6.10)

with respect to a certain BRST complex à la the Felder complex [122] involved in

the bosonization of the highly reducible Verma modules over the Virasoro algebra.

Among other things, the bosonization formula (6.1) leads to the following relation for

the matrix elements of the parafermion currents:

〈σj,m |
M∏
m=1

ψεm(xm) |σj,m 〉 = (nq−1)
M
2 〈 p1, p2 |

M∏
m=1

V εm(xm) | p1, p2 〉 (εm = ±) ,

(6.11)

provided
∑L

m=1 εm = 0 and the pairs (j, m) are related to (p1, p2) as in eq. (6.10). It

is not difficult to see that the Zn-charge operator is bosonized by the relation

Ω = e4πP1 (6.12)

and the operator τ(λ) can be written in the form

τ(λ) = Tr

[
←
P exp

(
i λ+√

n

∫ t0+R

t0

dx
(
ψ+ σ+ + ψ− σ−

))
Ω−

1
2
σ3

]
. (6.13)
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Therefore, τ(λ) can be understood as an operator which invariantly acts in the sub-

spaces V(m)
j of the irrep Vj of the algebra of parafermion currents. We can now address

the problem of the diagonalization of this operator. Notice that it is sufficient to con-

sider m ≥ 0, and in what follows we will always assume that

j = 0, 1
2
, 1, 3

2
, . . . , 1

2

[
n
2

]
m = 2 j, 2 j− 2, . . . , 2 j− 2 [j] . (6.14)

6.2 Discretization of the chiral transfer-matrix

The goal of this section is to propose a lattice version of the parafermionic chiral

transfer-matrix (6.13). For this purpose we return back to the formula (??) for the

classical conserved charges in the sausage model and follow the approach based on

discretization that was mentioned in the introduction.

Split the integration contour onto N small segments of size δ and consider the

elementary transport matrices in the fundamental representation:

M (s)(µ) = π½

[
←
P exp

∫ xs+δ/2

xs−δ/2
dxAx

]
(s = 1, . . . , N) . (6.15)

These can be expressed in terms of the elementary “light-cone” transport matrices

M (s)(µ) = L̄
(s)

(µ)L(s)(µ) (see fig. 6.1) and, as it follows from eq. (??),

{
L(s)(µ) ⊗

,

L(s′)(µ′)
}

=
[
L(s)(µ)⊗L(s′)(µ′) , r½½(µ/µ

′)
]
δss′ (6.16)

{
L̄

(s)
(µ) ⊗

,
L̄

(s′)
(µ′)

}
=

[
L̄

(s)
(µ) ⊗ L̄(s′)

(µ′) , r½½(µ/µ
′)
]
δss′

{
L(s)(µ) ⊗

,
L̄

(s′)
(µ′)

}
= 0 ,
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t0
R0

t

x

L(s) L̄
(s)

M

Figure 6.1: By replacing the integration over the segment at the time slice t =
t0 by integration over the light-cone pieces, the monodromy matrix can be ex-
pressed as a product of the elementary “light-cone” transport matrices: M (µ) =

L̄
(N)

(µ)L(N)(µ) . . . L̄
(2)

(µ)L(2)(µ) L̄
(1)

(µ)L(1)(µ).

where

r½½(µ) =



a(µ) 0 0 0

0 0 c(µ) 0

0 c(µ) 0 0

0 0 0 a(µ)


with

a(µ) = 1
2
µ+µ−1

µ−µ−1

c(µ) = 1
µ−µ−1

. (6.17)

Consider the structure of L(s)(µ) = π½

[←
P exp

xs+δ/2∫
xs−δ/2

dxA+

]
. From the explicit

form of A+ (??), one has

L(µ) =

1 + f(µ)
4

H i
2
g(µ)E−

i
2
g(µ)E+ 1− f(µ)

4
H

+O(δ2) , (6.18)

with

E± =

∫ xs+δ/2

xs−δ/2
dxΠ+(x) e∓Q(x) , H = 2

∫ xs+δ/2

xs−δ/2
dxΠ+(x) , (6.19)

and, as it follows from the canonical commutation relations,

{E+, E−} = −H , {H,E±} = ±2E± . (6.20)

Here, to simplify the notation, we have temporarily dropped the superscript “s”

and are focusing on a single site. Let’s look at the above formulae from a slightly
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different angle. Suppose we are given the matrices L of the form (6.18) with arbitrary

functions g(µ) and f(µ) where H, E± satisfy the Poisson bracket relations (6.20).

The requirement that L obeys the Yang-Baxter Poisson algebra (6.16) leads to two

equations imposed on the functions f and g:

a(µ/λ) g(λ)− c(µ/λ) g(µ) =
1

2
g(λ) f(µ) (6.21)

c(µ/λ) =
1

2

g(λ)g(µ)

f(λ)− f(µ)
.

One can show that, modulo the rescaling µ 7→ const µ, the most general solution to

these equations is given by:

f(µ) =
(1− κ)µ+ (1 + κ)µ−1

(1− κ)µ− (1 + κ)µ−1
(6.22)

g(µ) =
2
√

1− κ2

(1− κ)µ− (1 + κ)µ−1
.

with κ an arbitrary parameter.

This simple calculation hints as to how we should proceed with the deduction

of the quantum counterpart of the above formulae. Strictly speaking, there is no

canonical prescription for the quantization of the Poisson brackets (6.20), however, it

seems natural to substitute them by the defining relations of the Uq(sl(2)) quantum

algebra with q = e
i~
2 :

[
E+ , E−

]
=
qH − q−H

q − q−1
,

[
H , E±

]
= ±2 E± . (6.23)

For the quantum version of eq. (6.18), we put forward the following ansatz

L(µ) =

F−(µ) q−
1
2
H + F+(µ) q+ 1

2
H (q − q−1)G(µ) E−

(q − q−1)G(µ) E+ F−(µ) q+ 1
2
H + F+(µ) q−

1
2
H

 , (6.24)

where F±(µ) and G(µ) are some functions. The classical matrix will be recovered if

we assume that as ~→ 0,

q±
1
2
H = 1± 1

4
i~ H + o(δ) , (6.25)
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while

H = −i ~−1 H +O(~0) , E(±) = ~−1 E(±) +O(~0) , (6.26)

and also

lim
~→0

F±(µ) =
1

2

(
1± f(µ)

)
, lim

~→0
G(µ) =

1

2
g(µ) . (6.27)

It is clear that the operator valued matrix L must satisfy the Yang-Baxter algebra

R½½(µ
′/µ)

(
L(µ)⊗ 1

)
(1⊗L(µ′)

)
=
(
1⊗L(µ′)

)(
L(µ)⊗ 1

)
R½½(µ

′/µ) , (6.28)

where R½½ is given by eq. (5.18). The ansatz (6.24), combined with this relation,

yields

F+(µ) = +aµ G(µ) , F−(µ) = −(aµ)−1 G(µ) , (6.29)

where a is an arbitrary constant. Consistency with eq. (6.27) and the explicit form

for f and g (6.22) requires that

lim
~→0

(a2) =
1− κ
1 + κ

. (6.30)

We may now use the well known fact that the Uq(sl(2)) algebra with defining

relations (6.23) and q = e
i~
2 admits a formal realization in terms of the Heisenberg

algebra

[ Q , P ] = i ~ . (6.31)

Namely [123],

E+ = e−
1
2
Q

sinh( 1
2
P + ~C )

sin(1
2
~)

e−
1
2
Q

E− = e+ 1
2
Q

sinh( 1
2
P− ~C )

sin(1
2
~)

e+ 1
2
Q (6.32)

H = −2i ~−1 P .



94

It is not difficult to see that this can be thought of as the quantum counterpart of

eqs. (6.19). The constant C is arbitrary and is related to the value of the quantum

Casimir. In fact, it is convenient to substitute it by `: C = i (2`+ 1)/4, then

1

2

[
(q + q−1)

(
qH + q−H

)
+ (q − q−1)2

(
E−E+ + E+E−

) ]
= q2`+1 + q−2`−1 . (6.33)

Let us introduce the Heisenberg group generators, subject to the Weyl commuta-

tion relations

V = exp
(

1
2
P
)
, U = exp( Q ) : UV = q VU . (6.34)

Our analysis suggests that the 2 × 2 operator valued matrix L(µ) = L(`)(µ|U, V),

where [124, 125]

L(`)(µ|U, V) =

 (
µ V− µ−1 V−1

)
i
(
q−` V− q+` V−1

)
U

i
(
q+` V− q−` V−1

)
U−1

(
µ V−1 − µ−1 V

)
 (6.35)

satisfies the Yang-Baxter relation (6.28). Furthermore, it is easy to see that the

same properties still hold for the matrix which depends on a set of six parameters

{a, b, c, g , r , `}:

L
[ g r `

a b c

]
(µ | U, V) = g r

σ3
2 L(`)(aµ | b U, c V) r

σ3
2 . (6.36)

Most of the parameters, except maybe r and `, look trivial when we consider only

a single site. However, for the discretized system of N sites, the possibility that

the parameters may be different at different sites should be considered. In any case,

one can expect that for a properly adjusted set {as, bs, cs, gs, rs, `s}Ns=1 the discretized

quantum transfermatrix in the fundamental representation is given by

T (N)(µ) = (−µ)N Tr

[
←
P
( N∏

s=1

L
[ gs rs `s

as bs cs

]
(µ | Us, Vs)

)
(qd V)−σ3

]
, (6.37)

where V =
∏N

s=1 Vs is the discretized counterpart to the exponential eπP1 and d is some

constant. The overall factor (−µ)N is inserted to ensure that the transfer-matrix is a
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polynomial in µ2 of order N . Notice that

T (N)(0) = V−2 q−d
N∏
s=1

gs rsc
−1
s + V+2 qd

N∏
s=1

gs r
−1
s cs (6.38)

is expressed in terms of integer powers of

Xs ≡ V2
s (6.39)

rather than Vs. In fact, this is true for any µ, and it can be made explicit by rewriting

(6.37) in the equivalent form:

T (N)(µ) = CTr

[
←
P
( N∏
j=1

(
L(rs `s)
−

(
bsUs, c2

s Xs

)
−as

2µ2 L(rs `s)
+

(
bsUs, c2

s Xs

))) q−d Z−1 0

0 qd

]

(6.40)

where C is a constant, L± are triangular matrices:

L(r`)
− (U, X) =

 r 0

−i
(
q−`−1 − q+`−1 X

)
U−1 r−1 X



L(r`)
+ (U, X) =

r X i
(
q1+` − q1−` X

)
U

0 r−1

 , (6.41)

and

Z =
N∏

s=1

Xs . (6.42)

Finally, let us note that the set of formal operators
{
Us, Xs

}N
s=1

satisfy the commutation

relations

[
Us, Us′

]
=
[
Xs, Xs′

]
=
[
Us, Xs′

]
= 0 (s 6= s′) , Us Xs = q2 Xs Us , (6.43)

and also that Z commutes with T (N)(µ) for any values of the parameters in (6.40).
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We are now faced with the task of specifying the parameters in (6.40). Our

analysis outlined below shows that in all likelihood it is enough to consider the case

with

C = as = bs = cs = rs = 1 , ` = −1
2
, d = 2p2 − 1 . (6.44)

In this case, we expect that, with a properly chosen representation of the algebra

(6.43) and with a properly understood scaling limit, the operator T (N)(µ) can be

identified with the chiral transfer-matrix τ(λ) defined in eq. (5.19) with j = 1
2
. The

discretized operator should be restricted to the sector with

Z = q1−2(p2+ip1) , (6.45)

where, perhaps, some constraints need to be imposed on (p1, p2). Recall that the pair

(p1, p2) label the Fock space Fp1,p2 in which τ(λ) acts.

We came to the above conjecture through the analysis of the case of integer n ≡ 2π
~ .

At n = 2, 3, . . ., the formal algebra (6.43) admits an nN dimensional representation

where the operators associated with each site are given by the n× n matrices

Xαβ = δα+1,β , Uαβ = ωα δα,β , ω = e−
2πi
n . (6.46)

Here α, β = 0, . . . , n− 1 and

δαβ =


1 , α = β (mod n)

0 , α 6= β (mod n)

. (6.47)

Now T (N)(µ) is an nN ×nN matrix. We plan to discuss the diagonalization of the op-

erator (6.40), with the parameters {as, bs, cs, rs, `s} not depending on “s”, in a separate

publication. Here we only note that such an operator but without the diagonal matrix q−d Z−1 0

0 qd

, was studied in the works [125, 126] in the context of the chiral Potts



97

model. The extra diagonal matrix does not significantly change the diagonalization

procedure.

In the case (6.44), the diagonalization problem simplifies dramatically and can

be solved within the standard Bethe ansatz framework (see next section for some

details). This allows a thorough investigation of the scaling limit. An important point

is that the scaling procedure requires a choice of some reference state (“vacuum”)

and only states whose “energy” measured from the vacuum energy remains finite as

N → ∞, should be taken into account. Let H(N)
M be the subspace in the tensor

product H(N) ≡
(
Cn
)⊗N

with Z = ωM . The operator T (N)(µ), with parameters as

in eq. (6.44), restricted to the H(N)

j−m
2

subspace, with j and m satisfying the conditions

(6.14), commutes with the Hamiltonian of the Fateev-Zamolodchikov Zn spin chain

H(N) = − 1

n

N∑
s=1

n−1∑
l=1

(Xs)
l +
(
UsU

†
s+1

)l
sin
(
πl
n

) ∣∣∣∣∣
Z=ωj−m

2

(6.48)

with twisted boundary conditions

UN+1 = ωj+m
2 U1 . (6.49)

It also commutes with the lattice shift operator

P(N) = δα1
β2
δα2
β3
. . . δαNβ1+j+m

2

∣∣∣
Z=ωj−m

2
. (6.50)

Our numerical work for the vacuum state of the Hamiltonian H(N) in the sector H(N)

j−m
2

for different admissible values of n, j and m gives strong support to the following

relations (see Appendix D)

τ(λ) = slim
N→∞

F (N)(λ) T (N)
((

π
N

) 1
n λ
)
, (6.51)

where

F (N)(λ) =


exp

(∑[n
2

]

l=1
π

2l
n

l cos(πl
n

)
N1− 2l

n λ2l
)

(n 6= 2, 4, . . .)

(
Ne
π

) 4
n
λn

exp
(∑[n

2
]−1

l=1
π

2l
n

l cos(πl
n

)
N1− 2l

n λ2l
)

(n = 2, 4, . . .)

,(6.52)
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and the symbol “slim” in (6.51) stands for the scaling limit which assumes that only

the low-energy states are taken into account. The operator τ(λ) in (6.51) should be

understood as the chiral parafermionic transfer-matrix (6.13) acting in the space V(m)
j

discussed in the previous subsection.

Similarly to (6.51), one can consider the scaling limit

slim
N→∞

F (N)(λ−1) (−1)N µ−2N T (N)(µ)
∣∣∣
µ=(π/N)

1
n λ−1

.

This can be identified with the anti-chiral parafermionic transfer-matrix τ̄(λ−1) acting

in the space V(2j)

j . Therefore, in the scaling limit, (at least some of) the low energy

states of H(N)

j−m
2

organize into the sector V(m)
j ⊗ V(2j)

j of the Zn CFT Hilbert space. In

this sector the low energy spectrum of the Hamiltonian (6.48) and the corresponding

eigenvalues of the lattice shift operator have the form

E(N) = e0N + 2π
N

(
∆j,m + ∆j, 2j − cn

12
+ L+ L̄

)
+ o
(
N−1

)
P (N) = exp

(
2πi
N

( ∆j,m −∆j, 2j + L− L̄ )
)
, (6.53)

where e0 is some constant and L and L̄ are integers. The central charge and conformal

dimensions are given by eqs. (6.3) and (6.9), respectively.

Returning to the formal operator T (N)(µ) (6.40)-(6.45) for arbitrary values of n,

we note that the case of real (p1, p2) is of prime interest to the cigar NLSM. Perhaps

the most promising approach to the construction of a suitable representation of the

algebra (6.43) and the diagonalization of T (N)(µ) is based on the method of separation

of variables [127].

6.3 Spectrum of the chiral transfer-matrix

In the previous sections the construction of the chiral transfer-matrices has been

discussed. We are now ready to tackle the calculation of their spectrum. A powerful
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approach to this problem is the ODE/IQFT correspondence and here, we’ll illustrate

the method by calculating the vacuum eigenvalues of τ(λ).

6.4 Operators ζ±(θ)

As it was already mentioned, a comprehensive discussion of the diagonalization pro-

cedure of the discretized chiral transfer-matrix T (N)(µ) (6.40)-(6.45) will be dealt

with in a separate publication. However, it would be useful here to make a short

summary of the important integrable structures which play a crucial rôle in the pro-

cedure. Namely, it is possible to explicitly construct two matrices Z±(µ) satisfying

the following set of conditions:2

(i) Commutativity

[
Z±(µ),Z±(µ′)

]
=
[
Z+(µ),Z−(µ′)

]
= 0

[
Z±(µ), T (N)(µ′)

]
=
[
Z±(µ),H(N)

]
=
[
Z±(µ),P(N)

]
= 0

(ii) “Quantum Wronskian” type relations

Odd n:

(1 + µ)2N Z+(q−
1
2µ)Z+(q+ 1

2µ)− (1− µ)2N Z−(q−
1
2µ)Z−(q+ 1

2µ) = W (µ) P(N)

Even n:

Z+(q−
1
2µ)Z+(q+ 1

2µ)− (1− µ2)2N Z−(q−
1
2µ)Z−(q+ 1

2µ) = W (µ) P(N)

with

W (µ) = (1 + µn
)2N − (1− µn

)2N

2All matrices appearing below are understood as operators acting invariantly in H(N)
j−m

2
– the

eigenspace of Z in
(
Cn
)⊗N

corresponding to the eigenvalue ωj−m
2 , where j and m are restricted as in

(6.14).
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(iii) “T −Q” type relations

Odd n:

T (N)(µ)Z±(µ) = (1∓ q−
1
2 µ)2N Z∓(q−1µ) + (1∓ q+ 1

2 µ)2N Z∓(q+1µ)

Even n:

T (N)(µ)Z−(µ) = Z+(q−1µ) + Z+(q+1µ)

T (N)(µ)Z+(µ) = (1− q−1 µ2)2N Z−(q−1µ) + (1− q+1 µ2)2N Z−(q+1µ)

(iv) Analytical conditions

Odd n:

Z±(µ) = µm ×
(

polynomial in µ of degree (n− 1)N − 2j−m
)

Even n:

Z+(µ) = µm ×
(

polynomial in µ2 of degree 1
2
nN − j− 1

2
m
)

Z−(µ) = µm ×
(

polynomial in µ2 of degree 1
2

(n− 2)N − j− 1
2
m
)

(v) µ→ −µ symmetry

Odd n : Z±(−µ) = (−1)m Z∓(µ)

Even n : Z±(−µ) = (−1)m Z±(µ)

The scaling limit of the operators Z±(µ) is of special interest. In Appendix E we

present evidence that the following scaling limits, similar to (6.51), do exist:

Odd n : ζ± = λ∓2λn slim
N→∞

G(N)(±λ) Z±
((

π
N

) 1
n λ
)

(6.54)
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Even n : ζ+ = slim
N→∞

G
(N)
+ (λ) Z+

((
π
N

) 1
n λ
)

ζ− = λ4λn slim
N→∞

G
(N)
− (λ) Z−

((
π
N

) 1
n λ
) (6.55)

with

G(N)(λ) =
(eN

π

)− 2(n−1)
n

λn

exp

( n−1∑
l=1

(−1)l+1 π
l
n

l cos( πl
2n

)
N1− l

n λl
)

G
(N)
+ (λ) =

(eN

π

)−2λn

(6.56)

G
(N)
− (λ) =

(eN

π

) 2(n−2)
n

λn

exp

(
−

n
2
−1∑
l=1

π
2l
n

l cos(πl
n

)
N1− 2l

n λ2l

)
.

Notice that for odd n, we include the “strange” extra factor λ∓2λn in the formula for

ζ±. A similar factor λ4λn appears for ζ− with even n. At first glance they look artificial

and, furthermore, make ζ± multivalued functions of λ. However, these “strange”

factors allow one to write the scaling version of the quantum Wronskian type relations

(ii) in a form which is applicable for both odd and even n:

ζ+

(
θ + iπ

2

)
ζ+

(
θ − iπ

2

)
− ζ−

(
θ + iπ

2

)
ζ−
(
θ − iπ

2

)
= 2 sinh

(
2πeθ

)
. (6.57)

Here we have introduced θ,

λ = e
θ
n (6.58)

and later we’ll argue that ζ± are single valued functions of this variable. The T −Q

type relations (iii) in the scaling limit also have the same form for odd and even n,

τ(λ) ζ±(θ) = ζ∓(θ − iπ) + ζ∓(θ + iπ) . (6.59)

Since the operator τ(λ) acts in the parafermionic space V(m)
j it is natural to expect

that the same holds true for ζ±(θ).

The relations (6.57) and (6.59) work for n = 2, 3, 4 . . . , but is it possible to

extend them to non-integer n? We conjecture, that for any n > 0 and general values
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of (p1, p2), there exists a pair of operators which act invariantly in the Fock level

subspaces

ζ±(θ) : F (L)
p1,p2
7→ F (L)

p1,p2
(6.60)

such that

[ζ±(θ), ζ±(θ′)] = [ζ+(θ), ζ−(θ′)] = [ζ±(θ), τ(λ′)] = 0 , (6.61)

satisfying the relations (6.57) and (6.59).

Unfortunately, at this moment we don’t know how to explicitly construct the

operators (6.60). Nevertheless, there are strong physical arguments that they do

exist. In the works [114] and [115], ζ+ and ζ− were introduced and studied for real

(p1, p2), as the boundary state operators in the paperclip model with topological

angle equal to 0 and π, respectively.3 Among the results of those works is the large-θ

behaviour. It was proposed that the operators ζ± possess the following asymptotic

at θ → +∞:

ζ+(θ) � exp
(
−
(

2θ + π cot
(
πn
2

)
− C

)
eθ −

∞∑
j=1

i2j−1 e−θ(2j−1)
)

(6.62)

ζ−(θ) � τ̃
(

e−
θ

n+2

)
exp

( (
2θ − π cot

(
πn
2

)
− C

)
eθ +

∞∑
j=1

i2j−1 e−θ(2j−1)
)
.

Here τ̃(λ̃) is the formal series (5.30) generating the set of dual nonlocal IM while

{i2j−1}∞j=1 is the infinite set of local IM (5.58)-(5.62). The real constant C is non-

universal and can be chosen at will. In ref.[114], it was set to π cot
(
πn
2

)
. For our

purposes it is convenient to set it to zero,

C = 0 . (6.63)

With this choice it turns out that for odd n and (p1, p2) restricted by the conditions

(6.10),(6.14), ζ± are the same functions that appear in the scaling limit (6.54). How-

ever, one can see from eq.(6.62) that the operators ζ± become singular for even n.

3In the notations of ref. [114]: B(κ) = 2−
1
2 exp(2θ eθ) ζ+(θ), provided κ = eθ.
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They can be analytically regularized similar to as in eq. (5.36),

ζ
(reg)
± (θ)

∣∣
n=2l

= lim
ε→0

exp
(

2
ε

eθ
)
ζ±(θ)

∣∣
n=2l+ε

(l = 1, 2, 3 . . .) . (6.64)

When the regularized operators are restricted to the parafermionic space V(m)
j , they

are the same as the ones on the left hand side of eq. (6.55).4

It is expected that the operators ζ± are entire functions of θ (in the sense that all

their matrix elements and eigenvalues are entire functions of this variable) satisfying,

for real (p1, p2), the Hermiticity condition

[
ζ±(θ)

]†
= ζ±(θ∗) . (6.65)

As it was pointed out, the asymptotic formulae (6.62) are written for large positive

θ, however in all likelihood, they hold true for complex values, at least in the strip

|=m(θ)| < π with <e(θ)→ +∞.

Also, it deserves mentioning that the chiral transfer-matrices τj(λ) with j =

0, 1
2
, 1, . . . , can be expressed in terms of the operators ζ±(θ). Namely, for j = 1

2
, 3

2
, . . .

τj(λ) =
(−1)j+

1
2

2 sinh(2πi eθ)
(6.66)

×
[
ζ+

(
θ − iπ(j + 1

2
)
)
ζ−
(
θ + iπ(j + 1

2
)
)
− ζ−

(
θ − iπ(j + 1

2
)
)
ζ+

(
θ + iπ(j + 1

2
)
)]

whereas for j = 0, 1, . . .

τj(λ) =
(−1)j

2 sinh(2πeθ)
(6.67)

×
[
ζ+

(
θ − iπ(j + 1

2
)
)
ζ+

(
θ + iπ(j + 1

2
)
)
− ζ−

(
θ − iπ(j + 1

2
)
)
ζ−
(
θ + iπ(j + 1

2
)
)]
.

where λ and θ are related as in eq. (6.58). With these formulae the fusion relation

(5.27), as well as the T −Q type relations (6.59), are satisfied identically.

Finally, let us consider the “µ → −µ symmetry” relations (v). It is easy to see

that in the scaling limit they become

4Here, we have abused notation because the ζ± in (6.55) denote the continuous operators obtained
by means of the lattice regularization procedure.
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ζ±(θ + iπn) = (−1)m e±2πieθ ζ∓(θ) (n− odd) (6.68)

and

ζ+(θ + iπn) = (−1)m ζ+(θ) (n− even) (6.69)

ζ−(θ + iπn) = (−1)m e4πieθ ζ−(θ) .

As we will see below, these equations are not satisfied for non-integer n and only hold

for the admissible values of j and m (6.14). In these particular cases, they can be used

to truncate the so called Y -system – the chain of relations for Yj(λ) ≡ τj− 1
2
(λ) τj+ 1

2
(λ)

(see, e.g., refs.[50, 52]). In turn, the truncated Y -system allows one to derive the set

of TBA equations from which the eigenvalues of the chiral transfer-matrices can be

computed. For the vacuum eigenvalues with j = m = 0, the TBA system can be

found in ref.[115].

