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Voice-user interface (VUI) has exploded in popularity due to the recent advances in

automatic speech recognition (ASR). Such an interface has been integrated into various

platforms, such as mobile phones, smart appliances and stand-alone voice assistants, and

provides a convenient way for people to interact with them. Moreover, with such a conve-

nient VUI, voice speaker recognition system that could be seamlessly integrated to facilitate

security-related applications or personalized services has gained considerable attention re-

cently. However, existing studies have shown that deep neural networks (DNNs), as the

computational core of speaker recognition systems, are vulnerable to adversarial examples,

which strategically perturbed input examples leading to a fraudulent prediction.

In this thesis, we demonstrate that it is possible to construct adversarial examples

against speaker recognition systems. Particularly, we use several gradient/iterative-based

methods (e.g, fast gradient method (FGM), fast gradient sign method (FGSM), and ba-

sic iterative method (BIM)) and our proposed optimization-based approach for crafting

adversarial perturbations for both untargeted and targeted attacks. The untargeted attack

could make the system give an incorrect prediction while the targeted attack could change

the prediction result to any user desired by an adversary. Our experiments using a public

speech dataset of 109 people show that with only partial knowledge of the speaker recogni-

tion system, the adversary is capable of reducing the system accuracy by over 60% for the

untargeted attack. For the targeted attack, our approach could achieve an overall success

ii



rate of over 60%. With full knowledge of the system, the adversary can reduce the system

accuracy by 65%, while still keeping the crafted speech unnoticeable to humans.
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CHAPTER 1

INTRODUCTION

Speech is one of the most natural ways for human-computer interaction (HCI). As a result,

voice assistants have been gradually changing our daily lives with its wide deployment on

smartphones, smart speakers, vehicles and many other embedded systems and devices dur-

ing the last decade. The major function of the voice assistant systems is automatic speech

recognition (ASR), which automatically translates voice commands into corresponding

texts. The huge influence of existing ASR systems arouses an increasing interest on the

study of voice authentication processes. Speaker recognition (SR) addresses the task to

identify the speaker of a provided utterance. There is the text-dependent speaker recogni-

tion which requires the utterance to be a series of fixed words, and the text-independent

speaker recognition which has no constraints on the speech content. SR can be further

divided into two subtasks: speaker verification makes 1 to 1 comparison to verify if the

audio is spoken by the claimed speaker, and speaker identification (or speaker classifica-

tion) makes 1 to N comparison to search for the correct speaker among a set of potential

speakers. Generally, SR systems function by extracting the characteristics of each speaker’s

voice and constructing a voiceprint to uniquely identify the speaker. Comparing to other

biometrics, voiceprint has the advantage of high accuracy, high user acceptance, and low

cost. Nowadays SR systems have been widely deployed in online banking, identity veri-

fication for contact centers, criminal detection, user authentication on mobile devices and

many other security-intensive areas. However, the robustness of SR systems when facing

adversarial attacks is still doubtful.

As deep learning becoming extremely powerful and successfully pushing the state-of-

the-art in many difficult tasks including image classification [1, 2], image segmentation [3]

and speech recognition [4], modern speaker recognition systems have adopted deep neural
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networks (DNNs) as a replacement part for the traditional GMM-UBM based embedding

models. DNNs enable the system to learn to extract compact representations of the speaker

level variations from a massive amount of data and the DNN-based speaker recognition

systems has shown its superiority over the traditional systems in terms of recognition accu-

racy and error rates. However, previous studies [5, 6] have shown that DNNs are vulnerable

to adversarial examples, which manipulate inputs intentionally to cause false predictions.

The finding of adversarial examples has aroused increasing interest in the machine learning

community. Since the perturbation between the original input and the adversarial example

is small enough to be unnoticeable to human, the adversarial examples can bring severe

damage to the systems causing security risks and concerns. Existing works on adversarial

machine learning have been mainly focusing on vision domain [7, 8, 9], few papers touch

upon auto speech recognition [10]. To the best of our knowledge, we are not aware of

any existing study on evaluating the robustness of speaker identification systems. In this

thesis, we seek to explore the possibility of attacking speaker recognition systems using

adversarial examples. In summary, the main contributions of this thesis are:

• We demonstrate the vulnerability of speaker recognition systems by designing and

implementing several attacks against a DNN-based text-independent speaker identi-

fication system.

• We validate the feasibility to construct a targeted attack on such systems, which

allows us to possibly manipulate the prediction of a piece of provided audio recording

to any class of speaker at will.

