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Many genomic sequencing technologies have been developed since the Human 

Genome Project.  These next-generation sequencing (NGS) technologies from various 

companies reshaped the genomics field and have improved rapidly.  However, NGS has 

limitations for certain applications due to its short read length.  The third generation of 

sequencing technology uses single molecule real-time sequencer that can generate long 

reads.  Recently Oxford Nanopore entered the market with the release of its MinION 

sequencer.  Oxford Nanopore’s unique third generation sequencing technology allows 

for much longer read length than NGS technologies, potentially addressing some of the 

limitations of NGS.  Due to the novelty of nanopore sequencing technology, the 

available tools for aligning long read data and detecting structural variants have not 

been thoroughly evaluated.  Here we evaluate the performance of several alignment 

and structural variation detection tools on long read MinION data. 
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1. Introduction 

 

Many genomic sequencing technologies have been developed since the Human 

Genome Project.  Limitations on the Sanger sequencing technology lead to development 

of a more cost effective, high-throughput second generation of sequencing technology, 

termed next-generation sequencing (NGS).  NGS technology reshaped the genomics 

field and has improved rapidly, dramatically driving the cost of whole genome 

sequencing down to the threshold of one thousand dollars [1].  However, NGS has 

limitations for structural variant (SV) calling due to its short read length.  The arrival of a 

third generation of sequencing technology occurred as Pacific Biosciences launched its 

sequencer in 2011, the first available single molecule real-time sequencer that 

generated long reads [2].  Recently Oxford Nanopore entered the market with the 

release of its MinION sequencer.  Nanopore sequencing technology is capable of 

obtaining much longer read lengths, potentially addressing some of the limitations of 

NGS [3]. Here we will first provide an overview of sequencing techniques from each 

generation.   

Sanger sequencing, also called chain termination method, involves using 

dideoxyribonucleotides (ddNTPs) that lack the 3-prime hydroxyl group required by DNA 

polymerase to elongate the DNA strand.  Strand elongation stops when a ddNTP is 

incorporated, leading to a mixture of fragment sizes. In classical Sanger sequencing, 

ddNTPs at low concentration are included with normal dNTPs in a reaction and each of 

the four ddNTPs needs a separate reaction.  The four reactions are then placed in four 
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separate lanes and the fragments are size separated by gel electrophoresis.  Smaller 

fragments will migrate further towards the bottom of the gel, and the sequence can 

determined by reading the order of fragments from bottom to top based on the lane 

that the band appears in.  The method was improved with the introduction of 

fluorescent ddNTPs, allowing all four ddNTPs to be incorporated into one reaction and 

analyzed through capillary electrophoresis, where data is output as chromatogram trace 

peaks.  These advances helped to automate sample preparation and sequencing for 

higher throughput applications [4].  The first generation of automated sequencers, such 

as the ABI PRISM, could sequence up to 384 reactions in parallel and accelerated the 

pace of the Human Genome Project. 

Sanger sequencing is widely used in low throughput application such as sequencing 

a single gene or a small number of amplicons.  The low error rate of Sanger sequencing 

is still often considered the de facto “gold standard” to which other sequencing 

platforms are compared, and Sanger sequencing is sometimes used to confirm results 

from NGS.  The average read length for Sanger sequencing is between 700-1000 base 

pairs (bp), which is longer than most NGS platforms.  However, the high cost per base 

and relatively low throughput made development of more cost efficient, massively 

parallel sequencing platforms necessary for sequencing large and complex genomes. 

NGS platforms were introduced with the release of the 454 pyrosequencing 

platform in 2005 [5] and the field has continuously improved and evolved.  Multiple NGS 

platforms utilizing different strategies were released and these technologies were 

capable of carrying out millions of sequencing reactions in parallel and generating vast 
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amounts of data in a single run in comparison to Sanger sequencing [6].  The most 

successful line of NGS platforms in terms of market share and widespread adoption is 

from Illumina. Obtained from Illumina’s acquisition of Solexa, the technology underlying 

the platforms is termed “sequencing-by-synthesis” and involves the use of fluorescent 

reversible terminator deoxyribonucleotide triphosphates (dNTPs) and clonal 

amplification on the surface of a flow cell where sequencing reactions occur.  As a 

review, the following are the general library preparation and sequencing steps using an 

Illumina platform. 

First, a genomic library is sheared into smaller fragments through an enzymatic or 

physical method, such as sonication.  Adapter sequences are ligated onto both ends of 

the fragmented DNA. These adapters include the sequencing primer binding site and a 

barcode or index that is used to identify the sample that a read originates from, used 

when samples are multiplexed and run together on the sequencer.  The ends of the 

adapters also contain sequences that are complementary to oligonucleotide primers on 

the surface of the flow cell.  After adapters have been ligated, the DNA library is washed 

over the surface of the flow cell, where the adapters allow the DNA library to anneal to 

complementary oligonucleotides on the surface and attach to the flow cell.  The 

attached DNA fragments are clonally amplified through a process called bridge PCR, 

where clusters of monoclonal DNA fragments are generated.  This cluster generation 

step is necessary to intensify the fluorescent signal of the sequencing reaction to a level 

that is detectable by the sequencer [7]. 
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During bridge PCR, an attached DNA fragment is used as the template and the 

surface-bound oligonucleotide is elongated to generate the complement strand to the 

fragment.  The original DNA fragment is denatured and washed away, and the newly 

extended complement strand arches over and anneals to a surface-bound 

oligonucleotide through the adapter sequence on the other end of the molecule.  This 

molecule is now used as the template as the second oligonucleotide is extended, 

forming a double-stranded “bridge”.  The DNA fragments are then denatured and this 

amplification process repeats until a cluster of identical single stranded DNA fragments 

identical to the original DNA fragment are generated.  Hundreds of millions of these 

single stranded monoclonal clusters are generated on the surface of the flow cell [8]. 

