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Abstract of the Dissertation 

Finite Mixture Models in Survival Data Analysis 

by BENJAMIN YONGBIN LI 

 

Dissertation Director: 

Javier Cabrera 

 

In the pharmaceutical industry, cost-effectiveness analysis is an important step in 

the development of new health interventions. It is a method for assessing the gains in health 

relative to the costs of different health interventions. This assessment helps the regulators, 

providers, and potential users to make informed decisions. Health gains can be measured 

in several ways. One of them is the estimated gained life expectancy due to the intervention. 

Although the randomized controlled trials (RCTs) are considered to be the most reliable 

sources of the evidence to be used in the cost-effectiveness analysis, data collected from 

these trials are often incomplete due to censoring and truncation. This requires the 

extrapolation of the survival probability beyond the time frame of the RCTs. For this 

purpose, parametric models are necessary to estimate the survival functions. Although 

there exist several single parametric models (such as the Weibull, Gamma, and lognormal) 

that can perform this task, they fail to provide accurate estimates when the survival data 

are heterogeneous. In these situations, the finite mixture models fit the data better and 

therefore their results are more consistent and reliable. 
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This dissertation studies the implementation of the finite mixture models in survival 

data analysis. It discusses in detail how to estimate the parameters of a finite mixture 

models through the expectation and maximization (EM) algorithm. These steps are flexible 

to account for the effects of covariates. In addition, we propose a new approach via 

censored quantile regression for finding the initial values of the EM algorithm. This method 

takes into consideration the special features of survival data and therefore will help improve 

the efficiency of the EM algorithm. We also demonstrate how to construct the desired 

confidence intervals of the estimates through bootstrapping.  

In oncology as well as other therapeutic areas, some patients will not experience 

the relapse of the disease after being treated. These patients are considered to be cured. It 

is of interest to know both the cure rate and the survival function of the patients who are 

not cured by the intervention. We study the mixture cure model in the general framework 

of finite mixture models as a special case, and provide the modified EM algorithm to 

estimate both the cure rate and the survival function of the uncured patients. 
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Chapter 1: Introduction 

1.1 Motivation 

Survival analysis is a collection of statistical methods for data analysis. The random 

variable of interest in this type of analysis is time until an outcome event occurs. The term 

“survival analysis” came into being from initial studies where the event of interest was 

death. Later, the scope of the survival analysis has been broadened to include other fields, 

such as engineering, economics, and sociology. This topic is called reliability analysis in 

engineering, duration analysis in economics, and event history analysis in sociology. 

Depending on the research question in each specific study, the outcome event might be 

defined as death , the failure of a mechanical system, crash of the stock market, or duration 

of first marriage (Singh and Mukhopadhyay 2011). 

One unique feature about survival analysis is that quite often than not the researcher 

works with incomplete data, in the sense that for some patients the exact time of the event 

of interest is not observed during the study period. These are called censored observations 

or censored times. There are three types of censoring: left censoring, right censoring, and 

interval censoring. Left censoring occurs when a study subject already experienced the 

event of interest before entering into the study, but the exact time is unknown. Interval 

censoring occurs when an event of interest is known to have occurred between two 

timepoints, t1 and t2, but again the exact time is unknown. The last type of censoring is 

right censoring, which occurs when a study subject does not experience the event of interest 

by the end of the study, or the subject is lost to follow-up during the study period. The rest 
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of the dissertation will focus exclusively on analysis of survival data that are right censored, 

as this is the type of censoring most frequently seen in clinical trials. 

Within the pharmaceutical industry, the randomized controlled trials (RCTs) are a 

crucial part of the new drug development process. Survival analysis has been a major tool 

in RCTs to assess the benefits and risks of new interventions. It was originally motivated 

by the need to analyze time-to-death data in clinical trials. Since then, it has been 

extensively used in trials where the primary outcome measure is the time to a clinically 

important event, such as death, progression of a disease, serious adverse events, or response 

to the treatments. There has been enormous growth in the field of survival analysis over 

the past several decades. The most significant milestones in the development of new 

methodologies are the Kaplan-Meier (KM) estimator of the survival function, the log-rank 

test for comparing two survival distributions, and the Cox proportional hazard model for 

evaluating the effects of covariates on the survival time (Fleming and Lin 2000). The KM 

estimate and the log-rank test are nonparametric, while the Cox proportional hazard model 

is semi-parametric. In addition, there are parametric models where the survival time is 

assumed to follow certain distributions. The most common distributions in this category 

include exponential, Weibull, lognormal, log-logistic, gamma, Gompertz, generalized 

gamma, and generalized F. Between the nonparametric/semiparametric and parametric 

methods, the former are predominantly applied in RCTs where one of the endpoints is time 

to an event of interest, due to the fact that it is difficult to specify the parametric form given 

the complex nature of human diseases.  

With the advancement of research in biology, chemistry, and physics, the 

competition in the pharmaceutical industry is getting increasingly intense. Pharmaceutical 
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companies need to price their new products properly and formulate marketing strategies in 

order to stay competitive (Beck 1990). At the same time, policy makers and healthcare 

professionals are faced with the question of how to allocate limited resources to the 

interventions that provide the most health benefits. Cost-effectiveness analysis offers a 

means to assist the decision making for both the sponsors and users of new interventions. 

It is a method for assessing the gains in health relative to the costs of different health 

interventions. The basic calculation involves dividing the cost of an intervention in 

monetary units by the expected heath gain, which can be measured in several ways. One 

of them is the estimated gained life expectancy due to the intervention. This requires the 

prediction of the survival probability for patients receiving the intervention at a future time 

point. The RCTs are considered to be the most reliable sources of the evidence to be used 

in the cost-effectiveness analysis. However, the nonparametric/semiparametric models are 

not suitable for making predictions of the survival probability, given the incomplete nature 

of the survival data. For example, since data are truncated at the termination of the trial, 

only the restricted mean survival time can be directly estimated. For this purpose, the 

survival time needs to be assumed to follow some parametric form. Once this parametric 

form is determined and its parameters are estimated based on data collected from the RCTs, 

extrapolation of the survival probability can be carried out.      

There used to be no common practice in survival data extrapolation. Sponsors of 

new interventions would follow their own standards. And sometimes the selected models 

are not well justified. In 2011, the Decision Support Unit (DSU) of the National Institute 

for Health and Clinical Excellence (NICE) of UK published its Technical Support 

Document 14. In this document, the DSU gives its guideline on extrapolating patient level 
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survival data collected in RCTs. The recommended procedure consists of a sequence of 

steps, from visually checking the log-cumulative hazard plots or suitable residual plots, to 

running model diagnostics such as Akaide’s Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). However, the focus of this guidance is on fitting the data to a 

single parametric model or a piecewise parametric model, where a single model is 

estimated within a given period. At the same time, the DSU acknowledges that more 

flexible models can be very useful.  

There are apparently advantages associated with a single parametric model. First, 

the estimation procedure is relatively easy. All classical parametric survival models can be 

estimated in standard statistical software, such as R and SAS. Second, the density, survival, 

and hazard function are relatively simple. Third, the interpretation of a single model is 

more intuitive and straightforward than that of a more complex model. However, there are 

situations where survival time is heterogeneous and therefore a single model is not 

sufficient. One example is discussed in Blackstone et al. (1986). They discovered that the 

risk of death or time-related events following a major surgical intervention or acute illness 

often can be characterized in 3 phases. Risk is high after the intervention or onset of illness, 

then falls to a lower level, and later rises again. The distinction among these phases is not 

clear so each phase cannot be individually modeled by a separate parametric model. 

Another example of heterogeneous survival time is competing risk of failure, where the 

event of interest could be attributed to multiple causes. For instance, if the primary outcome 

in a study is all-cause mortality, then a death attributable to cardiovascular causes and a 

death attributable to non-cardiovascular causes are competing events to each other, as the 

occurrence of one precludes the occurrence of the other. Finally, in some studies, the 
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patients will never experience the event of interest after the intervention. These patients are 

assumed to be “cured”, and the statistical model needs to account for this fact as the 

survival function approaches to a non-zero value when time goes to infinity (Othus et al. 

2012). In these cases, a single parametric model is not capable of estimating accurately the 

underlying survival function and therefore tends to either over- or under-estimate the mean 

survival time. As a result, cost-effectiveness analysis relying on a single parametric model 

is more likely to draw wrong conclusions, which can lead to decisions that are detrimental 

to both the providers and potential users of new medical interventions. 

There have been a variety of statistical methods developed to cope with the 

heterogeneous data in survival analysis. Among them, the finite mixture model has been 

proposed by many researchers. Erişoğlu et al. (2011) demonstrated that a mixture of two 

different distributions (Exponential-Gamma, Exponential-Weibull, and Gamm-Weibull) is 

appropriate for the heterogeneous survival times. Farewell (1982, 1986) and Yu and Tiwari 

(2007) utilized a mixture cure model to estimate the proportion of patients who are cured 

from the disease of interest. Marín et al. (2005) showed how to use Bayesian methods to 

fit a mixture of Weibull model with an unknown number of component. McLachlan and 

Peel (2000) discussed in detail how to apply the finite mixture model in survival analysis 

with competing risks. These researchers have clearly demonstrated that in certain situations, 

the mixture models possess advantages over the single models. They have employed a 

variety of methods to estimate the parameters of the mixture models, such as directly 

solving the likelihood function to get the maximum likelihood estimators (MLEs), utilizing 

the expectation and maximization (EM) algorithm to find the MLEs, and the Bayesian 

estimators.  
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This dissertation builds upon the previous work in analyzing survival data with 

finite mixture models, and makes contribution to this line of research in three areas. First, 

to improve the likelihood and speed of convergence of the EM algorithm, we recommend 

a new approach to find the initial values needed to start the EM iteration. Most of the 

current methods of finding the initial values are borrowed from implementations of the EM 

algorithm in areas where data are not censored and often assumed to follow a normal 

distribution. These assumptions are not valid any more in survival data analysis. To account 

for the special features of the survival data, we suggest looking for initial values of the EM 

algorithm through censored quantile regressions, which take data censoring into 

consideration and can fit parametric models suitable for the time-to-event random variables. 

Second, most of the previous work estimating the mean survival function without 

examining the effects of covariates on either the mixing weights or the distribution 

parameters for each individual component. In contrast, we build into the EM algorithm 

steps that can incorporate any number of covariates, both continuous and categorical. Third, 

previous research work on the mixture cure model focused almost exclusively on 

estimating the cure rate. A missing piece of important information is the survival function 

of the patients that are not cured. In a typical mixture model, each individual component 

follows a distribution. In the mixture cure model, the cure rate is a constant. In this sense, 

the mixture cure model is a special case in the more general mixture model framework. We 

demonstrate that, not just the cure rate, but also the survival function of the uncured patients, 

which in turn can follow another mixture of distributions, can all be estimated through the 

EM algorithm.  
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1.2 Organization of the Dissertation 

 Chapter 2 discusses the need to extrapolate data from RCTs in the development of 

new health interventions. The RCTs are considered to be the gold standard in clinical trials. 

Compared with other trial designs, they possess a number of advantages that render the 

results reliable and interpretable. However, most RCTs typically have short follow-up 

periods and therefore cannot establish long-term benefits of the intervention. This question 

can be answered by the cost-effectiveness analysis, which quite often needs to make 

extrapolation of the data collected from RCTs. In cost-effectiveness analysis, benefits of 

an intervention typically are measured by gained life expectancy due to the intervention. 

Data extrapolations are often conducted by assuming that the survival time follows a 

certain distribution. In the situation of heterogeneous survival data, a model of mixture 

distributions will provide better fit and estimates than a single distribution model.    

 Chapter 3 includes a brief introduction of the finite mixture model. It also discusses 

the EM algorithm and its theoretical properties. This algorithm is used primarily in this 

dissertation to find the MLEs of the parameters for the finite mixture model. Detailed steps 

of the estimation processes are given in cases without and with covariates. Also, a new 

method of finding the initial values of the EM algorithm through the censored quantile 

regressions is introduced. The chapter also covers how to construct confidence intervals 

for the estimates through bootstrapping.  

 Chapter 4 compares the finite mixture models with the other single parametric 

models most frequently used in survival data analysis, in the setting of simulated data as 

well as empirical data. The EM algorithm is implemented for the estimation, both with and 

without covariates. The results show that when survival data are heterogeneous, the finite 
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mixture models provide better fit, and more accurate extrapolations of the survival function 

and mean survival time. 

 In Chapter 5, the mixture cure model is discussed in detail. Both simulated and 

empirical data are used to demonstrate that when there exists a cure portion, the mixture 

cure model is superior to the single parametric models. In addition, as a special case of the 

general mixture model, the mixture cure model can also estimate the survival function for 

the uncured patients, no matter whether this function follows a single distribution or 

another mixture distribution. 
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Chapter 2: Extrapolation of Heterogeneous Survival Data  

2.1 The Need for Extrapolation of Survival Data from Randomized Controlled Trials  

 In the development of new health intervention, the RCTs are considered to be the 

most reliable method to demonstrate efficacy and safety of the new intervention over the 

alternative. Sponsors of new interventions rely heavily on RCTs to answer patient-related 

questions and form the basis for regulatory authorities’ decisions on approval (Kabisch et 

al. 2011). RCTs minimize bias and confounding factors. They allow for direct comparison 

of different interventions to establish superiority. Adequately powered RCTs avoid both 

type I and type II errors, and statistical test of significance is readily interpretable (Bulpitt 

1996). However, RCTs also have their limitations. Besides being expensive and taking 

long time to finish, the patients in RCTs are not followed for a long period of time. The 

maximum follow-up in RCTs is typically only 1 to 5 years, while the choice of an 

intervention will often affect outcomes over a longer period (Jackson et al. 2017). This 

shortcoming of the RCTs becomes more prominent when there is need to establish the 

long-term benefits of the new intervention and its associated costs. This is important to the 

policy makers, the providers, and potential users of the new intervention. The policy 

makers will consider the costs and benefits related to the new interventions to decide how 

to allocate resources. The providers need this piece of information in price negotiations. 

The potential users weigh the benefits against the costs to decide whether to switch from 

their current treatment. The results from cost-effectiveness analysis will help provide 

answers to this question. Cost-effectiveness analysis compares the health effects of an 

intervention with the resources that must be invested to adopt the intervention (Beck 1990). 

It is one of the fastest-growing fields in health research. The analysis takes multiple 
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elements into consideration and boils down to a cost-effectiveness ratio, which is generally 

expressed as  

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 2 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 1

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑙𝑖𝑓𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 2 − 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑙𝑖𝑓𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 1
 

Quality adjusted life expectancy is used in the denominator because it is the standard unit 

of effectiveness. It is a combined measure of quality of life and quantity of life (Muennig 

2007). While RCTs are the major sources of information for both quality of life and 

quantity of life to be used in cost-effectiveness analysis, the focus of this dissertation is on 

the latter. Quantity of life, or life expectancy is typically measured by the expected overall 

survival time or expected survival time from certain causes over a long period of time, 

quite often a lifetime horizon (Jackson et al. 2017). However, the survival data collected 

from the RCTs, due to the limitation of the follow-up, only cover a short period of time. 

Extrapolating the RCT data from the trial period to the lifetime of the patients is needed to 

bridge the gap. The traditional non-parametric or semi-parametric survival data analysis 

techniques, such as the KM estimator and the Cox proportional hazard model, are not 

suitable for this purpose. In order to perform the extrapolation, the survival data need to be 

assumed to follow certain distributions. Based on this assumption, statistical procedures 

can be taken to estimate the parameters of the distribution, which in turn will enable the 

estimation of the expected survival time, or survival probability at a given time. It is 

obvious that the assumption about the underlying distributions is vital to the success of data 

extrapolation. 

 There is a wide range of parametric models in survival data analysis. These models 

include the exponential, gamma, Weibull, lognormal, log-logistic, Gompertz, generalized 
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gamma, and generalized F. They all have been implemented in practice to various extent. 