• We provide several algorithms for generating untargeted and targeted adversarial ex-

amples against speaker recognition systems. Two untargeted algorithms are capable

of generating adversarial examples using only a single step, and two targeted al-

gorithms generate adversarial examples through iterative or optimization process to

construct strong attacks.
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• With the constraints on distortion matrices, we report the noise level of most our ad-

versarial noise to be in the range of �15 dB — �40 dB, which is quasi-imperceptible

to human listeners.

• We perform extensive experiment under two different realistic attack scenarios. Merely

with the knowledge of embedding model, we are able to achieve an attack success

rate of 60% in targeted setting and 35% in untargeted setting, while still keeping the

noise at a unnoticable level. With complete knowledge of the system, we can achieve

a success rate of over 65% with our untargeted attack method, and 100% with our

targeted attack method at a low noise level.

1.1 Notational Convention

In the rest of this thesis we use the following notations:

• X denotes the clean input, which is the unmodified data sample from the original

data set.

• y denotes the label for input X .

• � denotes the adversarial perturbation in the input space.

• X 0 represents the adversarial example crafted by applying adversarial perturbation to

the input which intends to cause misclassification: X = X 0 + �. Conventionally we

call any inputs produced by this formula ’adversarial examples’ even though some

of them may not cause the ML model to produce false output.

• C(X) is the output classification results made by the ML model for input X .

• J (X, y) represents the cost function used to train the ML model. Model parameters

are considered in the cost function by default.
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• D(x, y) represents the distance between x and y, measured by some distance matrix,

for instance L0, L2, L1.

• e denotes the embedding of the input.

• E represents the mapping from input X to its embedding e (i.e. E : X ! e).

1.2 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 describes the architecture of conventional and modern speaker recognition

systems and the workflow of such systems. We also introduce previous studies on adver-

sarial machine learning and existing algorithms for generating adversarial examples.

Chapter 3 discusses the two settings of adversarial scenarios used as our threat model,

the distortion matrix we chose for evaluation. Finally, the algorithms for generating adver-

sarial examples in each scenario are introduced respectively.

Chapter 4 presents the results of applying our attack methods to a speaker recognition

system and evaluates the attack success rate and noise level under different adversarial

settings.

Chapter 5 introduces related works in attacking speaker recognition systems using syn-

thesized or recorded audio clips and generating adversarial example for automatic speech

recognition systems.

Chapter 6 concludes the thesis.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce the structure of a typical speaker identification system, the

basis of adversarial examples and existing attack methods.

2.1 Speaker Identification Systems

Speaker identification (SI) systems are designed to classify the identity of an unknown

voice from a set of speakers. In most SI systems, an embedding method is used to map

phonetic statistics into a feature space where distance measures the similarity of different

voices. Traditional text-independent SI systems use i-vectors [11] and probability linear

discriminant analysis (PLDA) [12] to make classification. As is shown in Figure 2.1, this

framework can be decomposed into 3 components:

• Front-End: After voice activity detection (VAD), the raw acoustic signal is pre-

processed and converted into feature vectors. Figure 2.2 shows the process of deriv-

ing feature vectors from an audio signal via the most commonly used mel-frequency

cepstral coefficients (MFCC) [13].

• Embedding Model: High-dimensional statistics are computed by a Gaussian Mix-

ture Model (GMM) based Universal Background Model (UBM), and a projection

matrix is used to get low-dimensional i-vectors that encodes speaker identity.

• Classifier: A separately trained PLDA classifier is used to make predictions for dif-

ferent utterances. This process involves principal component analysis to project the

embedding vectors into low-dimensional subspace, where probability scores for each

class is calculated by Gaussian distribution. The class with the highest score would

then be output as the prediction result.
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Figure 2.1: Traditional text-independent SI system framework

Figure 2.2: Feature vector extraction

Recently in the speaker verification (SV) task, many researches [14, 15, 16, 17] have

been seeking to replace the i-vector embedding model with a DNN-based feature extractor

for computational efficiency and model compactness. In the speaker identification (SI)

task, Chen et al. [18] proposed to use a DNN constructed by multiple fully-connected (FC)

layers to extract speaker level variability from the feature vectors. Synder et al. [19] uses

time-delayed deep neural networks (TDNN) which is directly-optimized to discriminate

speakers as the embedding model to achieve a superior performance.

The workflow of a SI system can be broken down into 3 phases [14]:

1. Development: The embedding model is trained with a large collection of data to

establish the mapping between utterances and speaker variability. In commercial

practices, this part is typically done by the manufacturer.
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2. Enrollment: The users are enrolled by collecting speaker specific data to construct

speaker-dependent models. The speaker sets in the development phase and the en-

rollment phase should be mutually exclusive. This part is usually done by the users

after purchasing the product. Comparing to the training set, the size of the data set

required for enrollment is very small.

