
NONCONVEX REPRESENTATION LEARNING FROM
DISTRIBUTED DATASETS

by

HAROON RAJA

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Waheed U. Bajwa

And approved by

New Brunswick, New Jersey

October, 2019
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Data representation is an important information processing task which finds use in diverse engi-

neering applications like signal processing, machine learning, medical imaging, and geophysical

data analysis, to name a few. Once a good representation model is known for a given applica-

tion then the next question is learning that model under practical constraints imposed by the

application. Two such constraints are: i) data is available at geographically distributed sites,

and ii) streaming data. In such scenarios distributed, decentralized, and online algorithms can

be deployed for solving data representation problems, which are the focus of this dissertation.

Specifically, this thesis focuses on solving following three problems: i) Solution for PCA for

high-rate streaming data, ii) collaborative dictionary learning for big, distributed data, and

iii) through the wall radar imaging (TWRI) in distributed settings. This thesis proposes new

methods to tackle challenges arising due to distributed and steaming nature of data, providing

theoretical analysis of the proposed methodologies (except TWRI), and finally using simulations

to demonstrate the efficacy of the proposed methods.
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Chapter 1

Introduction

1.1 Motivation

Data representation is an important first step towards solving tasks like inference, detection,

estimation, etc. In practice since we do not know the data generation model in advance, data

driven learning methods have been successfully used to learn a data generation model from

sample data, e.g., principal component analysis (PCA), linear discriminant analysis (LDA),

dictionary learning, autoencoders, etc [4, 5]. Learning these data representations from sample

data can be a computationally intensive task. Due to this, devising computationally efficient

methods for data representation problems has been an active area of research over the years

[4, 6, 7]. Further computational challenges arise due to practical considerations. Most prevalent

practical considerations in modern times have been: i) high volumes of data (large sample

size), ii) high dimensional data (large number of features), iii) streaming data (online settings),

and iv) data arriving at geographically distributed locations (distributed data). Under these

settings, classical numerical methods to solve these problems are not very effective. Due to this,

there has been an increased interest in developing efficient methods to solve these problems.

Among the above mentioned practical considerations this dissertation focuses on streaming

and distributed data settings. This type of data is common in online object tracking [8, 9],

autonomous vehicles[10, 11], social media websites [12–14], news websites [15–18], etc.
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1.2 Challenges due to big, distributed data

This dissertation leverages methods from decentralized methods, distributed and parallel com-

putation, stochastic methods, and online/adaptive algorithms to solve some nonconvex learning

problems i.e., principal component analysis (PCA), dictionary learning, and block structured

dictionary learning for through the wall radar imaging. To be specific we can categorize our

reasons for distributed methods as following:

1. (Computational challenges.) Large sample size and high dimensionality of data can render

computational resources at a single processor to be insufficient and hence in such scenar-

ios we need to distribute computation across multiple processing nodes. This situation

presents itself in many applications to name a few: image classification for social media

or autonomous vehicles, anomaly detection in communication networks, scientific applica-

tions like high energy particle Physics. Algorithms presented in Chapter 2 and Chapter 3

are devised to tackle some of the computational challenges arising due to these practical

situations.

2. (Privacy and security.) In some applications due to privacy and security reasons we

cannot aggregate all the data at one centralized location. For example, sharing medical

data among different providers and between patients and providers needs to be done

in a secure and privacy preserving manner [19–22]. Other prominent examples where

privacy and security are of paramount importance include financial data [23], military

applications, power grid, etc. Methods presented in Chapter 3 and Chapter 4 can be used

in such scenarios.

3. (Communication cost.) Issues related to communications e.g., communication efficiency

and robustness to node failures, provide motivation for developing decentralized methods.

To some extent, methods proposed in Chapter 3 and Chapter 4 achieve this by providing

better scaling in terms of data communication and resilience against node failures.

4. (Data storage.) In large scale machine learning sometimes it is not feasible to store data

at a single location due to large storage requirements, distributed methods can be used

to circumvent this issue (Chapter 3 and Chapter 2).
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1.3 Distributed versus decentralized algorithms

Terms distributed algorithms and decentralized algorithms can mean different things depending

on the research community. In order to avoid the confusion we clarify here what we mean by

these terms in this thesis. We use term distributed methods to describe algorithms where we have

a centralized server/fusion center present and each node can send information to the centralized

server for decision making. The star topology and a tree structured graph are two examples

for such methods. These methods find applications in data center like settings where reliable

communication to a central node can be guaranteed. In contrast, decentralized algorithms

have no central decision making node and all the nodes in network collaborate to reach a

decision. Some example graph structures include line graph, expanders, random graphs, etc.

These algorithms are applicable in applications like sensor networks, Internet of things (IoT),

autonomous vehicles/robots. In these applications reliable communication to a central node

can be difficult to guarantee and in addition node failures can be an issue.

1.4 Overview and contributions

Main contributions of this dissertation include a new distributed method for solving PCA for

high rate streaming data settings, a decentralized method for collaborative dictionary learn-

ing for big, distributed data, and a decentralized method for through the wall radar imaging

(TWRI). Further details of these contribution are given as follows:

1. Our first contribution, explained in more detail in Chapter 2, is solving PCA for high

rate streaming settings. We consider high rate streaming settings to be when data arrival

rate is faster than the processing rate at one node and hence if multiple processing nodes

are available then we need to distribute the processing across these multiple processors to

use all the data samples. Krasulina’s method is one of the classical methods for solving

PCA in streaming settings. In this thesis we propose a distributed variant of Krasulina’s

method which works for such high rate streaming settings. The main challenge here

is to show analytically that the proposed distributed method will have same sampling

complexity in high-rate streaming settings as the classical Krasulina’s method in low-rate

streaming settings (when one processor can process all the samples). For our analysis,

we take inspiration from mini-batching based techniques that are developed to speed up

convergence of convex optimization problems [24–27]. These techniques are not directly

applicable for PCA since it is a nonconvex optimization problem and therefore a new
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analysis is provided for distributed Krasulina’s method. We further extend our distributed

Krasulina’s method to propose a distributed mini-batch version of Krasulina’s method to

solve PCA in high rate streaming settings due to practical benefits of mini-batching,

for example, updating iterate in memory less frequently. Further, we provide simulations

over synthetic and real world data to prove efficacy of the proposed distributed mini-batch

method.

2. In Chapter 3, we consider big data settings where data is available at spatially distributed

servers. Due to high volumes of data, it may not be feasible to aggregate data at one

centralized node; in addition, privacy reasons may preclude from data sharing as well

(e.g., medical data). For such settings, we propose a distributed variant of the K-SVD

algorithm [4], which is one of the most well known method for dictionary learning for batch

data. The goal in dictionary learning for data representation is to learn an overcomplete

basis set which gives us sparse representation of data. Specifically, the goal is to learn both

the dictionary and sparse representations of the training data. Most dictionary learning

methods use an alternating minimization approach to solve this problem [4, 6]. Our first

contribution here is to provide a fully distributed solution using consensus averaging to

propose a distributed variant of K-SVD and hence term it as cloud K-SVD. Our main

algorithmic contribution is an insight that in distributed settings if we have a good enough

estimate of the dictionary at each node then we can perform sparse representation part

locally. In centralized settings, K-SVD updates each column of the dictionary separately,

by performing a rank-1 approximation of some matrix. Since this matrix depends on

sample data, which is distributed across different nodes, we proposed a distributed variant

of power method to compute the rank-1 estimate. Our second main contribution here is

to show that if we perform enough iterations of consensus averaging then cloud K-SVD

converges to the solution of the K-SVD algorithm. Finally, we provide simulations using

synthetic and real world to show the effectiveness of the cloud K-SVD algorithm.

3. Finally, in Chapter 4 we solve through the wall radar imaging (TWRI) problem in dis-

tributed settings. TWRI can be posed as a simultaneous sparse recovery problem (see

e.g., [28, 29]) with a block structured dictionary. Additionally, this dictionary can be

completely described if we know wall locations of the room/space under interrogation. In

practice, we can only know the location of outer surface of the wall and there is always

an uncertainty in inner wall location. Hence, we can pose dictionary learning problem
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in this case as a parametric dictionary learning problem, where wall locations (inner sur-

face) are the parameters we need to find. Centralized methods for solving this parametric

dictionary learning problem have been proposed in [28]. Solutions proposed in [28], use

particle swarm optimization (PSO) which is a greedy method and quasi-Newton method

(a gradient based approach) to estimate the wall locations. Our main contribution here

lies in proposing distributed variants of PSO and quasi-Newton methods to estimate wall

locations in a distributed manner. Our solutions rely on consensus averaging to develop

distributed variants of these methods. Furthermore, large Lipschitz constant of objective

function and presence of spurious local minimums presents additional challenges. These

challenges preclude us from using standard distributed quasi-Newton implementation like

[30]. Due to these issues we need to develop a solution that is tailored to specific re-

quirements of the TWRI problem. The effectiveness of proposed methods is showed using

synthetic data.
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Chapter 2

DM-Krasulina: A Distributed

Mini-Batch Algorithm for

High-Rate Streaming Principal

Component Analysis

This chapter considers the problem of computing the principal eigenvector of a covariance matrix

from independent and identically distributed data samples in high-rate streaming settings. Kra-

sulina’s method is one of the most popular classical stochastic method to accomplish this task.