After clusters are generated, sequencing primers are introduced along with DNA 

polymerase and fluorescently labelled, reversible terminator dNTPs. The 3’-OH ends of 

the dNTPs are blocked by the fluorescent moiety, preventing elongation when 

incorporated into a DNA strand. In one cycle, each DNA cluster is extended by one base 

and a fluorescence reading is taken, after which the fluorescent moiety blocking the 3’-

OH is enzymatically cleaved and ready for further extension in the next cycle. Millions of 

clusters undergoing sequencing reactions at the same time allow the method to be 

massively parallel, generating large amounts of data at high coverage. 

Illumina sequencing technology attains a high accuracy rate above 99.5% and has 

the lowest cost per base of the major NGS platforms [9].  A wide variety of Illumina 

sequencers are on the market with various output options from the MiniSeq to the 

NovaSeq and the technology is capable of various applications like DNA methylation 
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sequencing, RNA sequencing, and ChIP-seq.  The community using Illumina platforms is 

large and entrenched, contributing to its maturity as a technology and to the 

development of a large number of computational tools optimized around data produced 

from Illumina platforms.  However, the startup costs of procuring Illumina sequencers 

may be expensive and prohibitive for some labs.   

The main limitation to the technology is the relatively short read length.  Illumina 

sequencers rely on of clusters of identical DNA fragments to obtain a detectable signal, 

which deteriorates with each cycle in the sequencing run.  An increasing number of 

strands within a cluster become out of phase each cycle because of random 

incorporation errors.  The maximum read length for Illumina platforms is 600 bp as a 

300x300 paired end read, lower than the read lengths obtained from Sanger sequencing 

as well as some other NGS platforms. While high coverage and accurate reads are easily 

attainable through Illumina sequencing, the short read lengths are not optimal for the 

sequencing of long repetitive regions and detection of structural variation. 

Third generation single molecule sequencers are under active development and are 

capable of directly sequencing single DNA molecules in long reads [10].  These long 

reads would be advantageous towards the study of repetitive regions and structural 

variations that are relevant to evolution or the development of diseases. One 

sequencing technology that has generated a great deal of interest is nanopore 

sequencing under development by Oxford Nanopore Technologies. The company 

released the MinION in 2015, the first nanopore-based sequencer to the market [11].  

The device is small enough to be hand held and is easily transportable into the field.  
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The startup costs of procuring the MinION are also small in comparison to other 

platforms. 

Unlike other sequencing chemistries, nanopore sequencing does not require the 

detection of fluorescence or a product of chemical or enzymatic reactions.  Instead, 

single-stranded DNA molecules are sequenced by measuring current disruptions as 

molecules pass through a nanopore. These protein nanopores are embedded within a 

non-conductive polymer and allow ions to flow through, creating a baseline current. 

When a single strand of DNA is ratcheted through the nanopore by a protein motor, the 

current is disrupted into patterns that are characteristic to the nucleotides passing 

through the nanopore. This measurement of current disruption is often called “squiggle 

space” and the MinION software interprets the current disruption into 5 or 6-mer 

sequences [11]. 

The MinION is capable of ‘1D’ and ‘2D’ reads.  For 1D reads, a single stranded 

molecule is simply read from beginning to end.  For 2D reads, a hairpin adapter is used 

to tether together both strands of a DNA molecule.  After the first strand is sequenced 

and transported through the nanopore, the complement strand immediately follows, 

allowing a consensus sequence to be called based on both strands and increasing the 

accuracy of the read.  The reads obtained from the MinION can exceed an average of 10 

kb, and some labs report routinely achieving read lengths of more than 50 kb [12].   One 

of the main weaknesses of nanopore sequencing is the low accuracy rate. While the 

accuracy rate has improved to 92%, the accuracy rate is much lower than NGS and such 

a high error rate makes the data problematic for applications such as single nucleotide 



7 

 
 

variation (SNV) detection.  However the sequencing chemistry is rapidly improving and 

the development of computational tools designed specifically for long-read data will 

likely improve the accuracy rate in the near future. 

While the high error rate of nanopore sequencing may be problematic for SNV 

detection, the error-prone long reads may be advantageous still be advantageous for 

detecting structural variations that can be problematic for NGS.  Structural variants 

represent multiple types of genomic alterations larger than 50 bp and make up most of 

the heterogeneity between human genomes in terms of total number of bases [13].  SVs 

are associated with a variety of diseases, including severe neurological diseases and 

cancer.  Studying SVs is therefore critical to understanding the underlying genetic 

conditions for these diseases.  Long reads from nanopore data can span entire structural 

variations, enabling them to be detected in a single long read instead of inferred 

through strategies developed for short reads such as discordant read pairs.  New 

computational tools have been developed specifically for long read data. However, since 

ONT’s MinION was only recently launched, the available tools for aligning long read data 

and detecting structural variants (SVs) have not been thoroughly evaluated.   

In this study, we evaluated several aligners, including BWA-MEM [14], GraphMap 

[15], LAST [16], ngmlr [17], and minimap2 [18], by aligning our MinION-generated data.  

GraphMap, ngmlr, and minimap2 were developed specifically for long read sequencing 

and have reported promising results.  BWA-MEM and LAST are established mappers 

used for short-read data but have been tweaked for long-read data. 
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After evaluating the performance of the mappers, several tools for detecting 

structural variation were compared.  We have chosen to evaluate Picky [19], Sniffles 

[17], and NanoSV [20].  These are all recently developed SV callers that were developed 

for long error-prone reads.  Results from these structural variant callers were compared 

to publicly available high confidence structural variant calls to evaluate their 

performance. 

 

 

2. Methods/Experimental Procedures 

 

2.1. Library preparation and nanopore sequencing 

DNA sample of individual NS12911 was purchased from Coriell (Camden, NJ, USA). 

