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ABSTRACT OF THE DISSERTATION

Enabling High-quality Mobile Immersive

Computing through Edge Support

by Luyang Liu

Dissertation Director: Marco Gruteser

Emerging Mobile Immersive Computing applications, such as Virtual Reality

(VR), Augmented Reality (AR), and Mixed Reality (MR), are changing the way

human beings interact with the world. Such systems promise to provide un-

precedented immersive experiences in the fields of video gaming, education, and

healthcare. However, several key processes, such as rendering and object detec-

tion, are highly computational intensive, which make them extremely hard to run

on mobile devices. Offloading these bottleneck processes to the edge or cloud is

also very challenging due to the stringent requirements on high quality and low

latency.

In order to achieve high quality and low latency performance of mobile immer-

sive computing applications on mobile thin clients, the system requires to finish

the entire offloading pipeline within very short end-to-end latency. Offloading

Vision tasks to the edge cloud typically involves several main processes: Sens-

ing, Uplink Transmission, Processing, and Downlink Transmission. These four

processes form a round trip from the mobile device to the edge cloud and back
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to mobile devices. Compared to traditional offloading approaches that execute

these processes in a sequential way, our key contribution is to design new video

streaming and processing pipelines that can significantly reduce the offloading

latency and improve vision quality of VR and AR systems.

High-quality VR systems generate graphics data at a data rate much higher

than those supported by existing wireless-communication products such as Wi-

Fi and 60GHz wireless communication. The necessary image encoding, makes

it challenging to maintain the stringent VR latency requirements. To address

this issue, we introduces an end-to-end untethered VR system design and open

platform that can meet virtual reality latency and quality requirements at 4K

resolution over a wireless link.

Most existing Augmented Reality (AR)/Mixed Reality (MR) systems are able

to understand the 3D geometry of the surroundings but lack the ability to detect

and classify complex objects in the real world. Such capabilities can be enabled

with deep Convolutional Neural Networks (CNN), but it remains difficult to exe-

cute large networks on mobile devices. Offloading object detection to the edge or

cloud is also very challenging due to the stringent requirements on high detection

accuracy and low end-to-end latency. The long latency of existing offloading tech-

niques can significantly reduce the detection accuracy due to changes in the users

view. To address the problem, we design a system that enables high accuracy

object detection for commodity AR/MR systems running at 60fps.

Furthermore, we build EdgeSharing, an object sharing system leveraging large

computational resources at the edge cloud. Beyond the capability of providing ob-

ject detection service to nearby mobile clients, EdgeSharing holds a real-time 3D

feature map of its coverage region on the edge cloud and uses it to provide accurate

localization and object sharing service to the client devices passing through this

region. By sharing a moving object’s location between different camera-equipped

devices, it effectively extends the vision of participants beyond their field of view.
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We further propose several optimization techniques to increase the localization

accuracy, reduce the bandwidth consumption and decrease the offloading latency

of the system. The result shows that EdgeSharing is able to achieve high qual-

ity localization and object sharing accuracy with a low bandwidth and latency

requirement.
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Chapter 1

Introduction

1.1 Background and Motivation

Emerging Mobile Immersive Computing applications, such as Virtual Reality

(VR), Augmented Reality (AR), and Mixed Reality (MR), are changing the way

human beings interact with the world. Such systems promise to provide un-

precedented immersive experiences in the fields of video gaming, education, and

healthcare. Reports forecast that 99 million Virtual Reality (VR) and Augmented

Reality (AR) devices will be shipped in 2021 [1], and that the market will reach

108 billion dollars [2] by then.

To achieve an immersive experience, AR/VR headsets are required to have

high computational capability. Several key processes within the entire processing

pipeline are highly computational intensive, which make it extremely challenging

to run such systems on commercial mobile thin clients. In particular, high-quality

AR/VR systems require huge amount of computation resources to render life-like

virtual scenes or overlays that are indistinguishable from physical reality, and

AR or MR systems further require to have a comprehensive understanding of the

surroundings by running high computational vision tasks.

Existing AR/VR systems can be divided into two categories: Light weight

and High-quality systems, as shown in Figure 4.1. Light weight AR/VR systems

(e.g. Google Daydream and Magic Leap One) run simple AR/VR applications

locally on power efficient and light-weight mobile SoCs. These systems provide

high mobility to users but the quality is limited by the capability of the headset.
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On the other hand, high-quality AR/VR systems (e.g. HTC Vive and HoloLens)

leverage high performance graphic processing units to achieve immersive graphic

rendering and accurate vision processing. However, such systems typically provide

very poor mobility to users. They may either connect to a powerful desktop PC

or equip with heavy computation resources on board.

Figure 1.1: Light weight vs High quality AR/VR devices.

High-quality and light weight AR/VR is highly desirable but extremely chal-

lenging. While offloading these bottleneck processes to the edge or cloud through

wireless network is a feasible solution, it is still very challenging due to the strin-

gent requirements on high quality and low latency for such applications. Offload-

ing vision tasks to the edge cloud requires transmitting huge amount vision data

between the server and client through the wireless link. Figure 1.2 illustrates

the network bandwidth consumption of VR, AR, and MR. In the case of edge

VR (or untethered VR) system, the VR headset sends its orientation data to the

edge cloud, and the edge cloud uses this information to render high quality VR

frames leveraging its powerful graphic processors. Then, the edge cloud transmits

the render frame back to the VR headset to display, which consumes large net-

work resources on the downlink. Compare to VR system, AR system consumes

more network resources on the network uplink. AR system is requires to have a
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more comprehensive understanding our the surroundings. Therefore, it needs to

transmit the video frame captured by the camera up to the edge cloud for mul-

tiple detection tasks, while the edge cloud only transmits detection results back

to the headset. In addition, as AR system’s requirement of graphics approaches

the complexity of VR, the Mixed Reality system further requires the edge cloud

to send high quality visual elements back to the headset as well, which generate

large traffic on both uplink and downlink of the network. Such large date volume

generates long latency

Figure 1.2: Network bandwidth consumption of VR, AR, and MR.

However, it is very challenging to support these immersive computing appli-

cations on most today’s wireless networks, e.g. WIFI, LTE, and even Millimeter

waves. First, Designing a high-quality untethered VR system is extremely chal-

lenging due to the stringent requirements on data throughput and end-to-end

latency. Assuming we use three bytes to encode the RGB data of each pixel,

for HTC Vive and Oculus Rift with a frame rate of 90Hz and a resolution of

2160x1200, the raw data rate is 5.6Gbps, much higher than the data rate (e.g.,

less than 2Gbps) supported by existing wireless-communication products such as
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Wi-Fi and 60GHz wireless communication. For future VR targeting at a reso-

lution of 4K UHD or even 8K UHD, the required data rate would be as high

as 17.9Gbps and 71.7Gbps, respectively. To address the challenge of high data

throughput, data compression is necessary. However, high-quality VR also re-

quires a very tight total end-to-end (i.e., motion-to-photon) latency of 20-25ms [3]

to reduce motion sickness. That is, once the HMD moves, the system must be

able to display a new frame generated from the new pose of the HMD within

20-25ms. As compressing and decompressing frames introduce extra latency, it is

even more challenging to meet the end-to-end latency requirement.

Second, For AR/MR system, offloading object detection to the edge or cloud

is also very challenging due to the stringent requirements on high detection ac-

curacy and low end-to-end latency. High quality AR devices require the system

to not only successfully classify the object, but also localize the object with high

accuracy. Even detection latencies of less than 100ms can therefore significantly

reduce the detection accuracy due to changes in the user’s view—the frame lo-

cations where the object was originally detected may no longer match the cur-

rent location of the object. In addition, as mixed reality graphics approach the

complexity of VR, one can also expect them to require less than 20ms motion-

to-photon latency, which has been found to be necessary to avoid causing user

motion sickness in VR applications [3]. Furthermore, compared to traditional

AR that only renders simple annotations, mixed reality requires rendering virtual

elements in much higher quality, which leaves less latency budget for the object

detection task.

In addition, existing vision based object detection methods are only feasi-

ble for objects within the device’s field of view, which largely limits the user’s

awareness of the surrounding environment. For example, many accidents occur

at intersections involve visual occlusions of cars. Accurately sharing objects be-

tween moving clients is extremely challenging due to the high accuracy and low
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latency requirement for localizing both the client position and positions of its

detected objects. Compared to GPS and other inertial sensing methods that are

widely recognized to be less accurate in dense city scenarios, visual odometry so-

lutions (e.g. SLAM) are more feasible in such situations where rich visual features

exist. These solutions typically determine the position and orientation of a client

device by analyzing the associated vision inputs (e.g. camera image, Lidar depth

map, etc.) with a map constructed by 3D features. However, these solutions

require large amounts of computation and storage resources on the end devices

to store the large feature map and run computational intensive tasks on captured

frames, which are less common to appear on commercial vehicles or smart de-

vices. In addition, in order to continuously benefit from the evolving localization

and detection algorithms, it is more feasible to run those intensive algorithms on

the cloud, which can easily expand to large amounts of computation resource.

However, offloading vision tasks to the cloud can incur long transmission delays,

which make the feedback less useful to the mobile nodes.

To address these challenge, we build our solutions based on the following

hypothesis: Innovative streaming and processing algorithms are able to enable

high quality and low latency mobile immersive computing applications, such as

VR/AR/MR and other vision analytics, on mobile thin clients with the support

of commercial edge computation platforms and wireless connections.

1.2 Thesis Contribution

My thesis tackles these challenges and seeks to enable high quality and low la-

tency mobile immersive computing applications on mobile thin clients with the

support of commercial edge computation platforms and existing wireless connec-

tions. Offloading Vision tasks to the edge cloud typically involves several main
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Figure 1.3: Offloading pipeline of VR/AR/MR.

processes: Sensing, Uplink Transmission, Processing, and Downlink Transmis-

sion. As shown in Figure 1.3, these four processes form a round trip from the

mobile device to the edge cloud and back to mobile devices. Compared to tradi-

tional offloading approaches that execute these processes in a sequential way, our

key contribution is to design new streaming and processing algorithm that can

significantly improve the quality while reduce the offloading latency of VR and

AR system.

1.2.1 Contribution Summary

Overall, the key systems and contributions of this thesis are:

• An end-to-end untethered VR system design that can meet virtual reality

latency and quality requirements at 4K resolution over a wireless link.

• An AR system that enables high accuracy object detection for commodity

AR/MR system running at 60fps.

• An edge assisted object sharing platform that provides device localization

and object sharing services to travelers leveraging computational resources

at the edge cloud.
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1.2.2 Designing a High-quality Untethered VR System

with Low Latency Remote Rendering

We first introduces an end-to-end untethered VR system design that can meet

virtual reality latency and quality requirements at 4K resolution over a wire-

less link. This system employs a Parallel Rendering and Streaming mechanism

to reduce the add-on streaming latency, by pipelining the rendering, encoding,

transmission and decoding procedures. In addition, we introduce a Remote VSync

Driven Rendering technique to minimize display latency. We implement an end-

to-end remote rendering platform on commodity hardware over a 60Ghz wireless

network, and show the system can support current 2160x1200 VR resolution at

90Hz with less than 16ms end-to-end latency, and 4K resolution with 20ms la-

tency, while keeping a visually lossless image quality to the user. Furthermore,

our system outperforms previous untethered VR system [4, 3] in all four aspects:

end-to-end latency, frame rate, visual quality, and resolutions.

1.2.3 Edge Assisted Real-time Object Detection for Mo-

bile Augmented Reality

We design an AR system that enables high accuracy object detection for com-

modity AR/MR system running at 60fps. To achieve this, we propose a system

that significantly reduces the offloading detection latency and hides the remain-

ing latency with an on-device fast object tracking method. To reduce offloading

latency, it employs a Dynamic RoI Encoding technique and a Parallel Stream-

ing and Inference technique. The Dynamic RoI Encoding technique adjusts the

encoding quality on each frame to reduce the transmission latency based on the

Regions of Interest (RoIs) detected in the last offloaded frame. It provides higher

quality encodings in areas where objects are likely to be detected and uses stronger

compression in other areas to save bandwidth and thereby reduce latency. The
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Parallel Streaming and Inference method pipelines the streaming and inference

processes to further reduce the offloading latency. On the AR device, the system

decouples the rendering pipeline from the offloading pipeline instead of waiting

for the detection result from the edge cloud for every frame. To allow this, it

uses a fast and lightweight object tracking method based on the motion vector

extracted from the encoded video frames and the cached object detection results

from prior frames processed in the edge cloud to adjust the bounding boxes or key

points on the current frame in the presence of motion. Taking advantage of the

low offloading latency, we find this method can provide accurate object detection

results and leave enough time and computation resources for the AR device to

render high-quality virtual overlays. Besides, we also introduce an Adaptive Of-

floading technique to reduce the bandwidth and power consumption of our system

by deciding whether to offload each frame to the edge cloud to process based on

the changes of this frame compare to the previous offloaded frame. The result

shows that the system can improve the detection accuracy by 20.2%-34.8% for the

object detection and human keypoint detection tasks, and only requires 2.24ms

latency for object tracking on the AR device. Thus, the system leaves more time

and computational resources to render virtual elements for the next frame and

enables higher quality AR/MR experiences.

1.2.4 Designing an Augmented Intersection

We further build EdgeSharing, a first collaborative localization and object sharing

system leveraging the resources of an edge cloud platform and the visual inputs

from participating mobile clients (e.g., vehicles and pedestrians). Beyond the

capability of providing object detection service to nearby mobile clients, Edge-

Sharing holds a real-time 3D feature map of its coverage region on the edge cloud

and uses it to provide accurate localization and object sharing service to the

client devices passing through this region. In particular, EdgeSharing holds a
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3D feature map of its coverage region constructed from images and depth read-

ings from a dedicated data collection vehicle or crowdsourced from participating

clients. This 3D feature map is then used to provide accurate localization ser-

vices to the client devices passing through this region. Besides, EdgeSharing also

leverages the computation power on the edge cloud to detect object locations

on the images offloaded by participating clients. These locations are stored in a

sharing database and can be shared with other clients in the same region. With

EdgeSharing installed on the edge cloud, nearby vehicles are able to learn extra

object (e.g., traffic participant) locations from the edge cloud, which are outside

the vehicles field of view. This improves their situational awareness and safety.

To realize this, we propose several optimization techniques. In particular, we

propose a Context-Aware Feature Selection method to filter out potential moving

objects in the offloaded images to increase the localization accuracy. We also

introduce a Collaborative Local Tracking mechanism to significantly reduce the

bandwidth consumption of frame transmission by only offload selected keyframes

to the edge cloud, while using a lightweight local tracking method to keep track

of the location of the client and its detected objects on the end device. In ad-

dition, we design a parallel streaming and processing method to enable parallel

video streaming and cloud processing, which largely reduces the end-to-end la-

tency of EdgeSharing. The result shows that the system is able to achieve a mean

vehicle localization error of 0.2813-1.2717 meters, an object sharing accuracy of

82.3%-91.44%, and a 54.68% object awareness increment in urban streets and in-

tersections. In addition, the proposed optimization techniques are able to reduce

70.12% of bandwidth consumption and reduce 40.09% of the end-to-end latency.
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Chapter 2

Background

This thesis discusses how innovative streaming and processing algorithms are able

to enable high quality and low latency mobile immersive computing applications.

To better understand the background and challenges, we present background ma-

terial of (1) Mobile immersive computing, (2) Edge computing, and (3) Offloading

pipeline. More detailed related work sections are also provided in the remaining

chapters.

2.1 Mobile Immersive Computing

Emerging Mobile Immersive Computing applications, such as Virtual Reality

(VR), Augmented Reality (AR), and Mixed Reality (MR), promise to provide

unprecedented immersive experiences in the fields of video gaming, education,

and healthcare. Designing mobile VR/AR/MR system has also attracted strong

interest from both industry and academia.

Figure 2.1 shows differences between VR, AR and MR. Virtual Reality com-

pletely replaces reality with a virtual world, while seeks to let the user believe

the virtual world is a real one. Augmented Reality enhances reality by layering

information or virtual aspects over a direct view of actual reality. And Mixed

Reality further combines rendered interactive objects with the real environment.



11

Figure 2.1: Comparisons between VR, AR and MR

2.1.1 Virtual Reality

Existing VR systems can be divided into two categories: High-quality VR and

Light-weight VR systems. Due to the requirements of high quality and low la-

tency, most high-quality VR systems, such as HTC Vive [5] and Oculus Rift [6],

leverage a powerful desktop PC to render rich graphics contents at high frame

rates and visual quality. However, most of these solutions are tethered : they must

be connected to a PC via a USB cable for sending sensor data from the Head

Mounted Display (HMD) to the PC and an HDMI cable for sending graphics

contents from the PC back to the HMD. These cables not only limit the user’s

mobility but also impose hazards such as a user tripping or wrapping the ca-

ble around the neck. Standalone, portable VR systems such as Samsung Gear

VR [7] and Google Daydream [8] run VR apps and render graphics contents lo-

cally on the headset (or a smartphone slide in the headset). Those VR systems

allow untethered use but the rendering quality is limited by the capability of the

headset or smartphone. There has been extensive demand for such untethered

high-quality VR systems.
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2.1.2 Augmented / Mixed Reality

Augmented Reality, and in particular Mixed Reality systems enhance the real

world by rendering virtual overlays on the user’s field of view based on their

understanding of the surroundings through the camera. Existing mobile AR

solutions such as ARKit and ARCore enable surface detection and object pin-

ning on smartphones, while more sophisticated AR headsets such as Microsoft

HoloLens [9] and the announced Magic Leap One [10] are able to understand the

3D geometry of the surroundings and render virtual overlays at 60fps. These

AR headsets further promise to support an unprecedented immersive experience

called Mix Reality. Compared to tradition AR system, MR requires the system to

have a comprehensive understanding of different objects and instances in the real

world, as well as more computation resources for rendering high quality elements.

2.2 Edge Computing

While it remains challenge to achieve high quality VR/AR/MR experience on

existing mobile devices, edge computing provides a feasible way to overcome the

challenge. Compared to the traditional cloud computing that are far away from

the mobile devices, edge cloud are computation resources that lies on the edge of

the network. For example, a desktop PC can be the edge cloud at your home,

and a mini-datacenter connected to the base station can be the edge cloud of the

surrounding area. Most edge clouds lie just one hop away from the data producer

devices, so that it allow end devices to offload their high computational tasks to it

with very low latency. Edge computing has the potential to address the concerns

of response time requirement, battery life constraint, bandwidth cost saving, as

well as data safety and privacy.

There has been extensive works on enabling computational intensive appli-

cation with edge cloud offloading. MAUI [11] enables fine-grained energy-aware
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offload of mobile code to the edge infrastructures. Kahawai [12] improves graphics

quality of video games on mobile devices through edge offloading. Real-time video

analytics systems [13] can also benefit from the massive computation resources

on the edge cloud.

Recently, edge clouds also provide the potential to enable high quality mobile

immersive computing applications, such as VR, AR and MR. Several works [3, 4]

enables high quality VR system, while another group of work [14, 15, 16] enables

AR experience on mobile devices. However, most of previous works only aims to

optimize the latency on single process, but fail to consider the systematic way to

improve the performance of the entire offloading pipeline. As a result, most of

these system cannot achieve the latency and quality requirement for high-quality

VR/AR/MR system.

2.3 Offloading Pipeline

Offloading Vision tasks to the edge cloud involves several main processes: Sensing,

Uplink Transmission, Processing, and Downlink Transmission. In the case of

the Virtual Reality system, the mobile device senses its position and orientation

information and transmit it to the edge cloud through the wireless network link.

The edge cloud processes the data and renders the VR frames accordingly. Then

the frame is transmitted back to the mobile devices and display on the screen. For

Augmented and Mixed Reality system, the mobile device senses the surrounding

environment based on its camera, and transmits video frames to the edge cloud

to process. The edge cloud then applies various vision analysis techniques to

understand the frame and transmit the result back to the devices. To reduce the

network bandwidth consumption of video frame transmission, the system typically

uses video compression techniques to encodes the video frames on the sender side

and decodes them on the receiver side. These entire offloading pipeline provides
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us the opportunities to apply different optimization techniques and reduce the

offloading latency.
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Chapter 3

Designing a High-quality Untethered VR

System with Low Latency Remote Rendering

3.1 Introduction

Virtual reality systems have provided unprecedented immersive experiences in

the fields of video gaming, education, and healthcare. Reports forecast that 99

million Virtual Reality (VR) and Augmented Reality (AR) devices will be shipped

in 2021 [1], and that the market will reach 108 billion dollars [2] by then. Virtual

and augmented reality is also a key application driver for edge-computing and

high-bandwidth wireless networking research.

