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ABSTRACT OF THE THESIS

Defending Visual Adversarial Examples With Smoothout Regularization

by Weitian Li

Thesis Director: Prof. Bo Yuan

In the past decades with unexpected and rapid development of computer vision, tremen-

dous computer vision applications like face recognition, image recognition, object detec-

tion and so on. They present their powerful abilities to made life so convenient for humans.

In the trend of computer vision, deep neural networks (DNNs) occupies a very essential

role. Because relative applications are deploying in many critical fields such as autonomous

car, authentication and so on. However, there exist many adversarial attacks that can result

in huge model performance degradation. Deploying a robust and reliable DNN is becoming

a crucial and necessary step for various applications. In this work, we introduce Smooth-

Block, a novel regularization method to improve the model robustness against adversarial

attacks. It can be directly utilized as a defense mechanism in inference phase to protect the

pre-trained model. Besides, the proposed SmoothBlock can also be applied in both train-

ing and adversarial training to further improve the robustness against various adversarial

attacks. Furthermore, we apply the proposed SmoothBlock with a self-ensemble method to

improve the robustness of the system. We conduct extensive trials and detailed analysis on

CIFAR-10 using Resnet20 model. Results show that the model robustness can be signifi-

cantly improved by our method against FGSM, PGD and C&W L2 attacks under white-box

scenarios.

ii



ACKNOWLEDGEMENTS

I would first like to thank my advisor Professor Bo yuan for his patient and careful

guidance on the supervision of my master thesis.

I would also show my great thanks to Yi Xie and Siyu Liao for offering many useful

advise and help in the experiments and my thesis. It’s proud and happy to be your collab-

orator. In particular, I want to thank Professor Sheng Wei, Professor Predrag Spasojevic

for serving in my master thesis committee. Also, I would like to thank Zhongze Tang’s

template.

Last but not least, I would like to thank my friends, my girlfriend Hui Che and my

family for supporting and inspiring me.

iii



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Image Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Adversarial Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Adversarial Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Adversarial Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 FGSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 C&W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 PGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 DropBlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

iv



Chapter 3: Tools and Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Pytorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Adversarial Robustness Toolbox . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Resnet20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 SmoothBlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Comparison with Dropblock . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 4: Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Post-Hoc Application to Pre-trained Model . . . . . . . . . . . . . . . . . . 17

4.3 SmoothBlock Training on Clean Data . . . . . . . . . . . . . . . . . . . . 20

4.4 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 5: Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 6: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



LIST OF TABLES

3.1 Feature Maps Magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Robustness evaluation on pre-trained ResNet20 against PGD and C&W at-
tack (%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



LIST OF FIGURES

1.1 The outline of LeNet-5 [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An Adversarial Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Visualization of DropBlock and SmoothBlock. . . . . . . . . . . . . . . . . 4

3.1 The sample of CIFAR-10 dataset. [28] . . . . . . . . . . . . . . . . . . . . 12

3.2 The sample structure of ResNet. [30] . . . . . . . . . . . . . . . . . . . . . 14

4.1 Detailed Comparison of CIFAR10 test accuracy plots on pre-trained ResNet20
model against FGSM attack of DropBlock and SmoothBlock . . . . . . . . 19

4.2 Comparison of CIFAR10 test accuracy on pre-trained ResNet20 model
against C&W and PGD attack when testing DropBlock or SmoothBlock
is located in different layers with different sizes. . . . . . . . . . . . . . . . 20

4.3 Comparison of test accuracy plots on pre-trained ResNet20 model against
FGSM attack when testing DropBlock or SmoothBlock is located in dif-
ferent layers. (a) Test with DropBlock. (b) Test with SmoothBlock. (c)
Comparison of DropBlock and SmoothBlock. . . . . . . . . . . . . . . . . 21

4.4 Comparison of evaluation results with no defense during inference on orig-
inal pre-trained model and models trained with DropBlock/SmoothBlock
(%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Comparison of evaluation accuracy on regularized-trained ResNet20 mod-
els with different test methods against various adversarial attack (%). . . . . 23

4.6 Examples of CAMs for original and adversarial images on different mod-
els. (a) Examples for clean and adversarial images. (b) (c) CAMs for
both clean and adversarial images generated from pre-trained model and
SmoothBlock-trained model, respectively. . . . . . . . . . . . . . . . . . . 23

vii



4.7 The effeteness of our proposed regularized defense SmoothBlock work-
ing along with adversarial training. (a) Evaluation accuracy results against
FGSM (%). (b) Evaluation accuracy results against PGD (%). . . . . . . . . 24

4.8 Model self-ensemble results against FGSM, PDG and C&W attaks (%). . . 27

viii



CHAPTER 1

INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-art results in many tasks, such

as object recognition [1], natural language processing [2], semantic segmentation [3], au-

tonomous vehicle [4], image recognition [5] and so on. While DNNs are becoming a

powerful model and are deployed in real world platforms, related security problems have

drawn people’s attention recently in those security-critical scenarios.

