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by ROBYN MIRANDA 

 

Dissertation Director: 
Donald W. Schaffner 

 

 

Norovirus is the leading cause of acute gastroenteritis worldwide. Consumption of 

frozen berries have been identified as a risk factor for norovirus illness. This dissertation 

studies four scenarios that affect the risk of norovirus on frozen berries: the effect of 

freezing and frozen storage on the survival of bacteriophage MS2 (a norovirus surrogate) 

on frozen strawberries and raspberries; thermal inactivation kinetics of MS2 on frozen 

strawberry and raspberry purées in a water bath; efficacy of microwave heating on the 

destruction of MS2 in frozen strawberries; and an agent-based model simulating fruit 

pickers on a farm to quantify the spread of norovirus from an ill worker to coworkers and 

berries. The results show that bacteriophage MS2 is able to survive frozen storage on 

frozen berry products over long periods of time; heating of frozen berries following the 

product’s label instructions using the Defrost microwave oven setting resulted in minimal 

inactivation of MS2; and increased handwashing compliance on farm had a significant 

effect on the contamination of berries prior to reaching the consumer and an overall 

decrease in ill consumers. 
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A quantitative microbial risk assessment was also developed to assess the risk of 

norovirus associated with consumption of frozen strawberries. A 2012 norovirus outbreak 

in Germany linked to frozen strawberries was simulated using the model. Model 

predictions were in good agreement with data from the actual outbreak. The risk 

assessment model developed may provide useful quantitative data relevant for risk 

management initiatives, aimed at controlling the risk of norovirus from frozen berry 

products. 

The research presented in this proposal was funded in part by the USDA-NIFA 

Food Virology Collaborative, NoroCORE (Norovirus Collaborative for Outreach, 

Research and Education) – a food safety initiative with the goal to reduce the burden of 

foodborne disease associated with noroviruses. 
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Chapter 1: Literature Review (General) 
 
1.1 Introduction 
  

Norovirus (NoV) causes more cases of foodborne illness in the United States 

(U.S.) than any other pathogen, and with improvements in diagnostic tools and detection 

methods, it is likely to be attributed to many more outbreaks in the future (18, 103, 126). 

U.S. NoV outbreaks are strongly associated with the consumption of fresh produce and in 

the European Union (EU), the virus is strongly associated with consumption of berries 

(20). A recent U.K. study tested lettuce and fresh and frozen raspberries sold at retail for 

NoV over a 13-month period. This study found that 5.3% of lettuce, 2.3% of fresh 

raspberries and 3.6% of frozen raspberries were positive for NoV RNA (24). A recent 

study in China on retail frozen and fresh berries found the prevalence of NoV to be 9% 

and 12.11%, respectively (43).  

The annual per capita consumption of fresh fruits has increased from 130 to 150 

servings from 2004-2015, however with increased consumption has come an increase in 

the number of foodborne illnesses attributed to fresh produce (23, 102). Since foods can 

be contaminated with viruses throughout the food chain, prevention remains a challenge. 

The Food and Drug Administration (FDA) has recently begun surveillance on frozen 

berries (raspberries, strawberries, blackberries) for NoV and hepatitis A virus (HAV) to 

better protect consumers (41).  

1.2 Physical Characteristics of Foodborne Viruses  
 

Foodborne viruses are classified as enteric viruses since they are mostly 

transmitted through the fecal-oral route and replicate in the gastrointestinal tract of a 

suitable host. Since foodborne viruses are host-specific, they show a high degree of 



   

 
 

2 

tropism for individual cells (71, 139). NoV are unable to grow or multiply in or on food 

surfaces and require a live host cell for replication, yet foods are still likely vehicles for 

viral transmission to susceptible hosts. Enteric viruses can withstand many environmental 

stressors. NoV has been shown to survive for weeks on surfaces, and can survive 

freezing, heating, extreme pH and common chemical disinfectants (48, 75). Enteric 

viruses resist most commonly used sanitizers or disinfectants when these compounds are 

used at manufacturer recommended concentrations (47).  

1.3 Transmission Routes  
 

Transmission of NoV is facilitated because infected individuals shed high 

concentrations of the virus (105 to 1010 particles/g stool) (4, 5, 123), infected individuals 

continue to shed the virus, the virus has good environmental stability and is quite 

resistance to disinfection (75). NoV can be transmitted from aerosolized vomit and 

consuming contaminated food and water, however the fecal-oral route is the most 

common transmission route. Viruses can be introduced into the food chain from 

contaminated water or surfaces, or due to poor food handler hygiene. Viruses can be 

transferred both directly and indirectly to food products in the food chain. Since 

contamination can occur at many points along the food chain, traceback during 

epidemiological investigation of a foodborne outbreak remains a challenge.  

Fresh produce, including berries, can come into contact with NoV-contaminated 

surfaces throughout harvest and production. Improperly composted materials containing 

sewage could contain infectious viral particles and should not be used as fertilizer. 

Enteric viruses, such as HAV or NoV, can survive for months in sewage, and wastewater 

used for irrigation has been linked to virus contamination of fresh fruits and vegetables 
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when inadequately treated (9, 108, 116, 125). Lack of sufficient on-site handwashing 

facilities and toilets on farms can result in workers defecating in or near the fields or 

handling fresh produce without proper hand hygiene. Viruses are generally thought to 

occur on the surface of fresh produce, however some studies suggest that hydroponic or 

other cultivation methods could allow for the internalization of enteric viruses into edible 

portions of plants via roots (31).  

Viral contamination can also occur during post-harvest through washing or 

preparation of fresh produce. Viruses can contaminate large volume of product if washed 

in contaminated water. Contamination can also result from poor personal hygiene of 

individuals that directly handle produce during harvest, packing or food preparation. 

Vomit from infected individuals can lead to aerosolization of virus particles that can 

directly contact the product, or settle on surfaces that then come in contact with the 

product (127). An understanding of viral contamination routes in needed to develop 

effective risk management strategies for fresh produce production.  

1.4 Human Norovirus  
 

The Centers for Disease Control and Prevention (CDC) estimates that there are 

approximately 21 million symptomatic cases of NoV annually in the U.S.; of which 

approximately 5.5 million cases are linked to consumption of food, making it the top 

cause of foodborne illness. Foodborne NoV infections results in more than 15,000 

hospitalizations and 150 deaths annually in the U.S. (111). Infections peak during the fall 

and winter season, due to an apparent increase in person-to-person contact, larger 

numbers of people inside and increased virus survivability in cold temperatures (1, 66, 

90). NoV illness is typically a short, self-limiting disease, with symptoms developing 12 
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to 48 hours after exposure and lasting 24 to 72 hours (21). Young children, the elderly 

and immunocompromised individuals are at higher risk when infected and can have 

prolonged symptoms (74). Common NoV symptoms that can transmit the virus include 

vomiting and diarrhea. Virus levels in stools may reach 1010 particles per gram or higher 

(105).  

Human NoV belong to the Caliciviridae family and its particles are 27-38 

nanometers (nm) in diameter (142). The genus NoV is split into seven genogroups; G1, 

GII and GIV have been found to infect humans. The epidemiology of NoV is largely 

influenced by virus evolution through an accumulation of mutations (112). The NoV 

genus has been shown to have a high mutation rate estimated at 1.21 x 10-2 to 1.41 x 10-2 

point substitutions per site per year, leading to large strain diversity (98, 109, 131). NoV 

nomenclature is based on two factors that describe the genetic lineage of nucleic acids 

and capsid proteins (138). Genogroups GI and GII contribute to the majority of outbreaks 

worldwide, though studies have shown a recent predominance of GII strains, with GII.4 

as the primary genotype (37, 112). Studies have determined that the major capsid proteins 

of GII.4 strains evolve quickly, leading to new epidemic strains (14, 16, 73, 113). The 

emergence of new strains is likely associated with an increase in outbreaks worldwide 

(92). Protective immunity to any particular NoV strain following infection is considered 

temporary, although it is an ongoing area of research (73, 147). 

1.5 Laboratory Assays for Norovirus Detection and Quantification 
 
 There are several detection and quantification methods for viruses. Foodborne 

virus detection methods for liquid samples are categorized as either traditional or modern. 

Two traditional methods often used today are the plaque assay and the endpoint dilution 
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assay, also known as 50% tissue culture infectious dose (TCID50). Modern methods 

include reverse-transcriptase polymerase chain reaction (RT-PCR) and enzyme-linked 

immunosorbent assay (ELISA). Quantification methods continue to be developed and all 

methods have advantages and disadvantages.  

Plaque assays are used to determine the number of plaque forming units (pfu) 

within a virus sample. This microbiological assay may be conducted in petri dishes or 

well plates and are used in virology to determine viral titer. A susceptible host monolayer 

of cells is infected with appropriate dilutions of a virus sample in the plaque assay (8). 

When a virus particle infects a cell, the cell lyses producing a clear zone (or plaque) in 

the cell monolayer. The lysed cell spreads the infection to adjacent cells, repeating the 

infection-to-lysis cycle. Eventually the plaques become visible to the naked eye and is 

then manually counted. The counts are used together with the dilution value to calculate 

the original number of plaque forming units (8).  

TCID50 assay determines when 50% of cells in a culture have been infected. This 

assay provides a qualitative measurement of uninfected and infected cells (114). It is 

more often used in clinical research where the lethal dose of the virus must be determined 

or if the virus is unable to form plaques. Since there are distinct differences among 

TCID50 and plaque assays, the results are not used interchangeably. However, there is a 

theoretical relationship between TCID50 and PFU where 0.69 PFU = 1 TCID50 (141).  

ELISA is considered an accurate and highly sensitive test when compared to other 

immunoassay methods. ELISA uses a specific antibody linked to an enzyme to detect and 

measure the presence of an unknown amount of antigen (e.g. virus), in a sample. This 

method has high specificity because of the selectivity of the antigen-antibody binding. 
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This binding is quantified as an enzyme converts a reagent into a detectable signal, which 

is then used to calculate the concentration of the antigen in the sample (64, 79).  

Real-time RT-PCR is a sensitive rapid method with improved reproducibility 

when compared to traditional methods (80). RT-PCR involves extraction of the viral 

nucleic acids from the sample, conversion from RNA to DNA via reverse transcriptase (if 

needed), amplification by PCR, and detection of the amplified DNA. Disadvantages of 

RT-PCR is that it (60) can result in false positive results due to potential contamination 

and (2) the specificity of primers may lead to false negative results for genetically diverse 

viruses (132). Since most foodborne viruses contain RNA, the requirements to be suitable 

for an RT-PCR assay must also be carefully considered (17).  

1.6 Immunity to Norovirus 
 

Immunity to NoV is believed to be temporary and is genotype- or strain-specific 

with little protection or none at all across the genogroups. Human susceptibility to NoV is 

thought to depend on an individual’s fucosyltransferase 2 (FUT2) genotype. People with 

a functional FUT2 gene, termed secretor positive, have increased sensitivity to common 

viruses because FUT2 controls the secretion of ABO histo-blood group antigens 

(HBGAs) at the surface of the gut. HBGAs are needed for most NoV genotypes to bind, 

attach and infect cells in the gut. People who lack a functional FUT2 gene, termed non-

secretors or secretor negative, have shown protection from infections with several NoV 

genotypes (27, 76, 107). The relationship between secretor status and susceptibility to 

NoV has been determined by Thorven et al. (2005), who looked at susceptibility to 

gastroenteritis resulting from hospital outbreaks in patients and medical staff in Sweden 

(124). The results showed that patients homozygous for non-secretor status were 



   

 
 

7 

protected from viral infection. Larsson et al. (2006) also found that there were 

significantly higher antibody titers to NoV GII in secretors compared to non-secretors 

(68). European descendants are believed to be 80% secretor positive and 20% non-

secretors (secretor negative), although in other populations such as Mesoamerican, there 

can be as many as 95% secretor positive individuals (93).  

1.7 Norovirus Vaccine Development 
 

No vaccine to prevent NoV currently exists (49). A vaccine to minimize overall 

NoV disease burden would be beneficial given the NoV burden on the general 

population. Though everyone may benefit from receiving a NoV vaccine, the populations 

that are at the highest risk, including young children, the elderly and the 

immunocompromised would be the primary candidates. Many challenges exist in NoV 

vaccine development, including the continuously evolving genetic diversity of NoV, 

difficulty in culturing NoV in a laboratory, few human studies and short-term immunity 

following NoV infection (77).  

Virus like particles (VLPs) are antigenically and morphologically similar to NoV 

but non-replicating since they lack genetic material. VLPs are used as an alternative when 

developing diagnostic assays for NoV (56, 121). When recombinant NoV capsid proteins 

are expressed as (VLPs), they are thought to be antigens for NoV vaccines, and a 

majority of vaccination studies to date utilize VLPs. Gardasil and Cervarix, the two most 

successful human papillomavirus (HPV) vaccines, are VLP-based vaccines and have 

been highly effective in preventing HPV infections for strains included in the vaccine 

(29, 100). NoV vaccines will likely face complications similar to those of the seasonal 

influenza vaccine due to emerging variants in genogroups and genotypes (25). 
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A majority of NoV vaccine trials thus far have used a baculovirus expression 

system (BEVS) to produce capsid proteins of NoV and proteins from VLPs (121). The 

BEVS uses a helper-independent virus that can be grown to high titers in insect cells that 

are able to grow in suspension cultures allowing for large amounts of recombinant 

protein to be produced (56, 57). Vaccine candidates in pre-clinical stages include a (60) 

trivalent vaccine including GII.4 and GI.3 NoVs and rotavirus, (2) bivalent GII.4 NoV 

and enterovirus 71 vaccine, (3) P particle-based vaccines, and (4) viral vectors 

incorporating NoV capsid genes (virus replicon particles, VRPs). VLP-based vaccine 

candidates in clinical stages include (60) intranasal monovalent vaccine containing GI.I 

VLPs, (2) intranasal bivalent vaccine containing GI.1 and GII.4 VLPs, and (3) 

intramuscular bivalent vaccine containing GI.1 and GII.4 VLPs (77, 104).  

1.8 Surrogate organisms in virus research  
 

A major problem in the study of NoV was (until recently) the lack of lab-based 

methods to cultivate NoV in cell lines or animal models. NoV surrogates have been 

selected and used for experimental studies based on their similarity in behavior, genetic 

makeup, size and shape to NoV. The virus surrogates used for persistence, survival, 

inactivation and internalization studies can have very different characteristics from the 

enteric viruses they intend to represent, therefore data from those studies must be used 

carefully in quantitative microbial risk assessments (QMRA). Viruses from the 

Caliciviridae family, which contains NoV, are the most logical surrogate option (26). 

Surrogates that are commonly used for NoV include Feline calicivirus (FCV), Murine 

norovirus (MNV), Tulane virus (TV), bacteriophage MS2 (MS2) and Poliovirus (PV). 
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Each surrogate has advantages and disadvantages and its characteristics are shown in 

Table 1.  

FCV is easily propagated but it is known to be less stable at a low pH. 

Survivability at a low pH is an important resistance mechanism for NoV, allowing it to 

survive the environment of the stomach (45). FCV is less resistant than MNV-1 to pH 

and organic solvents (101), however MNV-1 has been shown to be less resistant than 

NoV to certain disinfectants, showing a 1-2 log greater reduction in viral titer by bleach 

than that shown with NoV (45). TV is also an important NoV surrogate since cell 

cultured TV binds similarly to HBGAs as NoV (97).  

Another surrogate includes the male-specific bacteriophage MS2 (MS2). MS2 is 

similar in shape and size to NoV and like NoV, is a single-stranded RNA virus (53). MS2 

has been shown to be an effective surrogate in resistance and survival studies for NoV in 

experimental research involving food products such as oysters and fresh produce (33). 

MS2 has also been used as an internal control to validate extraction, recovery and 

detection methods for NoV (89). Bacteriophages are particularly useful surrogates since 

they are easy to propagate and have a shorter incubation period requirement for detection 

relative to virus-plaque assays. Male-specific, also called F-specific (F1) bacteriophages, 

are good indicators for monitoring the viral quality of water and food since they 

superficially resemble enteroviruses, caliciviruses, and HAV (19, 35, 51, 61). They are 

also regularly present in wastewaters, resistant to treatment processes considered suitable 

for enteric virus indicators and are persistent in the environment (7, 91).  

1.9 Internalization of viruses in foods  
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NoV outbreaks have most often been linked to a variety of fruits and vegetables 

consumed raw including fruits (strawberries, raspberries, blueberries and melons) and 

vegetables such as lettuce (34, 38, 50, 70, 78, 110). Internalization of pathogens 

(including viruses) in fruits and vegetables is poorly understood. Several studies have 

investigated internalization using NoV surrogates and showed that fruits and vegetables 

are susceptible to viral internalization to some degree during production (30-32, 36, 54, 

134, 135, 143).  

Yang et al. (2018) researched the internalization and dissemination rates of NoV 

and TV in romaine lettuce, green onions and radishes. They observed a difference in 

internalization based on the growth substrate of hydroponically grown produce versus 

soil systems. In a soil growth system, infectious TV was not detected in radishes or green 

onions, though romaine lettuce plants grown in soil had recoverable TV from plant 

tissues after 14 days. Hydroponically grown green onions inoculated with a higher TV 

titer saw increased rates of internalization and dissemination as compared to green onions 

inoculated with a lower titer (143). DiCaprio et al. (2012) investigated internalization of 

NoV and its surrogates through the roots and the edible portions of the plant of romaine 

lettuce over a 14-day period. They found that NoV, MNV and TV can be internalized 

through the roots and spread to the shoots and leaves of the lettuce (31). This same group 

(32) looked at the effect of abiotic and biotic stress on the internalization and spread of 

NoV surrogates in romaine lettuce and found that drought stress decreased internalization 

and dissemination rates of MNV and TV, flood stress and biotic stress did not have a 

significant impact on the ability for the virus to internalize or disseminate. A study using 

porcine sapovirus (SaV) as a NoV surrogate found that when SaV was inoculated through 
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soil, viral RNA could be detected on the roots of the plant for up to 14 days. Viral RNA 

persisted on the roots and leaves for up to 28 days post-inoculation when SaV was 

inoculated through the plant roots (36). Wei et al. (2011) observed the internalization of 

MNV in romaine lettuce during irrigation and found that at high inoculum levels, MNV 

was detected in lettuce leaves after 5 days (136). 

Though most studies have been performed using romaine lettuce, Dicaprio et al. 

(2015) observed the internalization of MNV and TV in strawberry plants. The virus was 

introduced to the strawberry plant via the roots in a soil system and found that 31.6% of 

strawberries had internalized MNV and 37.5% of strawberries were positive for 

infectious TV (30). Factors that have been shown to affect internalization from published 

studies include the plant species, inoculum level, plant developmental stage, pathogen 

type and growth substrate (30, 32, 36, 135, 143).  

 1.10 NoV outbreaks 
 

NoV was first identified in stool specimens that were collected from a 

gastroenteritis outbreak in Norwalk, OH in 1968, and the organism was first named 

Norwalk virus (63). The illness was initially described as the “winter vomiting disease” 

in 1929 due to its seasonal patterns and frequent vomiting symptom (145). Outbreaks of 

NoV can occur anywhere and at any time but have often been associated with restaurants, 

schools, catered events and cruise ships (22). 

Consuming raw or improperly cooked shellfish (137) and fresh produce items, 

such as lettuce (81, 133) and raspberries (38, 70, 83), has been linked to NoV illness. 

Contamination can sometimes be traced to infected food handlers but can occur at any 

step in the food chain. Contamination of shellfish could occur through pollution of human 
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feces in and around the growing areas and fresh produce can be contaminated as a result 

of pre- and post-harvest practices. Pre-harvest contamination of fresh produce may occur 

through contaminated irrigation water and improperly treated manure for fertilization 

(136).  

The frozen fruit market has continued to thrive due to its ability to be consumed 

year-round (102). Though not well documented in the published literature, potential risk 

factors of viral contamination of berries at primary production include (60) 

environmental factors such as heavy rainfall (2) sewage-contaminated agricultural water 

intended for use as irrigation water or pesticide application (3) food handlers health and 

hygiene (4) and the cleanliness of equipment at harvest or post-harvest (122).  

From late September to early October of 2012, Germany experienced the largest 

documented foodborne outbreak in history (13). This outbreak involved more than 390 

foodservice institutions with approximately 11,000 cases; NoV was identified as the 

causative agent of this outbreak. Most of those affected by this outbreak included 

children and teenagers, all with symptoms of acute gastroenteritis, though staff members 

at the institutions also fell ill. Following interviews with victims and the catering 

supplier, an epidemiological analysis led investigators to believe meals containing 

strawberries (strawberry compote and strawberry tart) were likely vehicles for 

transmission (13). Frozen strawberries produced by a regional catering kitchen were used 

as a component of the meals involved. The strawberries were traced to a 22-ton lot that 

was distributed to several catering agencies throughout Germany and imported from 

China. Once the product was identified, these strawberries were quickly withdrawn from 
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the market, preventing additional illnesses. More than 11 tons of contaminated product 

did not reach consumers due to the recall (13).  

FDA reports one U.S. NoV outbreak linked to frozen berries between 1997-2016, 

resulting in 136 illnesses (41). Many more outbreaks of NoV associated with frozen 

berries have occurred in Europe in recent years. There were 29 European alerts involving 

NoV and frozen berries from 2014-2017 (42). Two large outbreaks in Denmark in 2005 

and Finland in 2009 occurred from frozen raspberries imported from Poland, resulting in 

over 900 NoV cases in each outbreak (38, 110).  

1.11 Berry Production Practices 
  

Strawberries are produced in the U.S. on more than 55,000 acres, mainly in 

Florida and California. The U.S. ranks first in production of strawberries, followed by 

Turkey and Spain (140). Strawberry plants have a shallow root system, so irrigation 

systems are recommended for efficient production. Supplemental nutrients are often 

applied to the soil of these products through a drip irrigation system (144). Most of the 

water taken up by the plant evaporates through the stomata of the leaves and stems; 

strawberry plants must be properly irrigated to replenish the water taken up by the plant. 

The majority of strawberries are harvested by hand (40). Berries such as raspberries and 

strawberries are often hand harvested since they are fragile and more susceptible to 

bruising. Berries may be sold as fresh, frozen or heated for products such as jams or 

purées. 

1.12 Labeling Requirements for Frozen Fruit  
 

There are several labeling requirements by regulatory agencies for frozen food 

products. Some of these requirements include the common name of the ingredients and 
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the style of the product such as whole and sliced. If the product is visible through the 

package, the style does not need to be specified. Additional required information includes 

nutritional information, expiration date, storage requirements, the packer and/or 

distributors name and place of business and heating instructions. Labels may also include 

the quality or grade of the product and serving suggestions (39). The FDA also has a set 

of labeling and regulations for frozen fruit which also includes a “keep frozen” statement, 

allergen declaration if the product contains a major allergen, and a code for traceability 

for recall purposes. Distributors must also meet specifications for frozen fruit including 

grade, style, net weight and fruit to sugar ratio allowance (128).  

1.13 Freezing Process  
 

Freezing products has been used for decades to extend the shelf life of foods. 

Freezing may also cause structural changes to the fruit, affecting texture. As food cools, a 

nucleus (or seed) is needed for an ice crystal to form. Once this first crystal forms, the 

phase change from liquid to solid progresses, leading to more crystal growth (10, 129). 

Fruits (like strawberries) are made up of ~ 90% of water which is held within rigid cell 

walls that gives structure and texture to the fruit. As the water in fruit freezes, the ice 

crystals expand, rupturing cell walls. When fruit thaws, those ruptured cell walls mean 

the fruit is a much softer product. When berries are quick frozen, they retain better cell 

integrity due to the formation of smaller ice crystals. Slow freezing forms large ice 

crystals which have been shown to increase drip loss after the product is thawed (55).  

