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ABSTRACT OF THE DISSERTATION

Communication and Sensing Techniques for Smart, Seamless

Human-Environment Interactions

By Viet H. Nguyen

Dissertation Director:

Marco Gruteser

Since its birth over 70 years ago, the computing area has gone over several generations,

with significant reduction in size and cost. We are now entering a new generation of com-

puting, called ubiquitous computing, where many small computers (smartphones, tablets,

sensors, actuators, etc.) are placed on user’s body or in the environments and provide many

useful services to users. However, current devices and communication methods have not

been able to provide fully smart and seamless interaction between users and the environ-

ments yet: either users are required to explicitly give attentions to devices and give them

instructions to run, or environments need to be equipped with additional infrastructure,

often expensive or inconvenient, to monitor user’s presence and activities. Therefore, the

next generation of computing requires devices that implicitly align with user’s intention, ob-

tain necessary information from environments as well as implicitly control them, and smart

environments with minimal infrastructure setup to monitor user presence and behaviors.

The goal of this research is to propose novel communication and sensing methods to en-

able such requirements. In particular, the proposed solutions include: (i) TextureCode,

a flicker-free high-speed screen-camera communication technique to help smart glasses

equipped with cameras obtain useful information from video stream on electronics dis-

plays, (ii) a body-guided communication technique that are used for authenticating users

with devices and objects on every single touch interaction, (iii) EyeLight, a sensing system

ii



based on visible light to provide indoor occupancy estimation and room activity recognition

services, and (iv) HandSense, an on-hand capacitive coupling-based sensing system for rec-

ognizing micro, dynamic finger gestures suitable for controlling head-mounted devices. We

believe these systems provide users with more seamless interaction with surrounding envi-

ronments: as the environment-user interactions implicitly align well with user’s intention,

data exchange, sensing, or authentication happens in the background without interruption

to user’s workflow.
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Chapter 1

Introduction

In his landmark paper “The Computer for the 21st Century”, published in 1999, Mark

Weiser, a researcher at Xerox PARC, described his vision of Ubiquitous Computing: “The

most profound technologies are those that disappear. They weave themselves into the fabric

of everyday life until they are indistinguishable from it.” [1]. This computing paradigm aims

to remove computing devices as the barriers between humans and their environments, thus

enables human-environment interaction to be more intuitive. In recent years, with the

advances in many fields such as Wearable Devices, Smart Home/Building, Smart Citites,

we are moving closer towards this vision of ubiquitous computing. For example, wearable

devices, with their ability to sense different biosignals, offer users the convenience of day-

long wellness tracking. Smart homes allow users to control the indoor heating, lighting

system from any place. Augmented Reality head-mounted devices start to find applications

in several industries (manufacturing, repair and maintenance, health care, etc.) with their

ability to overlay digital information on the real world.

However, a closer look at the landscape of computing devices, as well as communica-

tion/sensing methods, reveals that there are still several missing components in realizing

the “invisible” aspect of Ubiquitous Computing. First, users still need to give attention

to devices or explicitly give them instructions to run. To get detailed information about a

promotion advertisement displayed on an electronic display, a user needs to get his phone

out of his pocket to capture a QR code that stores the additional information. A smart

indoor AC system, such as a Nest thermostat, still needs to be controlled by a smartphone

interface, instead of a system capable of automatically detecting human presence and activ-

ities. Second, interactions with current smart devices still introduce interruption to user’s
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workflow. Personal devices like smartphones, smartwatches usually store sensitive user in-

formation, so they need user authentication; however, the common authentication methods

such as PIN code or passcode are cumbersome since users need to input them after each idle

period. To control an Augmented Reality head-mounted device, a user still needs to either

tap on device touch pad or perform in-air hand gestures in front of the device camera, thus

preventing the absolute hand-free, interruption-free workflow.

Third, some ambient sensing techniques still require complex infrastructure setup. Com-

mon sensing techniques, including cameras, wireless sensing, infrared motion sensing, re-

quire installation of additional sensors in the environments, and deployment of a large

number of these sensors to cover an indoor space would incur significant extra cost. Fourth,

there are still security and privacy issues in some of the current human-environment in-

teractions. Cameras being used for monitoring indoor user activities can cause discom-

fort as users increasingly concern about being under surveillance, especially in residential

spaces. For authentication of users with devices, some methods based on wireless signal

(Bluetooth, NFC) are susceptible to adversarial interception, such as eavesdropping and

man-in-the-middle attacks.

This thesis proposes communication and sensing methods, together with systems and

devices, with particular focus on the above problems for realizing a truly ubiquitous and

invisible computing for users. In this chapter, we will first look at existing wearable de-

vices and ambient sensing techniques for ubiquitous computing in Section 1.1, and several

challenges in ubiquitous computing systems in Section 1.2. Then we will lay out some de-

sign principles that guide us in developing our communication and sensing techniques in

Section 1.3. Section 1.4 describes in details the contributions of this thesis.

1.1 Existing wearable devices and ambient sensing techniques

Current computing devices usually have human attention problems. Let’s take smartphones

as an example. Although nowadays smartphones are convenient devices with more and more

powerful features packed into their small form factors, they require explicit attention from

us and bar us from real interaction with people and environment surroundingus. In some
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cases, the lack of attention to the surroundings can lead to fatality, such as distracted driv-

ing. To realize Mark Weiser’s vision of invisible computing, the next generation of devices

and communication methods should have seamless integration into the normal interaction

between users and environment. There are two major categories of research works on this

front: wearable computing and ambient sensing.

Wearable Computing. The first approach to Ubiquitous Computing is using devices

worn on users, since the close proximity to the user body would enable many human-centric

contextual sensing opportunities. Currently the most common use of wearable devices is in

the form of smartwatches (e.g. Apple Watch) and smart wristbands (e.g. Fitbit, Jawbone).

These devices use built-in sensors to provide users day-long activity and wellness tracking.

Research has shown other uses of these wrist-worn devices, such as recognizing hand ges-

tures [2,3], recognizing objects being touched [4], tracking user’s hand in space [5], detecting

eating and smoking behaviors [6], tracking driving behaviors [7]. There are other wearable

devices in research, including smart textile, smart rings, smart shoes, head-mounted devices

for Augmented Reality, etc.

This thesis looks at these wearable devices from a different perspective: they are con-

venient gadgets that almost always accompany users and can help them interact with the

environment in more effective and seemless ways. The thesis offers different communica-

tion mechanisms between on-body devices and in-environment ones that are fast and align

well with user’s intentions: screen-to-camera communication for information retrieval and

body-guided communication for user authentication.

Another aspect related to wearable devices in this thesis is to design a wearable, low-

complexity sensing system for finger gesture recognition, which users can use to control

head-mounted devices in non-hand-free working environments. Augmented Reality head

mounted devices are now bringing benefits to different working spaces as they provide

better visualization with their ability to overlay digital information on physical world. An

always-available, low effort interface, which is based on small finger gestures, would be

beneficial for these devices as it helps reduce interruptions to the user’s workflow.

Ambient Sensing. The second approach to Ubiquitous Computing is not to use any

devices worn on user at all, but instead embedding computation and sensing devices into the
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environment to sense humans by their different characteristics and then react in context-

sensitive ways. There are three broad categories in this class: camera, RF, and light.

The approach using cameras [8–10] requires capturing raw images and video, therefore

raise concerns about privacy risk involving leaking of sensitive images. RF-based activity

sensing [11–13] utilizes available indoor RF devices, such as WiFi routers, to sense user

presence and activities. Visibile Light Sensing is another approach for the indoor sensing

problem. For instance, StarLight [14] equips an office room with LED lights on the ceiling

and photosensors on the floor to reconstruct human skeleton of a user in the room.

This thesis proposes an easy way to embed sensing devices into the environment without

complicated infrastructure deployment. We present a smart environment based on exist-

ing indoor light infrastructure, since light is ubiquitous in human civilization. It also has

advantages over camera-based monitoring system, since people are less comfortable when

being monitored by cameras.

1.2 Research challenges

There are several challenges when realizing the vision of “invisible computing”, as described

below.

Unobtrusiveness. Users should not be bothered with the devices communicate with

each other, but the devices should intelligently couple to the user’s intention. The challenge

is the interactions between users and their environments usually have very short duration

(e.g. a quick glance, a short touch on a device), and during this short time interval the

communication and sensing should not cause any overhead to users.

Understanding human body characteristics. To provide a seamless, intuitive in-

teracting experience between users and their environments, we should understand some

aspects of the human perception to the communication and sensing modalities being used.

In some cases, there is only a small gap between human perception and machine perception,

which requires a careful design to exploit this opportunity. In other cases, some inherent

characteristics of the human body, such as conductive tissues, can be utilized for smart

sensing and authentication purposes.
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Sensing with low resolution data. A common solution for sensing indoor user activ-

ities is using cameras. However, this is usually not preferred in residential areas because of

privacy concerns. Users can be uncomfortable when knowing that they are being monitored,

their workflows or behaviors can be deviated from normal. In this thesis, the two sensing

modalities explored in this thesis, in particular visible light and capacitive sensing, have

lower resolution sensing data, thus remove privacy concerns for users. However, this low

dimension property places a challenge when inferring rich user activities and user gestures.

We overcome this challenge by the cooperative mechanism between large number of low

complexity sensing elements, as seen in Chapter 4 and Chapter 5.

1.3 Design principles

We follow these design principles in developing the communication and sensing techniques

in this thesis, in order to realize the unobtrusive interactions between users and their envi-

ronments:

Avoid interruption to normal workflow/user behaviors. To ensure smooth ex-

perience for users when interacting with devices in smart spaces, it is crucial that the

communication and sensing happen in the background without user’s notice. We identi-

fied several aspects of the current device interfaces that are not interruption-free, including

user authentication on devices, interfaces for head-mounted devices, and offered alternative

communication and sensing techniques that reduce user workflow interruption.

Minimal instrumentation. Our designs aim to have no or minimal instrumentation

in the environments and on human body. In these systems, either users are not required

to wear any devices or the wearable devices in use are widely adopted. In particular,

for ambient sensing, we propose using the ubiquitous lighting infrastructure in buildings

for indoor localization, room activity recognition and occupancy estimation. For wearable

devices, we built our system based on commonly worn devices or equipments, including

smartwatches, writbands in everyday life, or working gloves in certain industries.

Built-in security and privacy primitives. Security and privacy are two issues that

need to be guaranteed in communication and sensing systems involving humans. The two
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Communication Sensing

Visible Light TextureCode EyeLight

Capacitive coupling Body-guided Communication HandSense

Table 1.1: Communication and Sensing methods in this thesis.

communication and sensing modalities being explored in this thesis, visible light and ca-

pacitive coupling, can provide primitives for security and privacy. Visible light communi-

cation works on the basis of line-of-sight between devices, thus it is easy to constrain the

communication range to be in close proximity (Chapter 2). Taking advantage of the fact

that capacitive coupling only works in very short range, chapter 3 presents a capacitve

coupling-based authentication technique that prevents eavesdropping attack by constrain-

ing the communication channel to be a small region around the user’s hand. Sensing with

these two modalities is also less privacy obstrusive. The sensing elements (photodiodes in

visible light sensing, electrodes in capacitive sensing) provide only low-resolution data that

can hardly cause concerns about being surveilled as with using cameras.

High speed. The communication and sensing methods should be high speed, so that

within only a brief time of human attention (quick glance, a short touch, a micro gesture, a

quick presence), the device should still be able to capture enough information to do useful

tasks, such as information gathering, authentication, localization, or activity recognition.

1.4 Thesis contributions

This thesis hypothesizes that very high frequency signal (visible light) and low frequency

signal (through capacitive coupling) can be used to augment the human-environment in-

teractions with intelligent services while being unobtrusive to users and having built-in

security and privacy aspects. In particular, we embed message in these signals to enable

tracking where users look at and touch. We also utilize sensor arrays of these signals for

tracking people’s indoor movements, as well as subtle finger movements that can be used

for controlling Augmented Reality head-mounted devices. In summary, this thesis presents

four specific contributions (Table 1.1):

TextureCode: High-speed Flicker-free Screen-Camera Communication with
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Spatially Adaptive Embedding [15]. This work utilizes the pervasive use of screens

(such as public electronics displays) and cameras, which can accompany users in smart

glasses, and offer a high speed communication link from the screens to cameras. This

communication link is useful for users to use their wearable glasses to conveniently ob-

tain information from the displays they are interested in. A challenge in designing such a

communication link is to improve the communication throughput while maintaining unno-

ticeable flicker of screens. To achieve both high capacity and minimal flicker, we propose a

technique called spatial content-adaptive encoding, and combine multiple design dimensions.

We develop content-adaptive encoding techniques that exploit visual features of videos on

screens, such as edges and texture, to ubobtrusively communicate information. We are able

to achieve an average goodput of about 22kbps, significantly outperforming existing work

while remaining flicker-free. We present TextureCode in more details in Chapter 2.

Body-guided Communications: A Low-power, Highly-Confined Primitive to

Track and Secure Every Touch [16]. This work focuses on developing a secure yet con-

venient method for user identification, authorization and authentication when users interact

with surrounding devices and objects. The motivation is that as the interaction times with

each device or object is becoming shorter, the overhead of conventional user identification,

authentication and authorization methods places heavy burden on users. Therefore, it is

more desirable to do authentication on every single user touch. Our technique to achieve this

is based on a hardware token worn on user’s body, such as a wristband, which interacts with

a receiver embedded inside the object through a body-guided channel established when the

user touches the object. We will demonstrate several desirable properties of our solution,

including low power, superior resilience to attacks, and robust authentication capability.

We discuss Body-guided Communications in Chapter 3.

EyeLight: Light-and-shadow-based Occupancy Estimation and Room Ac-

tivity Recognition [17]. This work introduces EyeLight, a system embedded in indoor

lighting environment to sense the human occupancy and room activities. The system is

based on Visible Light Sensing: while previous works require either light sensors to be

deployed on the floor or a person to carry a device, our approach integrates photosensors

with light bulbs and uses the light reflected off the floor to achieve an entirely device-free
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system. We build a prototype system using modified off-the-shelf LED flood light bulbs

and install it in a typical office conference room. Evaluation results show that we are able

to achieve 0.89m median localization error as well as 93.7% and 93.78% occupancy and

activity classification accuracy, respectively. EyeLight will be presented in Chapter 4.

HandSense: Capacitive coupling-based Micro, Dynamic Finger Gesture Recog-

nition. This work aims at the applications of Augmented Reality head-mounted devices

in several industries, such as manufacturing, repair and maintenance, healthcare. While

these devices provide a convenient digital data overlay on physical world, it is desirable to

have a lower-effort, intuitive interface for users to interact with these devices, especially

in works where user hands are occupied. This work proposes HandSense, a light-weight,

always-available system to recognize a series of dynamic, micro finger gestures that are

highly suitable for controlling these head-mounted devices. Chapter 5 gives more details

about HandSense.
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Chapter 2

High-Rate Flicker-Free Screen-Camera Communication with

Spatially Adaptive Embedding

2.1 Introduction

With the pervasive use of screens and cameras, screen–camera communication through QR-

code-like tags has emerged in diverse applications from pairing devices to obtaining context

from advertisements and other screen content. When placing such codes on screens, they

occupy valuable screen real estate, which results in undesirable compromises. Either the

visual code replaces most of the imagery on the screen, which usually distracts from the

aesthetics of the image or video, or the code only uses a small area of the screen, which

leads to less throughput and requires the camera receiver to be closer to the screen. This

conundrum motivates embedding such codes into the screen imagery so that the code is

detectable with camera receivers but imperceptible for the human visual system.

While there have been a few existing efforts on embedded screen-camera communica-

tions, they tend to achieve either high throughput but noticeable flicker or virtually flicker-

free embedding but low throughput, as illustrated in Fig. 2.1. In particular, InFrame++ [18]

utilizes the flicker fusion property of the human visual system to embed data. It relies on

high screen refresh and camera frame rates to modulate the image at rates faster than the

human eye can perceive. It can therefore transmit data at 18 kbps, but noticeable flicker

remains. HiLight [19] modulates bits through slight pixel translucency changes, which re-

duces flicker to unnoticable levels but only supports a low bit rate. The setting is also

related to the classic watermarking literature, but only some of the work considers camera

capture, usually involving ultra-low data rates of a few bits per second [20], [21]. These are

sufficient for digital rights management applications to address movie piracy, but do not

meet the capacity and flicker requirements of pervasive screen tags. Overall, existing work
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to reduce flicker, but still achieves superior goodput.

tends to each explore one technique for embedding, and it is unclear what the limitations

are.

In this chapter, we systematically explore psychovisual factors leading to flicker per-

ception and uncover additional dimensions of the flicker-free embedding design space. In

particular, we study adaptive spatial encoding in the screen–camera communication chan-

nel, which has hitherto remained unexplored.

Conceptually, spatially adaptive encoding in screen–camera systems resembles adapting

modulation and coding rates on different streams in a spatially multiplexed precoded Multi-

ple Input Multiple Output (MIMO) radio system. In practice, however, the screen–camera

communication channel imposes very different challenges. Radio frequency MIMO often re-

quires precoding because typical MIMO spatial streams interfere with one another and need

to be decorrelated for the best encoding opportunities and decoding performance. In the

case of screen–camera communication, or visual MIMO, however, the individual pixel-to-

pixel links are very directional, and there is little interference between such “spatial” links

(neglecting image blur). Instead, the primary challenge is that the modulation and coding
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techniques should not only maximize communication performance but also minimize image

distortions and flicker for the human observer. In addition, the communication techniques

must be robust to noise from the carrier image or video and work without feedback from

the receiver, since the screen–camera channel is a one-way channel.

Our work addresses the challenges by exploring several factors for flicker perception

and combining corresponding coding opportunities. First, since both flicker perception and

receiver noise depend on the visual content of the frame that the information is embedded

in, we design a texture-based estimator that determines the suitability for embedding in

each pixel block of the screen. This information then governs the choice of modulation and

lends to the spatially adaptive approach. It also addresses the unknown channel state at

the transmitter, since the texture analysis effectively provides an estimate of receiver noise

on each block. Second, the technique aligns the boundary of each encoded region along the

existing edges in the video sequences to minimize the visible artifacts caused by encoded

messages. Third, akin to earlier work, we also modulate at a rate beyond the critical

flicker fusion threshold for most observers but remains decodable with the high-frame rate

(slow motion) cameras available in today’s smartphones. Finally, we identify a lightweight

approach following the same principles and delivering similar performance at a much lower

computational complexity.

In summary, the salient contributions of this work are:

• We analyze factors contributing to distortions and the flicker perception of embedded

screen–camera communication.

• We identify techniques to achieve spatially and content adaptive embedding. We also

show that it is possible to achieve similar performance using a lightweight approach.

• We explore and combine multiple encoding methods to embed information into arbi-

trary video content without noticeable distortions or flicker.

• We show experimentally that our proposed methods have the potential to more than

double the goodput of existing flicker-free screen–camera communication techniques.
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2.2 Flicker perception for embedded screen–camera communication

Flicker is a perceptual attribute normally defined for displays, seen as an apparent fluctua-

tion in the brightness of the display surface [22]. Prior psycho-visual studies have revealed

various effects in the displayed video that may contribute to the perceivable flicker, such as

the frame rate, image content, saccades, and the viewer’s field of view.

By inducing brightness changes in a regular video to modulate bits, embedded screen-

camera communication can naturally generate flicker. Therefore, we explore how to balance

the conflicting goals of embedding bits and avoiding flicker. Where applicable, we perform

simple experiments to provide qualitative hints. These follow the same settings as in Sec-

tion 3.6, and the flicker level is assessed visually by the first two authors.

2.2.1 Frame rate

It has long been known that flicker perception is prominent for luminance fluctuations

below 100 Hz [23, 24]. Although this frequency threshold was determined using a single

light source, it is still applicable if we consider the modern display as a collection of LED

light sources.

In our case, the fluctuation is caused by switching between bits at the same position

of the video across frames. Since such bit streams are random, we are constrained by the

largest differences between the codewords, the available display refresh rate (up to 144 Hz),

and the camera capture rate (up to 240 fps). Given the latter two constraints, we can

expect to display at 120 fps. The maximum codeword distance can then be determined

accordingly.

We place two uniform grayscale blocks side by side (Fig. 2.2). In each run, the left

block has a fixed intensity value x, while the right block’s color flips between x + α and

x−β at 120 fps. Across runs, x varies from 0 to 250 at steps of 25. Experiments show that

the color deviation without inducing flicker perception is α = 2 and β = 3. In other words,

only very slight color differences between adjacent blocks can be tolerated. This suggests

very limited scope for encoding bits directly using pixel intensity changes.
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Figure 2.3: Performance of flicker perception for different video samples

2.2.2 Image content

Images of natural scenes often contain many textured regions that we can use in our coding

method. It is well known that human vision is sensitive to even small intensity edges

[25, 26] and that texture affects the perception of intensity transitions [27]. As a practical

consequence of these perception traits, intensity modifications in smooth regions are more

likely to cause flicker than textured regions. To take advantage of this flicker reduction, our

method adapts to image content by detecting textured regions and embedding message bits

within this space.

To qualitatively evaluate the intuition of texture-based embedding, we experiment with

20 videos of varied contents. We divide each video frame into smooth and textured regions

(detailed in Section 2.3), and embed bits into the smooth regions only, the textured regions

only, or all regions to compare the flicker perception. Fig. 2.3 shows that embedding into
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textured regions exhibits the least amount of flicker.

2.2.3 Saccades

Saccades are rapid, ballistic movements of the eyes that abruptly change the point of fix-

ation. In [28], the authors introduced an edge between a white half frame and a black

half frame. The colors of the two halves were inverted in rapid succession, and the human

subjects still observed flicker artifacts regardless of the switching frequency, even at 500 Hz.

Since it is common to use a block of pixels to encode a bit, we also encounter edges

between adjacent blocks of different bits. When the two neighboring blocks are modulated

with “different phases”, i.e., one block changes from x+α to x−β while the other changes in

reverse, flicker is noticeable. However, separating the blocks with some distance can reduce

or minimize the effect.

2.2.4 Viewer’s field of view

In the course of experiments, we also observe that the level of flicker perception depends on

the size of the encoded regions in the video and the distance of the viewer from the video

displayed. We capture both effects with a single metric, the size of the ”viewer’s field of

view”. To measure this size, we use a square block of different sizes for encoding without

changing other parameters and view the video from different distances. Results show the

smaller area fell into viewer’s retina, i.e., the smaller block size or further distance, the less

flicker the viewer perceives. This suggests using only small code blocks for encoding and

avoiding parts of the image scene that might attract attention.

2.2.5 Hints for code design

We make several observations from the exploration so far. First, the first three factors above

suggest opportunities for modulating bits, while the field of view cannot be leveraged easily,

since the encoder side has no control. Second, each factor alone offers limited flexibility in

modulation. In other words, to control flicker perception in the encoding process, we have to

work within a small range of brightness fluctuation, which significantly constrains the code

capacity. This is precisely why HiLight and Inframe++ either achieves a high goodput or
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Figure 2.4: The block diagram of the different components in TextureCode.

negligible flicker perception, but not both simultaneously. Third, the first three factors are

orthogonal, paving way for combining the corresponding techniques leveraging the factors.

Frame rate is a temporal property of the video, whereas the image content and saccades

mostly affect the spatial domain. Based on these insights, we design TextureCode to achieve

high capacity at negligible flicker.

2.3 Spatial-Temporal Embedding

We exploit these observations of flicker perception and explore schemes that operate both

in the spatial and temporal dimensions. We first discuss the temporal dimension through

the design of high-frame rate embedding that seeks to operate beyond the human flicker

fusion frequency. We then discuss schemes that employ spatial adaptation based on texture

analysis to address the image content factor. Finally, we align the boundary of each encoded

region along the existing edges in the images, to minimize the effect of visible artifacts

caused by encoded messages and to address saccades. This is accomplished through a

superpixel encoding technique. We refer to combining these ideas in an approach that we

call TextureCode. A block diagram of this approach is shown in Figure 2.4. In addition,

as we will show in Section 3.6, the video frame content not selected in TextureCode could

still be used in other mechanisms to produce a hybrid version with better goodput and no

flicker.

2.3.1 Temporal embedding

We apply basic temporal embedding as follows. In our system, we utilize a screen capable

of playing video at high speed (120 Hz) as our transmitter. The 120 fps video is created

from an original video at 30 fps by duplicating each frame in the original videos to 4 new

frames. These 4 new frames are then used to embed messages.
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Figure 2.5: Illustration of the encoding method.

