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ABSTRACT OF THE DISSERTATION

Essays on Health Outcomes, Economic Wellbeing and Mismeasured

Discrete Health Variables

By NING LI

Dissertation Director:

Roger Klein

Carolyn Moehling

This thesis studies the labor supply effects of health shocks for aging Americans. To

address the mismeasured binary health variables used in the labor supply equation, this

thesis develops a new theoretical approach to the non-classical measurement error. In

addition to Chapter 1 which provides an overview of the thesis, there are three primary

chapters explaining the theoretical development and the empirical studies.

Chapter 2 theoretically addresses the estimation bias due to the misclassification

of a binary regressor in treatment models. Different from the assumption of a valid

instrument in the literature, this paper allows the potential instrument to be correlated

with the measurement error. In such a general setting, I propose an estimator relying

only on those extreme observations that are free of misclassification. This proposed

estimator is proven to have large sample properties and much better performance than

OLS and traditional IV estimates in finite samples.

Chapter 3 uses the method proposed in Chapter 2 to handle the binary, misclassified

health variable in studying the labor supply effects of health shocks. Extracting informa-

tion on true health from objective health measures, for example functional limitations
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and doctors’ diagnoses, this new method relies on such information to dynamically se-

lect observations that are free of misclassification. Using the 2012 wave of the Health

and Retirement Study (HRS), this paper primarily examines the labor supply effects

of health shocks for men and women aged 45-61. This study finds that individuals in

middle age will greatly reduce their labor supply when experiencing health shocks and

that the estimation results are very sensitive to the health measures used.

In Chapter 4, I examine how an individual’s labor supply responds in the short- and

long-run to a negative shock to her spouse’s health. I propose an optimal instrument

strategy with fixed effects to study labor supply effects of spousal health shocks. Anal-

ysis of the 1996-2012 data from the Health and Retirement Study (HRS) indicates that

in the short run, both husbands and wives change their labor supply very little when

their spouses become ill. However, in the long run, husbands adjust their labor supply

in response to their wives’ health problems. As the duration of wives’ health problems

increases by two years, husbands work 165 fewer hours per year.
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Chapter 1

Introduction

Building on the seminal work of Grossman (1972), health has been regarded as part

of human capital that plays an important role in determining an individual’s labor

market behavior. As people age, the risk of health problems increases. To assess

the economic impact of declining health status with aging, this thesis studies the labor

supply effects of health shocks for Americans age 45 years and older. When studying the

effect of health shocks on economic outcomes, the measurement error of binary health

variables is inherently non-classical, making the traditional IV strategy fail to obtain

a consistent estimate. This issue has attracted econometricians’ attention for decades

and has remained an open question. Therefore, this thesis develops a new theoretical

approach to the measurement error of binary health variables in labor supply equations.

In Chapter 2, I address the estimation bias due to the misclassification of a binary

regressor in treatment models. As a true “0” can only be misclassified, if at all, to a

“1”, and vice versa, the true binary variable and the measurement error will be corre-

lated. Accordingly, misclassification of a binary regressor is distinct from the classical

measurement error of a continuous independent variable. As a result, conventional

OLS and IV methods fail to obtain a consistent treatment effect. Failing to address

misclassification leads to biased estimates, and hence to potentially misleading recom-

mendations. An extensive body of literature has studied misclassification by assuming

a constant misclassification rate, which is a quite strong assumption, or by at most

allowing the probability of misclassification to depend on other covariates. Identifica-

tion relies on the existence of an instrument that is uncorrelated with the measurement

error. However, such a valid instrument will be difficult to find and may not exist, be-

cause the measurement error will generally be related to the true binary unobservable.

No previous research examines the case where the potential instrument is allowed to be

correlated with the measurement error. This paper relaxes the zero correlation between
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the instruments and the measurement error by assuming that potential instruments in-

dicate information not only on the true binary regressor but also on the misclassification

probabilities. For example, objective health measures (functional limitations or doctors’

diagnoses) as potential instruments are correlated with the general self-rated health sta-

tus that is of empirical interest and subject to measurement error. At the same time, it

is reasonable to believe that individuals with more functional limitations and doctors’

diagnoses are more likely to be sick and less likely to misreport their health status as

healthy. The same logic applies to those with fewer functional limitations and doctors’

diagnoses. Based on this argument, I assume that misclassification probabilities depend

on an index as a linear combination of individuals’ characteristics and objective health

measures and that there is accurate reporting (i.e. no misclassification) for extreme

values of the index. To implement this intuition, I define a data dependent high prob-

ability set containing extreme index values. This set is determined so as to optimize a

bias/variance tradeoff. Based on some assumptions on tail conditions, I prove identi-

fication, consistency and asymptotic normality. I run Monte Carlo simulations to test

the validity of the estimator in finite sample studies. The results suggest the proposed

estimator significantly improves the estimation compared to OLS and IV methods, in

terms of having a much smaller mean square error.

Chapter 3 uses the method proposed in Chapter 2 to handle the binary, misclassi-

fied health variable in studying the labor supply effects of health shocks. Extracting

information on true health from objective health measures, for example functional lim-

itations and doctors’ diagnoses, this new method relies on such information to dynam-

ically select observations that are free of misclassification. Based on these “correct”

observations, an IV estimator is consistent. Using the 2012 wave of the Health and Re-

tirement Study (HRS), this paper primarily examines the labor supply effects of health

shocks for men and women aged 45-61. When examining the measure of self-reported

health status, the results suggest that men (women) will reduce labor supply by 2,299

(1,929) hours per year when they rate their health as “Fair” or “Poor” and that OLS

and traditional IV estimators suffer from considerable attenuation biases compared to
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the proposed estimator. When examining the measure of work-limiting health, the re-

sults suggest that the traditional IV strategy and the proposed new technique produce

similar estimates, while the OLS estimate biases towards zero. As a comparison, I also

examine the sample aged 62-70 when the elderly seriously consider retirement. The

estimation results indicate significant reductions in hours of work when in poor health

but generally smaller than those for 45-61 year olds.

Besides the reduced work hours due to one’s own health shocks, an individual may

also respond in labor supply to her spouse’s health problems. To study the spouse’s

labor market behavior in the face of the other’s health declines is equally important in

assessing the economic circumstances of aging households. In Chapter 4, I examine how

an individual’s labor supply responds in the short- and long-run to a negative shock

to her spouse’s health. The predicted effect of health shocks on spouse’s labor supply

is theoretically ambiguous. On one hand, poor health often reduces productivity in

household production and requires time spent in care giving by the spouse. In this

case, the spouse remains the primary home producer and caregiver, which pulls her

away from the labor market. On the other hand, it has been well established that

health declines reduce own labor supply, resulting in an income loss. To compensate

for this loss, the spouse may need to earn more money and increase her labor supply.

I focus not only on the short-run effect soon after a negative health shock to a spouse

but also on the long-run effect of how a spouse adjusts her labor supply over time in

response to her partner’s health shock. The long-run effect may be larger than the

short-run effect, especially for the elderly who are more likely to suffer from chronic

conditions and so become more cautious than the young when making decisions about

labor supply. In this paper, I propose an optimal instrument strategy with fixed effects

to study labor supply effects of spousal health shocks. Analysis of the 1996-2012 data

from the Health and Retirement Study (HRS) indicates that in the short run, both

husbands and wives change their labor supply very little when their spouses become ill.

However, in the long run, husbands adjust their labor supply in response to their wives’

health problems. As the duration of wives’ health problems increases by two years,

husbands work 165 fewer hours per year. This research reveals that the impact on time
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allocation is greater for wives’ poor health than husbands’. A wife’s health decline will

gradually pull her husband away from the market. Such households, therefore, are at

greater risk for financial hardship.
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Chapter 2

Identifying and Estimating Regression Models with a

Misclassified, Binary Regressor

2.1 Introduction

Many empirical studies examine the causal effect of a binary treatment on economic

outcomes; some important examples are the wage effects of college education or union

status and the labor supply effects of a job training program or a health problem.

The measurement error in such binary treatment variables creates an econometric issue

distinct from the classical measurement error. In particular, the measurement error in a

binary treatment variable is by its nature negatively correlated with the true part of the

mismeasured variable (Aigner, 1973). As a result, it is difficult to find valid instruments

to resolve the discrete measurement error. Conventionally, this type of measurement

error is referred to as the misclassification.

This paper considers the identification and estimation of regression models where

a binary regressor is subject to misclassification. In contrast to other papers on mis-

classification, this paper uses a more general and applicable assumption about the

misclassification process. Most previous studies gained partial or point identification

based on the assumption that the probabilities of misclassification were constant across

the population or, at most, dependent on the covariates from the outcome equation.

As discussed below, their point identification results assumed not only that misclassifi-

cation probabilities depended on outcome covariates, but also that a valid instrument

existed. In view of Aigner’s results, such an instrument will be difficult to find and

may not exist. The selection of a valid instrument should be very sophisticated such

that the instrument is correlated with the true unobservable but uncorrelated with the

measurement error, given the inherent correlation of the latter two terms. No previous

work considered the case where the probabilities of misclassification are functions of not

only the covariates from the outcome equation but also the potential instruments. This
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assumption has a desirable feature that most literature lacked: the potential instru-

ments can be correlated with both the true part of the mismeasured regressor and the

measurement error. Meanwhile, this setting has a more practical application than that

with the constant or covariate-dependent probabilities of misclassification. For example,

in the study of how an individual’s health problem influences his or her labor supply,

the self-reported health status is subject to misclassification and some objective health

measures (like functional limitations or doctors’ diagnoses) can serve as excluded vari-

ables for the misreported subjective measure. Moreover, objective health measures can

provide information on health misclassification; both individuals who have relatively

many functional limitations or doctors’ diagnoses and those who have few functional

limitations or doctors’ diagnoses are unlikely to report the opposite health status. Thus,

individuals for which the objective health measures take on sufficiently large or suffi-

ciently small values have much lower possibility of misreporting and are less subject to

misclassification. Including the objective health measures in an index, the true health,

the misreported health and the measurement error are assumed to depend on this index.

While the misreported health is observed, its specific model is unknown. Therefore, in a

semiparametric model of the misreported health we estimate the index of health status.

As this index takes on very large or very small values, we assume that individuals have

much lower possibility of misreporting. As the index approaches its lower and upper

support points, we assume that the probability of correct classification tends to one.

To implement this intuition, we define a data dependent high probability set containing

extreme index values. An estimator is proposed based on the observations from this

high probability set. The set depends on the sample size with the property that the

index values in this set become more extreme as the sample size increases. If this set is

not sufficiently extreme, the bias in the estimator will be substantial as the set includes

many “incorrect” observations. If this set becomes “too extreme”, the bias becomes

negligible but the variance of the estimator will be potentially significant due to having

too few observations included. This high probability set is determined so as to optimize

the bias-variance tradeoff.
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This paper establishes the point identification without any prior knowledge on mis-

classification probabilities or higher order moment conditions of the error term. More-

over, it is not necessary to have equal misclassification probabilities, a condition often

assumed in the literature. To study the large sample distribution, it is assumed that

the conditional probabilities of the true regressor and its observed surrogate has the

same order in the tails of the index. As in other pioneering literature (Andrews and

Schafgans, 1998; Klein, Shen and Vella, 2015), I assume the distribution of the index,

a linear combination of all exogenous variables, has thicker tails than that of the error

term in the threshold-crossing model of the true binary regressor. This assumption

is required to show that the bias and the variance of the estimator converge to zero

sufficiently fast to obtain desirable large sample properties for the estimator.

The paper is organized as follows: Section 2.2 reviews related literature; Section 2.3

describes the model, explains the motivation underlying the approach and introduces

the estimator; Section 2.4 discusses definitions and necessary assumptions for the es-

tablishment of the estimator’s large sample distribution; Secton 2.5 presents theorems

and the outline of their proof strategy; Section 2.6 provides evidence that the estimator

performs very well in Monte Carlo simulations; and Section 2.7 draws conclusions. The

Appendix contains all needed lemmas and their proofs.

2.2 Literature Review

With an array of real world survey data suffering from the issue of measurement error,

models with mismeasured explanatory variables have been studied extensively. The

simplest version of measurement error, the classical measurement error in linear re-

gression models, assumes that the true unobservable, its mismeasured surrogate and

the measurement error are continuous. Further, the measurement error is assumed to

be uncorrelated with the true unobservable. The existence of such measurement error

leads to an attenuation bias when estimating the impact of the mismeasured explana-

tory variable. A valid instrument suffices to address the attenuation bias as long as it

satisfies exclusion restrictions and is uncorrelated with the measurement error.
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The assumption that the true unobservable and the measurement error are uncor-

related has been relaxed. Chen, Hong, and Tamer (2005) assumed the measurement

error was correlated with the true unobservable, which is very important in the case of

misclassification. They used an auxiliary dataset to convey information on the relation-

ship between the true variable and its mismeasured counterpart in the primary dataset,

assuming the primary and auxiliary datasets had the same conditional densities of the

true variable given its surrogate.

The correlation between the true explanatory variable and the measurement error

arises automatically when the mismeasured regressor is binary. Conventionally, this

type of measurement error is referred to as misclassification. The traditional assumption

on the misclassification process is that the misclassification rate is constant; all the

observations in a sample have the same probability of reporting a 1 when the true

treatment is 0, and the same probability of reporting a 0 with the true treatment of 1.

Based on this assumption, some papers rely on prior restrictions on the probabilities of

misclassification or higher order (conditional) moment conditions of the regression error

to achieve the partial or point identification. Aigner (1973) calculated the covariance of

the measurement error and the true variable, first recognizing the negative correlation

between these two random variables and thus deriving the least squares bias. To address

this problem, he applied a modified least squares technique by incorporating prior

knowledge of the misclassification process.

Bollinger (1996) identified bounds for the parameters in regression models with a

mismeasured binary regressor by using the first and second moments of the observables.

He also examined the bounds with different, stronger assumptions on the probabilities

of misclassification. Based on this paper, van Hasselt and Bollinger (2012) continued

to analyze the bounds for the regression coefficient of the misclassified regressor. They

found that assumptions on probabilities of misclassification or homoscedasticity in re-

gression error could shrink the identified set and therefore tighten the upper bound

compared to Bollinger (1996). Moreover, if the assumptions on equal and constant

misclassification (a 0 was misclassified to be a 1 with the same probability as a 1 was

misclassified to be a 0) and homoscedasticity held simultaneously, the coefficient for
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the misclassified regressor was identified, rather than only partially identified to its

lower and upper bounds. While such assumptions underlying the point identification

are too strong, as admitted by the authors themselves, their work helps reveal the sig-

nificant role the misclassification probabilities play in uncovering the potential set of

parameters.

Chen et al. (2008a, 2008b) resolved the identification problem in nonparametric

regression models with a misclassified binary regressor without additional auxiliary

information like an instrumental variable. They assumed the zero conditional third

moment of the regression error and recovered in closed form the conditional density

of the dependent variable and the misclassification process for the nonparametric re-

gression model (2008a). To generalize the results, they relaxed the assumption on the

zero conditional third moment (2008b). Instead, the true regressor was assumed to

provide no information on the second and third moments of the regression error. In

other words, the expectations of the squared and cubic error conditioned on the true

regressor were constant across all observations. The similar closed-form identification

results were established immediately, potentially leading to a consistent estimator.

With the assumption on the constant misclassification rate, another strand of work

contributing to the literature uses instrumental variables to identify the causal effect

of a binary, misclassified regressor. Black et al. (2000) and Kane et al. (1999) both

recognized the identification power when there were two mismeasured reports available

as the surrogates for the true unobservable. Essentially, each of these two measures

was able to serve for one another as an instrument (DiTraglia and Garćıa-Jimeno,

2017). These two important papers also demonstrated mathematically that any IV

estimator provided an upper bound on the true treatment effect whereas the OLS

estimator provided a lower bound as in Aigner (1973). Furthermore, they recovered

a point estimate using a series of moment conditions, including the joint distribution

of these two surrogates and the expectations of the dependent variable conditioned

on the two measures. Such moments together identified coefficients, the probability

distribution of the unobserved binary regressor and misclassification process of the two

measures. Frazis and Loewenstein (2003) replaced one of the mismeasured variables
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in Black et al. (2000) and Kane et al. (1999) with an instrument for the other one.

They used a set of moments to accommodate the instrument, which were equivalent to

those used in Black et al. (2000) and Kane et al. (1999), and proposed a consistent

GMM estimator. They also modified the technique in Hausman et al. (1998) to bound

the probabilities of misclassification and incorporated these parameter restrictions into

their GMM estimates. At the same time, the case where the misclassified regressor was

endogenous was analyzed. In this case, the GMM estimation would be underidentified,

although coefficients could be bounded.

All the papers described above, whether identified with instrumental variables or

not, required that the probabilities of misclassification were constant across observa-

tions. This is a quite strong assumption; it implies that individuals with differing demo-

graphics, like education, age, income, etc., would misreport with identical probabilities.

Mahajan (2006) relaxed this assumption in his nonlinear regression model, making the

probabilities of misclassification depend on other covariates. Assuming the existence of

an instrument that was uncorrelated with the measurement error, he used a series of

conditional moments given the values of covariates and the instrument to identify the

marginal effect of the true unobserved regressor and its misclassification rates. While

Mahajan (2006) believed that these identification results could be readily applied to the

case where the regressor of interest was not only misclassified but also endogenous in

the outcome equation, DiTraglia and Garćıa-Jimeno (2017) pointed out that Mahajan’s

direct application was incorrect, since with the addition of endogeneity the instrument

no longer indicated information on the endogeneous, mismeasured regressor. Then the

identification proposed by Mahajan (2006) failed in the context of endogeneity. Also,

DiTraglia and Garćıa-Jimeno (2017) showed that the instrument’s second and third

moment independence of the regression error point identified the treatment effect and

the misclassification rates.

While the assumption about the constant probabilities of misclassification has been

relaxed by these studies, no prior work considered the (conditional) dependence of

instrumental variables and the measurement error. The assumption in previous studies

on the lack of correlation between instrumental variables and the measurement error
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makes it difficult to find valid instrumental variables in practice, given the inherent

correlation between the true unobserable and the measurement error. The more general

assumption that allows the dependence of potential instrumental variables and the

measurement error meets the theoretical and empirical necessity but poses technical

challenges, as recognized in Mahajan (2006).

This paper contributes to the literature by studying a linear regression model and

assuming that the misclassification process is dependent not only on covariates but also

on potential instruments. Different from the previous misclassification literature, this

paper employs the technique of identification through the extreme high probability set

to estimate the causal effect of a binary treatment regressor when it is misclassified.

Identification and estimation through the extreme high probability set is enlightened by

the important work of Heckman (1990), Andrews and Schafgans (1998), and Klein, Shen

and Vella (2015) in sample selection models. Heckman (1990) proposed the estimator

for the intercept only using those observations for which the selection probabilities were

close to 1, since as the selection probability approached 1, the conditional expectation

of regression error for the selected was close to 0. Andrews and Schafgans (1998) used

a smooth weighting function to mimic the process of choosing extreme high probability

set in Heckman (1990). With assumptions on the known set, they obtained the large

sample distribution for the estimator. Klein, Shen and Vella (2015) considered a sample

selection model where the dependent variable was binary. Facing an unknown high

probability set, they estimated the set and proved the large sample property for the

marginal effect estimator that was defined based on the estimated high probability set,

making the technique of identification at infinity technically and empirically feasible.

Besides relaxing the assumption of no correlation between the instrumental variable

and the measurement error, this paper obtains the point identification without relying

on any prior knowledge on probabilities of misclassification or very strong higher order

moment conditions of the regression error, assumptions critical for identification in

previous studies. Furthermore, the proposed technique does not require the assumption

of having equal probabilities of misclassification.
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2.3 Methodology

2.3.1 Model

In this paper I consider a linear regression model in which a binary regressor, Y ∗2 , is

subject to misclassification:

Y1i = α+X1iγ + Y ∗2iβ + εi, E(εi|X1i, Y
∗

2i) = 0 (2.1)

where {Y1i, Y
∗

2i, X1i} is for observation i in a random sample that is independent and

identically distributed over i. Y1i, Y
∗

2i are scalars, and X1i is a 1 × k random vector,

including all other exogenous covariates. Dropping the observational subscript, Y ∗2 is a

binary variable and its effect on the outcome Y1 is of interest.

The misclassification issue in (2.1) arises because Y ∗2 is rarely observed in practice.