6.5 ODE/IQFT correspondence for the vacuum eigenvalues

Let us first consider the vacuum eigenvalues ζ
(vac)
± (θ) of the operators ζ±(θ) corre-

sponding to the real pair (p1, p2). The main ingredient in the ODE/IQFT correspon-

dence for this case, is the ordinary differential equation[
− d2

dx2
− p2

1

ex

1 + ex
+
(

1
4
− p2

2

) ex

(1 + ex)2
+ e2θ

(
1 + ex

)n]
Ψ(x) = 0 . (6.70)

We assume for the moment that θ is real. Eq. (6.70) has the form of a stationary zero

energy Schrödinger equation with the potential V (x) given by the last three terms in

(6.70). The potential V (x) is positive and grows fast at large positive x so that (6.70)

has a solution Ξ(x) decaying at x → +∞; this condition specifies Ξ(x) uniquely up

to normalization. To fix the normalization, we assume that

Ξ(x)→ e−
θ
2 exp

(
−
(
n
4

+ eθ
)
x− eθ

∫ ex

0

du

u

(
(1 + u)

n
2 − 1

))
(6.71)
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as x → +∞. On the other hand, V (x) approaches the positive constant e2θ at large

negative x. Hence eq. (6.70) has a solution which decays for large negative x; we

denote this solution Ψ+(x). The condition,

Ψ+(x)→
√
π

exp
(
eθ x
)

Γ(1 + 2 eθ)
as x→ −∞ , (6.72)

specifies the solution Ψ+(x) uniquely, including its normalization. Then

ζ
(vac)
+ (θ) = exp

(
C+ eθ

)
W
[
Ξ,Ψ+

]
, (6.73)

where

C+ = −π cot
(
πn
2

)
+ 2 log(2)− 2 (6.74)

and W [f, g] denotes the Wronskian f(x)g′(x)− g(x)f ′(x). Eq. (6.73) was proposed in

the work [114].

In the paper [115] this was extended to the vacuum eigenvalue ζ
(vac)
− (θ). The

starting point was the same differential equation (6.70), but instead of Ψ+ in (6.73),

another solution which grows as exp(−eθx) at large negative x was taken. Of course,

this condition alone does not define the solution uniquely since, besides the overall

normalization, one can always add any amount of Ψ+(x). It is usually difficult to

define a growing solution unambiguously, but in our case the following property of

(6.70) helps. Let us consider x as a complex variable. The potential V (x) is an

analytic function of x with branch-point singularities at all points where ex turns

to −1. Let us make branch cuts starting at each of the points x = iπ (2N + 1),

N = 0,±1,±2, . . . and going to +∞ parallel to the real axis, and choose the branch

of V (x) for which (1 + ex)n is real and positive on the real axis of the x-plane.

Restricting attention to the domain <e(x) < 0, one finds that the potential V (x) has

the periodicity property

V (x+ 2πi) = V (x)
(
<e(x) < 0

)
. (6.75)
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Consequently, equation (6.70) has two Bloch-wave solutions (2eθ 6∈ Z):

Ψ±(x+ 2πi) = e±2πi eθ Ψ±(x)
(
<e(x) < 0

)
, (6.76)

where the Bloch factors can be found by taking the limit <e(x) → −∞. At this

point we assume that 2eθ is not an integer, so that the conditions (6.76) specify

two independent solutions Ψ±(x) uniquely, up to their normalizations. Of course,

the solution Ψ+(x) defined this way decays as exp(eθx) at <e(x) → −∞, and the

asymptotic condition (6.72) also fixes its normalization. The solution Ψ−(x) grows

at large negative <e(x), and its normalization can be fixed by specifying the leading

asymptotic in this domain. Thus we define Ψ−(x) by the conditions

Ψ−(x+ 2πi) = e−2πi eθ Ψ−(x)
(
<e(x) < 0

)
(6.77)

Ψ−(x)→
√
π

exp
(
− eθ x

)
Γ(1− 2 eθ)

as <e(x)→ −∞ .

It is possible to show that both Ψ+(x) and Ψ−(x) defined by (6.72) and (6.77) are

entire functions of eθ, and

Ψ−
(
x | eθ

)
= Ψ+

(
x | − eθ

)
, (6.78)

where we temporarily exhibited the dependence of Ψ± on the parameter eθ. From

the definitions (6.72) and (6.77) we have

W
[
Ψ−,Ψ+

]
= sin(2πeθ) . (6.79)

The proposal in [115] was that

ζ
(vac)
− (θ) = exp

(
C− eθ

)
W
[
Ξ,Ψ−

]
, (6.80)

where

C− = −π cot
(
πn
2

)
− 2 log(2) + 2− 2γE − 2ψ(1 + n

2

)
(6.81)

with ψ(z) = ∂z log Γ(z) and γE stands for the Euler constant.
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There is much evidence to support the remarkable relations (6.73) and (6.80).

Some of them are based on WKB analysis of the differential equation (6.70). Using

the method of semiclassical expansion, one can systematically study the Wronskians

in (6.73), (6.80) at θ → +∞. This yields asymptotic expansions whose structures

turn out to be identical to the one for ζ
(vac)
± following from eq. (6.62). Furthermore

the WKB calculations give non-trivial predictions for the vacuum eigenvalues of the

local and dual nonlocal IM. On the other hand, these vacuum eigenvalues can be

directly calculated from their definitions. For example, the vacuum eigenvalue of the

first dual nonlocal IM is given by eq. (5.35), while it is a simple exercise to find the

vacuum eigenvalue of the first local IM i1:

i1(p1, p2) = − 1

12
+
p2

1

n
+

p2
2

n+ 2
. (6.82)

It turns out that the results of the WKB analysis are in full agreement with these

direct calculations.

Let us discuss now the θ → −∞ form of the Wronskians in (6.73) and (6.80).

The perturbative evaluation of the solutions Ξ(x) and Ψ±(x) leads to the expansions

[114, 115]

e±πκ cot(πn
2

) ζ
(vac)
± (θ) = Bp1,p2 e

2ip1θ
n F±(θ | p1, p2) +B−p1,p2 e−

2ip1θ
n F±(θ | − p1, p2) ,

(6.83)

where

Bp1,p2 =
√
n n−

2ip1
n

Γ(−2ip1)Γ(1− 2ip1

n
)

Γ(1
2
− p2 − ip1)Γ(1

2
+ p2 − ip1)

(6.84)

and

F±(θ |p1, p2) =
∞∑

i,j=0

fi,j(p1, p2) (±1)i e(i+ 2j
n

)θ (6.85)
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with

f0,0 = 1 (6.86)

f0,1 = −
Γ(1

2
+ 1

n
)Γ(1− 1

n
)

2
√
π

( 2

n

) 2
n
−1
(
n+ 2

n− 2
+

4p2
2

1 + 4p2
1

)
Γ(1− 1

n
− 2ip1

n
)

Γ(1−2ip1

n
)

f1,0 = −ψ
(

1
2
− p2 − ip1

)
− ψ

(
1
2

+ p2 − ip1

)
+ ψ

(
− n

2

)
+ γE + 2 log(2)− 2 .

Note that the integer powers of eθ in (6.85) come from the perturbative expansion

of the solution Ψ±(x). In view of (6.78), these powers in F+ are related to the

corresponding powers in F− by a change of sign, eθ → −eθ. At the same time, the

powers of e
2θ
n are the result of the expansion of Ξ(x), and hence they are the same in

F− and F+.

One of the important properties of the Wronskians on the right hand side of

eqs.(6.73), (6.80), is that for a given θ, they are entire functions in both complex

variables p2
1 and p2

2. Thus it is perfectly fine to consider them for pure imaginary

values of p1. Let’s set p1 = i
2
m, p2 = j + 1

2
and assume that m ≥ 0. In this notation,

the coefficient Bp1,p2 (6.84) contains the factor Γ(−j + m
2
) in the denominator, and

therefore vanishes when j − m
2

is a non-negative integer. At the same time, the

coefficient B−p1,p2 takes the form B−p1,p2 = Bs(m) with

Bs(m) =
√
n n−

m
n Γ
(

1− m

n

) (−1)s

s!

Γ(1 + m + s)

Γ(1 + m)

(
s = j− 1

2
m = 0, 1, 2, . . .

)
(6.87)

which remains finite for the discrete set of j and m (6.14) corresponding to the

bosonization of the parafermionic spaces V(m)
j . The vanishing of the coefficient Bp1,p2

does not actually mean that we can neglect the first term in the sum (6.83) –

the expansion coefficients in F±(θ|p1, p2) may become singular for (p1, p2) given by

eqs. (6.10), (6.14). Nevertheless, analysis shows that such “resonances” occur only for

the terms ∝ e(−m
n

+i+ 2j
n

)θ with i ≥ 0 and j ≥ m, i.e., having the same form as mono-

mials in the double sum e
m
n
θ F±(θ | − p1, p2). Notice that for integer n, the double

summations in F± can be replaced by a single one. This yields the formulae for the
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regularized (see eq. (6.64)) vacuum eigenvalues in the parafermionic spaces V(m)
j :

ζ
(vac)
± (θ) =


Bs(m) λ∓2λn λm

(
1 +

∑∞
j=1 fj (±λ)j

)∣∣∣∣
λ=e θn

(n− odd)

Bs(m) λ(2∓2)λn λm
(

1 +
∑∞

j=1 f
(±)
j λ2j

)∣∣∣∣
λ=e θn

(n− even) .

(6.88)

The appearance of the “strange” factors, λ∓2λn , λ(2∓2)λn here can be understood as

follows. The Wronskians in the l.h.s. of eqs. (6.73) and (6.80) are, of course, non-

singular functions of (p1, p2) and n > 0.5 However, the individual coefficients fi,j in

(6.85) become singular for some values of the parameters, as it can be seen from the

explicit formulae (6.86). When the values of the parameters are restricted to the

parafermionic case, the singularities from the different coefficients must cancel each

other giving rise to terms ∝ θmelθ which sum up to yield the “strange” factors in

(6.88). Notice also that some of the coefficients in these series expansions are known

explicitly. In Appendix E their values are compared with the corresponding results

obtained from the vacuum eigenvalues of the finite matrices Z±(µ).

We now return to the differential equation and consider the solution Ξ in more

detail. For complex θ, the asymptotic condition (6.71) unambiguously defines Ξ(x | θ)

in the strip
∣∣=m(θ)

∣∣ ≤ π
2

including its boundary. The two functions Ξ(x | θ+ iπ
2

) and

Ξ(x | θ − iπ
2

), with real θ, form a linear basis in the space of solutions of (6.70) with

e2θ substituted by (−e2θ), since as it follows from (6.71),

W
[

Ξ(x | θ + iπ
2

), Ξ(x | θ − iπ
2

)
]

= 2i . (6.89)

On the other hand, formulae (6.73), (6.80) and (6.79) imply

Ξ(x | θ) =
exp(ξ eθ)

sin(2πeθ)

(
ζ

(vac)
+ (θ) e−ce

θ

Ψ+

(
x | − eθ

)
− ζ(vac)

− (θ) e+ceθ Ψ+

(
x |+ eθ

) )
(6.90)

5 The only singularities at n = 2, 4, . . . are produced by the cotangent which shows up in the
expression for the constants C± (6.74), (6.81). The reason that this term was included in the
definition of ζ± is that we would like the T − Q type relations to have the simple canonical form
(6.59).
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which can be used to express Ξ(x | θ± iπ
2

) in terms of Ψ+(x| ± ieθ) and then calculate

the l.h.s. of (6.89). This yields the quantum Wronskian type relation (6.57) specified

at the vacuum eigenvalues of ζ±(θ). Notice that in eq. (6.90) we use the constants

ξ = −1
2

(C+ + C−) and c = 1
2

(C+ − C−). Of course, the factors exp(±c eθ) which

appear in this formula can be included in the definition of the solutions Ψ±. With

the value of c determined by eqs. (6.74), (6.81), the constant C, appearing in the

asymptotic expansions (6.62) for ζ±(θ), vanishes. The constant

ξ = −1
2

(C+ + C−) = π cot
(
πn
2

)
+ γE + ψ(1 + n

2

)
(6.91)

can also be absorbed into the definition of the solution Ξ(x).

Let us assume that the solution Ξ(x | θ) can be unambiguously continued to the

whole complex plane from the strip
∣∣=m(θ)

∣∣ ≤ π
2
.6 Then the function Ξ(x | θ+iπ(2j+

1
2
)
)

with j = 0, 1
2
, 1, . . . solves the differential equation (6.70) with e2θ 7→ (−e2θ) and

can be linearly expressed in terms of the two basic solutions Ξ(x | θ ± iπ
2

)

Ξ(x | θ + iπ(2j + 1
2
)
)

= aj(θ) Ξ
(
x | θ − iπ

2

)
+ bj(θ) Ξ

(
x | θ + iπ

2

)
. (6.92)

With manipulations similar to those which lead to the quantum Wronskian type

relations, it is straightforward to show that

aj(θ) = −bj− 1
2
(θ + iπ) (6.93)

and the bj
(
θ − iπj

)
are given by the r.h.s. of (6.66), (6.67) where the operators ζ±

are substituted by their vacuum eigenvalues. Hence we conclude that

τ
(vac)
j (θ) = bj(θ − iπj) . (6.94)

6.6 ODE/IQFT correspondence for the full spectrum

In the previous subsection, our analysis was restricted to the vacuum eigenvalues. As

a matter of fact, along the line of ref. [55], it can be extended to the whole spectrum

6It is expected that Ξ(x | θ) is an entire function of θ. However at this moment, we don’t have a
rigorous proof of this statement.
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of the commuting families of operators. This was already done for a more general

case in the work [90]. Here we give a sketch of the construction.

Let z be the the complex coordinate on CP1\{z1, z2, z3}, the Riemann sphere with

three punctures. Consider the second order Fuchsian differential operator −∂2
z+T0(z),

with T0(z) given by

T0(z) = −
3∑
i=1

( δi
(z − zi)2

+
ci

z − zi

)
(6.95)

and the δi are regarded as independent parameters, whereas the ci are unambiguously

defined by the constraints

3∑
i=1

ci = 0 ,
3∑
i=1

(zi ci + δi) = 0 ,
3∑
i=1

(z2
i ci + 2 ziδi) = 0 . (6.96)

The equation

(
− ∂2

z + T0(z)
)
ψ = 0 (6.97)

is a second-order differential equation with three regular singular points. For a generic

choice of the parameters δi, it can be brought to the standard hypergeometric form

by a change of variables. In the papers [128], a deformation of (6.97) was introduced,

of the form

D0(θ)ψ = 0 , D0(θ) = −∂2
z + T0(z) + e2θ P(z) , (6.98)

where θ stands for an arbitrary complex parameter and

P(z) =
(z3 − z2)a1 (z3 − z1)a2 (z2 − z1)a3

(z − z1)2−a1(z − z2)2−a2(z − z3)2−a3
(6.99)

with

a1 + a2 + a3 = 0 . (6.100)

Notice that, because of the last relation, P(z) (dz)2 transforms as a quadratic dif-

ferential under the PSL(2,C) group, so that the punctures z1, z2, z3 on the Riemann

sphere can be sent to any desirable positions.
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The immediate object of our interest is a particular case of the differential equation

(6.98) with

a1 = −n , a2 = n+ 2 , a3 = 0 (6.101)

and

δ1 = 1
4

+ p2
1 , δ2 = 1

4
− p2

2 , δ3 = 1
4
. (6.102)

Indeed, the change of variables

ex =
z − z3

z − z1

z2 − z1

z3 − z2

, Ψ(x) (dx)−
1
2 = ψ(z) (dz)−

1
2 , (6.103)

brings equation (6.70) to the form (6.98) specialized to this set of parameters.

As it was explained in [90], the description of the spectrum of the commuting

family of transfer-matrices in the Fock level subspaces F (L)
p1,p2 is based on a differen-

tial equation of the form similar to (6.98), where the differential operator D0(θ) is

substituted by

D(θ) = −∂2
z + TL(z) + e2θ P(z) , (6.104)

which has 3 +L singular points at z = z1, z2, z3 and also z = x1, . . . , xL. The form of

TL(z), including the positions of the extra singularities, z = x1, . . . , xL, is determined

by the requirement that the monodromy properties of the solutions to the equation

D(θ)ψ(z) = 0 are identical to those for D0(θ)ψ(z) = 0. It turns out that this

requirement can be fulfilled if the set of complex numbers {xi}Li=1 obey a system of

L algebraic equations similar to that from [55, 129, 130].

As we saw in the previous subsection, the vacuum eigenvalues of the operators

ζ±(θ) and τ(θ) can be identified with certain connection coefficients for the differential

equation (6.70), or equivalently for (6.98)-(6.102).7 Of course, similar connection

7By “connection coefficients” we understand the θ-dependent functions which allow one to relate
different bases in the linear space of solutions of the ordinary differential equation, see eqs.(6.90)
and (6.92).
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coefficients can be associated to the more general differential operator (6.104). Since

the singularities of the potential TL(z) at z = x1, . . . , xL do not affect the monodromy

properties of the solutions of D(θ)ψ(z) = 0, all the relations between the connection

coefficients remain unchanged. This allows one to identify them with specializations

of the operator relations like (6.57), (6.59), (6.66), (6.67) and (6.62), to the eigenvalues

of the commuting families of operators.

6.7 Operators β±(θ) and α±(θ)

With the philosophy of the ODE/IQFT correspondence in mind, let us return to the

differential equation (6.70). It has three singular points at ex = 0, ∞, −1, and we have

already discussed the canonical bases in the space of solutions in the neighbourhood

of two of them, ex = 0 and∞. We now consider the basis which is canonically defined

in the vicinity of ex = −1. For this purpose it is convenient to perform a change of

variables

e−x = −1− e−y , Ψ(x) = (1 + ey)−
1
2 Ψ̃(y) , (6.105)

which brings (6.70) to the form[
− d2

dy2
+ p2

2

ey

1 + ey
+
(

1
4

+ p2
1

) ey

(1 + ey)2
+ e2θ

(
1 + ey

)−n−2
]

Ψ̃(y) = 0 .(6.106)

For p2 > 0 the differential equation (6.106) admits a unique solution such that

Θ̃+(y)→
√

π

n+ 2
(n+ 2)−

2p2
n+2

e−p2y

Γ(1 + 2p2

n+2
)

as y → +∞ . (6.107)

For complex p2, one can show that the solution is a meromorphic function, analytic

in the half plane <e(p2) ≥ 0. Since the equation (6.106) is invariant w.r.t. the

substitution p2 7→ −p2, for generic values of p2 one can define the second linear

independent solution uniquely by analytic continuation Ap2 7→e±iπp2
to the half plane

<e(p2) < 0:

Θ̃−(y | e2θ, p2) = Ap2 7→e±iπp2

[
Θ̃+(y | e2θ, p2)

]
, (6.108)
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and it is easy to see that

W
[

Θ̃+, Θ̃−
]

= sin
(

2πp2

n+2

)
. (6.109)

Notice that both these solutions are entire functions of the variable e2θ whose depen-

dence is emphasized in the formula (6.108).

As y → −∞, eq. (6.106) admits the two linearly independent solutions

Ψ̃±(y)→
√
π

exp
(
± eθ y

)
Γ(1± 2 eθ)

as y → −∞ . (6.110)

Of course, Ψ̃±(y) are obtained from Ψ±(x) (6.72), (6.77) by means of the coordinate

transformation (6.105):

Ψ±(x) (dx)−
1
2 = exp

(
∓ iπ eθ

)
Ψ̃±(y) (dy)−

1
2 . (6.111)

Here the extra phase factor appears because of slightly different normalizations:

Ψ±(x) were defined in such a way that they stay real for real x and real values

of the parameters, whereas Ψ̃±(y) (6.110) are real for real y which is related to x as

e−y = −1− e−x. It is important to keep in mind the presence of such phase factors,

because they affect the reality conditions for the connection coefficients.

Following the philosophy of the ODE/IQFT correspondence, we consider the con-

nection coefficients for the bases
{

Ψ̃±(y)
}

and
{

Θ̃±(y)
}

and interpret them as vacuum

eigenvalues of certain operators β±(θ):

e+ceθ Ψ̃+(y | eθ
)

=
1

2 sin(2πp2

n+2
)

(
β

(vac)
+ (θ) Θ̃−

(
y | e2θ

)
− β(vac)

− (θ) Θ̃+

(
y | e2θ

) )
.(6.112)

The relation for e−ce
θ

Ψ̃− is similar with β
(vac)
± (θ) substituted by β

(vac)
± (θ+iπ). Notice

that it is expected that

β±(θ + iπ) = β±(θ − iπ) . (6.113)

Further, the operators β± are entire functions of the variable eθ and can be written

in the form of a convergent series

β±(θ) = b±

(
1 +

∞∑
m=1

b(±)
m emθ

)
. (6.114)
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The reality condition for the connection coefficients β
(vac)
± (θ) suggests the Hermiticity

[
β±(θ)

]†
= β±(θ∗) . (6.115)

Using the definition (6.112), one can express the Wronskian W
[

Ψ̃−, Ψ̃+

]
in terms

of the connection coefficients β
(vac)
± . On the other hand, as follows from (6.110), it is

equal to sin(2πeθ). This yields the quantum Wronskian relation

β+

(
θ + iπ

2

)
β−
(
θ − iπ

2

)
− β−

(
θ + iπ

2

)
β+

(
θ − iπ

2

)
= −4i sinh

(
2πeθ

)
sin
(

2πp2

n+2

)
,(6.116)

where the superscript “(vac)” is omitted, since we expect that it holds true for all

eigenvalues of the operators β±.

It turns out that the operators (6.114), acting in the Fock space Fp1,p2 , and sat-

isfying the commutativity conditions

[
βσ(θ), βσ′(θ

′)
]

=
[
βσ(θ), τ(θ′)

]
= 0

(
σ, σ′ = ±

)
, (6.117)

can be defined explicitly. Their construction lies beyond the scope of this work. Here

we just mention that it is similar to the construction of the Uq(ŝl2) Q-operators from

refs.[51, 52].

The last set of connection coefficients relates the basis in the space of solutions

canonically defined at the singular point ex = ∞ with that defined at ex = −1, or,

equivalently ey = −1 with ey = 0. Let Ξ̃(y) ≡ (1 + ey)
1
2 Ξ(x)|x(y). Then it can be

written in the form similar to (6.90) and (6.112):

Ξ̃(y | θ) =
exp(ξ eθ)

sin(2πp2

n+2
)

(
a+(θ) Θ̃−

(
y | e2θ

)
− a−(θ) Θ̃+

(
y | e2θ

) )
. (6.118)

Since for real y, the solution Ξ̃(y) is complex, the reality condition looks simpler if

we introduce α
(vac)
± (θ), such that

a±(θ) = i e∓iπp2 α
(vac)
±

(
θ − iπn

2

)
. (6.119)
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The latter turn out to be real functions for real θ and (p1, p2). Again, we interpret

them as the vacuum eigenvalues of the Hermitian operators α±(θ),

[
α±(θ)

]†
= α±(θ∗) , (6.120)

which are also expected to be entire functions of θ. Similar to the operators ζ±(θ),

one can obtain the quantum Wronskian relation

α+

(
θ − iπ

2

)
α−
(
θ + iπ

2

)
− α−

(
θ − iπ

2

)
α+

(
θ + iπ

2

)
= 2i sin

(
2πp2

n+2

)
(6.121)

and the T −Q relations, which now have the canonical form

τ(iλ) α±(θ) = α±(θ + iπ) + α±(θ − iπ) (6.122)

(
recall that τ(iλ) = τ(−iλ) and λ = e

θ
n

)
.

Using the WKB approximation, one can explore the asymptotic behaviour of the

connection coefficients for θ → +∞. This leads to the asymptotic expansions similar

to formulae (6.62) for ζ±(θ). In particular, it is expected that for <e(θ) → +∞ and

|=m(θ)| < π
2

(n+ 2),

α±(θ) � e∓iπp2 α̃±

(
e

iπ
2 e−

θ
n+2

)
exp

(
− π

sin(πn
2

)
eθ
)
, (6.123)

where α̃±(λ̃) stand for the formal power series of the form

α̃±(λ̃) =
(
λ̃
)±2p2 exp

(
−
∞∑
m=1

s̃(±)
m λ̃2m

)
. (6.124)

The coefficients {s̃(±)
m }∞m=1 are dual nonlocal IM, which are algebraically expressed

through the set {̃t(±)
m }∞m=1 by means of the formal T − Q relation (to be compared

with eq. (6.122)):

τ̃(λ̃) α̃±(λ̃) = α̃±
(
q̃ λ̃
)

+ α̃±
(
q̃−1λ̃

)
, (6.125)

where q̃ = e−
iπ
n+2 . Substituting the formal power series (5.30) and (6.124) in (6.125),

one can easily derive the relations between these two sets of dual nonlocal IM. For



117

example

s̃
(±)
1 =

t̃1
[1][1± 2p2]

, s̃
(±)
2 =

t̃2
[2][2± 2p2]

− t̃21
[1][2][1± 2p2][2± 2p2]

+
t̃21

2[1]2[1± 2p2]2
,

(6.126)

where we use the shortcut notation [x] = 2 sin( πx
n+2

).

Unlike for α±, the large-θ asymptotics of the operators β± include a contribution

from the local IM; for <e(θ)→ +∞ and |=m(θ)| < π, they read as

β±(θ) � α̃±

(
e−

θ
n+2

)
exp

(
− 2θ eθ −

∞∑
j=1

i2j−1 e−θ(2j−1)
)
. (6.127)

Finally, using the formulae (6.90), (6.111), (6.112), (6.118), (6.119), it is straight-

forward to show that the three sets of connection coefficients are not functionally

independent, they satisfy the relations

ζ+(θ) =
i e−iπeθ

2 sin(2πp2

n+2
)

[
e−iπp2 β−(θ)α+

(
θ − iπn

2

)
− e+iπp2 β+(θ) α−

(
θ − iπn

2

) ]
(6.128)

ζ−(θ) =
i e+iπeθ

2 sin(2πp2

n+2
)

[
e−iπp2 β−(θ + iπ)α+

(
θ − iπn

2

)
− e+iπp2 β+(θ + iπ)α−

(
θ − iπn

2

) ]
.