In 2011, the Decision Support Unit (DSU) of the National Institute for Health and Clinical 

Excellence (NICE) of UK published its Technical Support Document 14. In this document, 

the DSU reviews the extrapolation methods used in 45 NICE Technology Appraisals (TAs). 

Among them, 23 (51%) used the Weibull, 20 (44%) used the exponential, 9 (20%) used 

log-logistic, 6 (13%) used the Gompertz or lognormal, 2 (4%) used gamma, and 1 (2%) 

used piecewise modelling. In addition, the DSU provided its model selection algorithm as 

guidance on how to properly select the parametric model. This algorithm is broken down 

into multiple steps, including visual inspection of the log-cumulative hazard plots and 

checking the model fitting with AIC/BIC. The DSU recommends that all parametric 

models should be included in a systematic manner in the model selection process, and other 

novel survival modelling methods should be considered if these existing models fail to 

provide a good fit to the data. 

2.2 Extrapolation of Heterogeneous Survival Data 

 One situation where novel survival modelling is needed is when the survival data 

from the RCTs are likely to be heterogeneous. In clinical research, heterogeneity may exist 

in a variety of cases. Some of them are discussed in section 1.1. Hougaard (1991) also gave 

some examples of the existence of heterogenous data in studies of myocardial infarction, 

diabetic nephropathy, and occupational mortality. One common feature of these cases is 

that the patients are exposed to multiple risks, and that these risks have different impacts 

on the patients’ survival probability. Under this situation, the single parametric models 

discussed in the previous section are unlikely to provide a good fit. A much more suitable 
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approach is to adopt the finite mixture models, which allow for multiple distributions to 

have a composite effect on the marginal distribution of the survival time. 

 In the following chapters, we will develop such finite mixture models and compare 

their performances with those of the single parametric models. The comparison will be 

done first with simulated data. In addition, we will also apply the finite mixture models to 

analyze two sets of empirical data that are collected from RCTs.  

The first empirical data set comes from the Systolic Hypertension in the Elderly 

Program (SHEP). SHEP is a double-blind, randomized, placebo-controlled trial of the 

treatment for isolated systolic hypertension (ISH) in persons 60 years of age and older. The 

primary endpoint of this trial is to determine whether anti-hypertensive drug treatment 

reduces the risk of total stroke in patients with ISH within this age group. Participants were 

randomized to either the active treatment arm treated with either chlorthalidone or atenolol, 

or the matching placebo arm. There were 2365 patients in the active treatment arm, and 

2371 patients in the placebo arm. The randomized phase started in 1985 and concluded in 

1990. Results from this trial indicate that anti-hypertensive treatment helps reduce the 

incidence of stroke. Although all-cause mortality and cardiovascular related mortality also 

favor the treatment arm, the results are not statistically significant (SHEP Cooperative 

Research Group 1991). After that, all patients were advised to receive active therapy and 

have been followed-up and their mortality and cause of death information is collected 

through the National Death Index (NDI). Using this information up to December 31st, 2006, 

Kostis et al. (2011) found that anti-hypertensive treatment for the ISH patients increases 

their long-term survival from cardiovascular related deaths, and that there is no significant 

difference in overall survival between the active therapy and placebo patients.  
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It remains to be an interesting question whether there is a method that can 

accurately predict the long-term survival probability from both cardiovascular related 

mortality and all-cause mortality, so the benefits of the anti-hypertensive treatment to the 

ISH patients can be clearly estabelished. At the time of writing this dissertation, we have 

information for SHEP patients about their mortality and cause of death up to December 

31st, 2014. The total follow-up time from the beginning of the trail to this date is 

approximately 29.7 years. The KM estimates of the survival function for cardiovascular 

related survival and overall survival are plotted in Figure 1 and Figure 2, respectively. As 

can be seen in these figures, there is some separation in the respective survival curves 

between the two groups up to 20 years from the start of the trail, after that the curves are 

hardly separable. Since the placebo patients started active therapy at the conclusion of the 

randomized phase, they have been treated with anti-hypertensive drugs for more than 20 

years. Therefore, there should be minimal treatment effects remaining between the active 

treatment and placebo patients, and we therefore could combine the two groups and 

examine their long-term life expectance together.  

 SHEP patients are recruited from 16 clinical centers. They consist of both males 

and females and different races. There are large variations in their medical history and 

physical conditions (SHEP Cooperative Research Group 1991). Therefore, there are strong 

reasons to believe there exists heterogeneity among the patients. Amaratunga and Cabrera 

(2015) noticed this feature of the SHEP trial and recommended using the mixture models 

to make extrapolation from the data. In addition, some SHEP patients are lost to follow-up 

during the years and their mortality information becomes unknow. Including these patients 

in the analysis will distort the estimation and extrapolation. The finite mixture model is 
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capable of estimating this proportion by treating these patients as “cured”. Thus the 

extrapolation of survival probability will only be for the patients with explicit mortality 

information. 

 

Figure 1 Kaplan-Meier Curves of CV-related Survival – SHEP 

 

Figure 2 Kaplan-Meier curves of Overall Survival – SHEP 



15 

 

 

 

 

The second empirical data set is based on Hodi et al. (2010), which published the 

results of a double-blind Phase III clinical trial that investigated the efficacy and safety of 

ipilimumab in patients with previously treated metastatic melanoma. Ipilimumab works by 

blocking cytotoxic T-lymphocyte-associated antigen 4 to potentiate an antitumor T-cell 

response. A total of 676 eligible patients in the trial were randomized in a 3:1:1 ratio to 

receive ipilimumab plus a glycoprotein 100 peptide vaccine (IPI+GP100, 403 patients), 

ipilimumab alone (IPI, 137), or glycoprotein 100 alone (GP100, 136). Patients were 

followed up for up to 55 months. The primary endpoint is the overall survival, and one of 

the secondary endpoints is progression free survival. The study results show that 

ipilimumab plus GP100 or ipilimumab alone improves the overall survival in this patient 

population.  

Figure 3 is the original figure in Hodi et al. (2010) that includes the KM curves for 

overall survival and progression free survival. We re-create the patient level trial data by 

digitizing these curves. The KM curves based on the digitized data are displayed in Figure 

4. These re-generated KM curves based on the digitized patient level data are very close to 

the original curves in Figure 3. We can see that the progression-free survival curves for all 

three treatment arms follow an inverse “S” shape. This is an indication that a finite mixture 

model might fit the data better and generate more accurate predictions (Kleinbaum 2005). 

The overall survival curves for all three groups have a flat tail that does not approach 0 at 

the end of the follow-up period. This is indicative of a potential “cured” portion in the 

patients. Like with the SHEP data, it is an interesting and important question to estimate 

this proportion, and the finite mixture model is the right tool for this task. 
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Figure 3 Kaplan-Meier Curves for Overall Survival and Progression-free Survival 
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Figure 4 Digitized Kaplan-Meier Curves for Overall Survival and Progression-free 

Survival  
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Chapter 3: Finite Mixture Models and the Expectation and Maximization 

Algorithm 

 In this chapter we briefly introduce the finite mixture models and the different 

methods to estimate their parameters. The expectation and maximization (EM) algorithm 

and its application in finding the maximum likelihood estimators for the finite mixture 

models is discussed in detail. We also introduce our approach of choosing the initial values 

for the EM algorithm. Compared with other methods, this approach builds upon the 

censored quantile regressions and therefore is capable of handling the censoring feature in 

survival data. We finish this chapter by introducing the most popular parametric models in 

survival data analysis, whose performances will be compared with those of the finite 

mixture models in the following chapters. 

3.1 Finite Mixture Models 

A random variable 𝑌 follows a finite mixture distribution if the density 𝑓(𝑦) of 𝑌 

can be written in the form 

 𝑓(𝑦) =  ∑ 𝜋𝑖𝑓𝑖(𝑦),
𝑔
𝑖=1   (3.1) 

where the 𝑓𝑖(𝑦) are densities and the 𝜋𝑖 satisfy such conditions that  

                   0 ≤ 𝜋𝑖 ≤ 1 (𝑖 = 1, … , 𝑔)                   (3.2) 

and   

 ∑ 𝜋𝑖 = 1.
𝑔
𝑖=1  (3.3) 

 The 𝑓𝑖(𝑦) are called the component densities of the mixture, and the 𝜋𝑖 the mixing 

proportions or weights. It is clear that 𝑓(𝑦) is a density, which is called a g-component 
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finite mixture density. Its corresponding distribution function 𝐹(𝑦)  is called a g-

component finite mixture distribution. In some applications the number of components 𝑔 

is considered fixed, in others the value of 𝑔 can be unknown and needs to be inferred from 

data. In this and the following chapters we treat 𝑔 as fixed. 

 One way to generate a random variable 𝑌  following a g-component mixture 

distribution is through a random vector 𝒁 = (𝑍1, … , 𝑍𝑔)𝑇 , which follows a multinomial 

distribution consisting of one draw on 𝑔 categories with corresponding probability 𝝅 = 

(𝜋1, … , 𝜋𝑔)𝑇 . That is, 𝑍𝑖  can only take the value of 0 or 1, and  𝑃(𝑍𝑖 = 1) =  𝜋𝑖, (𝑖 =

1, … , 𝑔). Therefore, 

 𝑃(𝒁 = 𝒛) = 𝜋1
𝑧1𝜋2

𝑧2 … 𝜋𝑔
𝑧𝑔. (3.4) 

 The random vector 𝒁 can be viewed as the component label of the g-component 

finite mixture distribution of 𝑌 . When 𝑍𝑖 = 1 𝑎𝑛𝑑 𝑍𝑗≠𝑖 = 0 (𝑖, 𝑗 = 1, … , 𝑔),  𝑌  follows 

density 𝑓𝑖(𝑦) (𝑖 = 1, … , 𝑔). In other words, the conditional distribution of 𝑌 given 𝒁 is 

 𝑓(𝑦|𝒁 = 𝒛) = 𝑓𝑖(𝑦) (𝑖 = 1, … , 𝑔). (3.5) 

And the marginal distribution of 𝑌 has the g-component mixture form (3.1) (McLachlan 

and Peel 2000). 

  Since its first introduction by Karl Pearson in the late 1900’s, the finite mixture 

model has been continuously receiving popularity as a methodology to model 

heterogeneous data. Due to its extreme flexibility, it has been widely applied in astronomy, 

biology, genetics, medicine, psychiatry, economics, engineering, and marketing 

(McLachlan and Peel 2000, sec 1.1). Along with its development, the fitting methods of 
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the finite mixture model have also evolved from the initial method of moments by Pearson 

(1894), which is rather calculation intensive, to the direct application of the maximum 

likelihood method by Wolfe (1965) and Day (1969), and eventually to the popular EM 

algorithm developed by Dempster (1977) to find the maximum likelihood estimators 

(MLEs) efficiently. 

3.2 The Maximum Likelihood Estimators 

 The method of maximum likelihood is the most popular technique for deriving 

estimators (Casella and Berger 2002, p.315). If 𝑌1, … , 𝑌𝑛 are an independent and identically 

distributed (iid) sample from a population with density 𝑓(𝑦|𝜽), where 𝜽 is a vector of 

unknown parameters, the likelihood function of the sample point 𝒚 = (𝑦1, … , 𝑦𝑛)𝑇  is 

defined as  

 𝐿(𝜽|𝒚) = 𝑓(𝒚|𝜽) = ∏ 𝑓(𝑦𝑗
𝑛
𝑗=1 |𝜽).  (3.6) 

This is the sample density function considered as a function of 𝜽 for fixed 𝒚. The log 

likelihood function is defined as  

 𝑙(𝜽|𝒚) = log[𝑓(𝒚|𝜽)] =  ∑ log[𝑓(𝑦𝑗|𝜽)]𝑛
𝑗=1 . (3.7) 

An MLE 𝜃(𝒚) maximizes 𝐿(𝜽|𝒚) (equivalently 𝑙(𝜽|𝒚)). Possible candidates for 𝜃(𝒚) can 

be obtained as a solution to the likelihood equation 

𝝏

𝝏𝜽
 𝐿(𝜽|𝒚) = 𝟎, (3.8) 

or equivalently, 

 
𝝏

𝝏𝜽
 𝑙(𝜽|𝒚) = 𝟎. (3.9) 
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When regularity conditions hold, if the likelihood equation has a unique root, then 

this root is the MLE, which is consistent and asymptotically efficient. In the case the 

likelihood equation has multiple roots, there exist approaches such as the Newton-Raphson 

iterative process that leads to an estimator that is consistent, asymptotically normal, and 

efficient (Lehmann and Casella 1998).  

Suppose that 𝒚 = (𝑦1, … , 𝑦𝑛)𝑇  is a random sample from a population with a g-

component mixture density, that is, for 𝑗 = 1, … , 𝑛, 

 𝑓(𝑦𝑗|𝚿) = ∑ 𝜋𝑖𝑓𝑖(𝑦𝑗|𝜽𝑖),
𝑔
𝑖=1  (3.10) 

where 𝚿 = (𝜋1, … , 𝜋𝑔−1, 𝜽1, … , 𝜽𝑔)𝑇 is the vector containing all the unknown parameters. 

The 𝜋𝑖 are the weights, and the 𝜽𝑖 contain the respective parameters of each component 

density. The log likelihood function of the random sample 𝒚 is given by 

 𝑙(𝚿| 𝒚) = ∑ log[𝑓(𝑦𝑗|𝚿)] = ∑ log[∑ 𝜋𝑖𝑓𝑖(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1 ]𝑛

𝑗=1
𝑛
𝑗=1 . (3.11) 

 The MLE of 𝚿, 𝚿̂, is the solution to the likelihood equation, 

 
𝝏

𝝏𝚿
 𝑙(𝚿| 𝒚) = 𝟎. (3.12) 

It can be manipulated so that 𝚿̂ satisfies 

 𝜋̂𝑖 =  ∑ 𝜏𝑖𝑗(𝑦𝑗|𝚿̂) 𝑛⁄𝑛
𝑗=1     (𝑖 = 1, … , 𝑔), (3.13) 

and 

 ∑ 𝜏𝑖𝑗(𝑦𝑗|𝑛
𝑗=1 𝚿̂) 𝜕log[𝑓𝒊(𝑦𝑗|𝜽̂𝑖)] 𝜕𝜽𝑖⁄ = 𝟎     (𝑖 = 1, … , 𝑔),  (3.14) 

where  



22 

 

 

 

 𝜏𝑖𝑗(𝑦𝑗|𝚿) =
𝜋𝑖𝑓𝑖(𝑦𝑗|𝜽𝑖)

∑ 𝜋ℎ𝑓ℎ(𝑦𝑗|𝜽ℎ)
𝑔
ℎ=1

      (𝑖 = 1, … , 𝑔; 𝑗 = 1, … , 𝑛)  (3.15) 

is the posterior probability that 𝑦𝑗 belongs to the ith component of the mixture (McLachlan 

and Krishnan 1997, Sec. 1.4). See Appendix A for detailed derivation of (3.13), (3.14), and 

(3.15). 

 Equations (3.13) and (3.14) suggest an iterative computation of the solution. For an 

initial value 𝚿(0) of 𝚿, a new estimate 𝚿(1) can be computed for 𝚿, which in turn can be 

substituted into (3.13) and (3.14) to produce a new updated 𝚿(2). This process is repeated 

until convergence is achieved. It turns out that this iterative computation is a direct 

application of the EM algorithm for finding solutions to likelihood equations.   