Library preparation began with an input of 1.5 ug genomic DNA in 50 ul of water and 

followed the Oxford Nanopore (ONT) protocol for 1D Genomic DNA by ligation. The 

genomic DNA was sheared using a Covaris g-Tube (520079, Covaris, Woburn, MA, USA) 

spun at 6000 RPM for one minute to obtain 10 kb fragments. After recovering 

fragmented DNA from the g-Tube, fragment size was assessed using Agilent TapeStation 

with genomic DNA ScreenTape (5067-5365, Agilent, Santa Clara, CA, USA).     

End repair and A-tailing were performed with NEBNext Ultra II End Repair/dA-

Tailing module (E7546, New England Biosciences, Ipswich, MA, USA) and was followed 

by an AMPure XP bead (#A63880, Beckman Coulter, Indianapolis, IA, USA) cleanup 

following the manufacture protocol. Next, adapters were ligated using NEB Blunt/TA 



9 

 
 

Ligase master mix (#M0367, New England Biolabs, Woburn, MA, USA) with adapters 

from the 1D Genomic DNA by Ligation sequencing kit (SQK-LSK108, Oxford Nanopore 

Technologies, Oxford, UK).  After adapter ligation the library was cleaned up by adding 

AMPure XP beads at a 0.4X ratio and aspirating the supernatant.  The beads were 

washed with adapter bead binding buffer twice to remove free adapters and then 

eluted into 15 ul elution buffer from the 1D Genomic DNA by Ligation kit.  One 

microliter was taken and assessed with Agilent genomic ScreenTape to assess library 

size.   

The adapter-ligated library was mixed with library loading beads and running 

buffer provided in the ligation sequencing kit (SQK-LSK108, Oxford Nanopore 

Technologies, Oxford, UK) to prepare for flow cell loading. The library was then loaded 

into a flow cell (FLO-MIN106D, Oxford Nanopore Technologies, Oxford, UK) for 

sequencing.  On the user interface, the kit SQK-LSK108, and flow cell FLO-MIN106 were 

selected and real-time basecalling was not used.  

 

2.2. Data analysis methods  

Basecalling was performed with ONT’s Albacore 1.2.6 and Albacore 2.0.2 and the 

data quality and metrics were assessed with the nanopore-specific PoreTools and 

MinionQC.   The data was aligned using the recently developed long-read mappers 

ngmlr, Graphmap, and minimap2, as well as the older mappers BWA-MEM and LAST, 

which have been optimized for long reads. The commands used for each run are listed 
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in Appendix C. Mappers were tested and benchmarked on data from our two Nanopore 

MinION sequencing runs.  

Name Type Version Description Citation 

Poretools QC utility 0.6.0 QC toolkit for Oxford Nanopore 
sequencing data.   

[21] 

minionQC QC Utility 1.3.5 QC toolkit for Oxford Nanopore 
sequencing data.   

[22] 

BWA-MEM Aligner 0.7.15 Popular short read aligner  [14] 

GraphMap Aligner 0.5.2 Developed for long read sequencing.   [15] 

LAST Aligner 941 An older tool capable of handling long 
reads, similar to BLAST. 

[23] 

minimap2 Aligner 2.1 Developed for short and long reads, 
same lab as BWA-MEM 

[18] 

ngmlr Aligner 0.2.6 An aligner working with Nanopore long 
reads to generate high quality SV 
calling 

[17] 

NanoSV SV caller 1.2.0 Developed for long read sequencing. 
Identifies split and gap aligned reads, 
clusters based on orientation and 
genomic position to find breakpoint 
junctions 

[20] 

Sniffles SV caller 1.0.11 Developed for long read sequencing.  
Identifies SVs using split-read 
alignments, high-mismatch regions, 
and coverage analysis 

[17] 

Picky SV Caller 1.0 Developed for long read sequencing. 
Uses a greedy seed-and-extension 
algorithm to merge long read segments 
and detect breakpoints 

[19] 

Table 1: Tools used for analysis 

  

The Linux command /usr/bin/time -v  was used to generate alignment time and 

maximum memory usage benchmarks, and Samtools’ [24] flagstat option was used to 

generate the percentage of reads mapped.  Samtools’ depth was used to calculate 

average genomic coverage of the reads.   

The structural variant callers Picky, Sniffles, and NanoSV were evaluated in 

combination with several of the best performing mappers using publicly available high 

coverage data from ONT (https://github.com/nanopore-wgs-consortium/NA12878).  In order 

https://github.com/nanopore-wgs-consortium/NA12878


11 

 
 

to evaluate the SV calls generated from these mapper and caller combinations, a high 

coverage SV call set from Mt. Sinai was used as a benchmark (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai) [25].  This dataset 

was generated from 44X coverage PacBio reads from human reference NA12878 and 

the SV calls were evaluated using seven different methods.  These methods 

incorporated different combinations of raw and error corrected reads, SV callers, BLASR 

versions, and assembly (Appendix A).  

These SV calls were merged using bedtools [26] default merge function, which 

merges any calls with a single base overlap.  Next, the calls were lifted over using 

liftOver [16] human reference from hg19 to hg38 because that the public data from ONT 

was aligned to hg38.  SV calls from unincorporated contigs and the mitochondrial 

genome were filtered out to generate the final SV call set.  The same merging and 

filtering steps were done with the passing calls in the dataset. 

The filtered SV all set was used as a benchmark to compare the results of SV 

caller and long-read mapper combinations we tested.  Minimap2 and ngmlr were used 

in conjunction with the SV callers Sniffles, NanoSV, and Picky.  Picky was also run in 

combination with LAST because its authors developed it to run with LAST as its default 

mapper and incorporates LAST in the default command. 