Modern day applications like image segmentation in videos present a computational challenge

to Krasulina’s method due to the high streaming rate of the data samples. In such situations,

streaming rate can be high enough such that a single processor cannot finish an iteration of

Krasulina’s method in time before a new data sample arrives. Assuming the availability of

multiple processing nodes, the first main contribution of this chapter is proposing a distributed

variant of Krasulina’s method (D-Krasulina) that can keep up with the high streaming rate

of data samples by distributing the computational load across multiple processing nodes. Sec-

ond contribution of this work is showing theoretically that the proposed D-Krasulina’s method

converges to the principal eigenvector of the population covariance matrix at an optimal rate,

i.e., for an N node network, after t iterations of distributed Krasulina’s method error in top

eigenvector estimate will be on the order of O(1/Nt). Furthermore, due to the practical advan-

tages of mini-batching this chapter proposes a mini-batch version of the distributed Krasulina’s
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method (DM-Krasulina) along with its theoretical guarantees. Next, to account for data losses

due to practical constraints in distributed systems (e.g., insufficient communication or process-

ing resources) theoretical results for DM-Krasulina are further extended to show that as long as

we choose mini-batch size, B, appropriately DM-Krasulina will asymptotically achieve the near

optimal rate. Finally, experiments are performed over synthetic and real-world data to show

the improvements achieved by the proposed DM-Krasulina algorithm in high-rate streaming

settings.

2.1 Introduction

Dimensionality reduction and feature learning methods like principal component analysis (PCA),

sparse PCA, linear discriminant analysis, and dictionary learning, form an important compo-

nent of any machine learning pipeline. For data lying in a d-dimensional space, dimensionality

reduction methods try to find the k � d variables/features that are most relevant for solving

an application specific task (e.g., classification, inference, estimation, data compression, etc.).

The focus of this work is on principal component analysis (PCA), where the objective is to

compute k-features that capture most of the variance in data. The proliferation of big data

(both in terms of dimensionality and number of samples) has resulted in an increased interest

in developing new algorithms for solving PCA due to the fact that classical numerical solutions

(e.g., power iteration and Lanczos method [31]) for computing eigenvectors of symmetric ma-

trices do not scale well with high dimensionality and large sample sizes. The main goal here is

to develop algorithms that are cheap in terms of both memory and computational requirements

as a function of dimensionality and number of data samples.

In addition to high dimensionality and large number of samples, data is often streaming

at a high rate. Example applications include the Internet of things (IoT), video surveillance,

autonomous vehicles, social media websites, news websites, and weather data. Stochastic meth-

ods have been developed to solve PCA in such streaming settings [32–35]. These methods work

under the condition that data arrival rate is slow enough such that each data sample can be

processed before the arrival of the next data sample. This may not always hold for modern

day applications mentioned previously. To overcome this obstacle, this chapter proposes a dis-

tributed and distributed mini-batch variants of the Krasulina’s method [33]. Before providing

more details of the proposed methods, we first briefly review the existing algorithms for solving

the streaming PCA problem.
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2.1.1 Principal component analysis (PCA) from streaming data

For data lying in Rd, PCA learns a k-dimensional subspace with maximum data variance. Let

x ∈ Rd be a random vector that is drawn from some unknown distribution Px with zero mean

and Σ covariance matrix. For a constraint set V := {V ∈ Rd×k : VTV = I}, we can pose PCA

as the following optimization problem:

Q := arg max
V∈V

EPx

{
Tr(VTxxTV)

}
, (2.1)

here Tr(.) is the trace operator. The solution for (2.1) is the matrix Q with top k eigenvectors

of Σ. Note here that (2.1) cannot be solved in its current form since Px is unknown. If we have

T data samples, {xt}Tt=1, drawn independently from Px we can accumulate these data samples

to calculate the empirical covariance matrix

Ā :=
1

T

T∑
t=1

At, (2.2)

where At := xtx
T
t . Now, instead of solving (2.1) we can solve an empirical risk maximization

problem

Q := arg max
V∈V

1

T

T∑
t=1

Tr(VTxtx
T
t V). (2.3)

We can solve (2.3) by computing the singular value decomposition (SVD) of the empirical

covariance matrix Ā by solving a linear system of d equations, which is a computationally

intensive task that requires O(d3) multiplications and has a memory overhead of O(d2). This

is not suitable for high dimensional settings where the goal is to have O(d2k) computational

complexity and O(dk) memory complexity.

More efficient and hence popular approaches use methods like the power iteration or Lanczos

method [31, Chapter 8]. Although these methods improve overall computational complexity to

O(d2k) but they still have memory requirements on the order of O(d2). In addition, these batch

methods require computing the empirical covariance matrix Ā, which results in O(d2T ) mul-

tiplication operations. Furthermore, in streaming settings where the goal is real-time decision

making from data, it is infeasible to compute Ā. In such a situation, stochastic methods like

Krasulina’s method [33] and Oja’s rule [32] can be used. These are both simple and computa-

tionally efficient algorithms for computing the principal eigenvector (i.e., k = 1) of a covariance

matrix in streaming settings while achieving O(d2) computational and O(dk) memory complex-

ity. Recent years have seen an increased popularity of these algorithms and we will highlight

these recent advances in Section 3.1.2. For step size γt, Krasulina’s method for computing the
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top eigenvector is given by the following equation1:

vt = vt−1 + γt

(
Atvt−1 −

vT
t−1Atvt−1vt−1

‖vt−1‖22

)
. (2.4)

We can also interpret Krasulina’s method as a solution to an optimization problem . Using

Courant-Fischer Minimax Theorem [31, Theorem 8.1.2] the top eigenvector computation (1-

PCA) can be posed as the following optimization problem (k = 1 version of (2.1)):

q1 := arg min
v∈Rd

f(v) = arg min
v∈Rd

−vTAtv

‖v‖22
(2.5)

where,

∇f(v) =
1

‖v‖22

(
Atv −

(vTAtv)v

‖v‖22

)
. (2.6)

Comparing (2.6) with (2.4) we can see that (2.4) is very similar to applying stochastic gradient

descent (SGD) to (2.5) with only difference being the scaling factor of 1/‖v‖22. Since (2.5) is a

nonconvex problem general guarantees of SGD for convex problems do not apply here [24, 36, 37].

Despite its nonconvexity, (2.5) is a well structured problem and hence provably efficient methods

have been devised to solve it . Recent years have seen an increased activity towards developing

these provably efficient methods by exploiting the structure in nonconvex problems. Some of

the examples include PCA, dictionary learning, autoencoders, matrix completion, etc. Solving

the nonconvex optimization problem in (2.5) for high-rate streaming settings is the goal of this

chapter.

Remark 1. In this chapter we are only computing the top eigenvector of a covariance matrix

(solving 1-PCA). As explained in [38, Section 1] one way to extend Krasulina’s method for k > 1

case is to solve 1-PCA problem k times but it is not efficient in terms of sampling complexity. It

is our future goal to provide an algorithm that computes k-PCA directly for high-rate streaming

settings.

2.1.2 Our Contributions

This chapter proposes algorithms for computing the top eigenvector of a covariance matrix using

Krasulina’s method for high rate streaming settings. We then provide theoretical and empirical

results to show the efficacy of the proposed methods. Theoretically our goal is to show that

1Oja’s method is very similar to Krasulina’s method and its iterate is given as follows:

vt = vt−1 + γt

(
Atvt−1 − vT

t−1Atvt−1vt−1

)
.
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optimal convergence rate of O(1/t) can be achieved after using t samples (see [39, Theorem 1.1]

and [38, Theorem 6]) . Following are the key contributions of this chapter:

1. For a network consisting of N processing nodes we propose a distributed variant of Kra-

sulina’s method which is given in Algorithm 1. We then analytically show that the pro-

posed distributed method will have an improved convergence rate on the order of O(1/Nt)

(Theorem 1) as compared to the O(1/t) rate for the classical Krasulina’s method.