1.1 Image Recognition

Image recognition refers to the technique of using a machine to process, analyze, and un-

derstand images to identify targets and objects in various modes. For a typical image recog-

nition system, it accepts images and outputs classification of the images. The traditional

process of image recognition is image collection, image prepossessing, feature extraction

and image classification. Nowadays, DNN plays a significant role of it. One of the most

popular DNN architecture is LeNet-5 [6],which can input the image of hand crafted num-

ber and outputs the classification of the image. The outline of LeNet-5 is depicted in Figure

1.1 and it is general flow diagram of image classification of DNN.

Figure 1.1: The outline of LeNet-5 [6]

1
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(a) Classified as Dingo Dog (b) Classified as Mosquito Net

Figure 1.2: An Adversarial Example.

1.2 Adversarial Example

Recent study [7] firstly shows that DNN classifiers are vulnerable to data with small and

special designed perturbations. They apply imperceptible perturbation to test images and

successfully change DNN classification results, which is hard to distinguish for human.

These perturbed input are called adversarial examples. As shown in Figure 1.2, the left

image from ImageNet dataset [8] is classified as Dingo dogs by a given DNN. With small

and special designed perturbation, the modified image on the right looks almost the same

but now is classified as mosquito net.

What’s more, recent study revealed that some adversarial examples have transfer-ability

and are able to damage other DNNs [9]. That is to say, these perturbed inputs generated

from given DNN can attack other DNNs even though they may have different architectures.

Such transfer-ability is easy to find in non-targeted adversarial examples but not in targeted

adversarial examples. The former means DNN models give wrong results for input while

the latter further requires that DNN models misclassify the data to a designated class.

In general, classifier attacks can be categorized in three different classes [10], including
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evasion attack, poisoning attack and exploratory attack. For the evasion attack, it only mod-

ifies testing data. But poisoning attack is about ”poisoning” training data to compromise

a classifier performance. The exploratory attack aims at detecting underlying classifier

algorithm and even the training data pattern.

Note that this thesis mainly focuses on defending against evasion attack. In this case,

attacking methods greatly depend on attackers’ knowledge about given DNN. Thus, eva-

sion attack can be further categorized into white box and black box attack. White box

attack means attackers know the DNN architecture and even training data patterns. Instead,

black box attack means they are lack of such information. More specifically, it is called

non-adaptive black box attack if they know the training data distribution with which a sim-

ilar DNN can be trained. Due to the transfer-ability, adversarial examples can be generated

with this self-trained DNN under white box attack and then used to attack the unknown

DNN. Adaptive black box attack means attackers can use the target model but don’t have

any related information.

A natural and straightforward defense method is training DNN classifiers together with

adversarial examples, namely, adversarial training. This is effective for specific adversarial

attacks [11] but it may be not practical due to the extra training time to adjust existing DNNs

[12].

Inspired by the effectivenss of DropBlock [13], we find that smoothing feature maps

with less variance works better than increasing mean and variance when testing over both

clean and adversarial examples. Thus, instead of using dropping and scaling, we replace

dropped blocks with the overall average feature maps to smooth the activation. Figure

1.3 shows feature maps of an adversarial example when applying DropBlock and Smooth-

Block. Feature maps after DropBlock have large variance since values are distributed either

close to 1 or close to 0. Instead, SmoothBlock doesn’t scale up and the whole feature maps

look smooth.

In this work, we propose a flexible defense algorithm called SmoothBlock. It can be
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Figure 1.3: Visualization of DropBlock and SmoothBlock.

directly applied to an existing DNN model at testing phase and improve the robustness

against adversarial attacks. When adversarial training is feasible, it can also serve as a reg-

ularization method during training. Moreover, we combine SmoothBlock with adversarial

training and apply a self-ensemble method [14] to further improve the model robustness.

Contributions of this work are summarized as below:

• We propose a flexible defense algorithm, SmoothBlock, that is directly deploy-able

to protect pre-trained DNN models against adversarial examples while able to serve

as regularization for training.

• While SmoothBlock works well with adversarial training, the self-ensemble algo-

rithm can further improve the model robustness when computation cost is not in

concern.

• Extensive experiments are conducted to demonstrate the effectiveness of the pro-

posed method and results show that SmoothBlock works better than DropBlock un-

der different adversarial settings.



5

1.3 Thesis Structure

Our proposed regularized defense against adversarial examples method for deep neural

network allows the model to gain higher robustness when facing adversarial attacks at

inference phase, while it can be additional defense mechanism on already pre-trained model

and directly applied on model in training and adversarial training phase.

The structure of this thesis is as follows:

Chapter 1 introduces image recognition, adversarial examples and our findings of this

thesis.

Chapter 2 discusses related works on adversarial attack, defense methods, the relative

concepts of our topic and our inspiration source.

Chapter 3 presents the tools and platform for crafting practical image recognition model,

implementation for SmoothBlock, the image dataset and adversarial examples for follow-

ing experiment.

Chapter 4 descries our proposed method, explanation, mechanism and relative experi-

ment details.