It turns out these formulae and the quantum Wronskian relations, supplemented by

the Hermiticity (6.65), (6.115), (6.120) and the analyticity of the operators α±(θ), β±(θ),

ζ±(θ) constitute a very restrictive set of conditions. In particular, it leads to the im-

portant relation (see Appendix F)

α±
(
θ− iπ(n+1)

2

)
α±
(
θ+ iπ(n+1)

2

)
−α±

(
θ− iπ(n−1)

2

)
α±
(
θ+ iπ(n−1)

2

)
=β±

(
θ− iπ

2

)
β±
(
θ+ iπ

2

)
.

(6.129)

6.8 NLIE for the vacuum eigenvalues

The ODE/IQFT correspondence allows one, in principle, to find the spectrum of the

commuting family of operators by numerically solving differential equations. Such

a numerical procedure is especially convenient for the calculation of the eigenvalues
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of the operators β±(θ). However, it is a highly non-trivial task to, say, extract the

eigenvalues of the chiral transfer-matrix τ(λ) directly from the differential equations.

Here we demonstrate how the functional relations and analytic conditions for the con-

nection coefficients can be used to derive a system of Non-Linear Integral Equations

(NLIE) which prove to be highly efficient in numerical work [131, 132, 133]. We will

mostly focus on the vacuum eigenvalues.

For our purposes it is useful to rewrite eq. (6.129) using the notation

eiε(θ) = exp
(
2πi (eθ − p2)

) α+

(
θ − iπn

2

)
α+

(
θ + iπn

2

) . (6.130)

Focusing on the case where the subscript in (6.129) is “+”, one has

1− e4π eθ+i ε
(
θ+

iπ
2

)
−i ε
(
θ− iπ

2

)
=

β+(θ − iπ
2

) β+(θ + iπ
2

)

α+

(
θ − iπ(n+1)

2

)
α+

(
θ + iπ(n+1)

2

) . (6.131)

In order to define the operator ε(θ) itself, one should specify the branch of the log-

arithm 1
i
log(eiε(θ)). This can be done by supplementing (6.130) with the leading

asymptotic behaviour

ε(θ)→ 4πeθ − 4πp2

n+2
+ o(1) as θ → +∞ , (6.132)

which is chosen to be consistent with the asymptotic formula (6.123). As follows

from eq. (6.120), the operator ε(θ), thus defined and acting in the Fork space Fp1,p2 ,

satisfies the Hermiticity condition

[
ε(θ)

]†
= ε(θ∗) . (6.133)

Let us emphasize that (6.131)-(6.133) are operator relations for the commuting family,

and therefore the same relations hold true for the eigenvalues corresponding to any

common eigenvector |ψ 〉 in the Fock space. Another important general property

(which justifies the “strange” first factor in the definition (6.130)) concerns the zeroes

of the eigenvalue β
(ψ)
+ (θ). Namely it is easy to show that (see Appendix F)

if θj : β
(ψ)
+ (θj) = 0 , then exp

(
iε(ψ)(θj − iπ)

)
= −1 . (6.134)
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Notice that since β
(ψ)
+ (θ) is a real analytic and periodic function in θ with period 2πi,

it is sufficient to consider its zeroes in the strip 0 ≤ =m(θ) ≤ π, only.

In the case of the vacuum eigenvalues, our numerical work suggests that for 2p2

n+2
>

−1
2

all the zeroes of β
(vac)
+ (θ) in the strip |=m(θ)

∣∣ ≤ π are simple, located on the

boundary =m(θ) = π, accumulate toward <e(θ)→ +∞ and satisfy the condition

ε(vac)(θj − iπ) = π (2j − 1) (j = 1, 2, . . .) . (6.135)

This “quantization condition” supplemented by the asymptotic formula (6.123), leads

to an equation determining the vacuum roots of β
(vac)
+ (θ) which is asymptotically exact

as j → +∞:

exp
(
θ

(vac)
j

)
≡ −ρj : ρj � 1

2

(
j − 1

2
+ 2p2

n+2

)
− 1

2π

∞∑
m=1

s̃m(p1, p2) sin
(

2πm
n+2

)
(ρj)

− 2m
n+2

(6.136)

where s̃m(p1, p2) stands for the vacuum eigenvalues of the dual nonlocal IM s̃+
m in

(6.124), (6.126). In particular

s̃1(p1, p2) = −
(n+ 2

2

) 2
n+2 Γ( 1

n+2
)Γ(1

2
− 1

n+2
)

4
√
π

[
n

n+ 4
− 4p2

1

1− 4p2
2

]
Γ(1 + 2p2+1

n+2
)

Γ(2p2−1
n+2

)
.

(6.137)

Additional analytical input required for the derivation of the NLIE, is the be-

haviour at <e(θ) → −∞. It can be studied along the following line: using the for-

mulae (6.128) and the quantum Wronskian relations one can express α
(vac)
+ in terms

of ζ
(vac)
± and β

(vac)
+ . The asymptotics of ζ

(vac)
± (θ) at θ → −∞ are given by eqs. (6.83).

The general structure of the θ → −∞ behaviour of β
(vac)
+ is dictated by the operator

valued series expansion (6.114). Using the differential equation (6.106), it is not dif-

ficult to find the following explicit expressions for the vacuum eigenvalues of the first

expansion coefficients:

b
(vac)
± (p1, p2) = (n+ 2)−

1
2
∓ 2p2
n+2

2π Γ(1± 2p2)

Γ(1
2
− ip1 ± p2) Γ(1

2
+ ip1 ± p2) Γ(1± 2p2

n+2
)

(6.138)
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and
(
to be compared with the coefficient f1,0 in eq. (6.86)

)
b

(±,vac)
1 (p1, p2) = −ψ

(
1
2
−ip1±p2

)
−ψ
(

1
2
+ip1±p2

)
+ψ
(
1+ n

2

)
+γE+2 log 2−2 . (6.139)

Now it is straightforward to derive the leading asymptotic behaviour of the vacuum

eigenvalue of the operator ε(θ) (6.130), (6.132). Below we list explicit formulae for

ε(vac)(θ) and for the vacuum eigenvalues of the operator

ω(θ) ≡ log
(

eiε(θ− iπ
2

)−iε(θ+ iπ
2

)−4πeθ − 1
)
, ω(θ)→ 4π eθ + o(1) as θ → +∞ .

(6.140)

(a) For real p1 6= 0 and p2 > −1
2
:

ε(vac)(θ) = −2πp2 +
1

i
log

[
sin
(

2p1

n
(θ0 − θ + iπn

2
)
)

sin
(

2p1

n
(θ0 − θ − iπn

2
)
)]+ o

(
θ−∞

)
(6.141)

exp
(
− ω(vac)(θ)

)
=

sinh2(π(n−1)p1

n
)

sinh(2πp1) sinh(2πp1

n
)

+
sin2(2p1

n
(θ0 − θ)

)
sinh(2πp1) sinh(2πp1

n
)

+ o
(
θ−∞

)
where

θ0 = log(n) +
n

4ip1

log

[
Γ(1 + 2ip1)Γ(1 + 2ip1

n
)

Γ(1− 2ip1)Γ(1− 2ip1

n
)

Γ2(1
2

+ p2 − ip1)

Γ2(1
2

+ p2 + ip1)

]
.

(b) For p1 = 0 and p2 > −1
2
:

ε(vac)(θ) = −2πp2 +
1

i
log

[
θ0 − θ + iπn

2

θ0 − θ − iπn
2

]
+ o
(
θ−∞

)
exp

(
− ω(vac)(θ)

)
=

(θ0 − θ)2

nπ2
+

1

4n
(n− 1)2 + o

(
θ−∞

)
, (6.142)

where

θ0 = log(n)− (1 + n) γE − nψ
(

1
2

+ p2

)
.

(c) For pure imaginary p1 ≡ i
2
m with 0 < m < n

2
and real p2 ≡ j + 1

2
such that

j− 1
2
m > −1:

ε(vac)(θ) = −π (2j + 1−m) +
2πmn−

2m
n

Γ2(1 + m)

Γ(1− m
n

)

Γ(1 + m
n

)

Γ2(1 + j + m
2
)

Γ2(1 + j− m
2
)

e
2mθ
n + o

(
e

2mθ
n

)
ω(vac)(θ) =

2m

n
θ − 2 log

[
n

1
2

+m
n

Γ(1 + j− m
2
)Γ(m)Γ(1 + m

n
)

2πΓ(1 + j + m
2
)

]
+O

(
e

2θ
n , eθ

)
.(6.143)
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Notice that eqs. (6.142) with p2 = j + 1
2

and

j = 1
2
, 1, . . . , 1

2

[
n
2

]
(n = 2, 3, 4, . . .) (6.144)

can be applied to the parafermion case with m = 0. For positive integer m, restricted

to

1 ≤ m ≤
[
n−1

2

]
, j− 1

2
m ≥ 0 , (6.145)

eqs. (6.143) should be used.

It is expected that for the cases (b) and (c), the function α(vac)(θ) does not have

any zeroes in the strip |=m(θ)| < π
2

(n+2). However, as it follows from the asymptotic

behaviour (6.141) and formula (6.130), for p1 6= 0 and p2 > −1
2

it has a sequence of

zeroes, {θ(α)
m }∞m=1, extending towards −∞ along the real axis such that

θ(α)
m = θ0 −

πn

2p1

m + o
(
(m/p1)−∞

)
(m = 1, 2, . . .) . (6.146)

Again, we expect that there are no other zeroes apart from {θ(α)
m }∞m=1 in the strip

|=m(θ)| < π
2

(n + 2). In principle, these properties should be rigorously derived

from the differential equation (6.106). Unfortunately, we don’t have a proof at this

moment and we formulate the statements as a conjecture. Notice that the domain

of applicability of the large-θ asymptotic expansion (6.123) is also restricted to the

same strip.

The outlined analytic properties fully determine all of the vacuum eigenvalues of

the commuting operators acting in the Fock space Fp1,p2 . Practically, they can be used

to derive a closed system of integral equations which involve the vacuum eigenvalues

of ε(vac)(θ) and ω(vac)(θ). A few useful formulae appearing in the intermediate steps

of the derivation are given in appendices F and G. With the parameters p1 and p2 as

in (b) and (c) above, the final result reads as follows:
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ε(θ − iγ) = 4π eθ−iγ − 2πk +

∫ ∞
−∞

dθ′

2πi

[
G(θ − θ′ − 2iγ)

(
L(θ′ − iγ)

)∗
− G(θ − θ′) L(θ′ − iγ)

]
+

∫ ∞
−∞

dθ′

2π
G1(θ − θ′ − iγ) log

(
1 + e−ω(θ′)

)
ω(θ) = 4π eθ + =m

[ ∫ ∞
−∞

dθ′

π
G1(θ − θ′ + iγ) L(θ′ − iγ)

]
(6.147)

−
∫ ∞
−∞

dθ′

π
G2(θ − θ′) log

(
1 + e−ω(θ′)

)
L(θ) = log

(
1 + e−iε(θ)

)
.

Here we drop the superscript “(vac)” in the notation for the vacuum eigenvalues, and

the star “∗” as usual, stands for complex conjugation. The constant γ is an arbitrary

number belonging to the open segment 0 < γ < π
2
. We also swap p2 for

k =
2p2

n+ 2
, (6.148)

and the kernels read explicitly as

G(θ) =
sin( 2π

n+2
)

(n+ 2) sinh( θ+iπ
n+2

) sinh( θ−iπ
n+2

)

G1(θ) =
sin( 2π

n+2
) sin( π

n+2
) sinh( 2θ

n+2
)

(n+ 2) sinh(
θ+ iπ

2

n+2
) sinh(

θ− iπ
2

n+2
) sinh(

θ+ 3iπ
2

n+2
) sinh(

θ− 3iπ
2

n+2
)

(6.149)

G2(θ) = G(θ)−
sin( 4π

n+2
)

2(n+ 2) sinh( θ+2iπ
n+2

) sinh( θ−2iπ
n+2

)
.

It is important to keep in mind that the integral equations should be supplemented

by the asymptotics for the vacuum eigenvalues given by eqs. (6.142)-(6.143). For real

p1 6= 0 and p2 > −1
2

(as in case (a) above) the integral equations must be modified by

adding extra source terms to the r.h.s. The corresponding NLIE is given by formulae

(G.1), (G.2) in appendix G along with some explanations.
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Figure 6.2: A plot of the scaling function τ̃ (vac) = τ (vac) × exp
(
2π (−λ2)

3
2

)
for the

parafermion vacuum with n = 3, and 2j = m = 1. The thick black line comes from
the numerical solution of the NLIE system (6.147). The blue curves are the same
as in the plot appearing in the right panel of fig. D.1 from Appendix D. They were
obtained from the numerical solution of the Bethe ansatz equations for finite N and
subsequently interpolating the data to N =∞. The large (−λ2) asymptotic is given
by eqs. (5.29), (5.30).

Once the system of NLIE is solved, the numerical data can be used to recon-

struct the vacuum eigenvalues of α(vac)(θ), β(vac)(θ) and τ (vac)(iλ). The corresponding

formulae are given by (F.6)-(F.7) from Appendix F. Expressions for the vacuum eigen-

values of the local and dual nonlocal integrals of motion are present there as well.

In fig. 6.2 numerical results for τ (vac) in the parafermionic vacuum with n = 3 and

2j = m = 1 (p1 = i
2
, p2 = 1) are shown alongside the results from the Bethe ansatz.

Also, for numerous cases, we compared the numerical results for the connection co-

efficients computed from the NLIE with those obtained by direct integration of the

ordinary differential equations (6.106). The agreement we found in all cases justifies

the assumptions made within the derivation of the NLIE system.
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Chapter 7

Integrable structures in the sausage

We now turn to the main subject of interest – the sausage model. First of all, we

recall some basic facts concerning this quantum field theory. For more details, see,

e.g., [116].

7.1 Basic facts about the quantum sausage

In chapter 2, we briefly touched on the one loop renormalization in the sausage model.

Let us introduce the renormalized coupling κr which substitutes the bare coupling κ

(5.3):

1− κr
1 + κr

= (E∗/E)
2
n . (7.1)

Here E stands for a typical energy scale, which, in the case under consideration, can

be identified with the inverse of the circumference of the space-time cylinder, R−1.

Recall also that n ≡ 2π
~ and E∗ is a RG invariant energy scale appearing in the

theory through the mechanism of dimensional transmutation. Within the one-loop

approximation the bare coupling is replaced by κr, so that the renormalized sausage

metric is given by

G
(ren)
ab dXadXb =

n

2π

(dφ)2 + (dα)2

1
2

(κ−1
r + κr) + 1

2
(κ−1

r − κr) cosh(2φ)
, (7.2)

where we use the pair of real coordinates Xa = (φ, α) (??). Consider the ultraviolet

regime where E � E∗, i.e., 1−κr � 1. In this case, the central region of the sausage
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depicted in fig. ?? looks like a long cylinder equipped with the flat metric. If one

formally sets κr = 1 in (7.2), ignoring the presence of the two infinitely separated

tips, then

G
(ren)
ab dXadXb ≈ n

2π

(
(dφ)2 + (dα)2

)
. (7.3)

The NLSM action corresponding to this metric has the form of the massless Gaussian

model1

A0 =
n

4π

∫
d2x

(
(∂µφ)2 + (∂µα)2

)
. (7.4)

We now apply the T -duality transformation to the field α, i.e., we replace α by the

T -dual field ϑ such that ∂µα = 1√
n+2

εµν∂νϑ (the difference between n and n + 2 is

ignored here, since n is assumed to be large). The substitution of (φ, α) by the pair

(ϕ, ϑ), with φ = 1√
n
ϕ, brings the action to the form

Ã0 =
1

4π

∫
d2x

(
(∂µϕ)2 + (∂µϑ)2

)
. (7.5)

The advantage of Ã0 compared to the action (7.4), is that it allows one to easily

incorporate the effects of the sausage tips. The central region with the left tip of

the sausage form the cigar, and the corresponding NLSM, as it was mentioned in

sec. 5.2.2, admits the dual description in terms of the sine-Liouville action

Ã(left) = Ã0 + 2M
∫

d2x e−
√
nϕ cos

(√
n+ 2ϑ

)
. (7.6)

Clearly, the cigar NLSM whose target space is glued from the right tip and the central

region, is governed by the action which is related to (7.6) by the flip ϕ 7→ −ϕ, i.e.,

Ã(right) = Ã0 + 2M
∫

d2x e+
√
nϕ cos

(√
n+ 2ϑ

)
. (7.7)

At this point one can guess that the sausage NLSM admits the dual description by

means of the renormalized action

Ã(saus) =

∫
d2x

(
1

4π

(
(∂µϕ)2 + (∂µϑ)2

)
+ 4M cosh

(√
nϕ
)

cos
(√

n+ 2ϑ
) )

. (7.8)

1In what follows the Planck constant ~ = 2π
n will be always included in the action.
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Remarkably, the naive guess turns out to be correct! The dual form of the sausage

model was originally proposed by Aleosha Zamolodchikov and there are many ar-

guments to support its validity, a few of which will be mentioned later in the text.

Contrary to the sine-Liouville model where the dimensionless M is a somewhat fake

parameter, the coupling M in (7.8) is an important, dimensionful characteristic of

the theory. Notice that the field cosh
(√

nϕ
)

cos
(√

n+ 2ϑ
)

has the scale dimensions

equal to one w.r.t. the conventional energy momentum tensor of the “unperturbed”

free theory (7.5). Therefore M has dimensions of energy, i.e., M ∝ E∗ up to some

dimensionless constant.

Consider now the general structure of the Hilbert space of the sausage NLSM

in finite volume equipped with the boundary conditions of the form (5.55). The

quantum number m in that formula must take integer values only, it is a conserved

charge associated with the U(1)-isometry of the sausage metric. In what follows we

will focus on the neutral sector of the theory with m = 0, and therefore

ϕ(t, x+R) = ϕ(t, x) , ϑ(t, x+R) = ϑ(t, x) . (7.9)

Since the action (7.8) and the boundary conditions are both invariant under the

transformation ϑ 7→ ϑ+ 2π√
n+2

, the space of the neutral states of the sausage model is

somewhat similar to the Hilbert space of a quantum particle in a periodic potential:

it is split on the orthogonal subspaces H(K)
k characterized by the quasimomentum

restricted to the first Brillouin zone, −1
2
< k < 1

2
, and a positive integer K – the

band number. Our considerations below will be mostly restricted to the k-vacuum,

|vac〉k ∈ H(1)
k – the lowest energy neutral state in the first band.

In sec. 5.2.2 it was mentioned that the Hilbert space of the cigar/sine-Liouville

theory is classified w.r.t. the action of a certain W ⊗W-algebra. The W -algebras

related by the reflection ϕ → −ϕ are algebraically isomorphic (for details see, e.g.,

[114, 116]). This property allows one to identify the spaces of states for the “left”
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and “right” sine-Liouville models (7.6) and (7.7) which can be then interpreted as

an extended Hilbert space of the sausage NLSM. However, contrary to the case of

the cigar NLSM, instead of the continuous summation as in (5.46), the zero-mode

momentum p1 in the sausage takes a certain discrete set of admissible values which

depends on R. As MR→ 0 the mechanism of the quantization of p1 is similar to that

in the sinh-Gordon model considered in ref. [134]. The discussions from this work can

be easily adopted to our problem (see, e.g., [114]).

When MR � 1, the quantization condition which determines the value of p1 =

p1(R) for the k-vacuum, |vac〉k ∈ H(1)
k , reads as follows

−8p1

n
log
(MR

2

)
+ 2 δ(p1, p2) = 2π . (7.10)

Here p2 ≡ 1
2
(n + 2) k, δ(p1, p2) = −i logS0(p) and S0(p) is the overall scalar fac-

tor for the S-matrix (5.52). This factor was first derived by A. and Al. Zamolod-

chikov [119] and, using the notation of Bp1,p2 from (6.84), it is given by S0(p1, p2) =

−B−p1,p2/Bp1,p2 . Thus,

δ(p1, p2) =
4p1

n
log(n) (7.11)

− i log

[
Γ(1

2
− p2 − ip1) Γ(1

2
+ p2 − ip1)

Γ(1
2
− p2 + ip1)Γ(1

2
+ p2 + ip1)

Γ(1 + 2ip1)

Γ(1− 2ip1)

Γ(1 + 2ip1

n
)

Γ(1− 2ip1

n
)

]
where the branch of the logarithm is chosen so that δ(0, p2) = 0. The vacuum energy

in the sectorH(1)
k is approximately the corresponding vacuum energy of the free theory

(7.5), with the zero mode momentum for the field ϕ determined by the quantization

condition (7.10):

E
(vac)
k ≈ π

R

(
− 1

3
+

4

n

(
p1(R)

)2
+ (n+ 2) k2

)
. (7.12)

This result can be obtained both from the theory described by the action (7.8) and

directly from the sausage NLSM within the so-called minisuperspace approximation,

which, in fact, is a strong argument for the validity of the dual description of the

quantum sausage.
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A few comments to the formula (7.12) are in order. First of all a brief inspection

of the scattering phase δ(p1, p2) (7.11), shows that the quantization condition can be

applied literally only for |p2| < 1
2
, or, equivalently, for |k| < 1

n+2
. For p2 = 1

2
, notice

that eq. (7.10) has an R-independent solution p1 = 0, whereas for 1
n+2

< |k| < 1
2
, the

precise form of the quantization condition, to the best of our knowledge, is currently

not known. The next comment deals with corrections to the approximate formula

(7.12). A superficial analysis shows that for n > 2 the main correction is of order

R
4
n
−1, while for 0 < n < 2, a term ∝ R log(R) dominates. The latter can be

understood as the one-instanton contribution and has the following explicit form

δE(1−inst) = −πM 2R
(

4 log
(
RΛ(inst)

)
+ e(k) +O

(
p2

1(R)
))

. (7.13)

Here Λ(inst) is a cut-off energy scale which regularizes the contribution of the small-size

instantons [135, 136, 137, 66] and

e(k) = −2− 2ψ
(

1
2
− (n+2)k

2

)
− 2ψ

(
1
2

+ (n+2)k
2

)
. (7.14)

Now, let us turn to the large-R limit. In this limit, E
(vac)
k contains an extensive

part which is proportional to the spatial size of the system and does not depend on

k. As follows from the results of ref.[66], the specific bulk energy E ≡ lim
R→∞

E
(vac)
k /R

is given by

E = πM 2
(

4 log
(

M /Λ(inst)
)

+ π cot
(
πn
2

)
+ 2 γE + 2ψ

(
1 + n

2

) )
. (7.15)

The large-R behaviour of the difference E
(vac)
k − R E is dictated by the factorized

scattering theory associated with the model. In the original work [66], it was proposed

that the spectrum of the sausage model in infinite volume consists of a triplet of

particles of the same mass m. The mass scale is simply related to the dimensionful

coupling in the renormalized action (7.8):

m = 4πM . (7.16)
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Two of the particles A+ and A− carry the U(1) charge +1 and −1, respectively,

whereas the third particle A0 is neutral. The factorized scattering is completely

determined by the two-particle S-matrix which can be interpreted as a structure

constant in the formal Zamolodchikov-Faddeev associative algebra:

Aa(θ1)Ab(θ2) = Scdab(θ1 − θ2) Ad(θ2)Ac(θ1) . (7.17)

For convenience, we collect in Appendix H explicit expressions for the scattering am-

plitude Scdab proposed in [66]. Taking a closer look at these amplitudes, one can observe

that they are trivialized for n = 0. This is consistent with the fact that the dual the-

ory (7.8) can be understood, by use of the Coleman-Mandelstam bosonization, as an

interacting theory of a massive scalar and Dirac fermion. At n = 0, the interaction

disappears and we end up with a theory of three non-interacting particles. In fact,

this was the starting point of Al. Zamolodchikov’s proposal for the dual description

of the sausage. He performed perturbative calculations for small n and found that

the perturbative amplitudes match the small-n expansion of the exact two-particle

S-matrix.

As usual for a massive quantum field theory, the large-R expansion of E
(vac)
k −R E

can be represented in the form

E
(vac)
k −R E = ∆E1−particle + ∆E2−particle + . . . , (7.18)

where the individual terms correspond to the virtual contributions of N -particle

states. The one-particle contribution does not depend on the details of the inter-

action – it is the same as for the non-interacting theory and hence is given by

∆E1−particle = −Tr1

(
K(1)

) ∫ ∞
−∞

dθ

2π
m cosh(θ) e−mR cosh(θ) . (7.19)

Here the trace is taken over the isotopic component of the one-particle sector of the

theory in the infinite volume and K(1) is a 3 × 3 diagonal matrix of the (complex)
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fugacities:

K(1) =


e+2πik 0 0

0 1 0

0 0 e−2πik

 . (7.20)

Following Lüscher [138, 139] (see also ref. [140]), one can derive the explicit formula

for the two-particle contribution in eq. (7.18):

∆E2−particle = m

∫ ∞
−∞

dθdθ′

(2π)2
cosh(θ) e−mR cosh(θ)−mR cosh(θ′) (7.21)

× Tr2

[
K(2)

(
πI(2) δ(θ − θ′) + i ∂θ logS(27→2)(θ − θ′)

) ]
,

where S(27→2) is the 9× 9 matrix acting in the isotopic component of the two-particle

sector, K(2) = K(1) ⊗K(1) and I(2) is the identity matrix.