3. Evaluation: This is where the system makes predictions. An utterance is feed into

the model and a decision is made among enrollment speaker set.

The major distinction between SI system and other ML systems (e.g. image classi-

fication system, automatic speech recognition system) is the requirement for the enroll

process. Note that unlike other ML systems, it’s impossible for the SI systems to anticipate

the number of classes, as well as the classification objectives, and therefore it cannot offer

off-the-shelf pre-trained classifier models. In realistic commercial scenarios, the embed-

ding models trained by the manufactures are often fixed and stored either locally or on a

remote server, and the user’s profile is usually stored locally after enrollment.

2.2 Adversarial Examples and Attack Methods

2.2.1 Adversarial Examples

Recent breakthroughs in machine learning (ML) have enabled researchers to solve a variety

of complex real-world problems in speech, vision, video, text and other domains. Many

ML models are responsible to make security critical decisions such as autonomous driving,

malware classification, criminal detection, online-banking authentication etc. However,

several studies have demonstrated that most ML models are vulnerable to adversarial ex-

amples. Adversarial examples are intentionally perturbed input examples that are designed

to cause the victim ML model to make incorrect output with high confidence. The per-

turbation are often imperceptible to human, making it difficult to deploy ML models in
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Figure 2.3: An illustration of adversarial attack

security-intensive real-world scenarios. For instance, Figure 2.3 shows that in the Ima-

geNet [1] classification task, the adversarial image makes the neural network to misclassify

a dingo as a mosquito net with higher confidence.

Szegedy et al. [20] first introduced the vulnerability of ML models when facing ad-

versarial examples. In addition, their experiment shown that an adversarial example that is

designed to fool model A can also be misclassified by model B. This transferability prop-

erty makes it possible for attackers to generate adversarial examples on any ML models

even without the knowledge of its inner structure and parameters. This finding results in a

series of studies in adversarial machine learning. Papernot et al. [21] tested this property

under realistic scenarios. Kurakin et al. [22] applied adversarial examples in real-world

environments using printed-out images and cellphone cameras. Several attempts [6, 23]

have been made to theoretically explain the existence of adversarial examples and various

methods [24, 25] are proposed to increase the robustness of ML models.
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2.2.2 Attack Methods

Adversarial attacks can be classified into two types: targeted attack, which aims to gener-

ate adversarial example X 0 that would be classified by the victim model as a specific target

class (i.e. For a given target label t , construct an adversarial example X 0 s.t. C(X 0) = t),

and untargeted attack, which only seeks to make the victim model to make false prediction

(i.e. For a given clean input C(X) = t , construct an adversarial example X 0 s.t. C(X 0) =

i : i 6= t). Previous studies on both methods to generate adversarial examples have mainly

been focusing on vision domain. This section gives a brief introduction to some important

attack methods.

Fast gradient sign method Inspired by the observation that most deep neural net-

works are locally linear, Goodfellow et al. [6] proposed a single step solution to compute

untargeted adversarial perturbation:

X 0 = X + ✏sign (rXJ (X, y)) , (2.1)

where ✏ is a preset constant to control the attack strength. Smaller values are often chosen

to make the attack undetectable. Intuitively, as a input with higher cost has better chance

to be misclassified, FGSM generates adversarial examples by taking one small step in the

input space in the direction of the gradient of the cost function.

With this method, we can also perform targeted attack with only a slight modification:

X 0 = X � ✏sign (rXJ (X, yt)) , (2.2)

which brings the classification results one step closer to target class t. Note that FGSM

seeks to be fast, instead of finding the optimal perturbation.

Basic iterative method Kurakin et al. [22] proposed a modification to the original

FGSM to improve the attack performance. The single step of size ✏ in the direction of the
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gradient is broken down into multiple steps of size ↵, and the total length is clipped by the

same value ✏. The procedure can be formally described as:

X 0
0 = 0, X 0

n = Clip✏ {Xn�1 + ↵sign (rXJ (Xn�1, y))} . (2.3)

To generate targeted adversarial examples, formula 2.3 needs to be modified as follows:

X 0
0 = 0, X 0

n = Clip✏ {Xn�1 � ↵sign (rXJ (Xn�1, yt))} , (2.4)

where yt is the label of the target class. Experiments shows that basic iterative method

(BIM) produces better results comparing to FGSM.

C&W To break robust models with defense methods, Carlini et al. [9] proposed a

optimization-based method to construct strong targeted attacks. The problem of searching

for an adversarial example for input X can be initially formulated as a optimization process:

minimize D(X,X 0)

such that C(X 0) = t

X 0 2 [0, 1]n ,

where we assume X is a vector of dimension n, and [0, 1]n is the re-scaled box constraint

for X (e.g. in the image domain, this would be the RGB value for each pixel from 0 to

255).

