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ABSTRACT OF THE DISSERTATION

Towards Smart and Secure IoT with Pervasive Sensing

By JIAN LIU

Dissertation Director:

Yingying (Jennifer) Chen

With the advancement of mobile sensing and pervasive computing, extensive research

is being carried out in various application domains of Internet of Things (IoT), such

as smart home, smart healthcare, connected vehicles, and their security issues. My

research work explores the power of pervasive sensing technologies to benefit people’s

daily lives and make impacts on society advancement, especially in the emerging ar-

eas of smart healthcare, IoT security and IoT embedded system communications. In

this dissertation, I mainly study the following topics: (1) how to perform vital signs

monitoring during sleep towards smart healthcare; (2) how to conduct user authenti-

cation on any solid surface for IoT applications; (3) IoT security: side-channel security

leakage of typing with a nearby phone; and (4) high-throughput and inaudible acoustic

communication for IoT applications.

We first propose to track the vital signs of both breathing rate and heart rate during

sleep by using o↵-the-shelf WiFi without any wearable or dedicated devices. Our system

reuses existing WiFi network of IoT and exploits the fine-grained channel information

to capture the minute movements caused by breathing and heart beats. Our system

thus has the potential to be widely deployed and perform continuous long-term moni-

toring. Our extensive experiments demonstrate that our system can accurately capture
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vital signs during sleep under realistic settings and achieve comparable or even better

performance comparing to traditional and existing approaches, which is a strong indi-

cation of providing noninvasive, continuous fine-grained vital signs monitoring without

any additional cost.

Moreover, we propose VibWrite that extends finger-input authentication beyond

touch screens to any solid surface for smart access or IoT systems (e.g., access to apart-

ments, vehicles or smart appliances). It integrates passcode, behavioral and physio-

logical characteristics, and surface dependency together to provide a low-cost, tangible

and enhanced security solution. VibWrite builds upon a touch sensing technique with

vibration signals that can operate on surfaces constructed from a broad range of ma-

terials. It is significantly di↵erent from traditional password-based approaches, which

only authenticate the password itself rather than the legitimate user, and the behav-

ioral biometrics-based solutions, which usually involve specific or expensive hardware

(e.g., touch screen or fingerprint reader), incurring privacy concerns and su↵ering from

smudge attacks. VibWrite discriminates fine-grained finger inputs and supports three

independent passcode secrets including PIN number, lock pattern, and simple gestures

by extracting unique features to capture both behavioral and physiological charac-

teristics such as contacting area, touching force, and etc. Our extensive experiments

demonstrate that VibWrite can authenticate users with high accuracy, low false positive

rate and is robust to various types of attacks.

In addition, we explore the limits of audio ranging on mobile devices in the context

of a keystroke snooping scenario. we show that mobile audio hardware advances of

mobile and IoT devices can be exploited to discriminate mm-level position di↵erences

and that this makes it feasible to locate the origin of keystrokes from only a single

phone behind the keyboard. The technique clusters keystrokes using time-di↵erence of

arrival measurements as well as acoustic features to identify multiple strokes of the same

key. It then computes the origin of these sounds precise enough to identify and label

each key. By locating keystrokes this technique avoids the need for labeled training

data or linguistic context. Experiments with three types of keyboards and o↵-the-shelf

smartphones demonstrate that our system can recover 94% of keystrokes, which to
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our knowledge, is the first single-device technique that enables acoustic snooping of

passwords.

Finally, we design the first acoustic communication system, which achieves high-

throughput and inaudibility at the same time. The highest throughput we achieve

is over 17⇥ higher than the state-of-the-art acoustic communication systems, which

could facilitate various IoT applications. Particularly, we theoretically model the non-

linearity of the mobile device’s inbuilt microphone and use orthogonal frequency division

multiplexing (OFDM) technique together with the non-linearity model to transmit data

bits over multiple orthogonal channels with an ultrasound frequency carrier. Extensive

evaluations under various realistic settings demonstrate that our inaudible acoustic

communication system achieves throughput as high as 47.49kbps.
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Chapter 1

Introduction

1.1 Fine-grained Sleep Monitoring Leveraging O↵-the-shelf WiFi

Vital signs, such as breathing rate and heart rate, indicate the state of a person’s

essential body functions. They are the essential components to assess the general phys-

ical health of a person and identify various disease problems. Correlating the vital

signs with our sleep quality can further enable sleep apnea diagnosis and treatment [1],

treatment for asthma [2] and sleep stage detection [3]. However, the traditional way

to monitor vital signs during sleep requires a patient to perform hospital visits and

wear dedicated sensors [4], which are intrusive and costly. The obtained results may be

biased because of the unfamiliar sleeping environments in the hospital. Moreover, it is

di�cult, if not possible, to run long-term sleep monitoring in clinical settings. Thus, a

solution that can provide non-invasive, low-cost and long-term vital signs monitoring

without requiring hospital visits is highly desirable.

Recently, Radio Frequency (RF) based monitoring solutions [5, 6, 7, 8] have drawn

considerable attention as they provide non-invasive breathing rate monitoring. For

example, F. Adib et al. utilize Universal Software Radio Peripheral (USRP) and Fre-

quency Modulated Continuous Wave (FMCW) radar to monitor a person’s breathing

rate by detecting the chest fluctuations caused by breathing [7, 8]. Doppler radar [5]

and ultra-band radar [6] are utilized to catch a person’s breathing respectively. These

systems involve specialized devices with high complexity, which prevent them from

large-scale and long-term deployment. Furthermore, N. Patwari et al. [9, 10] use coarse-

grained channel information (i.e., received signal strength (RSS)) extracted from wire-

less sensor nodes to detect breathing rate. Their approach requires additional wireless

network infrastructure (i.e., dedicated sensor nodes), and the coarse-grained channel
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information is not able to capture the vital signs of heart rate. Another new direction

is using wearable sensors (such as Fitbit [11] and Jawbone [12]) to track people’s fitness

at any time. But they only have the capability of performing coarse-grained sleep mon-

itoring without capturing the breathing rate, which is critical to many sleep problem

diagnosis including sleep apnea. Additionally, users are required to wear these fitness

sensors even during their sleep, which could be a challenge for elder people.

To address these issues, our work aims to perform continuous long-term vital signs

monitoring with low cost and without the requirement of wearing any sensor. We show

that it is possible to track breathing rate and heart rate during sleep by using WiFi sig-

nals between WiFi-enabled IoT devices. This will largely increase the opportunity for

wide deployment and in-home use. Indeed, our system re-uses existing WiFi network

of IoT devices for tracking vital signs without dedicated/wearable sensors or additional

wireless infrastructure. Furthermore, by exploiting fine-grained channel information,

Channel State Information (CSI), provided by o↵-the-shelf WiFi-enabled IoT devices,

our system captures not only the breathing rate but also heart rate. Specifically, our sys-

tem utilizes the readily available channel information to detect the minute movements

caused by breathing and heart beats (i.e., inhaling, exhaling, diastole and systole).

Using channel state information has significant implication on how fine-grained

minute movements can be captured for vital signs monitoring. Comparing to the tra-

ditional RSS, which only provides a single measurement of the power over the whole

channel bandwidth, the fine-grained CSI provides both amplitude and phase informa-

tion for multiple OFDM subcarriers. For instance, the mainstream WiFi systems such

as 802.11 a/g/n are based on OFDM where the relatively wideband 20MHz channel

is partitioned into 52 subcarriers. Due to the frequency diversity of these narrowband

subcarriers, the multipath e↵ect and shadow fading at di↵erent subcarriers may result

in significant di↵erence in the observed amplitudes. This means that a small movement

in physical environment may lead to the change of CSI at some subcarriers, whereas

such change maybe smoothed out if we examine the signal strength over the whole

channel bandwidth. Our system thus takes advantage of the fine-grained CSI provided

by o↵-the-shelf WiFi-enabled IoT devices to capture the minute movements for vital
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signs monitoring.

Our system uses only a single pair of WiFi-enabled IoT device and wireless AP for

detecting the breathing rate, heart rate and sleeping patterns (e.g., sleeping events and

postures) during sleep. The breathing rate detection algorithm first obtains time series

of CSI from o↵-the-shelf WiFi device (e.g., desktop, laptop, tablet, and smartphone)

and then analyzes the information in time domain and frequency domain. It achieves

high accuracy for both single and two-person in bed scenarios. To detect heart rate, our

algorithm first applies a bandpass filter to eliminate irrelevant frequency components,

and then estimates the heart rate in the frequency domain by locating the frequency

peak in the normal heart rate range. Additionally, we distinguish di↵erent sleep events

(e.g., going to bed, turn overs during sleep) based on the CSI’s variance energy and

further identify people’s sleep posture using a machine learning based approach. Exten-

sive experiments are conducted in lab environment and two apartments with di↵erence

sizes. The results show that our system provides accurate breathing rate and heart

rate estimation not only under typical settings but also covering challenging scenarios

including long distance between the WiFi device and AP, none-line-of-sight (NLOS)

situation and di↵erent sleep postures. This demonstrates that our approach can pro-

vide device-free, continuous fine-grained vital signs monitoring without any additional

cost. It has the capability to support large-scale deployment and long-term vital signs

monitoring in non-clinical settings.

1.2 Towards Finger-input Authentication on Ubiquitous Surfaces via

Physical Vibration

The process of authentication verifies a user’s identity and is frequently deployed at

almost every corner of our daily lives. In particular, the increasingly wide deployment

of smart access systems of IoT, which are defined as those used for keyless controlling

access to corporate facilities/apartment buildings/hotel rooms/smart homes/vehicle

doors, require the authentication process to play a broader role in numerous daily

activities beyond the common form authentication on touch screen devices, such as
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mobile phones. The classic physical-key based access methods do not possess user au-

thentication functionality. A market report shows that the deployment of smart security

access systems is expected to grow rapidly at an annual rate of 7.49% and will reach a

market value of $9.8 billion by the year of 2022 [13]. The current authentication pro-

cess in smart security access systems mainly relies on traditional solutions supported

by intercom, camera, card, or fingerprint based techniques. These approaches however

involve expensive equipment, complex hardware installation, and diverse maintenance

needs. The trend of employing low-cost low-power tangible user interfaces (TUI) on

IoT devices to support user authentication in various facility entrances, apartment

doors and vehicles has gained industry attentions recently. For example, token devices

(e.g., smart ring, glove or pen) could be utilized for associating identities of their touch

interactions [14, 15], and an ultra-thin sensing pad can be deployed in automobiles

to perform driver authentication [16]. Moreover, isometric buttons appearing on new

models of microwave ovens and stove tops and rotary inputs (e.g., used by iPod) can

replace the regular physical buttons to provide better functionality and flexibility [17].

These new approaches appear promising of conducting user authentication and op-

erating appliances/devices in smart systems leveraging capacitive sensing. However,

these techniques require that the touched surface possesses electric conductivity and

an electric field that produces/stores electrical energy, which largely limits the wide

deployment of such solutions.

Along this direction, we start a new search in developing a low-cost general user

authentication approach, which has the capability to work with any solid surface for

smart access and IoT systems. The convenience of executing user authentication via

touching any surface is enticing. For instance, a driver can just place his palm against

the driver side window to access and start the vehicle. This has already been visualized

in the popular movie ”Mission Impossible 5”, in which the featured BMW muscle car

can be unlocked instantly when the lead actor pressed his palm against the side window.

In another instance, a user can place his hand on the door panel of his apartment to

perform authentication and unlock the entrance door without card access. Furthermore,

electronic appliances in smart homes have a growing need to provide customized services
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Figure 1.1: Illustration of a finger touching on a solid surface under physical vibration,
and three independent types of secrets for pervasive user authentication.

for advanced safety needs such as prohibiting children and elderly people to operate

risky appliances (e.g., oven and dryer), adjusting room temperature/lighting conditions

and recommending TV content. A low-cost solution of tangible user authentication

enabled on any solid surface could eliminate the need of installing touch screens on

such electronic devices and make the customized services easy to deploy. Toward this

end, our work seeks a general user authentication solution with smart access capability

that can work with any solid surface (such as a door, a table or a vehicle’s window),

not limited to touch screens, and with minimum hardware and maintenance cost.

The traditional authentication solutions are based on passwords (i.e., texts and

graphical patterns) [18, 19, 20, 21, 22]. However, all these approaches are based on the

knowledge of the passwords, and thus su↵er from password theft or shoulder surfing.

Another direction of authentication involves physiological biometrics (e.g., fingerprints,

iris patterns and face) [23, 24, 25, 26]. These mechanisms are less likely to su↵er

from identity theft. However, they usually require installation of expensive equipments

and stir privacy concerns of the users. Furthermore, recent studies [27, 28, 29] allow

users to rely on their familiar biometric-associated features (e.g., a sequence of 2D
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handwriting and corresponding pressure) extracted from mobile devices’ sensitive touch

screens instead of tedious passwords for user authentication. These approaches rely on

touch screens, and are hard to be extended to general security access systems such as

accessing corporate facilities, apartment buildings and smart homes when touch screens

are not always available. In addition, oily residues, or smudges, on the touch screen

surface may be used to recover user’s graphical password (i.e., smudge attacks) [30].

In this work, we introduce a new authentication system grounded on low-cost, low-

power tangible user interface, called VibWrite, which has the flexibility to be deployed

on ubiquitous surfaces. VibWrite leverages physical vibration to support authentica-

tion to emerging smart access security systems. To enable touching and writing on

any surface during the authentication process, VibWrite builds upon a touch sensing

technique using vibrations that is robust to environmental noise and can operate on

surfaces constructed from a broad range of materials. As shown in Figure 1.1(a), when

a vibration motor actively excites a surface resulting in the alteration of the shockwave

propagation, the presence of the object or finger touching in contact with the surface

can thus be sensed by analyzing the vibrations received by the sensor. VibWrite sup-

ports generalized vibration sensing based on a low-cost single sensor prototype that

can be attached to solid surfaces (such as a door, a table or an appliance) and sense

user touches and perform authentication flexibly from anywhere. By relying on the

vibration signals in a relatively high frequency band (i.e., over 16kHz), the system

is hardly audible or distracting to the user, and is less susceptible to environmental

interference from acoustic (i.e., mainly within a lower frequency band [31]) or radio-

frequency noise. More importantly, vibration propagation is highly dependent on the

surface material and shape in specific scenarios. VibWrite thus provides enhanced se-

curity by integrating location/surface uniqueness through such low-cost and tangible

vibration-based user-interface. As another example, the vibration response of an o�ce

door is di↵erent from that of a house door. The unique behavioral information is em-

bedded in both the behavioral biometrics as well as the surface being touched (e.g., the

specific door in the o�ce), making the system hard to be forged by attackers.

VibWrite provides users to choose from three di↵erent forms of secrets including
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PIN, lock pattern, and gesture (and signature in the future) to gain secure access as

shown in Figure 1.1(b). The authentication process can be enabled on any solid surface

beyond touch screens and without the constraint of the limited screen size. It is resilient

to side-channel attacks when an adversary places a hidden vibration receiver on the au-

thenticating surface or a nearby microphone to capture the received vibration signals.

It is also robust to various adversarial activities, including the seemingly very power-

ful ones that observe the legitimate user’s input multiple times and are aware of the

passcode secret. It can authenticate the legitimate user and reject attacks well because

of the following insights: 1) our study shows that vibration signals have the capability

to perform cm-level location discrimination; and 2) unique features are embedded in

a user’s finger pressing at di↵erent locations on a solid surface. Such unique features

reflect the characteristics of the user’s finger touching on the medium (e.g., a door panel

or a desk surface) including locations of touching, contacting area, touching force, and

etc., making them capable to discriminate di↵erent touching locations of the same user

and di↵erent users when touching on the same location. Thus, VibWrite enables users

to finger-input (i.e., touch or write) on solid surface and is robust to passcode theft

or passcode cracking by integrating 1) passcode, 2) behavioral and physiological char-

acteristics (e.g., touching force and contacting area), and 3) surface dependency (e.g.,

house door or o�ce desk) together to provide enhanced security.

1.3 Snooping Keystrokes with mm-level Audio Ranging on a Single

Phone

Mobile and IoT device hardware is increasingly supporting high definition audio

capabilities targeted at audiophiles. In particular, this includes microphone arrays for

stereo recording and noise cancellation as well as 4x improvement in audio sampling

rates. For example, the Samsung Galaxy Note 3 includes three microphones and its

audio chips are capable of 192kHz playback and recording. One can debate whether all

these advances actually lead to improvements in music playback and audio recording

quality that are perceivable by the human auditory system and not all these hardware

capabilities are currently made available by drivers and operating system software. Such
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advances, however, could have a significant impact on the accuracy of audio ranging

and localization.

Audio localization has been explored with mobile devices to achieve centimeter

level accuracy in various applications, such as phone-to-phone ranging and 3D local-

ization [32, 33], mobile motion games [34], and driver phone use detection [35]. Will

advanced mobile audio hardware capabilities lead to order of magnitude improvements

and let us achieve mm-level accuracy or do the limiting factors lie in multi-path distor-

tions and the accuracy of signal detection techniques?

We explore these questions in the context of keystroke snooping, a particularly

challenging localization technique and one with important security implications. To

eavesdrop on keystrokes, an adversary can inconspicuously leave a phone near a key-

board of the target user. Or, an adversary can co-opt the target users own phone, for

example by adding malware into an app with microphone access. Keystroke snooping

is particularly challenging because of the large number of di↵erent keys to distinguish

and the small cm-level separation between individual keys. It has important security

implications because using keyboard is still an important way of entering sensitive in-

formation into computing systems and crucially, passwords remain the primary means

to authenticate with remote systems, including financial- and health-related services.

Besides these security and privacy breaches there is also potential to create improved
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input methods for mobile devices that do not directly require typing on the confined

mobile screens. Additionally, the proposed solution also has the capacity to facili-

tate other applications that benefit from fine-grained localization, such as extending

interactions with the touch screen of a mobile device to its adjacent surfaces for con-

trolling music players or video games; tracking speakers in multiparty conversations in a

meeting room; and locating trapped disaster victims. The proposed audio ranging solu-

tion leveraging geometry based information (i.e., time di↵erence of arrival) and unique

acoustic characteristics extracted from potential sound sources could deal with many

limitations of mobile devices, such as only two stereo recording microphones, limited

sampling rate, and restrained distance between two microphones.

Prior work. Existing research has already recognized the significance of this ques-

tion and found limited potential to recover keystrokes from audio recordings. In partic-

ular, Asonov et al. [36] conducted an initial study that observed that each key produces

unique acoustic emanations and designed a supervised learning method to recognize

individual keys. UbiK [37] improves accuracy for keystrokes on solid surfaces (i.e., a

paper keyboard on a table) fingerprinting acoustic di↵erences due to multi-path fad-

ing. These approaches require extensive labeled training data from the exact keyboard

setting to learn the acoustic profiles for each key, which can be challenging to obtain in

adversarial scenarios. Later, Zhuang et al. [38] propose to add language constraints to

improve recognition accuracy. Berger et al. [39] further trades o↵ training requirements

for accuracy through a dictionary-based approach that leverages the similarity of acous-

tic signals from nearby keys. Such methods, however, improve keystroke recognition

only for natural language and fail for strong passwords composed of random characters.

Zhu et al. [40] proposes to utilize microphones on three phones to identify keystrokes

of a nearby keyboard based on time di↵erence of arrival (TDoA) measurements. The

requirements of three collaborating phones and the achieved moderate accuracy make

their approach less feasible for real attack scenarios. There is also a related line of

work that has explored vibrations sensing of keystrokes using accelerometers such as

(e.g., [41]). The accuracy of such approaches generally remains lower than that of au-

dio sensing. Figure 1.2 illustrates the design space and the results o↵ered by existing
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work. Due to the limited accuracy, the use of multiple recording devices, the need for

linguistic context, or training with extensive labeled data, none of these techniques can

easily be applied to snoop on passwords.

Approach. This work demonstrates that the mobile audio hardware advances can

indeed be exploited for high accuracy mm-level ranging and that practical scenarios ex-

ist where it is possible to localize keystroke sounds with an accuracy su�cient to snoop

on passwords. It explores a novel point in the keystroke recognition design space by

showing the feasibility of keystroke snooping that is (i) training-free, (ii) context-free,

(iii) based on single phone. The approach is training-free because it does not require

a-priori labeled training data, which is often di�cult to obtain for an adversary. Com-

paring to the training-based keystroke recovering solutions, e.g., using labeled keystroke

data to train a neural network to recognize subsequent keystrokes [36], our work de-

velops unsupervised algorithms without any labeled data to cluster a set of keystrokes.

The approach is context-free because it does not require on any linguistic models such

as letter, letter sequence (n-gram), or word likelihoods and can therefore be applied to

random key sequences such as passwords. And the approach is based on a single phone

because it does not require multiple phones or recording devices to be placed around

the keyboard; it only relies on two microphones in a single phone.

Our work achieves this by discriminating keystrokes based on the time-di↵erence-

of-arrival (TDoA) of the keystroke sound at the two phone microphones and by refining

such estimates using acoustic di↵erences in the sound emitted by each key. For certain

placements of the phone, relative to the keyboard, there exist measurable di↵erences in

TDoA value between most keys. Di↵erent from general acoustic TDoA localization ap-

proaches which require at least three distributed microphones, our work only uses two

microphones with highly constrained distances on a single phone, which produce a lim-

ited range of single-dimensional TDoA measurements for locating the keystroke. While

a single TDoA measurement will not allow determining a unique 2D location for the

keystroke, it does restrict the possible locations for this keystroke to a hyperbola. Given

multiple keystrokes of the same key and information about the keyboard geometry, this

hyperbola can be placed with mm-level precision so that it uniquely identifies a key. To
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obtain multiple audio samples of the same key, even under random typing, the approach

clusters keystrokes based on the observed TDoA and mel-frequency cepstral coe�cients

(MFCCs), which capture (slightly) di↵erent acoustic signatures of each keystroke such

as those due to physical imperfections across keys. Since the acoustic signatures are

only used for improving clustering, there is no need for training of acoustic signatures.

Further, since the final TDoA values describe relative locations, they can be directly

used to label keystrokes if the keyboard geometry and phone position is known (e.g.,

keyboard with phone/tablet stand) or if it can be inferred (i.e., enough keystrokes can

be observed to derive the key layout). The labeling process only requires finding a best

match between the measured TDoA and the expected TDoA for each key, given the

geometry and placement.

1.4 High-throughput and Inaudible Acoustic Communication with

Non-linearity of Microphones

Short-range wireless communication of mobile devices has become increasingly pop-

ular recently, which is targeted to support various mobile applications and services,

such as mobile advertisement, mobile payment, and device pairing, etc. In particular,

Near-Field Communication (NFC), Bluetooth, screen-camera Quick Response (QR)

codes are the most common choices of wireless short-range communication technolo-

gies. However, the deployment of NFC chips in mobile devices is far from satisfactory.

For instance, there are still over 1 billion mobile devices that are incapable with NFC

infrastructures in 2018 [42]. For Bluetooth and QR codes, the requirement of high

user-intervention (e.g., complex touchscreen operations and image alignment) leads to

incredible inconvenience for users in many application scenarios. As an alternative,

acoustic communication has gained considerable attention recently [42, 43, 44]. Di↵er-

ent from the aforementioned technologies, acoustic communication builds on the inbuilt

microphone and speaker of the devices, without the requirement for user intervention.

Because of these benefits and ever-growing market demands, many companies (e.g., Ver-

ifone [45], Paytm [46], ToneTag [47]) have started developing acoustic communication
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Figure 1.3: Inaudible acoustic communication with o↵-the-shelf mobile/IoT devices.

techniques for many applications (e.g., highly-secure proximity payments, customer en-

gagement services). Alipay even has launched acoustic communication mobile payments

systems on vending machines [48].

In an e↵ective and reliable acoustic communication system, high-throughput (i.e.,

high-speed) and inaudibility are the two key metrics a↵ecting the possible IoT/mobile

applications being supported and their user experiences. For instance, high-throughput

communication could enable the delivery of large digital files (e.g., audio, image, PDF

files) instead of the limited text message or url link. It would also be convenient for

developers to design more robust security protocols requiring more overhead for the

communication system. Additionally, it is essential to keep the communication process

inaudible to humans, making the system not annoying to users and usable anytime and

anywhere. Current state-of-the-art audio hardware on mobile devices usually supports

up to 48kHz sampling rate, thus the upper frequency in the communication frequency

band is 24kHz according to Nyquist theorem [49]. In order to achieve inaudible com-

munication, existing e↵orts use near-ultrasound frequency band (i.e., approximately

18-20kHz) [50, 51, 52]. However, using this limited near-ultrasound frequency band-

width cannot achieve satisfactory high throughput.

This work proposes the first acoustic communication system, BatComm, which can

achieve inaudibility and high-throughput simultaneously by using the non-linearity of

microphones (i.e., described with details in Section 5.2). As shown in Figure 1.3, an

ultrasound speaker transmits acoustic signals modulated on an ultrasound frequency

carrier (e.g., > 40kHz). Relying on the non-linearity of microphones, a nearby mobile
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or IoT device could pick up the signals of the entire audio frequency band (i.e., 0-

24kHz) that are modulated onto this ultrasound frequency carrier to receive data.

The proposed solution could facilitate many mobile and IoT applications requiring

high-speed data delivery functionalities, such as contents sharing between devices and

inaudibly broadcasting messages (e.g., any digitized files and advertisements) in public

facilities such as auditoriums, elevators, theaters, libraries and art museums.

Existing studies achieve a relatively high throughput (e.g., 1kbps [53, 54], 2.4kbps [55])

through using audible acoustic frequency band (e.g., 0-18kHz [53], 0-22kHz [55], 8-

10kHz [54]). However, due to the audible acoustic signal used for communication,

these approaches are annoying to users thus degrade the user experience. In addition,

several approaches [56, 57, 58] embed the data signals for communication underly-

ing the daily sounds (e.g., music, speech) leveraging the information-hiding technique.

These approaches use 6-20kHz frequency band, which is non-overlapped with those

daily sounds’ frequencies, for data communication. Additionally, some studies [50, 51]

directly utilize near-ultrasound band (e.g., 18-20kHz) to realize an inaudible acoustic

communication. However, the aforementioned approaches can only achieve a relatively

low throughput (e.g., 1kbps) due to the narrow bandwidth (i.e., around 2kHz) that can

be used. In this work, we design a communication solution with both high-throughput

(i.e., > 40kbps) and inaudibility, which provides a powerful communication channel for

the devices equipped with microphones.