For future reference let us make a short summary of the properties of the k-

vacuum energy discussed above. For this purpose it is convenient to introduce the

scaling variable

r = mR (7.22)

and dimensionless scaling function

F(r, k) =
R

π

(
E

(vac)
k −R E

)
. (7.23)

Notice that, ceff ≡ −6F(r, k) is sometimes interpreted as the effective central charge

for the off-critical theory. As r → 0 our discussion suggests that for |k| < 1
n+2

and

fixed n

F(r, k) =


−1

3
+ 4

n
p2(r) + (n+ 2) k2 +O(r

4
n ) for n > 2

−1
3

+ 4
n
p2(r) + (n+ 2) k2 + δF(1−inst) +O

(
r2 p2(r)

)
for 0 < n < 2

(7.24)
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Here p(r) is defined as the solution of the quantization condition

−8p
n

log
(
r

8π

)
+ 2 δ(p, p2) = 2π

(
p2 <

1
2

)
(7.25)

where δ(p1, p2) is given by (7.11), and

δF(1−inst) = − r2

16π2

(
4 log

(
r

4π

)
+ π cot

(
πn
2

)
+ 2 γE + 2ψ

(
1 + n

2

)
+ e1(k)

)
(7.26)

with e1(k) defined in (7.14).

The large r-behaviour of the scaling function F(r, k) is determined by eqs.(7.18)-

(7.21). It can be equivalently described by the following formula which is convenient

for numerical calculations:

F(r, k) = − r

π2

(
2 c(2k) + 1

)
K1(r) +

r

2π2

(
2 c(2k) + 1

)2
K1(2r)

− 2r

π3

(
1 + c(2k)

) ∫ ∞
−∞

dν

(
K1−iν(r)Kiν(r)

sinh
(π(n+2)ν

2

) (7.27)

×
[

2c(2k) sinh
(
πnν

2

)
− sinh

(π(n−2)ν
2

)])
+O

(
e−3r

)
where c(x) ≡ cos(πx), Ks(z) denotes the modified Bessel function of the second order,

Ks(z) =
1

2

∫ ∞
−∞

dθ esθ−z cosh(θ) , (7.28)

and the symbol O(e−3r) stands for terms which decay faster than e−(3−ε)r as r → +∞,

for any small ε > 0.

Finally, for n = 0, the scaling function F(r, k) is given explicitly by:

F(r, k) = − r

2π2

∫ ∞
−∞

dθ e±θ log

((
1 + e2πik−r cosh(θ)

)(
1 + e−2πik−r cosh(θ)

)
1− e−r cosh(θ)

)
. (7.29)

Notice that the small r-asymptotic (7.24) can not be applied to this exact formula

because of the noncommutativity of the limits r → 0 and n→ 0.
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7.2 NLIE for the k-vacuum eigenvalues in the sausage model

With some experience in working with nonlinear integral equations in integrable QFT,

one expects that the generalization of the massless equations to the massive ones re-

quires little effort. For this reason, before exploring the general integrable structures,

we make a simple-minded shortcut and guess the NLIE describing the k-vacuum

eigenvalues in the sausage model. Of course, this route requires careful consistency

checks which will be the main subject of our discussion here.

As usual, the major modification required to get the massive NLIE is related to

the source terms. In the case under consideration it is not difficult to guess that the

system (6.147) should be modified to the following

ε(θ − iγ) = r sinh(θ − iγ)− 2πk +

∫ ∞
−∞

dθ′

2πi

[
G(θ − θ′ − 2iγ)

(
L(θ′ − iγ)

)∗
− G(θ − θ′) L(θ′ − iγ)

]
+

∫ ∞
−∞

dθ′

2π
G1(θ − θ′ − iγ) log

(
1 + e−ω(θ′)

)
ω(θ) = r cosh(θ) + =m

[ ∫ ∞
−∞

dθ′

π
G1(θ − θ′ + iγ) L(θ′ − iγ)

]
(7.30)

−
∫ ∞
−∞

dθ′

π
G2(θ − θ′) log

(
1 + e−ω(θ′)

)
L(θ) = log

(
1 + e−iε(θ)

)
.

Unlike the massless case, there is no need to supplement these equations by the

asymptotic conditions at θ → −∞ – the source terms in (7.30) control the solution’s

behaviour both at θ → ±∞. In this subsection we will discuss the k-vacuum energy

only. Having at hand the formula (F.9) for the vacuum eigenvalue of the conformal

local IM i1, one expects that for the massive case,

F(r, k) =
r

2π2

∫ ∞
−∞

dθ

(
± 2=m

[
e±(θ−iγ) L(θ − iγ)

]
− e±θ log

(
1 + e−ω(θ)

))
(7.31)

and this should be valid for both choices of the sign ±.



133

Some superficial observations can been made at this point. First we note that

the kernels in (7.30) which are given by eqs. (6.149), can be expressed through the

two-particle scattering amplitudes for the sausage model. Indeed, using the explicit

formulae from Appendix H, it is straightforward to check that

G(θ) = −i ∂θ logS(θ) , G1(θ) = ∂θ log t
(
θ + iπ

2

)
G2(θ) = − i

8
∂θ log det

(
S(27→2)(θ)

)
. (7.32)

The next observation is that the system (7.30) admits a simple solution for n = 0. In

this case the kernels G(θ) and G1(θ) vanish, whereas G2(θ) turns to be π δ(θ). This

brings the NLIE to the form

ε(θ) = r sinh(θ)− 2πk , ω(θ) = r cosh(θ)− log
(
1 + e−ω(θ)

)
, (7.33)

and using eq. (7.31), one arrives at (7.29). Furthermore, one can perturbatively solve

the NLIE for small n, and compare the results to those from the weak coupling

expansion based on the dual action (7.8) for the sausage model. We found complete

agreement to the first non-trivial order in the expansion.

Much more effort is needed to derive directly from eqs.(7.30), (7.31) the asymptotic

formulae (7.24)-(7.27) describing the behaviour of the k-vacuum energy at r → 0 and

r → +∞. It is, in fact, possible to do this analytically, but here we only present

some evidence obtained through the numerical solution of the NLIE system (7.30)

(see fig. 7.1 and tab. 7.1).

The remarkable feature of the formulae (7.30), (7.31) is that they do not depend

explicitly on n. Hence, they can be applied to the case with n formally set to infinity,

i.e., to the O(3) sigma model. Nothing particularly special happens to the kernels
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Figure 7.1: ceff ≡ −6F(r, k) (7.23) plotted as a function of r = mR for n = 0.5 with
k = 0 and k = 0.2. The dots were obtained from the numerical solution of the NLIE
(7.30), (7.31). The small-r asymptotic comes from (7.24) while “large-r” represents
(7.27). For the corresponding numerical data see tab. 7.1.
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k = 0
r = mR ceff small-r large-r

10−5 1.963104810570 1.963104810585 ∗ ∗ ∗
10−4 1.947406984923 1.947406984949 ∗ ∗ ∗
10−3 1.919080208689 1.919080211060 ∗ ∗ ∗
0.01 1.859823363074 1.859823782193 ∗ ∗ ∗
0.10 1.698224051017 1.698316219415 ∗ ∗ ∗
0.20 1.589016773023 1.589515588521 ∗ ∗ ∗
0.40 1.409038525289 1.411851755076 ∗ ∗ ∗
0.60 1.250428169768 1.258361320834 1.1804081
0.80 1.105667568636 1.122485892386 1.0531828
1.00 0.973032006280 1.003537933054 0.9358090
1.50 0.691697724451 0.785383466436 0.6782200
2.00 0.477804027757 ∗ ∗ ∗ 0.4735652
2.50 0.322319977959 ∗ ∗ ∗ 0.3210983
3.00 0.213430553126 ∗ ∗ ∗ 0.2130984
3.50 0.139339032762 ∗ ∗ ∗ 0.1392523
4.00 0.089999431197 ∗ ∗ ∗ 0.0899774
4.50 0.057660716365 ∗ ∗ ∗ 0.0576552
5.00 0.036712137455 ∗ ∗ ∗ 0.0367108

k = 0.2
10−5 1.364830335405 1.364830335417 ∗ ∗ ∗
10−4 1.350312382232 1.350312382295 ∗ ∗ ∗
10−3 1.324531940186 1.324531948818 ∗ ∗ ∗
0.01 1.271882443291 1.271883920213 ∗ ∗ ∗
0.10 1.134046123560 1.134350188655 1.11141992
0.20 1.044536780739 1.046137755580 1.04399668
0.40 0.902842376206 0.911610323133 0.90993729
0.60 0.783720297274 0.807969967819 0.78900239
0.80 0.679456178786 0.729950921532 0.68245438
1.00 0.587464397842 ∗ ∗ ∗ 0.58894471
1.50 0.402767285740 ∗ ∗ ∗ 0.40287319
2.00 0.271053581853 ∗ ∗ ∗ 0.27100091
2.50 0.179589431194 ∗ ∗ ∗ 0.17955720
3.00 0.117506056343 ∗ ∗ ∗ 0.11749384
3.50 0.076124137247 ∗ ∗ ∗ 0.07612023
4.00 0.048928716276 ∗ ∗ ∗ 0.04892758
4.50 0.031251806913 ∗ ∗ ∗ 0.03125149
5.00 0.019860097547 ∗ ∗ ∗ 0.01986001

Table 7.1: The numerical data for ceff ≡ −6F(r, k) with n = 0.5, k = 0 and 0.2.
The small-r asymptotic was obtained by (7.24) whereas the large-r asymptotic comes
from (7.27).
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(6.149); as n→∞ they just become the rational functions

G(θ) =
2π

(θ + iπ)(θ − iπ)

G1(θ) =
4π2 θ

(θ + iπ
2

)(θ − iπ
2

)(θ + 3iπ
2

)(θ − 3iπ
2

)
(7.34)

G2(θ) = G(θ)− 2π

(θ + 2iπ)(θ − 2iπ)
.

Also the asymptotic formula (7.27) describing the large-r behaviour is, in the O(3)

limit,

F(r, k) = − r

π2

(
2 c(2k) + 1

)
K1(r) +

r

2π2

(
2 c(2k) + 1

)2
K1(2r)− (7.35)

2r

π3

(
1 + c(2k)

) ∫ ∞
−∞

dν K1−iν(r)Kiν(r)
(

2 c(2k) e−π|ν| − e−2π|ν|
)

+O
(
e−3r

)
.

The situation is much more subtle for the small-r asymptotic. Let us recall that for

finite n the asymptotic formula (7.24) can be applied only for |k| < 1
n+2

. This implies

that in the limit n → ∞ the applicability of this formula is restricted to the case

k = 0, and the only information it provides is that lim
r→0

F(r, 0) = −1
3
. As it follows

from general perturbative arguments, F(r, 0) should admit the power series expansion

in terms of the running coupling constant for the O(3) NLSM. It is convenient to

choose the RG scheme in which the running coupling g = g(r) satisfies the RG flow

equation [?, 141]

r
dg

dr
=

g2

1− g
= g2 + g3 + . . . . (7.36)

The solution to this equation which we will use is

g−1 e−
1
g = 1

32π
eγE+1 r . (7.37)

The funny constant 1
32π

eγE+1 = 0.048 . . . is chosen following the convention from the

works [142, 143, 144]. With this choice the gap between the vacuum and the first

excited state energies in the k = 0 sector, ∆E0, admits the perturbative expansion

where the term ∝ g2 is absent: R∆E0/(2π) = g + g3 + 1.19 g4 + O(g5). The small-r

behaviour of F(r, 0) should admit the
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asymptotic expansion of the form

F(r, 0) � −1
3

+ a1 g(r) + a2 g
2(r) + a3 g

3(r) + a4 g
4(r) + . . . . (7.38)

The first coefficient in this series is known a1 = 1
2

[66]. All others can, in principle, be

calculated within the renormalized perturbation theory for the O(3) NLSM. Instead

of doing so, we estimated their value by fitting the data obtained from the numerical

solution of the NLIE. The fitting suggests that, in all likelihood, a2 = 1
4

and a3 ≈ 1.

Also, our numerical results for k = 0 are in a full agreement with the numerical

data quoted in ref. [145]. To the best of our knowledge, the vacuum energies with

0 < |k| ≤ 1
2

have not been discussed in the literature.2 One can expect that for

non-zero k

F(r, k) � a0(k) + a1(k) g(r) + a2(k) g2(r) + a3(k) g3(r) + . . . (7.39)

with

a0(k) = −1
3

+ 2 |k|
(

1− |k|
)

for |k| ≤ 1
2
. (7.40)

The last formula can be understood as follows. In the ultraviolet limit the effect of the

target space curvature becomes negligible and (−1
3
) here represents the contribution

of two massless Goldstones. However, with non-zero k, the quasiperiodic boundary

condition (4.67) implies the presence of conical singularities at the north and south

poles of the 2-sphere. The result of the work [147] for a string propagating on a cone

yields eq.(7.40). Our numerical data seems to be in agreement with this prediction.

Some of the obtained results are depicted in fig. 7.2. Note that as k approaches to 1
2
,

the calculations for small r require a considerable amount of computational resources.

2The case k = 1
2 is of special interest for the application of resurgence theory to the problem of

instanton summation in the CPN−1 NLSM [146].
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Figure 7.2: A plot of F(r, k) with k = 0, 0.2 and 0.4 as a function of the running
coupling constant g(r) (7.37) for the O(3) sigma model. The large-r asymptotics,
depicted by the black curves, follow from eq. (7.35). For small r and k = 0.2, 0.4, the
numerical data was fitted by a cubic polynomial of the form (7.39) with a0 given by
(7.40). The result of the fit is represented by the dashed line. For k = 0 a quartic
fit was used (7.38) and the coefficients were found to be (a1, a2, a3) = (0.5, 0.25, 1.0).
Note that the smallest value of the running coupling that we reached is g = 0.0242 . . .
(for k = 0), whereas the largest value is g = 0.449 . . . . These correspond to r = 10−15

and r = 5, respectively.
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To complete this subsection, let us return to the case of finite n. As has been

already mentioned, the quantization condition (7.10) admits the R-independent so-

lution p1 = 0 for p2 = 1
2
. The latter corresponds to k = 1

n+2
. For this case, as follows

from (7.12), the value of the effective central charge at r = 0 is given by 2(n−1)
n+2

. For

integer n ≥ 2 this coincides with the central charge cn (6.3) of the Zn parafermions

CFT. Based on the results of the work [148], one can expect that the k-vacuum en-

ergy with k = 1
n+2

and n = 2, 3, . . . coincides with the ground state energy of the

non-critical model referred to as H
(0)
n in [148]. The model can be described by means

of the Euclidean action

A
H

(0)
n

= AZn − λ
∫

d2x
(
ψ+ψ̄+ + ψ−ψ̄−

)
, (7.41)

which is the critical action of the Zn parafermions CFT perturbed by the relevant

operator of the scale dimension d = 2− 2
n
. According to the work [148], the small-r

expansion for the scaling function F in this case reads as follows

F(r, 1
n+2

)
= −1

6
cn + 2

∞∑
j=2

Fj r
2j
n + 2F(log)

(
r

2π

)2
log(r) , (7.42)

with

F(log) =


−n−1

2n
for n odd

−1
2

for n even

. (7.43)

For n = 2 the model H
(0)
n coincides with the free theory of a massive Majorana

fermion, and therefore

F(r, 1
4

)
= − r

2π2

∫ ∞
−∞

dθ cosh(θ) log
(

1 + e−r cosh(θ)
)
. (7.44)

This was checked from the numerical solution of the NLIE (7.30).

7.3 A, B and T

We are now ready to discuss the general integrable structures in the quantum sausage

model. In fact, they are almost identical to those from the cigar/sine-Liouville CFT.
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We will place a special emphasis on the aspects of the integrable structures which are

related to the presence of the finite correlation length in the theory.

Recall that the sine-Liouville model possesses an infinite set of involutive local IM.

At the end of sec. ?? we mentioned only the integrals of the left chirality. Of course,

there are also the “right” local IM, so that the full commuting set is
{
i2j−1, ī2j−1

}∞
j=1

.

Remarkably (see, e.g., [116] for details), all the local IM are invariant under the

reflection ϕ 7→ −ϕ, and therefore they can be interpreted as the local IM for both

theories (7.6) and (7.7). This observation suggests that the quantum sausage NLSM

possesses the infinite set of local IM
{
I2j−1, Ī2j−1

}∞
j=1

which can be thought of, in a

certain sense, as a deformation of the conformal one [68]. In particular

I2j−1 =

∫ R

0

dx

2π

( ∑
l+m=j

C
(j)
lm (∂+ϕ)2l(∂+ϑ)2m + . . .

)
(7.45)

and similar for Ī2j−1 with ∂+ replaced by ∂−. Here we use the light cone variables

x± = x0 ± x1, the constants C
(j)
lm are the same as in eqs. (5.60)-(5.62), and the dots

stand for monomials which include higher derivatives of ϕ and ϑ, as well as terms

proportional to powers of M . It should be emphasized that the ϕ and ϑ in (7.45) are

local fields whose dynamics are governed by the dual action (7.8) and, if considering

the neutral sector of the model, the periodic boundary conditions (7.9). A special

rôle belongs to the integrals

I1 =

∫ R

0

dx

2π

(
(∂+ϕ)2 + (∂+ϑ)2 − 4M cosh

(√
nϕ
)

cos
(√

n+ 2ϑ
) )

Ī1 =
(
∂+ 7→ ∂−

)
, (7.46)

whose sum, HR = I1 + Ī1, and difference, PR = I1− Ī1, coincide with the Hamiltonian

and the total momentum, respectively. It is expected that the common eigenvec-

tors of
{
I2j−1, Ī2j−1

}∞
j=1

form a basis in each invariant subspace H(K)
k of the Hilbert

space of the sausage NLSM. Let’s denote the corresponding k-vacuum eigenvalues by
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{
I2j−1, Ī2j−1

}∞
j=1

. For the k-vacuum the total momentum is zero, so

I1 = Ī1 = 1
2
ER + π

2R
F(r, k) . (7.47)

This relation together with (7.31), allows one to express the vacuum eigenvalues of I1

and Ī1 in terms of the solution to the NLIE (7.30). It is not difficult to find similar

expressions for the other local IM (to be compared with formulae (F.9) from Appendix

F):

I2j−1 =
(m

4

)2j−1
∞∫
−∞

dθ

π

(
(−1)j e+(2j−1)θ log

(
1 + e−ω(θ)

)
+ 2=m

[
e+(2j−1)(θ−iγ) L(θ − iγ)

])
(7.48)

Ī2j−1 =
(m

4

)2j−1
∞∫
−∞

dθ

π

(
(−1)j e−(2j−1)θ log

(
1 + e−ω(θ)

)
− 2=m

[
e−(2j−1)(θ−iγ) L(θ − iγ)

])

For r � 1, similar to formula (7.24) for F(r, k), the vacuum eigenvalues of the higher

spin local IM can be approximated by

I2j−1 = Ī2j−1 ≈
(

2π
R

)2j−1
i2j−1

(
p(r), 1

2
(n+ 2) k

)
. (7.49)

Here, i2j−1(p1, p2) are the vacuum eigenvalues of the chiral local IM i2j−1 and p = p(r)

is the solution of eq. (7.25). Tab. 7.2 demonstrates the quality of this approximation

for the first few local IM.

Note that I2j−1 = Ī2j−1 for any j = 1, 2, . . . . These relations can be easily under-

stood since the model (7.8) is P -invariant and that under the parity transformation

P I2j−1 P = Ī2j−1 . (7.50)

Another important global symmetry is C -invariance. Acting on the local fields it flips

the sign of ϑ while keeping ϕ unchanged. All the local IM are C -invariant operators,

i.e.,

C I2j−1 C = I2j−1 , C Ī2j−1 C = Ī2j−1 . (7.51)
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r = mR
(
R
2π

)3
I3 i3(p(r), p2)

10−1 3.45716396595× 10−4 3.45832599760× 10−4

10−3 3.81476584833× 10−4 3.81476594313× 10−4

10−5 3.92737566343× 10−4 3.92737566334× 10−4

r = mR
(
R
2π

)5
I5 i5(p(r), p2)

10−1 −2.6148731× 10−5 −2.6151868× 10−5

10−3 −2.8189874× 10−5 −2.8189869× 10−5

10−5 −2.8833109× 10−5 −2.8833124× 10−5

Table 7.2: The vacuum eigenvalues of the first two higher spin local IM in the sausage
model for n = 1 and p2 = 3

2
k = 5

13
. The numerical values were calculated from the

solution of the NLIE and formula (7.48). The last column gives the vacuum eigen-
values of the chiral local IM, i3(p(r), p2) and i5(p(r), p2), where p(r) is the solution
to the quantization condition (7.25). The limiting values at r = 0 are given by
i3(0, p2) = 39031

95964960
= 4.067 . . . × 10−4, i5(0, p2) = − 137442779

4638370376640
= −2.963 . . . × 10−5.

Explicit expressions for i3 and i5 can be found in ref.[114].

Since C | vac 〉k = | vac 〉−k, this explains the fact that the vacuum eigenvalues I2j−1

are even functions of k. The last discrete symmetry that we shall consider is the

invariance of the dual action (7.8) w.r.t. the transformation

ϑ(r, t) 7→ Uϑ(t, x)U−1 = ϑ(t, x) +
2π√
n+ 2

, (7.52)

where the unitary operator U is the Flouquet-Bloch operator which is just a constant

phase factor when it acts on the subspace H(K)
k :

U H(K)
k = e2πik H(K)

k . (7.53)

Of course, [U, I2j−1] = [U, Ī2j−1] = 0.

Together with the local IM, the sausage model possesses the set of dual nonlocal

IM
{
Sj, S̄j

}∞
j=1

, which again can be understood as a deformation of the corresponding

conformal set. In contrast to the local IM, they are not C -invariant operators. Instead
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r = mR
(
R
2π

) 2
n+2 S1 s̃1(p(r), p2)

(
R
2π

) 2
n+2 S̄1 s̃1(p(r),−p2)

10−1 0.01936579 0.01877110 0.13129934 0.12726735

10−3 0.03374979 0.03374058 0.22882227 0.22875988

10−5 0.04003149 0.04003134 0.27141198 0.27141097

r = mR
(
r

8π

)2k
S S

(
p2| ip(r)

)
10−1 0.35644580 0.35731884

10−3 0.24462688 0.24463961

10−5 0.19673087 0.19673105

Table 7.3: The vacuum eigenvalues of the dual nonlocal IM S1, S̄1 and S for n = 9
2

and p2 = 13
4
k = 5

13
. Eq. (7.56) was used to find the numerical values of S1, S̄1

from the solution to the NLIE, whereas the corresponding formula for S is (7.59).
The vacuum eigenvalues s̃1(p1, p2) of the chiral dual nonlocal IM are given by (6.137)
and the expression for S

(
p2| q

)
is found in (7.61). Finally, p(r) is the solution of the

quantization condition (7.25).

they satisfy the relations

CP Sj CP = S̄j . (7.54)

This implies that the analog of eq.(7.49) for the set
{
Sj, S̄j

}∞
j=1

of k-vacuum eigen-

values of the dual nonlocal IM reads as follows

Sj ≈
(

2π
R

) 2j
n+2 s̃j

(
p(r),+1

2
(n+ 2) k

)
, S̄j ≈

(
2π
R

) 2j
n+2 s̃j

(
p(r),−1

2
(n+ 2) k

)
.(7.55)

Similarly as for the local IM, the vacuum eigenvalues of the dual nonlocal IM can be

expressed through the solution of the NLIE:

Sj =
2

n+ 2

(m
4

) 2j
n+2

∞∫
−∞

dθ

π

(
sin
(
πj
n+2

)
e+ 2jθ

n+2 log
(
1 + e−ω(θ)

)
−=m

[
e+

2j(θ−iγ)
n+2 L(θ − iγ)

])
(7.56)

S̄j =
2

n+ 2

(m
4

) 2j
n+2

∞∫
−∞

dθ

π

(
sin
(
πj
n+2

)
e−

2jθ
n+2 log

(
1 + e−ω(θ)

)
+=m

[
e−

2j(θ−iγ)
n+2 L(θ − iγ)

])
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In tab. 7.3 we present numerical data illustrating formulae (7.55) for S1 and S̄1.

We are now able to synthesize our study of the quantum sausage model in the

form of the following conjecture. It is expected that the theory possesses the operators

A(θ), B(θ) and T(θ) satisfying the set of conditions:

(i) Commutativity:
[
A(θ),A(θ′)

]
=
[
B(θ),B(θ′)

]
=
[
A(θ),B(θ′)

]
(ii) Analyticity: The operators A(θ), B(θ) and T(θ) are entire functions of the

variable θ

(iii) Global symmetries:

CP A(θ) CP = A(−θ) , CP B(θ) CP = B(−θ)

P T(θ) P = T(−θ) , C T(θ) C = T(θ)

[U, A(θ)] = [U, B(θ)] = [U, T(θ)] = 0

(iv) (Quasi)periodicity: B(θ + iπ) = U B(θ − iπ), T(θ + iπn) = T(θ)

(v) Hermiticity: A†(θ) = A(θ∗) , B†(θ) = B(θ∗) , T†(θ) = T(θ∗)

(vi) Functional relation:

A
(
θ− iπ(n+1)

2

)
A
(
θ+ iπ(n+1)

2

)
−A
(
θ− iπ(n−1)

2

)
A
(
θ+ iπ(n−1)

2

)
= B

(
θ− iπ

2

)
B
(
θ+ iπ

2

)
(vii) T −Q relation: T

(
θ + iπn

2

)
A(θ) = U− 1

2 A(θ + iπ) + U+ 1
2 A(θ − iπ)

(viii) Asymptotic behaviour of A(θ):

A(θ) � S±
1
2 exp

(
− r cosh(θ)

4 sin(πn
2

)

)
exp

(
− a(±)(θ)

)
as <e(θ)→ ±∞

with |=m(θ)| < π
2

(n+ 2), and

a(+)(θ) =
∞∑
j=1

Sj
(
m
4

e+θ
)− 2j

n+2 , a(−)(θ) =
∞∑
j=1

S̄j
(
m
4

e−θ
)− 2j

n+2
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(ix) Asymptotic behaviour of B(θ):

B(θ) � S±
1
2 exp

(
− rθ sinh(θ)

2π

)
exp

(
− b(±)(θ)

)
as <e(θ)→ ±∞

with |=m(θ)| < π, and

b(+)(θ) =
(
I1 − 1

2
ER
)

4
m

e−θ +
∞∑
j=1

(
I2j+1

(
m
4

e+θ
)−1−2j

+ Sj
(
m
4

e+θ
)− 2j

n+2

)
b(−)(θ) =

(
Ī1 − 1

2
ER
)

4
m

e+θ +
∞∑
j=1

(
Ī2j+1

(
m
4

e−θ
)−1−2j

+ S̄j
(
m
4

e−θ
)− 2j

n+2

)
(x) Zeroes: Let A(ψ)(θ), B(ψ)(θ), e2πik be the eigenvalues of the operators A(θ),

B(θ), U, respectively, corresponding to a common eigenvector |ψ 〉. If θj is a

zero of B(ψ)(θ), then

exp
(
− i

2
r sinh(θj)− 2πik

) A(ψ)
(
θj − iπ − iπn

2

)
A(ψ)

(
θj − iπ + iπn

2

) = −1 .