As the original formulation can be very difficult for any existing optimization methods

to solve due to the non-linearity of the classifier C, the authors instead solve an alternative
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problem:

minimize D(X,X 0)

such that f(X 0)  0

X 0 2 [0, 1]n ,

where f is a self-defined objective function satisfying that f(X 0)  0 is the sufficient and

necessary condition of C(X 0) = t. In practice, they solve:

minimize D(X,X 0) + c · f(X 0) s.t. X 0 2 [0, 1]n , (2.5)

where c is a pre-chosen positive constant. As the process of selecting from different objec-

tive functions f , distance matrix D and constant c values is rather sophisticated, we refer

interested readers to their original paper.

To perform adversarial attacks in real-world scenarios, the attacker would need to ap-

ply the calculated adversarial perturbation to the legitimate input to achieve her malicious

intents. For instance, to fool image recognition DNN systems in a self-driving car, the at-

tacker might want to use a print-out adversarial image [22], or a sticker [26] to modify the

stop sign. Similarly, the attacker could play a mixed audio of the adversarial noise and the

clean voice sample to fool the speaker verification system used in a bank’s call center.
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CHAPTER 3

METHODOLOGY

In this chapter we clarify our assumption on adversarial setting, and then introduce our

several attack methods. Finally we introduce the framework we used as the benchmark to

evaluate our attacks.

3.1 Threat Model

Given an input acoustic signal X and a victim SI system with classifier C, we seeks to

generate an adversarial signal X 0 = X + �, so that X and X 0 are similar, but C(X 0) 6=

C(X) (untargeted attack) or C(X 0) = t (targeted attack). Considering the increasingly

wide commercial deployment of DNN-based SI systems, in this thesis we will demonstrate

attacks against SI systems with DNN embedding models. We assume the adversary is able

to perform white-box attack, which allows the adversarial to access the complete network,

including its architectures and parameters. In addition, we expect our adversarial audios

are directly fed into the model without any external noise introduced (e.g. being played

over the air and recorded by microphones). This is a typical threat model picked by most

previous work [6, 10]. However, we believe our results are not necessarily limited to white-

box settings or merely DNN models, as many studies has proved that adversarial examples

could be transferable to different models and are resilient to environmental noise in image

tasks [21, 22], and we expect that our attack can be potentially extended to real-world

scenarios.

In most SI systems, the embedding models are fixed and either stored on remote servers,

or uniformly stored on every devices, whereas the enrolled model (i.e. users’ profile) are

often stored locally on a private device and could be changed by user behavior. We notice
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that in either case, it’s easier for the adversary to access the embedding models using probes

or other reverse-engineering methods than to access the enrolled model. To address this

problem, we further assume the following two scenarios:

• Partial knowledge scenario: Assuming that the adversary only have knowledge

of the embedding systems, the adversary could perform: a. untargeted attack to

change the classification result to a random speaker, b. targeted attack to change the

classification result to a specific speaker, provided with a piece of recording from the

target speaker. In the remaining part of this thesis, we will refer this as the embedding

space or the embedding level attack.

• Full knowledge scenario: Assuming that the adversary has complete knowledge of

both the embedding system and the enrolled model for classification, the adversary

could perform: a. end-to-end untargeted attack to change the classification result to

a random speaker b. end-to-end targeted attack to change the classification result to

any specific speaker, without the requirement of having recording from any speaker.

In the remaining part of this thesis, we will refer this as the scoring space or the

scoring level attack.

3.2 Distortion Metric

To be able to evaluate the adversarial distortion in a quantitative format, we use decibels

(dB) as a measurement to the noise level. Decibels is commonly used in acoustic signal

analysis to express the relative power level (i.e. loudness) on a logarithmic scale. Given a

measured signal s and a reference signal s0, the decibel is given by:

L = 10 log10

✓
A(s)2

A(s20)

◆
= 20 log10

✓
A(s)

A(s0)

◆
, (3.1)
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where A computes the amplitude of a given signal. In our case, we compare the noise � to

the original audio X , and define the following equation as our metric to measure distortion:

L(�, X) = 20 log10

✓
A(�)

A(X)

◆
. (3.2)

Specifically, since the amplitude of the noise is usually relatively small comparing to the

original waveform, the decibel value will be negative, and smaller values indicates smaller

noises. Conventionally, noises with decibel values less than -15 dB are considered to be

quasi-imperceptible.

3.3 Attack Methods

In this section, we will introduce the algorithms we use to generate untargeted and targeted

adversarial examples in the embedding space and the scoring space respectively. In each

space, we provide two methods for untargeted attack, and two methods for targeted attack.