Figure 2.5 shows how we embed messages inside a video sequence. For each frame,

the message structure is a rectangular M×N grid where each grid block carries one bit of

information. We choose a Manchester-like encoding scheme for modulating bits to keep

the frequency components of the encoded video signal above 60 Hz. Since Manchester

encoding ensures a transition on every bit, it generates less low frequency components

in the modulated signal when multiple consecutive bits are identical. For example, for a

block with bit 0 encoded, its luminance will be denoted as LOW-HIGH in two consecutive

frames. For a block with bit 1 encoded, its luminance will be denoted as HIGH-LOW in

two consecutive frames. This modulation signal is then combined with the sequence of

carrier image frames. The carrier pixel values inside each HIGH block are increased by α,

which means these pixels are made brighter. The pixel values inside each LOW block are

decreased by β, which is equivalent to making these pixels darker. In our implementation,

the two values are chosen as α = 2, β = 3. This change is applied to the Y channel in a

YUV encoded frame.

2.3.2 Spatial embedding based on texture analysis

The effect of message-hiding to human eyes is not universal across the video sequence. We

observe that in some regions, especially in regions having no or little texture, the flicker is

more obvious to see. This becomes motivation for us to use texture analysis to select “good”

regions to embed in the video sequence. In particular, we seek to categorize the blocks inside

each video sequence as “good” or “bad” based on its flicker effect when being encoded by

Manchester coding described above. We propose two techniques for this task: one based



17

on a machine learning technique called texton analysis and the other one is pixel-based

texture analysis method. The former is the more accurate and complete technique for

identifying “good” and “bad” blocks, but it is computationally heavy. Therefore, although

the technique allows us to explore to what extent of data throughput we can achieve with

our texture analysis, for dynamic scene videos, we employ the second simpler method.

Texton analysis. For texture analysis, we employ texture classification based on tex-

tons [29,30]. The algorithm is divided into a learning stage and a classification stage. In the

learning stage, training blocks are convolved with a filter bank to generate filter responses as

shown in Figure 2.6. Exemplar filter responses are chosen as textons via K-means clustering

and are collected into a dictionary. After learning a texton dictionary, we model texture

as a distribution of textons. Given a block in a video frame, we first convolve it with a

filter bank and then label each filter response with the closest texton in the dictionary. The

histogram of textons, which is the count of each texton occurring in the labeling, provides

us a model corresponding to the training block.

Next, we use K-means clustering to divide our training set of texton histograms into

groups. For each group, we segment videos so that only blocks belong to that group are

encoded. The videos are then graded based on their level of flicker. Then, each texton

histogram group is labeled “good” if the videos have low flicker, and “bad” otherwise. In

this manner, we identify the type of texture that is amenable to message embedding.

Each new block of an input video is pre-processed to compare its texton histogram with

our training set of texton histograms to find its label (“good” or “bad”). Based on this

label, the block is either used for message embedding or not.

Pixel-based texture analysis. Texton analysis is a computationally intensive process

and becomes more challenging to use in the dynamic scene videos as the varying content

on each frame will require recomputing the ”good” blocks to encode. To address this issue,

we also propose a computationally efficient method to find the ”good” regions to encode.

This pixel-based texture analysis is based on the variations of spatial pixel intensities. A

larger variation value indicates a more textured region.
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Figure 2.6: Texton Method of Representing Textured Regions

2.3.3 Superpixels

In above sections, we described the Manchester encoding at 120 fps, which ensures the

frequency component in our temporal video signal are above critical frequency threshold,

and texton analysis, which excludes the region with the kind of textures that are likely

to cause flicker. The flicker, although significantly reduced, is still observable. We observed

that the flicker artifacts appear along the edges between checkerboard blocks. This is the

result of the phenomenon described in section 2.2, where two neighboring blocks modulated

at different phases would cause flicker artifacts at their edges, even at frame rate as high as

120 fps. In addition, these edges are not naturally aligned to existing edges in original video

contents, causing visible flicker to human eyes. From these observations, we are motivated

to seek another technique to improve the unobtrusiveness of the encoded videos. This

technique would ensure: (1) Separate the encoded regions (i.e., get rid of edges between

them), and (2) align the border of each encoded region to the existing edges in the original

frame.

The technique we chose to fulfill this requirement is superpixels, a computer vision

technique that provides a convenient primitive from which to compute local image features.

It is a method of oversegmentation techniques: an image is divided into sub-regions with

respect to image edges, and pixels inside each region are uniform in color and texture.

To generate superpixels, we use SLIC (Simple Linear Iterative Clustering) algorithm [31],

which is fast and has high segmentation performance.

We use superpixels to determine which pixels inside checkerboard grid to embed infor-

mation. Recall that in our scheme, pixels inside each block alternate between dark and
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bright intensity values. However, we observe that if all pixels inside each block are allowed

to alternate, boundary between blocks are perceivable by human eyes. Superpixels, there-

fore, are employed to limit the region inside each block where pixels are allowed to alternate.

This approach also allows boundaries of each encoded region to align with the real edges in

the video frame, thus reduce significant perceivable flicker to human eyes.

Although superpixels can align the boundary of each encoded region to the existing

edges of the original video frame, the receiver needs to know the location of each super

pixel (i.e. which pixels in the original video frame belongs to which superpixel), which

means it needs to rebuild the superpixel map for each video frame. The superpixels are

also varying in size and shape, which can cause varying quality of decoding. To solve these

problems for block-based decoding, we propose a block-superpixel hybrid encoding

method as follows.

Each video frame is first segmented into superpixels and also divided into checkerboard

blocks. In each checkerboard block, we find superpixels that completely fall into that block,

and mark pixels inside these superpixels to be encoded. These pixels are then alternated

following the previously described method, while other pixels in the block are kept the same.

Figure 2.7 shows an example of how pixels inside each block are chosen to be encoded. This

hybrid encoding method has the following desirable properties: 1) it aligns the boundary of

each encoded region to existing edges in each video frame; 2) it ensures there is no common

edge between any two encoded units (blocks), and 3) it allows an easy block-based decoding

method—there is no need to rebuild the superpixels map on the receiver side.

2.3.4 Receiver and decoder

The receiver in our system is a camera capable of capturing video at 240 Hz. To evaluate

our decoding algorithm, we first captured high frame rate videos from the camera and

then extracted all frames inside these videos for offline processing. The offline processing

algorithm is implemented in Matlab.
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Figure 2.7: Texture encoding method (the pixels inside the blue regions are encoded). The
texton analysis avoids encoding in plain texture area in the video frame, such as the road,
the sky, etc. while encoding in the high texture area, such as the cars, the buildings, etc.
The superpixels method then further separates encoded blocks (avoid boundary effect), and
also aligns their boundaries to the existing edges in the video frame.

Frame perspective correction and spatial block division

Because of the capturing angle and the camera distortion, the received video frames are

normally trapezoids. This would bring some difficulties to the decoder when recovering the

correct location of spatial blocks. Therefore, after extraction, all frames need to be warped

into correct perspective. We use projective transformation for frame correction. After a

frame has been corrected, it will be divided into blocks for later decoding process.

Decoding algorithm

The main challenge for the decoder is to extract the desired intensity change among the

intensity changes due to noise and the video content itself. To minimize the effect of video

contents to the decoder, we choose to decode 8 encoded frames from an original video frame.

We are able to choose these 8 frames thanks to the following observation: the change by

pixel modulation is relatively small compared to the change in video contents. Therefore,

by calculating the pixel-by-pixel difference between consecutive frames, we can detect the

starting point of each 8-frame group. As we capture the videos at double the screen refresh

rate, one frame from the transmitter would produce two frames on the receiver. Therefore,
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Algorithm 1 Decoding algorithm

Input: a captured video.
Output: a decoded stream of bits.
Extract frames from the capture video;
for each frame in the extracted sequence of frames do

Warp the frame into the correct perspective;
Crop the video region inside the frame;

Detect the starting point of each 8-frame group;
for every 8-frame group of the same content do

for each block inside each frame do
a1, a2,..., a8 := average intensities of all pixels inside this block in these 8 frames;
for i = 0, 1 do

if a4i+1 + a4i+2 < a4i+3 + a4i+4 then
outBit = 0;

else
outBit = 1;

Save outBit to the output buffer;

within 8 received frames (or 4 sent frames), each checkerboard block will contain two bits,

as can be seen in Figure 2.5. We compare the average intensity of each block over two

frames with the average intensity over the next two frames to determine the transmitted

bit in this block. The pseudocode for our decoding mechanism is described in Algorithm 1.

Since the objective is primarily to evaluate the limits of spatially adaptive embedding, we

assume that the decoder knows the checkerboard size, the original video resolution and the

encoded regions for each frame. This eliminates pixel offsets and error for texture analysis

on the receiver side introduced from several factors, including video distortion, ambient

light change and camera exposure setting. In a full protocol design, these parameters can

be included in packet headers or inferred through additional receiver processing.

2.4 Implementation

The implementation of TextureCode consists of a transmitter and a receiver component.

For the transmitter, we take an original image or video stream and a data bitstream as

input, generate an YUV sequence, and use glvideoplayer [32] to play the video at 120 fps

on a computer screen, whose refresh rate is set to 120 Hz. We choose an uncompressed

YUV format to avoid any artifacts caused by video compression schemes. The receiver is a

smartphone camera with high frame rate video recording capability. We chose the iPhone6
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since it allows 240 fps capture. It captures the video sequence displayed on the screen and

detects the message embedded inside the video sequence.

Currently, both the transmitter and the receiver work offline. We use Matlab to multi-

plex the original video sequence with the data stream to create an encoded version of the

video. For the receiver, we use a Matlab script to post-process the video file recorded on

the the iPhone.

We implement two algorithms to evaluate TextureCode. One is the refined texton anal-

ysis and superpixels based method for finding ”good” regions to encode. The other is more

computationally efficient, using pixel-based texture analysis to find the ”textured pixels”

and encode only in those blocks with a high number of “textured pixels”. For the latter

method, we leave a few pixels unencoded at the block boundaries to avoid flicker. We use the

first method for videos with static scene, as the texton analysis and superpixels are better

at detecting regions with near-zero flicker perception. We use the lightweight pixel-based

texture analysis for dynamic scene videos.

2.5 Evaluation

We experimentally evaluate the effectiveness of spatial-temporal embedding and its orthog-

onality to different schemes. In particular, we study the communication link performance

of the TextureCode approach in terms of goodput and bit error rate and compare it with

the existing HiLight [19] and InFrame++ [18] schemes as baselines.

Experiment Settings. We conducted experiments in a well-lit indoor office room

environment using a display monitor screen as the transmitter and a smartphone camera

as the receiver. We used an ASUS VG248QE 24-inch monitor to display a set of test videos

at a rate of 120 Hz1. The screen resolution is 1360×760 while video resolution is 1280×720.

The displayed videos were recorded as video streams at 240 fps with an iPhone6 using its

built-in camera application in the Slo-Mo mode. The default distance between the screen

and the camera was set to 70 cm, where the screen fills the camera image. The iPhone

was mounted on a tripod as shown in Figure 2.8. We selected a set of 10 videos from two

1the maximum refresh rate of the monitor is 144 Hz



23

bigbuckbunny Bosphorus football highway Jockey

Table 2.1: The screenshots of some test video sequences.

publicly available standard data sets [33], [34]. Table 2.1 shows screenshots of sample test

video sequences.

Metrics. The primary metrics for evaluation are bit error rate and goodput. We chose

goodput over throughput since the bit error rates can be highly variable for embedded

screen-camera communications. We define goodput as follows.

Goodput =
∑

all frames

D

t (1)

where D is the number of correctly decoded bits and t is the transmission time.

In addition, we also consider the transmit rate to understand the effectiveness of the

spatially adaptive embedding approach. Note that the transmit rate in TextureCode is

dependent on the content of the carrier frames, because it encodes more bits in image areas

that are conducive to embedding. The transmit rate therefore varies in TextureCode, while

it remains constant in the baseline schemes.

Transmit Rate =
N∑
i=1

Bi × b× V
N × F

(2)

where Bi is the total number of encoded blocks in frame number i, b is the number of bits

encoded in each block, V is the video frame rate, N is the total number of frames in the

video sequence, and F is the number of frames needed to encode one bit.

Schemes for Comparison. The two existing techniques can be summarized as follows.

HiLight [19] utilizes the alpha channel to encode messages into each frame. In each carrier

frame, the alpha value is either 0 or ∆α, which is small (about 1-4%). The messages are

embedded using Binary Frequency Shift Keying (BFSK), where 6 frames are used to encode

bit 0 or 1 by translucency at 20 Hz or 30 Hz respectively. InFrame++ [18] uses Spatial-

Temporal complementary frames (STCF) to design frame structures. In InFrame++, a
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Figure 2.8: Experiment setting

Cell consists of p × p physical pixels; a Block consists of c × c neighboring Cells, and it is

considered the basic information carrying unit. InFrame++’s design boosts data throughput

by allowing each block to deliver multiple bits, distinguished by different visual patterns.

For each sample video, we generated one test video sequence each for the three candi-

date encoding schemes (TextureCode, HiLight and InFrame++) where each image frame of

the test video was embedded with a random bit stream. While we used the original imple-

mentation of HiLight using the code provided by the authors, we implemented InFrame++

based on the description available in the paper [18], as we did not have access to the code.

In addition, we implemented a hybrid encoding scheme where we used our proposed

TextureCode technique and the HiLight scheme on different regions of each video frame.

As we will show through our evaluations, the hybrid scheme improves the communication

performance of HiLight while inducing no flicker.

2.5.1 Communication Performance of TextureCode

We evaluate the communication link performance of TextureCode for two use-cases: (i)

dynamic, where the visual content (i.e. background) of the test video is changing, and

(ii) static, where the visual content of the test video does not change. The experimental

results are shown in Fig. 2.9, where we plot the transmission rate, goodput, and BER of

TextureCode for each test video, for both the dynamic and static cases, respectively. As

mentioned earlier, TextureCode achieves near-zero flicker perception for all the tested videos.
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Figure 2.9: Transmit rate and goodput performance. (a) Dynamic scene, (b) Static scene.

The experimental results from these plots indicate that TextureCode has an average goodput

of 16.52 kbps for the dynamic case and 15.16 kbps for the static case, while bounding the

average BER within 7% for the static case and within 20% for the dynamic case. We observe

that the BER achieved in the static case is usually smaller than the dynamic case. This

large error spike in the dynamic case happens because the original, unaltered video signal

is changing, but our algorithm assumes a constant base-video signal. In fact, the Jockey

dynamic video sequence has the fastest motion in our test, causing the highest BER (18%).

2.5.2 Comparison of TextureCode with prior work

We compare the performance of TextureCode with HiLight, InFrame++ and the Hybrid

schemes in terms of the goodput and flicker perception for the dynamic video cases, as

shown in Figure 2.10. We elaborate our inference on each of these dimensions as follows:

Perceived flicker

We observed that while TextureCode, HiLight and Hybrid schemes showed no signs of

flicker (flicker level was much below perceivable (subjective) threshold), there was still some

residual flicker in InFrame++ at the test viewing distance of 70cm. While there are several

proposed objective metrics for video flicker, we are not aware of any metrics applicable

to high speed videos. Therefore, the flicker assesment is the subjective assesment of two

subjects, according to the grading scale described in Fig. 2.3. It is worth noting that the

flicker level of the InFrame++ scheme can be reduced by limiting the encoding block size
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Figure 2.10: Comparison between systems.

Average
(kbps)

Max
(kbps)

Min
(kbps)

Standard
deviation
(kbps)

InFrame++ (S) 19.26 23.78 15.93 2.05

InFrame++ (D) 18.05 21.23 15.21 1.63

HiLight (S) 9.66 9.82 9.01 0.13

HiLight (D) 9.27 9.47 8.99 0.1

TextureCode (S) 15.16 22.94 6.96 5.55

TextureCode (D) 16.52 33.08 3.85 9.31

TextureCode-hybrid (S) 21.9 28.68 13.7 4.4

TextureCode-hybrid (D) 22.57 39.13 9.89 8.84

Table 2.2: Summary of goodput for the four systems: InFrame++, HiLight, TextureCode
and Hybrid system. S: Static scenes, D: Dynamic scenes

to 12x12, as described in the the original paper [18]. Reduction in block-size reduces the

area over which the block spatial transitions may be perceived by the human-eye. However,

a reduction in block size also translates to a reduction in communication range. This is

avoided in TextureCode as the design inherently reduces flicker without reducing block

size. In particular, the texton analysis and superpixels methods ensure there are no edges

between neighboring encoded units and align the edges of each encoded block to the edges

already present in the content of the image.
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Goodput and BER

To ensure a fair comparison of the candidate schemes we use a 32×32 block-size for all

schemes. We can observe from Figure 2.10 that TextureCode can achieve higher goodput

than HiLight, slightly lower goodput than InFrame++, but InFrame++ introduces more

visible flicker. The measured BER of TextureCode is 10%, which is also lower than the

measured BERs of InFrame++ (31%) and HiLight (40%). It should be noted that In-

Frame++ improves the goodput by using a smaller block size—a block size of 12×12 would

produce a throughput of hundreds of kbps. However, when we experimented InFrame++

with block size 24×24, 12×12 and 8×8, we observed BER close to 50%, which offers vir-

tually no usable capacity. This is the result of the inter-symbol interference and the pixel

offset errors. HiLight encodes bits by modulating the alpha channel to reduce human flicker

perception. Although this technique significantly reduces flicker, with a block size of 32×32,

the luminance changes are not easily captured by the camera, resulting in larger bit errors.

We observed that the bit error rate is as high as 40% for HiLight, hence reducing effective

goodput to about 10kbps.

The main advantage of using TextureCode is that it selectively encodes pixel regions in

the frame that have a high signal-to-noise ratio at the receiver thus reducing the number of

errors in decoding such pixels, resulting in a high goodput. To further improve the goodput

of TextureCode, we also explored a new hybrid technique, named TextureCode-Hybrid,

where we employ a mix of HiLight and TextureCode in a screen-camera communication

system. In particular, we use TextureCode in “good” (high texture) blocks, and apply

HiLight encoding to embed messages in the “bad” (plain texture) blocks, resulting in a

higher transmit rate. This technique still ensures that there is no flicker in the encoded

videos. Table 2.2 shows the average goodput (averaged over all test video samples) of

the four candidate schemes: InFrame++, TextureCode, HiLight and the Hybrid systems.

On average, the hybrid system achieves 22 kbps of goodput, increasing the goodput of

TextureCode by 45% and the goodput of HiLight by 125%. There is a larger deviation in

goodput of TextureCode and TextureCode-hybrid systems, because different texture content

results in different amounts of encoded video content. It is worth noting that HiLight was
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Figure 2.11: BER and goodput vs. distance.

demonstrated in real time and InFrame++ achieved online encoding while the algorithm

for TextureCode currently runs offline. We plan to address this in future work.

2.5.3 Microbenchmarking

Communication Range

We examine the communication range of TextureCode by measuring the goodput and BER

at increasing screen-camera distance from 70 cm (the minimal distance at which only the

screen pixels project onto the camera image) to 150 cm. We plot the average bit error

rate (averaged over all videos) and goodput in Figure 2.11. The block size is 32×32 in this

experiment. As one can expect, the BER increases with distance as the camera-captured

block size becomes smaller, resulting in higher inter-pixel interference [35]. We observe that

TextureCode performs well when the distance is within 1 m, maintaining bit error rate less

than 10% on average. One possible solution to improve performance at greater distances is

to adaptively change encoded block sizes. We reserve such considerations for future work.

Maximum Transmit Rate

Table 2.3 shows the maximum transmit rates for HiLight, InFrame++, and TextureCode. A

major improvement through TextureCode is that it can embed a bit for each block within

every two frames of the carrier video, while HiLight requires 6 frames and InFrame++
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System Capacity

HiLight frameRate∗N
6

InFrame++, τ = 4 frameRate∗N∗bitsPerBlock
8

TextureCode frameRate∗N∗encodedPercentage
2

Table 2.3: Comparison of Maximum Transmit Rate, which is normalized for the video
display frame rate and the number of blocks per video frame. In InFrame++, bitsPerBlock is
the number of bits per encoded block. In TextureCode, encodedPercentage is the percentage
of encoded regions over the whole video frame.

requires 8 frames (including about 4 transitional frames) respectively. Although in Tex-

tureCode, the maximum transmit rate is reduced by a factor of encodedPercentage, we

observed that this factor is about 30-40% from our experiments. As a result, the overall

theoretical limit on transmit rate of TextureCode is almost of the order of HiLight and

InFrame++.

2.6 Related Work

Screen-camera communication. Screen-camera communication began with codes that

are not embedded. PixNet [36] uses 2D OFDM to modulate high-throughput 2D barcode

frame, and optimizes high-capacity LCD-camera communication. COBRA [37] is a color

barcode system for real-time phone to phone transmission optimized for reducing decoding

errors caused by motion blur. Another orthogonal class of work includes resolving the frame

synchronization problem [38], extending the operational range [39], boosting the reliability

and throughput of the screen-camera communication link [40]. More recent studies have

focused on embedded screen-to-camera communications. Visual MIMO [41] is a real-time

dynamic and invisible message transmission between screen and camera. VR Codes [42] is

an invisible code to human eye, which uses high-frequency red and green light to transmit

data to a smartphone’s camera, where only the mixed colors are perceived by human eyes.

HiLight [19] leverages pixel transluency channel to encode data into any screen. InFrame++

[18] uses complimentary frame composition, hierarchical frame structure and CDMA-like

modulation to embed messages into videos. TextureCode differs in that it explores spatial

coding, an orthogonal dimension to these previous works.

Video watermarking and steganography. Video watermarking and steganography
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also make the embedding into images and videos imperceptible [20] [21]. However, the tech-

niques do not address real-world challenges in screen-to-camera communication channel as

our system does. We made observations as to finding appropriate regions (in an image) for

embedding inspired by the work in watermarking community and proposed a novel tech-

nique that addresses screen–camera channel distortions by encoding over spatio-temporal

dimensions.

2.7 Conclusion and Future Work

In this work, we study high-rate flicker-free embedded screen-camera communication. An

examination of factors that affect flicker perception leads us to explore the spatial dimension

of the design space and to combine it with more conventional temporal schemes. The re-

sulting encoding scheme, TextureCode, is spatially adaptive based on texton and superpixel

analysis. Experimental results show that this approach reduces flicker to unobservable levels

while offering the potential to meet or exceed the goodput of existing schemes. Realizing

this potential will still require a receiver that can automatically recognize and adapt to the

changing encoding regions in the video stream.

These results also show promise for significantly improving the performance of embedded

screen-camera communications through techniques that jointly use multiple dimensions of

embedding. This motivates future work to design such protocols, more complete receivers,

and online or real-time encoders.
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Chapter 3

Body-Guided Communications: A Low-power,

Highly-Confined Primitive to Track and Secure Every Touch

3.1 Introduction

As users interact with an increasing number of devices, our interaction times with each

device become shorter and the overhead of conventional user identification, authorization,

and authentication solutions places an increasing burden on users. Ensuring authorization

or accountability is particularly challenging in environments where devices are operated by

groups of people. Consider an intensive care unit with multiple patient monitoring and

life-support devices, that may be operated while several people including nurses, doctors

and patient visitors are present. In some cases, the interaction with a device will only be a

single touch before moving on to another device or task. How can we support accountability

and auditing by tracking which users looked up information or changed a setting at any

given time? If desired, how can we ensure that only authorized users operate these devices?

Similarly, challenges arise in numerous other scenarios, from industrial or manufacturing

settings to the home environment.

Current approaches broadly fall into the categories of passwords, biometrics, and tokens

with short-range radio or near-field communications (NFC). Passwords are cumbersome to

use for one-touch interactions and require a user interface for entry that is not present on

all devices (consider Amazon’s Dash button [43]). Biometrics can be convenient if directly

integrated into the interaction (e.g., a fingerprint sensor in the button) but require a so-

phisticated sensor that adds cost, particularly if every button on a device should have this

functionality. Radio tokens, as in keyless entry systems for cars, are more convenient to

use but their signals can be easily intercepted, requiring cryptographic protocols. These
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operations consume significant energy and the implementations of these protocols are sur-

prisingly often flawed [44, 45]. They are also difficult to secure against man-in-the-middle

attacks [46]. Near-field communications can reduce but not eliminate the probability of

adversarial interception. Achieving a higher level of security usually requires near-touch

between the token and the receiver, such as holding a watch or phone against a payment

terminal or a signet ring against a tablet screen [47]. This is an extra step that a user

needs to perform, which adds inconvenience. None of these techniques can, therefore, pro-

vide a convenient and low-complexity solution to securing quick touch interactions on small

devices.