Existing VR systems can be divided into two categories: High-quality VR

and standalone VR systems. Due to the requirements of high quality and low

latency, most high-quality VR systems, such as HTC Vive [5] and Oculus Rift [6],

leverage a powerful desktop PC to render rich graphics contents at high frame

rates and visual quality. However, most of these solutions are tethered : they must

be connected to a PC via a USB cable for sending sensor data from the Head

Mounted Display (HMD) to the PC and an HDMI cable for sending graphics

contents from the PC back to the HMD. These cables not only limit the user’s

mobility but also impose hazards such as a user tripping or wrapping the cable

around the neck. Standalone, portable VR systems such as Samsung Gear VR [7]

and Google Daydream [8] run VR apps and render graphics contents locally on

the headset (or a smartphone slide in the headset). Those VR systems allow

untethered use but the rendering quality is limited by the capability of the headset
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or smartphone. There has been extensive demand for such untethered high-

quality VR systems.

Untethered high-quality VR is highly desirable but extremely challenging. Ide-

ally, the cables between the VR HMD and PC should be replaced by a wireless

link. However, even existing high-quality VR systems operate at 2160x1200 reso-

lution and 90Hz, which generates a data rate much higher than those supported

by existing wireless-communication products such as Wi-Fi and 60GHz wireless

communication. The necessary image encoding, makes it difficult to maintain

the stringent VR motion-to-photon latency requirements, which are necessary to

reduce motion sickness.

VR applications have motivated much wireless research to realize robust, high-

capacity connectivity, for example in the 60 GHz range. Most existing research

has independently focused on optimizing the wireless link [17, 18, 19, 20] or the

VR graphics pipeline [4, 3]. To enable high-quality VR on smartphones, Furion [4]

separates the rendering pipeline into tasks to render the image foreground and

tasks to render the image background, so that the background rendering tasks

can be offloaded over commodity Wi-Fi. Other emerging systems such as TP-

CAST [21] and DisplayLink [22] replace the HDMI cable with a wireless link to

enable untethered VR experience with remote rendering and streaming. How-

ever, none of them studied systems issues and optimization opportunities that

arise when combining rendering, streaming, and display. Furthermore, it is still

challenging to enable untethered VR for future 4K or 8K systems with framer-

ates larger than 90Hz. Additionally, we discover that displaying remote-rendered

frames on an HMD may also introduce extra latency due to the VSync driven

rendering and display policy.

To overcome these challenges and facilitate such research, we propose an open

remote rendering platform that can enable high-quality untethered VR with low

latency on general purpose PC hardware. It reduces the streaming latency caused
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by frame rendering, encoding, transmitting, decoding and display through a Par-

allel Rendering and Streaming Pipeline (PRS) and Remote VSync Driven Frame

Rendering (RVDR). PRS pipelines the rendering, encoding, transmission, and

decoding process. It also parallelizes the frame encoding process on GPU hard-

ware encoders. The RVDR technique carefully schedules the start time of sensor

acquisition and rendering new frames on the server side so that the result arrives

at the display just before the VSync screen update signal, thus reducing latency

caused by the display update.

To evaluate the system, we implemented the end-to-end remote rendering

platform on commodity hardware over a 60GHz wireless network. The result

shows that the system supports existing high-quality VR graphics with a latency

of less than 16ms. We further show promise to support future VR systems with

4K resolutions with a latency up to 20ms. To facilitate widespread use of this

platform, it is currently designed as a software system using only general-purpose

GPU and network hardware. Performance could also be further improved through

hardware implementations of key components.

The contributions of this work are:

• Quantifying component latency in an end-to-end wireless VR system and

identifying the impact of the screen refresh (VSync). §3.2

• Designing a pipeline of Parallel Rendering and Streaming to reduce the

streaming latency caused by encoding, transmitting and decoding the frames.

§3.4

• Developing a method of Remote VSync Driven Rendering to adjust the

timing of sensor data acquisition and rendering of a new frame based on the

screen refresh timing (VSync signal) on the client side. §3.5

• Implementing and evaluating an open end-to-end remote rendering and

streaming platform based on the system on commodity hardware over a
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60GHz wireless network. §3.6

• Showing that the platform can support the current 2160x1200 VR resolution

and the 4K resolution at 90Hz within 20ms latency over a stable 60GHz link

even without complex modifications of the rendering process. §3.7

3.2 Challenges and Latency Analysis

Designing a high-quality untethered VR system is extremely challenging due to

the stringent requirements on data throughput and end-to-end latency. Assuming

we use three bytes to encode the RGB data of each pixel, for HTC Vive and Oculus

Rift with a frame rate of 90Hz and a resolution of 2160x1200, the raw data rate

is 5.6Gbps, much higher than the data rate (e.g., less than 2Gbps) supported

by existing wireless-communication products such as Wi-Fi and 60GHz wireless

communication. For future VR targeting at a resolution of 4K UHD or even

8K UHD, the required data rate would be as high as 17.9Gbps and 71.7Gbps,

respectively.

To address the challenge of high data throughput, data compression is neces-

sary. However, high-quality VR also requires a very tight total end-to-end (i.e.,

motion-to-photon) latency of 20-25ms [3] to reduce motion sickness. That is, once

the HMD moves, the system must be able to display a new frame generated from

the new pose of the HMD within 20-25ms. As compressing and decompressing

frames introduce extra latency, it is even more challenging to meet the end-to-end

latency requirement.

Latency analysis. We use the following equations to model the end-to-end

latency of our proposed untethered VR system with remote rendering:

Te2e = Tsense + Trender + Tstream + Tdisplay (3.1)
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Tstream = Tencode + Ttrans + Tdecode (3.2)

Ttrans =
FrameSize

Throughput
(3.3)

Te2e is the total end-to-end latency in generating and displaying a new frame.

It consists of four parts: the time for the rendering server to retrieve sensor data

from the HMD (Tsense); the time for the rendering server to generate a new frame

(Trender); the time to send the new frame from the rendering server to the HMD

(Tstream); and the time for the HMD to display the new frame (Tdisplay).

Tstream is the extra latency introduced by cutting the cord of a tethered VR

system. It has three parts: the time to compress a frame on the rendering server

(Tencode); the time to transmit the compressed frame from the rendering server

to the HMD over a wireless connection (Ttrans); and the time to decompress the

received frame on the HMD (Tdecode). Ttrans is decided by the compressed frame

size and the data throughput of the wireless connection.

Tdisplay also introduces significant latency. In modern graphics systems, frame

displaying is driven by VSync signals that are periodically generated based on

the screen refreshing rate. If a frame misses the current VSync signal after it is

received and decoded on an HMD, it must wait in the frame buffer for the next

VSync signal before it can actually be displayed on the screen (see more details in

§3.5). For a frame rate of 90Hz, the average waiting time is 5.5ms. Such an extra

latency may significantly impact the performance of a high-quality untethered

VR system, and thus must be carefully mitigated as much as possible.

For the total 20-25ms budget of Te2e, Tsense is small (less than 400µs in our

system with a WiGig network). Trender may be 5-11ms depending on the rendering

load. With a Tdisplay of 5.5ms, we have less than 10ms left for Tstream, including

encoding, transmitting and decoding a frame, which makes it a very challenging

task to meet the latency requirement of high-quality VR.
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Figure 3.1: System architecture.

In this paper, we focus on minimizing Tstream to reduce the end-to-end la-

tency Te2e. This is mainly done through parallelizing frame rendering and frame

encoding by leveraging the hardware capability. We cannot change Tsense and

Trender. However, by carefully arranging the timing of rendering new frames with

the latest pose of the HMD, we are able to reduce the frame waiting time for

VSync signals, and thus reduce Tdisplay.

Next, we describe our system design and the key techniques on how to address

the challenges.

3.3 System Overview

Figure 4.4 shows the system architecture of our proposed untethered VR system

with remote rendering. At a high level, it has two parts connected through a

wireless link: an HMD as the client and a PC as the rendering server. The HMD
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client tracks the pose of the player and the timing of its VSync signals and sends

the recorded data to the rendering server. If the player uses extra controllers

to play the game, the client also sends the controller data to the server. Using

the data received from the client, the server renders new frames, compresses and

transmits them to the client. Upon receiving a new frame, the client decompresses

and displays it on the HMD. The wireless link can be WiFi or 60GHz wireless

communication such as WiGig. In our implementation, we use WiGig for its high

data throughput and low latency.

To reduce the latency of streaming frames from the rendering server to the

HMD client, we develop two key techniques. The first technique is Parallel Ren-

dering and Streaming (PRS). PRS takes advantage of the two-eye image rendering

nature in VR. Once the left eye image is rendered, PRS immediately sends it to

the hardware encoder for compression. At the same time, PRS continues to render

the right eye image, enabling simultaneous rendering and encoding. PRS further

divides the image of each eye into two slides for parallel four-way encoding to

fully utilize the hardware encoding capability. After a frame slide is encoded, it

is immediately sent to the wireless link for transmission, without waiting for the

whole frame to be compressed. Similarly, once the HMD receives a frame slide,

it also immediately starts to decompress it, without waiting for the other frame

slides. Consequently, we achieve parallel frame rendering, encoding, transmission,

and decoding, and thus significantly reduce the latency.

The second technique is Remote VSync Driven Rendering (RVDR). The key

idea of RVDR is to reduce display latency by deciding when to acquire head

tracking sensor data and render a new frame based on the timing of the VSync

signals of the HMD client. To do so, the client keeps tracking the time of its

last VSync signal and the display delay of the last frame. Based on these timing

information, the rendering server decides whether to start earlier to render the

next frame so that the next frame can meet the next VSync signal on the client,
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or to slightly postpone the sensor acquisition and rendering of the next frame so

that it arrives closer to the VSync signal and display latency is reduced. This

is effective because the frame can be rendered with the latest possible pose of

the HMD and thereby reduce motion-to-photon latency. As a result, we further

reduce the display latency and minimize the rate of missing frames to maximize

the user experience.

In our design, the HMD client uses dedicated hardware video codecs (e.g.,

H.264) to decode the frames rendered on the rendering server. We choose this

design because hardware video codecs have a small size and consume a low power.

Prior studies [23, 4] have shown that it is not practically feasible to decode frames

using CPU or GPU on an HMD, due to the high decoding latency and high power

consumption. Hardware video codecs are mature and cost-effective techniques,

widely used in smartphones, tablets, laptops and many other devices. Thus,

integrating hardware video codecs into HMDs is a practical solution to enable

high-quality untethered VR systems.

3.4 Parallel Rendering and Streaming Pipeline

In this section, we introduce how we use the Parallel Rendering and Streaming

(PRS) mechanism to minimize the streaming latency (Tstream) on commercial VR

platforms. PRS consists of two parts: simultaneous rendering and encoding, and

parallel streaming. Together, they build a parallel frame rendering and streaming

pipeline to reduce the streaming latency.

3.4.1 Simultaneous Rendering and Encoding

Rendering a frame with rich graphics contents may take a long time (e.g., longer

than 5ms) even on a powerful VR-ready GPU (e.g., Nvidia Titan X). As we

cannot simply reduce frame quality to save frame-rendering time, we must find
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other ways to mitigate the impact of the long frame-rendering time on the end-

to-end latency. To this end, we propose the approach of simultaneous rendering

and encoding, to allow starting to encode a frame while it is still being rendered.

Simultaneous rendering and encoding is feasible due to two reasons. First,

we observe that rendering a VR frame is typically done in three sequential steps:

(1) render the left eye image, (2) render the right eye image, and (3) apply

lens distortion on the whole frame so that the frame can be correctly displayed

on a VR headset. This sequential rendering of the two-eye images provides an

opportunity for us to start to encode the left eye image before the right eye image

is fully rendered. Second, modern GPUs have dedicated hardware encoders and

decoders that are separate from the GPU cores used for rendering VR frames

(e.g., CUDA cores in Nvidia GPUs). Therefore, we may leverage the dedicated

hardware encoders to compress a frame without impacting the performance of

VR rendering.

Specifically, in simultaneous rendering and encoding, we redesign the VR ren-

dering procedure to the following 6 steps: (1) render the left eye image, (2) apply

lens distortion on the left eye image, (3) pass the distorted left eye image to

the encoding pipeline in a separate thread, and at the same time (4) render the

right eye image, (5) apply lens distortion on the right eye image, (6) pass the

distorted right eye image to the encoding pipeline in another separate thread.

Note that only steps (1), (2), (4), and (5) execute on the main rendering thread,

while steps (3) and (6) execute on two separate encoding threads using hardware-

based encoders. These encoding operations mainly consume the hardware-based

encoder resources with light CPU usage, and thus do not block or slow down the

frame-rendering pipeline inside the GPU.

Traditional video streaming approaches usually also use hardware-based en-

coders to accelerate the video-encoding procedure. However, they keep waiting

for a frame being fully rendered before passing the entire frame to a hardware



24

Figure 3.2: Simultaneous rendering and encoding with 4-way parallel streaming.

encoder. Such a design largely increases the end-to-end latency, which is fine to

video streaming with a low frame rate (e.g., 30 fps) and without user interactions,

but it is not acceptable in high-quality interactive VR systems.

3.4.2 Parallel Streaming

To further reduce the streaming latency, we propose to use a multi-threaded

streaming technique to encode the image of each eye in multiple encoding threads.

This is because almost all high-performance GPUs support more than one video

encoding session [24] and each encoding session generates its own encoding stream

independently. Consequently, by dividing an image into multiple slides and en-

coding each slide using different encoding sessions in parallel, we can reduce the

total encoding time. In our system, we cut the image of each eye into two slides

and compress each slide in a separate video stream. In total, we have four slides

of the two eyes for 4-way parallel streaming. On the client side, multiple decoding

sessions are used to decode each image slide in parallel as well.

This parallel streaming mechanism can be combined with simultaneous ren-

dering and encoding. Figure 3.2 shows the process of simultaneous rendering and

encoding together with 4-way parallel streaming. The image of each eye is divided

into two slides: the upper one and the bottom one. The total four image slides
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Figure 3.3: Illustration of parallel rendering and streaming (PRS) pipeline.

are encoded into four video streams using four encoders. Accordingly, the HMD

client uses four decoders to decode the four video streams, composites the four

image slides into a full frame, and displays the frame on the HMD.

Figure 3.3 illustrates how the PRS mechanism can reduce the streaming la-

tency through simultaneous rendering and encoding and 4-way parallel stream-

ing, in comparison to a baseline approach. Four main tasks (rendering, encoding,

transmission, and decoding) are represented with rectangles in different colors.

The length of each rectangle is the rough execution time of the corresponding

task. Note that here we analyze only the streaming latency rather the total end-

to-end latency. Thus, we do not show the time of fetching the sensor data before

rendering a frame and the time that the frame waits in the frame buffer after it

is decoded but before it is displayed. In the baseline approach, the four tasks

execute sequentially. The streaming latency, as shown in Figure 3.3, is the total

execution time of encoding, transmitting and decoding the whole frame.

With simultaneous rendering and encoding (middle in Figure 3.3), the encod-

ing of the left eye image starts immediately after the left eye image was rendering

and in parallel with the rendering of the right eye image. As a result, this two-way

parallel approach reduces the user-perceivable add-on streaming latency, i.e., the

extra streaming latency after the whole frame is rendered, by 1/2. By combining

the simultaneous rendering and encoding with 4-way parallel streaming together
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(a) Encode two streams with two encoding sessions.

(b) Encode two streams with only one encoding session.

Figure 3.4: Encoder multiplexing.

(bottom in Figure 3.3), we use two encoders to compress the image of one eye in

parallel. The add-on streaming latency further reduces to around 1/4 of the one

in baseline approach.

The parallel streaming technique may be further extended to 8-way or even

16-way for more parallelisms. However, we do not recommend doing so because

1) it requires more simultaneous encoding sessions that may not be possible on

many GPUs as we will show later, 2) it reduces the performance of motion esti-

mation in H.264 and thus leads to a lower compression rate, and 3) it makes the

implementation more complex.

Encoder Multiplexing

Ideally, the 4-way parallel streaming approach requires four encoding sessions.

However, in practice, many GPUs including some popular commercial VR-ready

GPUs may not support four simultaneous encoding sessions. For example, the

Nvidia’s GeForce 9 and 10 series and TITAN X GPUs [25] can support maximum
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two encoding sessions running simultaneously on a single GPU 1. Consequently,

the 4-way parallel streaming approach cannot directly work on those GPUs.

From Figure 3.3, we observe that even though the 4-way parallel streaming

approach uses four encoding streams, there are only up to two streams overlapped

at any time. This is because the rendering of the left eye image and the rendering

of the right eye image are sequential. As rendering an image usually takes a

longer time than compressing the image, encoding the half image of the left eye is

expected to be much faster than rendering the image of the right eye. Therefore,

only the encoding of the upper and bottom slides of the same eye image overlap.

That is, only two encoding sessions are actually needed at the same time.

However, we still cannot directly encode four streams using only two encoding

sessions due to the inter-frame compression in video encoding (e.g., H.264 and

H.265). Compared to image compression that compresses independent images

(e.g., JPEG), video compression encodes a set of images into a video stream

containing 3 types of frames: I-frames, P-frames, and B-frames. An I-frame is

encoded from a single image and can be decoded independently from other frames.

However, a P-frame contains references from the previously encoded frame for a

higher compression ratio, and therefore cannot be decoded by itself. A B-frame

further uses bi-directional prediction that requires both its prior frame and its

latter frame as its references, introducing more inter-frame dependencies in its

encoding and decoding 2. These inter-frame dependencies make it hard to encode

two video sources using one single encoder.

To solve the problem, we propose encoder multiplexing 3 to temporally allow

1This limitation may be just due to cost or marketing strategy considerations, as consumer
devices are mostly designed for decoding existing video streams rather than encoding new
streams.

2As a result, B-frames can only be encoded and decoded when the next frame is available.
Waiting for the next frame significantly increases the streaming latency and makes it infeasible
to use B-frames for low latency VR systems. We do not use B-frames in our system.

3Most devices including smartphones are able to decode four or even more (e.g., eight) video
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two video streams to share the same encoding session, as shown in Figure 3.4.

Figure 3.4(a) shows the standard usage of a single encoding session for a sin-

gle video stream. The two video streams are encoded in two different encoding

sessions separately. Each encoder compresses its raw input frames rendered from

the rendering server into an encoded H.264 stream, and sends the encoded stream

through the network link to the client. Each P-frame references to its previous

frame in the same stream and thus can be correctly decoded by the corresponding

decoder.

As shown in Figure 3.4, with encoder multiplexing, we encode the two video

streams in the same encoding session. To encode each P-frame correctly, we set

the previous frame in the same video stream as the long-term reference frame

(LRF) of the P-frame. As a result, each P-frame references to the previous frame

in its own video stream rather than the previous frame that is encoded in the

encoding session (which is from the other stream). The outputs of the encoder

will be divided into two streams that are sent to two different decoders on the

client. Even though each decoder only receives half of the encoded outputs of the

encoder, it has the reference frame needed to decode received P-frames. What

we need to do is only changing the list of decoded picture buffer (DPB) before

passing each stream to the decoder, to let it ignore those missed frames (i.e., the

frames of the other steam).

Specifically, we use one encoding session to encode the upper half images of

two eyes and another encoding session to encode the bottom half images of two

eyes, respectively. As a result, we enable four virtual encoders for the 4-way

parallel streaming using only two encoding sessions and make our approach work

on most GPUs.

streams simultaneously [4]. Thus, we do not need decoder multiplexing.
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Figure 3.5: Displaying two consecutive frames that are remotely rendered. (a)
The ideal case where the frames are displayed immediately after they are ready.
(b) The frames failed to meet their VSync signal and must wait for a long time
before actually being displayed. (c) The frames become ready in the same VSync
interval and thus frame n is dropped.

3.5 Remote VSync Driven Rendering

Modern computer systems use VSync (Vertical Synchronization) signals to syn-

chronize the rate of rendering frames (i.e., frame rate) and the refresh rate of a

display. To ensure a smooth user experience (e.g., avoid screen tearing), the dou-

ble buffering technique is usually used with two frame buffers: a front frame buffer

containing the frame that is being displayed on the screen, and a back frame buffer

containing the frame that is being rendered. Upon receiving a VSync signal, the

system swaps the two buffers to display the newly rendered frame and continues

to render the next frame in the new back frame buffer. If the system renders a

frame very fast, the frame must wait for the next VSync signal in the back frame

buffer, before it is sent to the display. If rendering a frame takes too long and

misses the next VSync signal, it must wait for the following VSync signal to be

displayed.

