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ABSTRACT OF THE DISSERTATION

Convex Optimization based Planning and

Control Methods for Space-robotic Systems

by

Gaurav Misra

Dissertation Director: Xiaoli Bai

Space-robotic systems are arguably the most promising technologies available

currently for on-orbit satellite operations including docking, berthing, and repair,

which have been demonstrated in typically manned and semi-autonomous mis-

sions. Another important application of space-robotic systems is space debris

mitigation. Space debris are uncooperative space objects (i.e. without any inter-

nal actuation) including defunct satellites and spent rocket stages, all of which

pose tremendous risk to current operational space assets. Autonomous robotic

capture, control, and stabilization of such objects are becoming critical. However,

space-robotic operations in proximity of such uncooperative object is challenging

with large uncertainties.

As a result, optimality, robustness, and tractability constitute some of the

desirable properties for any planning and control algorithm used for spacecraft

guidance, control, and robotic operations.
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Through the development of fast interior point methods for solving convex op-

timization problems with globally optimality, convex programming methods have

been proposed and experimentally validated for real-time guidance and control of

space systems. However, most current developments have explored solving locally

optimal solutions to highly non-linear and constrained optimal control problems

in real-time. The issues of robustness, tractability, and global optimality are still

open problems.

To this end, this thesis investigates robust and optimal planning and con-

trol schemes for space-robotics that leverage convex programming. Primarily,

four theoretical advances have been made: 1.) Exact reformulation for control

of deterministic, nonlinear robotic systems as a convex program; 2.) Sequential,

iteratively feasible convex relaxations leading to locally optimal solutions using

difference of convex functions programming; 3.) Hierarchy of convex relaxations

of systems formulated exactly or approximated with polynomial dynamics with

global optimality certificates and guaranteed convergence; and 4.) Robust con-

troller synthesis for nonlinear polynomial systems using polynomial optimization

in the framework of nonlinear disturbance observers for both matched and mis-

matched uncertainties.

For applications, the thesis solves four challenging problems for trajectory

planning and control during spacecraft proximity operation. First, quadratic

programming based trajectory planning methods are formulated for free-floating

space robots. Leveraging tools in analytical mechanics and differential geometry,

a novel quadratic programming based trajectory planning scheme is developed

for task-constrained end-effector motion which minimizes the base attitude dis-

turbance, in addition to obstacle avoidance for both the unactuated base and ma-

nipulator. Second, the orbital station-keeping of spacecraft in the framework of

the circular restricted three-body problem is solved using polynomial optimization
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in a receding horizon setting. Third, robust stabilization and tracking of space-

craft attitude motion in the presence of parametric uncertainties and external

disturbances is explored in the framework of convex optimization based nonlinear

disturbance observer synthesis. And fourth, an iteratively feasible convex pro-

gramming based approach is proposed for solving optimal spacecraft guidance

problems with non-convex constraints such as obstacle avoidance.
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Chapter 1

Introduction

The space environment especially in the Low Earth Orbit is becoming increasingly

cluttered every year. The access to space is now no longer limited to government

agencies, with private companies, universities actively engaged in building and

launching spacecraft. With the increasingly enhanced operational capabilities

of relatively cheaper CubeSats, the threat posed from space debris is real and

need for debris prevention, and mitigation is urgent. Over the years, many calls

have been released by space agencies such as NASA, ESA [1], DARPA [59], UN

COPUOS [106] to investigate the possibility of using passive/active debris removal

techniques. Overall, it has been estimated that roughly five large objects would

be required to be removed in order to counter the growing debris problem [92].

In addition, on-orbit satellite servicing and manipulation is also of interest.

Robotic manipulation in space is an attractive technology to handle coopera-

tive [127] and uncooperative operations. Cooperative space-robotic operations

have seen tremendous success such as the Shuttle Remote Manipulator System

(SRMS), better known as the Canada Arm [44]. Uncooperative space object

capture and manipulations introduce new and unique challenges. There is sel-

dom apriori information about the target parameters such as the mass, moment

of inertia, and shape. In addition, collision avoidance, and environmental un-

certainties such as attitude and orbital disturbances also are important factors

to consider during manipulator operations. Real time autonomy is paramount

for guidance and control, therefore developing control algorithms with on-board

implementation capabilities is required.
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In fact, the National Research Council (NRC) identified the top five challenges

for space robotic and autonomous systems which include rendezvous, maneuver-

ing, in situ analysis and sample return, hazard avoidance, and object recognition

and manipulation [160]. The critical importance of these challenges is made ob-

vious by past space mission failures and accidents. NASA’s demonstration of au-

tonomous rendezvous technology (DART) spacecraft [146] was launched in 2005.

The mission was designed to rendezvous and perform autonomous close proximity

maneuvers near the MUBLCOM satellite [22]. During approach, DART overshot

one of its critical waypoints and eventually collided with the target spacecraft

at a speed of 1.5 m/s. The key reasons attributed to this mishap was a com-

bination of guidance and computer logic error which incorrectly estimated the

amount of propellant left. The Japanese Aerospace Exploration Agency (JAXA)’s

Hayabusa mission to asteroid Itokawa also suffered a number of anomalies. Two

reaction wheels responsible for attitude control failed before touchdown [173] and

the spacecraft also suffered challenges during descent due to fuel leakge [126]. A

hopping mini-lander termed MINERVA failed to deploy correctly and was lost.

Remarkably, with some timely interventions by ground control, ion engines were

used to correct the spacecraft’s attitude and conduct a successful sample re-

turn [191]. The Japanese Experimental Test Satellite, ETS-VII launched in 1997

demonstrated automated rendezvous, docking and tele-robot operations. The

mission consisted of two satellites, a target and a chaser with a robotic arm tele-

operated from ground. While the mission was widely successful and achieved

significant milestones, the mission was not bereft of anomalies. The attitude

control system malfunctioned due to thruster misfires attributed to a number of

reasons including noisy gyro data and switching off of the Earth sensor [128].

While the above mentioned space mission anomalies are not exhaustive, it proves

that autonomous spacecraft guidance, navigation, and control still has significant

challenges ahead. Most importantly, there is an urgent need of real-time, robust,
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fault tolerant systems with provable safety guarantees.

The aim of this dissertation is to provide solutions towards such problems,

particularly leveraging convex optimization. The motivation behind studying

convex optimization based approaches comes from the need of real-time opti-

mization which is critical in almost all aspects of space mission design. Convex

programs typically have polynomial worst case complexity and upper bounds exist

on the number of iterations required to solve them. Furthermore, under certain

constraint satisfaction rules, the global optimal solutions can be recovered [25].

Lastly, due to self-dual embedding, convex programs do not require a user sup-

plied initial guess. This especially comes in handy when dealing with systems with

multiple constraints, uncertainties requiring on-board complex decision making.

Moreover in this work, we will investigate both guidance, the process of planning

and re-planning of kinodynamic trajectories of rigid and multi-link spacecraft un-

der different environment settings, and control, specifically feedback control for

stabilization and tracking of spacecraft trajectories.

1.1 Spacecraft proximity operations

Proximity operations typically involve relative spacecraft guidance, navigation,

and control near target bodies including uncooperative objects such as debris [108,

109], small Solar system bodies such as asteroids and comets [111, 147, 113] and

other cooperative spacecraft such as during docking or formation flying. Au-

tonomous rendezvous and docking broadly includes both far-range and short-

range approach with applications such as in-orbit assembly and manipulation and

sample collection. For an uncooperative spacecraft manipulation and de-orbiting,

Fig. 1.1 illustrates the main steps involved in the operation.
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Far-range
rendezvous

Phasing, Orbital transfer

Short-range
rendezvous

Relative motion control

Mechanical
interfacing

Contact dynamics

De-tumbling Post-impact stabilization

De-orbiting

Figure 1.1: Operation flowchart for deorbiting spacecraft

Short-range rendezvous typically involves planning a safe trajectory in prox-

imity of the target. This can be done under different dynamical regimes. Typ-

ically, linearized Clohessy-Hill-Wiltshire (CHW) equations of motion provide a

convenient means to study relative motion between the two spacecraft [32]. The

solutions to the CHW equations are characterized by decoupled inplane cycloidal

motion and out-of-plane harmonic motion. Due to its simplicity, it has been

widely used in practice, such as for Gemini [27] and Apollo [8] missions. How-

ever, the CHW equations assume that the two spacecraft are in circular orbit

which can be restrictive. To accommodate for arbitrary eccentricity, Tschauner

and Hempel [171] considered the linear spacecraft relative dynamics with true

anomaly as the independent variable. While the linearized CHW and Tschauner-

Hempel equations are expressed in Cartesian coordinates, alternate formulations

also exist expressed in orbital elements [162].

The relative spacecraft equations discussed above only consider translational

motion with the spacecraft assumed as a point mass. This assumption can in some

cases be insufficient, especially if the target and chaser spacecrafts are sufficiently
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large and comparable in size. A motivating scenario where the point mass as-

sumption is insufficient is spacecraft proximity operations near small Solar System

bodies. This is due to gravitational coupled orbit-attitude dynamics which have

significant impact on orbital motion of the spacecraft near small bodies [111, 114].

The effect of this coupling can be characterized by the ratio ε = ρ
r
, where ρ is

the characteristic dimension of the spacecraft and r is the orbital radius which is

quite small for proximity operations. The effect of rotational-translational cou-

pling can also be significant during formation flying, rendezvous and docking. In

addition, the coupled dynamics becomes important during vision-based relative

attitude and position control, where arbitrary feature points on a target vehicle

are to be tracked. Segal and Gurfil [154] provide an excellent analysis on the

impact of coupling on spacecraft formation flying. They prove that neglecting

the relative translation induced by the relative rotation can lead to considerable

errors in proximity operations.

A different but related dynamical regime for proximity operations is that of a

multi-body space system near a target. Typically, such multi-arm space robotic

systems are employed for on-orbit satellite servicing and manipulation of space

debris [44]. The space-robotic system typically consists of three major compo-

nents: the base spacecraft or servicing satellite, an n-degree-of-freedom robot

manipulator attached to the chaser or servicing satellite, and the target body.

Space robotic operations for on-orbit servicing or de-tumbling occur during or

after short-range rendezvous. During the process rendezvous, observation and

planning is conducted for acquiring motion and physical properties information

about the target. The second phase is to design and track a feasible trajectory

of the robot’s end-effector to interface/grasp with the target. This phase requires

on-board capability to quickly design and re-design guidance laws in presence

of uncertainties in real-time. Due to relatively short time-spans involved during

robot motion near the target, the effect of orbital motion due to gravity can be
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neglected. Note that this is different from the rendezvous phase of the spacecraft

which can last several thousand seconds and gravity influence must be included.

Following end-effector approach to the target, the next phase consists of physical

interception in which the robot physically grasps the capture point of the target.

This requires maneuvering the space-robotic system to have zero relative velocity

with respect to target to ensure a safe and successful capture. Following mechan-

ical interfacing, control torques on the manipulator are applied to bring the entire

captured system to rest following which de-orbiting can be performed.

A unifying feature of multi-body space-robotic system, point-mass or rigid

body spacecraft motion during proximity operations are path constraints. Colli-

sion avoidance is necessary to ensure that the spacecraft trajectory is safe [142].

For a multi-arm robot, it is necessary that the links do not collide with each

other or the base in addition to the target. The challenging aspect of collision

avoidance stems from it’s non-convexity which makes it harder to deal with in an

optimal control setting. In addition, it is possible that the chaser spacecraft has

constraints on it’s attitude, to ensure that payload and on-board sensors point

in the right direction. In addition, there can be attitude constraints to mitigate

any thruster plume impingement on the spacecraft payload [151]. Furthermore,

waypoint constraints are also a common feature where the spacecraft/space-robot

end-effector must traverse through given waypoints. Such a strategy is common

during spacecraft approach to the International Space Station (ISS) where a num-

ber of coasting arcs are designed prior to docking. During close approach, it may

also be desirable to have the chaser’s sensors in field-of-view of the target body.

Due to such constraints, it is desirable to formulate the spacecraft guidance prob-

lem as an optimal control problem. The generic guidance problem is represented
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as

minimize
x(t),u(t),t

∫ tf

t0

`(x(t), u(t), t)dt+ `f (xtf ,tf )

subject to ẋ = f(x(t), u(t), t)

g(x(t), u(t)) ≤ 0

x(t) ∈ X

u(t) ∈ U

x(tf ) ∈ Xf

x(t0) ∈ X0

(1.1)

where f(x(t), u(t), t) are the system dynamics which are typically non-linear, X

is the feasible region of the state, g(x(t), u(t), t) are path constraints, U is the

admissible control region, and X0, Xf denote the initial and final conditions.

1.2 Contributions and outline

This dissertation seeks to remedy some of the challenges discuss above in space-

robotic system guidance and control. Particularly, the emphasis and contributions

are on the following areas

• Real-time constrained motion planning of articulated space robots

• Optimal nonlinear receding horizon control for spacecraft control

• Robust optimization based nonlinear feedback control of spacecraft in pres-

ence of external disturbance and uncertainties

• Algorithmic and theoretical advances in direct transcription of non-convex

optimal control problems.

Chapter 2 describes the optimal spacecraft guidance and control in more detail.

The focus of this chapter is on recent advances on convex optimization based
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real-time control of different space systems including its use in present and fu-

ture space mission design. In addition, key concepts of convex optimization are

discussed with emphasis on sum-of-squares programming and polynomial opti-

mization which forms a key component of this thesis.

Chapter 3 describes the real-time trajectory planning problem for free-floating

space robotic manipulators. Particularly, we propose a quadratic programming

based planner for the system under a range of constraints including task constraint

end-effector motion, joint angle, velocity, and acceleration limits, and obstacle

avoidance for both base and manipulator. Benchmark numerical simulations are

also provided to compare the performance of the proposed approach with current

non-convex planning methods.

Chapter 4 focuses on nonlinear model predictive control (MPC) for space-

craft trajectory tracking in the circular restricted three-body problem framework.

Given a desired trajectory such as a Halo or Lissajous orbit, the objective of this

work is to use truncated nonlinear dynamics upto second order which is then uti-

lized for synthesis of MPC controller. The quadratic/polynomial spacecraft dy-

namics enable us to leverage global polynomial optimization to compute globally

optimal solutions using moment-sum-of-squares methodology [15]. We compare

the proposed polynomial MPC approach with linear and fully nonlinear MPC in

terms of tractability and control costs.

Chapter 5 introduces the robust controller synthesis problem for polynomial

systems. Nonlinear disturbance observer based control has seen significant suc-

cess in motion control. However, the applicability of this approach is severely

limited for complex nonlinear systems, where the disturbance-to-state mapping

is also a function of the state. For polynomial systems, we introduce an algo-

rithmic approach for synthesizing nonlinear disturbance observers by posing the

problem as a matrix polynomial optimization which can be solved using semidef-

inite programming. In addition, numerical stability verification is provided using
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Lyapunov analysis for systems with both matched and mismatched disturbances.

In Chapter 6, we extend the robust controller design to relative spacecraft atti-

tude tracking. In a scenario where disturbance torques act on both the target and

chaser spacecraft, we construct a disturbance observer using the sum-of-squares

methodology. In addition, we provide comparisons with existing approaches.

Chapter 7 focuses on algorithmic improvements to existing direct transcrip-

tion approaches to solving optimal control problems. Current approaches either

use interior point methods to solve the resulting static optimization problems

or leverage convex optimization to design faster iterative solutions. A common

concern with both these approaches is that the intermediate iterations may not

be a feasible or optimal solution to the problem. We leverage difference of con-

vex function (DC) programming to decompose non-convex dynamics and provide

an iteratively feasible convex approach to solving optimal control problems with

linear dynamics and non-convex path constraints.

1.3 Relevant publications

Below is a list of published, accepted and in-preparation research pertaining to

the subject matter of this dissertation.

• Journal papers

1. Misra, G., Bai, X. “Robust DOB based Control for Spacecraft Atti-

tude Tracking using Sum-of-Squares Programming.” Under review.

2. Misra, G., Bai, X. “Output-feedback Stochastic Model Predictive

Control for Glideslope Control during Aircraft Carrier Landing.” Jour-

nal of Guidance, Control, and Dynamics, (2019) In press.

3. Misra, G., Bai, X. “Task-Constrained Trajectory Planning of Space-

Robotic Systems using Convex Optimization.” Journal of Guidance,
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Control, and Dynamics, Vol. 40, No. 11 (2017), pp. 2857-2870.

4. Misra, G., Bai, X. “Optimal Path Planning of Free-flying Space Ma-

nipulators using Sequential Convex Programming”, Journal of Guid-

ance, Control, and Dynamics, Vol. 40, No. 11 (2017), pp. 3026-3033.

• Conference proceedings

1. Misra, G., Bai, X. ‘Iteratively Feasible Optimal Spacecraft Guid-

ance with Non-convex Path Constraints using Convex Optimization ”,

AIAA Guidance, Navigation, and Control Conference, Florida, 2020.

Under review

2. Misra, G., Bai, X. “Nonlinear Disturbance Observer based Control

for Polynomial Systems with Mismatched Uncertainties using Sum-of-

Squares Programming”, IEEE American Control Conference (ACC),

Philadelphia, 2019.

3. Misra, G., Gao, T., and Bai, X. “Modeling and Simulation of UAV

Carrier Landings”, AIAA Modeling and Simulation Technologies Con-

ference, San Diego, 2019.

4. Misra, G., Bai, X. “Stochastic Model Predictive Control for Gust

Alleviation during Aircraft Carrier Landing”, IEEE American Control

Conference (ACC), Milwaukee, 2018.

5. Misra, G., Peng, H, and Bai, X. “Halo Orbit Station-keeping us-

ing Nonlinear MPC and Polynomial Optimization”, 28th AIAA/AAS

Spaceflight Mechanics Meeting, Kissimmee, FL, 2018.
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Chapter 2

Convex optimization based guidance and control

Aerospace guidance and control problems have typically been approached and

solved in the framework of nonlinear optimal control. Existing approaches to

solve optimal control problems can be broadly divided into two classes: indirect

methods and direct methods. Indirect methods are based on variational calculus.

The Pontryagin’s minimum principle provides necessary conditions for optimality.

Once the necessary conditions have been derived, the problem is reduced to a two-

point boundary value problem amenable to methods such as multiple shooting. In

order to alleviate the challenges posed by good initial guesses to solve boundary

value problems, homotopy methods have been introduced. On the other hand,

using time-marching or pseudo-spectral methods, direct methods aim at assuming

a structure for state and control trajectories, such as piece-wise constant, or

cubic. Thus, the continuous optimal control problem can be converted to a static

optimization problem. Depending on the convexity of the resulting problem,

different methods can be used to obtain either locally optimal or globally optimal

solutions. In order to accommodate robustness and feedback into the system, such

problems are solved in a receding horizon fashion, where a static optimization

problem of fixed prediction horizon is solved at each step to obtain the necessary

control inputs.

Due to fast interior point solvers available to solve convex programming prob-

lems with guarantees on time complexity, significant research has been devoted
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to investigate its use in solving highly complex, nonlinear aerospace control prob-

lems. In Table 2, some of the recent applications of convex optimization in guid-

ance and control are provided. This includes both exact reformulation of the

problem termed as lossless convexification and relaxed iterative approaches to

solving optimal control problems in the framework of convex programming. THe

flowchart below describes the different techniques used to solve optimal control

problems.

Optimal Control

Direct Transcription

Convex

LP QP SOCP SDP

Globally optimal

Non-convex

Polynomial

SDP/SOS relaxations

Globally optimal

Non-polynomial

Interior point methods

Locally optimal

Indirect

HJB Equation

Pontryagin’s Principle

Application Reference

Planetary powered landing [2], [3], [20], [167]

Spacecraft rendezvous [101], [96]

Planetary entry [97], [180]

Asteroid landing [188], [136]

Fuel-optimal rocket landing [95]

Space robot trajectory planning [109], [108],[176]

Attitude control [169],[28]

Missile guidance [98]

Table 2.1: Compilation of convex optimization approaches proposed for different
aerospace guidance and control problems
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2.1 Convex optimization

This section gives an overview on convex optimization, a class of nonlinear opti-

mization where the objective function and inequality constraints are convex and

the equality constraints are linear. While several types of optimization problems

span convex programming, here we discuss quadratic programming and semidef-

inite programming since they are extensively used in the next chapters.

2.1.1 Quadratic programming

A quadratic optimization problem can be defined as

minimize
x

1

2
xTPx+ qx+ r

subject to Ax = b

(2.1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm, q ∈ R1×n, r ∈ R. If P ∈ Sn+, is positive

semidefinite, then the problem in Eq. 2.2 is defined as convex quadratic pro-

gram (QP) with a polyhedral feasible set. A variety of algorithms exist to solve

QPs, including active-set, augmented Lagrangian, interior-point, and conjugate

gradient methods. In case, the constraints are also quadratic, that is, of the

form 1
2
xTMix + nT

i x + l, i = 1, 2, ..., p, the problem is termed as a quadratically-

constrained quadratic program. For Mi ∈ Sn++, the feasible set is an intersection

p ellipsoids and an affine set.