3.3.1 Embedding Space

To evaluate the performance of untargeted attacks in the embedding space, we use the

following algorithms:

1. FGSM: The original FGSM is designed to compute adversarial noise in the image

domain by taking the gradient of the loss function with respect to the input. However

in our case, there is no available loss function in the embedding level. Therefore we

made a little modification to the original formulation 3.4 in order to perform FGSM

in the embedding space. Assuming E represents the mapping between the input

space and the embedding space, we have

X 0 = X + ✏sign (rXE(X)) . (3.3)
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This gives the intuition on how to project the small perturbation added in the input

space onto embedding space to distort the embedding and consequently change the

classification result.

2. FGM: During the experiment, we also compute the perturbation without taking the

sign function in the embedding space. We refer this as the fast gradient method

(FGM). To be explicit, we write

X 0 = X + ✏ ·rXE(X). (3.4)

We provide the detailed explanation and comparison between FGSM and FGM in

later in chapter 4.

To evaluate the performance of targeted attacks in the embedding space, we use the

following algorithms:

1. Optimization: we use a optimization-based method modified from C&W’s algo-

rithm ( later referred as optimization-based method or optim. in short ). Even with

dimensionality reduction, the search plane in embedding level is still enormous to

look for adversarial example without any external information as direction. There-

fore we require a piece of recordings of the target speaker to compute the target

embedding as a guidance. Suppose that X is the vectorized input audio of dimension

n, and Xt is the audio clip of the target speaker, we generate adversarial noise � by

solving the following optimization process:

minimize kE(X)� E(Xt)k2 + r · k�k1 s.t. � 2 Rn. (3.5)

where r is the regularization factor. As this will gradually reduce the distance be-

tween the adversarial embedding and the target embedding, and at some point change
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the classification result. We also place a penalty on the noise level to keep the attack

imperceptible.

2. BIM: Similarly, we define the L2 distance between the adversarial embedding and

the target embedding as the loss function, and apply BIM to derive the perturbation

in the input space with the following formula:

X 0
0 = 0, X 0

n = Clip✏ {Xn�1 � ↵sign (rX kE(Xn�1)� E(Xt)k2)} . (3.6)

3.3.2 Scoring Space

To evaluate the performance of untargeted attacks in the scoring space, we use the fol-

lowing algorithms:

1. End-to-end FGSM: For the scoring space, we define the loss function to be the

cross-entropy loss between the output probability distribution p of the PLDA classi-

fier and the true one-hot label y:

Jp(X) = �
X

yi · log(pi). (3.7)

Equation 3.4 then needs to be modified as:

X 0 = X + ✏sign (rXJp(X)) . (3.8)

Comparing to equation 3.3, this means to tweak the input to directly disturb the

output probability distribution and potentially further cause misclassification.
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2. End-to-end FGM: Remove the sign function in equation 3.8, we have:

X 0 = X + ✏ ·rXJp(X). (3.9)

To evaluate the performance of targeted attacks in the scoring space, we use the fol-

lowing algorithms:

1. End-to-end optimization: To compute adversarial noise, we solve the following

optimization problem modified from formula 2.5 using the distortion metric provided

in equation 3.2:

minimize L(�, X) + c · f(X 0) s.t. � 2 Rn. (3.10)

To make full use of the probability scores produced by the PLDA classifier, we define

function f to be

f(X 0) = max (max {pi : i 6= t}� pt, �) , (3.11)

where pi is the predicted probability for the ith class, and  is a pre-chosen constant to

represent attack confidence, as larger  values will usually produce stronger results.

2. End-to-end BIM: Combining equation 3.12 and 3.8, we get

X 0
0 = 0, X 0

n = Clip✏ {Xn�1 � ↵sign (rXJp(Xn�1))} . (3.12)

The idea of this process is to gradually modify the output probability distribution to

mimic the target label.
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Figure 3.1: Benchmark framework for evaluation

3.4 Evaluation Benchmark

3.4.1 Benchmark Framework

This section describes the architecture of the network used as our benchmark for testing.

We choose to used the DNN embedding system proposed in [14, 18] and use PLDA as the

classifier which is common in SI tasks [27, 19]. In detail, this framework can be describe

as three steps as shown in Figure 3.1.

For the front-end pre-processing, the audio waveform first goes through a energy-based

voice activity detection (VAD) of 95 percent to trim the silent segments, and is windowed

into frames of 320 samples with an overlapping of 160 samples. Then we take the fast

Fourier transform (FFT) and apply filter banks. We keep the first 26 dimensions after the

discrete cosine transform (DCT), and append the energy to the features after amplifying the

high frequencies. Finally, multiple frame-level features was stacked into a feature vector of

260 dimensions.