 The deletion and insertion calls generated from these caller and mapper 

combinations were compared to the Mt. Sinai dataset using bedtools intersect and 

bedtools window.  For deletions, bedtools intersect was set to report any calls with a one 

base overlap, which is its default setting.  For insertions, bedtools window was used to 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai
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report any calls within a window of 100 bases from the reported insertion site in the 

genome.  Both bedtools intersect and bedtools window were run twice for each caller 

and mapper combination, once to see which SV calls overlap the Mt. Sinai benchmark 

calls, and once to see which Mt. Sinai  benchmark calls overlap the calls detected by the 

SV caller.  

 
3. Results 

3.1. Library preparation 

The libraries prepared for the sequencing run fragmented uniformly according to our 

TapeStation results. The fragmentation gel image and electropherogram (Fig. 1a) from 

Figure 1: Gel image and electropheromgram from (a) library fragmentation and (b) post-adapter ligation Figure 1:  Library Preparation gel results after fragmentation (top) and adapter ligation (bottom) 
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the library preparation shows a large band around the 15,000 bp ladder band and a 

median fragment length of 13,483 bp.  Similarly, the gel images from the post-adapter 

ligation results also show a single band around the 15,000 bp leader band and a median 

fragment length of 12,007 bp (Fig. 1b).   

A second library was prepared using the identical protocol with similar 

TapeStation results (data not shown).   
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3.2. Sequencing and Base calling  

The first sequencing run crashed after about 14 hours due to unconfirmed reasons, 

but we suspect it was a data transfer issue between the sequencer and computer due to 

the large number of temporary files being generated by the sequencer.  

Basecalling was first performed with Oxford Nanopore’s default basecaller Albacore 

ver. 1.2.6.  While conducting our experiment, the updated Albacore ver. 2.0.2 was 

released and was subsequently used for basecalling.  In comparison, 504,407 reads and 

1,412,743,922 bp were produced from the Albacore ver. 1.2.6 while 452,755 reads and 

 

a) 

b
) 

Figure 2:  Poretools yield plot for (a) base pairs over time and (b) reads over time for Albacore 1.2.6 (left) and 
Albacore 2.0.2 (right) 
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1,289,136,460 bp from Albacore ver. 2.0.2 (Fig.2 ).  The differences between the 

basecallers are small and likely due to Albacore 2.0.2 automatically filtering out reads 

with a Q score less than 7, while 

Albacore 1.2.6 did not have a 

quality filter by default.  Since 

the differences were small and 

Albacore 2.0.2 was the updated 

version, we continued 

downstream analysis with results 

from this basecaller. 

Because the first run failed at 

14 hours, we constructed a new 

library following the same 

protocol as the previous library 

and repeated the sequencing run 

using a new flow cell.  The second run also encountered a crash, but we were able to 

resume and finish a full 48 hour sequencing run. 

Data from the second sequencing run was base called by Albacore 2.0.2. The 

sequencing run generated 1,026,451 reads and 2,985,936,734 bps (Fig. 3).   

Figure  SEQ Figure \* ARABIC 2: Base pairs vs time from data basecalled 
from Albacore 1.2.6 (left) and Albacore 2.0.2 (right) from the first 
sequencing run 

Figure 3:  Yield plot for total base pairs over time (top) and total 
reads over time (bottom) generated by poretools 
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The poretools yield plots (Fig. 4) show that after about 18 hours the yield gain 

decreased dramatically.  We 

encountered a crash at about the 

18-hour mark but were able to 

continue the run. However, the 

sequencer produced only a small 

amount of sequence (<15%) after 

restarting the run. This reduction in 

throughput could be due to either 

the exhaustion of DNA templates, 

or the crash affected the 

sequencing performance.  

Most of the longer fragments were sequenced towards the beginning of the 

sequencing run and the mean fragment size decreased over the length of the run.   The 

number of reads per hour also decreased steadily but spiked immediately after each 

mux switch (Fig. 4).  At about 18 hours the number of reads per hour drops to near zero 

due to the crash.  When the run was resumed, more reads were generated but the 

number of reads being generated tapered off quickly at about 30 hours. 

Most of the reads were clustered around 1,000 bp (Fig. 5).  The median read length 

for the sequencing run was 1,418 bp overall and 1,583 bp for reads with qscore >= 7.  

The longest read was 67,123 bp for both overall reads and reads with qscore >= 7.  The 

Figure 4: Mean read length per hour (top) and number of 
reads per hour (bottom) plots generated from MinionQC 
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mean qscore for the reads was 8.6 and 9.2 for overall reads and read with qscore >= 7, 

respectively. 

 

 

  

Figure 5: Fragment length histogram generated from minionQC 
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3.3. Read mapping results 

 Data from both sequencing runs were aligned with the mappers BWA-MEM, 

graphmap, LAST, minimap2, and ngmlr.  These were evaluated with samtools and time 

Linux command. For the first sequencing run, minimap2 had the best performance, 

completing the alignment fastest in 0.19 hours, followed by ngmlr which finished in 1.05 

hours.  BWA-MEM, LAST, and Graphmap completed alignment in 53.46, 20.53, and 

26.55 hours respectively.  For memory usage, BWA-MEM had the best performance, 

using 6.74 gb of memory, followed by ngmlr with 8.67 gb.  Minimap2, LAST, and 

Figure 6: Mapper performance metrics 
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graphmap used 14.95, 21.57, and 46.56 gb of memory respectively.  Minimap2, 

graphmap, BWA-MEM and LAST performed similarly at 94.87%, 94.43%, 94.27%, and 

93.61% reads mapped respectively.  ngmlr had the worst performance of the mappers 

at 88.78% reads mapped.  Graphmap had the best overall coverage from the at 0.37X, 

followed by minmap2, LAST, and ngmlr at 0.36X, 0.36X, and 0.35X coverage 

respectively.  BWA-MEM had the worst coverage at 0.31X coverage. 

 For the second sequencing run, the pattern is largely consistent with the first run 

while mapping roughly double the amount of reads.  Minimap2 completed alignment 

the fastest at 0.82 hours, followed by BWA-MEM at 1.71 hours and ngmlr at 2.47 hours.  