To achieve high-throughput communication for general mobile devices with limited

audio sampling rate (e.g., 48kHz), BatComm (1) applies orthogonal frequency division

multiplexing (OFDM) to transmit the data bits on multiple subcarriers concurrently;

and (2) uses wider bandwidth (e.g., entire audio frequency band) rather than the limited

near-ultrasound band. To make the whole communication process inaudible, we use

amplitude modulation (AM) to modulate the low-frequency signals (e.g., < 24kHz) on

an ultrasound frequency band (e.g., > 40kHz) at the transmitter end, while integrating

the non-linearity of device’s microphone to fully recover the low-frequency signals from

the ultrasound signals at the receiver end. Additionally, we theoretically and empirically

demonstrate that the unrelated residual signals produced by AM modulation under the
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non-linearity of microphones would interfere with the signals transmitting on other

OFDM subcarriers, which induces errors in the received data. To address this issue,

we propose an elimination scheme, which elaborately modifies the OFDM waveform

before AM, to eliminate the unrelated residual signals in the recorded signals. To make

BatComm robust in realistic settings, we also apply a series of techniques (e.g., DPSK,

preamble, cyclic prefix, channel estimation, BCH code, interleaving) to handle various

interference and fading problems including frequency selective fading, time selective

fading, inter-symbol interference and practical ambient noises.



15

Chapter 2

Fine-grained Sleep Monitoring Leveraging O↵-the-shelf

WiFi

2.1 System Design

In this section, we discuss the preliminaries, design challenges and overview of our

system design.

2.1.1 Preliminaries

While proliferating WiFi networks are usually used for wireless Internet access and

connecting local area networks, such as an in-home WiFi network involving both mobile

and stationary devices (e.g., laptop, smartphone, tablet, desktop, smartTV), they have

great potential to sense the environment changes and capture the minute movements

caused by human body [59]. Indeed, WiFi signals are a↵ected by human body move-

ments at various scales during sleep, such as large scale movements involving going to

bed and turn over, minute movements including inhaling/exhaling for breathing and

diastole/systole for heart beats. By extracting and analyzing the unique characteristics

of WiFi signals, we could capture and derive the semantic meanings of such movements

including both breathing rate and heart beats during sleep. We are thus motivated to

re-use existing WiFi network to monitor the fine-grained vital signs during sleep as it

doesn’t require any dedicated/wearable sensors or additional infrastructure setup.

To monitor the minute movements of breathing and heart beats, we exploit the

Channel State Information (CSI) provided by o↵-the-shelf WiFi devices as opposed to

the commonly used Received Signal Strength (RSS). While the coarse-grained channel

information of RSS provides the averaged power in a received radio signal over the whole



16

� � �� �� ��
�

��

��

��

��

��

��

���	
��

�
���
�
��
���
�	

�

�

��������	���
��������	���

��������	����
��������	����

Figure 2.1: CSI amplitude of four subcarriers over time when a person is asleep.

channel bandwidth, the fine-grained CSI of WiFi signal (based on OFDM) describes

at each subcarrier how a signal propagates from the transmitter to the receiver and

represents the combined e↵ect of, for example, scattering, fading, and power decay with

distance. For example, in 802.11 a/g/n, a relatively wideband 20MHz OFDM channel

(or carrier) is partitioned into 52 subcarriers. And we could examine the amplitude

and phase at each subcarrier, which could be thought of as a narrowband channel,

for extracting the minute movements. Due to the relative narrowband channel, the

scattering and reflecting e↵ects caused by minute movements could result in totally

di↵erent amplitudes and phases at each subcarrier. Such di↵erence however is usually

smoothed out if we look at the averaged power over the whole channel bandwidth (i.e.,

RSS). Analyzing the CSI at each subcarrier thus provides great opportunity to capture

the minute movements from not only breathing but also heart beats.

Figure 2.1 shows the CSI amplitude of four subcarriers (i.e., subcarrier 1, 7, 19 and

28) extracted from a laptop in a 802.11n network over time when a person is asleep.

His bed is in between an AP and the laptop with 3 meters apart. The person does

not carry any sensor in his body. We observe that the CSI amplitude of these four

subcarriers exhibits an obvious periodic up-and-down trend. Such a pattern could be

caused by the person’s breathing during sleep. This observation strongly suggest that

we may achieve device-free fine-grained vital signs monitoring by leveraging the CSI

from o↵-the-shelf WiFi devices.
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Figure 2.2: Overview of system flow.

2.1.2 Challenges

Our goal is to track human vital signs of breathing and heart rates simultaneously

using CSI measurements from a single pair of WiFi devices. To build such system

under realistic settings as a typical in-home scenario, a number of challenges need to

be addressed.

Robustness to Real Environments. The placement of WiFi devices in real

environments could change over time, and di↵erent persons present di↵erent sleeping

postures. Our system should be able to provide accurate vital sign monitoring un-

der such challenging conditions including various distances between the AP and WiFi

devices, presence of walls between WiFi devices (creating none-line-of-sight (NLOS)

scenarios), and di↵erent sleeping postures. In addition, our system should be able to

identify regular sleep related events (such as turnover or getting out of bed) to facilitate

vital signs monitoring.

Tracking Breathing & Heartbeat Simultaneously. Both breathing and heart

beat only involve small body movements, presenting significant challenges when tracking

such vital signs simultaneously under realistic settings. Even if the repeatable CSI

changing pattern caused by breathing could be detected as shown in Figure 2.1, it is
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di�cult to capture heartbeat movements using WiFi links at the same time. Because

the noisy environments will also a↵ect CSI measurements, making it much harder to

distinguish the minute movements caused by breathing (i.e., inhaling and exhaling) and

heart beats (i.e., diastole and systole).

Sensing with Single Pair of AP and WiFi Device. Our approach should work

with existing WiFi infrastructure, which may have only a single wireless link (between

the AP and the device) across the human body. This presents additional challenges

when two people are in-bed together. Our system should be able to distinguish and

measure breathing rates coming from two people. Furthermore, the system should use

WiFi tra�c as little as possible, such as only utilizing existing beaconing tra�c.

2.1.3 System Overview

The basic idea of our system is to track vital signs during sleep through capturing

the unique patterns embedded in WiFi signals. As illustrated in Figure 2.2, the system

takes as input time-series CSI amplitude measurements, which can be collected at an

o↵-the-shelf WiFi device by utilizing existing WiFi tra�c or system-generated periodic

tra�c (if network tra�c is insu�cient) during people’s sleep. The data is then pro-

cessed to filter out the CSI measurements that contain sleep events (e..g, going to bed

and turn over) or large environmental changes such as people walking by via Coarse

Sleep Event Detection and Filtering. The measurements belonging to the regular sleep

events can be further classified to detailed events such as going to bed, getting o↵ bed

and turnovers. Additionally, sleep posture plays an important role for people’s sleep

status/quality. For instance, some bad sleep postures (e.g., sleeping on the stomach)

may be the cause of people’s back and neck pain, stomach troubles [60]. The system

thus would identify people’s sleep posture using a machine learning based approach via

Sleep Posture Identification. Moreover, our work is based on the fact that breathing and

heart rates of resting people have di↵erent frequency ranges (e.g., breathing rate ranges

from 10 to 37 bpm [61, 62], and heart rate ranges from 60 to 80 bpm [63]). This useful

information leads us to work on di↵erent frequency bands of the CSI measurements for

accurate vital signs estimation.
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The core components of our system are Breathing Rate Estimation and Heart Rate

Estimation. After coarse sleep event detection and data filtering, based on the di↵erent

frequency information embedded inside the CSI measurements, the input is fed into

Breathing Rate Estimation and Heart Rate Estimation respectively. In particular, the

lower-frequency information of the CSI measurements is processed by the Breathing

Rate Estimation component. Our system first performs Data Calibration and Sub-

carrier Selection to preprocess the data and select only the subcarriers sensitive to

minute human body movements (i.e., subcarriers with large variances). We then de-

velop two methods, Breathing Cycle and PSD-based K-means Clustering, to estimate

the breathing rate for single and two-person in-bed scenarios respectively. PSD denotes

power spectral density. Following the similar principle, PSD-based K-means Clustering

can be easily extended to handle the case of estimating breathing rates for multiple

people simultaneously given the number of people under study is known. The higher-

frequency information of the CSI measurements is fed into the Heart Rate Estimation

component. The heart rate is then derived in the frequency domain by examining the

peaks in power spectral density (PSD) of CSI measurements. We leave the detailed

presentation of Breathing Rate Estimation and Heart Rate Estimation to Section 2.2

and Section 2.3, respectively.

2.2 Breathing Rate Estimation

We first describeData Calibration and Subcarrier Selection, and then present Breath-

ing Cycle Identification for estimating an individual’s breathing rate. We finally show

how to estimate breathing rates for two persons in-bed case.

2.2.1 Data Calibration

Data calibration is used to improve the reliability of the CSI by mitigating the

noise presented in the collected CSI samples in real environments. The noise sources

could come from environment-related changes, radio signal interference, etc. Our data

calibration first utilizes the Hampel filter [64] to filter out the outliers which have
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Figure 2.3: Illustration of data calibration of a single subcarrier.

significant di↵erent values from other neighboring CSI measurements. Specifically, we

apply the Hampel filter with a sliding window at each subcarrier to remove such outliers.

For CSI amplitude sequence (x1, x2, ..., xN ) at each subcarrier, the Hampel identifier

defines outliers as those data points xi whose absolute di↵erence from the median value

is greater than a pre-determined threshold, as defined by

8
<

:
|xi � x

⇤| > t ·M outlier;

|xi � x
⇤|  t ·M normal measurement,

(2.1)

where i is from 1 to N , and x
⇤ represents the median value of the rank-ordered samples

of a data sequence of length N . t is a scalar threshold and M is the median absolute

di↵erence (MAD) scale estimate, as defined by equation (2.2):

M = 1.4286 ·median{|xi � x
⇤|}, (2.2)

where the constant value 1.4286 ensures that the expected value of M equals the stan-

dard deviation of normally distributed data [65].

After that, we further apply a moving average filter, which further removes high-

frequency noise that is unlikely to be caused by breathing or heart beats as the cor-

responding minute movements usually present in a fixed frequency range. Figure 2.3

illustrates the e↵ectiveness of our data calibration by comparing the CSI amplitude

before and after data calibration under a none-line-of-sight case with severe signal out-

liers: the CSI amplitude shown in the figure is from a single subcarrier collected from

a WiFi device, which trasmits/receives packets from an AP with a wall between them.



21

As we can see from the figure, after data calibration, the sinusoidal waves in CSI am-

plitude can clearly reflect the periodic up-and-down chest and belly movements caused

by breathing.

2.2.2 Subcarrier Selection Strategy

We observe that the amplitudes of di↵erent subcarriers have di↵erent sensitivity to

inhaling and exhaling caused by breathing due to frequency diversity. Figure 2.4(a)

presents an example of CSI amplitude over time on 30 subcarriers extracted from a

laptop in WiFi network when a person is asleep. We find that the CSI from the smaller

subcarrier indices is significantly a↵ected by the minute movements caused by breathing,

while CSI from the higher subcarrier indices (i.e., from 15 to 30) is less sensitive. This

is because di↵erent subcarriers have di↵erent central frequencies, which have di↵erent

wavelengthes. Combining the e↵ect of multipath/shadowing with di↵erent frequencies,

CSI measurements at di↵erent subcarriers thus have di↵erent amplitudes. Those sub-

carriers not sensitive to the breathing activity should be filtered out. We utilize the

variance of CSI amplitude in a moving time window to quantify the subcarrier’s sen-

sitivity to minute movements. Figure 2.4(b) shows the variance of 30 subcarriers. We

can see that subcarriers with higher variance are more sensitive to minute movements.

We thus use a threshold based method to select subcarriers having large variance of

CSI amplitude in a time window for breathing rate estimation.

2.2.3 Breathing Cycle Identification

As breathing involves periodic minute movements of inhaling and exhaling, our

breathing cycle identification aims to capture the periodic changes in CSI measurements

caused by breathing. From Figure 2.1, we observe the CSI amplitude on the selected

subcarrier indeed presents a sinusoidal-like periodic changing pattern over the time

due to breathing. This observation suggests that we can identify breathing cycles by

measuring the peak-to-peak time interval of sinusoidal CSI amplitudes. We thus first

identify peaks of sinusoidal CSI amplitude patterns to calculate peak-to-peak intervals.

We then combine the peak-to-peak intervals from multiple subcarriers to improve the
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(a) CSI time series patterns after data calibration.
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Figure 2.4: Example of CSI amplitude pattern at 30 subcarriers and the corresponding
variance.
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Figure 2.5: Illustration of fake peak removal.

robustness and the accuracy of breathing cycle identification.

Local Peak Identification. A typical peak finding algorithm determines a data

sample as a peak if its value is larger than its two neighboring samples. However,

such simple method produces many fake peaks (i.e., the identified peaks that are not

at the location of real peaks of the sinusoidal CSI amplitude pattern) as illustrated in

Figure 2.5. The peak ⌧5 has larger value than its two neighboring samples, yet, it is

a fake peak among these nine identified peaks. In order to filter out the fake peaks,

we apply a threshold to the minimum distance between two neighboring peaks based

on human’s maximum possible breathing rate. In addition, we develop a Fake Peak

Removal algorithm to further reduce the number of fake peaks.
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Specifically, adults usually breathe at 10-14 breathes per minute (bpm) [62], while

new born babies breathe at around 37 bpm [61]. We therefore set the range of breathing

rates being considered in our work to 10-37 bpm which covers a broad range including

fast and slow breathing rates. We further adopt a minimum acceptable interval �mpd

that corresponds to the maximum possible breathing rate as a threshold to remove the

peaks that are too close to each other. If a peak has its backward interval (i.e., the

interval between previous peak and current peak) less than the minimum acceptable

interval length, it will be identified as a fake peak. In particular, we set the minimum ac-

ceptable interval �mpd = 60 ·f/37 samples, which corresponds to the maximum possible

breathing rate for infants. The parameter f is the sampling rate of CSI measurements

that corresponds to WiFi packet transmission rate.

In addition, we confirm the identified peaks by comparing its value to multiple data

samples within a verification window centered at the peak. The system only keeps the

identified peak when its value is greater than all the data samples in the verification

window. The algorithm of fake peak removal is provided in Algorithm 1. In our

experiments, we observe that a short verification window of one second is good enough

to remove fake peaks.

Breathing Cycles Combination. Once we capture all the local peaks from the

selected subcarriers, a more clear pattern can be obtained as shown in Figure 2.6. The

referenced signal is derived from the NEULOG Respiration Monitor Logger Sensor [66],

which is connected to a monitor belt attached to the user’s ribcage while asleep. Next,

our system estimates the breathing rate by combining peak-to-peak intervals obtained

crossing all selected subcarriers. We denote a set of peak-to-peak intervals obtained

from P selected subcarriers as L = [l1, ..., li, ..., lP ]0, where li = {li(1), ..., li(Ni � 1)}

is a vector of Ni peak-to-peak intervals obtained from the i
th subcarrier. Then the

estimated breathing cycle Ei from the i
th subcarrier can be obtained by using the

following equation:

argmin
Ei

Ni�1X

n=1

|Ei � li(n)|2. (2.3)

Considering the subcarriers with larger variance are more sensitive to the minute move-

ments, we utilize a weighted mean of estimated breathing cycles crossing all selected
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Algorithm 1 Fake Peak Removal.

Require:
CSI time series on subcarrier i: ci = {ci(1), ..., ci(M)};
Local peak set: MaxSet = {⌧k, 1 6 k 6 K};
Length of the verifying window: N ;

Ensure:
MaxSet after removing fake maximums;

1: for k=1: K do
2: locs := location(⌧k);
3: amp := amplitude(⌧k);
4: for m := locs-

⌅
N�1
2

⇧
: locs+

⌅
N�1
2

⇧
do

5: if m < 0 k m > M then
6: continue;
7: end if
8: if amp < ci(m) then
9: delete ⌧k from MaxSet;

10: break;
11: end if
12: end for
13: end for
14: return MaxSet;

subcarriers to obtain a more accurate estimation of breathing cycle E, which is defined

as follows:

E =
PX

i=1

var(ci) · EiPP
i=1 var(ci)

, (2.4)

where P is the number of validated subcarriers, ci is the CSI amplitude measurements

on the i
th subcarrier. The breathing rate finally can be identified as 60/E bpm.

2.2.4 Breathing Rate Estimation of Two Persons Scenario

Estimating breathing rate becomes challenging when there are two persons in bed as

the CSI measurements would be a↵ected by two independent movements simultaneously

due to breathing. It is hard to observe a clear sinusoidal pattern in the time series of

CSI amplitude. Nevertheless, the frequency of the breathing coming from two persons

is still preserved if we transfer the time series of CSI to the frequency domain. We

therefore develop a mechanism to determine two people’s breathing rates simultaneously

by examining the frequency components in CSI measurements.

In particular, our system analyzes the time series of CSI amplitude in frequency
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Figure 2.6: Local peaks of all selected subcarriers.

domain by using the power spectral density (PSD). The PSD transforms the time series

of CSI measurements on each subcarrier to its power distribution in the frequency

domain. It is used to identify the frequencies having strong signal power. A strong

sinusoidal signal generates a peak at the frequency corresponding to the period of the

sinusoidal signal in PSD. Therefore, the CSI amplitude measurements collected when

two persons in bed should present two strong peaks at the frequency corresponding to

the breathing rate of two persons, respectively. The PSD on the i
th subcarrier with N

CSI amplitude measurements can be calculated with following equation:

PSDi = 10 log10
(abs(FFT (ci)))2

N
, (2.5)

where ci is the vector of CSI measurements on subcarrier i.

For each selected subcarrier, we utilize a threshold based approach to identifying

the candidate peaks within its PSD. We then use a K-means clustering method to clas-

sify the candidate peaks into two clusters based on two dimensional feature including

PSD amplitude and corresponding frequency. The number of targeted people (i.e., K

in K-means) can be either estimated using existing work (e.g., [67]) or entered manu-

ally from the users. The average values of the frequencies in two clusters are identified

as the breathing rates of these two people. Figure 2.7 shows an example of estimat-

ing two persons’ breathing rate using PSD based method. The ground truths of two

persons’ breathing rates are 12bpm and 20bpm (i.e., 0.2Hz and 0.33Hz respectively).
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Figure 2.7: Illustration of two people breathing at di↵erent frequencies (12bpm and
20bpm).

Figure 2.7(a) depicts that there are two strong peaks in the PSD of selected subcarri-

ers near these two frequencies, respectively. Figure 2.7(b) shows that our PSD based

K-means clustering method can e↵ectively estimate the breathing rates of two persons

in bed simultaneously. We note that the proposed approach still works even when two

people have the same breathing rates. Under such scenario, our approach returns two

close-by PSD peaks on each selected subcarrier in the frequency domain after K-means

clustering. In addition, the person’s chest or belly that is closer to the wireless link has

bigger impact on the CSI changes, which creates more obvious periodic changes of CSI.

This leads to the stronger peak corresponds to that person’s breathing or heart beat

rate. We thus can map the detected breathing or heart rates to each individual based

on the strength of the peak and the proximity of the individual to the wireless link.

2.3 Heart Rate Estimation

Heart rate is a very important indicator of the persons’ sleep status, quality and

overall health condition. While the breathing patterns can be observed in the CSI

measurement, the heart rates don’t produce observable periodic CSI change patterns

in the time series CSI measurements. This is because the vibration of blood vessels

caused by heart beat (i.e., diastole and systole) are smaller minute movements than

that of breathing. Thus, the e↵ect of minute movement of heartbeat is overlapped
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with and covered by the chest and belly movements of breathing. On the other hand,

the heartbeat has much higher frequency than breathing. We thus can filter out the

interference of breathing in order to facilitate the heart rate estimation.

In particular, after Coarse Sleep Event Detection and Filtering, the CSI measure-

ments with the frequency range related to normal heart rate range of resting people

(i.e., 60bpm to 80bpm which corresponds to 1Hz to 1.33Hz) will be separated and

served as input to our Heart Rate Estimation. The patterns of CSI measurements of

all subcarriers after such band-pass filtering are illustrated in Figure 2.8(a), from which

we can observe the CSI changing that accompany the heart beats. With the aid of

the band-pass filter, the mean PSD curve for all subcarriers displays a noticeable peak

in the PSD graph at the frequency of 1.095Hz, namely 65.7bpm, in Figure 2.8(b). In

the same figure, there is a black dashed line representing the ground truth of 66bpm

measured by a commercial fingertip pulse sensor during such time period. We then

analyze the CSI amplitude on each subcarrier in frequency domain and generate the

power spectral density (PSD) (refer to Equation 2.5) to identify the frequencies having

strong signal power. We can thus determine the heart rate by locating the maximum

power in the average PSD of all subcarriers in the normal heart rate range. For two

person’s heart rates monitoring, we can identify two heart rates simultaneously by us-

ing the similar approach to the breathing rate estimation of two persons illustrated in

Section 2.2.4.

In addition to heart rates, fine-grained heart movement metrics (e.g., the heart rate

variability and R-R interval) have been shown to be good predictors for many possible

heart diseases [68]. We find that the normalized CSI can well capture the detailed

heart movement information from WiFi signals. Particularly, we pre-process the raw

CSI readings on each subcarrier via the aforementioned band-pass filter, and sum each

subcarrier’s readings together to get the normalized CSI. In the experiment, we placed

the WiFi device and AP at two sides of the bed with the distance of 5ft, and the

line of sight between the WiFi device/AP is crossing the person’s chest, so that our

system can well capture the user?s minute body movements associated with the heart

beats. Due to the vibrations of blood vessels caused by the diastole and systole of a
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(a) CSI time series patterns.
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Figure 2.8: Recovered heart beats by applying pass band filtering and PSD of CSI
measurements.

heart, the human body usually has slight movements when the heart beats. Similar to

the body movements caused by breathing, the even smaller movements associated with

heart beats also result in di↵erent amplitudes and phases at each subcarrier of WiFi

signals. After the band-pass filtering with the pass band limited to the frequency range

of human heart rate, the peaks/valleys in the CSI patterns can be used to measure the

heart contracts and cardiac diastole motions. Figure 2.9 compares the normalized CSI

patterns to a wrist-worn photoplethysmogram (PPG) sensor’s readings when the user

is asleep. The PPG sensor is usually used in clinical scenarios for collecting accurate

heart rates and detailed heart movement metrics. From Figure 2.9 we can see that the

changing pattern of the normalized CSI is highly correlated with the readings from the

PPG sensor, indicating that the normalized CSI obtained from WiFi signals could be

utilized to extract the fine-grained heart movement metrics such as heart contracts and

cardiac diastole (i.e., peak/valley in the corresponding CSI patterns [69]).

2.4 Sleep Event & Sleep Posture Identification

2.4.1 Coarse Sleep Event Detection & Environmental Change Filter-

ing

Coarse sleep event detection and filtering is used to detect and filter out the sleep

events or environmental changes that interfere with the minute movements of breathing
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Figure 2.9: Comparison of normalized CSI patterns and PPG sensor readings.

and heart beat during sleep. These sleep events, such as turnovers (i.e., changing

sleeping postures) and getting up, and occasional changes of environments, such as

people walking by, involve large scale body movements which significantly a↵ect the CSI

measurements and are irrelevant to vital signs monitoring. Our system thus performs

coarse determination of CSI segments containing such inference factors and filters them

out to facilitate accurate vital signs monitoring during sleep.

In particular, we employ a threshold-based approach to determine whether a seg-

ment of CSI measurements contains sleep events/environmental changes or not by ex-

amining the short-time energy of the moving variance of the CSI measurements. The

rationale behind this is that the sleep events or environmental changes involving large

body movements (e.g., going to bed and turn over) result in much larger changes of

CSI measurement than that of minute movements of breathing and heart beat. The

large movements thus can be detected once the variance energy of the corresponding

CSI measurements exceeds a particular threshold.

We denote the CSI samples of P subcarriers as C = [C1, . . . , Cp, . . . , CP ]0, where

Cp = {cp(1), . . . , cp(T )} represents T CSI amplitudes on the p
th subcarrier. We further

denote the moving variances of the P subcarriers as V = [V1, . . . , Vp, . . . , VP ]0, where

Vp = {vp(1), . . . , vp(T )} are the moving variances derived from Cp. Our system can then

calculate the cumulative moving variance energy of CSI samples accessing P subcarriers
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Figure 2.10: Short time energy of the variance of di↵erence sleep events.

as:

E =
1

NP

PX

p=1

NX

n=1

|vp(n)|2, (2.6)

where N denotes the window length of short time energy.

We empirically determine the variance energy to be 0.02 as the threshold in this

work. Figure 2.10 illustrates the normalized moving variance energy of CSI measure-

ments that are collected when the participant involves di↵erent sleep events during

sleep. We observe that all sleep events generate significantly large variance energy

comparing to that of the minute movements of only breathing and heart beats.

2.4.2 Regular Sleep Event Identification

Given the detected sleep events, we further classify them into detailed events such as

going to bed, getting o↵ bed and turnovers. Generating statistic of such detailed events

can help quantify the sleep quality. For example, frequent getting up or turning overs

may suggest that the person has di�culty falling asleep. This information contributes

to many healthcare applications such as elderly care and medical diagnosis. As shown

in Figure 2.10, sleep events involving relative larger-scale movements (i.e., going to

bed and getting out of bed) result in much larger variance energy than those involving

relative smaller-scale movements (i.e., turn overs). We thus can distinguish sleep events

with larger-scale movements from those with smaller-scale movements by comparing the

variance energy from Equation (2.6). To further distinguish larger-scale movements, we

can exploit the changes of the number of persons in bed to infer these two events. The
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number of persons in bed can be obtained by using a profile based approach as studied

in existing work (e.g., [67]).

2.4.3 Sleep Posture Identification

Sleep posture/position also plays an important role on a good night’s sleep. A

comfortable sleep posture could make a person easier to align his head, neck, spine, and

keep them in a neutral position, whereas some bad sleep postures (e.g., sleeping on the

stomach) may be the cause of people’s back and neck pain, stomach troubles, etc. [60].

Moreover, some researchers also found that di↵erent sleep postures incur di↵erent health

e↵ects. For example, the freefall posture is good for digestion, while the starfish and

soldier positions are more likely to lead to snoring and a bad night’s sleep [70]. This

encourages us to identify and track people’s sleep postures using WiFi signals, which

could provide additional sleep information to assist identifying potential reasons of

sleep di�culty or health problems. Intuitively, di↵erent sleep postures have inevitable

influence to WiFi signals, therefore we propose to match the features extracted from

CSI with the trained profiles to di↵erentiate sleep postures.