2. When implementing stochastic methods mini-batching has advantages from implemen-

tation point of view as compared to a sample-by-sample approach [24]. Following the

similar reasoning we then propose a distributed mini-batch variant of Krasulina’s method

(DM-Krasulina) that is given in Algorithm 2. For a network of N nodes performing mini-

batching with a batch of size B/N at node i we have a network-wide batch of size B.

We then analytically show that for this mini-batch setup similar to D-Krasulina method

we will see an improvement in convergence rate by a factor of B, i.e., O(1/Bt) rate is

attained.

3. Further, consider a situation where due to resource constraints (i.e., computational or

communication) we receive more data samples than we can process at any iteration t of

Algorithm 2. For these resource constrained settings, let µ be the number of samples we

lose at each iteration of the Algorithm 2 across the network. In such situations we show

that if µ = O(B), then we can still achieve near optimal convergence rate as shown in

Corollary 2. In addition to this, for non-streaming data settings, i.e., fixed number of

data samples T we provide Corollary 2 which gives an upper bound of B = O(T 1−2/c0)

on mini-batch size to achieve the optimal rate, here c0 > 2 is some constant.

4. Finally, we provide simulations using synthetic and real world data to show that mini-

batching improves performance of Krasulina’s method up to a certain point as we keep

increasing batch size B. Furthermore, using simulations on synthetic and real world data

we show the impact of having µ > 0 on the convergence of Algorithm 2 as well.

2.1.3 Related Work

Solving PCA efficiently has been an active area of research for decades. Krasulina’s method [33]

and Oja’s rule [32] are among the earliest and popular methods to solve PCA in streaming data

settings. Due to effectiveness of these mathods their variants have been proposed over the years

[40–42]. Like earlier developments in stochastic approximation methods [43], these algorithms
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were shown to converge asymptotically. Convergence rate results in stochastic optimization [44,

45] for finite sample settings paved the way to finding the non-asymptotic convergence rate

of stochastic PCA, which is a nonconvex optimization problem. In the following we will first

provide an overview of advancements in solving PCA in general and in the end we will talk

about solving PCA in streaming and distributed data settings which is the main theme of this

chapter.

Convex relaxation for solving PCA. One approach to answer this question is to relax

PCA as a convex optimization problem and use SGD analysis to give the rates of convexified

problems [7, 34, 46, 47]. The penalty we pay for convexification is that we need an iterate

matrix of dimensions Rd×d in contrast to Rd×k if we solve problem in its original nonconvex

form. Due to this reason, solving PCA in nonconvex form is preferable.

Nonconvex optimization based solutions. Examples of solving PCA as a nonconvex

optimization problem include works by Zhang and Balzano [35] and De Sa, Olukotun, and

Ré [48]. Among these, work by Zhang and Balzano [35] solve an optimization problem over

a nonconvex Grassmanian maifold and their analysis requires a good initial guess to work.

Contribution by De Sa, Olukotun, and Ré [48] use SGD to solve some nonconvex problems

including PCA. Their analysis uses constant step size and it needs to be sufficiently small in

order for method to converge which results in longer runtime in practice.

Algebraic approaches. By algebraic approaches we mean algorithms, [38–40, 49–52], that

are motivated by classical methods for online PCA like Oja’s rule [32] and Krasulina’s method

[33]. Among these, methods proposed by Shamir [50, 51] use variance reduction techniques

to speed-up the convergence, but these algorithms require multiple passes over data and their

analyses require initial value of the iterate to be close to the original subspace which, with high

probability, does not happen in practice. Allen-Zhu and Li [38] provide eigengap-free results for

Oja’s rule but these results do not take sampling variance into account and hence the extension

to mini-batch settings is not trivial. Among the above mentioned contributions, Jain et al. [39]

provide variance based guarantees for Oja’s rule but there results only hold with probability of

success 3/4. One possible way to get around this limitation is to run algorithm multiple times

which is not a feasible option in streaming settings.

Distributed online mini-batch PCA. In recent years, efforts have been made towards

solving PCA in distributed settings [53–56]. The goal in some of these works has been towards

improving the communication efficiency of distributed methods for PCA [53–55]. Note that

Balcan et al. [53] and Boutsidis, Woodruff, and Zhong [55] achieve this by applying compression

on iterates before communicating with the server node. On the other hand, Garber, Shamir, and
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Srebro [54] computes the top eigenvector of local covariances at each node and then add all these

local eigenvectors in the last iteration to compute the final estimate of eigenvector. Hence, this

way they only need a single round of communication at the last iteration of algorithm. Since,

we add up all the local estimates in the last iteration of algorithm the approach taken by

Garber, Shamir, and Srebro [54] is well suited for batch data but the extension to streaming

settings is not obvious. In contrast, goal in this chapter is to show that distributed mini-batch

extensions of traditional methods, like Oja’s rule and Krasulina’s method, for solving streaming

PCA problem results in improved convergence rates. In this regard our work is more closely

related to the work in [56]; which uses momentum method to accelerate convergence of power

method and further extend this method to stochastic settings. This method relies on a variance

reduction technique that requires a pass over the complete dataset once in a while, which is not

possible in streaming settings. Furthermore, theoretical guarantees provided by Xu et al. [56]

require a good initialization to work and they also do not consider issues arising as a result of

communication delay while averaging over a mini-batch. This chapter addresses some of these

issues while using mini-batching to speed-up the convergence of Krasulina’s method.

Nonconvex stochastic optimization. Another relevant research thrust to streaming

PCA is the use of stochastic methods to solve general noncovex problems. In this regard,

stochastic gradient descent (SGD) has been shown to work well for solving nonconvex optimiza-

tion problems [57–59]. In addition to simple SGD, variance reduction variants of SGD also exist

for noncovex problems [60, 61]. Furthermore, accelerated methods for stochastic optimization

have also been proposed recently [62, 63]. Among these works, contributions by Reddi et al.

[60] and Allen-Zhu and Hazan [64] are most relevant to the current work since they use mini-

batching framework to reduce variance in estimates which in return improves the performance

of SGD, which is the main algorithmic ingredient of this chapter as well. Our work in this

chapter differs from these contributions as it provides a mini-batch approach to compute the

global minimum of a specific problem i.e., PCA, in contrast to convergence to the first order

stationary points of a more general nonconvex optimization problems in above mentioned works.

2.1.4 Chapter Organization

In the following we first provide problem setup in Section 2.2, then in Section 2.3 we propose

distributed variant of Krasulina’s method (Algorithm 1) and a distributed mini-batch variant

as well (Algorithm 2). Then in Section 2.4 we provide theoretical guarantees for the proposed

methods and in Section 2.5 we provide proofs of our main theoretical results while the proof of

supporting lemmas are given in Sections 2.6, 2.7, and 2.8. Finally, we provide simulation results
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in Section 2.10.

Notation. We use bold face small case letters, a, to represent vectors, boldface capital

letters, A, to represent matrices, and plain small case letters, a, to represent scalars. We

also use plain small case letters to represent elements of a set of all possible realizations of a

distribution. d.e is used to define a ceiling operation over a scalar value. The spectral norm of a

matrix is denoted by ‖.‖2 and Frobenius norm is denoted by ‖.‖F . For a positive definite matrix

A ∈ Rd×d we have ‖A‖2 = λ1(A) ≤
√∑d

i=1 λ
2
i (A) = ‖A‖F , we will be using this inequality in

our proofs.

2.2 Problem Setup

2.2.1 Data model

In this chapter we consider a streaming setup where at any given time t we observe an indepen-

dent and identically distributed sample xt ∈ Rd from an unknown distribution Px. We require

following assumptions on distribution Px to hold for our convergence analysis.

[A1] (Zero mean bounded input) At any time t we observe a zero-mean bounded random vector

xt ∈ Rd, such that, E{xt} = 0 and ‖xt‖2 ≤ r (let r ≥ 1 without loss of generality).

[A2] (Spectral gap of the covariance matrix) We assume that the largest eigenvalue of Σ :=

E{xtxT
t } is strictly greater than the second largest eigenvalue, i.e., λ1 > λ2 ≥ λ3 ≥ · · · ≥

λd.

Assumptions [A1] and [A2] are the standard assumptions for proving convergence of Kra-

sulina’s method and Oja’s rule (cf. [32, 38, 39, 65]). From these samples, at any time t we

can compute an estimate, At := xtx
T
t , of the population covariance matrix Σ. We define the

variance in the estimate, At, of the covariance matrix Σ as follows:

Definition 1. (Variance of sample covariance matrix) We define the variance in sample co-

variance matrix At := xtx
T
t as follows:

σ2 := E
∥∥At −Σ

∥∥2

F
.