This work explores body-guided communications as a primitive for tracking and securing

every touch. This allows a wearable touch token to exchange credentials with a receiver

through a low-power communication channel that is established at the time the user touches

the device. While our technique builds on prior research on touch and body communica-

tion [48–52], it differs in that it seeks to create a highly-confined, low-power communication

channel between the user’s token and devices that is suitable for touches. More specifically,

it aims to maintain data rates suitable for touch authentication while improving security

by confining the signal to a few centimeters around the hand and lower arm carrying the

transmitter token. Therefore, we refer to this technique as body-guided communications

rather than body communications.

The body-guided communications technique is motivated by an intuition that wearable

devices such as a wristband or a ring are particularly suited as security tokens since there is

less chance that a user will misplace them and that such devices are in close contact with the

body. We also interact with many smart devices through touch, meaning that the human

body creates a temporary connection between the device and the user’s wearable. This

intuition leads to the following fundamental questions. First, can the human body provide

a robust transmission medium for body-guided communications in a variety of typical device

touch scenarios? Second, can such body-guided communication achieve security properties

more akin to those of a wire but with the convenience of wireless communications? Further,

can it allow low-power communication at data rates fast enough to execute security protocols

during the time of a quick touch?
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In this chapter, we introduce a body-guided communications model, touch token design,

and a prototype for body-guided touch communications. Body-guided communications re-

quire closing the circuit through a capacitive return path which is dependent on exact token

positions, posture, and environmental factors. To examine the feasibility under different

conditions, we prototype two form factors, a wristband and a ring, and study the robustness

of touch communication in several touch scenarios such as a button-device, and a handheld

smartphone.

While strong cryptographic security protocols can also be implemented with such a

device, the current prototype concentrates on exploring the body-guided communication

primitive and demonstrates feasibility with a basic passcode protocol, where the wristband

stores and transmits a code to identify and authenticate a user. When the user touches

an object equipped with a touch receiver, such as on tablets or medical devices, this iden-

tification will be transmitted through body-guided communications to the touch receiver

and authenticates the user. The current prototype’s data rate is about 1kbps, sufficient to

transmit a secret key of length 128-bit on most touches longer than 200ms. Higher data

rates are also possible.

We show through experiments with this prototype that by including the human body in

the communication channel, the human finger effectively “extends” the transmitting elec-

trode to be very close to the receiver, therefore allowing very low power at the transmitter

side. This improves communication energy-efficiency but also protects against eavesdrop-

ping and man-in-the-middle attacks on this channel. In particular, we also show that in

other directions in which free air has very high impedance, an electrode needs to be within

centimeters of the transmitter to eavesdrop on the transmitted signal.

In summary, the salient contributions of this work are:

• Proposing, analyzing and modeling body-guided communications.

• Designing a body-guided low-power authentication token for device interaction through

touches.

• Designing an alternative transmitter, that allows reception of signals with unmodified

capacitive touchscreen hardware.
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• Implementing a prototype and experimentally studying its performance in authenti-

cating every single touch.

• Conducting experiments with these prototypes in three different adversarial scenarios

to evaluate the eavesdropping resilience of this design.

3.2 Threat Model and Background

3.2.1 Threat Model

Token-based security protocols rely on detecting the presence of a security token during

authentication by exchanging information between the token and the authenticating device.

We consider an adversary that seeks to eavesdrop the transmitted signal, either to capture

a secret passcode or as a means to launch man-in-the-middle relay attacks (e.g., [46]) on

more secure one-time passcode protocols.

We assume that the adversary can design a custom receiver to accomplish this, and that

this receiver can be more capable than the receivers used in the wearable and small IoT

devices that the user may touch. For example, in the case of the radio frequency signals,

the adversary could use a high-gain directional antenna and low-noise receiver to capture

weak signals. Similarly, for magnetic coupling-based communications, a larger coil with an

iron core would be able to increase signal received at the adversary position. Both of the

above devices are simple and can be easily hidden from users. In this work we do not focus

on attacks on the wearable or the touched device itself.

3.2.2 Existing Wireless Technologies

We categorize existing wireless methods for communicating with security tokens based on

the following three criteria. We focus here on physical layer properties since upper layer

cryptographic methods are equally applicable across all these technologies yet do not solve

all security issues. For example, man-in-the-middle attacks are usually still possible, thus

improving physical security is still desirable.

• attack window : considers the range from which the adversary can intercept or inject
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Communication method Attack window Power Touch association

RF High Low (≈ nJ/bit) No

Magnetic Coupling Medium Low (≈ nJ/bit) No

Vibration Medium High (≈ 100µJ/bit) Yes

Table 3.1: Comparison of existing communication methods.

signals as well as the availability of known techniques to increase this range.

• low power : power consumed in the wearable token should be low.

• touch association: the ability to associate every touch with the intended signal.

Table 3.1 presents a summary comparison of the communication methods across these

criteria.

Radio-frequency communications. Data is modulated on a high-frequency signal

with a wavelength short enough so that it launches a radiated wave from the transmitter

antenna. Transmitter antennas frequently use an omnidirectional pattern, where signal

power is distributed evenly across all directions. In this case, the signal is not confined

to the intended receiver. A nearby eavesdropper could receive equal or even stronger sig-

nals, resulting in a high attacking window. Simple reducing transmission power also re-

duces the signal at the intended receiver. Directional antennas are larger in size and a

directional transmission may still reflect off other objects in unwanted directions. Security-

oriented beamforming and other physical layer security techniques can reduce this attack

window [53], but it is difficult to apply such techniques to wearables and small IoT devices

for several reasons. First, information about the channel state is often needed in advanced,

which is impractical for mobile wearable devices. Second, for directional transmissions or

beamforming, the size of an antenna array with a reasonably narrow beam angle would be at

least 10 times the wavelength. Since the antenna is constrained by the wearable form factor

(ring: about 1-2cm, wristband: 5-10cm), the frequency of the radio would have to be tens

of GHz. Operating the token at this frequency range consumes significantly higher power

than at lower frequency (100-200KHz), so it is less suitable for a small battery-powered

wearable device. More problematic is that the adversary may be less constrained in size

and could take full advantage of high gain antennas and sophisticated receivers.
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RF communications can be optimized for energy consumption resulting in about 10 to

100nJ/bit for transmission [54, 55]. Since it is difficult to confine a radio wave to a very

short distance, the association of a device with a user touch is not clear when multiple users

are around.

Near-field communications: Magnetic Coupling. In this technique, power is

transferred between coils of wire through a magnetic field. In Fig. 3.1, an AC signal gener-

ates an oscillating magnetic field around the transmitter coil L1. the part of the magnetic

field that passes through the receiving coil L2, generates a corresponding AC current in

the receiver. Magnetic coupling is more limited in distance since the field strength reduces

with distance cubed and the fraction of the magnetic flux passing through the receiver coil

depends on orientation alignment.

However, an adversary has several options to increase the received power. The adversary

could simply use a larger coil with more turns. Further, without space and cost constraints

of a small device, the adversary can add an iron core inside the coil loop, since this material

has very high permeability (>10000), thus it concentrates the magnetic field towards the

adversary [56]. As a result, while more difficult than for radio frequency, any nearby adver-

sary could still achieve higher signal-to-noise ratio than an intended receiver. As an example

of attack risks to magnetic coupling-based communications, although NFC has a nominal

operating range under 10cm, previous work [57] showed that it is possible to eavesdrop an

NFC channel at a distance of 20-90cm, using a loop antenna that couples well with the

magnetic field. Therefore, the attack window for magnetic coupling is ranked medium.
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The power consumption of magnetic coupling tends to be low (transmission energy

≈ nJ/bit [54]), comparable to RF communications. However, since magnetic coupling

authenticates all token inside the reception range, it cannot fully associate the touch with

the intended signal when two tokens are both in close proximity of the receiver.

Vibration. Recently, vibration-based techniques, such as Ripple II [58] have introduced

the ability to associate touch with the intended signal by guiding the acoustic signal through

the finger bone. Ripple II uses a vibration motor as the transmitter and a microphone as

the receiver. It achieves 7kbps from a ring and 2-3kbps from a watch, so it has the potential

to satisfy the rate needed for authenticating every touch. Moreover, Ripple II is able to

mitigate the attacks on vibratory sounds, but still an adversary with high-speed camera

and line-of-sight to the device may intercept the vibrating signal.

However, current prototypes have high power consumption due to the vibration mo-

tor [59]. Current consumption of a typical vibratory motor [60] is up to 90mA at 2V, so

the power consumption is nearly 200mW. At 2kbps bitrate (from a watch), the energy per

bit is 100µJ/bit.

Goal. Among the three methods mentioned above, vibration is the only method with

touch association ability, but it can only be achieved by at least three orders of magnitude

more energy per bit than RF or magnetic coupling. Our goal, therefore, is to provide a low

attack window and touch association at low power consumption, ideally comparable energy

per bit as RF and magnetic coupling.

3.2.3 On-Touch and On-Body Communication

Several earlier projects have introduced the concept of communicating upon touch using

different forms of body communication. EM-Comm [49] works in reverse direction: informa-

tion is encoded in electromagnetic emissions of electronic devices and sensed by a receiver in

a wristband when the devices are touched. Security was not a focus of this work and given

the magnetic component of this signal, the attack range can be expected to be one meter,

similar to that of near-field communications. BodyCom from Microchip [61] ostensibly uses

the human body to transmit a signal from an on-body mobile unit to an external base unit

upon touch. The design relies on capacitive techniques for detecting touch and works well



38

when the user and the touched device can capacitively couple to a large central conductor,

such as a door frame or a metal desk, to serve as common ground reference point for both

units to close the circuit. The design also includes coils for magnetic coupling, likely to

improve data rate particularly when the capacitive coupling is weak. This design also does

not confine communications to the human body. Even when only considering the capacitive

channel, a significant signal component travels through these external conductors. More-

over, the magnetic component again lends the design similar attack range properties as

near-field communication. These techniques, therefore, can provide touch association but

do not offer a highly confined attack range.

There are several related works on on-touch communication, which do not focus on

confining the signal to a small part of the body. Hessar et al. [48] shows how signals from

commodity fingerprint sensors and touchpads can be used to transmit information to other

devices in contact with the user’s body. Due to commodity device constraints, the data rate

is limited to 50bps, which does not allow for exchanging longer codes or executing security

protocols in the brief sub-second touch scenarios we consider in this work. Moreover, it

demonstrates how the signal can be received anywhere on the human body so that it is

available to a broad range of wearable devices. Biometric Touch Sensing [51] also has the

same limited bit rate problem: due to the COTS device’s update rate, its transmission rate

is only 12bps. Our design seeks to satisfy the bit-rate requirement (token is exchanged

within one touch) by using a customized receiver that can be easily attached to the current

devices. The design also confines the signal more within a small region of the body.

In addition, researchers have explored body communication techniques that can commu-

nicate between several devices connected to the human body [50, 62–67]. These also either

do not fully confine the signal to a small part of the body or cannot communicate through

a finger touch connection. We will discuss these in more detail in the next section.

3.3 Body Guided Communications

To reduce the attack window and power, we seek to guide signals between the wearable and

a touched device through the human body.
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Figure 3.2: Different coupling types in IBC.

3.3.1 Challenges with employing body communication methods

The goal of transmitting a signal from one body part (at the wearable token position) to

another body part (the fingertip) is ostensibly similar to that of intrabody communication

(IBC) between two devices coupled to the human body. The challenge with directly em-

ploying such body communication methods is that they require direct electrode contact

with the human skin for both the transmitting and receiving devices.

Two coupling types are normally used in this communication: capacitive coupling and re-

sistive coupling [66]. In both types, both the transmitter and receiver require two electrodes

each. In capacitively coupled IBC (Fig. 3.2(a)), one of the electrodes on the transmitter

and receiver side is attached the human body, while the other is floating [68, 69]. In resis-

tive coupled IBC (Fig. 3.2(b)), both of the electrodes in the transmitter and receiver are

attached to the human body [65].

Callejon et al. [67] observed that in resistive coupling, the signal attenuation increases

with the Tx-Rx distance, while in capacitive coupling the path loss is much more dependent

on the surrounding environments since the circuit is capacitively formed through the floating

electrodes. In addition, when interelectrode spacing is longer in resistive coupling (either

at the transmitter or at the receiver), the signal attenuation is lower. This is because with

close spacing, the current mostly flows along the direct path between them. With larger

spacing, there exists more dispersion of the lines of current from the direct path, allowing

more current to pass by the remote receiver electrodes.

This creates several challenges when applying the above two coupling types to transfer

a signal from a wearable token to the fingertip. First, since the fingertip size is small, two

electrodes touching the fingertip could only be spaced by a few mm. This significantly
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reduces the received power from these two electrodes as we saw above. Second, it is not

desirable to require all object touch surfaces to be made of conductive materials (copper,

iron, etc.). In most cases, the electrodes could be more easily hidden behind layers of

non-conductive materials (plastic, glass, etc.). This means that there is no direct resistive

skin contact to the electrode of the touched device and neither the traditional capacitive

coupling nor resistive coupling for body communications is possible.

3.3.2 Double capacitively coupled communications

To overcome these challenges with conventional intra-body communications we design a

body-guided communications method that allows for a double capacitively coupled circuit.

Design. The key difference in our design compared to previous on-body communications

is the combination of resistive coupling at the transmitter side and double capacitively

coupling at the touched receiver. As will be seen below, this design improves received signal

at the intended receiver while reducing it at an attacker monitoring the channel on air.

On the touched device, none of the electrodes have to be in direct skin contact, but

one is placed as close as possible to the expected touch-point of the device (usually behind

non-conductive material that the device is made of), while the other electrode is simply

floating and even less constrained in position. On the wearable side, we exploit direct skin

contact since this can usually be accomplished for wearables. Both electrodes are placed in

direct contact with the user’s skin, and their electrode spacing is maximized given the size

constraint of the wearable token (wristband or ring).

In other words, the link between the wearable and the user’s body is through resis-

tive coupling, while both links between the user’s body and the touched device are through

capacitive coupling. Note that this differs from conventional capacitively coupled body com-

munications on both sides. The intuition here is that by attaching the wearables second

electrode closer to the main body, the large human arm effectively forms a larger capacitor

with the floating electrode of the touched device. This creates a stronger signal and com-

pensates for the reduction in signal due to the double capacitive coupling on the touched

device while keeping the signal largely confined in the arm.
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Figure 3.3: Body-guided communication method: Channel modeling.

Our approach differs from Microchip’s BodyCom [61] and other capacitive body com-

munication techniques in that the return path directly couples to the body. Thus, it does

not require common external ground planes for the two units to couple. This allows the

system to work well in more environments and reduces the attack window. Our design also

differs from work by Hessar et al. [48]: it allows both electrodes on the touched device to

be capacitively coupled, while their work assumes a metal surface with direct resistive skin

contact at the receiver side. Capacitive coupling is easier to incorporate into many objects

made out of non-conductive materials.

Model. To understand this better, consider the circuit model for body guided com-

munications in Fig. 3.3. The two electrodes in the wearable are powered by an AC signal

generator and placed in direct contact with the user’s skin. Inside the human body, there

are conductive tissues, which are separated from the electrodes by a layer of skin’s epider-

mis. We model the epidermis layer between each electrode and the conductive tissues as a

parallel pair of resistor and capacitor ([Res1, Ces1] and [Res2, Ces2]). We separately model

the impedance between these 2 points in the conductive tissues under the two electrodes

([Rbody1, Cbody1]) because the resistance in the tissue is far lower than the skin’s. The ma-

jority of the current will flow through this skin-tissue-skin path. A second much weaker

current path, but one significant for our design, flows through the fingertip and through the
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touched device. This path can be modeled as the tissue impedance between point B and the

finger ([Rbody2,Cbody2]) and the double capacitive coupling to the human body. Since the

surface of the touched object can be non-conductive, the fingertip and the front electrode

forms a capacitor Cff . Finally, the reference point forms a capacitance Cx through the air

with the large human body, which is connected through a last impedance with the other

wearables electrode A, effectively closing the circuit loop. The voltage at the front electrode

is measured by a receiver with respect to the reference point (internal ground) of the device.

Note that this ground point can also be a metal surface inside the device.

Note that due to the large distance, Cx is much smaller (pFs) than Cff as well as the

tissue or skin impedances (nFs). Therefore, it is the limiting factor on the circuit allowing

the signal to flow through the touched device. Since electrode A is also attached to the

body, the comparatively large human body can capacitively couple to the device, increasing

the capacitance Cx to about 100pF according to the Human Body Model [70].

Consider now the change occurring when the finger stops touching the device. The

increasing distance between the fingertip and the front electrode reduces Cff . Since the

size of the fingertip and the front electrode are small compared to the size of the human

body, Cff becomes smaller than Cx even at very small distances. Then Cff is the limiting

factor and the resulting high impedance lets only a negligible current flow through the

device. Since the presence of a detectable signal is so closely linked to actual touch, this

shows how the finger guides the signal and promises to achieve our goal of touch association

and small attack windows.

All other paths through the air have higher impedance than the above path through the

body, leading to much weaker signal received at any point on air. For a given double capac-

itively coupled touch device, we experimented with different setups of the two electrodes at

the wearable side: both with direct skin contacts (resistive coupling), one with direct skin

contact and one separates from the skin by a thin mylar layer (capacitive coupling), and

both capacitive coupling. More details of the form factor of the wristband are in Section

3.4.1. Fig. 3.4 shows the average signal-to-noise ratio at the intended receiver and at a po-

sition on air that is 1cm and 5cm away from the token. When the touch device has double

capacitively coupled electrodes, the configuration with both resistively coupled electrodes
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Figure 3.4: SNR at the intended receiver vs. at an adversary on air for different wearable
electrode configurations.

on the wearable side gives us the highest signal advantage at the intended receiver over an

adversary monitoring the channel on air. This is the rationale for our design choice.

3.4 Touch authentication token design

Let us now consider how to use this body guided communication primitive to design a per-

touch authentication token. Our system consists of a transmitter embedded in a wearable

token, which is worn on the user’s body and sends the user code through the finger to

the fingertip. When the user touches an object with an embedded receiver, the receiver

can detect the signal and decode the authentication credentials for each touch event. The

design sets aside more sophisticated protocols such as time-based one time passwords [71],

and focuses on demonstrating the feasibility of improving the token communication with

body-guided communications through a passcode exchange from the wearable to the touched

device. It assumes that the wearable is activated just before such an exchange.

3.4.1 Wearable Design

Electrode placement and size of the token are key design factors since the body guided

communication signal is dependent on body resistance as well as environmental capacitance.

The goal is to enable a wide range of possible touch scenarios.

Touch Interaction Scenarios. To guide the design, we chose the following samples

of device interaction scenarios: (1) a wall-mounted device touched by a standing user. This

represents a switch, smart thermostat, or display for example; (2) a device on a table

touched by a sitting user, representing a tablet or touch screen; (3) a user holding a touch

device, while touching it with the same hand; and (4) a user holding a touch device, while
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touching it with the other hand. In most cases, the actual touch will occur with the index

finger of the dominant hand, except for case 3, when touches are performed with the thumb.

Form Factors. Based on the modeling of body guided communications in Section 3.3,

we seek to increase signal quality by 1) placing a token close to the intended receiver and

2) maximizing the electrode spacing.

Rings or watch- and wristbands stand out as wearables that fit the distance criterion.

Let us, therefore, consider the following electrode designs that maximize electrode spacing

within the size constraints of these form factors (Fig. 3.5):

d d

H

Figure 3.5: Wearable design.

Ring: the ring has the shape of a cylinder with height H = 2cm. There are 2 thin strips

of copper on the inner side of the ring (in contact with the finger); they are placed on two

sides of the ring and wrapped around the finger. Each electrode strip has height d = 0.3cm,

and they are separated by 1.4cm.

Wristband: the wristband has the same shape and electrode placement as the ring,

but with H = 2.4cm, d = 0.6cm, and larger electrode spacing of 1.2cm.

Generality of Wristband Design. In order to choose a suitable form factor, in terms

of usability and ability to deliver the signal to the intended receiver, let us study the effect

of form factor position for the different touch scenarios on the SNR at the intended receiver.

For the ring, we then explore two positions: on the index finger, which is also used to touch

the receiving device and on the ring finger. For the wristband, we test on both wrists of
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Figure 3.6: SNR received at the receiver for different form factor positions and different
touch scenarios.

the hand that is used to touch and on the wrist of the other arm.

Fig. 3.6 shows the signal quality received at the device in terms of signal-to-noise ratio

for all combinations of these interaction scenarios and wearable positions. The transmitter

is a microcontroller producing a square wave signal at 150KHz, and the receiver has a small

electrode pad covered by a thin non-conductive mylar tape. The received signal at 150KHz

is measured by a USB oscilloscope that is disconnected from earth ground. We give more

details in Section 3.5. As evident, the signal quality varies significantly across these use

cases. The index finger ring and wristband form factor provide the most consistent signal

quality across all scenarios when the device is located on the same hand, whose index finger

touches the device. Since wristbands are more commonly worn than index-finger rings,

particularly given the fitness tracker trend, we focus on the wristband design.

We also validate that this form factor achieves our goal of touch association, that is that

the received signal is only present when the token-wearing user touches the device. This can

be characterized by the SNR difference at the receiver between an actual touch and close

centimeter-level proximity. We conduct experiments to investigate this SNR difference for

three cases: off-hand table, one-hand, and two-hand operations. We noted that the exact

SNR depends on various factors: on the wearable token, the electrode size, the distance

between them; on the receiving pad, the electrode size, the distance between the front

surface and the electrode, etc. In this specific experiment, the user wears a wristband with

dimensions described above, covered by a thin mylar tape layer of 0.1mm. The receiving
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Figure 3.7: SNR difference between touch and no touch for different touch interaction
scenarios.

pad is a small electrode of size 1cm2, also covered by a thin mylar tape layer of 0.1mm.

Fig. 3.7 demonstrates the SNR difference between touch and no-touch for three cases:

off-hand, one-hand and two-hand operations. The SNR increases with transmitting voltage,

but SNR difference between touch and no touch remains relatively fixed in each case. These

SNR differences are 13dB, 5dB, and 23dB for off-hand, one-hand and two-hand operations,

respectively. As will be shown later, the small SNR difference for the one-hand case would

decrease the touch recognition accuracy.

3.4.2 Receiver Design

Since a goal of this work was to provide more flexibility for electrode placement in de-

vices, there are different ways of putting a receiving electrodes into an object that needs

authentication/identification. We choose the following example designs:

• button design: For small IoT devices like Amazon dash buttons, we embedded an

electrode behind its front-facing plastic/glass case. The electrode size is 1cm2 (about

the fingertip size), and the front-facing case is under 1mm thick.

• phone case design: For phones and tablets, we can put electrodes in plastic cases

used to cover the back of the devices, so that the electrodes have direct contact with

the device body. Since the device can be as thick as 1cm, we increase the size of the

electrode to be nearly the same size as the device dimension. For example, for a Nexus

5 phone, the electrode size is 13×6cm2.
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Figure 3.8: SNR received at the receiver for different frequencies.

In these designs, we do not use an explicit second electrode in the device. The receiver

connects to the electrode above and measures the voltage with respect to its internal ground.

3.4.3 Transceiver Design

Operating frequency. We look for the optimal carrier frequency for operating the trans-

mitter. Fig. 3.8 shows the SNR received at the receiver for different frequencies when the

transmitter sends a 3.3Vpp square wave. Note that the analysis is limited to 450KHz be-

cause of the limitation of the microcontroller used for the wearable token. We can see that

SNR is worse at frequencies less than 100 KHz, but starting from 100KHz, the SNR doesn’t

change much with frequencies: the difference is within 5dB. As the result, we should choose

frequency above 100KHz to ensure good received signal level at the receiver. On the other

hand, the frequency in use should be kept as low as possible since: (i) high frequency means

smaller wavelength, but we want the wavelength to be several orders of magnitude larger

than the electrode size to minimize any RF radiated signal that an adversary can capture,

and (ii) low frequency allows lower power consumption. In all of our evaluations, we choose

150KHz as the operating frequency of the wearable token.

Modulation. The frequency above can be used as the carrier wave for modulating

bits in the user’s identification code. We choose On-off keying (OOK) modulation method,

which represents the bits as the presence or absence of the carrier wave. Given high SNR at

the intended receiver when the user touches the device, it is possible to use Amplitude-shift
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Keying (ASK) to achieve a higher bit rate. However, we will later show that the simple OOK

modulation satisfies the necessary bit rate and code length needed for common per-touch

authentication applications.