2.1.2 Semidefinite programming

Semi-definite programming (SDP) is one of the most broadest classes of convex

optimization methods. It encompasses both linear programming and second-order

cone programming. It can be seen as a natural extension of linear programming

where the vector variables are replaced by matrices constrained to be positive
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semi-definite. Given matrices C, A1, ...Am ∈ Sn, the primal form of SDPs is

defined as

maximize
x

tr(CX)

subject to tr(AjX) = bj, j = 1, 2, ...,m

X � 0

(2.2)

where tr defines the trace of a matrix. The dual form for the SDP is expressed

as

minimize
y

bTy

subject to
m∑
j=1

yjAj − C � 0
(2.3)

In the dual form, the linear matrix inequality (LMI) form of SDP is recovered.

The feasibility set of an SDP is a spectahedron. For strong duality, that is, the

dual and primal solutions are equivalent, the slater’s condition is required to be

satisfied. Note that however, unline linear programs, in general, the primal and

dual SDP solutions may not be equal and only weak duality holds.

2.2 Sum-of-squares programming

The motivation behind sum-of-squares (SOS) programming stems from a basic

question ubiquitous in operations research, control, and other areas: Given a

polynomial f(x1, ...., xn), for all x ∈ Rn, is the function non-negative? It turns out

that assessing this question is NP-hard for a function with degree ≥ 4. However,

a sufficient and tractable condition to ascertain this is to check if the function is

positive over the feasible set.

Definition 1. A polynomial f ∈ Pn,2d, that is, a multivariate function of n

variables and maximum degree of 2d is called a sum-of-squares if

f(x) =
k∑
i=1

p2
i (x) (2.4)
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The SOS n-variate polynomials are denoted as Σn.

Theorem 1. A polynomial f ∈ Σn,2d if and only if

p(x) = Bn,d(x)TMBn,d(x) (2.5)

where Bn,d(x) is any fixed basis for Pn,d and M � 0.

Checking positivity of a polynomial p(x) is akin to solving an SDP. Consider

the example: f(x) = 2x4 + 5y4 − 4x2y2. Let the basis be [x2, y2, xy]. To find an

SOS decomposition, a feasibility SDP problem can be solved. Denote M ∈ R3×3

where Mi,j denotes each entry of matrix. This is expressed as

maximize −

subject to M11 = 2

M22 = 5

M33 + 2M12 = −4

M13 = M23 = 0

M � 0

(2.6)

Note that however, a nonnegative polynomial is not necessarily SOS. For example,

the Motzkin polynomial is non-negative but does not yield an SOS decomposi-

tion [132].

SOS programming finds applications in both unconstrained and constrained

polynomial optimization. Consider the unconstrained case

maximize
x∈Rn

p(x)

subject to p(x) ∈ Pn,d
(2.7)
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Using standard lifting techniques, we can define the optimal solution as ρ∗. There-

fore, we have

ρ∗ = sup{ρ : p(x)− ρ ≥ 0} ≥ sup{ρ : p(x)− ρ ∈ Σn,d} (2.8)

From Eq. 2.8, the lower bound on the optimal value of the unconstrained polyno-

mial optimization can be computed by solving an SDP [132]. Next, consider the

general constrained polynomial optimization problem

maximize
x

p(x)

subject to gi(x) ≥ 0, i = 1, 2, ..., k.

p(x), gi(x) ∈ Pn,d

(2.9)

The set defined by {x ∈ Rn|gi(x) ≥ 0∀i = 1, 2, ..., k} is called a basic semi-

algebraic set. Examples of basic semi-algebraic sets include the non-negative

orthant Rn
+ and the cone of positive semidefinite matrices. Similar to the uncon-

strained case, Eq. 2.9 can also be solved in the framework of SOS programming.

This will be discussed in detail in Chapter 4.
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Chapter 3

Real-time motion planning of space-robotic

systems

3.1 Close-proximity trajectory planning

Trajectory planning techniques for multi-link space robots (i.e. a manipulator

atop a base spacecraft) have received considerable attention over the last few

decades [119, 39, 35, 130, 129, 76, 121], most of which fall into two categories:

optimization techniques and sampling based planning. Due to the coupled dy-

namics between the base and the manipulator, trajectory planning schemes often

employ optimization algorithms with the objective to minimize such coupling

effects. In real applications, objectives can be divided into two types, namely,

base motion (attitude) minimization and base reaction minimization. It is worth

noting that the two objectives are in fact contradictory, i.e. minimizing the base

attitude disturbance can result in undesirable base reactions and vice versa [187].

Variational techniques are proposed for optimal path planning of free-floating

space manipulators while accounting for the holonomic and nonholonomic con-

straints in [5]. The resulting formulation is given as a system of differential-

algebraic equations. Sequential Quadratic Programming methods for point-to-

point motion planning problems for a free-floating space manipulator are em-

ployed in [153]. Redundancy resolution methods based on the reaction null space

(RNS) approach are used to obtain minimum attitude disturbance trajectories

in [123, 124, 179]. A motion planning technique for grasping and stabilization of
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an uncooperative space object is proposed wherein the planning task is formu-

lated as a nonlinear optimization problem based on direct single shooting with

obstacle avoidance in [75]. Pre- and post-capture motion planning to stabilize an

object with uncertain dynamics is discussed in [4], where the optimal guidance

law is framed directly in the end-effector task space. Using double integrator dy-

namics used to determine the motion of the end-effector, an optimal control law

is found by applying Pontryagin’s principle to minimize the total time of opera-

tion. A constrained least squares based redundancy resolution approach is used

to minimize the base reactions with end-effector trajectory tracking constraints

in [33], however, obstacle avoidance is not considered in the study. Particle swarm

optimization (PSO) based planning combined with differential evolution is used

in [94] to generate smooth paths for redundant free-floating space manipulators.

Based on either nonlinear programming methods or evolutionary optimization

methods such as PSO, most of these optimization techniques are slow, suscepti-

ble to initialization, and unsuitable for real-time implementation.

The key idea behind sampling based methods such as rapidly exploring ran-

dom trees (RRT) [84] is to construct a configuration (C) space roadmap by ran-

domly placing configurations in the C space and connecting neighboring portions.

A sampling-based A∗ algorithm is proposed for planning trajectories for a 7 Degree

of Freedom (DOF) space manipulator with numerical and experimental valida-

tion in [135]. Another sampling-based approach for reaction-less motion of space

robots has been recently proposed in [64], where the technique uses RRT based

path planners to plan motions starting from rest for a dual arm non-redundant

robot. The computation time required by the RRT planner to find a suitable

path was reported to be approximately 81 s, which is not feasible for real-time

applications. Although sampling based methods are efficient and probabilisti-

cally complete (i.e. if a feasible trajectory exists, the planner can compute it as

time goes to infinity) for high dimensional C spaces, the resulting trajectory can
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have convergence issues especially for manipulators with end-effector task con-

straints and is often jerky requiring smoothing techniques [199], and therefore,

not applicable for online autonomous planning.

In this study, the trajectory planning problem is posed as a convex quadratic

optimization problem with the goal to solve it in real-time. Convex quadratic pro-

grams (QP) are desirable from a computational standpoint since such problems

can be solved in polynomial time with the worst case complexity for a convex QP

with linear constraints being O(n3L) where n is the size of the decision variable

and L is the program input size [50]. In general, convex QP based planning meth-

ods are faster than techniques leveraging disjunctive programming [21, 37] (based

on mixed integer linear or quadratic programs) which are NP-complete and have

exponential worst case complexity. Recent advances in numerical techniques such

as interior point methods allow solving convex optimization problems quickly

and efficiently [25], making these methods desirable for on-board implementa-

tion without the use of look-up tables. Convex optimization based methods have

been successfully demonstrated for UAV trajectory generation [11], spacecraft

swarm control [116], constrained attitude control [89], planetary [20] and aster-

oid [188] landing, rendezvous and proximity operations [102], and robot motion

planning [152]. In fact, custom real-time Interior-Point Method solvers have been

proposed and experimentally validated on radiation hardened flight processors for

pin-point planetary landing [40, 148]. Previous studies on convex optimization ap-

plications in robotics have primarily looked at path tracking which assumes that a

high level planner provides an obstacle free geometric path [196, 174]. In contrast,

here we focus on trajectory planning of redundant manipulators on a free-floating

spacecraft platform (i.e. without any translational and rotational actuation on

the spacecraft) with the manipulator’s end-effector subjected to task constraints.

Although quadratic programming based approaches have been proposed for fixed-

base [197] and also wheeled- and legged-robotic systems [155], we have found no
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studies using convex optimization techniques for free-floating mobile base robotic

platforms. Furthermore, the motion of free-floating space-robotic systems differs

significantly from fixed-base ground robots because of the micro-gravity environ-

ment, the nonlinear dynamic coupling between the base and the manipulator, and

the nonholonomic constraints due to the conservation of angular momentum [109].

Furthermore, planning and control for space robots becomes even more challeng-

ing and complicated in the presence of initial non-zero momentum [120] as the

resulting system is affine with a drift term.

The main contributions of this approach lie in four aspects

• A convex quadratic programming based approach is developed in robot

joint space for path planning of kinematically redundant free-floating space-

robotic systems with non-zero initial momentum. It is through this novel

formulation in terms of QP that the real-time planning becomes possible.

• This technique can incorporate goals such as base attitude minimization,

physical constraints including joint angle, joint velocity, and acceleration

bounds, and obstacle avoidance. Given a desired trajectory of the end-

effector (which evolves on the non-Euclidean space SE(3)), we plan kine-

matically optimal paths in the joint space to achieve the desired primary (

e.g. end-effector tracking) and secondary tasks (e.g. obstacle avoidance).

Two primary task cases are discussed, when the end-effector is required to

track a given trajectory over the given time horizon and when the end-

effector is constrained to move through a finite set of way-points during

the operation. Additionally, the task formulation is carried out directly on

the Lie group of rigid body motions SE(3) to avoid algorithmic singularity

issues.

• Only forward kinematics are employed in the formulation, thereby avoiding

the explicit calculation of the pseudo-inverse of the Generalized Jacobian



21

Matrix (GJM) which can lead to dynamic singularities.

• A novel obstacle avoidance scheme is also proposed for the free-floating base.

The obstacle avoidance formulation is based on the dynamical coupling

between the base and the manipulator due to the conservation of total

system momentum.

3.1.1 Mathematical Preliminaries

Consider a kinematically redundant n-dof revolute jointed, free-floating space

manipulator under no external forces and no base actuation as shown in Fig. 3.1.

The joints are assumed to be rigid with no joint friction. Let θ ∈ Rn be the

joint angles for the manipulator. Let the position vector of the base spacecraft

centroid with respect to an inertial frame, denoted as
∑

I in Fig. 3.1 be given as

rb ∈ R3 and the attitude of the base be given by Qb ∈ SO(3), where SO(3) =

{Q = R3×3 : QTQ = E, det(Q) = 1} is the Lie group of rotations of a rigid body.

The kinematics of the base spacecraft is given as

Q̇b = ω×b Qb (3.1)

ṙb = vb (3.2)

where vb, ωb ∈ R3 are the linear and angular velocities of the base spacecraft in

the inertial frame, respectively, and (.)× : R3 → so(3) ⊂ R3×3 denotes the skew-

symmetric operator which is the vector space isomorphism between R3 and so(3),

with so(3) being the Lie algebra of SO(3). Let the position vector of the link

centroid be ri ∈ R3 with respect to the inertial frame and pi ∈ R3 with respect

to the base expressed in the inertial frame.
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Figure 3.1: Spatial model for a free-floating space manipulator.
∑

I and
∑

B

denote the inertial and base spacecraft body frame, respectively.

We have

ri = rb + pi (3.3)

The linear and angular velocity of the link i in the inertial frame is

vi = vb + ω×b pi + νi

Ωi = ωb + ωi (3.4)

where νi, ωi ∈ R3 are the linear and angular velocity of the link relative to the

base spacecraft and expressed in the inertial frame. The total linear and angular

momentum of the space-robotic system is given as [186]

n∑
i=0

mivi = P (3.5)

n∑
i=0

IiΩi +mir
×
i vi = H (3.6)
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where i = 0 denotes the base spacecraft, Ii ∈ R3×3 denotes the inertia matrix of

body i in the inertial frame, P,H ∈ R3 denote the linear and angular momentum

of the system. Furthermore, we observe that Eq. (3.5) is an integrable Pfaffian

constraint. Integrating the constraint, we find the mass centroid of the entire

system either remains stationary or translates with a constant velocity depending

on the magnitude of the linear momentum. Contrary to Eq. (3.5), Eq. (3.6) cannot

be directly integrated analytically and hence is a nonholonomic constraint. The

forward kinematics of link i at velocity level is expressed as

ξi =

νi
ωi

 =

JTi

JRi

 θ̇ (3.7)

where ξi ∈ R6 includes both the linear and the angular velocity and JTi, JRi ∈

R3×n denote the translational and rotational Jacobian matrices of link i, respec-

tively [158]. Using Eqs. (3.5) and (3.7), we get

GvE GvΩ

GT
vΩ GΩ

vb
ωb

+

Gvθ

GΩθ

 θ̇ +

O3×1

r×b P

 =

P

H

 , (3.8)

where O3×1 represents a three-dimensional null vector and,

Gv =
n∑
i=0

mi ∈ R (3.9)

GvΩ = −
n∑
i=0

mip
×
i ∈ R3×3 (3.10)

GΩ = Ib +
n∑
i=1

Ii +mi(p
×
i )Tp×i ∈ R3×3 (3.11)

Gvθ =
n∑
i=0

miJTi ∈ R3×n (3.12)

GΩθ =
n∑
i=1

IiJRi +mip
×
i JTi ∈ R3×n (3.13)
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where E ∈ R3×3 denotes an identity matrix and Ib ∈ R3×3 denotes the iner-

tia matrix of the base spacecraft. Under the assumption of a free-floating sys-

tem which involves no internal actuation on the base spacecraft and no external

forces, conservation of momentum holds. A majority of the previous literature on

space-robotic systems have assumed the initial momentum to be zero to simplify

analysis. However, during on-orbit operations, momentum can accumulate in the

system. In addition, some detumbling approaches such as the bias momentum

method [190] propose using initial stored momentum to facilitate post-capture

control of a target spacecraft. Therefore, we take a more general approach in this

paper. Let P0,H0, which are not necessarily zero be the initial linear and angular

momentum, respectively. We can then derive relations between base velocities,

joint rates and the initial momentum.

Gvvb + GvΩωb + Gvθθ̇ = P0 (3.14)

GT

vΩvb + GΩωb + GΩθθ̇ + rb × P0 = H0 (3.15)

Using Eq. (3.14), the linear velocity of the base spacecraft can be expressed as

vb =
P0 −GvΩωb −Gvθθ̇

Gv

(3.16)

Substituting Eq. (3.16) into Eq. (3.15), we get

GT
vΩ

Gv

(
P0 −GvΩωb −Gvθθ̇

)
+ GΩωb + GΩθθ̇ + r×b P0 = H0 (3.17)

Rearranging Eq. (3.17), we obtain

(
GT
vΩ

Gv

+ r×b

)
P0 +

(
GΩ −

GT
vΩGvΩ

Gv

)
ωb +

(
GΩθ −

GT
vΩGvθ

Gv

)
θ̇ = H0 (3.18)
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Therefore, the base angular velocity is represented as a function of the joint rates

and momentum as

ωb =
(
GΩ −

GT
vΩGvΩ

Gv

)−1
(

H0 −
(GT

vΩ

Gv

+ r×b
)
P0 +

(GT
vΩGvθ

Gv

−GΩθ

)
θ̇

)
(3.19)

Using auxiliary variables, this equation can be written as

ωb = Ĵωθ̇ + G1H0 + G2P0 (3.20)

where

G1 =
(
GΩ −

GT
vΩGvΩ

Gv

)−1

Ĵω = G1

(GT
vΩGvθ

Gv

−GΩθ

)
G2 = −G1

(GT
vΩ

Gv

+ r×b
) (3.21)

Finally, using Eqs. (3.16) and (3.20), the linear velocity for the base spacecraft is

expressed as

vb = Ĵvθ̇ + G3H0 + G4P0 (3.22)

where

Ĵv = −
(

GvΩĴω + Gvθ

Gv

)
G3 = −GvΩ

Gv

G1

G4 =
E−GvΩG2

Gv

(3.23)

Next, we look at the end-effector kinematics. Let ge ∈ SE(3) be the end-effector

pose in the inertial frame. The state of the end-effector is described as

ge =

Qe re

0 1

 = F(θ, rb, Qb) (3.24)
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where Qe ∈ SO(3) is the attitude of the end-effector; re ∈ R3 is the position

vector of the end-effector in the inertial frame; and F : SE(3) × Rn → SE(3), is

the differentiable nonlinear mapping from the joint space to the task space of the

manipulator, commonly known as the forward kinematics map. The end-effector

kinematics is represented as

ġe = ge(Neξe)
∨ (3.25)

where

(ξe)
∨ =

(ωe)
× νe

0 0

 ∈ se(3), Ne =

Qe 0

0 Qe

 (3.26)

where ξe =
[
νe ωe

]T
∈ R6 is the end-effector velocity in the inertial frame and

Ne is the transformation matrix from body to inertial frame. The end-effector

velocity can be mapped to alternate coordinate frames using the adjoint map,

Adg : se(3)→ se(3), given by [118]

Adge =

Qe r×e Qe

0 Qe

 ∈ R6×6, s.t. AdgeX
∧ =

(
geXg

−1
e

)∧
(3.27)

where X ∈ se(3), (·)∧ : se(3)→ R6 is the inverse of the vector space isomorphism

(·)∨ : R6 → se(3). The velocity (twist) of the end-effector, ξe ∈ R6 is expressed in

terms of base and joint variables as

ξe = Js

vb
ωb

+ Jmθ̇ (3.28)

where Jm =
[
JT JR

]T
∈ R6×n is similar to the conventional Jacobian for a
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ground manipulator [158] and the spacecraft Jacobian matrix is expressed as

Js =

E −(re − rb)×

0 E

 ∈ R6×6 (3.29)

where re ∈ R3 is the position vector of the end-effector in the inertial frame.

Using Eqs. (3.20) and (3.22), the base velocity can be eliminated to obtain the

relationship between the end-effector velocity and joint velocities. This is given

as

ξe = Jgθ̇ + Js

G4 G3

G2 G1

P0

H0

 (3.30)

where Jg = Js

Ĵv

Ĵω

+Jm ∈ R6×n is the Generalized Jacobian Matrix (GJM) [157].

It is important to recognize that even in the presence of non-zero initial mo-

mentum, both the base spacecraft and the end-effector velocities are affine func-

tions of the joint velocities as shown in Eqs. (3.22) and (3.30). This property is

crucial in formulating the trajectory planning as a convex optimization problem,

which is presented in the next section.

3.2 Problem Formulation

Given a desired end-effector trajectory/task in the inertial space, the planning

problem considered here requires solving for a feasible joint path that satisfies

the task-compliance constraints, physical constraints such as joint limits, and ob-

stacle avoidance, while optimizing a given cost function. At the kinematic level,

the manipulator motion can be expressed in the joint space by simple double

integrator dynamics where the joint acceleration is considered as the control in-

put. With a predefined cost function Γ(θ(t), the trajectory planning problem in
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continuous time denoted as Problem-1 is stated as

Problem-1 minimize
θ(t),θ̇,u(t)

Γ
(
θ(t), θ̇(t), u(t)

)
subject to θ̈(t) = u(t)

mi

(
θ(t), θ̇(t)

)
≤ 0 ,∀t ∈ [0, tf ]

gde(t) = F
(
θ(t), rb, Qb

)
θ(t = 0) = θ0, θ̇(t = 0) = θ̇0

rb(t = 0) = r0, Qb = Q0, ξb(t = 0) = ξ0
b

(3.31)

where, Γ
(
θ(t), θ̇(t), u(t)

)
: R3n → R is the cost function, u(t) is the control input,

tf is the predefined final time, mi(θ(t), θ̇(t)) ≤ 0 (interpreted as element wise

inequality) include collision avoidance constraints and limitations on joint angles,

velocities, and controls. gde(t) : [0 t] → SE(3) denotes the desired end-effector

trajectory, F
(
θ(t), rb, Qb

)
: Rn × SE(3)→ SE(3) denotes the forward kinematics

map, θ0, θ̇0 are the joint angles and velocities at the initial time, and r0, Q0, and ξ0
b

are the initial position, attitude, and velocity for the base spacecraft. The above

planning problem is generally a non-linear, non-convex optimization problem due

to the nonlinear equality constraints pertaining to the end-effector pose trajectory

and the obstacle avoidance constraints.