Since we are assuming bounded random vectors in Assumption [A1] all the moments of the

probability distribution Px exist and hence variance as defined above exists as well. In this

chapter we initialize Krasulina’s method with v0 ∈ Rd in a uniform random fashion over a unit

sphere in Rd. Based on random initialization v0 and a stream of samples x1,x2, . . . we define Ω
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Splitter

i) Data arriving at different nodes in a network ii) Using a splitter to split data among 
different nodes in a network

Figure 2.1: In i) data is arriving at N different nodes in a network at the rate of RS = RP
samples per second while in ii) a single stream of data is arriving at the rate of RS = N ×RP
samples per second and we are splitting a single stream into N streams at the splitter. In case
ii) here we are assuming a buffer of N samples at the splitter which distribute samples across
N nodes as soon as N samples become available.

to be the sample space of all the possible outcomes (v0,x1,x2, . . . ) and Pr to be the probability

distribution over all the events in the sample space Ω.

2.2.2 High-rate streaming settings

Let RS be the number of samples, xt, arriving every second and RP be the number of samples

we can process in a second. If RS > RP we will not be able to make an update in iterate (2.4)

for every sample in the stream, we term this regime as the high-rate streaming settings. In

these settings if RS = αRP for α > 1 then we can only use 1/α of total samples to update

iterate (2.4). Now assume that we have N ≥ dαe processors at our disposal with each having

processing capacity of RP samples per second. Under this assumption one possible solution

to this problem is to deploy all these processors and hence using all the data samples. In the

following we describe two possible ways for learning the top eigenvector from the sample data

in high rate streaming settings.

Distributed processing over a network

We consider a connected network of N nodes. For a connected network, if the nodes in the

network have locally available vector values {ai}Ni=1, then we can devise a method to compute

the summation
∑N
i=1 ai. We now define RC = 1/TC , where TC is the total time spent in

finishing the summation operation across the network. A connected network on which we can

perform summation operation is helpful since Krasulina’s method can be written down as a
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summation of local iterates when each node, i, is observing a separate and independent stream

of data samples, {Ai,t := xi,tx
T
i,t}Ni=1, from the same distribution Px. As an example, such

a summation operation across the network can be accomplished by having a fully connected

network topology, a star topology (where one central node accumulates data from all the other

nodes), or generating a tree structure where starting from leaf nodes each node passes its average

value to nodes above it in the hierarchy until we reach the root node and then we can propagate

this average value from root to rest of the network.

In case of high rate streaming data (i.e., RS > RP ), under the assumption that N ≥ dαe

we can distribute processing across these nodes and hence process all the samples to make

an update. This distributed setting can be an outcome of one of the following two possible

scenarios for data arrival: i) multiple streams with sample arrival rate of RS/N samples per

second arriving at N nodes in the network, or ii) a single stream with the data arrival rate of RS

is arriving at the load balancer/splitter which buffers N samples and then divide them across

the N processors as shown in Figure 2.1. For such a distributed network of N nodes we propose

a distributed variant of Krasulina’s method in Section 2.3 and then we provide convergence

guarantees of the proposed method in Section 2.4.

Mini-batching in a distributed network

Mini-batching reduces the number of I/O operations per iteration as compared to sample-by-

sample computation in stochastic algorithms and hence results in an improved performance in

practice (e.g., [24, 25]). Mini-batching can be seen as a bridge between a batch method (e.g.,

gradient descent) and its incremental variants (e.g., stochastic gradient descent (SGD)). In a

distributed network of N nodes let {Ai,j,t := xi,j,tx
T
i,j,t}

B/N
j=1 be the mini-batch of size B/N

arriving at a node i at time t (note that total mini batch size across the network is B). For

the distributed mini-batching setup described here we propose a variant of Krasulina’s method

which is given in Algortihm 2.

2.3 Solutions for PCA from high-rate streaming data

In the following we provide solutions for two problem setups described in Section 2.2.

2.3.1 Distributed Krasulina’s method

Recall that {Ai,t}Ni=1 is the sequence of sample covariance matrices received across a network at

time t. Starting from the same initial estimate of eigenvector v0 at each node, the distributed
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Algorithm 1: Distributed Krasulina’s method for PCA.
Input: Streaming data x1,x2, . . . .
Initialize: Randomly generate v0.
1: for t = 1, 2, . . . do
2: Receive sample covariance Ai,t = xi,tx

T
i,t and update ξi,t locally at each node as follows

ξi,t = Ai,tvt−1 −
vT
t−1Ai,tvt−1vt−1

‖vt−1‖22

3: Distributed vector sum computation routine to compute the average ξt ←
∑N
i=1 ξi,t

4: Update eigenvector estimate: vt ← vt−1 + γt
N ξt

5: end for
Return: Top eigenvector vT .

variant of Krasulina’s method can be written as follows:

vt = vt−1 + γt

(
1

N

N∑
i=1

Ai,tvt−1 −
1

‖vt−1‖22

(
vT
t−1

1

N

N∑
i=1

Ai,tvt−1vt−1

))

= vt−1 + γtξt. (2.7)

Note here that in contrast to the classical Krasulina’ s method where we use t samples after t

iterations of algorithm here we have used Nt samples to build our estimate vt. This difference

poses a question that whether both the algorithms will have similar performance in terms of

sample complexity. Specifically, after t iterations the distributed Krasulina’s method (Algo-

rithm 1) has used Nt samples and hence one should expect an improved convergence rate i.e.,

on the order of O(1/Nt). One of the main contribution of this chapter is to show that we

indeed achieve linear improvement in convergence as a function of number of nodes N in the

network. This is result is given in more detail in Theorem 1. We can view Krasulina’s method

in distributed settings as performing classical Krasulina’s method over an average of N sample

covariance matrices {Ai,t := xi,tx
T
i,t}Ni=1. For this setup we can define the variance in covariance

matrix estimates as follows:

Definition 2. (Variance of sample covariance in distributed settings) We define the variance

in sample covariance matrix At := xtx
T
t as follows:

σ2
N := E

∥∥ 1

N

N∑
i=1

Ai,t −Σ
∥∥2

F
.
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2.3.2 Distributed Krasulina’s method using mini batches

As described in Section 2.4.2, in distributed mini-batch settings each node i receives a mini-

batch, {Ai,j,t := xi,j,tx
T
i,j,t}

B/N
j=1 , of size B/N and computes ξi,t locally

ξi,t =

B/N∑
j=1

(
Ai,j,tvt−1 −

vT
t−1Ai,j,tvt−1vt−1

‖vt−1‖22

)
.

As shown in Step 7 of Algorithm 2, we sum up all these local estimates ξi,t and get the update

of distributed mini-batch Krasulina’s method as

vt = vt−1 +
γt
B

N∑
i=1

ξi,t. (2.8)

In addition to the practical gains from mini batching as described in Section 2.2.2 it also provides

a flexibility to analyze the impacts due to practical situations like delays in the network. Next

we describe two possible situations that can occur when implementing Algorithm 2 in practice.

• Case 1 (RS ≤ RP +RC): As long as this stays true we can process all the samples arriving

across the network. Convergence analysis of this case shows that we will get an optimal

rate of O(1/Bt) after t iterations of Algorithm 2.

• Case 2 (RS > RP + RC): In this scenario since data arrival rate is faster than what

the computation and communication resources can handle we will have to discard some

samples at each update. We define µ be the total number of data samples that are being

discarded across the network during each iteration of Algorithm 1. Our analysis shows

that as long as µ = O(B) we can still achieve an optimal rate asymptotically.

Our theoretical results for both the cases rely on variance reduction in the sample covariance

matrix due the averaging operation in Steps 7–8 of Algorithm 2. We formally define the variance

in sample covariance matrix of mini-batch size B in the following.

Definition 3. (Variance of sample covariance matrix for distributed minibatch settings) We

define the variance in sample covariance matrix At := 1
B

∑N
i=1

∑Bi

j=1 Ai,j,t as follows:

σ2
B := E

∥∥∥ 1

B

N∑
i=1

Bi∑
j=1

Ai,j,t −Σ
∥∥∥2

F
.