Chapter 5 presents the future work of this thesis and improvement.

Chapter 6 draws the conclusion.



CHAPTER 2

RELATED WORK

The security problem of DNN models is firstly proposed by [7], and it shows that the

smoothness assumption of DNN model doesn’t hold. In this case, the smoothness means

that introducing imperceptibly perturbations to the image should not change its category.

The existence of adversarial examples of DNN raises questions on the generalization and

discontinuity of nonlinear input-output mappings learned by DNN models. In this section,

we introduce basic concepts on DNNs and adversarial attacks used in our experiments. We

focus on DNN image classifiers under both targeted and non-targeted attacks.

2.1 Adversarial Attack

Linearity inside the design of DNNs like ReLU [15] turns out exploitable [12]. A fast gra-

dient sign method (FGSM) is proposed to quickly generate adversarial examples for given

DNNs. Small perturbation are generated based on signs of input image’s gradients. More-

over, iterative FGSM with clipping [16] generates stronger adversarial examples, which,

however, turns out to be less transferable.

Image gradients can also be utilized to help determine which input pixel perturbation

affects most to the given DNN. In [17], a salient map is computed to model pixel effect

on classification results. For a target class, it modifies the most effective pixel from salient

map each time and repeatedly does so till successfully changing the classification result.

[18] works on finding small perturbations with different distance metrics, including l0,

l2 and l∞ norm. Given the difficulty of high non-linearlity of DNNs, the objective function

is re-formulated so as to be optimized easily and it turns out to be a powerful attack method.

On the other hand, [19] firstly practically presents an adaptive black box attack method.

They are limited to query target DNN with input images. Firstly, a local DNN is trained

6
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with query results from target DNN, and it is also used to generate Jocobian-based synthetic

inputs to approximate the target DNN decision boundaries. Then they craft adversarial

examples on this local DNN using the method of [12] and [17]. As a result, this method

successfully attacks online DNN based service in real world.

2.2 Adversarial Defense

In order to smooth the DNN models, [20] learns from the distillation technique [21] that

is proposed to produce a compact DNN architecture by training a small network with soft

labels generated from a large network. Their intuition comes from the fact that distillation

may help DNN generalize well so as to defend against perturbed input. In this case, soft

labels come from the pre-trained DNN and are then used to help train a distilled network.

Inspired from game theory, stochastic activation pruning (SAP) is proposed as an ad-

versarial defense strategy [22]. Activation units at each layer are randomly pruned with

probabilities proportional to their absolute values. Rest units will be scaled up to keep the

overall magnitude.

On the other hand, it is natural to associate testing image with training image and clas-

sify based their combination [23]. Given a test image, its peer training images are found

by the cosine distance of their feature maps. The output feature map is computed as the

element-wise weighted results of these images. This method turns out effective for both

targeted and non-targeted white box attacks.

Unlike adversarial training, [24] directly added Gaussian noise as a regularization method

during training which is called Parametric-Noise-Injection (PNI). In both training and test-

ing phase, such noise can be added at inputs, activation units and even weight parameters.

Surprisingly, this method improves DNN performance over both clean data and adversarial

data.
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2.3 Deep Neural Network

Let X ∈ Rc×w×h denote an input image, where c, w and h are the number of channels,

image width and image height, respectively. DNN is a discriminative model L(θ;X, y) =

p(y|X,θ) that classifies input image. θ are weight parameters of DNN model and y is a

certain image class. The class with the maximum probability is chosen as the classification

result of DNN. Adversarial examples mean that there exist small perturbation δ < ε such

that X + δ is imperceptible but p(y|X + δ, θ) 6= p(y|X, θ). Therefore, the DNN classifier

is attacked and its accuracy gets much lower.

2.4 FGSM

It[12] generates adversarial examples using∇L(X), which only takes one step to compute.

The perturbation is set as the sign of∇L(X) and it is bounded under the infinity norm, i.e.,

||δ||∞ < ε for some ε ∈ R. A nice property of infinity norm is that it won’t scale up with

the input dimension. Then all pixels are modified with the perturbation:

X′ = X+ ε · sign(∇L(X)), (2.1)

where ε implies the strength of add-on perturbations and sign(·) is an element-wise sign

function. X′ is the adversarial example. Moreover, this method can be incorporated into

the loss function as a regularization term for adversarial training.

2.5 C&W

C&W [18] attack explores different perturbations under l0, l2 and l∞ norms. It generates

adversarial examples by solving following problem:

||δ||+ c · L(X+ δ), 0 ≤ X+ δ ≤ 1 (2.2)
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where || · || can be different norms and c is a constant scalar. It is suggested to choose small

c such that L(X+ δ) ≤ 0. The constraints on perturbed input falling into range 0 to 1 can

be solved by different approaches, including projected gradient descent, clipping gradient

descent and changes of variables. Then DNN optimizers are applicable to the re-formulated

problem and Adam [25] turns out to converge much faster than others.

2.6 PGD

Iteratively applying FGSM can be regarded as project gradient descent (PGD) [11] process.