Discrete Time Formulation

Let ∆t denote the time step and N be the total number of nodes, leading to the

final time tf = N∆t. We propose the trajectory planning at the joint velocity

level, such that the discrete-time variables are given as θ̇[k] , θ̇(k∆t). The

joint accelerations given as θ̈[k] ∈ Rn are considered as the control input, i.e.

u[k] , θ̈(k∆t). Furthermore, the control input u[k] is considered to be of a
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zero-order hold type [19] such that

u(t) = u[k], ∀t ∈ [k∆t, (k + 1)∆t] (3.32)

The discrete state equation using a trapezoidal discretization is written as

θ̇[k] = θ̇[k − 1] +
∆t

2
(u[k − 1] + u[k]) (3.33)

A critical aspect during manipulator operations is to ensure that the rotational

disturbance on the base is minimized. This requirement stems from communi-

cation, power constraints as well as obstacle avoidance. Therefore, the objective

of the planning problem is chosen to minimize the base attitude disturbance and

generate feasible smooth paths in the joint space. The base attitude described by

Qb is related to the base angular velocity through Eq. (3.1), therefore, a suitable

objective function is the 2-norm of the angular velocity. Using Eq. (3.20), we get

‖ωb‖2
2 =

∥∥∥Ĵωθ̇ + b
∥∥∥2

2
(3.34)

where b = G1H0 + G2P0.

The cost function is chosen to minimize the base attitude and the control

effort, represented as

Γ(θ̇, u) =
∥∥∥Ĵωθ̇ + b

∥∥∥2

2
+ uTSu (3.35)

where S ∈ Rn×n is a positive definite weight matrix that can be chosen based

on the relative priority of base angular motion and optimal joint motions for the

optimization problem. Importantly, notice since we use the joint velocities as

the design variable for the optimization problem, the first term of the objective

function is a quadratic form of the joint velocity. This is critical to formulate the

problem as a QP which leads to the possibility of real-time implementation.
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Problem-1 defined in Eq. (4.16) is rewritten in the discrete setting as

Problem-2 minimize
θ̇[k],u[k]

∥∥∥Ĵω[k]θ̇[k] + b[k]
∥∥∥2

2
+ u[k]TSu[k]

subject to θ̇[k] = θ̇[k − 1] +
∆t

2
(u[k − 1] + u[k])

θ̇min ≤ θ̇[k] ≤ θ̇max

umin ≤ u[k] ≤ umax

h(θ̇[k]) ≤ 0

θ[0] = θ0, θ̇[0] = θ̇0

rb[0] = r0, Qb[0] = Q0

ξb[0] = ξ0
b

gde [k] = F
(
θ[k], rb, Qb

)

(3.36)

where ξb = [vb, ωb]
T ∈ R6 is the base velocity. Note that Problem-2 aims at

minimizing the instantaneous angular velocity of the base rather than its sum over

the given horizon. Furthermore, although the objective function is in QP form,

Problem-2 is non-convex with obstacle avoidance and end-effector constraints.

3.3 Obstacle Avoidance

The kinematic redundancy allows the planner to satisfy secondary tasks such as

obstacle avoidance. Some of the common approaches to the obstacle avoidance

include the artificial potential field method [71], the pseudo-inverse method [103],

and the Jacobian transpose method [88]. In this paper, an inequality-based ob-

stacle avoidance is used as proposed in [68].

Let the configuration manifold of the robot be given as Q ∈ SE(3)× Rn, the

tangent space of Q as TqQ at some configuration q, and the robot state space is

defined as X = Q × TqQ. Defining the state time space as S = X × [0, tf ], we
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can describe the feasible motion as

Sfeasible = {(rb, Qb, ξb, θ, θ̇, t) ∈ S : R(q) ∩ O = ∅ ,∀t ∈ [0, tf ]} (3.37)

where R(q) is the volume occupied by the robot at configuration q, O is defined

as the known obstacle region, and ∅ denotes a null set. Whenever a collision is

detected between the robot and the obstacle (modeled as convex polygons), an

escape velocity is designed to drive the robot away from the obstacle. This is

mathematically formulated as

JT(θ)θ̇ = ẋ0 (3.38)

where JT ∈ R3×n is the translational Jacobian of the link and ẋ0 is the escape

velocity which is defined as a function of the link-obstacle distance as shown in

Fig. 3.2.

O

~da

x̂

ŷ

ẑ

~db

~_x0

Figure 3.2: Induced escape velocity for obstacle avoidance. Links and obstacles
are assumed as convex polyhedra. ~da and ~db are the minimum distances between
the links and obstacle. If the minimum instantaneous distance between the link
and obstacle is less or equal to some threshold, an escape velocity shown as ẋo is
imparted.

Several algorithms for collision detection between convex objects exist in lit-

erature [14, 18] and will not be discussed here for brevity. Using the method
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proposed in [68], obstacle avoidance strategy is expressed via the minimum dis-

tance d between two convex objects as

ḋ ≥ −ε d− d2

d1 − d2

if d < d1 (3.39)

where ε > 0 is a tuning parameter which governs the convergence speed and

d1, d2 denote the outer and inner safety threshold distance, respectively. A key

advantage of this strategy is that it provides a lower bound on the minimum

distance between the objects, which is expressed as [68]

∀t > 0, d(t) ≥ d2 + (d(0)− d2) exp(− ε

d1 − d2

t) > d2, if d(0) ≥ d2 (3.40)

Furthermore, ḋ is formulated in the joint velocity space as

ḋ = JT(θ)θ̇ · γ (3.41)

where (·) denotes the dot product operator and γ ∈ R3 is the unit vector between

the closest points of the two convex polyhedras. Finally, the obstacle avoidance

constraint is expressed via a linear inequality as

θ̇ · JT(θ)Tγ ≥ bG (3.42)

where, bG = −ε d−d2
d1−d2 . In the presence of a field of obstacles, the avoidance con-

straint becomes dij > d2, ∀i = 1.2..Nlinks and j = 1.2...Mobstacles.

Base-obstacle avoidance We recall the relationship between the base trans-

lational velocity and the joint velocities derived via the conservation of momen-

tum, originally formulated in Eq. (3.22).

vb = Ĵvθ̇ + G3H0 + G4P0 (3.43)
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Similar to the approach discussed above for link-link and link-obstacle avoidance,

we can frame the obstacle avoidance for the base spacecraft in terms of a linear

inequality constraint using the joint velocity as

θ̇ · ĴT

vγ ≥ bB (3.44)

where bB = (bG − (G3H0 −G4P0 · γ).

We note that the optimization framework along with the constraint formu-

lation in Problem-2 is formulated in a discrete setting. Therefore, it becomes

paramount to ensure that the obstacle avoidance constraints are not violated

between the two adjacent discrete nodes. Next, we provide a condition that guar-

antees the obstacle avoidance constraints between the discrete nodes.

Proposition 1. The obstacle avoidance constraints are not violated between dis-

crete nodes if ε ≤ d1−d2
∆t

.

Proof. Under the assumption that the time step chosen is small, we can assume

that the closest points between the two convex objects do not change due to

rotation or translation between the nodes. The minimum distance requirement is

expressed as

d(τ) > d2 ∀τ ∈ (t, t+ ∆t] (3.45)

Linearizing Eq. (3.45), we obtain

d(τ) = d(t) + ḋ(t)(τ − t) +O(∆t2) (3.46)

Ignoring higher order terms corresponding to O(∆t2), we consider the limiting

case where the minimum distance approaches the inner safety distance, d2 at time
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t, i.e. d = d2 + δ1 for some δ1 > 0. We can express Eq. (3.46) as

d(τ) = d2 + δ1 + ḋ(t)(τ − t) (3.47)

Reformulating, Eq. (3.39) using a slack variable δ2, we have

ḋ(t) = −ε δ1

d1 − d2

+ δ2, δ2 ≥ 0 (3.48)

Substituting Eq. (3.48) into Eq. (3.47), we get

d(τ) = d2 + δ1(1− ε

d1 − d2

(τ − t)) + δ2(τ − t) (3.49)

We require that the minimum distance d(τ) > d2 to ensure obstacle avoidance

constraints are not violated. This leads to

δ1(1− ε(τ − t)
d1 − d2

) + δ2(τ − t) > 0 (3.50)

Since δ1, δ2, although unknown, are positive and non-negative, a conservative

least upper bound can be found for ε that guarantees collision avoidance between

adjacent nodes. This is expressed as

ε ≤ d1 − d2

∆t
(3.51)

Thus, if the chosen convergence parameter, ε ≤ d1−d2
∆t

, collision avoidance is guar-

anteed ∀τ ∈ (t, t+ ∆t].

3.4 End-effector Task Compliance

Pre-grasping tasks for the space robot can include target observation, safe ap-

proach to the grasp locations without collisions, pose synchronization to ensure
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that the grasp locations is directed towards the manipulator, and relative velocity

minimization between the target and the end-effector. We consider two types of

task-induced constraints for the end-effector. i.e. end-effector task compliance,

here.

Waypoint guidance

Here we consider the case that the end-effector is required to go through a certain

finite set of waypoints during the operation. For example, during target observa-

tion, the end-effector is often guided such that the target remains in the robot’s

field of view. Let the waypoints be denoted by gl ∈ SE(3), l = 1, 2, 3..r, to be

traversed in a given sequence of time. We would like to find a continuous trajec-

tory ge(t) ∈ SE(3) that satisfies the task requirements. Interpolation techniques

for motions evolving on SE(3) are not straightforward as compared to Euclidean

spaces due to the lack of a bi-invariant Riemannian metric. However, research

has been done on generating and interpolating trajectories on SE(3) based on

invariant screw motions and by decomposing motion on SE(3) and considering

rotations and translations separately [34, 194, 13, 9].

Consider a point to point planning example as shown in Fig. 3.3. Let
[
ge[0], ξ∨e [0]

]
∈

TSE(3), be the initial end-effector state, where TSE(3) ' SE(3) × se(3) is the

tangent bundle of SE(3). The final end-effector state is given as
[
ge[f ], ξ∨e [f ]

]
.

The goal is to find a C2 trajectory ge(.) : [0, tf ] → SE(3) that satisfies the initial

and final end-effector states. We use the De Casteljau algorithm on SE(3) [9]

which is based on an Ad-invariant pseudo Riemannian metric (a non-degenerate

metric tensor which need not be positive definite). The basic idea behind the

algorithm is to generate a smooth curve by generating ‘control’ points using the

boundary conditions and interpolating via a combination of matrix exponential

(expSO(3), expSE(3)) and logarithm (logSO(3), logSE(3)) maps. We provide the basics

of Logarithm and Exponential maps in the appendix while detailed discussions
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→ Pose F
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z
(m

)

Figure 3.3: End-effector trajectory generated by the De Casteljau algorithm based
on the ad-invariant pseudo Riemannian metric. The initial pose and final pose
are shown as Pose I and pose F, respectively.

on the Decasteljau algorithm can be found in [9, 10].

Continuous tracking

It is also possible that the desired trajectory is given in a continuous form. Let

the desired trajectory be given as gde(t) ∈ SE(3). The pose in discrete time can

then be expressed as

gde [k] , gde(k∆t) =

Qe[k] re[k]

0 1

 , ∀k = [0, N ] (3.52)

Given an end-effector pose trajectory in discrete time, the associated desired

twists are related to the pose via the logarithm map, logSE(3) : SE(3) → se(3),

represented as

ξde [k] = Ne[k]
1

∆t
logSE(3)(g

d
e

−1
[k]gde [k + 1])∧ (3.53)
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After computing the discrete twists for either waypoint guidance using the De-

casteljau algorithm or continuous tracking in Eq. (3.52), the twists can be mapped

back to the joint space using the Jacobian matrix given by Eq. (3.30), which is

expressed in discrete time as

ξde [k] = Jg[k]θ̇[k] + Js[k]

G4[k] G3[k]

G2[k] G1[k]

P0

H0

 (3.54)

With Eq. (3.54), the end-effector pose constraints is expressed as linear equality

constraints given as

ξ̃e[k] = Jg[k]θ̇[k] ≡ ξde [k]− Js[k]

G4[k] G3[k]

G2[k] G1[k]

P0

H0

 (3.55)

Finally, the task constrained trajectory planning problem is expressed as Problem-

3, given as

Problem-3 minimize
θ̇[k],u[k]

∥∥∥Ĵω[k]θ̇[k] + b[k]
∥∥∥2

2
+ u[k]TSu[k]

subject to θ̇[k] = θ̇[k − 1] +
∆t

2
(u[k − 1] + u[k])

θ̇min ≤ θ̇[k] ≤ θ̇max

umin ≤ u[k] ≤ umax

γTJT(θ[k])θ̇[k] ≥ bG[k] (a)

γTĴv[k]θ̇[k] ≥ bB[k] (b)

θ[0] = θ0, θ̇[0] = θ̇0

rb[0] = r0, Qb[0] = Q0

ξb[0] = ξ0
b

Jg[k]θ̇[k] = ξ̃e[k]

(3.56)

Note the inequality constraints a, b in Problem-3 denote the obstacle avoidance
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constraints for the manipulator and the base, respectively. Next, we prove that

Problem-3 is a convex quadratic program with linear constraints.

Proposition 2. The constrained optimization represented in Problem-3 is a con-

vex quadratic program.

Proof. Let z[k] =
[
θ̇[k] u[k]

]T
be the new optimization variable. Problem-3 is

expressed as

minimize
z[k]

z[k]TM[k]z[k] + nTz + l

subject to Cz[k] = d, ∀k = 1, 2..N

Hz[k] ≤ f

z[0] =
[
θ̇0 0

]T
rb[0] = r0, Qb[0] = Q0

θ[0] = θ0, ξb[0] = ξ0
b

(3.57)

where

M[k] =

Ĵω[k]TĴω[k] 0

0 S

 ∈ R2n×2n, n =
[
2Ĵω[k]Tb[k] 0

]
∈ R2n, l = b[k]Tb[k] ∈ R

(3.58)

C =

Jg[k] 0

E −∆t
2

E

 ∈ R(6+n)×2n, d =

 ξ̃e[k][
E ∆t

2

]
z[k − 1]

 ∈ R6+n (3.59)

H =


γTJT(θ[k]) 0

E E

γTĴv[k] 0

E E


∈ R(2n+2)×2n, f =



bG

−
[
θ̇min umin

]T
bB[

θ̇max umax
]T


∈ R2n+2 (3.60)

We first prove that the matrix M[k] is generally atleast positive semidefinite.



39

For a symmetric block matrix X =

X1 X2

XT
2 X4

, we have the following properties

• If X4 is invertible and X4 � 0, then X � 0 if and only if the schur comple-

ment of block X4, schur(X4) = X1 −XT
2X

−1
4 X2 � 0 [46].

• For the case when X1 is rank-deficient or singular, we have the following

equivalence relation: X � 0 if and only if X1 � 0, (E−X1X
†
1)X2 = 0, and

X4 −XT
2X

†
1X2 � 0, where † denotes the pseudo-inverse [46].

• Furthermore, if X1 ∈ Rn×n is a symmetric matrix, then X1 is positive semi-

definite if there exists a matrix F ∈ Rm×n such that X1 = FTF [195].

For the considered case, we know that matrix S which is block X4 is positive

definite. The positive semi-definiteness of M[k] is determined solely by the matrix

X1 which is given as

X1 = (Ĵω)[k]TĴω[k] (3.61)

This leads to

z[k]TM[k]z[k] =
n∑
i=1

(M[k]z[k])2 ≥ 0 (3.62)

At configurations where X1 loses rank, we still obtain the positive semi-

definiteness of matrix M[k] based on the second property discussed above since

X2 = 0 and X4 � 0. Thus, M[k] is proven to be positive semi-definite, and

therefore, we conclude that Problem-3 is a convex quadratic program.

However, there may exist situations where at some node k, the GJM Jg[k] ∈

R6×n is rank-deficient, which leads to dynamic singularities. At such singular

configurations, the rows of the equality constraint matrix C cease to be indepen-

dent. However, the proposed formulation can accommodate such situations by
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decomposing Jg[k] as follows [31]

Jg =
[
J1 J2

]T
(3.63)

where J1 ∈ Rr×n has full row rank and J2 ∈ R6−r×n. The end-effector twists

are correspondingly prescribed as ξ̃e[k] =
[
ξ̃1[k] ξ̃2[k]

]T
with the new equality

constraint

J1[k]θ̇[k] = ξ̃1[k] (3.64)

where ξ̃1[k] denotes the direction of end-effector twists for which there are no

singular configurations. The objective function can then be augmented with a

2-norm of the end-effector pose tracking error in the singular direction, leading to

the new cost function given as
∥∥∥Ĵω[k]θ̇[k] + b[k]

∥∥∥2

2
+u[k]TSu[k]+

∥∥∥J2[k]θ̇[k]− ξ̃2[k]
∥∥∥

2
,

with ξ̃2[k] denoting the twists in singular direction. Compared to inverse kine-

matics based approaches requiring explicit inversion of Jg[k], therefore demanding

arbitrarily large velocities in the neighbourhood of the singularity, the QP formu-

lation can handle such constraints more optimally.

The algorithm for solving Problem-3 in the convex programming framework is

displayed in Algorithm 1, where the function De Casteljau is used to interpolate

the end-effector trajectory if waypoint guidance is required and SolveQP is used

to solve the convex program formulated in Eq. (4.21).
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Algorithm 1 Convex Planning Algorithm

1: Initialize manipulator configuration ∈ SE(3)× Rn

2: Initialize desired end-effector trajectory ge(t)
3: if ge ∈ waypoints then
4: De Casteljau (ge, ξe)
5: end if
6: Choose discretization step h = ∆t
7: Compute discrete time horizon, N =

tf
∆t

8: Discretize end-effector pose gde [k]
9: Get ξde [k] via logSE(3)

10: for k = 0,1 . . . N do
11: SolveQP(θ̇[k], u[k])
12: end for

Numerical Results

Table 3.1: Manipulator physical properties

Base Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7 Link 8 Link 9 Link 10
Mass, kg 800 5 5 5 5 5 5 5 5 5 5
Ix, kgm2 100.4 0.01 0.01 0.21 0.01 0.21 0.01 0.21 0.21 0.01 0.01
Iy, kgm2 75 0.21 0.21 0.01 0.21 0.01 0.21 0.01 0.01 0.21 0.21
Iz, kgm2 100.4 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
Length, m [ 1, 0.75, 1] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

In this section, the proposed convex optimization scheme is numerically validated

using a continuous end-effector tracking example. The space-robotic system con-

sists of a free-floating base spacecraft and a 10-dof manipulator. Table 3.1 presents

the physical properties of the system. Notice the mass ratio of the manipulator to

base is 1
16

, hence significant coupling between the base and the manipulator can

be expected. Three obstacles modeled as convex polyhedrons are assumed in the

proximity of the manipulator. A Gilbert-Johnson-Keerthi (GJK) algorithm [49]

is implemented on MATLAB for collision queries between the obstacles and the

manipulator. The inner and outer safety threshold distances for obstacle avoid-

ance are chosen as 0.05 and 0.1 m while the convergence parameter ε is set as

0.5 m· s−1. The goal of the planning algorithm is to minimize the base attitude

disturbance and control effort while adhering to the end-effector task constraints,

joint limits, and ensure a collision free motion.
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Table 3.2: Numerical simulation parameters

Symbols, unit Initial Conditions (t=0)

Base

rb, m

Qb

ξb, m· s−1 and rad·s−1

[
0 0 0

]T
Identity matrix[
0.005 0.005 −0.005 0.003 −0.0001 0.008

]T
Manipulator

θ, rad

θ̇, rad·s−1

[
π
5
−2π

3
0 π

4
−π

4
π
2

π
2
−π

2
0 0

]T[
0.23 0.08 0.06 0.24 0.05 0.19 −0.15 −0.11 0.03 0.17

]T
Initial Momentum

P0, kg · m · s−1

H0, kg · m2 · s−1

[
5.08 6.81 5.81

]T[
−2.64 0.54 −0.55

]T
Constraints

State bounds
θ, rad

θ̇, rad· s−1

θ ∈
[
−2π

3
2π
3

]
θ̇ ∈

[
−π

2
π
2

]
Control bounds u, rad·s−2 θ̈ ∈

[
−2π

3
2π
3

]
Desired Trajectory

End-effector pose
re(t), m

Qe(t)

[
−0.35 + 0.5 sin πt

10
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Figure 3.4: End-effector pose trajectory. End-effector attitude is displayed at
finite intervals. Pose I and F denote initial and final pose, respectively.