3.3 The EM Algorithm for Finding the MLEs 

The EM algorithm of Dempster et al. (1977) is a procedure of iterative computation 

to calculate the MLEs in cases where the observed data are deemed incomplete. We let 𝑿 

be a random vector from sample space 𝒳, and 𝒀 be another random vector from sample 

space 𝒴. Rather than observing the complete data vector 𝒙 in 𝒳 , we only observe the 

incomplete data vector 𝒚 in 𝒴. We denote the density function of 𝒙 by 𝑔𝑐(𝒙|𝚿), and the 

density function of 𝒚  by 𝑔(𝒚|𝚿) , where 𝚿 = (𝛹1, … , 𝛹𝑑)𝑇 is a vector of unknown 

parameters in parameter space Ω. There is a many-to-one mapping from 𝒳 to 𝒴 such that 

𝒚 = 𝒚(𝒙). The complete-data density 𝑔𝑐(𝒙|𝚿) is related to the incomplete-data density 

𝑔(𝒚|𝚿) by 

 𝑔(𝒚|𝚿) =  ∫ 𝑔𝑐(𝒙|𝚿) 𝒅𝒙
𝓧(𝑦)

, (3.16) 

where 𝒳(𝒚) is the subset of 𝒳determined by 𝒚 = 𝒚(𝒙). 
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 We denote the log likelihood function of 𝒙 by 𝑙𝑐(𝚿|𝒙), and the log likelihood 

function of 𝒚 by 𝑙(𝚿|𝒚). The EM algorithm takes iterative steps to find the MLE for 𝚿, 

not by directly solving 
𝜕𝑙(𝚿|𝒚)

𝜕𝚿
= 0, but through the utilization of  𝑙𝑐(𝚿|𝒙). Each iteration 

of the algorithm consists of two steps, the expectation step (E-step) and the maximization 

step (M-step). On the first iteration, the E-step takes in 𝚿(0), an initial value of 𝚿, for the 

calculation of  

 𝑄(𝚿; 𝚿(0)) = 𝑬𝚿(0)[(𝑙𝑐(𝚿|𝒚)]. (3.17) 

𝑄(𝚿; 𝚿(0)) is the expected value of the complete-data log likelihood, given 𝒚 and 𝚿(0). 

The M-step then maximizes 𝑄(𝚿; 𝚿(0)) with respect to 𝚿 over the parameter space Ω. 

We denote the resulting estimate of 𝚿 from this M-step 𝚿(1). The iteration is then repeated, 

but with 𝚿(0)  replaced by 𝚿(1)  in the new E-step. Continuing in this fashion, on the 

(𝑘 + 1)𝑡ℎ iteration, the following calculations are carried out: 

E-step Take conditional expectation of 𝑙𝑐(𝚿|𝒚), based on the observed data 𝒚 and the 

fitted  𝚿(𝑘) from the previous step. 

 𝑄(𝚿; 𝚿(𝑘)) = 𝑬𝚿(𝑘){(𝑙𝑐(𝚿|𝒚)}. (3.18) 

M-step Choose 𝚿(𝑘+1)to maximize 𝑄(𝚿; 𝚿(𝑘)), that is  

  𝑄(𝚿(𝑘+1);  𝚿(𝑘)) ≥  𝑄(𝚿; 𝚿(𝑘)). (3.19) 

 The iteration continues until 𝑙(𝚿(𝑘+1)|𝒚) − 𝑙(𝚿(𝑘)|𝒚) is less than an arbitrarily 

small amount (McLachlan and Krishnan 2008). Dempster et al. (1977) proved that 𝑙(𝚿|𝒚) 
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is a non-decreasing function in the EM iteration, so convergence can be achieved with a 

sequence of likelihood values that are bounded above. 

 The EM algorithm replaces one difficult to solve likelihood maximization with a 

sequence of easier maximizations whose limit is the answer to the original question. 

Although it works particularly well in “missing data” problems, the definition of “missing 

data” can be stretched to accommodate many models (Casella and Berger 2002, sec. 7.2.4). 

For example, when 𝑙(𝚿|𝒚) is difficult to work with, we could augment the observed data 

𝒚 into the complete data 𝒙, and create a new log likelihood function 𝑙𝑐(𝚿|𝒙) that has a 

simpler form (Lehmann and Casella 1998, p.457). 

3.4 Applying the EM Algorithm to the Finite Mixture Model  

3.4.1 Without Covariates 

 As discussed in Section 3.1, the finite mixture distribution can be generated through 

a random vector 𝒁 = (𝑍1, … , 𝑍𝑔)𝑇, which follows a multinomial distribution with 𝑛 = 1 

and probability 𝝅 =(𝜋1, … , 𝜋𝑔)𝑇. That is, 𝑃(𝑍𝑖 = 1) = 𝜋𝑖, (𝑖 = 1, … 𝑔). 𝒁 can be viewed 

as the component label of the mixture distribution. If a random variable 𝑌 follows a g-

component finite mixture distribution, when 𝑍𝑖 = 1, the density of 𝑌 comes from the ith 

component 𝑓𝑖(𝑌). However, we don’t observe 𝒛, the realized value of the random vector 

𝒁. Therefore 𝒛 can be viewed as missing data. Following the above notation within the EM 

framework, we observe the incomplete data vector 𝒚 = (𝑦1, … 𝑦𝑗)𝑇, not the complete data 

vector 𝒙 = (𝑦1, … 𝑦𝑗 , 𝒛1, … , 𝒛𝑗)
𝑇
. Based on (3.4) and (3.5), the complete-data likelihood 

function is given by  

  𝐿𝑐(𝚿|𝒙) = 𝑓𝑐(𝒙|𝚿) = ∏ ∏ [𝜋𝑖𝑓𝑖(𝑦𝑗|𝜽𝑖)]
𝑧𝑖𝑗𝑔

𝑖=1
𝑛
𝑗=1 , (3.20) 
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and the complete-data log likelihood function is  

  𝑙𝑐(𝚿|𝒙) = ∑ ∑ 𝑧𝑖𝑗{log(𝜋𝑖) + log[𝑓𝑖(𝑦𝑗|𝜽𝑖)]}
𝑔
𝑖=1

𝑛
𝑗=1 ,  (3.21) 

where 𝚿 = (𝜋1, … , 𝜋𝑔−1, 𝜽1, … , 𝜽𝑔)𝑇 is the vector containing all the unknown parameters. 

This setup enables us to take advantage of the EM algorithm to find the MLEs. 

The E-step 

 On the first iteration of the E-step, we take the conditional expectation of the 

complete-data log likelihood as defined in (3.17), given 𝒚 and 𝚿(0), the initial value of 𝚿. 

Since 𝑙𝑐(𝚿|𝒙) is linear in 𝑧𝑖𝑗, the expectation of the complete-data log likelihood can be 

simplified to the conditional expectation of 𝑍𝑖𝑗  given 𝒚  and 𝚿(0) . Since each 𝑍𝑖𝑗  is a 

Bernoulli random variable, its expectation is equal to the posterior probability that 𝑦𝑗 

follows the distribution of the ith component of the mixture.  

It follows that on the (𝑘 + 1)𝑡ℎ iteration, the E-step requires the computation of the 

conditional expectation of 𝑍𝑖𝑗  given 𝒚  and 𝚿(𝑘) , where 𝚿(𝑘)  is from the 𝑘𝑡ℎ  iteration. 

Like in (3.15), we could write this expectation as  

 𝐸𝚿(𝑘)(𝑍𝑖𝑗| 𝒚) = 𝑃𝚿(𝑘)(𝑍𝑖𝑗 = 1|𝒚) = 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘)), (3.22) 

where 

 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘)) =
𝜋𝑖

(𝑘)
𝑓𝑖(𝑦𝑗|𝜽𝑖

(𝑘)
)

∑ 𝜋ℎ
(𝑘)

𝑓ℎ(𝑦𝑗|𝜽ℎ
(𝑘)

)
𝑔
ℎ=1

      (𝑖 = 1, … , 𝑔; 𝑗 = 1, … , 𝑛). (3.23) 

 Substituting (3.23) into (3.21), we obtain 

 𝑄(𝚿; 𝚿(𝑘)) = ∑ ∑ 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘)){log(𝜋𝑖) + log[𝑓𝑖(𝑦𝑗|𝜽𝑖)]}
𝑔
𝑖=1

𝑛
𝑗=1 . (3.24) 
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The M-step 

On the (𝑘 + 1)𝑡ℎ iteration of the M-step, we maximize (3.24) with respect to 𝚿 in 

the parameter space Ω . By taking partial derivative of (3.24) with respect to 𝜋𝑖  and 

equating it to 0, we get  

 𝜋𝑖
(𝑘+1)

=
∑ 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘)

)𝑛
𝑗=1

𝑛
  (𝑖 = 1, … , 𝑔). (3.25) 

Similarly, we establish that 𝜃𝑖  (𝑖 = 1, … , 𝑔) satisfies 

 ∑ ∑ 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘)) {
𝜕

𝜕𝜽𝑖
log[𝑓𝑖(𝑦𝑗|𝜽𝑖)]}

𝑔
𝑖=1

𝑛
𝑗=1 = 𝟎. (3.26) 

Quite often the solution to (3.26) exists in closed form (McLachlan and Peel 2000). These 

values will be used in the E- and M-steps of the next iteration, and the process is repeated 

until 𝑙(𝚿(𝑘+1)) − 𝑙(𝚿(𝑘)) is less than an arbitrarily small amount.  

3.4.2 With Covariates 

In many applications, both the weights and the means of the component distributions 

can be modeled as functions of covariates. Let 𝒘 = (𝑤1, … , 𝑤𝑚)𝑇and 𝒗 = (𝑣1, … , 𝑣𝑝)
𝑇
be 

two vectors of covariates such that  

 𝜋𝑖𝑗 = 𝜋𝑖(𝜶𝑖|𝒘𝑗) (𝑖 = 1, … , 𝑔; 𝑗 = 1, … , 𝑛) (3.27) 

and  

 𝜽𝑖𝑗 = 𝜽𝑖(𝜷𝒊|𝒗𝑗) (𝑖 = 1, … , 𝑔; 𝑗 = 1, … , 𝑛) . (3.28) 

The two vectors 𝒘 and 𝒗 may or may not have elements in common. The logistic model is 

quite often selected for the function 𝜋𝑖(𝜶𝑖|𝒘𝑗). With the presence of covariates, the vector 
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of unknown parameters becomes 𝚿 = (𝜶1, … , 𝜶𝑔−1, 𝜷1, … , 𝜷𝑔)𝑇 , where 𝜶𝑖 =

(𝛼𝑖1, … , 𝛼𝑖𝑚)𝑇 (𝑖 = 1, … , 𝑔 − 1)  and 𝜷𝑖 = (𝛽𝑖1, … , 𝛽𝑖𝑝)𝑇 (𝑖 = 1, … , 𝑔) . The complete-

data log likelihood function (3.21) becomes  

 𝑙𝑐(𝚿|𝒙) = ∑ ∑ 𝑧𝑖𝑗{log(𝜋𝑖𝑗) + log[𝑓𝑖(𝑦𝑗|𝜽𝑖𝑗)]}
𝑔
𝑖=1

𝑛
𝑗=1 . (3.29) 

The E-step 

 The E-step is essentially the same as in Section 3.4.1. On the (𝑘 + 1)𝑡ℎ iteration, 

we take the conditional expectation of complete-data log likelihood function (3.29), given 

the data 𝒚 and 𝚿(𝑘), the estimated parameters from the previous iteration. After this E-step 

we get  

 𝑄(𝚿; 𝚿(𝑘)) = ∑ ∑ 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘)){log(𝜋𝑖𝑗) + log[𝑓𝑖(𝑦𝑗|𝜽𝑖𝑗)]}
𝑔
𝑖=1

𝑛
𝑗=1 , (3.30) 

where  

 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘)) =
𝜋𝑖𝑗

(𝑘)
𝑓𝑖(𝑦𝑗|𝜽𝑖𝑗

(𝑘)
)

∑ 𝜋
ℎ𝑗
(𝑘)

𝑓ℎ(𝑦𝑗|𝜽ℎ𝑗
(𝑘)

)
𝑔
ℎ=1

      (𝑖 = 1, … , 𝑔; 𝑗 = 1, … , 𝑛). (3.31) 

The M-step 

 The M-step on the (𝑘 + 1)𝑡ℎ iteration involves finding the 𝚿(𝑘+1) that maximizes 

(3.30). This requires solving the two systems of equations 

 ∑ ∑ 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘))
𝝏

𝝏𝜶
{log(𝜋𝑖𝑗)} = 𝟎

𝑔
𝑖=1

𝑛
𝑗=1  (3.32) 

and  

 ∑ ∑ 𝜏𝑖𝑗(𝑦𝑗|𝚿(𝑘))
𝝏

𝝏𝜷
{log[𝑓𝑖(𝑦𝑗|𝜽𝑖𝑗)]} = 𝟎

𝑔
𝑖=1

𝑛
𝑗=1 . (3.33) 

Both equation (3.32) and (3.33) can be solved by procedures that fit the generalized 

linear models and are available in most statistical software such as SAS and R. 
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 The difference between the cases without covariates and the cases with covariates 

is that in (3.23) and (3.24), 𝜋𝑖 and 𝜽𝑖  take the same value for all 𝑦𝑗, whereas in (3.30) and 

(3.31), they vary among 𝑦𝑗 as a function of 𝒘𝑗  𝑎𝑛𝑑 𝒗𝑗. 

3.4.3 Likelihood Function of Survival Data 

 Equation (3.6) describes the likelihood function in its general form. One unique 

feature of the survival analysis is that the data are often censored. Censoring takes place 

because patients in an experiment are not followed for the entire lifespan of the event of 

interest. Most of the time censoring is assumed to be random. Depending on the timing, 

censoring can be classified as right censoring, left censoring, and interval censoring (Lee 

and Wang 2003). Among them, right censored data are most often seen in clinical trials 

where patients are followed up to a certain timepoint, beyond which it becomes unknow 

whether or when the patients will experience the event of interest, if they have not done so 

during the follow-up period. Let 𝑇 denote the time to the event of interest that is subject to 

random right censoring, and let 𝐶 be the random censoring time. Instead of observing 𝑇 

directly, we observe 𝑌 = min (𝑇, 𝐶), and ∆= 𝐼(𝑇 ≤ 𝐶), where 𝐼(. ) is an indicator function. 

Assume 𝑇 follows a distribution with density function 𝑓(𝑡) and survival function 𝑆(𝑡), we 

observe 𝑓(𝑡) and 𝑆(𝑡), when ∆= 1 and ∆= 0, respectively. Therefore for an iid sample of 

size 𝑛 that consists of observed pairs of (𝑦𝑗 , 𝛿𝑗), 𝑗 = 1, … , 𝑛, the likelihood function can be 

written as 

 ∏ 𝑓(𝑦𝑗)𝛿𝑗𝑛
𝑗=1 𝑆(𝑦𝑗)1−𝛿𝑗 (3.34) 

and the likelihood function of an iid sample following a finite mixture distribution is simply 
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 ∏ [∑ 𝜋𝑖𝑓𝑖(𝑦𝑗)]
𝑔
𝑖=1

𝛿𝑗𝑛
𝑗=1 [∑ 𝜋𝑖𝑆𝑖(𝑦𝑗)]

𝑔
𝑖=1

1−𝛿𝑗
 (3.35) 

Substituting (3.35) for the density function in (3.23) and (3.31) gives the calculation of  𝜏𝑖𝑗 

when using right censored survival data.   