Commercial freezing processes are able to freeze foods within minutes. Individual 

quick freezing (IQF) is often used since for fruit since it is more suited to smaller pieces 

of food products. Taste, color, texture and nutritional value of the products is improved in 
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quicker freezing processes. Several quick-freezing processes can be used in commercial 

freezing such as air-blast tunnel freezers, belt freezers, cryogenic freezers, fluidized-bed 

freezers and plate freezers. Air-blast and belt freezing uses precooled (-40°C) air blown 

over the food. In air blast freezing, packaged products are placed on a tray and sent 

through a freezing tunnel. In belt freezing, food products are placed on a conveyor belt 

and sent through the freezing temperature zone. Fluidized-bed freezers use conveyor belts 

and high velocity cold air to tumble and float food pieces in a stream of cold air, ensuring 

all sides of the food are exposed to the cold air. Plate freezers are often used to freeze 

products that are flat, and the food is pressed between metal plates that have been cooled 

to subfreezing temperatures (65). Cryogenic freezing immerses the food in liquid 

nitrogen at low temperatures allowing it to freeze rapidly. The food is continuously 

moved to avoid the product lumping together. Though this method is very efficient, costs 

can be higher due to the use of liquid nitrogen (99).  

1.14 Microwave heating 
 

Organizations such as the American Frozen Food Institute (AFFI) and the 

Grocery Manufacturers Association (GMA) have issued guidelines for food processors to 

develop heating instructions for microwaveable food products (3, 46). These 

recommendations are not specific to all products and vary significantly for not ready to 

eat (NRTE) versus ready-to-eat (RTE) frozen foods. Food processors should develop 

instructions for the products quality and safety based on its volume, size, composition 

and the microwave capability. Validation of cooking and heating instructions by the 

manufacturer is essential to ensure that products are safe if consumers follow the proper 

manufacturer preparation instructions (46). The variability in microwave power levels 
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and wattage can have a significant effect on the survival of pathogens that may be present 

on the food.  

European Union (EU) regulation now requires 5% of consignments of frozen 

strawberries imported to the EU from China to be tested for NoV because of the 

Germany NoV outbreak. The EU also recommends that the catering sector heat-treat 

berries prior to consumption (12). Though many consumers purchase frozen fruit as a 

RTE product with the intention of using it in its frozen state, packages do provide 

microwave instructions. Table 2 shows the variability of microwave package instructions 

for whole frozen strawberries available in U.S. supermarkets.  

Microwave ovens are useful for heating products quickly versus conventional 

heating (52). Microwaves are defined as wavelengths along the electromagnetic spectrum 

ranging from 300 MHz (1 m) to 300 GHz (1 mm) (62, 67). The U.S. Federal 

Communications Commission has designated two microwave frequencies used for food 

processing and industrial microwave heating. The 915 MHz band is for industrial heating 

and the 2,450 MHz band is for industrial and domestic microwave ovens (28). The 

application of microwaves for thawing of frozen foods (72, 120), pasteurization (69, 

115), baking foods (2, 119), frying of foods such as oils, bacon and potatoes (44, 59, 96) 

and microwave sterilization of foods (6) have all been reviewed. 

Size and shape of the food product affect microwave heating; the larger the food 

mass, the longer time required to heat the product compared to smaller products (52, 95). 

Foods with unique geometries are a major drawback for microwave heating leading to 

non-uniform temperature distribution (130). The non-uniformity of microwave heating 
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results in cold and hot spots in the product, potentially affecting the final quality and 

safety. Pathogenic microorganisms may survive in cold spots of microwaved foods (146).  

1.15 Quantitative Microbial Risk Assessment 
 

Quantitative microbial risk assessment (QMRA) is used to better assess and 

manage the food safety risks that pathogenic microorganisms pose to human health. A 

risk assessment is the science-based element of risk analysis. Models can be developed to 

determine the risk posed by specific pathogens for a specific food production chain. 

QMRA models help to identify data gaps in the literature, estimate consumer exposure to 

the pathogen in food and evaluate alternate control scenarios. Risk assessments showing 

the influence of NoV-contaminated water on the spread of the virus on crops consumed 

raw, such as leafy greens (11, 82, 87), have been conducted. Other risk assessments have 

also focused on the spread of NoV by ill food handlers, highlighting the importance of 

hand hygiene (58, 84, 88, 117, 118). A quantitative farm-to-fork exposure model was 

developed that described the spread of HAV and NoV during harvesting and processing 

of berries and leafy greens (15). We recently published a QMRA of the NoV outbreak 

linked to consumption of Chinese-grown strawberries consumed in Germany (86), which 

is included as a chapter in the dissertation. We also recently published a short review on 

virus risk in the food supply chain (85) which is also included as a chapter in this 

dissertation. 
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Table 1.1: Comparison of human norovirus surrogates (Adapted from Hoelzer 2013 and 
Kniel 2014) 
 

 Human 
norovirus 
(411) 

Feline 
calicivirus 
(FCV) 

Murine 
norovirus 
(MNV-1) 

Tulane virus 
(TV) 

Coliphage 
(MS2) 

Poliovirus (PV) 

Family Caliciviridae Caliciviridae Caliciviridae Caliciviridae Leviviridae Picornaviridae 
Genus Norovirus Vesivirus  Norovirus  Recovirus Levivirus  Enterovirus 
Envelope No No No No No No 
Virion 
diameter 

28-35 nm 27-35 nm 28-35 nm 35-37 nm 27 nm 28-30 nm 

Host 
receptor, 
coreceptors 

Histo blood 
group 
antigens 
(HBGA), 
heparan 
sulfate 

JAM-1, 
sialic acid 

Sialic acid, 
glycoproteins 

HBGA F-pilus Immunoglobulin-
like receptor, 
CD155 

Genome 
composition 

(+) ss RNA (+) ss RNA (+) ss RNA (+) ss RNA (+) ss 
RNA 

(+) ss RNA 

Genome 
size and 
organization 

7.5 kb,        
3 ORF 

7.5 kb,         
3 ORF 

7.5 kb,         
3 ORF 

6.7 kb,          
3 ORF 

3.5 kb,      
4 ORF 

7.2-7.5 kb,         
1 ORF 
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Table 1.2: Microwave package instructions for heating whole frozen strawberries 
 

Brand Power level Time Serving Size (1 
cup = 140g) 

Heating Instructions 

Great Value 30% power  1 min 1 cup “Thaw desired amount at room 
temperature for approximately 30 
minutes, or thaw in microwave on 
defrost setting (30% power) for 1 
minute. “ 

Nature’s Promise Defrost  1-2 min 1 cup * 
Cascadian Farm Defrost   4 min 1.25 cup “Do not microwave in bag. For a 1200 

watt microwave, heat quarter bag for 2 
minutes on defrost or half bag for 6 
minutes on defrost. For a 1000 watt 
microwave, heat quarter bag for 4 
minutes on defrost or half bag for 8 
minutes on defrost. For a 700 watt 
microwave, heat quarter bag for 6 
minutes on defrost or half bag for 10 
minutes on defrost. Microwave 
wattages vary; adjust defrost time for 
the wattage of your microwave. Do not 
leave microwave unattended.” 
 

Dole Defrost  1 min 1 cup  “…place in microwave dish and thaw 
on Defrost setting for 1 minute. Serve 
slightly frozen. Do not refreeze.” 

Stop & Shop Defrost  1-2 min 1 cup “Place desired amount of frozen fruit 
into a 1-1/2 quart microwave-safe dish 
and cover. Defrost on defrost setting 1 
to 2 minutes, or until thawed. Do not 
thaw completely.” 

Shoprite Defrost or low 
setting  

2-3min 1 cup * 

Wegmans Defrost (30% 
power)  

2-5min 1 cup  “Microwave (1100 Watt): Place ½ 
package or less of fruit in microwave 
safe dish and cover. Set to defrost (30% 
power) 2-5 minutes, stirring halfway 
through or until desired softness.”  

Woodstock Defrost 1 min 1 cup  “…thaw in a microwave on defrost 
setting for 1 minute. Serve while there 
are a few ice crystals on the fruit for a 
firmer texture.” 

*no heating instructions available   
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Chapter 2: Literature Review (Mechanisms of Viral Inactivation) 
 
2.1 Background Information 
 

There are two major characteristics that differentiate viruses (1) the presence or 

absence of a viral envelope and (2) the genetic core of the virus (composed of DNA or 

RNA) (130). All viruses contain a protein coat, or capsid. The capsid is formed by units 

known as capsomeres and the capsid contains the viral genetic material. The capsid of 

enveloped viruses is enclosed by a lipid membrane or envelope. Non-enveloped viruses 

do not have a lipid membrane and are known to be more resistant to environmental 

stressors such as freezing, drying, heating and acidic conditions (113, 294). Viruses have 

evolved using different strategies for packaging their DNA or RNA genomes within the 

viral capsid (32, 250). Understanding the structure and functions of the viral protein 

capsid is essential in developing effective strategies to inactivate viruses. 

The basic steps in viral infection start with the virus injecting its genome into the 

host cell. This genome is translated into viral proteins, and viral DNA or RNA by the 

hosts genetic machinery, and these components spontaneously reassemble into new 

viruses that go on and infect other cells. The virus depends on the host ribosome to make 

its protein, and ribosomes only read mRNA so any virus genome (DNA or RNA) must 

first be translated into mRNA so the ribosome can make viral proteins. The genome of 

RNA viruses can be classified as positive-sense or negative-sense RNA. Positive-sense 

(5’ to 3’) RNA means that the specific viral RNA sequence can be directly translated into 

viral proteins. Viral RNA genome functions as mRNA, allowing it to be translated 

directly by the host cell in positive-sense RNA viruses (293). Negative-sense (3’ to 5’) 

RNA is not readable for the ribosome and must first be converted into positive-sense 
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RNA, so all negative-sense RNA viruses must carry an enzyme inside the virion that can 

transfer negative RNA into positive RNA. This enzyme is RNA-dependent RNA 

polymerase, also called RNA replicase (257, 330, 335). Most enteric viruses are non-

enveloped with a single-stranded, positive-sense RNA genome and have a protein capsid 

that protects the nucleic acid. Some exceptions include Rotavirus (RV) that are double-

stranded RNA viruses, Human parvovirus B19 and Adenovirus (AdV) which have a 

DNA genome and Coronavirus (CoV) which are enveloped (85).  

Our knowledge of the different mechanisms for inactivation of viruses continues 

to develop. Virus inactivation can be categorized as biological, chemical or physical. 

Inactivation is considered biological when the attack on the capsid is by enzymes or other 

microbial-related products. Chemical inactivation involves products such as strong acids, 

strong oxidizing agents and alcohols that affect the capsid. Physical inactivation includes 

methods such as heat and drying. Factors such as heat, pH and chemical treatments are 

known to primarily affect the capsid structure, which then affects the ability for the 

capsid to bind to viral receptors (317). It is generally accepted that for ozone and UV 

light processes, genomic damage was the primary cause of inactivation and for heat 

exposure and chemical treatments such as chlorine and chlorine dioxide, inactivation was 

associated with damage to the viral capsid (53). Though not all viruses have been 

researched equally, available data on these inactivation methods and how they affect the 

viral capsids is discussed below. Characteristics of foodborne viruses are shown in Table 

1.  

2.2 Foodborne Viruses 
 
Norovirus 
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NoV’s are in the Caliciviridae family, belonging to the Norovirus genus. They are 

non-enveloped, positive-sense single-stranded RNA viruses with icosahedral symmetry. 

The virus is approximately 28-35 nm in diameter and a genome size of approximately 

7.4-7.7 kb (247). There are currently seven genogroups that noroviruses are classified 

into. Genogroups I, II, and IV are associated with human infection whereas Genogroup 

III, GV, GVI and GVII have been shown to affect a variety of other animals including 

cattle and sheep, mice, canines and felines, respectively. Viruses are further classified 

into lineages within each genogroup, known as genotypes (159, 334). Genogroup II 

genotype 4 (GII.4) is the most globally prevalent (221). 

The NoV genome is covalently linked to a viral protein genome. This consists of 

3 open-reading frames (ORFs) that encode for viral proteins. ORF-1 encodes for the 

nonstructural proteins. The structural components, viral protein 1 (VP1) and viral protein 

2 (VP2) are encoded in ORF-2 and ORF-3, respectively. VP1 is the major capsid protein 

and VP2 is the minor structural protein (112). Virus-like particles (VLP’s) are assembled 

through expression of VP1; VLP’s have similar antigenicity and morphology to NoV and 

have been often used as a NoV surrogate (88, 112, 127, 247).  

Hepatitis A virus  
 

Hepatitis A virus (HAV) is in the Picornaviridae family and the Hepatovirus 

genus. It is a non-enveloped, positive-sense, single-stranded RNA virus with icosahedral 

symmetry. The virus is approximately 27-32 nm in diameter with a genome size of 

approximately 7.5 kb (34). There is a single species of HAV, categorized into 2 types: 

human HAV and simian HAV. Human HAV infects all species of primates, whereas 

simian HAV infects specifically cynomolgus and green monkeys (128). There are 7 HAV 
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genotypes (genotypes I to VII). Genotypes I, II and III, which are further divided into 

subtypes A and B, infect humans (60). Characterization of HAV into genotypes is 

essential in investigating outbreaks to trace foodborne outbreaks to the source (60, 246, 

251). HAV is stable outside of its host and can survive on contaminated surfaces, water 

and food. Transmission most often occurs between people, however food- and 

waterborne outbreaks have been recorded (36, 227, 258).  

Hepatitis E virus 
 

Hepatitis E virus (HEV) is a non-enveloped, positive-sense single-stranded RNA 

virus with icosahedral symmetry. The virus is approximately 27-34 nm in dimeter and a 

genome size of approximately 7.2 kb (136). HEV was classified in the Caliciviridae 

family due to its similar organization of the genome and structural morphology. The virus 

was later reclassified in the Togaviridae family because of similarities observed between 

replicative enzymes of togaviruses and HEV (6, 276). The current classification of HEV 

is in the Hepeviridae family and Orthohepevirus genus with 4 species, A-D, that have 

varying host ranges (75). Orthohepevirus A makes up the HEV variants that infect 

humans and eight genotypes have been identified within Orthohepevirus A. HEV1 and 

HEV2 only infect humans; HEV3 and HEV4 have been shown to infect humans and 

other domestic and wild animals; HEV5 and HEV6 are found to infect wild boars; and 

HEV7 and HEV8 have been identified in camels (75, 99, 113, 283, 331).  

Rotavirus  
 
 Rotaviruses (RV’s) are non-enveloped, double-stranded RNA viruses in the 

Reoviridae family. They are often associated with causing gastroenteritis and diarrhea in 

children and infants (62, 73, 144, 202). RV’s have icosahedral symmetry and are 
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approximately 70 to 80 nm in diameter with a genome size of approximately 18 to 20 kb 

(224). There are ten RV species that have been identified (A-J). The species most 

commonly linked to infection in children is RV species A, which is classified into 

different genotypes based on RNA sequence differences (62). Although RV strains are 

distinctively different between humans and animals, cross-species infection has been 

observed due to strain similarity (202). Outbreaks of water- and foodborne RV infections 

have occurred in several countries (104, 157, 213).  

2.3 Surrogate Viruses 
 

Surrogates are microorganisms that are used in research instead of pathogens. 

Ideal surrogates should behave similarly to the target pathogen, non-pathogenic, have 

inactivation characteristics and kinetics that can be used to predict those of the target 

pathogen and be easily cultivated in the laboratory (124, 274).  

Many NoV surrogates have been explored due to the difficulty of growing NoV in 

the lab. Most NoV surrogates are closely related structurally or genetically to human 

norovirus (65, 121). Before the discovery of animal caliciviruses (12), poliovirus (PV), 

and bacteriophage MS2 (MS2) were used as NoV surrogates for inactivation studies; PV 

is often used as a surrogate for HAV as well (14, 244). Research on human norovirus 

surrogates has established that non-enveloped viruses are more stable in the environment 

and foods than enveloped viruses (95, 102). 

Bacteriophage MS2 
 

Bacteriophage MS2 (MS2) is in the Leviviridae family, belonging to the Levivirus 

genus. It is a non-enveloped, positive-sense single-stranded RNA virus with icosahedral 

symmetry. MS2 is approximately 27 nm in diameter and has a genome size of 
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approximately 3.5 kb. The genome of MS2 is one of the smallest known, consisting of 

3,569 nucleotides of single-stranded RNA. MS2 is a virus that mainly infects E. coli, and 

other members of Enterobacteriaceae. MS2 binds to the host cell, inject its genome and 

replicate once the genome is inside the host cell. MS2 has been used often as a surrogate 

organism for studies virus sensitivity to disinfectants and aerosolization properties (191, 

267, 309). 

MS2 encodes four proteins: the coat protein (Coat), the maturation protein (A), 

the lysis protein (L), and the replicase protein (Rep). These proteins are arranged into an 

icosahedral shell to protect the genomic RNA. The structure of the coat protein is a five-

stranded Beta-sheet with 2 alpha-helices and a hairpin (156). When the capsid is 

assembled, helices and hairpin face the exterior of the particle and Beta-sheet face the 

interior. The coat protein is the primary structural component of the MS2 protein shell. 

The maturation protein is associated with attachment to the bacterial pilus, replication, 

RNA packing and infectivity. The maturation protein-RNA complex is the only viral 

component to enter host cells during infection. The replicase protein is involved in 

replication and the lysis protein is involved in the lysis of E. coli. The gene encoding the 

lysis protein overlaps the 3’-end of the upstream gene and the 5’ end of the downstream 

gene, and was one of the first reported examples of overlapping genes (304). 

Murine norovirus  
 

Murine norovirus (MNV) is in the Caliciviridae family, belonging to the NoV 

genus. MNV is a non-enveloped virus with a positive-sense single-stranded RNA genome 

with icosahedral symmetry. It is approximately 27-32 nm in diameter and has a genome 

size of approximately 7.5 kb (295). It was identified in 2003 and is a species of NoV that 
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affects mice. MNV is the only NoV that replicates in a small animal and in cell culture 

(56, 140, 324). 

Feline calicivirus  
 

Feline calicivirus (FCV) is in the Caliciviridae family, belonging to the Vesivirus 

genus. FCV is a non-enveloped virus, with a positive-sense single-stranded RNA genome 

with icosahedral symmetry (27). It is approximately 27-35 nm in diameter and has a 

genome size of approximately 7.6 kb (115). FCV causes disease in cat and is often used 

as a NoV surrogate due to its ability to be cultured in vitro and its phylogenetic similarity 

to NoV (226, 310). 

Tulane virus 
  

Tulane virus (TV) is in the Caliciviridae family, belonging to the Vesivirus genus. 

TV is a non-enveloped virus, with a positive-sense single-stranded RNA genome and 

icosahedral symmetry. It is approximately 35-39 nm in diameter and has a genome of 

approximately 7.3 to 8.5 kb in size. TV was isolated from rhesus monkeys and can 

replicate in vitro in rhesus monkey kidney cells. TV is considered a suitable NoV 

surrogate due to its large genetic variability and its ability to recognize human histo-

blood group antigens (76, 300, 301).  

Poliovirus 
 

Poliovirus (PV) is in the Picornaviridae family, belonging to the Enterovirus 

genus. PV is a non-enveloped virus with a positive-sense single-stranded RNA genome 

and icosahedral symmetry. It is approximately 28-30 nm in diameter and has a genome of 

approximately 7.4 to 7.5 kb in size (46). PV is a well characterized and has become 

useful for understanding the biology of RNA viruses. There are three serotypes of PV: 



   

 
 

37 

PV1, PV2 and PV3, each of which varies in its capsid protein. PV is made up of several 

capsid proteins, VP0 through VP4, each of which has a different purpose (4). All forms 

of PV are infectious, though PV1 is most commonly found in nature (193). Humans are 

the only known natural host of PV, however monkeys are able to be experimentally 

infected and have been used often to study PV (123).  

2.4 Emerging foodborne viruses  
 
Adenovirus 
 
 Adenoviruses (AdV) are in the Adenoviridae family and are divided into five 

genera. Human adenoviruses (HAdV) have been often linked to childhood gastroenteritis 

and belong to the genus Mastadenovirus. There have been seven identified HAdV 

species, HAdV A-G (105, 134). These are double-stranded DNA viruses that are non-

enveloped with icosahedral symmetry. HAdV are approximately 70 to 100 nm in 

diameter and a genome size of 28 to 45 kb (105, 141). HAdV is most often transmitted 

via aerosolization or the fecal-oral route. Though infrequent, cases linked to foodborne 

outbreaks involving HAdV have been reported (50, 303).    

Aichi Virus 
 

Aichi virus (AiV) is in the family Picornaviridae in the genus Kobuvirus. AiV is 

made up of three species, AiV A, B and C, formerly known as Aichivirus, bovine 

kobuvirus and porcine kobuviruses, respectively. AiV A is comprised of three genetically 

unique members with varying host species – AiV in humans, known as AiV-1, canine 

kobuvirus and murine kobuvirus (3, 139, 225). AiV-1 is a single-stranded, non-

enveloped, positive-sense RNA virus with icosahedral symmetry. AiV genome is 

approximately 8.3 kb in length and 30 nm in diameter (153). Though this virus has not 
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been linked to many outbreaks, it is often identified in sewage and is capable of being 

foodborne (167, 179). 

Astrovirus  
 

Human astroviruses (HAstV) are small, non-enveloped, positive-sense single-

stranded RNA viruses with an icosahedral symmetry, approximately 28-30 nm in 

diameter and a genome size of 6.8-7.0 kb (35). HAstV is grouped within the Astroviridae 

family which is further divided into two genera: Mamastrovirus includes astroviruses that 

infect mammals and Avastrovirus includes astroviruses that infect avian species. HAstV 

are currently divided into eight serotypes (HAstV-1 to HAstV-8); however, HAstV-1 is 

the most prevalent worldwide (93). Multiple large foodborne HAstV outbreaks have been 

reported (254). 

Highly Pathogenic Avian Influenza  
 

Avian influenza is in the family Orthomyxoviridae in the genus Influenzavirus. 

There are 3 genera in the Orthomyxoviridae family; Influenzavirus A-C. These viruses 

are pleomorphic, negative-sense single-stranded RNA viruses and have a genome 

approximately 13.5 kb in size (259). Avian influenza viruses are enveloped viruses and 

approximately 80 to 120 nm in diameter. Influenza A viruses infect humans as well as 

pigs and birds. Influenza B viruses infect seals as well humans (primarily children) and 

Influenza C infects humans. Type A influenza strains are classified by serological 

subtypes based on the primary viral surface proteins and undergo both antigenic drift and 

shift (288). Highly pathogenic avian influenza (HPAI) is caused by the strain H5N1. 

Surveillance data has shown that H5N1 HPAI virus was detected on the surface and 

within eggs, as well as in imported frozen duck meat (19, 111, 307). HPAI has also been 



   

 
 

39 

experimentally detected in breast and thigh meat, eggs, and blood and bones of HPAI 

virus-infected chickens (290). This data suggests that HPAI can be transmitted to humans 

through consumption of contaminated poultry products (52, 178).  

Coronavirus  
 

Coronaviruses (CoV) are large, enveloped, positive-sense single-stranded RNA 

viruses in the Coronaviridae family. These viruses are pleiomorphic with a genome size 

of 20 to 30 kb and a diameter of 80-220 nm. The most common human coronaviruses 

linked to infection are 229E (alpha coronavirus), NL63 (alpha coronavirus), HKU1 (beta 

coronavirus) and OC43 (beta coronavirus). Coronaviruses were initially divided into 

alpha, beta, gamma and delta based on their serology but are now divided by their 

phylogenetic clustering (86). Two new coronaviruses have emerged over the last few 

decades: Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East 

Respiratory Syndrome Coronavirus (MERS-CoV) (7, 33).  SARS-CoV may be spread to 

human from consumption of wild animals or food animals, believed to be derived from a 

different reservoir such as bats (173, 325).  

Nipah virus 
 

Nipah virus (NiV) is an emerging virus found most commonly in Asia. It is in the 

Paramyxoviridae family and the Henipavirus genus (182). It is a pleomorphic, enveloped, 

negative-sense single-stranded RNA virus. The virion size in the Henipavirus genome 

ranges from 40 to 600 nm with a genome size of approximately 18 kb (1, 10). NiV is an 

enveloped virus, which are known to be less stable on food and in the environment (71, 

198).   

Parvovirus 
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Parvovirus is in the family Parvoviridae and is a single-stranded DNA, non-

enveloped virus with a virion size of 20 to 30 nm. Its genome size is approximately 5 to 6 

kb and has an icosahedral capsid symmetry. Parvoviridae is divided into 2 subfamilies – 

Parvovirinae and Densovirinae that infect vertebrates and invertebrates, respectively. The 

first parvoviruses identified as pathogenic to humans include human parvovirus B19 

(B19) and human bocavirus 1 (HBoV1) (234).  