All zeroes of B(ψ)(θ) are simple and accumulate towards infinity along the lines

=m(θ) = π (mod 2π).

Clearly, the conjectured properties of A(θ), B(θ) and T(θ) are inspired by those of their

chiral counterparts α+(θ), β+(θ) and τ(λ) and the global symmetries of the model.

Unlike the chiral case, the subscript was not included in the notation of operators A

and B. It can be restored by setting A+ ≡ A and B+ ≡ B. The properties of the

C -conjugated operators A− ≡ C AC , B− ≡ C BC can be easily deduced from (i)-(x).

Perhaps only the θ-independent operator S, which appears in the large-θ asymptotic

expansions (viii) and (ix), requires some elucidations. Before presenting them, let us

first discuss the vacuum eigenvalues of A(θ) and B(θ). The obvious counterparts to

the formulae (F.6), (F.7) from Appendix F read as

logA(θ) = −r cosh(θ)

4 sin(πn
2

)
+

∫ ∞
−∞

dθ′

2πi

[
F1(θ − θ′ + iγ) L(θ′ − iγ) (7.57)

− F1(θ − θ′ − iγ)
(
L(θ′ − iγ)

)∗ ]
+

∫ ∞
−∞

dθ′

π
F2(θ − θ′) log

(
1 + e−ω(θ′)

)
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where |=m(θ)| < π
2

(n+ 2)− γ, and

logB(θ) = −rθ sinh(θ)

2π
+

∫ ∞
−∞

dθ′

2πi

[
F3(θ − θ′ + iγ) L(θ′ − iγ) (7.58)

− F3(θ − θ′ − iγ)
(
L(θ′ − iγ)

)∗ ]
−
∫ ∞
−∞

dθ′

π
F4(θ − θ′) log

(
1 + e−ω(θ′)

)
,

with |=m(θ)| < π − γ. Now ε(θ) and ω(θ) solve the massive NLIE (7.30), (6.149)

and the explicit form of the functions Fi(θ) are given in (F.8). It is easy to see that

these formulae combined with the asymptotics (viii) and (ix), yield the expressions

(7.48) and (7.56) for the vacuum eigenvalues of the local and dual nonlocal IM. Notice

that the term (−kθ) is absent in (7.57), (7.58) compared with the analogous formulae

(F.6), (F.7). This is consistent with the absence of the factor e−kθ in the asymptotics

(viii) and (ix) compared with the corresponding eqs. (6.123), (6.124) and (6.127) for

the chiral case. In connection with this, note that the operator k̂ is ill defined and

only its exponent U = exp(2πik̂) makes sense in the massive theory.

In the next subsection we will point out that the eigenvalues of the operator S

play a special rôle in the ODE/IQFT correspondence. Eqs. (7.57), (7.58) predict that

in the case of the k-vacuum states, its eigenvalue is given by

S = exp

(
2

n+ 2

∫ ∞
−∞

dθ

π
=m
(
L(θ − iγ)

))
. (7.59)

The small-r behaviour of S is given by a formula similar to (7.49), (7.55) (see tab. 7.3):

S ≈
(8π

r

)2k

S
(

1
2

(n+ 2) k | ip(r)
)
, (7.60)

where

S(p2| q) =
(
n+ 2

) 4p2
n+2

Γ(1
2

+ p2 + q)Γ(1
2

+ p2 − q)
Γ(1

2
− p2 + q)Γ(1

2
− p2 − q)

Γ(1− 2p2)

Γ(1 + 2p2)

Γ(1 + 2p2

n+2
)

Γ(1− 2p2

n+2
)
. (7.61)

Notice that S(p2| ip1) can be expressed in terms of the vacuum eigenvalues (6.138) of

the operators b± defined in (6.114): S(p2| ip1) = b
(vac)
− (p1, p2)/b

(vac)
+ (p1, p2).

The operator T(θ) is the transfer-matrix in the sausage model – the quantum

counterpart of the Wilson loop (3.2). By means of the T − Q equation (vii) it is
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expressed in terms of the operator A(θ) and, of course, commutes with both A and

B for any values of the spectral parameter θ. We did not include the formula which

described its large-θ asymptotic in the list (i)-(x) since it is an immediate consequence

of the T −Q equation and the asymptotic (viii) for A(θ). Notice that unlike for the

Toda-type theory, the transfer-matrix in the sausage model does not generate the

local IM through its asymptotic expansion.

Finally we can turn to the case of the O(3) NLSM. There is no reason to expect

that the n→∞ limit is problematic for the operator B(θ). Introduce the notation

B∞(θ) = lim
n→∞

B(θ) . (7.62)

Using eqs.(7.58), (F.8), one finds the relation which expresses its vacuum eigenvalue

in terms of the solution to the NLIE (7.30) with the kernels (7.34):

logB∞(θ) = −rθ sinh(θ)

2π
+

∫ ∞
−∞

dθ′

2πi

[
f3(θ − θ′ + iγ) L(θ′ − iγ) (7.63)

− f3(θ − θ′ − iγ)
(
L(θ′ − iγ)

)∗ ]
−
∫ ∞
−∞

dθ′

π
f4(θ − θ′) log

(
1 + e−ω(θ′)

)
where |=m(θ)| < π − γ, and

f3(θ) =
1

θ
− 1

sinh(θ)
, f4(θ) =

π

2(θ + iπ
2

)(θ − iπ
2

)
− 1

2 cosh(θ)
. (7.64)

The situation with the operators A(θ) and T(θ) is slightly more delicate. In this case,

one can expect that the following limits exist

A∞(θ) = lim
n→∞

A
(
θ − iπn

2

)
exp

(
1
4
r cot

(
πn
2

)
cosh(θ)

)
T∞(θ) = lim

n→∞
T(θ) exp

(
− 1

2
r cot

(
πn
2

)
cosh(θ)

)
(7.65)

and the limiting operators satisfy the T −Q equation in the form

T∞(θ)A∞(θ) = U−
1
2 A∞(θ + iπ) + U+ 1

2 A∞(θ − iπ) (7.66)
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(recall that in the sectorH(K)
k the operator U+ 1

2 becomes just a phase factor (−1)K−1 eiπk).

With eqs. (7.57), (F.8), it is easy to see that

logA∞(θ) = i
4
r sinh(θ) +

∫ ∞
−∞

dθ′

2πi

[
f1(θ − θ′ + iγ) L(θ′ − iγ) (7.67)

− f1(θ − θ′ − iγ)
(
L(θ′ − iγ)

)∗ ]
+

∫ ∞
−∞

dθ′

π
f2(θ − θ′) log

(
1 + e−ω(θ′)

)
with =m(θ) < π − γ,

f1(θ) =
1

θ + iπ
, f2(θ) = − π

2(θ + 3iπ
2

)(θ + iπ
2

)
, (7.68)

and ε(θ), ω(θ) are defined through the solution of the NLIE (7.30), (7.34).

7.4 ODE/IQFT for the sausage model

In sec. 6.6 we briefly discussed the ODE/IM correspondence for the cigar NLSM.

Recall that the correspondence relates the eigenvalues of the chiral transfer-matrices

to the connection coefficients for the family of second order differential equations

D(θ)ψ = 0 with the operators D(θ) of the form (6.104). The generalization of the

construction to the sausage model is based on the ideas from the work [56] and goes

along the following line.

As far as our attention was confined to the CFT, there was no need to sepa-

rately consider the antiholomorphic operators, D(θ̄) = −∂2
z̄ + T L̄(z̄) + e2θ̄ P(z̄), since

there was only a nomenclature difference between the holomorphic and antiholo-

morphic cases. In the massive QFT, following [56], one should substitute the pair(
D(θ0 + θ),D(θ0 − θ)

)
by a pair of (2× 2)-matrix valued differential operators

D(θ) = ∂z −Az , D(θ) = ∂z̄ −Az̄ (7.69)

with

Az = −1
2
∂zη σ3 + σ+ e+η + σ− e2θ0+2θ P(z) e−η

Az̄ = +1
2
∂z̄η σ3 + σ− e+η + σ+ e2θ0−2θ P(z̄) e−η ,

(7.70)
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where σ3, σ± = (σ1 ± iσ2)/2 are the standard Pauli matrices and P(z) is given by

(6.99). In fact, (Az, Az̄) form a sl(2) connection whose flatness is a necessary condi-

tion for the existence of a solution to the linear problem

D(θ) Ψ = 0 , D(θ) Ψ = 0 . (7.71)

The zero-curvature relation leads to the Modified Sinh-Gordon (MShG) equation:

∂z∂z̄η − e2η + ρ4 |P(z)|2 e−2η = 0 , ρ = eθ0 . (7.72)

In refs. [128, 90], a class of singular solutions to this partial differential equation dis-

tinguished by special monodromy properties of the associated linear problem (7.71)

was introduced. Together with the singularities at z = z1, z2, z3, the solutions are

allowed to have the so-called apparent singularities, which do not affect the mon-

odromy properties of the auxiliary linear problem (7.71). In the limit θ0 → −∞ with

θ+ = θ0 + θ kept fixed, the system (7.71) can be reduced to D(θ+)ψ = 0, ∂z̄ψ = 0

and the apparent singularities manifest themselves as the monodromy free singulari-

ties for the operator D(θ+) of the form (6.104). Parallel to this, the limit θ0 → −∞

with θ− = θ0 − θ kept fixed can be considered, which leads to the corresponding

antiholomorphic equations D(θ−)ψ = 0 and ∂zψ = 0.

In the same works [128, 90], evidence was presented that the linear problem (7.71)

built from the special singular solutions of the MShG equation makes up the ODE

part for the ODE/IQFT correspondence where the IQFT counterpart is the so-called

Fateev model [68]. The latter is governed by the Lagrangian

L = 1
16π

3∑
i=1

(∂µϕi)
2+2M

(
eiα3ϕ3 cos(α1ϕ1+α2ϕ2)+e−iα3ϕ3 cos(α1ϕ1−α2ϕ2)

)
(7.73)

for the three scalar fields ϕi = ϕi(t, x) which satisfy the periodic boundary conditions

ϕi(t, x+R) = ϕi(t, x) . (7.74)
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It is important that the dimensionless coupling constants αi satisfy the linear con-

straint

α2
1 + α2

2 + α2
3 = 1

2
, (7.75)

so that the coupling M in the renormalized Lagrangian (8.4) has the dimensions

of mass, M ∼ [ mass ]. Within the ODE/IQFT correspondence the parameters are

identified as follows

ai = 4α2
i , (i = 1, 2, 3) , (7.76)

whereas the relation between the dimensionless parameter MR and ρ from (8.20) is

given by

ρ = 1
2

MR . (7.77)

Although the original considerations of refs. [128, 90] were focused on the ODE/IQFT

correspondence with all three parameters a1, a2, a3 positive, in the subsequent work

[60] evidence was presented that the correspondence remains valid with minimum

modifications to the case a1, a2 > 0 and a3 < 0. In the recent works [149, 150], the

same conclusion was reached for a1, a2 > 0 and a3 = 0. Among the tasks of the

current paper is to argue that the ODE/IQFT correspondence remains valid for

a1 = −n, a2 = n+ 2 , a3 = 0 with n > 0 . (7.78)

In this case, the coupling α3 in the Lagrangian (8.4) vanishes and the field ϕ3 is

decoupled. The interaction part turns out to be the Lagrangian for the dual action

of the sausage model (7.8) provided the identifications ϕ1 = 2ϕ, ϕ2 = 2ϑ are made.

Notice that with the m - M relation for the sausage model (7.16), formula (7.77) can

be re-written as

ρ =
r

8π
. (7.79)
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The ODE/IQFT correspondence suggests that for any common eigenvector |ψ 〉 ∈

H(1)
k of the commuting family of operators A(θ) and B(θ), there exists a singular

solution of the MShG equation (8.20) with P(z) given by (6.99) and the parameters

ai as in (7.78). The solution should be such that e−η is a smooth, single valued

complex function without zeroes on the punctured Riemann sphere. In the vicinity of

z = z1, z3, the leading behaviour is described by

e−η ∼ |P(z)|−
1
2 as |z − zi| → 0 , (7.80)

whereas in the neighbourhood of the second puncture

e−η ∼ |z − z2|1−(n+2)|k| as |z − z2| → 0 (7.81)

with 0 < |k| < 1
2
.3 The description of the apparent singularities involves some

technical details that are completely analogous to those discussed in ref. [90]. In the

case of the vacuum state, the apparent singularities are absent and the solution η is

real. Notice that the point z =∞ on the sphere is assumed to be regular, so that

e−η ∼ |z|2 as |z| → ∞ . (7.82)

As it was mentioned in the previous subsection, the eigenvalue of the operator S

which appears in the large θ-asymptotic formulae (viii) and (ix) is of special interest.

Let us introduce the “regularized” value of the solution at the puncture z = z2 as

η =
(

(n+ 2) |k| − 1
)

log |z − z2|+ η(reg) + o(1) . (7.83)

Then for the solution corresponding to the eigenvector |ψ 〉 ∈ H(1)
k with 0 < k < 1

2
,

the following formula holds:

S(ψ) =

(
ρ

n+ 2

)−2k
Γ(k)

Γ(1− k)

exp(η(reg))

(n+ 2)

∣∣∣∣ z13

z12z23

∣∣∣∣−(n+2)k

, (7.84)

where we use the shortcut notation zij = zi − zj.

3At |k| = 0, 1
2 the leading asymptotic (7.81) involves logarithms. Here we ignore such subtleties.
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We can now describe, in precise terms, the ODE/IQFT correspondence for the

sausage model. Consider the auxiliary linear problem (7.71) associated with the

singular solution of the MShG equation. The puncture z = z2 is a regular singular

point for this system of ODE. In the vicinity of this point, assuming that 0 < k < 1
2
,

one can introduce the basis solutions by means of the following asymptotic formulae

as z → z2:

Θ−(z, z̄ | θ ) → e+iβ2√
sin(2πk)

e−k(θ− iπn
2

)

(
z − z2

z̄ − z̄2

)+ 1
4

(1−k(n+2))

1

0


(7.85)

Θ+(z, z̄ | θ ) → e−iβ2√
sin(2πk)

e+k(θ− iπn
2

)

(
z − z2

z̄ − z̄2

)− 1
4

(1−k(n+2))

0

1


where, for convenience, the constant phase factor is set to be

eiβ2 =

(
z12z23

z13

z̄13

z̄12z̄23

) k
4

(n+2)

. (7.86)

Unlike z = z2, the puncture at z = z1 is an irregular singular point for the auxiliary

linear problem. In its neighbourhood, and for π
2

(n−1) ≤ =m(θ) ≤ π
2

(n+1), another

solution can be uniquely defined using the WKB asymptotic condition:

Ξ(z, z̄| θ ) → |P(z)|
1
4 exp

(
− ρeθ

∫ z

z2

dz
√
P(z)− ρe−θ

∫ z̄

z̄2

dz̄

√
P(z̄)

)

×

+e−
θ
2

(
P(z)

)− 1
4

−e+ θ
2

(
P(z̄)

)− 1
4

 as z → z1 . (7.87)

There must be a linear relation between these three solutions and hence,

Ξ
(
z, z̄| θ + iπn

2

)
= A

(ψ)
+ (θ) Θ−

(
z, z̄| θ + iπn

2

)
+ A

(ψ)
− (θ) Θ+

(
z, z̄| θ + iπn

2

)
. (7.88)

The ODE/IM correspondence states that the connection coefficients A
(ψ)
+ (θ) and

A
(ψ)
− (θ) coincide with the eigenvalues of the operators A(θ) and C A(θ) C , for the

common eigenvector |ψ〉 ∈ H(1)
k associated with the singular solution of the MShG
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equation. The eigenvalues of the transfer-matrices T 1
2
≡ T, and more generally Tj

with j = 1
2
, 1, . . . , can be obtained by the formulae similar to eqs. (6.92)-(6.94):

Ξ(z, z̄ | θ + iπ(2j + 1
2
)
)

= T
(ψ)
j (θ + iπj) Ξ(z, z̄ | θ + iπ

2

)
(7.89)

− T
(ψ)

j− 1
2

(θ + iπ(j + 1
2
)) Ξ(z, z̄ | θ − iπ

2

)
.

Finally, the eigenvalues of the operators B(θ) and C B(θ) C can also be expressed in

terms of certain connection coefficients of the ODE system (7.71). For this purpose,

one needs to introduce suitable basis solutions in the vicinity of the third puncture

z = z3. The corresponding formulae are simple generalizations of (6.112) and we do

not present them here.
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Chapter 8

Winding vacuum energies in a deformed O(4)

sigma model

8.1 Introduction

Recall that the 3D sausage model action is given by

A =

∫
d2x

uTr(∂µU ∂µU−1) + 2l (L3
µ)2 + 2r (R3

µ)2

4(u+ r)(u+ l)− rl
(
Tr(U σ3U

−1 σ3)
)2 . (8.1)

The 3D sausage is a renormalizable NLSM within the three-dimensional space of

couplings (u, r, l) at the one-loop level (here L3
µ and R3

µ stands for the left and right

currents: L3
µ := 1

2i
Tr(∂µU U

−1σ3), R3
µ := 1

2i
Tr(U−1∂µUσ3)). The following combi-

nations of parameters turned out to be renormalization group (RG) invariant:

a1, a2 > 0 : a1 a2 =
π2

4
√

(u+ r)(u+ l)rl
, a2

1 − a2
2 =

π2

4

u(r − l)
(u+ r)(u+ l)rl

.(8.2)

Moreover, Fateev presented a set of convincing arguments in favor of the quantum

integrability of the model (8.1). In particular, he argued that its spectrum is generated

by two massive doublets of the same mass whose 2-particle S-matrix has the form

of a direct product (−Sa1 ⊗ Sa2) of two U(1)-symmetric solutions of the S-matrix

bootstrap equations. For this reason the above two-parameter deformation of the

O(4)-sigma model is sometimes referred to as the SS-model. Also, it is worth noting,

that Sa coincides with the soliton S-matrix [180] in the quantum sine-Gordon theory

with the renormalized coupling constant a.

As usual we impose the twisted boundary condition for the matrix valued field U ,

U(t, x+R) = eiπk2σ3 U(t, x) eiπk1σ3 . (8.3)
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Figure 8.1: Incidence diagram for the TBA system describing the vacuum energy at
the sector k1 = k2 = 0 in the case a1, a2 = 2, 3, 4 . . . . The source term is indicated
near the corresponding node.

The space of states of the theory then splits into sectors characterized by a pair of

“winding” numbers, k = (k1, k2). The ground-state in each sector is referred to below

as the k-vacuum and the corresponding energy is denoted by E
(vac)
k .

The lowest vacuum energy E
(vac)
k=0 , can be calculated in the framework of the Ther-

modynamic Bethe Ansatz (TBA) approach. For the simplest case of integer para-

meters a1, a2 = 2, 3, 4, . . ., the required TBA equations were obtained in [68]. These

equations are encoded by the incidence diagram shown in Fig.8.1, which has one mas-

sive node.1 Subsequently, in Ref.[182], these equations were generalized to a system of

Non-Linear Integral Equations (NLIE) [131, 183] which allows one to calculate E
(vac)
k=0

for any values of a1, a2 ≥ 2. Moreover, the k = 0 case of the undeformed O(4)-sigma

model was separately considered in Refs.[184, 185, 186]. However, to the best of our

knowledge, the problem of calculating the k-vacuum energies for general values of

ai and ki is beyond the scope of traditional approaches of integrable quantum field

theory. In this chapter we will discuss a conjectured exact formula for the k-vacuum

energy in the 3D sausage for the general case.

1As noted in [181], if a model has an S-matrix in the form of a direct product (−SG ⊗ SH) and
the TBA equations for the models described by S-matrices SG and SH are encoded by Dynkin-like
diagrams of type G and H, each having one massive node, then the TBA equations for the model
with the direct product S-matrix are obtained by “gluing” together the individual TBA equations
at their massive nodes. This prescription, when applied to the SS-model with integer a1, a2 ≥ 2,
leads to a TBA system whose incidence diagram is shown in Fig.8.1.
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8.2 UV/IR behavior of k-vacuum energy

Although E
(vac)
k is a rather complicated function of the parameters, its leading small-

R (i.e., UV) and large-R (IR) behavior can be obtained via a simple and intuitive

analysis which is based on the dual form of the 3D sausage proposed in Ref.[68].

The dual description is formulated in terms of three Bose fields governed by the

Toda-like Lagrangian

L̃SS =
1

16π

3∑
i=1

(∂µϕi∂
µϕi)

2 + 2µ
(

ebϕ3 cos(α1ϕ1 + α2ϕ2) + e−bϕ3 cos(α1ϕ1 − α2ϕ2)
)
,(8.4)

where

αi =
1

2

√
ai , b =

1

2

√
a1 + a2 − 2 (8.5)

and the dimensionfull coupling µ is related to the soliton mass as

M = 2µ
Γ(2α2

1)Γ(2α2
2)

Γ(2α2
1 + 2α2

2)
. (8.6)

The soliton charges qi = 0,±1,±2 . . ., corresponding to the factors Sai (i = 1, 2) in the

direct product (−Sa1 ⊗ Sa2), appear through the quasiperiodic boundary conditions

imposed on the dual fields:

ϕ1(x1 +R) = ϕ1(x1) +
π

α1

(q2 + q1) , ϕ2(x1 +R) = ϕ2(x1) +
π

α2

(q2 − q1) . (8.7)

In their turn, the winding numbers are interpreted as quasimomenta. Due to the

periodicity of the potential terms in ϕj (j = 1, 2), the stationary states can be chosen

to be the Floquet states characterized by the pair k = (k1, k2):

ϕi 7→ ϕi + 2π/αi : |Ψk 〉 7→ e2πiki |Ψk 〉 . (8.8)

The form of the dual Lagrangian suggests that for small R

E
(vac)
k ≈ π

R

(
−1

2
+

p2
0

4b2
+ a1k

2
1 + a2k

2
2

)
. (8.9)
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Since values of the field ϕ3 is effectively restricted within the segment of length
(
−

2b log(µR)
)
, the corresponding “zero-mode momentum” p0 is not arbitrary. It is

determined through a certain quantization condition, similar to that discussed in

Ref.[134] in the context of the quantum sinh-Gordon model. Assuming that

|a1k1 ± a2k2| < 1 , (8.10)

the original consideration from [134] can be applied to the 3D sausage yielding

−p0

b2
log
(µR

8b2

)
+ δ(q=0)(p0) ≈ 2π , (8.11)

with

δ(q)(p) = −i log
(
S(q1)(p|a1k1 − a2k2)S(q2)(p|a1k1 + a2k2)

) (
δ(q)(0) = 0

)
.(8.12)

Here S(q)(p|λ) stands for the so-called “reflection amplitude” for the sine-Liouville

model [119]

S(q)(p|λ) =
Γ(1+|q|

2
+ λ

2
− ip

2
)Γ(1+|q|

2
− λ

2
− ip

2
)

Γ(1+|q|
2

+ λ
2

+ ip
2

)Γ(1+|q|
2
− λ

2
+ ip

2
)

Γ(1 + ip)Γ(1 + ip
4b2

)

Γ(1− ip)Γ(1− ip
4b2

)
. (8.13)

In the IR limit the k-vacuum energy is composed of an extensive part proportional

to the length of the system

E
(vac)
k = R E0 + o(1) as R→∞ . (8.14)

The exact form of the specific bulk energy was found in [68]. It is expressed through

the soliton mass M as

E0 = −M
2

4

sin(π
2
a1) sin(π

2
a2)

sin(π
2
(a1 + a2))

. (8.15)

In the case a1, a2 > 1, when the fundamental particles do not form bound states, the

leading correction to (8.14) comes from virtual soliton and antisoliton trajectories

winding once around the space circle. These trajectories should be counted with
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Figure 8.2: Numerical values of the dimensionless k-vacuum energy R
π
E

(vac)
k versus

MR for a1 = 2, a2 = 3 and k1 = k2 = 0. The solid and dashed lines follow from UV
(8.9), and IR (8.16) asymptotic formulas, respectively. The heavy dots were obtained
by means of a numerical solution of the TBA system encoded by the incidence diagram
of Fig.8.1.

the phase factor eiπ(σ1k1+σ2k2), where σ1,2 = ±1. Therefore, summing over the four

possible sign combinations one obtains

E
(vac)
k = R E0 − 4

π
cos(πk1) cos(πk2) M K1(MR) +

(
multiparticle

)
(8.16)

(here a1,2 > 1 and K1(r) stands for the conventional Bessel function). Note that

similar arguments were originally applied to the quantum sine-Gordon model by Al.

Zamolodchikov in Ref.[187].