3.5 Choosing Initial Values for the EM Algorithm via Censored Quantile Regression 

 As shown in (3.17), the EM algorithm requires 𝚿(0) , the initial values of the 

unknown parameters, to start the iteration process. The choice of the initial values is crucial 

to the speedy convergence to the global maxima. Starting from a poor set of initial values 

will often lead to convergence to local maxima or no convergence at all (McLachlan and 

Peel 2000, Hipp and Bauer 2006). Over the years, researchers have developed several 

methods of choosing the initial values. One common technique is the random starting value 

approach, which divides the data into 𝑔 clusters and randomly assign each observation into 

a cluster. Parameters estimated based on the initial random cluster assignment are used as 

the initial values for the EM algorithm. A related method that builds on the random starting 

value approach is the iteratively constrained EM technique. It involves running several 

iteratively constrained EM algorithms and selecting the parameters from the best-fitting 

solutions as the initial values (Lubke and Muthén 2007). The k-means clustering technique 

uses results from the k-means algorithm as the initial values for the EM algorithm, and has 

been implemented in the R package “mixture” (Browne et al. 2014). Another R package 

“mclust”, adopts the agglomerative hierarchical clustering technique for selection of the 

initial values (Fraley and Raftery 2006). Other popular techniques include utilizing 

principal component analysis (McLachlan 1988), using results from moment estimation 

(Lindsay and Basak 1993, Furman and Lindsay 1994), and starting with well-separated 
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values (Böhning et al. 1994). These methods are evaluated and compared by Karlis and 

Xekalaki (2003) and Shireman et al. (2017). They find that each technique has its strengths 

and drawbacks. While some techniques outperform the others in simulations, it is difficult 

to characterize situations where a technique can be expected to outperform the others when 

working with empirical data.  

Most of the current techniques for choosing the initial values and their comparisons 

are implemented in the setting of finite mixture of normal distributions, as this is the most 

commonly employed mixture model (Biernacki et al. 2003). Although these techniques can 

still be applied in the analysis of survival data, they are unlikely to provides the optimal set 

of initial values due the fact that none of them considers the censoring feature of the 

survival data. For this reason, we propose an alternative procedure to select the initial 

values, which is based on the censored quantile regression of survival data.  

 For a random variable 𝑌, the 𝜏-th quantile is the value 𝑦 such that 𝑃(𝑌 ≤ 𝑦) =

𝐹𝑌(𝑦) = 𝜏. The quantile function is defined as  

 𝑄𝑌(𝜏) = 𝐹𝑌
−1(𝜏) = 𝑖𝑛𝑓{𝑦: 𝐹(𝑦) > 𝜏} (3.36) 

for 𝜏 ∈ [0,1]. Another presentation of quantiles treats the 𝜏-th quantile as the solution to 

the minimization problem below  

 𝑞𝜏 = argmin
𝑐

𝐸[𝜌𝜏(𝑌 − 𝑐)], (3.37) 

where 𝜌𝜏(. ) is an asymmetric absolute loss function defined as  

 𝜌𝜏(𝑌 − 𝑐) = [𝜏 − 𝐼(𝑌 ≤ 𝑐)](𝑌 − 𝑐) = [(1 − 𝜏)𝐼(𝑌 ≤ 𝑐) + 𝜏𝐼(𝑌 > 𝑐)]|𝑌 − 𝑐|. 

This is a weighted sum of absolute deviations, where negative deviations are weighted by 

(1 − 𝜏) and positive deviations are weighted by 𝜏. The definition of the median is a special 
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case of (3.37) when 𝜏 = 0.5 (Davino 2014). Under this loss function, the quantiles can be 

viewed as particular centers of the distribution (Hao 2007).   

 In survival data analysis with covariates, where 𝑌 is time to the event of interest 

and 𝒙 is a vector consisting of the covariates, a quantile regression model linearly links 

𝑄𝑌(𝜏) to 𝒙. Quite often, 𝑌 is transformed into log 𝑌, so   

 𝑄𝑙𝑜𝑔𝑌(𝜏|𝒙) = 𝒙𝑇𝜷(𝜏) + 𝑄𝜺(𝜏), (3.38) 

where 𝑄𝜺(𝜏) is the 𝜏-th quantile of the error term 𝜀 on the log scale (Xue et al. 2016).  It 

follows that equation (3.37) can be extended to 

 𝜷̂(𝜏) = argmin
𝜷(𝜏)

𝐸[𝜌𝜏(log (𝒀) − 𝒙𝑇𝜷(𝜏)].  (3.39) 

 There are two popular procedures for the estimation of 𝜷̂(𝜏). Portnoy (2003) used 

a recursively reweighted estimation procedure, while Peng and Huang (2008) adopted a 

martingale-based estimating equation. The two methods often result in similar estimates, 

and both are available in R and SAS (Xue et al. 2016).  

 Our proposed approach of selecting the initial values of the EM algorithm builds 

upon the results of the censored quantile regression. This approach takes advantage of the 

fact that quantiles can be viewed as special centers of the distribution.  By grouping the 

data into selected quantiles that represent the number of the components in the mixture 

model, we could estimate both the weights and parameter values for each individual 

component and use these estimates to start the EM algorithm. Assuming we have an iid 

sample of 𝑌1, 𝑌2, … , 𝑌𝑛 observations where 𝑌𝑗 is the observed survival time (censored or not) 

to the event of interest, this procedure is implemented in the following steps. For 

illustration purposes, we assume the mixture has two components.  
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1. Fit censored quantile regression for the different quantiles in a set Q of size 30 

to 100 and extract the residuals. The distribution model chosen in the quantile 

regression will correspond to that in the finite mixture model. The effects of 

covariates on the weights, if any, are incorporated by adding these covariates to 

the quantile regression. Define 𝑞𝑖 as the i-th quantile, 𝑟𝑖𝑗 as the residual of 𝑦𝑗 for 

𝑞𝑖.  

2. For every subset S of Q, where 𝑆 = {𝑞𝑖, 𝑞𝑘}  for 𝑖 ≠ 𝑘 , calculate 𝐶(𝑆) =

∑ [min (|𝑟𝑖𝑗|, |𝑟𝑘𝑗|)]
2𝑛

𝑗=1 , the sum of squares of the minimum absolute residual 

between 𝑞𝑖  and 𝑞𝑘 . Select the set 𝑆̂ = {𝑞̂𝑖, 𝑞̂𝑘}  that minimizes 𝐶(𝑆) . The 

quantiles 𝑞̂𝑖 and 𝑞̂𝑘 roughly represent the two components.   

3. Define 𝑤𝑖𝑗 =
|𝑟𝑖𝑗|

|𝑟𝑖𝑗|+|𝑟𝑘𝑗|
. This is the weight, or the probability that 𝑌𝑗 belongs to 

𝑞̂𝑖. Define 𝑤𝑘𝑗 in a similar fashion. 

4. Fit two parametric survival models with the weights from Step 3 respectively 

and get the parameter estimates for each individual model. 

5. Use the weight and parameter estimates from Steps 3 and 4 as the initial value 

for the EM algorithm. 

Compared with the other existing techniques of finding the initial values for the 

EM algorithm, this procedure possesses a major advantage. Censoring is a special feature 

of the survival data and none of the current methods has the mechanism to include its 

impact on finding the initial values.  Our proposed approach considers the effects of 

censoring in the observed data through the censored quantile regression.  
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3.6 Construction of Confident Intervals 

In the literature of finite mixture models there are two approaches to obtain the 

confidence intervals of 𝚿̂, or any function of it 𝜏(𝚿̂). One is based on the observed 

information matrix (Dietz and Böhning 1995,  Liu 1998), the other is based on bootstrap 

(McLachlan and Krishnan 2008). Basford et al. (1997) compared these two approaches and 

concluded that the results from the information-based approach is unstable unless the 

sample size was every large. The bootstrap method was first introduced by Efron (1979). 

Efron (1981) also studied how to conduct bootstrap with censored data and proposed a 

technique he called the Percentile Method to construct the confidence intervals for small 

samples. We follow Efron’s method as outlined below to obtain the confidence intervals 

for the 𝜏(𝚿̂) of interest. 

1. Given a sample of size n consisting of pairs of observed time to event (censored 

or not) and censoring indicators, estimate 𝜏(𝚿̂) following the methods discussed 

in sections 3.4 and 3.5. 

2. From the given sample, draw independently pairs of the time to event and the 

censoring indicator n times with replacement. This creates a bootstrap sample of 

the observed data. 

3. Estimate 𝜏(Ψ )̂ based on this bootstrap sample and call it 𝜏(𝜳̂∗). 

4. Repeat steps 2 and 3 a large number of times, for example 𝑁 = 1000, yielding 

bootstrap values 𝜏(𝜳̂∗
1), 𝜏(𝜳̂∗

2), … , 𝜏(𝜳̂∗
𝑁)  from which we can get the 

bootstrap distribution of 𝜏(𝚿̂) and the associated percentiles. The confidence 

intervals can then be constructed from the percentiles. For example, the 95% 

confidence interval is given by {𝜏(𝜳̂∗)0.025, 𝜏(𝜳̂∗)0.975}, where  𝜏(𝜳̂∗)0.025 and 
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𝜏(𝜳̂∗)0.975  are the 2.5% and 97.5% percentiles of the bootstrap distribution, 

respectively. 

3.7 Common Parametric Survival Models 

As discussed briefly in the previous section, several non-parametric and parametric 

models have been developed over the course of survival data analyses. These models 

generally fall into two families: the proportional hazard model or the accelerated failure 

time (AFT) model.  Let 𝑦 be the survival time, 𝒙 a vector of the covariates. Under the 

proportional hazard model, the hazard function is written as 

 ℎ(𝑦) = ℎ𝟎(𝒚)𝑔(𝒙), (3.40) 

where ℎ0(𝑦) is the baseline hazard function or the hazard function of a reference group, 

and 𝑔(𝒙) as a function of only the covariates reflects the effects of these covariates on the 

underlying risk ℎ0(𝑦). If subject 𝑗 has survival time 𝑦𝑗 and covariates 𝒙𝑗, and subject 𝑘 has 

survival time 𝑦𝑘  and covariates 𝒙𝑘 , then the hazard ratio of the two patients is 

ℎ(𝑦𝑗)
ℎ(𝑦𝑘)

⁄ =
𝑔(𝑥𝑗)

𝑔(𝑥𝑘)
⁄ . This ratio is constant over time and only a function of the 

covariates, hence the name of this family of models. 

 Depending on the form of ℎ0(𝑦) , there could be both nonparametric/semi-

parametric and parametric models in the proportional hazard family. The well-known Cox 

proportional hazard model is an example of the former. Under this model, ℎ0(𝑦)  is 

unspecified and 𝑔(𝒙) is equal to 𝑒𝒙𝑻𝜷, where 𝜷 is a vector of the unknown parameters. 

While the Cox proportional hazard model has been widely implemented to assess the 

impacts of covariates on survival risk, it cannot make predictions about the survival time 

as ℎ0(𝑦) is unspecified.  
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When both ℎ0(𝑦)  and 𝑔(𝒙)  assume to follow certain parametric forms, some 

parametric models also possess the feature of proportional hazard. One such an example is 

the Weibull model. There are two parameters in the Weibull distribution, the shape 

parameter 𝛾 , and the scale parameter 𝜆. The Weibull baseline hazard function can be 

written as ℎ0(𝑦) =  𝜆 𝛾𝑦𝛾−1. When 𝑔(𝒙) = 𝑒𝒙𝑻𝜷, as in the Cox proportional hazard model, 

the hazard function becomes ℎ(𝑦) =  𝜆𝑒𝒙𝑻𝜷 𝛾𝑦𝛾−1 . It is clear that 𝑌  follows another 

Weibull distribution with shape parameter 𝛾 and scale parameter 𝜆𝑒𝒙𝑻𝜷. Therefore, when 

the shape parameter 𝛾 is assumed to be constant and the scale parameter 𝜆 is a function of 

the covariates, the Weibull model follows a parametric distribution which also presents the 

trait of proportional hazard. 

In contrast, the AFT family contains primarily parametric models. The general form 

of models in this family links the logarithm of the survival time to the covariates by the 

equation 

 log (𝑦) = 𝒙𝑇𝜷 + 𝜎𝜀, (3.41) 

where, 𝜎 is an unknown scale parameter, and 𝜀 is a random variable with a known density 

function 𝑓(𝜖),  which determines the distribution that 𝑦  follows, such as the Weibull, 

Gamma, Lognormal, and Log-logistic distribution. The AFT family gets its name because 

we can re-write (3.41) as 𝑦 = 𝑒𝒙𝑇𝜷+𝜎𝜀, so 𝑦 is increased or decreased when 𝒙𝑇𝜷 > 0 or 

𝒙𝑇𝜷 < 0, respectively (Lee and Wang 2003). 

Table A. 16 in Appendix B summarizes these parametric proportional hazard and 

AFT models. Among them, the Weibull and the exponential distribution can be 

parameterized both as a proportional hazard and AFT model. The exponential distribution 

is a special case of the Weibull distribution when 𝛾 = 1. The Gompertz distribution is 
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closely related to the Weibull distribution and sometimes is called the log-Weibull 

distribution. The gamma distribution simplifies to the exponential distribution when 𝛼 =

1. The Generalized gamma distribution reduces to the gamma, lognormal, and Weibull 

when 𝑄 = 0, 𝑄 = 1, and 𝑄 = 𝜎, respectively. The Generalized F distribution is equivalent 

to the Generalized gamma distribution with 𝑃 = 0. It is also equivalent to the log-logistic 

distribution when 𝑃 = 1.  

The individual component of a finite mixture model most often comes from one 

these models. In the following chapters, we will fit finite mixture models as well as these 

single parametric models to various survival data and compare their performances under 

different conditions. 
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Chapter 4: Analyzing Survival Data with the Finite Mixture Models 

 Chapter 3 introduces the finite mixture models and the EM algorithm as a popular 

technique to estimate their parameters. A new approach based on the censored quantile 

regression is also proposed to choose the initial values for the EM algorithm. This approach 

takes into consideration the feature of censoring in survival data, and therefore will 

improve the likelihood of convergence of the EM algorithm to the global maximum. 

In this chapter, we will apply the methods developed in Chapter 3 and fit finite 

mixture models to several sets of survival data. These data sets consist of both simulated 

and empirical data. Together they represent some typical situations where the finite mixture 

models can provide more accurate estimates and extrapolations. The common parametric 

survival models in section 3.6 are also fit to these data, and the results are compared to 

those of the finite mixture models.  

 The component distribution in the finite mixture model is chosen to be the Weibull, 

due to its flexibility and intuitive interpretation (Marín et al. 2005).  

4.1 Simulated Data  

 An iid sample of 300 observations is generated to simulate a time-to-event random 

variable 𝑇 which follows a mixture of two Weibull distributions. For the first Weibull 

distribution, the weight 𝜋1 is set to equal 0.75, shape parameter 𝛾1 = 1.5  and scale 

parameter 𝜆1 = 2. For the second Weibull distribution, 𝜋2 = 0.25, 𝛾2 = 1, and 𝜆2 = 10. 

Censoring is through another random variable 𝑇𝑐𝑒𝑛𝑠𝑜𝑟, which also follows a mixture of 

two Weibull distributions. The two component Weibull distributions in the mixture for  

𝑇𝑐𝑒𝑛𝑠𝑜𝑟  have scale 12 and 20, respectively. They share the same weights and shape 
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parameters as their counterparts in the mixture for 𝑇. In addition, the data are truncated at 

𝑇 = 5. Therefore, an observation with either T> 𝑇𝑐𝑒𝑛𝑠𝑜𝑟 or T> 5 is censored. This results 

in approximately a 23% censoring rate. What we can directly observe from the simulation 

is not 𝑇, instead, we observe pairs of (𝑦𝑗 , 𝛿𝑗), 𝑗 = 1, … ,300, where 𝑦𝑗 = min (𝑡𝑗,𝑡𝑗
𝑐𝑒𝑛𝑠𝑜𝑟 , 5) 

and 𝛿𝑗 = 1 𝑖𝑓 𝑡𝑗 < min(𝑡𝑗
𝑐𝑒𝑛𝑠𝑜𝑟 , 5). No covariates are included in this simulation. 