The total time of operation is specified as tf = 6 s with a step size of 30

ms, leading to a total of 200 discrete nodes. The initial conditions are presented

in Table 3.2 and notice these conditions are chosen such that the total initial
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momentum is non-zero for the system.
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Figure 3.5: End-effector trajectory error. Attitude error is computed via the
logarithm map,

∥∥logSO(3)

(
Qd
e(t)

TQe(t)
)∥∥, where Qd

e(t) ∈ SO(3) is the desired
attitude trajectory.

Fig. 3.4 illustrates the manipulator end-effector pose trajectory obtained from

the planning algorithm in the inertial frame. The attitude of the end-effector is

also displayed at discrete intervals. The relative end-effector position and attitude

errors normalized to the reference trajectory are displayed in Figs 3.5. Some

deviation is observed in the computed pose, which is attributed to the numerical

error since a first order Euler integration scheme has been used to compute the

joint angles. However, from Figs. 3.5, we observe that the relative position error

is less than 0.4% for a 6 s operation and the attitude error expressed via the

exponential coordinates is less than one degree.
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Figure 3.6: Three-dimensional manipulator motion. Obstacles are shown in blue.
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Figure 3.7: Base spacecraft pose trajectory. Base attitude is displayed at finite
intervals. Pose I and F denote initial and final pose, respectively.

The corresponding three-dimensional trajectory of the robotic system along
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with the obstacle regions relative to the inertial frame is shown in Fig. 3.6. The

base spacecraft motion is illustrated in Figs. 3.7 and 3.8. Although it may

seem that the base rotation is large, this is largely due to the initial non-zero

base angular velocity. If on the other hand, only the control effort is minimized in

Problem-3, the base rotates by approximately 12 deg. In summary, the computed

QP solution allows for smooth tracking of the desired trajectory in the presence of

obstacles, state and control bounds, and even as the base rotates by approximately

8 deg and translates by approximately 6 cm during the motion. Following end-

effector approach to the target, the next phase consists of physical interception in

which the robot physically grasps the capture point of the target. This requires

manuerving the space-robotic system to have zero relative velocity with respect to

target to ensure a safe and successful capture. Following mechanical interfacing,

control torques on the manipulator are applied to bring the entire capture
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Figure 3.8: Base attitude change during manipulator operation. Attitude change
is computed as

∥∥logSO(3)

(
Qb(t = 0)TQb(t)

)∥∥, where Qb(t) ∈ SO(3) is the attitude
trajectory of the base spacecraft.
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Figure 3.9: Joint angle trajectory.

The resulting joint angle trajectories obtained from the solution of the QP

problem are shown in Fig. 3.11; the joint velocities are shown in Fig. 3.10; and

the joint control inputs are shown in Fig. 3.11. All state and control constraints

have been satisfied as observed from these figures. Furthermore, the magnitude

of the total system momentum remains constant as illustrated in Fig. 3.12.

The planning algorithm is implemented on a PC running Windows 10, with

an Intel Core i5 CPU @ 2.90 GHz and 8 GB RAM. We use the YALMIP [100]

optimization environment on MATLAB with the Gurobi [51] QP solver for the

numerical simulations. In order to appreciate the advantage in formulating the

motion in the joint velocity space which leads to a QP, we compared our approach

with an alternate discrete formulation which solves Problem-1, where the decision
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variables are chosen as both joint angles and velocities.
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Figure 3.10: Joint velocity trajectory.

Note that with this approach, we end up with a non-convex, nonlinear pro-

gram. Fig. 3.13 illustrates the computation time comparison between our pro-

posed formulation and the alternate nonlinear program along with the given step-

size for the problem. We test both the Barrier (B) algorithm and the Dual-simplex

(DS) algorithm within the Gurobi solver for the proposed QP formulation. A

sequential quadratic programming (SQP) solver in the Knitro optimization pack-

age [26] is used to solve the nonlinear program. The SQP solver requires an initial

guess which is used and iteratively refined to linearize and convexify the equality,

inequality constraints, and objective, respectively. We use the joint states at the

previous node [k-1] as the initial guess for the problem to be solved at node [k].
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Figure 3.11: Joint acceleration trajectory.
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This greatly speeds up the computation time for the SQP solver. We observe that

the Barrier method for solving the QP is approximately two orders of magnitude

faster than the corresponding nonlinear program solver. Furthermore, with an

average computation time of 8 ms per node where the given step size is 0.03 s

per node, real-time planning and replanning can indeed be achieved. We also

compare the optimal solution obtained by the QP and the nonlinear program.

Their objective values are shown in Fig. 3.14. It is observed that the objective

value is slightly higher for the QP initially, however overall the difference is small.



50

Chapter 4

Globally optimal model predictive control for

spacecraft trajectory tracking

4.1 Introduction

Autonomous orbit control in challenging dynamical regimes is a significant chal-

lenge in spacecraft guidance and control. Particularly, orbit station-keeping neaar

Libration points originating from the solution of the restricted three body prob-

lem is of particular interest. These points provide an ideal location for deep space

robotic and human explorations as well as monitoring and studying the solar

activity. A comprehensive architecture of human exploration missions to such

points can be found in Farquhar et al [43]. The dynamics in proximity of these

libration points is well investigated [47]. The phase space around the collinear

libration points is a saddle×center×center type. Among the infinitely many peri-

odic and quasi-periodic solutions, the most well-known include the halo, vertical,

and planar Lyapunov orbits. A key feature of such orbits is the inherent insta-

bility associated with the motion. Therefore, an active station-keeping control

strategy is often required to keep the spacecraft close to the desired reference

orbit.

Several station-keeping strategies have been proposed in the literature; see

Shirobokov et al. [156] for a comprehensive survey. Time-varying linear quadratic

regulator (LQR) techniques and backstepping control with time-invariant LQR

have been used to design optimal feedback control strategies for halo orbit station-

keeping for the Earth-moon L1 point [122]. LQR based control is also studied in
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Ghorbani and Assadian [48] for the Earth-moon system but the model takes into

account the gravitational perturbations from the Sun, planets and eccentricity

effects. Nonlinear programming based control strategies have been explored in

Ulybyshev [172] for long term station-keeping for lunar halo orbits. H∞ based

control has been applied for asymptotic stabilization of spacecraft motion in a

halo orbit by considering a linear time-varying approximation of the nonlinear

dynamics [74]. Impulsive control methods such as discrete LQR and sliding mode

control have been studied for station-keeping for halo orbits at the L2 Lagrange

point in the Earth-moon system [91]. Bai and Junkins [12] apply the modified

Chebyshev-Picard iteration method for halo orbit station-keeping by considering

the trajectory in the form of orthogonal Chebyshev polynomials. By constraining

the positions at two points, the station-keeping problem is formulated as a two-

point boundary value problem which is solved to find discrete control impulses.

Although the literature on spacecraft station-keeping in libration point orbits

is rich, several control issues exist. Some significant challenges include state and

actuator constraints on the system, optimality in the presence of model uncer-

tainty, and on-board feedback among others. Model predictive control (MPC) is

an interesting solution for the challenges listed above. Due to MPC’s inherent

capability to account for state and control bounds while optimizing the desired

performance criteria, in addition to real-time computational capability for liner

and (some) nonlinear systems, it has become a very popular control methodol-

ogy in aerospace applications such as relative spacecraft motion control [184],

rendezvous and proximity operations [36, 55, 54, 183, 42]. Peng et al. [134] have

demonstrates that the receding horizon control method is feasible to maintain pe-

riodic libration point orbits in the more complex Sun-Mercury elliptic restricted

three-body problem using a linearized model. Infact, most of the literature con-

sider linear dynamics for MPC control design due to the convenient convexity

of the optimization problem resulting from the simplified/linearized dynamics (as
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long as other constraints are also convex). This allows such problems to be solved

via fast and reliable interior point methods.

However, the dynamics describing the motion of the spacecraft in a three

body regime is highly nonlinear. In this chapter, we consider a nonlinear model

predictive control strategy for station-keeping of libration point orbits. Although

MPC strategies have been considered in prior studies [66], the emphasis has been

either on obtaining solution using linearized dynamics, or locally optimal solu-

tions using nonlinear MPC. In contrast, we propose a nonlinear dynamical model

based on a polynomial approximation of the nonlinear terms. Apart from cap-

turing higher order nonlinearities, the optimal control problem associated with

this dynamical model with a polynomial cost function can be transcribed as a

static polynomial optimization. Interestingly, such problems can be reduced to

semidefinite programs (SDP) via theory of moments and non-negative polynomi-

als [78]. This allows the solution for the original non-convex polynomial MPC

problems to be found by solving a series of convex SDPs [53]. While the series

of SDPs provide a lower bound on the optimal value of the problem, stronger

theoretical guarantees exist which prove that the method is monotonically con-

vergent to a global optimum in certain cases. This is appealing for applications

where control performance degradation is critical as the globally optimal solutions

may be more desirable. Furthermore, this approach does not require any initial

guess as opposed to local nonlinear descent methods. The remainder of the chap-

ter is organized as follows. In section 4.2, the dynamical model for the halo orbit

station-keeping is developed. Section 4.3 presents the background behind polyno-

mial optimization; Section 4.4 focuses on the formulation of the original problem

as a non-convex polynomial MPC problem. Numerical results for station-keeping

of Halo and Lissajous orbits using the polynomial MPC approach are shown in

Section 4.5.
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4.2 Equations of Motion

The circular restricted three body problem (CRTBP) can be stated as evaluating

the motion of a negligible mass m3 under the gravitational influence of the two

primaries m1 and m2 that move in circular Keplerian orbit owing to their gravita-

tional interaction. Let the position vector of m3 be defined as r =
[
x y z

]T
in

the synodic frame with the barycenter as the origin and let r1, r2 be the position

vectors of the spacecraft from the Sun and Earth respectively. Fig. 4.1 illustrates

the geometry of the Sun-Earth three body system. The dimensionless equations

of motion are expressed as [166]

ẍ = 2ẏ + x− (1− µ)
x+ µ

r3
1

− µx− 1 + µ

r3
2

(4.1)

ÿ = −2ẋ+ y − (1− µ)
y

r3
1

− µ y
r3

2

(4.2)

z̈ = −(1− µ)
z

r3
1

− µ z
r3

2

(4.3)

Here,

r2
1 = (x+ µ)2 + y2 + z2, (4.4)

r2
2 = (x− 1 + µ)2 + y2 + z2 (4.5)

and where the gravitational parameter µ = m2

m1+m2
, the distance between the

primaries is normalized to 1, while the new time unit is taken as the product of

the angular velocity and time. To address the nonlinear terms in the equations

above, we translate the origin to the libration point and expand the nonlinear

terms as functions of Legendre polynomials Pn which is defined as

1√
(x− a)2 + (y − b)2 + (z − c)2

=
1

D

∞∑
n=0

(
ρ

D
)nPn(

ax+ by + cz

Dρ
) (4.6)
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Figure 4.1: Geometry of the three body system

where D2 = a2 +b2 +c2 and ρ2 = x2 +y2 +z2. Define γ as the distance between L1

and the smaller primary. We can express the CRTBP equations in a coordinate

frame centered at L1 using Legendre polynomials as [72]

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρ
nPn(

x

ρ
) (4.7)

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑
n≥3

cnρ
nPn(

x

ρ
) (4.8)

z̈ + c2z =
∂

∂z

∑
n≥3

cnρ
nPn(

x

ρ
) (4.9)

where cn = γ−3(µ + (−1)n(1 − µ)( γ
1−γ )n+1). A third order approximation was

used by Richardson [143] to compute periodic orbit solutions in the vicinity of

collinear libration points. The approximated nonlinear equations are expressed

as

ẍ− 2ẏ − (1 + 2c2)x =
3

2
c3(2x2 − y2 − z2) + 2c4x(2x2 − 3y2 − 3z2) +O(4)

(4.10)

ÿ + 2ẋ+ (c2 − 1)y = −3c3xy −
3

2
c4(4x2 − y2 − z2)y +O(4) (4.11)

z̈ + c2z = −3c3xz −
3

2
c4z(4x2 − y2 − z2) +O(4) (4.12)
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Using the equations shown above, Richardson developed a third-order periodic

solution using the Lindstedt-Poincarè perturbation method. While such pertur-

bation techniques prove to be qualitatively insightful, they are insufficient for

dynamical analysis near the libration points. Analytical methods such as the

one developed by Richardson are then combined by numerical techniques such

as differential corrections to iteratively produce a periodic orbit. Fig. 4.2 illus-

trates a nominal Halo orbit for the Sun-Earth restricted three body system in

dimension-less coordinates obtained using the single shooting method.

For the purpose of this study, Taylor expansions are used to approximate the

nonlinear CRTBP model instead of Legendre expansions. This is done for two

reasons: 1. Taylor expansions are more general and therefore applicable to other

similar dynamical systems such as relative spacecraft dynamics. 2. In addition,

it was found that Taylor expansions resulted in more faithful representation of

the nonlinear model as compared to Legendre polynomial expansions. A second
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order Taylor expansion model is used in this work which is expressed as

ẍ = 2ẏ +

(
3µ

2γ4
L

− 3µ− 1

2(γL − 1)4

)(
2x2 − y2 − z2

)
+

(
2µ

γ3
L

− 2µ− 1

(γL − 1)3

)
x− µ− γL

(4.13)

+
µ

γ2
L

− µ− 1

(γL − 1)2
+ 1

ÿ = −2ẋ−
(

3µ

γ3
L

− 3µ− 1

(γL − 1)3

)
xy +

(
1− µ

γ3
L

+
µ− 1

(γL − 1)3

)
y (4.14)

z̈ = −
(

3µ

γ3
L

− 3µ− 1

(γL − 1)3

)
xz +

(
µ− 1

(γL − 1)3
− µ

γ3
L

)
z (4.15)

Due to the inherent instability of these orbits in a realistic n-body scenario

with perturbations such as solar radiation pressure, active station-keeping in the

form of continuous or impulsive control is often needed. Once a nominal orbit has

been specified, the controller ensures that the spacecraft trajectory remains suf-

ficiently close to the nominal orbit. In addition, instead of mitigating the effects

of system nonlinearity by control, it may be economical to use a more accurate

nonlinear model. In the next section, we propose the nonlinear polynomial model

given by Eq. 13-15 (truncated at order two) for design of a station-keeping con-

trol strategy based on polynomial optimization based nonlinear MPC which are

discussed in the next sections.

4.3 Polynomial Optimization

In Chapter 2, the methodology of sum-of-squares and semidefinite programming

was introduced. In this section, the discussion on polynomial optimization is

studied further. Consider the following optimization problem

minimize
x

f(x)

subject to x ∈ K
(4.16)
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where K := {x : gj(x) <= 0, j = 1, 2, 3..} is a basic semi-algebraic set, i.e. a set

formed by the intersection of finitely many polynomial inequalities and gj(x), f(x)

are real multivariate polynomials. We define a polynomial p(x) in x ∈ Rn as a

finite combination of monomials, given by [131]

p(x) =
∑
α

cαx
α =

∑
α

cαx
α1
1 ...x

αn
n , cα ∈ R, α = (α1...αn), αi ∈ N0. (4.17)

A polynomial is denoted as sum of squares (SOS) if it can be represented as

p(x) =
∑
j∈J

(
gj(x)

)2
(4.18)

Alternatively, a multivariate polynomial p(x) with degree 2d and in n variables

is a SOS if it can be represented as

p(x) = zTQz (4.19)

where Q � 0 and z = [1, x1, x2...xn, x1x2...x
d
n] is the vector of monomials upto

degree d. The optimization problem represented in Eq. 4.16 is non-convex and

NP complete. The problem can be rewritten with lifted variables as

maximize
x∈K,λ∈R

λ

subject to f(x)− λ ≥ 0

(4.20)

Thus, we require the largest λ such that f(x) − λ is non-negative over a semi-

algebraic set K. By replacing the non-negativity condition by positivity, tractable

positivity certificates can be leveraged to solve this problem.

Therefore, a weaker formulation of Eq. 4.21 in terms of positivity, and in
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particular SOS ( if K is compact) is described as

maximize
x∈K,λ∈R

λ

subject to f(x)− λ = s0(x) +
m∑
j=1

sj(x)gj(x)
(4.21)

where s0(x), sj(x) are SOS with deg(s0), deg(sjgj) ≤ 2t, for any t ≥ deg(p(x)/2),

deg(gj(x)/2). The constraint in Eq. 4.21 is obtained from the positivity certificate

proposed by Putinar given below

Lemma 1. (Putinar’s positivstellensatz [82]) Define the quadratic module gener-

ated by the family of polynomials gj as Qg expressed as

Q(g) := σ0 +
m∑
j=1

σjgj (4.22)

where (σ)mj=0 are SOS. Assume there exists u ∈ Qg such that the level set {x ∈

Rn : u(x) ≥ 0 is compact. If p(x) > 0 on the set K, then p(x) ∈ Qg. Therefore,

we can express

p(x) = s0 +
m∑
j=0

sjgj (4.23)

for some SOS polynomials (s(x))mj=0.

Denoting the problem in Eq. 4.21 as PSOS, we note that this problem is in

fact a semidefinite program which can be solved upto global optimality and that

PSOS provides a lower bound on the original problem. Furthermore the bounds

can be strengthened by increasing t. This is to say

PSOS(t) ≤ PSOS(t+ 1) ≤ P ∗
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where P ∗ is the optimal value of Eq. 4.21. Furthermore, the polynomial opti-

mization problem shown above can also be formulated as an infinite dimensional

linear optimization problem over the space of measures. Let K be a Borel subset

of Rn and let M(K) be the space of finite signed Borel measures on K, with the

positive cone M(K)+ being the space of finite Borel measures µ on K.

P∗ = minimize
x∈K

p(x) = minimize
µ∈M(K)+

∫
p(x)dµ subject to

∫
K
dµ = 1 (4.24)

The proof of Eq. 4.24 can be found in the book by Lasserre [82] and is not provided

here. Denote p(x) =
∑

α pαx
α = cT[x(2t)] such that α ≤ 2t, where [x(2t)] is now a

monomial vector. Each monomial xα = xα1
1 x

α2
2 ..x

αn
n is modeled by a new variable

yα and [x(2t)] is modeled as (yα)‖α‖≤2t.

The original polynomial optimization problem is then written in terms of the

sequence of moments of measures as

minimize
x∈K

cTy

subject to y ∈ conv([x(2t)] : x ∈ K)

(4.25)

We model the positive semi-definite constraint [x(t)][x(t)]T � 0 by Mt(y) =

(yα+β)‖α‖,‖β‖≤t.

If x ∈ K, then the constraint gj(x)[x(tj)][x(tj)]
T ≥ 0 is expressed by Mtj(y) =∑

γ(gjγyα+β+γ)‖α‖,‖β‖≤tj) and where tj = t− deg(gj).

Finally, the dual-moment problem is expressed as [83]

maximize
y

cTy

subject to Mt(y) � 0

Mtj(gjy) � 0, j = 1, 2..m

y0 = 1

(4.26)
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The optimization problem expressed in Eq. 4.26 is solved sequentially with in-

creasing t. Based on the rank equality condition for the moment matrices in the

equation, the global optimality of the solution can be concluded. In the next

section, we show how the optimal tracking control problem can be cast as a poly-

nomial optimization and then solved in a receding horizon fashion as is done for

MPC.

4.4 MPC Approach

MPC is a control methodology where a constrained open-loop optimal control

problem is solved at each sampling instant over a finite time horizon [73]. How-

ever, only the first control action is implemented and the horizon is shifted with

the new state used as the initial condition. This provides a feedback action,

making the system robust to disturbances. Systems with linear dynamics and

convex inequality constraints and performance index can be solved efficiently us-

ing standard convex optimization solvers. For nonlinear dynamical systems, MPC

is more challenging since the resulting problem is non-convex and local optimum

solutions are generally found. However, for the class of systems with polynomial

vector fields, the global optimum of the non-convex MPC can be obtained [140].

Consider a constrained discrete-time nonlinear system given by

xk+1 = f(xk, uk), xk ∈ X , uk ∈ U (4.27)

where x ∈ Rn are the system states and u ∈ Rm are the control inputs. The

function f is a real polynomial function in x and u with the equilibrium point at

the origin. A polynomial vector field f : Rn×Rm → Rn, f(x) = [f1(x), ...., fn(x)]T

is a vector field with fi(x) ∈ R[x] [139]. The sets X and U are assumed as semi-

algebraic sets given by a union of a finite number of real polynomial equations

and inequalities in x and u, respectively. The open-loop optimal control problem
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which is required to be solved at each instant k in a receding horizon manner is

then expressed as

minimize
uk

JN(xk, uk)

subject to xi+1|k = f(xi|k, ui|k), xk|k = xk

ui|k ∈ U , xi|k ∈ X

xk+N ∈ Xf , i = k, k + 1....k +N − 1

(4.28)

where, xi|k is the predicted state at instant i > k, the cost function JN(xk, uk) =∑k+N−1
i=k l(xi|k, ui|k) + F (xk+N |k) and N > 0 is the control horizon. Under certain

conditions on the terminal cost F (xk+N |k), and terminal set Xf , the asymptotic

stability and recursive feasibility of the closed-loop system can be determined.