Sapovirus 
 

Sapovirus (SaV) is in the Caliciviridae family and like NoV, is known to be a 

major cause of viral gastroenteritis in humans and animals (212, 217). It is a non-

enveloped, positive-sense single-stranded RNA virus with icosahedral symmetry. The 

virus is approximately 30 to 38 nm in diameter with a genome size of approximately 7.3 

to 7.5 kb (54). SaV’s have been classified into five groups, GI-GV, which is further 

divided into genetic clusters; GI-GIV have been known to infect humans. Outbreaks have 

been reported through foodborne transmission (117, 155, 212).  

2.5 Mechanism of Inactivation Treatments 
 
Ozone 
 
Introduction 
 

Ozone has been used as an inactivation treatment as an alternate to chlorine. It is 

advantageous over other chemical sanitizers since it has little effect on the environment – 

it rapidly dissociates into oxygen and does not form toxic byproducts (122). In 1982, 

ozone was classified as general recognized as safe (GRAS) and has since then been used 

as a decontamination method in the food industry (58). It is a strong oxidant that is 

capable of inactivating a range of organisms such as bacteria, fungi, protozoa and viruses, 
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but sensitivity to ozone varies based on type and strain. The ability of ozone to inactivate 

pathogens is dependent on ozone concentration, product matrix, contact time, 

temperature, pH and virus type (49, 120, 146). Viral inactivation via ozone treatment 

appears to target the antigenic sites for host cell receptor attachment, viral capsid proteins 

and nucleic acids. The interaction of ozone with antigenic sites and viral capsid proteins 

could affect the adsorption of the virus onto host cells.  

Mechanism of action  
 

The mechanism of action of ozone on viruses is not fully understood. Most 

foodborne viruses are non-enveloped which is thought to allow the ozone to access the 

core nucleic acid and damage to the nucleic acid may prevent replication of virus 

following treatment (142, 199, 313). Some researchers have hypothesized that ozone 

affects just the capsid (222, 233, 333), but conflicting studies show that ozone can affect 

both the capsid and the viral genome. Damage to the genome is thought to occur because 

ozone can diffuse through the protein coat, damaging viral nucleic acid. Ozone has been 

shown to destroy the capsid via oxidation at higher concentrations (143, 252, 267). It is 

believed that the interaction of ozone with antigenic sites and viral capsid proteins can 

affect the adsorption of the virus into the host cells (120). It has also been suggested that 

in enveloped viruses the ozone destroys the double bond sites of the viral envelope, then 

goes on the interact with nucleic acids (129, 289).  

Research determined through electron microscopy that MNV was affected by 

ozone by damage to the outer protein capsid which then allowed the viral RNA to leak 

out, leaving empty viral particles remaining (233). Several studies have observed the 

effect of ozone on bacteriophage f2 and MS2 and concluded that ozone affects the protein 
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capsid first to release RNA and which is subsequently inactivated by ozone. These 

studies also found that bacteriophage was more sensitive to ozone than enteric viruses 

(84, 92, 110, 143, 282). They hypothesized that at higher ozone concentrations, 

degradation of the virus capsids occurs more quickly (143). Reisser et al. (1977) found 

that when PV was treated with ozone, there was damage to the viral capsid (242). Results 

from Herbold et al. (1989) indicate that PV showed increased resistance to ozone 

exposure than HAV, despite having similar structure (116). In another study, it was 

observed that VP1 and VP2 virus capsid proteins of PV were damaged by the treatment 

of ozone, however the capsid protein most important for viral attachment to cells, VP4, 

was not affected. Results from this study suggest that the main mode of inactivation by 

ozone is nucleic acid damage as opposed to damage to the viral capsid (252). Hudson et 

al. (2007) looked at the ability of ozone gas to inactivate NoV and FCV on surfaces and 

found similar decreases in viral RNA after ozone exposure, though no mechanism of 

action was suggested (125).   

Gamma Irradiation  
 
Introduction 

 
The use of gamma (ionizing) irradiation and electron beam generators on food 

products has been used in the food industry as a decontamination treatment. The product 

is exposed to gamma rays, which consists of high energy electromagnetic waves. The 

gamma rays are emitted from radioactive forms of cobalt 60 or cesium 137 (98). Cobalt-

60 is most often used for food irradiation because it is water soluble and presents little 

risk to the environment. This form of radiation has also been used on hygienic equipment 

used in the medical and dental industry. Gamma radiation doses of 2 to 4 kilogray (kGy) 
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have often been used in food products to inhibit the growth of bacteria and parasites, 

however research on inactivation of foodborne viruses continues to be of interest to 

researchers (15). Gamma radiation is considered an ideal candidate vs. heat and chlorine 

for decontaminating products like fresh produce (29), since it maintains the quality of the 

initial product and penetrates deeply, while delivering a uniform dose (69). Electron 

beam generators create high energy electrons in an accelerator that is able to generate 

electrons to 99% of the speed of light (87). These have also been used on food products, 

but are unable to penetrate food products as deeply as gamma radiation.  

Mechanism of action 
 

The inactivation properties of gamma rays have been explored for both enveloped 

and non-enveloped viruses and treatments are typically categorized as direct or indirect. 

Several studies have hypothesized that the effect of gamma irradiation on viruses is due 

to the alteration of nucleic acids, destroying the infectivity of the virus (194, 312). 

However, researchers have also noted that the protein content of the viruses may have a 

stabilizing effect on radiation inactivation (69). Direct inactivation involves damage to 

the nucleic acid and protein, as well as crosslinking of the genetic material or radiolytic 

cleavage (88). Indirect inactivation of gamma ray treatment involves the action of free 

oxygen radicals, most often hydrogen peroxide and hydroxyl (OH) radicals (205, 277, 

279). Gamma radiation has been shown to be less effective when solutes, known as 

scavengers (e.g. proteins), are present since they are able to react with the OH radicals 

before they react with the virus (279). De Roda Husman et al. (2004) found that when 

MS2 was dispersed in a high-protein versus a low-protein stock, the virus was inactivated 
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more when there was less protein. These results confirmed the role of OH free radicals in 

virus inactivation (175).   

Ultraviolet Light 
 
Introduction  
 

Ultraviolet light (UV) is a form of non-ionizing, electromagnetic radiation that 

has shorter wavelengths than visible light. This combination allows for damage in a 

variety of organisms such as bacteria, viruses and fungi (158). UV light is divided into 

different groups by its wavelength and range, including UVA, UVB and UVC. UVA has 

a range of 400 to 315 nm, UVB has a range of 315 to 280 nm, and UVC ranges from 280 

to 100 nm (83, 240). This technology is appealing to the food industry due to its ease of 

use, low cost and lack of toxic byproducts. UV is often considered as an alternative to 

thermal pasteurization of beverages such as milk and juices (55). UV has also been 

suggested as a surface disinfectant on fresh produce and ready-to-eat (RTE) meals (30). 

Factors that have been shown to affect the success of UV light as a surface disinfectant 

for viruses include the virus strain, viral protein differences, viral nucleic acid type and 

the ability of the virus to form aggregates (20, 94).   

Mechanism of action  
 

Many studies have been published on the effect of UV light on inactivating DNA 

and RNA viruses and varying UV effects. The generally accepted mechanism of 

inactivation via UV is through damage to the genome of viruses through breaking bonds 

and the formation of photodimeric lesions in DNA, RNA and nucleic acids (21, 26). 

These lesions lead to inactivation through the prevention of transcription and replication 

of the virus (94, 160, 207, 320). Most foodborne viruses contain genomic RNA and have 
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been observed to undergo morphological changes in the viral capsid after UV light 

exposure (70).  

A study by Wang et al. (2014) looked at the effect of UV on TV, a NoV 

surrogate, and determined that although UV treatment affected the capsid protein, 

inactivation occurred primarily through genomic damage, leading to the inability of the 

virus to replicate (317). Bacteriophages are also considered to be more resistant to UV 

than other viruses and were found to be primarily inactivated by UV through damage to 

the RNA genome (270, 305). Researchers observed how UV affected the single-stranded 

RNA virus PV, and found that it primarily attacks the viral nucleic acid (20, 208, 209). 

UVs ability to inactivate viruses seems to be dose dependent. At doses >1000 mWs/cm2, 

UV has been shown to affect the capsid protein and create RNA-protein linkages, leading 

to degradation (70, 275, 321). UV light is thought to be capable of causing significant 

damage at the genomic level of RNA viruses (70, 218, 275).  

Researchers who studied the inactivation of several viruses by UV concluded that 

double-stranded DNA adenovirus (AdV) was more resistant than RNA enteric viruses, 

including PV and MNV (103). Researchers also studied the effect of UV on the 

inactivation of AdV and found that the mechanism of inactivation involved both the 

capsid and the genome; noting that AdV has been known to continue to infect and 

replicate within a host even when there is damage to the DNA, as long as the structural 

proteins remain intact (38). Double-stranded DNA viruses are also known to be capable 

of using host cell enzymes to repair the damage to DNA that is caused by UV light (273). 

Another study observed that double-stranded RNA rotavirus (RV), was also more 

resistant than HAV and PV (18). Several researchers have suggested that the improved 
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resistance of double-stranded viruses to UV treatment is linked to having an additional 

strand that remains undamaged and can act as a template for the host cell enzymatic 

repair (103, 135, 154, 189, 299). Generally, double-stranded viruses have been found to 

be at least 10 times more resistant to UV than single stranded viruses for this reason (119, 

135, 241).  

Fino et al. (2008) hypothesized that a large factor in UV ability to inactivate virus 

is the surface topography of the product. These authors studied 3 single-stranded RNA 

viruses, HAV, AiV and FCV, and found the larger differences in reduction between food 

products than between viruses. Lettuce had the greatest reduction vs. strawberries and 

green onions, attributed to product shadowing that disrupts the UV light path (94). Kaoud 

et al. (2016) studied the inactivation of highly pathogenic Avian influenza (HPAI) by UV 

light in fecal matter and found no reduction after 48 hours, attributed to poor UV 

penetration (138). This limitation of UV light is generally well known and restrict its 

adoption in the food industry (5, 177).  

High Pressure Processing 
 
Introduction  
 

High-pressure processing (HPP) has been increasingly used in the food industry 

and is considered a strong alternative to thermal processing (97). Research has shown 

HPP can inactivate pathogenic microorganisms, maintain organoleptic and nutritional 

properties and extend the shelf-life of food products. HPP applies pressure uniformly, 

making it an effective method to inactivate pathogens on the surface or within a product 

(239). Though most studies have looked at the ability for HPP to inactivate pathogenic 

and spoilage bacteria, some studies have investigated foodborne viruses. The mechanism 
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of action is believed to involve the alteration of the virus capsid that surrounds the RNA 

genome. A damaged viral capsid means that the virus is unable to attach to the host cell, 

and therefore is never able to release its nucleic acid into the cell and cause infection.  

Viruses studied thus far have had varying resistances and sensitivities to HPP 

treatment, suggesting that a mechanism for inactivation via HPP may differ across 

viruses (237). Kingsley et al. (2002) found that a 7-log reduction required an HPP 

treatment of 450 MPa for 5 min for HAV, whereas FCV treated at 275 MPa for 5 min at 

22°C saw the same reduction in viral titer (152).  

Mechanism of action 
 

As noted above, HPP is thought to alter capsid protein conformation and prevent 

virus attachment, host cell penetration or uncoating once the virus enters the cell (109, 

152, 181, 231, 237, 245). Studies have suggested that HPP may denature proteins of the 

viral coat of non-enveloped viruses and cause damage to the viral envelope of enveloped 

viruses (119, 148, 152, 200, 269). Researchers found the capsid of HAV remained intact 

after 500 MPa HPP treatment and there was no release of RNA genome (152). Other 

authors found damage to the attachment protein which can lead to a loss of ability to 

cause infection (231).  

Lou et al. (2011) also observed that HPP disrupted but did not degrade the viral 

capsid protein of MNV, and that the capsid protein remained antigenic. These authors 

also reported that primary and secondary structures of the major capsid structural protein 

VP1 was not disrupted (181). In another study from the same lab further confirmed that 

HPP could disrupt the capsids from MNV and FCV, while virus-like particle (VLP) 

capsids of NoV were found the be highly resistant to HPP compared to its surrogates 
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(180). Tang et al. (2010) found that HPP treated MNV was unable to bind to its target 

receptor and could not initiate infection in mouse RAW cells, and MNV capsid integrity 

was not affected by HPP treatment (292). Other research has linked the inactivation of 

RV to the viral spike protein being altered when exposed to high pressure (231). 

Factors that influence HPP’s effect on eliminating microorganisms include the 

product matrix, temperature, pressure applied, treatment length and morphology and size 

of the virus (59, 97, 197). An increase in inactivation of NoV, TV and MNV was 

observed when HPP was applied at a lower temperature (74, 150, 268). This effect of 

temperature and pressure when used together has been associated with maximizing 

protein denaturation from an increased water molecule density in the protein matrix (17, 

151, 161). The matrix of the suspension or food product has also been shown to influence 

the effectiveness of HPP.  

Several studies have shown that properties such as fats, salt, protein and 

carbohydrates decrease the impact of HPP on viruses (15, 17, 108, 147). It has been 

hypothesized that HPP leads to free radical formation, so antioxidants, like fruit 

polyphenols can decrease damage to the capsid that is caused by free radicals which can 

promote virus resistance to HPP (24, 185). A study by Wilkinson et al. (2001) looked at 

the ability of HPP to inactivate PV and AdV and found that at 400 MPa, AdV was 

inactivated, however, at 600 MPa, PV saw no significant inactivation. The authors 

suggested that since PV is a small, spherical virus it is resistant when uniform pressure is 

applied while AdV is larger and icosahedral shapes so that the flat planes of this viral 

particle are thought to collapse or become damaged when a certain pressure is applied 

(148, 323). 
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pH 
 
Introduction  
 

While acidification has often been used as a preservation technique in food 

microbiology (15), viruses are generally stable at low pH, allowing them to tolerate the 

acidity of products and environments, such as berries, and the intestinal tract in humans 

(174). Enveloped viruses are less resistant to low pH and experience denaturation more 

quickly than non-enveloped viruses (95). Non-enveloped NoV can for example, survive 

acidic stomach conditions to be able to reach the small intestine, where the virus 

replicates within epithelial cells (66).  

Mechanism of action  
 
Different viral capsids have shown different sensitivities to different pH 

environments. Studies have found that NoV GI.I and NoV GII.4 capsids were stable at 

acidic and neutral pH, while disassembly of the capsid  occurred at pH greater than 8 (13, 

67, 229). NoV VLPs have been used as a NoV surrogate to understand the effect of pH 

on capsid stability. VLPs are composed of one or more capsid proteins but lack viral 

nucleic acids. Cuellar et al. (2010) found that the mechanical stability of NoV capsids 

were pH-dependent. The size of the NoV VLP and overall diameter increased when 

exposed to pH 10, eventually losing structural stability and disassembling (66). 

Conversely NoV VLPs are stable at low pH (13, 66, 126, 132, 256). It has been 

hypothesized that high pH changes to the capsid shell are linked to weakening of the 

capsomer-capsomer interaction. Jiang et al. (1992) found NoV VLPs dissociate under an 

alkaline pH into soluble capsid proteins and reassemble when returned to a neutral pH 

(132). Ausar et al. (2006) found VLPs were stable from pH 3 to 7, but significant capsid 
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disruption at pH 8 was observed (13). Lin et al. (2014) studied VLPs made with different 

structural proteins and found that VPLs made with VP1 and VP2 structural proteins were 

more stable at pH of 8 than those made with just VP1 (176).  

Researchers have also looked at other single-stranded RNA viruses similar to 

NoV. When HEV was studied in a low pH solution, it was found that the major capsid 

protein undergoes conformational changes which is thought to increase stability and 

allow the virus to retain infectivity (332). Costafreda et al. (2014) concluded that the 

physical stability of HAV in the environment is related to capsid folding. HAV strains 

whose capsids vary in folding showed significant differences in its resistance to an acidic 

pH; where capsid folding is linked to mutations in the capsid coding region of viral 

nucleic acid (61).  

Changes in pH are also known to cause viral aggregation (multiple virus particles 

coming together) thought to occur because of viral capsid conformational changes. These 

conformation changes also effect viral entry into the host cell and release of RNA, 

affecting overall infectivity (66, 164). Langlet et al. (2007) studied the effect of pH on the 

aggregation of MS2. MS2 phages showed significant aggregation when the pH was less 

than or equal to the phage isoelectric point (pI = 3.9); at a pH of 2.5, there was 

approximately a 2-log reduction measured of viral PFU (164). Another study also 

observed the effect of pH on MS2 and showed that inactivation rates were lowest at a pH 

range of 6-8 (89). Tian et al. (2013) observed the stability of TV when exposed to a range 

of pH and found that the virus remained stable from pH 3-8, however there was a clear 

reduction at pH 2.5 and 9, and no detected viruses at pH 10 (300). The NoV surrogate 

MNV was found to be resistant at high and low pH; with a minimal reduction in 
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infectivity at a pH of 2. Compared to other enteric viruses, FCV has been found to be less 

stable at low pH (48, 77).  

Though studies have not been frequently conducted on NiV, one study looked at 

the effect of pH on virus survival in phosphate buffered saline (PBS) and showed that 

NiV was tolerant to a pH range from 3 to 11 (96). It has been observed in AstV that a 

drop in pH leads to viral uncoating and studies on porcine astrovirus (PAstV) have 

showed that the virus retained its infectivity after 3 hours at pH 4, resulting in a 2-log 

reduction (266, 318). Several studies have observed the stability of CoVs across a range 

of pH and concluded that CoVs are more stable at slightly acidic pH of 6-5.6 compared to 

an alkaline pH (100, 102, 162, 228, 232, 286).  

Pesavento et al. (2005) evaluated the effect of pH on conformational changes in 

rotavirus (RV) spike protein, VP4. This study observed that at increased pH, the VP4 

protein has an irreversibly conformational change, affecting its cell binding ability (223). 

An earlier study found that RV remained stable at a pH range of 3 to 10 but at a pH less 

than 3, the outer layer of the capsid collapsed (190, 216). When exposed to a range of pH 

values the double-stranded DNA virus AdV has been shown to have damaged capsid proteins 

but not damage to its viral DNA (214, 215, 243). Another DNA virus, Parvovirus B19 

(B19), has been found to have an altered capsid at pH of 5 or lower, however the changes 

appear reversible and exposure to low pH is not associated with capsid degradation (47, 

184, 220, 272).  

Disinfectants   
 
Introduction 
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Sanitizers and disinfectants approved by the Food and Drug Administration 

(FDA) and the Environmental Protection Agency (EPA) are not always effective at 

inactivating or removing foodborne viruses. Viral inactivation by disinfectants depends 

on exposure time, disinfectant concentration, exposure temperature, food contact surface 

characteristics and/or surrounding food matrix. Capsid proteins, presence of a lipid 

envelope and the nucleic acid (DNA or RNA) are all susceptible to attack by chemical 

disinfectants (263). Alcohols, chlorine, quaternary ammonium compounds, sodium 

hypochlorite, hydrogen peroxide and peroxyacetic acid are all relatively ineffective 

against many foodborne viruses; depending in large measure on whether a virus is 

enveloped or not (68, 119, 195, 306). The EPA allows virucidal claims against NoV to be 

made from data that show effectiveness against FCV. There are also EPA-registered 

products that mention the effectiveness against MNV as the basis for anti-noroviral 

claims (57, 80).  

Mechanism of action  
 
Alcohols  
 

Alcohols (primarily methanol and ethanol) are often used disinfectants to reduce 

microbial load on a surface. Enveloped viruses have been found to be readily inactivated 

at 70% ethanol concentration, however, non-enveloped viruses are significantly more 

resistant (137). The general mechanism of inactivation by alcohol is through the 

denaturation of the protein structure, leading to changes in virus conformation, and these 

inactivation mechanisms are largely based on the concentration of ethanol (163). NoV 

surrogates, such as MNV, FCV, MS2 and TV have all been studied to see the extent of 
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inactivation using an alcohol-based product. Several studies have found MNV to be more 

susceptible to alcohols than other non-enveloped viruses (22, 219, 262, 308).  

NoV VLPs have also been used as a NoV surrogate to study the effects of alcohol. 

Sato et al. (2016) found that when NoV VLPs were treated with ethanol, the major capsid 

protein VP1, remained intact (261). SaV, in the Caliciviridae family has been shown to 

be inactivated by ethanol through degradation of the viral capsid (212, 319). Other 

studies have concluded that when alcohol-based disinfectants are used against enveloped 

viruses, they cause damage to the lipid envelope and rapid denaturation of the proteins, 

affecting the infectivity of the virus to the host cell (82, 131, 145, 311). 

Oxidizing agents  
 

Oxidizing agents such as chlorine and chlorine dioxide have often been used as a 

disinfectant for their low cost, low toxicity to humans and wide range of application. The 

general mechanism of action of chlorine compounds against microbes is thought to 

involve the denaturation of proteins, as well as the ability to attack nucleic acids (31, 163, 

236). ClO2 reacts with amino acids such as histidine, tyrosine and tryptophan, leading to 

the disruption of primary and secondary structures, and disruption of these structures 

results in degradation of the viral capsid protein (201, 211, 285). 

Several studies have looked at the effect of oxidizing agents on virus inactivation 

in suspension and on foods, however the mechanism of action is not entirely understood 

(12, 196, 298, 300). MNV has been used often as a NoV surrogate to better understand 

the effect of ClO2 on viruses and results showed that CLO2 damaged the viral capsid 

structure which leads to the leaking and degradation of viral RNA (114, 329). The 

inactivation mechanism of disinfectants on HAV is likewise not well understood but has 
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been suggested that inactivation occurs through capsid protein fragmentation and then 

damage to the nucleic acid (210). In contrast, Li et al. (2002) suggested the initial target 

of chlorine inactivation was likely the HAV nucleic acid and not the capsid proteins, and 

that the 5’ and 3’ non-translating regions of HAV RNA are more sensitive to chlorine and 

the coding areas more resistant (171, 172). Other studies have found that when viruses 

are aggregated, they exhibit a protective effect against inactivation when exposed to 

chlorine (278, 296, 297).  

Kingsley et al. (2017) studied the effect of chlorine treatment levels on the 

inactivation on NoV and MS2. The authors concluded a loss of binding to host cells was 

apparent and this might suggest a mechanism related to capsid binding (149). Other 

research noted that binding of NoV viral capsid to histo-blood group antigen (HBGA) 

was significantly reduced by chlorine and suggests that the mechanism of inactivation 

was due to denaturation of the capsid proteins (316). Wigginton et al. (2012) looked at 

the effect of disinfectants on function and structural integrity of MS2 and found that 

chlorine treatment affected the capsid protein, inhibiting the viral genome from being 

injected into the host cell but not in a way related to binding to host cells (322). 

Inactivation of PV from exposure to sodium hypochlorite determined that there was no 

conformational change in the capsid, but that RNA was degraded (9, 210). Additional 

studies have found that ClO2 inactivated PV by disrupting the PV genome (133, 271). It 

has been demonstrated that loss of AdV infectivity after chemical treatment was due to 

DNA degradation rather than to capsid denaturation (264). AiV has been shown to be 

affected by sodium hypochlorite through disruption and damage to both the capsid and 

genomic RNA (187). Several studies have looked at the effect of sodium hypochlorite on 
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the enveloped avian influenza virus and the mode of action seems to be damage to the 

genomic RNA (287, 338).  

Heat 
 
Introduction 

 
Heat is often used in the food industry as a food processing method to reduce 

pathogenic bacteria, spoilage microorganisms and viruses in food products (166). D- and 

z-values are used to characterize the heat inactivation kinetics of microbes during thermal 

processing treatments (43). Factors that have been seen to contribute the most to viral 

inactivation when exposed to heat include the temperature and the matrix (25). In a study 

looking at heat inactivation in milk, the fats and proteins caused increased heat stability 

of HAV (28).   

Mechanism of action 
  

As noted above, thermal inactivation of viruses is thought to involve 

conformational changes in the capsid structure (119). Heat may induce structural changes 

to the capsid proteins which may lead to inactivation through changing the binding 

capacity to host cells (25, 206, 235). Generally, heat disrupts the hydrogen bonds, 

destroying the structural integrity of the viral proteins (41, 284, 315). Denaturation of the 

capsid proteins then leads to the release or denaturation of nucleic acids (280). Studies on 

the mechanism of inactivation of AiV involved the degradation of the capsid and release 

of genetic material (65, 255). 