Under this setting, the parameter vector is 𝚿 = (𝜋1, 𝛾1, 𝜆1, 𝛾2, 𝜆2)𝑇, which includes 

one of the weights, the shape and scale parameter for each of the two component Weibull 

distributions. To start the EM algorithm, we follow the steps outlined in section 3.5 to find 

the initial value 𝚿(0). The stopping rule for the EM algorithm is set to be 𝑙(𝚿(𝑘+1)) −

𝑙(𝚿(𝑘)) < 0.0001 . That is, when the difference in the log likelihood between the 

(𝑘 + 1)𝑡ℎ  and the 𝑘𝑡ℎ  iteration is less than 0.0001, we consider the EM algorithm has 

reached convergence and set 𝚿̂ = 𝚿(𝑘+1). Based on 𝚿̂, we can estimate any function 𝜏(𝚿) 

by 𝜏(𝚿̂), such as the density, survival function, hazard function, restricted mean survival 

time, and the mean survival time. If 𝑘 > 5000 and the stopping rule is still not satisfied, 

the EM algorithm is considered failing to converge. 

The parametric models covered in section 3.7 are fit to the simulated data and their 

performance are compared with that of the mixture model. As the exponential distribution 

is a special case of the Weibull distribution, it is not included in the comparison. The KM 

estimate is a non-parametric maximum likelihood estimator of the survival function. It is 

widely used as a surrogate of the true survival function (Lee and Wang 2003). For this 

reason, we include the KM estimator as a benchmark in addition to the true underlying 

survival distribution. 
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Survival function plots from all models are generated and overlaid to that of the 

true mixture distribution as well as the KM estimate to give a visual presentation of the 

model fitting. We also choose log likelihood and AIC as model fitting diagnostics (Solka 

et al. 1998). In addition, we compare restricted mean survival time and extrapolated mean 

survival time calculated from these models, as these are the most important measures of 

benefits of health interventions and hence the primary reason for utilizing the parametric 

models. 

The results are included in Figure 5-A to C as well as Table 1. For the mixture of 

two Weibull model, the 95% confidence intervals of the survival function, restricted mean 

survival time at T=5, and mean survival time are constructed following the bootstrap 

approach discussed in section 3.6. 

The survival functions for the true mixture distribution and each of the models are 

plotted in Figures 5-A to C. For each model, parameters are estimated with observed data 

up to 𝑇 = 5, and extrapolations about the survival function are made up to 𝑇 = 35. Among 

all the models, the mixture of two Weibull model yields a survival function that most 

closely traces the true function, as shown in Figure 5-A. In comparison, some of the single 

parametric models generate good estimate of the survival function as well, such as the log-

logistic and Generalized F, while others fail to do so, such as the lognormal and Gompertz. 

Model fitting diagnostics are displayed in Table 1. The mixture of two Weibull model has 

the best log likelihood (-452.64), followed by the log-logistic (-456.24). In terms of AIC, 

the mixture of two Weibull model also claims the best value (915.29). The true restricted 

mean survival time at 𝑇 = 5 is 2.33. This is the time point up to which data are observed. 

Again, the mixture of two Weibull model provides very close estimates (2.32). When it 
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comes to the mean survival time – one of the most important in the survival analysis, the 

mixture of two Weibull has an extrapolated value of 3.89, which is the closest to the true 

mean (3.85). The Generalized F and Gompertz model, on the other hand, are unable to 

estimate this value.          

 

 

 

Figure 5-A Extrapolation of Survival Probability – Simulated Data Without Covariates 
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Figure 5-B Extrapolation of Survival Probability – Simulated Data Without Covariates 

 

Figure 5-C Extrapolation of Survival Probability – Simulated Data Without Covariates 
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Table 1 Comparison of Mixture of Two Weibull and Common Parametric Models 

Simulated Data Without Covariates 

Models 
Log 

Likelihood 
AIC 

Restricted 

Mean 

(95% CI) 

T=5 

Extrapolated 

Mean 

(95% CI) 

Lifetime 

Underlying model 
  

2.33 3.85 

KM 
  

2.31 
 

Mixture of two 

Weibull 

-452.64 915.29 2.32 

(2.16-2.47) 

3.89 

(2.75-5.29) 

Single Weibull -461.13 926.25 2.38 

(2.19-2.56) 

2.69 

(2.39-3.01) 

Gamma -459.94 923.88 2.37 

(2.20-2.56) 

2.70 

(2.40-3.04) 

Lognormal -462.75 929.51 2.35 

(2.16-2.56) 

3.54 

(2.97-4.46) 

Log-logistic -456.24 916.47 2.35 

(2.15-2.54) 

4.04 

(3.24-5.35) 

Generalized F -456.92 921.84 2.30 

(2.15-2.56) 

 

Generalized Gamma -458.23 922.46 2.36 

(2.18-2.56) 

2.86 

(2.47-3.46) 

Gompertz -464.13 932.26 2.35 

(2.14-2.55) 

 

  

Next we report the results from a simulation where both the weights and the shapes 

of the mixture model are functions of covariates. Like in the previous case, the random 

variable 𝑇 follows a mixture of two Weibull distribution. The iid sample of observed pairs 

(𝑦𝑗 , 𝛿𝑗) contains 300 observations. The covariate vector is 𝑿 = (𝑋𝟏, 𝑋𝟐)𝑇, where 𝑋𝟏 is a 

continuous variable following a normal distribution 𝑁(5,1), and 𝑋𝟐 follows a Bernoulli 

distribution with 𝑃(𝑋𝟐 = 1) = 0.5. The weight 𝜋1  is linked to the covariates by 𝜋1 =

exp (𝛼1+𝛼2∗𝑋1+𝛼3∗𝑋2)

1+exp (𝛼1+𝛼2∗𝑋1+𝛼3∗𝑋2)
, and 𝜋2 =

1

1+exp (𝛼1+𝛼2∗𝑋1+𝛼3∗𝑋2)
, where 𝛼1 = 0.2, 𝛼2 = 0.1,  and 

𝛼3 = 0.3, respectively. The first Weibull distribution has 𝛾1 = 1.5 and the second Weibull 

distribution has 𝛾2 = 2 . The scale parameter 𝜆𝑖  is linked to the covariates by 𝜆𝑖 =
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𝑒𝛽𝑖1+𝛽𝑖2∗𝑋1+𝛽𝑖3∗𝑋2 , where 𝛽11 = 𝛽21 = log(2) , 𝛽12 = 0.1, 𝛽13 = 0.2, 𝛽22 = 0.3 , and 

𝛽23 = 0.5, respectively. The censoring variable 𝑇𝑐𝑒𝑛𝑠𝑜𝑟  also follows a mixture of two 

Weibull distribution. Each of the two components of 𝑇𝑐𝑒𝑛𝑠𝑜𝑟 has the same shape parameter 

as their counterparts in 𝑇 . The two scale parameters are linked to the covariates by 

𝜆1
𝑐𝑒𝑛𝑠𝑜𝑟 = 𝑒log 2+0.3∗𝑋1+0.8∗𝑋2  and 𝜆2

𝑐𝑒𝑛𝑠𝑜𝑟 = 𝑒log 2+0.5∗𝑋1+𝑋2. The data are truncated at 𝑇 =

8. If T> 𝑇𝑐𝑒𝑛𝑠𝑜𝑟 or T> 8, 𝑇 is censored. This results in approximately a 23% censoring 

rate. The parameter vector of the mixture of two Weibull model becomes 𝚿 =

(𝛼1, 𝛼2, 𝛼3, 𝛽11, 𝛽12, 𝛽13, 𝛽21, 𝛽22, 𝛽23, 𝛾1, 𝛾2)𝑇.  

The mixture model as well as the other parametric models are fit to the simulated 

data. The estimation is based on observed values up to 𝑇 = 8. The extrapolation of survival 

function is made up to 𝑇 = 35. To plot the survival function at given time 𝑇 = 𝑡, we take 

the average of the estimated survival probability at 𝑡 and 𝑿𝑗 = 𝒙𝑗 , 𝑗 = 1, … , 300. That is, 

the survival probability at a time 𝑡 is the average of the probabilities at this time point 

across all observed values of the covariates. The results are displayed in Figures 6-A to C 

and Table 2. 

In Figures 6-A to C, the red solid line represents the true underlying survival 

function. During the period when data are available, all models slightly over-estimate the 

survival probability. During the extrapolation period, the mixture of two Weibull model 

rather accurately predicts the survival probability at all time points. However, the other 

parametric models either over-estimate (such as the lognormal or Generalized F) or under-

estimate (such as the single Weibull or Gompertz) it. In Table 2, the mixture model reports 

the best log likelihood (-554.05) and AIC (1130.09), despite the fact that it has the largest 

number of parameters to estimate.    
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Figure 6-A Extrapolation of Survival Probability – Simulated Data with Covariates 

  

 

Figure 6-B Extrapolation of Survival Probability – Simulated Data with Covariates 



45 

 

 

 

 

Figure 6-C Extrapolation of Survival Probability – Simulated Data with Covariates 

 

Table 2 Comparison of Mixture of Two Weibull and Common Parametric Models 

Simulated Data with Covariates 

Models Log Likelihood AIC 

Mixture of two Weibull -554.05 1130.09 

Single Weibull -568.53 1145.07 

Gamma -567.14 1142.28 

Lognormal -569.05 1146.11 

Log-logistic -566.49 1140.97 

Generalized F -566.23 1144.46 

Generalized Gamma -566.43 1142.86 

Gompertz -574.39 1156.78 

 

4.2 Empirical Data 

 In the previous section we test the mixture of two Weibull model on simulated data 

and compared its performance with that of the common single parametric models. In this 
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section we repeat the exercise by fitting these models to data collected from SHEP, the 

RCT introduced in section 2.2. 

At the time of writing this dissertation, we have information about mortality and 

cause of death for SHEP patients until December 31st, 2014. To test whether the mixture 

models are at an advantage over single parametric models in making extrapolations, we fit 

all these models to SHEP data up to December 31st, 2010 and predict survival function 

from 2011 to the end of 2014.  

 We first examine the survival probability from cardiovascular related mortality, and 

fit all the candidate models to the data without considering the effects of covariates. Since 

the true underlying survival distribution is unknown, we use the KM estimate as the 

benchmark. The results are displayed in Figures 7-A to C and Table 3. As shown in Figure 

7-A, the mixture of two Weibull model accurately estimate the survival probability during 

the observation period. It also provides very close prediction from 2011 to 2014. The 95% 

confidence interval is quite narrow due to the large sample size. Among the single 

parametric models, the generalized F model fails to converge, the others either over or 

under estimate the survival function during the observation period, and they all make under 

prediction between 2011 and 2014.  Both the log likelihood and AIC in Table 3 indicate 

that the mixture model provides the best fit (-7396.99 and 14803.99, respectively), 

followed by the Log-logistic (-7429.83 and 14863.66, respectively). The extrapolated 

restricted mean survival time up to the end of the observation period (𝑇 = 26) by these 

models are close to that of the KM model. This is because the over and under estimation 

during the observation period cancels each other out. The extrapolated mean survival time 
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from cardiovascular related mortality is 50 years based on the mixture model. The single 

models estimate this value as low as 28 and as high as 70. 

 

Figure 7-A Extrapolation of Survival Probability 2011-2014 in SHEP – CV-related 

Mortality Without Covariates – All Patients 

 

Figure 7-B Extrapolation of Survival Probability 2011-2014 in SHEP – CV-related 

Mortality Without Covariates – All Patients 
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Figure 7-C Extrapolation of Survival Probability 2011-2014 in SHEP – CV-related 

Mortality Without Covariates – All Patients 

Table 3 Comparison of Mixture of Two Weibull and Common Parametric Models CV-

related Mortality - SHEP Data Without Covariates 

Models 
Log 

Likelihood 
AIC 

Restricted 

Mean 

(95% CI) 

T=26 

Extrapolated Mean 

(95% CI) 

Lifetime 

KM 
  

20.7 
 

Mixture of two 

Weibull 

-7396.99 14803.99 20.46 

(20.29-20.68) 

50.01 

(42.25-70.48) 

Single Weibull -7432.72 14869.44 20.53 

(20.30-20.75) 

33.43 

(31.85-35.16) 

Gamma -7433.90 14871.81 20.5 

(20.30 – 20.70) 

36.41 

(34.73 – 38.22) 

Lognormal -7492.32 14988.63 20.41 

(20.18-20.65) 

69.74 

(63.07-77.90) 

Log-logistic -7429.83 14863.66 20.49 

(20.26-20.70) 

61.30 

(55.70-68.31) 

Generalized F Cannot be estimated 

Generalized 

Gamma 

-7432.30 14870.61 20.52 

(20.30-20.75) 

34.55 

(31.77-38.07) 

Gompertz -7465.07 14934.15 20.52 

(20.29-20.73) 

28.02 

(26.91-29.32) 
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 Next, we examine the effects of covariates on the survival function. Based on 

recommendations from experts in cardiovascular disease, we select treatment arm, body 

mass index (BMI), and age as the covariates. This increases the number of parameters to 

14 in the finite mixture model. The survival function at a given time t is calculated in the 

same fashion as in the simulated data case.  

The results are displayed in Figures 8-A to C and Table 4. During both the 

observation and extrapolation period, the estimate from the mixture model is slightly below 

the KM estimate. The single parametric models, while being able to trace the KM estimate 

closely during the observation period, all fall below the KM curve by a large amount during 

the extrapolation period. This indicates that with available data up to the end of 2010, these 

single parametric models will under estimate the survival probability from 2011 to 2014.  

In terms of model fitting, the mixture model is better than the other models by a 

large margin. As shown in Table 4, for the mixture model, the log likelihood is -7151.51 

and AIC is 14331.01. The next best values are from the log-logistic, with log likelihood=-

7221.28 and AIC=14452.57. This is indicative that the SHEP patients are heterogeneous, 

and that by considering the effects of covariates that are related to this heterogeneity, the 

finite mixture model provides a better fit and more reliable extrapolation. 

Similar results are obtained when we repeat the exercise on all-cause mortality, as 

shown in Figures 9-A to 10-C, and Table 5 and Table 6. 
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Figure 8-A Extrapolation of Survival Probability 2011-2014 in SHEP – CV-related 

Mortality with Covariates – All Patients 

 

Figure 8-B Extrapolation of Survival Probability 2011-2014 in SHEP – CV-related 

Mortality with Covariates – All Patients 
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Figure 8-C Extrapolation of Survival Probability 2011-2014 in SHEP – CV-related 

Mortality with Covariates – All Patients 

 

Table 4 Comparison of Mixture of Two Weibull and Common Parametric Models CV-

related Mortality - SHEP Data with Covariates 

Models Log Likelihood AIC 

Mixture of two Weibull -7151.51 14331.01 

Single Weibull -7236.66 14483.33 

Gamma -7233.91 14477.83 

Lognormal -7294.28 14598.56 

Log-logistic -7221.28 14452.57 

Generalized F -7232.98 14479.96 

Generalized Gamma -7233.69 14479.38 

Gompertz -7271.38 14552.77 
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Figure 9-A Extrapolation of Survival Probability 2011-2014 in SHEP – All-cause 

Mortality Without Covariates – All Patients 

 

Figure 9-B Extrapolation of Survival Probability 2011-2014 in SHEP – All-cause 

Mortality Without Covariates – All Patients 
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Figure 9-C Extrapolation of Survival Probability 2011-2014 in SHEP – All-cause 

Mortality Without Covariates – All Patients 

Table 5 Comparison of Mixture of Two Weibull and Common Parametric Models All-

cause Mortality - SHEP Data Without Covariates 

Models 
Log 

Likelihood 
AIC 

Restricted 

Mean 

(95% CI) 

T=26 

Extrapolated 

Mean 

(95% CI) 

Lifetime 

KM 
  

16.60 
 

Mixture of two 

Weibull 

-12959.48 25928.96 16.63 

(16.45-16.82) 

23.76 

(21.71-23.72) 

Single Weibull -13002.90 26009.80 16.67 

(16.45-16.90) 

20.41 

(19.86-20.95) 

Gamma -13002.93 26009.85 16.61 

(16.37-16.83) 

21.25 

(20.67-21.84) 

Lognormal -13135.68 26275.35 16.42 

(16.18-16.65) 

28.63 

(27.32-30.02) 

Log-logistic -13012.29 26028.57 16.62 

(16.38-16.84) 

30.02 

(28.63-31.71) 

Generalized F -12967.31 25942.62 16.62 

(16.33-16.86) 
 

Generalized Gamma -13001.11 26008.22 16.61 

(16.37-16.83) 

20.79 

(20.19-21.52) 

Gompertz -13070.52 26145.03 16.61 

(16.37-16.85) 

19.06 

(18.70-19.49) 



54 

 

 

 

 

 

Figure 10-A Extrapolation of Survival Probability 2011-2014 in SHEP – All-cause 

Mortality with Covariates – All Patients 

 

Figure 10-B Extrapolation of Survival Probability 2011-2014 in SHEP – All-cause 

Mortality with Covariates – All Patients 
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Figure 10-C Extrapolation of Survival Probability 2011-2014 in SHEP – All-cause 

Mortality with Covariates – All Patients 

Table 6 Comparison of Mixture of Two Weibull and Common Parametric Models All-

cause Mortality - SHEP Data with Covariates 

Models Log Likelihood AIC 

Mixture of two Weibull -12548.31 25124.63 

Single Weibull -12667.54 25345.09 

Gamma -12659.77 25329.69 

Lognormal -12796.00 25602.23 

Log-logistic -12642.72 25295.43 

Generalized F -12557.43 25128.87 

Generalized Gamma -12659.77 25331.53 

Gompertz -12739.72 25489.44 

 

4.3 Finite Mixture Models with More Than Two Components 

 Determining the number of components 𝑔  in a mixture is an important but 

challenging task which has yet been completely resolved (McLachlan and Peel 2000). 