This is not discussed here for brevity.

Under the assumption that the cost function described above can be expressed

as a polynomial map and the terminal set is described via a polynomial inequality,

we now reformulate the nonlinear MPC problem as a polynomial optimization.

The predicted states are expressed in compact form as

ζ = [xk+1|k, xk+2|k, ....xk+N |k]
T (4.29)

Using a recursive relation, the system is then described via the control ν =

[uk|k, ....uk+N−1|k]
T and the state xk as

ζ = F (ν, xk) (4.30)

Note that Fi, i = 1...N , are now multivariate polynomial functions in ν. Since we

already define the inequality constraints as polynomial and assume a polynomial

cost function, we obtain the following theorem

Theorem 2. [139] The finite horizon optimal control problem defined in Eq. 15
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can be formulated as a polynomial optimization problem of the form

minimize
ν∈K

p0(ν) (4.31)

for discrete time polynomial systems, if K = {ν ∈ Rm.N : pi(ν) ≥ 0, i =

1, 2...2(n + m)N + 1}, is a compact set described by multivariate polynomial in-

equalities pi(ν) ∈ R[ν], i = 1, 2...2(n+m)N + 1.

Having cast the open-loop optimal control problem as a polynomial optimiza-

tion, relaxation methods based on the moment-SOS approach can be used to solve

the MPC problem. The tracking MPC problem studied here uses quadratic ob-

jective for the tracking error and the control effort. The formulation is expressed

as [112]

minimize
u

Np−1∑
i=1

(xi|k − xdi|k)TQ(xi|k − xdi|k) + uT

i|kRui|k + eTNp|kPeNp|k

subject to xi+1|k = f(xi|k, ui|k)

ui|k ∈ U

xi|k ∈ X

xk+N ∈ Xf , i = k, k + 1....k +N − 1

(4.32)

where xdi|k is the desired trajectory at instant i > k and eNp|k = xNp|k−xdNp|k. Both

terminal constraint set Xf and terminal cost P are used in the numerical simu-

lations to ensure recursive feasibility and stability. The equations of motion are

obtained by truncating the dynamics near L1 upto second order and discretized

using a fourth order Adam-Bashworth method. Once the control input is com-

puted using the formulation expressed in Eq. 4.32, a change of coordinates is

carried out to express the acceleration in the barycenteric frame, wherein the first

control input is implemented on the nonlinear CRTBP equations given in Eqs.
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Parameter Value
Q diag(

[
106 106 106 1 1 1

]
)

P Discrete algebraic Riccati solution
R diag(

[
103 103 103

]
Np 15
N 60

Table 4.1: Polynomial MPC parameters

1-3 and the corresponding new state is obtained, which after mapping backing to

the L1 coordinate frame becomes to new initial state and the problem is solved

in a receding horizon fashion. The performance of the approach is examined in

the next section.

4.5 Numerical results

In this section, the proposed polynomial MPC approach is evaluated for station-

keeping of a Halo orbit near the L1 libration point in the Sun-Earth restricted

three body system. The amplitude (Az) of the halo orbit is taken as 150, 000 km.

The nominal orbit is generated using the third order approximation and refined

using the single shooting method as discussed in Section 4.1.

The total horizon length is approximately taken as one revolution for the Halo

orbit, where it is parameterized in N equal spacings of true anomaly with a step

size of 0.051. A key issue with polynomial MPC is the choice of the prediction

horizon Np. If Np is taken as too large, the number of SDP variables grow

exponentially, thereby rendering the problem computationally intractable. The

parameters used in the tracking MPC problem are provided in Table 4.1. A very

large initial orbital insertion error of 40000 km is considered in the x direction

Fig. 4.3 shows the controlled orbit obtained in the coordinate frame centered at

L1. The projection of the computed trajectory in XY and XZ plane is displayed in

Fig. 4.4. Good tracking accuracy can be observed from the trajectory computed
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Figure 4.3: Three-dimensional tracking trajectory

using the polynomial MPC. The corresponding control input is illustrated in

Fig. 4.5.
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Figure 4.4: Two dimensional project of the tracking trajectory in XY and XZ
plane
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Figure 4.5: Control accelerations obtained using polynomial MPC

As a comparison, the nominal nonlinear CRTBP model was used in the MPC

framework with the same parameter. In addition, linear quadratic control (LQR)

and linear MPC models were also used and the results are compared with the

polynomial MPC (PMPC) scheme, solved globally using Gloptipoly and locally

using IPOPT in Table 4.2

Scheme ∆V (ms−2) Solver
PMPC (global) 7.94×10−4 Gloptipoly with Mosek
Nominal NMPC 6.81×10−4 IPOPT
PMPC (local) 9.02×10−4 IPOPT

LQR 7.01×10−4 NA
LMPC 9.78×10−4 Gurobi

Table 4.2: Comparison of ∆V required for tracking using different control schemes

It is observed that nominal nonlinear MPC has lower ∆V compared to that

of global PMPC. This is expected as the PMPC uses an approximate model to

compute the control inputs. LQR is also shown to have a lower ∆V , however,

LQR cannot accommodate state and control constraints.
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Figure 4.6: Computation time taken per MPC step
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Figure 4.7: Three-dimensional Lissajous trajectory

The polynomial MPC method implemented on a PC running Windows 10,

with an Intel Core i5 CPU @ 2.90 GHz and 8 GB RAM. We use the YALMIP [100]

optimization environment on MATLAB with the Gloptipoly [58] toolbox for
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global polynomial optimization which in turn uses the Mosek [117] SDP solver.

The computation time by these methods is also recorded and is illustrated in

Fig. 4.6
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Figure 4.8: Control input generated using PMPC

0 5 10 15 20

-1

-0.5

0

0.5

1

104 x y z

Figure 4.9: Tracking error profile

Next, the PMPC method is studied for trajectory tracking of Lissajous orbit

in the Earth-Moon restricted three body problem. A nominal orbit is gener-

ated and corrected using multiple shooting. An insertion error of 9500 km is
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considered in the x-direction. The total horizon length is taken as 100 which

corresponds to 22 days. The prediction horizon considered is 10, corresponding

to 5.45 hours. Fig. 4.7 shows the three-dimensional tracking trajectory generated

with the PMPC method. The control inputs generated by PMPC is shown in

Fig 4.8. The tracking error is illustrated in Fig. 4.9. The tracking error is seen to

converge within three days.

Np 2 6 10 15
PMPC ∆V 0.059 0.03212 0.03206 0.0318
NMPC ∆V DNC 0.03219 0.03212 0.032
LMPC ∆V 0.117 0.0475 0.047 0.0465
LQR ∆V 0.12 0.12 0.12 0.12

Table 4.3: Control comparisons for Lissajous orbit tracking

In Table 4.3, the ∆V required for tracking is computed for a range of different

prediction horizons. The PMPC approach is shown to have lower DeltaV values

than linear MPC, LQR and nonlinear MPC. Moreover, for a very small prediction

horizon, the nonlinear MPC failed to converge to a feasible solution. Although

PMPC obtains similar control budget as compared to nonlinear MPC, it does

not require any warm start and initial guesses. Furthermore, while the tracking

performance of polynomial MPC is good, its applicability is still limited to small

prediction horizons. For larger horizons, the problem size increases exponentially

and while theoretically the optimization problem is solvable in polynomial time, it

is computationally demanding. In cases where the problem size is big, parametric

explicit MPC formulations using algebraic geometry maybe more desirable [45].
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Chapter 5

Robust controller synthesis for polynomial

systems using convex optimization

In the preceding chapters, the problem of real-time, ’globally’ optimal trajectory

planning and control has been discussed. However, a key aspect of robustness

to disturbances is not considered. In this chapter, a convex optimization based

approach is studied for the synthesis of robust disturbance observer based con-

trol. Convex optimization based stability analysis and control methods have

received widespread attention, especially for polynomial systems. In particu-

lar, the moment based Lasserre hierarchy [83] and its dual the sums-of-squares

method for solving global non-convex polynomial optimization problems using

convex programming methods have been applied to a wide range of problems

such as polynomial model predictive control [53, 112], occupation measure based

optimal control [81], and robust stability analysis [67]. Robust control of linear

and nonlinear systems has also been addressed using Linear Matrix Inequalities

(LMI) based approaches [149]. More recently, input constrained robust control of

polynomial systems using polynomial optimization is addressed in [138]. While

several robust control methods exist, most of them are based on the worst case

approach which leads to a conservative control design. Moreover, for robust op-

timization based control, constraints on the convexity of the disturbance set may

be typically required.

Disturbance observer based control [30] enables a more flexible approach in

dealing with disturbance attenuation. In this framework, a nominal controller is

first designed under the assumption that no disturbances act on the system, then
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disturbance compensation is added to counteract the influence of the perturba-

tions acting on the system. The feed-forward compensation requires an estimate

of the disturbance which is provided through a suitably designed linear or non-

linear disturbance observer (NDOB). A distinct advantage of this approach is the

so called ‘patch’feature [90] wherein after the observer synthesis for the given sys-

tem, it can be added to different control systems without requiring a completely

new control design and formal verification. Furthermore, no assumptions such as

convexity are needed for the disturbance input apart from its boundedness.

The design of the NDOB depends on the dynamics of the nonlinear system

studied. In particular, the NDOB gain matrix explicitly depends on the time-

varying disturbance-to-state mapping to ensure convergence of the disturbance

estimation error. Due to nonlinearity of the mapping, design of such DOBs is

non-trivial and indeed can be extremely challenging. For systems perturbed by

harmonic disturbances with known frequency, [29] provides a DOB synthesis solu-

tion using differential geometric methods. However, most of the current methods

for DOB synthesis are tailored to particular problems. In [87] and [165], the DOB

synthesis is made simpler by considering the upper bound of the mapping with

the disturbance. However, this approach is sub-optimal and in general may not

work for general nonlinear systems.

For polynomial systems, the disturbance to state mapping is typically a poly-

nomial matrix or vector field. Thus, it is possible to formulate the DOB synthesis

problem as a polynomial optimization and leverage sum-of-squares programming

for its solution. Although physical systems in general are not polynomial,as a con-

sequence of the Weierstrass approximation theorem, any continuous function in a

closed domain can be uniformly approximated using polynomial functions [145].

Therefore, we focus on the DOB synthesis for general polynomial systems in this

work. Our main contributions of the proposed approach are two fold: A sys-

tematic framework is provided for design of NDOBs for systems with polynomial
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vector or matrix fields. Using sum-of-squares programming, it is demonstrated

how to design exponentially convergent NDOBs in addition to providing solu-

tions to constrain the gain magnitudes so that chattering in the control input can

be avoided. Secondly, for systems with mismatched disturbances where asymp-

totic stabilization is typically not possible, a suitable compensation gain matrix

is proposed and the input-to-state stability of the system is verified using sum-

of-squares (SOS) programming.

5.1 Background

Consider the class of affine nonlinear polynomial systems defined by

ẋ = f(x) + g1(x)u+ g2(x)d (5.1)

where x ∈ Rn, u ∈ Rm, d ∈ Rm. d is the disturbance vector which may be constant

or time-varying. It is assumed that f(x), g1(x), and g2(x) are polynomial vector

or matrix fields and hence are smooth functions of x. A general design framework

for NDOB based control is to separately design a nonlinear feedback controller

and an observer to estimate the disturbance. Finally, the NDOB is integrated

as a feed-forward to the controller to attenuate the disturbances. Suppose, that

the disturbance is bounded, slowly-varying but unknown. A suitable structure of

NDOB is expressed as [29]

ḣ = −l(x)g2(x)h− l(x)[g2(x)p(x) + f(x) + g1(x)u] (5.2)

d̂ = h+ p(x) (5.3)

where h ∈ Rm is the internal state of the observer, d̂ is the estimated disturbance,

and p(x) is a nonlinear function to be designed. The observer gain matrix l(x) is
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defined as

l(x) =
∂p(x)

∂x
(5.4)

Let the disturbance estimation error be denoted as ed, using (5.2) and (5.3), the

error dynamics is given by

ėd =
˙̂
d− ḋ = −l(x)g2(x)ed, for ḋ ≈ 0 (5.5)

It is seen that for a suitable choice of l(x), the estimation error dynamics can be

made asymptotically stable. For exponential stability, the design of l(x) should

satisfy

−eTd l(x)g2(x)ed ≤ −γ ‖ed‖2
2 (5.6)

where γ is a positive constant. In most applications studied under DOB based

control, the choice of l(x) is made simple since the disturbance to state mapping

given by g2(x) is assumed to be an identity matrix. Therefore, finding l(x) which

is positive-definite renders the error dynamics stable. For problems with special

structure, such as Euler-Lagrange systems, a systematic choice of l(x) was pro-

posed in [115]. Assuming full column rank for g2(x), one suitable parameterization

for l(x) is

l(x) = αg†2(x) (5.7)

where (.)† denotes the left inverse of the matrix and α > 0. Note, however, that

this choice may not be optimal and as such, depends on the system in question

which may not satisfy the rank condition imposed on g2(x). The constraints
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originating in (5.6), restrict the usage of NDOBs. It also paves the way for in-

vestigating alternate methods for design of NDOBs that are general enough for a

class of nonlinear systems. Another significant challenge which restricts the usage

of NDOBs is the so called ‘matching’condition. Under the matching condition,

for nonlinear systems, the disturbance and control must enter the system through

the same channel, i.e. g1(x) = g2(x). In such cases, the controller takes the form

u(x) = un(x)− d̂, where un is the feedback controller for the nominal unperturbed

system. For systems not satisfying this requirement, differential geometric tech-

niques are proposed in [189] to attenuate disturbance effects from system output

channels. However, in this work, we focus on finding an exponentially conver-

gent NDOB and a disturbance compensation gain function that renders the state

and disturbance estimation error dynamics input-to-state stable (ISS) using SOS

programming.

5.2 Disturbance Observer and Control Design

Assumption 1. The external disturbance d is unknown, slowly-varying, ḋ ≈ 0,

but bounded.

For a general nonlinear function g2(x), the design of p(x) satisfying( 5.5) is

computational challenging and often depends on the system studied. Except for

special cases such as linear systems or when g2(x) does not depend on the state,

NDOB synthesis becomes problem dependent.

Proposition 3. Consider the class of nonlinear matrix function g2(x) ∈ Rn×m

that are restricted to be polynomial functions of the state x. The NDOB gain

matrix l(x) and auxiliary vector p(x) synthesis can be posed as a polynomial op-

timization problem and solved using SOS relaxations [110].

Proof: Define pi(x) = Σ0≤j+k≤dcijkx
jxk, ∀i = 1, 2, 3..l as a generic d-order

polynomial to be designed such that l(x) = ∂p(x)
∂x

. The synthesis of p(x) is cast as
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a polynomial optimization problem given by

minimize
cijk

‖c‖1

subject to l(x)g2(x)− υI � 0

(5.8)

where I is an identity matrix of appropriate size, υ is a small but positive scalar,

and l(x)g2(x) : Rn → Sm, is a polynomial mapping, i.e., each entry l(x)g2(x)[ij]

of the m×m symmetric matrix is a polynomial in the indeterminate x, c is the

vector of coefficients cijk. This is indeed a specific instance of the broader class

of polynomial optimization problems where the matrix constraint in Eq. (5.8)

defines a basic semi-algebraic set K := {x : qi(x) > 0, i = 1, 2, 3..} i.e., a set

formed by the intersection of finitely many polynomial inequalities. Let r(t, x) =

det
(
tI − (l(x)g2(x) − υI)

)
be the characteristic polynomial of l(x)g2(x) − υI.

Rewriting r(t, x) in the form [57]

r(t, x) = tl + Σl
i=1(−1)iqi(x)tm−i (5.9)

It is proved in [79, 77] that all the roots of r(t, x) are positive, i.e, l(x)g2(x)−υI �

0, if and only if qi(x) ≥ 0,∀i = 1, 2, 3..l. Having converted Eq. (5.8) into a

scalar polynomial optimization problem, results from SOS relaxations [83] can be

applied by restricting qi(x) ∈ Σx and iteratively solving the resulting semidefinite

programs (SDP) to compute the observer gain matrix l(x) and the corresponding

decision variables cijk. Notice that υI is added to ensure that the eigenvalues

of l(x)g2(x) are strictly positive. The problem described in Eq. (5.8) aims at

finding the smallest gain, and thereby the smallest coefficients such that the

NDOB is exponentially convergent. This is desirable since arbitrarily large gains

may result in undesirable chattering in the control inputs. Using the standard

lifting methods, the `1 norm problem described above can be converted to the

standard SDP formulation using lifted coefficients [25].
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Theorem 3. Consider the system expressed in (5.5). If the observer gain matrix

is designed using (Eq. 5.8) and the disturbance is assumed to be slowly varying

such that ḋ ≈ 0, the NDOB can track the disturbance d and the estimation error

converges to the origin

Proof: Consider the Lyapunov function

V =
1

2
eTded (5.10)

where ed = d̂− d is the disturbance tracking error. The time derivative of V is

V̇ = eTd(ėd) ≈ −eTd
˙̂
d = −eTd(ḣ+

∂p(x)

∂x
ẋ) (5.11)

V̇ = −eTd
(
− l(x)g2(x)h− l(x)[g2(x)p(x)+

f(x) + g1(x)u] + l(x)[f(x) + g1(x)u+ g2(x)d]

) (5.12)

Using (5.3), and substituting the disturbance term d, we get

V̇ = −eTd
(
l(x)g2(x)d̂− l(x)(ẋ− f(x)− g1(x)u)

)
(5.13)

V̇ = −eTd
(
l(x)g2(x)

)
ed < 0 since l(x)g2(x) � 0 (5.14)

which implies that the disturbance estimate approaches to disturbance d globally

exponentially. Although the NDOB synthesized from (Eq. 5.8) is exponen-

tially convergent, it cannot directly be applied to the system since g1(x) 6= g2(x),

i.e, the uncertainties are mismatched. Similar to the approach in [30], we seek a
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composite control law given by

u(x) = χ(x) + ζ(x)d̂ (5.15)

where χ(x) : Rn → Rm is the feedback control law without considering distur-

bances on the system, and ζ(x) : Rn → Rm×m is the disturbance compensation

gain matrix. Using the composite control law, (5.15) in (5.1), along with the error

dynamics, we get

ẋ = f(x) + g1(x)χ(x) + g1(x)ζ(x)(d+ ed) + g2(x)d (5.16)

ėd = −l(x)g2(x)ed (5.17)

Consider the closed loop system with the augmented state z = [ed, x]T, the aug-

mented state dynamics are expressed as

ż =

 −l(x)g2(x)ed

f(x) + g1(x)χ(x) + g1(x)ζ(x)ed


+

 0

g1(x)ζ(x) + g2(x)

 d
(5.18)

where 0 is a matrix of zeros of appropriate dimensions.

Assumption 2. The origin of the augmented closed loop system is globally asymp-

totically stable in the absence of disturbances.

Due to the uncertainty mismatch, it is unlikely to achieve asymptotic stabil-

ity in presence of disturbances. Therefore, we seek a disturbance compensation

gain ζ(x) that renders the closed loop system (5.18) input-to-state stable (ISS).

Let (5.18) can be represented as ż = ϑ(z, d) with ϑ(0, 0) = 0. This system is

said to be ISS if there exists a class KL function β and a class K function γ such

that for any initial state z0 and bounded input d, the solution z(t) exists for all
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t ∈ [0,∞] and satisfies [52]

‖z(t)‖ ≤ max{β(‖z0‖ , t), γ( sup
τ∈[0,t]

‖d(τ)‖)} (5.19)

Definition 2. [159] A continuously differentiable function V : Rn → [0,∞] is

called an ISS-Lyapunov function for the system if there exists K∞ functions α1,

α2, α3, and σ such that

α1(‖z‖) ≤ V (z) ≤ α2(‖z‖), for any z ∈ Rn+m (5.20)

and

∂V (z)

∂z
ϑ(z, d) ≤ −α3(‖z‖) + σ(‖d‖), ∀(z, d) ∈ Rn+m × Rm (5.21)

Numerically tractable ISS conditions using SOS programming for general poly-

nomial systems, cascade connections, and feedback interconnected systems is pro-

posed in [62, 63].