In Fig. 8.2 the UV/IR asymptotic formulae are compared with the results of

a numerical solution of the TBA system described by the incidence diagram from

Fig.8.1.

8.3 Exact k-vacuum energy

8.3.1 3D sausage model

The model governed by the Lagrangian

LF =
1

16π

3∑
i=1

(∂µϕi∂
µϕi)

2+2µ
(

eiα3ϕ3 cos(α1ϕ1+α2ϕ2)+e−iα3ϕ3 cos(α1ϕ1−α2ϕ2)
)
,

(8.17)
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where the coupling constants αi are subjected to a single constraint

α2
1 + α2

2 + α2
3 =

1

2
, (8.18)

will be referred to below as the Fateev model. In the case when α1, α2 are real while

α3 is pure imaginary (unitary regime), the Lagrangian (8.17) is real and coincides

with the dual Lagrangian L̃ provided α3 = −ib. In the symmetric regime all the

coupling constant αi are real, the Lagrangian (8.17) is completely symmetric under

simultaneous permutations of the real fields ϕi and couplings αi. Despite that the

theory is apparently non-unitary in this case, one can still address the problem of

calculation of the k-vacuum energies. Since the Lagrangian LF in the symmetric

regime is invariant under the transformations ϕi 7→ ϕi + 2παi with i = 1, 2, 3, the k-

vacuum energies are labeled by the triple of quasimomenta k = (k1, k2, k3) (contrary

to the unitary regime where k = (k1, k2)). The short distance expansion of E
(vac)
k

in the symmetric regime is considerably simpler than in the unitary one. Its general

structure follows from the fact that the potential term of LF with αi > 0 is a uniformly

bounded perturbation for any values of the dimensionless parameter µR. Therefore

the conformal perturbation theory can be applied literally yielding an expansion

Symmetric regime :
R

π
E

(vac)
k = −1

2
+

3∑
i=1

(2αiki)
2 −

∞∑
n=1

en (µR)4n . (8.19)

An exact formula for the k-vacuum energies in the symmetric regime was proposed

in Ref.[128]. Below we argue that essentially the same formula actually holds in both

regimes of the 3D sausage.

8.3.2 Regular solutions of the shG equation

Consider the classical partial differential equation

∂z∂z̄η̂ − ρ2 |P(z)|
(
e2η̂ − e−2η̂

)
= 0 (8.20)
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where

P(z) =
(z3 − z2)a1 (z1 − z3)a2 (z2 − z1)a3

(z − z1)2−a1(z − z2)2−a2(z − z3)2−a3
. (8.21)

and z̄ denotes the complex conjugate of z. Here ρ is a real parameter and ai (i =

1, 2, 3) are also real and satisfy the condition

a1 + a2 + a3 = 2 . (8.22)

The variable z is regarded as a complex coordinate on CP1\{z1, z2, z3}, the Riemann

sphere with three punctures. Due to the relation (8.22), P(z)(dz)2 is a quadratic

differential under PSL(2,C) transformations, so that the punctures can be sent to

any prescribed positions, say (z1, z2, z3) = (0, 1,∞). Then the change of variables

w = ρ

∫
dz z

a1
2
−1 (1− z)

a2
2
−1 (8.23)

brings (8.20) to the standard form of the sinh-Gordon (shG) equation,

∂w∂w̄η̂ − e2η̂ + e−2η̂ = 0 . (8.24)

In the case when a1, a2, a3 are all positive Eq.(8.23) defines the Schwarz-Christoffel

mapping, transforming the upper and lower half-planes correspondingly to the trian-

gles (w1, w2, w3) and (w1, w2, w̄3), depicted in Fig. 8.3a. Note, that the adjacent sides

of the resulting polygon (w1, w2, w3, w̄3) should be identified to form a topological

2-sphere. In the case when a3 < 0, but a1, a2 > 0, the image of the punctured sphere

is shown in Fig. 8.3b. Again, the adjacent rays should be properly identified. In this

way Eq.(8.20) on the thrice-punctured sphere can be equivalently formulated as the

shG equation in the domains shown in Fig. 8.3a and Fig. 8.3b, corresponding to the

two cases

Regime I : a1 > 0, a2 > 0 , a3 = 2− a1 − a2 > 0 (8.25)

Regime II : a1 > 0, a2 > 0 , a3 = 2− a1 − a2 < 0 .
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Figure 8.3: The image of the thrice-punctured sphere in the complex w-plain: (a) for
the case a1,2,3 > 0 (regime I); (b) for the case a1,2 > 0 and a3 < 0 (regime II).

We will consider regular solutions to (8.24), defined by the following two require-

ments. First, the regular solution should be a smooth, single valued, real function on

the punctured sphere CP1\{z1, z2, z3} or, equivalently (when the complex coordinate

w is employed) in the domains shown in Fig. 8.3 with properly identified edges. Sec-

ond, the regular solution must develop the proper asymptotic behavior in the vicinity

of the punctures. For regime I there is the freedom to control the asymptotic behavior

of η̂ at each of the three punctures, or, equivalently, at each vertex wi in Fig.8.3a.

Namely,

η̂ → 2 li log |w − wi|+O(1) , when w → wi , (8.26)

where

−1

2
< li ≤ 0 (8.27)

denote free parameters2. For regime II, when a3 < 0, the third puncture is mapped

to the infinity of the domain, shown in Fig.8.3b, and we require that

Regime II : η̂ → 0 as |w| → ∞ , (8.28)

2For li = − 1
2 the leading asymptotics (8.26) should be replaced by

η̂ → − log
(
|w − wi| log

(
4

|w−wi|
))

+O(1) .
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whereas the asymptotic behavior in the vicinity of w = w1, w2, is still described by

(8.26) with two free parameters (8.27). It turns out that the solution of the shG

equation, satisfying the above regularity conditions, exists and is unique for both

regimes I and II.

8.3.3 Main conjecture

Define the functional

F(ρ) = − 8

π

∫
d2w sinh2(η̂) +

∑
i

ail
2
i , (8.29)

where η̂ is a regular solution and the summation index i takes the values i = 1, 2, 3

and i = 1, 2 for the regimes I and II, respectively. The additive constant in (8.29) is

chosen to provide the normalization condition

lim
ρ→∞

F(ρ) = 0 . (8.30)

Now we can extend the conjecture of Ref.[128] and propose the expression for the

k-vacuum energies, which is valid for both considered regimes,

R

π
E

(vac)
k = F(ρ)− 4ρ2

3∏
i=1

γ
(
ai
2

)
, (8.31)

where γ(x) := Γ(x)
Γ(1−x)

. This formula should be supplemented with the relations be-

tween the parameters of quantum and classical problems:

µR = 2 ρ , α2
i =

ai
4
, |ki| = li +

1

2
. (8.32)

In the case of the symmetric regime, formula (8.31) can be checked, in principle,

perturbatively. Namely, let us return to the original variable z and replace η̂ by

η = η̂ + 1
2

log |ρ2P|. This brings (8.20) to the form of the modified shG equation:

∂z∂z̄η − e2η + ρ4 |P|2 e−2η = 0 . (8.33)
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For the regular solution the third term in (8.33) can be treated perturbatively even

in the nearest neighbor of each puncture and the RHS of (8.31) admits a Taylor

expansion (see [128] for details):

Regime I : F− 4ρ2

3∏
i=1

γ
(
ai
2

)
=
∞∑
n=0

fn ρ
4n . (8.34)

On the other hand, the LHS of (8.31) possesses a series expansion (8.19) which, in

principle, can be obtained using the conformal perturbation theory. Thus, in the

symmetric regime (regime I), both sides of (8.31) can be understood perturbatively

and the conjectured relation implies that the corresponding expansion coefficients are

simply related: fn = −24n en.

The situation is somewhat different in the unitary regime (regime II). Of course,

the RHS of (8.31) in this regime is still well defined. However, the conformal pertur-

bation theory cannot be applied literally in this case. More generally, at the moment,

it is not entirely clear how one can calculate the LHS of (8.31) for arbitrary values

of ai and ki in the SS-model. In particular, as was mentioned earlier, the knowledge

of the exact S-matrix is not of much help in solving this problem. Therefore, as a

first step in proving the correspondence (8.31), it would be desirable to derive the

UV and IR asymptotics of E
(vac)
k , discussed above, from the differential equation side.

Fortunately, this could be done analytically by using an auxiliary linear problem as-

sociated with the shG equation (8.24). The derivation is rather technical and will

be published elsewhere. Here we only present the results of our numerical work in

support of the conjecture (8.31). The shG equation has been solved numerically for

various sets of the parameters ai and ki. We found that the resulting values of the

RHS of (8.31) are in good agreement with the UV and IR asymptotic formulae (8.9)

and (8.16). Some (small) part of the available numerical data is presented in Fig. 8.4

and Table D.1.
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Figure 8.4: Numerical values of the dimensionless k-vacuum energy R
π
E

(vac)
k versus

the variable r = MR for a1 = 1.7, a2 = 1.5, k1 = 4
17

= 0.235 . . . , k2 = 1
3
. The

solid and dashed lines represent the small-R, (8.9), and large-R asymptotics (8.16),
respectively. The heavy dots represent the LHS of (8.31) calculated from numerical
solutions of the shG equation. The corresponding numerical values are presented in
Table D.1.

MR r.h.s of Eq.(8.31) Eq.(8.9) Eq.(8.16)

0.1 -0.18631 -0.18510 -0.14729

0.2 -0.16773 -0.16770 -0.14197

0.3 -0.15230 -0.15288 -0.13487

0.4 -0.13945 -0.13913 -0.12654

0.5 -0.12651 -0.12589 -0.11731

0.6 -0.11390 -0.11288 -0.10739

0.8 -0.08919 -0.08695 -0.08605

1.0 -0.06463 -0.06061 -0.06327

1.2 -0.03973 -0.03346 -0.03941

1.4 -0.01456 -0.00524 -0.01461

Table 8.1: The dimensionless k-vacuum energy R
π
E

(vac)
k as a function of the variable

MR.



165

Chapter 9

Discussion/Outlook

In this dissertation we considered the problem of the quantization of NLSM. Our

principal examples were the 2D and 3D sausage models. To conclude, let’s summarize

and discuss the key points of the paper.

We started by introducing NLSM in 1 + 1 space-time dimensions. A key feature

of this class of models is renormalizability. The one-loop RG equations take the form

of the Ricci flow, which arose independently in mathematics. A number of examples

of one-loop renormalizable NLSM were provided, whose metric satisfies the Ricci flow

equations. It was mentioned that the 2D and 3D sausage NLSM were originally found

by explicitly solving the Ricci flow equations. It turned out that all these models were

classically integrable field theories.

In the work [75], a classically integrable NLSM was constructed starting from an

explicit ansatz for the form of the metric and the connection components entering

into the Zero-Curvature Representation. This NLSM is a four parameter deformation

of the SU(2) PCF with torsion that contains the 3D sausage model as a two para-

meter sub-family. Remarkably the model satisfies the generalized one-loop RG flow

equations (2.45). This hints to a deep connection between classically integrability

and one-loop renormalizability. It would be interesting to explore it further.

We emphasized the rôle of the Sklyanin exchange relations in an integrable field

theory. They guarantee the Poisson commutativity of the infinite family of integrals of

motion, which is an important component of classical integrability. Moreover, as the
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classical version of the quantum Yang-Baxter algebra, the Sklyanin exchange relations

are crucial in the “first principles” quantization of the theory. We discussed the

derivation of the Sklyanin exchange relations, which relies on the ultra-local form of

the Poisson brackets for the flat connection (3.23). However, in the case of integrable

NLSM, the connection components typically do not satisfy such relations, but contain

in addition a term proportional to δ′(x − y). This, in turn, causes problems in the

quantization of classically integrable NLSM.

The Poisson brackets of the flat connection depend on the gauge. We demon-

strated that the classical sausage model admits the ultralocal gauge. Thus, “Hamil-

tonian Methods in the Theory of Solitons” [77] can be applied without modifications.

In connection with this, we believe that the problem with ultralocality for other

integrable NLSM should be revisited.

Another strategy was formulated for tracing the Sklyanin exchange relations in a

non-ultralocal field theory. It is inspired by the age-old observation that the quantum

monodromy operator is somehow better behaved than its classical counterpart. In

the central example we recovered the Yang-Baxter Poisson algebra in a non-ultralocal

system based on the SU(2) current algebra by starting with an explicit quantum field

theory realization of the Yang-Baxter relation and then taking the classical limit. As

a result of the entangled interplay between the classical limit and the scaling one,

which required ultraviolet regularization of the model, we found that the classical

monodromy matrix is somewhat more cumbersome than its quantum counterpart. It

turned out that the net result of the non-ultralocal structure for the Sklyanin exchange

relations is the non-universal renormalization of the spectral parameter which occurs

even at the classical level. This is somewhat in the spirit of Faddeev and Reshetikhin

[48] who proposed to ignore the problem of non-ultralocality, arguing that it is a

consequence of choosing the “false vacuum”, and to restore the ultralocality of the

current algebra by hand.
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The example we elaborated is relevant to the Fateev model, an integrable two

parameter deformation of the SU(2) Principal Chiral Field. It provides evidence for

the existence of the Sklyanin exchange relations for this remarkable non-linear sigma

model, which was shown for several particular cases in the parameter space. We

believe that unraveling the Sklyanin exchange relations for non-ultralocal systems

is important in many respects. Of special interest is the Klimč ík model and its

reductions [92], which have recently attracted a great deal of attention in the context

of the AdS/CFT correspondence [93, 94].

We considered the quantization of the 2D sausage model in detail. In our study

of the quantum model we closely followed the ideas of the works [50, 51, 52]. We paid

special attention to the integrable structures of the cigar NLSM — the CFT governing

the ultraviolet behaviour of the quantum sausage. In particular we constructed the

BLZ type representation for the chiral transfer-matrices in the quantum cigar.

The chiral transfer-matrices depend on a number of parameters and can be con-

sidered in the parameter domain where they are not directly related to the cigar

NLSM. In this case, they are still of physical interest since they can be interpreted as

the transfer-matrices for the minimal Zn parafermionic models from ref. [121]. The

situation here resembles the interplay between the quantum Liouville theory and the

BPZ minimal models. We constructed lattice transfer-matrices and presented numer-

ical evidence that in the scaling limit they become the chiral transfer-matrices in the

parafermionic regime. We believe that it may hint as to how to proceed with the

lattice formulation of the cigar and sausage models. To go further in this direction

the most promising approach is, perhaps, the method of separation of variables [127]

which was successfully applied to a similar problem appearing in the quantization

of the sinh-Gordon model [151, 152, 153, 100, 154, 155, 156]. Another interesting

possibility is related to the work [157], where some spectral properties of the cigar
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NLSM were observed to appear in the scaling limit of a certain inhomogeneous ver-

sion of the 6-vertex model. We have already carried out a preliminary study of the

inhomogeneous 6-vertex model. Our main results are collected in the recent pre-print

[61].

One of the most effective methods for the calculation of the spectrum of com-

muting families of operators including the transfer-matrices in integrable quantum

field theory is based on the ODE/IQFT correspondence. From our study of the

parafermionic transfer-matrix, we proposed the ODE counterpart in the correspon-

dence for the cigar NLSM. It turns out to be identical to that which was introduced

earlier in the context of the so-called paperclip model in the works [114, 115]. Based

on the results of these papers, we derived non-linear integral equations for determin-

ing the vacuum eigenvalues of the chiral transfer-matrix which work both for the

cigar and the parafermionic regimes. We believe that this might be a good starting

point for applying the powerful fermionic methods [158, 159, 160, 161, 162] to the

sausage/O(3) NLSM.

In refs. [56, 90], a conceptual explanation was given of how the ODE/IQFT cor-

respondence for integrable conformal field theory can be generalized to the massive

IQFT. Following this route, we extended the ODE/IQFT correspondence from the

cigar to the sausage NLSM. With the correspondence one can uncover the basic in-

tegrable structures by studying the properties of the connection coefficients of the

ordinary differential equations. The properties of the commuting families of opera-

tors in the sausage model, which includes the quantum transfer-matrix, are given in

the list (i)-(x) in sec. 7.3 . The technical result that deserves to be mentioned is the

system of NLIE which describes the vacuum eigenvalues of the commuting families

of operators. Among other things, it allows one to calculate the k-vacuum energies

of the sausage/O(3) NLSM.

There are many results in the literature concerning the energy spectrum of the
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O(3) sigma model in the sector with k = 0 [163, 145, 185, 184]. In ref. [66] a system of

TBA equations was proposed which allows one to calculate the ground state energy

for k = 0 and integer values of the dimensionless coupling n ≥ 3 of the sausage

model. Recently Ahn, Balog and Ravanini [140] transformed this system of TBA to a

system of three non linear integral equations which, it is affirmed, works for any real

positive n. Their main assumption is a periodicity condition for the Q-function given

by eq. (3.16) from that paper. In our investigations, we did not find any trace of a

Q-function satisfying such a strong periodic condition. Nevertheless, the numerical

results presented in fig. 2 from that paper seem to be in agreement with the data

obtained from the solution of our NLIE (7.30), (7.31) with k = 0 and n = 1. This

situation needs to be clarified.

The ODE/IQFT correspondence was an invaluable tool in our study of the 2D

sausage model. In [128], the ODE/IQFT correspondence was proposed for the 3D

sausage. Based on the correspodence, a remarkable formula (8.31) was put forward

that expresses the k-vacuum energy in terms of certain solutions to the MShG equa-

tion. In this thesis, we numerically verified it for the unitary regime. The results are

given in fig. 8.4 and tab. 8.1. They show excellent agreement between the numerical

data and the UV/IR asymptotics.

Let us briefly touch on some problems which have not been discussed in the thesis

but are directly related to the subject of this work. We did not make any mention

of the sausage model with the topological term equal to π which is also expected to

be an integrable QFT [166, 66]. Another closely related model is the four-parameter

integrable family of NLSM with torsion introduced in the work [75], which includes the

3D sausage as a two parameter subfamily. We believe that extending the ODE/IQFT

approach to these models will be useful, both as a step in the development of the

method, and in terms of applications. There are the remarkable works [167, 168, 169]
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on toroidal algebras, which are deeply connected to this field.

All the models mentioned above are based on the sl(2)-algebra and its associated

integrable structures. Since the work of Klimč ík [69] there has been increasing interest

in “deformed” integrable NLSM associated with higher rank Lie algebras [170, 171, 74,

172]. The first principles quantization of such theories seems to be a very interesting

problem. In the recent work [173], an important step in this direction was taken where

a one parameter deformation was found of the set of “circular brane” local integrals

of motion introduced in ref. [174]. This offers the possibility for the quantization of

the deformed O(N) NLSM along the lines of this work.

Perhaps the main motivation for studying NLSM is based on the fact that certain

types of SUSY sigma models are at the heart of the celebrated AdS/CFT corre-

spondence, and integrability is an important possibility. In particular, the NLSM

associated with the AdS side of the correspondence for N = 4 SUSY Yang Mills

theory was argued to be integrable [175, ?]. As was already mentioned, the study of

the first principles quantization of the NLSM by traditional techniques has proven to

be difficult. A similar situation exists with sigma models on supergroups and super-

spaces, which are expected to provide theoretical descriptions of condensed matter

systems with disorder [176]. That is where one is most tempted to try the power of

the ODE/IQFT approach.
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Appendix A

Poisson structure of the Klimč́ik model

Using the Lagrangian (2.41) one can show that the currents I± =
∑

a I
a
±ta (3.13)

obey the Poisson bracket relations

g−2
{
Iaσ(x), Ibσ′(y)

}
= σ qabδσσ′ δ

′(x− y) +
∑
σ′′

F abc(σ, σ′|σ′′) qcd Idσ′′ δ(x− y) . (A.1)

The structure constants are given by

2F abc(±± |±) = +(1 + b) fabc ± iε2

(
Rc

d f
dba +Rb

d f
dac +Ra

d f
dcb
)

2F abc(±± |∓) = −(1− b) fabc ± iε2Rc
d f

dba (A.2)

2F abc(±∓ |±) = +(1− b) fabc ∓ iε2Rb
d f

dac

2F abc(∓± |±) = +(1− b) fabc ∓ iε2Ra
d f

dcb

with

b = 1
2

(1 + ε2
1 − ε2

2) .

Also, Rb
a in the above formulae stands for the matrix elements of the Yang-Baxter

operator

R̂(ta) = tbRb
a .

As was mentioned in the main body of the text, the currents I± are related via the

linear transformation (4.84), (4.85) to J± =
∑

a J
a
± ta which form two independent

copies of the current algebra (4.82). To write the explicit formulae for the matrix
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elements occurring in (4.85),

XA ≡

XA
++ XA

+−

XA
−+ XA

−−

 (A = ±, 0) ,

it is convenient to swap the deformation parameters ε1, ε2 for m1, m2 defined through

the relations

ε1 =
(1−m2

1)(1−m2
2)

(1 +m2
1)(1 +m2

2)
, ε2 =

4m1m2

(1 +m2
1)(1 +m2

2)
. (A.3)

Then,

X+ =
g2

(1 +m2
1)(1 +m2

2)

 (1−m1m2)2 (m1 −m2)2

(m1 +m2)2 (1 +m1m2)2



X− =
g2

(1 +m2
1)(1 +m2

2)

 (1 +m1m2)2 (m1 +m2)2

(m1 −m2)2 (1−m1m2)2



X0 =
g2

(1 +m2
1)(1 +m2

2)

 1 +m2
1m

2
2 m2

1 +m2
2

m2
1 +m2

2 1 +m2
1m

2
2

 .

Finally we note that the Hamiltonian of the Klimč́ik model (4.80) is expressed in

terms of the currents K± as

H =
g2

4

∫
dx

∑
σ,σ′=±

(
A
‖
σσ′ 〈K

0
σ, K

0
σ′ 〉+ 2A⊥σσ′ 〈K+

σ , K
−
σ′ 〉
)
,

where

A
‖
±± = 1 + ε2

1 , A
‖
±∓ = 1− ε2

1 ,

A⊥±± = 1 + ε2
1 − ε2

2 , A⊥±∓ = (1 + ε1 ∓ ε2)(1− ε1 ± ε2) .
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Appendix B

Here we discuss some geometrical aspects of the Klimč́ik non-linear sigma model. The

target space is topologically the same as G (which below is assumed to be a compact

simple Lie group) but equipped with a certain anisotropic metric Gµν . The latter can

be thought of as a two-parameter deformation of the left/right invariant metric on the

group manifold. In fact, the form of the Lagrangian (2.41) suggests that the target

manifold is equipped with the affine connection Γ such that the metric is covariantly

constant w.r.t. Γ, while its torsion is defined by the antisymmetric tensor Bµν . To be

precise, the covariant torsion tensor

Hλµν = Gλρ

(
Γρµν − Γρνµ

)
(B.1)

(here Γρµν stands for the Christoffel symbol), is a closed 3-form with Bµν playing the

rôle of the torsion potential:

Hλµν = ∂λBµν + ∂νBλµ + ∂µBνλ .

A remarkable feature of the Klimč´ik target space background is that it admits a

set of 1-forms which can be thought of as deformations of the Maurer-Cartan forms.

Introduce two sets {eaµ(σ)}Da=1 (D = dimG):

ta eaµ(σ) dXµ = −2 i Ω̂
−1

σ

(
U−1 dU

)
. (B.2)

Here Ω̂σ stands for the linear operator acting in g,

Ω̂σ = 1̂ + iσ ε1 R̂U + iσ ε2 R̂ (B.3)
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and σ takes two values ± . It is not difficult to show that the metric can be written

as

Gµν = 1
2g2 qab eaµ(+) ebν(+) = 1

2g2 qab eaµ(−) ebν(−) , (B.4)

i.e., {eaµ(+)}Da=1 and {eaµ(−)}Da=1 are two vielbein sets in the cotangent space of the

target manifold. Notice the following simple relations

Gµν eaµ(+) ebν(+) = Gµν eaµ(−) ebν(−) = 2g2 qab

and √
detGµν =

(
det Ω̂σ

)−1 ×
√

detG
(0)
µν , (B.5)

where G
(0)
µν = Gµν |ε1=ε2=0 .

It turns out that the torsion also admits simple expressions involving eaµ(σ) and

the structure constants F abc(σ, σ′|σ′′) (A.2) appearing in the Poisson algebra (A.1):

Hλµν = +
1

4g2

(
Fabc(− + |+) ec[λ(+)eaµ(−)ebν](+)− 2Fabc(+ + |+) eaλ(+)ebµ(+)ecν(+)

)
(B.6a)

and

Hλµν = − 1

4g2

(
Fabc(+ −|−) ec[λ(−)eaµ(+)ebν](−)− 2Fabc(− −|−) eaλ(−)ebµ(−)ecν(−)

)
.

(B.6b)

Here the symbol [λµν] denotes the alternating summation over all possible permuta-

tions of the indices λ, µ and ν.

Before discussing the origin of the above formulae for the metric and torsion, let

us first inspect the reality condition for the target space background. Consider the

metric and the torsion as a function of ε1 with the ratio ε2/ε1 a fixed real number.

First of all it is easy to see that the determinant det Ω̂σ which appears in the formula
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(B.5) does not depend on the choice of the sign factor σ – it is a polynomial in the

variable ε2
1 of degree coinciding with the integer part of half of D ≡ dim(G):

det Ω̂σ = 1 +

[D
2

]∑
n=1

ω(n) ε2n
1 ,

where the coefficients ω(n) are real as =m(ε2/ε1) = 0. In their turn, the components

of the metric tensor and the torsion are rational functions of ε1 of the form

Gµν =
1

det Ω̂σ

[D−1
2

]∑
n=0

g(n)
µν ε2n

1 (B.7)

Hλµν =
iε1

(det Ω̂σ)2

D−1∑
n=0

h
(n)
λµν ε

2n
1 .