Graphmap and LAST finished in 43.27 and 168.30 hours respectively.  BWA-MEM used 

the least amount of memory with 6.21 gb followed by ngmlr with 8.98 gb.  Minimap2, 

LAST, and graphmap used 15.03, 24.22, and 49.20 gb memory respectively.  BWA-MEM, 

minimap2, and graphmap had similar amount of mapped reads with 98.64%, 98.37%, 

and 97.18% reads mapped respectively, followed by LAST with 96.70% mapped reads.  

ngmlr had the worst mapping performance with 92.96% of reads mapped.  Minimap2 

had the best coverage at 0.87X coverage, followed by Graphamp, LAST, and ngmlr at 

0.86X, 0.85X, and 0.84X coverage respectively.  BWA-MEM had the worst coverage with 

0.76X.   

The alignment time increased in our second run due to the dataset being about 

twice as large as the first run.  However, LAST alignment time took more than eight 

times as long as the first run which was much more proportionally than alignment time 

increases in the other mappers.   Memory usage increased slightly for all mappers 
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between the two runs and mapped reads improved for all the mappers as well, except 

for LAST which was able to map all the reads for both runs. 

 

3.4. Mt. Sinai dataset  

 

To evaluate the calling performance of the SV callers, we compared the SV calls from 

different callers with an SV call set produced by Mt. Sinai School of Medicine. In this 

 

Figure 7: SV call size Mt. Sinai full dataset (top) and passing calls dataset (bottom) 
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dataset, SV calls were considered passing if called by at least three of the seven 

pipelines (Appendix A) and the dataset contains only deletion and insertion calls.  The 

full dataset contains 20957 deletions and 22199 insertions totaling 43156 SV calls while 

the passing subset contains 4495 deletions and 6099 insertions, totaling 10594 calls. The 

SV calls in the dataset were merged, lifted over to hg38, and then filtered to remove SV 

calls from unincorporated contigs or from the mitochondrial genome, leaving the 

dataset with 16171 deletions and 21589 insertions, totaling 35120 total SV calls 

(Appendix B).  The same merging and filtering steps were done with the passing calls in 

the dataset.  Following these steps, 4354 deletions and 6066 insertions were present in 

the passing subset. 

 The SV calls in the Mt. Sinai dataset skewed towards smaller SVs (Fig. 7).  While 

large calls over 100,000 bp existed in the dataset, the median SV call was 107 bp and 

120 bp for deletions and insertions respectively.  For passing calls, the median SV call 

was 312 bp and 299 bp for deletions and insertions respectively.  
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3.5. SV calling results 

We evaluated the performance of the 

SV call software on ONT’s sequencing 

data using a high-coverage (30x) ONT 

whole-genome sequencing dataset of 

individual NA12878. The SV callers 

Sniffles, NanoSV, and Picky were tested 

in combination with minimap2 and 

ngmlr.  Minimap2 and ngmlr were 

chosen for use in this analysis because of 

their development specifically for long-

read data, as well as their relatively short 

alignment time and comparable 

performance.  Since minimap2 was 

developed by the same lab as BWA and designed to be its replacement for long-read 

data, we excluded BWA for the SV call analysis.  We also included LAST in combination 

with Picky because the caller was initially designed to run with LAST, despite the long 

running time.   

 Picky calling LAST-mapped data took the least processing time at 4.63 hours, 

followed by Sniffles paired with minimap2 and ngmlr data, taking 5.58 and 11.19 hours 

respectively. Picky paired with ngmlr and minimap2 data took 29.19 and 25.88 hours to 

 
Figure 8: SV Caller processing time and memory usage 

 



23 

 
 

process.  NanoSV had the longest processing time overall, taking 343.24 and 261.71 

hours to align minimap2 and ngmlr data respectively.   

 Picky paired with LAST data and Sniffles paired with minimap2 and ngmlr had 

similar memory usage with 5.12, 5.83, and 5.87 gb memory usage.  Picky paired with 

ngmlr and minimap2 data used 9.13 and 17.88 gb respectively.  NanoSV used the most 

memory with 38.59 and 44.72 gb when paired with ngmlr and minimap2 data, 

respectively. 

Multiple SV types were detected by each SV caller.  Deletions were the most 

frequent SV detected for all SV callers and insertions were the second most frequent call 

for Sniffles and NanoSV.  Both 

SV callers detect duplications, 

and Sniffles also detects 

translocations and had a few 

ambiguous 

deletions/inversion calls.  In 

contrast, Picky detected more duplications and inversions than insertions, especially 

when paired with ngmlr and minimap2.  We have chosen only to evaluate deletions and 

insertions because the benchmark dataset only contains deletions and insertions (Table 

2).  

SV Caller Mapper Total DEL INS 

Sniffles  minimap2 45273 37919 7354 

Sniffles ngmlr 40109 34769 5340 

 NanoSV minimap2 122115 82840 39275 

NanoSV ngmlr 103950 82077 21873 

Picky minimap2 37178 35931 1247 

Picky ngmlr 20682 19407 1275 

Picky LAST 44793 42690 2103 
Table 2:  SV calls from caller/mapper combination 
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The distribution of the SV calls skews towards shorter calls for both deletions and insertions 

(Fig. 8).  The median deletion call was under 100 bp for all SV callers, though each caller had a 

few deletion calls over 100,000 bp.  The median insertion size was under 250 bp for all SV callers 

except with while for Picky when paired with LAST, where the median size was higher at 750 bp.  

The other SV types detected vary widely depending on the SV caller and mapper combination. 

Since the SV calls in the Mt. Sinai dataset contained only deletions and insertions, we 

did not evaluate other SV types against the Mt. Sinai dataset.  Within these calls, SV calls 

 
Figure 9:  SV call size distribution for each SV type 
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over 100,000 bp were filtered out.  We observed a few very large calls within the 

dataset but reasoned that these calls were likely inaccurate.  The 100,000 bp threshold 

filtered out these calls but was 

loose enough to retain most of 

the SV calls and was close to 

the maximum call length in the 

Mt. Sinai dataset.  The 

overlapping calls were then merged and the deletion and insertion calls were counted 

(Table 3).  