Proposition 4. Given the feedback control χ(x), the NDOB gain matrix l(x),

and corresponding auxiliary vector p(x), computed using (Eq. 5.8), for a suitable

polynomial matrix ζ(x), the closed loop system (5.18) can be rendered ISS and the

property can be verified using SOS programming.

Proof: We seek a polynomial matrix ζ(x) such that the system (5.18) is ISS

with input d. For a matrix ζ(x) ∈ Rm×m that is non-singular for all x, if there

exists polynomials αi ∈ K∞, Lyapunov function V ∈ K∞, SOS polynomials Σx



78

such that

V (z)− α2(‖z‖) = Σz (5.22)

− α1(‖z‖) + V (z) = Σz (5.23)

− ∂V (z)

∂z
ϑ(z, d)− α3(‖z‖) + σ(‖d‖) = Σz,d (5.24)

then the system is ISS [62]. This is due to the well-known property that the

system ż = h(z, d) is ISS if and only if it admits an ISS-Lyapunov function [159],

we can conclude that the system is ISS for a given ζ(x) such that (5.22-5.24) are

satisfied. An immediate consequence of the proposition is the structure of the

gain matrix ζ(x) and the construction of the K∞ polynomials. Similar to the

approach described in [62], it is sufficient to consider real univariate polynomials

of even degree given by

α(s) =
M∑
i=1

cis
2i (5.25)

where ci are the coefficients. The polynomial α(s) ∈ K∞ if and only if [63]

s
dα(s)

ds
≥ 0 ∀s ∈ R (5.26)

For numerical ISS-Lyapunov analysis, (5.26) must be imposed for all αi(s), σ(s).

The compensation gain matrix ζ(x) should be designed such that it is nonsingular

for all x and that the ISS conditions for the augmented system are satisfied.

To ensure non-singularity, it is sufficient to consider a strictly positive definite

compensation gain. A suitable form for ζ(x) can be

ζ(x) = diag

(
[
m∑
i=0

cix
2i,

m∑
j=0

cjx
2j...

m∑
k=0

ckx
2k]

)
(5.27)

Note that the degree of the monomial starts from 0 to ensure that ζ(x) is positive
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definite and thus non-singular even if x = 0.

5.3 Numerical Results

5.3.1 Disturbance observer design for matched disturbances

Consider the system

ẋ1

ẋ2

 =

x1x2

−x2
1

+

 1 x1

x2 x2
2 + 1

 (u+ d) (5.28)

where u ∈ R2 is the control input and d ∈ R2 is the disturbance. Since g2(x) =

g1(x), the disturbances act in the same channel as the control inputs. We seek

a disturbance gain matrix such that the disturbance estimation error is expo-

nentially convergent. The nonlinearity in the dynamics is quadratic. There-

fore, a cubic monomial is proposed for the design of auxiliary vector pi(x) =

cT
i [1, x1, x1x2....x

3
2] for i = 1, 2 so that the observer gain is an even degree poly-

nomial matrix. The decision variables are the coefficient vectors ci ∈ R10. The

gain synthesis is posed as an SOS feasibility problem and solved using the MAT-

LAB toolbox SOSTOOLS [137] with Sedumi [161] as the underlying SDP solver.

Throughout this section, monomials with coefficients less than 10−5 have been

omitted. The auxiliary vector and the gain matrix are obtained as

p(x) =

 0.203x2
2 + 0.603x1

0.301x2
1 + 0.135x3

2 + 0.406x2

 (5.29)

l(x) =

 0.603 0.406x2

0.603x1 0.406x2
2 + 0.406

 (5.30)
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Figure 5.1: State trajectory.

Figure 5.2: Disturbance and its estimation profiles.

A large but slowly varying disturbance profile is assumed, given as di(t) =

30 + 0.5 sin(t) for i = 1, 2. A regulation problem is studied using the com-

puted NDOB gains and a simple proportional controller given as u = −kx, with

k = diag([10, 10]). The use of this simple controller is deliberate, since it allows

us to assess the performance of the NDOB in presence of large and potentially

destabilizing perturbations especially when the nominal controller has no inherent

robustness capabilities.

The initial state is taken as x0 = [10, 5], while the initial value for the internal

state of the observer given by z0 = [0, 0]. Fig. 5.1 shows the profiles of the state

with time. Rapid convergence to the origin is observed for both states. In Figs. 5.2
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Figure 5.3: Disturbance estimation error profiles. Both estimates converge to the
actual disturbance state within the first 10 s.

and 5.3, the disturbance and its estimates, and the estimation error is illustrated.

Both d̂1 and d̂2 are able to track and compensate for the disturbance.

5.3.2 Disturbance observer design for mismatched distur-

bances

Consider a system with similar dynamics as the first case but with mismatched

disturbances. ẋ1

ẋ2

 =

x1x2

−x2
1

+

1 0

0 1

u+

 1 x1

x2 x2
2 + 1

 d (5.31)

For such systems, guaranteeing asymptotic stability in the presence of distur-

bances using an NDOB based control is generally not possible. We seek a compen-

sation gain matrix ζ(x), a nominal controller χ(x) which asymptotically stabilizes

the system without disturbances, and an NDOB such that with the augmented

system is ISS.

The closed loop system (5.31) without disturbances is asymptotically stable
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for the nominal controller

χ(x) =

x2x1 − x1

x2
1 − x2

 (5.32)

Consider the Lyapunov function

V =
1

2
xTx > 0 ∀x 6= 0 (5.33)

Taking the time derivative, we get

V̇ = x1(x1x2 + χ1(x)) + x2(−x2
1 + χ2(x)) (5.34)

where χ(x) = [χ1(x), χ2(x)]T. Substituting for χ(x),

V̇ = −(x2
1 + x2

2) < 0, ∀x 6= 0 (5.35)

Therefore, the closed loop system without disturbances is asymptotically stable

under the control law χ(x). Note that since g2(x) is the same mapping considered

in the previous example, the observer design remains the same. Next, we prove

that the system is ISS for a given compensation matrix ζ(x) � 0 ∀x. Let the

disturbance compensation gain be given as

ζ(x) =

1 + x2
1 + x2

2 0

0 0.5 + (x1 + x2)2

 (5.36)
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Figure 5.4: State trajectory. The trajectories rapidly converge to the neighbor-
hood of origin within 0.25 s and remain bounded.

Figure 5.5: Disturbance and its estimation profiles.

For the given non-singular ζ(x), a fourth degree polynomial ISS-Lyapunov

function is considered. The K∞ functions α1(s),α2(s), α3(s), and σ(s) are param-

eterized as

α1(s) = c1s
2 (5.37)

α2(s) = c2s
4 + c3s

2 (5.38)

α3(s) = c4s
2 (5.39)

σ(s) = c5s
4 + c6s

2 (5.40)

where the coefficients ci, i = 1..6 are the decision variables. Using χ(x) as shown



84

before, ζ(x) given in (5.36),and the NDOB gain (5.29), the feasibility problem

given by (5.22-5.24) and (5.26) is solved to find the ISS-Lyapunov function and

the corresponding K∞ functions. Solving the SDP feasibility problem, we obtain

V (x, ed) = 0.0018x2
1e

2
d2 − 0.00094x1x2ed1ed2 + 0.00015x1x2e

2
d2

+ 0.0051x1e
3
d1 − 0.00033x1e

2
d1ed2 + 0.015x1ed1e

2
d2

+ 0.00025x1ed1 − 0.0073x1e
3
d2 − 0.00016x1ed2

+ 0.0006x2
2e

2
d2 + 0.000558x2e

3
d1 + 0.0083x2ed1e

2
d2

+ 0.0213x2e
3
d2 + 0.00011x2ed2 + 0.8045e4

d1

+ 1.579e2
d1e

2
d2 + 0.7937e2

d1 + 0.1084ed1e
3
d2 + 0.0011ed1ed2

+ 0.9725e4
d2 + 0.7683e2

d2

(5.41)

where ed = [ed1, ed2]T is the disturbance estimation error.

α1(‖x, ed‖) = 2.098× 10−6(x2
1 + x2

2 + e2
d1 + e2

d2) (5.42)

α2(‖x, ed‖) = 2.271(x4
1 + x4

2 + e4
d1 + x44)

+ 1.136(x2
1 + x2

2 + e2
d1 + +x42)

(5.43)

α3(‖x, ed‖) = 1.942× 10−6(x2
1 + x2

2 + e2
d1 + e2

d2) (5.44)

σ(‖d‖) = 4.151(d4
1 + d4

2) + 1.351(d2
1 + d2

2) (5.45)

where d = [d1, d2]T is the disturbance. Since the SDP problem is feasible, the sys-

tem (5.31) with disturbance estimation error dynamics is ISS with ISS-Lyapunov

function given by (5.41).



85

Figure 5.6: Disturbance estimation error profiles. Estimation errors remain
bounded in the neighborhood of origin.

The ISS property of the closed-loop system is numerically validated with the

disturbance d(t) =

10 + 2 sin(t)

20 + 2 sin(t)

 using the control law (5.15) with χ(x) and

ζ(x) given in (5.32) and (5.36), respectively and NDOB gain (5.29). The initial

state of the system is taken as x0 = [10, 5]T while the initial internal state of

the observer is h0 = [0, 0]T. Fig 5.4 shows the state trajectory for the given time-

varying disturbances. Both the states converge rapidly towards origin and remain

bounded which proves that the system is ISS. The disturbance estimates are able

to track the periodic disturbance input as shown in Fig 5.5. The disturbance

error is also bounded and close to the origin as seen from Fig 5.6. In the next

chapter, the relative attitude tracking problem of spacecraft will be investigated

using nonlinear disturbance observer based control.
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Chapter 6

Robust disturbance observer based relative

attitude tracking control of spacecraft using

sum-of-squares programming

Attitude control of a spacecraft is critical to ensure the success of many space mis-

sions. During proximity operations, a chaser spacecraft is typically required to

synchronize it’s attitude and angular velocity to those of the target to enable safe

inspection and manipulation. During formation flying, attitude synchronization

of multiple spacecraft is also required. The attitude synchronization or the track-

ing problem has been studied extensively under a wide range of control method-

ologies, including, hybrid attitude control [150], adaptive control [7], finite-time

feedback control [38], Lyapunov based control [185], disturbance observer based

sliding mode control [178] amongst others. During proximity operations, it is pos-

sible that the chaser spacecraft experiences disturbances such as gravity gradient

torque. Furthermore, the target may be uncooperative and freely tumbling due

to attitude control loss. The problem of attitude tracking with disturbances for

an aircraft is studied in [178]. To ensure robustness against system uncertainties,

a linear disturbance observer is combined with a nonlinear sliding mode controller

to guarantee the stability of the system.

For spacecraft proximity operations, nonlinear disturbance observers (DOBs)

based robust control has been proposed to compensate for model uncertainty

and external disturbances [61, 87, 163, 99, 164, 200]. Disturbance observers are

desirable since the compensation control based on the estimates of the disturbance

obtained from the observer can be directly added as a patch to a nominal feedback
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control scheme [30]. For the purpose of this study, the focus is primarily on relative

attitude tracking with disturbance torques acting on both the target and chaser

spacecraft. It is assumed that the magnitude of target inertia uncertainties is

smaller than the disturbance torque on the target. The goal of the robust control

design is to track the attitude and angular velocity of the target and attenuate

disturbances acting on the system.

A challenging feature of the attitude tracking error dynamics is that the ex-

ternal disturbance or uncertainty is typically coupled to the angular velocity and

attitude error states which makes the synthesis of the DOB gain matrix challeng-

ing. Furthermore, the disturbances enters the system through a different channel

resulting in a ’mismatch’ condition. Existing literatures on DOB based control for

relative position and attitude control of spacecraft make simplifying assumptions

by considering the upper bounds on the disturbance to state mappings which

makes the synthesis of DOBs straightforward [87, 164].

Differently, in this chapter, the proposed method leverages the polynomial na-

ture of the tracking error dynamics to design an exponentially convergent DOB

to compensate for the uncertainties and disturbances for general polynomial sys-

tems as discussed in Chapter 5. The observer gain synthesis is posed as a ma-

trix sum-of-squares problem which can be be solved efficiently using semidefinite

programming. The main contributions of this method are as follows: 1.) A

systematic, computationally tractable approach leveraging sum-of-squares opti-

mization is proposed for synthesis of nonlinear DOBs for relative attitude tracking

of rigid spacecraft; 2.) The approach does not consider any approximation or up-

per bounds of the underlying dynamics; 3.) The proposed method is compared

to conventional control schemes including sliding mode control and DOBs with

simplified dynamics and shows superior control and tracking performance. The

remainder of the brief is as follows: Section 6.1 introduces the attitude tracking

problem along with the DOB design, the tracking control scheme is introduced in
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Section 6.2, Section 6.3 presents the numerical validation of the proposed method.

6.1 Relative attitude tracking and DOB design

Consider a relative proximity operation scenario where a chaser spacecraft is

required to track the attitude of an uncooperative target spacecraft. The variables

with subscript (.)c denote chaser variables, (.)t denote target variables, and (.)e

denote the error variables. The attitude parameterization chosen are the classical

Rodrigues parameters (CRP) denoted by σ while the angular velocity is denoted

by ω. The CRP attitude parameterization is related to the rotation matrix as [65]

R(σ) =
1

1 + σTσ

(
(1− σTσ)E3×3 − 2σ× + 2σσT

)
(6.1)

where R(σ) ∈ SO(3) is the rotation matrix. For simplicity, it is assumed that

the moment of inertia of the chaser spacecraft is known and the uncertainty in

the target moment of inertia (if any) is significantly smaller than the disturbance

torques on the target. However, both the chaser and target are assumed to

have time-varying disturbance torques acting on them. The chaser rotational

kinematics and dynamics are expressed as

σ̇c = G(σc)ωc (6.2)

Jcω̇c = −ω×c Jcωc + τc + dc (6.3)

where

G(σ) =
1

2

(
E3×3 + σ× + σσT

)
(6.4)

and where Jc ∈ R3×3 is the chaser moment of inertia, τc ∈ R3 are the control

torques and dc ∈ R3 are the disturbance torques. Similarly, the target dynamics
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are expressed as

σ̇t = G(σt)ωt (6.5)

Jtω̇t = −ω×t Jtωt + dτ (6.6)

where Jt ∈ R3×3 is the target moment of inertia and dτ ∈ R3 are the disturbance

torques on the target. The relative error between the chaser and target variables

can then be expressed as [65]

σe =
σc − σt + σ×c σt

1 + σT
c σt

(6.7)

ωe = ωc −Rωt (6.8)

Taking time derivative of the relative errors, we get

σ̇e = G(σe)ωe (6.9)

Jcω̇e = Jcω̇c − JcRω̇t − JcṘωt (6.10)

where R denotes the attitude error expressed using the rotation matrix. Substi-

tuting for the chaser and target angular accelerations

Jcω̇e = τ − ω×c Jcωc + dc − JcRω×e ωt+

JcRJ
−1
t ω×t Jtωt − JcRJ−1

t dτ

(6.11)

The error dynamics can then be expressed by substituting ωt using (6.8)

Jcω̇e = τ + dc − ω×c Jcωc − JcR(ωe)
×RT(ωc − ωe)+

JcR

(
J−1
t (RT(ωc − ωe))×JtRT(ωc − ωe)− J−1

t dτ )
(6.12)

Remark 1. The uncertainty in the target parameters enters the error dynamics
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through the term
[
−JcRJ−1

t E3×3

]dτ
dc

. Therefore, the disturbance to state

mapping explicitly depends on the rotation matrix error R(σe).

Remark 2. The rotation matrix error R(σe) ∈ SO(3) is a compact manifold and

can be upper bounded. Previous literature uses this property to design DOB for

attitude tracking by considering an upper bound of the attitude error resulting in

the state-disturbance mapping being an identity matrix [163, 87, 164]. The upper

bound max ‖R‖ = E3×3 results in the mapping
[
−JcJ−1

t E3×3

]dτ
dc

. Since the

mapping is independent of states, the DOB design is simplified.

Remark 3. The disturbance and input enter through different channels, therefore

there exist a mismatching condition in the system dynamics.

If the rotation matrix error is upper bounded as described in Remark 7.21, the

DOB design is straightforward. Since
[
E3×3 −JcJ−1

t

]
is constant, full-rank and

invertible, a suitable choice for the observer gain matrix can be
[
−JcJ−1

t E3×3

]T
,

which simplifies the observer design process. This approach commonly used in

literature will be compared with our proposed polynomial DOB method in Sec-

tion 6.3.

For the attitude tracking problem introduced in (6.12), we first note that the

disturbance acts on the dynamics of ωe and ωc and is dependent on the rotation

matrix through σe. Thus, the attitude kinematics for σc can be ignored from the

observed design. From the relative error dynamics equations, the disturbance to

state mapping term g2(x) in (5.1) is expressed as

g2(σe) =


03×6[

03×3 E3×3

]
[
−JcRJ−1

t E3×3

]
 (6.13)
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We seek a DOB gain matrix such that the disturbance estimation error is expo-

nentially convergent. Using the expression for the rotation matrix in (6.1), this

is mathematically expressed as

l(σe, ωe, ωc)

1 + σT
e σe


03×6[

03×3 (1 + σT
e σe)E3×3

]
[
Υ(σe) (1 + σT

e σe)E3×3

]
 � 0 (6.14)

where Υ(σe) = −Jc
(

(1 − σT
e σe)E3×3) + 2σeσ

T
e − 2σ×e

)
J−1
t , Note that the scalar

term 1
1+σT

e σe
is always positive and can be ignored from the equation above. For

brevity, consider the auxiliary term ḡ2(σe, ωe, ωc) given by

ḡ2(σe) =


03×6[

03×3 (1 + σT
e σe)E3×3

]
[
Υ(σe) (1 + σT

e σe)E3×3

]
 (6.15)

Thus, the following feasibility polynomial matrix sum-of-squares problem is solved

using SOS programming

minimize −

subject to l(σe, ωe, ωc)ḡ2(σe)− εE � 0

(6.16)

where ε > 0. The choice of ε directly impacts the resulting eigenvalues of the

matrix in (6.14) and can be tuned to improve estimate convergence. Note that

solving (6.16) can be computationally challenging. While posing the problem

as an SOS problem in a computational optimization environment, it is not only

required that the eigenvalues of the matrix are non-negative but symmetricity is

also desired. Thus additional constraints have to be imposed to ensure that the

matrix remains positive-semidefinite. This constraint can be alleviated using the
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following proposition.

Proposition 5. The synthesis of the DOB design proposed in (6.16) can be

computationally improved by solving the feasibility problem with the constraint

l(σe, ωe, ωc)ḡ2(σe) +
(
l(σe, ωe, ωc)ḡ2(σe)

)T − εE � 0 (6.17)

Proof. The proof of the proposition is straightforward. The stability of the distur-

bance estimate error which is a time-varying system cannot be directly ascertained

by the eigenvalues of the matrix A(t) = l(σe, ωe, ωc)ḡ2(σe). However, a sufficient

condition to conclude stability is A(t)+A(t)T � 0. Consider a radially unbounded

Lyapunov function

V (ed) = eTded (6.18)

Taking the time derivative of V

V̇ (ed) = −eTd(A(t) + A(t)T)ed < 0 (6.19)

Furthermore,

V̇ (ed) ≤ −λmax(A(t) + A(t)T)V (ed) (6.20)

V̇ (ed) ≤ −λmax(A(t) + A(t)T)‖ed‖2 ≤ −ε‖ed‖2 (6.21)

where λmax is the maximum eigenvalue of the matrix (A(t) + A(t)T). Since

λmax, ε > 0, the time-varying system ėd = A(t)ed is globally exponentially sta-

ble [70].

The nonlinearity in the disturbance mapping ḡ2(σe) is quadratic in σe. In

case alternate attitude parameterizations such as the modified Rodrigues param-

eters are chosen, the mapping would be quartic and therefore more computational

challenging. Although a cubic monomial is ideal for the design of auxiliary vector
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pi(x) = cT
i [1, σe1, σ

2
e1, σ

3
e1, ..., σe2..., ωe1, ..., ω

3
e3] for i = 1, 2, ..., 6 so that the ob-

server gain is an even degree polynomial matrix, we use a quadratic monomial

for pi(x) which is computationally more tractable and still satisfies Proposition 5.