2.4 Convergence Analysis

Our convergence analysis is based on error measure Ψt. The goal here is to show that Ψt → 0

as t→∞. We formally define Ψt in the following.
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Algorithm 2: (DM-Krasulina) Distributed mini-batch Krasulina’s method for PCA.
Input: Streaming data x1,x2, . . . .
Initialize: Randomly generate v0.
1: for t = 1, 2, . . . do
2: Initialize ξi,t ← 0 at node i
3: (At every node i perform following computation over mini-batch of size Bi):
4: for j = 1, . . . , Bi do
5: Receive sample covariance Ai,j,t = xi,j,tx

T
i,j,t and update ξi,t locally at each node as

follows

ξi,t = ξi,t + Aj,tvt−1 −
vT
t−1Aj,tvt−1vt−1

‖vt−1‖22
6: end for
7: Call distributed vector sum computation routine to compute the sum ξt ←

∑N
i=1 ξi,t, in

the meantime receive µ ≥ 0 new samples across the network which will not contribute
towards the estimate

8: Update eigenvector estimate: vt ← vt−1 + γt
B ξt

9: end for
Return: Top eigenvector vT .

Definition 4. (Estimation error) Let q1 be the principal eigenvector of Σ and vt be the output

of Algorithm 1 (or Algorithm 2) at iteration t, then we can define Ψt, the error in eigenvector

estimate, in the form of a potential function as

Ψt := 1− (vT
t q1)2

‖vt‖2
. (2.9)

Using this error measure is a common practice when arguing about PCA. It essentially

computes sine squared of the angle between the true eignevector and its estimate. If we initialize

Algorithm 1 (or Algorithm 2) with a vector v0 randomly over a unit sphere in Rd then it can

be shown that EΨ0 ≤ 1 − 1/d [65]. Since the preceding statement only tells us about the

expected behavior, we first need to establish that using Algorithm 1 (or Algorithm 2) we can

make a much stronger statement about vt, i.e., with high probability. Our first contribution

here will be in showing that for t > 0 if we choose step size of the form γt = c/(L + t) with

large enough value of L then with high probability we have Ψt ≤ 1 − O(1/d) (Theorem 3).

In order to prove this result we first define a filtration Ft−1 over samples observed from the

sample space Ω that captures the progress of the iterate of Algorithm 1 (or Algorithm 2) upto

iteration t − 1. In the following we define sigma algebra in terms of At for both Algorithm 1

and Algorithm 2 at iteration t of the respective algorithm. Recall that At for Algorithm 1 is

defined as At = 1
N

∑N
i=1 Ai,t and for Algorithm 2 At = 1

B

∑N
i=1

∑B/N
j=1 Ai,j,t. For the ease

of exposition, from this point onwards we are will be providing analysis in terms of random

variable At instead of xt.

Definition 5. (σ-algebra Ft) Starting from initial guess v0 of eigenvector we update eigenvector
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estimate based on covariance matrix estimates A1, . . . ,At until iteration t of Algorithm 1 (or

Algorithm 2), we define Ft to be the σ-field of all these outcomes, here (v0,A1, . . . ,At) is one

particular realization of the sample space Ωt:

Ft := σ(v0,A1, . . . ,At).

In addition to the filtration over all the observed samples we also need to define a sequence

of nested sample spaces which are subsets of the complete sample space Ω.

Definition 6. (Nested sample spaces) We define a nested sequence of sample spaces Ω ⊃ Ω
′

0 ⊃

Ω
′

1 ⊃ . . . such that each Ω
′

t is Ft−1-measurable and for εj > 0:

Ω
′

t := {ω ∈ Ω : sup
tj≤l<t

Ψl(ω) ≤ 1− εj , ∀ 0 ≤ j ≤ J}. (2.10)

Here, Ψl(ω) is estimation error for realization ω at iteration l of Algorithm 1 (or Algorithm 2).

Furthermore, we define Prt to be the probability distribution and Et to be the expectation over

sample space Ω
′

t. Formally, Et can be defined as follows:

Etf =
1

Pr(Ω
′
t)

∫
Ω
′
t

f(ω)Pr(dω). (2.11)

In Definition 6, Ω
′

t0 is the subset of sample space at the initial iteration (i.e., t0 = 0) and

subsequent sample spaces Ω
′

l with tj ≤ l ≤ t correspond to the event when roughly speaking,

the error is below 1− εj as defined in (2.10). An important implication of this definition is that

we are restricting ourselves to such subsets of sample space Ω which ensure the convergence of

the iterate of Algorithm 1 (or Algorithm 2) to the top eigenvector of the population covariance

matrix, Σ, at a linear rate. One main challenge here is to show that such subsets, Ω
′

t, of the

sample space occur with high probability. Specifically, we need to show that for any δ > 0, we

have Pr(Ω
′

t) ≥ 1− δ (Theorem 4).

2.4.1 Convergence of distributed Krasulina’s method (Algorithm 1)

Our first convergence result of this chapter shows that for a distributed network of N nodes

Ψt → 0 as t→∞ on the order of O(1/Nt) which means that Algorithm 1 results in an optimal

sampling complexity for streaming PCA. The key to proving this improved convergence rate

in distributed settings is the reduction in variance of covariance matrix estimate by a factor of

N due to averaging of the iterate (Step 4 in Algorithm 1). For σ2
N as defined in Definition 2

we can upper bound variance of the average estimate of the covariance matrix across network

in terms of variance of a single sample as, σ2
N ≤ σ2/N . The main theoretical result regarding

distributed Krasulina’s method is stated in the following theorem.
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Theorem 1. For some c0 > 2, pick 0 < δ < 1 and c = c0/2(λ1 − λ2). Define

L1 :=
64edr4 max(1, c2)

δ2
ln

4

δ
, L2 :=

512e2d2σ2
N max(1, c2)

δ4
ln

4

δ
(2.12)

and set: L ≥ L1 + L2. For φ := λ2
1 + λ2

2 define constants

C1 :=
1

2

(
4ed

δ2

) 5
2 ln 2

ec
2φ/L and C2 :=

2c2e(c0+c2φ)/L

(c0 − 2)

then, if Assumptions [A1] and [A2] hold and we choose step size as γt = c/(L+ t), then there

is a nested sequence of subsets of the sample space Ω ⊃ Ω
′

0 ⊃ Ω
′

1 ⊃ . . . such that

Pr(Ω
′

t) ≥ 1− δ, and

Et{Ψt} ≤ C1

( L+ 1

L+ t+ 1

) c0
2

+ C2

( σ2
N

t+ L+ 1

)
, (2.13)

where Et is expectation restricted to the sample space Ω
′

t (Definition 6).

In the following we explain the result in Theorem 1 and the proof is moved to Section 2.5.

Our aim here is to explain the dependence of convergence properties of Algorithm 1 on the

parameters of interest in solving (2.3). The important problem parameters while solving the

PCA are: i) dimensionality of the ambient space, d, ii) the eigengap of the population covari-

ance matrix, (λ1− λ2), iii) variance in sample covariance matrix, σ2
N , and iv) the upper bound

on received data samples, r. Since we followed the proof technique devised by Balsubramani,

Dasgupta and Freund [65], therefore our results have a similar form. But, despite the appar-

ent similarities our result differs in terms of dependence on the problem parameters described

above. Specifically, the result by Balsubramani, Dasgupta and Freund [65] is independent of

the variance, σ2
N , in the sample covariance matrix which is an important problem parameter

for stochastic and online methods. The result provided in [65] is based on an assumption that

‖xt‖2 ≤ r (Assumption [A1] here) while our analysis also takes into account the sample vari-

ance, σ2
N , of the empirical covariance matrix At. Due to this difference, result in Theorem 1 is

on the order of O(σ2
N/t) in contrast to O(r4/t) result in [65]. This improvement is important

since we can now decrease the error by using larger values of N . In addition, this also results in

an improved lower bound on choice of L by splitting it into two quantities where the first term

(L1 in (2.12)) is on the order of Ω(r4d/δ2) which is an improvement over Ω(r4d2/δ4) bound of

[65]. Here, the second term in the lower bound of L (L2 in (2.12)) has same dependence on d

and 1/δ as [65] but instead of r4 it is being multiplied with σ2
N which we can always decrease by

using a bigger batch size. The improved lower bound on L implies that we can use a larger value

for the step size which also results in faster convergence. In terms of the eigengap, our result
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has optimal dependence of 1/(λ1 − λ2)2 which is the same as in [65]. While for dimensionality

the dominant error term in (2.13) is independent of dimension but the lower bound on L has a

quadratic dependence on d which results in a polynomial dependence (order 4 polynomial for

c0 = 2) on d for the non-dominant term in (2.13). As already explained, for large values of N

the lower bound on L will depend linearly on d and hence the polynomial dependence on d can

be improved e.g., for c0 = 2 the non-dominant term in (2.13) will depend quadratically over

d. Hence, our result improves upon the result of [65] in terms of the dependence on d as well.