The architecture of our DNN embedding model is proposed in [14]. We use input di-

mensional of 260 to be consistent with the size of feature vectors. The number of outputs

is equal to the number of speakers in the development set, which is 105 in our case. With

out loss of generality, we choose to use two FC layers to construct the network for com-

putational efficiency, and the output from the last hidden layer is taken as the embedding

vector as is suggested in [14]. The model is based on the hypothesis that the DNN will au-

tomatically learn to extract representations of the variations of speakers in the development

set, and the learned mapping can also be used to distinguish unseen speakers.
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3.4.2 Dataset Description

The dataset we use for network training and evaluation is CSTR VCTK Corpus dataset

from the University of Edinburgh [28]. This dataset contains speech data uttered by 109

native English speakers with various accents. Each speaker reads out about 400 sentences.

We first divide the dataset into development set containing 105 speakers, which is for

embedding network training, and evaluation set containing the rest 4 speakers (labeled as

p363, p364, p374 and p376). Then we further divide the evaluation set into enrollment

set, which is to enroll the 4 speakers as users of the system, and testing set which is for

attack methods testing. The proportion of the enrollment set and the testing set is 4:1. The

classification results will be made among these 4 speakers.
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents the results and discussion of our experiments. We will first illustrate

the results of our untargeted and targeted attacks in the embedding space, and then the

results our untargeted and targeted attacks in the scoring space.

4.1 Embedding Level Attack

Untargeted Attacks We use the last 4 speakers in the VCTK Corpus dataset to test our

untargeted attacks (labeled as p363, p364, p374, and p376), in total 285 audio files. The

baseline system accuracy with clean inputs is 97.19%. Table 4.1 and 4.2 summarize the

results. The configuration column shows the attack strength, the systems accuracy column

shows the systems accuracy tested with the adversarial inputs, and the attack success rate

(ASR) is the difference between system accuracy with clean inputs and the system accuracy

with adversarial inputs. As we can see from the results, larger ✏ values produces stronger

attacks. With same ✏ values, FGM produces superior results than FGSM. FGSM is original

proposed in the image domain, where the input value range are limited. For instance, the

value of each pixel ranges within 0-255 under RGB color mode. In which case, taking sign

function can prevent the algorithm from producing illegal adversarial inputs. However, the

input value of audio files has a much wider range. For example, for a 16 bit audio file, the

amplitute can go as high as 32767. Therefore the sign function is not necessary in our case.

However, as we can see from the last column in table 4.1 and 4.2, to achieve the same ASR,

FGM requires stronger noise to be added. This is because instead of introducing uniform

noise as the FGSM does, FGM produces unevenly-distributed noise with larger distortion.



21

Table 4.1: Results of FGSM attack in the embedding space

Configuration System Accuracy Attack Success Rate Noise Level
✏ = 10�1 34.38% 62.81% �3.44 dB
✏ = 10�2 62.45% 34.74% �23.44 dB
✏ = 10�3 94.38% 2.81% �43.44 dB
✏ = 10�4 95.43% 1.76% �63.44 dB

Table 4.2: Results of FGM attack in the embedding space

Configuration System Accuracy Attack Success Rate Noise Level
✏ = 10�1 24.21% 72.98% 34.13 dB
✏ = 10�2 38.94% 58.28% 14.13 dB
✏ = 10�3 52.98% 44.21% �5.86 dB
✏ = 10�4 79.64% 17.55% �25.86 dB

Targeted Attacks To evaluate our targeted attack in the embedding space, we ran-

domly select audio clips from the original speaker and the target speaker. For each combi-

nation, we repeat the attack for 20 times with different audios selected each time. We only

report success when the classification result matches target speaker. Table 4.3 shows our

best results of BIM method with number of steps = 100, ✏ = 0.01 and ↵ = 0.001. Table

4.4 shows our best results of optimization-based method using the Adam optimizer, with

r = 0.01, learning rate = 0.001 and number of training epochs = 2000. For simplicity we

refer the speakers with label p363, p364, p374, p376 as speaker A to D. We observe that the

ASR differs from different combination of original and target speakers. Both results shows

that the attack attempting to change the classification from speaker A to B, or reversely

B to A, has a relative high ASR. On the other hand, the attack attempting to change the

classification from any speaker to speaker D is harder to success. This is due to the fact

that speaker A and B has a similar voice tone which results in a closer distribution in the

embedding space and therefore it’s easier to flip the prediction. Results shows that BIM

produces slightly better performance than the optimization method in the embedding space.