The decision variables are the coefficient vectors ci ∈ R324. Given the chaser mo-

ment of inertia matrix Jc = diag[100, 50, 100] and the chaser moment of inertia

Jt = 2Jc , the gain synthesis is posed as an SOS feasibility problem and solved

using the MATLAB toolbox SOSTOOLS [137] with Sedumi [161] as the under-

lying SDP solver. Throughout this section, monomials with coefficients less than

10−5 have been omitted. The auxiliary vector p(σe, ωe) ∈ R6 are obtained as

p1(σe, ωe) = 1488ωe1 + 3411ωc1 − 118σe2ωe3 + 118σe3ωe2

+ 93.4σe3ωc2

(6.22)

p2(σe, ωe) = 1177ωe2 + 3611ωc2 + 281σe1ωe3 − 281σe3ωe1

− 140σe1ωc3 + 140σe3ωc1

(6.23)

p3(σe, ωe) = 1488ωe3 + 3411ωc3 − 118σe1ωe2 + 118σe2ωe1

− 93.4σe1ωc2

(6.24)

p4(σe, ωe) = 1255ωc1 − 1766ωe1 − 2066σe2ωe3 + 2066σe3ωe2

+ 2011σe2ωc3 − 1855σe3ωc2

(6.25)

p5(σe, ωe) = 1000ωc2 − 1333ωe2 + 1388σe1ωe3 − 1388σe3ωe1

− 1344σe1ωc3 + 1344σe3ωc1

(6.26)
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p6(σe, ωe) = 1255ωc3 − 1766ωe3 − 2066σe1ωe2 + 2066σe2ωe1

+ 1855σe1ωc2 − 2011σe2ωc1

(6.27)

The gain matrix can then be computed as l(x) = ∂p(x)
∂x
∈ R6×9.

6.2 Tracking control scheme

Theorem 4. Let the sliding surface be defined as

s = ωe + λσe (6.28)

The goal of the composite controller is to track the disturbances and state error

such that ωe → 0, σe → 0, and ed → 0 as t → ∞. Consider the relative

kinematics and dynamics for tracking expressed in (6.12), the following control

law guarantees asymptotic convergence of the state and disturbance estimate error

τ = τsmc − Jc
( [

E3×3 −JcRJ−1
t

]
d̂
)

(6.29)

where τsmc is the nominal SMC controller given by

τsmc = Jc
(
− λG(σe)ωe −Ks−

(−ω×c Jcωc − JcR(ωe)
×RT(ωc − ωe))+

JcR(J−1
t (RT(ωc − ωe))×JtRT(ωc − ωe))

) (6.30)

where λ,K � 0 .

Proof. Consider the Lyapunov function

V =
1

2
sTs+ eTded (6.31)
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The time derivative of the Lyapunov function is given as

V̇ = sTṡ− eTd(A(t) + A(t)T)ed (6.32)

V̇ = sT(ω̇e + λG(σe)ωe)− eTd(A(t) + A(t)T)ed (6.33)

Using the control law defined in (6.29) in (6.33)

V̇ = sT(−Ks−
[
E3×3 −JcRJ−1

t

]
ed)

− eTd(A(t) + A(t)T)ed

(6.34)

Remark 4. Matrices K and
[
E3×3 −JcRJ−1

t

]
admit constant upper bounds.

Consider the disturbance estimate error system where

‖ėd‖ =
√
〈 A(t)ed, ed〉+ 〈ed, A(t)ed〉 ≤

√
λmax‖ed‖ (6.35)

Thus, an upper bound on the time derivative of the Lyapunov function is given

by

V̇ ≤ −γ1‖s‖2 − γ2‖s‖‖ed‖ − γ3‖ed‖2 (6.36)

where γ1, γ2, and γ3 denote the upper bounds on terms in (6.34). (6.36) can then

be transformed as

V̇ ≤ −(γ1 −
γ3

4γ2

) ‖ωe‖2 −
(√

γ2 ‖ed‖ −
γ3

2
√
γ2

‖ωe‖
)2

(6.37)

For V̇ ≤ 0, γ1 ≥ γ3
4γ2

. Note that γ1 denotes the maximum eigenvalue of the

symmetric matrix K. Therefore, with a sufficiently large gain, V̇ ≤ 0 can be

guaranteed. This implies V (t) ≤ V (0). Since ed is bounded by the design of

the DOB, from (6.37), ωe, σe, and correspondingly R are bounded as well. The
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closed-loop dynamics in presence of disturbances is

Jcω̇e = −K(ωe + λσe)−
[
E3×3 −JcRJ−1

t

]
ed (6.38)

Thus, ω̇e is bounded as well. Taking the time derivative of V̇

V̈ =
(
ω̇e + λG(σe)ωe

)T(
ω̇e + λG(σe)ωe

)
+ (ωe + λσe)

T(ω̈e + λĠ(σe)G(σe)ω
2
e + λG(σe)ω̇e)

+ ėTd ėd + eTd ëd

(6.39)

Since ėd converges exponentially to zero and ωe and σe are bounded, ëd is bounded

as well. Thus, from (6.39), we conclude that V̈ is bounded as well. Therefore,

using Barbalat’s lemma, we obtain that ωe → 0, σe → 0, and ed → 0 as t → ∞.

Thus, the composite control law in (6.29) yields global asymptotic stability.

6.3 Numerical results

To numerically validate the efficacy of the proposed observer and controller design,

a robust tracking example is considered. Table 6.1 provides the parameters used in

the study. Where ut denotes a square wave of given magnitude. The magnitude of

disturbance torques on target is assumed to be larger than that on the chaser since

the target does not have any on-board actuation. For a realistic tracking scenario,

the effects of gravity gradient torque and torque produced via the solar radiation

pressure and drag are added to the periodic disturbance torque expressed in

Table 6.1. Although the resulting disturbances are fairly large in magnitude, these

values are deliberately chosen to ascertain the performance of the proposed DOB

design. The maximum gravity gradient torque, τg = [τg1, τg2, τg3]T is modeled via
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Parameter Values
Jc diag[100,150,100]
Jt diag[200,300,200]

σc(t = 0)
[
0 0 0.1

]T
ωc(t = 0)

[
0 0 0

]T
σe(t = 0)

[
π/3 −π/2 π/2

]T
ωe(t = 0)

[
0 0 0

]T
dc(t)

 3 cos(πt/5)
2 cos(πt/10)
9 cos(πt/10)

× 10−3

dτ (t)

 3 sin(πt/10)
2 sin(πt/10) + 0.1 ut(πt/5)
2 sin(πt/10) + 0.3 ut(πt/10)

× 10−3

λ 0.125E3×3

K 0.2E3×3

Table 6.1: Parameters used in the numerical simulation for relative attitude track-
ing

the following expression [193]

τg1 =
3µ

r5
(I3 − I2) (6.40)

τg2 =
3µ

r5
(I1 − I3) (6.41)

τg3 =
3µ

r5
(I2 − I1) (6.42)

where µ is the gravitational parameter, r is the radius of the spacecraft orbit,

and I1, I2, I3 are the components of the moment of inertia of the spacecraft. The

maximum torque due to solar radiation pressure is computed as [193]

τsrp =
Fs
c
As(1 + q)(Cp − Cg) (6.43)

where Fs = 1367 W/m2 is the solar constant, c is the speed of light, As is the

surface area of the spacecraft facing the Sun, Cp and Cg denote the center of

solar pressure and gravity, respectively, and q is the reflectance factor. Finally
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Figure 6.1: Attitude error trajectory in terms of CRP
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Figure 6.2: Angular velocity error trajectory

the torque produced due to atmospheric drag is given as [193]

τd =
1

2
ρCDAV

2(Cpa − Cg) (6.44)

where ρ is the atmospheric density, CD is the drag coefficient, V =
√

µ
r

is the

orbital velocity of the spacecraft, A is the surface area normal to the drag, and

Cpa denotes the center of air pressure. Note that however, the magnitude of these

torques are of the order of 10−4 Nm and hence are quite small. Fig. 6.1 shows

the time profile of the relative attitude error in terms of the classic Rodrigues pa-

rameters.The errors converge within 70 s. Fig. 6.2 illustrates the relative angular

velocity trajectory. Although the initial error is close to zero, there is an increase
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Figure 6.3: Control torque profiles
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Figure 6.4: Disturbance torque on target spacecraft and it’s estimate in body
frame x axis

in the angular velocity within the first 5 s after which the angular velocities decay

to zero. Fig. 6.3 shows the torque profiles. The control torques converge to the

vicinity of origin in 60 s.

In Figs. 6.4, 6.5, and 6.6, the time profile of the disturbance torques on the

target spacecraft and it’s estimate is provided. It is observed that within the

first one second, the estimates are able to track the time varying torques with

very low error. Fig. 6.7, 6.8, and 6.9 illustrates the disturbance and estimates

on the chaser spacecraft. The deviations observed in the estimates is higher

within the first 1 s but they rapidly decay and good tracking performance is

observed. Overall, the performance of the DOB with a nominal sliding mode
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Figure 6.5: Disturbance torque on target spacecraft and it’s estimate in body
frame y axis
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Figure 6.6: Disturbance torque on target spacecraft and it’s estimate in body
frame z axis
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Figure 6.7: Disturbance torque on chaser spacecraft and it’s estimate in body
frame x axis
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Figure 6.8: Disturbance torque on chaser spacecraft and it’s estimate in body
frame y axis
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Figure 6.9: Disturbance torque on chaser spacecraft and it’s estimate in body
frame z axis
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controller is very promising. The speed of convergence for the observer depends

on the coefficients of the observer gain matrix which are tuned using the term ε

in (6.17). However, from Lyapunov analysis, we find that coefficients with higher

magnitude in the observer gain matrix l(σe, ωe, ωc) affect the term γ2 that need to

be compensated with a sliding mode gain values as seen from (6.37) to ensure that

Theorem 4 holds. Overall, the results illustrate that the proposed polynomial

NDOB based controller can not only guarantee the stability of system but in

addition, accurately estimate the external disturbances, such that the relative

attitude tracking can be successfully executed in the presence of large disturbance

torque.

The superior performance of the DOB based control is illustrated in Fig. 6.10

via a net torque magnitude comparison with a nominal sliding mode control

(SMC) scheme without disturbance observation expressed in (6.30) and a SMC

with the disturbance observer obtained from approximating the system dynamics

as discussed in Remark 7.21 and using the same composite control law in (6.29).

Compared to the nominal SMC scheme and the approximate NDOB based con-

troller, the polynomial NDOB requires less control effort to stabilize the system,

as shown in Table 6.2. In comparison, the approximate NDOB augmented SMC

method is observed to have higher torque magnitude than both controllers. In

addition, the performance of the polynomial and approximate NDOB methods is

analyzed through the disturbance estimate error, ed. In Fig. 6.11, the disturbance

error estimates are illustrated. The polynomial NDOB shows significantly better

disturbance tracking performance, where the magnitude of the estimate error is

approximately 10−4 at most times. On the other hand, the approximate NDOB

based controller fails to optimally track the disturbance and the error magnitude

is above 10−3 Nm. Furthermore, large observer gains are required to track the

disturbance for the approximate NDOB which in turns degrades the controller

performance as observed in Fig. 6.10.
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Figure 6.10: Control magnitude comparison between nominal SMC ,SMC aug-
mented with the polynomial NDOB, and SMC augmented with approximate
NDOB

Controller Time integral of torque magnitude (Nm)
Nominal SMC 8.87×103

Approximate NDOB with SMC 8.98×103

Polynomial NDOB with SMC 7.62×103

Table 6.2: Comparison of controller performance
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Figure 6.11: Disturbance error magnitude comparison between polynomial NDOB
and NDOB with approximate dynamics
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Chapter 7

Iterative feasible solutions for nonlinear optimal

control problems using DC programming and

polynomial optimization

In Chapter 2, convex optimization based approaches for solving nonlinear optimal

control problems are briefly discussed. Using direct methods, the optimal control

is transcribed and solved as a static optimization. Although time marching and

pseudo-spectral methods have been practically implemented [69] and commercial

solvers such as GPOPS [133] and DIDO [144] exist, two significant challenges are

required to be tackled in aerospace guidance and control.

• First, there are often no bounds available on the computational time and

effort required.

• Tractability can also be challenging in the sense that a bad initial guess can

lead to numerical divergence of the solution.

These drawbacks make the applicability of nonlinear programming based tran-

scription methods in real-time scenarios challenging. On the other hand, convex

optimization can be reliably be solved in polynomial time. Iterative or sequen-

tial convex programming based approaches to solve optimal control problems

involve solving a series of simpler convex programs till convergence is achieved.

Such methods have been applied to a range of challenging guidance and control

problems including planetary entry [97, 182], rocket landing [95], orbit trans-

fer [181], proximity operations [101], space robot motion planning [108] among

others. The main operating principle behind most approaches leveraging convex
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programming is linearizing the state dynamics and convexifying the non-convex

inequality constraints. This results in a convex subproblem assuming a convex

cost function. To ensure that linearization does not result in an infeasible con-

vex problem, virtual control type terms can be introduced [105]. To mitigate

the risk of unboundedness, a trust region constraint commonly seen in sequential

quadratic programming methods is typically imposed. Using a penalty based ap-

proach, the problem is iteratively solved until convergence is achieved. Such class

of methods have been numerically validated for quadrotor maneuvers in presence

of obstacles [168], and model predictive control [104]. Wang et al. [177] combine

the advantages of pseudo-spectral discretization and sequential convex optimiza-

tion to design optimal guidance laws for fuel-optimal rocket landing problems in

a receding horizon setting. This method also implements linearized dynamics and

constraints in a trust region framework.

A disadvantage of the linearized trust region, penalty based methods proposed

above is the feasibility of the iterates. Most methods only guarantee feasibility

of the solutions when they converge. For highly constrained, challenging prob-

lems, the mission may require early termination of the optimal control algorithm

and recover a sub-optimal but feasible solution. Using general pseudo-spectral

based methods or iterative relaxed convex solutions, this is not possible as the

iterates are often in-admissible and convergence is non-monotonic, meaning, that

the objective function cost may increase between iterations. Zhang et al. [198] ad-

dress the iterative feasibility challenge by representing the optimization problem

in the framework of the Convex-Concave procedure [192], a specialized method

in Difference of Convex (DC) programming [60]. Under the assumption that

the initial guess is feasible, the admissibility of the iterates is guaranteed in this

method. Furthermore, the global convergence of the algorithm is proved under

mild assumptions. Although the method proposed is general in [198], only con-

cave inequality constraints pertaining to obstacle avoidance are studied. More
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importantly, how to tractably numerically obtain difference of convex functions

decomposition is not discussed. More recently, Virgili-Llop and Romano [175] also

propose another variant of the recursively feasibly sequential convex programming

method with linear dynamics and apply it to the spacecraft reorientation prob-

lem. The method proposed is similar in spirit to the technique discussed and

studied in this paper. However, contrary to our approach, the key idea behind

maintaining recursive feasibility of the iterates is the inner convex approximation

of the non-convex constraints using Taylor expansions. This can be understood

as a higher order regularization based on the convexification of the higher order

(greater or equal to order 3) terms of a Taylor series expansion.

In this chapter, we propose an iterative method for solving nonlinear optimal

control problems using convex optimization assuming that the state dynamics is

linear. The method works for general non-convex constraints without restriction

on the type of path constraints. By representing the inequality path constraints

as difference of convex functions, the convex-concave procedure is implemented to

iteratively solve the transcribed optimization problem. The main contributions

of the method are: 1.) We propose a sequential convex approach to solve optimal

control problems with non-convex path constraints with guaranteed feasibility as-

suming a feasible initial guess without requiring trust region constraints; 2.) Using

recent advances in decomposition of polynomials as the difference of convex sum-

of-squares (SOS) polynomials [6], we provide a systematic and tractable way to

deal with non-convex path constraints such as obstacle avoidance; 3.) We provide

convergence proofs and solve an anytime feasible and sub-optimal problem for a

spacecraft relative guidance scenario in cluttered environments. The remainder

of the chapter is as follows, Section 7.1 introduces the general nonlinear optimal

control problem and it’s transcription along with the DC programming approach

to solve the optimal control iteratively. Theoretical proofs for convergence is pro-

vided in Section 7.2 with theoretical proofs on convergence; Section7.3 introduces
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the optimal relative spacecraft guidance problem with numerical validation of the

approach.

7.1 Problem formulation

Consider a generic continuous optimal control problem given below

minimize
u(t),t0,tf

∫ tf

t0

H(t, x(t), u(t)) + M(t0, tf , x(tf ))

subject to ẋ(t) = f(t, x(t), u(t))

C(t, x(t), u(t) ≤ 0

Φ(x(tf ), u(tf ))) ≤ 0

(7.1)

where, the cost function is expressed in the Bolza form, and subjected to dy-

namics represented by f(t, x(t), u(t), path constraints C(t, x(t), u(t) and termi-

nal constraints Φ(x(tf ), u(tf )). The problem expressed in Eq. 7.1 is infinite-

dimensional. To practically solve this problem, we can transcribe or convert the

infinite-dimensional problem into a finite-dimensional approximation. This can

be undertaken in three major steps [16]:

1. Convert the dynamical system into a problem with finite number of vari-

ables. For example: using pseudospectral [41] or time-marching meth-

ods [141].

2. Solve the finite-dimensional problem using nonlinear optimization.

3. Assess the accuracy and repeat the transcription process to improve perfor-

mance if necessary.

Due to challenges in obtaining optimal solutions in near-real time, methods based

on convex relaxations have gained attention. Sequential convex programming

(SCP) methods have been proposed as a viable alternative to transcription based
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nonlinear programming approach in solving optimal control problems. While sev-

eral variants of SCP have been proposed, the approach typically solves a sequence

of relaxed convex problems iteratively till convergence is achieved. Penalty meth-

ods allow constrained optimization problem to be solved as unconstrained opti-

mization problem by augmenting the objective function with a penalty function

with an associated penalty parameter. This ensures that the problem remains

feasible as long as the joint state and control bounds are respected. A simple

penalty method is expressed as

minimize
y∈Rn

J(y) + λ
(
υ(Γ(y)

)
subject to |y − yk| ≤ ρ

(7.2)

where J(y) : Rn → R is the original objective function of the constrained op-

timal control problem in discrete form, λ ∈ R>0 and υ(.) : Rn → R are the

penalty parameter and penalty function, respectively, and Γ(y) : Rm → Rn de-

note the linearized equality and convexified inequality constraints which include

the state dynamics and path constraints. For a sufficiently large value of λ, the

solution of the unconstrained optimization problem is equal to the constrained

problem. To ensure that the solution does not diverge, a trust region constraint

parametrized by radius ρ is used, where yk denotes the solution at the previous

iteration. Note that due to linearization of dynamics and path constraints with

the penalty implementation, the solution at intermediate iterations may not be

feasible. Furthermore, the objective function may converge non-monotonically to

the local optimum solution. For highly constrained scenarios where near real-

time solutions are desirable, it is beneficial to use an approach that allows an

early termination of the iterative algorithm where the solution is at least feasible

and naturally sub-optimal. To this end, a particularly promising approach is the

DC programming method which is discussed below



109

7.1.1 DC programming

The Difference of convex function (DC) algorithm is one of several methods to

solve non-convex optimization problems. A function f : Rn → R is said to be

a difference of convex (DC) function if there exists convex functions g and h

: Rn → R such that f = g − h. DC problems have the form

minimize
x∈Rn

g0(x)− h0(x)

subject to gi(x)− hi(x) ≤ 0, , i = 1, ...,m

(7.3)

The class of DC functions is quite broad, which includes every twice differen-

tiable function with a bounded Hessian [56]. DC problems arise in diverse ap-

plications and areas including feedback control [24], machine learning [86] and

statistics [170]. Traditionally, the approach to solve DC programs can be broadly

classified into global and local methods. Global methods such as branch and

bound [85] are quite effective but can be slow in practice. On the other hand, lo-

cally optimal solutions to DC problems can be obtained using heuristic algorithms

such as the convex-concave procedure (CCP) [192]. In the basic version of the

CCP procedure, the concave part of the objective and inequality constraints are

replaced by convex upper bounds and the resulting problem is solved iteratively

until convergence is achieved. This is shown in the algorithm below Note that

Algorithm 2 Convex-Concave Procedure

1: Given: Initial feasible point x0, k := 0
2: while convergence not achieved do
3: Convexify ĥi(x, xk) , hi(xk) +∇hi(xk)T(x− xk) for i = 0, 1, ...m
4: Solve

minimize
x∈Rn

g0(x)− ĥ0(x, xk)

subject to gi(x)− ĥi(x, xk) ≤ 0, , i = 1, ...,m

5: Update iteration k := k + 1
6: end while

Algorithm 2 requires a feasible initial guess. In [93], the infeasibility of the initial
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guess is addressed in a penalty framework. The problem is relaxed by adding slack

variables to the constraints, gi(x)− ĥi(x, xk) ≤ si and the sum of the constraint

violations are penalized by augmenting the objective function. A distinct advan-

tage of the CCP is that it does not require trust region constraints typically seen

in other methods such as sequential quadratic programming. In addition, in the

SQP method, a quadratic program is solved with linear constraints. Therefore,

all the information above the second order is lost during the iterations. On the

contrary, the CCP retains the convexity of the first part and only linearizes the

concave portion of the objective and inequality constraints.