Pollard (1960) hypothesized that structural changes in the viral proteins occur as 

parts of the virus expand when heat is applied and that the enthalpy and entropy of the 

virus components (e.g. capsid and nucleic acid) differ, such that degradation rates can 
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vary over a wide temperature range (230). Croci et al. (2012) found that exposure to 50°C 

led to damage of the FCV receptor binding site, and at increased temperatures, higher 

inactivation rates were associated with denaturation of capsid proteins, leading to the 

release and degradation of nucleic acids (64).  

Changes in the secondary, tertiary and quaternary structure has also been 

observed at increased temperatures (13, 42, 63, 64, 281, 314, 322). Another study found 

that TV RNA levels were not significantly decreased when subjected to high heat (80°C) 

for 10 seconds. The authors concluded that these results show heat treatment did not 

physically degrade the genomic RNA, though a loss of capsid integrity and change in the 

virion symmetry was seen (11). Studies on RNA viruses including FCV, MNV, HAV and 

PV concluded that heat changed the conformation of the capsid, leading to loss of 

infectivity, without a loss in RNA infectivity (23, 44, 63, 118, 208, 209, 248).  

A study by Brie et al. (2016) found that when MS2 was exposed to heat (72°C), 

particles were disrupted and the genome was susceptible to degradation. Another study 

observed that the capsid of MS2 was unable to recognize its receptor following heat 

treatment (322). When RV was exposed to heat, the mechanism responsible for 

inactivation was associated with a disruption of viral RNA synthesis (81, 249). 

Enveloped viruses have been associated with increased susceptibility to harsh 

treatments. CoVs which are enveloped, single-stranded RNA viruses, have been studied 

with respect to heat treatment. Studies investigating both severe acute respiratory 

syndrome and Middle East respiratory syndrome (both caused by CoVs), have 

determined that thermal inactivation occurs through destabilization of the viral envelope, 
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affecting the viral capsid structural integrity and denaturation of the nucleic acid (37, 51, 

107, 165, 168, 170, 186). 

Researchers looked at the effect of thermal resistance on viruses on the single-

stranded DNA virus, PaV. Studies have shown that the mechanism of inactivation 

involves DNA release from an intact capsid (184, 188, 265). When a double-stranded 

DNA virus (AdV) was heated, its capsid was degraded but with no observed effect on the 

infectivity of the DNA (253).  

Cold Plasma 
 
Introduction 

 
Plasma (the fourth state of matter) has become a promising food industry non-

thermal technology (39, 91, 169). It has been shown to be effective against a variety of 

yeasts, spores, viruses and fungi (16, 45, 72, 79, 90, 183, 192, 238, 302, 337). Plasma is 

made up of photons, electrons, positive and negative ions, and reactive species such as 

radicals, atoms and molecules. The reactive species often include reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) (106). Factors that greatly influence the 

efficacy of plasma as an inactivation method against viruses include the gas composition, 

pH of the solution and treatment time, virus suspension medium and virus type (2, 78). 

Mechanism of action  
 
The general mechanism of microbial inactivation via cold plasma is a synergistic 

effect of ROS and the chemistry of the air produced by cold plasma, leading to oxidation 

of cellular components. It can be hypothesized that following oxidation, the capsid 

protein (for non-enveloped viruses) or lipid membrane (for enveloped viruses) are 

attacked, leading to subsequent nucleic acid degradation and virus inactivation (40, 260). 
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The inactivation of viruses by plasma on has not been studied as much as other microbes 

(72, 90, 101, 336). Aboubakr et al. (2015) hypothesized that plasmas mode of action 

against FCV in suspension was that the ROS and RNS react with the capsid protein 

leading to peroxidation and capsid destruction. Researchers have found that virucidal 

activity of plasma against NoV surrogates were significantly enhanced by adding oxygen 

such that the inactivation rate of cold plasma is primarily a function of the oxygen 

concentration in the mixture of carrier gas (2, 8, 328, 336). Other studies looking at AdV 

and several bacteriophages have also shown that plasma affects the capsid protein of a 

virus, leading to subsequent damage to the nucleic acids (291, 326, 327). Niemira (2012a, 

2012b) suggested that components of plasma like ROS, photo-inactivating light and 

gaseous antimicrobials may act on both the viral capsid and genome, depending on the 

structural integrity of the virus (203, 204). An earlier mechanism proposed by Roy et al. 

(1981) and Kim et al. (1980) suggested that ROS may inactivate viruses through specific 

damage to the capsid polypeptide chains after which the ROS diffuse through the 

damaged capsid and react with the virus nucleic acid (143, 252).  
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Table 2.1: Characteristics of foodborne viruses  
Virus Genus or 
Species  Family 

Nucleic 
acid type Envelope 

Morphology 
Symmetry  

Size of 
virion 
(nm) Culturable? 

Genome 
Size (kb) Disease caused  Reference 

Influenzavirus Orthomyxoviridae (-) ssRNA Y Helical 80-120 Y 13.5 
Respiratory, eye, and 
gastroenteritis infection Sangsiriwut 2018 

Henipavirus  Paramyxoviridae  (-) ssRNA Y Helical 40-600  Y 18 
Respiratory infection, 
encephalitis  Ang 2018 

Astrovirus Astroviridae (+) ssRNA  N Icosahedral 28-39 Y 6.8-7 Gastroenteritis  Bosch 2014 

Norovirus Caliciviridae (+) ssRNA  N Icosahedral 28-35 N 7.4-7.7 Gastroenteritis  Robilotti 2015 

Vesivirus Caliciviridae (+) ssRNA  N Icosahedral 27-35 Y 7.6 Gastroenteritis  He 2016 

Sapovirus Caliciviridae (+) ssRNA  N Icosahedral 30-38 N 7.3-7.5 Gastroenteritis  Choi 2015 

Hepatovirus  Picornaviridae (+) ssRNA  N Icosahedral 27-32 Y 7.5 hepatitis, inflammation of liver Bondarenko 2013 

Orthohepevirus  Hepeviridae  (+) ssRNA  N Icosahedral 27-34 N 7.2 hepatitis, inflammation of liver Kamar 2014 

Enterovirus Picornaviridae (+) ssRNA  N Icosahedral 28-30 Y 7.2-7.5 
Poliomyelitis, meningitis, 
encephalitis  Brown 2003 

Levivirus Leviviridae (+) ssRNA  N Icosahedral 27-28 Y 3.5  Bollback 2001 

Kobuvirus Picornaviridae (+) ssRNA  N Icosahedral 30  8.3 Gastroenteritis  Kitajima 2015 

Recovirus  Caliciviridae (+) ssRNA  N Icosahedral 35-37 Y 6.7  Yu 2013 

Coronavirus Coronaviridae (+) ssRNA  Y Helical 80-220 Y 20-30 
Gastroenteritis, resipiratory 
infections  Fehr 2015 

Adenovirus Adenoviridae dsDNA N Icosahedral 70-100 Y 28-45 
Respiratory, eye, and 
gastroenteritis infection Ghebremedhin 2014 

Rotavirus Reoviridae  dsRNA N Icosahedral 70-80 Y 18-20 Gastroenteritis  Phan 2016 

Parvovirus  Parvoviridae  ssDNA N Icosahedral 20-30 N 5-6 Gastroenteritis  Qiu 2017 
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Chapter 3: Virus risk in the food supply chain 
 
Published in Current Opinion in Food Science 2019, 30: 43-48  
Robyn C Miranda and Donald W Schaffner  
 
3.1 Abstract 
 

Enteric viruses are an important food safety concern and have been associated 

with many foodborne disease outbreaks. Norovirus and Hepatitis A virus have been 

implicated in majority of outbreaks; however, other foodborne viruses such as Hepatitis E 

virus, Sapovirus and Rotavirus can also present a risk to humans. Viral foodborne disease 

outbreaks have typically been associated with foods served raw including shellfish, fruits 

and vegetables. The contamination of food by viruses can occur anywhere in the supply 

chain. Unlike bacteria, viruses cannot replicate in food, so the ability of a contaminated 

food to serve as a vehicle for infection depends on virus stability and host susceptibility. 

The burden of foodborne enteric viral disease is often difficult to estimate as many 

illnesses are mild and go unreported. Molecular assays have been developed for 

foodborne viruses, and the sensitivity of theses assays has significantly improved 

throughout the last decade. Surrogate viruses are often used in laboratory research to 

further understand virus behavior as many foodborne viruses are difficult or impossible to 

culture outside a human host. This review provides an overview of the epidemiology and 

detection of foodborne viruses, and most summarizes the state of the science in 

quantitative microbial risk assessment as applied to foodborne viruses, including the use 

of viral surrogates. 

3.2 Introduction 
 

Viruses are increasingly recognized as important causes of foodborne disease 

worldwide in recent years. Viruses have properties that make them quite different than 
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more commonly studied foodborne bacterial pathogens. Viruses consist of nucleic acids, 

enclosed within a protein coat called a capsid. Viruses are not free-living and are only 

capable of replicating within the living cells of humans, other animals, plants or bacteria. 

As such, foodborne viruses (unlike foodborne bacteria) are unable to replicate in food. 

Most foodborne viruses lack a viral envelope, and thus are extremely stable in the 

environment.  

Some foodborne viruses are able to withstand some food processing techniques 

which control bacterial pathogens in foods. Foodborne viruses may able to survive in 

foods, on hands, in feces, and on food contact surfaces and floors for long periods of 

time. Some foodborne viruses, such as norovirus (NoV) may be shed in very high 

numbers (105–1011 virus particles/g of stool or vomitus) from infected individuals, and 

have a relatively low median infective dose, which can lead to large outbreaks in short 

periods of time (54). The burden of illness from foodborne viruses is highest in young 

children, the elderly and immunocompromised. Viruses cause a wide range of diseases in 

plants, animals and humans, and each group of viruses has its own typical host range and 

cell preference (44). Since viruses are increasingly recognized as a common cause of 

foodborne illness, significant progress has been made in recent years regarding the 

methodology available for detection and identification of viruses in food and clinical 

samples (23). 

3.3 Foodborne viruses involved 
 

There has been an increase in data published on the epidemiology of viruses in the 

last decade (41). Foodborne viral infections are typically caused by enteric viruses, and 

these infections are spread via virus particles shed in the stool or vomit of infected 
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individuals. Norovirus (NoV) and hepatitis A virus (HAV) are the two most common 

causes of viral foodborne illness in the United States (16). Hepatitis E virus (HEV), 

sapoviruses, rotaviruses, astroviruses, and Aichi viruses are less commonly associated 

with outbreaks of foodborne gastroenteritis (17, 37, 42, 50, 56). NoV is generally 

considered to be the most prominent cause of viral-associated foodborne illness 

worldwide. NoV is linked to an estimated 19–21 million cases of acute gastroenteritis 

annually in the United States (56). This review is focused on the viruses causing most 

foodborne viral disease, NoV and HAV, as well the emerging foodborne viral hazard, 

HEV (Table 1). 

3.4 Common foods and notable outbreaks  
 

Foods served raw or lightly cooked are considered at greatest risk of causing 

enteric viral illnesses. Shellfish, fresh fruits and fresh vegetables are among the foods 

most commonly linked to foodborne virus outbreaks (3, 15, 32). Shellfish, fruits and 

vegetables are at increased risk of transmitting enteric viruses since they can undergo 

extensive human handling, may not undergo further processing and are subject to 

environmental contamination pre-harvest and post-harvest. Fresh fruits and vegetables 

are at a high risk for contamination by foodborne viruses because these commodities 

normally undergo a little or no processing and can be contaminated at any step from pre-

harvest to post-harvest. Major routes of contamination include contaminated water for 

irrigation or washing, or by infected workers handling the food during harvesting, 

processing or distribution (14). Fresh produce usually undergoes a brief sanitization step 

after harvest from the field, though commonly used sanitizers are ineffective in removing 

viral contaminants from these foods (4, 24, 30). Shellfish may be harvested from waters 
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subject to human fecal contamination or sewage discharge and may be handled by 

infected shellfish harvesters. Shellfish are usually eaten with their digestive tracts in place 

and are often eaten raw, and both practices increase risk (12, 53). Contamination of foods 

associated with food and waterborne viruses can occur at any point in cultivation, 

harvesting, processing, distribution, or preparation.   

The proportion of foodborne disease caused by viruses has historically been 

difficult to estimate due to difficulties in culturing or detecting viruses (versus bacteria). 

Under reporting due to the mild and self-limiting nature of some viral infections (NoV), 

or lack of an identified vehicle due to long onset times and the delayed appearance of 

symptoms for other infections (HAV) can also occur. Factors contributing to the increase 

and spread of viral foodborne disease include lack of clean water, globalization of the 

supply chain and changes in eating habits, including increased consumption of food 

commonly eaten raw. The 2018 Winter Olympics in PyeongChang, South Korea were 

struck by a NoV outbreak with 194 confirmed cases. The likely source of the outbreak 

was contaminated cooking water (29). Frozen raspberries imported from China were the 

cause of more than 700 confirmed cases of NoV in Quebec between March and July in 

2017 (22). Royal Caribbean cruise line made headlines in December 2017 after more than 

500 people fell ill with NoV on two of the company’s cruise ships (49). A multistate 

outbreak of HAV linked to frozen strawberries imported from Egypt resulted in 143 cases 

in 9 states in 2016 (18).  

3.5 Means of disease spread  
 
Viruses can be transmitted directly and indirectly and may contaminate a wide 

variety of foods pre-harvest or postharvest. The most common route for transmission of 
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foodborne viruses is termed fecal-oral, where viruses in microscopic particles of feces are 

orally ingested by another person. Some viruses can also be transmitted by aerosolization 

of vomitus particles from an infected person and subsequently ingested by the next 

victim. Patients with viral gastroenteritis are capable of shedding high numbers of viruses 

in their feces, sometimes reaching over 1010 NoV genome copies/g (gc/g) feces, and it is 

estimated that as many as 3 x 107 virus particles are released in a single vomiting episode 

(2, 34, 54, 64). Feces from those shedding of HAV may contain >106 infectious virus 

particles per gram and virus excretion in feces can occur 2-3 weeks before symptoms 

appear and last for at least 6 weeks after onset (48, 58, 62). Peak shedding of HEV (about 

108 gc/g) occurs during the incubation period and early, acute phase of the disease (61). 

Indirect transmission of these viruses can occur via water and food or from contact with 

contaminated fomites including serving utensils, plates, tables, and so on. 

3.6 Challenges of detecting foodborne viruses in foods 
 

Significant efforts have been made to develop tools for virus detection in foods in 

the last decade. Detection of viruses in foods can be a greater challenge than culturable 

bacteria because viruses do not replicate outside the host and, therefore, cannot be 

enriched for or otherwise cultured (19). Viral loads present in food samples are typically 

much lower than those found in clinical samples and thus detection methods must be 

quite sensitive. The original methods for detection of human enteric viruses in food are 

based on mammalian cell culture assays. This method is expensive, time-consuming and 

some enteric viruses grow poorly or not at all in cultured cells (55). Current virus 

detection methods for foods are based on molecular methods such as reverse transcription 

polymerase chain reaction (RT-PCR) or next generation sequencing (NGS). Other 
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laboratory assays for the detection of viruses include electron microscopy (EM) and 

immunological enzyme immunoassay. Electron microscopy has the ability to detect 

multiple viral pathogens, but it is insensitive, requires expensive equipment and involves 

training. Immunological enzyme immunoassay results in high specificity, high 

throughput but has low sensitivity (36).  

RT-PCR detection of viral nucleic acid is currently one of the best approaches for 

the detection of foodborne viruses in food matrices because it has high specificity, 

sensitivity and throughput. RT-PCR also has several important limitations. Viruses must 

first be extracted and concentrated from the food matrix before application of RT-PCR 

(38, 68). Extraction and concentration steps are often inefficient and can result in loss of 

virus and low recovery. NGS offers new potential methods for sensitive detection of 

viruses in food and clinical samples. As the sensitivity of NGS methods are improved, 

they may be the ideal laboratory method to investigate foodborne outbreaks (19). 

3.7 Microbiological risk assessment  
 
General factors to consider  
 

Risk assessment is a process that can be used to under- stand and manage 

biological or chemical hazards associated specific foods. It is commonly presented as 

consisting of four steps: hazard identification, hazard characterization, exposure 

assessment and risk characterization. Risk assessments can be categorized as qualitative, 

semi-quantitative, and quantitative, each requiring more data than the last. In quantitative 

microbial risk assessment, mathematical models are used to describe pathogen prevalence 

and concentration, as well as their growth and inactivation kinetics in foods as a result of 

transport, handling, and processing (43, 69). Parameters important in viral risk 
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assessment include the stability of foodborne viruses in food and in response to 

processing stresses (e.g. heat, freezing, sanitizer exposure) as well as transfer and spread 

via cross-contamination. 

Most microbial risk assessments have focused on bacterial pathogens, but there is 

increased interest in risk assessments for enteric viruses, in part because measures used to 

control or bacterial contamination in food or water are not always effective for 

controlling viruses (20). Viral risk assessments should consideration such as virus 

inactivation over time, susceptibility to disinfectants, differences in host immunity, 

differences in clinical symptoms and health outcomes (including the potential for 

asymptomatic and secondary infections), genetic diversity and emergence of novel viral 

strains (10). Over the last decade, almost two dozen foodborne or waterborne viral risk 

assessments have been published, often focusing on commonly contaminated foods and 

environmental sources associated with outbreaks (Table 2). Early risk assessments 

focused on irrigation water quality and a variety of viruses, while more recently 

published risk assessments have focused on Norovirus in a variety of food products. 

3.8 Viral surrogates  
 

Some enteric viruses infecting humans lack an easy or suitable cell culture-based 

assay system or pose a high risk to laboratory staff, so surrogate viruses are often used 

(27). Surrogates microorganisms are typically selected on the basis of their 

morphological similarities and/or similar physiological characteristics to the pathogens of 

interest (13). The ideal surrogate should be equivalent or slightly more resistant to 

treatments than the target organism, and should be nonpathogenic, with similar survival 

and persistence characteristics (9, 13, 35). Surrogates for pathogenic foodborne enteric 
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viruses include feline calicivirus, murine norovirus, bacteriophage MS2, Tulane virus, 

porcine sapovirus, and poliovirus (11, 57). There is no one universal one-to-one 

relationship between specific foodborne viruses and their surrogates. This is because a 

surrogate suitable for one stress (i.e. heat) might not be ideal for another stress (i.e. 

sanitizers), and there are multiple other stresses or situations that need to be studied 

(frozen survival, pH stress, cross-contamination, etc.).  

3.9 Risk management strategies  
 

The decision-making process for risk managers should be transparent and based 

on sound science and risk assessment (10). Viruses associated with foodborne disease 

tend to be those where humans are the natural hosts; therefore, effective control measures 

need to include preventing exposure of foods to human feces or vomitus. Effective 

control of water treatment, food processing, cleaning and disinfection of surfaces, 

personal hygiene and hand washing, and/or sanitation are all required in order to control 

the spread of viruses along the food chain, although the efficiency of current control 

measures is poorly characterized (10). Vaccination can also be an important risk 

management strategy, and vaccines against HAV and rotavirus have already been 

implemented and there are now several candidate vaccines for NoV, although none have 

currently made it to market (21). 

3.10 Conclusion 
 

Foodborne viruses cause considerable morbidity and mortality. Controlling these 

viruses means relying on good personal and food hygiene, good agricultural practices, 

appropriate post-harvest controls and effective management of human sewage to prevent 

further transmission. More data on foodborne viruses and their surrogates, and well as 
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risk assessments incorporating such data are needed to assist risk managers in controlling 

foodborne viral disease. 
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Table 3.1: Characteristics of foodborne viral infections 
 
Frequency of  

foodborne 
transmission 

Virus name Virus family Genome Transmission routes 

    Fecal-
oral 

Person 
to 

person 

Water and 
environment 

High Hepatitis A virus  Picornaviridae  ssRNA X X X 
 Norovirus  Caliciviridae  ssRNA X X X 
Low/Unknown  Hepatits E virus  Hepeviridae  ssRNA X  X 
Rare Aichi virus  Picornaviridae  ssRNA X  X 
 Astrovirus  Astroviridae  ssRNA X X X 
 Rotavirus  Reoviridae  dsRNA X X  
 Sapovirus Caliciviridae  ssRNA X X  
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Table 3.2: Summary of recent viral risk assessment related publications 
 
 
Year published Virus(es) studied  Food, viral source or study focus  Citation 

2000 Enteric viruses Irrigation water (67) 
2001 Enterovirus  Irrigation water  (51) 
2005 Hepatitis A virus  Irrigation water (60) 
2006 Rotavirus Irrigation water  (31) 
2007 Rotavirus, Norovirus  Irrigation water and soil (40) 
2008 Norwalk virus  Dose response study (63) 
2008 Hepatitis A, Norovirus Fresh fruit (7) 
2009 Norovirus  Foodservice  (47) 
2009 Hepatitis A virus  Clams (52) 
2010 Rotavirus, Norovirus  Irrigation water and soil (39) 
2012 Poliovirus, Rotavirus Leafy greens post-irradiation (26) 
2012 Hepatitis A virus  Oysters (65) 
2013 Norovirus  Irrigation water and soil (5) 
2013 Norovirus  Oysters  (66) 
2013 Norovirus  Greywater irrigated lettuce  (28) 
2014 Norovirus  Wastewater irrigated vegetables (46) 
2014 Norovirus  Wastewater irrigated vegetables (6) 
2015 Norovirus  Deli sandwiches  (59) 
2015 Norovirus, Hepatitis A virus, Adenovirus  Fresh produce, farm to fork (8) 
2015 Norovirus, Adenovirus  Wastewater and soil (1) 
2017 Norovirus  Foodservice  (25) 
2017 Norovirus  IQF raspberries and raspberry puree  (33) 
2018 Norovirus  Frozen berries (45) 
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4.1 Abstract 
 

Norovirus is a foodborne enteric virus and has been linked to outbreaks following 

consumption of fresh and frozen fruits. Experiments were performed to determine the 

efficacy of freezing and frozen storage (-20°C) on the survival and persistence of 

norovirus surrogate, bacteriophage MS2, on frozen strawberries and raspberries at three 

different starting titers. Frozen storage at -20°C was used to represent a storage scenario 

in consumers home freezer. There was a decline rate of approximately 0.22 log 

PFU/month for strawberries and 0.21 log PFU/month raspberries, respectively, at a high 

starting titer. The decline in log PFU/month was increased as the starting titer increased. 

The pH did not change significantly during frozen storage for either berry. The color of 

the berries and pH did not significantly change throughout the freezing process and 

frozen storage. 
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4.2 Introduction 
 

Frozen foods are one of the largest sectors of the food industry and large 

quantities of frozen foods are consumed year-round. The United States (U.S.) frozen food 

industry is valued at over $6 billion in annual sales (36). Freezing is typically considered 

superior to dehydration and canning because foods retain more of their fresh sensory 

attributes and nutritional properties (42), but ice crystals can form in fruits, leading to a 

breakdown of the fruit structure, affecting overall appearance (12, 16, 29). Batches of 

frozen berries are often packed in small bags in large cases and have a typical “best-

quality” shelf-life of around 18 to 24 months, as observed on packages purchased at local 

New Jersey supermarkets.  

Norovirus (NoV) is the leading cause of acute gastroenteritis in the world causing 

an estimated 21 million illnesses in the U.S. annually (5). Many foodborne outbreaks 

involving fresh and frozen berries have been linked to viruses (2, 19, 22, 24, 26, 33, 34, 

37). The largest outbreak on record arising from NoV-contaminated berries occurred in 

Germany in 2012, where over 11,000 people fell ill with NoV after consuming 

contaminated frozen strawberries sourced from China (28). Viruses can survive frozen 

storage, which can contribute to geographically and temporally widespread outbreaks. 

NoV is usually spread through feces or vomit of infected individuals and can be passed 

through contaminated water, food or direct person-to-person contact. Contamination can 

occur pre- or post-harvest or during handling by workers or consumers (30). Many 

berries may require more handling by hand than most fruits or vegetables due to their 

delicate nature. A survey of NoV contamination in commercial frozen berry fruits from 
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2016 to 2017 in the leading berry-producing area in China found the prevalence of NoV 

was 9% when sampling 900 frozen retail berry samples (13).  