When the mixture model is employed as an alternative method to estimate unknown 

distributions, the commonly used criteria, such as AIC and BIC, would be adequate for 
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choosing the number of components 𝑔 (Ćwik and Koronacki 1997, Biernacki et al. 1998, 

Solka et al. 1998). Making extrapolations about the survival probability with the mixture 

model falls into this category. When applying the finite mixture models to the survival data, 

we could fit a set of models with a varying number of components and select the optimal 

one based on model fitting diagnostics. In this section we will present a couple situations 

where we demonstrate when to pick a mixture of 3 Weibull model versus a mixture of 2 

Weibull model.   

 For this purpose, we use the digitized data based on Hodi et al. (2010), also 

introduced in section 2.2. To determine whether a mixture model with 3 components 

possesses advantages over a mixture model with 2 components as well as the other single 

parametric models, we first fit a mixture model of 3 Weibull, a mixture model of 2 Weibull, 

and all the single models to the digitized progression-free data.  

For the IPI arm, Figures 11-A to 11-C clearly show that the estimated survival 

functions from both mixture models closely mimic the KM estimation. The single models, 

on the other hand, are far off from the KM curve. Table 7 also shows that both mixture 

models provide a substantially better fit to the data than the single models. The log 

likelihood values for the 3-mixture and 2-mixture models are -231.97 and -239.12, 

respectively. The next best single-model log likelihood value is -270.51 from the 

generalized F. In terms of AIC, the 3-mixture model has the best value of 479.94, followed 

by the 2-mixture model (488.24) and generalized F (549.03). Between the two mixture 

models, the 3-mixture model outperforms the 2-mixture model in both log likelihood and 

AIC, even though it has 3 more parameters (1 for the weights and 2 for the third Weibull) 

to estimate. Although both have a restricted mean of 8.52 at 𝑇 = 46, which is very close 
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to the KM estimate of 8.55, for most of the time the 2-mixture model either under-estimates 

or over-estimates the survival function. In comparison, the 3-mixture model’s estimates are 

consistently close to the KM curve over time. Therefore, when there is need to extrapolate 

survival probability beyond the observation period or the mean survival time, results from 

the 3-mixture model are more reliable. For example, the estimated mean survival time 

based on the 3-mixture model is 13.6 months, while it is only 9.37 months based on the 2-

mixutre model. This is a substantial difference for this type of patients, and the choice of 

model will have a huge impact on the cost effectiveness profile of the intervention.    

 

Figure 11-A Progression-free Survival – IPI  
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Figure 11-B Progression-free Survival – IPI  

 

Figure 11-C Progression-free Survival – IPI  
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Table 7 Progression Free Survival – IPI  

Models Log 

Likelihood 

AIC Restricted Mean 

(95% CI) 

T=46 

Extrapolated Mean 

(95% CI) 

Lifetime 

KM 
  

8.55 
 

Mixture of 3 

Weibull 

-231.97 479.94 8.52 

(6.5 – 9.97) 

13.6 

(7.75 – 2.88x105) 

Mixture of 2 

Weibull 

-239.12 488.24 8.52 

(6.68 – 9.84) 

9.37 

(6.93 – 12.49) 

Single Weibull -359.99 723.97 7.95 

(6.59 – 9.51) 

7.98 

(6.69 – 8.33) 

Gamma -357.49 718.97 7.76 

(6.68 – 9.02) 

7.77 

(6.7 – 8.98) 

Lognormal -324.09 652.18 6.94 

(5.92 – 8.01) 

6.98 

(5.95 – 8.33) 

Log-logistic -313.80 631.59 5.62 

(4.81 – 6.56) 

5.7 

(4.88 – 6.73) 

Generalized F -270.51 549.03 6.99 

(4.59 – 8.26) 

 

Generalized 

Gamma 

-284.04 574.08 7.19 

(5.93 – 8.82) 

9.4 

(6.42 – 23) 

Gompertz -347.96 699.93 8.74 

(6.68 – 11.1) 

 

  

Similar results are observed for the IPI+GP100 arm. As shown in Figures 12-A to 

12-C, the two mixture models fit the data decently well, while all single models fail to do 

so. In Table 8, both log likelihood and the AIC for the two mixture models are much better 

than those for the single models. Between the two mixture models, the 3-mixture model 

has better log likelihood and AIC. It also has higher restricted mean and mean survival 

time than the 2-mixture model.  
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 When these models are compared for the GP100 arm, although the mixture models 

maintain their advantages over the single models, as shown in Figures 13-A to 13-C and 

Table 9, the difference between themselves become minimal.  The log likelihood, AIC, 

restricted mean, and mean survival time are all similar between them. Therefore, for the 

GP100 arm, the 2-mixture model should be adopted since it can perform as well as the 3-

mixture model but has less parameters to estimate. 

 

 

Figure 12-A Progression-free Survival – IPI+GP100 
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Figure 12-B Progression-free Survival – IPI+GP100 

 

 

Figure 12-C Progression-free Survival – IPI+GP100 
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Table 8 Progression Free Survival – IPI+GP100 

 

 

Figure 13-A Progression-free Survival – GP100 

Models Log 

Likelihood 

AIC Restricted Mean 

(95% CI) 

T=51 

Extrapolated Mean 

(95% CI) 

Lifetime 

KM   6.47  

Mixture of 3 

Weibull 

-615.95 1247.90 6.51 

(5.55 – 7.61) 

6.84 

(5.7 – 8.16) 

Mixture of 2 

Weibull 

-631.04 1272.07 6.26 

(5.4 – 6.76) 

6.29 

(5.4 – 6.89) 

Single Weibull -988.70 1981.40 5.86 

(5.36 – 6.37) 

5.86 

(5.37 – 6.37) 

Gamma -955.92 1915.84 5.67 

(5.25 – 6.09) 

5.67 

(5.30 – 6.10) 

Lognormal -861.76 1727.51 5.22 

(4.89 – 5.57) 

5.22 

(4.88 – 5.60) 

Log-logistic -816.97 1637.93 4.41 

(4.18 – 4.69) 

4.42 

(4.18 – 4.66) 

Generalized F -707.59 1423.18 5.25 

(4.64 – 5.72) 

5.39 

(4.68 – 6.01) 

Generalized 

Gamma 

-736.31 1478.63 5.35 

(4.91 – 5.91) 

5.52 

(4.97 – 6.28) 

Gompertz -996.38 1996.75 6.12 

(5.70 – 7.00)  
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Figure 13-B Progression-free Survival – GP100 

 

Figure 13-C Progression-free Survival – GP100 
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Table 9 Progression Free Survival – GP100 

Models Log 

Likelihood 

AIC Restricted Mean 

(95% CI) 

T=34 

Extrapolated Mean 

(95% CI) 

Lifetime 

KM   4.38  

Mixture of 3 

Weibull 

-190.51 397.02 4.45 

(3.75 – 5.03) 

4.71 

(3.82 – 3.21x105) 

Mixture of 2 

Weibull 

-193.60 397.19 4.45 

(3.79 – 5.3) 

4.53 

(3.84 – 6.23) 

Single Weibull -306.07 616.15 4.36 

(3.83 – 4.96) 

4.36 

(3.84 – 4.96) 

Gamma -284.72 573.45 4.25 

(3.86 – 4.69) 

4.25 

(3.85 – 4.66) 

Lognormal -253.07 510.13 4.02 

(3.68 – 4.41) 

4.02 

(3.70 – 4.38) 

Log-logistic -229.47 462.94 3.68 

(3.46 – 3.9) 

3.68 

(3.46 – 3.92) 

Generalized F Cannot be estimated. 

Generalized 

Gamma 

-233.51 473.02 4.04 

(3.66 – 4.52) 

4.04 

(3.68 – 4.52) 

Gompertz -319.23 642.47 4.4 

(3.68 – 5.22) 

 

 

 When it comes to overall survival, the 3-mixture model starts to lose its edge over 

the other models. For all three treatment arms, while the 3-mixture model still has the 

highest log likelihood, the best AIC values are taken by other models. Although by 

checking the plots of the estimated survival functions we observe that the two mixture of 

Weibull models still fit the data better than the single models, the log likelihood, AIC, and 

estimated restricted mean survival time among them are indistinguishable. Similar patterns 

are also present between the two mixture models, the 3-mixture model is not at a clear 

advantage any more. Based on these observations, the 2-mixture model should be selected 

for the estimation and extrapolations with regard to the overall survival for all three 

treatment arms.  
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Figure 14-A Overall Survival – IPI 

 

 

Figure 14-B Overall Survival – IPI 
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Figure 14-C Overall Survival – IPI 

Table 10 Overall Survival – IPI  

Models Log 

Likelihood 

AIC Restricted Mean 

(95% CI) 

T=55 

Extrapolated Mean 

(95% CI) 

Lifetime 

KM   17.6  

Mixture of 3 

Weibull 

-390.20 796.38 17.6 

(14.3 – 20.4) 

49.9 

(16.4- 6.06x107) 

Mixture of 2 

Weibull 

-392.5 794.44 17.6 

(14.1 – 19.8) 

42.2 

(20.8 – 8.84x107) 

Single Weibull -396.67 797.35 17.2 

(14.2 – 20.4) 

19.1 

(15.1 – 24.3) 

Gamma -397.41 798.82 17.2 

(14.2 – 20.1) 

18.5 

(14.6 – 23.1) 

Lognormal -396.38 796.77 18.1 

(14.8 – 21.5) 

32.5  

(20.6 – 51.2) 

Log-logistic -394.76 793.52 17.9 

(14.9 – 21.2) 

66.6 

(31.2 – 556) 

Generalized F -393.22 794.44 17.5 

(14.7 – 23.8) 

 

Generalized 

Gamma 

-395.12 796.25 17.5 

(14.4 – 21.0) 

22.3 

(16.4 – 23.1) 

Gompertz -393.85 791.70 17.7 

(14.7 – 20.9) 
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Figure 15-A Overall Survival – IPI+GP100 

 

Figure 15-B Overall Survival – IPI+GP100 
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Figure 15-C Overall Survival – IPI+GP100 

Table 11 Overall Survival – IPI+GP100 

Models 
Log 

Likelihood 
AIC 

Restricted Mean 

(95% CI) 

T=56 

Extrapolated Mean 

(95% CI) 

Lifetime 

KM   19.40  

Mixture of 3 

Weibull 
-1059.71 2135.42 

19.44 

(17.4 – 21.1) 

16107666 

(4.17x105 – 

5.81x108) 

Mixture of 2 

Weibull 
-1062.17 2134.35 

17.61 

(17.4 – 20.9) 

11799751 

(2.52x105 – 

7.14x108 

Single Weibull -1080.59 2165.18 
17.7 

(15.9 – 19.6) 

19.7 

(16.8 – 23.1) 

Gamma -1082.96 2169.91 
17.6 

(15.9 – 19.6) 

18.9 

(16.6 – 21.7) 

Lognormal -1072.30 2148.60 
18.8 

(16.7 – 20.9) 

32.9 

(24.9 – 42.3) 

Log-logistic -1068.99 2141.99 
18.3 

(16.5 – 20.3) 

63.5 

(37.1 – 184) 

Generalized F -1067.58 2143.15 
18.8 

(16.8 – 21.0) 
 

Generalized 

Gamma 
-1071.43 2148.87 

18.4 

(16.5 – 20.5) 

26.5 

(20.1 – 44.2) 

Gompertz -1068.35 2140.70 
19.0 

(17.0 – 21.2) 
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Figure 16-A Overall Survival – GP100 

 

 

Figure 16-B Overall Survival – GP100 
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Figure 16-C Overall Survival – GP100 

 

Table 12 Overall Survival – GP100 

Models Log 

Likelihood 

AIC Restricted Mean 

(95% CI) 

T=48 

Extrapolated Mean 

(95% CI) 

Lifetime 

KM   11.6  

Mixture of 3 

Weibull 

-383.17 782.35 11.59 

(9.32 – 13.23) 

370920 

(13.2 – 4.51x106) 

Mixture of 2 

Weibull 

-384.78 779.56 11.61 

(9.88 – 13.54) 

9112 

(10.8 – 2.05x106) 

Single Weibull -391.44 786.88 11.3 

(9.35 – 13.3) 

11.5 

(9.49 – 13.9) 

Gamma -391.60 787.20 11.2 

(9.39 – 13.4) 

11.4 

(9.58 – 13.6) 

Lognormal -387.85 779.70 11.8 

(9.54 – 14.0) 

14.2 

(10.8 – 19.9) 

Log-logistic -385.68 775.36 11.6 

(9.53 – 13.7) 

17.5 

(12.1 – 29.2) 

Generalized F -384.69 777.39 11.5 

(9.81 – 15.8) 

 

Generalized 

Gamma 

-387.18 780.36 11.5 

(9.56 – 13.7) 

12.6 

(9.85 – 19.0) 

Gompertz -388.42 780.84 11.6 

(9.42 – 14.0) 
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 One phenomenon we notice in Tables 11 and 12 is that for the IPI+GP100 and 

GP100 arms, the extrapolated mean survival time is unrealistically large from both the 3-

mixtue and the 2-mixture models. For the IPI+GP100 arm, the expected survival time is 

16,107,666 and 11,799,751 months based on the 3-mixture and 2-mixture model, 

respectively. For the GPI arm, the 3-mixutre model estimates an expected survival time of 

370,920 months, and the 2-mixture model comes up with an estimate of 9,112 months. 

These values are clearly impossible, despite these two models have the best model fitting 

values. Upon closer examination of the survival function plots, we realize that the KM 

curves do not approach 0 during the observation period. Instead, they reach a value above 

0 at a certain time point and stop decreasing onward. For example, for the IPI+GP100 arm, 

as can be seen in Figure 15-A, the KM curve reaches and stays above 0.2 at approximately 

30 months. This indicates that a portion of the patients will never experience the event of 

interest, or death in our case. In other words, these patients are considered “cured”. While 

all patients will die eventually, this “cured” feature might be caused by lost to follow-up to 

these patients and as a result their death time is never known to the investigator. Similar 

concerns about this “cured” portion of patients due to lost to follow-up also exist for SHEP. 

If these patients are included in the extrapolation of the mean survival time, they will appear 

always alive and therefore will artificially inflate the estimation. 