For pure imaginary ε1, the 1-forms eaµ(σ) are real and, as it follows from (B.4), the

metric is positive definite. Formula (B.7) implies that it remains positive definite for

sufficiently small real ε1.1 At the same time, as it follows from (B.6), (A.2) the torsion

is real for pure imaginary ε1. Therefore the expansion coefficients h
(n)
λµν turn out to be

real as =m(ε2/ε1) = 0. However, Hλµν takes pure imaginary values for real ε1 and

ε2, in particular for 0 < ε1 < 1, 0 < ε2 < 1 − ε1. Notice that the case G = SU(2)

turns out to be somewhat special in that the torsion becomes zero identically [70].

The corresponding non-linear sigma model is equivalent to the model introduced by

Fateev in ref.[68]. In the presence of non-vanishing torsion, the Lagrangian (2.41) is

not invariant under the substitution (t ± x) 7→ (t ∓ x), i.e., the field theory is not

P -invariant. However it is still invariant w.r.t. the special Lorentz transformation

(t± x) 7→ e±θ (t± x) with real θ.

Vielbeins

To clarify the special rôle of the 1-forms (B.2) for the Klimč´ik target space back-

ground let us make the following observations.

1 Presumably the metric remains positive definite in the parameter domain 0 < ε1 < 1 , 0 <
ε2 < 1− ε1.
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First we point out that the 1-forms eaµ(+) are covariantly constant w.r.t. the

spin-connection

ων,a
b(+) = Fac

b(+ − |+) ecν(−) ,

i.e.,

∂ν eaµ(+) − Γλµν eaλ(+) + ων,b
a(+) ebµ(+) = 0 . (B.8)

A simple consequence of this fact is that the covariant derivative of the metric (B.4)

is zero, as it should be. In a similar manner, the 1-forms eaµ(−) satisfy the covariant

constant condition

∂ν eaµ(−) − Γλνµ eaλ(−) + ων,b
a(−) ebµ(−) = 0 (B.9)

which involves another spin-connection

ων,a
b(−) = Fac

b(− + |−) e+
ν (+) .

Finally, the covariantly constant 1-forms obey the Maurer-Cartan type equations:

∂[νeaµ](+)− 1
2

(
qaa

′
Fa′bc(+ + |+)−Θaa′ Fa′bc(−+ |+)

)
eb[ν(+) ecµ](+) = 0

(B.10)

∂[νeaµ](−)− 1
2

(
qaa

′
Fa′bc(−− |−)−Θa′a Fa′bc(+− |−)

)
eb[ν(−) ecµ](−) = 0

with

Θaa′ : eaµ(+) = Θa
b ebµ(−) , Θaa′ = 1

2g2 G
µν eaµ(+) ea′ν (−) , Θa

c q
cd Θb

d = qab .

Relations (B.8), (B.9) allow one to express the torsion in terms of eaµ(σ). Namely,

a simple calculation yields

Γλµν = 1
2g2 qab

(
ων,c

a(+) ebλ(+) ecµ(+) + eaλ(+) ∂ν ebµ(+)
)

(B.11)

Γλµν = 1
2g2 qab

(
ωµ,c

a(−) ebλ(−) ecν(−) + eaλ(−) ∂µ ebν(−)
)
.
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These formulae, combined with (B.1) imply

Hλµν = 1
2g2 σ qab

(
eaλ(σ)

(
ων,c

b(σ) ecµ(σ)− ωµ,cb(σ) ecν(σ)
)

+ eaλ(σ)
(
∂ν ebµ(σ)− ∂µ ebν(σ)

))
.

In the case under consideration, the torsion is a 3-form and the more elegant expres-

sions (B.6) can be achieved by anti-symmetrizing w.r.t. the Greek indices and using

the formula

qab ea[λ(σ) ∂µ ebν](σ)− 1
2

∑
σ′=± Fabc(σσ|σ′) ea[λ(σ) ebµ(σ) ecν](σ

′) = 0

valid for both choices of σ = ±. The later is an immediate consequence of the

Maurer-Cartan structure equations (B.10).

Formulae (B.4) and (B.6) can be made more transparent using the notation

F̃abc(σ σ
′ σ′′):

Fabc(σ σ
′|σ′′) = e

iπ
4

(σ+σ′−σ′′) F̃abc(σ σ
′ σ′′) .

The advantage of F̃abc(σ σ
′ σ′′) compared to Fabc(σ σ

′|σ′′) is that it is a completely

antisymmetric symbol w.r.t. the pair permutations (a, σ) ↔ (b, σ′) and (b, σ′) ↔

(c, σ′′):

F̃abc(σ σ
′ σ′′) = −F̃bac(σ′ σ σ′′) = −F̃acb(σ σ′′ σ′) .

Then (B.4), (B.6) can be re-written as

Gµν =
i

4g2

∑
σ=±

σ qab Ea
λ(σ) Eb

µ(σ)

Hλµν =
1

4g2

∑
σ,σ′,σ′′=±

sgn(σ + σ′ + σ′′) F̃abc(σ σ
′ σ′′) Ea

λ(σ) Eb
µ(σ′) Ec

ν(σ
′′) ,

where we also use

Ea
µ(σ) ≡ e−

iπ
4
σ eaµ(σ) .
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Ricci tensor

Let Rµν be the Ricci tensor built from the affine connection Γ (B.11). For practical

purposes, it is useful to express it in terms of the symmetric Ricci tensor Rµν associ-

ated with the Levi-Civita connection.2 Using the results from the work [73] one can

show that

1
2

R(µν) = Rµν − 1
4
Hµ

σρHσρν = 1
8

(
1− (ε1 − ε2)2

) (
1− (ε1 + ε2)2

) ∑
σ=±

qab eaµ(σ)ebν(−σ)

− ∇µWν −∇νWµ (B.12)

1
2

R[µν] = 1
2
∇λH

λ
µν = 1

8

(
1− (ε1 − ε2)2

) (
1− (ε1 + ε2)2

) ∑
σ=±

qab σeaµ(σ)ebν(−σ)

+ WλH
λ
µν + ∂µWν − ∂νWµ .

Here

Wµ = −1
2
∂µ log

(
det Ω̂σ

)
+ wµ (B.13)

with Ωσ given by (B.3) and

wµ = ± i
4

eaµ(±) fab
c (ε1 R̄ − ε2R)bc .

The last formula holds true for any choice of the sign ± and we use the notation

R̄b
c = (U−1RU)bc = (U−1)bb′R

b′
c′ U c

′
c ,

where U ba stands for the D×D matrix of the group element U in the adjoint repre-

sentation:

U taU
−1 = tb U ba .

2Below, the Ricci tensor is defined as Rµν = Rλµλν where Rρλµν is the Riemann tensor

Rλµρν = ∂ρΓ
λ
µν − ∂νΓλµρ + ΓλσρΓ

σ
µν − ΓλσνΓσµρ

and Γσµν = Γσνµ stands for the Christoffel symbols for the Levi-Civita connection.
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1-loop renormalization of the Klimč´ik NLSM

In the path-integral quantization, the general NLSM (2.41) should be equipped with

a UV cutoff. A consistent removal of the UV divergences requires that the “bare”

target space metric and torsion potential be given a certain dependence on the cutoff

momentum Λ. To the first perturbative order in the Planck constant ~ the RG flow

equations are given by [65, 71, 72]

∂τGµν = −~
(
Rµν −

1

4
Hµ

σρHσρν +∇µVν +∇νVµ

)
+O(~2)

(B.14)

∂τBµν = −~
(
− 1

2
∇λH

λ
µν + VλH

λ
µν + ∂µΛν − ∂νΛµ

)
+O(~2) ,

where ∂τ ≡ 2πΛ ∂
∂Λ

. The infinitesimal variation of the Klimč́ik metric and torsion

potential, assuming that the combinations of the couplings ε2
ε1

, g2ε1 are kept fixed,

can be expressed as

δGµν = +
δε1

4g2ε1

∑
σ=±

qab eaµ(σ)ebν(−σ)

δBµν = − δε1

4g2ε1

∑
σ=±

qab σ eaµ(σ)ebν(−σ) .

With the explicit formulae for the Ricci tensor (B.12), it is easy to see that the

general RG flow equations (B.14) are satisfied if Vµ = Λµ = Wµ with Wµ given by

(B.13). Also it follows that the evolution of the bare couplings under a change in Λ

is described by the system of ordinary differential equations (2.46).
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Appendix C

In this Appendix we provide the explicit relation between the flat connection (3.15)

for the case of the Fateev model (G = SU(2)) and that given in the work [75].

In that work a more general four parameter deformation of the SU(2) principal

chiral field is considered which contains the 3D sausage as a two-parameter subfamily.

The deformation parameters were denoted by (η, ν(L), σ, q) and, for the case of the

Fateev model, ν(L) together with σ should be set to zero:

ν(L) = σ = 0 .

Here the superscript L has been used to distinguish the parameter ν in ref.[75] with

the one from this work. The remaining two parameters η and q are related to κ and

ν in (2.49) as

κ =
ϑ2

2(0, q2)

ϑ2
3(0, q2)

, ν = −i
ϑ1(iη, q2)

ϑ4(iη, q2)
,

where ϑa stand for the conventional theta functions. In ref.[75] the co-ordinates v

and w that appear in the Euler decomposition (3.33)-(3.34) are used, while φ from

(3.34) is replaced by u, such that

tanh(φ) =
ϑ2(u, q2)ϑ3(0, q2)

ϑ3(u, q2)ϑ2(0, q2)
(0 < u < π) .

The flat connection A
(L)
± found in [75] is defined by eqs. (1.6), (2.7) and (2.10)-

(2.14) from that work, where λ is the spectral parameter and, for the 3D sausage,

η+ = η− = η and φ± = 0. Formulae (2.7), (2.10) involve the vielbein eaµ (µ = u, v, w),

which in turn are given by eqs. (2.28)-(2.32). Here, for the convenience of the reader,
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we reproduce the main equations needed for the computation of A
(L)
± specialized to

the 3D sausage.

The non-vanishing components of the vielbein are given by

e3
u =

i

g

ϑ2(iη, q)ϑ′1(0, q)

ϑ1(iη, q)ϑ2(0, q)

e±v = ∓ i

g

ϑ4(0, q2)ϑ4(iη ± u, q2)

ϑ4(u, q2)ϑ4(iη, q2)

e±w = ± i

g

ϑ4(0, q2)ϑ1(iη ± u, q2)

ϑ4(u, q2)ϑ1(iη, q2)
.

Note that, with these expressions at hand, it is simple to re-write the Lagrangian of

the 3D sausage in terms of the parameters (η, q) and the co-ordinates Xµ = (u, v, w)

since

LF = 2Gµν ∂+X
µ∂−X

ν

and the non-zero components of the metric tensor Gµν are

Guu = (e3
u)

2 , Gvv = e+
v e
−
v , Gww = e+

we
−
w , Gvw = 1

2
(e+
v e
−
w + e−v e

+
w) .

The connection is constructed from the matrix valued 1-form ζµ(λ) defined by

ζµ(λ) = f3(λ) e3
µ σ

3 + f+(λ) e+
µ σ
− + f−(λ) e−µ σ

+ ,

where σ3 and σ± = 1
2
(σ1 ± iσ2) are the standard Pauli matrices, while

f+(λ) = −f−(−λ) = −g

2

ϑ1(u− λ
2
, q)ϑ1(iη, q)ϑ2(0, q)

ϑ1(u, q)ϑ2(iη, q)ϑ1(λ
2
, q)

f3(λ) = −g

2

ϑ1(iη, q)ϑ2(0, q)ϑ′1(λ
2
, q)

ϑ2(iη, q)ϑ′1(0, q)ϑ1(λ
2
, q)

.

In terms of this 1-form, the connection components A
(L)
± are expressed as

A
(L)
+ =

1

2i

∑
µ

(
ζµ(iη + λ) + σ2 ζµ(iη − λ)σ2

)
∂+X

µ

A
(L)
− =

1

2i

∑
µ

(
ζµ(iη + λ− π) + σ2 ζµ(iη − λ+ π)σ2

)
∂−X

µ ,
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where Xµ = (u, v, w). One should keep in mind that the zero curvature representation

in [75] is [
∂+ +A

(L)
+ , ∂− +A

(L)
−
]

= 0 ,

which differs from the convention used in this work (3.1) by the overall sign of A±.

The gauge transformation that maps the flat connection A
(L)
± to the one in

(3.15), (3.13) with U understood as a matrix in the fundamental representation of

SU(2) (i.e., h = σ3, e± = σ±), is described as follows:

∂± −A± = S
(
∂± +A

(L)
±

)
S−1 ,

where

S =

√
ϑ4(λ, q2)ϑ4(0, q2)

2ϑ1(λ, q2)ϑ4(u, q2)


e

iw
2

ϑ2( 1
2

(λ−u), q)

ϑ3(λ
2
,q)

i e
iw
2

ϑ2( 1
2

(λ+u), q)

ϑ3(λ
2
,q)

i e−
iw
2

ϑ1( 1
2

(λ−u), q)

ϑ4(λ
2
,q)

e−
iw
2

ϑ1( 1
2

(λ+u), q)

ϑ4(λ
2
,q)


and S−1 = σ2 S

Tσ2 (detS = 1). The parameters ρ± are expressed in terms of the

spectral parameter λ as

ρ+

ρ−
=
ϑ2

3(λ
2
, q)

ϑ2
4(λ

2
, q)

, ρ+ρ− =
ϑ2

4( iη
2
, q)

ϑ2
3( iη

2
, q)

.

Finally note that m1, m2 which appear in eq. (A.3) can be elegantly written using q

and η

m1 = −i
ϑ1( iη

2
, q2)ϑ2( iη

2
, q2)

ϑ3( iη
2
, q2)ϑ4( iη

2
, q2)

, m2 = −i
ϑ1( iη

2
, q2)ϑ3( iη

2
, q2)

ϑ2( iη
2
, q2)ϑ4( iη

2
, q2)

,

while

ε1 =
ϑ2

4(iη, q2)ϑ3(0, q2)ϑ2(0, q2)

ϑ2
4(0, q2)ϑ3(iη, q2)ϑ2(iη, q2)

, ε2 = − ϑ
2
1(iη, q2)ϑ3(0, q2)ϑ2(0, q2)

ϑ2
4(0, q2)ϑ3(iη, q2)ϑ2(iη, q2)

.
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Appendix D

To investigate the scaling behaviour of T (N)(µ) (6.40)-(6.45), we conducted numerical

work for integer n when the discretized operator is a finite dimensional matrix that

can be diagonalized by means of the Bethe ansatz (see Appendix E for details). We

focused only on the vacuum eigenvalue in the sector H(N)

j−m
2

and considered the cases

with n = 2, 3, . . . , 6 and all admissible values of j,m (6.14). Let τ (vac)(λ) be the

vacuum eigenvalue of the chiral transfer-matrix in the parafermionic subspace V(m)
j .

We expect that it can be obtained from the vacuum eigenvalue of T (N)(µ) by using the

formula (6.51) which explicitly describes the scaling limit of the discretized operator.

To estimate numerical values of τ (vac)(λ) we used data obtained for a set of finite

N and then performed a certain interpolation procedure to N = ∞. The results

were compared with predictions coming from the properties of τ (vac)(λ) discussed in

sec. 5.2, specialized to the values p1 = i
2
m and p2 = j + 1

2
. Agreement was found in

all cases considered. In this appendix, some of our numerical work is presented.

Let {ul}∞l=1 be the set of zeroes of τ (vac)(λ) considered as a function of λ2. From

the numerical data it was found that all the zeroes are simple, real, positive, and

n t̃2 n t̃2

1 0 6 0.0658731

2
√

2
48

7 0.0613178
3 0.0546105 8 0.0561029
4 0.0661040 9 0.0509101
5 0.0683646 10 0.0460445

Table D.1: Numerical values of t̃2 for j = m = 0 (from ref. [115]).
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root # N = 501 N = 1001 N = 1500 N = 2600 N =∞ 2u
n
2
l

1 0.4818860 0.4818829 0.4818820 0.4818814 0.4818809 0.47349
2 1.4891566 1.4891424 1.4891392 1.4891372 1.4891359 1.48725
3 2.4919329 2.4918863 2.4918769 2.4918715 2.491868 2.49093
4 3.4935044 3.4933890 3.4933666 3.4933541 3.493348 3.49276
5 4.4946127 4.4943769 4.4943321 4.4943074 4.494295 4.49387
6 5.4955294 5.4951073 5.4950277 5.4949844 5.494962 5.49464
7 6.4963870 6.4956974 6.4955682 6.4954981 6.495463 6.49521
8 7.4972634 7.4962107 7.4960140 7.4959077 7.495854 7.49564
9 8.4982121 8.4966857 8.4964010 8.4962476 8.496171 8.49599
10 9.4992734 9.4971480 9.4967523 9.4965392 9.496432 9.49628
11 10.500481 10.497616 10.497084 10.496797 10.49665 10.49652
12 11.501864 11.498105 11.497406 11.497031 11.49684 11.49672
13 12.503448 12.498625 12.497729 12.497248 12.49701 12.49690
14 13.505258 13.499187 13.498060 13.497455 13.49715 13.49705
15 14.507318 14.499799 14.498404 14.497655 14.49728 14.49719

Table D.2: Numerical values of 2N
π

[
µ

(N)
l

]n
, where µ

(N)
l > 0 are the roots of the vacuum

eigenvalue of the discretized operator T (N)(µ) for n = 4, j = m = 0. The column
“N = ∞” was obtained by interpolating the results for finite N . The entries in the
last column were calculated by using the asymptotic formula (D.2) truncated at the
first non-zero term in the series.

accumulate towards λ2 = ∞ with the leading asymptotic behaviour

ul ∼
(

1
2

) 2
n ×


(
l − 1

2

) 2
n for 0 ≤ 2j < n

2(
l − 1

2
+ n

n+2

) 2
n for 2j = n

2
(n− even)

(D.1)

For 0 ≤ 2j < n
2
, this is consistent with the asymptotically exact formula,

u
n
2
l + 1

2π

∞∑
m=1

g̃m
(

i
2
m, j + 1

2

)
sin
(

2πm
n+2

)
u
− nm
n+2

l � 1
2

(
l − 1

2

)
, (D.2)

which can be easily derived from eqs. (5.39)-(5.40). Knowledge of the coefficients

g̃m allows us to compute systematic corrections to the leading asymptotic behaviour

(D.1). As it follows from eq. (5.38), the first coefficient is

g̃1(p1, p2) =
t̃1(p1, p2)

2 cos
(

2πp2

n+2

) , (D.3)

with t̃1(p1, p2) – vacuum eigenvalue of t̃1 – given by eq. (5.35). Notice that for

p2 = j+ 1
2

= n+2
4

(n-even), the denominator in (D.3) is zero so that (D.2) is no longer
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Figure D.1: On the left panel, a plot of τ (vac) for n = 3, 2j = m = 1 com-
pared to its large (+λ2) asymptotic following from eq. (5.39). On the right panel,

τ̃ (vac) = τ (vac) exp
(
2π (−λ2)

3
2

)
is plotted and compared with the large (−λ2) asymp-

totic derived from eqs. (5.29), (5.30). The scaling function was numerically estimated
by interpolating to N =∞ the data for N = 500, 1000, 2000, 4000.

valid. Also when j = m = 0, g̃1 vanishes, but for this case the second term in the

sum in (D.2) is known, since

g̃2(0, 1
2
) =

t̃2(0, 1
2
)

2 cos
(

π
n+2

)
and numerical values of t̃2(0, 1

2
) were calculated in ref.[115] and are reproduced in

tab. D.1. Truncating the series in (D.2) at the first non vanishing term, we calculated

the corrections to the leading asymptotic (D.1). This was compared to the zeroes of

the vacuum eigenvalue of T (N)(µ) for increasing N . In all cases good agreement was

observed. As an example, in tab. D.2 the results for n = 4, j = m = 0 are shown.

As λ2 → −∞, the asymptotic behaviour of τ (vac) is dictated by eqs. (5.29), (5.30).

Truncating the sum in (5.30) at the first non-zero term and substituting t̃j by its

vacuum eigenvalue, we compared this to the results of the N =∞ interpolation. The

agreement was good considering that the interpolation procedure becomes rapidly

less efficient for increasing values of (−λ2). Fig. D.1 shows a plot of the estimated

scaling function versus the asymptotics for n = 3 and 2j = m = 1.

Another check that can be made is to consider the Taylor expansion of τ (vac)(λ)

at zero following from formulae (5.28) and (5.34). The coefficient t1(p1, p2) (p1 =
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i
2
m, p2 = j+ 1

2
) can be compared to the corresponding term in the vacuum eigenvalue

of the discretized operator:

T (N,vac)(µ) = 2 cos
(
mπ
n

)
+ t

(N)
1 µ2 +O(µ4) .

Note that t
(N)
1 is a divergent quantity for large N and must be regularized. According

to eq. (6.51), for n > 2, the following limit exists and converges to t1:

t1
(

i
2
m, j + 1

2

)
= lim

N→∞
t
(N,reg)
1 , t

(N,reg)
1 =

(
π
N

) 2
n

(
t
(N)
1 + 2N

cos(mπ
n

)

cos(π
n

)

)
. (D.4)

We compared the value of t1
(

i
2
m, j + 1

2

)
given by eq. (5.34) to the numerical values

of t
(N,reg)
1 and found good agreement for n = 3, 4 . . . , 6 and all the allowed values of

j,m. A few cases are presented in tab. D.3.

Finally, let us mention that for n = 2, analytic expressions exist for both τ (vac)

and the vacuum eigenvalue of T (N). In the case j = m = 0,

T (N,vac)(µ) = 2
N∏
m=1

(
1− µ2 cot

(
π

2N
(m− 1

2
)
))

,

and using the formula (6.51), the scaling limit can be taken explicitly to yield

τ (vac)(λ) =
(e

2

)2λ2 2
√
π

Γ
(

1
2
− 2λ2

) .
It is easy to verify that this is consistent with the properties of the chiral transfer-

matrix discussed in chapter. 5.2. For n = 2 and 2j = m = 1, the discretized operator

turns out to be zero for any N and hence, τ(λ) = 0.

n = 6 N = 100 N = 200 N = 400 N = 800 N =∞ eq. (5.34)
2j = m = 0 0.54474 0.54519 0.54542 0.54553 0.5456440 0.5456445
2j = m = 2 0.43807 0.44710 0.45357 0.45818 0.469649 0.469446

n = 5 N = 100 N = 200 N = 400 N = 750 N =∞ eq. (5.34)
2j = m = 0 0.86236 0.86271 0.86287 0.86294 0.8630048 0.8630049
2j = m = 2 0.40173 0.40751 0.41144 0.41390 0.419808 0.419632

Table D.3: The regularized value t
(N,reg)
1 (D.4) for a variety of cases and increasing

N compared to the expression for t1
(

i
2
m, j + 1

2

)
given by eq. (5.34). The column

“N =∞” was obtained by interpolation.
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Appendix E

In this appendix we will consider the vacuum eigenvalue of the matrices Z±(µ) in

the space H(N)

j−m
2
. Recall that H(N)

j−m
2

denotes the eigenspace of the matrix πH(N)(Z)

(6.42), (6.46) having eigenvalue ωj−m
2 , where j and m are restricted as in (6.14). Our

considerations are entirely based on the properties of Z±(µ) (i)-(v) listed in sec. 6.4.

Let Z(ψ)
± (µ) be the eigenvalue corresponding to a common eigenvector |ψ〉 of the

commuting family Z±(µ). Using the analytical conditions (iv) and µ→ −µ symmetry

(v), it can be written in the form,

Z(ψ)
± (µ) = B(N,ψ) µm

(n−1)N−2j−m∏
i=1

(
1∓ µ

µi

)
(n− odd) (E.1)

and

Z(ψ)
+ (µ) = B(N,ψ) µm

nN
2
−j−m

2∏
i=1

(
1− µ2

vi

)
(n− even) (E.2)

Z(ψ)
− (µ) = B(N,ψ) µm

(n−2)N
2
−j−m

2∏
i=1

(
1− µ2

wi

)
From the T − Q type relations (iii), it follows that the overall coefficient B(N,ψ)

(depending on the state |ψ〉) is the same for both Z(ψ)
+ and Z(ψ)

− . Another consequence

of this relation is that the roots satisfy the following Bethe ansatz equations:

(n−1)N−2j−m∏
i=1

µi + q−1 µl
µi + q+1 µl

= −q2m

(
1− q+ 1

2 µl

1− q− 1
2 µl

)2N

(n− odd) (E.3)
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and
nN
2
−j−m

2∏
i=1

vi − q−2wl
vi − q+2wl

= −q2m

(n− even) (E.4)
(n−2)N

2
−j−m

2∏
i=1

wi − q−2 vl
wi − q+2 vl

= −q2m

(
1− q+1 vl
1− q−1 vl

)2N

Similar equations for the Fateev-Zamolodchikov spin chain (6.48) with periodic bound-

ary conditions were previously derived in the works [177] and [178] for odd and even

n, respectively. Notice that the constant B(N,ψ) in (E.1), (E.2) is determined (up to

an overall sign) by the quantum Wronskian type relations (ii).

The Bethe ansatz equations are valid for all integer n ≥ 2 and j,m restricted to

(6.14), except for 2j = m = n
2

(n even) which requires special attention. In this case,

for certain sectors of H(N)
0 a significant simplification occurs; Z(ψ)

− vanishes so that the

T −Q type relations (iii) become trivial and the quantum Wronskian type relations

(ii) can be used to obtain much simpler equations for the roots. For instance, for the

vacuum eigenvalue, Z(vac)
− (µ) = 0 and Z(vac)

+ is given explicitly by

Z(vac)
+ (µ) = 2

√
N µ

n
2

N−1∏
l=1

(
1 +µn cot

(
πl
2N

))
,

(
2j = m = n

2
, n− even

)
. (E.5)

Recall that the vacuum is defined as the lowest energy state of the Fateev-Zamolodchikov

spin chain Hamiltonian (6.48), (6.49), which commutes with both Z+(µ) and Z−(µ)

for any µ.