Feature Extraction & Selection. In particular, we use a sliding window whose

length is 5 seconds on the calibrated CSI time series (after the Data Calibration that is

discussed in Section 2.2.1) and extract nine basic features including mean, maximum,

minimum, variance, skewness, range, mode, median and kurtosis on each subcarrier

group. Therefore, for the 30 subcarrier groups, we could have 270 features in total for

each time window. In addition, since not all wireless signal transmission paths would be

influenced by people’s di↵erent postures, we find that only a few subcarriers or features

are distinguishable enough to di↵erentiate these sleep postures. We thus select a subset

of features that are more unique between di↵erent sleep postures from the 270 extracted

features on 30 subcarrier groups based on Fisher Score [71]. The fisher score of the i-th

feature is defined as follows:

Fi =

Pc
j=1 nj(µj � µ)2
Pc

j=1 nj�
2
j

, (2.7)

where nj is the number of instances in sleep posture class j, j = 1, ..., c, µj and �
2
j denote
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Figure 2.11: Derived fisher score of the extracted 270 features on 30 subcarrier groups
(features 1� 30 are the first feature mean on 30 subcarrier groups, and so on so forth).

the mean and variance of class j corresponding to the i-th feature, and µ denotes the

mean of i-th feature candidates in the whole training data sets. Figure 2.11 shows the

normalized fisher scores of those 270 features spanning on 30 subcarrier groups that

we extract to discriminate di↵erent sleep postures. Figure 2.11 shows the normalized

Fisher scores of the nine types of features extracted from 30 subcarrier groups, every 30

Fisher scores in this figure correspond to one type of the features. From the figure, we

observe that, for a particular type of feature, not all the subcarriers have high Fisher

scores (e.g., presenting a V -shape pattern), which means they are not equally sensitive

to human body movements. Note that such sensitivity di↵erences are often caused

by the relative position of the AP and WiFi device to the human body. In addition,

we observe that the features variance, skewness, range and kurtosis (i.e., feature ID

91 � 180 and 241 � 270) with low fisher score are not representative for each posture.

In order to reduce the impact of non-sensitive features and subcarrier groups to the

sleep posture identification, we empirically choose a threshold (i.e., ⌧f = 0.1) and only

use the features having Fisher scores larger than the threshold for the sleep posture

identification.

PCA Dimension Reduction. In order to further reduce the computational cost

in the later classification process, we adopt Principal Component Analysis (PCA) [72]

which not only converts original feature vectors into a set of linearly uncorrelated

principal components but also removes uncorrelated noise components in the features.

Specifically, we adopt PCA to convert the selected features in each time window into
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20 linearly uncorrelated principal components.

Posture Training and Identification. Our system mainly focus on identifying

four typical sleep postures, including curl up, supine, prone, and recumbent, which

are illustrated in Figure 2.12(b). Given a specific WiFi device setup, our system first

constructs the four sleep posture profiles with the extracted CSI features. Then the

four posture profiles are respectively used to train a machine learning based classifier.

Finally, in the sleep posture identification phase, CSI measurements and their corre-

sponding features collected while the user is sleeping are fed into the classifier to identify

the user’s posture. We compared the performance of using four di↵erent classifiers in-

cluding Discriminant Analysis, k-nearest neighbors (k-NN), Support Vector Machine

(SVM), and Random Forest, which are described in Section 3.6.

2.5 Performance Evaluation

In this section, we evaluate our system of tracking vital signs during sleep in both

lab and two apartments.

2.5.1 Device and Network

We conduct experiments in an 802.11n WiFi network with a single o↵-the-shelf

WiFi device (i.e., Lenovo T500 Laptop) connected to a commercial wireless Access

Point (AP) (i.e., TP-Link TL-WDR4300). The laptop runs Ubuntu 10.04 LTS with

the 2.6.36 kernel and is equipped with an Intel WiFi Link 5300 card for measuring

CSI [73]. Unless mentioned otherwise, the packet transmission rate is set to 20pkts/s.

How the packet rate a↵ects the performance will be discussed in Section 2.5.6. For each

packet, we extract CSI for 30 subcarrier groups, which are evenly distributed in the 56

subcarriers of a 20MHz channel [73].

2.5.2 Experimental Methodology

The experiments are conducted in both lab and two apartments with 6 participants

over a three-months time period. The lab environment is a large room with o�ce cubic
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Figure 2.12: Setup of relative position of WiFi device and AP and sleeping postures.

around. It is used to study the impact of various factors such as obstacles, the various

distances between the AP and the WiFi device, and sleep postures. In breathing rate

estimation experiments, the participants lie on a bed and control their breathing rate

to follow various steady beats from a metronome, which is set to a rhythm ranging from

12bpm to 18bpm.

We also conduct experiments in two apartments with di↵erent bedroom sizes. Fig-

ure 2.13 illustrates the environmental setup in two bedrooms, in which both beds are

queen size. The smaller one (i.e., bedroom-1) has the size of about 12ft ⇥ 9ft, whereas

the larger one (i.e., bedroom-2) is about 15ft ⇥ 12ft. As shown in Figure 2.13, we have

three setups in both apartments: setup 1 is the ideal scenario where the AP and WiFi

device are placed at two sides of the bed. This setup is useful for persons who want

to optimize the performance of the vital signs monitoring during sleep. Setup 2 repre-

sents a typical scenario where there is a AP inside the room and a WiFi device, such

as smartphone, laptop or tablet, is put on the bed table. Setup 2 has larger distance

between the AP and the WiFi device than setup 1. Setup 3 is a challenging scenario

where the AP and the WiFi device are placed in di↵erent rooms with a concrete wall

between them. The distance between the AP and the WiFi device is the largest among
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Figure 2.13: Two apartment setup.

three setups. In this setup, we utilize directional antennas (i.e., TL-ANT2406A) to en-

hance the reception of WiFi signals. Specifically, the distances between the AP and the

WiFi device in the three setups of the bedroom-1 are 5ft, 13ft and 11ft, respectively.

And the distances in the three setups of the bedroom-2 are 5ft, 14ft and 12ft, respec-

tively. The ground truths of breathing and heart rates are monitored by the NEULOG

Respiration Monitor Logger Sensor [66] and a fingertip pulse oximeter, respectively.

For the sleep posture identification experiments, we collect the CSI measurements

when a participant lies in bed in the lab environment and perform four common sleep

postures, which include prone, supine, curl-up and recumbent as shown in Figure

2.12(b). The participant stayed in each posture for about 40mins. The relative position

of the AP/WiFi device to the human body is same as the setup 2 in Figure 2.13 (a),

and the distance of the AP and WiFi device is around 10ft.

2.5.3 Evaluation of Breathing Rate Estimation

We evaluate the overall performance of breathing rate estimation under di↵erent

scenarios including di↵erent distances between the AP and WiFi, evaluation in two real

apartments and two persons in bed case.
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Figure 2.14: Performance under di↵erent distances between WiFi device and AP.

E↵ect of Device Distance

As typical bedroom has limited space, we choose a large lab environment to study

the performance of breathing rate estimation under various distances. The AP and the

WiFi devices are placed at two sides of the bed (i.e., P0 setup in Figure 2.12(a)) with

distances from 2 to 10 meters. Figure 2.14(a) presents the mean error in terms of beat

per minute (bpm) of breathing rate estimation under di↵erent distances when there

is a single person in bed. Overall, we observe that the mean estimation error of our

breathing rate estimation is lower than 0.4bpm, which demonstrates that our system is

very accurate across di↵erent distances including very large distances such as 5 to 10

meters. In addition, shorter distance between the AP and the WiFi device results in

better performance. For example, the mean error is within 0.2bpm when the distance

is under 5 meters. This is because the received WiFi signals are stronger with shorter

communication distances, providing more reliable measurements to capture the minute

movements of breathing. Comparing to the result of existing work using RSS [10] which

only tested with the distance of 2m, as shown in yellow bar in Figure 2.14(a), our system

provides significantly better performance (i.e., the error is reduced by about 67%).

Figure 2.14(b) depicts the Cumulative Density Function (CDF) of the breathing rate

estimation error for three categories of distances between the AP and WiFi device: best

case (i.e., 2m), typical case (i.e., 3m-7m covering mid-sized bedrooms), and challenging

case (i.e., 8m-10m covering huge-sized bedrooms). As we can see that for both best
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Figure 2.15: Performance in two real apartments.

case and typical case, over 90% estimation errors are less than 0.4bpm. Even for the

challenging case, over 80% of estimation errors are smaller than 0.5bpm. This suggests

that our system can achieve highly accurate breathing rate estimation by using a single

pair of AP and WiFi device. And it supports large distance between them.

Evaluation in Real Apartments

We next evaluate the breathing rate estimation in two di↵erent-size apartment bed-

rooms with di↵erent deployments of the AP and WiFi device, as shown in Figure 2.13.

Figure 2.15(a) presents the mean estimation error for each setup in two bedrooms. We

find that the setup 1 achieves the lowest estimation error of about 0.15bpm in both

bedrooms due to the shortest distance between the AP and WiFi device. The esti-

mation error of setup 2 increases as the distance between two devices increases. Still,

setup 2 has the estimation error as low as 0.22bpm and 0.24bpm in bedroom 1 and

bedroom 2, respectively. In addition, we observe that although setup 3 involves the

obstacle (i.e., a 6-inch wall) that blocks the line-of-sight signal transmission and longer

distance between the AP and WiFi device, we can still achieve less than 0.3bpm mean

estimation error with a single pair of AP and WiFi device. Moreover, Figure 2.15(b)

shows that more than 80% estimation errors are less than 0.5bpm for all of those three

setups in two real bedrooms, indicating that our system is accurate and robust in real

apartment environments. The above results show that our system provides e↵ective
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Figure 2.16: Breathing rate estimation of two persons in bed.

breathing rate monitoring under various distances of WiFi device and AP and is robust

across di↵erent environments.

Two Persons in Bed Case

We further test our system with two persons in bed using bedroom 1 setup. The

AP and WiFi device are placed at two sides of the bed with the distance of 3m. Two

participants are breathing with di↵erent rates as: {12bpm, 12bpm}, {12bpm, 13bpm}

and {12bpm, 16bpm}). Figure 2.16 depicts the mean estimation error and the CDF

of the breathing estimation error. We observe that the mean error is within 0.5bpm

for all combination of di↵erent breathing rates. In addition, we find that over 90%

of estimation errors are less than 1bpm, which is comparable to that of commercial

physical contact devices (e.g., zephyr[74]). Given that we only use a single pair of AP

and WiFi device, such accuracy of breathing rate monitoring is very encouraging.

2.5.4 Performance of Heart Rate Estimation

Figure 2.17 illustrates the CDF of heart rate estimation error when one person is

in bed using setup 1 in bedroom 1 with the AP equipped with directional antennas.

We observe that about 57% of estimation errors are less than 2bpm and over 90% of

estimation errors are less than 4bpm. The results are very encouraging as our sys-

tem achieves comparable accuracy to that of commercial sensors, e.g., Zephyr [74] and
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SleepIQ [75]. Comparing with these commercial products, our system re-uses exist-

ing WiFi network without dedicated/wearable sensors or additional cost. Our system

thus is able to support large-scale deployment and long-term vital signs monitoring in

non-clinical settings. To the best of our knowledge, our work is the first to achieve

device-free heart rate estimation leveraging o↵-the-shelf WiFi.

2.5.5 Performance of Sleep Posture Identification

We adopt a variety of machine learning classifiers to perform sleep posture identi-

fication, including Discriminant Analysis (DA), Support Vector Machines (SVM) with

linear kernel, K-Nearest-Neighbors (K = 5) and Random Forests (RF). Figure 2.18(a)

presents the overall accuracies of sleep posture recognition models built upon multiple

classifiers. We find that all classifiers yield the accuracies over 80%. Specifically, KNN

(K = 5), SVM and Random Forest classifiers result in the sleep posture identifica-

tion accuracies over 90%, which also verifies the robustness of aforementioned feature

extraction and selection techniques. We then look into the precision and recall rates

of our sleep posture recognition model trained by the RF that outperforms all other

classifiers, which are shown in Figure 2.18(b). We notice that even the lowest precision

and recall rates across all four sleep postures are still higher than 0.95, which again

demonstrates the decent accuracy achieved by our system in identifying user various

sleep postures in bed.

We further examine the confusion matrix that describes the identification accuracy
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Figure 2.18: Performance of sleep posture identification.
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for each of four sleep postures using the RF classifier, which is shown as Figure 2.19.

Each row represents the actual user sleep posture and each column shows the posture

that is predicted by our system. Each cell in this confusion matrix contains the per-

centage of the actual user sleep posture in the row that is classified as the postures in

the column. We note that our sleep posture classification model using Random Forests

can estimate each of sleep postures with accuracy over 98%. The above evaluation

results collectively show that our system is able to estimate user sleep postures with

high accuracy using a single pair of WiFi devices.

2.5.6 Impact of Various Factors

We also perform detailed study of breathing rate estimation under various factors.
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Figure 2.20: Impact of sleep postures on the breathing rate estimation.

Sleep Postures

We experiment with di↵erent sleep postures as shown in Figure 2.12(b). The AP

and laptop are placed at two sides of the bed with the distance of 3m. Figure 2.20(a)

compares the mean error of breathing rate estimation resulted from di↵erent sleep pos-

tures. Overall, our system achieves less than 0.3bpm mean error for all sleep postures,

which demonstrates the e↵ectiveness and robustness of our system. In particular, the

mean estimation errors of supine, curl up, and recumbent positions are about 0.07bpm,

0.1bpm and 0.158pm, respectively. Figure 2.20(b) shows the CDF curves of estimation

error for all postures. We find that our system can obtain less than 0.2bpm error for

more than 80% of typical sleep postures. The prone posture has the largest mean es-

timation error of about 0.25bpm for the reason that the body movements, which are

caused by breathing, are mainly in the chest and belly and would be absorbed and

blocked by the soft mattress. Still, our system achieves 93% of estimation errors less

than 0.5bpm for prone posture.

Obstacles/Walls

We evaluate our system with obstacles of di↵erent materials in between of AP and

WiFi device with P0 deployment in Figure 2.12(a). These obstacles are commonly used

materials in home environments including a plastic frame of 1inch, a solid wood door

of 2inches, and a concrete wall of 6inches. As more and more people use directional
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Figure 2.21: Impact of the types of obstacles between WiFi device and AP on the
breathing rate estimation.

antenna to boost the wireless signal reception in home WiFi network, we use both di-

rectional and omnidirectional antennas in the experiments. From Figure 2.21(a), we

observe that the mean error is less than 0.4bpm for all materials. Obviously, with the

concrete wall, the performance is slightly worse than that of door and plastic frame.

In addition, by using the directional antenna, the mean error decreases about 0.1bpm,

indicating the directional antenna can enhance the performance of breathing rate esti-

mation due to stronger received signals. Figure 2.21(b) shows the CDFs of estimation

error. We observe that the error is always within 0.5bpm and 1bmp for the plastic

frame and wall respectively. The results show that our system can work under di↵erent

obstacles and the directional antenna could improve the performance. A more compre-

hensive study of the system performance in various environments with more obstacles

and walls will be presented in our future work.

Relative Position of WiFi device and AP

Figure 2.22(a) shows the mean error of breathing rate estimation under di↵erent rel-

ative positions of Tx-Rx pair (i.e., the AP and WiFi device), as shown in Figure 2.12(a).

We find that the deployment P2 has the largest mean error at about 0.26bpm among all

deployments (i.e., P0, P1, P2, P3, P4) since the WiFi signals are partially blocked by

the human body (i.e., head and feet). In addition, Figure 2.22(b) depicts the CDFs of

breathing rate estimation errors. We observe that the estimation errors are all within
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Figure 2.22: E↵ect of relative position of WiFi device and AP.
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Figure 2.23: E↵ect of packet transmission rate.

than 0.5bpm even for the worst case deployment P2. Above results show that our

system is e↵ective under di↵erent relative positions of WiFi device-AP pair.

Packet Transmission Rate

As higher packet transmission rate results in more CSI measurements for vital signs

monitoring, we are interested in how the packet rate a↵ects the performance of our

system. Furthermore, we study whether our system can work with existing WiFi bea-

coning packets. Figure 2.23 presents the mean breathing rate estimation error versus

packet transmission rate when varying the transmission rate from 5pkt/s to 20pkt/s us-

ing the dataset from apartment experiment (i.e., Bedroom 1, setup 1). We observe that

high packet transmission rate slightly improves the performance. Overall, our system is

not very sensitive to packet transmission rate, given the range from 5pkt/s to 20pkt/s.
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Specifically, when the packet transmission rate is as low as 5pkts/s or 10pkts/s, our

system has about 0.24bpm and 0.2bpm mean estimation error, respectively. As the

commercial access points have the beaconing of 10pkts/s to broadcast their SSID, our

system is able to use such beacons for accurate breathing rate estimation. These results

show that our system can not only work with existing AP beaconing packets but also

provide accurate breathing rate monitoring with even less packet rate, such as 5pkts/s.

2.6 Conclusion

In this paper, we show that the WiFi network could be exploited to track vital signs

during sleep including breathing and heart rates using only one AP and a single WiFi

device. In particular, our system exploits fine-grained channel state information from

o↵-the-shelf WiFi devices to detect the minute movements associated with breathing

and heartbeat activities. Our algorithms grounded on CSI information in both time

and frequency domain have the capability to estimate the breathing rate of a single

person as well as two-person in bed cases. Additionally, the existing WiFi links can

also be used to track people’s sleeping events (e.g., turnovers, getting up) and sleeping

postures. Extensive experiments in both lab and two apartments confirm that our

proposed approach using the existing WiFi network can achieve comparable or even

better accuracies as compared to existing dedicated sensor based approaches. This

WiFi-based approach opens up a new direction in performing device-free and low-cost

vital sign monitoring during sleep in non-clinical settings.
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Chapter 3

Towards Finger-input Authentication on Ubiquitous

Surfaces via Physical Vibration

3.1 Physical Vibration Propagation

Physical vibration is a mechanical phenomenon, which creates a mechanical wave

transferring the initial energy through a medium. Similar to the transmission of wireless

signals, when a vibration signal travels through a medium, it experiences attenuation

along the propagation path and reflection/di↵raction when the signal hits the boundary

of two di↵erent media (e.g., the contacting area between a finger and a medium).

Figure 3.1(a) illustrates the reflection and di↵raction of a vibration signal propagating

in a solid surface when a finger touches the area in between the vibration signal generator

and receiver. When the vibration signal hits the contacting area of the finger, part of

the signal reflects back to the surface and the rest of it propagates into the finger (i.e.,

absorption) and bounces back to the surface along a di↵erent propagation path. The

vibration signal is a↵ected by the touching location of the finger and traverses di↵erent

paths before reaching the receiver (i.e., vibration sensor). Thus, the touching location

information is embedded in the various interference e↵ects captured at the receiver.

Furthermore, when a finger touches the surface of an object (e.g., a table), the

flexibility of the object is a↵ected not only by the touching location but also the strength

of touch. A recent study [76] utilizes these properties to enable a commodity phone to

recognize the force applied to its phone body and screen. To mathematically model the

vibration e↵ect on the object under an external force caused by the finger touch, we

consider a spring-mass-damper system as shown in Figure 3.1(b). A free body diagram

with the mass M represents the vibrating surface, while the external force Ft is caused

by the finger touch. Moreover, the vertical shaft has an e↵ective spring constant of Ks
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Figure 3.1: Illustration of the propagation characteristics of vibration signals on a solid
surface.

and a damping coe�cient of Kd. When the surface has a vertical displacement of x,

we have

Ft = Kd(
d

dt
)x+Ksx+M(

d

dt
)2x. (3.1)

To satisfy the equilibrium condition, the vertical displacement x is dependent on the

external force Ft. This indicates that the finger touching force could be captured by

analyzing the received vibration signals and utilized as a biometric-associated feature in

VibWrite. Note that the above analysis also works on vertical planar surface (e.g., door

panel) as the equilibrium condition could be analyzed along the direction perpendicular

to the surface.

In addition, Dong et al. [77] experimentally demonstrate that the vibration energy

absorbed into the human finger-hand-arm system is di↵erent under di↵erent vibration

frequencies. In our empirical study we find that the frequency response of the same

user finger-press presents higher correlation than that of di↵erent users when they touch

the same location on a surface. This important observation suggests that the vibration

propagation properties are strongly influenced by unique human physical traits such as

contacting area, touching force and etc., which can assist ubiquitous user authentication

together with passcode on any surface beyond touch screens.
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3.2 Approach Overview

In this section, we present the attack model and system overview of VibWrite.

3.2.1 Attack Model

We consider the following attacks that are harmful to the proposed ubiquitous au-

thentication functionalities.

Blind Attack. An adversary randomly touches on the authentication surface

equipped with the VibWrite system, hoping the random touching events can result

in similar impacts to the vibration signals as the legitimate user does and passes the

authentication.

Credential-aware Attack. An adversary has the prior knowledge of the legitimate

user’s credentials, including the PIN number, lock pattern or personal gesture, but does

not possess the knowledge of the VibWrite setting details such as the grid size, gesture

region, and the authentication surface.

Knowledgeable Observer Attack. An adversary is capable of both observing

the legitimate user’s hand movements when he is passing the authentication system via

shoulder surfing or video taping as well as knowing the user’s credentials and VibWrite

setting details. The adversary tries to imitate the legitimate user’s hand or finger move-

ments based on his understanding of the user’s credentials to pass the authentication.

Side-channel Attack. An adversary makes an e↵ort to hack the VibWrite system

directly in the hope of capturing the similar vibration signals of the legitimate user

by placing a hidden vibration receiver on the authentication surface or employing a

microphone in a nearby location.

3.2.2 System Overview

The basic idea underlying VibWrite is to analyze unique features from the received

vibration signals to enable authentication on ubiquitous object surfaces such as en-

trances (e.g., apartment building or car doors) and smart home appliances (e.g., hot

stove and dryer). In particular, VibWrite can be triggered when a person moves closer
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Figure 3.2: Overview of VibWrite architecture.

to the security access area (e.g., a door panel), which can be easily achieved using low

power proximity sensors or motion sensors [78, 79]. As illustrated in Figure 3.2, the

vibration motor then generates low annoyance vibrations and VibWrite starts taking

inputs of vibrational signals from the vibration receiver. The system first performs

Data Calibration (Section 3.3.2) including data synchronization and clock drift e↵ect

mitigation to ensure the received vibration signals always synchronized and eliminate

the e↵ects caused by the clock drift (i.e., inconsistent sampling frequency).

VibWrite then extracts and selects vibration features (Section 3.3) in the frequency

domain from the synchronized vibration signals within a sliding window. We find

that Spectral Point-based Feature (i.e., frequency amplitude of each spectral point)

and MFCC-based Feature (Mel-frequency cepstral coe�cient [80]) reflect the intrinsic

physical traits embedded in the user’s finger inputs. The system further performs

feature selection based on the Fisher Score [71] on top of the Spectral Point-based and
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MFCC-based features by selecting a subset of features exhibiting more discriminative

power among di↵erent touching locations as well as maintaining feature consistency

within each touching location.

The extracted vibration features are used by two phases in VibWrite: profiling and

authentication. In both PIN number based and lock pattern based authentications, a

grid is drawn on the touching surface. In the profiling phase, the features are extracted

and captured while a user first enrolls in the system and presses his finger at di↵erent

grid points on the touching surface. These features are labeled and saved to build the

user’s profile in Grid Profile Construction.

During the authentication phase, the received vibration signals are utilized to extract

vibration features. The extracted features then serve as inputs to Grid Point Index

Trace Derivation via a classifier based on Supporting Vector Machine (SVM) trained by

the grid profiles. The classifier compares the extracted features with the stored ones in

the profile to filter out the signal segments before and after the finger inputs and derive

grid point trace containing finger touching inputs. The derived grid point trace would

then be put into Grid Point Index Filtering (Section 3.4.2) to eliminate the incorrectly

classified grid point indices and obtain the ones corresponding to the finger presses in

the grid point index trace. Next, the filtered grid point trace would be recovered to the

PIN sequence/lock pattern via PIN Sequence Derivation or Lock Pattern Derivation

(Section 3.4.3). The recovered PIN number/lock pattern is then compared with the

local stored PIN/lock pattern information for the final authentication.

Independently, VibWrite also enables the user to perform simple gestures (e.g.,

drawing a circle on the surface) for authentication without the restrictions of press-

ing/passing the grid points on the authentication surface. Di↵erent from the fixed

grids in PIN/lock pattern based authentication, using gestures provides more flexibility

for authentication. However, even for the same user, the same finger gesture could be

slightly di↵erent at di↵erent authentication times due to the lack of consistency. Thus,

the mechanism for gesture-based authentication in VibWrite needs to capture the in-

trinsic gesture behavior to deal with gesture inconsistency while preserving individual
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Figure 3.3: Example of generated vibrations between 16kHz and 22kHz.

diversity. In particular, during the gesture-based authentication, VibWrite first iden-

tifies the signal segment containing the gesture operation via Gesture Segmentation.

In the profiling phase, the extracted feature sequence (i.e., Spectral Point-based and

MFCC-based features) from the gesture segments are saved to build the specific user’s

profile. To measure the similarity of generated features in the authentication phase to

the gesture profiles, VibWrite addresses the gesture inconsistency problem by consid-

ering both time warped feature sequences and the distribution of the features. This is

achieved by calculating both MD-DTW (Multi-Dimensional Dynamic Time Warping)

Distance [81] and EMD (Earth Mover Distance) [82] of the extracted feature sequences

to the profiles. The weighted distance combination in Weighted Distance Matching

obtains the combined distance from the two techniques. Finally, VibWrite makes de-

cision as user authenticated or access denied by checking a threshold to the calculated

distances between input gestures and the stored profiles.

3.3 Vibration Signal Design and Feature Extraction & Selection

In this section, we first describe the details of vibration signal design and calibration.

We then present how to extract and select unique features for the authentication process

in VibWrite.

3.3.1 Vibration Signal Design

To facilitate finger-input based user authentication via physical vibration, the vibra-

tion signals used in our system need to contain a broad range of frequencies to increase
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the diversity of vibration features in the frequency domain. Specifically, we generate

repeated chirp vibration signals to linearly sweep frequency from 16kHz to 22kHz,

which are hardly audible to most human ears [83]. Additionally, such frequency range

is much higher than the frequency range of ambient noise and the vibrations caused by

human body (e.g., breathing and heart beating). This makes our system less possible

to be interfered by these unrelated noises. Figure 3.3 illustrates an example of the

generated vibration signal and its corresponding spectrogram.In particular, there is a

short pseudo-noise (PN) sequence preamble played before the repeated chirp vibrations,

which is used for the signal synchronization. We leave the details in Section 3.3.2. After

transmitting PN pilot, with a 50ms pause, the vibration motor repeatedly transmits

the chirp vibration signal to keep its continuous sensing capability while performing

authentication. The length of each chirp vibration signal is set to T=10ms, which

provides high time resolution to enable continuously finger-input sensing.

3.3.2 Vibration Signal Calibration

Vibration Signal Synchronization. The timing of the VibWrite’s vibration

motor and receiver needs to be synchronized, so that we could guarantee that each

sliding window being used to extract vibration features contains the same parts of the

chirp vibration signals without time delay. Therefore, they can be used for further

comparison of their extracted features and capture the di↵erence in each window when

the finger touches di↵erent positions on the surface. In order to avoid the uncertainty,

we add a pseudo-noise (PN) sequence preamble (i.e., 2400 samples) [84], which has ideal

autocorrelation properties, at the beginning of the generated chirp vibration signals as

illustrated in Figure 3.3. We then synchronize the received vibrations using cross-

correlation between the PN sequence of the received vibration signal and the known

generated PN sequence.