NoV was unable to be propagated in cell culture until recently (11) so NoV is 

often studied using surrogate organisms such as Murine norovirus (MNV), Feline 

calicivirus (FCV), Tulane virus (TV) and bacteriophage MS2 (MS2) (6, 32). Freezing is a 

common practice to preserve berries commercially and at home, but survival 

characteristics of foodborne viruses on frozen fruits is not well documented. The 

objective of this study was to determine the effect of freezing and frozen storage on 

frozen berries contaminated with bacteriophage MS2 over a two-year time period.  

4.3 Materials and methods  
 
Bacteriophage MS2 Propagation  
 

MS2 (ATTC 15597-B1) and E. coli C3000 (ATCC 15597) were obtained from 

American Type Culture Collection (Manassas, VA). MS2 was propagated using E. coli 

C3000 as a host on tryptic soy agar (TSA) plates using the double agar overlay method 

(Difco, Becton Dickinson, Sparks, MD) (20). MS2 stocks were prepared on the cell 

lawns of E. coli C3000 by U.S. Environmental Protection Agency method 1601(9). One 

tenth (0.1) ml of overnight E. coli C3000 culture was added to 5 ml of molten TSB soft 

agar, in addition to 0.1 ml of MS2 (~11 log PFU/ml). The inoculated culture was spread 

on the surface of a TSA plate and incubated overnight at 37°C. MS2 was recovered by 

scraping the top of the plate (soft agar layer) and placing it in TSB. The MS2 phage in 

TSB was separated from the host cells by centrifugation (5,000 x g, 4°C for 25 min), 

followed by filtration of the supernatant through a 0.45-µm pore-size filter (Fisher), 

stored at 4°C prior to use.  
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Frozen Storage Experiments  
 

Fresh strawberries and raspberries were purchased from a local Stop & Shop and 

stored at 4°C prior to use (Stop & Shop, Somerset, NJ). The strawberries and raspberries 

had pH (Accumet Basic AB15 pH Meter, Fisher Scientific) values of 3.40 ± 0.02 and 

3.27 ± 0.05, water activities (aw) of 0.986 and 0.984 (Rotronic Instrument Corp., 

Hauppauge, NY), and 14 and 12 °Brix, respectively. Fresh strawberries and raspberries 

had initial L*, a* and b* values of 29, 33, 10 and 34, 36, 10, respectively (Konica 

Minolta Sensing, Inc., Chroma Meter CR-410). °Brix content was obtained by taking 

three measurements of sliced and whole berries, varying berry surface angles and 

averaging the L*, a* and b* values. Virus dilutions in phosphate buffered saline (PBS) 

were inoculated onto the surfaces of each 15 g portion of fresh berries (one large 

strawberry, three raspberries) by dispensing 50 µl over approximately 10 spots with 

approximately 11 log PFU/ml of MS2. Inoculated samples were air-dried in a biosafety 

cabinet for 1 hour. Individual berries were placed in sterile sample bags and placed in the 

freezer to avoid cross-contamination between berries and reduce freezer burn.  

Berry samples were analyzed on the day of inoculation, in triplicate, and the 

remaining samples were stored at -20°C. Batches of three samples were thawed and 

processed as described above, over a two-year period. Additional uninoculated berries 

were stored for each individual sampling time to determine the pH and L (lightness), Da 

(redness), Db (yellowness) values over time. The total color difference, DE, was 

calculated as well to determine if there were noticeable differences in color measurement 

from the initial fresh berries (Equation 1).  

Equation 1 DE= Ö (DL2 + Da2 + Db2) 
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The freezing time from a whole fresh strawberry and raspberry to when the center 

was frozen was estimated to be approximately 1.15 hrs and 0.37 hrs, respectively, using 

Pham’s method (31). This method is more accurate than Plank’s method (23) because it 

considers the diameter of the product. The inputs used for the calculation were -20°C for 

air temperature, 0°C for final center temperature, product diameter of ¾” (0.01905 m) 

and ¼” (0.00635 m) for strawberry and raspberry respectively, as well as a convective 

heat transfer of 12.2 W/m2°C as estimated using numerical simulation from the published 

literature (7). Strawberries and raspberries were tested to determine when the product 

reached freezing by inserting a thermometer (Thermistor Thermometer, Grainger) into 

the berry; the temperatures of the berries reached freezing (0°C) at 1.02 ± 0.18 and 0.23 ± 

0.07 hrs, respectively.  

Data Analysis 
 

Regression analysis was performed to estimate the rate of decline in virus 

concentration over time (Microsoft Office Excel; Microsoft, Redmond, WA, USA). The 

D-value, or decimal reduction time, is determined by the best fit on the slope of the viral 

survival curve obtained by plotting the log of the viral titer after frozen storage against 

the time the frozen berries are stored. The reciprocal of the slope of the regression line is 

the D-value. The decline rate (log PFU/month) was calculated.  

4.4 Results 
 

Figures 1 and 2 show survival of MS2 on frozen strawberries and raspberries 

stored at -20°C with high, medium and low starting titers. The D-value for frozen 

strawberries at high starting titer was approximately 139 days, whereas the D-values for 

medium and low titer were about 182 and 250 days, respectively. The decline rate per 
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month for high, medium and low titer on frozen strawberries were 0.22, 0.17 and 0.12 log 

PFU/month, respectively. The D-value for frozen raspberries at high starting titer was 

approximately 147 days, whereas the D-values for medium and low titer were about 217 

and 270 days, respectively. The decline rate per month for high, medium and low titer on 

frozen raspberries were 0.21, 0.14 and 0.12 log PFU/month, respectively. There was a 

significant decrease in viral titer during the freezing process that ranged from 0.84 to 1.42 

log PFU/berry by day 1.   

No significant change in pH of the frozen strawberries and raspberries was 

observed over the two-year time period (Fig. 3). Colorimeter values for the frozen 

strawberries and raspberries are shown in Figure 4 and Figure 5. L* and a* values 

fluctuated during the freezing process and throughout frozen storage. The b* value 

fluctuated less throughout freezing and frozen storage for both berry types. The total 

color difference (Delta E*) is calculated from the other three parameters and thus shows 

fluctuations similar to L*, a* parameters. 

4.5 Discussion 
 

The freezing process is believed to have little effect on foodborne pathogens, 

including enteric viruses. Similarly, frozen storage at typical commercial conditions (e.g. 

-20°C) produces only a gradual decline in viability over time (3, 18). The occurrence of 

foodborne viral disease outbreaks from consumption of fruit frozen for prolonged periods 

of time indicates that if the food is contaminated prior to freezing, viruses survive and can 

remain infectious long enough through frozen shelf life to cause disease. 

   Mattison et al. (2007) researched the survival of FCV inoculated on lettuce and 

strawberry disks stored at 4°C. Greater than a 2.5 log reduction on strawberries was 
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observed after 6 days at 4°C and an average of a 2 log reduction was observed on lettuce 

following 7 days of storage at 4°C (25). Though FCV is commonly used as a NoV 

surrogate, it has been shown to be an unreliable surrogate when exposed to acidic 

conditions, like those found in fruits. Studies have reported that the inactivation of FCV 

increased with decreasing produce pH (4, 17, 35).  

Dawson et al. (2005) used the surrogate bacteriophage MS2 to observe virus 

survival on a variety of fresh produce. At 4°C, < 1 log reduction was observed after 7 

days of storage on strawberry, lettuce, pepper, carrots, cabbage, and tomato and < 2 log 

reduction was seen prior to produce deterioration (8). In a study using human norovirus 

GII.4 and GI.4, MNV and human adenovirus (hAdV), virus survival on fresh strawberries 

and fresh raspberries depended on the storage temperature and fruit type – viruses 

typically showed similar persistence patterns (39). The largest difference among 

persistence was observed at 21°C; there was a rapid decline of infectious MNV-1 and 

hAdV particles on strawberries after 1 day (approximately 1.5 log reduction), whereas 

raspberries saw no decline over this period. This study demonstrated that NoV was less 

persistent on strawberries than on raspberries. Our research, as well as Verhaelen et al. 

(2012), demonstrate the importance of considering differences between different fruits 

when assessing risk (39).  

The freezing process has shown a reduction of viral load on food. FCV and canine 

calicivirus (CaCV) showed a decline in infectivity of 0.34 ± 0.18 D and 0.44 ± 0.12 D, 

respectively, after 5 cycles of freeze-thawing (10). While we did not study repeated 

freeze-thaw cycles, we saw little decline from the single freeze thaw cycle we used. A 

study by Kurdziel et al. (2001) observed a reduction of < 2 log of Poliovirus (PV) in 
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frozen strawberries after 15 days of storage at -20°C, with a D-value of 8.4 days; while 

no decline was observed for fresh raspberries under the same conditions (21). PV is 

known to be more resistant to environmental conditions than other enteric viruses, 

therefore the authors expected little affect during freezing (40). No significant reduction 

was observed of MNV-1 infectivity in deep-frozen spinach and deep-frozen onions over 

6 months of storage at -21°C (1).  

Richards et al. (2012) reported that long-term frozen storage at -80°C did not 

decrease NoV RNA titers over the 17-week study period (32). Butot et al. (2008) studied 

the effect of frozen storage at -20°C on HAV, NoV, FCV and rotavirus (RV) when 

inoculated on strawberries, raspberries and blueberries. No significant reduction in the 

viability of any of the viruses was observed during freezing, except for FCV in 

strawberries, raspberries and blueberries. The TCID50 (50% tissue culture infective dose) 

values on these samples were reduced by more than 1 log10 unit. Over a 3-month period, 

frozen storage had a limited effect on the survival of HAV and rotavirus RV in all 

products tested, whereas FCV infectivity declined by more than 2 log10 units on 

strawberries, raspberries and blueberries, likely due to their lower pH (3).  

Over a two-year a time period, the pH for both frozen raspberries and strawberries 

did not significantly change. A study by Grzeszczuk et al. (2007) looked at the effect of 

blanching, freezing and frozen storage on spinach plants found that the pH significantly 

changed after 9 months of frozen storage (15). Another study (38) recorded the effect of 

ascorbic acid treatment on frozen strawberries and raspberries and observed a 10-13% 

decrease in pH following 3 months of storage, regardless of the ascorbic acid treatment 

received. Experiments by Mgaya-Kilima et al. (2014) reported on the effect of storage 
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temperature on roselle-fruit juice blends at 4°C and 28°C. At both temperatures, the pH 

was observed to increase due to the decrease in acidity of the juices (27). Several studies 

found that after freezing and frozen storage of strawberries and raspberries found that the 

L*, a* and b* values did not change significantly (14, 41), consistent with our 

observations.  

Our findings suggest that if MS2 is used as a surrogate for foodborne pathogenic 

viruses for fruits contaminated before freezing, predicted risk of disease decreases very 

slowly and consistently over a 2 year shelf. Unfortunately, the published literature on 

viral survival in frozen fruits shows wide variability in virus survival rates. These may be 

true differences between viruses, which means selecting a surrogate is challenging. 

Although risk from viruses on frozen berries may go down during storage, prevention of 

contamination and/or processing to reduce risk still have the best potential to decrease the 

risk of future outbreaks.    



   

 
 

108 

Table 4.1: Survival kinetics of MS2 on Frozen Strawberries and Frozen Raspberries  
 

Food pH Water 
Activity 

°Brix Starting 
titer 
(log 

PFU/g) 

R2 of 
regression 

line 

Decline rate 
(log 

PFU/month) 

D-value 
(days) 

Strawberries 3.40 ± 0.02 0.986 14 High 
(9.89) 

0.9618 0.216 139 
 

   Medium 
(8.21) 

0.9183 0.165 182 
 

   Low 
(6.51) 

0.9720 0.120 250 

Raspberries  3.27 ± 0.05 0.984 12 High 
(9.47) 

0.9364       0.204   147 
 

   Medium 
(8.65) 

0.9392 0.138 217 
 

   Low 
(6.56) 

0.8781 0.120 250 
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Figure 4.1: Survival of MS2 on frozen strawberries  
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Figure 4.2: Survival of MS2 on frozen raspberries 
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Figure 4.3: pH change in frozen strawberries and frozen raspberries over time  
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Figure 4.4: Colorimeter values for frozen strawberries over time  
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Figure 4.5: Colorimeter values for frozen raspberries over time 
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5.1 Abstract  
 

Norovirus is the leading cause of foodborne illness worldwide. There is little 

information regarding thermal inactivation characteristics of norovirus due to the 

complexity of cell culture systems necessary for propagation. Thermal inactivation of 

microorganisms remains a key measure in the food industry, therefore understanding the 

thermal inactivation kinetics of human norovirus surrogates could be valuable. The 

objective of this study was to evaluate the thermal inactivation kinetics of norovirus 

surrogate, bacteriophage MS2, in frozen berry purées. Strawberry and raspberry purées 

were inoculated with MS2 (~10 PFU/ml purée) and exposed to three temperatures (55, 60 

and 65°C) over a range of suitable times in a water bath. The z-values for raspberry purée 

at 10, 20 and 30°Brix were 10.9, 16.3 and 21.9°C, respectively. The z-values for 

strawberry purée at 10, 20 and 30°Brix were 10.1, 16.3 and 22.2°C, respectively. The 

results of this study will assist in developing suitable thermal processing procedures of 

frozen berries to ensure delivery of a safe product to consumers. 
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5.2 Introduction  
 

Norovirus (NoV) is the leading cause of acute gastroenteritis worldwide (14). 

NoV infections are primarily transmitted through fecal-oral contamination, by 

aerosolized vomit from an infected person or by contaminated food, water or surfaces. 

Fruits and vegetables, such as minimally processed berries, have been recognized as 

vehicles of viral gastroenteritis. Frozen raspberries contaminated with NoV were reported 

to be the probable cause of several outbreaks in Denmark, France and Sweden (16, 24, 

28, 31). Frozen strawberries sourced from China were linked to over 11,000 illnesses to 

children in Germany in 2012 (25, 33). 

Fresh produce may become contaminated with foodborne viruses’ pre-harvest, 

following contact with contaminated irrigation water or contaminated water used to dilute 

fertilizer applied to the produce. Contamination can also occur throughout several stages 

of the food chain including harvesting, processing, storage, distribution or preparation by 

coming in contact with contaminated water or surfaces or infected workers (26, 27, 36, 

42). Berries can be individually quick frozen (IQF) or processed into purées for use in 

other products. Berry purées can be further processed into products such as smoothies, 

jams, jellies or fruit fillings.  

Heat treatment is applied to manufacture fruit purées which helps to increase the 

shelf-life and to inactivate pathogenic and spoilage microorganisms that may be present. 

Raspberry purée is generally pasteurized by heating for approximately 2 min at 88°C 

(38). Studies have shown that this pasteurization process would be sufficient to inactivate 

high levels of NoV (3, 12, 40). Consumer demand for minimally processed foods with 

nutritional and flavor profiles closer to fresh have resulted in a modification of the berry 
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pasteurization processes to use more mild heating conditions, like 30 s at 65°C or 15 s at 

75°C (3). Several studies have been performed on heat inactivation of viruses in various 

foods (1, 2, 37) using small volumes of homogenized food samples under controlled 

heating conditions (41). Only a few studies have specifically observed inactivation of 

viruses using heat for berries (3, 5, 13, 20, 30).  

Viruses are affected by thermal inactivation when the capsid of the virus is 

altered. The capsid encloses the viral genome and additional components that are needed 

for virus structure or function needed to bind to the host (21). Song et al. (2011) 

determined that the mechanisms of thermal inactivation involve the denaturation of viral 

proteins and disassembly of virus particles into noninfectious viral subunits (39). 

Experimental studies relevant to human NoV are often performed using surrogate 

organisms because NoV could not be cultured until recently, and even now requires a 

complex cell system (23). Commonly used surrogates for foodborne viruses include 

Feline calicivirus (FCV), Murine norovirus (MNV), Tulane virus (TV), Poliovirus (PV) 

and bacteriophage MS2 (MS2) (19, 29, 43). MS2 is similar in shape and size to NoV and 

is also a single-stranded RNA virus. MS2 is adapted to the intestinal tract and has been 

shown to be a successful indicator for NoV in water and aerosolization studies (Tung-

Thompson 2015; Dawson 2005). MS2 is typically used as an internal control for 

validation of recovery and detection methods for NoV (34). Bacteriophages, like MS2, 

are useful surrogates because they are relatively easy to propagate and require a shorter 

incubation period for detection than other virus plaque assays. The reduction of 

bacteriophage MS2 by mild heat treatments on frozen raspberry and strawberry purées 

was investigated in this study. This data may have a variety of uses, but we will 
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specifically use it to predict the effectiveness of different time/temperature treatments for 

microwaving frozen berries. 

5.3 Materials & Methods  
 
Bacteriophage MS2 preparation 
 

MS2 (ATTC 15597-B1) and E. coli C3000 (ATCC 15597) were obtained from 

American Type Culture Collection (Manassas, VA). MS2 was propagated using E. coli 

C3000 as a host on tryptic soy agar (TSA) plates using the double agar overlay method 

(Difco, Becton Dickinson, Sparks, MD) (32). MS2 stocks were prepared on the cell 

lawns of E. coli C3000 by the U.S. Environmental Protection Agency method 1601 (22). 

One tenth (0.1 ml) of overnight E. coli C3000 culture was added to 5 ml of molten TSB 

soft agar along with 0.1 ml of MS2 (~11 log PFU/ml). The inoculated culture was spread 

on the surface of a TSA plate and incubated overnight at 37°C. The MS2 phage was 

recovered by scraping the top of the plate (soft agar layer) and placing it in TSB. The 

MS2 phage in TSB was separated from the host cells by centrifugation (5,000 x g, 4°C 

for 25 min), followed by filtration of the supernatant through a 0.45-µm pore-size filter 

(Fisher) and stored at 4°C, prior to use.  

Berry preparation 
 

Frozen raspberry purée (100% raspberries) and strawberry purée (100% 

strawberries) were purchased from a local supermarket (Stop and Shop, Somerset, NJ). 

The pH and °Brix of samples were measured using a surface pH probe (Accumet Basic 

AB15 pH Meter, Fisher Scientific) and a °Brix refractometer (Fisherbrand Handheld 

Analog Brix/Sucrose Refractometer, Fisher Scientific), respectively. The initial °Brix 

measurements were 10 and 8 °Brix for raspberry and strawberry purée, respectively. The 
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purées were modified as needed by directly adding sucrose (Sucrose, Fisher Scientific) 

and homogenizing the samples until a final concentration of 10, 20 and 30 °Brix for 

raspberry and strawberry purée was obtained. The pH of the initial frozen raspberry and 

strawberry purée samples were 3.01 ± 0.09 and 3.41 ± 0.03, respectively.  

Thermal treatment  
 

The frozen purées were thawed for 30 min and 10 g samples were placed into 

sterile filter bags for immediate use following appropriate addition of sucrose to reach 

desired °Brix measurements. Each berry purée sample was inoculated with MS2 to obtain 

a concentration of approximately 10 log PFU/ml. One ml of the virus stock solution was 

used to inoculate individual samples (10 g of berry purée) and these samples were then 

placed in a water bath at respective temperatures (55°C, 60°C and 65°C), with negligible 

come-up time. The virus extraction procedure was performed on all heat-treated samples 

after a maximum storage of 20 min on ice to cease further thermal inactivation. 

Raspberry and strawberry purée inoculated with 1 ml virus stock solution at room 

temperature (RT) served as a positive control. Uninoculated un-heat-treated raspberry 

and strawberry purée served as a negative control.  

Data analysis  
 

Thermal resistance of MS2 at 55°C, 60°C and 65°C was evaluated by calculating 

the D-value, the time required at a specific temperature to obtain a one log reduction of 

the viral titer. Using linear regression, the D-value, or decimal reduction time, is given by 

the best fit on the slope of the viral inactivation curve. The viral inactivation curve is 

created by plotting the log of the viral titer after heat treatment against the time of 

exposure. The relative heat resistance at different temperatures (z-value) was also 
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calculated. A categorical regression was performed in R Studio to model the effect of 

temperature as a continuous variable, with categorical variables for berry type and °Brix 

to determine significance of interactions on the D-value (p < 0.05) (RStudio, Inc., Boston, 

MA).  

5.4 Results & Discussion 
 

Frozen raspberry purée had a measured pH of 3.01 and 10 °Brix, while the 

strawberry purée had a measured pH of 3.41 and 8 °Brix. The calculated D-values and z-

values for the variables are shown in Table 1. The pH of the samples remained constant 

when sucrose was added. As the sucrose concentration increased, the D-value decreased 

in both berry purées. The D-values for raspberry purée at 55°C were 1.27, 1.11 and 0.99 

min for sucrose concentrations of 10, 20 and 30 °Brix, respectively. The D-values were 

for strawberry purée at 55°C were 1.52, 1.12 and 0.97 min for 10, 20 and 30 °Brix, 

respectively. The calculated z-values for raspberry purée were 10.9, 16.3 and 22.0°C for 

10, 20 and 30 °Brix, respectively. The z-values were for strawberry purée were 10.1, 16.4 

and 22.2°C for 10, 20 and 30 °Brix, respectively. 

The results of the categorical regression showed which variables and variable 

interactions had a significant effect on the D-value. Temperature was the only variable 

that had a significant effect on the D-value (p = 0.0023). Interactions between berry type, 

°Brix and temperature did not significantly affect the D-value (p > 0.05). The effect of 30 

°Brix, was not statistically significant (p = 0.1873) and neither was the interaction of 

temperature with 30 °Brix (p = 0.1802) as shown in Table 2. 

Several thermal inactivation studies have been conducted using NoV surrogates 

and foodborne enteric viruses and are summarized in Table 3. Table 3a summarizes 
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thermal inactivation data available in the published literature involving fruits and 

vegetables and Table 3b in cell culture media. The most recent study by Bartsch et al. 

(2019) researched the thermal inactivation of human NoV and surrogates in strawberry 

purée. Both MNV and TV were inactivated to below detection (> 7 log10 reduction) after 

treatment for 8 s at 80°C (5). MNV inactivation has been studied in spinach and 

raspberry purée (3, 4, 9). Baert et al. (2008) researched the effectiveness of blanching 

spinach at 80°C and the survival of MNV during this process. The come-up time of the 

blanching process was not considered and the researchers did not specify the final 

temperature of the spinach following treatment and no thermal inactivation kinetics were 

given (4).  

Bozkurt et al. (2015) reported thermal inactivation kinetics of MNV and FCV in 

spinach of temperatures at 50, 56, 60, 65, and 72°C. D-values for MNV were between 

0.16 and 14.57 min with a z-value of 10.98°C (9). These findings were similar other 

research from the same group (10, 11) who reported similar z-values (9.31, 11.62, 

10.37°C) of FCV and MNV with the same temperature profiles. Another study also from 

this group (8) investigated thermal inactivation kinetics of HAV (50 to 72°C) in spinach 

and reported D-values ranged from 34.3 to 0.91 min at 50 to 72°C with a z-value of 

13.92°C. HAV is another commonly researched foodborne virus; calculated D-values for 

this organism in strawberry mashes with varying brix values, 28 and 52° brix at 80°C, 

were 1.22 and 8.94 min, respectively (20). These results indicate that an increase in °Brix 

increases the thermal resistance of HAV. This effect was also seen in strawberry mash 

with 28 and 52°brix heated at 85°C with reported D-values of 0.96 and 4.98 min, 

respectively (20).  
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As Table 3 shows, thermal resistance of foodborne enteric viruses can be 

influenced by the food matrix. Significant differences can be seen across food types and 

between food and cell culture media suspensions. Inactivation results vary by the 

compositional different in the food matrix since the environment that viruses are found in 

impacts their thermal inactivation sensitivity. To gain a better understanding of how 

viruses can be inactivated in foods, the interaction between temperature and matrix must 

be considered (6). Certain food components such as the protein, fat and sugar content 

have been shown to play a protective role against thermal inactivation of viruses. (7, 17, 

18, 20, 35).  