Despite this improvement, the dependence on d is still rather lose, as an example, the result in

[39] has log2(d) dependence in higher order error terms. We highlight these dependencies on

problem parameters further with the help of simulations in Section 2.10.

Remark 2. Note that, same as in [65] for the case of c0 < 2, we will get a rate of O(t−c0/2).

Remark 3. In this chapter we are only providing analysis for Krasulina’s method, but as de-

scribed by mBalsubramani, Dasgupta and Freund [65] we can analyze Oja’s rule using similar

techniques.

2.4.2 Mini-batching in Distributed Settings (Algorithm 2)

As explained in Section 2.3.2 we consider two situations for mini-batching in distributed settings.

In first case we consider that RS ≤ RP + RC hence no data loss occurs i.e., µ = 0. While in

second case RS > RP +RC and hence we will experience loss of µ > 0 samples in each iteration

of Algorithm 2. In the following we provide convergence rate analysis for both these cases.

Case 1: Mini-batching with no data loss (RS ≤ RP +RC and µ = 0)

This scenario is very similar to distributed Krasulina’s method (Algorithm 1). The difference

here is that instead of averaging over N samples with one sample at each node we are performing

averaging over B samples with Bi samples at node i. We can bound the sample variance

(Definition 3) of mini-batch method as σ2
B ≤ σ2/B which gives us improvements in convergence

rate. Using the same procedure as in Section 2.4.1 we get the following result for distributed

mini-batch settings.

Theorem 2. Under the same conditions as in Theorem 1, if there is a nested sequence of

subsets of the sample space Ω ⊃ Ω
′

0 ⊃ Ω
′

1 ⊃ . . . then we have

Pr(Ω
′

t) ≥ 1− δ, and

Et{Ψt} ≤ C1

( L+ 1

L+ t+ 1

) c0
2

+ C2

( σ2
B

t+ 1

)
,
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where Et is expectation restricted to the sample space Ω
′

t (see (2.11)) and L ≥ L1 + L2 where

L1 and L2 are given by (2.12).

Proof. The proof is the same as that of Theorem 1 by replacing number of nodes N by mini-

batch size B.

This shows that, same as in the case of distributed Krasulina’s method with N nodes, in

this case we will observe a linear improvement in convergence rate as a function of batch-size

B. So far we have talked about applying Algorithm 1 and Algorithm 2 to the streaming setting.

In practice these algorithms can also be applied when we have fixed number of samples T and

T is large enough that applying a batch algorithm is not feasible. Next, we extend the result in

Theorem 2 to show that Algorithm 2 can be used to solve problem (2.3) for some very large but

fixed number of samples T . For such settings following result shows that if we choose mini-batch

size B appropriately we can still achieve the optimal rate:

Corollary 1. Under the conditions defined in Theorem 1 and if Assumptions [A1]–[A2] hold,

then there is a nested sequence of subsets of the sample space Ω ⊃ Ω
′

0 ⊃ Ω
′

1 ⊃ . . . and if we

choose B = O(T 1−2/c0), then with:

Pr(Ω
′

TB
) ≥ 1− δ, and

ETB
{ΨTB

} ≤ c0C1L
c0/2
1

T
+ c0C1

(
L2

T

)c0/2
+

2C2σ
2

T
,

where ETB
is as defined in (2.11) and L ≥ L1 + L2 where L1 and L2 are given by (2.12).

Proof. Substituting t = TB in result from Theorem 1 we get:

ETB
{ΨTB

} ≤ C1

( L+ 1

L+ TB

) c0
2

+ C2

(σ2
B

TB

)
≤ 2C1

( L

TB

) c0
2

+ C2

(σ2
B

TB

)
.

Substituting L = L1 + L2 we get

ETB
{ΨTB

} ≤ c0C1

(L1

TB

) c0
2

+ c0C1

(L2

TB

) c0
2

+ C2

(σ2
B

TB

)
. (2.14)

Let L2 be the value selected for classical Krasulina’s method then from lower bound on L2 we

can pick L2/B for distributed mini-batch Krasulina’s method (Algorithm 2). Now substituting

L2/B and TB = T/B gives us:

ETB
{ΨTB

} ≤ c0C1

(
BL1

T

)c0/2
+ c0C1

(
L2

T

)c0/2
+

2C2σ
2B

BT
,

substituting B = O(T 1−2/c0) in this inequality completes the proof.
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This result shows that for a fixed batch size optimal rate can be achieved as long as we choose

mini-batch size appropriately. In Section 2.10 we corroborate this with numerical simulations

over synthetic and real-world data as well.

Case 2: loss of samples due to resource constraints µ > 0

In the following we consider streaming settings where we assume that we know in advance that

we will be provided T data samples in a streaming fashion. The constraint here is that due to

large volume of data we cannot store the data samples and we need to provide real-time estimate

as soon as we received the T -th data sample (e.g., video surveillance over a short interval of

time). In distributed settings, as described in Section 2.3.2 when due to resource constraints

we need to discard µ samples per iteration of Algorithm 2 then after observing T samples this

translates into performing TB := T/(B + µ) iterations of the algorithm as compared to T/B

iterations for µ = 0 case. The convergence rate of Krasulina’s method for such distributed

settings is given by the following result.

Corollary 2. Under the same conditions as in Theorem 1 and if Assumptions [A1] and [A2]

hold, then there is a nested sequence of subsets of the sample space Ω ⊃ Ω
′

0 ⊃ Ω
′

1 ⊃ . . . such

that

Pr(Ω
′

TB
) ≥ 1− δ, and

ETB
{ΨTB

} ≤ c0C1

(
(B + µ)L1

T

)c0/2
+ c0C1

(
(B + µ)L2

BT

)c0/2
+

2C2σ
2(B + µ)

BT
, (2.15)

where ETB
is expectation restricted to the sample space Ω

′

TB
and L ≥ L1 +L2 where L1 and L2

are given by (2.12)..

Proof. Let L2 be the value selected for classical Krasulina’s method then from lower bound

on L2 we can pick L2/B for distributed mini-batch Krasulina’s method (Algorithm 2). Now

substituting L2/B and TB = T/(B + µ) in (2.14) gives us:

ETB
{ΨTB

} ≤ c0C1

(
(B + µ)L1

T

)c0/2
+ c0C1

(
(B + µ)L2

BT

)c0/2
+

2C2σ
2(B + µ)

BT
,

In this case if we choose B = O(T 1−c0/2) then the error after TB iterations will be O(1/T +

µ/BT ) which implies that as long as µ = O(B), we will achieve the optimal rate of O(1/T ).

For a special case of tree structured network of N nodes, we have µ = log2N which results

in error on the order of O(1/T + (log2N)/BT ). In this special case we can notice that since
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B =
∑N
i=1Bi ≤ N we have log2N

BT � 1 which shows that the penalty we are paying due to loss

of samples is not very large.

2.5 Proofs of Main Results

In this section we provide proofs of the main results which are Theorem 3, Theorem 4, and

Theorem 1. Proofs of the supporting lemmas are moved to Sections 2.6, 2.7, and 2.8. The main

result of this chapter is given in Theorem 1 whose proof consists of three phases. The initial

and intermediate phases here correspond to proving Theorem 3 and Theorem 4, while the final

phase proves the main result i.e., Theorem 1.

In initial phase we establish that if we choose step size, γt, as in Theorem 1 then for t ≥ 1 we

will have error less than some constant (1− ε0) with high probability. In second phase, starting

from error 1 − ε0, we sequentially decrease error until it gets below 1/2. For j = {0, 1, . . . , J},

defining εj = 2jε0 and εJ ≥ 1/2 we get following sequence of errors:

{
1− ε0, 1− ε1, 1− ε2, . . . , 1− εJ

}
.

Let tj be the number of Krasulina’s method iterations required to decrease the error from

1 − εj−1 to 1 − εj . The main challenge here is to provide a lower bound on tj such that if we

perform tj iterations of Krasulina’s method then, the error will be less than 1 − εj with high

probability.

2.5.1 Initial Phase

Our goal in the initial phase is to show that if we pick step size appropriately, i.e, we set L to

be large enough (cf. (2.12)) and Assumptions [A1] and [A2] hold, then the error, Ψt, will not

exceed a certain value with high probability. This is formally stated in the following result.