Problems. The above VSync-driven rendering and displaying mechanism works

well on a local system. However, in remote rendering, the frame displaying is

driven by VSync signals of the HMD client but the frame rendering is driven by

VSync signals of the rendering server. Due to the asynchronized frame rendering

and displaying and the extra streaming latency, it may cause problems.
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To illustrate the problems, we show the processing procedure of two consecu-

tive frames n and n+1 in Figure 3.5. The rendering server starts to render frame

n at time T n
render. The frame is then encoded and transmitted to the client. The

client decodes the frame and presents it to the frame buffer swap chain at time

T n
ready. We define the time interval between T n

render and T n
ready, i.e., T n

ready−T n
render,

as the generating time of frame n. Ideally, the frame is ready just before VSync

signal n at time T n
vsync, so that it can be displayed immediately. This ideal case

is shown in Figure 3.5(a). However, if frame n missed VSync signal n (i.e.,

T n
ready > T n

vsync), it must wait for VSync signal n + 1 and thus the end-to-end

latency is increased by T n+1
vsync − T n

ready. Such a long waiting time case is shown in

Figure 3.5(b) 4. Furthermore, if frame n missed the VSync signal n, and at the

same time frame n + 1 becomes ready before time T n+1
vsync (i.e., T n+1

ready < T n+1
vsync),

frame n will become useless and thus will be dropped. Instead, frame n + 1 will

be displayed upon VSync signal n+1. This case is called frame missing as shown

in Figure 3.5(c) 5. In this case, the time and resources used to render, encode,

transmit and decode frame n are wasted.

To confirm that the two problems are real, we conduct an experiment. In

this experiment, we cap the frame rate on the rendering server to 90 Hz. On the

client, for each frame n, we record the time interval ∆T n between the frame-ready

time T n
ready and the next VSync signal time after T n

ready. We define such a time

interval ∆T n as the waiting time of frame n. Figure 3.6 plots the waiting time

of more than 200 consecutive frames. It shows that the frame waiting time keeps

drifting from 0 ms to 11.1 ms periodically. This is because that the rendering

server is unaware of the VSync signals of the client and thus cannot synchronize

its rendering with the frame displaying on the client. This phenomenon not only

4This case may also happen in local systems without remote rendering. However, the extra
streaming latency in remote rendering makes this case happen more frequently.

5This case is caused by remote rendering and will not happen in a local system unless VSync
is disabled.
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Figure 3.6: Time till next VSync signal.

introduces additional latency as shown in Figure 3.5(b), but also causes frame

missing when ∆T n jumps in consecutive frames, which is shown in the red dotted

circle in Figure 3.6. In the red dotted circle, for a frame n with a very large ∆T n

close to 11 ms, the ∆T n+1 of the next frame n+ 1 may immediately become very

small close to 0 ms. In this case, the two frames n and n+ 1 are ready to display

within the same VSync interval and thus frame n will not be displayed, which is

the frame-missing case in Figure 3.5(c).

Solution. To solve the problems, we propose to drive the frame rendering of the

server using the VSync signals of the client. The key idea is adjusting the timing

of rendering the next frame according to the feedback from the client on how the

previous frame was displayed, how long its waiting time was, and how fast the

HMD moved. Specifically, we use the following equations to decide when to start

to render a new frame n+ 1:

T n+1
render = T n

render +
1

90
s+ Tshift (3.4)

Tshift = (T n
vsync − T n

ready − Tconf − Tmotion) ∗ cc (3.5)
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Tmotion = k ∗∆θn (3.6)

In Equation 3.4, besides using a constant time interval of 1/90 seconds to

maintain the frame rate of 90 Hz, we further introduce a time shift Tshift that

dynamically modifies the start time of rendering frame n+ 1 (i.e., T n+1
render). Tshift

is decided by several factors. The first factor is the waiting time of frame n,

T n
vsync − T n

ready. We intend to postpone T n+1
render for time interval T n

vsync − T n
ready.

Assume frames n and n+ 1 have the same generating time, i.e., T n+1
ready−T

n+1
render =

T n
ready − T n

render, the time of placing frame n + 1 to the swap frame buffer chain

T n+1
ready exactly equals to T n+1

vsync. This way, the waiting time of frame n + 1 is

minimized. However, if it takes a slightly longer time period to generate frame

n+1, frame n+1 may miss its VSync signal n+1, resulting in a very long waiting

time or even missing frame n + 1. To mitigate this issue, we introduce Tconf to

shift T n+1
ready back a lit bit to tolerate the variance in generating frames.

We take a data-driven approach to decide a proper value for Tconf . Initially, we

set Tconf to zero. We track the frame-generating time of the last 1,000 frames. We

calculate the value that covers the variances of the frame-generating time of the

last 1,000 frames with a confidence of 99% (a.k.a 99% confidential interval). We

set the value of Tconf to the half of the 99% confidential interval. Over time, Tconf

acts as an adaptive safeguard to handle the variance in generating consecutive

frames.

Another factor we consider in Tshift is how fast the HMD moves. The intuition

behind this consideration is as follows: when the HMD moves fast, the view of

the VR game may change fast. As a result, the content of the next frame may

have significant changes and thus its rendering time might be longer than that of

its previous frame. To accommodate the large rendering cost of the next frame,

we need to start to render it early to avoid missing VSync. We use Tmotion for

this purpose in Equation 3.5. However, as the frame rate is as high as 90 Hz, the
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absolute distance that the player may move along a direction in a frame time (i.e.,

1/90 seconds) is pretty small and thus has limited impact on the content changes

of the next frame in practice. But, the rotation of the HMD may significantly

affect the content of the next frame due to the change of the viewing angle.

Therefore, we only consider the viewing angle changes in our design. As shown in

Equation 3.6, Tmotion is determined by the change of viewing angle ∆θn together

with a constant scaling parameter k. We empirically set the value of k to 100.

Finally, we use a scaling parameter cc as a low-pass filter in calculating the

value Tshift, as shown in Equation 3.4. We empirically set its value to 0.1.

With this remote VSync driven rendering approach, we try to ensure that the

system can stay in the ideal case shown in Figure 3.5(a). We expect that most

frames become ready to display just before the next VSync signal and thus have

a very short waiting latency, and that very few frames are dropped. Furthermore,

even we may postpone the rendering of a frame, we always use the latest possible

pose of the HMD to render the frame. This is achievable because the sampling

rate of HMD pose is as high as 1,000 Hz, one order of magnitude higher than

the frame rate. As we display the postponed frame with the best possible VSync

signal, we minimize the user-perceived latency and thus provide the best user

experience. Indeed, we may even be able to do better than the tethered system.

As we will show in Section 3.7, if the rendering time of a frame is very short,

we may delay its rendering to reduce its waiting time. As we render it with a

fresher HMD pose, doing so not only achieves a lower end-to-end latency, but also

provide a better user experience, compared to the tethered system.

3.6 Implementation

We implement our system on Windows for its rich supports on VR. We use

Qualcomm WiGig solution to achieve 2.1 Gbps wireless transmission throughput.
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Figure 3.7: Hardware setup.

Our implementation is entirely based on commodity hardware and consists of

around 7,000 lines of code.

3.6.1 Hardware Setup

As shown in Figure 3.7, the rendering server is an Intel Core i7 based PC with

a Nvidia TITAN X GPU. It has a Mellanox 10Gbps network interface card to

connect to a Netgear Nighthawk X10 WiGig AP using a 10Gbps Ethernet cable.

We use a ThinkPad X1 Yoga laptop to act as the client that connects to the Wigig

AP through a Qualcomm QCA6320/QCA6310 WiGig module. The laptop equips

an Intel i7-7600U CPU and an HD 620 Integrated GPU with H.264 hardware

decoder ASIC included. The laptop connects to an HTC Vive HMD using HDMI

and USB.

3.6.2 Software Implementation

We implement our proposed techniques based on the OpenVR SDK [26], the

Unity game engine [27], and the Google VR SDK for Unity [28].

Remote Rendering VR Camera. The core of the server-side implementation

is a VR camera that leverages Unity’s rendering solution and Nvidia’s Video

Codec for low-latency remote rendering. This VR camera is modified based on the
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(a) Normal VR Camera. (b) Our VR Camera.

Figure 3.8: Life cycle comparison between our VR camera and normal VR camera.

solution from the Google VR SDK [28]. Figure 3.8 shows the life cycle comparison

between the normal VR camera used in the Google VR and our VR camera. The

normal VR camera starts rendering each frame from a fixed update callback

function, driven by the periodic VSync signals of the system. Then, the camera

updates user’s pose and rotates itself towards the correct direction in the 3D

scene. After that, the camera renders the left eye image and the right eye image

sequentially, then applies lens distortion on the whole frame. On the right side

of Figure 3.8(a), we show the changes of the RenderTexture in each step. A

RenderTexture is a texture that can be rendered to by D3D or OpenGL. In the

normal VR camera case, a screen-size RenderTexture is allocated when the VR

camera is created. The camera renders left eye image and right eye image to each

side of the render texture sequentially. Then, a dedicated vertex shader is applied

to the whole texture to do the VR lens distortion 6.

Our VR camera works as shown in Figure 3.8(b). The fixed update function

6For illustration purpose, we set the original RenderTexture in Figure 3.8 as a black frame.
In real systems, it should be the last frame when starting rendering the current frame.
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is changed to a remote VSync driven update function to optimize the rendering

time based on the VSync signals on the HMD client. VSync time can be retrieved

from the client side by calling the GetTimeSinceLastVsync() in the OpenVR

API [26]. Similarly, the pose update function is changed to the remote pose

update to get the pose information from the client. In this function, the server

sends a request packet to the client through the wireless network. The client

calls the GetDeviceToAbsoluteTrackingPose() function in the OpenVR API to

get the current pose of both the HMD and controllers, and send them back to the

server. Instead of using a single RenderTexture as the render target, we create

two RenderTextures of half screen size for the image of each eye separately. We

modify the distortion shader to work for only single eye image, and apply it on

the RenderTexture immediately after rendering the image of one eye.

Parallel Encoding. Our parallel encoding module is developed as a Unity native

plugin attached to the remote rendering VR camera. This module uses zero-copy

between rendering and encoding in the GPU. We register the RenderTexture

of each eye using the CUDA function cudaGraphicsD3D11RegisterResource() so

that it can be accessed from CUDA. We directly pass the registered memory ad-

dress to Nvidia’s hardware video codec for encoding, and thus do not need any

memory copy. As mentioned in Section 3.4, the system passes each RenderTex-

ture to two separate encoders for parallel encoding, and creates total 4 encoding

streams. The encoding operation is executed asynchronously without blocking the

rendering of frames. To maintain a high image quality with low latency, we use

the Two-Pass Rate Control setting with 400KB maximum frame size to encode

each frame. With this setting, the encoded frame size is capped to 400KB.

Parallel Decoding. We implement the parallel decoding module on the com-

mercial Intel-based low power video codec, using the Intel Media SDK [29] that
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can be run on any 3rd generation (or newer) Intel Core processors. In this mod-

ule, four decoding sessions are created to decode four encoded streams in parallel.

A separate display thread is developed to keep querying the decoded frame blocks

from the decoder sessions and display them on the corresponding positions on the

HMD screen. This module also calls the OpenVR API to retrieve the pose and

VSync data for sending to the rendering server.

3.7 Evaluation

We evaluate the performance of our system in terms of end-to-end latency, the

trade-off between visual quality and add-on streaming latency, frame missing

rate, and resource usage on the client. We demonstrate that our system is able to

achieve both low-latency and high-quality requirements of both the tethered HTC

Vive VR and future VR at 4K resolution at 90Hz over a stable 60GHz wireless

link. The result shows the system can support current 2160x1200 VR resolution

with 16ms end-to-end latency and 4K resolution with 20ms latency. Furthermore,

we show that our system misses very few frames in different VR scenes and uses

only a small portion of CPU and GPU resources on the client.

As shown in Table 3.1, our system outperforms previous untethered VR sys-

tem [4, 3] in all four aspects: end-to-end latency, frame rate, visual quality, and

resolutions. However, as we mentioned, we target to optimize the system issues

arise when combining the whole rendering and streaming pipeline, thus is com-

plementary to previous work. Performance may further improve when combining

different approaches.



38

Mobile Latency Frame Rate Visual Quality Resolution
VR (ms) (Hz) (SSIM) (pixels)

Flashback [3] 25 60 0.932 1920x1080

Furion [4] 25 60 0.935 2560x1440

Ours 20 90 0.987 3840x2160

Table 3.1: Comparison between different mobile VR systems.

3.7.1 Experiment Setup

We use the hardware setup described in Section 3.6 to conduct experiments. Since

our objective is not to improve 60GHz communication but provide an open plat-

form to do so, we keep the wireless link stationary all the time 7. We compare

our system with the tethered HTC Vive VR system and a baseline untethered

solution. As described in Section 3.4, the baseline solution is the typical video

streaming approach that executes the rendering, encoding, transmission, and de-

coding sequentially, without parallel pipelines. We use four different VR scenes

in our evaluation: Viking Village [30], Nature [31], Corridor [32], and Roller

Coaster [33]. These four scenes are carefully selected to cover different kinds of

VR applications. Viking Village and Nature are rendering intensive, requiring

up to 11ms to render a frame even on our rendering server. Viking Village is

a relatively static scene, while Nature has more than hundreds of dynamic ob-

jects (leaves, grasses, and shadows) that keep changing all the time. Corridor

and Roller Coaster have relatively light rendering loads. Different from the other

three scenes, Roller Coaster lets a player sit on a cart of a running coaster. Thus,

the player’s view keeps changing even if the player doesn’t move at all.
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Figure 3.9: CDF of end-to-end latency of 4 different approaches in 4 VR scenes.

3.7.2 End-to-end Latency

We first measure the end-to-end latency (Te2e) in four cases: the tethered HTC

Vive VR system (Tethered VR), the baseline untethered solution (Baseline), our

solution with only the PRS technique (PRS only), and our solution with both PRS

and RVDR techniques (PRS and RVDR). For repeatable experiments, we pre-

logged a 1-min pose trace for each VR scene and replayed it for the experiments

of the same scene in the four cases 8.

Figure 3.9 shows the CDFs of the measured results. In Tethered VR, Te2e is

always 1/90 seconds for the periodic VSync signals at 90Hz. In Baseline, Te2e is

very large due to the large extra cost of the sequential frame rendering, encoding,

7Mobility is an issue in existing 60GHz wireless products and there is active on-going research
on addressing that issue [17, 18, 20].

8We replay the logged traces on the client upon the requests from the server. Thus, the
measured end-to-end latency includes the time cost of sensor data acquisition.
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transmission, and decoding. The median value of Te2e is more than 26ms and the

maximum value is even larger than 38ms. Due to asynchronized VSync signals

on the client and the server, the variance of Te2e is also very large. With the PRS

technique, we reduce Te2e for more than 10ms, compared to Baseline. Combing

the techniques of both PRS and RVDR, we not only reduce the average Te2e

to only 10-14ms depending on which scene is used, but also largely reduce the

variance of Te2e. For the scenes with light rendering loads, such as Corridor and

Roller Coaster, our solution can achieve a comparable performance to Tethered

VR. In Roller Coaster, we may even achieve a lower end-to-end latency (i.e.,

< 11ms) for many frames, because we render them with a fresher pose.

From Figure 3.9, it shows that Te2e varies in different VR scenes. To figure out

the reason, we plot the raw latency traces of two VR scenes (Corridor and Viking

Village) in Figure 3.10. We breakdown the total end-to-end latency into four

parts/tasks: Tsense, Trender, Tstream, and Tdisplay. Each curve in Figure 3.10(a) and

Figure 3.10(b) shows the total latency after each task is finished. For example,

the curve at the bottom is Tsense, and the curve on the top is the sum of Tsense,

Trender, Tstream, and Tdisplay (i.e., the total end-to-end latency Te2e). Figure 3.10

shows that the rendering latency Trender is a critical part that affects the variance

of the total end-to-end latency Te2e. For Corridor, our system achieves a similar

Te2e compared to Tethered VR, because the rendering time Trendering is small

(around 5ms). However, for rendering-intensive Viking Village, the rendering

time Trendering is large (up to more than 10ms), resulting in a large Te2e.
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(a) Corridor

(b) Viking Village

Figure 3.10: Raw latency traces of our system in running Corridor and Viking

Village.

Furthermore, we observed that Te2e has a small variance in Corridor, but a

large one in Viking Village, fluctuating from 11ms to 15ms. This difference is also

caused by rendering time. For illustration, we show two frames from each game

in Figure 3.10. Each frame points to its rendering time on the corresponding

rendering latency curve. In Corridor, the rendering time of different frames is

relatively constant. In Viking Village, frame #2 (the user looked towards the

water) has much less rendering load than frame #1, when the user faced the

village. When the user moves, the rendering latency keeps fluctuating, and the

total latency changes accordingly. However, as we apply the constant bitrate



42

control setting in encoding each frame, the add-on streaming latency Tstream stays

at a constant value no matter how the rendering latency changes.

Latency distribution in each step. Figure 3.11 shows the average latency of

each step in frame rendering, encoding, transmission, decoding and displaying,

and how the steps are overlapped. It shows that our PRS technique is able to

build a very effective parallel pipeline to reduce the end-to-end latency. The

average display time is only less than 1.7ms, demonstrating the effectiveness of

our RVDR technique in reducing the display latency.

Frame rate. With the low add-on streaming latency in our system, we can

actually enable a frame rate higher than 90Hz. Indeed, our system is able to

achieve 150 frames per second in Corridor, demonstrating the capability of our

system in supporting future VR at a higher frame rate, e.g., 120Hz.

3.7.3 Add-on Streaming Latency vs Visual Quality

The visual quality of encoded frames plays a critical role in providing a good user

experience. Our system not only achieves low-latency remote rendering, but also

keeps a visually lossless (visually identical) experience to users. It is well known

that there’s a trade-off between the visual quality and the streaming latency. In

our system, visual quality is controlled by the bitrate in the Rate Control settings

of encoding. To quantify the visual quality of an encoded frame, we use the widely

used Structural Similarity (SSIM) to determine how similar the encoded frame

is to the original frame. Table 3.2 shows the average SSIM score of the four VR

scenes in different bitrate settings (each results in a different encoded frame size).

From a previous study [12], a visually lossless encoded visual requires the SSIM

score to be larger than 0.98. In Table 3.2, it shows that the encoded frame size

of 400KB or larger can achieve an SSIM score of more than 0.98 for all the four

VR scenes.



43

(a) Corridor (b) Viking Village

(c) Nature (d) Roller Coaster

Figure 3.11: Average latency (in ms) of each frame-processing step in the parallel
pipeline.

To further build a relationship between add-on streaming latency and visual

quality, we calculate the add-on streaming latency in different encoded frame sizes.

Figure 3.12 shows how Tstream changes with the image SSIM score in Corridor,

with the comparison of the Baseline approach and our approach. We also draw

the visually lossless quality cutting curve as a red dash line. It shows the system

requires an encoded frame size of more than 200KB to achieve visually lossless

quality. The add-on streaming latency requirement to achieve this quality in our

system is only around 4ms which is much smaller than the one of the Baseline

approach.
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Frame Size Nature Corridor Viking Roller

800KB 0.9914 0.9936 0.9927 0.9965

400KB 0.9831 0.9887 0.9865 0.9913

200KB 0.9707 0.9780 0.9763 0.9838

100KB 0.9560 0.9609 0.9643 0.9718

60KB 0.9411 0.9439 0.9478 0.9605

Table 3.2: Encoded frame size and visual quality measurement (SSIM score).
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Figure 3.13: Frame missing rate with and without RVDR in the 4 VR apps.

3.7.4 Frame Missing Rate

In Figure 3.10, each pin-shape peak on the top purple curve represents a missing

frame. To quantify the effectiveness of the RVDR technique in reducing frame

missing, we calculate the average frame-missing rate in the four VR apps with

and without RVDR enabled. Figure 3.13 shows the results. We can see that

RVDR is able to significantly reduce the frame-missing rate. Without RVDR, the

average frame-missing rate is from 5.3% to 14.3%. With RVDR, it is reduced to

only 0.1% - 0.2%.

3.7.5 Resource Usage on Client

We also measure the resource usage on the client. Without our system, Windows

10 uses 3% to 5% CPU. With our system playing a VR game, the CPU usage is

around 36% mainly for handling the network packets. Decoding frames use only

29% of the video-decoding capability of the GPU (not the whole GPU capability

such as rendering 3D scenes). In building a future untethered HMD using our

techniques, such resource usage may be further significantly reduced by a more

integrated hardware design with embedded software. We further discuss the power
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consumption of the system in Section 3.9.

3.7.6 4K Resolution Support

To expand our system towards future VR systems, we further measure whether

our system can deliver 4K resolution (3840x2160) VR frames with less than 20ms

end-to-end latency. To do it, we conduct experiments on the 4 VR scenes with

Vive (2160x1200) and 4K resolutions. We force the rendering engine to render

4K frames with the same graphics quality settings as the Vive case. To achieve

visually lossless encoding of 4K, we enlarge the maximum encoded frame size to

500KB. With the 4K resolution, both Trender and Tstream are larger than those of

Vive resolution in all four VR scenes. The average Tstream to stream a 4K resolu-

tion frame is 8.3ms. The average Tsense and Tdisplay are 0.4ms and 1.7ms, respec-

tively, not affected by the resolution change. For Corridor and Roller Coaster,

our system can still keep the Te2e within 20ms, but the Te2e of Viking Village and

Nature exceed 20ms. Figure 3.14(a) and 3.14(b) show the latency breakdown

of the 2 scenes. The rendering latency Trender is the bottleneck in 4K. This is

because the GPU we used is not 4K VR ready, and thus both scenes require more

than 11ms to render a 4K frame, which cannot meet the frame rate of 90Hz.