Authentication process and protocols. For per-touch authentication, the receiver

needs to associate each touch with a user ID code. This includes two steps: touch recognition,

which triggers the authentication process, and bit decoding, which demodulates the received

signal to get the user’s ID code. Touch recognition can be implemented through other

components of the device or with the detection mechanism in the signal receiver itself.

For packet detection and bit decoding, methods include power-based detection, correlation

detection based on known bit sequence (such as Barker sequence [72]). When activated,

the transmitter can repeatedly transmit the authentication credentials with a preamble to

mark the beginning of a transmission of the code. In this work, we focus on the touch

recognition ability of the standalone receiver and a simple power-based bit detection; we

leave the design of the full authentication process and protocols for future work.

Power. From measurements, we observed that during touch, received signal voltage at

the intended receiver is about two order of magnitudes smaller than the original transmitted

voltage. For example, when the transmitter is powered by a 3V coin cell battery, the received

voltage is about 25mV. We can design a custom receiver to amplify this signal to detect

the code being sent; we give details about one such implementation in Section 3.5. For off

the shelf phones or tablets, since they are not designed to sense this small signal, we seek

a method to generate high voltage at the transmitter to deliver big enough signal to the

devices to trigger their touch events.

3.5 System implementation

On the transmitter side, we implement both a low-power token with a custom receiver and

a token that allows using off-the-shelf touchscreen hardware as a receiver.

3.5.1 Low power token

Transmitter. We use a Teensy 3.2 board [73], powered by a 3.7V LiPo battery, to generate

a square wave of the frequency of 150KHz. This board has a Digital-to-Analog Converter



49

(a) Wristband form-factor. (b) Ring form-factor.

Figure 3.9: Transmitter prototype.

for output voltage control, allowing experimentation with different transmission power lev-

els. The microcontroller output is connected to two electrodes in direct contact with the

user’s skin. We demonstrate our technique for two form factors of the token: a wristband

(Fig. 3.9(a)) and a ring (Fig. 3.9(b)). The microcontroller and battery are inside a small

plastic case sitting on top of the electrodes. Note that the electronics of the prototype can

be easily miniaturized. The transmitter circuit has much lower complexity than common

radio chips and size is primarily determined by electrodes and the battery. It could be

integrated into smartwatches as an add-on feature.

Receiver. The receiver downconverts the signal to allow a microcontroller to implement

sampling and processing. The design and our fabricated board are shown in Fig. 3.10. The

input signal from the sensing electrodes is first amplified with an instrumentation amplifier

(INA332 [74]), then fed into an analog multiplier (AD835 [75]) with a reference signal set to

f0− 5KHz, where f0 is the frequency of the signal generated by the transmitter. The local

oscillator is controlled by an Analog Discovery 2 instrumentation device [76]. The output

signal from the analog multiplier consists of a 5KHz frequency component together with

higher frequency components. By applying a low pass filter (LT1563 [77]) with a cutoff

frequency above 5KHz on this output, we can extract the low-frequency component, whose

amplitude is proportional to the received signal at frequency f0.

The signal after the low pass filter is read by an MSP432 microcontroller [78] at 20KHz

sampling rate. To ensure real-time performance with no sample loss during processing, we

implemented a dual-buffered memory, with 2KB for each buffer, to store ADC samples. A

ping-pong DMA is implemented so that ADC samples accumulate in one buffer while the

processor works on the other buffer.

As an illustration, Fig. 3.11 shows the signal received from the receiver board. The
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Figure 3.10: Touch receiver.
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(b) Signal received from the receiver board
(zoomed in from red area in Fig. 3.11(a)).

Figure 3.11: Signal received from the receiver board.

user wears the wristband with the transmitter board on the wrist and touches the receiving

electrode (for simplicity, the electrode is touched directly here, while the remainder of

the evaluation focuses on electrodes that are behind non-conductive material) multiple

times with the same hand. The transmitter continuously modulates a random 128-bit

identification code on this signal by using On-Off Keying: bit 0 turns off the output and

bit 1 turns on the 150kHz signal. As shown in Fig. 3.11(a), the amplitude of the 5kHz

signal significantly increases during the time the user touches the receiving electrode and

is very weak even when the finger is only about a cm away from the receiver. This helps

the receiver recognize touch events and trigger the bit decoding process. Fig. 3.11(b) is the

zoomed-in version of one example touch event. At this scale, we can observe the ID code

sent from the user token with OOK modulation.

Note that our custom receiver can be easily integrated with smartphones. For the current

COTS mobile devices, the receiver can be added in the form of a case with electrodes in

contact with the back of the devices and a small receiver circuit inside. The receiver circuit
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can send the code received to the mobile device through Bluetooth or USB, and the mobile

device can integrate this information with its own touch position identification. For the next

generation of mobile devices, the receiver can be made in the form of an ID detection chip

alongside the current touch detection circuit and reuse the electrodes in the touch screen

as its input.

Our receiver design differs from COTS receivers in the touch sensing mechanism and

data rate. COTS touchscreen recognizes touches via the change in capacitance on a matrix

of sensing electrodes [79, 80]. It only detects the presence and position of fingers; its scan-

ning and filtering mechanisms limit the reception of high-speed signals transmitted from

the token to the fingertip. In contrast, our receiver is designed to sense the current running

through the receiver electrodes when a finger touches the device surface, as described in

Sec. 3.3.2. It is optimized to detect signal at the frequency generated at the token trans-

mitter, thus allows much higher data rate, which is needed for per-touch authentication.

3.5.2 Token for COTS touchscreens

In order to elaborate the pervasive of our method to secure every touch with body-guided

communication, we show the operation scenario using our custom transmitter along with

a COTS touchscreen such as smartphone screen as the receiver. In particular, we generate

a modulated signal that will go through the human body and observe the phenomenon at

the contact point of user’s fingertip and touchscreen. Whenever the modulated signal is

transmitted from the signal generator, the touchscreen is affected and artificial touch events

are generated correspondingly. We confirm that the artificial touches can also be created

on COTS devices using the following method, but at a lower rate of communication.

Transmitter. We used Analog Discovery 2 [76] to generate a 10V peak to peak sweeping

sinewave signal (200kHz sweep to 500kHz in 1ms) using OOK modulation. The Analog

Discovery waveform output is connected to the user’s index finger through a wire and ring-

like form electrode. The ground pin of the Analog Discovery output is floated.

Receiver. The receiver is a Samsung Galaxy S5 running Android 6.0.1. The app is

written on the phone to capture the artificial touch events and decode the transmitted

bit sequence using OOK demodulation. Through experiments, we found that the system
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Figure 3.12: Received signal at different distances from the wearable token (wristband form
factor).

obtains up to 92.5% of accuracy at 10 bps rate. Details evaluation results are presented in

Section 3.6.

We conducted experiments to find out the best waveforms and frequencies that could

create reliable communication between our customized transmitter (Analog Discovery) and

COTS receiver (Samsung Galaxy S5). We tested the frequencies from 100kHz to 1MHz

with sine, square, triangle waveforms. The sine and square waves sometimes can generate

expected artificial touches, but we found that sweeping frequency technique obtained better

results and is more reliable.

3.6 Performance evaluation

3.6.1 Difficulty of Eavesdropping

Since the received signal at the adversary is dependent on factors such as the transmission

power used, we measure the difficulty of eavesdropping as the signal advantage of the

receiver, which is independent of transmission power. We define signal advantage as the

difference between the SNR at the intended receiver and that at the adversarial receiver.

The signal advantage characterizes how easily the token can be designed: a large positive
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signal advantage allows us to choose an appropriate transmission power to ensure necessary

signal level at the intended receiver while reducing the receive signal at the adversary to

an undecodable level. A signal advantage equal to or below zero means that this is not

possible.

We focus this evaluation on extremely challenging scenarios, where existing wireless

technologies cannot achieve positive signal advantages.

Protection against remote monitoring over the air. To evaluate how secure the

body-guided communication channel against an adversary monitoring over the air with a

wearable-size receiver, for each transmission power, we measure the received signal at a

3×3 cm2 electrode over a range of small distances d to the token. We focus on the most

challenging case, with very small distances in the mm to cm range. Fig. 3.12 shows the

received signal level at the intended receiver and at the adversary, for different distances

and different transmission powers. The received signal at the adversary’s receiving electrode

degrades quickly as distance increases. Even at an extremely close distance of 1mm, the

signal received at the adversary’s electrode is 20dB worse than at the intended receiver.

This means that at our highest transmit power setting the signal was below the noise floor

for the adversary at a distance of 15cm. A signal from a well-designed transmitter would

be well below the noise floor at mm-range. For comparison, related work [48] reports a

signal advantage of 16dB at a distance of 6cm compared to 30dB in our design and requires

resistive contacts at both the transmitter and receiver to achieve this.

Note that one cannot expect any signal advantage of the intended receiver with radio or

magnetic coupling when the adversary is at such close proximity. As discussed in Section 4.2

the attacker could further take advantage of high gain antennas (for RF) or a larger coil

with an iron core (for magnetic coupling), to achieve a strong negative signal advantage,

meaning that the adversary has the advantage. These techniques do not apply to body-

guided communications.

Low SNR leads to high bit error rate (BER) in the decoding process. Table 3.2 shows

the BER using the same receiver for several distances when the transmission voltage is

3.2Vpp. Although BER is 0% when the receiver touches the token, a small gap between

the receiver and token increases the BER the BER significantly; at 10cm, the BER is
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(a) Adversary touches
user’s arm.

(b) Indirect touch (conductive material). (c) Indirect touch
(non-conductive
surface).

Figure 3.13: Touch-based eavesdropping.
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Figure 3.14: Intended receiver’s SNR advantage over the adversary.

44.7%, disabling the attacker’s ability to eavesdrop the code. This demonstrates how the

body-guided communication token design reduces the attack windows.

d (cm) 0 2 4 6 8 10

P(Rx) (dBV) -53.68 -60.65 -63.45 -66.17 -68.21 -68.60

BER (%) 0 12.78 15.7 28.19 22.7 44.7

Table 3.2: BER vs. distances (received power at each distance is also recorded).

Protection against direct and indirect contact. Besides over the air remote eaves-

dropping, as can happen in RF security risks, we also consider other example scenarios where

an adversary can get in direct or indirect contact with a user to attempt to eavesdrop on

his body-guided communications. Fig. 3.13 illustrates these scenarios. To measure the SNR
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at the adversarial receiver, we use an Analog Discovery 2 100Msps USB oscilloscope [76]

connected with an ungrounded laptop. The noise level is about -71dBV.
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Figure 3.15: Received signal vs. distance on arm.

Scenario 1: Direct touch of user’s skin. This scenario represents a crowded or close-

collaboration setting where an adversary could achieve direct skin contact without much

suspicion while the user authenticates. In this case, the adversary touches the receiver

electrode onto the user’s skin just below elbow level, as shown in Fig. 3.13(a). For this

scenario, the signal advantage remains between 10-16dB across all transmission powers, as

shown in Fig. 3.14. We also observed that the received signal power decreases significantly as

the receiver moves centimeters away on the arm from the transmitter token (Fig. 3.15). This

shows our configuration confines the signal to lower arm carrying the token and virtually

no eavesdropping is possible on other body parts.

Scenario 2: Indirect touch through conductive material. This scenario could

occur when two persons are both leaning on the metal door, holding handrails in a metro,

or on the stairs. In this scenario, we assume that the attacker places his receiving electrode

on the hand that touches the metal surface and thereby directly connects to the token user’s

finger, as shown in Fig. 3.13(b). The intended receiver has an SNR advantage of 21dB over

the eavesdropper when the eavesdropper’s SNR decreases to 0dB, as shown in Fig. 3.14.

Scenario 3: Indirect touch through non-conductive surface. Here the adversary

attaches the receiver to a large metal body hidden behind a non-conductive surface that

is touched by the user’s hand. An example is the metallic support of a table, as shown in

Fig. 3.13(c). The intended receiver has SNR advantage of 10-17dB over the eavesdropper
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Figure 3.16: Touch recognition rate vs. transmission power.
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Figure 3.17: Decoding success rate vs. touch duration and code length.

across all transmission powers, as shown in Fig. 3.14.

Overall, these results show that even with direct contact to the user’s body the adversary

receives a significantly weaker signal than the intended receiver and therefore requires more

sophisticated receiver hardware to capture the signal.
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Figure 3.18: Decode rate vs. transmission rate (COTS receiver).
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3.6.2 Per-touch authentication/identification

To successfully authenticate every touch, it is important to associate each touch event with

one user ID. The receiver should be able to process the signal stream following two steps:

(i) recognize touch events, and (ii) detect the user’s ID code in the signal portion inside the

detected touch event’s duration. We evaluate two metrics corresponding to these two steps:

touch recognition rate, the percentage of the touch events that are recognized, and decoding

success rate, the percentage of the touch events that the receiver can successfully decode a

full ID code that was sent from the wearable token. We also evaluate bit error rate of the

communication channel for different users. For the following experiments, the users are not

constrained on how they touch the device: they can tap or swipe in any direction.

Touch recognition rate vs. transmitted power and touch scenarios. The touch

recognition ability can be provided by other components of the device: for example, the

Amazon dash button knows when the user presses it, thus can notify our receiver to start

decoding the signal. Here we also investigate the capability of a standalone receiver, which

can extract touch events from the received signal stream. We tested with 1826 touches for

three power levels of the transmitter (peak-to-peak voltages are 0.09V, 0.8V, and 3.3V)

and three different touch interaction scenarios as described in Fig. 3.7. A touch event is

detected when the amplitude of the received signal crosses an adaptive threshold, which

we derive from the statistics of the signal when there is no touch. In our implementation,

given S is a window of signal when there is no touch, we choose the threshold to be T =

average(S)+k[max(S)−average(S)], and k is empirically chosen to be 1.8. Fig. 3.16 shows

touch recognition rate for all these cases. At higher power (0.8V and 3.3V peak-to-peak),

the touch recognition rates for all three cases are above 92%. As analyzed in Section 3.4, the

SNR difference between touch and no-touch in the one-hand scenario is the lowest, thus at

low power (0.09Vpp), the touch recognition rate for this scenario decreases to only 13.81%.

Decoding success rate vs. touch duration and code length. We conducted

experiments with two people touching the objects for a total of 2170 touches over 5 days

with varying touch durations from 50.7ms to 1.78s. We also experimented with different

code lengths: 32, 64, 128, and 256-bit long. The data rate is 1kbps. Fig. 3.17 shows the
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decoding success rate versus touch duration. As can be seen, for all code lengths, the

decoding success rate increases as the touch duration becomes longer. Also, for the same

touch duration, shorter keys have a higher decoding success rate. For the common 128-bit

ID, it achieves 89.5% accuracy when the touch duration is between 200ms and 300ms, and

100% accuracy when the touch duration is longer than 300ms.

This result is, of course, dependent on the data rate of 1kbps. The current receiver is

limited by the microcontroller sampling rate and not optimized for data rate. According to

Shannon theory, the achievable bit rate at 100 kHz is C = Blog2(1 + SNR) = 100kHz ×

log2(1 + 100) = 665kbps.

Bit error rate vs. different users. Since our body-guided communication method

relies on human hands as the transmission medium, we examine its performance across

different users. Eight graduate students wore the prototype wristband and naturally touched

two prototype devices for 5 minutes each: one is an Amazon IoT button [81] with an

electrode attached behind its front-facing plastic case, and the other is a Galaxy Nexus 5

phone with an electrode attached on its back. Figure 3.19 shows the bit error rate across

these users. As can be seen, for all users and both devices, the BER remains under 10−2.

This suggests that with coding robust body-guided communication can be achieved.
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Figure 3.19: BER vs. different users.

COTS touchscreen as receiver. To confirm the feasibility of enabling this chan-

nel of communication with an unmodified touchscreen as the receiver, we implemented a

simple receiver software to decode the artificial touch event sequence, generated by the

Analog Discovery transmitter through the user’s body (Sec. 5.2). By counting the num-

ber of software-reported touch events during the transmission period (i.e. the effect of the
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transmitter to the touchscreen during the period of turning the signal generator on), we

achieve a decoding rate of 92.5% at 10bps. When the transmission rate is increased the

receiver’s performance reduces due to the mismatch between the signal being generated and

the response of the screen as shown on Fig. 3.18. While the data rate is low, it can still

improve security as part of two-factor authentication protocols, especially over a sequence

of touches or during longer swipes. For example, when a user types a password or swipes

a secret pattern with his/her finger on the screen, the wearable device can simultaneously

transfer a proof that the user possesses the hardware authentication token (e.g., the wrist-

band). In addition, we expect that the data rate can also improve significantly by modifying

the touch driver of the COTS receiver for increasing its touch sensing frequency.

3.6.3 Power consumption

The microcontroller in the hardware token only needs to continuously modulate the user

code using On-Off Keying, so it can be operated at low power. The results from the prior

sections are obtained from our first prototype where the wristband token was implemented

using a Teensy microcontroller development board [73]. The average current drawn in this

unoptimized prototype is 37mA at 4V supply voltage, which means the token consumes

148mW on average. Given the simple functionality of the token, we started optimizing

for power with a low-power microcontroller to understand to what extent the power con-

sumption of the wearable token can be reduced. In particular, we implemented a second

prototype token using an MSP430G2553 microcontroller [82] in its low power mode and

measured the power consumption of the token when worn on the user’s wrist. This proto-

type is capable of producing the same output signal as the first one, so we do not expect any

change in the prior results. Measurement results with this second prototype show that the

average current drawn is 1.3mA at the 3V supply voltage, which means the microcontroller

only consumes 3.9mW on average. At 1kbps, the energy per bit is 3.9µJ/bit. Even though

the microcontroller is not fully optimized yet, the energy per bit is already two orders of

magnitudes lower than the estimated power of the only other communication prototype with

a smaller attack window (vibration-based communication with 100µJ/bit, see Sec. 4.2).

For comparison, the measured power consumption of our prototype receiver is 525mW.
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This consists mostly of heat dissipated at inefficient linear regulators (225mW) and power

at the mixer chip (250mW). The power consumption of the receiver can be optimized in

an integrated circuit form. Receivers could also be activated by the user’s touch to avoid

continuous operation but this is out of the scope of this work.

3.7 Discussion and future work

Benefits of body-guided communication over near-field communications. Capac-

itive coupling is the dual of magnetic coupling: they both occur in near-field region, not

in the radiated far field region. However, when the authentication token is worn on user’s

body, capacitive coupling has an advantage over magnetic coupling: human tissues have a

high dielectric constant, so the capacitive coupling approach can alter the electric field to

focus on the intended receiver. In contrast, the relative permeability of human tissues is

close to that of free-space, so the human body plays no role in guiding the magnetic field.

Also, received signals when touch and when no-touch occur (even when the finger is sepa-

rated only a few mm from the object) have a large difference, which provides a primitive

feature for touch association.

Security and Activation. Through-body capacitive coupling reduces the attack win-

dow by its ”beam-forming” ability to create a better channel from the transmitter to receiver

than in any other direction. We are not aware of any method that an adversary could em-

ploy to increase receiver gain as easily as for magnetic coupling (more turns), RF (high gain

antennas), and vibration (high-speed camera). As with wired communications, the adver-

sary can, of course, capture the signal with high quality when directly in the circuit—that is

between the finger and the button (e.g., ATM skimming device). Our results also show that

the signal can be captured while shaking hands if the signal was inadvertently transmitted

during this time. This highlights the needs of one-time password protocols or an activation

mechanism (the wearable only transmits when the user touches the intended receiver). The

latter would also decrease the token’s power consumption.
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Currently, our experiments only demonstrate the feasibility of unidirectional commu-

nication from the wearable token to the touch receiver. To support sophisticated authen-

tication protocols such as challenge-response, this technique can be complemented with a

reverse channel. Note that many protocols can obtain security benefits from our technique

even if the reverse channel uses a less secure magnetic or radio-frequency communication

medium. For example, the challenge in a challenge-response protocol could be broadcast

over Bluetooth or NFC.

Power consumption. The clearly defined channel along the finger also helps lower

power at the transmitter, while maintaining a sufficient level at the touched device. Power

is also reduced through the operating frequency of hundreds KHz instead of the tens of GHz

that would be necessary for RF beamforming approaching a similar level.

There is ample room for optimizing power-consumption of the design. Assuming a highly

optimized design with negligible processing power, an estimate for the lower bound can be

found in the necessary transmission power. Since the transmitted signal feeds two electrodes

in contact with the human skin, two factors affect the transmission power. The first factor

is power to charge and discharge the body capacitance: assume the energy per bit is the

energy to charge up the capacitance between two electrodes. The measured capacitance is

about 10nF, leading to energy per bit at an operating voltage of 3V is Eb = CV 2 = 10−8×32

J/bit = 90nJ/bit. The second part is power dissipated from the body resistance between the

two electrodes: The measured resistance is about 10MΩ, leading to power (PR = V 2/R)

of about 0.9µW. For 1kbps data rate, the energy per bit consumed by body resistance

is 0.9nJ/bit. In total, lower bound of energy per bit of our token is 90nJ/bit, which is

comparable to that of common wireless technologies (Wi-Fi, BLE, NFC).

3.8 Related work

Device authentication techniques. Although password, PIN or pattern are widely used

for device authentication, they are inconvenient when entering frequently and susceptible

to shoulder surfing attacks [83] and smudge attacks [84]. User identification code can also

be encoded as a series of electrical pulses that trigger the capacitive touch sensing when the
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ring’s token directly contacts the mobile’s touch surface, e.g., SignetRing [47]. While this

ring also allows transmitting a few bits per second when only the finger touched the screen,

this rate is insufficient to identify users on a brief half-second touch. Further, since a high

voltage is needed to spoof the screen, the ring has high power consumption. Nguyen et

al. [85] presented a low-power, battery-free device to transmit data from 3D printed object

to the touchscreen. However, the supported bit rate is only up to 32bps, which limits its

use in per-touch authentication applications. Also, these approaches still require the tokens

to have direct contact with touch surfaces, which is inconvenient for normal touches.

Biometric authentication [86] is another authentication technique used in current de-

vices. Fingerprint identification is currently supported using a dedicated fingerprint scan-

ner, which makes the device design more complex and expensive. Face identification, such

as Apple’s Face ID [87] identifies the user’s face by applying neural networks classifier on

images captured by the infrared camera along with the conventional camera. Although our

approach also uses dedicated receiver hardware, it offers a different design point. As a much

larger number of devices become smart the economics shift so that adding hardware to a few

wearables in order to simplify the receiver hardware on each device becomes more efficient.

Furthermore, our system allows faster recognition, thus supports authentication on the per-

touch basis, not only at the session level as with fingerprint sensors and face identification.

Also, the main drawback of biometric authentication is once the user fingerprint/face is

captured by an adversary, they are hard to change compared to tokens or passwords. It

is also not straightforward to integrate camera-based or face authentication solutions into

devices with smaller interfaces or lower specs (such as Amazon buttons), and there is no

direct association between people recognized by the camera and actions performed on the

touched devices, especially in multi-user operation scenarios.

On-body wireless communication has been proposed for paring wearable devices with

smartphones [48]. In this work, they demonstrate transmission bit rate of up to 50bps over

the human body using electromagnetic signals, which is insufficient for per-touch authenti-

cation.

Per-touch authentication. Different wearable devices were proposed to augment the

user’s touch with its ID. Bioamp [51] is a wristband augmented with electrodes in contact
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with user’s skin, and powered by a high-frequency signal source. The signal is then mod-

ulated onto the user’s body through the skin and transmitted to the user’s finger. When

the person touches the touch screen, the signal affects the capacitive measurement, and

allow the device to decode the modulated information. However, the bit rate is low (up to

12bps), limiting its use for per-touch authentication. IRRing [88] is a ring-like device that

continuously transmits the user’s ID code in the form of infrared light pulses to a touch

device. This helps the touch device associate all touch events inside the region surrounding

the point where the infrared light points to. However, this technique still relies on the touch

sensing capability of the device for the association, so it cannot be extended to everyday

objects. VibRing [89] is also a ring-like device equipped with a vibration motor, which

is used to transmit vibration patterns to a touchscreen when the finger wearing the ring

is in contact with the touchscreen. Since relying on a mechanical vibrator, the ring can

only modulate up to 20Hz frequency, significantly limiting the bit rate of the channel. A

vibratory ring is also mentioned as an application of Ripple [58], which claims to be able to

achieve 7.41kbps of throughput. However, power consumption was not investigated in the

paper.