Instead, econometricians observe its surrogate, another binary variable Y2 = Y ∗2 + η,

where η is the measurement error. In particular, mismeasurement only happens when

the true variable is 0 but its surrogate is 1 (η = 1) or when the true variable is 1 but it

is misreported to be 0 (η = −1). This type of measurement error is typically referred

to as the misclassification. In the context of misclassification, the measurement error

is negatively correlated with the true value of the regressor, given that when Y ∗2 equals

0, the error η must be 0 or 1, and when Y ∗2 equals 1, the error η must be 0 or -1. See

Aigner (1973) for a statistical calculation of the covariance between the true variable

and the measurement error. With observables, econometricians run the regression (2.1)

as

Y1 = α+X1γ + Y2β + (Y ∗2 − Y2)β + ε

= α+X1γ + Y2β + (ε− ηβ)

(2.2)

In the classical measurement error model, the unobserved variable Y ∗2 and its ob-

served surrogate Y2 are both continuous variables. Even if the measurement error η is

independent of the unobserved true variable, it is well-established that the OLS estimate

causes an attenuation bias. An IV estimator is consistent as long as the instrument

is correlated with the true variable and uncorrelated with the regression error and the

measurement error. However, when the mismeasured variable is binary, its true values
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will be negatively correlated with the measurement error, making the IV estimators

inconsistent even if the instruments are correlated with the true variable and uncorre-

lated with the regression error. More explicitly, let X2 be the potential instrument such

that cov(X2, Y
∗

2 ) 6= 0 and cov(X2, ε) = 0. As cov(Y ∗2 , η) 6= 0, it is not guaranteed that

cov(X2, η) = 0 even if X2 is correlated with η only through the true variable Y ∗2 (Frazis

and Loewenstein, 2003). Therefore, the inherent correlation between the true part of

the mismeasured variable and the measurement error makes IV estimators inconsistent.

While the instrumental variable strategy fails to address misclassification, the po-

tential instrument does provide information on the unobserved true variable:

Y ∗2 = I{X1π1 +X2π2 > µ} (2.3)

where X1 is the covariate vector from the outcome equation, X2 includes all the ex-

clusion variables (or termed potential instruments),1 and I{.} is an indicator function.

In the literature on misclassification, it is commonly assumed that the probabilities of

misclassification are fixed across the population. Typically,

Pr(Y2 = 1|Y ∗2 = 0, X) = Pr(Y2 = 1|Y ∗2 = 0) = α0 (2.4)

Pr(Y2 = 0|Y ∗2 = 1, X) = Pr(Y2 = 0|Y ∗2 = 1) = α1 (2.5)

This is a very strong assumption; it implies that individuals with differing demograph-

ics, like education, age, income, etc., would misreport with the identical probabilities.

Mahajan (2006) relaxed this by assuming that the probabilities of misclassification are

functions of covariates from the outcome equation. As exclusion variables are poten-

tially correlated with the misclassification error by its nature, I extend the assumption

further to allow exclusion variables to indicate information not only on the true vari-

able but also on the misclassification process. The probabilities of misclassification are

1Exclusion variables are akin to instrumental variables in terms of their independence of the outcome
model conditional on Y ∗

2 . They are not directly named as instruments because they are allowed to be
correlated with the measurement error and also because proposed estimator in this paper uses a function
of exclusion variables rather than using these variables as they are, which will be explained later in
more detail. In addition, any number of exclusion variables are sufficient. To include only one exclusion
variable here makes it convenient for elaborating the estimation of the index in the general way.
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functions of covariates as well as exclusion variables:

PL(X) = Pr(Y2 = 1|Y ∗2 = 0, X) (2.6)

PR(X) = Pr(Y2 = 0|Y ∗2 = 1, X) (2.7)

where X includes all the exogenous variables, X1 and X2.

To motivate this assumption, let Y1 denote an individaul’s labor supply and Y ∗2

denote whether or not an individual has a health problem. By the model (2.1), we would

like to examine how one’s health declines affect his labor supply. In most empirical

research, health status is self-reported, resulting in a subjective measure, Y2 with errors.

Some relatively objective measures are used to instrument for the subjective one, like

functional limitations and doctors’ diagnoses. Individuals who have more functional

limitations or doctors’ diagnoses are believed to have worse “true” health, and those

who have fewer functional limitations or doctors’ diagnoses usually have better “true”

health. At the same time, it is reasonable to argue that those who have more functional

limitations and doctors’ diagnoses are much less likely to report themselves as healthy.

For example, an individual diagnosed with diabetes, high blood pressure or cancer

is unlikely to report his health as excellent. Individuals who have few or even no

functional limitations or doctors’ diagnoses would be unlikely to report their health

status as unhealthy. In this way, the exclusion variables indicate information not only

on the true unobservable but also on the misclassification process.

The relationship between the true variable’s and its surrogate’s distributions can be

derived:

Pr(Y2 = 1|X) = Pr(Y2 = 1|Y ∗2 = 1, X)Pr(Y ∗2 = 1|X)

+ Pr(Y2 = 1|Y ∗2 = 0, X)Pr(Y ∗2 = 0|X)

= (1− PR(X))P ∗2 (X) + PL(X)(1− P ∗2 (X))

(2.8)

where P ∗2 (X) = Pr(Y ∗2 = 1|X). The distribution of Y2 depends on X and the equation

(2.8) implies the relation between Y2’s and Y ∗2 ’s distributions. Define an index V as a

linear combination of all the exogenous variables in X:

V = X11 +X12ψ20 +X13ψ30 + ...+X1kψk0 +X2θ0 (2.9)
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where {X11, ..., X1k} are the k variables in the vector, X1. I assume the model satisfies

the following index restrictions:2

Pr(Y ∗2 = 1|X) = Pr(Y ∗2 = 1|V ) = P ∗2 (V ) (2.10)

Pr(Y2 = 1|X) = Pr(Y2 = 1|V ) = P2(V ) (2.11)

Pr(Y2 = 1|Y ∗2 = 0, X) = Pr(Y2 = 1|Y ∗2 = 0, V ) = PL(V ) (2.12)

Pr(Y2 = 0|Y ∗2 = 1, X) = Pr(Y2 = 0|Y ∗2 = 1, V ) = PR(V ) (2.13)

In the discrete choice model where the binary dependent variable was subject to misclas-

sification, Hausman, Abrevaya and Scott-Morton (1998) showed that index parameters

could be recovered consistently under the assumption that the probabilities of misclas-

sification were constant. Then by equation (2.8), it is easily derived that the P2 and

P ∗2 depend on the same index. The current paper assumes that the probabilities of

misclassification are not constant and depend on the same index as P ∗2 does. If P2 de-

pends on a perceived index which is some function of the actual index, it is natural to

assume that P2 and P ∗2 still depend on the same index. Under these index restrictions,

the relation between Y2’s and Y ∗2 ’s distributions becomes:

P2(V ) = (1− PR(V ))P ∗2 (V ) + PL(V )(1− P ∗2 (V )) (2.14)

2.3.2 Model Simplification

With the index V , the model in (2.3) can be written:

Y ∗2 = I{V b > µ} (2.15)

V b = X1π1 +X2π2 = (X11 +X12ψ20 +X13ψ30 + ...+X1kψk0 +X2θ0)b (2.16)

Under the index restrictions in (2.10)-(2.13), the distribution of Y2 depends on the same

index, V , as that of Y ∗2 . The index parameters can be recovered by estimating a binary

response model of Y2 in the process of maximizing the following guasi log-likelihood

2In a semiparametric model, it is the parameters of this normalized index that are identified, which
suffices to obtain probabilities and marginal effects.
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function:

L({ψm}km=2, θ) ≡
N∑
i

{Y2i ln[P̂2i(Vi({ψm}km=2, θ))]

+ (1− Y2i) ln[1− P̂2i(Vi({ψm}km=2, θ))]} (2.17)

The parameters {ψm}km=2 and θ are identified semiparametrically in a single-index

model. The estimates of index parameters have been well established in semiparametric

models, for example Klein and Spady (1993) and Ichimura (1993). The semiparametric

model here is important because while the unobservable Y ∗2 has a single-index model

in (2.15), the specific model for the observable Y2 is unknown.

With the index V recovered, I can simplify the model in (2.1) using the approach

proposed by Robinson (1988) for partially linear models. To be specific, the outcome

equation in (2.1) can be written as

Y1 = α+X1γ +G(V ) + newerror (2.18)

where G(V ) = E(Y ∗2 |V )β = P ∗2 (V )β and newerror = (Y ∗2 − G(V ))β + ε. As Y ∗2 is

unobserved, the function G(V ) is unknown. Taking the expectation of every term in

(2.18) conditional on the index V , then

E(Y1|V ) = α+ E(X1|V )γ +G(V ) (2.19)

Making the difference between equations (2.18) and (2.19) on both sides, we can obtain

a differenced model as

Y1 −E(Y1) = (X1 −E(X1|V ))γ + newerror (2.20)

Robinson (1988) showed that the parameter γ can be consistently estimated at the
√
N

rate. Subtracting the estimator of X1γ from both sides and still using Y1 to denote the

differenced outcome on the left hand side, the model in (2.1) can be simplified into the

model as follows:

Y1i = α+ Y ∗2iβ + εi, E(εi|Y ∗2i) = 0 (2.21)

Without loss of generality, the rest of this paper focuses on the simplified model in

(2.21).
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It is desirable to use Robinson’s technique to separate the estimation of the health

impact from that of other covariates. As Bound (1991) explained, when other economic

covariates were correlated with health in the labor supply equation, their coefficients

would be also biased due to the biased estimate of the effect of health (resulted from

measurement error). Also, such biased coefficients on other economic characteristics

remained even if the biased impact of health could be addressed in some way. Therefore,

to first estimate the coefficients on other covariates using Robinson’s technique avoids

the influence passed on by the mismeasured health status in estimation, making it

possible to compare the relative importance of health and other economic characteristics

in labor supply decisions.

2.3.3 Motivation for High Probability Set

The essential issue in misclassification is the failure to observe Y ∗2 and the discrepancy

between it and its surrogate Y2. If in some regions Y2 behaves in the same way as Y ∗2

with a high probability, their discrepancy will disappear and the distribution of Y ∗2 can

be recovered in such regions. Equation (2.14) provides this opportunity. If P ∗2 (V ) is

similar to P2(V ) in these regions, it is credible that P2(V ) captures the variation of

P ∗2 (V ) there. Here, to be “similar” is in terms of having the same order in the extreme

regions; this will be explained in more detail later in the paper.

Again, take the effect of health status on labor supply as an example. The index now

denotes a linear function of functional limitations, doctors’ diagnoses and other variables

that influence health status. As individuals who have more functional limitations and

doctors’ diagnoses (a higher V ) are more likely to have poor health and less likely to

misreport their health status, P2(V ) (the probability of reporting poor health given the

index) will be similar to P ∗2 (V ) (the probability of actually having poor health given the

index) and both converge to 1 as the index V becomes sufficiently large. On the other

extreme, as individuals who have few or no functional limitations or doctors’ diagnoses

(a lower V ) are more likely to have good health and also less likely to misreport their

health status, P2(V ) will also be similar to P ∗2 (V ) and both converge to 0 as the index V

becomes sufficiently small. Thus, the index V indicates the regions where P2(V ) looks



18

like P ∗2 (V ). I will refer to such regions as the high probability set, enlightened by the

identification approach of Heckman (1990), Andrews and Schafgans (1998), and Klein,

Shen and Vella (2015), which all estimated parameters of interest in sample selection

models by using only those observations within their respective high probability sets.

In this paper the high probability set occurs when the index becomes sufficiently

large or sufficiently small. The probability of Y2 = 1 conditional on the index V ,

P2(V ), is estimated semiparametrically. In this context, it is important to have a flexible

model that allows Y2’s distribution to differ from Y ∗2 ’s distribution when not in the high

probability set. In the high probability set, the probability of Y ∗2 = 1 conditional on the

index V , P ∗2 (V ), can be recovered up to the order because the conditional probability

P2(V ) has the same order as the conditional probability P ∗2 (V ) in the set. With N as

the sample size, the high probability set is defined as

{v : P2(v) < N−a or P2(v) > 1−N−a}, 0 < a < 1 (2.22)

Observations are selected for which index values are located in the high probability set.

As the value of index becomes sufficiently large, P2(v) converges to 1 and the cutoff point

(1−N−a) moves toward 1 to select those index values, as the sample size N increases.

The analogous rule applies to the other tail for sufficiently small index values. The

high probability set parameter a determines which observations in the sample will be

selected. To study it, I will introduce in later sections an infeasible estimator that is

close to the feasible estimator. The optimal value of a will be determined to balance

the order of the infeasible estimator’s (squared) bias and variance. Based on it, I will

define its sample counterpart as the optimal high probability set parameter for the

feasible estimator. In the study of large sample properties for the feasible estimator,

this sample counterpart will be proved to converge in probability to the optimal value

of a.
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2.3.4 The Estimator

With P̂2i as an instrument for Y2i, the estimator I propose is the IV estimator on a

high probability set

β̂ =

∑N
i=1(P̂2i − P̄2)Y1iŜi∑N
i=1(P̂2i − P̄2)Y2iŜi

(2.23)

where P̂2i and Ŝi abbreviate P̂2i(V̂i) and Si(V̂i, âi, P̂2i), respectively, and P̄2 is the

weighted average of P̂2i,
∑N

i=1 P̂2iŜi∑N
i=1 Ŝi

. The estimated conditional probability P̂2i is given

by Definition (D2) in next section, while the relevant definitions regarding Ŝi are from

Definition (D3) and (D4). The S-function gives a high weight up to 1 to the observation

i once the observation is “trapped” by the high probability set, while giving low weights

of 0 to those observations excluded from the high probability set.

The estimator in (2.23) incorporates Newey’s (1990) theory about optimal instru-

ments. If Y ∗2i in the model (2.21) is not misclassified (now Y2i = Y ∗2i) but endogenous,

an optimal IV estimator will be

β̃ =

∑N
i=1(P̂2i − P̄2)Y1i∑N
i=1(P̂2i − P̄2)Y2i

(2.24)

Without misclassification, (2.24) gives a consistent estimator for the parameter β. The

estimator in (2.23) is also a type of IV estimator but differs from the conventional IV

estimator by using a fraction of all observations. Based on this “IV-type” estimator,

it appears possible to resolve the estimation in future research for models where the

regressor of interest is not only misclassified but also endogenous. Essentially, the

estimator β̂ is attained by conducting the IV estimation only on the high probability

set. Such observations are “effective” because their P2 and P ∗2 converge to 0 with the

same order as the index becomes sufficiently small, and to 1 as the index becomes

sufficiently large. On the set, the discrepancy of P2 and P ∗2 will vanish and the bias

and variance of the estimator in (2.23) will converge to 0.

The selection of the high probability set presents a technical challenge. The effective

sample size is the number of observations from the high probability set. As N →∞, a

smaller fraction of all observations are used in the estimation of β̂, because according to

the definition in (2.22), a bigger N shrinks the size of high probability set. For a given
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value of N , as the value of a approaches 0, almost all of the observations are included

in the estimation, resulting in a substantial bias in the presence of the discrepancy

between P2 and P ∗2 . As the value of a approaches 1, only those observations for which

the index is on the very extreme ends will be selected, resulting in a negligible bias but

a potentially significant variance due to having too few observations included in the

estimation. Therefore, the optimal a is data dependent and it is important to balance

the bias (squared) and the variance of the estimator. In the next section, I provide

assumptions and definitions required to study this bias-variance tradeoff.

2.4 Assumptions and Definitions

To establish consistency and asymptotic normality of the estimator in (2.23), I make

the following assumptions:

• A1. The observations {Y1i, Y2i, Xi} are i.i.d. over i, with Xi ≡ [X1i, X2i].

• A2. E(ε|Y ∗2 , X) = 0. E(εε′|Y ∗2 , X) = σ2I.

• A3. The index restrictions in (2.10)-(2.13) hold. There is at least a continuous

variable in the vector X1.

• A4. E(Y1i|Y ∗2i, Y2i, Xi) = E(Y1i|Y ∗2i, Xi).

• A5. The probability P2i(Vi) is a nondecreasing function of the index Vi, for

Vi < V̄S sufficiently small and for Vi > V̄L sufficiently large. P2i(Vi) → 0 as

Vi → −∞ and P2i(Vi)→ 1 as Vi → +∞.

• A6. P2i(Vi) and P ∗2i(Vi) converge to 0 (1) at the same rate as Vi → −∞ (Vi →

+∞).

• A7. In the indicator function (2.3), let Gv(.) and Fµ(.) denote the cumulative dis-

tribution functions of the index and the error µi, respectively. Since P ∗2i depends

on the distribution of the error µi (Y ∗2i = I{Vi > µi}, so P ∗2i = Fµ(Vi)), and P ∗2i

has the same order as P2i on both ends, I don’t distinguish the error µi for P ∗2i
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from that for P2i. Assume the tail conditions as:

For all t < T sufficiently small,

Gv(t) > Fµ(t) (2.25)

For all t > T sufficiently large,

1−Gv(t) > 1− Fµ(t) (2.26)

• A8. With gv(.) as the density for the index, Vi, gv(.) is increasing in the tail on

the left, decreasing in the tail on the right. Further, gv(.) ≥ N−ξ, where ξ is

an arbitrarily small positive number. With H(.) ≡ gv(.)
1−Gv(.) as the hazard for the

index V , I assume

1− Fµ(ver)

1−Gv(ver)
< H(ver)N

−a0N (2.27)

Fµ(vel)

1−Gv(vel)
< H(vel)N

−a0N (2.28)

where vel and ver denote the left and right limit value of the index, respectively,

such that gv(v) ≥ N−ξ for v ≥ vel or v ≤ ver.

The first two assumptions are basic for many regression models. Assumption (A3)

requires that the distributions of Y2 and Y ∗2 depend on the same index, which I have

discussed in Secton 3.1. Assumption (A4) implies the non-differential measurement

error, which will not provide extra information on the dependent variable given the

true variable and other exogenous variables.

Assumption (A5) makes it possible to select “effective” observations through the

high probability set in (2.22), given P2i(Vi)’s monotonic feature for extreme index values.

While (A5) assumes that P2i(Vi) converges to the same value as P ∗2i(Vi) for the lower

and upper support points of the index, Assumption (A6) steps further to guarantee

that they converge in the same order in both tails. It suffices that PL(Vi) converges to

0 as Vi → −∞ at a faster rate than P2i(Vi) converges to 0, while PR(Vi) converges to 0

as Vi → +∞ at a faster rate than P2i(Vi) converges to 1. Meanwhile, 1−PL(Vi) 9 1 as

Vi → +∞ while 1−PR(Vi) 9 1 as Vi → −∞. To check it, see the relation between Y2’s
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and Y ∗2 ’s distribution by equation (2.14) for the case where Vi → −∞. As Vi → +∞,

check the rewritten relation equation as

1− P2i(Vi) = PR(Vi)P
∗
2i(Vi) + (1− PL(Vi))(1− P ∗2i(Vi) (2.29)

To state it informally, Assumption (A6) implies that PL(Vi) +PR(Vi) < 1 for very ex-

treme values of the index. It exactly coincides with “Assumption 2- Restriction on the

Extent of Misclassification” in Mahajan (2006) (pp.637) except that Mahajan (2006)

assumed it on the general real line, R, not only at infinity. The misclassification litera-

ture has discussed the similar assumption (e.g. Bollinger, 1996; Frazis and Loewenstein,

2003; van Hasselt and Bollinger, 2012; DiTraglia and Garćıa-Jimeno, 2017), making sure

that the surrogate Y2i is positively correlated with the true variable Y ∗2i. While the ob-

served surrogate is contaminated by measurement error, it is at least better than an

arbitrary guess.

The tail conditions specified in Assumption (A7) mean that the tails of the index

distribution are fatter than those of the error term, µi, on both ends, similar to the

assumption in Andrews and Schafgans (1998) and Klein, Shen and Vella (2015). Such

tail conditions are needed in the establishment of the estimator’s large sample proper-

ties. In particular, Assumption (A7) helps to bound the terms E(SLi) and E(SRi) from

below, which will contribute to the order analysis of the squared bias and the variance.

See that in Lemma 1 in Appendix.

Finally, Assumption (A8) follows the assumption (A5b) in Klein, Shen and Vella

(2015). The high probability set tends to select extreme observations and those “too

extreme” observations must be removed by a trimming function. This assumption is

necessary to guarantee the high probability set after trimming is not empty. Let vl be

the left threshold value of the index such that P2(v) ≤ N−a for v ≤ vl, and vr be the

right threshold value such that P2(v) ≥ 1−N−a for v ≥ vr. Taking the left tail as an

example, the nonempty high probability set implies that vel < vl. It holds when

Fµ(vel) < Fµ(vl) = N−a ⇔ Fµ(vel)

1−Gv(vel)
<

N−a

1−Gv(vel)
= H(vel)N

−(a−ξ) (2.30)

where Fµ(vl) = P2(vl) ≤ N−a, since P ∗2 has the same order as P2 on the high probability

set.
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The relevant definitions used in the above assumptions are provided as follows:

• D1. True and estimated index parameters.