Theorem 3. Let 0 < ε < 1 (where ε = δ2/8e and 0 < δ < 1) and

L ≥ 8dr4 max(1, c2)

ε
ln

4

δ
+

8d2σ2
B max(1, c2)

ε2
ln

4

δ
(2.16)

if Assumptions [A1] and [A2] hold and we choose step size to be γt = c/(L+ t), then we have

Pr
(

sup
t≥0

Ψt ≥ 1− ε

d

)
≤
√

2eε =
δ

2
. (2.17)

In order to prove Theorem 3 we need lemmas that are stated in the following. We only

provide lemma statements in this section and move the proofs to the Appendix 2.6. We start

by writing the recursion of error metric Ψt in the following lemma.
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Lemma 1. Defining a scalar random variable

zt := 2γt
(vT
t−1q1)(ξT

t q1)

‖vt−1‖22
(2.18)

and φ := λ2
1 + λ2

2, we get the following recursion

(i) Ψt ≤ Ψt−1 + 4γ2
t

(∥∥∥ 1
B

∑B
i=1 Ai,t −Σ

∥∥∥2

F
+ Ψt−1φ

)
− zt.

(ii) Ψt ≤ Ψt−1 + γ2
t r

4 − zt.

Part (i) of this Lemma will be used to prove the final phase of Algorithm in Theorem 1,

while Part (ii) will be used to prove the initial phase (Theorem 3) and the intermediate phase

(Theorem 4). Next we will bound moment generating function of Ψt conditional on iterate

values up to iteration t − 1. We define this by a σ-field Ft−1 (Definition 5) which encodes

the previous iterate information. To bound moment generating function of Ψt, we need upper

bound on variance of zt which is given in the following lemma.

Lemma 2. The variance of the random variable zt is given by

E{(zt − E{zt})2|Ft−1} ≤ 16γ2
t σ

2
N . (2.19)

Using this upper bound on variance of zt we can now upper bound the moment generating

function of Ψt as follows.

Lemma 3. The conditional moment generating function of Ψt is upper bounded as

E{exp(sΨt)|Ft−1} ≤ exp

(
sΨt−1 − sE{zt|Ft−1}+ sγ2

t r
4 + s2γ2

t σ
2
N

)
, (2.20)

This result is similar to [65, Lemma 2.3] with the difference that last term here is sample

variance, σ2
N , in contrast to upper bound on input ‖xt‖2 ≤ r in [65, Lemma 2.3]. This difference

prompts changes in next steps of the analysis of Krasulina’s method. Furthermore, it enables

us to characterize improvements in convergence rate of Krasulina’s method using mini-batches.

Having proved Lemma 1 and Lemma 3, we can now use these to prove Theorem 3 as follows.

Proof of Theorem 3. We start by constructing a super-martingale sequence of error Ψt. First

we define constants

βt := γ2
t r

4, ζt := sγ2
t σ

2
N , τt :=

∑
l>t

(βl + ζl), and Mt := exp (sΨt + sτt).
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Now, taking expectation of Mt conditioned on the filtration Ft−1 we get

E{Mt|Ft−1} = E{exp (sΨt)|Ft−1} exp (sτt)

(a)

≤ exp (sΨt−1 + sβt + sζt + sτt)

= exp (sΨt−1 + sτt−1)

= Mt−1.

Here, (a) is due to Lemma 3 and using the fact that E{zt|Ft−1} ≥ 0 [65, Theorem 2.1]. These

calculations show that sequence {Mt} forms a super-martingale. Using sequence Mt, we can

now use Doob’s martingale inequality [66, pg. 231] to show that Ψt will be bounded away from

1 with high probability.

Pr
(

sup
t≥0

Ψt ≥ ∆
)
≤ Pr

(
sup
t≥0

Ψt + τt ≥ ∆
)

= Pr
(

sup
t≥0

exp (sΨt + sτt) ≥ es∆
)

= Pr
(

sup
t≥0

Mt ≥ es∆
)

≤ E{Mt0}
es∆

= exp (−s(∆− τ0))E{esΨ0}.

Substituting ∆ = 1− ε/d and using [65, Lemma 2.5] to bound EesΨ0 we get

Pr
(

sup
t≥0

Ψt ≥ 1− ε

d

)
≤ exp (−s(1− (ε/d)− τ0))es

√
d

2s
. (2.21)

Next we need to compute
∑
l>0 βl and

∑
l>0 ζl. First we compute∑

l>0

βl =
∑
l>0

γ2
l r

4 = r4
∑
l>0

γ2
l = r4

∑
l>0

c2

(l + L)2
≤ r4c2

L
. (2.22)

Again using a similar procedure we get∑
l>0

ζl ≤
sσ2
Bc

2

L
. (2.23)

Combining (2.22) and (2.23), we get

τ0 ≤
c2

L

(
r4 + sσ2

B

)
. (2.24)

Now using lower bound on L from (2.12) we get τt0 ≤ ε/d as shown in Proposition 4. Substi-

tuting this in (2.21) we get

Pr
(

sup
t≥0

Ψt ≥ 1− ε

d

)
≤ exp (−s(1− ε/d− ε/d))es

√
d

2s
= exp (2sε/d)

√
d

2s
.

Finally, substituting s = d/4ε, we have

Pr
(

sup
t≥0

Ψt ≥ 1− ε

d

)
≤
√

2eε.
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2.5.2 Intermediate Epochs of Improvement

In Theorem 3 we have shown that if we choose L such that it satisfies the lower bound given

in Theorem 3 then we have error Ψt greater than 1− ε0 (here, ε0 = δ2/8ed) with probability δ.

Next, our aim is to show that if we perform enough iterations tJ of Krasulina’s method then

for any t ≥ tJ the error in the iterate will be bounded by Ψt ≤ 1/2 with high probability . In

order to prove this we divide our analysis into different epochs j = {1, . . . , J}. Starting from

1− ε0 we provide a lower bound on number of Krasulina’s method iterations, tj , such that we

progressively increase εj in each epoch until we reach εJ .

Theorem 4. For ρ ∈ (0, 1/2), c = c0/(2(λ1 − λ2)), c0 > 0, number of nodes N > 1, and

L ≥ 8r4 max(1,c2)
ε0

ln 4
δ +

8σ2
N max(1,c2)

ε20
ln 4

δ , take step size to be γt = c/(L + t). Now pick any

0 < δ < 1 and select a schedule (0, ε0), (t1, ε1), . . . , (tJ , εJ) such that the following conditions are

satisfied

[C1] ε0 = δ2

8ed and 3
2εj ≤ εj+1 ≤ 2εj for 0 ≤ j < J , and εJ−1 ≤ 1

4

[C2]
(
tj+1 + L+ 1

)
≥ e5/c0

(
tj + L+ 1

)
for 0 ≤ j < J

then, Pr(Ω
′
) ≥ 1− δ.

In order to prove this result we need Lemmas 4–7 which are stated as follows:

Lemma 4. For t > tj the moment generating function of Ψt, restricted to sample space Ω
′

t is

given by:

Et
{
esΨt

}
≤ exp

(
s

(
Ψt−1

(
1− c0εj

t+ L

)
+

c2r4

(t+ L)2
+

sc2σ2
N

(t+ L)2

))
Lemma 5. For t > tj and any s > 0

Et{esΨt} ≤ exp

(
s(1− εj)

(
tj + L+ 1

t+ L+ 1

)c0εj
+

(
sc2r4 + s2c2σ2

N

)(
1

tj + L
− 1

t+ L

))
.

(2.25)

Using result from Lemma 5 our next result deals with specific value of t, i.e., t = tj+1.

Lemma 6. If Conditions [C1]–[C2] are satisfied, then for 0 ≤ j < J and any s > 0

Etj+1

{
esΨtj+1

}
≤ exp

(
s(1− εj+1)− sεj +

(
sc2r4 + s2c2σ2

N

)( 1

tj + L
− 1

tj+1 + L

))
Lemma 7. If Conditions [C1]–[C2] are satisfied, then picking any 0 < δ < 1 we have

J∑
j=1

Prtj
(

sup
t≥tj

Ψt > 1− εj
)
≤ δ

2
.

Proof. (Proof of Theorem 4) Now using results from Lemma 7 and Theorem 3 and applying

union bound we get the proof for Theorem 4.
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2.5.3 Final Epoch

Now that we have shown that Ψt ≤ 1/2 with probability 1− δ, in the final epoch we show that

how Ψt decreases further as a function of algorithm iterations. The following result captures

the rate at which Ψt decreases during this phase.

Lemma 8. For any t > tJ , expected error in Ψt is given by

Et{Ψt} ≤

(
1 +

c20φ
2

4(t+ L)2(λ1 − λ2)2
− c0

2(t+ L)

)
Et−1{Ψt−1}+

c2σ2
N

(t+ L)2
.

Next we will prove our main result in Theorem 1.