Caller Mapper 
All SVs 
called 

Deletions 
called 

Insertions 
called 

Sniffles minimap2 44943 37681 7262 

Sniffles ngmlr 39913 34586 5327 

NanoSV minimap2 107945 68671 39274 

NanoSV ngmlr 88009 66137 21872 

Picky minimap2 5966 4768 1198 

Picky ngmlr 8448 7185 1263 

Picky LAST 44774 42672 2102 
Table 3: SVs called from caller/mapper combination after filtering 
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3.6. Evaluating SV caller results using the Mt. Sinai dataset  

Since we regarded the Mt. Sinai calls as the benchmark, we considered any Mt. 

Sinai call which overlapped with an SV call as a true positive.  We considered any Mt. 

Sinai call that did not overlap 

with an SV call as a false 

negative and any SV call that did 

not overlap with a Mt. Sinai call 

a false positive. The number of 

true positive, false negative, and 

false positive calls from each call 

set is shown in Appendix D. 

Using these results, we 

calculated the recall, precision, 

and F1 score to evaluate the SV 

caller performance. Recall, 

precision, and F1 score of the SV 

calls from these mapper and 

caller combinations were 

benchmarked against the 

passing calls from Mt. Sinai 

dataset (Fig. 10, 11).  For recall, 

NanoSV with minimap2 had the 
 

Figure 10:  SV Caller Precision-Recall for combined calls (top), 
deletions (middle) and insertions (bottom) 



27 

 
 

best overall performance with 87.73% of calls detected and was also the most sensitive 

for insertions with 92.71% of insertions detected.  Sniffles with minimap2 was the best 

performer for detecting 

deletions at 81.49%, slightly 

more sensitive than 

NanoSV, which detected 

80.45%.  Both Sniffles and 

NanoSV seem to be slightly 

more sensitive in 

combination with minimap2 

than ngmlr.  Picky had 

overall poor performance 

for recall, and in combination with minimap2 and ngmlr the results were especially 

poor.    

In terms of precision, nearly all the caller and mapper combinations performed 

poorly, due to the large number of calls generated by the callers.  However, Picky in 

combination with LAST had the highest precision in combination with LAST at 81.78%.  

Picky with ngmlr had the highest overall precision with 25.62% of calls.  In general, Picky 

with minimap2 and ngmlr outperformed the other combinations in terms of precision, 

though both combinations also had very few insertion calls.  

F1 score was highest for Sniffles overall, while also having the highest F1 score 

when evaluating insertions in particular (Fig. 11).  F1 score was similar for Sniffles in 

 
Figure 11:  SV Caller F1 Score 
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combination with both minimap2 and ngmlr.  F1 score for deletions was lower across 

most SV caller and mapper combinations due to the high number of false positives 

called.  Picky in combination with ngmlr had the highest F1 score for deletions but called 

very few deletions in comparison to other SV callers.  

 

4. Discussion 

Structural variants comprise about 1% of heterogeneity between human genomes 

and have a significant role in phenotypic variation and disease susceptibility.  SVs have 

been implicated as driver alterations in a variety of disease, including severe 

neurological diseases and cancer.  Thus, advances in our ability to detect and evaluate 

SVs in the genome is crucial to improving our understanding of the biological impact of 

SVs 

While NGS has revolutionized genomics, its short read length is not optimal for 

resolving SVs.  Recently, ONT released its nanopore-based sequencers capable of 

generating long reads, potentially improving our ability to detect SVs.  We generated 

nanopore sequencing data from the MinION to evaluate current mappers and used 

publicly released high-coverage nanopore data to assess SV callers developed for long 

read sequencing data. 

We prepared a library for sequencing following ONT’s 1D genomic DNA by ligation 

protocol and sequenced on a single MinION flow cell.  We experienced crashes on two 

different sequencing runs but successfully resumed the second crash for a full 48-hour 

run.  While we have not pinpointed the reason for the crashes, we suspect the crashes 
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are related to insufficient memory or communications issue between the sequencer and 

the computer.  Since the MinION is being actively developed, the software and system 

requirements have both been updated multiple times since our experiment and we 

expect these issues are likely resolved. 

Two versions of ONT’s Albacore base caller, Albacore ver 1.2.6 and Albacore ver 

2.0.2, were tested.  In terms of quality control, the differences between the two 

versions were small and mainly due to the incorporation of a qscore filter by default in 

Albacore ver 2.0.2 and we did downstream analysis with this version.  Albacore ver 2.0.2 

switched from event-based base calling to raw signal base calling, which improves single 

read accuracy [25].  While we tested the most recent version of Albacore available to us, 

base calling is an active and rapidly changing area of development within ONT and the 

nanopore community.  Older base callers like Nanonet, DeepNano [27], and 

basecRAWller [28] are no longer maintained while ONT released six different versions of 

Albacore within the same year.  Guppy, a new GPU-based caller produced by ONT that is 

not yet publicly available, recently replaced Albacore as the production basecaller for 

the MinION system [29].  

After base calling, we observed that the read lengths were shorter than expected.  

However, the library QC showed that we had fragments over 10 kbp after both the 

fragmentation and adapter ligation steps.  We suspect that the shorter read lengths may 

be due to nicks on the DNA fragments that occurred during library preparation.  While 

we followed the standard protocol published by ONT the optional DNA repair step was 

omitted.  This step may have been necessary if many of the fragments were damaged, in 
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which case part of the fragment may have disassociated from the adapter and would 

not have been sequenced in the nanopore.  Several others have included the DNA repair 

step [12, 30] and attained fragment sizes above 10 kbp with an otherwise similar library 

preparation.  However, one lab that included the DNA repair step also reports shorter 

fragment lengths for some of the libraries [20].  The chemistry is still under 

development by ONT and the newest version of the 1D sequencing by ligation kit, SQK-

LSK109, removes the fragmentation step and requires DNA repair [31].  The new kit and 

protocol have already produced improved fragment lengths and we expect longer 

fragment lengths to be more reproducible as the chemistry improves and the nanopore 

sequencing community expands.     