Clock Drift E↵ect Mitigation. When the vibration receiver senses the vibration,

the analog voltage signals created by the sensor will be converted into the digitized

signals via an Analog to Digital Converter (ADC). The ADC can be configured at

a wide range of rates, and it is usually set to sample the analog signals at a fixed
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Figure 3.4: Illustration of clock drift e↵ect mitigation.

frequency driven by di↵erent application requirements. For instance, a few options

(e.g., 32kHz, 44.1kHz and 48kHz) can be set in most smartphones’ audio ADCs in

terms of the required audio recording quality. However, we experimentally find that

the sampling rate may be not a fixed value over time due to imperfect clock, and there

exists a small gap between the real sampling rate and the configured sampling rate.

To eliminate the e↵ect caused by the clock drift, we estimate the sampling rate o↵set

during a short calibration phase at the beginning. During the calibration, the vibration

motor periodically sends a short vibration chirp with a fixed time interval (e.g., 2s).

The time intervals between these chirps should be fixed value as well if there is no clock

drift. We use cross-correlation to measure the sample delays of the received vibration

chirps over time, which is illustrated in Figure 3.4. We observe that the number of

the delayed samples increases linearly over time, indicating that the real sampling rate

is slightly larger than the configured sampling rate but remains a relative fixed value.

We then use a least-squares based approach to fit a quadratic curve to the measured

delayed samples, and obtain the slop k to shift the starting point Sp of each received

vibration chirp to Sp = Sp � bktc, where t is the time interval between the current

vibration chirp and the first received vibration chirp.
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3.3.3 Spectral Point-based Feature Extraction

In order to extract unique vibration features from the received vibrations to dis-

criminate the finger touches on di↵erent surface locations and distinguish di↵erent users

touching a same surface location, we first analyze the received vibration signals in the

frequency domain using a 200ms sliding window. Figure 3.5(a) presents an example

of the Fast Fourier Transform (FFT) of a time series of the received vibration signals,

ranging from 16kHz to 22kHz, in a sliding window. The transmitted chirp vibration

signal has fundamental frequencies that are all multiples of the frequency 1/T Hz,

where T is the time duration of each chirp vibration signal (e.g., T = 0.01s in Vib-

Write). We find that the amplitudes of some designated frequency components in the

signals (i.e., peak values in Figure 3.5(a)), called spectral points, are most sensitive to

the minute changes caused by finger touching or swiping. These spectral points are

more sensitive to the finger touches and could be utilized to di↵erentiate di↵erent sur-

face locations finger presses or finger moving along. For example, in our preliminary

experiments, the vibration signals are collected when a user’s finger presses at four dif-

ferent locations of a solid surface (i.e., wooden table) equipped with our vibration motor

and receiver. We observe obvious distinguishable patterns of the frequency amplitude

at these 60 spectral points (i.e., 22000�16000
100 = 60) between di↵erent locations, which

are shown in Figure 3.5(b). Furthermore, the spectral points in the frequency domain

may not be exactly spaced at 100Hz due to imperfect sampling module. We thus de-

sign a threshold-based strategy (i.e., minimum distance between two neighboring peaks

and minimum height of each detected peak) to find peaks of the frequency response to

extract each spectral point feature.

3.3.4 MFCC-based Feature Extraction

The Mel-frequency cepstral coe�cient (MFCC) is widely used to represent the short-

term power spectrum of acoustic or vibration signals [80] and can represent the dynamic

features of the signals with both linear and nonlinear properties. While the MFCCs

are able to distinguish people’s sound di↵erences in speech and voice recognition, we
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Figure 3.5: Illustration of the frequency response of the received vibrations in a 0.2s
time window. And the frequency response is depicted at spectral points when a finger
presses 4 di↵erent locations of a desk.

find that they can also characterize the vibration signals transmitting via the medium

of a solid surface on which the user’s finger touches, because the user’s behavioral and

physiological characteristics (e.g. touch area and pressure) and the touching position

can cause di↵erent changes to the vibration propagation. We thus extract the MFCC-

based features to characterize the di↵erent vibration signatures when the user touches

or writes at di↵erent positions on the surface. In particular, we calculate the MFCCs

of the received vibration signals in each sliding window. The number of filterbank

channels is set to 32, and 16-th order cepstral coe�cients are computed in each 20ms

Hanning window, shifting 2ms each time.

Figure 3.6(a) shows the MFCCs extracted from the received vibration signals in

a 0.2s sliding window when the user presses on a solid surface. We observe that the

extracted MFCCs have a periodical pattern, which is caused by the cycle of the repeated

vibration chirp signals. Figure 3.6(b) shows Pearson correlation coe�cient [85] of the

MFCC-based features when the user’s finger touches at three di↵erent locations. In

this experiment, twenty consecutive sliding time windows (i.e., instances) are used

to extract MFCCs for each finger-touching location to compare the similarity between

di↵erent finger touches. We observe that the MFCC features of the same finger-touching

location present higher correlation than that of di↵erent locations, which confirms the

e↵ectiveness of utilizing the MFCC features to characterize the user’s finger-touching
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Figure 3.6: MFCC feature illustration: (a) Example of the extracted MFCC features
and (b) Pearson Correlation between MFCC features when a finger presses three dif-
ferent locations on a desk surface.

on the surface.

3.3.5 Feature Selection based on Fisher Score

From our experiments, we observe that not all extracted features including both

spectral points and MFCC are unique enough to discriminate di↵erent touching loca-

tions and distinguish di↵erent users touching the same location. The discrimination

power is dependent on the extracted features at specific frequencies or Mel-frequency

bands. We therefore propose to select features based on Fisher Score [71] to find a

subset of features which are more distinct between classes (i.e., touching locations per

user) and consistent within a class. The fisher score of the r-th feature candidate is

defined as follows:

Fr =

Pc
i=1 ni(µi � µ)2Pc

i=1 ni�
2
i

, (3.2)

where ni is the number of instances in class i. And µi and �
2
i denote the mean and

variance of class i, i = 1, ..., c, corresponding to the r-th feature candidate. µ denotes

the mean of r-th feature candidates in the whole data sets.

To analyze the feature di↵erence between di↵erent frequency bands, we consider each

spectral point or MFCCs at each frequency band as an individual feature candidate.

Figure 3.7 shows the normalized fisher scores of both the spectral point based and

MFCC based features that we use to perform user authentication. In VibWrite, we
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Figure 3.7: Fisher score of the feature candidates (a) spectral point based and (b)
MFCC based.
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Figure 3.8: Example of PIN sequence/lock pattern derivation in sliding windows when
entering a PIN sequence/lock pattern on a solid surface.

empirically choose top 30 spectral point based features, and top 8 MFCC based features

which are more sensitive to the finger pressing and swiping.

3.4 Authentication Using PIN Numbers and Lock Patterns

The VibWrite system allows users to perform PIN number based authentication by

touching grid points on a solid surface or conduct lock pattern based authentication

by swiping finger through the grid points. Depending on the type of applications, the

solid surface could be a range of options including an apartment door, a car door,

an executive’s o�ce desk or a smart appliance. VibWrite first converts the received

vibration signals to a time series of grid point indices, then filters out the incorrectly
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classified grid point indices and finally determines the PIN sequence/lock pattern based

on the derived grid point indices.

3.4.1 Deriving Grid Point Index Traces

The system takes the received vibration signals as input when the user enters PIN

sequence/lock pattern. In particular, we apply a sliding window to the vibration signals

and derive vibration features (e.g. spectrum-based feature and MFCC-based feature)

in every sliding window. We then apply a machine learning-based grid point classifier

based on the Support Vector Machine (SVM) using LIBSVM [86] to estimate the finger-

press positions in terms of the grid point index for each sliding window, by leveraging the

user’s personal grid profile. The resulted grid point index trace is actually an estimated

finger-press position trace which reflects the finger position changes among the grid

point indices in the entire PIN sequence/lock pattern input duration. Note that when

we derive grid point index trace, it involves user’s behavior and physical characteristics.

It is highly di�cult for an unauthorized user to obtain correct grid point index at this

step because the system needs to compare with the authorized user’s profile, which

integrates both PIN/Lock pattern and the user’s behavior characteristics. Based on the

derived grid point index trace, we can recognize the user’s PIN sequence/lock pattern

input and verify their identities.

Figure 3.8 shows an example of the user’s PIN sequence/lock pattern based authen-

tication on a solid surface (e.g. an apartment door) with a 3⇥ 3 grid. The predesigned

grid is drawn in-between the receiver and vibration motor as shown in Figure 3.8(a),

and the distance between the grid points is 3cm. The user first builds a personal grid

profile, which is discussed in Section 3.4.4. The user then presses the grid points “1267”

sequentially to input a PIN sequence and swipes the finger through the grid points “1-

2-5-9” to input a lock pattern as shown in Figure 3.8(a). The vibration features during

the PIN sequence/ lock pattern input are extracted in each sliding window and are

inputted to the SVM-based classifier. The estimated finger position trace (i.e., grid

point index trace) for the PIN sequence input “1267” is shown in Figure 3.8(b). We

observe that when the user presses on a number with the finger staying on the virtual
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key, the consecutive same grid points corresponding to the key can be obtained, and

when the user moves the finger in the air to the next key, the vibration signals are

classified as “E” representing “Empty” based on the vibration profile collected when

no finger presses the surface.

Figure 3.8(c) shows the estimated finger position trace of the lock pattern “1-2-5-9”.

We observe that when the finger swipes near a virtual key, the vibration signals will

be classified to the corresponding grid point index. In particular, the consecutive same

grid points can be obtained for the duration beginning from the finger moving close

to, pressing on, to just swiping away from the virtual key. Thus the derived grid point

index trace can reflect the user’s finger positions on the grid and can be utilized to

further derive the user’s PIN sequence/lock pattern inputs.

3.4.2 Grid Point Index Filtering

However, the derived grid point index traces contain incorrectly classified grid point

indices, which are due to the unstable vibration features caused by the varying finger

touching area and force when the finger is just detaching or pressing on the surface

(e.g., the noises in Figure 3.8(b)), or are because the swiping finger is far from any of

the predesigned profiled virtual keys (e.g., the noisy indices in Figure 3.8(c)). These

incorrectly classified grid point indices should be excluded when deriving the passcode

patterns.

We develop a grid point index filter to determine the segments that have consecutive

same grid point indices. Intuitively, these segments are corresponding to the time

periods when the user’s finger is pressing on or swiping near a grid point, which means

they are more reliable results for identifying the PIN sequence/lock pattern. The grid

point index filter consists of three steps: 1) calculating the di↵erence between every two

consecutive grid point indices in the trace and the firm presses will generate consecutive

“0” for the di↵erential grid point index; 2) searching for the starting and ending points

of the consecutive di↵erential grid point indices (i.e., 0s) to extract finger-press segment,

indicating the finger positions of the firm finger presses right on or near virtual keys; 3)

removing the grid point indices from the trace that are out of the finger-press segments.
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The red dots in Figure 3.8(b) and Figure 3.8(c) are filtered grid point indices for the

PIN sequence and lock pattern derivation, respectively.

3.4.3 PIN Sequence/Lock-pattern Derivation

Next, we further confirm each finger-press segment based on their time length and

remove the incorrect finger location estimations to derive the PIN sequence/lock pat-

tern. The intuition is that when users enter their PIN sequences, the finger press for

each PIN number lasts for a certain amount of time. And when users draw their lock

patterns, the duration beginning from the finger swiping close, right pressing on, to

finger swiping away from each virtual key should last for an amount of time. The grid

point index segments shorter than this amount of time are highly possible to be incor-

rect finger location estimations. We empirically determine the threshold of minimum

finger-press duration (i.e., 300ms) to remove the finger-press segments with shorter

time duration. Finally, given the length of the user’s PIN sequence/lock pattern, the

system finds the same number of the longest finger-press segments as the valid finger-

press segments and derives the PIN sequence/lock pattern by mapping the segments’

grid point indices to the virtual keys.

3.4.4 Grid Profile Construction

We notice that the users can generate individually unique vibration features even by

pressing at the same position of a solid surface due to the individual’s di↵erent behav-

ioral and physiological characteristics (i.e., touching area and pressure on the surface).

The user’s such unique vibration features can provide another level of security to our

user authentication in addition to the secrecy of passcodes.Our PIN/Lock-pattern based

authentication requires constructing the user’s profile corresponding to every grid point,

which enables successful identification of the input virtual keys during authentication.

Specifically, the VibWrite system records a short time period (e.g., 1 to 5 seconds per

grid point) of received vibration signals when the user presses at each grid point. The

recorded vibration signals are used to derive the vibration features in sliding windows.

The feature in each sliding window is labeled with corresponding grid point index. In
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Figure 3.9: Illustration of the four pre-defined finger gestures for gesture-based authen-
tication.

addition, we also build a profile when no finger touches the surface and label it as “E”

(i.e.,“empty”) to discriminate whether finger presses on the surface.

To illustrate the security provided by the user’s unique vibration features in addition

to the passcodes for PIN number/lock pattern based authentication. We ask an attacker

to enter the legitimate user’s same PIN number “1267” via VibWrite on the same grid

and the same surface as shown in Figure 3.8(a). The VibWrite processes the attacker’s

vibration signals based on the legitimate user’s grid profile and the results are shown

in Figure 3.8(d). We observe that nearly all the vibration features of the attacker

are incorrectly classified and thus cannot pass the authentication, which verifies the

e↵ectiveness of the individual physical characteristics contained in the user’s grid profile.

3.5 Authentication Using Gestures

Di↵erent from PIN/lock pattern based authentications, using gestures provides more

flexibility for authentication. In particular, VibWrite defines four simple finger gestures

as shown in Figure 3.9: swiping a single finger along three patterns including a triangle,

square and circle, and swiping two fingers horizontally.

3.5.1 Gesture Segmentation

To facilitate the gesture-based authentication, our system needs to first detect the

occurrence of the user’s gesture input from the received vibration signals and remove the

vibration signals with no gestures (i.e., no touch on the surface). Specifically, VibWrite
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extracts vibration features from spectral points and MFCC and then calculates vibra-

tion feature di↵erences between the received vibration signals and those in the profile

when no finger touches on the surface. The intuition is that when the user inputs a

gesture, the finger swipes on the surface, causing the vibration features to di↵er largely

from those when there is no finger touching. Figure 3.10 shows an example of calculated

vibration feature di↵erences when the user inputs square gestures on the surface for five

times. For all the five gesture inputs, we observe the vibration feature di↵erence grows

higher (e.g. over 300) when the finger swipes on the surface and falls back to lower

values (e.g., around 200) when the finger releases from the surface. We thus normalize

the vibration feature di↵erences and segment each gesture via a threshold.

3.5.2 Distance Calculation of Feature Sequence

User authentication using such simple gestures is much harder due to lack of unique

secrecy to discriminate di↵erent users. Moreover, the speed, duration, and trajectory

of the same user’s gestures could be di↵erent from time to time, which causes gesture

inconsistency and makes the generated vibration signals present di↵erent lengths and

results in varying density of locations within the swiped pattern. In addition to feature

extraction containing user’s unique physical traits, we resort to two techniques to com-

plete the authentication process in high accuracy to cope with these challenges: the

Dynamic Time Warping (DTW) [81] is exploited to deal with gesture inconsistency,

and the earth mover’s distance (EMD) [82] technique is employed to preserve individ-

ual diversity because the feature distribution of the same user should have a higher

similarity than that from di↵erent users.

Specifically, we first derive a time series of vibration features based on the vibration

signals in segmented gestures using a sliding window. The DTW technique stretches

and compresses required parts to allow a proper comparison between two data se-

quences. Therefore, it is useful to compare the vibration feature traces extracted from

two segmented gestures regardless of di↵erent swiping speeds. In our system, vibration

features are in a format that reports both frequency amplitude at multiple spectral
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points and MFCC coe�cients, which is discussed in Section 3.3. To perform multidi-

mensional sequence alignment, our system applies Multi-Dimensional Dynamic Time

Warping (MD-DTW) [81], in which the vector norm is utilized to calculate the distance

matrix according to:

d(vi, v
0
j) =

PX

p=1

(vi(p)� v
0
j(p))

2
, (3.3)

where V = v1, v2, ..., vT and V
0=v

0
1, v

0
2, ..., v

0
T are two vibration feature traces for gesture

discrimination, and P is the number of dimensions of the sequence data (i.e., the number

of extracted features within each window). A least cost path is found through this

matrix and the MD-DTW distance is the sum of the matrix elements along the path.

Besides time warped feature sequence, we find that the histogram of the spectral

point based features preserve individual diversity and can be used to distinguish dif-

ferent users when even the same gesture is swiped. Figure 3.11 shows the feasibility

study results where two users swipe their fingers following an exactly same circle ges-

ture pattern on a desk surface. The histogram of frequency response (quantized to 10

bins) at a specific spectral point during their swiping presents distinct distributions

that can clearly distinguish these two users. We thus take the advantage of the EMD-

based distribution di↵erence to preserve the individual diversity during gesture based

authentication. Specifically, we normalize the EMD distance and MD-DTW distance to

be integrated for final authentication. If the integrated distance to the gesture profiles
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is larger than a threshold, VibWrite regards the swiped gesture as an unknown gesture

and fails the authentication. Otherwise, we consider the swiped gesture is from the user

whose profile results in the minimum integrated MD-DTW and EMD distance.

3.5.3 Gesture Profile Construction

Unlike grid point profile construction, VibWrite does not need to construct profiles

for each grid point for the gesture-based authentication. Instead, when constructing the

gesture profile for a particular user, VibWrite collects the vibration signals while the

user swipes a finger following a predefined gesture. In particular, we use the sequence

of the vibration features extracted from the segmented signals for building individual

gesture profile. Though the profile only contains simple gestures, such profile contains

the user’s unique behavior and physiological characteristics and is su�cient to perform

user authentication. We also build a profile with the vibration signals when there is no

finger touching on the surface to determine the presence of finger touching or not for

gesture segmentation.

3.6 Performance Evaluation

In this section, we first describe the experimental setup and methodology. We then

present the performance of VibWrite in terms of authenticating the legitimate user and

its robustness under various attacking scenarios.

3.6.1 Prototyping and Experimental Setup

We evaluate the performance of user authentication using PIN and lock patterns on

a 3 ⇥ 3 square-shaped grid. In practice, the grid patterns could be flexibly extended

as needed. The grid is drawn on a solid surface in a typical o�ce environment. The

distance between every two adjacent grid points is 3cm. We test with two di↵erent

surfaces as shown in Figure 3.12: one with the testing region resided below the vibration

motor and receiver on a wooden table (e.g., the executive’s desk in a company), and the

other with the testing region resided in between the motor and receiver on a door panel
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(e.g., an apartment door). For the user authentication using gestures, we remove the

restriction of pressing/passing the grid points on the authentication surface, and aim

to utilize the simplest finger gestures as shown in Figure 3.9. We want to demonstrate

that even the simplest finger gestures carry the unique behavioral and physiological

characteristics reflected by the physical vibrations. The gesture patterns are drawn on

the table within a 6cm⇥ 6cm region between the vibration motor and receiver to guide

user’s swiping.

The vibration generator is implemented with a Linear Resonant Actuator (LRA)

based motor, which has a wide frequency response. The frequency and amplitude of

the generated vibration can be regulated by the frequency and peak-to-peak voltage of

an input analog signal. The low-cost vibration receiver is implemented with a vibration

receiver (i.e., piezoelectric sensor) and a low-power consumption amplifier, which can

be easily plugged into the standard audio jack of any audio recording device (e.g.,

mobile phone) to sense vibration signals. The sampling rate of the vibration receiver

is determined by the audio recording device, which is typically 48kHz. The size of

vibration motor and receiver is very small, which makes them easily to be attached

to any solid surface. Compared to other authentication systems based on cameras,

touch screens, or biometric readers, in VibWrite we seek to explore using low-cost

sensor settings (i.e., vibration motor and receiver) for the potential of wide-deployment

such as in apartment buildings, hotel rooms, smart homes, o�ce desks, etc. Besides

the vibration motor and receiver, our system needs additional supporting hardware

including, but not limited to, amplifier, ADC, micro-controller and storage device to

perform necessary data process, feature extraction and profile matching. With these

required components, we roughly estimate the cost of an end-to-end system could be

maintained around tens of dollars (e.g., $20 ⇠ $50). As a comparison, some existing

authentication systems (e.g., face recognition based and fingerprint based [87, 88, 89])

may usually cost hundreds of dollars.
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Figure 3.12: Experimental setup of VibWrite on a wooden table and door panel.

3.6.2 Evaluation Scenarios & Data Collection

Legitimate User Verification

We recruit 15 participants to evaluate the performance of VibWrite under three

types of authentication. 1 Our data is collected across three-month period, and 15 par-

ticipants were involved across di↵erent days. Additionally, before the data collection,

we allow users to practice multiple rounds of authentication inputs on the authenti-

cating surface to get familiar with the VibWrite system. 1) For PIN number based

authentication, each user is asked to sequentially press the 9 grid points for 5s to create

his/her grid profiles. During verification, each user presses 10 random 4-digit PIN se-

quences as their passcodes. 2) For lock pattern based authentication, our system uses

the same grid point profiles. During testing, each user swipes his/her finger through 10

lock patterns to verify the system’s authentication performance. 3) For gesture based

authentication, each user chooses one of the four gestures as shown in Figure 3.9 as

their preferred gestures and swipes the finger gesture 10 times. In total, we collected

450 genuine input passcodes (i.e., PIN sequences, lock patterns and gestures) for each

motor/receiver placement to evaluate legitimate user access authentication. We further

collected attack data to evaluate the VibWrite performance under attack scenarios.

1The study has been approved by our institute IRB.
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Figure 3.13: Performance of verifying legitimate users when the testing region is below
the vibration motor and receiver.

Various Attack Scenarios

We evaluate the robustness of VibWrite under various types of attack. Specifically,

we choose one user as a legitimate user and the rest users as attackers to launch the

attacks.

Blind Attack. The attacker randomly guesses the legitimate user’s PIN, lock

pattern and gesture and uses his/her finger to press and swipe on the solid surface for

10 times. In total, we collected 420 blind attack inputs.

Credential-aware Attack. The attacker gets to know the legitimate user’s PIN/lock

pattern/gesture. But he has not observed how the legitimate user presses his/her PIN

numbers or swipes his/her lock patterns and gestures on the authentication surface.

The attacker performs the same PIN/lock pattern/gesture as the legitimate user did

without knowing the legitimate user’s detailed behavior. Each attacker inputs the

PIN/lock pattern/gesture 10 times. In total, we collected 420 inputs.

Knowledgeable Observer Attack. The attacker not only knows the legitimate

user’s PIN/lock pattern/gesture but also observes how the legitimate user inputs them

on the authentication surface. Each attacker practices 5 times and then inputs the

PIN/lock pattern/gesture 10 times, trying to pass the authentication. Again, 420 inputs

are collected.

Side-channel Attack. In addition, we perform the side-channel attack by placing

additional vibration receivers on the authentication surface. In particular, two receivers

are employed: one is placed adjacent to the original receiver, whereas the other is placed
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at the other side of the surface opposite to the original receiver.

3.6.3 Evaluation Metrics

Verification Accuracy/Attack Success Rate of PIN Number-based Au-

thentication. The verification accuracy/attack success rate shows the percentage of

correctly verified PIN numbers entered by the legitimate user or attacker respectively

during the user authentication process. Specifically, it includes the complete PIN se-

quence verification accuracy and the PIN digit verification accuracy. The complete

PIN sequence verification accuracy measures the rate of the user’s input PINs being

completely recognized (i.e., all numbers in the PIN sequence are correctly recognized),

while the PIN digit identification accuracy shows the rate of successfully recognizing

each single PIN digit.

Verification Accuracy/Attack Success Rate of Lock Patten-based Au-

thentication. The verification accuracy/attack success rate shows the percentage of

correctly verified lock patterns input by the legitimate user or attacker respectively

during the user authentication phase. Similarly, it includes the complete lock pattern

verification accuracy and lock pattern segment verification accuracy.

ROC Curve of Gesture-based Authentication. ROC curve is a plot of true

positive rate (TPR) over false positive rate (FPR). The TPR denotes the rate of the

legitimate users passing the authentication while FPR denotes the rate of the attackers

successfully passing the system. Through varying the feature distance threshold in

gesture-based authentication, we can achieve varied TPR and FPR and obtain ROC

curves to evaluate the system performance.

3.6.4 System Performance of Verifying Legitimate Users

PIN Number-based Verification. Figure 3.13(a) shows the identification accu-

racy of each PIN digit and the complete PIN sequence of 15 legitimate users. Our PIN

number based authentication can achieve a high verification accuracy. Specifically, the

users can obtain over 95% verification accuracy of recognizing each PIN digit and the

mean verification accuracy of the complete PIN sequence reaches 90%. Moreover, the
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verification accuracy of each PIN digit is higher than that of PIN sequence, since the

complete PIN verification accuracy result requires that all the PIN numbers in the PIN

sequence are correctly identified. The results demonstrate our system is e↵ective in

verifying all the legitimate users.

Lock Pattern-based Verification. Figure 3.13(b) shows the average authenti-

cation accuracy of the lock-pattern based verification with di↵erent number of trials.

Specifically, the average verification accuracy of the complete lock pattern reaches 79%

and 95% with a single trial or two trials respectively, which requires all the segments

of the lock pattern to be correctly identified. In addition, the accuracy of the lock pat-

tern identification is slightly lower than that of the PIN sequence based authentication,

which indicates that swiping a finger continuously on the surface generates more errors

than pressing the finger separately on each grid point. The above verification results

show that our VibWrite can achieve a good performance to authenticate users by lock

patterns.

Gesture-based Verification. Figure 3.13(c) illustrates the e↵ectiveness of legiti-

mate user verification in gesture-based authentication with ROC curves. 15 legitimate

users perform their preferred simple gestures (i.e., one of our four predefined gestures as

shown in Figure 3.9) ten times. With only one training instance (i.e., one time swiping)

for each user, we observe that given a requirement of a 90% true positive rate, we can

achieve as low as a 5% false positive rate on average, which indicates only around 5%

of gesture trials have gained unauthorized access. We also observe that the using both

DTW and EMD techniques can provide slightly better performance than that of only

using EMD technique, since it considers the similarity in both time warped feature

sequences and the features’ distributions. The obtained high verification accuracy and

the low-training e↵orts demonstrate that VibWrite is capable to distinguish di↵erent

users even though they perform the same simple gesture due to their distinct behavioral

biometrics (i.e., finger tip size and structures).

Multiple Authentication Trials and Fall-back Strategy. Figure 3.13(b) shows

the average verification rate under di↵erent number of trials. We observe that our

system can achieve over 99% verification rate with both of the PIN number and lock
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pattern inputs when users enter three trials. For the first-time user input, our system

can achieve around 89% and 79% accuracies when users enter their PIN numbers or

lock patterns, respectively. Additionally, our system can integrate with any fall-back

strategy to let the legitimate user bypass the system, e.g., the legitimate user can always

use a physical key to enter his vehicle/apartment.