While this issue may be solved by using a 4K VR ready GPU, we want to study

whether our system has the capability to deliver 4K frames with 90Hz if such a

GPU is available. Therefore, we reduce the rendering quality of Viking Village

and Nature to squeeze the rendering latency to less than 11ms. As shown in Fig-

ure 3.14(c) and 3.14(d), by doing so, our system is able to meet the requirement

of 20ms end-to-end latency. With average Tsense = 0.4ms, Tdisplay = 1.7ms, and

Tstream = 8.3ms, our system is able to support 4K resolution if the rendering time

is within 9.6ms.
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Figure 3.14: Latency breakdown in 4K resolution.

3.8 Related Work

Cutting the Cord. Cutting the cord of high-quality VR systems has attracted

strong interest from both industry and academia. TPCAST [21] and Display Link

XR [22] provide a wireless adapter for HTC Vive. They both take a direct “cable-

replacement” solution that compresses the display data, transmits over wireless

and decompresses on HMD. To our knowledge, they compress whole frames after

the frames are fully rendered, and thus it is hard to explore the opportunities

to pipeline rendering/streaming and fine-tune rendering/VSync timing. More-

over, their solutions are implemented in ASICs instead of commodity devices.

Therefore, they are hardly used by the research community to explore advanced

system optimization. Zhong et al. [23] explored how to cut the cord using com-

modity devices and measured the performance of different compression solutions
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on CPUs and GPUs. Their measurement results provide valuable guidance and

are motivating to us.

High-Quality VR on Mobile. Mobile devices are another popular VR plat-

form. Google Daydream [8], Google Cardboard [34] and Samsung Gear VR [7]

are examples of this type. As we have discussed, it is very difficult to achieve

high-quality VR on mobile due to its limited computing power. Some research

works have tried to attack this problem. For example, Flashback [3] performs ex-

pensive rendering in advance and caches rendered frames in mobile devices. Doing

so provides high-quality VR experience for scenarios that can be pre-computed.

Furion [4] enables more scenarios by offloading costly background rendering to

a server and only performs lightweight foreground rendering on a mobile device.

Such collaborative rendering reduces overall rendering time, which is complemen-

tary to our design and can be incorporated into our system to further reduce the

latency. Similarly, mobile offloading techniques, e.g., [35, 36, 37, 12, 38, 39] also

could be borrowed.

Wireless Performance. Performance of wireless link is critical to wireless VR

experience. There are a lot of ongoing research on this issue, especially on mobility

and blockage handling for 60GHz/mmWave. For example, MoVR [17] specially

designs a mmWave communication system for wireless VR. Agile-Link [18] pro-

vides fast beam tracking mechanism. MUST [20] redirects to Wi-Fi immediately

upon blockage. Pia [19] switches to different access point proactively. These

studies are complementary to our system.

Video Streaming. Our work is also related to video streaming techniques.

Nvidia’s video codec [40] and Intel’s Quick Sync [41] provide fully hardware-

accelerated video decoding/encoding capability. Most of these techniques enable

slice-mode video streaming, which cuts the whole frame into pieces and streams

separately. We borrow this idea and combine it into the rendering pipeline to
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enable parallel rendering and streaming using multiple hardware encoders. 360-

degree video streaming [42, 43, 44, 45, 46, 47] pre-caches the panoramic view and

allows users to freely control their viewing direction during video playback. Multi-

view video coding [48, 49, 50, 51] enables efficient images encoding from multi-

viewpoint using both the temporal and spatial reference frames. Video streaming

is not extremely latency sensitive as interactive VR unless the streaming is real-

time (broadcasting). We may use some techniques in video streaming particularly

360-degree streaming to our system.

3.9 Discussion

In this section, we discuss the following three issues: (1) advantages and the

generality of our system, (2) power consumption, and (3) link outage limitations

that were out of the scope of this project.

Generality. Our system is a software solution that can be extended to differ-

ent hardware and operating systems. The server-side rendering module is devel-

oped using Unity, which is known to be compatible with D3D and OpenGL. The

encoding module on the server side and the decoding module on the client side

can be implemented using various hardware codec APIs, such as Nvidia Video

Codec [40], Intel Quick Sync [41], Android MediaCodec [52], etc. Compared

to previous approaches that still require additional rendering operations on the

client side [4, 12, 3, 35], our solution only requires a hardware video codec on the

client side, allowing it to work with very thin clients. Our system optimizations of

the entire VR offloading pipeline can also be combined with previous techniques

(e.g. pre-rendering background scenes [4], robust 60 GHz network [17]) to further

improve the performance of the VR offloading task.

Power Consumption. To truly allow cutting the cord of an existing high-

quality VR system, it is also important to consider the power consumption on
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System component VR headset H.264 decoder WiGig

Power (W) 5.9 4.8 2.3

Table 3.3: Power consumption of three main components in the system.

the client side. Since we use the hardware codec from a laptop in our prototype,

it is hard to decouple the codec power consumption from the overall laptop con-

sumption. We therefore estimate power consumption based on reported power

consumption data from the three main components (VR headset, H.264 hardware

decoder, and WiGig wireless adapter) in our implementation by referring to pre-

vious measurement results [53, 54, 55]. The power consumption of an HTC VIVE

when running normally is 5.9W [53], and the 802.11ad’s power consumption is

around 2.3W [54]. We also estimate the power draw of the H.264 decoder in our

4-way parallel decoding scenario based on a prior measurement result of an H.264

video decoder [55]. As shown in Table 3.3, the total power consumption estimate

for these key components is 12W, which shows that such a system could be pow-

ered from a smartphone-sized Lithium-ion battery for about 3 hours. Note that

this power consumption is estimated in a conservative way. The real consumption

may be much lower with customized hardware design.

Limitations. This project has not addressed the link outage problem of

60GHz networks, which will likely require orthogonal solutions. To effectively

evaluate the performance gain of our solution without the measurements being

affected by random movement and link outages, we kept the 60GHz antennas

stationary in our experiment to maintain a stable wireless link between the server

and the client. It is well known that mobility is still an issue in existing 60GHz

wireless products and there is active on-going research to address this [17, 18, 20].

We expect that this project provides a platform that enables such research with

realistic end-to-end applications and that ultimately this research will lead to so-

lutions that can be combined with the techniques presented here. We further note

that our system can also operate over a Wi-Fi network, which is less susceptible
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to obstructions, albeit with sacrificing image resolution.

3.10 Conclusion

In this paper, we design an untethered VR system that is able to achieve both low-

latency and high-quality requirements over a wireless link. The system employs

a Parallel Rendering and Streaming mechanism to reduce the add-on streaming

latency, by pipelining the rendering, encoding, transmission and decoding pro-

cedures. We also identify the impact of VSync signals on display latency, and

introduce a Remote VSync Driven Rendering technique to minimize the display

latency. Furthermore, we implement an end-to-end remote rendering platform on

commodity hardware over a 60GHz wireless network. The result shows that the

system can support 4K resolution frames within an end-to-end latency of 20ms.

We plan to release the system as an open platform to facilitate VR research,

such as advanced rendering technologies and fast beam alignment algorithms for

60Ghz wireless communication.
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Chapter 4

Edge Assisted Real-time Object Detection for

Mobile Augmented Reality

4.1 Introduction

Augmented Reality, and in particular Mixed Reality systems, promise to provide

unprecedented immersive experiences in the fields of entertainment, education,

and healthcare. These systems enhance the real world by rendering virtual over-

lays on the user’s field of view based on their understanding of the surroundings

through the camera. Existing mobile AR solutions such as ARKit and ARCore

enable surface detection and object pinning on smartphones, while more sophis-

ticated AR headsets such as Microsoft HoloLens [9] and the announced Magic

Leap One [10] are able to understand the 3D geometry of the surroundings and

render virtual overlays at 60fps. These AR headsets further promise to support

an unprecedented immersive experience called Mix Reality. Compared to tradi-

tion AR system, MR requires the system to have a comprehensive understanding

of different objects and instances in the real world, as well as more computation

resources for rendering high quality elements. Reports forecast that 99 million

AR/VR devices will be shipped in 2021 [1], and that the market will reach 108

billion dollars [2] by then.

Most existing AR systems can detect surfaces but lack the ability to detect

and classify complex objects in the real world, which is essential for many new

AR and MR applications. As illustrated in Figure 4.1, detecting surrounding

vehicles or pedestrians can help warn a driver when facing potentially dangerous
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(a) Dangerous traffic warning. (b) Pickachu sits on her
shoulder.

Figure 4.1: New AR application supported by object detection algorithms.

situations. Detecting human body key points and facial landmarks allow render

virtual overlays on the human body, such as a virtual mask on the face or a

Pikachu sitting on the shoulder. Such capabilities could be enabled with CNN,

who have shown superior performance in the object detection task [56], but it

remains difficult to execute large networks on mobile devices, for example for

heat dissipation and power reasons.

Offloading object detection to the edge or cloud is also very challenging due to

the stringent requirements on high detection accuracy and low end-to-end latency.

High quality AR devices require the system to not only successfully classify the

object, but also localize the object with high accuracy. Even detection latencies

of less than 100ms can therefore significantly reduce the detection accuracy due to

changes in the user’s view—the frame locations where the object was originally

detected may no longer match the current location of the object. In addition,

as mixed reality graphics approach the complexity of VR, one can also expect

them to require less than 20ms motion-to-photon latency, which has been found

to be necessary to avoid causing user motion sickness in VR applications [3].

Furthermore, compared to traditional AR that only renders simple annotations,
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mixed reality requires rendering virtual elements in much higher quality, which

leaves less latency budget for the object detection task.

Most existing research has focused on enabling high frame rate object de-

tection on mobile devices but does not consider these end-to-end latency require-

ments for high quality AR and mixed reality systems. Glimpse [15] achieves 30fps

object detection on a smartphone by offload trigger frames to the cloud server,

and tracks the detected bounding boxes on remaining frames locally on the mo-

bile devices. DeepDecision [16] designs a framework to decide whether to offload

the object detection task to the edge cloud or do local inference based on current

network conditions. However, they all require more than 400ms offloading latency

and also require large amounts of local computation, which leaves little resources

to render high-quality virtual overlays. No prior work, can achieve high detection

accuracy in moving scenarios or finish the entire detection and rendering pipeline

under 20ms.

To achieve this, we propose a system that significantly reduces the offloading

detection latency and hides the remaining latency with an on-device fast object

tracking method. To reduce offloading latency, it employs a Dynamic RoI Encod-

ing technique and a Parallel Streaming and Inference technique. The Dynamic

RoI Encoding technique adjusts the encoding quality on each frame to reduce the

transmission latency based on the Regions of Interest (RoIs) detected in the last

offloaded frame. It provides higher quality encodings in areas where objects are

likely to be detected and uses stronger compression in other areas to save band-

width and thereby reduce latency. The Parallel Streaming and Inference method

pipelines the streaming and inference processes to further reduce the offloading

latency. On the AR device, the system decouples the rendering pipeline from

the offloading pipeline instead of waiting for the detection result from the edge

cloud for every frame. To allow this, it uses a fast and lightweight object tracking

method based on the motion vector extracted from the encoded video frames and
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the cached object detection results from prior frames processed in the edge cloud

to adjust the bounding boxes or key points on the current frame in the presence of

motion. Taking advantage of the low offloading latency, we find this method can

provide accurate object detection results and leave enough time and computation

resources for the AR device to render high-quality virtual overlays. Besides, we

also introduce an Adaptive Offloading technique to reduce the bandwidth and

power consumption of our system by deciding whether to offload each frame to

the edge cloud to process based on the changes of this frame compare to the

previous offloaded frame.

Our system is able to achieve high accuracy object detection for existing

AR/MR system running at 60fps for both the object detection and human key-

point detection task. We implement the end-to-end AR platform on commod-

ity devices to evaluate our system. The results show that the system increases

the detection accuracy by 20.2%-34.8%, and reduce the false detection rate by

27.0%-38.2% for the object detection and human keypoint detection tasks. And

the system requires only 2.24ms latency and less than 15% resources on the AR

device, which leaves the remaining time between frames to render high quality

virtual elements for high quality AR/MR experience.

The contributions of this work can be summarized as follows:

• Quantifying accuracy and latency requirements in an end-to-end AR system

with the object detection task offloaded.

• Proposing a framework with individual rendering and offloading pipelines.

• Designing a Dynamic RoI Encoding technique to reduce the transmission

latency and bandwidth consumption in the offloading pipeline.

• Developing a Parallel Streaming and Inference method to reduce the of-

floading latency.
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• Building a Motion Vector Based Object Tracking technique to achieve fast

and lightweight object tracking on the AR devices.

• Implementing and evaluating an end-to-end system based on commodity

hardware.

• Showing that the proposed system can achieve 60fps AR experience with

accurate object detection.

4.2 Challenge Analysis

Offering sophisticated object detection in mobile augmented reality devices is

challenging because the task is too computationally intensive to be executed on-

device and too bandwidth intensive to be easily offloaded to the edge or cloud.

Most lightweight object detection models require more than 500ms processing

time on current high-end smartphones with GPU support. Even on a powerful

mobile GPU SoCs (such as the Nvidia Tegra TX2 which is reportedly used on the

Magic Leap One), object detection on an HD frame still takes more than 50ms.

This is too long to process every frame on a 60Hz system and likely to lead to

energy consumption and heat dissipation issues on the mobile device.

Latency Analysis. When offloading the detection tasks to more powerful

edge or cloud platforms the image encoding and transfer add significant latency.

Longer latency not only reduces the detection accuracy but also degrades the

AR experience. To better understand these challenges, we model the end-to-end

latency of a baseline AR solution with offloading as follows:

te2e = toffload + trender

toffload = tstream + tinfer + ttrans back

tstream = tencode + ttrans + tdecode

(4.1)
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Figure 4.2: Latency Analysis.

As shown in Figure 4.2, the AR device (i.e. smartphone or AR headset) is

assumed to be connected to an edge cloud through a wireless connection (i.e.

WiFi or LTE). The blue arrow illustrates the critical path for a single frame. Let

te2e be the end-to-end latency, which includes the offloading latency toffload and

the rendering latency trender. toffload is determined by three main components:

(1) the time to stream a frame captured by the camera from the AR device to

the edge cloud tstream = T1 − T1, (2) the time to execute the object detection

inference on the frame at the edge cloud tinfer = T3 − T2, and (3) the time

to transmit the detection results back to the AR device ttrans back = T4 − T3.

To reduce the bandwidth consumption and streaming latency tstream, the raw

frames are compressed to H.264 video streams on the device and decoded in the

edge cloud [57]. Therefore, tstream itself consists of encoding latency (tencode),

transmission latency (ttrans) and decoding latency (tdecode).

We conduct an experiment to measure the latency and its impact on detec-

tion accuracy in the entire pipeline, and find that it is extremely challenging for

existing AR system to achieve high object detection accuracy in 60fps display

systems. In the experiment, we connect a Nvidia Jetson TX2 to an edge cloud
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Figure 4.3: Latency and accuracy analysis.

through two different WiFi protocols (WiFi-5GHz, WiFi-2.4GHz) and stream en-

coded frames of a video [58] at 1280x720 resolution from the Jetson to the edge

cloud for inference. The edge cloud is a powerful PC equipped with a Nvidia

Titan Xp GPU.

Detection Accuracy Metrics. To evaluate the detection accuracy in terms

of both object classification and localization, we calculate the IoU of each detected

bounding box and its ground truth as the accuracy of this detection. We also

define the percentage of detected bounding boxes with less than 0.75 IoU [59] (the

strict detection metric used in the object detection task) as false detection rate.

Similarly, we use the Object Keypoint Similarity (OKS) [60] metric to measure

the accuracy of each group of keypoints in the human keypoint detection task.

We find that low latency object detection is highly beneficial for achieving a
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high detection accuracy. Figure 4.3(a) shows the impact of toffload on the false

detection rate. We can find that even a latency of a frame time (16.7ms) will

increase the false detection rate from 0% to 31.56%. This is because during the

time that the detection result is sent back to the AR device, the user’s view may

have changed due to user motion or scene motion.

However, it is very challenging to achieve very low latency object detection

with commodity infrastructures. We first measure the latency spend on inference

(tinfer), and show the result in Figure 4.3(b). To push the limit of tinfer on the

edge cloud, we use TensorRT [61] to optimize three pretrained Faster R-CNN

models1 using INT8 precision. These three models use three different backbone

CNN networks (ResNet-50, ResNet-101, and VGG-16) for feature extraction. As

shown in Figure 4.3(b), we can observe that all three models require more than

10ms for object detection.

Figure 4.3(c) shows the additional latency imposed by transmitting a single

HD frame with different encoding bitrate from the AR device to the edge cloud

(ttrans) through two different WiFi connections (WiFi-2.4GHz and WiFi-5GHz).

Here, bitrate is a codec parameter that determines the quality of video encoding.

Encoding with small bitrate will result in a lossy frame after decoded. We can

observe that the average ttrans requires to transmit an encoded frame with 50mbps

bitrate is 5.0ms on 5GHz WiFi and 11.2ms on 2.4GHz WiFi. Inference plus

transmission latency therefore already exceeds the display time for one frame.

One may think that decreasing resolution or encoding bitrate may reduce the

transmission latency, however, this also reduces the detection accuracy of an

object detection model.

To validate this issue, we show the detection accuracy of the ResNet-50 based

1We choose Faster R-CNN because it is much more accurate than other alternatives, such
as SSD and R-FCN.
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Figure 4.4: System Architecture.

Faster R-CNN model under different encoding bitrate and resolution in Fig-

ure 4.3(d). In this case, we use the detection result on raw video frames (without

video compression) as the ground truth to calculate the IoU. The result shows

that it requires at least 50Mbps encoding bitrate to achieve a high detection ac-

curacy (i.e. 90). We also compare the detection result on two lower resolution

frames (960x540 and 640x320), and show that lower resolution has much worse

detection accuracy than the original 1280x720 frame. Lowering resolution there-

fore also does not improve detection accuracy. Note that this accuracy drop can

be stacked together with the drop caused by the long offloading latency to get a

much lower detection accuracy.

Based on the above analysis, we find that it is extremely challenging for exist-

ing AR system to achieve high object detection accuracy in 60fps display systems.

This can lead to poor alignment of complex rendered objects with physical objects

or persons in the scene.
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(a) Detect RoIs on the last of-
floaded frame.

(b) Mark macroblocks that
overlap with RoIs.

(c) Change encoding quality
on the current frame.

Figure 4.5: Three main procedures of RoI encoding.

4.3 System Architecture

To overcome these limitations, we propose a system that is able to achieve high

accuracy object detection with little overhead on the rendering pipeline of mobile

augmented reality platforms, by reducing the detection latency with low latency

offloading techniques and hiding the remaining latency with an on-device fast

object tracking method. Figure 4.4 shows the architecture of our proposed system.

At a high level, the system has two parts connected through a wireless link: a

local tracking and rendering system on a mobile device (a smartphone or an AR

headset) and a pipelined objected detection system on the edge cloud. To hide

the latency caused by offloading the object detection task, our system decouples

the rendering process and the CNN offloading process into two separate pipelines.

The local rendering pipeline starts to track the scene and render virtual overlays

while waiting for object detection results, and then incorporates the detection

results into the tracking for the next frame when they arrive.

As shown in Figure 4.4, both pipelines start with a Dynamic RoI Encoding

technique that not only compresses raw frames for the CNN offloading pipeline

(yellow arrow), but also provides its meta data for the on-device tracking module

in the tracking and rendering pipeline (green arrow). Dynamic RoI Encoding is an

efficient video encoding mechanism that is able to largely reduce the bandwidth

consumption and thereby reduce the transmission latency to the edge cloud, while

maintaining detection accuracy. The key idea of Dynamic RoI Encoding (DRE)
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is to decrease the encoding quality of uninteresting areas in a frame and to main-

tain high quality for candidate areas that may contain objects of interest based

on earlier object detection results. Due to the spatiotemporal correlation over

subsequent video frames, the system uses the intermediate inference output of

the last offloaded frame as candidate areas. These candidate areas are where it

maintains high encoding quality and are also referred to as regions of interest

(RoIs).

In the CNN offloading pipeline as illustrated by the yellow blocks and ar-

row, we propose an Adaptive Offloading and a Parallel Streaming and Inference

(PSI) technique to further reduce the latency and bandwidth consumption of the

offloading task.

Adaptive Offloading is able to reduce the bandwidth and power consumption

of our system by deciding whether to offload each frame to the edge cloud based on

whether there are significant changes compared to the previous offloaded frame.

For efficiency, this technique reuses the macroblock type (inter-predicted blocks or

intra-predicted blocks) embedded in the encoded video frame from the Dynamic

RoI Encoding to identify significant changes that warrant offloading for object

detection.