We benchmarked several mappers using our sequencing data including both older 

established mappers and recent long-read mappers.  Alignment time and memory usage 

varied widely between mappers while differences in percent mapped reads were more 

moderate.  All mappers improved percent reads mapped for the second run possibly 

because the number of reads to align was doubled.  Minimap2, a recently developed 

long-read mapper was extremely fast with high percentage of reads mapped.  BWA-

MEM, developed by the same author as minimap2, had similar read mapping 

performance to minimap2 and used the least memory of all the mappers.  We may need 

to map longer reads to see demonstrable benefits in read mapping that minmap2 is 

designed to have over BWA-MEM.   Ngmlr had the worst reads mapping performance 

but had comparatively fast alignment time and low memory usage.  Graphmap had the 

longest alignment time of the three new long-read mappers and high memory usage.  
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LAST was comparable to the other long read mappers but had a very long alignment 

time for the second sequencing run.  

We chose minimap2 and ngmlr as mappers to test in combination with all the SV 

callers tested because of their development as long-read specific tools and relatively 

short alignment times.  Additionally, ngmlr was developed alongside Sniffles and is the 

preferred mapper according to its authors.  LAST was also chosen to run with Picky due 

to its claimed synergy and its incorporation into the default Picky workflow.  We 

excluded graphmap from the evaluation because of its long run time and excluded 

BWA-MEM since it had the worst overall coverage and minimap2 was developed to be 

its replacement for long reads.   

Since the fragment length and coverage of our data were not optimal for evaluating 

SV calls, we used publicly released NA12878 data from Nanopore Sequencing 

Consortium for the SV caller evaluation.  We used an SV call set generated from PacBio 

data from Mt. Sinai School of Medicine as our benchmark, reasoning that SV calls in 

common between our nanopore-derived data and the PacBio generated data would 

more likely be true. 

 The SV call results differ significantly when evaluated for deletions and insertions 

separately.  If the user does not have any specific requirements for SV calling, we would 

recommend Sniffles paired with minimap2.  This combination of tools would have the 

fastest processing time and the overall performance is balanced for both deletions and 

insertions.  
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For deletion focused performance, we recommend Sniffles because of its relatively 

balanced performance.  Sniffles and NanoSV had similar recall for deletions but Sniffles 

was more precise.  Sniffles deletion performance did not change drastically between 

minimap2 and ngmlr, but Sniffles paired with minimap2 is recommended over ngmlr 

because of its recall and fast run time.  Picky showed especially low recall with 

minimap2 and ngmlr.  We suspect the Picky may require further development before 

we can use it in combination with these mappers.  Although the F1 score for Picky 

paired with ngmlr is the highest of the F1 scores for deletions, we do not recommend 

this combination due to extremely poor recall.   

We also recommend Sniffles for calling insertions due to its more balanced 

performance between recall and precision, though NanoSV may be considered if high 

insertion recall is desired and additional false positives can be tolerated.  Sniffles overall 

performance paired with minimap2 and ngmlr is similar, but we recommend minimap2 

for higher recall and much faster run time.  Like with deletions, Picky had poor recall for 

deletions with minimap2 and ngmlr and further optimization is required.  Picky run with 

LAST alignment had slightly better recall than paired with the other callers and high 

precision and may be useful for applications where high insertion precision is required 

and recall is not a priority (Table 4). 

SV Caller/Mapper Performance Optimal For 

Sniffles/minimap2 Overall deletion calling 

Sniffles/minimap2 Overall Insertion calling 

NanoSV/minimap2 Insertion recall 

Picky/LAST High insertion precision 
Table 4:  SV Caller/Mapper recommendation by application 
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 We evaluated our calls against a 44X coverage dataset generated through Pacific 

Biosciences sequencing technology, one of few long-read datasets that attempt to 

contain high confidence SV calls by employing several different pipelines.  While we 

reason that SV calls in this benchmark dataset are more likely be true if also found in our 

own SV calls generated from nanopore sequencing chemistry, the benchmark is limited 

in several ways.  The benchmark dataset is limited to deletions and insertions, which did 

not allow us to fully evaluate SV callers that also generate calls for other SV types.  One 

of the SV callers used to generate the benchmark, PBHoney [32], is an older SV caller 

that is not actively maintained. Some of the pipelines used to generate the benchmark 

set were similar to each other, differing only in different versions of the software used.  

We predict that as long-read sequencing technology matures, more comprehensive SV 

call sets will become available.  However, experimental validation of some SV calls is 

necessary to empirically assess the accuracy of the calls.   

 The SV calling results from the tools tested in this study show that there is 

significant room for improvement in both recall and precision.  In order to improve 

performance of the current SV callers, we plan to follow an integrative approach and 

combine the calls from multiple callers.  The consensus SV call set can be expected to 

increase the precision and recall of our SV calls.     

 

5. Conclusion 

Nanopore sequencing is a rapidly developing technology in both sequencing 

chemistry and data analysis.  ONT continues to enhance nanopore sequencing 
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performance with regular chemistry, reagent kit, and analysis algorithm updates.  For 

example, ONT released an updated ligation sequencing kit last year and recently 

launched its new R10 nanopore into an early access program.  Recently, the MinION 

default basecaller was also changed to Guppy.   

New mappers and SV callers have been developed to leverage long-read sequencing 

data.  Though few resources are available to benchmark these tools, we have 

established a workflow for evaluating these mappers and SV callers.  We found that SV 

caller performance diverges depending on the type of SV the user desires to evaluate.  