Table 4.5 shows the noise level of our BIM and optimization-based attack. Perturbation

generated by both methods are within acceptable range. The average decibel generated by
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our optimization based method measures at a very low value (-38.38 dB), which makes our

attack hard for human to perceive. Figure 4.1 shows the waveform of a successful attack

from speaker A to speaker C, generated by our optimization-based method. From top to

bottom are the waveform of the original audio, the adversarial audio, and the noise (red)

comparing to the original audio (blue). It’s hard to distinct the two waveforms by visual

observation, and the noise is also subtle comparing to the original audio. The noise level we

measured between the noise and the original audio is -32.45 dB. Figure 4.2 shows the log-

power spectrogram of the original audio and adversarial audio. Again, the two diagrams

have extremely similar patterns.

Table 4.3: Results of BIM attack in the embedding space

Target at A Target at B Target at C Target at D ASR per spk.
Spk. A - 95% 90% 50% 78%
Spk. B 80% - 100% 40% 73%
Spk. C 70% 10% - 45% 41%
Spk. D 50% 90% 90% - 76%

Overall ASR: 67%

Table 4.4: Results of optim. attack in the embedding space

Target at A Target at B Target at C Target at D ASR per spk.
Spk. A - 80% 85% 50% 71%
Spk. B 70% - 70% 15% 51%
Spk. C 60% 60% - 55% 58%
Spk. D 50% 50% 75% - 58%

Overall ASR: 60%

Table 4.5: Noises levels of targeted attacks in embedding space

Maximum Minimum Average
BIM �15.81 dB �36.75 dB �26.13 dB

Optim. �17.88 dB �72.89 dB �38.38 dB
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Figure 4.1: Waveform of original audio and adversarial audio

Figure 4.2: Log-power spectrogram of original audio and adversarial audio
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4.2 Scoring Level Attack

Untargeted Attacks Table 4.6 and table 4.7 compares the results of the end-to-end FGSM

and the end-to-end FGM respectively with different ✏ values. Note that after back-propagating

through the PLDA classifier and the embedding model, the gradients values are becoming

very small, which is known as the vanishing gradient problem. If we set the ✏ too small,

the adversarial perturbation will be insufficient to have any influence on the classification

process. Therefore we use a large ✏ number to boost the noise.

The end-to-end FGSM shows superior performance comparing to the embedding level

FGSM. When ✏ = 10�2 and noise level at around 24 dB, the ASR of end-to-end FGSM is

87% higher than the embedding level FGSM. This shows that computing FGSM adversarial

perturbation directly aiming at the classifier is more efficient. Comparing to embedding

level FGM’s 17.55% ASR at -25 dB, end-to-end FGM has a better performance of 38.25%

ASR at a lower noise level of -35 dB. However, this is still not comparable with the end-to-

end FGSM attack.

Table 4.6: Results of FGSM attack in the scoring space

Configuration System Accuracy Attack Success Rate Noise Level
✏ = 10�1 26.31% 70.88% �4.85 dB
✏ = 10�2 31.92% 65.27% �24.85 dB
✏ = 10�3 32.98% 64.19% �44.85 dB
✏ = 10�4 80.70% 16.47% �64.85 dB

Table 4.7: Results of FGM attack in the scoring space

Configuration System Accuracy Attack Success Rate Noise Level
✏ = 107 44.91% 52.28% 4.18 dB
✏ = 106 51.92% 39.27% �15.81 dB
✏ = 105 58.94% 38.25% �35.81 dB
✏ = 104 65.61% 31.58% �55.81 dB

Targeted Attacks Table 4.9 shows the result of our end-to-end optimization-based at-

tack using the Adam optimizer. The configurations are set as c = 1,  = 1, learning rate =
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0.001, and number of epochs = 3000. The performance are comparable to the embedding

level optimization-based method, which infers that the knowledge of the enrollment model

failed to provide any incremental information to support the attack. The pattern of the ASR

for pair of original and target speaker aligns with the targeted results produced in the em-

bedding space. The attack between speaker A and speaker B still shows high ASR, and

the lowest ASR appears when speaker D is involved. This proves our assumption made in

previous section that the voice tone of the speaker place a large impact on the ASR.

Table 4.8 summarizes the results generated by the end-to-end BIM attack, with ✏ =

0.01, ↵ = 0.001 and number of steps = 20. It’s interesting to find that the end-to-end BIM

is able to achieve an overall ASR of 100% while still keeping the distortion under -15 dB,

as is shown in table 4.10. We expect the end-to-end optimization-based method to have

better results. However, the performance of end-to-end optimization method is related to

the choice of different f functions, the value of parameter c and , the learning rate and

the training epoch number. We believe that by fine-tuning these parameters the end-to-end

optimization method can achieve better results, and we will leave it as the future work.