Once the frame is marked for offloading, the Parallel Streaming and Infer-

ence (PSI) method parallelizes the transmission, decoding and inference tasks to

further reduce the offloading latency. It splits a frame into slices and starts the

convolutional neural network object detection task as soon as a slice is received,

rather than waiting for the entire frame. This means that reception, decoding,

and object detection can proceed in parallel. To solve the dependency issues

across slices during object detection, we introduce a Dependency Aware Inference

mechanism that determines the region on each feature map that has enough input

features to calculate after each slice is received, and only calculate features lie in

this region. The detection results are sent back to the AR device and cached for
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future use.

In the tracking and rendering pipeline (green blocks and arrow in Figure 4.4),

instead of waiting for the next detection result, we use a fast and light-weight Mo-

tion Vector based Object Tracking (MvOT) technique to adjust the prior cached

detection results with viewer or scene motion. Compared to traditional object

tracking approaches that match image feature points (i.e. SIFT and Optical Flow)

on two frames, the proposed technique again reuses motion vectors embedded in

the encoded video frames, which allows object tracking without any extra pro-

cessing overhead. Given the aforementioned optimizations to reduce offloading

latency, tracking is needed only for shorter time frames and a lightweight method

can provide sufficiently accurate results. Using such a lightweight method leaves

enough time and computational resources for rendering on the device, in partic-

ular to render high-quality virtual overlays within the 16.7ms (for 60Hz screen

refresh rate) latency requirement.

4.4 Dynamic RoI Encoding

Dynamic RoI Encoding reduces the transmission latency of the offloading pipeline

while maintaining a high object detection accuracy. Transmitting the frames with

high visual quality from the mobile to the edge/cloud leads to a high bandwidth

consumption and thereby transmission latency. Dynamic RoI Encoding selec-

tively applies higher degrees of compression to parts of the frame that are less

likely to contain objects of interest and maintains high quality in regions with

candidate objects. This largely reduces the size of encoded frames with only a

small tradeoff in object detection accuracy. The key lies in identifying the regions

with potential objects of interest, which we will refer to as regions of interest.

The design exploits candidate regions that have been generated internally by the

convolutional neural network on prior frames.
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4.4.1 Preliminaries

RoI Encoding. While the building block of RoI encoding has been used in other

applications, current methods to select regions of interest are not suitable for

this augmented reality object detection task. RoI encoding is already supported

by most video encoding platform, which allows the user to adjust the encoding

quality (i.e. Quantization Parameter - QP) for each macroblock in a frame. It

has been largely adopted in surveillance camera video streaming and 360-degree

video streaming, where the RoIs are pre-defined or much easier to predict based

on user’s field of view. For example, the RoI can be derived as the area that a user

chooses to look at. This region would then receive near-lossless compression to

maintain quality while lossier compression is used for the background or non-RoI

area. Augmented reality includes use cases that should draw users attention to

other areas of the view and therefore regions of interest cannot just be based on

the current objects a user focuses on.

Object Detection CNNs. Due to impressive performance gains of state-

of-the-art object detection is largely based on CNN. While several networks exist

(e.g., Faster-RCNN, Mask-RCNN), they share a similar architecture, which firstly

utilizes a CNN network to extract the features of the input image, then internally

propose candidate regions (also called regions of interest) and their corresponding

possibilities through a region proposal network, and finally perform and refine

the object classification. The CNN network is also called backbone network and

there are multiple options for its implementation, including VGG, ResNet, and

Inception. The region proposal network usually generates hundreds of regions of

interest which are potential objects locations in the frame.

Note that the term RoIs is used both in object detection and video compres-

sion. For the object detection task, RoIs are usually the output proposals of the

region proposal network. While in the field of video compression, RoIs are the

areas inside video frames that may contain more visual information and will be



65

encoded with fewer losses. This presents an opportunity to exploit this similarity

and tie these concepts together.

4.4.2 Design

In order to reduce the bandwidth consumption and data transmission delay, we

design a dynamic RoI encoding mechanism that links internal RoI generated in

the object detection CNNs to the image encoder. Specifically, it uses the CNN

candidate RoIs generated on the last processed frame for determining encoding

quality on the next camera frame. It accommodates a degree of motion by slightly

enlarging each region of interest by one macroblock but largely benefits from the

similarity between two frames captured a short moment apart in time. While one

may expect that even greater bandwidth savings are possible by choosing RoIs

only in areas where object were detected on the previous frame, this approach

frequently misses new objects that appear in the scene because the image areas

containing these objects end up too heavily compressed. Changes in such a heavily

compressed area, however, are often still identified as part of the much larger

set of candidate RoIs of the CNN, the outputs of the region proposal network.

We therefore use the RoIs from the region proposal network, filtered with a low

minimum prediction confidence threshold (i.e., 0.02). A sample output of our RoI

detection method is shown in Figure 4.5(a).

In order to use these selected RoIs to adjust the encoding quality on the

current frame, we calculate a QP map that defines the encoding quality (QP)

for each macroblock on the frame. The QP map indicates for each macroblock

whether it overlaps with any RoI. In the example in Figure 4.5(b), all overlapping

macroblocks are marked in blue and non-overlapping ones in grey. Since object

detection is offloaded to the edge, cloud the object detection pipeline sends this

QP map back to the AR device, which uses it for the next captured frame.
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Figure 4.6: Parallel Streaming and Inference.

As shown in Figure 4.5(c), the encoder applies lossy compression on those non-

overlapping (grey) regions, while maintaining high visual quality on overlapping

(blue) regions.2 Specifically, our implementation reduces the QP value by 5 for

lossy encoding.

4.5 Parallel Streaming and Inference

We offload the heavy deep neural network computation to the edge cloud. This

requires transmitting the camera frames from the mobile side to the edge cloud.

Conventional architectures, however, can only start the object detection process

when the entire frame is received, as the deep neural networks are designed with

neighborhood dependency. This will add to the latency, since both the streaming

and the inference process take considerable time and run sequentially, as discussed

in section 4.2. To mitigate this long latency, we propose a Parallel Streaming

and Inference technique which enables inferences on slices of a frame, so that

the streaming and inference can be effectively pipelined and execute in parallel.

This technique can significantly reduce the latency since streaming and inference

consume different resources that do not affect each other: transmission consumes

bandwidth on the wireless link, decoding uses edge cloud hardware decoders, and

the neural network inference mainly consumes GPUs or FPGAs resources on the

2Note that Figure 4.5(b) and 4.5(c) uses a grid of 16x9 macroblocks for illustration purposes.
In the H.264 standard, a macroblock is usually 16x16 pixels, so a 1280x720 resolution frame
has 80x45 macroblocks.
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Figure 4.7: Dependency Aware Inference.

edge cloud.

The challenge for deep neural networks to execute on a slice of frame is the

dependency among inputs, which is caused by the neuron operations that take

neighborhood values as input. To address this problem, we propose Dependency

Aware Inference to automatically analyze the dependencies of each layer, and

only infer on the regions which have enough neighbor values. Figure 4.6 shows

how the Parallel Streaming and Inference method reduces the offloading latency.

Compared with encoding and inference on the entire frame, we encode the whole

image into multiple slices, each slice will be sent to the edge cloud immediately

after it is encoded. The edge cloud will start to infer once it receives and decodes

the first slice of the frame.

4.5.1 Dependency Aware Inference

Due to the computational dependency among neighbor values of the input frame,

simply running inference and then merging based on slices of a frame will cause

significant wrong feature values near boundaries. To solve this problem, we de-

sign a Dependency Aware Inference technique which only calculates the regions of
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feature points in each layer with enough input feature points available. Dependen-

cies are caused by the convolutional layers (as well as pooling layers sometimes),

where the feature computation around the boundary of each frame slice requires

also adjacent slices. This effect propagates for the standard convolutional layers

and pooling layers structure. We experimentally find that the boundary feature

computation of the last convolutional layer on VGG-16, Resnet-50, and Resnet-

101, requires 96, 120, 240 pixels respectively. One naive solution for parallelizing

inference is to recompute such regions when the next slice arrives at the edge

cloud. However, this requires significant extra computations for every convolu-

tional layer, which inflates the inference latency.

To solve this dependency issue, we calculate the size of the valid region for

the output feature map of each layer, and only infer based on valid regions. Valid

regions are defined as the areas of each convolutional feature map that have

enough input features available and their sizes can be determined in equation 4.2.

Hout
i = (H in

i − 1)/S + 1

W out
i =


W in

i −(F−1)/2−1
S

+ 1, i = 1, 2, ..., n− 1

W in
i −1
S

+ 1, i = n

(4.2)

Hout
i and W out

i are the height and width of valid region of the output feature

map of a convolutional layer after slice i arrives at the edge cloud (i is the number

of slice, n is the number of slices we divided.). Similarly, H in
i and W in

i are the

valid region on the input feature map of this convolutional layer. We also define

the spatial extent and stride of this conv layer as F and S correspondingly3.

Note that we empirically set n to 4 in our system to archive a balance between

transmission and inference.

3Note that we assume the number of zero padding of a conv layer is equal to (F − 1)/2 in
most cases.
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(a) Cached detection result of the last
offloaded frame.

(b) Shift the bounding box based on
the motion vectors.

Figure 4.8: Main procedures of RoI encoding.

Figure 4.7 illustrates the concept of the Dependency Aware Inference tech-

nique. Since our system cuts the whole frame into 4 slices with 1/4 of the original

width, Hout
i of one conv layer is constant and only affected by H in

i and S as shown

in the first equation, while W out
i keeps increasing as more slices arrive at the edge

cloud. For example, in the case of a standard 3x3 convolutional layer with stride

1, we will not calculate the very right column of features for slice 1,2 and 3, due

to those features requiring inputs from the next slice of the frame. As shown in

Figure 4.7, our system only calculates the red regions in each conv layer after slice

1 arrives at the edge cloud. As more slices arrive, the valid region keeps increasing

on each feature map, and the system continuously calculates those new features

included in the valid region. We can observe that the number of features that can

be calculated for slice 1 keeps decreasing as the network goes deeper. Slice 2 and

3 are able to compute more features than slice 1, and all the remaining features

will be calculated after slice 4 arrives. Note that we also defined similar logic

to process pooling layers, which will not calculate the rightmost column in the

output feature map for slice 1,2 and 3 if the input feature map is an odd number.

4.6 Motion Vectors Based Object Tracking

In this section, we introduce Motion Vector Based Object Tracking that is able to

estimate the object detection result of the current frame using the motion vector
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extracted from the encoded video frames and the cached object detection result

from the last offloaded frame.

Motion vectors are broadly used by modern video encoding approaches (e.g.

H.264 and H.265) to indicate the offset of pixels among frames to achieve a higher

compression rate. Commodity mobile devices are usually equipped with specific

hardware to accelerate video encoding and compute the motion vectors. Fig-

ure 4.8 shows the key steps of the Motion Vector based Fast Object Tracking

technique. For each new frame captured by the camera, the system passes the

frame to the Dynamic RoI Encoding session. The encoder uses the frame corre-

sponding to the last cached detection result (Figure 4.8(a)) as its reference frame

for inter-frame compression. After that, the system extracts all motion vectors

from the encoded frame, as illustrated in Figure 4.8(b). To track the object in

the current frame, we get the bounding box of this object in the last offloaded

frame, calculate the mean of all motion vectors that reside in the bounding box,

and use it to shift the old position (in blue) to the current position (in yellow).

Similarly, we also apply this technique to the human keypoint detection task, in

which we calculate the mean motion vector in the closest 9x9 macroblock region

of each keypoint, and use it to shift each keypoint.

In our experiment, we find that the accuracy of the motion vector decreases

as the time interval between the current frame and reference frame increases.

However, due to the low offloading latency achieved by the proposed latency

optimization techniques, we found that this method can provide accurate object

detection results with very short latency. The system we implemented on Nvidia

Jetson TX2 requires only 2.24ms for this motion tracking process, which leaves

enough time and computation resources for the AR device to render high-quality

virtual overlays within the 16.7ms latency requirement.

Note that this technique cannot hide the latency to first detection of an object.

Since this is already well under the response time that human observers notice,
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this technique focuses on accurate tracking so that virtual objects can follow the

motion of physical ones.

4.7 Adaptive Offloading

To effectively schedule the offloading pipeline, we propose an Adaptive Offloading

mechanism to determine which encoded frame should be offloaded to the edge

cloud. The Adaptive Offloading mechanism is designed based on two principles:

(1) a frame will only be eligible to be offloaded if the previous offloaded frame

has been completely received by the edge cloud, (2) a frame will be considered

for offloading if it differs significantly from the last offloaded frame. The first

principle eliminates frames queuing up to avoid network congestion, while the

second principle ensures that only necessary views with enough changes will be

offloaded to minimize communication and computing costs. Therefore, if a frame

satisfies both principles, it will be offloaded to the edge cloud.

The first principle requires the system to be aware of the transmission latency

of previous offloaded frames. The edge cloud therefore signals the AR device

once it receives the last slice of the offloaded frame. Based on this time difference

between the reception time and the transmission time, the AR calculates the

transmission latency and uses it to decide whether to offload the next encoded

frame.

To fulfill the second principle, it is necessary to estimate the differences be-

tween two frames. We evaluate such differences from two perspectives with either

of them satisfying the second principle: (1) whether large motions (including

both user’s motion and objects’ motion) occur among the frames, (2) whether

there are considerable amounts of changed pixels appearing in the frame. The

motion of a frame is quantified by the sum of all the motion vectors, and the

number of new pixels is estimated by the number of intra-predicted macroblocks
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within an encoded frame. Between the two types of macroblocks (inter-predicted

block and intra-predicted block) within an encoded frame, we experimentally find

that intra-predicted macroblocks usually refer to newly appeared regions, since

these macroblocks fail to find reference pixel blocks in the reference frame during

encoding.

4.8 Implementation

Our implementation is entirely based on commodity hardware and consists of

around 4000 lines of code.

4.8.1 Hardware Setup

In the hardware setup, we use a mobile development board Nvidia Jetson TX2 as

the AR device, which contains the same mobile SoC (Tegra TX2) as the Magic

Leap One AR glass. The Jetson board is connected to a TP-Link AC1900 router

through a WiFi connection. We emulate an edge cloud with a PC equipped with

an Intel i7-6850K CPU and a Nvidia Titan XP GPU, which connects to router

through a 1Gbps Ethernet cable. Both the AR device and the desktop PC run

an Ubuntu 16.04 OS.

4.8.2 Software Implementation

We implement our proposed techniques based on Nvidia JetPack[62], Nvidia Mul-

timedia API [63], Nvidia TensorRT [61], and the Nvidia Video Codec SDK [40].

Client Side. We implement the client side functions on the Nvidia Jet-

son TX2 with its JetPack SDK. The implementation follows the design flow in

Figure 4.4. We first create a camera capture session running at 60fps using the

JetPack Camera API, and register a video encoder as its frame consumer using the

Multimedia API. To realize the RoI encoding module, we use the setROIParams()
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function to set the RoIs and their QP delta value for encoding the next frame,

based on the RoIs generated on the edge cloud. We also enable the external RPS

control mode to set the reference frame of each frame to the source frame of the

current cached detection results, so that the extracted Motion Vectors can be

used to shift the cached detection results. To implement the Parallel Streaming

and Inference module, we enable the slice mode for the video encoder and use the

setSliceLength() function with a proper length to let the encoder split a frame

into four slices. After frame slices are encoded, the system extracts motion vec-

tors and macroblock types from each slice using the getMetadata() function. This

information is used as the input for Adaptive Offloading and MvOT in two differ-

ent threads (Rendering thread and offloading thread). In the offloading thread, if

the Adaptive Offloading module decides to offload this frame, its four slices will

be sent out to the server through the wireless link one by one. In the render-

ing thread, the Motion Vector based Object Tracking module uses the extracted

motion vectors and cached detection results to achieve fast object tracking. The

system then renders virtual overlays based on the coordinates of the detection

result.

Server Side. The server side implementation contains two main modules:

Parallel Decoding and Parallel Inference, which are designed to run in two dif-

ferent threads to avoid blocking each other. In the Parallel Decoding thread, the

system keeps waiting for the encoded frame slices from the AR device. Once a

slice is received, it immediately passes it to the video decoder for decoding in

asynchronous mode, which won’t block the system to continue receiving other

slices. We use Nvidia Video Codec SDK to take advantage of the hardware accel-

erated video decoder in the Nvidia Titan Xp GPU. After each slice is decoded,

the system passes it to the parallel inference thread in a callback function at-

tached to the decoder. The Parallel Inference module is implemented using the

Nvidia TensorRT, which is a high-performance deep learning inference optimizer
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designed for Nvidia GPUs. To push the limit of inference latency on the server

side PC, we use the INT8 calibration tool [64] in TensorRT to optimize the object

detection model, and achieves 3-4 times latency improvement on the same setup.

To achieve the proposed Dependency Aware Inference method, we add a Plug-

inLayer before each convolutional layer and pooling layer to adjust their input

and output regions based on Equation 4.2. After the inference process of a whole

frame, the edge cloud sends the detection results as well as the QP map back to

the AR device for future processing.

4.9 Evaluation

In this section, we evaluate the performance of the system in terms of detection

accuracy, detection latency, end-to-end tracking and rendering latency, offload-

ing latency, bandwidth consumption, and resource consumption. The results

demonstrate that our system is able to achieve both the high accuracy and the

low latency requirement for AR headsets and hand-held AR system running at

60fps. The result shows that the system increases the detection accuracy by

20.2%-34.8%, and reduce the false detection rate by 27.0%-38.2% for the object

detection and human keypoint detection tasks, respectively. To achieve this high

accuracy, the system reduces the offloading latency by 32.4%-50.1% and requires

only an average of 2.24ms to run the MvOT method on the AR device, which

leaves the remaining time between frames to render high quality virtual elements.

4.9.1 Experiment Setup

We use the setup and implementation described in Section 4.8 to conduct exper-

iments. Two different detection tasks are designed to evaluate the performance

of our system: an object detection task and a keypoint detection task. Both of

them follow the flow in Figure 4.4. In the first task, the edge cloud runs a Faster
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R-CNN object detection model with ResNet-50 to generate bounding boxes of

objects for each offloaded frame. In the second task, the edge cloud runs a Key-

point Detection Mask R-CNN model with ResNet-50 to detect the human body

keypoints. Based on the detection result, the AR device renders a complex 3D

cube on the user’s left hand, as shown in Figure 4.10. Both detection tasks run

local object tracking and rending at 60fps on the AR device. Compared to the

first task, the second task incurs higher rendering loads on the AR device. For

repeatable experiments, we extract raw YUV frames at 1280x720 resolution from

ten videos4 in the Xiph video dataset [65] as the camera input for evaluation. In

total, 5651 frames have been processed in our evaluation. In addition, we use

two different WiFi connections (2.4GHz and 5GHz) as the wireless link between

the AR device and the edge cloud. The bandwidths measured with iperf3 are

82.8Mbps and 276Mbps correspondingly.

4.9.2 Object Detection Accuracy

Our system is able to achieve high detection accuracy and low false detection

rate under various network conditions. We first measure the object detection

accuracy in four approaches: the baseline solution (Baseline), our solution with

only the two latency optimization techniques (DRE + PSI), our solution with

only the client side motion vector based object tracking method (Baseline +

MvOT), and our overall system with all three techniques (DRE + PSI + MvOT).

The baseline approach follows the standard pipeline we introduced in Section 2.

We evaluate the detection accuracy of our system with two key metrics: mean

detection accuracy and false detection rate. Specifically, we feed extracted frames

of each video to the client side video encoder at 60fps to emulate a camera but

4DrivingPOV, RollerCoaster, BarScene, FoodMarket, and SquareAndTimelapse for object
detection task. Crosswalk, BoxingPractice, Narrator, FoodMarket, as well as SquareAndTime-
lapse for the human keypoint detection task.
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Detection
Model

Approaches
WiFi

2.4GHz
WiFi
5GHz

Faster
R-CNN
Object

Detection

Baseline 0.700 0.758
DRE + PSI 0.758 0.837
MvOT only 0.825 0.864

Overall System 0.864 0.911

Mask
R-CNN

Keypoint
Detection

Baseline 0.6247 0.6964
DRE + PSI 0.7232 0.7761
MvOT only 0.7667 0.8146

Overall System 0.8418 0.8677

Table 4.1: Mean Detection Accuracy (IoU/OKS) of two models with two WiFi
connections.

allow experiments with repeatable motion in the video frames. To calculate the

detection accuracy for each frame, we calculate the mean Intersection over Union

(IoU) or Object Keypoint Similarity (OKS) between the detection result from

the MvOT and the ground truth detection result of each frame (without frame

compression and emulating no latency). Recall that IoU is 0 when the detected

object labels do not match (e.g., vehicle vs pedestrian) and otherwise represent the

degree of position similarity within the frame. More precisely, it is the intersection

area over the union area of the detection bounding box and ground truth bounding

box. Similar to IoU, OKS also varies from 0 to 1, describing the normalized

Euclidean distances between detected positions of keypoints and groundtruth

labels. In the experiment, we connect the server and the client devices through

two WiFi connections: WiFi-2.4GHz and WiFi-5GHz.