We studied the solutions to the Bethe ansatz equations corresponding to the low

energy states |ψ 〉 of the Fateev-Zamolodchikov spin chain. It was found that the

roots accumulate along the rays given by (see fig. E.1)

arg(µ) = ±π
n
p , p = 1, 3, . . . , n− 2 (µi − roots)

arg(µ2) = 2π
n
p , p = 1, 3, . . . , n− 1 (vi − roots)

arg(µ2) = 2π
n
p , p = 2, 4, . . . , n− 2 (wi − roots)
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Figure E.1: On the left panel, the roots of Z(vac)
+ (µ) are depicted in the complex plane

for n = 5, j = 1, m = 0 and N = 12. On the right panel, the roots of Z(vac)
+ (circles)

and Z(vac)
− (crosses) as functions of µ2 are shown for n = 6, 2j = 3, m = 1 and N = 8.

In the scaling limit most of the roots become densely packed along the rays. However

we observed that at the edges of the distribution, the roots exhibit a certain scaling

behaviour. In particular, at the edge next to zero of the locus labeled by the integer p,

with index i enumerating the roots ordered by increasing absolute value, the following

limits exist

lim
N→∞
i−fixed

N
1
n µ

(N,ψ)
i,p , lim

N→∞
i−fixed

N
2
n v

(N,ψ)
i,p , lim

N→∞
i−fixed

N
2
n w

(N,ψ)
i,p .

Here we temporarily exhibit the dependence of the roots on N and the state |ψ 〉.

Also, the scaling limit can be defined for the coefficient B(N,ψ) in formulae (E.1),

(E.2):

B(ψ) = slim
N→∞

(π/N)
m
n B(N,ψ) . (E.6)

Keeping N finite, consider the logarithm of the r.h.s of eqs. (6.54) and (6.55) for

a given eigenvalue. With Z(ψ)
± of the form (E.1), (E.2) it is straightforward to find

their Taylor series at λ = 0. In the case of odd n, the expansion coefficients are given
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by

M (N)
m =

1

m

( π
N

)m
n

( ∑
i

µ−mi +
(−1)m N

cos
(
πm
2n

) ) (m < n)

M (N)
n =

π

nN

∑
i

µ−ni +
2

n
(n− 1) log

(Ne

π

)
(E.7)

M (N)
m =

1

m

( π
N

)m
n
∑
i

µ−mi (m > n)

For even n,

V
(N)
m =

1

m

( π
N

) 2m
n
∑
i

v−mi
(
2m < n

)

W
(N)
m =

1

m

( π
N

) 2m
n

(∑
i

w−mi +
N

cos
(
πm
n

) ) (
2m < n

)

V
(N)
n
2

=
2π

nN

∑
i

v
−n

2
i + 2 log

(Ne

π

)
(E.8)

W
(N)
n
2

=
2π

nN

∑
i

w
−n

2
i − 2

n
(n− 2) log

(Ne

π

)

V
(N)
m =

1

m

( π
N

) 2m
n
∑
i

v−mi , W
(N)
m =

1

m

( π
N

) 2m
n
∑
i

w−mi
(
2m > n

)
It is expected that the following limits exist,

M
(ψ)
m = slim

N→∞
M

(N)
m (n− odd)

V
(ψ)
m = slim

N→∞
V

(N)
m , W

(ψ)
m = slim

N→∞
W

(N)
m (n− even)

(E.9)

and coincide with the expansion coefficients in λ ≡ e
θ
n of the CFT eigenvalues of

log ζ±:

log ζ
(ψ)
± (θ) = logB(ψ) + m

n
θ ∓ 2

n
θ eθ −

∞∑
m=1

(±1)m M (ψ)
m e

mθ
n (n− odd)
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n = 4, j = 1, m = 0 N = 101 N = 201 N = 400 N = 1001 N =∞ exact

V
(vac)

1 2.4301852 2.4299253 2.4298202 2.4297709 2.4297498 2.4297502

V
(vac)

2 −W (vac)
2 3.1094496 3.1094648 3.1094686 3.1094697 3.1094699 3.1094699

n = 4, 2j = m = 1 N = 201 N = 401 N = 1001 N = 1500 N =∞ exact

V
(vac)

1 -0.970065 -0.962059 -0.955825 -0.954074 -0.948453 -0.948425

W
(vac)
1 2.020549 2.016718 2.013751 2.012921 2.010289 2.010250

n = 5, 2j = m = 2 N = 100 N = 200 N = 400 N = 750 N =∞ exact

M
(vac)
1 -1.09540 -1.09018 -1.08669 -1.08453 -1.07962 -1.07956

M
(vac)
2 0.77960 0.77649 0.77445 0.77320 0.77054 0.77039

Table E.1: Numerical values of the coefficients (E.7), (E.8) for the vacuum of the
Fateev-Zamolodchikov spin chain (6.48), (6.49). The column N = ∞ was obtained
by interpolating the finite-N data. The last column lists the exact predictions given
in (E.10), (E.11).

log ζ
(ψ)
+ (θ) = logB(ψ) + m

n
θ −

∞∑
l=1

V (ψ)
m e

2mθ
n (n− even)

log ζ
(ψ)
− (θ) = logB(ψ) + m

n
θ + 4

n
θ eθ −

∞∑
m=1

W (ψ)
m e

2mθ
n .

Recall that the symbol “slim” stands for the scaling limit which is applied for low

energy eigenstates only. For numerical checks, we focused only on the vacuum of the

Fateev-Zamolodchikov spin chain (6.48), (6.49). Our numerical work confirmed the

existence of the limits (E.9) for n = 3, 4, . . . , 6 and all admissible values of j and

m (6.14). Since a few of the expansion coefficients in (6.88) are available in explicit

form, we have the following analytical predictions for some of the limits in (E.9).

Let f0,1 = f0,1(p1, p2) be defined by eq. (6.86) and γ(x) ≡ Γ(x)/Γ(1−x). Then for

n > 2 one has (here the superscript “(vac)” in the notation for the coefficients (E.9)
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is omitted):

Mm(m, j) = 0 (m = 1, 3, . . . , n− 2− 2m )

M1

(
n−1

2
, n−1

4

)
= −n−

1
n γ
(

1
2
− 1

2n

)
M2(m, j) = −f0,1

(
− im

2
, j + 1

2

) (
m = 0, 1, 2, . . . , n−3

2

)
M2

(
n−1

2
, n−1

4

)
= −f0,1

(
− i(n−1)

4
, j + 1

2

)
+ 1

2
n−

2
n γ2

(
1
2
− 1

2n

)
(E.10)

Mn(0, j) = 2 log
(e

2

)
+ 2

n

(
γE − log(n)

)
+ 4ψ(1 + j)− ψ(1 + n

2
) + γE

Vm(m, j) = Wm(m, j)
(
m = 1, 2, . . . , n−2

2
−m

)
V1(m, j) = W1(m, j) = −f0,1

(
− im

2
, j + 1

2

) (
m = 0, 1, 2, . . . , n

2
− 2
)

V1

(
n−2

2
, j
)

= −f0,1

(
− i(n−2)

4
, j + 1

2

)
− n−

2
n γ
(

1
2
− 1

n

)
(E.11)

W1

(
n−2

2
, j
)

= −f0,1

(
− i(n−2)

4
, j + 1

2

)
+ n−

2
n γ
(

1
2
− 1

n

)
Vn

2
(0, j)−Wn

2
(0, j) = 4 log

(e
2

)
+ 4

n

(
γE − log(n)

)
+ 8ψ(1 + j)− 2ψ(1 + n

2
) + 2γE

The numerical data agreed with these explicit formulae. This is shown, for a few

cases, in tab. E.1.

As was already mentioned, the constant
(
B(N,ψ)

)2
can be found using the quantum

Wronskian type relations (ii) from sec. 6.4. The r.h.s. of these relations is proportional

to the lattice shift operator P(N) (6.50) whose eigenvalues are pure phases (6.53). By

explicit diagonalization of Z± for small N we found that

1

π
arg
(
B(N,ψ)

)
=

1

nN

(
(2j− s) s+ n (L− L̄)

)
+ s (mod 2) , (E.12)

where s = j− 1
2
m and L, L̄ are non-negative integers depending on the state |ψ〉. For

the vacuum state L = L̄ = 0, and the overall sign of the limit B(vac) (E.6) is (−1)s.
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(−1)sBs(m)

n = 3, 2j = m = 1
N = 101 N = 201 N = 401 N = 1001 N =∞

1.6262101.621564 1.623528 1.624666 1.625467 1.626213

n = 6, 2j = m = 2
N = 100 N = 200 N = 400 N = 800 N =∞

1.825361.79398 1.80320 1.80971 1.81430 1.82531

n = 6, 2j = 3, m = 1
N = 2 N = 4 N = 6 N = 8 N =∞

4.104.178 4.148 4.135 4.127 4.08

Table E.2: The absolute value of (π/N)
m
n B(N,vac) corresponding to the vacuum state

of the Fateev-Zamolodchikov spin chain (6.48), (6.49). The column “N = ∞” con-
tains the results of numerical interpolation from the finite N data. The analytical
expression for Bs(m) is given by (6.87).

This coincides with the sign factor in Bs(m) (6.87). For large values of N , when direct

diagonalization becomes impossible, we verified by means of the Bethe ansatz that

the absolute value of (π/N)
m
n B(N,vac) converges to (−1)sBs(m) (see tab. E.2).

Recall that 2j = m = n
2

with even n is a special case. Using eq. (E.5) the scaling

functions can be found explicitly,

ζ
(vac)
+ (θ) =

2
√
π e

θ
2

Γ
(
1 + 2eθ

) , ζ
(vac)
− (θ) = 0 .

This formula can be applied for n = 2. For the remaining n = 2 case, j = m = 0, it

is easy to show that for finite N

Z(vac)
+ (µ) =

√
2

N∏
m=1

(
1− µ2 cot

(
π

4N
(2m− 1)

))
, Z(vac)

− (µ) =
√

2 ,

so that the scaling functions are given by

ζ
(vac)
+ (θ) =

√
2π

Γ
(

1
2

+ 2eθ
) ( 2

e

)2eθ
, ζ

(vac)
− (θ) =

√
2 exp

(
2θ eθ

)
.
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Appendix F

In this appendix we sketch some technical details in the derivation of the system of

NLIE (6.147).

Suppose θ, p2
1 and p2 are real, then eqs. (6.128), Hermiticity conditions (6.65), (6.115),

(6.120) and the periodicity (6.113) imply that

e−iπeθ
[

e−iπp2 β−(θ)α+

(
θ − iπn

2

)
− e+iπp2 β+(θ) α−

(
θ − iπn

2

) ]
=

e+iπeθ
[

e−iπp2 β+(θ) α−
(
θ + iπn

2

)
− e+iπp2 β−(θ)α+

(
θ + iπn

2

) ]
, (F.1)

e+iπeθ
[

e−iπp2 β−(θ + iπ)α+

(
θ − iπn

2

)
− e+iπp2 β+(θ + iπ)α−

(
θ − iπn

2

) ]
=

e−iπeθ
[

e−iπp2 β+(θ + iπ)α−
(
θ + iπn

2

)
− e+iπp2 β−(θ + iπ)α+

(
θ + iπn

2

) ]
.

Due to the analyticity of the operators α±(θ) and β±(θ), these relations should be

satisfied for any complex θ. Let us introduce the shortcut notations

B0 =
β+(θ)

β−(θ)
, B1 =

β+(θ + iπ)

β−(θ + iπ)
, U = e2πip2

α+(θ + iπn
2

)

α−(θ + iπn
2

)
, A± = e∓2πip2

α±(θ − iπn
2

)

α±(θ + iπn
2

)

and Λ = exp
(
2πi eθ

)
. Then (F.1) can be rewritten as

B0 = U
1 + Λ−1A+

1 + Λ−1A−
, B1 = U

1 + ΛA+

1 + ΛA−
.

Solving these equations w.r.t. A+ and A−, one finds

A+ = −1
2

(
Λ + Λ−1

)
+

Λ− Λ−1

B1 −B0

(
B0B1 U

−1 − 1
2
B0 − 1

2
B1

)
and similar for A−. This formula, combined with the quantum Wronskian relation

(6.116) written in the form

Λ− Λ−1

B1 −B0

= −β−(θ) β−(θ + iπ)

2i sin
(

2πp2

n+2

) ,
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leads to

A+(θ) = − cos
(
2πeθ

)
− β+(θ) β+(θ + iπ)

2iU(θ) sin
(

2πp2

n+2

) +
β+(θ) β−(θ + iπ) + β−(θ) β+(θ + iπ)

4i sin
(

2πp2

n+2

) .

Together with the periodicity condition β±(θ + iπ) = β±(θ − iπ) the last equation

implies

A+

(
θ − iπ

2

)
− A+

(
θ + iπ

2

)
=
β+

(
θ + iπ

2

)
β−
(
θ − iπ

2

)
2i sin

(
2πp2

n+2

) (
U−1

(
θ + iπ

2

)
− U−1

(
θ − iπ

2

))
.

As it follows from the quantum Wronskian relation (6.121):

U−1
(
θ + iπ

2

)
− U−1

(
θ − iπ

2

)
=

2i e−2πip2 sin
(

2πp2

n+2

)
α+(θ + iπ(n−1)

2

)
α+

(
θ + iπ(n+1)

2

) .
This can be substituted into the previous formula, yielding eq. (6.129) with the sub-

script “+”. Of course the formula is valid for the “−” case also.

Let us now take a closer look at the second equation in (F.1) specialized to the

eigenvalues corresponding to a common eigenvector |ψ 〉. Suppose θj is a zero of

β
(ψ)
+ (θ). As follows from the quantum Wronskian relation (6.116), β

(ψ)
− (θj) 6= 0, and

therefore we conclude that

e−iπ(eθj+p2) α
(ψ)
+

(
θj − iπ − iπn

2

)
= −eiπ(eθj+p2) α

(ψ)
+

(
θj − iπ + iπn

2

)
,

which can be equivalently written in the form (6.134).

As was mentioned in the main body of the text, the zeroes of the entire periodic

function β
(vac)
+ (θ) = β

(vac)
+ (θ + iπ) are simple, located on the lines =m(θ) = π (2m +

1), m ∈ Z, and accumulate toward <e(θ)→ +∞. Also, assuming that the parameters

p1 and p2 are restricted as in cases (b), (c) from sec. 6.8, it is expected that the entire

function α
(vac)
+ (θ) does not have any zeroes within the strip |=m(θ)| < π

2
(n + 2).

Therefore, as follows from the definition (6.130), ε(vac)(θ) is an analytic function for

|=m(θ)| < π where it has the leading asymptotic behaviour (6.132) at <e(θ)→ +∞.
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Combining this analytic information with the “quantization condition” (6.135) for

the zeroes of β
(vac)
+ (θ) and the asymptotic behaviour

(
see eq. (6.127)

)
log β

(vac)
+ (θ) = −2θ eθ − k θ + o(1) as <e(θ)→ +∞ &

∣∣=m(θ)
∣∣ < π ,

with k = 2p2

n+2
, it is a simple exercise (see however appendix G) to derive a dispersion-

type relation

log
(
β

(vac)
+

(
θ − iπ

2

)
β

(vac)
+

(
θ + iπ

2

))
= 2π eθ − 2k θ − (F.2)

=m
[ ∫ ∞
−∞

dθ′

π

1

1 + e2θ−2θ′+2iγ

(
2L(vac)(θ′ − iγ) + i

(
ε(vac)(θ′ − iγ)− 4π eθ

′−iγ + 2πk
))]

.

Here γ ∈ (0, π
2
) is an arbitrary constant and the notation

L(vac)(θ) = log
(

1 + exp
(
− iε(vac)(θ)

))
(F.3)

is used.

The next important property employed in the derivation of the system of inte-

gral equations (6.147)-(6.149) is that ε(vac)(θ) can be written in terms of the Fourier

integral

ε(vac)(θ) = 4π eθ − 2πk +

∫
R+i0

dν

2π
eiνθ ε̃(ν) . (F.4)

Notice that the existence of the Fourier transform is ensured by the asymptotic be-

haviour (6.132) at θ → +∞, and formulae (6.142), (6.143) for θ → −∞. One can

expect that the function ε̃(ν) decays sufficiently fast as ν → ±∞, so that the integral

in (F.4) converges for any θ in the strip of analyticity |=m(θ)| < π. It is not difficult

to see now that

log
[
α

(vac)
+

(
θ − iπ(n+1)

2

)
α

(vac)
+

(
θ + iπ(n+1)

2

)]
=2πeθ−2kθ+i

∫
R+i0

dν

2π
eiνθ cosh(π(n+1)ν

2
)

sinh(πnν
2

)
ε̃(ν)

(F.5)
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and also that the imaginary part of the function (F.3) with θ having infinitesimally

small negative imaginary part, can be represented by the convergent integral

=m
(
L(vac)(θ − i0)

)
=

∫
R+i0

dν

2π
eiνθ L̃(ν) .

Similarly for the function ω(θ) (6.140) with θ real, one has

ω(vac)(θ) = 4π eθ +

∫
R+i0

dν

2π
eiνθ ω̃(ν) , log

(
1 + e−ω

(vac)(θ)
)

=

∫
R+i0

dν

2π
eiνθ M̃(ν) .

The remaining part of the derivation of the NLIE consists of straightforward manip-

ulations with the Fourier images ε̃, L̃, ω̃, M̃ . Finally, going back to functions of the

variable θ, one derives the system of integral equations (6.147)-(6.149).

Knowing the functions ε(vac)(θ), ω(vac)(θ) from the solution of the NLIE, and the

asymptotic formulae (6.123), (6.127), one can recover the vacuum eigenvalues of the

operators α+(θ) and β+(θ) from (F.2), (F.5). The corresponding explicit relations are

given below, where we drop the superscript “(vac)” like in the NLIE (6.147)-(6.149):

logα+(θ) = − π

sin(πn
2

)
eθ − kθ +

∫ ∞
−∞

dθ′

2πi

[
F

(CFT)
1 (θ − θ′ + iγ) L(θ′ − iγ) (F.6)

−F (CFT)
1 (θ − θ′ − iγ)

(
L(θ′ − iγ)

)∗ ]
+

∫ ∞
−∞

dθ′

π
F2(θ − θ′) log

(
1 + e−ω(θ′)

)
valid for |=m(θ)| < π

2
(n+ 2)− γ, and

log β+(θ) = −2θ eθ − kθ +

∫ ∞
−∞

dθ′

2πi

[
F

(CFT)
3 (θ − θ′ + iγ) L(θ′ − iγ) (F.7)

−F (CFT)
3 (θ − θ′ − iγ)

(
L(θ′ − iγ)

)∗ ]
−
∫ ∞
−∞

dθ′

π
F4(θ − θ′) log

(
1 + e−ω(θ′)

)
for |=m(θ)| < π − γ. Here the kernels are given by F

(CFT)
1 (θ) = F1(θ) − 1

n+2
,



198

F
(CFT)
3 (θ) = F3(θ)− 1

n+2
with

F1(θ) =
1

n+ 2
tanh

( θ

n+ 2

)
, F2(θ) =

sin( π
n+2

)

2(n+ 2) cosh
( θ+ iπ

2

n+2

)
cosh

( θ− iπ
2

n+2

)
F3(θ) =

1

n+ 2
coth

( θ

n+ 2

)
− 1

sinh(θ)
(F.8)

F4(θ) =
sin( π

n+2
)

2(n+ 2) sinh(
θ+ iπ

2

n+2
) sinh(

θ− iπ
2

n+2
)
− 1

2 cosh(θ)
.

The vacuum eigenvalues of the chiral transfer-matrix can be obtained using the T −Q

relation

τ (vac)(iλ) =
α+(θ + iπ)

α+(θ)
+
α+(θ − iπ)

α+(θ)
with λ = e

θ
n .

Combining (F.6), (F.7) with the general asymptotic expansions at <e(θ)→ +∞ found

in (6.123), (6.127), the expressions for the local and dual nonlocal integrals of motion

follow

i2m−1(p1, p2) =

∫ ∞
−∞

dθ

π

(
2=m

[
e(2m−1)(θ−iγ)L(θ − iγ)

]
+ (−1)me(2m−1)θ log

(
1 + e−ω(θ)

))
(F.9)

s̃m(p1, p2) = − 2

n+ 2

∫ ∞
−∞

dθ

π

(
=m

[
e

2m(θ−iγ)
n+2 L(θ − iγ)

]
−sin

(
πm
n+2

)
e

2mθ
n+2 log

(
1 + e−ω(θ)

))
.
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Appendix G

Here we discuss the modifications to the integral equations (6.147)-(6.149) for the

case of real p1 6= 0 and p2 > −1
2
, when the asymptotics of the functions ε(vac)(θ) and

ω(vac)(θ) at θ → −∞ oscillate (6.141).

The first important difference in this case is that α
(vac)
+ (θ) has a set of zeroes

{θ(α)
m }∞m=1 in the strip |=m(θ)| < π

2
(n + 2) whose asymptotic behaviour is given

by relation (6.146). Secondly, in the derivation of (6.147) presented in the pre-

vious appendix, we implicitly assumed that all values θ∗ on the real axis, such

that ε(vac)(θ∗) = π (mod 2π) arise from the quantization condition (6.135), i.e.,

θ∗ = θ
(vac)
j − iπ for some j = 1, 2, . . . (recall that =m(θj) = π). In other words

all such θ∗ are related to the zeroes of β
(vac)
+ (θ) and, therefore, form an increasing

semi-infinite sequence extending towards +∞ on the real axis (see (6.136)). For the

oscillating asymptotics (6.141) this is no longer true. Indeed, it is easy to check from

(6.141) that the condition

ε(vac)(θ̃m) = −π (2m− 1) with m = 1, 2, . . .

is satisfied for an infinite set of values
{
θ̃m
}∞
m=1

which extend towards −∞ such that

θ̃m = − n
2p1

(
πm− 1

2 δ(p1, p2)
)

+ o
(
(m/p1)−∞

)
,

valid up to an exponentially small correction. Here

δ(p1, p2) = 4p1θ0/n+ i log
[

cos(π(p2 + ip1))/ cos(π(p2 − ip1)
]

coincides with the scattering phase defined by eq. (7.11). In the terminology of the

Bethe ansatz we have an infinite number of “holes” where the phase passes a resonant
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value without a corresponding zero θj. Therefore the integrals in the r.h.s. of (6.147)

contain spurious contributions from non-existent roots. To exclude these unwanted

contributions one needs to add extra source terms to the r.h.s. of eqs. (6.147).

Introduce the notation

J (ε)(θ) = −i
∞∑
m=1

log

[
S(θ − θ̃m)

S
(
θ + iπ

2
(n+ 2)− θ(α)

m

)]

(G.1)

J (ω)(θ) = −
∞∑
m=1

log

[
t
(
θ + iπ

2
− θ̃m

)
t
(
θ + iπ

2
+ iπ

2
(n+ 2)− θ(α)

m

)]
where S(θ) and t(θ) are defined in (H.1) below. Then the modified equations (6.147)

can be written as

ε(θ − iγ) = 4π eθ−iγ − 2πk + J (ε)(θ − iγ) +

∫ ∞
−∞

dθ′

2πi

[
G(θ − θ′ − 2iγ)

(
L(θ′ − iγ)

)∗
− G(θ − θ′) L(θ′ − iγ)

]
+

∫ ∞
−∞

dθ′

2π
G1(θ − θ′ − iγ) log

(
1 + e−ω(θ′)

)
ω(θ) = 4π eθ + J (ω)(θ) + =m

[ ∫ ∞
−∞

dθ′

π
G1(θ − θ′ + iγ) L(θ′ − iγ)

]
(G.2)

−
∫ ∞
−∞

dθ′

π
G2(θ − θ′) log

(
1 + e−ω(θ′)

)
L(θ) = log

(
1 + e−iε(θ)

)
.

One can check that the leading terms in the asymptotics (6.141) solves these equations

at θ → −∞, i.e., when the exponential terms proportional to eθ in the r.h.s. are

omitted.



201

Appendix H

Here, we present the explicit form of the two particle scattering amplitudes for the

sausage model [66]. The S-matrix satisfies the Yang-Baxter equation and was origi-

nally introduced as the Boltzmann weights of the so-called 19-vertex model [179].

S(θ) = S++
++(θ) = S−−−−(θ) = −

sinh( iπ−θ
n+2

)

sinh( iπ+θ
n+2

)

T (θ) = S+−
+−(θ) = S−+

−+(θ) = S(iπ − θ) (H.1)

t(θ) = S+0
+0(θ) = S0+

0+(θ) = S−0
−0(θ) = S0−

0−(θ) =
sinh( θ

n+2
) sinh( iπ−θ

n+2
)

sinh(2iπ−θ
n+2

) sinh( iπ+θ
n+2

)

r(θ) = a(iπ − θ) = S0+
+0(θ) = S+0

0+(θ) = S0−
−0(θ) = S−0

0−(θ) = S+−
00 (iπ − θ)

= S−+
00 (iπ − θ) = S00

+−(iπ − θ) = S00
−+(iπ − θ) = −i

sin( 2π
n+2

) sinh( iπ−θ
n+2

)

sinh(2iπ−θ
n+2

) sinh( iπ+θ
n+2

)

R(θ) = S+−
−+(θ) = S−+

+−(θ) =
sin( π

n+2
) sin( 2π

n+2
)

sinh(2iπ−θ
n+2

) sinh( iπ+θ
n+2

)

σ(θ) = S00
00(θ) = S+0

+0(θ) + S+−
−+(θ)

As a 9× 9 matrix S(27→2) satisfies the conditions

(
S(27→2)

)†
S(27→2) = I(2) for =m(θ) = 0

detS(27→2)(θ) =

[
sinh2( iπ−θ

n+2
)

sinh2( iπ+θ
n+2

)

sinh(2iπ+θ
n+2

)

sinh(2iπ−θ
n+2

)

]4

. (H.2)
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