The container geometry has also been shown to influence the thermal inactivation 

behavior of viruses; using larger container sizes can affect the time to reach the ideal 

temperature, known as the come-up time (15). The influence of sample size on thermal 

resistance of human norovirus surrogates, like FCV and MNV has been reported (10, 11) 

and at high temperatures, the increased come-up time might contribute to variances in the 

measured D-value. 

Foodborne viruses are generally more heat resistant than most foodborne non-

spore-forming bacterial pathogens. Therefore, processing recommendations based on data 

for pathogenic bacteria may not eliminate foodborne enteric viruses. A detailed 

understanding of the thermal inactivation behavior of NoV and its surrogates has 

significant importance for understanding the role that thermal processing can play in 

managing risk. This study will contribute to developing appropriate thermal processing 

procedures to manage NoV risk from frozen berries.  
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Table 5.1: Inactivation kinetics of bacteriophage MS2 in Raspberry and Strawberry 
Purees with modified sugar content 
 
Berry type °Brix Temperature 

(°C) 
D-value 
(min) 

z-value 
(°C) 

R2 

Raspberry 10 55 1.276 10.9 0.999 
  60 0.462   
  65 0.155    
 20 55 1.113 16.3 0.971 
  60 0.677   
  65 0.272    
 30 55 0.997 22.0 0.973 
  60 0.686   
  65 0.350    
Strawberry 10 55 1.524 10.1 0.998 
  60 0.447   
  65 0.155    
 20 55 1.115 16.4 0.975 
  60 0.670   
  65 0.273    
 30 55 0.970 22.2 0.975 
  60 0.667   
  65 0.345    
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Table 5.2: Categorical regression analysis  
 

Variable and Interaction type p-value 
Berry temperature 0.0023 
Brix 20 0.4373 
Brix 30 0.4209 
Temperature – Berry Type, strawberry 0.1873 
Temperature – Brix 20 0.4583 
Temperature – Brix 30 0.4049 
Berry Type, strawberry – Brix 20 0.1802 
Berry Type, strawberry – Brix 30 
Temperature – Berry Type, strawberry- Brix 20 
Temperature – Berry Type, strawberry – Brix 30 

0.5792 
0.5972 
0.5648 
 

 
 

  



   

 
 

129 

Table 5.3A. Summary of literature data on thermal inactivation of foodborne enteric 
viruses in foods 
 
Virus  Citation Sample  Temp 

(°C) 
D-value 
(min) 

SD  z-value 
(°C) 

Feline calicivirus 
(FCV) 

Bozkurt et al 2015 Turkey deli meat 50 9.94   

   56 3.03   
   60 0.82   
   65 0.43   
   72 0.14   
 Bozkurt et al 2014b Spinach 50 17.39  9.89 
   56 5.83   
   60 0.78   
   65 0.27   
   72 0.15   
 Bozkurt et al 2014 Mussels 50 5.20  11.39 
   56 3.33   
   60 0.77   
   65 0.33   
   72 0.07   
 Butot et al 2009 Basil 75 0.63   
  Chives  <0.63   
  Mint   <0.63   
  Parsley  0.68   
 Allowood et al 

2004 
Cabbage 4 1.50  176 

   25 1.00   
   37 1.00   
  Lettuce 4 1.50  176 
   25 1.00   
   37 1.00   

Murine Norovirus 
(MNV) 

Bartsch et al 2019 Strawberry puree  50 31.40 4.8 8.6 ± 0.6 

   56 5.90 0.7  
   63 2.20 0.3  
   72 0.10 0  
   80 0.00 0  
 Shao et al 2018 Oyster homogenate 49 28.17   
   54 14.41   
   58 4.60   
   63 1.82   
   67 0.86   
 Bozkurt et al 2015 Turkey deli meat 50 21.00 0.8  
   56 7.30 0.8  
   60 2.70 0.6  
   65 0.90 0.1  
   72 0.20 0  
 Bozkurt et al 2014 Mussels 50 20.19   
   56 6.12   
   60 2.64   
   65 0.41   
   72 0.18   
 Bozkurt et al 2014b Spinach 50 14.57   
   56 3.29   
   60 0.98   
   65 0.40   
   72 0.16   
 Hewitt et al 2009 Milk 63 0.70   
   72 0.50   
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 Baert et al 2008 Spinach 80 0.74   
  Raspberry puree (9.2 

Brix) 
65 0.44   

Poliovirus Strazynski et al 
2002 

Milk 72 0.44   

Tulane virus  Shao et al 2018 Oyster homogenate 49 18.18   
   54 8.64   
   58 3.14   
   63 1.56   
 Bartsch et al 2019 

(PA)  
Strawberry puree  50 23.20 2.6  

   56 5.40 0.3  
   63 0.70 0  
   72 0.10 0  
   80 0.00 0  
 Bartsch et al 2019 

(PCR)  
Strawberry puree  50 126.30 18.8  

   56 19.50 2.6  
   63 4.60 0.6  
   72 0.20 0  
   80 0.00 0  
 Ailavadi et al 2019 Spinach 50 7.94 0.21 10.74 
   54 4.09 0.04  
   58 1.43 0.02  

Hepatitis A virus 
(HAV) 

Bozkurt et al 2015 Spinach 50 34.40  13.92 

   56 8.43   
   60 4.55   
   65 2.30   
   72 0.91   
 Bozkurt et al 2015 Turkey deli meat 50 42.08   
   56 20.62   
   60 5.91   
   65 2.27   
   72 1.01   
 Bozkurt et al 2014 Mussels 50 54.17  12.97 
   56 9.32   
   60 3.25   
   65 2.16   
   72 1.07   
 Butot et al 2009 Basil 75 1.34   
  Chives  <0.83   
  Mint   1.46   
  Parsley  1.21   
  Basil 95 <0.83   
  Chives  <0.83   
  Mint   <0.83   
  Parsley  1.03   
 Hewitt et al 2009 Milk 63 1.10   
   72 <0.3   
 Deboosere et al 

2004 
Strawberry mash (28 
Brix) 

85 0.96   

  Strawberry mash (52 
Brix) 

80 4.98   

  Strawberry mash (52 
Brix) 

85 8.94   

 Bidawid et al 2000 Milk 85 0.01   
  1% fat milk 71 1.64   
  3.5% fat milk 71 2.08   
  18% fat milk/cream 71 3.16   
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Human Norovirus 
GI 

Butot et al 2009 Basil 75 5.20   

  Chives  <0.83   
  Mint   2.57   
  Parsley  1.56   
  Basil 95 4.90   
  Chives  <0.83   
  Mint   <0.83   
  Parsley  1.58   

Human Norovirus 
GII 

Bartsch et al 2019 Strawberry puree  50 584.10 189.5 6.1 ± 0.1 

   56 59.80 8.1  
   63 8.00 1  
   72 0.60 0.2  
   80 0.00 0  
 Croci et al 2012  Mussels  60 25.00   
   80 4.84   
 Butot et al 2009 Basil 75 1.71   
  Chives  1.85   
  Mint   1.58   
  Parsley  1.64   
  Basil 95 1.55   
  Chives  1.08   
  Mint   <0.83   
  Parsley  0.89   
 Hewitt et al 2006 Mussels 100 1.30   
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Table 5.3B. Summary of literature data on thermal inactivation of foodborne enteric 
viruses in cell culture media 
 
Virus  Citation Temp (°C) D-value (min) SD  z-value (°C) 
Feline calicivirus (FCV-F9) Bozkurt et al 2014 50 19.95  10.97 

  56 6.37   
  60 0.94   

  65 0.72   
  72 0.21   

 Bozkurt et al 2013 50 20.23  9.29 
  56 6.36   

  60 0.56   
  65 0.32   

  72 0.11   

 Gibson et al 2011 37 599  14.01 

  50 50.6   
  60 14.1   

 Cannon et al 2006 56 6.72  9.46 
  63 0.41   

  72 0.12   

 Duizer et al 2004 37 480  9.87 

  56 2.7   
  71.3 0.17   

 Doultree et al 1999 56 8   

  70 0.49   
  100 0.13   

Murine Norovirus (MNV) Bozkurt et al 2014 50 36.28  10.37 
  56 3.74   

  60 1.09   
  65 0.77   

  72 0.25   

 Bozkurt et al 2013 50 34.49  9.31 

  56 3.65   
  60 0.57   

  65 0.3   
  72 0.15   

 Hirneisen et al 2013 50 2.47  22.83 
  55 1.18   

  60 0.64   
  65 0.56   

 Hewitt et al 2009 63 0.9   
  72 <0.30   

 Cannon et al 2006 56 3.47  12.23 
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  63 0.44   

  72 0.17   

Sapovirus (SaV) Wang et al 2012  56 12.6   

Hepatitis A virus (HAV) Bozkurt et al 2014 50 56.22  12.51 
  56 8.4   

  60 2.67   
  65 1.73   

  72 0.88   

 Cappelozza et al 2012 50 56.22   

  60 2.19   
  70 1.09   

 Gibson et al 2011 50 385  9.99 
  60 74.6   

  70 3.84   

 Hewitt et al 2009 63 0.6   

  72 <0.30   

Tulane Virus (TV) Ailavadi et al 2019 52 4.59 0.05 9.09 
  54 2.91 0.05  

  56 1.74 0.07  
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6.1 Abstract 
  

Human norovirus is the most common causative agent of foodborne illness in the 

United States. Frozen berries have been repeatedly linked to acute gastroenteritis caused 

by norovirus. Many guidelines recommend that frozen berries be microwaved for at least 

2 min, but it is unclear if this thermal treatment is effective at inactivating human 

norovirus. Epidemiological investigations have recognized improper handling and 

heating prior to consumption as a common consumer practice that has led to illness. The 

objective of this study was to assess the effect of microwave heating at varying power 

levels in the survival of bacteriophage MS2, when inoculated in frozen strawberries. D- 

and z-values collected previously were used to predict the effect of microwave heating in 

a variety of scenarios. Bacteriophage MS2, a norovirus surrogate, was inoculated into 

frozen strawberries with a starting concentration of approximately 10 log PFU/g. Samples 

were heated in a 1,300-Watt research microwave oven at power levels ranging from 30-

100% (full power) to determine the inactivation of the surrogate organism. Temperatures 

at the surface of berries were monitored during heating, using fiberoptic thermometry. 

Our findings indicate that microwave power levels and heating times significantly affect 

final berry temperatures reached and estimated reduction in the concentration of MS2. 

Following heat treatment of 60 s for 3 berries, log reductions of 1.1 ± 0.4, 1.5 ± 0.5, 3.1 ± 

0.1 and 3.8 ± 0.2 log PFU/g were observed for 30, 50, 70 and 100% microwave power 

levels, respectively. These finding will also be useful in future quantitative microbial risk 

assessments when predicting the effect of microwave heating of berries in the home or 

foodservice. 
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6.2 Introduction 
  

Norovirus (NoV) is the leading cause of acute gastroenteritis worldwide, causing 

approximately 685 million cases annually (5). NoV outbreaks throughout the United 

States (U.S.) and Europe have implicated frozen berries as transmission vehicles over the 

last decade. Frozen berries may be consumed in a frozen or thawed state without 

subsequent heating which would reduce NoV risk. The largest NoV outbreak on record 

occurred in 2012 in Germany, where over 11,000 people fell ill after consuming 

contaminated frozen strawberries (2). Data from that same outbreak also indicated that 

those consuming heated berries were less likely to become ill. Following large outbreaks 

of NoV and hepatitis A virus (HAV) elsewhere around Europe, a regulation has been 

implemented requiring caterers to heat-treat frozen berries prior to serving and 

recommending that consumers also heat frozen berries prior to consumption (2, 9, 24). 

Microwave heating can be fast and efficient, but standardizing microwave oven cooking 

instructions has proven difficult due to the uneven heating profiles inherent in the 

technology (23). 

Microwave energy inactivates microorganisms as a function of the heat that is 

produced. Microwave heating is faster heating compared to conventional oven heating, 

but a major drawback can be the non-uniform product temperature distribution and 

resulting hot and cold spots that affect pathogen survival (13, 28). Stirring or turning the 

foods during microwave heating can help to reduce the effects of unbalanced heating and 

allow for more consistent microbial reduction. Food geometry, food location in the oven, 

oven wattage, oven age, and differing dielectric and thermal properties can significantly 

affect the temperatures reached in different sections of the product (20).  
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The U.S. Federal Communications Commission has designated two microwave 

frequencies for food processing and industrial microwave heating: 915 and 2,450 

megahertz (MHz). U.S. domestic microwave ovens operate at a frequency of 2,450 MHz 

and several different common wattages (600, 700, 800, 1,000 and 1,200) (7, 12). 

Microwave power levels are adjustable and determine the amount of microwave energy 

directed at the food product. An oven set at 50% power means the oven is producing 

microwaves 50% of the time and not producing microwaves the other 50% of the time 

(27).  

Cooking instructions should be validated for different oven wattages due to 

variations in heating profiles. The objective of this study was to assess the effect of 

microwave heating on the inactivation of the NoV surrogate, bacteriophage MS2 (MS2), 

and develop validated heating instructions for microwave heating of frozen strawberries.  

6.3 Materials and Methods   
 
Frozen Strawberry Product Characteristics 
 

Whole frozen strawberries were purchased from a local supermarket and stored in 

the freezer (-20°C) prior to use (Stop & Shop, Somerset, NJ). Each strawberry weighed 

approximately 15 g and was approximately ¾” in diameter.  

The pH and °Brix of samples were measured using a surface pH probe (Accumet 

Basic AB15 pH Meter, Fisher Scientific) and a °Brix refractometer (Fisherbrand 

Handheld Analog Brix/Sucrose Refractometer, Fisher Scientific), respectively. Thawed 

frozen strawberries were ~8 °Brix. The pH of thawed frozen strawberries was 3.65 ± 

0.03. The water activity of thawed frozen strawberries measured 0.972, using a water 

activity meter (Rotronic Instrument Corp., Hauppauge, NY). 
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Microbiology 
 

MS2 (ATTC 15597-B1) and E. coli C3000 (ATCC 15597) were obtained from 

American Type Culture Collection (Manassas, VA). MS2 was propagated using E. coli 

C3000 as a host on tryptic soy agar (TSA) plates using the double agar overlay method 

(Difco, Becton Dickinson, Sparks, MD) (18). MS2 stocks were prepared on the cell 

lawns of E. coli C3000 by a method described by the U.S. Environmental Protection 

Agency method 1601 (8). Briefly, 0.1 ml of overnight E. coli C3000 culture was added to 

5 ml of molten TSB soft agar along with 0.1 ml of MS2 (~11 log PFU/ml). The 

inoculated culture was spread on the surface of a TSA plate and incubated overnight at 

37°C. The MS2 phage was recovered by scraping the top of the plate (soft agar layer) and 

placing it in TSB. The MS2 phage in TSB was separated from the host cells by 

centrifugation (5,000 x g, 4°C for 25 min), followed by filtration of the supernatant 

through a 0.45-µm pore-size filter (Fisher) and stored at 4°C prior to use.  

Inoculation procedures 
 

Whole frozen strawberries (3 or 5) were removed from the freezer and placed in a 

sterile plastic dish and one ml of the virus stock solution was spot inoculated on the 3 or 5 

strawberries, to obtain a concentration of approximately 10 log PFU/g of strawberry. The 

inoculated frozen berries were placed at the center of the microwave carousel and heated 

for the selected times (15s - 300s) and power levels (30 - 100%) as shown in Table 1. 

Product temperatures were initially determined by placing two fiber optic probes at the 

berry surface and berry center.  

Microwave oven 
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A Panasonic Model NNS760WA with 1300W of nominal power (Panasonic 

North America, Secaucus, New Jersey) was used in this study. The FISOCommander 

OSR System ® (FISO Technologies, Quebec, Canada) including fiber optic sensors, and 

the FISOCommander Microwave Workstation Edition ® (Fiso Technologies, Quebec, 

Canada) software were used to monitor the temperature of the frozen strawberry 

throughout microwave heating. Probes were placed to record surface temperatures since 

it was the surface of the frozen whole strawberries that was inoculated with MS2. Surface 

temperatures were recorded until frozen berry thawed such that the fiber optic probe was 

dislodged due to melting of the berries. Probes were also used to record internal berry 

temperature. 

Heating instructions specified on the packaged, whole frozen strawberries stated: 

“Place desired amount of frozen fruit into a 1.5 quart microwave-safe dish and cover. 

Defrost on defrost setting 1 to 2 minutes, or until thawed. Do not thaw completely.” 

These heating instructions, as well as those collected from a variety of local supermarkets 

(Table 2), were used as a baseline for time and temperature conditions to validate. 

Survival of bacteriophage MS2 after microwave heating 
 

Samples were transferred to a sterile filter bag with 100 ml phosphate buffered 

saline (PBS) immediately after microwaving, and then homogenized, serially diluted and 

plated on an E. coli lawn on TSA to enumerate PFU. Data were recorded until the 

detection limit (2 log PFU/g) was reached. Frozen strawberries inoculated with 1 ml virus 

stock solution and held at room temperature were a positive control and used to calculate 

the concentration before microwaving. Uninoculated, unheated frozen strawberries were 

a negative control to ensure MS2 was not present on uninoculated berries.  
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6.4 Integrated Lethality Analysis  
 

The z (10.1°C) and D-values (D55 = 1.52 min) from the water bath study using 

fruit purées and the microwave berry surface temperatures were used to estimate 

integrated lethalities from microwaving.  

6.5 Results 
 
Microwave heating profiles 
 

The heating profiles seen in Figure 1 are representative of the surface 

temperatures recorded. The temperature increased quicker when 3 berries were heated vs. 

5 berries, regardless of microwave power level. The initial surface temperatures of whole 

frozen strawberries prior to heat treatment was -2.3 ± 1.9°C. Inoculated berry surface 

temperature was higher than freezer temperature (-20°C), since the MS2 stock was at 4°C 

before inoculation. 

Survival of bacteriophage MS2 after microwave heating  
 

Uninoculated, unheated frozen strawberries showed no detectable MS2 as 

expected. Frozen strawberries inoculated with 1 ml virus stock solution and held at room 

temperature was used to calculate virus concentration prior to microwaving, and was 8.9 

± 0.5 PFU/g berry. The results across all power levels (30-100%) showed greater log 

reduction at increased power levels, and when 3 berries were heated versus 5 berries (Fig 

2). When 3 and 5 berries were heated at 30% power level for 240 s (4 min), log 

reductions of 5.2 ± 0.3 and 4.1 ± 0.1 PFU/g were observed, respectively. When 3 and 5 

berries were heated at 50% power level for 180 s (3 min), log reductions of 5.2 ± 0.1 and 

5.1 ± 0.4 PFU/g were observed, respectively. At 70% power level for 105 s (1.75 min), 

log reductions of 5.4 ± 0.3 and 5.1 ± 0.1 PFU/g were observed for 3 and 5 strawberries, 
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respectively. Lastly, when 3 and 5 strawberries were heated at the highest microwave 

power level, 100%, for 90 s (1.5 min), log reductions of 5.7 ± 0.5 and 4.7 ± 0.4 PFU/g 

were observed, respectively.  

6.6 Discussion 
 

The heating instructions on frozen strawberry packages we sampled suggest a 

serving size of ~1 cup (Table 2). It is important to take into consideration the number of 

berries consumers may be microwaving at one time. Vilayannur et al. (1998) reported 

that the volume of the product affects microwave heating, with higher volumes resulting 

in longer heating times compared to smaller volume products to reach target temperatures 

(29), and these finding are consistent with ours which show slower heating of five berries 

compared to three berries. 

Majority of microwave heating instructions for frozen strawberries advise using 

low power or the defrost setting and range from 60 s (1 min) to 300 s (5 min) depending 

on the brand and amount of strawberries being heated (Table 2). These heating 

instructions are typically intended to produce thawed fruit of acceptable quality. The 

increase in outbreaks and recalls linked to NoV and HAV on frozen fruit show it may 

also be necessary to validate these heating instructions for food safety. Published studies 

on the effect of microwave heating to inactivate pathogens on foods has typically been 

conducted using a variety of pathogenic bacteria including Salmonella spp., Listeria spp. 

and E. coli O157:H7 (1, 14-17, 21, 22, 25, 26, 30-32). Published results have shown both 

log-linear and non-log-linear inactivation patterns. Pucciarelli et al. (2005) investigated 

the inactivation of Salmonella Enteritidis on microwaved raw poultry starting at a 

temperature of 25°C and concluded that bacteria are inactivated log-linearly with 
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microwave heating time (22). Another study using E. coli (ATCC 11775) in peptone 

water starting at 50°C found that microwave heating under a vacuum resulted in log-

linear inactivation with microwave heating time (31). A study looking the inactivation of 

Salmonella Typhimurium in salsa observed a non-log linear reduction with microwave 

heating time, where reduction rate increased dramatically with heating time (26).  

The information on microwave inactivation of viruses on foods is very limited. A 

study by Misbu et al. (1990) suggested that HAV can be inactivated by microwaving, 

following an outbreak of HAV in sandwiches where those ate sandwiches were not 

microwaved had nine times the chance of acquiring HAV as those that ate microwaved 

sandwiches (19). Another study found that microwaving reduced PV to below detection 

levels in infant milk (17). Many thermal inactivation studies have been conducted on 

NoV surrogates, including MNV, FCV and HAV in food products including blue 

mussels, turkey deli meat and spinach (3, 4, 10, 11), but none of these studies 

investigated inactivation kinetics in microwave ovens.  

Recent research has shown the complexities associated with modeling the thermal 

profile of even very simple matrices which approximate food during microwave heating 

(6). Our research reveals some of these complexities, and it is not surprising that the 

theoretical integrated lethalities we calculate using water bath derive D- and z-values for 

berry purée and limited thermal data from the surface of microwave berries do not match 

the experimentally measured MS2 survival during microwave heating. Until these 

complexities are understood and overcome, validation of microwave cooking directions 

will have to be done empirically on an experiment by experiment basis as we have done 

here.  
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Figure 6.1: Microwave heating profiles 
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Figure 6.1: Microwave heating profiles 
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Figure 6.2: Microwave inactivation of bacteriophage MS2 on frozen, whole strawberries  
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Figure 6.2: Microwave inactivation of bacteriophage MS2 on frozen, whole strawberries 
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Table 6.1: Experimental microwave heating parameters  
 Microwave Power Level (%) 
 30 50 70 100 

Heating Time 
(s) 

60 30 15 15 
120 60 30 30 
180 90 45 45 
240 120 60 60 
300 150 75 75 
 180 90 90 
 240 105 105 
  120 120 
  150  
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Table 6.2: Microwave package instructions for heating whole frozen strawberries 
 

Brand Power level Time Serving Size 
(1 cup = 140g) 

Heating Instructions 

Great Value 30% power  1 min 1 cup “Thaw desired amount at room 
temperature for approximately 30 
minutes, or thaw in microwave on 
defrost setting (30% power) for 1 
minute. “ 

Nature’s Promise Defrost  1-2 min 1 cup -* 
Cascadian Farm Defrost   4 min 1.25 cup “Do not microwave in bag. For a 1200 

watt microwave, heat quarter bag for 2 
minutes on defrost or half bag for 6 
minutes on defrost. For a 1000 watt 
microwave, heat quarter bag for 4 
minutes on defrost or half bag for 8 
minutes on defrost. For a 700 watt 
microwave, heat quarter bag for 6 
minutes on defrost or half bag for 10 
minutes on defrost. Microwave 
wattages vary; adjust defrost time for 
the wattage of your microwave. Do not 
leave microwave unattended.” 

Dole Defrost  1 min 1 cup  “…place in microwave dish and thaw 
on Defrost setting for 1 minute. Serve 
slightly frozen. Do not refreeze.” 

Stop & Shop Defrost  1-2 min 1 cup “Place desired amount of frozen fruit 
into a 1-1/2 quart microwave-safe dish 
and cover. Defrost on defrost setting 1 
to 2 minutes, or until thawed. Do not 
thaw completely.” 

Shoprite Defrost or low 2-3min 1 cup -* 
Wegmans Defrost (30% 

power)  
2-5min 1 cup  “Microwave (1100 Watt): Place ½ 

package or less of fruit in microwave 
safe dish and cover. Set to defrost (30% 
power) 2-5 minutes, stirring halfway 
through or until desired softness.”  

Woodstock Defrost 1 min 1 cup  “…thaw in a microwave on defrost 
setting for 1 minute. Serve while there 
are a few ice crystals on the fruit for a 
firmer texture.” 