3.9 Conclusion

In this work, we propose a body-guided communication method for securing every touch

interaction from users with a variety of devices and objects. Through prototype touch-token

measurements, we showed that the body-guided channel established during every single

touch is more secure against eavesdropping than other wireless communication technologies,

that is the signal received at the intended receiver is at least 20dB higher than that received

at an adversary’s receiver in proximity. It can achieve this at low-power consumption of

3.9µJ/bit in an unoptimized prototype, with potential to reach 90nJ/bit. Our current

prototype for per-touch authentication is robust enough to reliably deliver a 128-bit ID

code on every touch longer than 300ms. We believe this touch token design will provide

secure while convenient authentication mechanism for users when interacting with a growing

number of devices.
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Chapter 4

Light-and-shadow-based Occupancy Estimation and Room

Activity Recognition

4.1 Introduction

Building-wide occupancy detection and activity sensing promises to enable a new class of

applications across smart homes, elderly care, and retail marketing. In smart homes, for

example, it could enhance control of lighting, heating, ventilation, and air conditioning

based on sensed and predicted activities across rooms. Useful information ranges from ba-

sic occupancy and movement tracking to activity inference (e.g., sleeping, cooking, eating,

watching TV or media). In elderly care, activity sensing allows quick detection of emer-

gencies or changes in routine. In stores and showrooms, foot traffic statistics for individual

aisles or product display areas are invaluable for ad placement and arranging products.

Existing occupancy sensing technologies. These activities are currently detected

by a number of dedicated sensing systems, with Infrared (IR) motion sensing being especially

prevalent. Passive or Pyroelectric Infrared (PIR) sensors detect the radiated IR energy

from humans and animals [90]. However, PIR sensors require line-of-sight coverage, which

increases the number of required sensors to cover a certain area. For example, previous

work [91] required one sensor per 4 meter square area. PIR sensors are also sensitive to

other heat sources (e.g., hot appliances, sunlight and open window), and they are designed to

detect movements, not presence, which limits its tracking of stationary users. For more fine-

grained detection in a small area, light barriers detect motion when transmission between an

IR transmitter and receiver is obstructed. Other device-free solutions have relied on cameras

[92]. Although they are effective and ubiquitous in public places, cameras raise privacy

issues, especially in residential areas. More recently, Wifi-based activity sensing (e.g., [11]),

has been proposed, which generally achieves large coverage at lower accuracy and faces more
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challenges to scale to buildings with many occupants. Besides such device-free sensing,

other approaches leverage user devices like smart watches and smart phones (e.g., [93]).

The disadvantage of these approaches is that users need to continuously carry, wear, and

usually charge them.

More recently, fine-grained localization and activity sensing using visible light has been

investigated. Current VLS work mainly uses active techniques (users are required to carry

sensors or devices) and focuses on line-of-sight communication between transmitter and

receiver [94, 95]. Among passive (device-free) techniques, LiSense [96] demonstrates fine-

grained gesture and human skeleton reconstruction using visible light sensing but requires

deploying photodiodes on the floor to obtain line-of-sight links with the transmitters. Ceil-

ingSee [97] converts ceiling mounted LED luminaries to act as photosensors, to infer indoor

occupancy, but requires dense deployment (1.25m between nearby pair) of LED luminaries

because of reduced sensitivity of LEDs acting like photosensors compared to dedicated pho-

tosensors. None of these technologies can therefore provide device-free occupancy sensing

beyond line of sight, which would enable building scale fine-grained activity sensing with

lower deployment overhead (i.e. using fewer sensors).

EyeLight Approach. We introduce EyeLight, a device-free occupancy detection and

activity sensing system exploiting opportunistic, indirect light sensing so that it can be

integrated in a set of networked LED light bulbs. EyeLight forms a mesh of virtual light

barriers among nearby light bulbs to sense human presence as they move across the room.

Exploiting light provides attractive properties. Due to its nanometer wavelength it is highly

sensitive to small motion and objects when compared to RF waves. Also, unlike most RF

techniques, light does not suffer from RF interference and cannot penetrate through walls,

which preserves privacy and makes it easier to determine in which room an activity occurred.

Contrary to conventional light barriers, however, no direct line-of-sight is needed—the

system exploits opportunistic reflections in the environment (e.g., shadows and reflections

off the floor). Indirect tracking of users based on their shadows, enlarges the system’s

operation range, compared to line-of-sight based solutions like PIRs. This allows covering

a space with fewer sensors and provides more freedom in deployment locations, making it

easier to reuse infrastructure that already exists (for example, recessed can lighting where
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power is available but, due to the recessed location, line-of-sight may not exist to the entire

space). Such reuse allows for building-scale motion tracking and activity sensing with little

installation overhead (no additional building wiring is needed).

The prototype design makes use of the trend of LED light bulbs increasingly containing

electronics and having access to plentiful power. Light bulbs are integrated with photosen-

sors and networked to coordinate signaling and to upload sensor data for processing. We

design barrier crossing detection as well as occupancy and activity classification algorithms

based on sensed changes in the reflected light levels, for example, due to a shadow. This

work significantly extends prior work [98] by 1) using dual purpose signaling light (illu-

mination without causing flicker to the eyes while sending the signature of the node), 2)

a room-scale prototype with localization and activity recognition, as well as 3) enhancing

sensitivity to operate on different reflective surfaces and longer sensing distances (up to 3

meters).

In summary, the major contributions of this work are as follows:

• exploring the feasibility of creating opportunistic meshes of virtual light barriers be-

tween modified light bulbs by exploiting reflections off room surfaces.

• proposing a sensitive photoreceiver design for lamp-based light barriers that can detect

light reflected from different room materials, including dark floor carpet.

• designing light-based occupancy tracking and room activity recognition algorithms

and exploring their potential when deployed across a room’s ceiling lighting system.

• designing and implementing a room-scale prototype system and evaluating Eye-

Light in terms of localization accuracy, estimating occupancy, and recognizing dif-

ferent room activities based on 28.5 hours of recorded data.

4.2 Background and Related Work

Visible light sensing can be implemented directly in illumination systems. Adoption of

LED lighting is growing rapidly [99] due to their 75% lower energy consumption and 25

times longer lifetime than incandescent lighting. LEDs can also be switched faster than
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incandescent and fluorescent light sources, which allows rapid signaling with light sources

and enables novel applications [100]. Given the presence of solid state devices and power

converting circuits (AC to DC) in LED light bulbs, it has also become easier to integrate

additional electronics in such devices, particularly since power is plentiful. To be acceptable,

signaling between lights usually has to be impercetible for human observers.

Human light perception. Imperceptible signaling is possible because human eyes

respond slower than photodiodes to light changes. The critical flicker frequency (CFF) [24],

typically 100Hz, defines the frequency beyond which our eyes cannot perceive time-variant

light fluctuation and see only its average luminance. This effect is similar to a low pass

filter with the CFF as cut-off frequency. While the exact frequency depends on other factors

(such as light intensity, color contrasts, etc.,) sufficiently fast signaling can surpass the flicker

perception of human eyes, yet still remain detectable by photosensor front-ends.

Our eyes also perceive light intensity logarithmically, instead of relatively linearly like

photosensors. Therefore, a small change of light intensity that is perceivable in a dark room

can be invisible in a brighter room. A photosensor calibrated for this range of light levels

can easily detect such differences, however.

Existing passive sensing techniques. A major approach to occupancy sensing is

using RF signal measurements, based on RSSI ( [101,102]) or time-of-flight [103]. Cameras

are also used for monitoring people indoors, but they raise privacy concerns [104]. Other

approaches, including Capacitance [105] and Pressure [106] require sensors on the floor,

which is not practical for installation in several cases.

Light, both visible and infrared, has long been used for motion detection. Light barriers

or curtains [107, 108], for example, detect when a light beam between a source and a pho-

tosensor is blocked by a moving object. Since light beams can be easily focused through

lenses, they allow more precise movement detection than radiofrequency sensing. To ease

deployment, retro-reflective sensors package the light source and sensor into a single device

but this usually requires a retroreflector that is carefully aligned to reflect the light back to

the sensor.

Visible Light ( [85, 94]), an emerging short range communication technology, has been

recently explored for indoor localization applications, thanks to the growing use of LED
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bulbs. More recent works [96, 97] explored the use of ceiling lights in the visible light

spectrum to track people indoor. However, either the photosensors are deployed on the floor

to achieve line-of-sight to the ceiling lights, which significantly complicates the deployment,

or the LEDs are forward biased to function as light sensors, which leads to lower sensitivity

and small coverage in the line-of-sight area.

Challenges in reflective light sensing. Is it possible to achieve both large coverage

and ease of deployment by forming a mesh of opportunistic reflective light barriers?. Al-

lowing for indirect, reflective light sensing could extend the sensing range, since movement

can be detected not only directly in line-of-sight of a sensor but also anywhere along the

longer reflected path of a light signal. Eliminating the line-of-sight constraint also provides

more freedom in placing the lights and sensor. In particular, this approach would allow in-

tegrating all necessary components into light bulbs, which would significantly simplify the

deployment process: the system could be installed by simply changing light bulbs. Note

also, that power requirements of the added electronics are met by the power source to the

LED light and does not require any battery or additional wiring.

This approach introduces several challenges, however. First, the detector now has to

recognize much weaker light levels due to two reasons: 1) received light power decreases

proportional to square of the distance and reflected paths tend to be longer (for example,

the distance with a floor reflection to an adjacent ceiling light is more than double compared

to the distance with photosensors directly on the floor), and 2) most typical room surfaces

absorb or diffuse a substantial part of the light (e.g. a dark carpet), thus the incident

light power on the photodiode is reduced. Second, the reflected paths are less well defined.

The exact path depends on the position and shape of objects in the space and it is possible

that the light reaches the photosensor along multiple paths (akin to radio multipath effects).

Motion tracking, occupancy estimation, and activity detection algorithms have to be robust

to such effects. Third, the receiver should be able to distinguish light from different sources.

In addition, any signaling technique used for this purpose should remain imperceptible and

not detract from the illumination function of light bulbs.

A common method for detecting a weak signal is a correlation detector with a known

pseudorandom number (PRN) sequence. This effectively spreads the signal bandwidth
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leading to a significantly enhanced signal to noise ratio. Applying this to EyeLight is

challenging, however. First, achieving high processing gains requires long PRN sequences1.

Given the limited modulation rate of high power lighting LEDs, these sequences would take

seconds to minutes to transmit, which is longer than the duration of human movement

events that we seek to detect. Second, transmitting continuous PRN sequences with on-off

keying would halve the brightness of the ceiling lights, since one can expect equal number of

on and off symbols. Third, as a result of the spectrum spreading property, PRN sequences

introduce low frequency components, which increases the chance of flicker for human eyes.

4.3 EyeLight design

EyeLight realizes an opportunistic mesh of reflected light barriers through synchronized

signaling from networked transmitters and a pulse-based power measurement technique

based on sensitive receiver hardware. It relies on modified LED light bulbs to transmit

modulated light and contains sensitive photodetectors to detect light signals. It coordinates

signaling among light sources so that a virtual light barrier can be established between

nearby pairs of lights without interference from other participating light sources. These

light barriers are opportunistic since the light needs to reflect off surfaces in the environment

to reach the photodetector on an adjacent light bulb. The key rationale for integrating

both signaling and sensing components in light bulbs is that it reduces installation and

maintenance costs, as power is already available at the lamps.

It addresses the challenge of invisible modulation of LED light bulbs together with

self-interference free detection sensitive enough to measure weak reflections through a syn-

chronous, pulse-based power measurement technique. Bulbs emit a periodic pulse, which is

short enough to remain imperceptible, meaning it does not noticeably affect brightness of

the light and does not cause flicker. Receivers measure the signal power of the pulse and

compare it to the overall light level to track movement and changes in the room.

The light nodes have wireless connectivity to report their measurements to a server,

where tracking and activity detection algorithms process the datastream to monitor the

1For example, GPS system uses 1023-bit PRN sequence which repeats itself every 1ms.
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Figure 4.1: Overview diagram of components in EyeLight.

movements and activities of occupants. We assume that light bulbs can be mapped with

their location in the room during installation. Self-localization algorithms may also be

possible. Fig. 4.1 shows an overview of the components in EyeLight.

Transmitted Signal. The transmitted signal should allow the receiver to separate

light emitted by one specific transmitter from other ambient light sources, while remaining

imperceptible to the human eye. In theory, this can be achieved with straightforward ON-

OFF signaling. Since flicker perception depends on frequency, this raises the question of

whether the high power LEDs used in light bulbs can be switched fast enough to remain

imperceptible. We measured the rise and fall time of an off-the-shelf LED bulb (Ecosmart

65W BR30) and observed that the lamp takes about 0.1ms to rise to 90% of its peak

intensity and a shorter time to fall. This shows that the light bulbs are fast enough for

ON-OFF signaling without introducing flicker to human eyes (previous research [24] showed

that the critical flicker frequency of human eyes when perceiving a strong single light source

is only about 100Hz).

In addition to eliminating flicker, the signal also should not significantly affect the overall
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Figure 4.2: Receiver.

illumination level. We therefore use periodic signaling, which only occurs in a short slot

out of a longer cycle. When ceiling lights are used to illuminate the space, the light would

briefly switch off during its slot, while remaining on during the rest of a cycle. This design

reduces the lamps’ brightness by only a negligible amount. Conversely, when lights are off,

the lamps could briefly switch on during their slot to signal. Our implementation focuses

on the former. Supporting both modes would require additional calibration of receiver

sensitivity.

Receiver. Sensing reflected light off the floor with photosensors deployed on the ceiling

is a challenging task. The photsensor frontend needs a high sensitivity to receive weak

light and fast response time to detect the modulated signal. These requirements are usually

at odds with each other. We achieve these requirements by carefully designing a receiver

circuit combining several components (Fig. 4.2(b)). Since we require a fast light sensor to

detect short pulse (under 1ms) from the transmitter, we use a photodiode as our sensor.

The weak current generated by the photodiode is amplified through a Transimpedance

Amplifier. The amplifier acts as the current-to-voltage converter—it converts and amplifies

the photocurrent generated by the photodiode to a voltage that can be read out. The

amplifying gain of the TIA is set by the feedback resistor RF following: Vout/IP = −RF .

Compared to a simple detector (a photodiode in series with a resistor R), the tran-

simpedance amplifier has much faster response time than the time constant RF ∗ Cd (with

Cd is the internal capacitor of the photodiode). Therefore, we can use a larger value of RF
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to increase the gain while maintaining fast response at the front end. However, the value

of the feedback resistor cannot be arbitrarily large since it is limited by two factors: large

Johnson thermal noise (vn =
√

4kBTR(V )) can reduce SNR of the frontend, and low input

rolloff frequency (fRCin = 1
2RFCin

) can limit our operating frequency. To further boost the

gain, we use a second stage amplifier: an instrumentation amplifier (INA126). The output

of the amplifier is given by,

Vo = G(V+ − V−) + VRef

where VRef is a reference voltage being fed to the instrumentation amplifier, and G is a

controllable gain. One can consider the two inputs to the INA126 as output voltages from

two arms of a Wheatstone bridge [98], whose difference we seek to amplify. The negative

input V− is fed with the output of the TIA, while the positive input V+ is fed with a constant

voltage from a voltage divider. Note that G and V+ are two controllable factors that help

the receiver adapt to different light levels.

Multiple Transmitters and Receivers. The previous two sections describe how a

single pair of transmitter and receiver can communicate through reflected light on the floor.

When multiple transmitters are in the room, each light node needs its own identification—

when the sensing module detects a light level change because of a shadow, it needs to

recognize which light source created that shadow. Therefore, each LED bulb needs a mech-

anism to send its own signature. This can be done in the frequency domain, as in [96], or

time domain. We choose the time domain because of its simplicity when combined with

synchronization from the common AC power signal, which our design assumes. As in other

prior work [14], the main idea is that each light fixture chooses its own time slot, during

which it signals.

For the time-slot based mechanism to work, the clocks of all light nodes need to be

synchronized. We implement this by using the common 60Hz AC signal available from the

mains power [109]. Recall that a key motivation for incorporating signaling and sensing

into light bulbs was the easy availability of power. We therefore also assume a common

AC signal for synchronization. Each zero-crossing event of the mains power signal marks

the start of a cycle for EyeLight, making the cycle length half the period of the AC signal
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(about 8ms).

Given n light bulbs that can potentially observe signals from each other, the system

requires n timeslots to uniquely assign a slot to each lamp, which lets the receiver identify

the signaling lamp based on the current time. Note that, as in wireless systems, spatial

reuse is possible and walls that block light make the reuse of slots across different lamps in

a building even easier. This keeps the total number of required time slots relatively small.

The maximum number of timeslots that can be supported is determined by the cycle length

and the lower slot duration bound derived from the LED rise time.

Besides signaling, each node also looks for signal from other nodes through multiple

receivers co-located with the LED lamp. The photosensors point to different directions

to detecting signal from surrounding light nodes. For the sampling scheme, we employ a

Round-Robin approach to maximize the number of samples per cycle: in each cycle, we let

only one photosensor sample the light level in its view, then move to the next photosensors.

This ensures each sensor has high enough sampling rate for detecting the fast signal from

other nodes.

Fig. 4.3 shows an example of received light power at one receiver over consecutive cycles.

This receiver is on node 2, so it observes a big dip in the second timeslot when node 2 signals.

It also observes a smaller dip in the first timeslot, when the adjacent node 1 does signaling.

This dip shows the effectiveness of our receiver design to sense weak reflected signals off the

floor from an adjacent node.

4.4 Tracking Algorithms

The photodiode in each sensor converts the incident radiant energy P to the output pho-

tocurrent Ip, making our sensor a light power measurement device. In essence, our tracking

algorithms utilize signal power measurements over time, and compare them with the base-

line light power level when the room is unoccupied. To improve the confidence of our

localization, we introduce two methods, Spike algorithm for coarse-grained localization and

Delta algorithm for fine-grained localization.

The first method measures if there is any change in received light power, which is
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Figure 4.3: Raw readings from one receiver.

caused by movement events surrounding the light node position. We detect this change by

continuously taking average received power over an entire cycle for each sensor and using

a threshold-based detection to detect when this average power deviates far away from base

light level (when the room is empty). This approach, which we call Spike algorithm, only

tracks movement at a coarse-level—it can only detect if there is a movement event in an

area surrounding the spot on the floor a receiver is monitoring.

The second method aims at fine-grained level tracking—it determines whether a change

occurred on a specific transmitter-receiver link. With multiple light nodes covering a room

and each carrying several receivers, we can effectively create an opportunistic mesh of

virtual light barriers to detect when a subject is passing by. Since each light source in the

interference domain signals in a unique time slot, receivers can simply check for the presence

of the ON-OFF signal in a particular time slot. If the signal can be detected the virtual

light barrier is connected, otherwise it is interrupted. This technique is agnostic to most

changes in ambient light level that can occur. Over time, the system can then monitor

changes in the status of each link.

While the concept is intuitive, its implementation is challenging due to the complex

light propagation environment. The system uses reflections off random surfaces rather than

direct illumination or a special reflector as in a retro-reflective light barrier. This means
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that the light level change when the virtual light barrier is crossed can be small and it tends

to differ for every pair of lamps. Moreover, in contrast to conventional light barriers, the

illuminating signals are more diffuse and the field of view of the sensor is wider to cover a

larger area of interest. In addition, multi-path can exist. This means that signals are often

only partially blocked when the barrier is crossed.

To address this challenge, EyeLight employs a delta technique. For a given transmitter-

receiver link, it measures the delta change in received signal power when the ON-OFF

transition occurs and compares it with a delta obtained under reference conditions (i.e.,

an occupied room). The signal power delta effectively captures how much light from the

signaling transmitter is reaching the sensor. It subtracts out all light from other sources,

assuming it remains constant over the duration of one slot. If the measured delta signifi-

cantly deviates from the reference delta, it means that a change between the transmitter

and receiver has occurred.

More precisely, let P jki,ON and P jki,OFF denote the mean power measured by the k-th sensor

on node j while node i is in the ON and OFF phase of its signaling, repectively. We define

the delta as ∆jk
i = P jki,ON − P

jk
i,OFF .

Note that both the terms effectively sum all light power reached at the sensor k, including

both the power from ambient light (natural light and illumination from lamps other than i)

and signaling light power received from lamp i. That is P jki = P jkambient +P jki,received. During

OFF phase of lamp i, P jki,received becomes zero and assuming no change in ambient lighting

between ON and OFF phases, it follows that ∆jk
i = P jki,received,ON . This means the delta

value is effectively the light power reflected from node i to sensor jk during the ON phase of

node i. When a person crosses the link between node i and j, the person can either block

light or reflect more light from node i to receiver jk, depending on the exact position and the

reflectivity of the person’s hair, skin and clothes. In either case, that causes P jki,received,ON ,

and in effect ∆jk
i , to deviate from the normal level.

This observation becomes the key for our light barrier crossing detection method called

Delta algorithm (Algorithm 2). Going back to the example of receiver jk, in each cycle, we

calculate the term ∆jk
i as described above, then check if this term exceeds a preset threshold

range. To reduce noise on the series of calculated delta values, we first apply Hampel filtering
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Figure 4.4: Virtual light barrier crossing detection.

to remove outliers and then a low pass filter to smooth the signal. The algorithm then uses a

windowing approach (set to 1s) and outputs a detection when the majority of delta values in

the window exceed the threshold. We set the threshold based on the mean and the standard

deviation of the delta values in the baseline dataset (when the room is unoccupied). (For

our prototype, we empirically choose threshold to be baseDelta ± 2 ∗ baseStd). Fig. 4.4

illustrates one output example of the delta detection algorithm, where receiver 2 on node 1

points to node 2’s direction, and a person passes 10 times the light barrier between node 1

and 2.

Given detections from either the Spike algorithm and Delta algorithm, we seek to infer

the location of the person. For Spike algorithm, based on detections of a user or her shadow

in the field of view of different receivers, EyeLight derives the user location based on the

positions that these receivers are pointing to. We assign a weight for each receiver based

on the magnitude of the deviation of the received light power from the baseline level. The

final location of the user is estimated as the weighted average of the locations to which the

receivers are pointing to. For the Delta algorithm, we estimate the location of the user to

be the center point between the transmitter and the location the receiver is pointing to.

Note that Spike algorithm and Delta algorithm compliment each other. The Spike

algorithm provides better coverage (any movement in an area surrounding the receiver
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Algorithm 2 Delta algorithm - light barrier crossing detection

Input: readings from node jk, baseDeltas, baseSTD
Output: events
while next cycle exists do

cycle = getNextCycle()
for i = 1→ numOfNodes do

P jki,ON = mean(cycle period during ON phase of node i)

P jki,OFF = mean(cycle period during OFF phase of node i)

∆jk
i = P jki,ON − P

jk
i,OFF

Update W jk
i - running series of ∆jk

i

hampelfilter(W jk
i )

lowpassfilter(W jk
i )

if |∆jk
i − baseDeltas

jk
i | > 2 ∗ baseSTDjk

i then

increase count(eventsjki )

if end of 1-sec window then
if (count(eventsjki ) > window / 2) then

detectionjki = True

count(eventsjki ) = 0

would be detected) but its location estimation is coarse-grained. In contrast, the Delta

algorithm easily pinpoints which transmitter-receiver link the person crosses, but it loses

track of a person that does not cross a light barrier link. To obtain both large coverage and

fine-grained localization, one can combine the results from both algorithms, for example,

by calculating the centroid of their estimated locations.

4.5 Room Activity and Occupancy Recognition

In this section, we introduce the room activity recognition and occupancy classification

module. The study focuses on a conference room, with activities and occupancy levels

categorized as in Table 4.1. This module uses a supervised machine learning approach

based on a feature vector of light power measurements. For other types of rooms, our

activity classifier needs to be trained separately to classify different set of activities that

commonly happen in these rooms.

The features to be used have to cover all the room’s different activity spots, thanks to the

non-LOS nature of shadow based tracking. Based on our hypothesis, detecting the room’s

occupancy and different activities can be inferred from the sources of movements and light
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Table 4.1: Room activity and occupancy categories
Activity Occupancy

Index Room Activity Human Count Category

0 Empty Room 0 Empty Room
1 Sitting at/near Table 1 Single Person
2 Whiteboard Discussion 2-3 Few People
3 Projector Presentation > 3 Many People
4 Single Person Rehearsing
5 Conducting Experiments

settings at different locations. For example, during a presentation activity, the ambient light

is usually dimmed and most light received is coming from the projector. One can think of

using the delta values and base light level readings during OFF phase of the transmitter

for the feature vectors. However, limiting the features to only these two values might cause

losing information needed for the classification. Also, the effectiveness of these features

depends directly on the base light level, that may change from time to time. Therefore, to

capture the temporal and spatial variability of light settings, we use the readings from all

the receivers in the room; values for each receiver are 12 average readings of 6 timeslots

(including ON and OFF phases). We include the readings from all the time slots since this

enables our system to distinguish the source of the lights from multiple directions. The

readings are averaged over a span of time window w. We choose w to be long enough to

capture the different activities and movements by users indoors. Since humans walk on

average 1.4 m/s [110], we vary this time window from a second to a minute long. We only

report the time window that maximizes the classification accuracy.