V = X11 +X12ψ20 +X13ψ30 + ...+X1kψk0 +X2θ0 (2.31)

V̂ = X11 +X12ψ̂2 +X13ψ̂3 + ...+X1kψ̂k +X2θ̂ (2.32)

where {ψm0}km=2 and θ0 denote the true index parameters, and {ψ̂m}km=2 and θ̂

are their corresponding estimators.

• D2. Population conditional probability P2 and its sample counterpart

P̂2. Here I define them at their realization t:

P2(V = t) = Pr(Y2 = 1|V = t) (2.33)

P̂2(V̂ = t) =
∑

j
1

Nh
Y2jK(

t−Vj
h

)∑
j

1
Nh

K(
t−Vj

h
)

(2.34)

where K is a standard normal kernel with window h = O(N−.2).

• D3. The S-function. S(.) is a selection function by which those observations on

the high probability set are selected in the estimation whereas those outside the

high probability set are excluded. Dropping the subscripts, the definition of the

selection function is

S(V, a, P2) = S(V, x(a, P2)) + S(V, y(a, P2)) = SL + SR (2.35)

S(V, x(a, P2)) = τ(V )C(x(a, P2)) (2.36)

S(V, y(a, P2)) = τ(V )C(y(a, P2)) (2.37)

C(z) =


0 z ≤ 0

1− exp −zk
bk−zk 0 < z < b

1 z ≥ b

(2.38)

τ(V ) =
1

1 + exp[N .2(E(gv(V ))N−.005

ln(N) − gv(V ))]
(2.39)
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x(a, P2) = ln
1

P2
− lnNa (2.40)

y(a, P2) = ln
1

1− P2
− lnNa (2.41)

Here, C(x(a, P2)) and C(y(a, P2)) are the core of the selection function, an ex-

tension of the smooth selection function in Andrews and Schafgans (1998). It

smoothly selects the high probability set, and the addition of a trimming function

τ(V ) helps to trim out those too extreme index values for which the density gv(V )

goes to zero too fast. For notational convenience, let SL denote S(V, x(a, P2)) and

SR denote S(V, y(a, P2)). I use the same smooth selection function form, S, as

Klein, Shen and Vella (2015) except for the two extreme ends required to control

here instead of only one end in their work. The sub-choosing function SL mainly

helps to select those observations for which indices are located on the left end in

R, while SR does for the right end. ŜL and ŜR denote their sample counterparts,

S(V̂ , x(â, P̂2)) and S(V̂ , y(â, P̂2)), respectively, and Ŝ = ŜL + ŜR. Note that Ŝ is

defined at the estimated optimal parameter â in (D4).

• D4. True and estimated optimal parameters a0N and â. While different

values of the parameter a select high probability sets with different sizes, the

optimal parameter a0N trades off the squared bias and the variance of the infea-

sible estimator. With A = {a : 0 < a < .5},3 ŜL(a) = S(V̂ , x(a, P̂2(V̂ ))) and

ŜR(a) = S(V̂ , x(a, P̂2(V̂ )))

a0N = argmina∈A(N2a−1[
E(S2

L)

(E(SL))2
+

E(S2
R)

(E(SR))2
]− 1)2 (2.42)

â = argmina∈A(N2a−1[
Ê(Ŝ2

L(a))

[Ê(ŜL(a))]2
+

Ê(Ŝ2
R(a))

[Ê(ŜR(a))]2
]− 1)2 (2.43)

where

Ê(ŜL(a)) = 1
N

∑
i ŜLi(a) (2.44)

Ê(ŜR(a)) = 1
N

∑
i ŜRi(a) (2.45)

Ê(Ŝ2
L(a)) = 1

N

∑
i Ŝ

2
Li(a) (2.46)

Ê(Ŝ2
R(a)) = 1

N

∑
i Ŝ

2
Ri(a) (2.47)

3The range of a comes from the process of balancing the squared bias and the variance.
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The optimal high probability set parameter should equate the orders of the

squared bias and the variance of the estimator so that the estimator will con-

verge to the true coefficient as fast as possible. In Appendix, Lemma 2 gives an

upper bound on the order of the squared bias of the infeasible estimator explained

below and Lemma 3 calculates the order of its variance. The optimal parameter

a0N is defined to equate these two orders in (2.42) and â is its sample counterpart.

2.5 Consistency and Normality

To analyze the large sample property for the estimator in (2.23), I rewrite it in an

equivalent form as follows:

β̂ = β +
β 1
N

∑N
i=1(Y ∗2i − Y2i)(P̂2i − P̄2)Ŝi + 1

N

∑N
i=1 εi(P̂2i − P̄2)Ŝi

1
N

∑N
i=1(P̂2i − P̄2)Y2iŜi

(2.48)

Rather than studying the estimator directly, I will firstly study its infeasible substitute

β̂∗ = β +
β 1
N

∑N
i=1(Y ∗2i − Y2i)(P2i − E(P2S(a0N ))

E(S(a0N )) )Si(a0N )

E(P2 − E(P2S(a0N ))
E(S(a0N )) )Y2S(a0N )

+

1
N

∑N
i=1 εi(P2i − E(P2S(a0N ))

E(S(a0N )) )Si(a0N )

E(P2 − E(P2S(a0N ))
E(S(a0N )) )Y2S(a0N )

(2.49)

The infeasible estimator replaces P̂2i, Ŝi and P̄2 in (2.48) with P2i, Si(a0N ) and E(P2S(a0N ))
E(S(a0N )) ,

respectively. Its denominator becomes the population expectation rather than the sam-

ple average in (2.48). Note that while the the feasible estimator in (2.48) depends on

the estimated high probability set parameter â, the infeasible estimator is defined at

the true optimal high probability set parameter a0N . After examining the properties

for the infeasible estimator, I will show that the feasible estimator in (2.23) (equivalent

to (2.48)) is close to the infeasible substitute. In this way, I will get the consistency

and asymptotic normality for the estimator in (2.23).

Theorem 1 Under Assumptions (A1-A8),

β̂∗
p→ β (2.50)
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Theorem 2 Under Assumptions (A1-A8), with V ar(β̂∗) =
E(S2

L(a0N ))

N [E(SL(a0N ))]2
+

E(S2
R(a0N ))

N [E(SR(a0N ))]2
,

CN =
√

1
V ar(β̂∗)

,

CN (β̂∗ − β)
d→ Z∗ ∼ N(0, 1) (2.51)

Theorem 3 Under Assumptions (A1-A8),

CN (β̂ − β̂∗) p→ 0 (2.52)

Theorem 4 Under Assumptions (A1-A8),

CN (β̂ − β)
d→ N(0, 1) (2.53)

2.6 Simulation Results

In this section, I study the performance of the estimator in (2.23) by Monte Carlo

simulations for finite samples. The model is generated as follows:

Y1 = 2 + 1.5X1 + 3Y ∗2 + ε (2.54)

Y ∗2 = I{3X1 + 4X2 + 5X3 > µ} (2.55)

V = 3X1 + 4X2 + 5X3 (2.56)

Y2 = Y ∗2 I{U > PR}+ (1− Y ∗2 )I{U < PL} (2.57)

where Y ∗2 is the unobserved binary treatment. When Y ∗2 = 1, the observed surrogate

Y2 is 0 with the probability of PR. When Y ∗2 = 0, Y2 = 1 with the probability of PL.

The index V is the linear combination of X1, X2 and X3. It is rescaled to have unity

variance. U is a uniformly distributed random variable. The instruments and error

term are generated:

[X1, X2, X3]′ ∼ N(0,Σ) (2.58)

ε ∼ N(0, 1) (2.59)

µ ∼ N(µ̄, .25) (2.60)

where Σ is a non diagonal matrix, allowing the correlation between any two exogenous

variable X ′s. Simulations are conducted when the value of µ̄ takes on -1, -.5, -.1, 0, .1,
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.5, 1, respectively. The probabilities of misclassification PR,PL are functions of the

index V :

PL = .9Φ(5V ) (2.61)

PR = .9(1− Φ(5V )) (2.62)

where Φ(.) is the standard normal CDF. The setting of PR,PL guarantees that PL

converges to 0, PR not to 1 as the value of the index is sufficiently small and that

PR converges to 0, PL not to 1 as the value of the index is sufficiently large, which is

implied by Assumption (A6). It also makes sure that Y2 and Y ∗2 will be close to each

other in the high probability set. In addition, the variance of the error term µ is .25

so that the distribution of the index has fatter tails than that of the error µ, satisfying

tail conditions in Assumption (A7).4

For each value of µ̄, I run the simulation with 1000 observations for 1000 replica-

tions. In every replication the coefficient of Y ∗2 , β, in the outcome equation is estimated.

I compare the performance of the OLS estimator, IV estimator and the IV estimator

based on the high probability set (hereafter referred to as IV estimator on HPS) pro-

posed in this paper.

Table 2.1 shows the estimation results by the value of µ̄. In every simulation, I

report the mean, standard deviation and root-mean-square error for OLS estimator, IV

estimator and IV estimator on HPS, respectively. Overall, the IV estimator on HPS

has a very good performance by having much smaller root-mean-square error than the

other two counterparts. The OLS estimator is biased downward in all of the settings,

which is consistent with the arguments in Aigner (1973). The standard IV estimator

is also biased downward, but there is no definite answer to the direction of the bias in

IV estimators, especially in my case where the instrument is allowed to be generally

correlated with the measurement error outside of high probability set. A numerical

calculation of the covariance for the instrument and the measurement error indicates it

is positive, supporting an attenuation bias of the standard IV estimator.

4This design is allowed to increase the variance of the error term to make its tails relatively fatter
while the index tails are held fixed. As expected, the thinner are the tails of the error term relative to
those of the index, the better are the results of the IV estimation on the high probability set.
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Specifically, in the models with µ taking the value of 0, -.5, -.1, .1 and .5, respectively,

the IV estimator on HPS performs better than the other two estimators. It has a very

small bias and only a slightly bigger standard deviation due to estimation only relying on

a fraction of the full sample, and thus a much smaller root-mean-square error compared

to its counterparts. In the other two models with µ = −1 or µ = 1, the IV estimator on

HPS demonstrates a more significant advantange over the other estimators through the

greatly reduced bias. With µ = −1, the mean of the 1000 replications from OLS and IV

techniques is just slightly above 1, whereas the mean from IV on HPS is about 2.9. A

similar advantage occurs in the model with µ = 1. Compared to the root-mean-square

error 1.9 and 1.6 from the OLS and IV techniques, the root-mean-square error is only .2

in the IV estimator on HPS, implying the proposed estimator converges in probability

to the true coefficient as fast as possible.

2.7 Conclusions

This paper studies the identification and estimation of models with a binary, misclassi-

fied treatment regressor, a problem faced in a broad range of applications in empirical

studies. I assume that both the misclassification probabilities and the probability for

the true binary variable depend on an index. Then the probability for the misclassi-

fied binary variable will be some unknown function of this index. With the index as

a linear combination of covariates and potential instruments, I can recover the index

semiparametrically. The measurement error is assumed to gradually vanish in the high

probability set where the index becomes sufficiently large or small. I estimate the high

probability set and establish an IV estimator based on it. The optimal high probabil-

ity set is obtained by controlling a data-dependent parameter such that the squared

bias and the variance of the estimator vanish at the same rate as the sample size in-

creases. Under tail conditions, I study the large sample properties for the proposed

estimator, showing that the estimator is consistent and asymptotically normal. I also

conduct Monte Carlo simulations to test its validity in finite sample studies. The re-

sults show that the estimator proposed in this paper is valid, substantially improving

the estimation compared to the OLS estimator and the classical IV estimator.
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Besides misclassification, endogeneity is also prevalent in empirical studies. For ex-

ample in the study of how the health status influences the labor supply, the true health

is endogenous in the outcome equation, or the measurement error term is dependent

on labor market outcomes (justification bias). Of course, the phenomenon that the

endogenous regressor is misclassified exists not merely in health measures, making it

appealing to address endogeneity as well as misclassification in many applications. As

the current paper addresses the misclassification by relaxing the assumption of zero cor-

relation between the potential instrument and the measurement error, it is promising to

exploit the instrument to search for the high probability set that is free of misclassifica-

tion and implement an IV strategy on that set. Then endogeneity and misclassification

can be addressed simultaneously.

2.8 Appendix

Lemma 1. Under tail conditions in Assumption (A7),

E(SLi) > O(N−a) (2.63)

E(SRi) > O(N−a) (2.64)

E(S2
Li) > O(N−a) (2.65)

E(S2
Ri) > O(N−a) (2.66)

Proof. To see they are bounded from below,5

E(SLi) > Pr(x ≥ b)

= Pr[P2i < N−a exp (−b)]

= Pr[Vi < F−1
µ (N−a exp (−b))]

= Gv[F
−1
µ (N−a exp (−b))]

> Fµ[F−1
µ (N−a exp (−b))]

= N−a exp (−b)

(2.67)

5Since the trimming function only trims out a very small fraction of observations from the high
probability set, it is reasonable to assume that the remainder constitutes the main body of the high
probability set, and thus the orders of E(SLi) and E(SRi) are mainly determined by the core C(z).
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and

E(SRi) > Pr(y ≥ b)

= Pr[P2i > 1−N−a exp (−b)]

= Pr[Vi > F−1
µ (1−N−a exp (−b))]

= 1−Gv[F−1
µ (1−N−a exp (−b))]

> 1− Fµ[F−1
µ (1−N−a exp (−b))]

= N−a exp (−b)

(2.68)

where P2(v) = Fµ(v) because P2 has the same order as P ∗2 on the high probability set.

The proofs for E(S2
Li) and E(S2

Ri) follow in a similar way.

When the infeasible estimator β̂∗ is defined at an arbitrary value of a ∈ (0, .5),

Lemmas 2 and 3 and thus Theorem 1 hold as follows.

Lemma 2. Under Assumptions (A1-A8)

Bias2 = (E(β̂∗)− β)2 ≤ O(N−2a) (2.69)

Proof.

|Bias| = |E(β̂∗)− β| =
|βE(Y ∗2 − Y2)(P2 − E(P2S)

E(S) )S|

E(Y2P2S)− E(P2S)
E(S) E(Y2S)

(2.70)

We can analyze the order of the bias for three cases: (I) O(E(SL)) = O(E(SR)), (II)

O(E(SL)) > O(E(SR)), and (III) O(E(SL)) < O(E(SR)). For case (I), E(P2S)
E(S) → λ ∈

(0, 1) as N →∞. The denominator in (2.70)

E(Y2P2S)− E(P2S)

E(S)
E(Y2S) = E(P 2

2 SL) + E(P 2
2 SR)− E(P2S)

E(S)
(E(P2SL) + E(P2SR))

= O(E(SR))

(2.71)
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The numerator in (2.70)

|E(Y ∗2 − Y2)(P2 −
E(P2S)

E(S)
)S| = |E(E[(Y ∗2 − Y2)(P2 −

E(P2S)

E(S)
)S|X])|

= |E(P ∗2 − P2)(P2 −
E(P2S)

E(S)
)S|

≤ |E(P ∗2 − P2)(P2 −
E(P2S)

E(S)
)SL|

+ |E(P ∗2 − P2)(P2 −
E(P2S)

E(S)
)SR|

≤ N−a|E(P2 −
E(P2S)

E(S)
)SL|+N−a|E(P2 −

E(P2S)

E(S)
)SR|

= N−aO(E(SL)) +N−aO(E(SR))

= N−aO(E(SR))

(2.72)

Combining the orders of numerator and denominator,

|Bias| ≤ N−aO(E(SR))

O(E(SR))
= O(N−a) (2.73)

The analysis of orders for cases (II) and (III) leads to the same results.

Lemma 3. Under Assumptions (A1-A8)

V ar(β̂∗) =
E(S2

L)

N(E(SL))2
+

E(S2
R)

N(E(SR))2
(2.74)

Proof. Taking case (I) as an example,

V ar(β̂∗ − β) =
V ar[β(Y ∗2 − Y2)(P2 − E(P2S)

E(S) )S + (P2 − E(P2S)
E(S) )Sε]

N [E(Y2P2S)− E(P2S)
E(S) E(Y2S)]2

(2.75)

Analyzing the numerator,

V ar[β(Y ∗2 − Y2)(P2 −
E(P2S)

E(S)
)S + (P2 −

E(P2S)

E(S)
)Sε]

= β2E(Y ∗2 − Y2)2(P2 −
E(P2S)

E(S)
)2S2

+ E(P2 −
E(P2S)

E(S)
)2S2ε2 − β2[E(Y2∗ − Y2)(P2 −

E(P2S)

E(S)
)]2

(2.76)
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The first term on the right hand side,

E(Y ∗2 − Y2)2(P2 −
E(P2S)

E(S)
)2S2 = E{(P2 −

E(P2S)

E(S)
)2S2E[(Y ∗2 − Y2)2|X]}

= E[PRP
∗
2 + PL(1− P ∗2 )](P2 −

E(P2S)

E(S)
)2S2

L

+ E[PRP
∗
2 + PL(1− P ∗2 )](P2 −

E(P2S)

E(S)
)2S2

R

≤ N−aE(P2 −
E(P2S)

E(S)
)2S2

L +N−aE(P2 −
E(P2S)

E(S)
)2S2

R

= N−aE(P2 −
E(P2S)

E(S)
)2S2

(2.77)

where the conditional expectation of (Y ∗2 − Y2)2 given X is calculated by the sum of

four cells (Y ∗2 = Y2 = 0, Y ∗2 = Y2 = 1, Y ∗2 = 1 while Y2 = 0, and Y ∗2 = 0 while

Y2 = 1) multiplied by their respective conditional probabilities. The inequality comes

from Assumption (A6).

The second term converges to zero slower than the first term, since

E(P2 −
E(P2S)

E(S)
)2S2ε2 = σ2E(P2 −

E(P2S)

E(S)
)2S2

L + σ2E(P2 −
E(P2S)

E(S)
)2S2

R

= O(E(S2
L)) +O(E(S2

R))

(2.78)

For the third term, by the calculation of the Bias numerator,

[E(Y2∗ − Y2)(P2 −
E(P2S)

E(S)
)]2 ≤ O(N−2a[E(SR)2] (2.79)

So the second term is the order contributor in the Variance numerator.

The order of the Variance denominator is

N [E(Y2P2S)− E(P2S)

E(S)
E(Y2S)]2 = O(N [E(SR)]2) (2.80)

Combining the numerator and variance of Variance,

V ariance =
O(E(S2

L)) +O(E(S2
R))

O(N [E(SR)]2)

=
E(S2

L)

N(E(SL))2
+

E(S2
R)

N(E(SR))2

(2.81)

The last equality comes from the O(E(SL)) = O(E(SR)) in case (I). The same results

hold for cases (II) and (III).
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Theorem 1. Under Assumptions (A1-A8),

β̂∗
p→ β (2.82)

Proof. Lemma 2 shows Bias2 → 0 as N →∞. For the variance, since E(S2
L) ≤ E(SL),

then
E(S2

L)

(E(SL))2
≤ 1

E(SL) . As Lemma 1 implies E(SL) > O(N−a),
E(S2

L)

N(E(SL))2
≤ 1

NE(SL) <

1
N1−a . Because 0 < a < .5,

E(S2
L)

N(E(SL))2
→ 0 as N →∞. The similar argument applies to

E(S2
R)

N(E(SR))2
. So V ariance→ 0, as N →∞. Then consistency of β̂∗ follows.

Theorem 2. Under Assumptions (A1-A8), with V ar(β̂∗) =
E(S2

L)

N(E(SL))2
+

E(S2
R)

N(E(SR))2
,

CN =
√

1
V ar(β̂∗)

,

CN (β̂∗ − β)
d→ Z∗ ∼ N(0, 1) (2.83)

Proof. The result follows from the Lindeberg condition as in Klein, Shen and Vella

(2015).

From Lemmas 2 and 3, we have known the bias and variance of the infeasible estima-

tor β̂∗ that is defined at an arbitrary value of a ∈ (0, .5). The optimal high probability

set parameter for this infeasible estimator, a0N , is determined in (2.42) to balance the

orders of the squared bias and the variance. Since the optimal parameter a0N has been

determined, the infeasible estimator in the following lemmas and theorems is defined at

a0N . For notational simplicity, I abbreviate S(a0N ), SL(a0N ) and SR(a0N ) by S, SL and

SR, respectively. To show the the feasible estimator is close to its infeasible substitute,

I first prove the following lemmas.