* no other directions provided 
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7.1 Abstract 
 

Foodborne illness outbreaks have been increasingly linked to the consumption of 

fresh and frozen berries that were contaminated with pathogenic viruses, such as human 

norovirus (NoV). Contamination of berries is assumed to take place at harvest by the use 

of contaminated water for pesticide dilution, irrigation water source or by shedding berry 

pickers in the field. A quantitative microbial risk assessment simulation model was built 

to replicate the largest known NoV outbreak which sickened about 11,000 people over a 

3-week period. The outbreak occurred in Germany in 2012 when contaminated frozen 

strawberries were served at nearly 400 schools and daycare centers. The risk model 

explicitly assumed that all contamination would arise from NoV contamination of surface 

water used for pesticide dilution. Input data was collected from the published literature, 

observational studies and assumptions. The model starts with contamination of the berries 

in the field, and proceeds through transportation to processing facility, washing, 

sanitizing, freezing, frozen transport to cargo ship, transport view of cargo ship, transport 

to distribution center, frozen storage at the distribution center, transport to the catering 

facility, food service preparation and consumption, dose response, and predicted 

illnesses. A total of 21 scenarios were chosen to evaluate the impact of model parameters 

on the number of illness associated with NoV contamination of berries. Scenarios 

evaluated include the initial level of NoV in surface water, the effect of seasonality on the 

prevalence of NoV in surface water, the strength of the pesticide used, the volume of 

water used to dilute the pesticide, temperature during transportation to processing facility, 

washing and sanitizing conditions at processing facility and preparation (heat-treatment) 

of berries prior to consumption. Scenarios were compared via the Factor Sensitivity 
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technique where the logarithm of the ratio of mean illnesses was used to compare 

different assumptions. The input that had the greatest effect on increasing in the number 

of illnesses was a high NoV concentration in the water (8 log Genome Copies/L) when 

compared to the baseline scenario with resulting mean illnesses of 7,964 illnesses and ~2 

illnesses, respectively. This assumption about the concentration of virus in the pesticide 

makeup water was the only variable capable of producing an outbreak similar to that 

observed in Germany in 2012. Heat-treatment of the berries, use of a pesticide with 

strong antiviral effect, and assumption about the virus concentration in the pesticide 

make-up water had the largest impact on decreasing illnesses. 
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7.2 Introduction 
 

Norovirus (NoV) is the leading cause of foodborne disease worldwide, causing an 

estimated 685 million cases of acute gastroenteritis annually (31, 37, 54). Although most 

deaths occur in developing countries, NoV continues to be a significant burden to high-, 

middle- and low-income countries (11). NoV are transmitted primarily from person-to-

person via the fecal-oral route or from aerosolized vomit. The virus may also be 

transmitted indirectly through contaminated food, water, fomites and environmental 

surfaces. 

The average incubation period for NoV-associated gastroenteritis is 12 to 48 

hours and is typically followed by symptoms including nausea, vomiting and diarrhea 

with abdominal cramps. The average probability of infection for a single NoV particle 

was estimated to be near 50% (0.5), exceeding any other virus studied thus far (61). Viral 

load from an infected person has been shown to range from 108 to 1012 viral particles per 

gram of feces (5, 6, 61). Shedding of NoV can start in the pre-symptomatic phase as early 

as 3 to 14 hours before onset and those who are infected with NoV can continue to shed it 

in their feces for several months after initial infection (1, 6, 47). NoV stability in the 

environment is thought to be due to its lack of a viral envelope; it can survive freezing 

and heating, can survive for weeks on surfaces and is resistant to many common chemical 

disinfectants that are effective for bacteria (25, 36).  

The market for frozen berries has continued to succeed because of the availability 

to consume the product year-round (4), even though fresh and frozen berries have been 

linked to NoV and Hepatitis A virus (HAV) foodborne disease outbreaks around the 

world (12, 26, 34, 39, 43, 55, 57, 60). 
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The risk factors for contamination of berry fruits at primary production with NoV 

are not well documented in the published literature due to limited data. Suggested risk 

factors based on what is known for other pathogens associated with fresh produce include 

(1) environmental factors such as heavy rainfall that increase the transfer of NoV from 

sewage runoff to irrigation water sources or fields (2) use of sewage-contaminated 

agricultural water as irrigation water or for the application of agricultural chemicals such 

as pesticides and (3) poor food handlers health and hygiene or contaminated equipment at 

harvest or post-harvest (42, 60).  

Temperature is considered a major factor influencing virus persistence, although 

it is not considered an effective mitigation strategy for fresh berries because persistence 

of enteric viruses is higher at low temperatures and quality loss (e.g. decay) generally 

increases with an increase in temperature (53). Some berries undergo washing 

(strawberries, blueberries) prior to freezing, while more fragile berries (e.g. raspberries 

and blackberries) may not get washed as it can lower product quality. The presence of 

NoV in frozen berries has been linked to many outbreaks of gastroenteritis throughout the 

world, which clearly shows these viruses survive and remain infectious after freezing (12, 

33, 39, 43, 55). 

Quantitative microbial risk assessment (QMRA) is used to better understand and 

manage food safety risks. Models are developed to describe the transmission of 

pathogens over a specified food production chain. These models may cover the complete 

farm to fork pathway or only a portion of it. De Keuckelaere et al. (2015) analyzed 

published risk assessments that studied viruses, fresh produce, irrigation and wash water 

from food safety and water management perspectives (19). Several studies have 
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presented quantitative risk assessments showing the impact of contaminated water on the 

spread of NoV on leafy greens and other crops consumed raw (10, 40, 45). Other risk 

assessments and exposure assessments have focused on the spread of NoV by ill food 

handlers, highlighting the importance of hand hygiene measures in foodservice facilities 

(21, 23, 28, 44, 46). A quantitative farm-to-fork exposure model was developed 

describing the spread of NoV and Hepatitis A during the harvesting and processing of 

leafy greens and berry fruits (15).  

Here we consider the source of the contamination, NoV inactivation and survival 

on berries, as well as processing at the facilities and preparation of the berries prior to 

consumption. Our QMRA is designed to simulate the largest known outbreak arising 

from NoV-contaminated berries, which occurred in 2012 in Germany and was linked to 

frozen strawberries sourced from China. 

7.3 Materials and methods  

Overview of the development of the risk model.  

Data from the peer reviewed literature regarding NoV behavior in fresh and 

frozen fruit were used to develop the model. The model parameters and their 

corresponding probability distributions are described in Table 1. Inputs were assumed to 

be independent, although some inputs may have dependencies (e.g. strength of pesticide 

diluted in a specific volume of water). The risk model assumes that contamination of 

strawberries strictly arises from NoV contamination in the surface water.  Other sources 

of contamination will be explored in subsequent research. 

Contamination source.  
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Berries are susceptible to contamination with NoV through spraying with 

pesticides mixed with contaminated water. Sources of water used for agriculture 

applications can be ranked by risk of microbiological contamination and are in order of 

increasing risk: rain water, ground water from wells, surface water, and raw or 

inadequately treated wastewater (35). The main sources of NoV in surface and 

groundwater are sewage discharge and human fecal waste. Pesticides are often diluted in 

different volumes of water depending on the crop. Although NoV does not replicate in 

water, it can remain infectious in water for prolonged periods of time. Seitz et al. (2011) 

found through human challenge studies that NoV remained infectious in water for at least 

61 days (56).  

We assumed the use of drip irrigation in our model. Drip irrigation itself is an 

unlikely point of microbial contamination because water is applied to the soil or directly 

at the roots of the plant, far from the edible fruit. Drip irrigation is a preferred method for 

berries since berries are particularly susceptible to mold growth which is likely to occur if 

overhead irrigation is used (28). Limited information on NoV adherence to and 

persistence on strawberries exists, and therefore were not considered in this model. 

Our model assumes that all of the pesticide applied adheres to the edible fruit, 

which implied no run-off (or pesticide drift). Pesticide drift occurs in many crops (22), 

including strawberries, and is complex and multi-faceted (14). Given the complexity of 

modeling this aspect of agricultural production, we have chosen the simplifying 

assumption above. 

Our model also assumes that contaminated the water is applied immediately 

before harvest. Many pesticides have a prescribed pre-harvest interval, which specifies 
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the length of time after application that is required prior to harvest.  During this pre-

harvest interval any virus particles present on the berries would be subject to 

environmental stresses, including exposure to sunlight and drying, and thus would lose 

viability. Unfortunately, we have no knowledge of the pre-harvest interval period 

between pesticide treatment and picking of strawberries in China.  Information on pre-

harvest interval for strawberries in the US (38) shows that pre-harvest intervals of 0 to 1 

days are quite common for many of the pesticides used on strawberries. Given the lack of 

the published data on pre-harvest intervals in China, common short pre-harvest intervals 

in the US, and minimal declines observed over these short intervals, we have chosen to 

make the simplifying assumption that no reduction in virus population occurs pre-harvest. 

Effects of washing and chlorine application.  

Data from Butot et al. (2008) and Predmore et al. (2011) on the effect of washing 

and sanitizing berries prior to freezing were extracted from the scientific literature and 

analyzed for inclusion in the model (17, 51). Wash water as a source of contamination 

was not considered in this model. Some berries (e.g. strawberries) are washed with water 

before freezing, but more fragile fruits (e.g. raspberries) are not (59). Washing fruits or 

vegetables with water alone generally yields no more than a 2-log reduction in microbial 

concentration (13). Excessive chlorine concentrations must be avoided as they can affect 

sensory quality (49). It has been shown that prolonged treatment of berries with 

chlorinated water did not result in a significant increase in the effectiveness, although 

various surrogates have been shown to be affected differently (20, 24, 48).  

Time and temperature during transportation and storage.  
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Strawberries were assumed to be transported on a refrigerated truck after harvest 

to a processing facility. The baseline simulation used 4 °C as the temperature for 

transporting strawberries to the processing facility, as literature data showed that the fruit 

quality is not adversely affected at this temperature (58). Data on NoV survival and 

inactivation at various storage temperatures was used to determine the concentration of 

NoV on strawberries over time (18, 29, 32). The simulation assumed that once the 

strawberries arrived at the processing facility, they were exposed to washing and 

sanitizing steps, followed by individually quick freezing (IQF). The frozen strawberries 

were transported by cargo ship, assuming a transportation time of 25-30 days from the 

port in China to the port in Germany (3). 

Process of freezing berries.  

Although all processing steps are important in maintaining the quality of berries, 

the freezing process in the most critical. The primary goal in freezing fruit is to maintain 

the original characteristic product quality. This is best achieved by freezing rapidly and 

careful handling before and after freezing. If freezing is slow, large ice crystals will form 

and can break down food structures. This results in high drip losses and a deterioration in 

product quality. Several factors that affect freezing rates include the type of freezing 

equipment used, initial berry temperature and product characteristics (e.g. size, shape and 

structure). Individually quick freezing (IQF) is one of the quickest ways of freezing small 

fruits. Advantages of the IQF process include short freezing times, efficient heat transfer 

and less product dehydration (27). Freezing has no significant effect on the infectivity of 

NoV, and virus particles appear to retain their structural and genome integrity after 
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freezing and during multiple freeze-thaw cycles (52). Data from Butot et al. (2008) were 

used to determine the log reduction of NoV during frozen storage (17). 

Preparation at catering facility and consumption.   

The serving size was selected after an internet search of similar recipes and it was 

decided that ~4 strawberries per serving of strawberry compote was an appropriate 

serving size.  While we could have used a more complex assumption regarding serving 

size, since our specific objective was to simulate the 2012 German outbreak (rather than 

for example all domestically consumed frozen strawberries in the United States), this 

simplified assumption suits our purpose. Should a future risk assessment need to address 

more complex scenarios, food consumption databases could be used to estimate variable 

serving sizes. 

The baseline model assumed that strawberries were not heated prior to 

consumption. Different heat treatment scenarios were considered based on data available 

in the literature. The effect of mild heat treatment (30s at 65°C) was simulated with a 

normal distribution with mean log reduction and standard deviation of 1.86 ± 0.32 (9). 

High heat treatment (15s at 75°C) resulted in a mean log reduction and standard deviation 

of 2.81 ± 0.39 (8, 9). NoV inactivation data was based on NoV surrogates including 

feline calicivirus F9 (FCV) and the murine norovirus 1 (MNV-1).  

Dose-response modeling.   

Dose-response models mathematically link exposure to probability of infection 

and/or illness, where exposure represents the dose ingested (50). Illness (i.e. symptoms of 

vomiting and/or diarrhea) is the endpoint of this risk assessment. An existing dose 

response model for the probability of illness among infected subjects was used with 
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parameters η and r as given by Teunis et al. (2008) (61). The risk of illness is considering 

the dose as the sum of dose from GI and GII and the parameters, η and r, were assumed 

to be independent of the NoV genogroup (GI or GII), as well as secretor status (50, 62). 

The values for η and r in this model are 2.55 x 10-3 and 0.086, respectively Equation 1:  

P (ill/dose, η, r, inf) = 1- (1 + η x dose) –r    (1) 

Simulation modeling.  

Extracted data and user inputs were entered into an Excel (Microsoft, Redmond, 

WA) spreadsheet as described in Table 1, discussed in detail in the results and discussion 

section below. The Excel add-in @Risk (Palisade Corporation) was used to perform 

Monte Carlo simulations of 100,000 iterations for each scenario evaluated. Scenarios 

were constructed to reflect the best estimates of the number of servings (~100,000) 

believed to be involved in the outbreak. The baseline simulation condition is shown in 

detail in Table 1, but briefly: The concentration of NoV in water was modeled as a 

uniform distribution from 1.27 to 4.84 log genome copies (GC)/L.  The volume of liquid 

used to apply pesticides was 200 L/ha. The seasonality for prevalence of NoV in surface 

water was represented by a triangular distribution assuming a minimum of 12%, a most 

likely value of 12% and a maximum value of 95% per L.  The effect of pesticide on 

reduction in NoV concentration was described by a lognormal distribution with mean 

0.35 and standard deviation of 0.56 log GC/L where the resulting is shifted by -0.21. The 

truck temperature for transport from the field to the freezing location was assumed to by 

4 °C, with no change in NoV concentration at that temperature. We assumed that the 

strawberries were washed in cool (18 °C) water resulting in a reduction of NoV 

concentration following a normal distribution (mean 0.67, standard deviation 0.33) log 
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GC NoV. We also assumed the strawberries were sanitized using 200 ppm chlorine, 

resulting in a reduction of NoV concentration following a normal distribution (mean 1.35, 

standard deviation 0.24) log GC NoV.  The baseline assumed no heating step during 

foodservice preparation resulting in no change in NoV concentration prior to 

consumption. 

Sensitivity analysis.  

A total of 21 scenarios were chosen to evaluate the impact of model parameters 

on the number of illness associated with NoV contamination of strawberries, and these 

are shown in Table 2. Scenarios evaluated include the initial level of NoV in surface 

water, the effect of seasonality on the prevalence of NoV in surface water, the strength of 

the pesticide used, the volume of water used to dilute the pesticide, temperature during 

transportation to processing facility, washing and sanitizing conditions at processing 

facility and preparation (heat-treatment) of strawberries prior to consumption. Each 

scenario was selected to explore variations around each of the 8 parameter baselines to 

test the individual impact of a given parameter on the change in the number of illnesses. 

Equation 2, adapted from Zwietering et al. (2000), represents the scenario factor 

sensitivity (FS), which is the order of magnitude of the importance of each scenario 

relative to the baseline (64). High factor sensitivity values equate to a high sensitivity to 

the variations and reveal what factors have greater effects on the number of illnesses (N).  

FSk = log	 &'()*+,*-,./)
&'(1*234,/3)

    (2) 

7.4 Results and Discussion 
  

As noted above, Table 1 summarizes the Excel spreadsheet used for risk 

calculations and explains how the variables are linked in the risk assessment. The first 
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column represents the spreadsheet cell designation for the variable on that line of the 

table. The next column is a description of the variable in words, with bold headers 

describing each section of the risk assessment. The third column is either a number, 

formula or an @Risk formula representing the value of a given cell. The fourth column 

shows the units of the variable in the third column. The last column represents the source 

of the information used to determine the value of the variable. The source can be either 

user input, from the published literature or calculated from other cells in the spreadsheet.  

 The first section of Table 1 (In field) represents variables describing the 

environmental factors that influence NoV contamination on strawberries in the field. 

Information involving conditions strawberries were exposed to during the outbreak in 

Germany from strawberries harvested in China is limited (39). Because much of this 

information is unknown, important variables were included from the published literature 

or as user input. Key in-field variables include starting concentration and prevalence of 

NoV in surface water, fraction of positive water liters used for pesticide delivery and the 

ability of pesticides to reduce NoV concentration in the pesticide water. The NoV 

concentration in water is expressed as a uniform distribution (30) and the prevalence of 

NoV in the water is expressed as a triangular distribution based on the published 

literature (7). Surface water (river water, lake water, canal water, etc.) is typically used 

for diluting the pesticide that will be sprayed onto strawberry plants (16, 28, 41). The 

effect of pesticides on the reduction in NoV from water used to dilute pesticides is 

expressed as a log normal distribution based on data extracted from Verhaelen et al. 

(2013) (30). Various pesticide strengths were evaluated in the sensitivity analysis. A 

binomial distribution was used to determine how many liters were positive which was 
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used to calculate the effective concentration per liter, considering positive and negative 

liters. The level of NoV on the strawberries at harvest was determined by calculation of 

the effective concentration per liter, considering positive and negative liters multiplied by 

the volume of water sprayed on strawberries.  

The next section (Transportation to processing facility) presents data extracted 

from Kurdziel et al. (2001), Verhaelen et al. (2012) and Dawson et al. (2005) to estimate 

the effect of temperature on the persistence and survival of NoV during transportation to 

the facility. Relevant data extracted include mean log reduction and the standard 

deviation of the log reduction at 3 different temperatures (4, 10 and 21°C). Refrigeration 

temperature (4°C) was used as the baseline with no log reduction of NoV observed (18, 

32, 63).  

 The simulation assumes strawberries were washed and sanitized after receipt at 

the processing plant. Data were extracted from the peer reviewed literature (17) to 

estimate the degree to which washing reduces NoV contamination on strawberries (Table 

1, Washing log reduction). Although the primary purpose of the washing step is to 

remove dirt and debris rather than achieve a microbial reduction, reductions in NoV 

concentration has been shown when berries were washed with warm or cold water (17). 

The simulation assumed that sanitizer was applied to the strawberries after washing. The 

baseline used for spray sanitizer data on berries was a 200 ppm chlorine solution (Table 

1, Sanitizer log reduction). Chlorine concentrations for produce and wash water are 

generally £ 200 ppm (13).  The variables in this section, as well as the washing section, 

express the variability in log reduction by using the RiskNormal function using the mean 

log reduction and standard deviation from the published literature (17). Scenarios with 
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varying sanitizers (5ppm ClO2 and 10ppm ClO2) using the RiskNormal function, as well 

as no application of sanitizers, were considered (Table 2). The washed and sanitized 

strawberries undergo the IQF method (Table 1, Freezing process). Although commercial 

IQF is generally thought to cause little change in the concentration of microorganisms, no 

peer reviewed data on survival of NoV during the IQF process was found. A single non-

food related study that examined the effect of freeze-thaw cycles on NoV titers found that 

both capsid integrity and viral RNA titers remained stable through repeated freeze/thaw 

cycles (52), so we assumed that freezing had no effect on NoV concentration. 

The next three sections of Table 1 (Truck to cargo ship, Transport via cargo ship 

and Transport to distribution center) model the expected change in NoV level on 

strawberries during these three phases of frozen storage. Data for log reduction after 90 

days frozen storage was extracted and calculated from Butot et al. (2008) using a normal 

distribution (mean 0.4, standard deviation 0.18), and this was adjusted to estimate the log 

reduction per day. A uniform distribution was used to model the variability in each leg of 

transport. Depending on the transportation step, the length of storage was either 

determined by data from the literature or user input. Ranges of 0.5 to 2 days during 

transport from China distribution center to cargo ship, 25 to 30 days on cargo ship from 

China to Germany (3) and 0.5 to 5 days on a truck from the cargo ship to distribution 

center in Germany, were selected from uniform distributions.  

The Frozen storage at distribution center section estimates the time and 

corresponding log reduction during storage at the German frozen food distribution center. 

The time at the distribution center was expressed as a uniform distribution ranging from 

0.5 to 90 days. The simulation then assumed the product was transported on a truck, 
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frozen, to the catering facility. The time for transport from the frozen food distribution 

center to the catering facility was expressed as a uniform distribution ranging from 0.5 to 

5 days.  All the frozen transport time variables, except for the transport by cargo ship are 

designated as user inputs, as no good source for these data were readily available.  Since 

frozen strawberries can maintain their quality for 14-18 months (2), the values selected 

here may underestimate the declines in NoV populations observed during frozen storage.  

The next section of Table 1 (Foodservice preparation and consumption) represents 

the expected change in NoV level on frozen strawberries depending upon preparation 

method. Strawberry compote made with unheated or cold frozen strawberries was the 

food type associated with the large NoV outbreak in Germany (12, 39). German kitchens 

not associated with the outbreak almost exclusively served the strawberries after 

“heating”, but the temperatures reached during that heating processes were unknown. Our 

baseline model assumes no heat step was applied to the strawberries prior to serving, and 

thus no thermal inactivation of NoV. Two different preparation steps were used to 

represent alternative scenarios where frozen berries were heated prior to consumption: 

mild heat treatment for 30s at 65°C by using the @Risk function RiskNormal (1.54, 0.32) 

and high heat treatment for 15s at 75°C with a log reduction of RiskNormal (2.81, 0.39). 

The next section of Table 1 (Serving and dose response) includes the serving size 

of the number of strawberries consumed per dessert, calculations that convert the log 

genome copies (GC) per strawberry to the dose per serving, and the parameters of the 

dose-response model from Teunis et al. (2008). Based on the dessert implicated in the 

outbreak (strawberry compote) and extensive search of strawberry compote recipes for 

one serving, we assumed that 4 strawberries constituted a serving (39). The model output 
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was the probability of illness, which was used to calculate the number of illnesses. The 

probability of illness given the dose from the previous section was combined with the 

number of servings used per iteration in a binomial distribution to predict the number of 

illnesses arising from those servings.  

Figure 1 shows a tornado plot representing a sensitivity analysis of the risk 

assessment. Since risk assessment models can be complex and may have intricate 

interactions between various inputs, it may be difficult to determine which model 

parameters contribute the most to variation in the output. Although there are many 

different approaches to sensitivity analysis, we used the method of Zwietering et al. 

(2000) because the resulting Factor Sensitivity values distinctly show the sensitivity to 

individual variants (64). Figure 1 shows the log relative change in mean number of 

illnesses from alternative scenarios compared to the baseline scenario from 100,000 

iterations. The scenario that had the greatest impact on the number of illnesses relative to 

the baseline was the assumption of a high level of NoV present in the water (8 log GC/L). 

This resulted in a mean of 7,694 illnesses (Table 2), whereas the baseline risk model 

resulted in a mean of only 1.89 illnesses.  The top bar for Figure 1 shows a factor 

sensitivity of 3.6 calculated from these two values using equation 2: log (7,694/1.89). 

Mild- and high-heat treatment to strawberries had a significant reduction on the illnesses 

relative to the baseline, with 0.02 mean illnesses and 0 mean illnesses, respectively. Since 

it was not possible to calculate log (0/1.89), it was assumed that the minimum number of 

possible illnesses occurred in the high-heat treatment scenario (i.e. 1 illness in 100,000 

iterations, log(0.00001/1.89) or a factor sensitivity of -5.3). Use of a pesticide with a 

strong antiviral effect also impacted the probability of illnesses (0.02 mean illnesses, for a 
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factor sensitivity of 1.9). Relative to the other scenarios, seasonality of NoV prevalence 

in water and the truck temperature had the least effect on the outcome of illnesses, with 

factor sensitivities ranging from -0.5 to 0.2. Other key scenarios evaluated the volume of 

water used to dilute pesticides. Pesticides sprayed using large volumes of water may lead 

to a greater risk of viral contamination of the crop because the probability of 

contaminated water coming in contact with crops is higher and the concentration of 

pesticides is lower due to dilution, resulting in potentially greater viral persistence (30). 