Table 4.1 shows the mean detection accuracy of two models with two different

WiFi connections. In the object detection case, we can observe that our sys-

tem achieves a 23.4% improvement for the WiFi-2.4GHz connection and a 20.2%

improvement for the WiFi-5GHz connection. In the human keypoint detection

case, our system achieves a 34.8% improvement for WiFi-2.4GHz and a 24.6% im-

provement for WiFi-5GHz. The results also show that the three main techniques

(DRE, PSI, and MvOT) are able to effectively increase the detection accuracy of
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(c) Keypoint Detection - WiFi 2.4GHz
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Figure 4.9: CDF of detection accuracy (IoU/OKS) for object detection and key-
point detection task.

the system. By comparing the DRE + PSI approach with the Baseline approach,

we find that the low latency offloading solution helps to achieve high detection

accuracy. By comparing the Baseline + MvOT with the Baseline approach, we

also see that our fast object tracking technique increases accuracy. The gains of

these two approaches accumulate in the overall system accuracy.

In addition, we show the CDF of the measured detection accuracy results in

Figure 4.9. To determine acceptable detection accuracy, we adopt two widely used

thresholds in the computer vision community: 0.5 as a loose accuracy threshold

and 0.75 as the strict accuracy threshold [66]. A detected bounding box or a

set of keypoints with a detection accuracy less than the accuracy metric is then

considered a false detection. Due to the high quality requirement of AR/MR

system, we mainly discuss the false detection rate in terms of the strict accuracy

metric, but we also mark the loose metric in each figure with the black dashed

line.

Figure 4.9(a) and Figure 4.9(b) show the CDF of IoU for the object detection
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task. Result shows that our system only has 10.68% false detection rate using

WiFi-2.4GHz and 4.34% using WiFi-5GHz, which reduce the false detection rate

of the baseline approach by 33.1% and 27.0% correspondingly. Figure 4.9(c) and

Figure 4.9(d) show the CDF of OKS for the human keypoint detection task.

Compared to object detection task that only tracks the position of each object

bounding box, this task requires to track 17 human keypoints of each human

using embedded motion vector, which is much more challenging. However, our

system can still reduce the false detection rate by 38.2% with WiFi-2.4GHz and

34.9% with WiFi-5GHz.

To understand how the detection accuracy affects the AR experience, we show

several frames with their detection accuracy (OKS) from a sample AR the human

keypoint detection task in Figure 4.10. In this sequence, the person is moving

the left hand while the system seeks to render virtual object in the palm of the

hand. The three frames in the first row are the rendering results based on our

system, while the bottom three frames are based on the baseline approach. We

can observe that the rendered cube is well-positioned in our system but trailing

behind the palm due to delayed detection results in the baseline approach.

Impact of background network traffic. Results further show that our

system is less affected by the background network load, and accuracy degrades

more gracefully even in congested networks. Figure 4.11 shows our measurement

results of the false detection rate in WiFi networks with different background

traffic loads. In the experiment, we gradually increase the background traffic in

the network, and record the corresponding false detection rate with both WiFi-

5GHz and WiFi-2.4Hz connections. When raising the traffic load from 0% to

90%, the false detection rate for baseline increases by 49.84% and 35.60% in

WiFi-2.4GHz and WiFi-5GHz, respectively. For our system, the increase is only

21.97% and 15.58%, which shows the higher tolerance of our system too network

congestion.
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(a) OKS: 0.98 (b) OKS: 0.98 (c) OKS: 0.97

(d) OKS: 0.83 (e) OKS: 0.76 (f) OKS: 0.73

Figure 4.10: (a)-(c) Rendering results based on our system. (d)-(f) Rendering
results based on the baseline approach.

4.9.3 Object Tracking Latency

Our system only requires 2.24ms to adjust the positions of previously detected

objects in a new frame, which leave enough time and computation resources

for the AR device to render high-quality virtual overlays with the time between

two frames. Figure 4.12 compares our MvOT method with two standard optical

flow based object tracking approaches—the Lucas Kanade and Horn Schunck

methods. Both methods have been optimized to take advantage of the on-board

GPU of Nvidia Jetson TX2. We can observe that our 2.24ms MvOT method is

significantly faster than traditional optical flow approaches and requires 75% less

GPU resources compared to the Lucas Kanade based optical flow method. While

their tracking may be more accurate, the delay would mean missing the frame

display time, which leads to lower accuracy because objects can have moved even

further in the next frame.
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Figure 4.14: Offloading latency
of three approaches using WiFi.

4.9.4 End-to-end Tracking and Rendering Latency

Our system is able to achieve an end-to-end latency within the 16.7ms inter-frame

time at 60fps to maintain a smooth AR experience. To validate this, we run the

keypoint detection task with 3D cube rendering on the BoxingPractice video and

plot the raw latency traces in Figure 4.13. The black dashed line in the figure

is the 16.7ms deadline for 60fps AR devices, and the yellow curve is the end-to-

end latency of this application. Due to our low latency object detection method

(Encoding + MvOT) requires an average latency of only 2.24ms, we leave more

than 14ms for the AR device to render high quality elements on the screen. We

can find that our system is able to finish the detection and rendering tasks within

16.7ms for all 250 test frames.
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4.9.5 Offloading Latency

Our RoI Encoding and Parallel Streaming and Inference techniques can effectively

reduce the offloading latency. Figure 4.14 shows the offloading latency of three

methods (Baseline, DRE, and DRE + PSI) with two different WiFi connections.

We divide the offloading latency into streaming latency and inference latency for

the first two methods, and use a PSI latency for the third method, because the

streaming and inference processes run in parallel. The streaming latency contains

time spending on encoding, transmission, and decoding tasks. The mean encoding

latency to encode an HD frame on Jetson TX2 is 1.6ms and the mean decoding

latency on our edge cloud server is less than 1ms.

In the baseline approach, the mean offloading latency is 34.56ms for WiFi-

2.4G and 22.96ms for WiFi-5G. With the RDE technique, our system is able to

reduce the streaming latency by 8.33ms and 2.94ms, respectively. Combine the

techniques of both RDE and PSI, the system further reduces the offloading la-

tency to 17.23ms and 15.52ms. We find that our latency optimization techniques

are especially effective to reduce the offloading latency on lower bandwidth con-

nections, such as on the 2.4GHz WiFi network.

4.9.6 Bandwidth Consumption

Our system is able to reduce the bandwidth consumption of the offloading task

through the Dynamic RoI Encoding (DRE) and Adaptive Offloading techniques.

We conduct an experiment to measure the bandwidth consumption of three differ-

ent offloading approaches (Baseline, DRE only, and DRE plus Adaptive Offload-

ing) in the object detection task. In all three approaches, we use seven different

QPs (5, 10, 15, 20, 25, 30, and 35) to control the base quality to encode each

frame. The approaches with the RoI Encoding technique will adjust the encoding

quality based on the detected RoIs, and the adaptive offloading approach further
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makes the decision whether to offload each frame to the edge cloud. We record

the mean detection accuracy and the bandwidth consumption of these approaches

for each QP.

Figure 4.15 shows how the mean detection accuracy changes with the band-

width consumption for the object detection task, with the comparison of these

three approaches. For the same bandwidth consumption, our RoI Encoding plus

Adaptive Offloading approach can achieve the highest mean detection accuracy.

Similarly, we can observe that this approach also requires the least bandwidth

consumption given a mean detection accuracy, e.g. to achieve the mean detection

accuracy of 0.9, our system reduces 62.9% bandwidth consumption compared to

the baseline approach.

4.9.7 Resource Consumption

Our solution consumes very few computation resources on the AR devices. To

calculate the resource consumption of our system, we run an object detection

task without any local rendering tasks on the DrivingPOV video repeatedly for

20 minutes and use the tegrastats tool from JetPack to measure the resource CPU

and GPU usage. Figure 4.16 shows the raw resource usage traces for 20 minutes.

Results show that our system requires only 15% of the CPU resource and 13%

of the GPU resource, which leaves all the remaining resources to rendering rich

graphic overlays for AR/MR system.

4.10 Related Works

Mobile AR. Designing mobile Augmented Reality system has attracted strong

interest from both industry and academia. ARCore [67] and ARKit [68] are two

mobile Augmented Reality platforms, while HoloLens [9] and Magic Leap One [10]

further promise to achieve an experience called Mixed Reality. However, none of
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these platforms support object detection due to the high computation demands.

To enable such experience, Vuforia [69] provides an object detection plugin on the

mobile devices based on the traditional feature extraction approach. Overlay [70]

uses sensor data from the mobile device to reduce the number of candidate objects.

VisualPrint [71] aims to reduce the bandwidth consumption of image offloading

by only transmit the extracted feature points to the cloud. However, none of

them is able to run in real-time (e.g. 30fps or 60fps). Glimpse [15] is a continuous

object recognition system on the mobile device running at 30fps. This system

only offloads trigger frames to the cloud, and uses an optical flow based object

tracking method to update the object bounding boxes on the remaining frames.

However, Glimpse requires a more than 600ms end-to-end latency, as well as

significant computational resources on the smartphone for object tracking, which

is not feasible for high quality AR/MR system. Other mobile AR works [72, 73, 74]

also provide useful insights for us.

Deep Learning. In recent year, Convolutional Neural Network (CNN) has

been proven to achieve better performance than traditional hand-crafted feature

approaches on various detection tasks. Huang et al. [75] compare the speed and

accuracy trade-offs for modern CNN object detection models, including Faster
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R-CNN [76], R-FCN [77] and SSD [78]. Thanks to the idea of multitask learn-

ing, current CNN can further reuse the deep features inside the object bound-

ing box for more fine-grained detection, such as instance segmentation [79], hu-

man key points detection [79], facial landmark detection [80], etc. There have

been extensive works on how to efficiently run these CNN models on mobile de-

vices [81, 82, 83, 84, 85, 86, 87, 88]. However, none of them can satisfy the latency

requirement for high quality AR/MR system.

Mobile Vision Offloading. Offloading computation-intensive tasks to cloud

or edge cloud infrastructures is a feasible way to enable continuous vision analyt-

ics. Chen et al. [89] evaluate the performance of seven edge computing applica-

tions in terms of latency. DeepDecision [16] designs a framework to decide whether

to offload the object detection task to the edge cloud or do local inference based

on the network conditions. Lavea [90] offloads computation between clients and

nearby edge nodes to provide low-latency video analytics. VideoStorm [91] and

Chameleon [92] achieve higher accuracy video analytics with the same amount of

computational resources on the cloud by adapting the video configurations. Most

of these works focus on a single aspect in the whole vision offloading pipeline,

while we focus more on improving the performance of the whole process.

Adaptive Video Streaming. Adaptive video streaming techniques have

been largely exploited to achieve better QoE. Several 360-degree video streaming

works [93, 94, 42, 95] also adopt the idea of RoI encoding to reduce the latency

and bandwidth consumption of the streaming process. Other video adaptation

techniques [96, 97, 98, 99] are also complementary to our work.

4.11 Conclusion

In this paper, we design a system that enables high accuracy object detection

for AR/MR systems running at 60fps. To achieve this, we propose several low
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latency offloading techniques that significantly reduce the offloading latency and

bandwidth consumption. On the AR device, the system decouples the rendering

pipeline from the offloading pipeline, and uses a fast object tracking method to

maintain detection accuracy. We prototype an end-to-end system on commodity

hardware, and the results show that the system increases the detection accuracy

by 20.2%-34.8%, and reduce the false detection rate by 27.0%-38.2% for two object

detection tasks. The system requires very few resources for object tracking on

the AR device, which leaves the remaining time between frames for rendering to

support high quality AR/MR experiences.
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Chapter 5

EdgeSharing: Edge Assisted Real-time

Localization and Object Sharing in Urban

Streets

5.1 Introduction

Urban streets and intersections are notorious traffic trouble spots. According to

the U.S. Department of Transportation, 51 percent of all injury crashes and 28

percent of all fatal crashes in the United States occur at intersections. Many

accidents, which occur at intersections involve visual occlusions of cars or vulner-

able road users. This is a challenge that instrumenting individual vehicles with

sensors, as in current automated driving and advanced driver assistance system,

cannot fully solve since they can suffer from similar occlusions.

Ubiquitous sensors and computational resources on the road raise the possi-

bility of smart intersections that address such occlusions through object sharing.

Object sharing systems promise to extend traffic participants awareness beyond

their field of views by sharing the moving object’s detected from different camera

perspectives and positions. For example, a leading vehicle can share its detected

front vehicle or pedestrian locations to a following vehicle whose field of view

has been blocked by the leading vehicle. Meanwhile, the following vehicle can

also share the traffic participants detected in the blind spot of the leading vehicle

to extend its awareness. Furthermore, a deployed camera at an intersection can

localize each object in the intersection and provides this information to all clients

in the nearby region.
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Figure 5.1: Object Sharing in Urban Street

Accurately sharing objects between moving clients is extremely challenging

due to the high accuracy and low latency requirement for localizing both the

client position and positions of its detected objects. Compared to GPS and other

inertial sensing methods that are widely recognized to be less accurate in dense

city scenarios, visual odometry solutions (e.g. SLAM) are more feasible in such

situations where rich visual features exist. These solutions typically determine

the position and orientation of a client device by analyzing the associated vision

inputs (e.g. camera image, Lidar depth map, etc.) with a map constructed

by 3D features. However, these solutions require large amounts of computation

and storage resources on the end devices to store the large feature map and

run computational intensive tasks on captured frames, which are less common

to appear on commercial vehicles or smart devices. In addition, in order to

continuously benefit from the evolving localization and detection algorithms, it

is more feasible to run those intensive algorithms on the cloud, which can easily

expand to large amounts of computation resource. However, offloading vision
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tasks to the cloud can incur long transmission delays, which make the feedback

less useful to the mobile nodes.

Today’s visual odometry method on mobile devices either run in small spaces

or offload image features up to the cloud for assistance. Most of existing AR/VR

platforms, including Apple ARKit [68], Google ARCore [67], Microsoft Hololens [9],

and Oculus Go [100], are able to achieve real-time SLAM in small spaces with

mostly stationary scenes. Mapping in large and open spaces are even more chal-

lenging due to the large variations in the environment. Existing outdoor map-

ping technologies adopted by self-driving cars requires the vehicle to equipped

with high computational resources (e.g. GPU or FPGA) and also store a huge

precomputed 3D feature maps onboard to achieve accurate visual based localiza-

tion. Other applications such as Google Map’s AR navigation app [101] offloads

features from the captured image to the cloud and match them with the feature

map stored in the cloud server, which effectively offloads the computation task to

the cloud. For object sharing, AVR [74] is a pioneer work that allows a vehicle to

share its point cloud to another vehicle through V2V communication. However,

it requires each vehicle to have large computation resources and comprehensive

3D feature map on board, which is really hard to achieve with different manu-

facturers. Besides, The direct sharing method between mobile nodes is hard to

apply any sophisticated system or upgrade with improved algorithms that exceed

the computational capabilities of legacy devices. While cloud offload is a feasible

way to overcome these limitations of the device’s resources, it requires a long

transmission latency to upload the visual information to the remote cloud. It is

therefore highly desirable to offload localization and object sharing platform on in

a way that reduces latency incurred by frame transmission so that it can support

driving and vehicle control applications.

In this paper, we introduce EdgeSharing, a first collaborative localization and

object sharing system leveraging the resources of an edge cloud platform and the
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visual inputs from participating mobile clients (e.g., vehicles and pedestrians).

In EdgeSharing, the edge cloud holds a 3D feature map of its coverage region

constructed from images and depth readings from a dedicated data collection

vehicle or crowdsourced from participating clients. This 3D feature map is then

used to provide accurate localization services to the client devices passing through

this region. Besides, EdgeSharing also leverages the computation power on the

edge cloud to detect object locations on the images offloaded by participating

clients. These locations are stored in a sharing database and can be shared

with other clients in the same region. With EdgeSharing installed on the edge

cloud, nearby vehicles are able to learn extra object (e.g., traffic participant)

locations from the edge cloud, which are outside the vehicles field of view. This

improves their situational awareness and safety. To realize this, we propose several

optimization techniques. In particular, we propose a Context-Aware Feature

Selection method to filter out potential moving objects in the offloaded images

to increase the localization accuracy. We also introduce a Collaborative Local

Tracking mechanism to significantly reduce the bandwidth consumption of frame

transmission by only offload selected keyframes to the edge cloud, while using a

lightweight local tracking method to keep track of the location of the client and

its detected objects on the end device. In addition, we design a parallel streaming

and processing method to enable parallel video streaming and cloud processing,

which largely reduces the end-to-end latency of EdgeSharing.

Compared to direct sharing between vehicles, an edge cloud-based object shar-

ing system has allowed for easier software and hardware upgrading and mainte-

nance, allowing the system to run more sophisticated algorithms at key intersec-

tions, even if legacy vehicles do not have the computational resources to run them

fully in-vehicle. In addition, the large storage on the edge cloud also allows the

system to store longer-lived object locations even when traffic is sparse.
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EdgeSharing is able to achieve high-quality real-time localization and accu-

rate object sharing with only small amounts of cloud computation and bandwidth

resources. Our evaluation result demonstrates that the system is able to achieve

a mean vehicle localization error of 0.2813-1.2717 meters, an object sharing accu-

racy of 82.3%-91.44%, and a 54.68% object awareness increment in urban streets

and intersections. In addition, the proposed optimization techniques are able to

reduce 70.12% of bandwidth consumption and reduce 40.09% of the end-to-end

latency.

The contributions of this work can be summarized as follows:

• Designing the first real-time collaborative localization and object sharing

system EdgeSharing, leveraging the support of the edge cloud.

• Proposing a practical solution to localize objects detected by dynamic mov-

ing devices.

• Improving the localization accuracy with context-aware feature selection

mechanism.

• Reducing offloading bandwidth with a collaborated local tracking method.

• Decreasing the end-to-end latency using a parallel streaming and processing

pipeline.

• Implementing and evaluating the EdgeSharing system based on commodity

hardware and showing that the proposed system can achieve high-quality

real-time localization and accurate object sharing with only small amounts

of cloud computation and bandwidth resources.



91

5.2 Motivation and Challenge

Many traffic accidents at intersections involve occlusions of cars or other vulner-

able road users. This situation becomes even more severe in urban intersections

where large amounts of vehicles and pedestrians heavily interact together. A left

turning vehicle may obscure oncoming traffic. A large truck may block the view

of following vehicles, therefore prevent them from making the right decisions. As

ubiquitous sensors and computation resources appear on the road, this creates

an opportunity for object detection and sharing between different mobile nodes,

which promises to address such occlusion by extending the vision beyond their

field of view.

In order to achieve a high-quality object sharing experience, the system re-

quires to accurately localize both the positions of mobile nodes (e.g. vehicles

and pedestrians) as well as their detected objects. While GPS and inertial sensor

readings can achieve decent localization accuracy in an open area, it is widely rec-

ognized to have poor accuracy in urban canyon scenarios, due to multi-path and

building obstructions. Therefore, visual odometry solutions (e.g. visual mapping

and SLAM) offer higher accuracy in such situations, particularly in such urban

areas where rich visual features exist. In addition, CNN based object detection

is also required to localize the object position in the observer’s perspective.

However, running the whole system on mobile nodes is very challenging be-

cause the task is memory and computationally intensive. First, the system re-

quires the mobile nodes to have large storage resources to store the large 3D

feature map for visual mapping. To demonstrate this, we conduct this analytic

based on a popular open-sourced SLAM algorithm ORB-SLAM, which generates

its feature maps using scene features (map points) among a subset of selected

frames (keyframes) captured by a dedicated map generation vehicle. As the spa-

tial area of the whole map increases, the number of keyframes increases and the
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Figure 5.2: Challenges of running object sharing system on mobile nodes.

storage consumption of the feature map increases consequently. Figure5.2(a) pro-

vides an illustration of the map storage requirement in three different scenarios:

an urban intersection, a block, and a 100 meter straightway. We find that the

map of only one intersection requires more than 200MB to store. Therefore, it is

challenging to store many such feature map on mobile nodes.

Besides, it is challenging to run sophisticated mapping and object detection

algorithm on mobile nodes due to their limited computation resources. While

many existing works have already shown that running object detection on mobile

devices results in very low frame rate [102], we also find that the mapping latency

of ORB-SLAM increases with the number of keyframes in the map, as shown

in Figure 5.10(c). A feature map with around 800 keyframes (similar to the

number of keyframes in an intersection) requires around 40ms to track a frame

on a normal CPU (i.e. Intel I7 5500U), which makes it extremely hard to run at

30fps on current mobile nodes.