First application of FGSM is the updated perturbed input and the rest FGSMs work like a

projection function. This is formulated as follows:

X0 = X, Xt+1 = clipε(Xt + α · sign(∇L(Xt))), (2.3)

where α is a constant scalar and the function clip(·) ensures that each pixel is valid and also

bounded by ±ε as defined in [16]. A valid pixel value means that its value is between 0

and 255 in terms of eight-bit color depth. The iteration number is chosen to reach the ε-ball

boundary while saving the experiment computation cost.

2.7 DropBlock

Images has spatial locality as well as its feature maps at outputs of each layer of a DNN

[13]. Randomly dropping single activation unit is not enough to remove semantic informa-

tion since neighboring units are highly related and may compensate those dropped units. As

a result, dropping a block of activation units can be much more effective in training DNN

model and improving classification accuracy. This method is called DropBlock. After

dropping, rest units will be scaled up to maintain the overall activation magnitude. How-

ever, DropBlock is proposed to be a regularization method to generalize dropout [26] to

convolution layers. It is unknown whether it can improve the DNN robustness and help
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defend adversarial examples or not.



CHAPTER 3

TOOLS AND PLATFORM

3.1 Pytorch

In our work, we use Pytorch as our programming Python framework. It is an open source

Python library that allows users to have tensor computation with strong GPU acceleration

and deep neural networks built on a tape-based autograd system [27]. The Pytorch version

we used is 0.4.1.

3.2 CIFAR-10

In this work, we apply our SmoothBlock and following experiments on Canadian Institute

For Advanced Research 10 dataset (CIFAR-10) [28]. It was collected by Canadian Institute

For Advanced Research, which is one of the most popular and worldwide used datasets for

machine learning and computer vision research. In CIFAR-10, there is 60000 32x32 pixels

color images in 10 class, with 6000 images per class [28]. 50000 of them are training

images and another 10000 images are test images. In this dataset, there are five batches for

training and one batch for testing. Each batch contains 10000 images. Here is the sample

of CIFAR-10 in Figure 3.1.

3.3 Adversarial Robustness Toolbox

As mentioned below, there are many adversarial attack methods such as FGSM, C&W,

PGD and so on. They are main and powerful adversarial attack methods used for evalu-

ating robustness of DNN. In this work, we use Adversarial Robustness Toolbox, an open

source Python library from IBM company. It is developed for rapid crafting adversarial

examples and analysis of attacks and defense methods for machine learning models [29].

11
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Figure 3.1: The sample of CIFAR-10 dataset. [28]
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The Adversarial Robustness Toolbox we used is 0.4.0.

3.4 Resnet20

ResNet (Residual Neural Network) was proposed by Kaiming He et al. [30] (Microsoft

Research Institute). Through the use of ResNet Unit, the 152-layer neural network was

successfully trained and won the championship in ILSVRC2015. The error rate on top5

was 3.57%. At the same time, the parameter quantity is lower than VGGNet, and the per-

formance is very outstanding [30]. The structure of ResNet can accelerate the training

of neural networks very quickly, and the accuracy of the model is also greatly improved.

At the same time, ResNet is very popular and can even be used directly in the Inception-

Net network. There are many variant such as ResNet20, ResNet32, ResNet44, ResNet56,

ResNet110, ResNet1202 and so on. In this work, we choose ResNet20 as our exam network

for SmoothBlock. Here is the sample structure of ResNet in Figure 3.2.

3.5 SmoothBlock

In this work, we argue that dropping blocks of activation units and scaling up rest ones will

increase mean and variance for rest activation units. This is limited in improving the DNN

robustness. Instead, using the average of feature maps can help defend against adversarial

examples, which will smooth these perturbed feature maps with the same mean value but

less variance.

We present our algorithm in psedu-code as in Algorithm 1. Input contains layer ac-

tivation X, block size b and probability setting p which is used to randomly select block

centers C. p determines how likely to keep the activation unit so it is actually keeping

probability as in [13]. The neighboring features maps is defined by a function N(·) which

returns neighbors as decided by b. In this work, these are square blocks all with the same

height and width. Set B contains all activation units within blocks generated based on cen-

ter points in C. For each activation unit in B, it is replaced either by the overall average m.
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Figure 3.2: The sample structure of ResNet. [30]
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Rest activation units are kept the same as original.

Algorithm 1 SmoothBlock Layer
1: Input: layer activation X, size b, keeping probability p
2: Output: layer activation Y
3: initialize empty set C = {}
4: for xi ∈ X do
5: uniformly sample γ ∈ [0, 1]
6: if γ < 1−p

b2
then

7: C = C ∪ {xi}
8: initialize empty set B = {}
9: for ci ∈ C do

10: for xi ∈ X do
11: if xi ∈ N(ci) then B = B ∪ {xi}
12: m← mean(X)
13: initialize Y the same dimension as X
14: for xi ∈ X do
15: if xi ∈ B then
16: yi ← m
17: else
18: yi ← xi

19: return Y

Since p stands for keeping probability, 1 − p will be the probability to take the point

as the dropping center. We scale this probability down with the block size b because the

dropping center will drop together with b2 number of neighboring units.