Lemma 4. Under Assumptions (A1-A8),

CN

1
N

∑N
i=1(Y ∗2i − Y2i)(P2i − E(P2S)

E(S) )Si + 1
N

∑N
i=1 εi(P2i − E(P2S)

E(S) )Si

E(P2 − E(P2S)
E(S) )Y2S

= Op(1) (2.84)
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Proof. It is sufficient to show

T1 ≡ CN
1
N

∑N
i=1(Y ∗2i − Y2i)(P2i − E(P2S)

E(S) )Si

E(P2 − E(P2S)
E(S) )Y2S

= Op(1) (2.85)

and

T2 ≡ CN
1
N

∑N
i=1 εi(P2i − E(P2S)

E(S) )Si

E(P2 − E(P2S)
E(S) )Y2S

= Op(1) (2.86)

For T1,

E(T1) ≤ CN
E|(Y ∗2 − Y2)(P2 − E(P2S)

E(S) )S

E(P2 − E(P2S)
E(S) )Y2S

= CNN
−a0N

E|P2 − E(P2S)
E(S) |SL + E|P2 − E(P2S)

E(S) |SR
E(P2 − E(P2S)

E(S) )Y2S

(2.87)

According to the definition of a0N in (2.42),

CN =
1√

E(S2
L)

N(E(SL))2
+

E(S2
R)

N(E(SR))2

= Na0N (2.88)

And
E|P2−E(P2S)

E(S)
|SL+E|P2−E(P2S)

E(S)
|SR

E(P2−E(P2S)
E(S)

)Y2S
= O(1). Therefore, T1 = Op(1). For T2, this term

on the left hand side has zero mean and bounded variance. By Markov Inequality, it is

bounded in probability.

Lemma 5. With Defition (D4), there exist δ > 0 such that

â− a0N = op(N
−δ) (2.89)

Proof. See Lemma (6-7) in Klein, Shen and Vella (2015). Their lemmas considered

that the estimated high probability set parameter â was close to the optimal high prob-

ability set parameter a0N . That argument can be readily extended in this paper.

Theorem 3. Under Assumptions (A1-A8),

CN (β̂ − β̂∗) p→ 0 (2.90)

Proof. It is equivalent to show

CN [(β̂ − β)− (β̂∗ − β)]
p→ 0 (2.91)
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where with P̄2 ≡
1
N

∑N
i=1 P̂2iŜi

1
N

∑N
i=1 Ŝi

,

β̂ − β =
β 1

N

∑N
i=1(Y ∗

2i−Y2i)(P̂2i−P̄2)Ŝi+
1
N

∑N
i=1 εi(P̂2i−P̄2)Ŝi

1
N

∑N
i=1(P̂2i−P̄2)Y2iŜi

(2.92)

β̂∗ − β =
β 1

N

∑N
i=1(Y ∗

2i−Y2i)(P2i−
E(P2S)
E(S)

)Si+
1
N

∑N
i=1 εi(P2i−

E(P2S)
E(S)

)Si

E(P2−E(P2S)
E(S)

)Y2S
(2.93)

Let

Â = 1
N

∑N
i=1(Y ∗2i − Y2i)(P̂2i − P̄2)Ŝi + 1

N

∑N
i=1 εi(P̂2i − P̄2)Ŝi (2.94)

A = 1
N

∑N
i=1(Y ∗2i − Y2i)(P2i − E(P2S)

E(S) )Si + 1
N

∑N
i=1 εi(P2i − E(P2S)

E(S) )Si (2.95)

B̂ = 1
N

∑N
i=1(P̂2i − P̄2)Y2iŜi (2.96)

B = E(P2 − E(P2S)
E(S) )Y2S (2.97)

Then the left-hand side in (2.91) equals

CN (
Â

B̂
− A

B
) = CN (

Â−A
B̂

+
A

B̂
− A

B
)

= CN (
Â−A
B̂

− B̂ −B
B̂

A

B
)

= CN
Â−A
B

B

B̂
− CN

A

B

B̂ −B
B̂

(2.98)

To show the theorem, it suffices to show: (1) CN
A
B = Op(1), (2) B

B̂

p→ 1, (3) CN
Â−A
B

p→

0, and (4) B̂−B
B̂

p→ 0. The condition (4) implies (2) directly, then it suffices to show

(1), (3) and (4). Lemma 4 shows condition (1). Employing Lemma 5 and arguments

similar to these in Lemma 4, it can be shown that the conditions (3) and (4) hold.

Theorem 4. Under Assumptions (A1-A8),

CN (β̂ − β)
d→ N(0, 1) (2.99)

Proof. The result follows from Theorems 1, 2 and 3.



36

Table 2.1: Estimation of Coefficient β

True β OLS IV IV on HPS

µ̄ = 0 3 mean 2.1163 2.5306 2.9655
std 0.0650 0.0710 0.0849
rmse 0.8860 0.4747 0.0916

µ̄ = −1 3
mean 1.1382 1.3636 2.8823
std 0.0657 0.0865 0.1429
rmse 1.8630 1.6386 0.1851

µ̄ = −.5 3
mean 1.7986 2.1758 2.9478
std 0.0681 0.0802 0.1003
rmse 1.2033 0.8281 0.1131

µ̄ = −.1 3
mean 2.1032 2.5164 2.9649
std 0.0654 0.0701 0.0858
rmse 0.8992 0.4887 0.0926

µ̄ = .1 3
mean 2.1030 2.5154 2.9651
std 0.0654 0.0724 0.0853
rmse 0.8994 0.4900 0.0921

µ̄ = .5 3
mean 1.7968 2.1703 2.9459
std 0.0641 0.0788 0.0992
rmse 1.2049 0.8334 0.1130

µ̄ = 1 3
mean 1.1344 1.3543 2.8791
std 0.0628 0.0861 0.1415
rmse 1.8667 1.6479 0.1861
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Chapter 3

Labor Supply Effects of Health Shocks: A New Approach

on Misclassification of Health Measures

3.1 Introduction

Building on the seminal work of Grossman (1972), health has been regarded as part

of human capital that plays an important role in determining an individual’s labor

market behavior. Health shocks will directly reduce the time that can be allocated

between work and leisure and decrease wage rates by reducing productivity. Moreover,

Gustman and Steinmeier (1986) pointed out that health shocks will change the marginal

substitution rate of goods and leisure. Accordingly, it is necessary to study the labor

supply effects of health shocks to assess individuals’ economic circumstances, and also to

assist policy makers in designing health-related policies to help particularly vulnerable

groups.

Among the challenges in studying the labor supply effects of health shocks is the

measurement error in health variables. Health economists desire a “perfect” health vari-

able that accurately measures the true health status, and at the same time, captures

the components of health that are determinants of work capacity. But such a “per-

fect” health variable is rarely available in real world data given the substantially varied

definitions of health from individual to individual and the pervasive imperfect infor-

mation among the population on own health status. In this context, the self-reported

health measures serve as a comprehensive substitute for true health since they have

been found to be more correlated with work capacity than other health measures (Blau

et al., 2001). While such self-reported health measures provide information on overall

health, they are subject to measurement error in a wide range of survey data. Butler

et al. (1987) found sizable disparities between the reported arthritis symptoms and

the recorded arthritis diagnoses. My analysis of the 2012 wave of the Health and Re-

tirement Study (HRS) also suggests the existence of enormous inconsistencies between
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the measure of work-limiting health problems and the measure of self-reported health

status. Failure to address the measurement error of health variables will lead to biased

estimation and misleading recommendations for economic policy.

However, few papers recognize that the measurement error of many health vari-

ables is non-classical because these health measures are recorded as discrete variables

in survey data. For example, in the binary case, if an individual truly has good health,

the measurement error occurs only when he reports poor health, and vice versa. Such

measurment error in binary health variables creates an econometric issue distinct from

the classical measurement error. To address it, some previous studies use a series of

objective health measures, like functional limitations or doctors’ diagnoses, to instru-

ment for self-assessed health measures, ignoring the possible correlation between the

instruments and the measurement error as explained in Chapter 2. Another approach

widely used in literature is to estimate a health index from objective health measures

and then substitute this continuous index for the binary self-reported health variable in

the labor supply equation, but this approach introduces interpretation and functional

form challenges in practice.

This study uses the method proposed in Chapter 2 to handle the binary, misclassi-

fied health variable in the labor supply equation. Also extracting information on true

health from objective health measures, this new method relies on such information to

dynamically select observations that are free of misclassification. Based on these “cor-

rect” observations, an IV estimator is consistent. Using the 2012 wave of the Health

and Retirement Study (HRS), this paper primarily examines the labor supply effects

of health shocks for men and women aged 45-61. When examining the measure of

self-reported health status, the results suggest that men (women) will reduce labor

supply by 2,299 (1,929) hours per year when they rate their health as “Fair” or “Poor”

and that OLS and traditional IV estimators suffer from considerable attenuation biases

compared to the proposed estimator. When examining the measure of work-limiting

health, the results suggest that the traditional IV strategy and the proposed new tech-

nique produce similar estimates, while the OLS estimate is biased towards zero. As a

comparison, I also examine the sample aged 62-70 when the elderly seriously consider
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retirement. The estimation results suggest smaller reductions in hours of work than for

the youger group, but the mean hours of work already lower.

The paper is organized as follows: Section 3.2 reviews literature; Section 3.3 explains

how to apply the method proposed in Chapter 2; Section 3.4 describes the data and

descriptive statistics of the sample; Section 3.5 discusses estimation results; and Section

3.6 draws conclusions.

3.2 Literature Review

The effect of health shocks on labor supply has been extensively studied for decades.

Currie and Madrian (1999) gave a thorough review of literature, pointing out that most

studies drew the same conclusion of the negative effect of health shocks on labor supply,

but that there was no consensus on its magnitude due to differing health measures and

identification methods used. Chirikos and Nestel (1985) used a ten-year record of

respondents aged 45-64 from the National Longitudinal Surveys (NLS) to study how

the history of health problems affected current wage rates and hours of work. Different

from the literature that examined a variety of health measures from the survey data,

they constructed a variable of health history from respondents’ reported impairments,

self-rated health status, and work-limiting health conditions. Including the estimated

(log) wage in a tobit model of annual hours worked, they found that compared to

the report of continuously good health, having had a health problem, regardless of

current health status, lowered hours worked per year. The reduced annual hours of

work ranged from 81 hours for white women to 388 hours for black women. Mitchell

and Burkhauser (1990) addressed the wage and hours equations simultaneously using

working-age men and women from the 1978 Survey of Disability and Work. Estimating

a nonlinear simultaneous model for each gender with and without arthritis, they found

that the condition of arthritis explained 42.1% of the difference in work hours between

men with and without arthritis, 36.7% for women aged 18-44 and 51.0% for women

aged 45-64.

As the aging of population has become a pressing issue in many developed countries,
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more attention has been focused on the labor market behavior of the elderly. Bound

et al. (1999) used the first three waves of the Health and Retirement Study (HRS)

to examine the association between health and labor market transitions for men and

women who were 50-62 years old in the first wave. They only selected observations for

which respondents were employed in Wave 2 and investigated whether between Wave 2

and Wave 3 these respondents stayed employed at the same job, changed to a different

job, applied for some disability insurance or became unemployed without applying for

any disability insurance. Since they argued that there likely was a difference between the

effects of persistent poor health and of a recent health shock, they regressed the labor

market transitions on current health as well as lagged health. The results indicated that

workers who suffered a recent health shock were more likely to exit the labor force than

those whose health deterioration occurred earlier. In addition, workers who remained

in the market after a health shock tended to change to a different job as an alternative

adaptation.

Disney et al. (2006) used a longitudinal sample of older adults aged 50-64 in 1991

from the British Household Panel Survey (BHPS) to study how adults make retirement

decisions in the face of health shocks. They constructed a continuous health index year

by year from a series of objective health indicators and defined the health shock for an

individual as the deviation of his or her index value from the cohort mean. Estimating

both fixed effects logit models and discrete time hazard models, they found that poor

health predicted an increased probability of exiting the market.

Garćıa-Gómez et al. (2010) studied the transition into and out of the labor market

using the first twelve waves of the British Household Panel Survey (BHPS). The au-

thors selected a sample of individuals who were working in the first wave and a sample

of individuals who were not working in the first wave. With the first sample, the au-

thors used the discrete-time duration model to study the role that health limitations,

self-assessed health measures and mental health status played in a worker’s decision to

become unemployed. With the second sample they examined the effect of health de-

clines on a non-worker’s re-entering the labor force. The results suggested that a health

shock increased the probability of quitting the market and decreased the probability
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of re-entering the market. Surprisingly, a deterioration in some dimensions of mental

health was associated with a rising likelihood of employment, possibly explained by a

view that an individual who was stressed while unemployed would be likely to rejoin

the labor force (Paul and Moser, 2006).

As Currie and Madrian (1999) reviewed, health is defined differently across various

measures in survey data and the estimated effect of health on labor market outcomes is

very sensitive to which measure of health is used. Subjective health measures are widely

used in studies of labor market activities because they have been found to be more cor-

related with work capacity than objective measures. Blau et al. (2001) found that when

including multiple health measures in labor supply equations, subjective measures that

described the comprehensive health status usually had a larger explanatory power than

objective indicators that reported only some narrow, concrete dimension of health. The

subjectivity of such health measures, however, brings measurement error and may bias

the estimation of the labor supply effects of health shocks. Individuals with the identi-

cal underlying health may have different thresholds to report poor health. Moreover, a

majority of empirical studies suggest that the measurement error in subjective health

variables is not random. In particular, individuals who supply less time to, or exit

the labor market, are more likely to report worse health to justify their labor market

withdrawal. Social Security disability benefits also provide financial incentives to report

more severe conditions to meet the eligibility criteria.

To address measurement error in health variables, Stern (1989) proposed to use

objective measures to instrument for subjective measures. Since then, this method has

become one of the predominant strategies and has been widely used in empirical stud-

ies. The objective health measures commonly used in such studies include functional

limitations, doctors’ diagnoses or mortality information, which only imperfectly reflects

the true health but is less likely to suffer from measurement error. See Charles (1999)

for an empirical analysis. However, there are two potential flaws when using relatively

objective measures to instrument for subjective measures. First, as many subjective

health variables are dichotomous, the measurement error is typically non-classical. As

it is explained in Chapter 2, the true health indicator is negatively correlated with the
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measurement error, making a traditional IV estimator biased. Second, Bound (1991)

showed mathematically that the measurement error of health measures would distort

the estimated effects of other economic factors that were correlated with health, for

example education. Even if the measurement error of health measures was addressed,

the estimates of the coefficients on these economic factors were still biased.

Another approach addressing the measurement error is to recover the latent health

stock. Bound et al. (1999), Disney et al. (2006) and Garćıa-Gómez et al. (2010)

estimated an underlying health index from a number of objective health indicators and

substituted this index for the subjective health variable in the labor supply equation.

This method has been extended beyond the study of labor market outcomes, for ex-

ample, Jürges (2007) examined the differences in self-reported health across countries

by estimating the latent health index. While this method mitigates the estimation bias

resulting from measurement error, the direct replacement of the discrete health measure

by a continuous health index makes interpreting the results challenging. First, most

health policies concern the change of individuals’ health from “good” to “poor” instead

of from “good” to “slightly less than good” or from “poor” to “slightly less than poor”.

Individuals who suffer from a slight health decline are likely to remain economically

active in the labor market. Second, when constructing the continuous health index

using a number of objective health indicators, different researchers may have different

knowledge and beliefs of which objective indicators are critical as determinants of the

true health. Once some important objective indicator was omitted, the evaluation of

health might lose a significant dimension. In addition, based on the different objective

indicators included, it becomes difficult to make a comparison among studies. Third,

an assumption underlying the continuous index is the effect of the labor supply is con-

stant across health status in linear regressions. When interpreting the effect of a health

decline measured by the continuous index, the response in hours of work to the de-

cline of health from “good” to “slightly less than good” is assumed the same as the

response to the decline from “poor” to “slightly less than poor”. However, individu-

als in good status probably respond differently from their counterparts in poor status

when encountering similar health shocks. Therefore, it is crucial to directly address the
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measurement error in discrete health variables.

To summarize the literature, the essence of these two primary solutions is to extract

reliable information on true health from relatively objective measures. While the first

solution fully recognizes the discreteness of self-reported health variables, it fails to

handle the inherent non-classical measurement error. Meanwhile, it always distorts

the estimated coefficients on other economic factors that are correlated with health,

making it difficult to compare the relative impacts on labor market decisions of health

and other economic factors, for example education. The second solution constructs a

continuous health index to circumvent the issue of non-classical measurement error, but

ignoring the discreteness of many health measures introduces interpretation challenges

in practice.

In contrast, this study uses the method proposed in Chapter 2 to handle the binary,

misclassified health variable in the labor supply equation. Also extracting information

on true health from objective health measures, this new method relies on such informa-

tion to dynamically select observations that are free of misclassification. Based on these

“correct” observations, an IV estimator is consistent in the estimation of the effect of

health shocks on working hours.

3.3 Methodology

3.3.1 Model

In this paper I study the labor supply effect of health shocks using the following struc-

tural model:

Yi = α+X ′iγ +H∗i β + εi (3.1)

where Yi is the observation i’s hours of work, H∗i measures health status and Xi, a k×1

random vector, includes all other exogenous covariates, for example age, square of age,

race, education, marital status and census region. The regression error εi has mean

zero and variance σ2. Observations are independent and identically distributed over i.

The health measure H∗i is dichotomous, 1 for “poor” and 0 for “good”. Accordingly,
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the coefficient, β, reflects the effect of health shocks on hours worked.1

However, the true health status, H∗i , is rarely observed in practice. Instead, the

self-assessed health measures are collected in most survey data through asking the

respondents to rate their own health status. While these self-assessed health measures

have been shown to be more likely than the objective health measures to reflect one’s

work capacity, they are more susceptible to measurement error. As virtually all the

questionnaire wording in survey data requires the respondents to answer “Yes or No”,

or at most to pick one from a few options that best describes their health status, these

self-assessed health variables are binary or categorical. The measurement error of such

health measures is distinct from that of the continuous health measures. Here, I focus

on the binary health measures that are subject to measurement error. In particular,

if the true health is 0, it can be only misreported, if at all, to be a 1 and if the true

health is 1, it can be only misreported to be a 0. As a result, the measurement error

is negatively correlated with the true unobserved health. Such measurement error

is typically referred to as misclassification. Due to the inherent correlation between

the true health, H∗i , and the measurement error, a conventional IV technique may

fail to obtain a consistent estimate. To be specific, when we use the objective health

measures, for example functional limitations on daily life activities or doctors’ diagnoses,

to instrument for the subjective, self-assessed health measures, it is difficult to guarantee

that these instruments are uncorrelated with the measurement error, since we know

that the instruments are closely correlated with the true health status and that there

is negative correlation between the true health and the measurement error.

While the instrumental variable strategy fails to address misclassification, these

objective health measures do provide information on the unobserved true health. For

example, if an individual reports limitations on many daily life functions and medical

conditions diagnosed by doctors, he is likely to have poor health. If an individual

1There could be a mass of observations at zero hours that result in a potential sample selection
issue. Here, I follow the argument of Angrist and Pischke (2008) about limited dependent variables to
run a linear regression. In addition, I compare the marginal effects of all exogenous variables in the
case where zero hours are accounted for to the marginal effects in the case where they are not. I find
that these two cases present similar marginal effects. In future research, I will modify my theory to
handle sample selection and more general, nonlinear models.
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reports very few or no limitations or doctors’ diagnoses, it is likely that his true health

is good. Motivated by this idea, many previous studies agreed that the true, unobserved

health depended on the objective health measures in some way. In accordance with the

literature, I use the threshold-crossing model of the true health as follows:

H∗i = I{X ′iπ1 + Ziπ2 > µ} (3.2)

where Xi includes all the covariates from the structural model and Zi is the objective

health variable. The objective health variable is termed the excluded variable, because

it does not directly affect the labor supply as long as the subjective health measure

is included in the structural model. Identification requires only one excluded variable.

To include only one excluded variable here makes it convenient for elaboration. When

using real world data, usually many variables meet the exclusion restriction. In this

paper I use a series of indicators of medical conditions diagnosed by doctors and a

continuous variable, the number of one’s functional limitations on daily life activities.