Table 4.8: Results of end-to-end BIM attack in the scoring space

Target at A Target at B Target at C Target at D ASR per spk.
Spk. A - 100% 100% 100% 100%
Spk. B 100% - 100% 100% 100%
Spk. C 100% 100% - 100% 100%
Spk. D 100% 100% 100% - 100%

Overall ASR: 100%

Table 4.9: Results of end-to-end optim. attack in the scoring space

Target at A Target at B Target at C Target at D ASR per spk.
Spk. A - 75% 85% 15% 58%
Spk. B 85% - 70% 0% 51%
Spk. C 75% 80% - 35% 63%
Spk. D 15% 50% 65% - 43%

Overall ASR: 49%
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Table 4.10: Noises levels of targeted attacks in scoring space

Maximum Minimum Average
End-to-end BIM �19.50 dB �40.19 dB �29.78 dB

End-to-end Optim. �12.71 dB - 135.57 dB �34.99 dB
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CHAPTER 5

RELATED WORK

This chapter introduces some prior works on generating adversarial examples against au-

tomatic speech recognition systems and methods to attack speaker recognition systems,

which are related to this thesis.

5.1 Attacks on Automatic Speech Recognition

Previous studies on adversarial attacks on ASR systems have primarily focused on inject-

ing carefully crafted perturbations into speech signals such that the audio is recognized as

a specific sequence of phrases, which is desired by the attacker. Cisse [29] generate untar-

geted and targeted adversarial examples against gradient-based speech recognition models

directly using the task loss. Carlini et al. [30] use a forwarding and inverse MFC process

to remove all feature that is used for comprehension by human listeners but not used for

speech recognition to construct a hidden voice command that is correctly interpreted by

machines but unintelligible to humans. Yuan et al. demonstrates that voice commands can

be embedded in songs to construct practical attacks. They test their attack against DNN-

based models under realistic settings where the adversarial audio is played over the air

and picked up by microphones on victim devices. Another work by Carlini and Wagner

[10] extend their method proposed on image tasks and use a L1 constrained connectionist

temporal classification (CTC) loss function to construct adversarial examples that can be

targeted at any combination of phases as desired by the adversary.
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5.2 Replay and Synthesis Attacks

Previous works attempt to attack the speaker recognition system by using synthesized or

recorded audio clips. Kinnunen et al. [31] study the feasibility to fool the speaker recog-

nition system using voice conversion techniques, which is to modify the original speaker’s

utterances to mimic the voice of another speaker. They use a joint density GMM voice

conversion method trained by expectation maximization (EM) algorithm, and use vector

quantization (VQ) based method for frame alignment. Their results are tested on different

variations of GMM-UBM based speaker recognition systems. Lindburg and Blomberg [32]

studies the feasibility of using concatenated recordings and synthesized voice to deceive the

speaker recognition system. They use extracted features from legitimate user’s recorded au-

dio to re-synthesis the attacker’s voice to imitate his. They also use a commercial diphone

synthesis system to generate imposter voices. The result shows only concatenated voice

sequences succeed to cause a large false accept rate.

On the other hand, there have been a large number of techniques developed for detecting

and defending such attacks. Wu et al. [33] proposed a defense method utilizing features

derived from phrase spectrum to detect conversion-based spoofing attacks and reported to

successfully reduce the equal error rate from more than 20% to 2.35%. A recent study [34]

trained a five-layer DNN classifier for spoofing detection, and proposed to use human log-

likelihood (HLL) as the scoring method. They claimed to successfully reduce the average

equal error rate of all attacks to 0.045%. However, it’s important to note that none of the

mentioned defense methods claim to be effective against adversarial examples. It’s worth

to mention that training DNN to detect adversarial noises would cause a conundrum as the

adversary is also capable of crafting adversarial examples aiming at the DNN classifier.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we demonstrated the vulnerability of speaker recognition systems when fac-

ing adversarial examples. We implemented and tested several attacks on a deep neural

network based text-independent speaker identification system. Our experiment shows that

under such set-up, it is possible for the adversary to utilize gradient-based algorithms to

construct untargeted and targeted attack in different scenarios. Although machine learn-

ing models have shown improvements on the traditional speaker recognition systems, our

results suggest it’s still critical to inspect the robustness of such models.

In future work, we would like to further test the feasibility of crafting robust perturba-

tions to be able to propagate through speakers and microphones. We also look forward to

demonstrating utilizing the transferability of adversarial examples across different models

to achieve black-box attacks. In addition, we hope that an effective defense method against

those adversarial attacks will be proposed.
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