Our activity and count recognition approaches uses ensemble learning, specifically Ad-

aBoost.M2 [111]. In Adaboost, the classification results of other learning algorithms (’weak

learners’) are combined into a weighted sum that represents the final output of the boosted

classifier. AdaBoost is able to tweak adaptively the weak learners without prior knowledge

about their performance. We use regularized linear discriminant analysis (LDA) learners

as weak learners. We train the room activity and occupancy ensemble classifiers with the

feature vectors labeled with the activity index and occupancy category label, respectively.
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4.6 EyeLight prototype and testbed

In our prototype, we use an off-the-shelf Ecosmart 65W BR30 LED bulb as the transmitter

for each light node. This light bulb contains an AC-to-DC module to provide DC power

source to a series of LED chips. For our experiments, we remove this AC-to-DC module

and feed 40V DC source directly from a DC power supply to the LED chips. We use

a microcontroller (MSP432) to control a power MOSFET (IRFL520) as a switch to drive

much larger current needed for the LED lamp. For timeslot assignment, to support 6 nodes,

we divide each cycle (8ms) into 6 even timeslots.

In the transimpedance amplifier, we use the LF356 op-amp [112] which has low input

noise voltage (12nV/
√
Hz) and suitable for photosensor amplifier task. The feedback resis-

tor is 10MΩ to maximize the transimpedance gain. In the later stage, further amplification

is achieved by using INA126 [113], an instrumentation amplifier with low noise characteris-

tics.

We use TI MSP432 Launchpad [114] to control both transmitter and receiver operations.

The MSP432 Launchpad also offloads data measurement through Wi-Fi to our processing

server with the help of a TI CC3100 BoosterPack [115].

We built 6 light nodes and placed them inside a conference room (size 7.5×6m2, ceiling

height 2.74m), as shown in Fig. 4.5. All circuit components for each light node , including

the microcontroller (MSP432 Launchpad), receiver boards, synchronization board, power

board, were placed on a woodplank together with the LED light bulb. We placed 4 receivers

around each LED bulb, pointing to different directions; each photodiode is titled θ = 100

compared to the vertical line. This placement of photodiodes increases the number of virtual

light barriers in the room to detect human presence. To construct groundtruth, we placed

a ZED depth camera [116] in the corner of the room. The camera records videos of the

room with depth information, and these videos are later manually processed to rebuild the

positions of all persons inside the room.
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Figure 4.5: EyeLight testbed. There are 6 light nodes with distance between adjacent pair
is 2.5m. The room has a central table, a number of chairs, and a projector screen.

4.7 EyeLight evaluation

We collected data using our testbed in a conference room for 5 days over multiple weeks. For

each day, we recorded data during normal working hours, the total number of hours recorded

being 28.5 hours. Different users entered the room, including visitors, staff, faculty and

students. Different lighting settings and different chairs organizations have been conducted

during these days. We collected the base light level for the Spike and Delta algorithms at

the beginning of each day.

4.7.1 Light barrier crossing detection accuracy

The output of the Delta detection algorithm for each photoreceiver is a binary detection:

for each second, whether there is shadow casted by the adjacent node on the floor where

the receiver is looking at. To evaluate the accuracy of our Delta detection algorithm, we

conduct an experiment in which several test subjects walk in the room across all the lamps.

Fig. 4.7 shows the True Positive Rate (TPR) and False Positive Rate (FPR) of the delta

detection algorithm for different photoreceivers. TPR is the ratio of the correctly detected

events over the total number of proximity events, and FPR is the ratio of the incorrectly

detected events over the total number of testing cases when no person is in the vicnity

of a sensor. The receivers in the figure are the ones pointing to an adjacent light bulb.

The average TPR across all receivers is 82.17% and the average FPR is 5.77%. Among

all receivers, only receiver 5.3 has low TPR (6%). Given our conference room has dark
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Figure 4.6: The distribution of different activities and occupancy categories in the dataset.

carpet with low reflected light, the TPR and FPR value reported here are reasonably good.

Also, this is the performance for each single receiver; we expect that by combining multiple

receivers together, the accuracy of the whole system would be higher.

4.7.2 Localization error

Fig. 4.8 shows the localization error for single-person tracking scenarios, using three different

methods: using only spikes detection, using only delta detection, and combined. Delta

detection shows lower localization error (median 0.89m and 90 percentile of 2.5m) than

spikes detection (median 1.18m and 90 percentile of 2.56m). However, the spikes detection

is achieving this localization error while covering 94% of the time in which the user is inside

the room compared to 69% for the delta detection. It is clear that there is a tradeoff here
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Figure 4.8: CDF of localization error for three cases: 1/ using only spikes detection, 2/
using only delta detection, and 3/ combined detection.

between the coverage and localization accuracy. Therefore, we also propose the combined

version of the two algorithms, which achieves a 0.94m median error and better coverage

rate than the delta detection.

4.7.3 Room Activity Recognition and Occupancy Estimation

We evaluate our room activity recognition classifier by 10-fold cross validation over the whole

collected dataset using random partitioning. Each feature vector represents the average
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readings over a 5-second period, which maximizes the classification accuracy. Fig. 4.9

shows the confusion matrix for the classification results of our activity recognition classifier.

Each column represents the actual activity performed by the user and each row shows the

activity as classified by our system. The overall classification accuracy is 93.78%; however,
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if we break down the TPR for each activity, we can see the performance degrades for

categories 2: whiteboard discussion, 4: single rehearsal and 5: conducting experiments.

These activities represent a small fraction of the collected data as presented in Fig. 4.6a,

and therefore, the classifier likely has not enough data to accurately capture the true model

of these classes. Also, class 3, presentation in the dark, is easily misidentified as class 0,

empty room, since the room is almost dark, and during presentation there are not many

movements to capture. However, we expect collecting more data specially for these classes

will decrease the classification error.

EyeLight is able to distinguish 4 classes of occupancy of a room, by classifying the read-

ings coming from all the nodes inside. Each feature vector represents the average readings

over a 10-second period, which maximizes the classification accuracy. We used the same

evaluation procedure of the activity recognition classifier (10-fold cross validation). Fig. 4.10

shows the confusion matrix for occupancy estimation classifier. The overall accuracy of the

classifier is 93.7%, while the TPR for single person class is lowest among all the classes with

86%. A single person staying in a conference room is not a common event, so the dataset for

this class is not enough. Detecting a single person is thus more challenging than multiple

persons specifically, since the collected data for single-person class is also the lowest among

the four classes as in Fig. 4.6b. Moreover, a single person induces low effect on the light

especially when not moving (e.g., sitting near the table and working with on a laptop).

Therefore, we moved from five-second feature vectors, as in the activity recognition, to a

ten-second feature vector in order to capture more of these rare movements for a single user.

Again, we expect that collecting more data for this class would improve the classification

accuracy.

4.7.4 Microbenchmark experiments

Distance between nodes. We increase the distance between the two nodes and measure

the delta values received in one receiver for each distance between two nodes (Fig. 4.11a).

As the distance between two nodes increases, the delta value becomes smaller; starting from

3.5 meters, this delta is too small to distinguish from noise, rendering EyeLight ineffective

to use.
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Figure 4.11: (a) Delta values for different distance between two nodes. (b) Location median
error for different number of nodes. (c) Delta values for different ambient light settings.
(d) Delta values for different types of floor carpets.(e) Types of carpet in (d). (f) Effect of
lamp shade.

Number of nodes. We measure the localization median error of two algorithms (Spikes

and Delta) with reducing number of nodes to cover our conference room (Fig. 4.11b). Note

that there is no data for single node case of the Delta algorithm detection, since it needs at

least a communication link between two nodes. As expected, the location accuracy reduces

as the number of nodes decreases, because either the number of guarded locations (for Spike

detection) or the number of virtual light barriers (for Delta detection) decreases.

Ambient light. We test different ambient light settings in our conference room: no

ambient light, only ceiling lights turned on, only side lights turned on, both ceiling lights and

side lights turned on. The mean and standard deviation of delta values for each light setting

over a period of time is shown in Fig. 4.11c. For each ambient light setting, the standard

deviation is small, allows the delta algorithm to work efficiently. However, the mean value
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of deltas slightly differs between light settings, suggesting that the system might need to

calibrate for several times a day, when the ambient light setting is changed.

Different types of carpets. Another factor that affects the efficiency of the delta-

based virtual light barrier crossing detector is the reflectivity of the floor carpet materials.

The carpet inside our conference room is dark, and thus reflects less light. To see the

applicability of our detection algorithm on other types of carpets, we tested a light node

facing different types of carpets (Fig. 4.11e) and compute the delta values (Fig. 4.11d).

As can be seen, two other carpets have brighter surface, giving much larger delta values.

Therefore, we believe EyeLight is also suitable to work with other room carpet, with even

better performance. For other floor types, such as tiles, wood, due smoother surface, they

reflect light even better than carpets, thus are also applicable in EyeLight.

Lamp shade. In all previous experiments, we tested with commercial light bulbs

without lamp shades. To show the effect of lamp shade on the transmitted signal, we

compared the average delta values for lamps with and without lampshade (Fig. 4.11f). The

result shows that with lamp shade on, the average delta value actually increases. One

might think that lampshade would reduce the intensity of the light from the transmitter,

weakening received light power at the receiver. In fact, however, the lamp shade distributes

light more evenly over the floor area under the lamp, thus improve the sensitivity of the

receivers looking at different spots on the floor.

4.8 Discussion and Conclusion

We proposed a device-free indoor tracking, occupancy estimation and activity recognition

system that can be integrated in light-bulbs. The key idea is to create a mesh of reflective

virtual light barriers across networked light bulbs to detect occupant movement. We found

that our high-sensitivity photo-sensing circuit can detect minute light changes (shadows)

even on dark carpeting, and that a time division pulse signaling scheme allows differentiating

the light nodes causing shadows on the floor. With our 45 m2 conference room prototype

system with 6 light bulbs each carrying 4 receivers, we further found that the sensing system

can achieve a 0.89m median localization error as well as 93.7% and 93.78% occupancy and
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activity classification accuracy, respectively.

Our current system still has several limitations that could be addressed in future work.

First, EyeLight requires more than one lamp per room for fine-grained user tracking. Fortu-

nately, the small size of LED lights makes it easier to add additional lights in rooms. Second,

EyeLight so far focuses on tracking a single person per room. It could track multiple persons

as long as they cross different virtual light barriers, while multiple persons walking together

leads to mixed shadows. Third, EyeLight needs to adapt to different light settings, such as

different times of the day, rooms with outdoor light passing through windows. Currently

our prototype works in a conference room without windows, where measured illuminance of

light reflected from the floor is under 5 lux. In a room with outdoor light entering through

windows, the current receivers saturate. However, techniques like Adaptive Gain Control,

as used in other systems dealing with high dynamic range, can be added to EyeLight to

improve its robustness. An adaptive system is also needed to keep track of the change of

the baseline light level. We leave such designs for future work.
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Chapter 5

Capacitive Coupling-based Micro, Dynamic Finger Gesture

Recognition

5.1 Introduction

Head-mounted devices (HMDs) for Augmented Reality (AR) are transforming modern

workspaces thanks to their ability to overlay digital information onto the physical world.

There are a growing number of applications of these devices in different industries, such as

image-guided therapy [117], site productivity improvement for construction workers [118],

online support for field service workers [119], training new employees [120]. However, pro-

viding inputs to these devices while being user friendly, intuitive and ensuring an immersive

experience remains a challenging problem: the current input techniques mostly require users

to hold a tablet or smart phone in one hand or both hands or require hands to be present

in the field of view of a sensor. This often leads to inconvenient interactions and limits

the device usage in mobile scenarios. For example, camera-based detection of in-air gesture

interfaces (Microsoft HoloLens [121]) requires users to raise a hand to eye level, which can

cause fatigue over longer periods of use and is also impractical in some scenarios, such as

repair and maintenance. Voice input can be convenient for some simple instructions or

information, but can be disturbing in a common workplace setting. Therefore, to advance

the usage of the head-mounted devices, an always-available, low-effort, and expressive input

method is required.

Input methods using hand or finger gestures can satisfy this need. Current techniques

being used for hand/finger gesture recognition include off-body sensing (cameras [121],

radar [122], acoustic [123]) and on-body sensing (inertial sensors [124], impedance tomog-

raphy [125], magnetic sensors [126]). Some approaches seek to reconstruct arbitrary hand
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Figure 5.1: HandSense concept. While Augmented Reality head-mounted devices start
to find applications in areas like manufacturing, repair and maintenance, providing inputs
for these devices with low-effort from users remains a challenge. HandSense offers an always-
available, user-friendly dynamic, micro finger gesture recognition system for these devices.

poses, but generally rely on cameras, which require the hand in the field of view and signif-

icant computational overhead, or visible light sensing [127], which also requires user hands

to be inside the sensing space. In addition, gestures being recognized often include large

movements of the fingers or the whole hand, which can be tiring to users during/after

long periods of usage. The existing gesture recognition techniques fall short of satisfying

the needs for controlling HMDs in working environments because of the following reasons:

unable to operate outside a specific region of sensor operation; heavy instrumentation on

the hand or in off-body sensors; difficult to detect low-effort finger gestures that are more

suitable for HMD controller.

In this work, we propose HandSense, a light-weight, always-available system to recognize

a series of dynamic, micro finger gestures that are highly suitable for controlling HMDs. The

key idea in HandSense is measuring and classifying pairwise profiles of capacitive coupling

between electrodes placed on all fingertips. Capacitive coupling between two electrodes is

a monotonic function of the distance between them; it therefore allows inferring distance

between two corresponding fingertips. Given the structural constraints of the human hand,
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the inferred fingertip distances allow recognizing micro finger gestures.

This approach is motivated by the observation that there exists a large and important

class of augmented reality applications where users typically wear gloves (e.g., in the medical,

maintenance / repair, manufacturing, or certain e-sport domains). The electrodes can be

integrated into the fingertip sections of such gloves, akin to how many gloves already contain

conductive materials at the fingertip to enable touchscreen use. Placing electrodes on each

fingertip can therefore be much less intrusive than one might initially assume. Note also,

that in contrast to more heavily sensor-instrumented gloves for sensing hand motions, such

as DataGlove [128] or fiber-optic gloves for VR applications [129], HandSense only requires

electrodes as sensing elements, which can be fashioned from cheap conductive materials such

as copper tapes or conductive thread (connecting to an external processing unit possibly

placed inside user’s smartwatch or a wristband), thus the gloves can be particularly useful

in medical or high wear and tear working environments. While currently intended for

gloves, advances in skin electronics [130] (perhaps electrodes and traces back to the on-

wrist device) may allow HandSense techniques to be used even in applications where users

do not wear gloves. Overall, note that electrodes and traces are not active components,

thus the fabrication can be low-cost.

Another aspect that helps HandSense better serve as a gesture controller for HMDs

is its low-effort, always-available property. Since the system relies only on interactions

between sensing elements on fingers, it is not limited by the working range or suffered from

occlusion from external sensors (e.g. cameras [121], radar chip [122]). In addition, HMD

users in working environments often have their hands occupied (e.g. therapists working on

medical devices, cargo workers holding packages); in these cases performing finger gestures

with small movements in any place is the more preferred method over whole-hand movement

onto the virtual dashboard, which is inconvenient and interrupting to the workflow.

There are several challenges in realizing the HandSense system. First, the human hand is

a large conductive surface, thus the dominant capacitive coupling of the fingertip electrodes

is through the hand and the signal is much less dependent on the relative distances between

the electrodes. To further increase the dynamic range of the detection of spatial relationship

between electrodes, we seek to reduce the unwanted influence of the hand through the use of
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an additional ground electrode on each finger. Second, to be able to detect quick, dynamic,

micro finger gestures, the capacitive coupling measurements should be fast to provide frames

of link measurements quickly. We use synchronous undersampling technique, which is a

light-weight, low complexity method for estimating the received signal amplitude. Third, as

over-the-air capacitive coupling between finger electrodes decreases quickly with distances,

the link measurements between non-adjacent fingers are less usable in the capacitive profile.

We identified an additional through the hand capacitive coupling path between all fingers,

thus enabling more types of finger gestures to be recognized.

In summary, the major contributions of this work are as follows:

• Proposing a placement configuration for electrodes on fingertips to enable measure-

ment of capacitive coupling between each pair of fingers with minimal effect from

user’s hand.

• Designing a light-weight capacitive profiling system for measuring pair-wise capacitive

coupling between fingers, which are then used for finger gesture clasification system.

• Identifying three types of finger interactions detected by the capacitive profiling sys-

tem, which enable more dynamic, micro finger gestures to be recognized.

• Designing and implementing a glove prototype and evaluating HandSense in recog-

nizing a set of 14 different micro finger gestures based on data collected from 10

subjects.

5.2 Background

Current modalities of interacting with computers, mobile phones, laptops, tablets and smart

watches is by using keyboards, mice, trackpads and touch screens. But with the advent

of Augmented Reality (AR) and Virtual Reality (VR) platforms these existing modalities

of human computer interaction fall short from the aspects of immersion, ease of use and

being intuitive. A big part of crafting such an experience lies in how easily and seamlessly

the user is able to interact with the virtual environment. To this end it can be argued that

enabling a user to interact with the AR / VR environment directly with their hands would
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ensure a more intuitive and immersive user experience. In order to accomplish this, the AR

/ VR systems need to be able to recognize what exact gestures users are making to interact

with them. From a VR perspective the user is not able to see their hands but the exact

hand position and finger configuration need to be rendered with high precision. Whereas,

from an AR perspective the user will be able to see their hands but would need to interact

with overlaid virtual interfaces.

5.2.1 Existing finger gesture recognition techniques

Data Gloves: Gloves have been used to detect hand gestures since the early seventies.

They are a reliable way of sensing the gestures/hand movements that the user is making.

Early gloves such as the Sayre Glove [129], Data Glove [128], MIT LED glove [129] and

CyberGlove [131] were sensor dense and usually had a mix of flex/bend sensors, touch

sensors, inertial motion sensors, tilt sensors, ultrasonic sensors, LED and photosensors

sensors. These sensors were mostly affixed to the glove. This class of ”data gloves” were

rich in providing data generated from different parts of the hand. However, the sensors were

not cheap and due to their large numbers the gloves were bulky, cumbersome to carry and

usually restricted the movement of the users hands. The sensors could not translate small

changes in flexion to finer or dynamic gestures. They also usually required a user-specific

calibration procedure.

Camera-based approach: Another approach is to capture the movement of the users

hands directly using a camera and then inferring the gestures made. This is demonstrated

by HoloLens [121], DepthTouch [132], 6D Hands [133], Keskin et al. [134] and Microsoft

Kinect [135] where captured raw images/video of the hand are processed using sophisticated

computer vision algorithms to determine the hand position and gesture being made. On the

front end this method eliminates all burdens from the user to wear or carry extra devices.

It also makes the experience of using the system immersive and intuitive as users are now

able to interact with the system with their bare hands. However, this approach assumes

that the hands can continuously be monitored, are always in the field of view of the camera

(i.e., no occlusion) and external illumination conditions will always permit capturing data

of satisfactory quality. On the back-end this method requires the availability of a powerful
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enough computer that can run these sophisticated algorithms to process the acquired raw

hand tracking images. Finally, housing both the camera and the computer often leads to

bulky devices / systems.

WiFi, radar and light-based approaches. Other modalitiesused to perform hand

gesture recognition are WiFi channel state information (CSI) [136], WiFi received signal

strength (RSSI) [137], shadows cast by visible light [127] and more recently radar based

systems [122]. Deployed WiFi access points (APs) leverage changes in channel state infor-

mation and drops in received signal strength to detect hand gestures. Visible light based

techniques infer 3D gestures based on shadows that are cast on photoreceivers. Google’s

Project Soli [122] developed a 60GHz radar chip that is able to detect micro movements of

fingers. The chip pings a signal similar to a radar and looks for reflections, hand gestures

are determined by feeding these received pings to a trained random forest classifier.

HandSense approach. A common aspect of the systems discussed earlier is that all

of them expect that hands be in the field of view (FoV) of their deployed sensors. They

also require the surrounding environment of the hand to be fairly stable (e.g. availability

of sufficient light, not too much movement around the subject). These systems are unable

to sense micro gestures or dynamic movement of fingers. For these reasons these modal-

ities fail to be good options for use in conjunction with head mounted displays in active

work/industry environments.

HandSense is able to overcome these problems by making use of capacitive sensing. This

sensing modality has the following advantages: 1) HandSense is always available; it infers the

relative spatial relationship between fingers, hence, the hands can be anywhere and gestures

can still be recognized, 2) by its sensitivity to close range movements, capacitive sensing

allows recognizing micro finger gestures, 3) sensing electrodes are cheap and the glove can

be light-weight when embedding electrodes in it, and 4) low computation overhead.

5.2.2 Capacitive sensing

Capacitive sensing is an ubiquitous sensing technology in human-computer interaction. It

works by measuring the capacitance variation between two or more conductors. In the

most basic form, the capacitance between two parallel plate conductors is C = ε0εrA
d , where



94

ε0, εr are the free space and relative dielectric constants, respectively, A is the area of the

conductor plate and d is the distance between the two conductors. While there are many

forms of capacitors, the capacitive coupling between two conductors is always affected by

only these three factors: electrode size, dielectric between electrodes and distance between

them.

The measurement technique in HandSense is closely related to the shunt-mode capacitive

sensing [138]. In this mode, a capacitive link is established between two electrodes, in which

one electrode is powered by an AC signal and the displacement current is measured at

the other electrode. The displacement current is proportional to the capacitive coupling

amount between the two electrodes. Each sensing electrode can be configured as either

a transmitter or a receiver. For n electrodes, there are n(n−1)
2 distinct measurements for

all transmitter-receiver combinations. Note that the electrodes are in fixed positions with

careful calibration to better detect the appearance/position of human body parts.

While also using excitation-response measurement approach as in the shunt-mode

method, the electrodes in HandSense are placed at mobile positions; in particular on fin-

gertips. It then uses the pair-wise capacitive coupling measurements between electrodes to

infer micro gestures performed by users. Measurement with this particular electrode place-

ment presents both challenges and opportunities: on one hand, it is difficult to calibrate the

measurement system with mobile electrodes, and the large surface of the user’s hand causes

most capacitive coupling between electrodes to pass through the hand. On the other hand,

distance between fingers when performing gestures is small enough for a capacitive coupling

measurement to work. Also, the relative motion between fingers is constrained (fingers can

only flex and move in certain directions). HandSense optimizes the electrode placement to

only expose the capacitive coupling path associated with finger gestures, including close-

range over-the-air coupling and intended through-the-hand finger communication, while

reducing the unwanted coupling in the back channel between electrodes.
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Figure 5.2: System overview

5.3 HandSense overview

HandSense is able to recognize a set of dynamic, micro finger gestures that are suitable for

use in conjunction with head-mounted devices. This is enabled by placing electrodes on each

of the five fingertips of a hand and inferring the spatial relationship between them through

capacitive measurements from all the pairs of electrodes. HandSense, therefore, is self-

contained: unlike approaches using cameras, on-body or external RF sensors, HandSense is

able to detect finger gestures when the hand moves anywhere in space, even when it is not

in the field of view (FoV) of a head-mounted devices or hands are occluded. The system is

also able to detect fast movements (comparable to the speed of a quick swipe), thus allowing

the gestures to be low-effort to users. The availability everywhere and the ability to detect

fast, low-effort gestures make HandSense a highly suitable input method for head-mounted

devices.

On-finger electrode design. A simple method to infer close distance / proximity

between two electrodes in free-space is by measuring the capacitance between them as

capacitance is inversely proportional to the distance between electrodes. However, a naive

configuration of affixing one electrode on each finger comes with problem: a large amount of

the coupling between the electrodes would be through the hand as opposed to over the air.

This is because the hand is more conductive than air and most of the capacitance coupling

between the two electrodes would be through the lower impedance path along the hand.