3.6.5 Attacks on Legitimate User’s Credentials

Under blind attacks, both our PIN number and lock pattern based authentications

can achieve close to zero attack success rate. The results are intuitive because the

attackers’ random PIN guesses or lock pattern guesses are nearly impossible to pass

the legitimate user’s system within limited trials. Similarly, for gesture-based authen-

tication, the TPR in the obtained ROC curve is close to 100% when the FPR is close

to 0%, which shows that the attackers’ random gestures cannot successfully access the

system.

Under credential-aware attacks, our system also achieves high accuracy (i.e., close

to 0% attack success rate) for all three types of authentications. Since the attackers do

not possess the knowledge of the VibWrite setting details (e.g., grid size, gesture region

and the authentication surface), the attackers’ finger-inputs are hard to generate the

similar impacts on the vibration propagation as the legitimate users do. Knowledgeable

observer attack is the most extreme attack, where the attacker is capable of knowing the

user’s credentials and observing the legitimate user’s finger inputs. Additionally, the

attacker has the knowledge of the VibWrite setting details and can perform the finger

inputs on the same authentication surface. Thus in the rest of this dissertation, we

present the performance evaluation results of our system under this more challenging

knowledgeable observer attack.

PIN Number-based Authentication. Figure 3.14(a) shows the performance

of our VibWrite in PIN number based authentication under knowledgeable observer

attack, where 1 of 15 users alternatively behaves as victim and other 14 users play

as attackers. We find that the VibWrite system is very e↵ective in defending against

attackers even though they have the knowledge of the legitimate user’s PIN and use
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Figure 3.14: Performance of user authentication under knowledgeable observer attacks
when the testing region is below the vibration motor and receiver.

the same VibWrite setting (e.g., grid size and authentication surface). In particular,

the attackers can only break an average of around 7% single PIN digits. Furthermore,

even if the attackers can successfully verify several PIN digits, it is even harder for

them to break the complete PIN sequences of the legitimate user. In particular, the

attackers can only achieve an average of 2% attack success rate in verifying complete

PIN sequences.

Lock Pattern-based Authentication. Similarly, we ask the 15 users to alterna-

tively play one victim and fourteen attackers, who swipe 10 lock patterns after practice

based on the knowledgeable observation. Figure 3.14(b) depicts the attack success rate

of lock-pattern based authentication on each legitimate user under the knowledgeable

observer attack. The results show that the attackers are hard to pass the system even

though they imitate the legitimate user’s behavior to swipe the same lock patterns on

the same grid of the same authentication surface after practice. Specifically, for the

user 4, 6-8 and 12-15, all the fourteen attackers can hardly pass the legitimate user’s

complete lock patterns in 10 trials though they can successfully swipe around 5% accu-

rate segments of the lock patterns. The average attack success rates of the lock pattern

segment and the complete lock pattern are around 5% and 11% respectively. Moreover,

we find the performance of the lock pattern based authentication under knowledgeable

observer attack is comparably good to that of the PIN number based authentication.

Gesture-based Authentication. We evaluate the performance of VibWrite in

gesture-based authentication under knowledgeable observer attacks, where attackers

try to mimic the legitimate user’s swiping gestures. In order to test the worst case in
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VibWrite, we only rely on one single training data for the legitimate user. Figure 3.14(c)

shows the ROC curve, where we can achieve as low as a 3% false positive on average

given a requirement of a 80% true positive rate. Even for only using EMD technique,

we can still achieve as low as a 8% false positive rate on average given a requirement

of a 80% true positive rate. The results indicate that, even for the most challenging

knowledgeable observer attack, VibWrite is still e↵ective in defending against attackers

and successfully authenticate legitimate users in the meanwhile.

3.6.6 Side-channel Attacks

Attacks via a Vibration Receiver. One may suspect that attackers can place

hidden vibration receivers on the authentication surface to recover the vibration signals

and obtain the unique features of the legitimate user. In reality, the hidden receiver

cannot be placed at the exact same location as the VibWrite’s receiver. Thus, our

Hidden1 and Hidden2 are placed at two representative locations that an adversary

may choose to launch a side-channel attack. Particularly, Hidden1 is placed adjacent to

the original receiver, whereas Hidden2 is placed at the other side of the authentication

surface (around 3cm thickness) opposite to the original receiver. Figure 3.15 shows

the mean and standard deviation of the Pearson Correlation coe�cients [85] between

the signals received by the original receiver and two hidden receivers after the designed

vibration chirps are generated 20 times. We observe that Hidden1 and Hidden2 can

only achieve a very low correlation coe�cient less than 0.2. This indicates that the

vibration signals received by hidden receivers present very di↵erent patterns comparing

to that received by the original receiver even when the hidden receivers are placed

very close to the original receiver, making the attacks via a hidden vibration receiver

ine↵ective.

Attacks via a Nearby Microphone. Furthermore, a nearby microphone can

record the acoustic sounds emitted by the vibration motor, however, the additional

transmission path (i.e., air between the vibration motor and microphone) can largely

change the vibration patterns, making it also di�cult to recover the similar vibra-

tion signals received by VibWrite’s vibration receiver. Additionally, a few new studies
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Figure 3.15: Similarity between the vibrations received by VibWrite’s original receiver
and hidden receivers.

demonstrate that physical vibrations can be recovered to a certain extent by using

wireless signals [90] and high-speed cameras [91]. However, these solutions can only re-

cover relatively low-quality audio/vibrational signals due to the limits of the hardware

sensing ability in both vibration amplitude and frequency. Thus, they are mainly used

for eavesdropping human speech sounds whose frequency typically falls below 1KHz.

3.6.7 Impact of Training Data Size

PIN Number/Lock Pattern based Verification. Our system can achieve

around 90% accuracy in identifying each PIN digit/lock-pattern segment with the grid

point training time over 0.4 seconds while the identification of complete PIN sequences

or complete lock pattern achieve over 80% accuracy with the grid point training time

over 0.6 seconds as shown in Figure 3.16. Moreover, the PIN sequence/lock pattern

based authentication can achieve higher accuracy with longer training time and the

accuracy reaches stable when the training size is over around 2 seconds.

Gesture-based Verification. From the results as shown in Figure 3.13(c) and

Figure 3.14(c), we observe that our gesture-based verification can obtain very high au-

thentication accuracy with the training profile only containing one single gesture train-

ing instance. The results also indicate that our gesture-based authentication system

could work with a very small training data size.
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3.6.8 Impact of Surface and Vibration Motor/Receiver Placement

We change the positions of the vibration motor and the piezoelectric sensor to the

center of each side and evaluate the PIN sequence verification accuracy on the grid of

the door panel surface. Ten users are first asked to construct their individual grid profile

and then input their PIN sequences with this new experimental setup for verification.

The results in Figure 3.17 show that our PIN number based authentication can achieve

comparably high verification accuracy for this setup. In particular, the accuracies of

verifying the complete PIN sequence and PIN digit are 88% and 94% respectively.

The similar results can also be observed for lock pattern based and gesture based

authentication. Thus our system is robust for di↵erent vibration generator/receiver

placements.

3.7 Discussion

Serving as a concrete starting point of vibration-based authentication system, Vib-

Write is a low-cost and easy-to-deploy solution that has a high potential to work at

various places such as apartment buildings, hotel rooms, smart homes, etc. We admit

that the current system is still not ready for the industrial deployment in terms of its

authentication/false-accept rates, thus a large space is left for us to further improve the
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system. In this section, we introduce a few limitations of the current VibWrite system

and the potential for future improvements.

Accuracy, and Further Improvement. The current system achieves around 89%

and 79% authentication rates with a single trial when users enter their PIN numbers

or lock patterns, respectively. The accuracy number is comparable to a few recent low-

cost authentication/verification solutions (e.g., [92, 93, 94, 95]), which use either gait

patterns captured by existing Wi-Fi/smartphone or passive sensing of embedded sen-

sors on smartphones. Specifically, the gait pattern based solution could achieve around

80% detection rate of unauthorized users when leveraging accelerometers on smart-

phones [92] and 79% user recognition accuracy when using o↵-the-shelf Wi-Fi [93].

Multi-sensor (i.e., gyroscope, magnetometer and accelerometer) based smartphone au-

thentication can achieve around 70% and 90% accuracy in the studies [95] and [94],

respectively. However, the current VibWrite system is still far from practical deploy-

ment as a legitimate user may need to try a few times to pass the system. To improve

the system performance, we target to explore the following aspects in our future work

including deploying multiple sensor pairs, refining the hardware, and improving the au-

thentication algorithms. Specifically, more than one pair of vibration transmitters and

receivers can be employed to help increase the dimension of the surface sensing features,

which can better represent each individual’s behavioral and physiological characteris-

tics. In addition, empirically we noticed that the uniqueness of the features is a↵ected

by the stableness of the hardware components as the weak analog signals extracted by

the piezoelectric sensor can be easily distorted when passing through electronic com-

ponents (e.g., amplifier and ADC). We thus could build a higher standard hardware

signal processing component (e.g., ultra-low-noise signal amplifier) to enhance the sys-

tem. Meanwhile, the improvement of the vibration motor in terms of its power level,

stableness and frequency response could become another venue to explore.

Coping with Additional Physical Attacks. In addition to the side channel

attacks via a hidden vibration receiver or a nearby microphone, other types of physical

attacks might be launched when the system is deployed in practice. We discuss a couple

of representative ones below and show how VibWrite could be extended in coping up
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with such attacks. Given that the proposed system is highly dependent on the attached

surface, such surface dependency might be employed by an adversary to launch a denial-

of-service (DoS) attack (e.g., adhering tiny objects or a hidden vibration motor to

the surface) to prevent the legitimate user from passing the system. To combat the

DoS attack, VibWrite can develop a simple mechanism to perform the surface sanity

check periodically by comparing the received vibration signals with the empty surface

training profile. If the surface dissimilarity is detected, the authentication surface will

be examined. The most extreme case is when an adversary gets access to the cable

connecting the vibration motor/sensor and cut it to make the system not function at

all. On one hand, to deal with such a physical attack, the vibration motor and receiver

could be placed at the opposite side of the authenticating surface hidden from the users

and even placed inside some enclosed cases hard to access without authorization. On

the other hand, the adversary does not gain much benefit in this attack as he still cannot

pass the authentication system. We leave the detailed study of these adversarial cases

as an avenue for our future work.

System Maintenance. As a starting point, our system is evaluated in a relatively

stable indoor environment. However, in practical deployment, there are many envi-

ronmental factors that need to be taken into consideration and may a↵ect the system

performance. For instance, if the surface (e.g., car door panel) is exposed to an outdoor

environment, the surface’s vibration response may be changed across di↵erent days af-

fected by temperature, humidity, wind, wetness, dirt, etc. Additionally, the temporary

presence of additional objects placed on the surface (e.g., a book placed on the desk)

could alter the received vibrations slightly di↵erent from the trained one. The noticeable

e↵ect caused by these factors might be reduced through further filtering or directional

sensing techniques. More robust machine learning methods grounded on deep learn-

ing [96] can also be built in our future work to deal with various environmental-related

elements. In addition, future work should continue the evaluation with more/diverse

population samples, longer time periods and more influential factors to improve the

system robustness.
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3.8 Conclusion

In this work, we propose VibWrite, which implements the idea of low-cost low-power

tangible user authentication beyond touch screens to any solid surface to support smart

access applications (e.g., apartment entrances, vehicle doors, or smart appliances). Uti-

lizing low-cost physical vibration, VibWrite performs ubiquitous user authentication via

finger-input by integrating passcode, behavioral and physiological characteristics, and

surface dependency together to provide enhanced security. VibWrite is built upon a

vibration-based touch sensing technique that enables touching and writing on any solid

surface through analyzing unique vibration signal features (e.g., frequency response and

cepstral coe�cient) in the frequency domain. It is easy to deploy and flexibly provides

users with three independent forms of secrets (including PIN number, lock pattern,

and simple gesture) to gain security access by developing new techniques of virtual grid

point derivation, featured-based dynamic time warping (DTW) and distribution anal-

ysis based on earth mover’s distance (EMD). We perform extensive experiments with

participants input their passcodes by using three forms of secrets. We also study the

robustness of Vibwrite under various attacks trying to impersonate the legitimate user

or launching side-channel attacks to hack the VibWrite system directly. Our results

indicate that VibWrite is resilient to side-channel attacks. And it can verify legitimate

user with high accuracy under minimum training e↵orts while successfully deny the

access requests from unauthorized users with a low false positive rate.
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Chapter 4

Snooping Keystrokes with mm-level Audio Ranging on a

Single Phone

4.1 Attack Model & Limits of TDoA with a Single Phone

In this section, we introduce the attack scenarios and the rationale for their selection.

We also analyze key factors a↵ecting the accuracy of keystroke snooping when using a

single phone and define basic concepts.

4.1.1 Attack Model

We consider a scenario where an adversary seeks to identify each entered charac-

ter in a sequence of keystrokes from the acoustic signal generated by depressing a key

(”typing sound”). We assume that adversaries have the access to stereo audio record-

ings from a single mobile device (e.g., smartphone or tablet) that is placed close to a

victim’s keyboard. Two representative scenarios where this is plausible are: (1) the

adversary inconspicuously leaves a prepared recording device next to the victim’s key-

board, perhaps in a confined setting such as library seats where physical proximity is not

suspicious; (2) the adversary gains software access to the microphones of the victim’s

phone, perhaps through a malicious app, and waits until the victim places the phone

next to a keyboard. We note that it is not uncommon for users to place their phone on

the desk while working on a laptop keyboard. Moreover, tablets and large phones are

frequently used with external Bluetooth keyboards, where the device is placed directly

behind the keyboard. We believe that this latter scenario is particularly likely and use

it as the primary example in this work.

We do not assume any particular structure in the typed information. This means
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Figure 4.1: Illustration of the geometrical TDoA on a single-phone and theoretical key
groups.

that adversary seeks to identify not only text input matching a known linguistic model

but also seeks to identify random input strings such as strong passwords. We also

explicitly do not assume that the adversary has access to labeled training data (i.e.,

audio recordings for each key, where it is known which key was pressed). Such training

data is specific to a particular phone-keyboard combination, the exact placement, and

the exact acoustic environment. It would therefore be challenging to obtain in many

adversarial settings.

4.1.2 Basic Concepts of Single Phone TDoA Localization

The selection of the attack model is rooted in an understanding of the fundamental

limits of acoustic localization. To avoid the need for labeled training data we disregard

fingerprinting techniques and focus on time-of-flight measurements, which are attractive

given the relatively low propagation speeds of audio signals. Since we do not know when

a particular keystroke sound is emitted, we rely on measuring the time-di↵erence-of-

arrival (TDoA) of this sound across the two microphones of the device.

A TDoA measurement reveals information about the direction of the incoming
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sound. Determining an exact position of origin for the sound normally requires tri-

angulation, that is at least two direction measurements from di↵erent locations. In

the keyboard snooping scenario, however, there is a discrete and relatively small set

of candidate positions from which the sound can emanate: the center of each key. If

the relative phone position and keyboard geometry is known, it is therefore possible

to locate the sound even with a single TDoA measurement by finding the best match

between the direction estimate and the expected direction for each key.

This process, however, requires mm-level accuracy, which is an order of magnitude

beyond the cm-level accuracies that have been previously demonstrated in audio lo-

calization. Operating at this level of accuracy involves estimating precise hyberbolas

instead of coarse direction estimates. Consider our primary scenario as illustrated in

Figure 4.1(a). Let’s denote the distance between two microphones as d, and the dis-

tance between the sound source (i.e., the keystroke made on the keyboard) to that

of two microphones as r1 and r2, respectively. Suppose �t is the TDoA measured

at two microphones, the derived distance di↵erence �r from the pressed key to two

microphones can be represented as:

�r = r1� r2 = �t · s0, (4.1)

where s0 is the velocity of sound. All possible locations that satisfy�r lie on a hyperbola

as illustrated by the red curve in Figure 4.1(a). This hyperbola typically crosses several

keys on the keyboard as indicated by the darker keys in the figure (and one key may

also be crossed by more than one hyperbola). Narrowing this to a single key therefore

involves determining the closest key center to this hyperbola. As can be seen in the

figure, shifting the hyperbola by only a few mm would bring it closer to the center of

a di↵erent key. For this reason, the process require mm-level precision and accuracy.

4.1.3 Factors A↵ecting Accuracy

The achievable accuracy and precision with TDoA measurements depend on several

key factors.

Sampling Rate. When recording the keystroke sound, the sound is digitized by
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Figure 4.2: Good phone locations for keystroke snooping. Warmer color indicates
locations from which a higher range of TDOA values can be observed over di↵erent
keys.

an Analog to Digital Converter (ADC) with a fixed sampling rate before it becomes

accessible to applications. This therefore limits the resolution with which the time

di↵erence of arrival can be measured by application software. While signal processing

techniques exist that promise sub-sample accuracy, this time resolution serves as a

useful guideline.

Current state-of-the-art audio hardware on mobile devices supports up to 192kHz

sampling rate but drivers and or operating system usually still limit this to 48kHz. At

a speed of sound of 343m/s, this results in a resolution for the distance di↵erence �r

of ⇡ 1.8mm and ⇡ 7.15mm for the two sampling rates, respectively.

Distance between Two Mics. The number of distinguishable hyberbolas also

depends on the range of possible TDoA measurements. The range is bounded by the

distance between two microphones on the phone. It can be calculated based on the

triangle inequality theorem. As can be inferred from Figure 4.1(a), the range of �r

is [�d,+d]. The TDoA value �t then falls into the range of [�d/s0,+d/s0], which

corresponds to the number of distinguishable hyberbolas N at the sample level as

expressed below:

N = d2d · fs
s0

e. (4.2)

For example, the distance between the two microphones of the Samsung Galaxy Note 3
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smartphone is d = 15.3cm. With a sampling rate fs = 48kHz, this yields 42 hyperbolas

that can be discriminated at the sample level.

Placement of the Mobile Device. In practice, only a subset of these N hyper-

bolas may actually cross the keyboard and be useful for distinguishing keystrokes. The

size of this subset depends on the size of the keyboard and the relative location of the

recording device. Figure 4.2 shows the size of this subset depending on the phone po-

sition around the keyboard, for two di↵erent phone orientations. Warm colors indicate

good phone positions relative to the keyboard. Horizontal phone orientation means that

a line connecting the two microphones would be parallel to the long side of the keyboard

(as also the case in Figure 4.1(a)). Vertical orientation means that the phone is rotated

90 degrees to the left, so that the line is parallel to the short side of the keyboard. This

analysis assumes a sampling rate of 48kHz, a keyboard size of 28cm ⇥ 13cm (as for

the Apple wireless keyboard MC184LL/A) and microphone distance of d = 15.3cm (as

on the Samsung Galaxy Note 3). The results show that a vertically placed phone on

the side needs to be in very close proximity but a horizontally placed phone behind the

keyboard o↵ers a bit more flexibility. Such placements are consistent, however, with the

attack scenarios that we have identified earlier. In our primary scenario (e.g., a Sam-

sung Galaxy Note 3 is placed behind an apple keyboard as illustrated in Figure 4.1(a)),

in particular, this leaves us with 31 hyperbolas crossing the 26 alphabetic keys.
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4.1.4 Theoretical TDoA and Key Groups

Given known keyboard geometry and phone placement, keystroke snooping can be

simplified as a matching process between measured TDoA values and expected TDoA

values for each key. By solving for �t in Equation (4.1), it is possible to compute an

expected TDoA value for each key, which we also refer to as the theoretical TDoA value

for a key.

In addition to the limiting measurement factors discussed earlier, measurements will

be a↵ected by noise. This further limits the distinguishability of keys and leads us to

introduce the notion of theoretical key groups, which are groups of keys whose expected

TDoA values are so close that we would expect them to be di�cult to distinguish. For

instance, the 26 alphabetic keys in our primary scenario are grouped into 13 theoretical

key groups, each illustrated through a separate color in Figure 4.1(b).

These key groups are established as follows. We first sort the keys based on their

theoretical TDoAs. We then link any pair of keys whose di↵erence in theoretical TDoA

is less than a threshold ⌧ . Based on our experiments with di↵erent keyboards and

sampling rates, we empirically determine ⌧ as 1
480ms (which corresponds to 1, 2, 4 TDoA

samples corresponding to 48kHz, 96kHz and 192kHz). Each connected set of keys is

then considered as one theoretical key group, as illustrated in Figure 4.3.

We will explain how to use these concepts and how to achieve accuracy below the

level of a theoretical key group next.

4.2 System Overview

To accurately recover keystrokes using a single mobile device, we design an approach

that leverages TDoA measurements and fine-grained acoustic signatures of keystrokes.

In this section, we discuss the challenges and architecture of our system design.
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4.2.1 Challenges

To achieve the goal of accurately recognizing keystrokes by utilizing a single mobile

device without relying on training and contextual information, the design and imple-

mentation of our system involve a number of challenges:

Sensing with Single Mobile Device. Using one single mobile device to recover

keystrokes is challenging as most commercial mobile devices only support stereo record-

ing with two microphones, while general acoustic TDoA localization approaches require

at least three microphones to create multiple half-hyperbolas to locate a sound source.

Moreover, the distance between two microphones in a phone is highly constrained,

which limits the range of possible TDoA values. Although some mobile devices have

three microphones, for example iPhone 5s and Samsung Galaxy Note 3, neither Apple

nor Google provides API to record 3-channel audio with three microphones. Therefore,

our system must be designed in a way that it can accurately identify keystrokes based

on the stereo recording of two microphones.

Imperfect measurement of TDoA. Di↵erent from some recent TDoA localiza-

tion studies [32, 34, 33, 35] that utilize customized acoustic signals, such as a high

frequency narrow band signal, our work locates more challenging sound sources, i.e.,

keystrokes, which cannot be controlled and contain rich frequency components. Mean-

while, the range of possible TDoA values is limited by the distance between two mi-

crophones and is a↵ected by the placement of the mobile device. Also, the sampling

frequency limits the resolution with which the time di↵erence of arrival can be mea-

sured. Moreover, the measured TDoA may also be a↵ected by multipath e↵ects and

environmental noises. These factors result in imperfect measurements of TDoA which

make it hard to uniquely locate each keystroke.

Training-free Keystroke Recognition. Without the cooperation of the tar-

geted user, developing training-free keystroke recognition is critical when performing

keystroke snooping, especially when an adversary seeks to derive the user’s sensitive

typing information. Our system aims to recognize keystrokes without training e↵orts

that involve target users (e.g., requiring the target user to type each key repeatedly to
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Figure 4.4: System architecture: single-keystroke based processing.

label the data beforehand).

Recovering Keystrokes without Linguistic Model. Users may type not only

sentences following English language constraints (e.g., emails and articles), but also

random letters or numbers (e.g., passwords and credit card numbers). Our developed

method should have the ability to recover sensitive information consisting of random

combination of letters and numbers. This requires our system to recognize keystrokes

without relying on linguistic models or dictionaries.

4.2.2 System Architecture

The basic idea of our system is to perform keystroke snooping leveraging the dual-

microphone on a single smartphone through studying the fine-grained acoustic sig-

natures inherent from key typing sounds. In particular, we consider two processing

approaches, namely Single-keystroke Based Processing and Set-keystroke Based Pro-

cessing. These two approaches seek to cover various practical scenarios that have dif-

ferent requirements on the accuracy and response time. The Single-keystroke Based

Processing can be applied to even a small set of recovered keystrokes, since it can pro-

cess each keystroke individually. The Set-keystroke Based Processing exploits a larger

set of keystroke samples to improve the recognition accuracy. It reduces the e↵ect of

imperfect measurement of TDoA by combining multiple keystroke samples from the

same key. It can identify strokes of the same key by extracting the acoustic cepstral

features of keystrokes as well as by using coarse TDoA matching.

In our proposed system, we assume the relative position of the mobile device to
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the keyboard is known. This information can be obtained if an adversary intentionally

places the mobile device close to the keyboard, or when the external keyboard is at-

tached to the mobile device (e.g., Microsoft Surface). There are also other means to

obtain such information. For example, the adversary may take a picture of the setting

of the keyboard and mobile device. The adversary may also estimate the setting using a

bunch of collected keystrokes of multiple keys. It is important to note that such process

does not need the participation of the target user as in the traditional training phase.

Additionally, we discuss how to derive such information when the relative position the

mobile device is unknown in Section 4.4.3.

Single-keystroke Based Processing. A quick way to recover each individual

keystroke is to leverage the theoretical calculated TDoAs based on the relative posi-

tion between the mobile device and keyboard. The Single-keystroke Based Processing

method compares the measured TDoA derived from the input keystroke to the com-

puted theoretical values and determine which key has been pressed. The main steps

of this method are depicted in Figure 4.4 and described as follows: For each captured

keystroke sound, this method first perform Keystroke Audio Detection & Segmenta-

tion to extract the audio signals corresponding to the press and release phases of the

keystroke. It then derives the TDoA based on the extracted keystroke acoustic signal

using signal processing techniques. Next, it determines which key has been pressed by

finding the top-w keys that have the theoretical TDoAs closest to that of the input

keystroke (i.e., Finding the Nearest Theoretical TDoA).

Set-keystroke Based Processing. This method aims to reduce the impact of the

imperfect TDoA measurement by examining a set of input keystrokes and study the

statistics of the fine-grained acoustic features in addition to pure TDoA computation.

Figure 4.5 illustrates the steps of the Set-keystroke Processing approach. This method

first takes as input a set of di↵erent keystroke sounds recorded by a nearby mobile de-

vice. It then extracts the audio signals corresponding to the keystrokes and derives the

TDoAs. Next, it performs Pre-grouping of Keystrokes Using TDoA to categorize the in-

put keystrokes to multiple key groups based on the pre-calculated theoretical key groups
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Figure 4.5: System architecture: set-keystroke based processing.

in Section 4.1. To overcome the limited accuracy, this method then extracts the cep-

stral features (e.g., Mel Frequency Cepstral Coe�cients (MFCCs)) from the keystroke

sounds through the Keystroke Acoustic Features (MFCCs) Extraction component. The

MFCC features are utilized to further cluster the keystrokes in the same key group so

that each cluster only contains strokes of the same key. This allows calculation of mean

TDoA values over several strokes of the key, which helps reduce measurement noise.

Finally, the system performs key labeling of each cluster to recover each keystroke by

examining the distance di↵erence between the mean TDoA of each cluster to that of

the theoretical TDoAs. We discuss the details of this approach in Section 4.3.
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4.3 Set-keystroke Based Processing

4.3.1 Pre-grouping Keystrokes Into Theoretical Key Groups

After a set of keystrokes are collected, the Set-keystroke Based Processing approach

first obtains the TDoA of each keystroke based on the techniques described in Sec-

tion 4.4. It then utilizes these derived TDoA values to assign each keystroke into a

theoretical key group based on the discussion in Section 4.1. We denote each key as

K
n
i , where i is the key ID and n is the corresponding theoretical key group ID (e.g.,

K
1
1 is the key “Q” and K

12
19 is the key “L”). We further denote the theoretical TDoAs

of keys with the theoretical key group ID n as Dn = {�t
n
i }, where i is the key ID and

�t
n
i is the theoretical TDoA of the key K

n
i . We then put each input keystroke into one

of the theoretical key group by comparing its measured TDoA �t with the theoretical

TDoAs �t
n
i . The input keystroke will be assigned to the theoretical key group n, if the

di↵erential TDoA between �t and �t
n
i is the minimum as shown below:

G = argmin
n

|�t� 8�t
n
i 2 Dn|. (4.3)

At the end, each input keystroke is assigned with a theoretical key group ID.