As the measurement error may be generally related to the excluded variable, this

paper assumes non-constant misclassification probabilities. Mahajan (2006) firstly rec-

ognized that the assumption of constant misclassification probabilities was very strong

and thus relaxed it by assuming that the probabilities of misclassification were func-

tions of covariates from the structural equation. To go a step further, I assume that

the probabilities of misclassification are functions not only of the covariates Xi but also

of the objective health measure Zi. This further relaxed assumption has a theoretical

foundation. As we have discussed, there probably exists a general correlation between

the measurement error and the objective health measures. So it is natural to extend

the assumption by allowing the probabilities of misclassification to depend on Xi and

Zi. Moreover, this further assumption also has an applicable implication. Individuals

who have more limitations on their daily life functions and medical conditions are much

less likely to report themselves as healthy. Similarly, individuals who have fewer limi-

tations or even no doctors’ diagnoses would be unlikely to report their health status as

unhealthy. In short, if an individual has extremely many or extremely few functional

limitations and doctors’ diagnoses, his or her probabilities of misreporting health status
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will be extremely low.

3.3.2 Health Index

In the threshold-crossing model of the true health status, the distribution of H∗i depends

on Xi and Zi through their linear combination. This linear combination combines the

demographics and an objective health indicator that are critical determinants of the

true health. Define an index Vi:

Vi = X1i +X2iψ20 +X3iψ30 + ...+Xkiψk0 + Ziθ0 (3.3)

where {X1i, ..., Xki} are the k variables in the vector, Xi. I assume the distribution of

H∗i depends on the index, Vi, which is a normalized linear combination of Xi and Zi.

Then

P ∗i = Pr(H∗i = 1|Vi) = Pr(Vib > µi|Vi) (3.4)

Vib = Xiπ1 + Ziπ2 = (X1i +X2iψ20 +X3iψ30 + ...+Xkiψk0 + Ziθ0)b (3.5)

where P ∗i is the probability of actually having poor health conditoned on the index Vi.

The function of P ∗i relies on the unknown distribution of the error term µi. Since the

index Vi contains many objective health indicators in practice, it is referred to as the

health index hereafter.

The misclassification probabilities are assumed to depend on the covariates and

the excluded variable. As the health index is a linear combination of covariates and

objective health measures, the misclassification probabilities are functions of the index:2

PL(Vi) = Pr(Hi = 1|H∗i = 0, Vi) (3.6)

PR(Vi) = Pr(Hi = 0|H∗i = 1, Vi) (3.7)

where Hi is the self-assessed health measure, 1 for “poor” and 0 for “good”. Individ-

uals with extreme values for the health index (e.g. perhaps due to having extremely

many or extremely few functional limitations or doctors’ diagnoses) are less likely to

2With the misclassification functions being unknown, it is the normalized index Vi that can be
recovered. For our purpose, identification of Vi is sufficient.
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misreport their health status. Then as the health index approaches the extremely large

or extremely small values, the misclassification probabilities will tend to be 0, that is,

no misclassification.

Since both the true health and the misclassification probabilities depend on the

health index, by the Law of Total Probability, the self-assessed health is also a function

of the index:

Pi(Vi) = (1− PR(Vi))P
∗
i (Vi) + PL(Vi)(1− P ∗i (Vi)) (3.8)

where Pi is the probability of reporting poor health (Hi = 1) conditioned on the in-

dex Vi. While the specific model for the observable Hi is unknown, the parameters

{ψm0}km=2 and θ0 in the index are identified semiparametrically in a single-index model.

Therefore, the index Vi and the probability Pi(Vi) are consistently estimated.

3.3.3 Estimator

Before proposing the estimator, it is necessary to simplify the structural model. With

the index Vi recovered, I simplify the structural model using the approach proposed by

Robinson (1988) for partially linear models. See Chapter 2 for details of the simplifi-

cation. Essentially, the simplication process separates the estimation of coefficients on

other economic covariates from the estimation of health effects on labor supply. Bound

(1991) argued that the mismeasured health variables would distort the estimated co-

efficients on other economic covariates that were related to health. Furthermore, he

showed that even if the measurement error of health variables was addressed, the dis-

torted estimation of coefficients on other covariates still remained. To separate such

twisting effects on labor supply, I use the Robinson’s technique to first estimate the co-

efficients on other covariates, leaving the health variable alone in the simplified model

to address. The Robinson’s technique on other covariates does not affect the estimation

of health effects on hours of work afterwards. At the same time, the later estimation

of how the health shock influences labor supply will not impact the estimation of the

coefficients on other covariates in the first step. In this way, we can individually achieve

consistent estimates of coefficients on covariates and health variable, making it possible
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to compare the relative significance of health and other economic covariates in labor

supply decisions. The simplified model is:

Y1i = α+H∗i β + εi (3.9)

where Y1i is interpreted as the differenced outcome by subtracting the estimator of X ′iγ

from the dependent variable Yi in the structural model. Again, the coefficient β reflects

the effect of health shocks on hours worked.

The observations with the extreme index values are important to address the mis-

classification. The proposed method in Chapter 2 essentially selects a set of the extreme

observations, which is termed a high probability set. On this set the observations have

no misclassification with a high probability. The estimator is essentially an instrumen-

tal variable strategy on the high probability set. The estimator of the coefficient on

health shocks is

β̃ =

∑N
i=1(P̂i − P̄ )Y1iŜi∑N
i=1(P̂i − P̄ )HiŜi

(3.10)

where P̂i is the estimate of Pi from a semiparametric model as discussed in Chapter

2. The selection function Ŝi helps to assign different weights to the observations in the

sample. See Chapter 2 for its mathematical definition. It assigns high weights (up to

1) to those observations with the extreme index values and low weights (down to 0) to

those observations with modest index values. P̄ denotes the weighted average of P̂i on

the high probability set,
∑N

i=1 P̂iŜi∑N
i=1 Ŝi

.

As discussed in Chapter 2, the high probability set parameter â controls which ob-

servations are selected. If the selected index does not approach the sufficiently large

or sufficiently small values, the bias of the estimator will be substantial because many

misreported observations are included. If the value of the index is too extreme, the bias

will become negligible but the variance will be significant due to having too few obser-

vations. Therefore, the high probability set parameter is determined in the dynamic

balance of the (squared) bias and the variance.

It is noteworthy that there are two high probability set parameters, one for each

tail. To be specific, there is a high probability set parameter â1 in the sub-choosing
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function ŜL (see D3 in Chapter 2) that helps to select those observations with extremely

small index values, while another parameter â2 in the sub-choosing function ŜR selects

observations with extremely large index values. The left tail of the index may be differ-

ent from the right tail, so two different parameters are needed to control the potential

different processes of selecting extreme observations. When the index is symmetrically

distributed, these two paramaters will be identical.

3.4 Data

This study uses the wave in 2012 of the Health and Retirement Study (HRS) to ana-

lyze how an individual responds in labor supply to his own health shock. The Health

and Retirement Study is a nationally representative survey of aging American house-

holds. The first cohort entered in 1992 and there were five other cohorts subsequently

entering in 1993 (the AHEAD cohort), 1998 (the Children of Depression cohort and

the War Baby cohort), 2004 (the Early Baby Boomer cohort), and 2010 (the Mid Baby

Boomer cohort). Each respondent is interviewed biennially. In each interview wave, the

HRS collects information on health status, employment history, wealth, income, social

security, pension and demographics for respondents and their spouses (if any). The

data contain an abundant set of health measures, including self-reported health status,

work-limiting health problems, functional limitations, doctors’ diagnoses, medical care

utilization, body mass index and mental health scores. Such a rich set of measures helps

to assess individuals’ health status from different perspectives and makes it possible to

implement the model proposed in Chapter 2.

This study mainly focuses on respondents aged between 45 and 61, because at age

62 individuals are able to collect Social Security retirement benefits and at 65 they are

eligible to receive Medicare. Both provide individuals with sizable financial incentives

to leave the labor force, leading them to be more likely to change their labor market

behavior when they experience health shocks compared to those who have not reached

these age thresholds. In addition, I exclude observations with missing reports on labor

supply, health and some economic characteristics. As a result, there are 2,877 men and

3,958 women in the sample.
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Table ?? defines the variables used in this study. The measure of labor supply is an

individual’s hours worked per year. The HRS contains the number of hours per week

and the number of weeks per year a respondent devotes to his or her main and second

job. For each job, I calculate the hours worked as a product of the number of hours per

week and the number of weeks per year. The total hours worked are a sum of the hours

of work from one’s main and second jobs. Those who are described as not working

have zero hours of work. The reported educational attainment has five categories: Less

than high school, GED, High school, Some college, and College and above. Except

for the reference category of Less than high school, there are four dummy variables in

the regression model for the other four education levels, respectively. There are two

self-assessed health measures used, work-limiting health problem (“Wl hlth” in Table

??) and self-reported health status3(“Sr hlth” in Table ??). Their respective effects

on labor supply will be examined individually. Since men and women may respond in

different ways, I examine their responses separately.

3.4.1 Descriptive Statistics

Table 3.2 presents descriptive statistics for men and women, respectively. Panel A

reports their basic demographics. The average ages of men and women are both about

56, and a majority of men and women are 51 years and older. There is no substantial

gender difference in the distribution of educational attainment and female respondents

have a slight edge over male respondents in completed higher education levels. While

male respondents are 1.2 percentage points more likely to have the education level of

less than high school than female respondents, 30 percent of females have some college

education compared to 28.8 percent of males. Females are also slightly more likely to

complete a bachelor’s degree or higher. To account for the effect of other income sources

that are unrelated to labor earnings, I calculate the non-labor income by subtracting

3Respondents are required to categorize their general health status as “Excellent”, “Very Good”,
“Good”, “Fair” and “Poor”. Since different individuals may apply different definitions to “Excellent”,
“Very Good” and “Good”, it is more common to translate this into a binary variable. In this paper I
divide these five categories into two groups: 1 for “Fair” or “Poor” health and 0 for “Excellent”, “Very
Good” or “Good” health.
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individuals’ own labor income from their total household income. On average, females

receive 4,000 dollars more of nonlabor income than males. There are more single women

than single men in this sample, with 22.5 percent of women being divorced or widowed

compared to only 13.5 percent of men in the same marital status.

Panel B compares the labor market behavior for the two genders. Generally speak-

ing, males have a stronger attachment than females to the labor market. They par-

ticipate in the labor force more actively than females and supply more hours of work.

When investigating the males who are working, about 15 percent of them also work on

a second job, compared to only 11 percent of females who supply labor in the market.

In addition, male workers devote more hours per year than female workers not only to

their first job but also to the second one, if any.

Panel C shows the men’s and women’s reports on their health status. Twenty-five

percent of men report a health problem that limits their work. At the same time,

there is a similar share (24%) of men reporting “Fair” or “Poor” health measured by

self-reported health status. The proportions of women in unhealthy status measured

by these two variables appear very close to each other, 26.7 percent for work-limiting

health problems versus 27.5 percent for self-reported health status. But it is noteworthy

that the group who reports work-limiting health problems is quite different from the

group who reports “Fair” or “Poor” in self-reported health measure. Table 3.3 illus-

trates the reported discrepancy between these two health measures by gender. Among

the 709 male respondents with some problem that limits their work, only 404 (57%)

report “Fair” or “Poor” health, while there are 289 individuals in the group (693) with

“Fair” or “Poor” health reporting no work-limiting problems. Such a large reporting

differential between these two health measures also occurs in the sample of female re-

spondents, providing evidence that self-assessed health varies greatly across variables

used to measure health and that there may be considerable misclassification of these

measures.
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To instrument for the subjective health measures, I include the number of func-

tional limitations4 and several doctors’ diagnoses. On average, males have 1.7 kinds of

limitations on daily life functions and females have 2.3. Forty-nine percent of men and

sixty percent of women report at least one type of limitation. Almost half of the sample

suffers from high blood pressure and more than 18 percent from diabetes, indicating

the high prevalence of chronic conditions among the aging population. Females are 10

percentage points more likely to experience psychological disorders than males, which

aligns with the literature on gender difference in mental health (McManus et al., 2016).

3.5 Results

3.5.1 Self-reported Health Status

Table 3.4 presents estimation results for men aged 45-61 when the self-reported health

status is examined. I apply the technique (termed IV on HPS) explained in the Method-

ology section to estimate the labor supply effect of health shocks. As a comparison, I

provide the OLS and IV estimates.5 When a man rates his health as “Fair” or ”Poor”,

he will work 2,299 hours per year fewer than his counterparts who rate their health

as “Good”, “Very Good” or “Excellent”. While the traditional IV estimation pro-

duces results that are not very far from the IV estimation on HPS, the OLS estimator

demonstrates a substantial attenuation bias compared to the IV estimator based on

high probability set; a man will reduce his labor supply by only 725 hours per year if

his health is not good in the OLS regression.

Table 3.5 shows the estimation results for women aged between 45 and 61 when

examining the self-reported health status. With respect to the estimated labor supply

effect of health shocks, not only the OLS estimator but also the traditional IV estimator

4To increase the variation of the estimated health index, I use the number of functional limitations
instead of a set of indicators for those limitations.

5Here, I regress an subjective health measure on covariates and instrumental variables in a semi-
parametric model. The health index, as a linear combination of covariates and excluded variables, is
estimated. The predicted expectation of the subjective health indicator conditional on this index is
used as an optimal instrument for the subjective measure. See Newey (1990) for optimal instrumental
variables.
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demonstrate attenuation biases compared to the proposed IV estimator based on the

high probability set. When estimating the effect of health using the IV technique on

high probability set, the result shows that “Fair” or “Poor” health will reduce women’s

labor supply by 1,929 hours per year. As a comparison, the results from the other two

estimators suggest that the working time devoted by women reduces by 602 hours in

the OLS estimation and 1,544 hours in the traditional IV estimation.

Figure 3.1: Frequency of Work Hours for Men (Upper) and Women (Lower)

Both men and women greatly reduce their labor supply in the face of health declines.

In particular, both genders with “Fair” or “Poor” health work about 2,000 fewer hours

per year than those who rate their health as “Excellent”, “Very Good” or “Good”.

This amount of reduced working time approximately equals the total hours devoted

by a full-time worker (On average, a full-time worker works 40 hours per week and 52

weeks per year). Figure 3.1 shows the histograms of men’s and women’s hours worked

per year. Surprisingly, there are a sizable number of observations with working time

above 2,000 hours per year, even up to 3,000 hours per year. It is plausible that a

hardworker may decide to greatly reduce his or her hours of work or even exit the labor
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market when experiencing a health shock.

Generally speaking, the hours worked for males and females increase with age,

and the increment rate decreases as people age. Whites supply more hours to the

market than the non-whites. Neither males nor females respond in labor supply to the

change in their non-labor income. While married men supply more hours to the labor

market than single men, married women work slightly less (insignificant) than single

women, probably implying the different incentives caused by marriage for males and

females. It is noteworthy that the measurement error of health variables will bias the

estimated coefficient on other covariates if they are correlated with the mismeasured

health variables (Bound, 1991). For example, education is often acknowledged to be

strongly related to health status6 and thus may be correlated with the measurement

error of health variables. For the OLS regression on self-reported health status, males

with the education level of high school graduate supply 186 hours per year more than

the males with educational attainment of less than high school (the reference category).

Those with more education, some college or college and above, devote even more time

to the labor market, 257 and 429 hours per year, respectively. In contrast, when

implementing Robinson’s technique for covariates before addressing the misclassification

of health variables, those who have a GED degree, a high school diploma or some college

education work fewer hours than those with the education level of less than high school.7

Different from the sample of men, women who have more schooling, for instance high

school graduate, some college, college and above, work more than their counterparts

with less than high school education.

3.5.2 Work-limiting Health

Table 3.6 and Table 3.7 present the estimation results for men and women, respectively,

when the work-limiting health is investigated. The IV estimate on HPS suggests that a

6Grossman (1972) believed that adults with higher education were able to produce health more
efficiently. Fuchs (1982) proposed a theory that more education was a signal of lower discount rate.
Adults with a lower discount rate would like to make a current investment and receive payoffs from the
future. Those who had a lower discount rate tended to invest in education and health.

7A bachelor’s degree or higher also slightly reduces one’s hours of work compared to his counterparts
with education below high school, but the result is statistically insignificant.
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man will reduce his labor supply by 1,713 hours per year when he suffers from a work-

related limitation in health. The traditional IV estimation produces similar results,

while the OLS estimator is biased towards zero. For the sample of women, the IV

estimate on HPS indicates that a woman will reduce her labor supply by 1,309 hours

per year when she has a work-related health limitation, while she will reduce her labor

supply by 1,052 and 1,278 hours per year by the OLS and traditional IV estimations,

respectively.

When the work-limiting health is examined, the traditional IV estimate and the

IV estimate on HPS yield close results. There are three possible explanations for it.

The first possibility involves a hypothesis that the sample has endogeneity rather than

measurement error. If it is true, a traditional IV technique will produce a consistent

estimate compared to the biased OLS estimate. The IV estimate on HPS, which con-

ducts an IV strategy for a fraction of observations, will also produce a similar consistent

result except a larger standard error. The second possible explanation would be that

there exists measurement error instead of endogeneity and that the potential instru-

ment is valid. Since the valid instrument is uncorrelated with the measurement error,

it handles the misclassification of work-limiting health, leading to the same pattern of

results as the first explanation. In addition, a special data distribution can also explain

this phenomenon; the difference between the true health and the misreported health

may be symmetrically distributed around the mean of the index but with different

signs. Then the expectation of the difference conditional on small index values will

offset the expectation given large index values. As a result, the overall expectation

of the difference between the true and the misreported health disappears. Future re-

search needs to investigate the reason behind the close results between the traditional

IV estimate and the proposed IV estimate on HPS. In addition, the estimated effect of

work-limiting health is different from the effect of self-reported health, providing new

empirical evidence that economic outcomes resulting from health declines are sensitive

to the measures used, which is consistent with the review of Currie and Madrian (1999).
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3.5.3 Retirement Age Group: Aged 62-70

After examining the working age population between 45 and 61 years old, I study indi-

viduals aged 62-70 as they may be considering retirement. With the financial incentives

provided by the Social Security retirement benefits (starting from 62) and Medicare

(starting from 65), individuals over 62 are more likely than those below 62 to choose

retirement over staying in the market. While there may be more than one factor that

influences one’s labor supply decision at retirement age, it is interesting to study the

role of health status.

Table 3.8 describes the characteristics of men and women in this age group. Com-

pared to the working age group, an increased percentage of men and a slightly decreased

percentage of women are married. Different from the similar distribution of educational

attainment between men and women aged 45-61, older male respondents are 8.4 per-

centage points more likely to receive a bachelor’s degree or higher than older female

respondents, since more women (31%) than men (24%) stop schooling after a high

school diploma. Above 62 years old, both men and women significantly reduce their

labor force participation rate and hours of work. Only 42 percent of men and 34 per-

cent of women in this age group are active in the labor market. For those who are

working, the working time devoted to the main and second jobs also drops, except

that elderly females work more hours on the second job than their counterparts aged

45-61, maybe a result from selection. Panel C indicates more individuals at retirement

age are diagnosed with medical conditions than those at working age. While the older

group is more likely to report work-limiting health problems than the younger group,

the proportion of older individuals who rate their health as “Fair” or “Poor” is similar

to the proportion of younger individuals reporting this status, regardless of gender.

These two health measures may capture different dimensions of the true health status,

or respondents may have different motivations when reporting these two measures. As

such, it is necessary to study these two health measures in the labor supply equation.

Table 3.9 presents the estimation results of men and women aged 62-70. Compared

to the sample aged 45-61, there is smaller reduction of hours worked when individuals
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experience health declines, except the sample of women when the work-limiting health

is investigated. The results are reasonably expected because at retirement age both

men and women decide to reduce hours of work or exit the labor force even if they are

in good health. But the sample selection issue may be severe, as only 42 percent of

males and 34 percent of females are economically active in the labor market. To test

the existence of the sample selection issue and to accomodate it in the proposed IV

technique on HPS, requires further theoretical developments.

3.6 Conclusions

This paper uses the method proposed in Chapter 2 to address the misclassification of

health measures in studying the labor supply effects of health shocks. With objective

health indicators providing exclusion restrictions for subjective health measures, I es-

timate the health index semiparametrically. Based on the high probability set where

the index values are sufficiently large or sufficiently small, I implement the proposed IV

estimator on this set using a sample from the 2012 wave of the Health and Retirement

Study (HRS). The results suggest that both men and women aged 45-61 will reduce

their labor supply substantially and that OLS and conventional IV methods demon-

strate considerable attentuation biases when the self-reported health status is studied.