Therefore our recommendation may differ depending on the desired application.  

However, for an initial analysis without specific requirements, we recommend 

minimap2 and Sniffles due to its rapid speed and relatively balanced performance 

calling both insertions and deletions. 

As can be expected with first generation tools, significant optimization to improve 

accuracy and recall is needed.  In future evaluations we intend to combine results 

between SV callers to form a consensus set as well as evaluate SV callers with simulated 

nanopore data.  We expect resources from ONT and the nanopore sequencing 

community to improve as the technology improves and adds to its user base. 
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Appendix A. Methods used to generate Mt. Sinai Dataset 

 

Methods used to generate Mt. Sinai Dataset: 

PBHoney, raw reads, blasr1.3.1 

Custom pipeline, raw reads, blasr1.3.1 

PBHoney, error-corrected reads, blasr1.3.1 

Custom pipeline, error-corrected reads, blasr1.3.1 

Assembly 

Custom pipeline, error-corrected reads, blasr1.3.2 

Custom pipeline, raw reads, blasr1.3.2 

 

Appendix B.  Mt. Sinai Dataset filtering 

 

  Full dataset: 
After 

merging: Liftover to hg38: Filtering: 

Total Calls 43156 35836 35496 35120 

Deletions 20957 16649 16375 16171 

Insertions 22199 22174 22046 21589 

          

  Passing dataset: 
After 

merging: Liftover to hg38: Filtering: 

Passing Calls 10594 10503 10425 10404 

Deletions 4495 4430 4363 4354 

Insertions 6099 6089 6078 6066 
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Appendix C.  NA12878 read length size distribution 

 
 
 

Appendix D.  SV caller/Mapper performance 

 

True Positives    
Caller/Mapper 
combination Total: Deletions: Insertions: 

Sniffles/minimap2 7568 3548 4020 

Picky/minimap2 1264 727 537 

NanoSV/minimap2 9127 3503 5624 

Sniffles/ngmlr 6825 3344 3481 

Picky/ngmlr 2161 1202 959 

NanoSV/ngmlr 8426 3431 4995 

Picky/LAST 4628 2896 1732 

 

False Negatives    
Caller/Mapper 
combination Total: Deletions: Insertions: 
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Sniffles/minimap2 2836 806 2046 

Picky/minimap2 9140 3627 5529 

NanoSV/minimap2 1277 851 442 

Sniffles/ngmlr 3579 1010 2585 

Picky/ngmlr 8243 3152 5107 

NanoSV/ngmlr 1978 923 1071 

Last/picky 5776 1458 4334 

 

False Positives    
Caller/Mapper 
combination Total: Deletions: Insertions: 

Sniffles/minimap2 37382 34090 3292 

Picky/minimap2 4732 4039 693 

NanoSV/minimap2 93092 65094 27998 

Sniffles/ngmlr 33121 31231 1890 

Picky/ngmlr 6284 5965 319 

NanoSV/ngmlr 75561 62658 12903 

Last/picky 40151 39768 383 

 

Recall  
  

Caller/Mapper 
combination Total: Deletions: Insertions: 

Sniffles/minimap2 72.43% 81.49% 65.74% 

Picky/minimap2 10.26% 16.70% 5.61% 

NanoSV/minimap2 87.73% 80.45% 92.71% 

Sniffles/ngmlr 64.04% 76.76% 54.75% 

Picky/ngmlr 20.51% 27.61% 15.36% 

NanoSV/ngmlr 80.99% 78.80% 82.34% 

Last/picky 44.26% 66.51% 28.17% 

 

Precision    
Caller/Mapper 
combination Total: Deletions: Insertions: 

Sniffles/minimap2 16.75% 9.53% 53.79% 

Picky/minimap2 17.50% 15.29% 25.96% 

NanoSV/minimap2 13.76% 5.21% 28.71% 

Sniffles/ngmlr 16.63% 9.70% 61.41% 

Picky/ngmlr 25.29% 16.98% 72.14% 

NanoSV/ngmlr 14.14% 5.26% 41.01% 

Last/picky 10.29% 6.81% 80.88% 

 



38 

 
 

F1 Score    
Caller/Mapper 
combination Total: Deletions: Insertions: 

Sniffles/minimap2 0.27 0.17 0.60 

Picky/minimap2 0.15 0.16 0.15 

NanoSV/minimap2 0.24 0.10 0.44 

Sniffles/ngmlr 0.27 0.17 0.61 

Picky/ngmlr 0.23 0.21 0.26 

NanoSV/ngmlr 0.24 0.10 0.55 

Last/picky 0.17 0.12 0.42 

 

Appendix E. – Mapper and SV caller commands used 

 

BWA-MEM: 

/bwa mem -t 8 hg19.fa nanopore_data.fastq > nanopore_bwamem.sam 

Graphmap: 

/graphmap align -r hg19.fa -t 8 -d nanopore_data.fastq -o nanopore_graphmap.sam 

LAST: 

/ lastal -Q1 -P 8 -p last_nanopore.param referencedb nanopore_data.fastq | \last-split > 

nanopore_reads.maf 

/maf-convert sam nanopore_reads.maf > nanopore_last.sam 

Minimap2: 

/minimap2 -t 8 -ax map-ont hg19.fa nanopore_data.fastq > nanopore_minimap.sam 

ngmlr: 

/ngmlr -r hg19.fa -t 8 -q nanopore_data.fastq -o nanopore_ngmlr.sam -x ont

NanoSV: 

NanoSV -t 16 -s samtools -b human_b38.bed -o nanosv.vcf mapper_ONT.sort.bam 

Sniffles: 

sniffles -t 16 -m mapper_ONT.sort.bam -v sniffles.vcf 

Picky: 
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./picky.pl script --fastq LongRead.fastq --thread 4 > LongRead.sh 

./LongRead.sh 
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