4.3.2 MFCC Based K-means Clustering

We next explore the acoustic features of keystroke sound to further separate the

keystrokes within the same key group.

MFCC Feature Extraction. In our experiments, we find that the Mel-Frequency

Cepstral Coe�cients (MFCCs) [80, 97] of keystroke sounds capture acoustic signatures

of di↵erent keys within the same theoretical key group. MFCC utilizes the magnitude

of the Fourier Transform of the time-domain speech frames to analyze acoustic signals.

The rationale of using MFCC to distinguish di↵erent keystrokes in the same theoretical

key group is that physical uniqueness of each key component results in slightly di↵er-

ent keystroke sounds for di↵erent keys. In addition, the keystroke sounds of keys at

di↵erent locations experience di↵erent multipath e↵ects. In particular, we extract the

MFCC features from the entire duration of a keystroke sound. The number of filterbank
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Figure 4.6: Pearson Correlation between MFCC features of three keys within a group:
same key shows higher correlation, while di↵erent keys present lower correlation.

channels is set to 32, and 16th-order cepstral coe�cients are computed in each 10ms

Hanning window, shifting 2.5ms each time. To exclude the frequency range of ambient

noise, we only consider acoustic signal from 400Hz to 14kHz for MFCC extraction.

To illustrate the e↵ectiveness of using the MFCC features to distinguish di↵erent

keystrokes within a key group, we repeatedly type “E”,“D”, and “X” keys (which are

within the same theoretical key group) 10 times respectively and examine the correla-

tion between the MFCC features extracted from the keystrokes. Figure 4.6 shows the

Pearson correlation coe�cient [85] between any two MFCC features derived from those

keystrokes. We observe that the MFCC features of the same key present higher corre-

lation than that of di↵erent keys. It thus appears promising to use MFCC features to

distinguish keystrokes within a group. We note only one channel of the keystroke sound

is used to extract MFCC features. If dual-microphones have di↵erent characteristics,

we could combine parallel features to improve the clustering performance [98].

In-group K-means based Clustering. To reduce the e↵ect of the imperfect

measurement of TDoA and minimize the impact of environmental noise, we further

cluster keystrokes within a group into di↵erent clusters based on the MFCC features

(if the corresponding theoretical key group contains multiple keys). In particular, we

use the cityblock distance to measure the distance between MFCC features of di↵erent

keystrokes using K-means clustering [99]. In order to obtain the optimal clustering

results, we minimize the variances of the MFCC features of keystrokes in each cluster
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by satisfying:

argmin
C

KX

k=1

NkX

n=1

|mk
i � µk|2, (4.4)

where Nk represents the number of keystrokes in the kth cluster, mk
n denotes the MFCC

features of the n
th keystroke in the k

th cluster, and µk is the mean value of the MFCC

features in the k
th cluster.

4.3.3 Cluster Based Letter Labeling

Finally we label each cluster. We leverage the statistical information of TDoAs in

each cluster to determine which key the cluster belongs to. In practice, the TDoA

measured from multiple keystrokes for the same key may have slightly di↵erent values

as the touch point may change slightly each time. In our experiments, we find that

keystroke sounds emitted from di↵erent keys within group have di↵erent distributions

of TDoAs which result in slightly di↵erent mean TDoA. Moreover, the mean TDoA

of the keystroke sounds emitted by the same key is very close to the corresponding

theoretical TDoA. Thus, we compare the mean values of the measured TDoAs of each

cluster to the theoretical TDoAs. The keystrokes in the cluster will be labeled as the

key whose theoretical TDoA has the minimum distance to the mean TDoA of that

cluster.

4.4 Implementation

4.4.1 Keystroke Segmentation

A typical keystroke acoustic signal can be divided into three parts [36, 38]: touch

peak, hit peak and release peak. These peaks correspond to touch, hit and release the

key respectively. Figure 4.7 shows an example of these three peaks from two di↵erent

keyboards (i.e., Apple wireless keyboard and Razer Black Widow keyboard).

In order to extract the acoustic sound of a keystroke, we first examine the energy

levels of the acoustic signal to determine the starting point of the keystroke sound [38,

40, 37]. Particularly, we calculate the energy levels of a keystroke sound by accumulating
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Figure 4.7: Keystroke acoustic signals emitted from two keyboards and correspond-
ing short-time energy, keyboard-1 (Apple wireless keyboard) and keyboard-2 (Razer
Blackwidow keyboard).

the square of the signal amplitude in a sliding time window as shown below:

A(t) =
t+WX

n=t

r
2(n), (4.5)

where W is the length of the time window and r(n) is the amplitude of the sound signal

within the time window. We empirically determine the length of the sliding window

as W = 2ms (i.e., 96 samples with 48kHz sampling rate). Figure 4.7 illustrates the

energy levels of the keystroke signals from two keyboards.

We identify the starting point of the keystroke sound when the energy level exceeds

a threshold. An empirical threshold of 0.05 is used in our work to determine the starting

point ps. We find the length of keystrokes is typically about 100 milliseconds. We thus

extract the keystroke sound as the acoustic signal between [ps�5ms, ps+100ms]. Note

that our system uses the entire keystroke sound to generate MFCC features, whereas

the system only uses about first 20ms segment roughly corresponding to touch peak

and hit peak to calculate the TDoA as these two peaks result in more accurate TDoA

estimation than using the whole keystroke sound.

4.4.2 TDoA Derivation

Once we have input keystroke segment, we could find out how many delayed samples

between two digital audio signals recorded at two microphones at a mobile device to

obtain the time delay between two microphones when receiving keystroke sound. Sup-

pose the acoustic signal of a keystroke is recorded at the two microphones as r1(n) and
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r2(n) with length L respectively, where n = 1, . . . , L. We use cross-correlation between

the two recorded signals to derive the TDoA. Cross-correlation is a standard signal

processing technique to measure the similarity between two signals and is calculated

as:

cc(d) =

P
n [(r1(n)� µr1) · (r2(n� d)� µr2)]pP

n (r1(n)� µr1)
2 ·

P
n (r2(n� d)� µr2)

2
, (4.6)

where µr1 and µr2 are the means of the corresponding signals. cc(d) provides the

similarity between r1(n) and shifted (delayed) copies of r2(n� d). If the Equation 4.6

is computed for all delays d = 0, 1, . . . , L� 1 then it results in a cross correlation series

of the original r1(n) or r2(n). Then, the TDoA �t (i.e., time delay) between r1(n) and

r2(n) can be obtained as:

�t =
1

fs
· (argmax

d
cc(d)� L). (4.7)

4.4.3 Relative Position Estimation

The relative position of the phone to the keyboard is needed in our method to

calculate the ground truth of TDoA (i.e., theoretical TDoA values). This information

could be obtained if the adversary intentionally places the phone at a pre-identified

location or if the phone/tablet is used in a tablet stand. If the adversary plants a

malware into the victim’s smartphone, such information could be inferred based on the

keyboard layout and the measured TDoA of keystrokes.

Keyboard layout can be obtained o✏ine as long as the keyboard model is known.

The keyboard model could be detected by capturing Bluetooth identifiers or through

manual visual identification. With the keyboard layout, we then can define the coordi-

nates of keys. For the sake of simplicity, we assume there are m keys Ki with known

coordinate or location loci, where i = 1, 2, ...,m. Given the measured TDoA of a col-

lection of keystrokes, we have the TDoA value of each key to that of two microphones

with certain measurement error. We assume the measured TODA of each key to that

of two microphones is �̂ti, and the sorted one is �̂tj , with j = 1, 2, ...,m.

With the above information, we can estimate the locations of two microphones M1

and M2, with the constraint kM1�M2k = d, where d is the known distance between two
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microphones. With the arbitrary locations of microphones and known location of the

key loci, we can calculate the theoretical TDoA of each key to that of two microphones

as �ti, with the sorted one �tj . The optimal location of the two microphones thus can

be estimated as follow:

argmin
M1,M2

j=mX

j=1

k�̂tj ��tjk, (4.8)

where k�̂tj ��tjk represents squared distance between �̂tj and �tj .

Note that we may not get the measured TDoA of each key in practice. Even so we

can calculate the location of two microphones as long as we obtain several measured

TDoA values. Moreover, the measured TDoA of di↵erent keystrokes for the same key

may be di↵erent slightly. Empirical study shows that the di↵erence is small (i.e., about

one or two samples). We could then group similar TDoA values together and use the

averaged value to represent the TDoA of one key.

4.5 System Evaluation

In this section, we first present the experimental methodology, and then evaluate

the performance of both set-keystroke based and single-keystroke based approaches.

We also discuss the impact of multipath propagation on the keystroke snooping.

4.5.1 Experimental Methodology

Keyboard & Phone

Keyboard. Although we do not study the sound intensity level of each key, we eval-

uate our system with three di↵erent kinds of keyboards (i.e., an Apple wireless keyboard

MC184LL/A, a Microsoft surface keyboard and a mechanical keyboard Razer Black

Widow Ultimate) that produce di↵erent keystroke sound intensity levels. In particular,

the keystroke sound from the mechanical keyboard is much louder than that from the

Apple keyboard. And the keystroke sound from the Microsoft surface keyboard is the

weakest. These keyboards have di↵erent designs and dimensions resulting in di↵erent

layout of keyboards and di↵erent characteristics of keystroke sounds. Specifically, the

Apple wireless keyboard and Microsoft surface keyboard have comparable dimension
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(i.e., ⇠ 28mm⇥13mm), whereas Razer keyboard is much larger (i.e., ⇠ 47mm⇥17mm).

Moreover, the depth of key caps on the Apple and Microsoft keyboards (i.e., ⇠ 2mm)

is much smaller than that of the Razer keyboard (i.e., ⇠ 6mm).

Mobile Phone. In our experiments, we utilize the Samsung Galaxy Note 3 as the

mobile device to launch attacks. The operating system of the phone is Android 4.4.2.

Although the Samsung Galaxy Note 3 has equipped with three microphones on the top,

bottom and right bottom, the microphone on the right bottom edge is only used for

noise cancelation. We thus use the top and bottom microphones to record the keystroke

sound. The distance between these two microphones is about 15.3cm.

Sampling Rate

The audio chipset on smartphone (i.e., Samsung Galaxy Note 3) is Qualcomm Snap-

dragon 800 MSM8974 [100], which supports 24bit nominal quantization at 192kHz sam-

pling rate. Although the Android 4.4.2 system only supports up to 48kHz sampling

rate, Smartphone Operating Systems are increasingly supporting higher sampling rate,

for example recently released Android 5.0 claims it could support up to 96kHz sampling

rate [101]. We thus envision that the software restriction on the sampling rate will be

loosed and the smartphone could use 192kHz for audio recording in a near future. In

the evaluation, we study the impact of di↵erent sampling rates on the performance of

keystroke snooping. We simulate the high sampling rate (i.g., 96kHz and 192kHz) by

utilizing a pair of omni-directional microphones connected to a laptop through a USB

adapter (i.e., Diamond Tube). We place the two microphones 15.3cm apart from each

other to simulate the Samsung Galaxy Note 3 with 96kHz and 192kHz sampling rates.

Placement

We concentrate on the primary usage scenario, where the mobile device is placed

behind the keyboard. We further study two more placement scenarios, where the mobile

device is typically placed by the user when using the keyboards: in front of the keyboard

and left side of the keyboard. These three placements are shown in Figure 4.8.
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Figure 4.8: Three typical placements of the phone to the keyboard in the experiments.

Data Collection

We focus on experiment on the 26 alphabet letters, but our method also applies to

the whole keyboard. Three participants are involved to randomly type the 26 keys a-z

on keyboards in typical o�ce environments (i.e., two laboratory rooms with ambient

noise (e.g., HVAC noise)). For each experimental setup (i.e., a specific type of keyboard,

placement, and sampling rate), 520 keystrokes are collected. In total there are 3, 640

keystrokes from three participants for our experimental evaluation.

Metrics

We use the following three metrics to evaluate the performance of keystroke snoop-

ing:

Precision. Given Nk keystrokes of a key k, precision of recognizing the key k is

defined as Pk =
NT

k

NT
k +MF

k
, where N

T
k is number of keystrokes correctly recognized as

the key k, M
F
k is the number of keystrokes corresponding to other keys mistakenly

recognized as the key k.

Recall. Recall of the key k is defined as the percentage of the keystrokes that are

correctly recognized as the key k among all keystrokes of the key k, which is Rk =
NT

k
Nk

.

Top-w Accuracy. Given w identified key candidates, we want to know whether

the pressed key is among these w candidates. The top-w accuracy measures overall

performance of the keystroke recognition. Assuming the number of keys on keyboard
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Figure 4.9: Performance of set-keystroke based processing using three keyboards and
o↵-the-shelf phone (48kHz).

is K, the top-w accuracy is defined as A =
PK

k=1 P
T,w
kPK

k=1 Nk
, where P

T
k is the number of the

keystrokes that are correctly identified as one of the keys among the top-w candidates,

Nk is the total number of keystrokes for key k.

4.5.2 Performance of Set-keystroke Based Processing

Overall Performance

We evaluate the overall performance of the set-keystroke based processing with the

primary attack scenario (i.e, the phone is placed behind the keyboard). The sampling

rate is set as 48kHz. Figure 4.9(a) shows the overall accuracy for keystroke identifi-

cation with three di↵erent keyboards. We find that the phone can capture di↵erent

levels of keystroke sound intensity from all three keyboards when the mobile phone is

placed close to the keyboard. We observe that all three keyboards have comparable

high accuracies. In particular, the top-1 accuracy is about 85.5%, whereas the top-2

and top-3 accuracy increase to 94.9% and 97.6%, respectively. These results show that

our training-free and context-free approach provides su�cient accuracy to snoop on

passwords composed of random characters.

Figure 4.9(b) plots the confusion matrix for the keystroke recognition after combin-

ing the results from three keyboards. We find that there are only few keystrokes are

mistakenly identified as incorrect keys. These mistakenly recognized keystrokes usually

correspond to the neighboring keys that have the same TDoA value. For example, a

few keystrokes of the key w are mistakenly recognized as the key a which is crossed
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Figure 4.10: Di↵erential between measured TDoA and theoretical TDoA with 192kHz
sampling rate.

by the same hyperbola as that of the key w, as shown in Figure 4.1(b). Moreover,

two neighboring keys may produce similar keystroke sounds resulting in high similarity

of MFCC features. This could also lead to a few keystrokes mistakenly recognized as

di↵erent keys.

The precision and recall of recognizing each alphabetic key is shown in Figure 4.9(c).

It combines the results for all three keyboards. Overall, the average precision is about

87% and the average recall is about 85%. This result shows that our system could

recognize each individual alphabetic letter without linguistic model. Thus, our system

could recover passwords consisting of random combination of letters.

TDoA Ranging

We next study how accurately we can measure TDoAs with the phone’s microphone

capability of 192kHz sampling rate. We compare the measured distance di↵erence (i.e.,

measured TDoA multiplies velocity of sound) of the keystroke sound to the true distance

di↵erence of the key at the two phone microphones. We use Apple wireless keyboard

and each alphabet key is typed ten times in the experiment. Figure 4.10 illustrates mean

and standard deviation of error for each key. We observe that the average ranging error

is about 2mm indicating that mm-level accuracy could be achieved at 192kHz which

is the frequency supported by the smartphone audio hardware.
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Figure 4.11: Performance of set-keystroke based processing using di↵erent sampling
rates.

E↵ect of Sampling Rate

The impact of the sampling rate on the recognition accuracy is shown in Fig-

ure 4.11(a). The Microsoft surface keyboard is used in the experiment with the sampling

rates of 48kHz, 96kHz and 192kHz. From Figure 4.11(a), we observe that higher

sampling rate indeed improves the recognition accuracy as it provides higher TDoA

resolution to discriminate the close by keys. In particular, the accuracy is improved

from about 84.8% to 94.2% for top-1 candidate when increases the sampling rate from

48kHz to 192kHz. However, the improvement on the top-3 candidates is marginal

since these top-3 candidates usually covers these keys are spaced closely with the sim-

ilar TDoA. The improved sampling frequency thus has limited improvement for the

top-3 candidates.

Figure 4.11(b) and Figure 4.11(c) show the precision and recall for each key, re-

spectively. We find higher sampling frequency in general improves the precision and

recall, especially for the keys that hard to be distinguished at lower sampling frequency.

For example, the keys w and a are physically close and the corresponding recalls and

precisions are very low (at around 50%) when the sampling frequency is 48kHz. They

are improved to over 90% for both w and a at the sampling frequency of 192kHz. This

is also because higher sampling rate provides better TDoA resolution to distinguish

close by keys.
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Figure 4.12: Top-w accuracy of set-keystroke processing with di↵erent placements of
the phone to the keyboard.

E↵ect of Phone’s Placement

Next, we study the performance under di↵erent phone placements. As shown in

Figure 4.8, the phone is placed at three di↵erent positions (i.e.,behind, front and left)

close to the Apple wireless keyboard. Figure 4.12 depicts the top-w accuracy for three

phone placements. We observe that the placements of front and behind result in

higher accuracy than that of left. This is inline with our analysis on phone placement

shown in Figure 4.2(a). This also shows that the primary placement of phone-keyboard

(i.e., behind) when the users use external keyboard is more vulnerable to keystroke

snooping. In particular, top-1 2 and 3 accuracies are about 84.8%, 95%, and 95.7% for

the primary placement respectively, whereas they are about 80.1%, 95.7%, and 99% for

front placement respectively.

4.5.3 Performance of Single-keystroke Based Processing

We evaluate the naive approach, the single-keystroke based processing, by using

the same dataset as we used for the set-keystroke based processing. Figure 4.13 shows

the overall accuracy under di↵erent sampling rates. As expected, the naive approach

has worse performance for top-1 accuracy when comparing to the set-keystroke based

processing. This is because the single-keystroke based processing identifies keys based

on a single TDoA value without exploiting acoustic features and statistic information

of keystrokes of the same key. In particular, the top-1 accuracy of the single-keystroke

based processing is about 60% at 48kHz. The accuracy however increases dramatically

to 89.6% for the top-2 accuracy and to 97.7% for the top-3 accuracy. This is due to
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Figure 4.13: Top-w accuracy of single-keystroke processing with di↵erent sampling
rates.
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Figure 4.14: Precision and recall of single-keystroke processing with 48kHz sampling
rate.

that the top-2 and top-3 candidates usually cover the close-by keys that are hard to

distinguish with one single TDoA.

In addition, the accuracy can be further improved by increasing the sampling rate

to 96kHz or 192kHz. With 192kHz, the single-keystroke based processing can achieve

95% and 98% accuracy for top-2 and 3 candidates respectively. Figure 4.14 further

shows the precision and recall of each key at 48kHz sampling rate. Since the single-

keystroke based processing is hard to distinguish two keys with theoretical TDoAs

within one sample, several keys are mistakenly recognized as others, such as keys w,g,h,c

and m shown in Figure 4.14.

4.5.4 Multi-path Investigation

Multi-path E↵ects through Keys . Like many other wireless signals, multi-

path e↵ects may change the characteristics of acoustic signal. For keystrokes, because
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(a) Keyboard with keycaps.
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(b) Keyboard without keycaps.

Figure 4.15: Experimental Setups for multi-path investigation.

the sound sources are mostly inside each key and always below neighboring keys, it

is important to understand the impact of multipath on the TDoA estimation in our

system. Particularly, we conduct following experiments: as shown in Figure 4.15(a),

we first use the Samsung Galaxy Note 3 to play a pre-recorded chirp sound signal via

a earbud, which is to make sure the sound comes below neighboring key caps and thus

has multipath e↵ects, for 20 times at each target key’s position on a regular keyboard.

Next, we repeat the same experiment, but remove the neighboring key caps as shown

in Figure 4.15(b). Note that the phone is placed at 90 degree angle with the keyboard

and the microphones are at a higher level than the keys on the keyboard to better

study the multipath e↵ects through keys. We remove all the keys between the earbud

and the phone in order to simulate a lower multi-path environment. Figure 4.16 shows

the di↵erence of measured TDoA between such keyboards with di↵erent levels of multi-

path e↵ects. The average di↵erence is only about 1 sample, and we thus conclude that

the impact of multi-path (key caps on keyboard) does not have much influence on the

TDoA estimation.

Non Line of Sight E↵ects. In the experiment, we use two mobile phones(i.e.,

Samsung Galaxy Note 3 and HTC Evo 4G) on two tripod at heights 1 meter above

the ground as shown in Figure4.17(a). Similarly, we use the Samsung phone to record

the chirp sound played by the HTC phone for 20 times. We align two phones to make

sure the measured TDoA is close to 0 in the line-of-sight scenario. Next, we repeat the

experiment, but with a thick card board separator placed in between the two phones

to simulate the non-line-of-sight scenario as shown in Figure 4.17(b). Figure 4.18(a)
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(a) Line-of-sight(LOS) environment. (b) Non-line-of-sight(NLOS) environment.

Figure 4.17: Experimental Setups for multi-path investigation.

shows the overall statistics of TDoAs in both the line-of-sight(LOS) scenario and non-

line-of-sight(NLOS) scenario. Figure 4.18(b) is the enlarged part within the circle in

Figure 4.18(a). Compared to the LOS scenario, the measured TDoAs increase dramat-

ically in the NLOS scenario.

4.6 Discussion

Environmental Accuracy. There are several factors that have an important ef-

fect on accuracy including phone placement, multi-path, and noise. Our system has

been evaluated with di↵erent phone placements close to the keyboard. Accuracy would

significantly degrade for recordings taken at larger distances and meter-level distances

would require much larger microphone separation, for example by using multiple coop-

erating devices. We believe, however, that close proximity is possible even in adversarial
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Figure 4.18: TDoA estimation for LOS and NLOS environment.

settings, for example if the adversary co-opts the users own phone or if the attack takes

place in relatively confined space (e.g., airplane). As any time-of-arrival related local-

ization technique, our system relies on a detectable signal arriving on the line-of-sight

path. If this path is significantly attenuated by an obstacle, our system will measure

a reflected signal which leads to errors too large to allow for recovery of keystrokes (as

illustrated in section 4.5.4). Phone placement close to the keyboard makes such an

obstacle unlikely, however. We evaluate our system in typical o�ce environments (i.e.,

two laboratory rooms with ambient noises (e.g., HVAC noise)), and our results show

little impact under such ambient noises. Although we observe that loud noises (e.g.,

people talking) could impact the detection accuracy, we believe that additional filtering

or context-based word correction could further improve the accuracy.

Security Concerns. To our knowledge, this is the first demonstration of acoustic

keystroke recovery that raises more serious concerns regarding password snooping. It

appears practical that malicious background apps with microphone access could recover

passwords entered from a nearby keyboard (either an associated Bluetooth keyboard

or a keyboard used for another device). If high definition stereo audio trickles down

from professional video conference systems, to voice over ip and video calling apps,

keys typed during a call could potentially be recovered by the remote party. It may

also be possible for an adversary to inconspicuously place a phone near a victim’s

keyboard, particularly in tight settings such as an airplane. That said, the attack is
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currently only possible with select phone models that expose stereo recording and have

large microphone separation and even at future expected sampling rates of 192kHz

there is only a moderate chance of accurately capturing a long random password on

first attempt. Still, this significantly reduces the password entropy to a small set of

candidates that can be brute-forced and the accuracies would be su�ciently higher for

the many weaker passwords in use, when combining the keystroke recognition results

with knowledge about common password patterns.

While there is already considerable awareness of privacy risks associated with mi-

crophones, this awareness usually extends only to spoken words and not necessarily to

keystrokes. Users might therefore type sensitive information even if they know that

recording devices are present. Overall, these results indicate that microphone access on

mobile device should be tightly controlled and we hope to raise awareness to that the

recoverable information from mobile device audio recordings extends far beyond spoken

conversations.

Localization Implications. More generally, the results show that low-multipath

scenarios exist where mobile audio enable mm-level ranging and localization. Such high

accuracies could be exploited for numerous applications from motion tracking [34], over

driver phone use detection [35], to user interface improvements [102]. Currently, app-

level access to these audio capabilities is still very limited; the capabilities are primarily

used for specific functions such as noise cancellation during calls or high definition

audio playback. In light of these localization results, we argue that app-level software

access to multiple microphones and high sampling rates for localization purposes should

become a higher priority.

4.7 Conclusion

In this work, we show that microphones on a single o↵-the-shelf phone can be used to

discriminate mm-level position di↵erences, which not only creates potential security and

privacy concerns related to recovering keystrokes being typed on a nearby keyboard, but

could also benefits a broad range of applications relying on fine-grained localization (e.g.,
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sensing touch interaction on surfaces around mobile devices and tracking speakers in

multiparty conversations in a meeting room). The implemented system does not require

any training or linguistic model, which makes it applicable in real-world adversarial

context and has the capability to recover random typing (e.g., passwords). In particular,

our system exploits digital acoustic signals received at the microphones from an o↵-the-

shelf phone and leverages the integration of geometry-based TDoA and fine-grained

acoustic signatures to exceed the resolution limit of TDoA and accurately identify

keystrokes. Extensive experiments involving three types of keyboards demonstrate

that, with 48kHz sampling rate, our proposed system can accurately identify a set

of keystrokes with over 85% accuracy. The accuracy of our system can achieve as high

as 94% with the higher sampling rate (i.e., 192kHz). Additionally, our system can

snoop even a single keystroke input at the accuracy of 97% among the top-3 candidate

keys with 48kHz sampling rate.
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Chapter 5

High-throughput and Inaudible Acoustic Communication

with Non-linearity of Microphones

5.1 Background

5.1.1 Microphone System

The most commonly used microphones are electret condenser microphone (ECM)

and micro-electro-mechanical system (MEMS) microphone. Due to the small package

size and low power consumption, MEMS microphones currently dominate the market of

audio device on mobile devices including smartphones and wearable devices, etc [103].

A MEMS microphone on a commercial o↵-the-shelf mobile device mainly consists of

four components, i.e., transducer, pre-amplifier, inbuilt low-pass filter and analog-to-

digital converter (ADC), as shown in Figure 5.1. When an acoustic signal carries the

energy towards a microphone, the transducer of the microphone first transforms the

mechanical sound waves to electric signals through the electromagnetic induction [104].

Then, the pre-amplifier enhances the electric signal to improve the signal-to-noise ratio

(SNR) of the signal transformed from sound waves. Next, the inbuilt low-pass filter

eliminates the high-frequency harmonic components from the electric signals so as to

Low-pass
filter

Transducer ADC
Digital
signal

Microphone

Amplifier

Ultrasound
signal

Figure 5.1: Microphone architecture and illustration of its non-linearity.
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match the sampling rate of ADC in the microphone. The inbuilt low-pass filter usually

sets the cut-o↵ frequency as 24kHz due to the maximum sampling rate of 48kHz in

the ADC of most widely-deployed mobile devices. After that, ADC samples the electric

signals and stores the values as digital signals, which can represent the recorded acoustic

signals.