Hence it becomes difficult to measure the small change in capacitive coupling through the

air on top of a large capacitive coupling through the hand when the fingers move closer or

further away from each other. To solve this problem, we propose adding a ground electrode

underneath each signal electrode to minimize the capacitive coupling between the signal

electrode and the user’s hand. More discussions about this design is in Section 5.4.
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Minimally instrumented glove design. HandSense consists of a central controller

board worn on a user’s wrist and a glove which is used to equip the user’s fingertips with

sensing electrodes. Note that the glove only requires passive components; electrodes and

traces. This makes HandSense particularly useful in high wear and tear environments, such

as healthcare, wellness and fitness, automobile/factory shop floor, assembly line. A user can

connect their own smartwatch/wristband with a new glove to use with his head-mounted

device.

Light-weight pair-wise capacitive coupling measurement techniques. Hand-

Sense is based on the insight that most finger gestures can be inferred from a profile of pair-

wise capacitive coupling measurements between fingertip electrodes. Furthermore, since

HandSense seeks to recognize dynamic finger gestures, the pair-wise capacitive coupling

profile contains not only measurements at one instant in time but a time series of measure-

ments, providing richer data for finger gesture classification. For typical dynamic, micro

finger gestures (e.g. sliding, tapping), which can last under 1 second, the measurement sys-

tem should repeatedly sample all finger-pairs fast enough to deliver sufficient data points

to infer the gestures. We employ several techniques to satisfy this requirement: (a) fast

switching between electrodes to act as transmitters and receivers, (b) a synchronous un-

dersampling measurement technique to quickly estimate the instantaneous received signal

in each link. The synchronous undersampling technique is light-weight in both hardware

and firmware: it avoids the needs of expensive components such as mixers, phase shifters,

and low pass filters, as in the traditional synchronous detection technique. The on-board

firmware only requires a moderate ADC sampling rate and minimal computational over-

head, as opposed to the Discrete Fourier Transform technique. Such low requirements made

it easier to integrate the controller electronics into low-cost wristbands for HMD users. We

describe these techniques in more detail in Section 5.5.

Finger gesture recognition. With the above electrode placements and measurement

techniques, we describe three different finger interactions that HandSense can recognize:

direct over-the-air finger proximity, finger touching, and indirect through-the-hand electrode

communication. These finger interactions produce signal signature in the time series data,

which can be used for recognizing more finger gestures. With this time series data of
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(a) A glove with electrodes at-
tached on fingertips and con-
nected with a wrist-worn device.

(b) Cross-section view.

Figure 5.3: Electrode placement.

measurements on pair-wise links, we investigate different neural network based techniques

to classify the finger gestures. More details are in Section 5.6.

Design overview. Fig. 5.2 illustrates the overall design of HandSense. The sensing

electrodes are attached on a glove at the fingertip sections. These electrodes are connected

with a central controller board, called CapProfiler, which could be embedded inside a smart-

watch or wristband. Inside this board, a microcontroller controls the signal transmission

through a signal generator module, receives signal from an analog receiver circuit, and coor-

dinates timing of different transmitter-receiver links. Received signal amplitudes calculated

from the measured signal on all links are packaged into frames and sent over Bluetooth to a

remote host, which can be a head-mounted device the user is wearing. The time-series sig-

nal sequences of all the communication links are then passed through a trained end-to-end

neural network model to classify into different finger gestures.

5.4 Design of on-glove electrodes

The electrodes (conductor plates) act as both transmitting and receiving elements in Hand-

Sense. They are placed on the top bone (distal phalanges) of each finger (Fig. 5.3(a)). The

rationale for placing the sensing electrodes in these positions is that the fingertips are the

most active parts of the hand, and they take part in almost all gestures. While we seek to

measure the capacitive coupling between each pair of electrodes over the air (small dielec-

tric), the higher dielectric constant capacitive coupling path through the hand presents a
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challenge to HandSense. In addition to acting like a resistor, the outermost layer of skin

(epidermis) acts like a capacitor if placed in contact with a piece of metal. The underlying

tissue represents one plate of a capacitor and the metal surface the other. The dry epidermis

represents the less conductive material or ”dielectric” in between. In our case we use an

AC source to excite the electrodes, this AC source ”shorts” out the natural resistance of

the epidermis allowing the current to bypass that part of the hand’s resistance and making

the hand’s total resistance much lower. This resistance further reduces with increasing fre-

quency of the current. This means that the dominant signal path goes through the hand

(the less resistive path) as opposed to through the air. According to the National Institute

for Occupational Safety and Health (NIOSH) the resistance offered by the human body is

in the range of 1000 to 100,000 Ω [139] and the capacitor with A = 2cm2, d = 3cm with air

as dielectric has a capacitance of 590pF and an impedance of 26MΩ [140]. Hence a weaker

amount of capacitive coupling over the air between two signal electrodes in the presence

of a stronger capacitive coupling through the body would be more difficult to measure.

This is detrimental to our system as we wish to estimate the over-the-air distance between

fingertips based on the capacitance between the fingertip electrodes.

To address this challenge, we place a ground electrode between each signal electrode

and the finger, with insulation layers in between to prevent shorting of the electrodes

(Fig. 5.3(b)). It is evident from Fig. 5.4 that there is not much change in amplitude at

100kHz when the ground plane is absent, whereas in the case with the ground plane we can

see that there is a drop in amplitude when fingers are moved apart to a distance of 3cm.
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Figure 5.4: Received signal at 100kHz in one-electrode vs. two-electrode designs. Here d is

the distance between the two fingers during its transmitting-receiving session.

Adding a ground electrode underneath the signal electrode closer to the signal electrode

than the skin helps, as it is at a lower potential than the skin. Hence it couples stronger

with the signal electrode. It also provides a common ground to the smart watch/device

which measures the voltage. Without the ground electrode, the transmitting signal would

couple to the user’s hand and then couple to the receiving electrode.

Note that there are other advantages in having a defined ground electrode: 1) the ground

plane ensures that the signal is always coupled to the same ground potential across all

fingertips as each fingertip has the same ground electrode underneath the signal electrode.

Without this common ground, each signal electrode is coupled to its own dynamically

changing finger potential, 2) generally frequency multiplexing (i.e., each finger is assigned a

pre-determined frequency of operation) techniques are used to uniquely distinguish received

signals from different fingers. But since we are measuring distance using capacitance, fingers

that are far away from each other produce signals that have very low amplitude. Having a

common ground plane ensures that the calculated signals are also with respect to the same

potential which means that all the fingers can be excited with the same frequency signal.

5.5 Design of the capacitive profiling system

The central controller board of HandSense, called CapProfiler, can be embedded inside a

wrist-worn device such as a smartwatch or wristband, which leaves only electrodes on the
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glove. CapProfiler board follows modularized design: signal excitation, reception, as well

as signal processing are all integrated on board, and the system can be put to use once

the user connects glove with sensing elements with the CapProfiler board. To further lower

the cost of making CapProfiler boards, we seek a design with low complexity hardware and

light-weight measurement techniques in firmware.

5.5.1 Transmitter and receiver design

Capacitive Coupling Transmitted Signal. At any given time, HandSense transmits a

sinusoidal wave as an excitation signal to an electrode and measures the received displaced

current from a nearby unexcited electrode to infer the capacitive coupling between the two

electrodes. The choice of transmitting frequency is dictated by several factors. On one hand,

as the impedance through the air between the two electrodes is XC = 1
2πfC , the higher the

frequency is, the lower the inter-electrode impedance is, causing more displacement current

at the receiving electrode. On the other hand, higher transmitting frequency requires higher

ADC sampling rates and real time processing capabilities. In HandSense, we choose 100kHz

sinusoidal wave as our excitation signal.

Electrode

Vcc/2

Rf

Cf

OPA340

Vcc/2
+

-

Rg
Vcc

Vcc

INA126

Vcc

LMV324
To ADC

++

--

Figure 5.5: Analog receiver frontend

Analog receiver frontend design. We design a simple sensitive analog receiver fron-

tend circuit connected to an electrode as shown in Fig. 5.5. The displacement current

measured at the receiving electrode is amplified through a transimpedance amplifier. The

amplifying gain of the transimpedance amplifier (OPA340) is set by the feedback resistor

Rf following the formula: Vout/Iin = −Rf . It also has a capacitor in parallel to create

a lowpass filter to filer out unwanted higher frequency components and harmonics. Since
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the board is powered using a single supply a bias voltage of Vcc/2 is provided at the non-

inverting terminal. This forces the DC output to about Vcc/2. The difference between this

filtered, amplified output voltage and a bias voltage Vcc/2 is further amplified by a second

stage using an instrumentation amplifier (INA126). This ensures that we amplify just the

small received signal. The instrumentation amplifier has a default gain of 5 and additional

gain can be set by using Rg. The output from the instrumentation amplifier is fed to a

voltage follower with a low output impedance before being fed to the microcontroller ADC.

Multiple transmitters and receivers. We utilize a round-robin approach for multi-

plexing between different capacitive links, where one link is the capacitance between a pair

of fingers (i.e., thumb to index finger is one link, thumb to middle finger is another link).

We also observe as expected that links are symmetric (e.g., the middle-to-ring finger signal

is the same as the ring-to-middle finger signal). The two multiplexers, one for transmitting

and one for receiving, iteratively choose each of the electrode links, wait for the ADC to

sample enough data points before switching to another link. By using the multiplexers

we reuse the same signal generator and frontend receiver circuits, further simplifying our

hardware design.

5.5.2 Estimation of received signal amplitude

A common technique to calculate the signal amplitude at a given frequency from ADC sam-

ples at a fixed sampling frequency is using Discrete Fourier Transform (DFT). However, this

technique requires a high sampling rate, at least twice the frequency of interest, thus caus-

ing high processing overhead for the microcontroller. Moreover, we only need to compute

signal amplitude for the transmitted frequency, thus most of the frequency spectrum pro-

duced by DFT is redundant. To avoid sampling data at high speed for high frequency

signal (100KHz), we estimate the received signal amplitude by synchronous undersampling

measurement technique, which was first proposed by Smith [138] and described in more

detail in [141]. This technique can be seen as digital equivalent for synchronous detection

method in analog domain.
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(a) Synchronous detection. (b) Synchronous sampling. (c) Synchronous undersampling.

Figure 5.6: Measurement methods for estimation of received signal amplitude.

Algorithm 3 Calculation of received signal amplitude using synchronous undersampling
technique.

Input: ADC sample array S (number of samples = 4n).
Output: Received signal amplitude.
I = Q = 0
for i = 0→ n− 1 do

I = I + (S[4i]− S[4i+ 2])
Q = Q+ (S[4i+ 1]− S[4i+ 3])

I = I/n
Q = Q/n
return amp =

√
I2 +Q2/2

Synchronous detection is a common measurement technique for recovering the ampli-

tude of the received signal at the transmitted frequency. Fig. 5.6(a) shows a typical hard-

ware setup for the synchronous detection measurement method. The sinusoidal signal of

frequency f from the transmitting electrode induces at the nearby receiving electrode a re-

ceived signal consisting of attenuated version of the transmit signal plus noise. The received

signal is multiplied with the original transmitted signal to produce sidebands at +2f and

-2f frequencies and also a DC value. A subsequent low pass filter removes these sidebands,

and the remaining DC value is proportional to the amount of displacement current on the

receiving electrode. This assumes the phase of received signal and transmitted signal have

the same phase. In practice, the received signal is demodulated with both the transmit-

ted signal and its 90-degree-shift version, to recover the in-phase (I) and quadrature (Q)

components. The received signal magnitude is then calculated as
√
I2 +Q2.

Implementing synchronous detection would require significant hardware cost (including

mixers, phase shifters, and low pass filters). Moreover, the heavy low pass filtering after

the mixer makes it slow to response to fast signal. Synchronous sampling seeks to remove

these hardware components while still being able to estimate the amplitude of the received
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signal at the transmitted frequency.

Fig. 5.6(b) shows a full period of a sine wave of frequency f with DC offset. If we sample

at 4f sampling frequency, the 4 samples on each wave cycle are separated by 90 degrees

each. Let S1, S2, S3, S4 be four samples on a wave cycle, when mapping these values onto

an equivalent circle, we observe that r1 = |S2 − S4|/2 and r2 = |S1 − S3|/2. Applying

Pythagoras’s law for the shaded triangle, we also have r =
√
r21 + r22. This leads to the

amplitude of the sinusoidal wave can be estimated as: r =
√

(S1 − S3)2 + (S2 − S4)2/2.

The synchronous sampling technique is fast: it only requires four samples to calculate

the signal amplitude. However, it requires the sampling rate of 4f , which can exceed the

capability of some microcontrollers when the transmitted frequency is high (e.g. 100KHz).

To reduce the required sampling frequency, we instead use synchronous undersampling. We

assume that inside a small time window, signal is repetitive, so instead of sampling S1,

S2, S3, S4 on the same cycle, we sample them on continuous cycles. Now the samples are

taken 450 degrees each, and the sampling frequency can be reduced to 4f/5. The formula

to estimate the signal amplitude remains the same. To increase SNR, we accumulate values

of S1, S2, S3, S4 over many cycles, average them before calculating the signal amplitude.

Algorithm 3 shows the full procedure.

In our implementation, we use an ADC sample array of size 16 to calculate the received

signal amplitude for each link. With sampling frequency of 80KHz, it takes 200us for

capturing these 16 samples into a buffer. We implement ADC with Direct Memory Access,

which frees the CPU from sampling process. In the main CPU process, we delay 1ms after

switching the multiplexers to ensure the DMA buffer contains only samples after the link

is stable. Therefore, a frame containing 10 measurements from 10 links takes 10ms, which

leads to the measurement frequency of 100Hz in our implementation.

5.6 Micro dynamic finger gesture recognition

Typical finger gestures can be categorized into two groups: static gestures (such as making

the victory sign, spiderman sign, okay sign) and dynamic gestures (such as swiping, sliding,

tapping). HandSense focuses on the later group of gestures, especially the dynamic, micro
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(a) Closed fist gesture. (b) Pinch gesture. (c) Tap gesture.

Figure 5.7: Illustrations of finger interactions recognized by HandSense.

gestures. These gestures are more suitable for interacting with the head-mounted devices

for workers on manufacturing or construction sites: when the users hands can be busy with

interacting with objects on the site, moving a few fingers to perform a gesture is less likely

to disrupt the workflow. The gestures can be performed by finger muscles, as opposed to

large hand muscle groups, thus reducing fatigue over longer use cases as well.

HandSense is highly suitable for detecting these type of dynamic, micro finger gestures.

The system is capable of providing frames of link-wise measurements at rate of 100Hz, thus

capturing more data points to recognize these fast, micro finger gestures. In addition, we

realized that the finger movements in these gestures are more correlated with the relative

position and velocity of each finger with regard to the other ones, as opposed to abso-

lute position and velocity of individual fingers with regard to another coordinate system.

Approaches using inertial sensors [124, 142, 143] or bend sensors [128, 131, 144] are able to

track individual finger joints, but find it difficult to infer dynamic gestures being performed.

Link-wise capacitive coupling measurements in HandSense provides better representation

of these dynamic finger gestures.

In this section, we first show the three finger interactions that HandSense is able to

recognize, then describe the neural network-based approaches to the problem of classifying

finger gestures.
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5.6.1 Recognition of different types of finger interactions

With the configuration of electrodes on the fingertips, we identify three finger interactions

that can be recognized with HandSense. In this section, we illustrate the signal signature

of each finger interaction with an example gesture. For better visualization, we also include

the time boundary for each gesture in gray boxes.

a. Direct over-the-air electrode proximity detection. Fig. 5.8 we show the mean

and standard deviation of the received signal at a receiving electrode when the transmitting

and receiving electrodes are on the index finger and the thumb respectively, and two elec-

trodes are kept in parallel at different distances. The received signal decreases exponentially

with increase in distance between transmitting and receiving electrodes. We observe that

beyond 5cm, the received signal stays at a minimum level, which is the capacitive coupling

between signal traces on the processing board, thus electrode distances more than 5cm are

hard to detect.

As an illustration, consider the closing fist gesture shown in Fig. 5.7(a), in which all the

fingers are curled toward the palm to make a fist. The time series of 4 links of adjacent

fingers (pinky-ring, ring-middle, middle-index, index-thumb) all show signal increase as the

fingers in each pair move close toward each other.

Note that since the capacitive coupling amount depends not only on distance between

electrodes, but also on orientation of electrodes to each other, as well as possible capacitive

coupling to the user’s hand, there is no direct mapping between received signal amplitude

and electrode distance. However, as we are interested in dynamic finger gestures, the

relative change in time in each data stream is the more important feature to recognize

different gestures.

b. Detection of finger touching. When the two electrodes touch each other (i.e.,

the insulation over the signal electrodes), the capacitive coupling between the two would be

the strongest. This strong capacitive coupling produces saturated readings at the output

of the frontend receiver. An example of this finger interaction is the index pinch gesture

(Fig. 5.7(b)), in which index finger tip taps on thumb tip. The index finger electrode acts

as transmitter and the thumb electrode acts as receiver. The received signal at the thumb
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Figure 5.8: Received signal vs. distance (Thumb to index finger)

electrode quickly increases and saturates at 0.5V when the two fingers touch each other.

c. Indirect through-the-hand electrode communication. The short range (under

5cm) of the over-the-air electrode proximity detection makes the capacitive link between

far apart fingers (e.g. thumb-to-pinky) seem unusable. However, we can take advantage

of the palm as a communication channel between them. We discovered that when two

electrodes are touching near the center of the palm at the same time, since the human

hand is conductive, there is some capacitive coupling through the hand between the two

electrodes. We can take advantage of this fact to use in some intuitive and low-effort finger

gestures.

As an illustration, consider the tap gesture shown in Fig. 5.7(c), in which the thumb

taps onto the surface of the index finger. The middle, ring, and little fingers are curled into

the palm and thus electrodes on these fingers are coupled to the user’s hand palm region.

Fig. 5.7(c) also shows the time series signal on three channels, from thumb to middle, ring,

and little fingers, when the user performs multiple tap gestures. As can be seen in this

figure, when the thumb taps the base of the index fingers, received signals on all these three

channels increase because of more capacitive coupling through the hand in each link. This

provides features to differentiate this gesture in the classification step.
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5.6.2 Neural network-based gesture classification

The input to HandSense’s gesture classification system is a time series data of data samples,

each contains received signal amplitudes in 10 links being calculated from the CapProfiler

board. There are different approaches for the problem of time series classification [145].

Classicial machine learning techniques, such as SVM, Decision Tree, Logistic Regression,

require manual feature extraction from the raw sensor data before feeding into their clas-

sifiers. However, handcrafted features have several challenges, such as task or application

dependence, reliance on domain knowledge, difficulty in transferring to a new type of sensor

data [146].

We instead employ a data-driven approach. In particular, we seek to train end-to-

end models that allow raw sensor data as input data for gesture classification. We utilize

several common neural network-based methods for Time Series Classification problems,

in particular Multi Layer Perceptron (MLP), Convolutional Neural Network (CNN), and

Long Short-Term Memory Network (LSTM). The architectural details of each network is

as follows.

Multi Layer Perceptron (MLP). As a baseline, we started with a simple neural

network model as follows: Each input sequence is reshaped to a column vector of size 10 ×

[number of time steps]. The input layer is fully connected to a hidden layer, which is in turn

fully connected to an output layer. The number of hidden neurons is set to approximately

2/3 × (number of input neurons + number of output neurons).

Convolutional Neural Network (CNN). CNN is used frequently with time series

data problems, thanks to its ability to learn spatial/temporal relationship in the input data.

In our experiment CNN network architecture, each input sequence is reshaped to a two-

dimensional feature matrix, one dimension size is 10 (number of links being calculated),

the other dimension is the time steps in the sequence. We pad input data with zeros to

make input sequences of the same size. These input sequences are then used to train a

Convolutional Neural Network (CNN). Our CNN consists of two convolutional layers, each

followed by a max pooling layer. The kernel sizes for the convolution layers are 5 × 10 and

20 × 1. The pool sizes are 2 × 1 and 20 × 1. We use Rectified Linear (ReLU) activation
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(a) CapProfiler board. (b) Glove prototype.

Figure 5.9: Prototype.

function after each convolutional layer and dropout of rate 0.4 after the fully connected

layer. The initial learning rate is set at 10−3.

Long Short-Term Memory network(LSTM). LSTM is a special kind of recurrent

neural network (RNN) that is capable of learning long-term dependencies. Compared to

standard feedforward neural networks (e.g. MLP and CNN) that feeds the whole sequence

as an entire input, LSTM is able to learn the dependencies from time-series data by feeding

the sequence to the network step by step. We experimented with a LSTM network with

one hidden layer consisting of 50 LSTM units. Dropout layers and L2 regularization are

used to avoid over-fitting the model. We set the initial learning rate to 10−3.

5.7 Evaluation

In this section, we present our developed prototype, the set of dynamic, micro finger gestures

used in our experiments, then describe the data collection process from users. Next, we

evaluate the capability of HandSense in recognizing these gestures.
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5.7.1 CapProfiler prototype

We designed a capacitive profiler board consisting of the following components: a Teensy

3.2 microcontroller [73] to do the central processing, a SparkFun Minigen signal genera-

tor [147], which is centered around the chip AD9837 [148], to generate sinusoidal wave,

a custom analog receiver front-end circuit for displacement current measurements, two

8-channel CD74HC4051 multiplexers [149] for transmitting and receiving directions, and

CC2650 BoosterPack [150] for Bluetooth data streaming. The signal generator generates a

1V peak-to-peak 100KHz signal. Fig. 5.9(a) shows the fabricated board.

We use a cotton glove and attach electrodes around its fingertips. The electrodes are

connected to the central processing board by coaxial cables to avoid affect from environment

noise (Fig. 5.9(b)).

5.7.2 Gesture set

HandSense is able to recognize different types of finger interactions as described above,

giving us an opportunity to specify intuitive and low-effort finger gestures for operations on

a head-mounted device. We design a set of such gestures, illustrated in Table 5.1. These

gestures are highly suitable for operations on head-mounted devices, for example:

• Sliding (right to left or left to right): to rewind or fast forward any video

• Swiping: to scroll up or down a document

• Tap / double tap: to select an item on screen

• Closed fist: to close the current document / window

• Knob turn: to rotate displayed objects

• Pinch (between thumb and the remaining four fingers): to select between different

options by pressing virtual buttons

The gestures in the set also demonstrate the capability of HandSense in recognizing

the finger interactions described in Section 5.6. Also, most gestures require only small
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1. Finger rub 2. Sliding (right to left) 3. Sliding (left to right) 4. Knob turn (CW)

5. Knob turn (CCW) 6. Closed fist 7. Swipe down 8. Swipe up

9. Single touch 10. Double touch 11. Index pinch 12. Middle pinch

13. Ring pinch 14. Little pinch

Table 5.1: Full gesture set used in our experiments. Note that the illustrations do not
include the hand glove.

amount of motions and can be performed by muscles controlling the fingers, rather than

those involving larger muscle groups. Note that the gesture set includes a few challenging

pairs of gestures, such as sliding right to left vs. left to right, knob turn clockwise vs.

counter-clockwise, which can be easily misclassified with each other.

5.7.3 Data collection and preprocessing

Ten subjects wore the glove on the right hand and performed the gestures; the glove is

equipped with electrodes on fingertips, connected with the CapProfiler board worn on the

subject’s wrist, as described in above section. Each gesture is captured 25 times, with

experiment sessions lasting about 30 minutes per user. To simplify analysis, the start and

the end of each gesture are manually marked by pressing a button. In total, we captured

10 × 25 × 14 = 3500 sequences with different lengths. This dataset is used in most of our

experiments.
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Based on the markers of the start and the end of each gesture, sequences are extracted

into individual gesture windows. The time series data is further processed by a Hampel

filter, followed by a moving average filter, before being given as input to the classification

system.

5.7.4 Gesture recognition performance

We use common metrics for multi-class classification: precision, recall and F1-score, to

evaluate the performance of each model in recognizing different finger gestures. We use

10-fold cross validation for evaluating these performance metrics. Table 5.2 shows these

metrics for three models: Multi Layer Perceptron (MLP), Convolutional Neural Network

(CNN) and Long Short-Term Memory network (LSTM).

Model Precision Recall F1 score

MLP 0.909 0.903 0.903

CNN 0.945 0.942 0.942

LSTM 0.976 0.975 0.975

Table 5.2: Classification performance of different neural network-based methods.

MLP achieves 0.909 precision, 0.903 recall and 0.903 F1 score, which is a good base-

line for the classification. This shows that with a simple fully connected layers model, the

discriminative signatures in the capacitive profiling are already able to provide reasonably

high accuracy in finger gesture classification. However, since MLP concatenates time series

sequences on all the links into a single 1D input vector and samples are treated as indepen-

dent neurons, it loses the temporal dependency within a single link as well as across links.