Besides, the above neighboring function N(·) can be implemented as creating square

blocks with certain height and width that are centered by the given point. All activation

units inside the block will be ”smoothed” with the average value m.

3.6 Comparison with Dropblock

In this section, we discuss the differences between SmoothBlock and Dropblock, which are

concluded in following aspects:

• SmoothBlock ”smoothed” dropped units with overall average value rather than zeros.

• SmoothBlock doesn’t scale up rest activation units.
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• SmoothBlock can be directly applied to testing phase without fine-tune but it can also

serve as a regularization method for training.

• SmoothBlock makes DNN model more robust than DropBlock in practice.

However, SmoothBlock maintains the same feature map magnitude as DropBlock while

with less variance. Let X′ be activation of perturbed input. Table 3.1 presents feature maps

magnitude in terms of their Frobenius norm. Dropped units in DropBlock method have

zero magnitude since they are set as zero and rest units are scaled up by constant c which is

chosen as 1
p

[13]. SmoothBlock keeps the same magnitude for both dropped and rest units.

As a result, the overall magnitude is maintained in both methods. Mean and variance of

DropBlock are both scaled up in terms of rest units. Variance of SmoothBlock is smaller

since many blocks of units are now with same values.

Table 3.1: Feature Maps Magnitude.

Dropped Units Rest Units
DropBlock 0 ||X′|| ∗ p ∗ c

SmoothBlock ||X′|| ∗ (1− p) ||X′|| ∗ p



CHAPTER 4

EXPERIMENTS

4.1 Experiment setup

We evaluate the robustness of SmoothBlock against adversarial examples on CIFAR-10

[31] dataset using ResNet20 [30] model is evaluation. This baseline model is trained for

200 epochs using Adam optimizer, with batch size of 128, and initial learning rate as 0.001

that decreases at epoch 80 and 180 with a factor of 0.1 and 0.5, respectively. The model

can achieve 90.03% accuracy on clean test data.

We defend against FGSM attack, PGD attack as well as C&W l2 attack under white-box

scenario. For FGSM attack, the adversarial perturbation magnitude is set as ε = {1, 2, 4, 8,

16, 32}with respect to [0-255] pixel scale. Configuration for non-targeted PGD is the same

as [11], i.e., ε = 8 and 7 iterative steps with size α = 2. As for C&W, we perform l2 norm

based target attack on first 1000 images of CIFAR-10 test data, using 10 steps of binary

search for constant c. The final attack success rate (ASR) for C&W can reach at 100%,

ASR implies the percentage of test data being mis-classified to the target wrong label.

The proposed SmoothBlock is systematically compared with DropBlock [13]. We for

the first time apply DropBlock in test phase to exam the model robustness against adversar-

ial examples. It is also worth mentioning that the idea of DropBlock is similar with another

competing defending method SAP [22] when the block size is set as 1. Both SmoothBlock

and DropBlock use shared dropped blocks across feature channels in our experiments.

4.2 Post-Hoc Application to Pre-trained Model

We directly apply our proposed SmoothBlock on pre-trained ResNet20 model against ad-

versarial attacks without any fine tuning. ResNet20 consists of a convolutional layer with

17
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a batch normalization, followed by 3 residual blocks, an average pooling, and a fully-

connected output layer. Extensive experiments are conducting to figure out the impact of

block size b, applied location of SmoothBlock as well as keeping probability p.

Comparison results of test accuracy on ResNet20 model against FGSM attack are de-

picted in Fig. 4.3. The details of comprehensive experimental results are showed in Fig.4.1.

We inject the defensive DropBlock/SmoothBlock regularization in ResNet20 at 5 different

positions: layer 1 denotes applying DropBlock/SmoothBlock after the activation of the first

convolutional layer, layer 2-4 denote applying DropBlock/SmoothBlock after each resid-

ual layer respectively, and layer 5 denotes placing DropBlock/SmoothBlock after the last

pooling layer. Results for different block size b settings with top performance are shown

in Fig. 4.3a and 4.3b. For both DropBlock and SmoothBlock, the model robustness has

a larger improvement for layer 1 compared to others. Corresponding accuracy results are

extracted to be shown in Fig. 4.3c for a detailed comparison. It clearly shows that using

our proposed SmoothBlock in testing phase could make the model much more robust than

original baseline and DropBlock. However, utilizing SmoothBlock could also eliminate

legitimate spatial features, since the original model is trained without this regularization

term, thus the test accuracy on clean data is deducted from 90.03% to 77.34%as shown in

Fig. 4.3c.