5.1.2 Non-linearity of Microphone

Due to the limited sampling rate (i.e., 48kHz) of the microphone in mobile devices,

the devices can only record the acoustic signals within a specific frequency range (i.e.,

< 24kHz). However, when receiving an ultrasound signal, the pre-amplifier of the

microphone exhibits non-linearity in the ultrasound frequency range [105, 106], which

is feasible to make the ultrasound signal become recordable by the inbuilt microphones.

Specifically, the non-linearity of microphones can be modeled theoretically. Assume

that the microphone receives an acoustic signal sin. After the sound is picked up and

amplified by the microphone’s transducer and pre-amplifier, the recorded signal sout

can be represented as:

sout = A1sin +
1X

i=2

�(f)Ais
i
in

⇡ A1sin + �(f)A2s
2
in,

(5.1)

where Ai is the energy gain for the ith order term and �(f) is an indicator function.

Although the non-linear output is an infinite power series, the value of Ai decreases

with the increase of i and the third and higher order terms are extremely small. Thus

we only consider the linear and quadratic terms. The indicator function �(f) is defined

as:

�(f) =

8
>><

>>:

0, f < f0

1, otherwise,

(5.2)

where f0 is the critical frequency of the non-linearity. We empirically find the critical

frequency f0 ⇡ 18kHz in the most commercial mobile devices. This indicates that

the pre-amplifier generates additional frequency components other than original fre-

quency component, when the microphone receives an ultrasound signal. The quadratic
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term of Equation 5.1 exhibits the non-linearity of microphones. The non-linearity of

microphones provides the feasibility of utilizing ultrasound for communication. As

shown in Figure 5.1, by selecting an appropriate modulation technique, the modulated

data bits carried on an ultrasound carrier can be transmitted inconspicuously, and the

microphone has potential to recover the original data bits with the non-linearity prop-

erty. We are thus motivated to explore how to use such microphone’s non-linearity to

achieve high-throughput inaudible communication rather than using the limited near-

ultrasound frequency band.

5.2 Achieving High Throughput While Keeping Inaudibility

5.2.1 Challenges

To achieve high-throughput and inaudibility of the acoustic communication simul-

taneously, the design of our system mainly involves the following challenges.

High-throughput and Inaudible Communication for General Mobile De-

vices. The high-throughput of acoustic communication requires to utilize a wide fre-

quency bandwidth for data transmission. However, for most mobile devices, the inbuilt

microphone only has limited ADC sampling rate (i.e., 48kHz), thus the device can

only record acoustic signals within 24kHz according to Nyquist theorem [49]. Addi-

tionally, the audio signal with the frequency larger than 18kHz is hardly audible to

most humans [107]. In order to achieve inaudibility, a narrow frequency bandwidth

(i.e., 18-24kHz) has to be used for communication, which significantly reduces the pos-

sible communication throughput. Therefore, it is essential to find a way to increase

the frequency bandwidth for communication so as to improve the throughput, while

keeping the inaudibility.

Robust Communication Under Various Environmental Factors. There are

many environmental factors a↵ecting the robustness of acoustic communication sys-

tems. For instance, acoustic frequency channels may be easily a↵ected by other sound

sources in the environment, such as HVAC (Heating, Ventilation, Air Conditioning)
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noises, people talking, etc. Moreover, due to the omni-directional propagation of acous-

tic signals, the acoustic communication su↵ers from significant multipath e↵ect, which

may induce the time selective fading and frequency selective fading problem. Therefore,

our system needs to transmit data via acoustic channels in a way that is robust to these

noisy environments and signal interference factors.

5.2.2 Integrating Non-linearity with Signal Multiplexing and Modu-

lation Techniques

To achieve high-throughput and inaudibility at the same time, we use orthogonal

frequency division multiplexing (OFDM) technique and amplitude modulation (AM)

with the non-linearity model of microphone to modulate the data bits onto multiple

subcarriers in an ultrasound frequency band to transmit data.

Achieving High-throughput based on OFDM. In order to achieve high-throughput

communication, we utilize OFDM technique to modulate the data signals on multiple

subcarriers to convey multiple data bits concurrently. In a communication system,

frequency division multiplexing (FDM) is a widely-used multiplexing technique, which

divides the total frequency bandwidth into a series of non-overlapping frequency bands,

i.e., subcarriers, and sets a guard band between every two subcarriers to avoid interfer-

ences. However, the guard band wastes the scarce spectrum of acoustic communication.

To improve the e�ciency of spectrum utilization, we use OFDM multiplexing that uti-

lizes orthogonal subcarriers1 in the system. Furthermore, the communication capability

of an OFDM system increases as the increase of the frequency bandwidth. Our sys-

tem thus aims at using the whole acoustic frequency band, including both audible and

inaudible frequency band, to achieve high-throughput.

Enabling Inaudibility via AM Modulation and Microphone’s Non-linearity.

Due to the utilization of audible frequency band in OFDM, directly transmitting the

1Orthogonal subcarriers in OFDM have overlapping spectra between subcarriers, but this overlap
of spectral energy does not interfere system to recover the original signal.
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OFDM-multiplexed signals remains audible on ambient areas. To make the acous-

tic communication inaudible, we further integrate AM technique to transmit audi-

ble OFDM-multiplexed signal via an ultrasonic carrier. Specifically, we define the

OFDM-multiplexed signal on the mth OFDM subcarrier (subcarrier frequency is fm)

is: m(t) = cos (2⇡fmt). Then m(t) can be modulated with an ultrasound carrier signal

cos (2⇡fct) (fc � fm) through AM. The modulated signal is:

sin = cos(2⇡fct) · (1 + cos (2⇡fmt)). (5.3)

Combined with the non-linearity of microphone, i.e., Equation 5.1, we can derive the

signal sout that is recorded by the device’s inbuilt microphone as:

sout =A1 cos(2⇡fct)

+
A1

2
(cos(2⇡(fc + fm)t) + cos(2⇡(fc � fm)t))

+
A2

4
(4 cos(2⇡fmt) + 3cos(4⇡fct) + cos(4⇡fmt))

+
A2

8
(cos(4⇡(fc + fm)t) + cos(4⇡(fc � fm)t))

+
A2

2
(cos(2⇡(2fc + fm)t) + cos(2⇡(2fc � fm)t))

+
3A2

4
.

(5.4)

From Equation 5.4, we can find that the frequency components contain fc, fc �

fm, fc + fm, fm, 2fc, 2fm, 2(fc + fm), 2(fc � fm), 2fc + fm, 2fc � fm. Since fc (fc �

fm) is the ultrasound carrier frequency, the components with the frequency fc can be

eliminated with the low-pass filter in the microphone, as shown in Figure 5.1. After

that, the signal becomes:

sout = A2 cos(2⇡fmt) +
A2

4
cos(4⇡fmt) +

3A2

4
, (5.5)

which only contains the frequency components fm and 2fm. In addition to the trans-

mitted frequency component fm, we note that the induced component A2
4 cos(4⇡fmt)

may impact the OFDM signals on other specific subcarrier (i.e., the one with subcar-

rier frequency 2fm). It would lead to significant errors when the system recovers the

original signal m(t). We next introduce how to eliminate this interference e↵ect caused

by the frequency component 2fm.
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Figure 5.2: Illustration of the signals on the subcarrier fn a↵ected by the residual signal
(e.g., fn = 2fm).

5.2.3 Eliminating Unrelated Residual Signals Induced by AM Modu-

lation

As shown in Equation 5.5, the unrelated frequency component 2fm, which we call

unrelated residual signal, may greatly impact the system’s capability of recovering origi-

nal signals and interfere with the OFDM signals transmitting over the subcarrier whose

frequency is 2fm. We simulate that a signal, consisting of two frequency components

(i.e., fm and fn = 2fm), is transmitted with an ultrasound carrier through AM modu-

lation. As shown in Figure 5.2, we observe that the received demodulated signal has a

great interference on the frequency fn due to the induced unrelated residual signal.

To eliminate the residual signal, we elaborately modify the OFDM-multiplexed sig-

nal before the AM modulation in the transmitter side. According to Equations 5.1

and 5.3, the linear term (i.e., A1sin) of the non-linearity model contains ultrasound

frequency fc and thus would be filtered out by the inbuilt low-pass filter of the mi-

crophone. Hence, we only analyze the quadratic term (i.e., A2s
2
in) for the elimination

scheme design. Specifically, we define the analog OFDM symbol waveform as s(t) that

carried the data bits to be transmitted. According to Equation 5.1, the quadratic term

sq can be represented as:

sq =A2(cos(2⇡fct) · (1 + s(t)))2

=
A2

2
(1 + cos(4⇡fct)) +

A2

2
(1 + cos(4⇡fct))(2s(t) + s

2(t)).
(5.6)
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Figure 5.3: Image comparison between transmitted and received images without and
with unrelated residual signal elimination scheme (BER = 10.2% vs. BER = 0.3%).

We observe that the first term (i.e., A2
2 (1+cos(4⇡fct))) of Equation 5.6 only contains the

ultrasound frequency component 2fc, which can be neglected due to the low-pass filter

in the microphone. As s(t) contains frequency components crossing all the OFDM sub-

carriers, the second term (i.e., A2
2 (1+ cos(4⇡fct))(2s(t) + s

2(t))) of Equation 5.6 would

produce unrelated residual signals, as per Equation 5.4. In order to eliminate these

residual signals, we use following signal se(t) to replace the OFDM symbol waveform

s(t) before AM modulation:

se(t) =
p
(s(t) + 1)� 1. (5.7)

Therefore, we have 2se(t) + (se(t))2 = s(t), and Equation 5.6 would be changed to:

sq =
A2

2
(1 + cos(4⇡fct)) +

A2

2
(1 + cos(4⇡fct))s(t). (5.8)

Thus, by neglecting the components containing ultrasound frequency fc, only the com-

ponent A2
2 s(t) can be preserved through the microphone’s low-pass filter. With further

modulating the modified OFDM signal (i.e., se(t)) with the ultrasound carrier through

AM, the recorded signal in the receiver side would not contain the unrelated residual

signals anymore.
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To validate whether the proposed scheme could eliminate the unrelated residual

signals, we conduct a simulation experiment, in which a software-defined transmitter

(including OFDM, elimination approach and AM) and a software-defined receiver (in-

cluding the microphone’s pre-amplifier with non-linearity, built-in low-pass filter and

OFDM demodulation process) are implemented. We use an additive white Gaussian

noise (AWGN) model in the communication channel and SNR is set to 36. An image2

(i.e., Figure 5.3(a), 6.4kB) is transmitted from the transmitter to the receiver. With-

out the proposed elimination scheme (i.e., using s(t) as OFDM symbol waveform), we

observe that the received image (i.e., Figure 5.3(b)) contains significant errors (i.e.,

bit error rate (BER)=10.2%), and the error di↵erence between the transmitted and

received images is shown in Figure 5.3(c). Di↵erently, by using the elimination scheme

(i.e., using se(t)), the received image is almost error-free (i.e., BER=0.3%), as shown

in Figure 5.3(d). The error di↵erence between the transmitted and received images is

shown in Figure 5.3(e). This result demonstrates that the proposed elimination scheme

is e�cient to reduce the e↵ect caused by the unrelated residual signals for achieving

robust acoustic communication.

5.3 System Overview

The architecture of BatComm is shown in Figure 5.4, which consists of two parts,

i.e., transmitter and receiver.

Transmitter Design. The transmitter is responsible to modulate data bits to an

ultrasound signal for the high-throughput and inaudible acoustic communication. The

data bits are first encoded with BCH error correction code [108] and further re-ordered

through an interleaving technique to reduce the unpredicted errors during the signal

propagation. Then, the encoded data is converted to phase values through the digital

modulation technique, i.e., di↵erential phase shift keying (DPSK). To fully utilize the

scarce frequency band for communication, the OFDM technique is further applied to

modulate the phase values to multiple subcarriers for concurrent data transmission.

2Each pixel in the grayscale image contains 8 bits.
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Figure 5.4: Architecture of BatComm.

During the OFDM, a pilot is inserted in OFDM signals for channel estimation so as

to eliminate the impact of multipath e↵ect on the received signals. After that, the

OFDM symbol waveform s(t) is modified to se(t) for eliminating the unrelated residual

signals, which are generated through AM under the non-linearity of microphones. Then

the modified OFDM symbol waveform se(t) is modulated onto the ultrasound carrier

through AM for inaudible communication.

Receiver Design. The receiver in our system is a commercial mobile/IoT de-

vice (e.g., a smartphone) with an inbuilt microphone, which records and demodulates

the received ultrasound signal to receive data. Taking advantage of the modeled non-

linearity of microphone, the receiver can demodulate the received ultrasound signals to

obtain the OFDM symbol waveform. After that, the receiver performs the demultiplex-

ing on the recorded OFDM waveform to extract the phase values. Additionally, the

pre-inserted pilot in the OFDM signals is used for channel estimation to eliminate the

interference of multipath e↵ect. Further, the extracted phase values are mapped into

the digital data bits through DPSK demodulation. Finally, the receiver performs error

correction on the digital data bits with the pre-inserted BCH code and the interleaving

matrix to mitigate the unpredicted errors.
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5.4 Transmitter Design

In practical communication scenarios, there exist many potential factors a↵ecting

the communication system, such as ambient noises, multipath e↵ect, etc. To improve

the robustness, we integrate a series of techniques (e.g., BCH code and interleaving,

DPSK, pilot signal) in the transmitter design to make BatComm resilient to various

interferences.

5.4.1 Error Correction via BCH Codes and Interleaving

In the proposed acoustic communication, it may have unpredicted errors induced

in the propagation channel. To mitigate these errors, we first encode the digital data

with BCH code [109], which is a widely-used error correction code in communication

field. Specifically, the digital data is encoded with (N,K)-BCH code, where N is the

length of the encoded data, K is the length of original digital data. The (N,K)-BCH

encoded data uses N -K bits error correction code.

Additionally, BCH error correction code is satisfactory to correct randomly dis-

tributed errors in the signals. However, the errors usually burst in some specific do-

mains of the signal, due to the intensive noises appearing in some specific frequency

band or specific time period. To address this problem, we further apply a matrix-based

interleaving approach to interleave the data stream in a particular known order, which

could convert bursts of errors into random-like errors. Specifically, we first take a block

of encoded data bits and fill it in a M ⇥N matrix following the row order, i.e.,

2

66666664

x11 x12 · · · x1N

x21 x22 · · · x2N

· · · · · · · · · · · ·

xM1 xM2 · · · xMN

3

77777775

. (5.9)

Then, this block of encoded data bits is transmitted following the column order of

the matrix, i.e., x11, x21, · · · , xM1, x12, x22, · · · , xM2, · · · , x1N , x2N , · · ·xMN . Such an

interleaving approach could greatly improve error correction based on BCH codes when

burst errors occur.
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5.4.2 Digital Modulation based on DPSK

In order to transmit data in the air, the digital data bits should be first modulated,

which is necessary for digital-to-analog conversion. The most commonly used digital

modulation techniques are amplitude shift keying (ASK), frequency shift keying (FSK)

and phase shift keying (PSK). ASK and FSK utilize the amplitude and frequency of

carrier signals to modulate the digital data bits, respectively. However, due to the

vulnerability to noises and the requirement of wide bandwidth, they are inappropriate

for acoustic communication. Moreover, PSK modulates the data bits on several absolute

phase values, which is e�cient to utilize the scarce acoustic spectrum. However, in

practical communication scenario, the multipath propagation of acoustic signals and

ambient noise may induce unpredictable phase shift on the signals, which leads to

errors in the absolute phase values.

To solve this problem, we use di↵erential phase shift keying (DPSK) for the digital

modulation in our system. Specifically, we modulate n-bit digital data to one of the

2n possible phase values, which are uniformly spread in the range of [0, 2⇡]. Instead

of transmitting this modulated phase value p
t, the transmitter sends the phase value

pi, satisfying pi = pi�1 + p
t, and uses the phase di↵erence between two successive

transmitted samples (i.e., pi�1, pi) to carry the modulated phase value. In the receiver

side, the system can demodulate the data by mapping the di↵erential phase values into

the digital bits.

5.4.3 Signal Multiplexing based on OFDM

After digital modulation, our system uses multiple orthogonal subcarriers in OFDM

to carry these modulated samples for achieving high-throughput communication. Par-

ticularly, OFDM transforms the modulated phase values on multiple subcarriers from

frequency domain to a time-domain analog waveform through inverse fast Fourier trans-

form (IFFT) (i.e., 1024 points in our system). Considering the unpredicted interference

during the propagation of acoustic signals, we further extend the standard OFDM,

making it suitable for our high-throughput inaudible acoustic communication.
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Adding Preamble and Cyclic Prefix for Synchronization Issue. To reliably

transmit data from the transmitter to receiver, the transmitter is required to synchro-

nize with the receiver. To achieve the synchronization, we divide the data stream to be

transmitted into a set of frames. In each frame, there are 30 OFDM symbols, each of

which modulates data bits onto multiple OFDM subcarriers. To ensure that the receiver

can recover the complete data from acoustic signals, it is necessary for the receiver to

precisely find the beginning of each frame. We thus add a preamble in the beginning of

each frame, and the preamble is designed following the protocol of IEEE 802.11a [110].

Moreover, the multipath e↵ect introduces the inter-symbol interference [111] between

OFDM symbols. To eliminate the interference, the transmitter adds a cyclic prefix in

the beginning of each symbol, which is designed as the last quarter of the symbol, as

shown in Figure 5.5. With the preamble and cyclic prefix, the receiver can find the

beginning of each frame and obtain OFDM symbols precisely.

Inserting Pilot for Channel Estimation. Due to the multipath propagation

of omni-directional acoustic signals, there exist time and frequency selective fading in

the received signals [112]. To mitigate the time selective fading induced by multipath

propagation, we insert pre-defined phase values, comb-type pilot, on one subcarrier (i.e.,

the subcarrier #502, corresponding to 23.53kHz)3. The pilot symbol, block-type pilot,

is used to mitigate the frequency selective fading at the receiver end, which is discussed

in Section 5.5.1.

31024-point IFFT/FFT in OFDM could have 512 orthogonal subcarriers corresponding to the band-
width of 0-24kHz.
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Frequency Bandwidth Selection to Resist Interference. Due to the inter-

ference of ambient noises in the environment, parts of the available acoustic frequency

bands introduce significant errors in the communication. The normal sound sources

(e.g., human speaking) usually generate acoustic signals lying in the frequency less

than 8kHz [57]. On the other hand, commercial smartphones can only record the

acoustic signals with the frequency up to 24kHz, due to the limited sampling rate. To

achieve high-throughput communication while keeping our system resilient to the daily

noises, the operation bandwidth for the OFDM subcarriers is chosen as 8.06-23.53kHz,

corresponding to the OFDM subcarrier #172 to #502 in our system.

5.4.4 Analog Modulation based on AM Towards Inaudibility

The analog OFDM symbol waveform s(t) needs to be modulated onto an ultrasound

carrier, so as to ensure the communication out of human perception. Particularly, as

mentioned in Section 5.2, the combination of OFDM and AM techniques would pro-

duce unrelated residual signals, which would largely interfere our system and produce

significant transmission errors. Thus, we use the modified OFDM symbol waveform

se(t), as per Equation 5.7, before AM modulation to eliminate the interference from

the residual signals. Then we use AM modulation to modulate se(t) onto the ultrasound

carrier with frequency fc, according to Equation 5.3.

Furthermore, the selection of the frequency fc is critical. This is because a low car-

rier frequency induces the overlapping between AM-modulated ultrasound signal and

OFDM-multiplexed signal, while a high carrier frequency leads to low-power transmit-

ted signals, i.e., the transmitted signals are with low signal-to-noise ratio (SNR). As

mentioned in Section 5.1.2, after the ultrasound is recorded by the microphone, the fre-

quency components (e.g., fc� fm, fc+ fm, fc) including the carrier frequency fc should

be filtered out by the inbuilt low-pass filter. It indicates that the lowest frequency

component (i.e., fc � fm) should be larger than the cut-o↵ frequency of the filter fl.

Thus, we have fc � fl + fm. According to Section 5.4.3, the operation bandwidth of

OFDM subcarriers is around 8.06-23.53kHz. Therefore, the carrier frequency should

meet the requirement of fc � 48kHz. To maximize the SNR of the transmitted signal,
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Figure 5.6: Illustration of three experimental settings. Signal source is a signal generator
or mobile device (e.g., smartphone, tablet), and the receiver is commercial o↵-the-shelf
smartphones.

unless mentioned otherwise, we set fc = 48kHz in our system.

5.5 Receiver Design

In this section, we introduce the technical details of how the receiver demodulates

the ultrasound signals to recover the transmitted data bits.

5.5.1 Signal Demultiplexing based on OFDM

Due to the non-linearity of the microphone and the design of our residual signal

elimination scheme, the transmitted OFDM waveform could be automatically picked

up by the microphone, as mentioned in Section 5.2.2 and Section 5.2.3. In BatComm,

the receiver first detects the preamble in the received signal to synchronize the OFDM

frames, then demodulates the signal through OFDM technique and finally performs

channel estimation to mitigate the multipath e↵ect based on the pre-inserted pilot

signal.

Preamble Detection and Synchronization. The receiver first needs to detect
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the preamble of each OFDM frame so as to synchronize the signal frames. Since the

prior knowledge of preamble is known to both the transmitter and receiver, we apply

the correlation to detect preamble and find the beginning of the transmission:

R(n) =
MX

i=0

x(i)y(n+ i)⇤, (5.10)

where x and y are the preamble and received signal, respectively, M are the length

of the preamble and n is the beginning index in a segment of the received signal for

correlation. ()⇤ represents the conjugate operation. Based on the correlation values,

the beginning of the preamble ns can be found through ns = argmaxnR(n). After we

detect each OFDM frame’s beginning, the receiver further removes the cyclic prefix to

extract the data from OFDM signals. Since the cyclic prefix serves as a guard between

two successive OFDM symbols, the inter-symbol interference can be eliminated through

removing the cyclic prefix. After that, the receiver demodulates the OFDM symbols

through FFT operation to derive the phase values for further processing.

Pilot Detection and Channel Estimation. Due to the omni-directional prop-

agation property of sound, the unpredicted propagation would introduce unexpected

time and frequency selective fading errors in received signals. To deal with it, the

receiver performs the channel estimation based on the pre-inserted pilot, which is dis-

cussed in Section 5.4.3. Specifically, the received pilot signal can be represented as

Yp = HXp + n, where Xp and Yp are transmitted and received pilot signals (i.e., in-

serted phase values), respectively. H is the channel response, and n is the ambient

noises. Hence, the channel response can be represented as:

H =
Yp

Xp
� n

Xp
⇡ Yp

Xp
, (5.11)

where the ambient noise n almost has no e↵ect on the channel response since the

signals are modulated at the frequency higher than 8kHz. With the estimated channel

response, the data transmitted on other subcarriers can be calibrated as:

Yc = H
�1

Yr, (5.12)

where Yr and Yc are the received and calibrated signals, respectively. Through such a
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channel estimation, the multipath e↵ect can be mitigated in the received signals, which

improves the robustness of communication.

5.5.2 Digital Demodulation & Error Correction

After demodulated OFDM signals, the receiver would further perform the digital

demodulation based on DPSK to obtain the digital data bits. Specifically, the receiver

first derives the di↵erential phase values and extracts the digital data bits through the

constellation mapping scheme. After that, the receiver recovers the digital data bits

through interleaving. Since the dimension of matrix (i.e., Equation 5.9) for interleaving

is known for the receiver, the receiver performs the reversed process of the interleaving

to obtain the corrected-order data. Then, the receiver utilizes the BCH code to correct

the unpredicted errors in the digital data bits.

5.6 Performance Evaluation

5.6.1 Experimental Setup & Methodology

Device and setting. To evaluate the performance of BatComm, we implement

three settings of the transmitter to meet various application requirements. For these

three settings, as shown in Figure 5.6, the signal source is a Keysight 33509B signal

generator, a Galaxy S6 and a Samsung Tab P7510, respectively. The signal source de-

vices are all tuned to the maximum volume for signal transmitting. In the frontend of

these settings, we use an Avisoft ultrasonic dynamic speaker Vifa [113] and a portable

ultrasound power amplifier [114] to transmit ultrasound signals. In addition, we use

commercial o↵-the-shelf mobile devices (i.e., a Galaxy S6, a Galaxy Note 4, and a Sam-

sung Tab P7510) as receivers to evaluate BatComm. We use the primary microphone,

which is located at the bottom of the devices, to record the acoustic signal. Unless oth-

erwise mentioned, the operation bandwidth for OFDM subcarriers is 8.06-23.53kHz,

the digital modulation scheme is 16DPSK, the carrier frequency fc for AM is 48kHz and

error correction is based on (63, 45)-BCH code. The distance between the ultrasound

speaker and the receiver (i.e., smartphone) is 3cm, which is natural and appropriate
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Figure 5.7: BER of BatComm under di↵erent (a) transmitter settings and environments
(b) distances between transmitter and receiver (Throughput = 34.13kbps).

for a short-range communication application. We also evaluate longer distance, which

is discussed in Section 5.6.2.

Data Collection. In order to evaluate BatComm and visually check the occurrence

of errors, we transmit various grayscale images (i.e., 6.4kB for each) from the trans-

mitter to the receiver. In each round of transmission, the transmitter transmits the

modulated data through ultrasound signals, and we repeatedly conducted 20 rounds

of transmissions for each environmental setup with various communication parame-

ter settings. To test the impact of environmental noises on BatComm, we perform

the experiments in three representative environments: lab, restaurant, and mall. The

measured background noise levels of these three environments are 39.7dB, 57.3dB and

80.2dB, respectively.

Evaluation Metrics. We mainly use two metrics to evaluate the performance

of BatComm. (1) Throughput : Assume a data stream of D bits is transmitted from

the transmitter to the receiver with a time of T seconds. The throughput of acoustic

communication is defined as D
T bits per second (bps); and (2) Bit Error Rate (BER):

Assume the system transmits nt bits digital data. Due to noise, interference, distortion

or bit synchronization errors, ne bits data is altered during the communication. The

BER is defined as ne
nt
, which is presented as a percentage.
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5.6.2 Overall System Performance

With the operation parameters in Section 5.6.1, BatComm can achieve a throughput

of 34.13kbps, which is over 10⇥ higher than the state-of-the-art solutions. Note that

di↵erent environments and transmitter settings do not a↵ect the throughput of the

communication system.

Environments and Transmitter Settings. We evaluate the BER of BatComm

under di↵erent environments and transmitter settings, as shown in Figure 5.7(a). It can

be observed that the average BER of BatComm under the three settings in the quiet

lab are all less than 6% with the standard derivation less than 2%. Figure 5.8 shows

two sets of transmitted and received images during the experiments. We find that

although the BERs for the two image transmission are 4.7% and 5.1%, the received

images are clear for human recognition. This result indicates that such a BER is

satisfactory for the acoustic communication. Moreover, all three transmitter settings

achieve a comparable performance (i.e., BER di↵erence is less than 1%), indicating

that BatComm can use various device as the signal source at the transmitter end.