When examining the measure of work-limiting health, the proposed technique and the

conventional IV estimation yield similar results, while the OLS estimate is still biased

towards zero. The greatly reduced work hours indicate that health problems occuring

at middle age severely lower individuals’ wage earnings and even force them to exit

the labor market, which aligns with the literature on the relation between health and

retirement. As individuals age, a larger proportion of men and women work zero hours

in the labor market, leaving the sample selection bias a potential issue. Meanwhile, it is

important to assess the financial status of the aging population through studying their

labor market outcomes. Therefore, addressing the selection issue is a topic for future

research.
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Table 3.1: Definitions of variables in the structural model and exclusion variables

Variable Definition

Structural Model: Yi

Hours worked Total hours per year respondent works at the main and 2nd jobs.

Structural Model: Xi and Hi

Age Age of respondent.
Age squared Square of age.
Nonlabor
income

Total household nonlabor income, excluding wages and salaries
earned by respondent.

Race = 1 if white; = 0 otherwise.
GED = 1 if having GED and 12 or fewer years of education; = 0 other-

wise.
High school = 1 if having high school diploma and 12 or fewer years of educa-

tion; = 0 otherwise.
Some college = 1 if having high school diploma or GED and 13 or more years

of education, but less than bachelor degree; = 0 otherwise.
College above = 1 if having college degree or greater; = 0 otherwise.
Married = 1 if married (spouse present), married (spouse absent) or part-

nered; = 0 otherwise.
New England = 1 if census division of residence is New England; = 0 otherwise.
Mid Atlantic = 1 if census division of residence is Mid Atlantic; = 0 otherwise.
EN Central = 1 if census division of residence is East North Central; = 0

otherwise.
WN Central = 1 if census division of residence is West North Central; = 0

otherwise.
S Atlantic = 1 if census division of residence is South Atlantic; = 0 otherwise.
ES Central = 1 if census division of residence is East South Central; = 0

otherwise.
WS Central = 1 if census division of residence is West South Central; = 0

otherwise.
Mountain = 1 if census division of residence is Mountain; = 0 otherwise.
Wl hlth = 1 if respondent has a health problem that limits the kind or

amount of paid work; = 0 otherwise.
Sr hlth = 1 if respondent reports “Poor” or “Fair” general health status;

= 0 if respondent reports “Excellent”, “Very Good” or “Good”
general health status.
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Table 3.1 Continued

Variable Definition

Exclusion Variables: Zi

Functional
Limt #

Number of limitations on daily life activities, including “walking
several blocks”, “sitting for about 2 hours”, “getting up from a
chair after sitting for long periods”, “climbing several flights of
stairs without resting, stooping/kneeling/crouching”, “lifting or
carrying weights over 10 lbs”, “reaching arms above shoulder level”
and “pushing or pulling large objects”.

Hibp = 1 if respondent has been diagnosed with “high blood pressure
or hypertension”; = 0 otherwise.

Diab = 1 if respondent has been diagnosed with “diabetes or high blood
sugar”; = 0 otherwise.

Cancr = 1 if respondent has been diagnosed with “cancer or a malignant
tumor of any kind except skin cancer”; = 0 otherwise.

Lung = 1 if respondent has been diagnosed with “chronic lung disease
except asthma such as chronic bronchitis or emphysema”; = 0
otherwise.

Heart = 1 if respondent has been diagnosed with “heart attack, coro-
nary heart disease, angina, congestive heart failure, or other heart
problems”; = 0 otherwise.

Strok = 1 if respondent has been diagnosed with “stroke or transient
ischemic attack (TIA)”; = 0 otherwise.

Psych = 1 if respondent has been diagnosed with “emotional, nervous,
or psychiatric problems”; = 0 otherwise.
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Table 3.2: Descriptive Statistics

Variable Men Women

Panel A: Basic Demographics

Age
56.2
(3.3)

55.5
(3.7)

45-50 (%) 4.6 9.6
51-55 (%) 37.6 37.4
56-61 (%) 57.8 43.0
Non-white (%) 37.7 39.5

Nonlabor Income
45217.8
(85350.1)

49195.6
(93320.1)

Married (%) 76.1 65.7

Educational Attainment (%)
Less Than High School 15.6 14.4
GED 6.0 5.8
High School 24.8 24.7
Some College 28.8 30.0
College Above 24.8 25.1
N 2877 3958

Panel B: Labor Supply

Hours Worked
1566.9
(1183.4)

1177.6
(1075.5)

Working Group (%) 70.8 62.3
Working On 2nd Job/Working Group(%) 14.7 11.2

Hours On 1st Job Among 1st Job Workers
2141.1
(698.0)

1845.3
(685.6)

Hours On 2nd Job Among 2nd Job Workers
532.7
(518.2)

474.3
(486.8)

Panel C: Health Measures

Wl hlth (%) 24.6 26.7
Sr hlth (%) 24.1 27.5

Functional Limt #
1.7
(2.4)

2.3
(2.6)

Hibp (%) 49.6 47.5
Diab (%) 19.2 18.5
Cancr (%) 5.1 9.0
Lung (%) 5.7 9.0
Heart (%) 14.2 12.3
Strok (%) 3.9 3.9
Psych (%) 14.4 23.9
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Table 3.3: Discrepancy Between Two Subjective Health Measures

Men
Self-reported = 0 Self-reported = 1 Total

Work-limiting = 0 1879 289 2168
Work-limiting = 1 305 404 709
Total 2184 693 2877

Women
Self-reported = 0 Self-reported = 1 Total

Work-limiting = 0 2475 426 2901
Work-limiting = 1 394 663 1057
Total 2869 1089 3958

Table 3.4: Labor Supply Effect of Self-reported Health Status for Men Aged 45-61

OLS IV IV on HPS

Health
-725.4
(48.9)

-2084.5
(115.6)

-2299.3
(302.3)

Age
462.7
(145.4)

483.4
(247.5)

454.8
(139.2)

Age Square
-4.5
(1.3)

-4.6
(2.2)

-4.4
(1.3)

Nonlabor Income
0.0
(0.0)

-0.0
(0.0)

-0.0
(0.0)

White
220.0
(43.5)

149.8
(50.5)

124.8
(42.4)

Educational Attainment

GED
-79.0
(96.4)

-244.2
(111.5)

-253.5
(94.5)

High School
186.0
(66.7)

-99.3
(79.9)

-164.5
(68.1)

Some College
257.0
(65.7)

-44.2
(80.1)

-132.6
(68.3)

College & Above
428.8
(69.7)

37.5
(86.5)

-27.6
(74.2)

Married
424.4
(48.3)

353.5
(57.6)

327.5
(47.6)

N 2877 2877 2877

Figures in parentheses are standard errors.
Other covariates in every regression model include eight geographical dummy variables, indicating New
England, Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central,
West South Central, and Mountain.
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Table 3.5: Labor Supply Effect of Self-reported Health Status for Women Aged 45-61

OLS IV IV on HPS

Health
-602.4
(37.8)

-1543.8
(77.2)

-1928.6
(265.3)

Age
530.9
(102.8)

469.6
(139.2)

551.1
(100.1)

Age Square
-5.1
(0.9)

-4.5
(1.3)

-5.2
(0.9)

Nonlabor Income
-0.0
(0.0)

-0.0
(0.0)

-0.0
(0.0)

White
123.2
(34.3)

104.6
(38.0)

58.3
(33.9)

Educational Attainment

GED
259.6
(78.5)

120.7
(86.6)

68.2
(77.6)

High School
371.3
(54.5)

140.8
(61.6)

116.9
(56.2)

Some College
472.5
(53.3)

199.0
(61.6)

168.6
(55.8)

College & Above
595.5
(56.8)

242.8
(67.7)

225.2
(61.1)

Married
-13.5
(36.6)

-69.0
(43.1)

-59.5
(37.5)

N 3958 3958 3958

Figures in parentheses are standard errors.
Other covariates in every regression model include eight geographical dummy variables, indicating New
England, Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central,
West South Central, and Mountain.



63

Table 3.6: Labor Supply Effect of Work-limiting Health for Men Aged 45-61

OLS IV IV on HPS

Health
-1299.8
(43.5)

-1666.1
(67.9)

-1712.8
(140.9)

Age
406.9
(131.8)

498.8
(201.4)

411.8
(140.5)

Age Square
-3.9
(1.2)

-4.7
(1.8)

-4.0
(1.3)

Nonlabor Income
0.0
(0.0)

0.0
(0.000)

0.0
(0.0)

White
214.4
(39.3)

206.4
(40.7)

209.7
(41.3)

Educational Attainment

GED
107.5
(87.3)

141.4
(90.3)

167.5
(93.8)

High School
267.0
(59.8)

237.0
(61.6)

254.9
(62.5)

Some College
323.7
(58.6)

317.9
(60.9)

282.4
(61.4)

College & Above
391.0
(62.3)

335.5
(65.6)

336.0
(68.5)

Married
286.0
(44.1)

243.5
(47.4)

243.0
(48.2)

N 2877 2877 2877

Figures in parentheses are standard errors.
Other covariates in every regression model include eight geographical dummy variables, indicating New
England, Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central,
West South Central, and Mountain.
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Table 3.7: Labor Supply Effect of Work-limiting Health for Women Aged 45-61

OLS IV IV on HPS

Health
-1052.3
(34.4)

-1277.6
(53.0)

-1309.0
(243.9)

Age
554.5
(95.4)

532.4
(120.7)

559.6
(100.7)

Age Square
-5.2
(0.9)

-5.0
(1.1)

-5.3
(0.9)

Nonlabor Income
-0.0
(0.0)

-0.0
(0.0)

-0.0
(0.0)

White
139.6
(31.8)

153.1
(32.7)

115.0
(33.4)

Educational Attainment

GED
348.6
(72.6)

360.8
(74.2)

319.2
(76.2)

High School
380.7
(50.0)

347.2
(51.4)

349.0
(52.9)

Some College
523.7
(48.4)

499.3
(49.9)

512.5
(50.7)

College & Above
584.7
(51.5)

534.7
(54.3)

541.8
(54.9)

Married
-72.0
(34.0)

-99.4
(37.5)

-87.5
(35.9)

N 3958 3958 3958

Figures in parentheses are standard errors.
Other covariates in every regression model include eight geographical dummy variables, indicating New
England, Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central,
West South Central, and Mountain.
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Table 3.8: Descriptive Statistics: Aged 62-70

Variable Men Women

Panel A: Basic Demographics

Age
65.6
(2.7)

65.7
(2.7)

Non-white (%) 24.0 25.4

Nonlabor Income
58700.8
(110775.5)

45736.5
(87506.8)

Married (%) 82.0 63.2

Educational Attainment (%)
Less Than High School 13.9 16.1
GED 4.8 4.9
High School 24.0 30.5
Some College 26.6 26.2
College Above 30.8 22.4
N 1631 2267

Panel B: Labor Supply

Hours Worked
770.9
(1065.4)

548.2
(898.5)

Working Group (%) 42.4 33.8
Working On 2nd Job/Working Group(%) 10.4 9.9

Hours On 1st Job Among 1st Job Workers
1774.4
(851.3)

1574.5
(773.2)

Hours On 2nd Job Among 2nd Job Workers
482.4
(463.1)

522.8
(618.3)

Panel C: Health Measures

Wl hlth (%) 31.1 34.9
Sr hlth (%) 24.3 24.6

Functional Limt #
1.9
(2.4)

2.7
(2.6)

Hibp (%) 64.1 61.6
Diab (%) 27.4 24.9
Cancr (%) 14.0 14.5
Lung (%) 8.8 11.3
Heart (%) 25.5 20.3
Strok (%) 6.7 6.1
Psych (%) 16.9 25.2
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Table 3.9: Labor Supply Effect of Health Shocks for Men and Women Aged 62-70

OLS IV IV on HPS OLS IV IV on HPS

Men

Wl hlth
-650.2
(53.3)

-991.4
(95.0)

-1079.0
(172.6)

– – –

Sr hlth – – –
-407.1
(59.9)

-1120.3
(123.6)

-986.7
(190.4)

Women

Wl hlth
-531.2
(37.2)

-649.2
(64.3)

-1886.2
(246.7)

– – –

Sr hlth – – –
-358.8
(43.8)

-770.0
(84.8)

-1242.8
(286.0)

Figures in parentheses are standard errors.
Other covariates in every regression model include age, age squared, nonlabor income, race, educational
attainment, married status and eight geographical dummy variables, indicating New England, Mid
Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South
Central, and Mountain.
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Chapter 4

Health Shocks and Household Labor Supply:

Instantaneous and Adaptive Behavior of an Aging

Workforce

4.1 Introduction

As individuals age, the risk of health problems increases. Johnson et al. (2005) found

that for a sample of individuals who were aged 51 to 61 in 1992, 41 percent experienced

some type of major medical problem between 1992 and 2002, and 34 percent had

health problems that limited work. Such critical health events can negatively impact

the economic circumstances of households. An individual’s health decline may affect

not only her own labor supply but also her spouse’s labor supply. The knowledge of

how individuals respond in labor supply to their partners’ health conditions helps to

assess the economic effect of poor health on households and therefore could inform the

development of policies to insure households from economic loss due to illness.

However, the predicted effect of health shocks on spouse’s labor supply is theoret-

ically ambiguous. On one hand, poor health often reduces productivity in household

production and requires time spent in care giving by the spouse. In this case, the

spouse remains the primary home producer and caregiver, which pulls her away from

the market. On the other hand, it has been well established that health declines reduce

own labor supply, resulting in an income loss. To compensate for this loss, the spouse

may need to earn more money and so increase her labor supply. Additionally, the in-

crease of health care expenditures also promotes greater labor supplied to the market.

Combining the pull imposed on spouses away from the market and the incentive of

devoting more time to the market, the theoretical ambiguity makes empirical analysis

crucial.

However, the empirical modeling of own and spousal health status on labor supply

is complicated by measurement error and shared characteristics across spouses. As with
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a large body of previous work, this study uses self-reported work-limiting health condi-

tions and self-rated health status as indicators of health. If respondents systematically

report inaccurate health status to justify their labor force withdrawal, the models will

suffer from endogeneity bias. In addition, if there exist shared characteristics across

spouses, this will also bias the estimation. To address these problems, I use an instru-

mental variable strategy.

I use the Health and Retirement Study (HRS), a longitudinal dataset ranging from

1992 to 2012, to consider the impact of own and spousal health status on labor supply

decisions. I include fixed effects into the model to control for the unobserved fixed

characteristics. I also extend the analysis to consider how a spouse adjusts her labor

supply over time in response to her partner’s health shock. The research to date has

focused on the instantaneous effect on an individual’s labor supply soon after negative

health shock to her spouse. I argue that this instantaneous effect captures only a part

of the full picture. While some individuals respond immediately to their spouses’ health

shocks, those who are bound by labor contracts or who face costs caused by sudden

labor supply changes probably postpone their responses. For those who would like

to work more in the market after their spouses become ill, it may take some time to

match up with vacant positions, and this too would not be reflected in the estimated

instantaneous effect. The case will be more complex if an individual changes her mind

over time after health problems initially affect her partner; for instance, an individual

immediately reduces her labor supply due to the acute condition of her spouse, but

then decides to raise her labor supply some years later when her spouse’s health is

expected to be stable or in recovery. In contrast, an individual probably maintains

her labor supply at the beginning of her spouse’s negative health spell, but decreases

the work hours in the market as her spouse’s health deteriorates. Few previous studies

address these complicated situations. I will call this over time adjustment “adaptation”

and develop an empirical model to test it by constructing variables in which the health

indicators interact with the elapsed time since the first report of a work-limiting health

condition.
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This paper is organized as follows: the next section reviews the literature; Sec-

tion 4.3 introduces and describes the sample used in this study; Section 4.4 explains

methodology; Section 4.5 presents results; and Section 4.6 draws conclusions.

4.2 Literature Review

Much previous research has examined the effect of an individual’s health status on her

spouse’s labor supply, but the results are mixed. Parsons (1976) uses the Productive

Americans Survey (PAS) to examine the effect of work-limiting health conditions on

own and spouse’s time allocation. The time allocation contains productive hours in the

labor market as well as in the home, each recorded in the PAS for husband and wife.

For each spouse, market work hours and home work hours are regressed on own health

status as well as spousal health status. Not surprisingly, in response to own health

problems both spouses substantially reduce work hours in the market but maintain

their home work hours. It is noteworthy that husbands and wives respond differently

to spousal health shocks. A husband whose wife suffers a health related work limitation

increases his work hours in the home rather than in the market, while a wife increases

her work hours in the market rather than in the home when a health problem strikes

her husband.

Levy (2002) examines the effect of a new diagnosis (cancer, diabetes, heart at-

tack, chronic lung disease and stroke) on various economic outcomes of households and

individuals, including labor supply. She uses the first four waves of the Health and

Retirement Study (HRS) and separately examines insured and uninsured households.

Levy estimates fixed-effect models and includes as explanatory variables interactions

of insurance status both with demographic characteristics and the dummy for a new

diagnosis. The results suggest no evidence of an added worker effect; individual labor

supply is not affected by spousal health shocks. But Levy neglects the gender difference

by using the full sample of combining males and females, with the effect on husbands

potentially offset by the effect on wives.

Siegel (2006) uses the first wave (1992) of the Health and Retirement Study (HRS)
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to estimate the effect of the deterioration of husband’s health on his wife’s labor force

participation and hours of work. There are two subjective health measures, the self-

rated health status and work limitations, and two objective measures, the number of

diagnoses of health conditions and the number of limitations of daily living activities and

instrumental activities. The regressions suggest the dependence of the estimates on the

health measures used; the more limitations of daily living activities and instrumental

activities reported by the husband lead his wife to be more likely to work, while a

woman whose husband reports his health as very good or good works fewer hours than

a woman whose husband reports excellent health.

Parsons (1976), Levy (2002) and Siegel (2006) do not consider the bias of estimates

caused by the systematic misreporting of health status to justify reduced labor supply.

In contrast, Charles (1999) focuses on the endogeneity incurred by measurement error

in the categorical health indicators, the self-reported work-limiting health condition

and self-rated health status, when he determines how individuals react in labor supply

to their spouses’ health shocks. To account for measurement error bias, measures of

functional limitations are used as instruments in a 2SLS regression. He also includes

a fixed effect which he argues is correlated with own health and spouse’s labor supply.

He estimates this fixed-effect IV model using the first two waves of the Health and Re-

tirement Study (HRS). The results indicate that both husbands and wives adjust labor

supply significantly when their partners suffer health shocks but in different directions:

husbands lower their work hours in the market when their wives’ health declines, while

wives work more in the face of their husbands’ illnesses.

However, Charles’ work is subject to criticism. As he explains, his fixed-effect IV

model is estimated by 2SLS in which he regresses the endogenous health variables on

the instruments, using the probit model in the first stage, and subsequently he replaces

the endogenous health variables in the structural model in the second stage by the

prediction from the first stage. It should be noted that this two-stage estimator is not

an IV estimator. 2SLS can be very problematic if the first stage regression is not linear,

like the probit model. So this two-stage estimator used by Charles is very sensitive to

the probit model being exactly right and does not have the robustness properties of IV.
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This study will improve upon Charles’ model by proposing an optimal IV estimator.

The optimal instrument strategy has the robustness and consistency properties of IV,

which I will discuss in more detail below.

The above work all focuses on the examination of the instantaneous effect. The

literature on how an individual adjusts over time in labor supply to their spouses’ health

declines is somewhat limited. Berger and Fleisher (1984) argue that an estimate using

cross-sectional data that compares the response of wives whose husbands are healthy

with those whose husbands have health problems will not reveal wives’ response to a

decline of their husbands’ health over time. Past research using the first wave (1966) of

the National Longitudinal Survey (NLS) found having a husband with a work-limiting

health condition increased the probability a woman worked in the market and the

number of hours she worked. However, Berger and Fleisher find that for wives whose

husbands were reported to be healthy in 1966, the onset of a new spousal health problem

of their husbands between 1966 to 1970 reduced their weeks worked. In contrast, wives

whose husbands remained healthy during this period increased their work time engaged

in the market. To explain the wives’ adjustment over time, they regress the wives’

weeks worked in 1970 on wives’ weeks worked in 1966, husbands’ work-limiting health

problems during the period ranging from 1966 to 1970, and other controls. Among the

control variables is the attractiveness of transfer income, which is the ratio of monthly

public assistance in 1969 to the husband’s hourly wage in 1966. Berger and Fleisher

believe that the transfer income replaces the earnings loss related to husbands’ health

declines and therefore impacts wives’ response to these declines. To capture the impact

by the transfer income, a variable is constructed by interacting the husbands’ work-

limiting health problems with the attractiveness of the transfer income. As argued, the

results suggest that a husband’s negative health shock indeed impacts his wife’s labor

supply, but this impact depends on transfer payments: as the transfer payments are

more attractive, wives decrease the work time devoted to the market. Even though

the work by Berger and Fleisher is illuminating, they only examine the adjustment in

labor supply of 1970 in response to the occurrence of health problems from 1966 to

1970, without tracing the history of labor supply since health problems were initially
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reported. I will measure the duration of an individual’s health problem and study how

the spouse adjusts her labor supply over this duration.