We also evaluate defending against PGD attack and C&W attack that are powerful non-

targeted and targeted attack respectively. We have tried various configurations for block

size b and applied location for both SmoothBlock and DropBlock. The details of extensive

experiment are depicted in Fig.4.2. Best evaluation results are shown in Table. 4.1. It

suggests that when applying defensive regularization, resistance of the model has been

improved against PGD attack. Particularly, the proposed SmoothBlock allows the model to

achieve much better performance than DropBlock. In addition, applying both SmoothBlock

and DropBlock terms can effectively protect the model against C&W attack while getting

significantly lower attack success rate (ASR) from 100% to 7.87%.
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(a) Comparison of CIFAR10 test accuracy plots on pre-trained ResNet20 model against FGSM attack when
testing DropBlock is located in different layers with different block sizes.

(b) Comparison of CIFAR10 test accuracy plots on pre-trained ResNet20 model against FGSM attack when
testing SmoothBlock is located in different layers with different block sizes.

Figure 4.1: Detailed Comparison of CIFAR10 test accuracy plots on pre-trained ResNet20
model against FGSM attack of DropBlock and SmoothBlock
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Figure 4.2: Comparison of CIFAR10 test accuracy on pre-trained ResNet20 model against
C&W and PGD attack when testing DropBlock or SmoothBlock is located in different
layers with different sizes.

Table 4.1: Robustness evaluation on pre-trained ResNet20 against PGD and C&W attack
(%).

PGD Acc C&W ASR C&W Acc
Raw 6.44 100 0.00

DropBlock 25.6 7.82 57.95
SmoothBlock 36.31 7.87 60.5

4.3 SmoothBlock Training on Clean Data

As investigated in 4.2, in most cases, SmoothBlock as a regularization term is embedded at

layer 1 in ResNet20 with block size b = 3 and keeping probability p = 0.7, top defense per-

formance will be reached. Therefore, we fix such configurations for other experiments. By

training model with SmoothBlock using the same hyper-parameters mentioned in Section

4.1, the classification performance on clean data are comparable with original pre-trained

model as shown in Figure 4.4. Besides, we also list the evaluation accuracy under FGSM

attack on regularized models without any defensive method during inference, and results
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(a) (b)

(c)

Figure 4.3: Comparison of test accuracy plots on pre-trained ResNet20 model against
FGSM attack when testing DropBlock or SmoothBlock is located in different layers. (a)
Test with DropBlock. (b) Test with SmoothBlock. (c) Comparison of DropBlock and
SmoothBlock.
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Figure 4.4: Comparison of evaluation results with no defense during inference on original
pre-trained model and models trained with DropBlock/SmoothBlock (%).

imply the raw model’s robustness. Particularly, as shown in Figure 4.4, with the proposed

SmoothBlock regularization during training, we effectively defend the FGSM adversarial

attack under the same ε setting when compared with the original model. This is because of

injecting randomness and blurring some spatial features in training phase such that model

is less overfitting to training distributions and can generalize well over simple one-step

adversarial attack. The learn-able information becomes sparser, which allows the model

less addicted to training distribution and achieves more capacity against simple one-step

adversarial attack.

Furthermore, we utilize DropBlock or SmoothBlock in the inference phase towards the

aforementioned regularized-trained models. The accuracy results against various attacks

are compared in Figure 4.5. As mentioned in section 4.2, original accuracy is degraded

when the DropBlock or SmoothBlock is directly applied in pre-trained model. Since many

previous works [32] [24] have revealed that there is a trade-off between maintaining the

non-perturbation data accuracy and defending the adversarial data, thus, this is another im-

portant metric to evaluate the effeteness of defense solutions against adversarial examples.

To address this, as can be seen in Figure 4.5, re-training the model with SmoothBlock

layer can solve this issue. Towards legitimate images, the classification performance does

not pose a significant deterioration compared to the original model ( only 0.69% drop).

Moreover, defense results in Figure 4.5 gain considerable improvements against all listed

attacks. In general, when our proposed SmoothBlock is applied in both training and testing

phase, evaluation performance has the most significant enhancement which is comparable

to state-of-art defense strategies against adversarial attacks [33] [34].
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Figure 4.5: Comparison of evaluation accuracy on regularized-trained ResNet20 models
with different test methods against various adversarial attack (%).

(a) Image Examples (b) Original Model (c) SmoothBlock-trained Model

Figure 4.6: Examples of CAMs for original and adversarial images on different models. (a)
Examples for clean and adversarial images. (b) (c) CAMs for both clean and adversarial
images generated from pre-trained model and SmoothBlock-trained model, respectively.

To explore the underlying reasons for the model’s robustness, we visualize the spatial

distributed information of the model’s attention by the class activation map (CAM) [35].

As shown in the left column of Figure 4.6a, we demonstrate several original image samples
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(a)

(b)

Figure 4.7: The effeteness of our proposed regularized defense SmoothBlock working
along with adversarial training. (a) Evaluation accuracy results against FGSM (%). (b)
Evaluation accuracy results against PGD (%).

from CIFAR10 dataset that ResNet20 can successfully classify. However, if adding some

adversarial perturbations to legitimate images, the model is easily fooled while the pertur-

bation is imperceptible to people (right column). Figure 4.6b and 4.6c represent CAMs gen-

erated from original model and SmoothBlock-regularized model, respectively. By adding a

highlighted mask on images, CAMs could localize class-specific regions learned by mod-

els. More specially, CAMs in the left column of Figure 4.6b and 4.6c correspond to the

legitimate images. We can see that the model attentions mainly focus on objects to be clas-

sified. However, for original model under adversarial attacks (right column of Figure 4.6b),

its attentions largely spread to other less significant regions which undermine the model’s

decision to incorrect class. On the other hand, Figure 4.6c shows CAMs for our proposed

SmoothBlock-trained model against adversarial attacks. Despite with a slight distraction,

the highlighted attention are generally maintain on the top of discriminated class-specific

regions to drive model making correct decisions.