Additionally, the system performance degrades with the increase of background noise

levels. However, BatComm can still achieve an average BER of around 8% in the noisy

mall environment (with a noise level around 80dB), which indicates our system is robust

to di↵erent environments.

Transmitter-Receiver Distances and Environments. We also evaluate the

impact of distance between the transmitter and receiver on BatComm. Figure 5.7(b)

shows BER of BatComm under di↵erent distances and environments. We observe that

the BER of our system slightly increases as the distance increases. This is because

as the propagation distance increases, SNR of the acoustic signals decreases, which

induces more errors in the recorded signals. In the quiet lab environment, the average

BER is around 5% with a standard deviation less than 2% under a distance between

the transmitter and receiver less than 8cm, which is a natural and appropriate distance

for the short-range communication application. Even for the mall, the BER is 8.3%

under the distance less than 5cm. This result indicates that BatComm can achieve high
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Figure 5.8: Image comparison between transmitted (i.e., (a), (c)) and received images
(i.e., (b), (d)), where BERs are 4.7% and 5.1% (Throughput = 34.13kbps).

throughput with an acceptable BER for almost all the short-range applications.

5.6.3 Impact of OFDM Bandwidth

The bandwidth for OFDM multiplexing directly a↵ects the throughput of the acous-

tic communication system. Also, since the background noises would impact the audible

frequency band used in OFDM, the bandwidth, especially the lower bound of band-

width, a↵ects the BER of acoustic communication system. Hence, we evaluate the

performance of BatComm under di↵erent bandwidths (i.e., di↵erent lower bound of

the bandwidth). Figure 5.9(a) shows the throughput and BER of BatComm under

di↵erent bandwidths. We can see that the throughput increases as the OFDM band-

width increases, which is consistent with the theoretical analysis. Moreover, it can be

observed that the BER also slightly increases as the OFDM bandwidth increases. This

is because as the bandwidth increases, the lower bound of bandwidth decreases. Usu-

ally, the low-frequency band is easily a↵ected by the background noises (e.g., human

speaking). Hence, the wider bandwidth introduces more errors in recorded signals and
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Figure 5.9: Performance of BatComm with di↵erent (a) bandwidth, (b) BCH settings,
(c) digital modulation settings.

would decrease BER of the system. However, even for the 20kHz bandwidth of OFDM

operation (4-24kHz), the average BER of BatComm achieves 7.1% with a standard

deviation of 5.3%, while the throughput of BatComm can achieve 42.18kbps, which

indicates a satisfactory performance.

5.6.4 Impact of BCH Code

In our system, BCH code is used to mitigate the unpredicted errors in recorded

signals. However, di↵erent BCH settings a↵ect the performance of the acoustic com-

munication system. Particularly, the digital data is encoded with (N,K)-BCH code,

where N is the length of encoded data bits, K is the length of original digital data

bits. Figure 5.9(b) shows the throughput and BER of BatComm under di↵erent BCH

settings. We observe that without BCH error correction (i.e., (63, 63) BCH setting),

BatComm can achieve a high throughput of 47.49kbps and the average BER is only

6.3% with a standard deviation of 4.1%. By adding more BCH coding bits for error

correction, both throughput and BER would decrease. To meet specific application

requirements, we can use some particular BCH settings to achieve a near-zero BER

(e.g., 5.31kbps with 0.1% BER; 12.13kbps with 0.4% BER).

5.6.5 Impact of Digital Modulation

In BatComm, DPSK modulates data bits into phase values for the digital modu-

lation. Figure 5.9(c) shows throughput and BER of BatComm under di↵erent digital
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Figure 5.10: Image comparison between transmitted (i.e., (a)) and received images
under 64DPSK (i.e., (b)) and 256DPSK (i.e., (c)), respectively. The BERs are 26.0%
and 33.7%.

modulation settings. We can see that both the throughput and BER increase when the

digital modulation setting changes from QDPSK to 256DPSK. Specifically, for QDPSK

and 16DPSK, the average BERs of our system are 1.7% and 4.7% with a standard

deviation 0.5% and 1.8% respectively, which are satisfactory for acoustic communi-

cation. However, for 64DPSK and 256DPSK, although the throughput is quite high

(i.e., larger than 50kbps), the achieved BER is not quite satisfactory (i.e., higher than

20%). This is because when the digital modulation setting changes from QDPSK to

256DPSK, the number of data bits modulated by each phase increases, which narrows

the di↵erence between adjacent phases. This makes the data bits modulated in phase

values highly possible to be misjudged. However, depending on the type of transmitted

files, human perception is not always consistent with the BER. Figure 5.10 shows two

received images under 64DPSK and 256DPSK respectively. We can find that although

the BER under 256DPSK is larger than that under 64DPSK, the received image under

256DPSK is clearer than that under 64DPSK, as shown in Figure 5.10(c) and 5.10(b)

respectively. This is because each pixel of the grayscale image contains 8-bit data. In

256DPSK, every 8-bit data is modulated with one phase. Hence, the errors only in-

duce in a pixel itself without the a↵ecting other pixels, which makes the received image

clearer for human perception. Based on this observation, BatComm can use specific

type of digital modulation scheme for specific file transmission (e.g., 256DPSK for 8-bit

grayscale image transmission) to further improve the throughput without significant

loss of user experience.
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Figure 5.11: BER of BatComm under di↵erent (a) sampling rates and receiver devices
(b) AM carrier frequencies.

5.6.6 Impact of Receiver Devices and Sampling Rate

To ensure that BatComm is capable of transmitting data to most mobile devices,

we evaluate the performance of our system using three mobile devices (i.e., Galaxy S6,

Galaxy Note 4, and a Samsung Tab P7510) as receivers with di↵erent sampling rate

(i.e., 44.1kHz and 48kHz). According to Nyquist theorem, di↵erent sampling rates

lead to di↵erent bandwidth for communication, which a↵ects the throughput. Specifi-

cally, the throughput of BatComm achieves 34.13kbps and 30.01kbps under 48kHz and

44.1kHz sampling rate, respectively. The BERs of our system under di↵erent receiver

sampling rates are shown in Figure 5.11(a). We observe that the comparable low BERs

of these device models can be achieved under di↵erent sampling rates. Specifically, the

overall BERs for the three receiver models are 5.1% and 5.0% for 48kHz and 44.1kHz

sampling rate, respectively. These results demonstrate that BatComm is capable for

most commercial o↵-the-shelf mobile devices.

5.6.7 Impact of AM Carrier Frequency

As mentioned in Section 5.4.3, due to the limited frequency response of ultrasound

speaker, the ultrasound carrier frequency in AM a↵ects the performance of acoustic

communication system. Since the AM carrier frequency fc should satisfy fc � 48kHz



127

to avoid the interference between ultrasound signal and automatically demodulated

signals, we evaluate the performance of BatComm under di↵erent carrier frequencies

that larger than 48kHz. Figure 5.11(b) shows the BER of BatComm under di↵erent

AM carrier frequencies. We can see that the BER increases as the AM carrier frequency

increases. This is because the response of ultrasound speaker decreases as the signal

frequency increases, which leads to a poorer SNR of the received signal. This result is

consistent with our theoretical analysis. It can be also observed from Figure 5.11(b)

that the di↵erence on BERs under di↵erent transmitter setups is less than 1%, which

exhibits similar results with Figure 5.7(a).

5.7 Discussion

Using Dual Microphones to Improve Performance. In this work, we use

the primary microphone of the mobile device (receiver) to pick up ultrasound signals

for receiving data bits. However, most commercial mobile devices are equipped with

multiple microphones, which are used for stereo recording and noise reduction. Due to

di↵erent deployment positions of the microphones on the device, the signals recorded by

the microphones came from di↵erent propagation paths and contain di↵erent properties

of channel fading e↵ects, background noise levels, etc. It thus has great potential to

use multiple microphones to perform noise reduction (e.g., a previous work [115]) and

recording-quality calibration, so as to improve the acoustic communication performance.

We leave this in our future work.

Long-range Acoustic Communication. BatComm concentrates on using the

inaudible acoustic signals for short-range wireless communications, where the transmit-

ter and the receiver should be within several centimeters. Relying on the properties of

short-range and inaudibility, we believe it would reduce the privacy risks associated with

the acoustic communication. However, the capability of long-distance high-throughput

inaudible acoustic communication, which still remains unexplored, would greatly ex-

tend its possible applications. Existing work [116] demonstrates a potential long-range

inaudible voice attack, which can successfully convey voice command to Amazon Echo

and Google Home-like devices within a 25ft range. Toward this end, our future work
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is interested in providing the high-throughput, inaudible and long-range acoustic com-

munication to extend the application scenarios.

5.8 Conclusion

In this work, the proposed system, BatComm, integrates OFDM and AM techniques

with the non-linearity of microphone to achieve the high-throughput and inaudibility

for the acoustic communication simultaneously. The combination of OFDM and AM

under the non-linearity induces an unrelated residual signal, which leads to significant

errors in the communication. To eliminate the residual signal, BatComm modifies

the OFDM symbol waveform before AM to counteract the signal and improve the

performance. Moreover, to mitigate the interference in practical scenarios, a series of

interference reduction techniques (e.g., DPSK digital modulation, pilot-based channel

estimation, BCH error correction code, interleaving) are integrated into BatComm for

improving the robustness. Extensive experiments demonstrate that BatComm can

achieve a throughput as high as 47.49kbps, which is over 17⇥ higher than the existing

acoustic communication solutions.
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Chapter 6

Related Work

In this chapter, we present the related research work and compare our approaches

with the others. We first review existing studies to perform sleep monitoring and

tracking vital signs (i.e., breathing and heart rates) in Section 6.1. We then discuss

existing studies on user authentication in Section 6.2. We further review the existing

e↵orts on keystroke recognition in Section 6.3. Finally, in Section 6.4, we study the

previous work on short-range acoustic communication.

6.1 Fine-grained Sleep Monitoring Leveraging O↵-the-shelf WiFi

Breathing rate, heart rate and statistics of sleep events are important indicators for

evaluating one’s sleep quality, stress level and various health conditions. In general, the

methods used to track such information during sleep can be categorized into four groups:

dedicated sensor based, smartphone and wearable sensor based, touch-free sensor based

and RF signal based.

Traditional approaches use dedicated sensors to measure vital signs during sleep.

For example, Polysomnography (PSG) [4] measures body functions including breath-

ing rate, eye movements (EOG), heart rhythm (ECG) and muscle activity by attach-

ing multiple sensors to a patient. Such systems incur high cost and are usually lim-

ited to clinical usage. Recent advances of smartphones and wearable sensors have

enabled in-home sleep monitoring by utilizing the built-in accelerometer and micro-

phone [117, 118, 11, 12]. These methods mainly provide coarse-grained monitoring

including the detection of body movements, snoring, or regular sleep events, and are

not able to monitor breathing rate, which is a critical indication of sleep irregularity

such as sleep apnea. They also require users to place smartphones close-by and wear
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sensors during sleep. Recent smartphone based approaches [119, 120] can track breath-

ing using either earphone or acoustic FMCW (frequency modulated continuous wave)

on smartphones. Moreover, a more direct solution Zephyr [121] uses accelerometer and

gyroscope measurements from a standard smartphone held on a person’s chest for respi-

ratory rate estimation. However, these solutions cannot provide the information of heart

rate and they are also require users to place smartphones close-by even on the users’

chest while asleep. Touch-free sensor based solutions either use the sensors attached to

the mattress [75] or install a camera to capture the chest movement for breathing rate

estimation [122]. These systems however require professional installations and cannot

estimate heart rate.

Most related to our work is the RF signal based monitoring mechanisms, such as the

use of Doppler radar [5], ultra-wideband [6], Frequency Modulated Continuous Wave

(FMCW) radar [8, 7] or Received Signal Strength (RSS) [9, 10, 123] for monitoring

the vital signs of breathing rate. In particular, these mechanisms [5, 6, 7, 8] rely on

specialized hardware including Universal Software Radio Peripheral (USRP), FMCW

radar and Doppler radar. These systems incur high cost and high complexity, making

them impractical for large scale deployment. N. Patwari et al. [9, 10] use received sig-

nal strength (RSS) measurements (e.g., using 16 frequency channels in IEEE 802.15.4)

extracted from wireless sensor nodes to detect the breathing rate. Their approaches

require additional wireless network infrastructure and high-density placement of sensor

nodes. UbiBreath [123] can track a user’s breathing rate and detect apnea using RSS

measurements from WiFi-enabled devices. However the coarse-grained channel infor-

mation of RSS is not able to capture the heart rate. Additionally, Phuc et al. use a

specialized radar (i.e., iMotion radar [124]) to capture the subtle phase changes of the

continuous 2.4 GHz wave signal, which are associated with a user’s body movements

caused by breathing, to estimate the user’s breathing volume [125]. BodyScan [126] can

recognize a diverse set of human activities while also estimating the user’s breathing

rate, by analyzing the Channel State Information (CSI) of the radio signals transmit-

ted/received by two designed wearable devices worn on the user’s hip and wrist.
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Di↵erent from the previous work, our system re-uses existing WiFi network for track-

ing vital signs of breathing and heart rates concurrently without dedicated/wearable

sensors or additional wireless infrastructure. By exploiting fine-grained channel state in-

formation provided by o↵-the-shelf WiFi devices, our system captures both the breath-

ing rate as well as heart rate. Our system thus performs device-free, continuous fine-

grained vital signs monitoring without any additional cost. It has the potential to be

widely deployed in home and many other non-clinical environments.

6.2 Towards Finger-input Authentication on Ubiquitous Surfaces via

Physical Vibration

User authentication becomes a critical step under the growing privacy concerns. Tra-

ditional user authentications utilize text-based passwords [18]. To ensure that a user’s

password cannot be easily guessed, the user has to memorize long strings of random

characters, making it inconvenient [20]. Graphical passwords are proposed to ease the

memory burden by letting users choose their pre-selected images from random choices

of pictures [19, 20, 22] or Cued Clicked Points (CCP) in a sequence of images [127].

Additionally, grid lock pattern based approaches [21, 128] have been widely adopted to

keep the user’s mobile devices protected. Recent graphical authentication methods can

resist shoulder surfing attacks by utilizing the Convex Hull Click Scheme [129] or the

eye-gaze version of CCP [130]. However, these strategies eventually perform the authen-

tication based on the knowledge of the passwords (e.g., text-based, image-based and

lock pattern-based) and cannot tell whether the password is entered by the legitimate

user or not.

To ensure that the secret inputs used for authentication are physically from the le-

gitimate user, biometrics-based schemes (e.g., fingerprints [24], iris patterns [23], retina

patterns [25], and face [26]) have been drawn considerable attention recently. However,

physiological biometrics are sensitive personal information, which may involve privacy

concerns, thus are not widely accepted. To reduce the privacy concerns, a compromised

approach is to authenticate users based on their behavioral characteristics, including



132

unique keystroke dynamic [131], mouse movements [132], and gait patterns [133]. Al-

though these approaches are less sensitive in terms of privacy, they are designed for

continuous user verification during the period that the user operates the keyboard,

moves a mouse or takes a walk, rather than one-time authentication.

To provide authentication to the emerging smart access systems needed by corpo-

rate facilities, apartment buildings, hotel rooms, and smart homes, techniques involving

intercom [134], camera [135], access card [136] and fingerprint [24] have been explored.

For example, KinWrite [135] uses Kinect, a vision-based platform, to capture the user’s

3D handwriting patterns for authentication. These approaches usually involve expen-

sive hardware, complex installation process, and diverse maintenance e↵orts. Recent

studies successfully combine 2D handwriting and behavior features such as correspond-

ing writing pressure, writing speed, and correlation between multiple fingers on touch

screens to provide enhanced security [27, 28, 29]. The limitation is that the authenti-

cation relies on touch screens, which may su↵er from smudge attacks [30] and are not

always available in smart access systems. Toward this end, we propose VibWrite that

extends the authentication process beyond touch screens to any solid surface leveraging

vibration signals. VibWrite will have the authentication capability in a broad array

of applications including entry access (e.g., smart building, car doors) and supporting

customized services in appliances and devices at smart homes. The authentication pro-

cess combines password and human physical traits, and supports three types of secret

independently including PIN, lock pattern, and gesture input for emerging smart access

systems.

6.3 Snooping Keystrokes with mm-level Audio Ranging on a Single

Phone

There have been active research e↵orts in keystroke recognition based on the acoustic

emanation or vibration of the keystroke [36, 38, 39, 40, 37, 137, 138, 139, 41]. Acoustic

emanation based approaches[36, 38, 39, 40] mainly rely on the observation that each key

produces unique acoustic signal when typed, whereas the vibration based methods [137,
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138, 139, 41] capture the correlation between the vibration of the keystroke and the

location of the keystroke occurred. Vibration based methods all require training e↵orts

to label the keystrokes and usually have less recognition accuracy than that of acoustic

emanation based approaches.

In particular, Asonov et al. [36] observe that the sound of keystrokes di↵ers slightly

from key to key and build a supervised learning based approach to recognize keystrokes.

This problem is then revisited by Zhuang et al. [38] through adding the language mod-

eling to boost the English text recognition. Berger et al. [39] propose a dictionary-based

approach leveraging the observation the keystroke sounds correlate to their physical po-

sitions on the keyboard. UbiK [37] proposes to locate the location of keystrokes made

on solid surfaces leveraging multi-path fading with moderate training e↵orts. More

recently, Zhu et al. [40] proposes to utilize microphones on three phones to identify the

keystroke of nearby keyboard. The requirements of three phones and the achieved accu-

racy (i.e., 72.2%) make their approach less feasible for real attack scenarios. Comparing

to the above research e↵orts, our approach is able to achieve high keystroke recognition

accuracy by using a single phone without any training.

Another body of related work is smartphone based localization or ranging using

acoustic signals [32, 34, 33, 35, 31, 140, 141, 142, 143, 144, 145, 146]. Beepbeep [32]

and SwordFight [34] propose phone-to-phone ranging systems that can achieve cen-

timeter level accuracy. Qiu et al. [33] develops a 3D continuous localization system for

phone-to-phone scenarios with about 10 cm accuracy. The above work however requires

application-level communication between two involved phones. Yang et al. [35] intro-

duces an acoustic relative-ranging system that classifies phone’s position inside the car.

This approach relies on customized beep sound for acoustic signal detection. Tarzia et

al. [31] introduces a technique based on ambient sound fingerprint achieve room-level

accuracy. Constandache et al. [140] deploys extra acoustic infrastructure inside the

building for correcting users’ movement traces captured by the accelerometer and com-

pass. In our work, we exploit dual microphones on smartphone to locate the keystroke

with high accuracy without customized beep sound or phone-to-phone communication.
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6.4 High-throughput and Inaudible Acoustic Communication with

Non-linearity of Microphones

Audible Acoustic Communication. Early work [53] evaluates the impact of dig-

ital modulation technique, such as amplitude shift keying (ASK) and frequency shift

keying (FSK), on human perception and achieves a human-pleasant communication

with throughput up to 400bps. Moreover, Dhwani [55] uses self-jamming coupled with

self-interference cancellation at the receiver to provide a secure acoustic communica-

tion channel between the devices, which achieves a throughput of 2.4kbps. Additionally,

PriWhisper [54] achieves a secure audible acoustic communication, with around 1kbps

throughput, using FSK and a jamming technique. However, all of the aforementioned

studies directly utilize audible frequency band for communication, which raise distur-

bance to humans and are also vulnerable to the interference of ambient noises.

Inconspicuous Acoustic Communication. To improve user experience, another

body of works embeds the data underlying the daily sound for acoustic communications.

For instance, Matsuota et al. [56] embed data bits into a piece of music imperceptibly

through OFDM multiplexing, which achieves around 40bps throughput. Yun et al. [58]

develop a modulated complex lapped transform (MCLT) based approach and achieve

around 600bps throughput. In addition, Dolphin [57] implements a dual-channel acous-

tic communication, i.e., transmitting both daily sound and underlying data simultane-

ously. Specifically, Dolphin applies OFDM to modulate data on high-frequency carriers

(i.e., 8-20kHz) to embed the data on acoustic signals, and then utilizes the masking

e↵ects of human auditory system to transmit the OFDM-modulated data and daily

sounds simultaneously without arousing human perception. The throughput achieved

in Dolphin is around 500bps. These approaches hide the data into daily sound, making

them not always applicable and still annoying to humans in some cases.

Inaudible Acoustic Communication. To achieve inaudible acoustic communi-

cation, existing studies use near-ultrasound band (i.e., 18-20kHz). Chirp [50] demon-

strates that the near-ultrasound chirp signal can be used for acoustic communication

through chirp binary orthogonal keying technique. Moreover, Ka et al. [51] further
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design a chirp quaternary orthogonal keying-based approach to realize acoustic com-

munication between TVs and mobile devices leveraging near-ultrasound chirp signals.

However, these studies can only achieve a low communication throughput (i.e., 15-

16bps). Additionally, U-Wear [52] implements a near-ultrasound acoustic communica-

tion for wearable devices. This work can achieve a throughput of 2.76kbps by employing

Gaussian minimum-shift keying technique. However, due to the limited frequency band

for acoustic communication, these aforementioned studies can only achieve a relatively

low throughput, which is unsatisfactory for many emerging applications.

Ultrasound Recording with COTS Microphones. Typically, ultrasound signal

can only be recorded by specialized hardware [147] due to the limited sampling rate

of the mobile devices’ built-in microphones. However, recent studies [148, 149] reveal

the non-linearity of microphones, which shows the ultrasound recording capability of

these microphones of mobile devices. Specifically, Backdoor [148] demonstrates that

ultrasound can be recorded by microphones with the non-linearity, which is applicable

for wireless communication. In addition, Dolphin Attack [149] shows the feasibility of

launching inaudible-voice-command attacks on speech recognition systems (e.g., Apple

Siri, Google Now). In particular, regular voice commands are modulated on ultrasound

carriers to achieve inaudibility. Leveraging the non-linearity of microphones, voice

commands can be demodulated from the ultrasound signals, and further recognized by

the speech recognition systems.

Di↵erent from existing approaches, this work e↵ectively uses both OFDM multi-

plexing and the non-linearity of the mobile device’s inbuilt microphone, and proposes a

high-throughput inaudible acoustic communication system for general mobile devices.

The proposed system significantly improves the communication throughput (i.e., over

17⇥ higher than the existing solutions) while maintaining a low bit error rate.
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Chapter 7

Dissertation Conclusion

In conclusion, this dissertation investigates possible applications and potential se-

curity breach with pervasive sensing in future Internet of Things. Specifically, we make

the following contributions:

We first showed that the existing WiFi network of IoT can be re-used to capture

vital signs of breathing rate and heart rate through using only one AP and a single

WiFi-enabled IoT device. Such an approach can also be extended to non-sleep sce-

narios when the user is stationary. Our proposed system extracts fine-grained channel

state information (CSI) from o↵-the-shelf WiFi device to detect the minute movements

and provide accurate breathing and heart rates estimation concurrently. Moreover,

we developed algorithms that have the capability to track breathing rates of a single

person as well as two-person in bed cases, which cover typical in-home scenarios. The

proposed system also have the capability to distinguish di↵erent sleep events and track

people’s sleep postures, which can help people understand their sleep status/quality.

Extensive experiments in both lab and two apartments over a three-month period show

that our system can achieve comparable or even better performance as compared to

existing dedicated sensor based approaches.

We then developed the first vibration-signal-based finger-input authentication sys-

tem, which can be deployed on any solid surface for smart access and IoT systems (e.g.,

apartment entrances, car doors, electronic appliances and corporate desks). VibWrite

captures intrinsic human physical characteristics presenting at specific location/surface

for authentication through extracting unique features (e.g., frequency response and cep-

stral coe�cient) in the frequency domain. The proposed system has the flexibility to

support three types of secrets (i.e., PIN, lock pattern, and gesture) to meet di↵erent
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application requirements by developing new techniques of virtual grid point deriva-

tion, featured-based dynamic time warping (DTW) and distribution analysis based on

earth mover’s distance (EMD). VibWrite is implemented using a single pair of low-

cost vibration motor and receiver, which involves minimum hardware installation and

maintenance. We performed extensive experiments including authenticating legitimate

users and modeling various types of attacks. The results demonstrate that VibWrite

can e↵ectively verify legitimate users with over 95% accuracy within two trials and less

than 3% false positive rate.

We further demonstrated that a single o↵-the-shelf phone can recover keystrokes by

exploiting mm-level acoustic ranging and fine-grained acoustic features. We developed

a training-free approach on a smartphone that does not require a linguistic model, al-

lowing it to recover random keystrokes (e.g., random passwords). We exploited recent

mobile audio hardware advances to stretch the limits towards mm-level audio localiza-

tion accuracy. Moreover, we developed a keystroke snooping framework, which leverages

hardware advances (i.e., stereo recording with high sampling rate) of o↵-the-shelf mo-

bile devices to narrow down possible positions of a keystroke. The framework further

exploits the geometry-based information (i.e., TDoA) and unique acoustic signatures of

keystrokes to ping-point their positions on a keyboard. We conducted extensive exper-

iments with three kinds of keyboards to show that an o↵-the-shelf phone with 48kHz

microphone sampling rate can accurately identify a set of keystrokes with over 85%

accuracy. With higher sampling rate (e.g., 192kHz), the accuracy could be increased

to over 94% accuracy. Even for a single keystroke input, our system can achieve 97%

accuracy of identifying keystrokes in the top-3 candidate keys with 48kHz sampling

rate. We believe that these are the first results to raise serious concerns about acoustic

password snooping.

Finally, we developed the first high-throughput inaudible acoustic communication

system, BatComm, applicable to general mobile and IoT devices. The achieved through-

put (i.e., as high as 47.49kbps) is over 17⇥ higher than existing acoustic communication

solutions. In order to maximize the throughput while keeping inaudibility, we theoreti-

cally modeled the non-linearity of the device’s inbuilt microphone and innovatively used
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OFDM multiplexing technique together with the non-linearity model to transmit data

over multiple narrow-band channels in an ultrasound frequency band. Relying on the

non-linearity of microphones, mobile devices could recover the modulated data on the

entire audio frequency band (i.e., < 24kHz). We proposed a residual-signal elimination

scheme, which elaborately modifies the analog OFDM symbol waveform, to mitigate

the e↵ect caused by the unrelated residual signals produced by AM. To achieve ro-

bust high-throughput inaudible acoustic communication, the proposed system explores

microphone’s non-linearity and integrates a series of interference reduction techniques

including DPSK modulation, interleaving, BCH codes, pilot-based channel estimation,

etc. Extensive experiments in various realistic settings demonstrate that BatComm can

achieve a high-throughput and low bit error rate (BER) (e.g., 47.49kbps with 6.3% BER;

25.37kbps with 1.5% BER and 17.58kbps with 0.4% BER) while keeping inaudibility,

which outperforms all the state-of-the-art solutions.
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