4.3 Data

I use the Health and Retirement Study (HRS) to analyze how an individual responds to

her spouse’s health shock. The HRS is a national panel survey consisting of households

which have been interviewed biennially since 1992. It collects information spanning from

1992 to 2012 on employment history, health status, income, asset and demographics

for individuals and their spouses. It includes six cohorts: the HRS cohort was first

interviewed in 1992, the AHEAD cohort in 1993, the Children of Depression (CODA)

cohort in 1998, the War Baby (WB) cohort also in 1998, the Early Baby Boomer (EBB)

cohort in 2004 and the Mid Baby Boomer (MBB) cohort in 2010. The original HRS

contains 37,319 respondents, each respondent being recorded biennially since her cohort

entered the HRS.

This study is aimed at examining an individual’s work decision when her partner

suffers a health shock, so I focus on couples for whom there exists a long enough history

to identify the impact of a health shock. I restrict my sample to observations from 1996

to 2012, eliminating observations from the first and second waves because some crucial

variables in relation to health status, for example the functional limitations, are different

for the first two waves compared to the subsequent nine waves. I restrict the sample to

married couples1 and eliminate single respondents and households in which there is a

remarriage. Moreover, I only include waves in which both spouses are 45-70 years old

and therefore old enough to become more vulnerable to health declines and likely to

still be in the labor force. Additionally, I exclude waves with missing data on variables

of interest, such as age, race, educational attainment, census region, household income,

individual earnings, health measures and employment history. The above restrictions

1If either spouse in a household dies in a given wave, the subsequent observations for this household
will be excluded from this sample. If one spouse reports herself to be divorced in a given wave, the
corresponding observation for this household in this wave is excluded.
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result in an unbalanced panel2 of 5,823 couples with 21,779 observations for each spouse.

The key variables used in this study are described as follows:

The measure of labor supply is the hours worked per year. It is the sum of work

hours in the major job as well as in the second job, each computed as the product of

“hours of work per week” and “weeks worked per year.” Individuals not working for

pay are treated as having zero hours of work.

There are four measures of health shocks, two commonly considered to be more

subjective and the other two more objective. The two more subjective health measures

are work-limiting health conditions and self-rated health status. The variable of work-

limiting health conditions has the value of 1 if respondents report a health problem

that limits their work, and 0 otherwise. The self-rated health status reports the general

health status for husbands and wives, categorized as “excellent”, “very good”, “good”,

“fair” and “poor”. I recode this variable to a dummy variable: it equals 1 if respondents

report their general health status as “fair” or “poor”, and 0 if they report as “excellent”,

“very good” or “good”. The number of individuals reporting “excellent” or “poor” in

the original variable make up only a small proportion of the whole sample.3 The

two more objective health measures are functional limitations and doctor-diagnosed

health problems. Functional limitations contain a set of variables recording data about

difficulty with physical activities, like walking several blocks, climbing several flights of

stairs without resting, and so on. Each variable equals 1 if respondents report some

difficulty and 0 if not. Doctor-diagnosed health problems include high blood pressure,

diabetes and the like. Respondents are asked if they have ever been diagnosed with

any condition when they are first interviewed, and in subsequent waves, respondents

have the opportunity to review the prior statement and report again if they have been

diagnosed with any condition since the previous interview. This update is reflected in

these variables. In each wave, if respondents have been diagnosed with any condition,

the corresponding variable has the value of 1; otherwise, it equals 0.

2The sample excludes households with only one wave for the sake of a longitudinal dataset.

3There are not enough instrumental variables to instrument each category in the original variable,
which I will discuss in more detail in methodology.
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The duration of an individual’s health shock is defined as the number of waves since

the first report of her work-limiting health condition. Because the duration is unclear

if an individual reported a work-limiting health condition in her first interview, this

variable is created only for individuals who did not report any work-limiting health

condition in their first interview.

I use “total household income” and “individual earnings” to derive household non-

labor income. These two economic variables record information in the calendar year

prior to the survey. The difference by subtracting both spouses’ individual earnings

from total household income is the household non-labor income. I convert household

non-labor income to year 2000 dollars using the CPI-U.

The HRS includes other demographic variables, such as the data on age, race,

educational attainment and census region for husbands and wives in each wave.

4.3.1 Descriptive Statistics

Table 4.1 presents basic descriptive findings. In this sample, about 88 percent of hus-

bands and wives are white and there is a very small number of inter-racial marriages.

The distribution of educational attainment indicates a gender difference in education

for the sample cohort: husbands are 1.9 percentage points more likely to have less

than high school degrees than wives, but 33 percent of husbands have college degrees

and above compared to only 28 percent of wives. Twenty-six percent of husbands and

thirty-one percent of wives have high school degrees. The distribution of husbands’

educational attainment is comparatively even, while the distribution of wives’ concen-

trates on the high school degree. Because my sample is unbalanced and households

may enter or exit this sample in different waves, I describe variables that change across

waves for two waves, the first wave when a household enters and the last wave up to

which a household stays. The average age of husbands in the last wave is 62 and the

average age of wives is just below 60. The average marital duration is more than 30

years in the last wave, implying a high commitment to marriage.

Table 4.1 reports descriptive statistics for two main health measures, work-limiting
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health conditions and self-rated health status. These two measures display health de-

terioration of husbands and wives with time. For example, in the first wave 17 percent

of husbands report having work-limiting health conditions and by the last wave this

percent rises to 24. Wives experience a similar deterioration of health. Self-rated health

status also shows health declines for husbands and wives: in the first wave, 17 percent

(16 percent) of husbands (wives) rate their health status as fair or poor rather than

good, very good or excellent, and in the last wave 21 percent (19 percent) of husbands

(wives) believe they have fair or poor health. In addition, a comparison of hours of

work per year between the first and last waves indicates that both husbands and wives

reduce their labor supply over the period of study.

4.4 Methodology

4.4.1 Basic Model

To examine how individuals react in labor supply to spouses’ health shocks, I propose

a model as follows:

Lit = β0 +X ′itβ +Hr
itγr +Hs

itγs + αi + θt + εit (4.1)

where the dependent variable Lit is work hours of individual i at time t; Hr
it, H

s
it are

own and spouse’s health status, respectively, either work-limiting health conditions or

self-rated health status; Xit are variables capturing determinants of labor supply other

than health status, including own and spouse’s ages and square of ages, own race and

educational attainment, census region and household non-labor income; αi and θt are

the individual effects and time fixed effects, and εit is a normally-distributed error with

zero mean. This equation includes the time fixed effects, θt, to take into account time

period specific effects on labor supply such as the general economic climate.

The existence of measurement error complicates the empirical estimates of own and

spousal health status on labor supply. The two health measures used in this model are

both self-reported health and therefore more likely to be endogenous to work decisions.

Bound (1991) casts doubt on the comparability of self-reported health across respon-

dents because different people probably rate the same condition differently. He also
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argues that working age individuals prefer to report worse health to rationalize their

reduction in labor supply. For example, the questionnaire wording of work-limiting

health problems is “Now I want to ask how your health affects paid work activities.

Do you have any impairment or health problem that limits the kind or amount of

paid work you can do?” This questionnaire wording hints at the relationship between

health problems and labor supply, and probably leads a respondent to misreport own or

spouse’s health status to justify his reduction of labor supply. To address this problem,

I use two sets of more objective health measures simultaneously, functional limitations

and doctor-diagnosed health problems, to instrument for work-limiting health condi-

tions and self-rated health status.4 Functional limitations and doctor-diagnoses reveal

health status: if a respondent has a limitation to function in some physical activity in

daily life or he has a diagnosis, it is highly possible that he reports his health as poor.

Different from the two subjective health measures, each variable in functional limi-

tations and doctors’ diagnoses involves some specific physical limitation or diagnosis,

which is very “narrow” and thus less subject to misreporting. And the questionnaire

wording for these variables does not hint at the relationship between health problems

and labor supply.

The self-reported health variables are regressed on all exogenous variables in equa-

tion (4.1) and functional limitations as well as doctor-diagnosed health problems as

excluded restrictions:

Hj
it = I{π0 +X ′itπ1 + Zjit ≥ µit}, j = r, s (4.2)

where Hr
it, H

s
it are individual i’s and spouse’s health status at time t, respectively; Xit

include the same exogenous variables as in equation (4.1); Zrit, Z
s
it are the instruments

for individual i and her spouse, respectively, including their respective functional limi-

tations and doctor diagnosed health problems; and µit is a normally-distributed error

4This IV assumption may not hold, since such instruments are probably correlated with the mea-
surement error of the discrete health variables, which is illustrated in earlier chapters. An extension of
Chapter 2 to cover multiple mismeasured regressors in panel data regressions would make it possible
to test this IV assumption. If the test indicated that the IV assumption fails, then an extension of the
analysis based on high probability set in Chapter 2 could be employed. In future research, I plan to
consider this extension.
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with zero mean. Since the two health measures of Hj
it, j = r, s are dummy variables, I

estimate the probit regression for (4.2).

Newey (1990) proposes optimal instruments to minimize the covariance matrix of

an IV estimator. The optimal instrument of an endogenous variable is the expectation

of this variable conditioned on all regressors in the function of this endogenous variable.

The optimal instrument strategy has the robustness and consistency properties of IV,

and the variance of the estimator in this strategy would be smaller than the variance of

other IV estimators. There are three steps to process the optimal instrument strategy:

• In step 1, I get optimal instruments for endogenous health measures.

P jit = E(Hj
it|Xit, Z

j
it) = Pr(Hj

it = 1|Xit, Z
j
it), j = r, s (4.3)

The optimal instrument is P jit, j = r, s. I predict the probability, P̂ jit, from the

probit model in (4.2). The prediction is the estimated optimal instrument.

• In step 2, I regress the endogenous variable on optimal instruments. It is the first

stage of 2SLS:

Hj
it = δ0 +X ′itδ1 + P̂ ritδ2 + P̂ sitδ3 + ωit, j = r, s (4.4)

From this regression, I get the predicted indicators for health, Ĥj
it, j = r, s.

• In step 3, the predicted indicators for own and spouse’s health from the step 2

substitute for the endogenous health variables in the structural model, as the

second stage of 2SLS.

In step 3, I run a fexed-effect regression instead of an OLS regression, since there

likely exists another endogenous problem: unobserved household characteristics. Charles

(1999) discusses it taking an example of “laziness.” He argues laziness is a kind of fixed

effect shared by a husband and a wife, since assortative mating makes a man and a

woman with common characteristics more likely to get married. In this case, for ex-

ample, laziness may prevent a woman from exercising and therefore worsen her health.

At the same time, laziness negatively affects her husband’s labor supply. So a wife’s

health will be endogenous in the function of her husband’s labor supply. Even if taking
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no account of the process of assortative mating, Charles further argues that similar

lifestyles within a couple still affect health status and labor supply of both spouses.

Then an individual’s health is still endogenous in the function of spouse’s labor supply.

Since my sample includes a majority of couples with long marital duration in which

spouses are likely to live similar lifestyles, I add fixed effect in the structural model. So

in the above step 3, I fit a fixed-effect model.

To clarify the necessity of fixed effects, a Hausman test for fixed effects is used to test

whether the fixed effects are correlated with the explanatory variables. The Hausman

test compares a random-effect optimal IV (REIV) model that includes random effects

in step 3 to a fixed-effect optimal IV (FEIV) model that includes fixed effects in step

3. If fixed effects are uncorrelated with the explanatory variables in the “true” specifi-

cation, the REIV model is consistent and efficient while the FEIV model is consistent

but inefficient. However, a standard Hausman test has a very strong assumption: the

REIV estimator must be the fully efficient estimator, requiring consistent estimation

of the variance of REIV estimator, which is hardly ensured by the above three steps,

particularly with the nonlinear specification in the first step. A bootstrapped version

of Hausman test can address this problem: both REIV and FEIV are conducted with

400 bootstrap replications, and eventually the bootstrapped estimator of the variance

used in the Hausman test is calculated. As a result, the bootstrapped version of Haus-

man test rejects the null hypothesis that αi is uncorrelated with own and spouse’s

health status in equation (4.1). Therefore, it is necessary to include fixed effects in

the structural model (4.1). In addition, I compare the OLS regression and the optimal

IV regression without fixed effects to the optimal IV regression with fixed effects. The

OLS regression, as a benchmark in the comparison, ignores endogeneity resulting from

measurement error and potential fixed effects. The optimal IV estimator without fixed

effects implements similar three steps as the optimal IV regression with fixed effects,

except running an OLS regression in step 3 without taking into account the unobserved

household characteristics. The estimation difference between the optimal IV regressions

with and without fixed effects will provide empirical evidence that it is necessary to

consider fixed effects.
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It is crucial to analyze the validity of the optimal instrument I use in 2SLS. A valid

instrument should be highly correlated with the endogenous variable, but not affect

directly the dependent variable in the second stage of 2SLS. I use a Kleibergen-Paap

LM test for under-identification and the Kleibergen-Paap Wald test for weak identifi-

cation, since these two tests are consistent in this study where the error term clusters

by individual instead of being independently and identically distributed. Given that

Zjit, j = r, s are the excluded restrictions, I conduct a t test for the individual signif-

icance of functional limitations and doctor-diagnosed health problems and the Wald

test for their joint significance in step 1. Because there are two optimal instruments

for two endogenous health variables, Stata cannot conduct a Sargan-Hansen test for

over-identification even though there are actually more than two excluded restrictions,

Zjit, j = r, s. To test over-identification, I split the Zjit, j = r, s to two sets: one is the set

of functional limitations and the other is the set of doctor-diagnosed health problems.

Then I estimate the optimal instrument using only the set of functional limitations in

step 1, and perform the above three steps by including the set of doctor diagnoses into

the second stage of 2SLS. If the excluded restrictions do not directly affect labor supply,

the coefficients on doctor diagnoses will be close to zero or insignificantly different from

zero. So after estimating this 2SLS, I test the coefficients of doctor diagnoses individu-

ally and jointly. I also conduct the similar test by estimating optimal instruments using

only doctor diagnoses and then including functional limitations in the second stage of

2SLS.

4.4.2 Adaptation Model

The estimate in the basic model characterizes the instantaneous effect of an individual’s

health shock on spouse’s labor supply, failing to consider how a spouse adjusts her labor

supply over time in response to her partner’s health shock. Individuals who are bound

by labor contracts or who face costs caused by sudden labor supply change probably

postpone their responses to their own and spouse’s health shocks. In addition, it may

take time to match up with vacant positions for those who would like to work more

or fewer hours after their spouses become ill. Therefore, I include the duration of the
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health shock in the labor supply model. More importantly, I argue that the effect

of an individual’s health problem on spouse’s labor supply depends on the duration

of health shock. For example, this labor immediately responds to a spouse’s health

shock but then increases hours of work as the spouse’s health improves. In contrast,

an individual could maintain his labor supply at the beginning of his spouse’s health

condition, but decrease work hours in the market as his spouse’s health deteriorates.

In other words, the effect of an individual’s health shock on spouse’s labor supply may

vary with duration of health shock.

To examine this adjustment in labor supply over time, I propose a model as follows:

Lit = β0 +X ′itβ +Hr
itγr +Hs

itγs +Hr
it ∗Dr

itϕr +Hs
it ∗Ds

itϕs + αi + θt + εit (4.5)

where Dr
it, D

s
it are duration of individual i’s and spouse’s health shocks at time t; Hr

it, H
s
it

are own and spouse’s health status as in the basic model, respectively, either work-

limiting health conditions or self-rated health status; Hr
it ∗Dr

it, H
s
it ∗Ds

it are interactions

of own and spouse’s health status with their respective duration of health shocks; other

symbols have the same definitions as in equation (4.1). The coefficients γr, γs measure

the instantaneous effect of own and spouse’s health shocks on an individual’s worked

hours, and the coefficients ϕr, ϕs of interaction terms identify how an individual adjusts

in labor supply over time in response to her own and spouse’s health problems.

Similar to the discussion in basic model, endogeneity resulting from measurement

errors and unobserved household effects occurs in this model. SoHr
it, H

s
it and interaction

terms Hr
it ∗Dr

it, H
s
it ∗Ds

it are endogenous in the function of individual i’s labor supply.

The existence of interaction terms makes the model nonlinear and therefore complicates

the estimation of the optimal IV estimator. Newey (1990) addresses the optimal IV

estimation of nonlinear models. Based on his study, I conduct the optimal instrument

strategy as the following three steps:

• In step 1, it is the same procedure as in basic model to get the optimal instruments

P̂ jit for health measures by the probit model in (4.2). Optimal instruments for

interaction terms Hj
it ∗D

j
it, j = r, s are naturally obtained by interacting P̂ jit with

duration Dj
it, P̂

j
it ∗D

j
it, j = r, s.
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• In step 2, I regress the endogenous variables on optimal instruments as the first

stage of 2SLS:

Hj
it = δ0 +X ′itδ1 + P̂ ritδ2 + P̂ sitδ3 + P̂ rit ∗Dr

itδ4 + P̂ sit ∗Ds
itδ5 + ω1

it (4.6)

Hj
it ∗D

j
it = δ∗0 +X ′itδ

∗
1 + P̂ ritδ

∗
2 + P̂ sitδ

∗
3 + P̂ rit ∗Dr

itδ
∗
4 + P̂ sit ∗Ds

itδ
∗
5 + ω2

it (4.7)

By OLS regressions, I can get predicted indicators for health and interaction

terms, Ĥj
it,

̂
Hj
it ∗D

j
it, j = r, s.

• In step 3, I substitute these predicted indicators for endogenous variables and

estimate a fixed-effect regression as the second stage of 2SLS.

I use a Kleibergen-Paap LM test for under-identification and the Kleibergen-Paap

Wald test for weak identification. Similar to the basic model, the adaptation model

here is still just-identified, prohibiting the use of over-identification tests. To test the

extra excluded restrictions Zjit, j = r, s, I apply the same methods used in basic model;

I estimate optimal instrument using only the set of functional limitations in step 1 and

perform the above three steps by including the set of doctor diagnoses into the second

stage of 2SLS. Then I test the coefficients of doctor diagnoses individually and jointly.

I also conduct the analogous test by estimating optimal instruments using only doctor

diagnoses and then including functional limitations in the second stage of 2SLS.

4.5 Results

4.5.1 Basic Model

Table 4.2 presents the estimation results for husband’s and wife’s hours of work in the

basic model, which are estimated using optimal instrument strategy with household ef-

fects. Regardless of which measure of health status is used, neither husbands nor wives

significantly change their hours of work in response to spousal health problems. Consis-

tent with previous literature, individuals always reduce their labor supply significantly

when they themselves suffer health shocks: a husband works 1051 fewer hours per year

when he has a work-limiting health condition, holding other factors constant, while a

wife works 574 fewer hours per year when she has a work-limiting health condition. A
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husband reduces his hours of work by 1273 hours per year if he rates himself with fair

or poor health, holding other factors constant, while a wife reduces her hours worked

by 823 hours per year under her fair or poor health.

The P-value of Kleibergen-Paap LM statistic (prob> u = .000) shows that the

estimates do not suffer from under-identification and the optimal instrument strategy

is feasible. The null hypothesis that the estimator is weakly identified is rejected,

because the Kleibergen-Paap Wald statistic is far more than 10, which is proposed by

Staiger and Stock (1997) as a “rule of thumb”. The over-identification test shows that

the instruments do not affect directly labor supply, because the null hypothesis that

a subset of excluded restrictions are jointly uncorrelated with labor supply after the

left restrictions explain endogenous regressors is not rejected. Note this hypothesis is

not rejected at 1% significance for the model of husband’s hours worked when health is

measured by self-rated health status.

The results of the first-stage in 2SLS are shown in Table 4.3. The results of the first-

stage suggest that optimal instrument is significantly correlated with the endogenous

measure of own health.

Table 4.4 shows the results of the probit model in (4.2). I regress the health measure

on excluded restrictions, including functional limitations and doctor-diagnosed health

problems. Coefficients of almost all excluded restrictions are highly significant, which

implies the excluded restrictions used to explain endogenous measure of health are

highly correlated with endogenous health variables.