 Survival models with a cure portion can be viewed as a special case of the finite 

mixture model. In the next chapter we will discuss in detail their estimations and 

applications. 

 

  



72 

 

 

 

Chapter 5: The Mixture Cure Models 

5.1 The Finite Mixture Models and the Mixture Cure Models 

In classical survival analysis, one assumption is that all patients will eventually 

experience the event of interest. However, there are situations where the subject may never 

experience it. For example, in a clinical trial where the medical intervention is efficacious 

against certain disease, some treated patients will not suffer a replace of the disease. These 

patients are then considered cured. If the endpoint of the trial is the time until recurrence 

of the disease, these patients will have infinite survival time.  In economic studies where 

the interest is the time from unemployment to the next employment, some patients may 

never find a job and therefore will have infinite unemployment time. One common feature 

in the above cases is that if 𝑇 is the time to the event of interest and 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) is the 

survival function, then lim
𝑡→∞

𝑆(𝑡) > 0. This positive, non-zero limiting value corresponds 

to the portion of patients who will never experience the event. This portion is often called 

the cure rate. And statistical models that take this feature into account are commonly 

referred to as the cure models (Amico 2018), although they bear different names in other 

fields, such as the split population models in economics (Schmidt and Witte 1989). 

When there is a mixture of two groups in a population, one cured and one not cured, 

the survival function of the population 𝑆𝑝(𝑡) consists of two major parts, the probability of 

being uncured (often called the “incidence model”) and the conditional survival function 

of the uncured (often called the “latency model”) (Klein et al. 2016). Basically, 𝑆𝑝(𝑡) can 

be written as 

 𝑆𝑝(𝑡) = 1 − π + π𝑆𝑢(𝑡)     (5.1) 
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where 𝜋  denotes the probability of not cured (the incidence model), and 𝑆𝑢(𝑡)  is the 

survival probability of the uncured group (the latency model). Both 𝜋 and 𝑆𝑢(𝑡) can also 

be modeled as functions of covariates. If 𝑿 and 𝒁 are the set of covariates that 𝜋 and 𝑆𝑢(𝑡) 

depend on, respectively, then (5.1) becomes 

 𝑆𝑝(𝑡|𝒙, 𝒛) = 1 − π(𝐱) + π(𝒙)𝑆𝑢(𝑡|𝒛).  (5.2) 

The logistic model is often assumed for π(𝐱), the effect of 𝑿  on 𝜋 . For the survival 

function of the uncured group  𝑆𝑢(𝑡), different assumptions have led to parametric, semi-

parametric, and non-parametric mixture models (Amico 2018).      

As discussed in Chapter 3, the classical survival analysis models are broadly 

classified as parametric and non-parametric. They can also be categorized as the 

proportional hazard models or the accelerated failure time (AFT) models. The Cox 

proportional hazard model is the most popular among the non-parametric models. While 

most parametric models fall into the AFT category, some of them, such as the Weibull, can 

be both proportional hazard and AFT. When these classical survival analysis models are 

extended to accommodate the cure portion, they form the proportional hazard mixture cure 

models (Anthony and Chen-Hsin 1992, Peng and Dear 2000, Sy and Taylor 2000, Corbière 

et al. 2009), the semi-parametric AFT mixture cure models (Li and Taylor 2002, Zhang 

and Peng 2007, Lu 2010) , and the full parametric mixture cure models (Boag 1949, 

Berkson and Gage 1952, Farewell 1977, 1982, Yamaguchi 1992, Ghitany et al. 1994, Peng 

et al. 1998). Among these, the full parametric mixture cure models are capable of making 

extrapolations of survival probability for the uncured at a future time. They can be treated 

as a special case of the more general mixture models discussed in Chapter 3.  
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The full parametric mixture models are comprised of two components: 1 − π, the 

probability of being cured, and 𝑓𝑢(𝑡), the density function of the survival time for the 

uncured. Since the survival function of the cured group is 𝑆𝑐(𝑡) = 𝑃(𝑇 > 𝑡) ≡ 1, it follows 

a degenerate distribution. Therefore, when 𝑔 = 2 in (3.1), we can get (5.1) by taking 1 

minus the integration of each component. In the current literature, 𝑆𝑢(𝑡) is assumed to 

follow a single parametric model, such as the exponential, Weibull, generalized gamma, or 

generalized F. We can further extend this part of the mixture by assuming that 𝑆𝑢(𝑡) also 

follows a mixture of distributions. Thus the resulting parametric mixture models contain 

𝑔 + 1components, one of them has a degenerate distribution corresponding to the cured 

portion, the remaining 𝑔 components each represent an individual distribution.  

The likelihood function for the finite mixture models with right censored data is 

given in (3.35) under section 3.4.3. It is derived based on the fact that due to right censoring, 

we don’t observe 𝑇, the time to the event of interest. Instead, we observe 𝑌 = min (𝑇, 𝐶) 

and ∆= 𝐼(𝑇 ≤ 𝐶), where 𝐶 is a random censoring variable and 𝐼(. ) is an indicator function. 

When ∆= 1, we observe 𝑓(𝑡), otherwise, we observe 𝑆(𝑡). In a mixture model with a cured 

portion, the observed value of ∆ gives different information about 𝜋𝑢 . In a sample of 

observed pairs (𝑦𝑗 , 𝛿𝑗), 𝑗 = 1, … , 𝑛, when 𝛿𝑗 = 1, the jth subject is clearly not cured. When 

𝛿𝑗 = 0, the jth subject may or may not be cured. As a result, when data are right censored, 

the likelihood function of a mixture cure model can be written as 

 ∏ [∑ 𝜋𝑖𝑓𝑖(𝑦𝑗)]
𝑔
𝑖=1

𝛿𝑗𝑛
𝑗=1 [(1 − 𝜋𝑢) + ∑ 𝜋𝑖𝑆𝑖(𝑦𝑗)]

𝑔
𝑖=1

1−𝛿𝑗
. (5.3) 
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Following the procedures discussed in section 3.4, the EM algorithm can be applied 

to find the MLEs of the parameters 𝚿. The complete-data likelihood function of a mixture 

cure model with 𝑔 + 1 components can be written as  

 𝐿𝑐(𝚿|𝒙) = 𝑓𝑐(𝒙|𝚿) = ∏ (1 − 𝜋𝑢)𝑧𝑐𝑗 ∏ [𝜋𝑖𝑓𝑖(𝑦𝑗)]
𝑧𝑖𝑗𝑔

𝑖=1
𝑛
𝑗=1 , (5.4) 

where 𝜋𝑢 is the probability of being uncured, and 𝑍𝑐𝑗 is an indicator variable which takes 

the value of 1 if the jth patient is cured, and 0 otherwise. And the loglikelihood function is  

 𝑙𝑐(𝚿|𝒙) = ∑ {𝑧𝑐𝑗 log(1 − 𝜋𝑢) + ∑ 𝑧𝑖𝑗{log(𝜋𝑖) + log[𝑓𝑖(𝑦𝑗|𝜽𝑖)]}
𝑔
𝑖=1 }𝑛

𝑗=1 , (5.5) 

where 𝚿 = (𝜋𝑢, 𝜋1, … , 𝜋𝑔−1, 𝜽1, … , 𝜽𝑔)𝑇  is the vector containing all the unknown 

parameters. In order to accommodate the existence of a cure portion, two modifications, 

one at each of the two steps within an iteration, need to be made to the EM algorithm. 

At the E-step, the expected value of 𝑍𝑐𝑗 and  𝑍𝑖𝑗 need to be calculated differently. 

This is because only censored observations have a chance of being cured. By combining 

(3.23) and (5.3), we get  

 𝐸𝚿(𝑘)(𝑍𝑐𝑗|𝒚) = (1 − 𝛿𝑗)
1−𝜋𝑢

(𝑘)

(1−𝜋𝑢
(𝑘)

)+∑ 𝜋ℎ
(𝑘)

𝑆ℎ(𝑦𝑗|𝚿(𝑘))
𝑔
ℎ=1

, (5.6) 

and 

 𝐸𝚿(𝑘)(𝑍𝑖𝑗|𝒚) = 𝛿𝑖
𝜋𝑖

(𝑘)
𝑓𝑖(𝑦𝑗|𝚿(𝑘))

∑ 𝜋ℎ
(𝑘)

𝑓ℎ(𝑦ℎ|𝚿(𝑘))
𝑔
ℎ=1

+ (1 − 𝛿𝑗)
𝜋𝑖

(𝑘)
𝑆𝑖(𝑦𝑗|𝚿(𝑘))

(1−𝜋𝑢
(𝑘)

)+∑ 𝜋ℎ
(𝑘)

𝑆ℎ(𝑦𝑗|𝚿(𝑘))
𝑔
ℎ=1

. (5.7) 

 At the M-step, when the mixture model does not contain a cure portion, no 

distinction needs to be made among the 𝜋𝑖
′𝑠, because each 𝜋𝑖 corresponds to an individual 

distribution and the mixture is not affected by the order of the individual component. Also, 



76 

 

 

 

there is no prior knowledge about the values of the 𝜋𝑖
′𝑠. This is not the case when there is 

a cure portion in the mixture. From the tail of the KM estimate of the survival function, we 

know the upper bound of the cure rate. Therefore, among the updated 

𝜋𝑢
(𝑘+1)

, 𝜋1
(𝑘+1)

, … , 𝜋𝑔
(𝑘+1)

, the one closest to the tail value of the KM estimate is assigned 

as the estimate of the cure portion at the 𝑘 + 1 iteration.   

 In order to demonstrate the advantage of the mixture cure model over single models 

in applicable situations, we test their performances in two settings, one with simulated data 

and one with empirical data.  

5.2 Simulated Data 

 An iid sample of 300 observations is generated to simulate a time-to-event random 

variable 𝑇 which follows a mixture of two Weibull distributions. In addition, 30% of the 

population is simulated to be cured. Thus 𝜋𝑢, the rate of being uncured, is equal to 0.7. For 

the first Weibull distribution, the weight 𝜋1 is set to equal 0.2, shape parameter 𝛾1 = 0.5 

and scale parameter 𝜆1 = 12. For the second Weibull distribution, 𝜋2 = 0.5, 𝛾2 = 5, and 

𝜆2 = 10 . Censoring is through another random variable 𝑇𝑐𝑒𝑛𝑠𝑜𝑟  which also follows a 

mixture of two Weibull distributions with a 30% cure portion. The two component Weibull 

distributions in the mixture for  𝑇𝑐𝑒𝑛𝑠𝑜𝑟 have scale 60 and 40, respectively. They share the 

same weights and shape parameters as their counterparts in the mixture for 𝑇. In addition, 

the data are truncated at 𝑇 = 50. Therefore, an observation with either 𝑇 > 𝑇𝑐𝑒𝑛𝑠𝑜𝑟 or T>

50 is censored. This results in approximately a 35% censoring rate. No covariates are 

included in this simulation. Under this setting, the parameter vector is 𝚿 =

(𝜋𝑢, 𝜋1, 𝛾1, 𝜆1, 𝛾2, 𝜆2)𝑇, which includes the rate of being uncured, the weight for one of the 
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component Weibull distribution, the shape and scale parameters for each of the two 

component Weibull distributions. 

We fit a mixture cure model of 2 Weibull, a mixture cure model of 1 Weibull, and 

the single parametric models to the simulated data. Like in the previous chapters, we 

compare the survival function plots, the restricted mean survival time at 𝑇 = 50, and the 

mean survival time of these models to those of the underlying true distribution. We also 

use log likelihood and AIC to evaluate model fitting. Finally, we compare the estimated 

cure rate from the mixture cure model of 2 Weibull and mixture cure model of 1 Weibull. 

The results are included in Figure 17-A to 17-C as well as Table 13. For the mixture of 2 

Weibull model and the mixture of 1 Weibull model, the 95% confidence intervals of the 

cure rate, survival function, restricted mean survival time, and mean survival time are 

constructed following the bootstrap approach discussed in section 3.6. 

Given the simulation is generated with a 30% cure rate, the restricted mean survival 

time and the mean survival time are conditional on that the patients are not cured. The true 

restricted mean survival time at 𝑇 = 50 is 7.5, and the true mean survival time is 9.39. 

Among all the models, the mixture cure model of 2 Weibull generates the estimates that 

are closest to the true values (6.77 and 8.49, respectively). The next closest values are from 

the mixture cure model of 1 Weibull, which is 5.6 for both the mean and restricted mean 

time. The single parametric models, due to the fact they do not include the cure portion, 

result in over-estimating the mean and restricted mean survival time by a large amount. 

Some of them cannot even calculate these values. In terms of model fitting, the survival 

function plots in Figure 17-A, 17-B, and 17-C show that the two mixture cure models trace 

the true survival curve much more closely than all the other single parametric models. In 
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Table 13, both the log likelihood and AIC values suggest that the best two are the mixture 

models. Log likelihood is -688.03 for the mixture of 2 Weibull model, and -779.41 for the 

mixture of 1 Weibull model. AIC for the two models are 1388.06 and 1564.82, respectively. 

This indicates that between the two mixture models with a cure portion, the mixture of 2 

Weibull provides a better fit. In addition, the mixture of 2 Weibull provides an estimated 

cure rate of 0.32, which is closer to the true rate of 0.3, compared with the estimate of 0.34 

provided by the mixture of 1 Weibull model.  It is clear from this simulated situation that 

when there is presence of a cure portion, the mixture cure models that accounts for this 

feature will provide more accurate estimates of the survival function in general, and the 

mean survival time in particular, as well as an estimate of the possibility that the patients 

will be cured.  

 

 

Figure 17-A Extrapolation of Survival Probability – Simulated Data with a Cure Portion 
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Figure 17-B Extrapolation of Survival Probability – Simulated Data with a Cure Portion 

 

 

Figure 17-C Extrapolation of Survival Probability – Simulated Data with a Cure Portion 

 



80 

 

 

 

Table 13 Extrapolation of Survival Probability – Simulated Data with a Cure Portion 

Models 
Log 

Likelihood 
AIC Cure Rate 

Restricted 

Mean 

(95% CI) 

T=50 

Extrapolated 

Mean 

(95% CI) 

Lifetime 

Underlying 

Model 
  0.3 7.50 9.39 

KM    22.5  

Mixture of 2 

Weibull + 

Cured 

-688.03 1388.06 
0.32 

(0.17 – 0.36)  

6.77 

(5.66 – 15.13) 

8.49 

(95.91 – 

6.71*108) 

Mixture of 1 

Weibull + 

Cured 

-779.41 1564.82 
0.34 

(0.28 – 0.37)  

5.6 

(5.14 – 6.19) 

5.6 

(5.14 – 6.19) 

Single 

Weibull 
-846.93 1697.85  

24.8 

(22.6 – 27) 

47 

(36.9 – 62.3) 

Gamma -852.15 1708.30  
25.2 

(23.1 – 27.6) 

40.9 

(33 – 50.4) 

Lognormal -853.86 1711.73  
25.1 

(22.7 – 27.4) 

221 

(122 – 462) 

Log-logistic -834.32 1672.65  
23.9 

(21.6 – 26) 
 

Generalized F -794.39 1596.79    

Generalized 

Gamma 
-844.02 1694.04  

24.7 

(22.2 – 26.9) 

58.4 

(41.1 – 99) 

Gompertz -810.33 1624.66  
23.7 

(21.3 – 26) 
 

 

5.3 Empirical Data 

In Section 4.3, we observe that in the digitized data based on Hodi et al. (2010), 

both the IPI+GP100 and GP100 groups have an extremely large mean survival time for 

overall survival (Tables 11 and 12). Also, the KM estimates of the survival function have 

a long flat tail above 0. These are all signs that there might exist a cure portion in both 

groups. To test the existence of the potential cure rate, we fit a mixture cure model of 2 

Weibull and a mixture cure model of 1 Weibull to the overall survival data for the 

IPI+GP100 group, along with the single parametric models. The log likelihood for the 2 
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Weibull mixture is -1062.15, and -1062.17 for the 1 Weibull mixture, AIC is 2136.29 for 

the 2 Weibull mixture and 2130.34 for the 1 Weibull mixture. Between the two mixture 

cure models, the mixture of 1 Weibull provides a decent fit to the data. The comparisons 

between the 1 Weibull mixture and the other single parametric models are displayed in 

Figures 18-A, 18-B and table 14. The 1 Weibull mixture cure model has the best values in 

both log likelihood and AIC. It comes up with an estimated cure rate of 0.21. For the 

uncured patients, the mean survival time becomes 7.65, and a restricted mean of 7.64 at 

𝑇 = 56, the ending time of the study. Based on what is observed in the data, the mixture 

cure model proves to be a better fit than the single models. It provides an estimate of the 

possibility of being cured, and more reasonable estimates of the mean survival time for 

patients who are not cured.   