In addition, Current SLAM algorithms (e.g. ORB-SLAM) have very poor

performance running in the urban street due to the dense traffic. It is well known

that SLAM algorithms are expected to fail when many moving objects occur in

the scene. Based on experiments, we also observed that the accuracy of both

tracking and mapping decrease as the number of moving vehicles increases in the
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scene. In order to provide a robust and accurate localization method, the object

sharing system needs a more sophisticated algorithm that might require more

computation resource.

While vehicles may be equipped with significantly higher computational re-

sources, long replacement cycles for vehicles will make it challenging for older

vehicles to be continuously upgraded with state-of-the-art algorithms that will

likely require additional resources.

It is therefore highly desirable to have a localization and object sharing plat-

form on the edge cloud that can be more easily upgraded and can overcome

resource limitation on commercial mobile nodes. Compared to traditional cloud

platforms that are typically far from the end devices, edge clouds are located at

the network edge, thus require less latency for offloading tasks of mobile nodes.

Previous works have already demonstrated the benefit of the edge cloud of vision

based offloading tasks, such as VR, AR, and video analytics. In this paper, we

ask whether it is also possible to use achieve cloud-based localization and object

sharing system that aims to achieve high-quality object sharing with latencies low

enough to be able to support vehicle control applications.

Note that this is not meant to replace local processing in vehicles but can

augment in-vehicle processing at key intersections, particularly for legacy vehicles

that may lack the resources for state-of-the-art algorithms.

5.3 EdgeSharing Design

In this paper, we propose EdgeSharing, a system that aims to provide high-

quality real-time object sharing services to travelers in dense city traffic scenarios

leveraging large computational resources at the edge cloud. First, this platform

allows mobile clients, such as vehicles and pedestrians to offload computations

of the visual localization task onto the edge cloud while maintaining low latency
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Figure 5.3: System Design

and high accuracy. Second, it collects sensor data from these mobile clients and

other infrastructure sensors near the edge that offer different perspectives onto

the intersection and merges this. Merging accuracy benefits from sharing rich

data streams so that perspectives can be accurately aligned based on a large

set of feature points. Merging information from different perspectives allows

vehicles to see into blind spots and other areas of the intersection that are occluded

by objects. More complete information about traffic participant positions and

trajectories will allow improving efficiency and safety in advanced driver assistance

as well as automated driving systems. The whole system consists of two parties:

clients and an edge server, as illustrated in Figure 5.3.

Clients. Clients can be any mobile nodes with visual sensors (e.g. au-

tonomous or human-driven cars, pedestrian’s smartphones or smart glasses, and

street cameras for commercial or security purposes) that have connectivity to the

edge cloud server. In EdgeSharing, these mobile clients can be split into two

categories: producer and consumer, with some devices acting as both. Producers

are mobile clients with both RGB camera and depth sensors that can localize the

position of captured objects in the 3D environment, while consumers are mobile

clients that keep receiving the information of surrounding objects that it might

interact within the local region. Participation as a consumer is possible without
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depth-sensing. Typical producer clients include advanced self-driving cars, street

cameras or flying drones with RGB cameras and depth sensing capability. These

devices are able to continuously transmit captured RGB frames and depth read-

ings that contain information of its current perspective to the edge server. While

consumers are mobile clients that keep receiving the information of surrounding

objects that it might interact within the local region. Differently, consumer clients

can be any existing commercial mobile devices such as smartphones, smartglasses,

and commercial vehicles. These clients only need to offload the RGB frame cap-

tured by its equipped camera to localize itself, and then benefit from the objects

shared by producers. Note that producers such as self-driving cars can also act as

consumers in the meantime to receive object locations shared by other producers.

Edge Server. An edge server is a regional edge cloud or data center that

gathers sensor readings of all participating mobile clients, detects objects from

different perspectives, and provides such information back to mobile clients for

safety purposes. As illustrated in Figure 5.3, the edge server consists of three key

services: Device Localization, Object Detection, and Object Sharing. In order to

benefit from the objects detected by different mobile clients, EdgeSharing requires

estimating the accurate 3D pose information (location and orientation) of each

participating client in the world coordinate system. While GPS and inertial sensor

data provide low-cost location and orientation data, it is widely recognized to

be noisy and inaccurate in urban canyons. The Device Localization procedure

of EdgeSharing estimates the 3D transformation matrix with visual odometry

techniques leveraging the offloaded frames from the client device. EdgeSharing

redesigns a popular ORB-SLAM algorithm to work in this edge offloading scenario

– the edge server collects the offloaded frames from mobile clients to generate

the 3D map and uses it to help localize these devices. In the Object Detection

Service, the system first leverages a state-of-the-art object detection algorithm to

detect locations of a new object in the image frame. EdgeSharing uses the depth
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information provided by the producer client to estimate the 3D localization of

each such object in its camera coordinate system, and then projects the position

to the world coordinate system with the perspective projection from the device

localization service. All detected object locations are stored in an object database

on the edge server. The last component is Object Sharing Service which shares the

stored object locations in the database with nearby clients. EdgeSharing projects

the position of each object in the database back to the client’s coordinate system

and returns this information back to the client. We further detail this system in

the following subsections.

5.3.1 Device Localization Service

To enable accurate object sharing in urban streets with dense traffic, EdgeSharing

requires estimating the position and orientation of each participating client in the

coverage region. This allows the system to calculate the relative transformation

between two different objects and share the information with clients.

EdgeSharing leverages a popular SLAM framework (i.e. ORB-SLAM) as its

device localization solution. The original purpose of ORB-SLAM is to leverage

ORB features extracted from continuous captured frames for real-time construc-

tion or updating of a 3D feature map of an unknown environment, while simulta-

neously keeping track of an agent’s location within it. In EdgeSharing, we use this

ORB-SLAM solution to generate a high-quality 3D feature map of the coverage

region of an edge cloud server (e.g. an intersection) and use this map to localize

the participating mobile clients in this local region.

To build the feature map for device localization, we can simply use a dedicated

data collection vehicles to drive through the region from different directions for

several times and provide the captured frames to the ORB-SLAM algorithm to

process. There has been other research that constructs feature map using crowd-

sourced frames from travelers in the street [103]. Once the map is constructed,
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the edge server is able to provide device localization service to the mobile devices

by matching the ORB feature points from their offloaded image to features in

the 3D feature map. The system further optimizes the pose of the device with

RANSAC and motion model constraints. The final output of the device local-

ization service is a world to camera transformation matrix (Tcw) that is able to

transform a point’s 3D location between the world coordinate system and the

camera coordinate system. This matrix is also refer to the combination of a ro-

tation matrix (Rcw) and a translation matrix (tcw) between the two coordinate

system as shown in Equation 5.3

5.3.2 Object Detection and Sharing Service

After localizing the 3D position and orientation of each client, EdgeSharing adopts

an Object Detection and Sharing Service to identify the objects in the client’s field

of view, while also share those NLOS objects that have been detected by other

clients on the road. This service has three key components: Object Bounding

Box Detection, Object 3D Localization, and Object Sharing.

Object Bounding Box Detection. EdgeSharing leverages state-of-the-art

CNN based Object Detection models to identify object locations on each frame’s

pixel coordinate system. Specifically, we use a ResNet-50 based Faster RCNN

Object Detection model to detect object locations of each video frame. This

model takes the raw RGB frame as the input and outputs the 2D bounding

boxes of objects appears in the frame. The model is trained with Microsoft

Coco dataset, which contains 91 different object types, including person, car,

motorcycle, bicycle, bus, truck, traffic light, and different street signs that all

appear frequently in urban streets.

Object 3D Localization. In order to share the detected object to other

clients, EdgeSharing requires to estimate the 3D localization of each object in

the world coordinate frame. The Object 3D Localization process works in the
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following procedures: (1). The system estimates the depth of each object with

respect to the camera’s coordinate system. This step can be achieved using depth

sensors from the vehicle (e.g. Lidar, Radar, RGBD camera or stereo camera), or

based on other monocular based depth estimation techniques. (2). The system

then uses perspective projection to transform the location of a vehicle from the 2D

pixel coordinate frame to the 3D world coordinate frame. Equation 5.1 shows the

projection equation of projecting a point from the pixel coordinate system (u, v)

to the camera’s coordinate system (xc, yc, zc), and then to the world coordinate

system (xw, yw, zw). EdgeSharing uses the center point of each bounding boxes

as the location of this object (u, v) on the frame’s pixel coordinate system, and

uses the median depth value inside the bounding box as its depth towards the

camera’s coordinate system (zc). With the position information of the object

and the intrinsic matrix (K) of the camera, the system is able to transform each

object to the camera’s coordinate system. After that, EdgeSharing further derives

the position of each object in the world coordinate system leveraging the client’s

Extrinsic Matrix (Tcw) calculated by the device localization service. (3). All

detected locations of objects are immediately stored in a Shared Object Database,

an object collector on the edge cloud that stores the real-time 3D object locations

in its coverage area. The Shared Object Database gathers the location of each

object from images offloaded by nearby clients, while providing this information

for object sharing. To maintain a timely object sharing, each collected object

will be expired after 33 ms. Note that this process is only executed for frames

offloaded by producer clients, which include both the color and depth information

of frames.
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(a) Object detection on the RGB frame. (b) Estimate depth of each detected object
using the depth map of the frame.

Figure 5.4: Object 3D Localization.
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Object Sharing. Finally, EdgeSharing shares objects inside the Shared

Object Database to the client to provide them more information beyond their

line-of-sight. In particular, the system transforms all shared objects within the

responsible region from the world coordinate system to the client camera’s co-

ordinate system based on the transformation matrix (Tcw) calculated from the

device localization service. The server combines the shared object locations with

the detected object locations, and send them back to the client.
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Figure 5.5: Collaborated Local Tracking

5.3.3 System Optimization

In addition, we propose several optimization techniques on our system to im-

prove the performance of EdgeSharing. First, we design a Context Aware Feature

Selection method to select only stable features on each frame to estimate the

pose of the device (Section 5.4). This method takes advantage of the powerful

computation resource on the edge server and uses the detected object bounding

boxes to do the feature selection. Second, EdgeSharing adopts a Collaborated

Local Tracking mechanism to reduce offloading bandwidth while maintaining a

high tracking accuracy (Section 5.5). Last, we implement a Parallel Streaming

and Processing pipeline to decrease the end-to-end latency of the whole offload-

ing tasks by efficiently pipelining streaming and image processing processes in

parallel (Section 5.6).
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5.4 Context Aware Feature Selection

EdgeSharing applies a Context Aware Feature Selection mechanism to increase

the accuracy of our device localization service in dense traffic scenarios. While

SLAM based visual odometry method has been adopted as the key inside-out

tracking method for mobile devices, it is still widely recognized to be vulnerable to

moving objects in the scene [104]. This method relies on matching feature points

between continuous captured frames and uses them with motion model constraints

to derive instant changes over time. The key principle underlies this mechanism

is that most of the matched feature points are not moving between frames in

the world coordinate system. However, based on our observation, the principle is

very hard to guarantee in dense traffic scenarios, where large amounts of moving

objects (e.g. vehicles, pedestrians, etc.) exist. To overcome this challenge, we

propose a Context Aware Feature Selection method to filter out potential moving

features in the scene and only use stable feature matches to estimate the location

changes. The intuition of this approach is that we believe feature points located

inside the detected object bounding boxes of movable objects are more likely to

move than other background regions. By taking advantage of the object detection

service, EdgeSharing directly filtered out the feature points lie in the bounding

boxes of potential moving objects. In particular, we consider the following objects

as potential moving objects: car, bus, truck, motorcycle, bicycle, and person.

Figure 5.6 shows an illustration of our feature selection method when pro-

cessing one of the offloaded frames. The green markers are the feature matches

between the frame and feature points in the 3D map. The blue markers represent

the matches with previous frames and red markers are the discarded matches due

to they lie in the bounding boxes of detected potential moving objects. In the

device localization service, the system only matches green and blue feature points

with the 3D feature points and use them to derive the location of the device. We
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Figure 5.6: Context Aware Feature Selection

further show how this mechanism can increase the localization accuracy in dense

city traffic scenarios in Section 5.10.

5.5 Collaborated Local Tracking

EdgeSharing requires participants to keep offloading video frames to the server

through the wireless link, which require a huge amount of bandwidth support.

To eliminate this large overhead, a potential solution is to reduce the offloading

frequency. However, this will result in a low device localization accuracy due to

the low update rate. To overcome this trade-off between the localization accuracy

and bandwidth consumption, we propose a Collaborated Local Tracking to reduce

the offloading frequency while keeping a high localization accuracy. Instead of

continuously offload every frame to the edge server, EdgeSharing leaves some

frames on the device for local tracking and updating. The offloaded frames still

follow the regular procedures described in Section 5.3, while the local frames go

through a fast local tracking process to estimate the location changes of the client

as well as the position of its detected objects.
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5.5.1 Local Device Tracking

As shown in Figure 5.5, the local device tracking module has three components:

(1) Image downsampling, (2) Homography calculation, and (3) Transformation

calculation. In the first step, the system downsamples the raw frame to a smaller

resolution (from 800x600 to 400*300) to reduce the time complexity of following

feature extraction and matching. Then, the system extracts ORB feature points

from the downsampled frame and find feature matches with the last offloaded

frame. After that, the system runs a RANSAC with projective motion model to

get a group of correct matches between the current frame and the last offloaded

frame using the matched ORB feature pairs between them. Finally, an SVD

method can be used to estimate the homography matrix between two images.

As shown in Equation5.4, Homography matrix is a 3x3 matrix that is an image

to image mapping matrix that is able to transform each pixel’s homogeneous

coordinate on the last offloaded image ([u, v, 1]T ) to its corresponding coordinate

on the current image’s pixel homogeneous coordinate system ([u′, v′, 1]T ).

λ
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u′
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1
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

u

v

1

 (5.4)

With the homography matrix between two images, the system then extracts

the rotation and translation matrix between two images, and uses them to build

the transformation matrix Tc′c that can transform a 3D point in the camera’s

homogeneous coordinate system of the last offloaded frame ([x, y, z, 1]) to the

corresponding points in the current camera’s homogeneous coordinate system

([x′, y′, z′, 1]). After that, the system can calculate the transformation matrix

from the world coordinate system (Tc′w) using Equation 5.5.

Tc′w = Tc′cTcw (5.5)
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With this local tracking method, EdgeSharing is able to localize the position

of the client device in real-time without the necessity of offloading every frame to

the edge to process. For the local processed frame, the mobile client only needs

to send the updated location of the device to the edge server, and the server can

use this information to share objects to the client.

5.5.2 Local Object Tracking

In addition to local device tracking, EdgeSharing also enables object tracking

when the frame is kept on the device for local processing. The local object

tracking has three main procedures. First, the system uses a motion vector based

object tracking method to shift the bounding box of each object from the last

offloaded to the current frame, based on the match feature points in those regions.

Then the system uses the same method as introduced in section 5.3 to find the

position of the object in the camera’s coordinate frame using the new bounding

box location and depth readings of that region. After that, the location of the

object can be projected to the world coordinate system using the transformation

matrix Tc′w calculated in the local tracking module. Finally, the client device

transmits the device transformation matrix and all object locations to the cloud

to update the share object database and retrieves the shared objects based on its

position. This local object tracking technique can help the producer client update

its detected object position without continuously uploading frame to the cloud.

5.5.3 Adaptive Offloading

In addition to the local tracking mechanism, we also design an adaptive offloading

mechanism to determine whether the client device should offload the current

frame to the edge server or keep it for local tracking and only update the location

and orientation changes to the server. The key intuition behinds this method
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Figure 5.7: Parallel Streaming and Processing

is that we want to offload the frames that have large changes compare to the

previous offloaded frame. Therefore, Adaptive Offloading uses the number of

feature matches between the last offloaded frame and the last frame to determine

how similar is the current frame compared with the last offloaded frame. If the

feature matches are too low, the system will be hard to maintain a high accuracy

tracking, therefore, should offload the frame to the edge server to process. If there

are still a lot of matches with the last offloaded frame, the system can continue

to process the frame locally. We empirically pick 40 pairs as the threshold and

report the result in section 5.10.

5.6 Parallel Streaming and Processing

EdgeSharing also strives to reduce the end-to-end latency of the whole transmis-

sion and processing pipeline. The whole processing pipeline consists of frame

streaming and several cloud processing procedures that usually has a The end-

to-end latency of more than 50ms. Such long latency may significantly reduce

the accuracy of localization and object sharing, since the location of objects may

already changes after the system get the detection result. To overcome these

challenge we propose a Parallel Streaming and Processing pipeline to parallel

the processing pipeline of different tasks on different resources of the edge cloud

platform, and therefore, largely reduce the overall latency spend on the task.

As illustrated in Figure 5.7, the baseline of the offloading pipeline is consists
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(a) Dataset 1: 4-way Stop
Sign.

(b) Dataset 2: City Intersec-
tion.

(c) Dataset 3: LA Intersec-
tion.

of four key procedures: (1) Frame transmission from the client device to the edge

server, (2) Object detection on the offloaded frame, (3) Feature processing on the

offloaded frame (i.e. feature extraction and matching), and (4) post processing,

including camera pose estimation, object location estimation and object sharing.

Since both the transmission and image processing on the server take considerable

time and run sequentially, it ends up with a long end-to-end latency for the

entire system. A previous work [105] has already shown how to enable parallel

streaming and inference for object detection tasks. In EdgeSharing, we further

extend this idea to enable parallel streaming and feature processing. In particular,

the client device splits each offloaded frame into four slides and transmit them

one by one. Once each slide of the image arrives at the edge server, the system

can immediately start feature extraction or object detection tasks on the single

slide instead of waiting for the whole frame to arrive. In addition, we also parallel

the procedures of object detection and feature processing by offloading the object

detection to the onboard GPU. After all object detection and feature processing

task finished, the system starts to the post processing stage and finish the rest of

the task.

Parallel Streaming and Process is able to achieve almost half latency reduction

compared to the baseline approach. More results regarding this technique is

described in the section 5.10.
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5.7 Implementation

Our implementation is entirely based on commodity hardware and consists of

more than 5000 lines of code.

5.8 Hardware Setup

We emulate the whole system using a group of commodity hardware. On the

client side, We use a mobile development board Nvidia Jetson TX2, which is

connected to a TP-Link AC1900 router through a WiFi connection. We emulate

an edge cloud with a PC equipped with an Intel i7-6850K CPU and an Nvidia

Titan XP GPU, which connects to a router through a 1Gbps Ethernet cable.

Both the client device and the edge server run an Ubuntu 16.04 OS.

5.9 Software Implementation

The whole system is built upon the successes of previous open source projects

or libraries, including ORB-SLAM2 [104], OpenCV [106], Nvidia JetPack [62],

Nvidia Multimedia API [63], Nvidia TensorRT [61], and the Nvidia Video Codec

SDK [40]. We further explain the implementation of the edge server and the client

side in detail.

Edge Server. The edge server-side implementation contains three key mod-

ules: Frame Decoding, Object Detection and Frame Tracking, which are designed

to run in three different threads to avoid blocking each other. In Frame Decoding

thread, the edge server keeps decoding frame slides transmitted from the client de-

vice and feeds them to the Object Detection thread and the Frame Tracking thread

immediately after completion. The Object Detection thread is implemented using

the Nvidia TensorRT, which is a high-performance deep learning inference opti-

mizer designed for Nvidia GPUs. To push the limit of inference latency on the
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server side PC, we use the INT8 calibration tool [64] in TensorRT to optimize

the object detection model, and achieves 3-4 times latency improvement on the

same setup. More design detail can be found in a previous work [105]. The Frame

Tracking thread is developed based on the famous ORB-SLAM2 algorithm [104].

We modify the original project to fit our requirement of parallel processing and

feature selection. In particular, we create a Frame object for each frame slide and

use it to extract key points and ORB descriptors on each slide. Then the feature

matching is performed by matching each feature point on a slide with features on

the entire last frame. To implement the Context-aware Feature Selection method,

we perform a filter on the match feature pairs in the post processing stage, lever-

aging the object bounding boxes detected in the Object Detection thread.

Mobile Client. We implement the client side functions on the Nvidia Jetson

TX2 with its JetPack SDK and OpenCV. The implementation follows the design

flow in Figure 5.3 and Figure 5.5. We use OpenCV to achieve the image down-

sampling, cropping, and various transformation matrix calculation. To implement

the Parallel Streaming and Inference module, we enable the slice mode for the

video encoder and use the setSliceLength() function with a proper length to let

the encoder split a frame into four slices. Each slide is immediately transmitted

out to the edge server to process.

5.10 Evaluation

In this section, we evaluate the performance of the EdgeSharing in terms of device

localization accuracy, object sharing latency, bandwidth consumption, end-to-end

latency. The results demonstrate that our system is able to achieve both the high

accuracy and the low latency requirement for device localization and object shar-

ing in urban streets. The result shows that the system is able to achieve a mean

vehicle localization error of 0.2813-1.2717 meters, an object sharing accuracy of
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82.3%-91.44%, and a 54.68% object awareness increment in urban streets and in-

tersections. In addition, the proposed optimization techniques are able to reduce

70.12% of bandwidth consumption and reduce 40.09% of the end-to-end latency.