For comparison, I also estimate OLS regressions for the structural model in equation

(4.1). Table 4.5 presents the results for OLS regressions. It shows that husbands and

wives respond differently to their spouses’ health shocks: a wife’s work-limiting health

condition leads her husband to work 56 fewer hours per year, while a husband’s work-

limiting health condition leads his wife to work 80 more hours per year. A husband

whose wife rates her health status as fair or poor rather than good, very good or

excellent reduces his hours of work by 58 hours per year, while a wife whose husband

rates his health status as fair or poor rather than good or better raises her hours worked

by 20 hours per year and this estimated coefficient is insignificant. However, the results
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for OLS regressions may be subject to the attenuation bias caused by measurement

errors in self-reported health measures.

Table 4.6 presents the results for optimal IV regressions without household effects

and provides evidence of the attenuation bias in OLS regressions. Different from the

OLS estimation results, the results in Table 4.6 show that wives increase a large number

of hours worked in response to their husbands’ health shocks, while there is no sub-

stantial effect on husbands’ labor supply of their wives’ health problems. For example,

a husband’s work-limiting health condition leads his wife to work 193 more hours per

year, holding other factors constant, and if he rates his health as fair or poor rather

than good or better, his wife increases her working hours by 295 hours per year. In

contrast, a husband whose wife has a work-limiting health problem reduces work hours

by 44 hours per year, and a husband increases a small number of work hours if his wife

rates her health as fair or poor compared to good, very good or excellent. In addition,

the effect of wife’s health shock on husband’s working hours is not significant, regardless

of health measures.

To make sure the existence of household effects, I take the regression of husbands’

working hours on work-limiting health conditions as an example and perform a boot-

strapped version of Hausman test. This Hausman test rejects the null hypothesis that

αi is uncorrelated with own and spouse’s health status in equation (4.1). Therefore, it

is necessary and to include fixed household effects in the structural model (4.1). Com-

pared to the optimal IV with household effects (Table 4.2), the optimal IV without

household effects (Table 4.6) is biased upward because of failure to include household

effects.

4.5.2 Adaptation Model

Table 4.7 presents the results of the structural model (4.5) with interaction terms. Sim-

ilar to the results for the regression of the instantaneous effect in Table 4.2, individuals

do not respond immediately to their spouse’s health shocks. However, a husband would

adjust in his work hours over time in response to his wife’s health problem when self-

rated health status is used. The effect of his wife’s health problem on his hours worked
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depends on the duration of the wife’s health problem. Holding other factors constant,

as the duration of wife’s health problem increases by one wave (two years), he reduces

working hours by 165 hours. Wives appear not to adjust their labor supply over time in

response to their husbands’ health problems. In addition, husbands adjust their labor

supply over time in response to their own health problems while wives do not.

To analyze the validity of instruments, I perform an under-identification test, weak

identification test and over-identification test of endogenous regressors. The results re-

ject null hypotheses of under-identification and weak identification. The over-identification

test shows exogeneity of instruments, because the null hypothesis that a subset of ex-

cluded variables are jointly uncorrelated with labor supply is not rejected.

Table 4.8 shows the results for the first-stage regressions of 2SLS. Because both

husband’s and wife’s labor supply models have four endogenous variables, each of the

four endogenous variables is estimated in the first stage. The upper panel in Table 4.8

shows the results when work-limiting health conditions are used and the lower panel

shows the results when self-rated health problems are used. The optimal instrument for

own health is strongly correlated with the endogenous measure of own health, and the

optimal instrument for the interaction of own health with its duration is also strongly

correlated with the endogenous interaction term.

4.6 Conclusions

I use the HRS to examine the instantaneous and adaptive effects of individuals’ health

shocks on their spouses’ labor supply. There are two measures of health status, work-

limiting health conditions and self-rated health status. Regardless of which measure

is used, both husbands and wives immediately respond to their own health shocks by

reducing own working hours, but not to their spouses’ health shocks. However, I argue

that the effect of an individual’s health problem on spouse’s labor supply depends on the

duration of that health problem. This is what I call the adaptive effect. Even though

both husbands and wives do not respond immediately to their spouses’ health shocks,

husbands work 165 fewer hours as the duration of their wives’ health problems increases
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by one wave (two years). This adaptive behavior occurs only when self-rated health

status is used, which implies that the examined effect of individuals’ health shocks on

their spouses’ hours of work depends on the measure of health. This research finding

reveals that the impact on time allocation is greater for wives’ poor health than for

husbands’. The wives’ health declines will gradually pull their husbands away from the

market. Such households, therefore, are at greater risk for financial hardship.

The results have some implications for further research. First, given that the results

suggest the effect of a wife’s health problem on her husband’s hours of work depends

on the duration of wife’s health problem and that this dependence is a linear function

of duration, additional work is needed to consider semiparametric estimates. Then the

assumption of linear dependence can be dropped and the structural model adapted to

contain a regressor which is an unknown function of health status and its duration. If

the “true” specification of the structural model indeed contains a function of health

problems and its duration but the function is not the product of these two variables,

the estimated linear dependence is probably misleading and the semiparametric esti-

mates are reliable. Second, the method of over-identification test in this study deserves

more attention. Because the model is just-identified, I test exogeneity of instruments

by splitting the excluded restrictions into the set of functional limitations and doctor

diagnoses, putting one set in the probit model to get the estimated optimal instrument

and the other in the second-stage regression of 2SLS, then testing the joint significance

of the latter set. I perform it again by switching the two sets. However, if the “true”

specification of the probit model contains these two sets simultaneously, the estimate of

optimal instrument may be problematic by excluding either set. More theoretical and

empirical advances are needed to address this problem. Finally, in view of discussions

in Chapter 2, the validity of objective health measures as instruments requires further

examination. An extension of the proposed technique in Chapter 2 may make it possible

to test whether the instruments are correlated with the measurement error or not. If the

test indicated that the assumption of zero correlation between the instruments and the

measurement error does not hold, an extension of Chapter 2 to accommodate multiple

mismeasured regressors in panel data regressions would be a promising alternative. In
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future research, I plan to consider this extension.
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Table 4.1: Descriptive Statistics

Variable Husband Wife

First wave Last wave First wave Last wave
White (%) 87.7 – 88.4 –

Age
55.6
(4.8)

62.2
(5.8)

52.9
(4.8)

59.7
(5.9)

Educational attainment (%)
Less than high school 11.5 – 9.6 –
GED 5.0 – 4.5 –
High school 25.6 – 30.5 –
Some college 25.0 – 27.5 –
College and above 32.9 – 27.9 –

Marriage duration (for couples)
25.6
(10.9)

32.2
(12.2)

– –

Household nonlabor income
(for couples, dollars in 2000)

32870.8
(145499.5)

42583.6
(411849.5)

– –

Health measures (%)
Work-limiting health conditions 16.8 24.3 17.4 23.9
Self-rated health status 16.9 20.9 16.3 19.1

Hours worked per year
1836.3
(1173.5)

1201.4
(1229.4)

1295.2
(1083.2)

921.2
(1035.3)

Number of households 5823 – – –
Number of observations 21779 21779 21779 21779

Figures in parentheses are standard errors.
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Table 4.2: Optimal IV Estimates of the Effect of Health Shocks on Hours Worked
(with Fixed Effects)

Work-limiting health conditions Self-rated health status
Variable Husband’s

hours
Wife’s hours Husband’s

hours
Wife’s hours

Own health
-1050.8***
(75.4)

-574.1***
(75.3)

-1272.5***
(107.2)

-822.7***
(116.6)

Spouse’s health
-50.4
(81.9)

22.1
(67.4)

55.0
(125.8)

10.1
(86.5)

Own age
126.2***
(40.2)

145.0***
(33.7)

142.2***
(43.4)

177.6***
(34.5)

Own age squared
-1.2***
(.3)

-1.4***
(.3)

-1.2***
(.3)

-1.6***
(.3)

Spouse’s age
.9
(36.2)

69.6*
(36.5)

29.2
(38.8)

59.7
(37.5)

Spouse’s age
squared

-.2
(.3)

-.5*
(.3)

-.3
(.3)

-.4
(.3)

Household nonlabor
income

-.0
(.0)

-.0
(.0)

-.0
(.0)

.0
(.0)

F 136.9 59.2 116.4 53.7
Prob>F .000 .000 .000 .000
Under-id test u
(K-P LM statistic)

407.9 408.0 262.8 263.4

Prob>u .000 .000 .000 .000
Weak id test w
(K-P Wald statistic)

328.6 328.9 182.0 182.5

Over-id test: functional limitations in (4.2), doctors’ diagnoses in (4.1)
Wald ω2 (14) 14.0 14.3 25.3 13.4
Prob>ω2 .450 .429 .032 .498
Over-id: doctors’ diagnoses in (4.2), functional limitations in (4.1)
Wald ω∗2 (16) 10.2 17.5 23.8 19.6
Prob>ω∗2 .854 .355 .094 .238
N 21779 21779 21779 21779

Figures in parentheses are standard errors.
*Indicates significance at the 10 percent level. ** indicates significance at the 5 percent level. ***
Indicates significance at the 1 percent level.
Regressions include demographic controls for own race, own educational attainment, census region and
interview wave.
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Table 4.3: First-stage Regression of Optimal IV with Household Effects

Work-limiting health conditions Self-rated health status
Variable Husband’s

health
Wife’s health Husband’s

health
Wife’s health

Husband’s optimal
instrument

.688***
(.023)

.019
(.017)

.735***
(.031)

.010
(.023)

Wife’s optimal
instrument

.017
(.017)

.603***
(.024)

.061***
(.026)

.596***
(.031)

Husband’s age
.012
(.013)

-.007
(.013)

.025*
(.013)

-.008
(.013)

Husband’s age
squared

-.000
(.000)

.000
(.000)

-.000
(.000)

.000
(.000)

Wife’s age
-.018
(.012)

-.008
(.011)

.012
(.012)

.022**
(.011)

Wife’s age
squared

.000
(.000)

.000
(.000)

-.000
(.000)

-.000
(.000)

Household non-
labor income

.000
(.000)

-.000
(.000)

.000
(.000)

.000
(.000)

F 48.2 31.2 30.5 18.1
Prob >F .000 .000 .000 .000
N 21779 21779 21779 21779

Figures in parentheses are standard errors.
*Indicates significance at the 10 percent level. ** indicates significance at the 5 percent level. ***
Indicates significance at the 1 percent level.
Regressions include demographic controls for own race, own educational attainment, census region and
interview wave.
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Table 4.4: Probit Estimates of Optimal Instruments for Endogenous Health Measures

Work-limiting health conditions Self-rated health status
Excluded variables
(Z)

Husband’s
health

Wife’s health Husband’s
health

Wife’s health

Walking several
blocks

.638***
(.040)

.712***
(.037)

.540***
(.041)

.513***
(.039)

Sitting for 2 hours
.255***
(.040)

.258***
(.037)

.093**
(.040)

.147***
(.037)

Getting up from
chair

.108***
(.033)

.094***
(.034)

.147***
(.034)

.062*
(.036)

Climbing several
flights of stairs

.343***
(.035)

.262***
(.033)

.340***
(.034)

.343***
(.033)

Stooping
.352***
(.033)

.260***
(.033)

.128***
(.032)

.073**
(.036)

Lifting weights over
10 lbs

.484***
(.050)

.500***
(.039)

.169***
(.049)

.355***
(.039)

Reaching arms above
shoulder level

.298***
(.044)

.220***
(.044)

.130***
(.042)

.230***
(.042)

Pushing large ob-
jects

.527***
(.044)

.536***
(.037)

.350***
(.044)

.292***
(.039)

High blood pressure
.096***
(.032)

.060*
(.033)

.206***
(.031)

.163***
(.034)

Diabetes
.214***
(.039)

.056
(.044)

.432***
(.038)

.460***
(.045)

Cancer
.181***
(.053)

.144***
(.050)

.341***
(.055)

.210***
(.053)

Chronic lung disease
except asthma

.384***
(.058)

.261***
(.055)

.454***
(.053)

.344***
(.057)

Heart attack
.327***
(.038)

.214***
(.045)

.388***
(.037)

.278***
(.046)

Stroke or TIA
.529***
(.077)

.437***
(.095)

.329***
(.070)

.299***
(.093)

Emotional, nervous or
psychiatric problems

.429***
(.051)

.378***
(.039)

.385***
(.049)

.334***
(.040)

Wald ω2 (15) 3112.4 3642.5 2563.5 2599.4
Prob> ω2 .000 .000 .000 .000
N 21779 21779 21779 21779

Figures in parentheses are standard errors.
*Indicates significance at the 10 percent level. ** indicates significance at the 5 percent level. ***
Indicates significance at the 1 percent level.
Regressions include demographic controls for own and spouse’s age and square of age, household non-
labor income, own race, own educational attainment, census region and interview wave.
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Table 4.5: OLS Estimates of the Effect of Health Shocks on Hours Worked

Variable
Work-limiting health conditions Self-rated health status
Husband’s hours Wife’s hours Husband’s hours Wife’s hours

Own health
-944.1***
(22.9)

-712.5***
(20.2)

-548.9***
(25.9)

-390.5***
(25.0)

Spouse’s health
-56.0**
(23.5)

79.6***
(21.8)

-58.2**
(26.6)

20.4
(22.4)

Own age
235.5***
(32.0)

145.1***
(26.3)

235.7***
(33.6)

147.7***
(27.2)

Own age squared
-2.6***
(.3)

-1.7***
(.2)

-2.7***
(.3)

-1.7***
(.2)

Spouse’s age
23.1
(28.0)

27.7
(31.7)

20.2
(29.3)

38.1
(33.3)

Spouse’s age
squared

-.3
(.2)

-.3
(.3)

-.3
(.3)

-.4
(.3)

Household non-
labor income

.0
(.0)

-.0
(.0)

.0
(.0)

-.0
(.0)

Own race
84.7***
(29.6)

-71.0***
(27.6)

66.8**
(32.8)

-88.9***
(29.6)

Own educational attainment
Less than high school – – – –

GED
-59.3
(54.2)

318.3***
(54.9)

-145.0**
(59.2)

257.6***
(59.9)

High school
109.5***
(34.8)

242.5***
(32.8)

84.2**
(38.3)

240.5***
(35.3)

Some college
154.7***
(37.1)

354.8***
(34.9)

119.7***
(40.3)

346.1***
(37.8)

College and above
224.7***
(36.6)

384.2***
(36.9)

222.7***
(40.0)

393.4***
(39.5)

Constant
-3425.1***
(1022.6)

-2082.5**
(969.1)

-3240.1***
(1073.5)

-2426.6***
(1013.5)

F 288.8 167.7 200.0 107.7
Prob>F .000 .000 .000 .000
R2 .306 .231 .242 .181
N 21779 21779 21779 21779

Figures in parentheses are standard errors.
*Indicates significance at the 10 percent level. ** indicates significance at the 5 percent level. ***
Indicates significance at the 1 percent level.
Regressions include controls for census region and interview wave.
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Table 4.6: Optimal IV Estimates of the Effect of Health Shocks on Hours Worked
(without Fixed Effects)

Variable
Work-limiting health conditions Self-rated health status
Husband’s hours Wife’s hours Husband’s hours Wife’s hours

Own health
-1206.6***
(27.1)

-833.7***
(24.3)

-1471.1***
(39.5)

-1122.4***
(35.1)

Spouse’s health
-43.5
(28.7)

193.1***
(26.4)

35.1
(40.4)

295.3***
(34.8)

Own age
236.9***
(25.8)

146.7***
(20.8)

244.2***
(28.3)

174.0***
(22.5)

Own age squared
-2.6***
(.2)

-1.7***
(.2)

-2.7***
(.2)

-2.0***
(.2)

Spouse’s age
23.0
(22.5)

24.0
(24.7)

11.2
(24.6)

14.2
(27.0)

Spouse’s age
squared

-.3
(.2)

-.3
(.2)

-.2
(.2)

-.2
(.2)

Household non-
labor income

.0
(.0)

-.0
(.0)

.0
(.0)

-.0
(.0)

Own race
79.3***
(18.8)

-70.3***
(17.6)

16.0
(21.6)

-132.6***
(19.6)

Own educational attainment
Less than high
school

– – – –

GED
-48.7
(35.1)

322.1***
(35.0)

-205.4***
(40.0)

182.7***
(39.7)

High school
90.0***
(22.3)

233.3***
(20.6)

-55.0**
(26.5)

95.8***
(24.5)

Some college
134.2***
(23.7)

347.7***
(21.8)

-41.2
(27.9)

188.8***
(26.1)

College and above
182.7***
(23.4)

376.2***
(23.3)

-9.2
(28.4)

202.4***
(27.9)

Constant
-3444.5***
(852.9)

-2009.6***
(797.4)

-2983.9***
(929.9)

-2228.2***
(861.3)

Wald ω2 (29) 10843.5 7062.2 8629.9 5962.4
Prob> ω2 .000 .000 .000 .000
R2 .299 .228 .163 .116
N 21779 21779 21779 21779

Figures in parentheses are standard errors.
*Indicates significance at the 10 percent level. ** indicates significance at the 5 percent level. ***
Indicates significance at the 1 percent level.
Regressions include controls for census region and interview wave.
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Table 4.7: Estimates of Adaptive Effect of Health Shocks on Hours Worked

Variable
Work-limiting health conditions Self-rated health status
Husband’s
hours

Wife’s hours Husband’s
hours

Wife’s hours

Husband’s health
-1002.0***
(92.6)

-25.2
(75.3)

-1333.5***
(153.5)

-53.0
(111.7)

Duration of husband’s
health*husband’s
health

34.2
(35.8)

-21.1
(41.7)

63.9
(50.3)

-11.5
(55.3)

Wife’s health
-73.0
(104.3)

-487.6***
(94.3)

140.6
(174.4)

-628.4***
(152.6)

Duration of wife’s
health*wife’s
health

-32.2
(37.9)

-25.8
(36.4)

-164.6**
(65.9)

-72.6
(57.7)

F 108.6 45.9 92.7 43.0
Prob>F .000 .000 .000 .000
Under-id test u
(K-P LM
statistic)

275.4 275.7 162.6 163.3

Prob>u .000 .000 .000 .000
Weak id test w
(K-P Wald
statistic)

132.2 132.3 57.3 57.7

Over-id test: functional limitations in (4.2), doctors’ diagnoses in (4.5)
Wald ω2 (14) 13.0 15.4 22.6 16.4
Prob> ω2 .528 .354 .068 .292
Over-id test: doctors’ diagnoses in (4.2), functional limitations in (4.5)
Wald ω∗2 (16) 9.7 21.4 18.5 22.3
Prob>ω∗2 .883 .165 .296 .134
N 15674 15674 15674 15674

Figures in parentheses are standard errors.
*Indicates significance at the 10 percent level. ** indicates significance at the 5 percent level. ***
Indicates significance at the 1 percent level.
Regressions include demographic controls for own and spouse’s age and square of age, household non-
labor income, own race, own educational attainment, census region and interview wave.
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Table 4.8: First-stage Regressions of Adaptation Models

Variable
Work-limiting health conditions

Husband’s
health

Wife’s health
Husband’s
health*duration

Wife’s
health*duration

Opl inst for
husband’s health

.991***
(.035)

.047*
(.025)

-.084**
(.038)

.046
(.038)

Opl inst for
wife’s health

.012
(.031)

.935***
(.044)

-.032
(.038)

-.163***
(.039)

Opl inst for
husband’s health
duration

-.056***
(.015)

-.008
(.016)

1.132***
(.058)

.011
(.022)

Opl inst for
wife’s health
duration

.053**
(.022)

-.001
(.021)

.027
(.040)

1.370***
(.071)

F 62.3 41.8 43.3 34.4
Prob>F .000 .000 .000 .000
N 15674 15674 15674 15674

Self-rated health status

Husband’s
health

Wife’s health
Husband’s
health*duration

Wife’s health
*duration

Opl inst for
husband’s health

.768***
(.043)

.004
(.029)

-.038
(.036)

.038
(.039)

Opl inst for
wife’s health

.086**
(.040)

.689***
(.048)

.016
(.035)

-.081*
(.049)

Opl inst for
husband’s health
duration

.003
(.023)

.009
(.016)

.967***
(.063)

.049*
(.027)

Opl inst for
wife’s health
duration

-.013
(.019)

.003
(.025)

.034
(.031)

.991***
(.102)

F 19.3 11.9 18.5 12.8
Prob>F .000 .000 .000 .000
N 15674 15674 15674 15674

Figures in parentheses are standard errors.
*Indicates significance at the 10 percent level. ** indicates significance at the 5 percent level. ***
Indicates significance at the 1 percent level.
Regressions include demographic controls for own and spouse’s age and square of age, household non-
labor income, own race, own educational attainment, census region and interview wave.
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