7.1.2 Optimal control with linear dynamics and non-convex

path constraints

Consider the continuous optimal control problem shown in Eq. 7.1. Using either

time-marching or pseudo-spectral discretization, the continuous optimal control

can be transcribed into a static optimization problem. Let the underlying system

dynamics be linear. In concise form, this is expressed as

minimize
y

f0(y)

subject to fi(y) ≤ 0, , i = 1, ...,m

py + s = 0

(7.4)

where y = [x, u] contains both the state and control as the decision variables,

f0(y) is the discretized objective function, the linear equality constraints denote

the discretized state dynamics, and the inequality path constraints are expressed

via fi(y). The equality constraint represents the linear dynamics and is linear.

In these cases, the main source of non-convexity arises from the non-convex path

constraints. For spacecraft proximity operations, such constraints can include

keep-out zones, obstacle avoidance among others. While DC decomposition of
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functions is a known result, specific results on how to obtain such decomposi-

tions have been limited. A universal DC decomposition technique exploits the

bounded Hessian property of the function and proposes the following DC decom-

position [125]

f(x) = (
1

2
ρ∗ ‖x‖2)− (

1

2
ρ∗ ‖x‖2 − f(x)) (7.5)

where ρ∗ is a constant satisfying ρ∗ ≥ maxx ρ(∇2f(x)). However, this decompo-

sition may not be optimal. Furthermore, in order to calculate ρ∗, the spectral

radius of the hessian of the function needs to be computed which can be com-

putationally challenging for highly non-convex functions. In Eq. 7.5, a possible

decomposition is shown based on the spectral radius of the hessian of the func-

tion f(x). Naturally, the decomposition is not unique. For any decomposition,

f = g − h, f = g − p − h + p is another equivalent decomposition. This paves

the way for the question: how to obtain an optimal decomposition of a given

non-convex function?.

Definition 3. Let y = [y1, ..., yn]T be a vector of variables. A polynomial b(x) is

said to be SOS-convex if yTHb(x)y is convex for all x and y where Hb(x) denotes

the Hessian of b(x) [80].

Instead of computing convex functions g and h such that f = g − h, it is

possible to make the problem computationally tractable by looking at the subset

of convex functions g and h that are also sum-of-squares. This is made pos-

sible by posing the problem as a sum-of-squares problem which can be solved

efficiently using semidefinite programming. The feasibility problem to find the



112

decomposition of f(x) is given by [6]

minimize
g,h

−

subject to f = g − h

zTHg(x)z � 0

zTHh(x))z � 0

(7.6)

where z ∈ Rn. Note that the non-convex constraint f(x) is convexified at a given

iterate xk as g(x)−
(
h(xk)+∇h(xk)

T(x−xk)
)
. An optimal decomposition for the

polynomial f(x) is to compute h(x) such that it is as close to an affine function

as possible around the iterate xk. This is mathematically expressed as [6]

minimize
g,h

TrHh(xk)

subject to f = g − h

zTHg(x)z � 0

zTHh(x))z � 0

(7.7)

where Tr denotes the trace. Eq. 7.7 computes g and h such that h(x) minimum

average curvature around the point xk. Alternatively, it is possible to minimize

the worst case curvature by minimizing λmaxHh(xk), where λmax is the maximum

eigenvalue of the Hessian of h(x) evaluated at point xk. Another notion in DC

decomposition is that of undominated decomposition [23].

Definition 4. A g be a DC decomposition of f , that is, g is convex and f − g

is convex. A function ḡ is said to dominate g if g − ḡ is convex and non-affine.

A DC decomposition g of f is undominated if no other DC decomposition of f

dominates g.
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The undominated decomposition problem is expressed as

minimize
g,h

1

An

∫
Sn−1

TrHgdσ

subject to f = g − h

zTHg(x)z � 0

zTHh(x))z � 0

(7.8)

where An = 2πn/2

Γ(n/2)
is a normalization constant, Γ(n/2) is the gamma function,

and Sn−1 denotes the unit sphere in Rn.

The promising feature with the decomposition methods shown in Eqs. 7.6-7.8

is that they can be posed as sum-of-squares problems and solved using semidefinite

programming.

7.2 Optimal control algorithm and convergence proof

Using the DC decomposition techniques mentioned above, an iterative scheme to

solve the transcribed optimal control problem in Eq. 7.4 is solved via the following

algorithm

Algorithm 3 Iterative optimal control algorithm

1: Given: Initial feasible trajectory y0 = [x0, u0], k := 0
2: while ‖f0(yk)− f0(yk−1)‖ ≥ β) do
3: Decompose non-convex inequality constraint and linearize concave part in

Eq. 7.4

f̂i(y, yk) , gi(y)−
(
hi(yk) +∇hi(yk)T(y − yk

)
fori = 0, 1, ...m (7.9)

4: Solve

minimize
y

f0(y)

subject to py + s = 0

gi(y)−
(
hi(yk) +∇hi(yk)T(y − yk)

)
≤ 0, , i = 1, ...,m

(7.10)

5: Update iteration k := k + 1
6: end while
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Lemma 2. The function f̂i(y, yk) is an inner convex approximation of the original

non-convex constraint function fi(x), for i = 0, 1, ...,m and satisfies

fi(y) ≤ f̂i(y, yk) (7.11)

fi(yk) = f̂i(yk, yk) (7.12)

∂fi(yk)

∂yj
=
∂f̂i(yk, yk)

∂yj
(7.13)

Proof: Let the solution to the convexified problem in Eq. 7.10 be denoted as

yk+1. Since yk+1 is an optimal solution to the convexified problem, it satisfies the

inequality constraint

gi(yk+1)− hli(yk+1, yk) ≤ 0, ∀i = 1, 2..., n (7.14)

where hl(yk+1, yk) = h(yk+1) +∇hi(yk)T(yk+1 − yk
)
. Evaluating the original non-

convex constraint in Eq. 7.4 at yk+1

gi(yk+1)− hi(yk+1), ∀i = 1, 2..., n (7.15)

Taking second order Taylor expansion of h(yk+1) in Eq. 7.15

gi(yk+1)− hl(yk+1, yk)− ḧ(yk+1, yk) (7.16)

Since hi(y) is a convex function, Hhi(y) � 0 and therefore ḧ(yk+1, yk) ≥ 0. This

results in the following inequality

gi(yk+1)− hi(yk+1) ≤ gi(yk+1)− hl(yk+1, yk)− ḧ(yk+1, yk) ≤ 0 (7.17)
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Thus, we have

fi(yk+1) ≤ f̂(yk+1, yk)− ḧ(yk+1, yk) (7.18)

This completes the proof for Eq. 7.11 in the lemma. The proof for Eqs. 7.12-

7.13 is trivial. Evaluating f̂(y, yk) and ∂f̂i(y,yk)
∂yj

at point yk returns the original

nonlinear function and its gradient respectively.

Lemma 3. The optimal solution yk+1 at iteration k+1 for the convexified problem

in Eq. 4 is feasible for the original non-convex problem expressed in Eq. 7.4

Proof: To ensure dynamics and path constraint feasibility in Eq. 7.4, we

require

fi(yk+1) = gi(yk+1)− hi(yk+1) ≤ 0, , i = 1, ...,m (7.19)

pyk+1 + s = 0 (7.20)

Eq. 7.20 refers to the linear dynamics and is automatically satisfied for Eq. 7.4.

For Eq. 7.19, we use the following property: Considering that hi(y) is a twice

differentiable convex function, a quadratic upper bound exists and is expressed

as [17]

hi(y) ≤ hi(yk) +∇hi(yk)T(y − yk) +
M

2
‖y − yk‖2 (7.21)

where the above expression holds for any yk and M ≥ maxy∇2h(y) . Using the

upper bound of hi(y) at point yk+1 in Eq. 7.19

gi(yk+1)− hi(yk+1) ≤ gi(yk+1)− hi(yk)−∇hi(yk)T(yk+1 − yk)−
M

2
‖yk+1 − yk‖2

(7.22)

gi(yk+1)− hi(yk+1) ≤ gi(yk+1)− f̂(yk+1)− M

2
‖yk+1 − yk‖2 ≤ 0 (7.23)
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Note that f̂(yk+1) ≤ 0 are the convexified path constraints and are always satisfied

since the point yk+1 is feasible/optimal. Furthermore M > 0, which implies that

the nonconvex path constraints expressed in Eq. 7.4 are satisfied. Note that we

can also directly prove Eq. 7.19 using the inner convex approximation argument

in Lemma 2. This completes the proof.

Lemma 4. The iterative Algorithm 3 is a descent (monotone) algorithm.

Proof: Consider f0(y) as an arbitrary non-convex cost function. The DC

decomposition of f0(y) is given as f0(y) = g0(y)− h0(y).

Let the solution to the convexified problem be given by yk+1. The objective

function in Eq. 4 is then expressed as

g0(yk+1)− hl0(yk+1, yk) (7.24)

where hl0(yk+1, yk) = h0(yk+1) +∇h0(yk)
T(yk+1 − yk

)
. Thus,

g0(yk+1)− hl0(yk+1, yk) ≤ g0(yk+1)− hl0(yk, yk) (7.25)

Thus, for the non-convex objective function, the following inequality holds

g0(yk+1)− h0(yk+1) ≤ g0(yk+1)− hl0(yk+1, yk)

≤ g0(yk)− h0(yk) ≤ g0(yk)− hl0(yk+1, yk)
(7.26)

This completes the proof.

Theorem 5. The fixed point of the sequence generated by the iterative algorithm

is a KKT point to the original non-convex problem.
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proof: Suppose y∗ is the optimal solution obtained from the converged se-

quence in Algorithm 3. The Lagrangian for the convexified problem is given as

L(λi, µ) = f0(y) +
m∑
i=1

λi
(
gi(y)− hl(y, yk)

)
+ µT(py + s) (7.27)

where λ, µ are the Lagrange multipliers. The KKT conditions for the convexified

problem is then expressed as

∇L(λi, µ) = ∇f0 +
m∑
i=1

λi
(
∇gi(y)−∇hl(y, yk

)
(7.28)

λi(gi(y)− hl(y, yk) = 0 (7.29)

λi ≥ 0 (7.30)

Since, y∗ is the optimal solution for the problem, subsituting for y∗ in y and yk,

we obtain

∇L(λi, µ) = ∇f0 +
m∑
i=1

λi
(
∇gi(y∗)−∇hl(y∗, y∗

)
(7.31)

λi(gi(y
∗)− hl(y∗, y∗) = 0 (7.32)

λi ≥ 0 (7.33)

Note that since ∇hl(y∗, y∗) = ∇h(y∗) and hl(y
∗, y∗) = h(y∗) from Lemma 2, the

point y∗ satisfies the KKT conditions for the original problem in Eq. 7.4 as well.

This completes the proof.

7.3 Numerical demonstration of optimal relative space-

craft guidance

The iteratively feasible sequential convex programming approach is studied using

an optimal spacecraft guidance problem. The dynamics of the chaser spacecraft
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in a circular orbit in proximity of a target in a circular orbit is expressed using

the Clohessy-Hill-Wiltshire equations. The dynamics are given as

ẍ = 3n2x+ 2xẏ (7.34)

ÿ = −2nẋ (7.35)

z̈ −−n2z (7.36)

where n =
√

µ
a3

is the orbital rate, µ is the gravitational parameter, and a is the ra-

dius of the circular orbit. The key challenge in finding the optimal guidance law is

the non-convex obstacle avoidance constraint. Using simplified circular/spherical

shape of the obstacle, concave inequality constraints are used in [198] to account

for obstacle avoidance. However, this assumption does not work with non-convex

obstacles and convex hull approximations of the obstacles may not be optimal.

The optimal guidance problem in discrete domain is expressed as

minimize
x,u

N∑
k=0

ηk

subject to Xk+1 = AXk +BUk

‖Uk‖ ≤ ηk

dT

kUk ≤ ‖Uk‖ cos θ

‖Uk‖ ≤ Umax

− x4
k − y4

k − z4
k + xkykz

2
k − x2

kykzk + 200 ≤ 0 (a)

− (x2
k − y2

k)
2 − z4

k + 75 ≤ 0 (b)

− (z2
k − y2

k)
2 − x4

k + 1 ≤ 0 (c)

x0 = x0, xN = xf

(7.37)

The objective of the guidance problem is to minimize the total control norm

which in discrete domain is expressed as
∑N

k=0 ‖Uk‖. Although the objective is
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Table 7.1: Non-convex constraint decomposition

Constraint Undominated solution

a := −x4
k − y4

k − z4
k + xkykz

2
k

−x2
kykzk + 200

g :=0.583x4
k + 0.5y4

k + 0.75y2
kx

2
k + 0.583z4

k

+0.5z2
kx

2
k + 0.75z2

ky
2
k − 0.5zkykx

2
k + 0.5z2

kykxk
h :=-200+1.5833x4

k + 1.5y4
k − 0.75y2

kx
2
k

+1.588z4
k+0.5zkykx

2
k − 0.5z2

kykxk

b := −(x2
k − y2

k)
2 − z4

k + 75
g := 0.33x4

k + 0.33y4
k + 2y2

kx
2
k

h := −75 + 1.33x4
k + 1.33y4

k

c := −(z2
k − y2

k)
2 − x4

k + 1
g :=0.33z4

k + 0.33y4
k + 2z2

ky
2
k

h := −1 + 1.33y4
k + 1.33y4

k

non-differentiable, using slack variables, the objective has been converted to a sec-

ond order cone constraint. Plume impingement constraints are also implemented

where dk ∈ R3 denotes the docking axis fixed on the target. In order to solve

Eq. 7.37, the non-convex obstacle avoidance constraints expressed in (a-c) are

decomposed by using the notion of undominated decompositions. The obstacle

avoidance constraints (a−c) are created to model a fairly complex, realistic target

spacecraft structure with multiple appendages. In particular, constraint a models

a central non-convex shaped body resembling a spacecraft bus, and constraints b

and c model appendages such as external solar panels and radiator shades. Ta-

ble 7.1 provides the non-convex constraints a − c as well as their decomposition

in terms of SOS-convex DC functions. The decomposition is carried out via the

method of undominated decompositions discussed in Eq 7.8 and using the SPOT

toolbox on MATLAB [107]. The problem studied here can be considered as a

near-field rendezvous where a chaser is required to be optimal guided in close

proximity to a target spacecraft while ensuring that the chaser remains safe from

any collisions.

A circular orbit with radius 800 km is considered. The initial position and

velocity of the spacecraft is taken as x0 = [−40, 15,−15, 0, 0, 0]T and the final

position and velocity is taken as xf = [7, 0, 2, 0, 0, 0]. The problem is initialized

by solving Eq. 7.37 without the objective, i.e, a feasible initial guess is generated
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Figure 7.1: Three dimensional spacecraft trajectory around a non-convex shaped
target shown in gray. Orange trajectories denote intermediate sub-optimal and
feasible iterates. The black and blue trajectories denote the initial guess and
converged solution, respectively.

using the interior point solver IPOPT. The problem in Eq. 7.37 is then convexified

by linearizing the concave part of the decomposed non-convex obstacle avoidance

constraints. This problem is iteratively solved until convergence is achieved.

Figs. 7.1 and 7.2 illustrate alternate views of the three-dimensional spacecraft

trajectories in presence of a non-convex target. The XY projection of the tra-

jectory is shown in Fig. 7.3. It is observed that all the iterates shown in orange

remain feasible and away from the target body. Fig. 7.4 shows the velocity pro-

file of the spacecraft. The control profiles are shown in Fig. 7.5. The control

constraint ensures that the accelerations do not exceed the maximum threshold

taken as 1 m/s2. The variation of the objective value is shown in Fig. 7.6 where

convergence is achieved in approximately 32 iterations. Monotonic convergence of

the objective is observed which is expected from the convex-concave procedure.
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Figure 7.2: Alternate view of three dimensional spacecraft trajectory

Figure 7.3: XY projection of spacecraft trajectory
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Figure 7.4: Spacecraft velocity profiles

Figure 7.5: Spacecraft control profiles

Figure 7.6: Objective value
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Chapter 8

Conclusions and future work

8.1 Summary and conclusions

Motivated by recent advances in computational guidance and control of space

systems, this dissertation focuses on advances in robust, real-time, and optimal

planning and control of space-robotic systems using convex programming.

The classical problem of planning the motion of a free-floating space manipula-

tor is reformulated and solved as a quadratic program. The method is general and

accommodates different types of constraints including minimizing base rotational

disturbance, obstacle avoidance, and end-effector task constraints. Compared

with current approaches using non-convex and sampling based techniques, the

proposed quadratic programming method is several orders of magnitude faster.

This enables rapid planning and re-planning of space robot trajectories which is

suitable in a dynamically changing environment.

For a spacecraft in the circular restricted three-body dynamical regime, the

station-keeping problem is studied for Halo orbits in the Sun-Earth system and

Lissajous orbits in the Earth-Moon system. Given a desired reference trajectory

to follow, the equations of motion for the spacecraft are expanded up-to third

degree using Taylor expansions. The resulting polynomial system serves as the

dynamics model which is used in a receding horizon setting. Contrary to local

nonlinear approaches, the receding horizon problem is converted to a polynomial

optimization problem and solved to global optimality using sum-of-squares relax-

ations. The globally optimal model predictive control approach provides lower
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∆V budget as compared to other competing approaches such as linear quadratic

regulator and linear and locally optimal nonlinear Model predictive control.

Robust control of nonlinear polynomial systems is addressed in the framework

of nonlinear disturbance observers. The synthesis of these observers is extremely

challenging for general nonlinear systems. By restricting the focus on systems

with polynomial vector or matrix fields, the observer synthesis problem is posed

and solved as a polynomial optimization using the sum-of-squares methodology.

In addition, the design of a compensation matrix for systems with mismatched

uncertainties is numerically validated using computational Lyapunov analysis. To

further illustrate the efficacy of this framework, the robust rigid-body relative at-

titude tracking problem is studied where disturbance torques are assumed to act

on both the chaser and target spacecraft. The robustness of the disturbance ob-

server is verified using numerical simulations with a simple proportional-derivative

feedback control scheme.

The sequential convex approach for solving nonlinear optimal control prob-

lems is also addressed. To meet the demands of rapid generation of optimal

trajectories for problems with non-convex constraints and linear dynamics, an it-

eratively feasible technique is investigated. Contrary to existing methods such as

the penalty based trust region approach, the technique shown in this dissertation

maintains any-time feasibility and sub-optimality of the iterates. This is made

possible by leveraging difference of convex function programming for polynomial

non-convex constraints. As an application, the optimal spacecraft guidance prob-

lem in the framework of Clohessy-Hill-Wiltshire dynamics is solved. Although the

underlying dynamics are linear, the problem is complicated due to the presence

of non-convex obstacle avoidance constraints. By optimally decomposing these

non-convex constraints as the difference of two convex functions, the recursive

feasibility of the iterates is preserved.
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8.2 Recommendations for future work

Based on the convex programming tools developed to solve a diverse range of

space-robotic planning and control problems, this thesis opens several avenues

for improvement.

• In Chapter-4, the trajectory planning of free-floating space robots only fo-

cuses on kinematically feasible trajectories. While theoretically the ap-

proach is suitable for kino-dynamic trajectories as well, it has not been

numerically validated. Experimental validation of such trajectories in a

free-floating setting is also of interest. Lastly, robustness of the planning

technique to external disturbances can be incorporated in the framework of

robust optimization.

• A significant challenge in implementing the polynomial optimization based

globally optimal Model Predictive Control approach is the computational

complexity since it requires solving large dimensional semi-definite pro-

grams. The reduction of problem structure and incorporating sparsity can

be explored to make this approach suitable for real-time applications.

• The disturbance observer framework proposed generally works well and does

not require any assumptions on the disturbance structure. However, it

would be interesting to study outlier cases of external disturbances where

the proposed approach may not work. Improvements in theory need to

be made to solve problems where the disturbance is fast-varying with time.

Secondly, in the framework proposed, the observer design is considered sepa-

rate and decoupled and as such the designed observer can be used as a patch

with any asymptotically feasible control law. However, this may result in

actuator saturation especially if the disturbance estimate is large and con-

verges slowly to the actual disturbance. In these settings, the investigation

of saturated composite observer-control laws will be of interest.
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• The sequential convex approach to solving nonlinear optimal control prob-

lems only consider non-convex, polynomial constraints to ensure iterate fea-

sibility. Future work is needed to make the method proposed in this dis-

sertation amenable to non-linear dynamics. In this setting, the investiga-

tion of inner convex approximations of nonlinear dynamics either through

feedback/partial-feedback linearization or coordinate transformations will

be useful.
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