4.4 Adversarial Training

Adversarial training has been introduced in [12], and adopted by [11]. It is a form of

data augmentation method which now can be considered as a well-known typical defense
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method against adversarial examples. In this section, we embed our proposed Smooth-

Block regularization into adversarial training to further improve the defense performance.

We train the ResNet20 model on CIFAR10 by injecting adversarial examples as the vanilla

adversarial training baseline. Following the identical configurations in Section 4.1, the

original evaluation accuracy achieves 81.30%. As shown in Figure 4.7a, the model robust-

ness against FGSM attacks has been increased compared to the original baseline without

employing adversarial training in Section 4.2. Especially, improvements for attacks with

smaller strengths are significant. However, such effect is eliminated when SmoothBlock

is applied directly on vanilla adversarial training. Furthermore, we explicitly examine the

proposed SmoothBlock with adversarial training by putting it in both training and testing

phase. Results are shown in last two rows in Figure 4.7a. It can be seen that not only

the model capacity on clean data is increased from 81.30% to 84.54%, but also the top

evaluation performance against FGSM attacks is achieved by our proposed SmoothBlock

solution across all attacking strengths.

Recent study [11] has developed adversarial training against PGD attack which is known

as one of the most powerful attacks. We directly apply our proposed SmoothBlock on

vanilla adversarial-trained model. Results are shown in Figure 4.7b. Although test accu-

racy for PGD is improved, the performance of legitimate data is severely dropped from

81.30% to 54.61%. To address this issue, we put SmoothBlock in training stage along with

adversarial training. Accuracy results are reported for testing with and without Smooth-

Block (second row in table). It can be easily observed that when our proposed Smooth-

Block employed in both training and testing phase, the model robustness against PGD

attack gains considerable increase to 50.56%. Besides, for clean data, evaluation accuracy

is proportional to the vanilla adversarial training and even gets improved from 81.30% to

82.23%.

Compared to another recent work [24] as aforementioned in section 2.2, our work has

similar effect of increasing model robustness by introducing regularization term in model.
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Even though we have both achieved analogous performance against FGSM and PGD at-

tacks, PNI is limited that it could not work properly without adversarial training while

our method is more flexible. The proposed SmoothBlock can effectively improve model

robustness, even when directly applied to pre-trained model as well as embedded into train-

ing phase with and without adversarial examples injection.

4.5 Ensemble

Many recent works [14] [24] have proved that introducing randomness is a promising so-

lution against adversarial examples. As discussed, DropBlock and SmoothBlock blocks

are randomly generated to sample on intermediate feature maps of DNN models. No-

tably, to maintain high classification accuracy, DropBlock is not applied during inference.

Such randomness would pose uncertainty and bias for model decision, and the impact from

DropBlock is worse than SmoothBlock. However, by initiating model ensemble, we can

turn this drawback to benefits.

We obtain model predictions for multiple iterations and ensemble results to make final

decisions. The model here is ResNet20 trained with SmoothBlock, by randomly picking

one regularization term from DropBlock and SmoothBlock in each testing phase. We show

ensemble results in Figure 4.8. Compared with one-time test result, the evaluation perfor-

mance against small-strength FGSM is improved as well as C&W target attack. This con-

tributes to the combination of DropBlock which reflects to our observation that DropBlock

behaves better for small perturbations ( Section 2.2 ). Ensemble performance fluctuates in a

reasoning range and reaches an upper bound when we initiate more than 100 test iterations.

As a result, if inference computation cost is not in concern, we suggest such ensemble

strategy to further improve the model robustness.
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Figure 4.8: Model self-ensemble results against FGSM, PDG and C&W attaks (%).



CHAPTER 5

FUTURE WORK

With extensive experiments on selecting appropriate block size and location of Smooth-

Block, we select the best configurations for our ResNet20 model. The well trained ResNet20

model with SmoothBlock achieves around 90% accuracy on legitimate CIFAR-10 data

and even under the adversarial training scenarios it can achieve around 82% on legitimate

CIFAR-10 data. With proposed SmoothBlock, the ASR of PGD and C&W hover around

7.8%, which is largely lower than when apply no defense method. It also achieves state-of-

art performance when facing FGSM, PGD and C&W mainstream adversarial attack. Also,

we apply self-ensemble method to futuer improve the performance.