5.10.1 Experiment Setup

We use the setup and implementation described in Section 5.7 to conduct exper-

iments. Two different object sharing tasks are designed to evaluate the perfor-

mance of our system: a vehicle to vehicle object sharing and an infrastructure

to vehicle object sharing. In vehicle to vehicle object sharing scenario, the Edge-

Sharing server collects object position from producer vehicles with both cameras

and depth sensors and providing object sharing service to all consumer vehicles

with only RGB cameras. In the infrastructure to vehicle sharing scenario, the

EdgeSharing gets object position from a street camera and depth sensor, and

shares detected objects to all vehicles with RGB cameras.

For repeatable experiments, we use three collected datasets as described in the

section 5.10.2 to conduct our experiment. During the experiment, we simulate the

whole offloading and sharing process follows the workflow described in Section 5.3.

5.10.2 Dataset Description

We collected three different datasets to evaluate the performance of our system.

To first evaluate the system under perfect data inputs, we collect two datasets

using an open-source simulator for autonomous driving called CARLA [107].

CARLA provides open digital assets (urban layouts, buildings, vehicles) that were

created for this purpose and can be used freely. The simulation platform sup-

ports flexible specification of sensor suites, environmental conditions, full control

of all static and dynamic actors and maps generation. We carefully choose one

4-way stop sign intersection and another city intersection from CARLA’s map 3
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and map 5 to collect dataset for our experiment. Figure 5.8(a) and Figure 5.8(b)

show the top view of two intersections. During the data collection, we spawn

400 vehicles equipped with front view cameras in random locations on the map.

In the 4-way stop sign intersection, we aim to evaluate vehicle to vehicle object

sharing, therefore, each vehicle is equipped an additional depth camera to record

the corresponding depth for each pixel on the RGB image. In map 5, we put a

street camera and another depth camera at the position shown in Figure 5.8(b) to

evaluate infrastructure to vehicle sharing scenario. The street camera keeps cap-

turing 120-degree field of view and 1280x720 resolution frames at 30 fps, while

vehicles are capturing frames 90 fov 800x600 resolution frames at 30 fps. All

images are recorded with synchronized time-stamps for our evaluation. We also

log the position and orientation data of each participant as groundtruth for the

following evaluation.

To further evaluate the performance of EdgeSharing in real traffic scenarios,

we collect another 120-hour dataset in an intersection in Los Angeles, CA. In this

dataset, we use GoPros mounted at the bottom center under the windshield to

record the full drivers front view videos with 1280720 resolution at 30 fps. The

30Hz GPS readings are also recorded using the embedded GPS sensor in GoPros.

During the data collection, ten different drivers were driving together as a fleet

in an urban street back and forth for 30 times. Figure 5.8(c) show an example

of collected video data, where three vehicles are driving together in a row. We

can observe that the second vehicle can see the first vehicle in its field of view.

Similarly, the third vehicle can also see the second vehicle in its front view. We

also use this data to evaluate how well EdgeSharing can provide localization and

object sharing services to them.
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Figure 5.8: CDF of device localization of EdgeSharing.

Dataset Approaches
Position
(meter)

Orientation
(degree)

4-way
Stop Sign

Baseline 0.6481 2.0129
+ Feature Selection 0.3173 0.5742
+ Local Tracking 0.3856 0.8215

City
Intersection

Baseline 0.5801 1.8812
+ Feature Selection 0.2813 0.5216
+ Local Tracking 0.3650 0.7518

LA
Intersection

Baseline Fail N/A
+ Feature Selection 1.2717 N/A
+ Local Tracking 1.6841 N/A

Table 5.1: Mean position and orientation error of three different approaches on
three datasets.
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5.10.3 Accuracy of Device Localization

EdgeSharing is able to achieve high accuracy of device localization under many

different urban traffic scenarios. We first measure the device localization accuracy

of EdgeSharing in three approaches: the baseline solution (Baseline), our solution

with the Context-aware Feature Selection method (+ Feature Selection), and our

solution with both the Context-aware Feature Selection and the Collaborated Local

Tracking method (+ Local Tracking). The baseline approach follows the standard

pipeline we introduced in Section 2. We evaluate the detection accuracy of our

system with two key metrics: the position error and the orientation error of

the device, as shown in Table 5.1. For the 4-way stop sign intersection and the

city intersection dataset, we create a dedicated map generation vehicle in the

simulator and let it drive through the intersection from different directions and

lines for several times. The captured 30fps RGB frames and depth maps are

used to generate the map. For the LA intersection dataset, we use two videos

from the leading vehicle to construct the feature map. The map is then used

to help the other vehicles localize themselves in the same intersection. In the

baseline approach, both the map generation and device localization processes

use all ORB feature points on the frame, while only selected features are used for

those tasks in the last two approaches. We use some reference points to transform

the map’s coordinate system to the world coordinate system of the groundtruth

location reading, and use it unify the position and orientation output of the device

Localization service with our groundtruth. As shown in Table 5.1, the proposed

Context-aware Feature Selection is able to increase the localization accuracy for

the first two datasets. In the 4-way stop sign dataset, EdgeSharing reduces the

mean position error from 0.6481 meters to 0.3173 meters, and reduces the mean

orientation error from 2.0129 degrees to 0.5742 degrees. Similarly, EdgeSharing

also reduces the mean position error and mean orientation error to 0.2813 meters

and 0.5216 degrees correspondingly. For the LA dataset, we only evaluate the
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performance of position error since we did not collect orientation groundtruth.

For the baseline approach, we find that EdgeSharing fails to build a meaningful

feature map due to the interference of a large amount of moving objects and

the vehicle’s own dash. Therefore, the localization with the map generated by

the baseline solution does not make any sense. With the Context-aware Feature

Selection method, EdgeSharing is able to achieve a pretty good performance of

around 1.2717 meters. Note that this error may also be caused by the inaccurate

GPS readings collected by the GoPro.

In addition, we show that the proposed Collaborated Local Tracking method

does not significantly reduce the localization accuracy. As listed in Table 5.1,

the Collaborated Local Tracking method increases the mean position error from

0,3173 meter to 0.3856 meter for the 4-way stop sign dataset, increases from

0.2813 meter to 0.3650 meter for the city intersection dataset, and increases from

1.2717 meter to 1.6841 meter for the LA intersection dataset. The Orientation

error also performs similar behavior.

To further understand the distribution of the position and orientation error,

we show the cumulative distribution function (CDF) of localization error for the

city intersection dataset in Figure 5.8(d) and Figure 5.9(d) respectively. The 95

percentile of the position error distribution is 0.489 meter for the approach with

Context-aware Feature Selection and 2.156 meters for the baseline approach. Sim-

ilarly, The 95 percentile of the orientation error distribution is 0.909 degree for the

approach with Context-aware Feature Selection and 2.579 degrees for the base-

line approach. The result demonstrates that our Context-aware Feature Selection

technique is able to reduce the localization error and keep most of the tracking

error in a very low value. Figure 5.8(f) shows the CDF of position error in the

LA dataset. We can observe that EdgeSharing is able to achieve a position error

of fewer than 3 meters for the majority cases in both the feature selection and

local tracking approaches.
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Figure 5.9: Accuracy of Object Sharing.

5.10.4 Accuracy of Object Sharing

Our system is able to achieve high localization accuracy for object sharing in urban

streets, and provides higher object awareness to individual vehicles to enlarge their

vision. We first use object localization accuracy to estimate the performance of

EdgeSharing on different datasets. In terms of object localization accuracy, we

want to understand what percentage of detected objects is correct among all

detected objects. We first show the object sharing accuracy of the first and

third dataset with three different approaches in Figure 5.9(a) and Figure 5.9(b)

respectively. To calculate the accuracy, we use the object 3D localization method

introduced in section 5.3.2 to calculate the 3D location of the object in the world

coordinate system, and check whether in an error tolerance range can we find a

vehicle from the collected groundtruth data. As shown in Figure 5.9(a), we can

observe the approach with Context Aware Feature Selection is able to achieve the

highest sharing accuracy compare to other methods for the same error tolerance.

And for the same approach, the accuracy increases as the error tolerance increases.

The sharing accuracy of the Context Aware Feature Selection approach with an

error tolerance of 4 meters is able to achieve 91.44%. For the LA dataset, we

only calculate the sharing accuracy of our data collection vehicles in the scene.

The result of Context Aware Feature Selection approach and Collaborated Local

Tracking approach are depicted in Figure 5.9(b), which shows our system is able



115

to achieve 82.3% sharing accuracy with 4-meter error tolerance in the dataset

collected in real scenarios with imperfect sensors. Note that the wrong detection

can be considered as the combination of device localization error, depth sensor

error, object detection algorithm error, and the error caused by vehicle shape. We

experimentally find that the error of the CNN based object detection algorithm

has the most significant contribution to the entire object sharing error.

Second, we want to know how many more objects can one vehicle be aware

of with the support of EdgeSharing. To achieve this, we define object awareness

as the percentage of objects that one vehicle is aware of in the region of the

intersection. We compute the object awareness of each vehicle in the intersection

at each timestamp with three approaches: own vision, location sharing only, and

location and object sharing in three different error tolerance. In the own vision

approach, each vehicle only knows the objects in its field of view. With location

sharing, the producers in the street are able to store their position in the shared

object database for sharing, based on the transformation matrix calculated from

the localization service. With object sharing, these producers further store the

locations of the detected object to the database. In the experiment of the 4-way

stop sign dataset, we randomly assign 25 vehicles as producer and calculate the

object awareness for the rest of vehicles in the region of the intersection. For

the city intersection dataset, we only use the street camera as the producer and

calculate the rate for all vehicles in the region of the intersection. Figure 5.9(c) and

Figure 5.9(d) show the object awareness of two dataset correspondingly. We can

find that object awareness is significantly increasing with the support of location

sharing and object sharing from the producer clients. We do not demonstrate

the object awareness since we don’t have the groundtruth location data for all

vehicles on the street.
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Figure 5.10: Bandwidth consumption and end-to-end latency of EdgeSharing.

5.10.5 Bandwidth Consumption

EdgeSharing uses the Collaborate Local Tracking method to significantly reduce

the bandwidth consumption while maintaining a low localization error. To demon-

strate this, we tune the offloading threshold (feature matching pair number) used

in Collaborate Local Tracking to illustrate the relationship between localization

error and the bandwidth consumption of our system. Figure 5.10(a) and Fig-

ure 5.10(b) show this relationship of the city intersection and LA intersection

datasets. Compared to the fully offloaded scenarios, EdgeSharing is able to largely

reduce the bandwidth consumption, while only has a slight increment on the local-

ization error. For example, if we choose to use 40 matching pairs as the offloading

threshold, we can reduce the bandwidth consumption of the urban intersection

dataset from 40.34 Mbps to only 12.05 Mbps, while only increasing the local-

ization error from 0.2813 to 0.365 meters. Similarly, we also observe the same

pattern for the LA dataset we collected in real cases. Note that the LA dataset

requires higher bandwidth consumption, because it is transmitting a large frame

than the simulation dataset we collected from CARLA.
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5.10.6 Latency

EdgeSharing includes a Parallel Streaming and Processing (PSP) pipeline to re-

duce the end-to-end latency of the system. We contact a real-time experiment

on the city intersection dataset using the setup introduced in section 5.7, and

compare the sequential approach and the PSP approach in Figure 5.10(c). As

shown in the Figure, we divide the offloading latency into streaming latency, ob-

ject detection latency, feature processing latency, and post processing latency for

the sequential approach, and use a PSP latency for the third method, because

the streaming and inference processes run in parallel. The streaming latency con-

tains time spending on encoding, transmission, and decoding tasks. The mean

encoding latency to encode an HD frame on Jetson TX2 is 1.6ms and the mean

decoding latency on our edge cloud server is less than 1ms.

In the sequential approach, the mean end-to-end latency to finish the entire

pipeline of one frame is 52.66ms, while our solution with Parallel Streaming and

Processing technique requires only 31.55ms, which makes it possible for the system

to deliver 30fps object sharing experience to the participated clients.

5.11 Related Works

Collaborated Sensing in Connected Vehicles. Connected vehicles allows

cars to share information and sensor reading to other devices both inside as well

as outside the vehicle. Traditional vehicular communication systems (e.g. DSRC)

has been used to solve plenty of traffic issues by sharing safety messages to other

nodes on the road [108, 109, 110, 111]. Many recent works further explore to use

millimeter wave to provide much higher bandwidth for the vehicular communi-

cation [112, 113, 114]. With such great resources, there have been more works

that focus on sharing the camera perceptions through V2V networks not limited

for autonomous vehicles but also for other Advanced Driving Assistance Systems
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(ADAS). The see-through system [115] uses monocular cameras on the car to

share its front view to its following vehicles. The system uses DSRC to transmit

the front cars view to its following cars and overlays the occluded region on the

augmented view of following cars. Inspired by this vision sharing idea, AVR [74]

broadens the vehicles visual horizon by sharing 3D visual information extracted

from stereo cameras with other nearby vehicles. This system proposes a novel

usage of the SLAM algorithm in vehicle position tracking, and methods to isolate

and track dynamic objects to save bandwidth consumption. However, this work

requires each vehicle to have large computation resources and comprehensive 3D

feature map on-board, which is really hard to achieve with different manufactur-

ers. In contrary, EdgeSharing is a complete edge cloud-based solution for object

sharing between vehicles and other mobile nodes. Compared to direct sharing

methods, edge cloud-based object sharing system has the benefits of easier sys-

tem upgrading and maintenance, as well as the better computation resources for

more sophisticated algorithms.

Vision Task Offloading. Offloading computation-intensive tasks to cloud

or edge cloud infrastructures is a feasible way to enable continuous vision analyt-

ics on power and computation constraint devices. Chen et al. [89] evaluate the

performance of seven edge computing applications in terms of latency. DeepDe-

cision [16] designs a framework to decide whether to offload the object detection

task to the edge cloud or do local inference based on the network conditions.

Lavea [90] offloads computation between clients and nearby edge nodes to provide

low-latency video analytics. VideoStorm [91] and Chameleon [92] achieve higher

accuracy video analytics with the same amount of computational resources on the

cloud by adapting the video configurations. Liu et al. [105] propose an edge based

AR system that is able to achieve 60fps object detection on commercial mobile

devices. These works have demonstrated the benefit of using edge offloading in

many different applications, which also supports the idea of EdgeSharing.
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Device Localization. Accurate device localization is a key component of

EdgeSharing system. While GPS provides low-cost position tracking on smart

devices, it is widely recognized to be inaccurate in city traffic where large amounts

of interference exist. Some other techniques such as inertial sensor [116], wireless

signal [117] and visual sensors [104] on the device to improve the localization accu-

racy. Among these techniques, visual odometry techniques have shown its great

performance in tracking devices in the environment where rich visual features

exist. Several popular visual SLAM algorithms, including ORB-SLAM2 [104]

and LSD-SLAM [118], have shown their superior performance in mapping and

localization in small space such as an indoor environment with very few moving

objects. These techniques have also been adopted in commercial AR or VR plat-

forms, such as ARKit [68], ARCore [67], Hololens [9] and Oculus Go [100]. In this

work, we use the existing ORB-SLAM2 as our localization solution. In order to

make it work in outdoor scenarios with dense traffic, we propose the new feature

selection method leveraging the resource of the edge cloud.

Adaptive Video Streaming. Adaptive video streaming techniques have

been largely exploited to achieve better QoE. Several 360-degree video streaming

works [93, 94, 42] also adopt the idea of RoI encoding to reduce the latency

and bandwidth consumption of the streaming process. Adaptive video streaming

techniques have also been adopted by mobile gaming [35, 12] and virtual reality

system [119] to achieve high-quality experience on mobile thin clients. Other

video adaptation techniques [96, 97, 98, 99] are also complementary to our work.

5.12 Conclusion

In this paper, we introduce EdgeSharing, a first collaborative localization and ob-

ject sharing system leveraging the resources of edge cloud platform and the visual
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inputs from participating mobile clients (e.g., vehicles and pedestrians). In Edge-

Sharing, the edge cloud uses a 3D feature map of its coverage region to provide

accurate localization services to the client devices passing through this region.

Besides, EdgeSharing also leverages the computation power on the edge cloud to

detect object locations on the images offloaded by participating clients, localizes

them in 3D space, and shares them with other clients in the same region. With

EdgeSharing installed on the edge cloud, nearby vehicles are able to learn extra

object (e.g., traffic participant) locations from the edge cloud, which are outside

the vehicles field of view, which improves their situational awareness and safety.

To realize this, we propose several optimization techniques. In particular, we

propose a Context-Aware Feature Selection method to filter out potential moving

objects in the offloaded images to increase the localization accuracy. We also

introduce a Collaborative Local Tracking mechanism to significantly reduce the

bandwidth consumption of frame transmission by only offload selected keyframes

to the edge cloud, while using a lightweight local tracking method to keep track of

the location of the client and its detected objects on the end device. In addition,

we design a parallel streaming and processing method to enable parallel video

streaming and cloud processing, which largely reduces the end-to-end latency of

EdgeSharing.
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Chapter 6

Conclusion

In this dissertation, we presented novel techniques and system archtechtures to

enable high-quality mobile immersive computing with the support of edge cloud.

As emerging mobile immersive computing applications, such as Virtual Reality

(VR), Augmented Reality (AR), and Mixed Reality (MR), are changing the way

human beings interact with the world. Such systems promise to provide un-

precedented immersive experiences in the fields of video gaming, education, and

healthcare. However, several key processes, such as rendering and object detec-

tion, are highly computational intensive, which make them extremely hard to run

on mobile devices. Offloading these bottleneck processes to the edge or cloud is

also very challenging due to the stringent requirements on high quality and low

latency.

In order to achieve high quality and low latency performance of mobile immer-

sive computing applications on mobile thin clients, the system requires to finish

the entire offloading pipeline within very short end-to-end latency. Offloading

Vision tasks to the edge cloud typically involves several main processes: Sensing,

Uplink Transmission, Processing, and Downlink Transmission. These four pro-

cesses form a round trip from the mobile device to the edge cloud and back to

mobile devices. Compared to traditional offloading approaches that execute these

processes in a sequential way, we proposed novel video streaming and processing

pipelines that can significantly reduce the offloading latency and improve vision

quality of VR and AR system. We further introduced advanced vision based al-

gorithms that can largely improve the quality of these applications leveraging the
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resources on the edge cloud.

To demonstrate the advantage of offloading vision tasks to the edge cloud,

this dissertation makes the following fundamental contributions:

• An open remote rendering platform that can enable high-quality unteth-

ered VR with low latency on general purpose PC hardware. High-quality

VR systems generate graphics data at a data rate much higher than those

supported by existing wireless-communication products such as Wi-Fi and

60GHz wireless communication. The necessary image encoding, makes it

challenging to maintain the stringent VR latency requirements. To address

this issue, we introduces an end-to-end untethered VR system design and

open platform that can meet virtual reality latency and quality requirements

at 4K resolution over a wireless link. We found that innovative streaming

and processing pipelines are able to enable high-quality and low latency VR

experience on mobile thin client, with the support of the edge cloud.

• A system that enables high accuracy object detection for commodity AR/MR

system running at 60fps. Most existing Augmented Reality (AR)/Mixed

Reality (MR) systems are able to understand the 3D geometry of the sur-

roundings but lack the ability to detect and classify complex objects in

the real world. Such capabilities can be enabled with deep Convolutional

Neural Networks (CNN), but it remains difficult to execute large networks

on mobile devices. Offloading object detection to the edge or cloud is also

very challenging due to the stringent requirements on high detection accu-

racy and low end-to-end latency. To address the problem, we introduce a

system that employs low latency offloading techniques, decouples the ren-

dering pipeline from the offloading pipeline, and uses a fast object tracking

method to maintain detection accuracy. We found that advanced process-

ing pipelines can enable high-quality object detection for mobile augmented
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reality system, with the support of the edge cloud.

• We build EdgeSharing, an object sharing system leveraging large compu-

tational resources at the edge cloud. Beyond the capability of providing

object detection service to nearby mobile clients, EdgeSharing holds a real-

time 3D feature map of its coverage region on the edge cloud and uses it to

provide accurate localization and object sharing service to the client devices

passing through this region. By sharing a moving object’s location between

different camera-equipped devices, it effectively extends the vision of partic-

ipants beyond their field of view. We further propose several optimization

techniques to increase the localization accuracy, reduce the bandwidth con-

sumption and decrease the offloading latency of the system. This work

shows that edge cloud is a perfect location to sharing information between

mobile clients to improve the quality of users.

In this dissertation, we explore the usage of the edge cloud offloading on var-

ious mobile immersive tasks and show the advantage of the edge cloud on high

computational tasks with several real-world applications. We hope this disserta-

tion can serve as the guide of designs and implementations for future edge cloud

based mobile immersive applications.
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