The baseline model assumed a volume of 200 L/ha was applied to the strawberries, and 

the sensitivity analysis showed that illnesses were 10-fold lower and higher (factor 

sensitivities of -1 and 1) vs. the baseline when 20 L/ha and 2,000 L/ha, respectively were 

used.   

Figure 2 compares the distribution of predicted illnesses over the 100,000 

iterations for the baseline and worst case (8 log GC/L in the surface water) scenarios, 

using both illnesses and log(illnesses). Figure 2a shows that for the baseline scenario 

most iterations (~70%) result in no illnesses, the average number of illnesses is ~2, and 

the distribution is highly skewed with one iteration resulting in over 400 illnesses. Figure 

2b shows a much different picture for the 8 log GC/L in the surface water scenario. In 

this case the most frequent result is still no illnesses, but many more scenarios result in 

illness, with much less skewed distribution, mean illnesses over 7,000 and one scenario 

resulting in almost 40,000 illnesses. Figure 2c shows the baseline scenario on a 

log(illness) scale. Most iterations (~70%) result in no illnesses, but because log(0) is 

undefined, those iterations are indicated as such. Figure 2c makes it clear that when 

illnesses occur, the most common number of illnesses is 1, shown as 0 on the log illness 
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scale, with frequency declining steadily. Figure 2d shows a similar log(illness) plot for 

the high illness scenario (8 log GC/L in the surface water). As with Figure 2b, the most 

common result is no illnesses.  Figure 2d makes it clear that (as also seen in Figure 2c) 

that when illnesses occur, the most common number of illnesses is also 1 (shown as 0 on 

the log illness scale). The frequency of various illness rate declines and remains fairly 

constant from about 1.5 log (31 illnesses) to 3 log (1,000 illnesses), when the frequency 

increases to around the mean of 3.5 log, followed by a steady decline to the maximum 

number of illnesses (~4.5 log). 

Figure 3 shows a comparison of the distribution of simulated virus particles per 

serving from 100,000 iterations of quantitative microbial risk assessment for Norovirus in 

frozen strawberries. The y-axis represents the logarithm of the relative frequency of 

observation of specific virus particle concentrations. A logarithmic transformation is used 

on this axis to better visualize frequency of low probability events, where zero represents 

100% (i.e. all iterations of the simulation), -1 represents 10%, -2 represents 1%, etc. 

Panel (A) baseline scenario shows the baseline distribution of virus particles. As with all 

of the other scenarios, the most frequent prediction was for a serving to contain zero virus 

particles. The next most common prediction was for a serving to contain a single virus 

particle in about 4% of the iterations.  as the predicted number of virus particles 

increases, the predicted frequency decreases.  The highest predicted concentration of 

virus particles per serving in the baseline scenario was 17. Since that figure represents 

100,000 iterations, those predictions showing a frequency of -5 represent a single 

iteration of the simulation. Panel (B) represents the baseline conditions plus high heat 

(15s at 75 °C) use during food service preparation. The highest number of virus particles 
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predicted per serving in this scenario was only two, which occurred in less than 10 

iterations of the simulation. Panel (C) shows the results from the scenario where highly 

contaminated (8 Log GC/L) water was used for pesticide application, and dramatically 

higher virus particle concentrations for serving were predicted, with the highest 

concentrations in excess of 80,000 virus particles. The pattern of contamination is 

however consistent with those shown in panel A and B, where the most frequent 

simulation result is still a serving containing zero virus particles. Panel (D) shows a 

scenario where the interaction between the use of highly contaminated (8 Log GC/L) 

water plus high heat (15 s at 75 °C) use during food service preparation is presented. The 

most contaminated serving contains almost 800 virus particles, but this was only 

observed during one iteration of the simulation, and more than 97% of servings contained 

zero virus particles. 

This risk assessment was undertaken to simulate the German 2012 NoV 

outbreak linked to frozen strawberries sources from China (12), but we also believe it 

can be adapted to other berry types. It was possible to develop a working QMRA 

model, which has identified available data and data gaps, and which is able to provide 

simulation results which approximate the German outbreak. The data gaps identified 

include information on persistence and survival of human NoV strains (instead of 

surrogates) in fresh and frozen strawberries and in response to heating. Our model 

shows that the German outbreak in 2012 could have resulted from the use of a highly 

contaminated water source applied to a large number of strawberries prior to harvest. 

Our model also predicts that thorough heating of frozen strawberries prior to serving 

would have a dramatic effect on risk. Following the outbreak that sickened ~11,000 
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people in Germany, the European Union (EU) regulation now requires 5% of 

consignments of frozen strawberries imported from China into the EU to be tested for 

norovirus, as well as recommending to the catering sector to heat-treat berries prior to 

consumption (12). These two interventions appear to have prevented the recurrence of 

an outbreak the size of the German 2012 event. The use of a model-based risk 

assessment supports these risk management measures and would likely assist in 

comparison of the utility of additional intervention measures.  
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Figure 7.1: Comparison of Norovirus in frozen strawberry scenario assumptions on factor 
sensitivity. Factor sensitivity is defined as the logarithm of the ratio of the mean number 
of illnesses for the relevant factor versus the baseline scenario. 
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Figure 7.2: Comparison of distribution of predicted illnesses from 100,000 iterations of 
quantitative microbial risk assessment for Norovirus in frozen strawberries. Leftmost 
panels represent baseline scenario (A and C) versus highly contaminated (8 log GC/L) 
pesticide makeup water (B and D). Topmost panels (A and B) show data as illnesses, 
while bottommost panels (C and D) show the same data expressed as logarithm of the 
number of illnesses. 
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Figure 7.3: Comparison of distribution of simulated virus particles per serving from 
100,000 iterations of quantitative microbial risk assessment for Norovirus in frozen 
strawberries. (A) baseline scenario, (B) baseline plus high heat (15 s at 75 °C) use during 
food service preparation, (C) Highly contaminated (8 Log GC/L) water used for pesticide 
application, (D) Highly contaminated (8 Log GC/L) water used for pesticide application 
plus high heat (15 s at 75 °C) use during food service preparation. 
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Table 7.1: Norovirus in frozen berries risk model using baseline parameters in @risk for 
farm to fork quantitative microbial risk assessment 
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Table 7.2: A comparison of baseline conditions to other scenarios showing minimum, 
mean and maximum number of illnesses as well as factor sensitivities for different 
scenarios. 
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8.1 Abstract 
 

Many quantitative microbial risk assessments have historically used a linear 

structure to represent the “farm to fork” continuum. While such structures are relatively 

straightforward to implement in commonly used modeling programs, they cannot easily 

handle less linear transmission paths. One example where these traditional models are 

less useful would be in the simulation of microbe transmission from the hands of a 

symptomatic worker who is hand-harvesting delicate fruits like strawberries or 

raspberries. The microbe concentration on the workers hands changes through the day or 

week depending upon resolution of symptoms, bathroom use, handwashing and number 

of fruits picked. One solution to these complex modeling problems involves the use of 

agent-based models. In an agent-based modeling environment, individual workers, virus 

particles and berries all constitute “agents” whose behaviors can be simulated. The 

objective of this risk assessment was to develop an agent-based model to simulate the 

spread of human norovirus on a farm, starting from a single ill fruit picker. The model 

predicts prevalence and concentration of norovirus particles on berries picked over one 

week as the disease spreads to other pickers on the farm and the impact of prevention 

strategies, such as handwashing. 
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8.2 Introduction 
 

Norovirus (NoV) is the leading cause of foodborne illness worldwide, resulting in 

approximately 19-21 million cases in the United States (U.S.) annually (6). Fruits and 

vegetables, specifically berries, have been frequently linked to foodborne viral disease 

outbreaks, most commonly arising from NoV or hepatitis A virus (HAV) (3, 17, 23, 25, 

26, 36, 37, 39). These viruses may be transmitted through water, food, contact with 

contaminated surfaces or directly from person to person (5). The largest NoV outbreak on 

record occurred in 2012 in Germany was linked to frozen strawberries imported from 

China; these berries were served to children in hundreds of schools resulting in over 

11,000 illnesses (3).  

Fruit harvesting may be done by hand depending on the size of the farm and 

fragility of the fruit. Hand harvesting can increase the opportunity for ill employees to 

contaminate the product as hands are a means of foodborne disease transmission. The 

role food handlers play in the contamination of food with enteric viruses is well 

established (1, 4, 41). Infected people can excrete high quantities of enteric viruses in 

their feces (i.e. 105 –109 virus particles/g feces) and shedding at this level has been shown 

to continue for several weeks in symptomatic and asymptomatic patients (40). 

Agent-based modeling (ABM) is a bottom-up modeling approach that simulates 

interactions between computer-generated units known as “agents”. Individual agents can 

be assigned a variety of attributes, states, behavioral properties and interactions. An ABM 

featuring individual agents can use personalized behaviors taken directly from the 

published literature and can be used to build complex models based on simple 

components (24). ABM has been used in healthcare to simulate epidemiological 
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occurrences, as well as medical innovations or interventions (11, 32, 35). Agent-based 

methods simulating the transmission of human viral and bacterial diseases, such as 

influenza and Listeria spp., has been conducted in the food supply chain (2, 21, 29). 

Simulation offers a potential to help understand how an aspect of the world operates, 

considering real-world variability and complexity without time consuming, expensive 

and sometimes impossible experiments. Such simulations can help identify areas for 

improvement and minimize the risk of errors when implementing changes.  

Our model is used to study the transmission dynamics of NoV on farm at an 

individual level, with respect to timing and dispersal of secondary infections from a 

single infected person. This model includes many parameters such as infection rate, 

shedding rate, infection period, immune period and the effectiveness of hand hygiene 

compliance. The model simulates the stochastic contact events from the individual level 

including berry picking, allowing us to predict prevalence and concentration at the level 

of the individual berry. This model is designed for two reasons: (1) to determine if an 

outbreak the size of the one which occurred in Germany in 2012, which was traced back 

to a 22-ton lot of strawberries imported from China can occur through increased contact 

rates and improper hand hygiene and (2) to influence policy and prevention strategies in 

regards to the impact of handwashing on the outcome of contaminated berries (19).  

8.3 Methods  

AnyLogic: Simulation Environment  

AnyLogic is a Java-based programming and simulation tool. The software allows 

the user to combine different modeling methods including differential equations, discrete 

events and agent-based systems. While the software offers a simple visual interface to 
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enable fast prototyping, Java code is always available “under the hood” to allow the 

programmer to address specific customization needs. Our model has two types of agents: 

fruit pickers and the individual berries to be picked. These agents interact with their 

simulated farm environment.  

Fruit Picker Agent  

The fruit pickers in the simulation can have different health statuses. The health 

status of the ‘fruit picker’ agent is controlled by a state-chart which defines the state-

transitions and actions for these transitions, as shown in Figure 1. A modified Kermack-

McKendrick SIR model (susceptible, infected, recovered) was used to describe disease 

spread within a population (20). Our modified SEIR (susceptible, exposed, infected, 

recovered) model allows the inclusion of many features and characteristics of epidemic 

diseases by using parameters specific to NoV. The system uses parameters that contain a 

variety of influences that essentially affect the progress or prevent an epidemic. 

Figure 1 shows each ‘fruit picker’ as immune, susceptible, exposed, infectious, 

shedding or recovered. The first branch determines whether the fruit picker is immune or 

susceptible to NoV infection. It has been shown that a portion of the population is 

immune to NoV which is determined by the presence or absence of a functional FUT2 

gene. Approximately 20% of the Caucasian population does not encode a functional 

FUT2 gene and are considered “non-secretors” and are therefore believed to be immune 

to NoV (9). The model has been set so that there is 1 initially infected ‘fruit picker’ at 

time 0, and the model runs for 10 days. The arrows represent various transitions from 

state to state as described by the parameter shown in Table 1. When running the 
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simulation, each fruit picker in a particular disease state is represented by a different 

color to help visualize the infection states on farm.  

Berry Agent  

The berry agent, a single berry, is represented by a small red oval in the graphical 

interface. The concentration on berries was collected in a data set to determine how many 

berries and at what level were contaminated by each individual fruit picker. All of the 

berries were assumed to be free of NoV contamination prior to harvesting.   

Baseline Scenario  

The baseline scenario assumes that there are 20 fruit pickers on the farm, that one 

fruit picker is initially infected, and all fruit pickers wash their hands 1 time/day. On day 

1, the initial ill employee is able to contact 10 other fruit pickers, putting those picker 

agents into the susceptible state. Depending on their state, handwashing will result in a 1 

log reduction in viruses on the hands. Studies have found that a standard handwashing 

practice typically results in 1-2 log reductions of NoV from hands (10, 12, 22, 38). The 

parameters for the baseline scenario are in Table 1.  

Scenario Analysis  
 

The model simulated the behavior of fruit pickers and how this effects 

contamination of berries that are harvested. Different scenarios are described in Table 2. 

The scenarios vary factors such as handwashing behavior, contact rate between 

employees and exclusion of an ill worker with the replacement of a healthy employee, to 

see how each affects final NoV prevalence and concentration on berries. Contact rate per 

day was varied to see the impact of person to person transmission and its outcome of 

berry contamination. Simulations were run to see the effect of contact rate of 5 people per 
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day versus 15 people per day (with 10 people per day being the baseline). Handwashing 

compliance was also varied. Simulations were run to see the effect of handwashing 0 

times per day versus 2 times per day (with 1 time per day being the baseline). The final 

scenario of interest was the exclusion of an ill worker and replacement by a healthy 

employee midweek (end of day 5).  

8.4 Simulation modeling  
 

Our previously published quantitative microbial risk assessment (30) was 

combined with the outputs from the AnyLogic simulation to look at final effect on risk. 

The published risk assessment followed the farm to fork continuum of NoV 

contamination on strawberries, assuming pesticide application water was the source of 

virus contamination. The new risk assessment assumed that contamination occurred from 

berries harvested by infected fruit pickers where the prevalence and concentration on 

these berries was calculated by AnyLogic. The Excel add-in @Risk (Palisade 

Corporation) was used to perform the Monte Carlo simulations of 100,000 iterations for 

the AnyLogic baseline and each scenario evaluated.  

8.5 Results  
 
Baseline 
 

The baseline scenario of our published risk assessment (30) resulted in a mean of 

~2 illnesses from 100,000 servings. Substituting baseline inputs from our AnyLogic 

simulation presented here, resulted in the same ~2 mean illnesses, with a maximum 

simulated 92 illnesses from 100,000 servings. The baseline number of infected workers at 

the end of 10 days was normally distributed with a mean of 7 ± 5 infected workers and a 

median of 7 infected workers, where workers were considered infected when in the 
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infectious and shedding state. The baseline prevalence of NoV on berries at harvest was 

approximately 3.3% and the concentration was normally distributed with mean log of 3.1 

± 1.3 virus particles per berry. The scenarios of decreased contact rate (5 people per day) 

and improved handwashing compliance (2 times/day) resulted in 1 mean illness, as 

compared to the baseline that resulted in 2 mean illnesses as described below and in 

Table 3. 

Handwashing scenarios 
 

The effect of reduced handwashing compliance, (no fruit pickers washed their 

hands) increased the mean (15) and maximum (1,306) illnesses from 100,000 servings. 

The reduced handwashing compliance scenario yielded 6.8% prevalence and mean log of 

5.8 ± 1.6 virus particles per contaminated berry. The number of infected workers at the 

end of 10 days in the reduced handwashing compliance scenario was normally distributed 

with a mean of 11 ± 4 infected workers and a median of 10 infected workers. The 

improved handwashing compliance scenario (2 washes/day), resulted in a mean of 1 

mean and a maximum of 89 illnesses from 100,000 servings. Improved handwashing 

compliance yielded a 1.7% prevalence of NoV on berries with a mean log of 1.7 ± 1.1 

virus particles per berry beat described by a Weibull distribution. The number of infected 

workers at the end of 10 days was normally distributed with a mean of 7 ± 3 infected 

workers and a median of 6 infected workers. 

Contact rate scenarios  
 

The scenario with the largest increase in NoV contamination resulted from a 

contact rate increased from 10 people per day to 15 people per day when 20 people were 

working, resulting in a mean of 21 illnesses and a maximum of 1,409 illnesses from 



   

 
 

194 

100,000 servings. Berries in the increased contact rate scenario had a NoV prevalence of 

9.5% prevalence and concentration with mean log of 6.3 ± 1.9 virus particles per berry, 

best described by a triangle distribution. The number of infected workers at the end of 10 

days was normally distributed with a mean of 12 ± 8 infected workers and a median of 12 

infected workers. Decreasing the contact rate per day from 10 to 5 people resulted in an 

outcome of approximately 1 mean illness and a maximum of 87 illnesses from 100,000 

servings. This scenario resulted in a NoV prevalence of 2.9% where the contaminated 

berries had a concentration of mean log of 3.6 ± 2.1 virus particles per berry, best 

described by a log normal distribution. The number of infected workers at the end of 10 

days was normally distributed with a mean of 6 ± 5 infected workers and a median of 5 

infected workers. 

Exclusion of ill employee 
 

When an ill employee was excluded from work on day 5 and replaced with a 

healthy employee, the outcome was approximately 2 mean illnesses and a maximum of 

162 illnesses from 100,000 servings. This scenario resulted in a NoV prevalence of 2.0% 

and the concentration on berries was represented by a log normal distribution with a 

mean log of 3.7 ± 2.8 virus particles per berry. The number of infected workers at the end 

of 10 days was normally distributed with a mean of 3 ± 4 infected workers and a median 

of 6 infected workers. 

8.6 Discussion 
 

A recent U.K. study tested lettuce and fresh and frozen raspberries sold at retail 

for NoV over a 13-month period. This study found that 5.3% of lettuce, 2.3% of fresh 

raspberries and 3.6% of frozen raspberries were positive for NoV RNA (8). A recent 
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study in China on retail frozen and fresh berries found the prevalence of NoV to be 9% 

and 12.1%, respectively. This Chinese surveillance study included samples of fresh and 

frozen strawberry, raspberry, blueberry, cranberry, blackberry and blackcurrant (14). The 

data from these previously published surveillance studies of viral contamination on fresh 

fruits and vegetables in real-time are similar to the prevalence of NoV contamination 

produced from our AnyLogic simulation. Though these studies do not report on the 

concentration of NoV on the berries, the prevalence of the virus is evident and 

appropriate risk management strategies should be put in place to decrease NoV 

prevalence on fresh and frozen berries. The FDA has recently begun surveillance 

(November 2018) on frozen berries (raspberries, strawberries, blackberries) for NoV and 

hepatitis A virus (HAV) to better protect consumers and is expected to last for 18 months 

(13). The surveillance thus far has resulted in several recalls of frozen fruit products, such 

as frozen blackberries, that tested positive for NoV (13). 

Government agencies recommend prevention strategies to decrease the risk of 

foodborne illness from NoV (7). It is important to understand which factors minimize the 

spread of NoV in the exposed population. While large experiments would be the ideal 

way to determine which prevention strategies work best, they are both prohibitively 

expensive and ethically challenging. The use of simulations to predict outcomes have 

become increasingly popular in healthcare settings (11, 32, 35).  

Quantitative microbials risk assessments have often been used to model bacterial 

transmission, and many risk assessments involving NoV have been completed in recent 

years. The most recent risk assessment representing the transmission of NoV in a food 

establishment has been published by the U.S. Food and Drug Administration (FDA) (10). 
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The objective of FDAs risk assessment was to observe the risks associated with NoV 

transmission to consumers from food contaminated by ill employees in a retail food 

setting. Conclusions from this study showed that exclusion of a symptomatic employee 

from work is key in decreasing the risk of NoV transmission to food being served to the 

consumer. Other factors that influenced infection to consumers included handwashing 

efficiency and frequency, as well as limiting contact between hands with objects such as 

door and faucet handles (10). There have been additional exposure assessments and risk 

assessments focused on NoV transmission by ill food employees, and those authors have 

also highlighted the importance of hand hygiene in NoV spread (15, 18, 28, 31, 34).  

ABM has been viewed as a promising approach to affecting policy change (2, 21, 

29). An ABM project has been completed to represent NoV transmission in a school 

setting to evaluate school policies (16). This ABM observed daily activities that would 

expose students to NoV and how two policies derived from the Centers for Disease 

Control and Prevention (CDC), limiting student-to-student interaction, had an effect on 

illness outcome. The study concluded that implementing either policy developed under 

the CDC helped in reducing student illnesses and that if the policy was implemented 

quicker, the outbreak duration would be shortened (16).  

Though it is a relatively new concept to the food industry, several studies have 

implemented ABM to look specifically at the behavior of Listeria in a food processing 

facility, as well as the complexity of the food supply chain and food safety inspections at 

an individual inspector and consumer level (27, 42, 43). Zoellner et al. (2019) observed 

the behavior of Listeria spp. in the environment and equipment surfaces in a cold-smoked 

salmon facility. The authors developed EnABLe, “Environmental monitoring with an 
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Agent-Based model of Listeria” and determined sanitary design to be a large predictor of 

Listeria spp. contamination. This ABM used two agent types, employees and equipment 

surfaces, that were able to interact with one another and the environment (43). The 

outcome of ABM will help researchers better understand the complexity of processes 

such as the spread of pathogenic bacteria and viruses, as well as interactions between 

human behavior. Our results show the importance and limitations of interventions such as 

handwashing, and how they impact the safety of hand-harvested berries. 
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Figure 8.1: Infection statechart 
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Figure 8.2: Disease state simulation over a 10-day period 
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Figure 8.3: Comparison of distribution of simulated virus particles per berry from 
100,000 iterations of quantitative microbial risk assessment for norovirus on frozen 
strawberries. (A) baseline scenario, (B) excluded ill employee, (C) high contact rate, (D) 
low contact rate, (E) 0% handwashing, (F) 100% handwashing 
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Figure 8.4: Comparison of distribution of predicted illnesses from 100,000 iterations of 
quantitative microbial risk assessment for norovirus on frozen strawberries. (A) baseline 
scenario, (B) excluded ill employee, (C) high contact rate, (D) low contact rate, (E) 0% 
handwashing, (F) 100% handwashing 
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Table 8.1: AnyLogic baseline input  
 

Variable Input Unit Reference 
Contact rate 10 People/day Input 
Transmission 
Probability (person to 
person) 

Uniform 
(0.12,0.46) 

% Matthews et al 2012 

Transmission 
Probability 
(foodborne) 

Uniform 
(0.31,0.71) 

% Matthews et al 2012 

Duration of Latency Uniform 
(0.5, 2) 

Days https://www.cdc.gov/hai/pdfs/norovirus/229110-
ANoroCaseFactSheet508.pdf 
 

Duration of 
Infectiousness  

Normal 
(1,2) 

Days Lee et al 2013 

Duration of Waning 
Immunity 

Uniform 
(180, 730) 

Days Simmons et al 2013 

Duration of Shedding Uniform 
(13, 56) 

Days Atmar et al 2008 

Handwashing 1 Day Input 
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Table 8.2: AnyLogic Scenarios  
 

Scenario Variables changed Contact rate  
(contacts/infected 

picker/day) 

Normal 
Handwashing 

event/day 
Baseline Inputs from references   10 1 

1 High contact rate   15 1 
2 Low contact rate                      5 1 
3 100% handwashing compliance   10 2 
4 0% handwashing compliance   10 0 
5 Exclusion of ill worker with replacement of 

healthy employee 
  10 1 
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Table 8.3: Outputs from AnyLogic to determine the resulting illnesses following 
consumption of frozen strawberries.  
 

Scenario Variables 
changed 

Mean 
infected 
workers 
after 10 

days 

Prevalence of 
NoV on 

berries (%) 

Concentration of 
NoV on berries  

(log virus 
particles/berry) 

Mean 
illnesses 

Maximum 
illnesses 

Baseline Inputs from 
references 

7 ± 5 3.3 3.1 ± 1.3 2 92 

1 High contact rate 12 ± 8 9.5 6.3 ± 1.9   21      1,409 
2 Low contact rate 6 ± 5 2.9 3.6 ± 2.1 1  87 
3 100% handwashing 

compliance 
7 ± 3 1.7 1.7 ± 1.1 1  89 

4 0% handwashing 
compliance 

11 ± 4 6.8 5.8 ± 1.6   15       1,306 

5 Exclusion of ill 
worker with 

replacement of 
healthy employee 

3 ± 4 2.0 3.7 ± 2.8 2    162 
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