By trial and error, we found the location, block size and setting configurations can

largely influence the performance of the model with SmoothBlock. For example, we may

place the two SmoothBlock layers with block size 5 and 3 in the model at the last residual

block. We are also interested in different structures like VGG-net, DenseNet and other

famous DNN structures, since different solutions of layer connection may affect the per-

formance of SmoothBlock. Additionally, we intent to apply our proposed SmoothBlock on

Resnet20 with larger dataset like ImageNet.

28



CHAPTER 6

CONCLUSION

In this work, we propose a regularized defense method against adversarial examples for

DNN models. We conduct extensive experiments to illustrate the effectiveness of the pro-

posed SmoothBlock under different attacking approaches (FGSM, PGD, C&W) in white-

box scenarios. According to our convincing experiments, SmoothBlock can be easily

embedded into pre-trained model to improve adversarial accuracy. Moreover, the model

robustness achieves state-of-art performance when putting our proposed SmoothBlock in

training and adversarial training, without degradation on clean data. Besides, we suggest an

ensemble strategy to further improve DNN robustness. With our proposed SmoothBlock,

the model is able to gain high robustness, reduce the negative impact from perturbed input

data and achieve excellent classification performance with clean data.

29



REFERENCES

[1] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,”
in Advances in neural information processing systems, 2013, pp. 2553–2561.

[2] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep convolutional net-
works for natural language processing,” arXiv preprint arXiv:1606.01781, vol. 2,
2016.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 3431–3440.

[4] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the incep-
tion architecture for computer vision,” 2015. eprint: arXiv:1512.00567.

[6] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision
and pattern recognition, Ieee, 2009, pp. 248–255.

[9] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial exam-
ples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[10] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, “Ad-
versarial attacks and defences: A survey,” arXiv preprint arXiv:1810.00069, 2018.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learn-
ing models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

30

arXiv:1512.00567


31

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[13] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A regularization method for con-
volutional networks,” in Advances in Neural Information Processing Systems, 2018,
pp. 10 750–10 760.

[14] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural networks via
random self-ensemble,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 369–385.

[15] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 315–323.

[16] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”
arXiv preprint arXiv:1611.01236, 2016.

[17] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” in 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), IEEE, 2016, pp. 372–387.

[18] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in 2017 IEEE Symposium on Security and Privacy (SP), IEEE, 2017, pp. 39–57.

[19] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practi-
cal black-box attacks against machine learning,” in Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, ACM, 2017, pp. 506–
519.

[20] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to
adversarial perturbations against deep neural networks,” in 2016 IEEE Symposium
on Security and Privacy (SP), IEEE, 2016, pp. 582–597.

[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[22] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi, A. Khanna,
and A. Anandkumar, “Stochastic activation pruning for robust adversarial defense,”
arXiv preprint arXiv:1803.01442, 2018.

[23] J. Svoboda, J. Masci, F. Monti, M. M. Bronstein, and L. Guibas, “Peernets: Ex-
ploiting peer wisdom against adversarial attacks,” arXiv preprint arXiv:1806.00088,
2018.



32

[24] A. S. Rakin, Z. He, and D. Fan, “Parametric noise injection: Trainable randomness to
improve deep neural network robustness against adversarial attack,” arXiv preprint
arXiv:1811.09310, 2018.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[27] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors and dynamic
neural networks in python with strong gpu acceleration,” PyTorch: Tensors and dy-
namic neural networks in Python with strong GPU acceleration, vol. 6, 2017.

[28] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online: http://www.
cs. toronto. edu/kriz/cifar. html, vol. 55, 2014.

[29] M.-I. Nicolae, M. Sinn, M. N. Tran, A. Rawat, M. Wistuba, V. Zantedeschi, N. Bara-
caldo, B. Chen, H. Ludwig, I. M. Molloy, et al., “Adversarial robustness toolbox v0.
4.0,” arXiv preprint arXiv:1807.01069, 2018.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[31] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny im-
ages,” Citeseer, Tech. Rep., 2009.

[32] A. Athalye and N. Carlini, “On the robustness of the cvpr 2018 white-box adversarial
example defenses,” arXiv preprint arXiv:1804.03286, 2018.

[33] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples,” arXiv
preprint arXiv:1710.10766, 2017.

[34] T. Na, J. H. Ko, and S. Mukhopadhyay, “Cascade adversarial machine learning reg-
ularized with a unified embedding,” arXiv preprint arXiv:1708.02582, 2017.

[35] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep fea-
tures for discriminative localization,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 2921–2929.


	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Image Recognition
	Adversarial Example
	Thesis Structure

	Related Work
	Adversarial Attack
	Adversarial Defense
	Deep Neural Network
	FGSM
	C&W
	PGD
	DropBlock

	Tools and Platform
	Pytorch
	CIFAR-10
	Adversarial Robustness Toolbox
	Resnet20
	SmoothBlock
	Comparison with Dropblock

	Experiments
	Experiment setup
	Post-Hoc Application to Pre-trained Model
	SmoothBlock Training on Clean Data
	Adversarial Training
	Ensemble

	Future Work
	Conclusion
	References