For example, in swipe down gesture, the capacitive coupling amount should increase then

decrease in this order: thumb-index, thumb-middle, thumb-ring, then thumb-little. As we

will see, most of the misclassifications in MLP happen within close pairs of gestures: sliding

right to left vs. left to right, knob turn clockwise vs. counter-clockwise, swiping up vs.

down, single-touch vs. double-touch.

CNN performs better than MLP (0.945 precision, 0.942 recall and 0.943 F1 score). This

is because CNN keeps the 2-dimensional data (10 links × number of time steps) as input

to the network, and its 2D filters are able to learn the temporal dependency within each
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link (e.g. received signal rises and falls when fingers move closer and further away) as well

as across links (e.g. swipe down gesture, as described above).

LSTM has been widely recognized to achieve excellent performance on time series data

classification. Compared to CNN, LSTM has better memorization of the long term depen-

dencies of the past. Based on our results in Table 5.2, we show that LSTM achieves the

best performance in all three metrics (0.976 precision, 0.975 recall and 0.975 F1 score).

Fig. 5.10 shows the confusion matrix of the finger gesture classification with the three

neural network-based methods, using 10-fold cross validation. As expected, we can see

that most misclassifications are within pairs of close gestures: sliding left to right vs. right

to left, knob turn clockwise vs. counter-clockwise. CNN performs better than MLP in

differentiating gestures in each pair, thanks to its awareness of temporal dependency in the

data stream. LSTM further shows its superior performance on detection of compounding

gestures such as single touch and double touch. Knob turn (clockwise, counter-clockwise)

are the most challenging gestures for all three models. This can be for two reasons: 1) the

highly similarity between signal traces of these two gestures, and 2) the gestures are hard to

perform (feedback from users), meaning the collected signal might not have been consistent

even for the same user.

Overall, the three neural network-based methods have high gesture recognition perfor-

mance on our collected dataset, proving the distinctive signatures in the data stream col-

lected from our measurement technique. Note that this exploration of neural network-based

methods is by no means an exhaustive search for the model with the highest recognition

performance. Instead, the focus is on the suitability of this new measured capacitive cou-

pling profile in recognizing fine-grained finger gestures. The results in this section provide a

promising baseline, and we leave additional analysis of suitable machine learning techniques

for future work.

5.7.5 Microbenchmarks

Capacitive coupling measurement rate vs. classification accuracy. We evaluate the

effect of the measurement rate on the classification accuracy of HandSense. From 100Hz-rate

dataset collected from the above process, we downsampled the data stream to simulate data



113

collected at 50Hz, 25Hz, and 10Hz measurement rate. On these new datasets, we use the

same CNN network architecture and 10-fold cross validation to evaluate the classification

performance. Fig. 5.11 shows Precision, Recall, and F1 scores for these measurement rates.

We can see that the classification performance degrades as the measurement rate decreases.

This shows the advantage of our light-weight measurement technique in delivering high-rate

measurements to classify fast, dynamic finger gestures more accurately.

Glove independency. Gloves used in HandSense system serve only as a convenient

means to connect finger electrodes to the CapProfiler board on a wrist-worn device. To

illustrate that the glove being used has little effect on the classification performance of

HandSense, we asked one of the ten subjects above to wear a Hyper Tough Gripping Glove

(Fig. 5.12) and collected another set of experiments from this subject. We then trained a

CNN model using data collected from previous set of ten subjects when they wore the cotton

glove, and tested this model on the newly collected data. The classification achieves 0.979

precision, 0.977 recall, and 0.977 F1 score, proving that training the HandSense classifier

on only one glove allows the user to use other gloves as well.

5.8 Limitation and Discussion

Power consumption. For fast prototyping, our current CapProfiler prototype uses off-

the-shelf modules, including a Teensy 3.2 microcontroller [73], a MiniGen signal generator

module [147], and TI CC2650 BoosterPack for Bluetooth module [150]. At 3.7V supply

voltage, the average current drawn in this unoptimized prototype is 90mA when Teensy is

in active mode and 57mA when it is in sleep mode, with the breakdown for each component

shown in Table 5.3. This means the CapProfiler board consumes 330mW in active mode and

211mW in sleep mode. While this is high power consumption, we believe power consumption

can be reduced in an optimized prototype, given the simple functionalities of the CapProfiler

board. Several power optimization methods can be: replacing MiniGen module with a

simple microcontroller’s pin toggle at the transmitted frequency, lowering measurement

rate (increasing microcontroller’s sleep time) while HandSense is in idle mode. We leave

the power optimization of the CapProfiler board as the future work.



114

Component Current drawn

Teensy (active mode) 38mA

Teensy (sleep mode) 5mA

Analog receiver frontend 2mA

CC2650 BoosterPack 10mA

MiniGen 40mA

Table 5.3: Current drawn in each component in our CapProfiler prototype.

Usability. Gloves are already prevalent in some workplace sites, such as repair and

maintenance, and HandSense is easily adopted in these areas. While the current Hand-

Sense prototype remains bulky with coaxial cables connecting the finger electrodes with

the CapProfiler board, given the minimal requirements for the glove (only finger electrodes

and traces are needed), we believe it is possible to design cheap gloves with all sensing

elements weaved into the fabric. Also, with the advance of skin electronics [130], the elec-

trodes and traces can be attached directly to the user’s hand, thus potentially enabling

more applications of HandSense in consumer electronics.

Gesture spotting and gesture segmentation. Current system assumes well-defined

start and end points of each gesture as the input to the classifier. We focused more on the

sensor design and the suitability of measurement signal for the task of finger gesture clas-

sification. To be able to develop HandSense into a real-world system, other challenges still

remain, such as detection of registered finger gestures versus random motion, segmentation

of consecutive finger gestures, which we leave for future work.

Cross user training system. The performance metrics reported in previous section

is for 10-fold cross validation, which simulates a per-person trained gesture classification

system. We also experimented with the leave-one-person-out approach on the same dataset,

and achieved lower performance (MLP: 0.682 Precision, 0.681 Recall, 0.649 F1 Score; CNN:

0.712 Precision, 0.701 Recall, 0.671 F1 Score; LSTM: 0.822 Precision, 0.815 Recall, 0.813

F1 Score). We believe with larger dataset, a more generalized model can be built to support

cross-user training scenarios.
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5.9 Related Work

Many finger gesture recognition and tracking methods have been proposed. We categorize

them based on their sensing modalities.

Flex and inertial sensor based. Most early work such as Data Glove [128], Digital

data entry glove [144] and CyberGlove [131] focused on sensing the amount of finger bending

/ flexing to infer hand and finger gestures. Bending / flexing the sensor would change its

resistance in proportion to the amount of bending. Gloves like the AcceleGlove [142], are

equipped with inertial sensors (accelerometer and gyroscope) which measure roll, pitch, yaw

and provide absolute angular position to help reconstruct the exact posture of the hand.

Accelerometers present in smartwatches [151] have also been leveraged to perform hand

gesture recognition. Serendipity [124] recognizes up to 5 fine-grained finger gestures using

inertial sensors inside smartwatches. Unfortunately, the sensors were expensive, heavy

to carry, restricted free hand movement and usually required a user-specific calibration

procedure.

Light and infrared based. Sayre Glove developed by Thomas de Fanti and Daniel

Sandin [152] detects hand gestures based on the amount of light received at a photoreceiver.

Optical fibers with an LED on one end and a photoreceiver on the other are connected

along the fingers on the back of the hand. Bending a finger bends the optical fiber reducing

the amount of received light. Other gloves like the MIT Glove [152] have LEDs stuck to

the cloth and detectors track the light from these LEDs. More recently doing away with

gloves, Aili [153] uses a table lamp and few low-cost photoreceivers to reconstruct a 3D

hand skeleton in real time. ZeroTouch [154] makes use of infrared LEDs and sensors for

hand pose sensing. While, ZeroTouch only tracks fingers in a 2D plane, Aili reconstructs

3D hand poses. SensIR [155] detects hand gestures with a wearable bracelet using infrared

transmission and reflection. However, these solutions find it hard to translate small changes

in flexion to micro or dynamic gestures. They also assume that the hands are always in the

field of view of the sensor.

Magnetic field sensing. Magnetic tracking uses a source element radiating a magnetic

field and a small sensor that reports its position and orientation with respect to the source.
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They also do not rely on line-of-sight observation. Chouhan et al. [156] affix a strong magnet

to the palm and Hall sensors on fingertips. When the fingers are brought close to the palm

a low signal is sent to a microcontroller. uTrack [157] converts the thumb and fingers into a

3D input system using magnetic field sensing. A user wears a pair of magnetometers on the

back of their fingers and a permanent magnet affixed to the back of the thumb. By moving

the thumb across the fingers, a continuous location stream is obtained for 3D pointing.

Similarly, Finexus [126] tracks precise motion of multiple fingertips by instrumenting the

fingertips with electromagnets. These systems are often clunky and are heavily dependent

on the range of magnetic field.

Acoustic sensing. Acoustic trackers use high-frequency sound to triangulate a source

within the work area. Most systems send out pings from a source which are received by

microphones in the environment. These systems rely on line-of-sight between the source and

the microphones. The PowerGlove [158] uses two ultrasonic transmitters on the knuckles

and a receiver on the TV, when a signal is received at the TV, triangulation is used to

determine where the hand is in 3D space. FingerIO [123] transforms a device (typically a

smart-phone) into an active sonar system that transmits inaudible sound signals and tracks

the echoes from fingers at its microphones. FingerIO does not require instrumenting the

finger with sensors and works even in the presence of occlusions between the finger and

the device. Whereas, SoundTrak [159] requires users to wear a ring with an embedded

miniaturize speaker sending an acoustic signal at a specific frequency which is captured by

an array of miniature, inexpensive microphones on the target wearable device. The surface

surrounding the transmitter and receiver greatly influences reflections.

WiFi and radar based. The basic idea is to leverage commercial off the shelf WiFi

access points to transmit a signal and sense the effect of in-air hand motion on the wireless

received signal strength, channel state information (CSI), angle of arrival. The performed

hand gestures are mapped uniquely to changes in these values. WiGest [137] leverages

changes in WiFi signal strength to sense in-air hand gestures around the users mobile device.

Whereas, WiG [136] attempts to achieve a fine-grained gesture recognition only by observing

abnormalities in CSI. Similarly, SignFi [160] recognizes upto 276 sign language hand gestures

using CSI. WiDraw [161] harnesses the angle-of-arrival values of incoming wireless signals
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at the mobile device to track the users hand trajectory. More recently, Google’s Project

Soli [122] proposed a 60GHz radar chip that is able to detect micro movements of fingers.

Soli works on the principle of radar sensing, where using certain properties of the received

back-scattered signal, hand gestures are inferred. Similar to light based sensors WiFi and

radar based sensors require line of sight between transmitter and the hand.

Camera and computer vision based. Multiple (depth) cameras capture raw images

/ video of the hand and the recorded raw data is then processed using sophisticated com-

puter vision algorithms to determine the position and gesture being made. HoloLens [121]

makes use of depth cameras present on the head mounted display to track hands in the field

of view. Individual frames of the video are analyzed using algorithms to first separate the

hands from the background, then detect the gesture from the image of the hand. Depth-

Touch [132] uses a depth-sensing camera, which reports a range value per pixel in addition

to color, to track the 3D position of the users head and hand through a transparent vertical

display screen. 6D Hands [133] uses two consumer-grade webcams to observe the users

are hands. The pose made by the user is estimated by looking up the gesture from a pre-

computed database that relates hand silhouettes to their 3D configuration to enable more

intuitive computer aided design (CAD). Keskin et al. [134] use the Kinect depth sensor to

capture images. They then introduce a novel randomized decision forest (RDF) based hand

shape classifier for pose estimation. Camera based techniques often raise privacy concerns

and come with large computation overheads. They also require large datasets of gestures

for reliable classification.

Electrical impedance tomography and capacitance based. Capacitance between

two conductors depends on the distance and dielectric material between the conductors.

GestureWrist [162] detects changes in wrist contour by measuring the capacitance between

a series of electrodes integrated into a wristband. This is similar in operation to CapBand [2].

Electrical Impedance Tomography [163] is a similar paradigm employed for hand gesture

recognition. Tomo [3] and Touche’ [164] recover the inner impedance distribution of objects,

forearm, wrist using pair-wised measurements from surface electrodes surrounding an object

/ forearm / wrist. Since the electrodes measure changes in object or muscle tension, the

effort required to perform a gesture is high. Also these techniques find it harder to detect
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dynamic and fast gestures.

5.10 Conclusion

In this work, we introduce HandSense, a system based on pair-wise capacitive coupling

measurements between electrodes placed on fingertips to recognize dynamic, micro fin-

ger gestures suitable for operations in Augmented Reality applications. We proposed a

placement configuration for electrodes on the fingertips that minimizes the effect from the

human hand to better associate the capacitive coupling measurements with inter-electrode

distances. We designed a light-weight measurement technique based on synchronous un-

dersampling to capture high-resolution capacitive profiling of fast, dynamic , micro finger

gestures. The capacitive profiling is used in three end-to-end neural network-based models

for gesture classification. Experiment results with our HandSense prototype show an av-

erage classification accuracy of 97% over a set of 14 dynamic, micro finger gestures from

10 different subjects. It achieves this accuracy without restrictions on hand position (as

compared to cameras, for example) and with relatively lightweight instrumentation of the

glove that enables use in environments where gloves are regularly changed. We believe our

technique is a promising input interface to be used in conjunction with head-mounted aug-

mented reality devices in working environments, which allows users to control the interface

through finer gestures that are less interrupting to their workflow.
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Figure 5.10: Confusion matrix of finger gesture classification using three neural network-
based models.
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Figure 5.11: Effect of the measurement rate on classification performance.

Figure 5.12: Different glove.
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Chapter 6

Conclusion

In this dissertation, we have presented communication and sensing methods that enable

seamless interactions between humans and their environments. These are based on two

modalities, visible light and capacitive sensing, which are ubiquitous in indoor environ-

ments and on human body. Our approaches aim for minimal instrumentation both in the

environments and on the users to ensure unobtrusive experience for the users. The com-

munication techniques are well aligned with user’s intentions, while the sensing techniques

have low complexity. These communication and sensing methods are all demonstrated by

systems built end-to-end, including designing, prototyping and evaluation. Overall, they

present a holistic effort to make interactions between humans and their environments more

intuitive, less obtrusive and less effort.

6.1 Summary of contributions

This dissertation has made the following contributions:

• We proposed a spatial content-adaptive encoding method in screen-to-camera com-

munication to increase the goodput of the communication channel while maintaining

normal viewing experience (flicker-free) for users. This technique would be helpful for

users to quickly obtain side information from many screens available in public spaces

by using built-in cameras inside their wearable glasses.

• We developed a secure yet convenient method for user identification, authorization

and authentication when users interact with surrounding devices and objects. In

particular, the technique aims to do authentication on every single user touch. It is

based on a hardware token worn on user’s body, such as a wristband, which interacts
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with a receiver embedded inside the object through a body-guided channel established

when the user touches the object. This technique has superior resilience to attacks,

and robust authentication capability.

• We developed a system embedded in indoor lighting environment to sense the human

occupancy and room activities. In this system, photosensors are integrated inside

light bulbs to sense the light reflected off the floor. Light change and shadow caused

by human activities inside the room are used to infer useful information, including

localization, room occupancy level estimation, and room activity recognition.

• Lastly, for applications of Augmented Reality head-mounted devices in several indus-

tries, we proposed an always-available, on-hand, and light-weight system to recog-

nize a series of dynamic, micro finger gestures that are suitable for controlling these

head-mounted devices. In this system, electrodes are placed on fingertips to enable

measurements of capacitive coupling between each pair of fingers. The capacitive pro-

file of pair-wise capacitive coupling measurements would be used for a classification

system to recognize different low-effort finger gestures.

6.2 Looking ahead

With devices becoming increasingly smaller, more capable, and more integrated into ev-

eryday objects, and communication systems becoming more reliable, ubiquitous computing

would quickly be seen in more applications in our life. This thesis touched on several aspects

to push ubiquitous computing towards wider adoption: more intuitive human-machine in-

terfaces, designs with built-in security and privacy primitives, minimal instrumentation on

human body and environments. While other challenges remain, including ones from techni-

cal, economic and social perspectives, we believe the communication and sensing techniques,

as well as systems and devices, presented in this thesis would be ready for use in future

Ubiquitous Computing applications.
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[88] V. Roth, P. Schmidt, and B. Güldenring, “The ir ring: Authenticating users’ touches
on a multi-touch display,” in Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’10, (New York, NY, USA), pp. 259–
262, ACM, 2010.

[89] A. Bianchi and S. Je, “Disambiguating touch with a smart-ring,” in Proceedings of
the 8th Augmented Human International Conference, AH ’17, (New York, NY, USA),
pp. 27:1–27:5, ACM, 2017.

[90] J. Yun and S.-S. Lee, “Human movement detection and identification using pyroelec-
tric infrared sensors,” Sensors, vol. 14, no. 5, pp. 8057–8081, 2014.

[91] C. R. Wren and E. M. Tapia, “Toward scalable activity recognition for sensor net-
works,” in LoCA, vol. 3987, pp. 168–185, 2006.

[92] J. Lei, X. Ren, and D. Fox, “Fine-grained kitchen activity recognition using rgb-d,”
UbiComp ’12, pp. 208–211, ACM, 2012.

[93] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, “Pbn: Towards practical activity
recognition using smartphone-based body sensor networks,” in Proc. of the 9th ACM
Conf. on Embedded Networked Sensor Syst., pp. 246–259, ACM, 2011.

[94] L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao, “Epsilon: A visible light based po-
sitioning system,” in 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), (Seattle, WA).



130

[95] C. Zhang and X. Zhang, “Litell: Robust indoor localization using unmodified light
fixtures,” in Proc. of the 22nd Annu. Int.Conf. on Mobile Computing and Networking,
MobiCom ’16, (New York, NY, USA), pp. 230–242, ACM, 2016.

[96] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing using visible
light communication,” in Proc. of the 21st Annu. Int. Conf. on Mobile Computing
and Networking, MobiCom ’15, (New York, NY, USA), 2015.

[97] Y. Yang, J. Hao, J. Luo, and S. J. Pan, “Ceilingsee: Device-free occupancy inference
through lighting infrastructure based led sensing,” in Proc. of the 15th Int. Conf. on
Pervasive Computing and Commun., Percom ’17, IEEE, 2016.

[98] M. Ibrahim, V. Nguyen, S. Rupavatharam, M. Jawahar, M. Gruteser, and R. Howard,
“Visible light based activity sensing using ceiling photosensors,” in Proc. of the 3rd
Workshop on Visible Light Commun. Syst., VLCS ’16, (New York, NY, USA), pp. 43–
48, ACM, 2016.

[99] http://www.energy.gov/energysaver/led-lighting.

[100] http://www.ledsmagazine.com/articles/2005/01/benefits-and-drawbacks-of-leds.

html.

[101] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user location and
tracking system,” in Proc. IEEE INFOCOM 2000 Conf. on Comput. Commun. 19th
Annu. Joint Conf. IEEE Comput. and Commun. Soc., vol. 2, pp. 775–784 vol.2, 2000.

[102] M. Ibrahim, M.and Youssef, “Cellsense: An accurate energy-efficient gsm positioning
system,” IEEE Trans. on Vehicular Technology, 2012.

[103] Z. K. F. Adib and D. Katabi, “Multi-person localization via rf body reflections,”
in 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’15), (Oakland, CA).

[104] K. E. Caine, A. D. Fisk, and W. A. Rogers, “Benefits and privacy concerns of a home
equipped with a visual sensing system: A perspective from older adults,” in Proc. of
the human factors and ergonomics society annual meeting, vol. 50, 2006.

[105] M. Valtonen, J. Maentausta, and J. Vanhala, “Tiletrack: Capacitive human tracking
using floor tiles,” in 2009 IEEE Int. Conf. on Pervasive Computing and Commun.,
pp. 1–10, March 2009.

[106] R. J. Orr and G. D. Abowd, “The smart floor: A mechanism for natural user identifi-
cation and tracking,” in CHI ’00 Extended Abstracts on Human Factors in Computing
Syst., CHI EA ’00, (New York, NY, USA), pp. 275–276, ACM, 2000.

[107] http://ab.rockwellautomation.com/Sensors-Switches/Operator-Safety/

Light-Curtain.

[108] https://www.pepperl-fuchs.com/global/en/classid_4294.htm.

[109] Z. Li, W. Chen, C. Li, M. Li, X.-Y. Li, and Y. Liu, “Flight: Clock calibration using
fluorescent lighting,” in Proc. of the 18th Annu. Int. Conf. on Mobile Computing and
Networking, Mobicom ’12, (New York, NY, USA), pp. 329–340, ACM, 2012.



131

[110] B. J. Mohler, W. B. Thompson, S. H. Creem-Regehr, H. L. Pick, and W. H. Warren,
“Visual flow influences gait transition speed and preferred walking speed,” Experi-
mental brain research, vol. 181, no. 2, pp. 221–228, 2007.

[111] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning
and an application to boosting,” in European conference on computational learning
theory, pp. 23–37, Springer, 1995.

[112] http://www.ti.com/product/LF356.

[113] http://www.ti.com/lit/ds/symlink/ina126.pdf.

[114] http://www.ti.com/product/MSP432P401R.

[115] http://www.ti.com/tool/cc3100boost.

[116] https://www.stereolabs.com/.

[117] “Philips Azurion.” https://www.usa.philips.com/healthcare/resources/

landing/azurion.

[118] “Trimble Mixed Reality.” https://mixedreality.trimble.com/.

[119] “A Use Case for Digital Field Service With the Mi-
crosoft HoloLens.” https://www.sikich.com/insight/

microsoft-hololens-use-case-for-digital-field-service/.

[120] “Packing with Mixed Reality: KLM uses Microsoft HoloLens
to redefine its cargo training experience with mixed re-
ality.” https://customers.microsoft.com/en-gb/story/

klm-airlines-travel-and-transportation-hololense-azure-netherlands.

[121] “Microsoft HoloLens 2.” https://www.microsoft.com/en-us/hololens.

[122] S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges, “Interacting with soli: Ex-
ploring fine-grained dynamic gesture recognition in the radio-frequency spectrum,” in
Proceedings of the 29th Annual Symposium on User Interface Software and Technol-
ogy, UIST ’16, (New York, NY, USA), pp. 851–860, ACM, 2016.

[123] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “Fingerio: Using active sonar for
fine-grained finger tracking,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, (New York, NY, USA), pp. 1515–1525, ACM,
2016.

[124] H. Wen, J. Ramos Rojas, and A. K. Dey, “Serendipity: Finger gesture recognition
using an off-the-shelf smartwatch,” in Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, CHI ’16, (New York, NY, USA), pp. 3847–
3851, ACM, 2016.

[125] Y. Zhang and C. Harrison, “Tomo: Wearable, low-cost electrical impedance tomog-
raphy for hand gesture recognition,” in Proceedings of the 28th Annual ACM Sym-
posium on User Interface Software &#38; Technology, UIST ’15, (New York, NY,
USA), pp. 167–173, ACM, 2015.



132

[126] K.-Y. Chen, S. N. Patel, and S. Keller, “Finexus: Tracking precise motions of multiple
fingertips using magnetic sensing,” in Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, CHI ’16, (New York, NY, USA), pp. 1504–
1514, ACM, 2016.

[127] T. Li, X. Xiong, Y. Xie, G. Hito, X.-D. Yang, and X. Zhou, “Reconstructing hand
poses using visible light,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 1, pp. 71:1–71:20, Sept. 2017.

[128] T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand
gesture interface device,” in Proceedings of the SIGCHI/GI Conference on Human
Factors in Computing Systems and Graphics Interface, CHI ’87, (New York, NY,
USA), pp. 189–192, ACM, 1987.

[129] L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glove-based systems and
their applications,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 38, no. 4, pp. 461–482, 2008.

[130] “The Future of Skin Electronics.” https://www.youtube.com/watch?v=

zpGujcLRHNw.

[131] “Cyberglove ii.” http://www.cyberglovesystems.com/cyberglove-ii.

[132] H. Benko and A. D. Wilson, “Depthtouch: using depthsensing camera to enable
freehand interactions on and above the interactive surface,” in In Proceedings of the
IEEE Workshop on Tabletops and Interactive Surfaces, Citeseer, 2009.
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