 

 

     Months 

Figure 18-A Overall Survival with a Cure Portion – IPI+GP100 
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       Months 

Figure 18-B Overall Survival with a Cure Portion – IPI+GP100 

 

Table 14 Overall Survival with a Cure Portion – IPI+GP100 

Models 
Log 

Likelihood 
AIC 

Cure Rate 

 

Restricted 

Mean 

(95% CI) 

T=56 

Extrapolated 

Mean 

(95% CI) 

Lifetime 

KM    19.4  

Mixture of 1 

Weibull + 

Cured 

-1062.17 2130.34 
0.21 

(0.16 – 0.26) 

7.64 

(6.5 – 8.77) 

7.65 

(6.5 – 8.78) 

Single 

Weibull 
-1080.59 2165.18  

17.7 

(15.9 – 19.6) 

19.7 

(16.8 – 23.1) 

Gamma -1082.96 2169.91  
17.6 

(15.9 – 19.6) 

18.9 

(16.6 – 21.7) 

Lognormal -1072.30 2148.60  
18.8 

(16.7 – 20.9) 

32.9 

(24.9 – 42.3) 

Log-logistic -1068.99 2141.99  
18.3 

(16.5 – 20.3) 

63.5 

(37.1 – 184) 

Generalized F -1067.58 2143.15  
18.8 

(16.8 – 21.0) 
 

Generalized 

Gamma 
-1071.43 2148.87  

18.4 

(16.5 – 20.5) 

26.5 

(20.1 – 44.2) 

Gompertz -1068.35 2140.70  
19.0 

(17.0 – 21.2) 
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 The SHEP patients are followed for over 20 years after the conclusion of the 

randomized phase. Over this long period of time, some patients are lost to follow-up. As a 

result, their mortality information is unknown and they will appear to be always alive. In 

this sense, they should be treated as “cured”, as including them in the extrapolation will 

result in over estimation. To evaluate the impact of the potential cure portion on the 

extrapolated survival function, we fit a 1 Weibull mixture cure model to the all-cause 

mortality data up to December 31st, 2014 in SHEP. The results are presented in Figure 19-

A, 19-B, and Table 15. The 1 Weibull mixture cure model has the best log likelihood (-

13917.73) and AIC value (27841.46). It estimates a cure rate of 0.216. The restricted mean 

survival time at 𝑇 = 29.7 years and the extrapolated mean survival time are 11.3 and 11.7 

respectively. These are survival times for SHEP patients who have mortality and cause of 

death information available. These estimates will be confirmed as data beyond 2014 for 

SHEP patients become available in the future. 

 

Figure 19-A All-cause Mortality with a Cure Portion – All Patients in SHEP 
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Figure 19-B All-cause Mortality with a Cure Portion – All Patients in SHEP 

 

Table 15 Extrapolation of Mean Survival Time with a Cure Portion – All-cause Mortality 

– All Patients in SHEP 

Models 
Log 

Likelihood 
AIC 

Cure Rate 

(95% CI) 

Restricted 

Mean 

(95% CI) 

T=29.7 

Extrapolated 

Mean 

(95% CI) 

Lifetime 

KM    17.8  

Mixture of 1 

Weibull + 

Cured 

-13917.73 27841.46 
0.216 

(0.198 – 0.23) 

11.3 

(10.9 – 11.9) 

11.7 

(11.2 – 12.4) 

Single 

Weibull 
-13973.41 27950.82  

18 

(17.7 – 18.2) 

21.4 

(20.9 – 21.9) 

Gamma -13960.55 27925.10  
17.9 

(17.6 – 18.2) 

22 

(21.5 – 22.6) 

Lognormal -14065.77 28135.55  
17.7 

(17.4 – 18) 

28.9 

(27.6 – 30.2) 

Log-logistic -13947.31 27898.63  
17.8 

(17.6 – 18.1) 

30.2 

(29.4 – 32.5) 

Generalized F -13897.10 27802.20  
17.8 

(17.5 -18.1) 
 

Generalized 

Gamma 
-13959.37 27924.74  

17.9 

(17.6 – 18.2) 

22.3 

(21.6 – 23.2) 

Gompertz -14064.23 28132.46  
17.8 

(17.5 – 18.1) 

20.4 

(19.9 – 20.9) 
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Appendix A: Derivation of the Maximum Likelihood Estimators in the Finite 

Mixture Models  

Suppose that 𝒚 = (𝑦1, … , 𝑦𝑛)𝑇  is an iid random sample from a population 

following a g-component mixture density, that is, for 𝑗 = 1, … , 𝑛, 

 𝑓(𝑦𝑗|𝚿) = ∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖),
𝑔
𝑖=1  (A.1) 

where 𝚿 = (𝜋1, … , 𝜋𝑔−1, 𝜽1, … , 𝜽𝑔)𝑇 is the vector containing all the unknown parameters. 

The 𝜋𝑖 are the weights, and the 𝜽𝑖 contain the respective parameters of each component 

density. The log likelihood function of the random sample 𝒚 is given by 

 𝑙(𝚿| 𝒚) = ∑ log[𝑓(𝑦𝑗|𝚿)] = ∑ log[∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1 ]𝑛

𝑗=1
𝑛
𝑗=1 . (A.2) 

In order to get (3.13), we take partial derivatives of (A.2) with respect to 𝜋𝑖  (𝑖 =

1, … , 𝑔 − 1), we get  

 
𝜕𝑙(𝚿| 𝒚)

𝜕𝜋𝑖
= ∑ [

𝑓𝒊(𝑦𝑗|𝜽𝑖)

∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1

−
𝑓𝒈(𝑦𝑗|𝜽𝑔)

∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1

 ]𝑛
𝑗=1 .   (A.3) 

This is because 𝜋𝑔 = 1 − ∑ 𝜋𝑖
𝑔−1
𝑖=1 . The MLE of 𝜋𝑖, 𝜋̂𝑖, satisfies 

∑ [
𝑓𝒊(𝑦𝑗|𝜽𝑖)

∑ 𝜋̂𝒊𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1

−
𝑓𝒈(𝑦𝑗|𝜽𝑔)

∑ 𝜋̂𝒊𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1

 ]𝑛
𝑗=1 = 0. (A.4) 

By multiplying 𝜋̂𝑖 to both sides of (A.4) and 
𝜋̂𝑔

𝜋̂𝑔
⁄ to the second part of the left side of 

(A.4), we obtain 

 ∑ [
𝜋̂𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)

∑ 𝜋̂𝒊𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1

−
𝜋̂𝑖𝜋̂𝑔𝑓𝒈(𝑦𝑗|𝜽𝑔)

𝜋̂𝑔 ∑ 𝜋̂𝒊𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1

 ]𝑛
𝑗=1 = 
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 ∑ [𝜏𝑖(𝑦𝑗|𝜽𝑖) −
𝜋̂𝑖

𝜋̂𝑔
𝜏𝑔(𝑦𝑗|𝜽𝑖) ]𝑛

𝑗=1 = 0. (A.5) 

for 𝑖 = 1, … , 𝑔 − 1, where  

 𝜏𝑖(𝑦𝑗|𝜽𝑖) =
𝜋̂𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)

∑ 𝝅̂𝒊𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝑔
𝑖=1

.  (A.6) 

Since (A.5) also holds for 𝑖 = 𝑔, we can sum over  𝑖 = 1, … , 𝑔 in (A.5) to give 

∑ ∑ [𝜏𝑖(𝑦𝑗|𝜽𝑖) −
𝜋̂𝑖

𝜋̂𝑔
𝜏𝑔(𝑦𝑗|𝜽𝑔) ] =

𝑔
𝑖=1

𝑛
𝑗=1 ∑ [1 −

1

𝜋̂𝑔
𝜏𝑔(𝑦𝑗|𝜽𝑔)] = 0𝑛

𝑗=1 . (A.7) 

from (A.7), we get  

 𝜋̂𝑔 =
∑ 𝜏𝑔(𝑦𝑗|𝜽𝑔)𝑛

𝑗=1

𝑛
. (A.8) 

Substitute (A.8) into (A.5) yields 

 𝜋̂𝑖 =
∑ 𝜏𝑖(𝑦𝑗|𝜽𝒊)𝑛

𝑗=1

𝑛
 (𝑖 = 1, … , 𝑔 − 1). (A.9) 

Together, (A.8) and (A.9) give us (3.13). 

To derive (3.14), we take partial derivatives of (A.2) with respect to 𝜽𝑖 (𝑖 =

1, … , 𝑔), we get  

 
𝜕𝑙(𝚿| 𝒚)

𝜕𝜽𝑖
= ∑ [

𝜕

𝜕𝜽𝑖
∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)

𝑔
𝑖=1

∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝒈
𝒊=𝟏

 ]𝑛
𝑗=1 = 

 ∑ [

𝜕

𝜕𝜽𝑖
𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)

∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝒈
𝒊=𝟏

 ]𝑛
𝑗=1  (𝑖 = 1, … , 𝑔). (A.10) 
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By multiplying 𝑓𝒊(𝑦𝑗|𝜽𝑖) to both the numerator and denominator of (A.10), we obtain 

 
𝜕𝑙(𝚿| 𝒚)

𝜕𝜽𝑖
= ∑ [

𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝜕

𝜕𝜽𝑖
𝑓𝒊(𝑦𝑗|𝜽𝑖)

𝑓𝒊(𝑦𝑗|𝜽𝑖) ∑ 𝜋𝑖𝑓𝒊(𝑦𝑗|𝜽𝑖)
𝒈
𝒊=𝟏

 ]𝑛
𝑗=1 = 

 ∑ {𝜏𝑖(𝑦𝑗|𝜽𝑖) [
𝜕

𝜕𝜃𝑖
log 𝑓𝒊(𝑦𝑗|𝜽𝑖)]}𝑛

𝑗=1 .  (A.11) 

for 𝑖 = 1, … , 𝑔. And the MLE of 𝜽𝑖, 𝜽̂𝑖, satisfies  

 ∑ {𝜏𝑖(𝑦𝑗|𝜽̂𝑖) [
𝜕

𝜕𝜃𝑖
log 𝑓𝒊(𝑦𝑗|𝜽̂𝑖)]}𝑛

𝑗=1 = 𝟎 (𝑖 = 1, … , 𝑔). (A.12) 
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Appendix B: Common Parametric Survival Models 

A.16 Summary of Common Parametric Survival Models 

Model 
Parame- 

ters 
Probability Density Function 

Survival 

Function 
Hazard Function 

PH or 

AFT 

Weibull 𝜆, 𝛾 𝑓(𝑡) = 𝜆𝛾𝑡𝛾−1𝑒−𝜆𝑡𝛾
 𝑆(𝑡) = 𝑒−𝜆𝑡𝛾

 ℎ(𝑡) =  𝜆𝛾𝑡𝛾−1 AFT/PH 

Exponential 𝜆 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 𝑆(𝑡) = 𝑒−𝜆𝑡 ℎ(𝑡) =  𝜆 AFT/PH 

Lognormal 𝜇, 𝜎 𝑓(𝑡) =
1

√2𝜋𝜎𝑡
𝑒

−
(𝑙𝑜𝑔𝑡−𝜇)2

2𝜎2  

𝑆(𝑡)
= 1

− Φ(
𝑙𝑜𝑔𝑡 − 𝜇

𝜎
) 

ℎ(𝑡)

=
𝜙(

𝑙𝑜𝑔𝑡 − 𝜇
𝜎

)

𝜎𝑡[1 − Φ(
𝑙𝑜𝑔𝑡 − 𝜇

𝜎
)]

 
AFT 

Gamma 𝛼, 𝛽 
𝑓(𝑡) =  

1

Γ(𝛼)𝛽𝛼 𝑡𝛼−1𝑒
−

𝑡

𝛽, 

where Γ(𝛼) =  ∫ 𝑡𝛼−1∞

0
𝑒−𝑡𝑑𝑡 

No closed form No closed form AFT 

Log-

logistic 
𝛼, 𝛽 𝑓(𝑡) =

𝛼
𝛽

(
𝑡
𝛽

)𝛼−1

(1 + (
𝑡
𝛽

)𝛼)2
 

𝑆(𝑡)

=
1

1 + (𝑡
𝛽⁄ )

𝛼 ℎ(𝑡) =

𝛼
𝛽

(
𝑡
𝛽

)𝛼−1

1 + (
𝑡
𝛽

)𝛼
 AFT 

Gompertz 𝛼, 𝛽 𝑓(𝑡) = 𝛽𝑒
𝛼𝑡−

𝛽

𝛼(𝑒𝛼𝑡−1) 

𝑆(𝑡)

= 𝑒
−

𝛽

𝛼(𝑒𝛼𝑡−1) 
ℎ(𝑡) = 𝛽𝑒𝛼𝑡 PH 

Generalized 

Gamma 
𝜇, 𝜎, 𝑄 

If 

𝛾 ~ 𝐺𝑎𝑚𝑚𝑎(𝑄−2, 1), 𝑎𝑛𝑑 𝑤 =
log(𝑄2𝛾)

𝑄
, 𝑡ℎ𝑒𝑛 𝑡 = 𝑒𝜇+𝜎𝑤 

follows the Generalized 

gamma distribution with 

probability density function 

𝑓(𝑡|𝜇, 𝜎, 𝑄)

=
|𝑄|(𝑄−2)𝑄−2

𝜎𝑡Γ(𝑄−2)
𝑒(𝑄−2(𝑄𝑤−𝑒𝑄𝑤)) 

No closed form No closed form AFT 

Generalized 

F 
𝜎, 𝜇, 𝑄, 𝑃 

If 𝑦 ~ 𝐹(2𝑠1, 2𝑠2), 𝑎𝑛𝑑 𝑤 =
log(𝑦) , 𝑡ℎ𝑒𝑛 𝑡 = 𝑒𝑤𝜎+𝜇 

follows the Generalized F 

distribution. Let 𝑠1 = 2(𝑄2 +
2𝑃 + 𝑄𝛿)−1, 𝑠2 = 2(𝑄2 +
2𝑃 − 𝑄𝛿)−1. Equivalently, 

𝑄 = (
1

𝑠1

−
1

𝑠2

) (
1

𝑠1

+
1

𝑠2

)
−

1
2

, 𝑃

=
1

𝑠1 + 𝑠2

 

Define 𝛿 = (𝑄2 +

2𝑃)
1

2, 𝑎𝑛𝑑 𝑤 =
(log(𝑡)−𝜇)𝛿

𝜎
 

No closed form No closed form AFT 
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 Note: PH = proportional hazard.  

Then the probability density 

function of t is 𝑓(𝑡) =

𝛿(
𝑠1
𝑠2

)
𝑠1

𝑒𝑠1𝑤

𝜎𝑡(1+
𝑠1𝑒𝑤

𝑠2
)

(𝑠1+𝑠2)

𝐵(𝑠1,𝑠2)

 

and 𝐵(𝑠1, 𝑠2) =
Γ(𝑠1)Γ(𝑠2)

Γ(𝑠1+𝑠2)
 is the 

beta function. 
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