Proof. (Proof of Theorem 1) Following the same procedure as in the proof of [65, Theorem

1.1] we define epochs (tj , εj) that satisfy conditions in Theorem 4. We define epochs such

that εJ = 1/2 and εj+1 = 2εj whenever possible . Then we have J = log2

(
1/(2ε0)

)
(since

εJ = 2εJ−1 = · · · = 2Jε0 ⇒ 2J = εJ/ε0 = 1/2ε0). This implies

tJ + L+ 1 =
(
L+ 1

)
exp

(5J

c0

)
=
(
L+ 1

)( 1

2ε0

)5/(c0 ln 2)

=
(
L+ 1

)(4ed

δ2

)5/(c0 ln 2)

. (2.26)

Defining a1 = c20φ
2/4(λ1 − λ2)2, a2 = c0/2 and b = c2σ2

N , and for t > tJ using Lemma 8 we

have

Et{Ψt} ≤
(

1 +
a1

(t+ L)2
− a2

t+ L

)
Et−1{Ψt−1}+

b

(t+ L)2
.

Now using Proposition 1 for c0 > 2 we get

Et{Ψt} ≤
( tJ + L+ 1

t+ L+ 1

) c0
2

exp
( a1

tJ + L+ 1

)
EtJ{ΨtJ}

+
b

a2 − 1

(
1 +

1

tJ + L+ 1

)2

exp
( a1

tJ + L+ 1

) 1

t+ L+ 1
(a)

≤ 1

2

( L+ 1

t+ L+ 1

) c0
2
(4ed

δ2

) 5a2
(c0 ln 2)

exp
( a1

tJ + L+ 1

)
+

b

a2 − 1
exp

( 2

tJ + L+ 1

)
exp

( a1

tJ + L+ 1

) 1

t+ L+ 1

=
1

2

( L+ 1

t+ L+ 1

) c0
2
(4ed

δ2

) 5
(2 ln 2)

exp
( a1

(L+ 1)(4ed/δ2)(5/2 ln 2)

)
+

2c2σ2
N

c0 − 2
exp

( 2 + a1

(L+ 1)(4ed/δ2)(5/2 ln 2)

) 1

(t+ L+ 1)
.

Here, the inequality in (a) is due to (2.26) and we use the fact that (1+x)a ≤ exp (ax), for x < 1.

In addition, since (4ed/δ2)(5/2 ln 2) ≥ 1, therefore we get

Et{Ψt} ≤
1

2

( L+ 1

t+ L+ 1

) c0
2
(4ed

δ2

) 5
(2 ln 2)

exp
( a1

L+ 1

)
+

2c2σ2
N

c0 − 2
exp

(a1 + 2

L+ 1

) 1

(t+ 1)

≤ 1

2

( L+ 1

t+ L+ 1

) c0
2
(4ed

δ2

) 5
(2 ln 2)

ea1/L +
2c2σ2

Ne
(a1+2)/L

c0 − 2

1

(t+ L+ 1)

= C1

( L+ 1

t+ L+ 1

) c0
2

+ C2

( σ2
N

t+ L+ 1

)
. (2.27)
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2.6 Proof of Supporting Lemmas for Initial Phase

To prove Theorem 3 we start by writing the recursion of error metric Ψt in the Lemma 1. In

order to prove Lemma 1 we first need the following result:

Lemma 9. The second moment of the stochastic update vector ξt in Krasulina’s method is

upper bounded as

E

(
‖ξt‖22
‖vt−1‖22

)
≤ E‖ξt − Eξt‖22

‖vt−1‖22
+ Ψt−1φ,

where φ := λ2
1 + λ2

2.

Proof. We start by writing E‖ξt − Eξt‖22 in terms of E‖ξt‖22 as follows

E‖ξt − Eξt‖22 = E

{
ξT
t ξt + (Eξt)TEξt − ξT

t Eξt − (Eξt)Tξt

}

= E‖ξt‖22 − EξT
t Eξt.

Now defining Ct := EξT
t Eξt and rearranging the above equation we get

E‖ξt‖22 = E‖ξt − Eξt‖22 + Ct.

Now substituting value of ξt from (2.7) we get

Ct
‖vt−1‖22

=
EξT

t Eξt
‖vt−1‖22

=
1

‖vt−1‖22

(
Σvt−1 −

vT
t−1Σvt−1vt−1

vT
t−1vt−1

)T(
Σvt−1 −

vT
t−1Σvt−1vt−1

vT
t−1vt−1

)

=
vT
t−1Σ

2vt−1

‖vt−1‖22
−

(
vT
t−1Σvt−1

‖vt−1‖22

)2

. (2.28)

Since Σ is a positive definite matrix we can write its eigenvalue decomposition as

Σ =

d∑
i=1

λiqiq
T
i ,

where λ1 > λ2 ≥ · · · ≥ λd and q1, . . . ,qd are the eigenvalues and eigenvectors of Σ respectively.
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It follows that

Ct
‖vt−1‖22

=

d∑
i=1

λ2
i

(vT
t−1qi)

2

‖vt−1‖22
−

(
d∑
i=1

λi
(vT
t−1qi)

2

‖vt−1‖22

)2

= λ2
1

(vT
t−1q1)2

‖vt−1‖22
+

d∑
i=2

λ2
i

(vT
t−1qi)

2

‖vt−1‖22
−

(
λ1

(vT
t−1q1)2

‖vt−1‖22
+

d∑
i=2

λi
(vT
t−1qi)

2

‖vt−1‖22

)2

≤ λ2
1

(vT
t−1q1)2

‖vt−1‖22
+ λ2

2

d∑
i=2

(vT
t−1qi)

2

‖vt−1‖22
− λ2

1

(vT
t−1q1)4

‖vt−1‖42

= λ2
1

(vT
t−1q1)2

‖vt−1‖22

(
1−

(vT
t−1q1)2

‖vt−1‖22

)
+ λ2

2

(
1−

(vT
t−1q1)2

‖vt−1‖22

)
.

From definition of Ψt−1 we get

Ct
‖vt−1‖22

≤ Ψt−1

(
(1−Ψt−1)λ2

1 + λ2
2

)
≤ Ψt−1

(
λ2

1 + λ2
2

)
= Ψt−1φ.

Now using Lemma 9 we can prove Lemma 1 in the following.

2.6.1 Proof of Lemma 1

From (2.9), we have

Ψt =
‖vt‖22 − (vT

t q1)2

‖vt‖22
.

Now substituting vt from (2.7) we get

Ψt =
‖vt−1 + γtξt‖22 − ((vt−1 + γtξt)

Tq1)2

‖vt‖22
,

(a)
=
‖vt−1‖22 + γ2

t ‖ξt‖22 − ((vt−1 + γtξt)
Tq1)2

‖vt‖22
,

(b)

≤ ‖vt−1‖22 + γ2
t ‖ξt‖22 − ((vt−1 + γtξt)

Tq1)2

‖vt−1‖22
,

= 1 + γ2
t

‖ξt‖22
‖vt−1‖22

− ((vt−1 + γtξt)
Tq1)2

‖vt−1‖22

= 1 + γ2
t

‖ξt‖22
‖vt−1‖22

− ((vt−1 + γtξt)
Tq1)2

‖vt−1‖22

= 1 + γ2
t

‖ξt‖22
‖vt−1‖22

−
(vT
t−1q1)2 + γ2

t (ξT
t q1)2 + 2γt(v

T
t−1q1)(ξT

t q1)

‖vt−1‖22

= 1−
(vT
t−1q1)2

‖vt−1‖22
+ γ2

t

‖ξt‖22 − (ξT
t q1)2

‖vt−1‖22
− 2γt

(vT
t−1q1)(ξT

t q1)

‖vt−1‖22

= Ψt−1 + γ2
t

‖ξt‖22
‖vt−1‖22

− 2γt
(vT
t−1q1)(ξT

t q1)

‖vt−1‖22
. (2.29)

Here (a) and (b) are due to [65, Lemma A.1], (a) is true because vt−1 is perpendicular to ξt

and (b) is true because ‖vt−1‖2 ≤ ‖vt‖2. Now defining v̂t−1 = vt−1/‖vt−1‖2, the second term
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in the above inequality can be bounded as

‖ξt‖22
‖vt−1‖22

=
‖ξt − Eξt‖22 + EξT

t Eξt
‖vt‖22

,

(a)

≤ ‖Ai,t −Σ‖22 + Ψt−1ρ ≤ ‖Ai,t −Σ‖2F + Ψt−1ρ. (2.30)

Here, (a) is due to Lemma 9. Substituting (2.30) in (2.29) we complete proof of Part 1 of

Lemma 1. Next, we prove Part 2 of Lemma 1.

‖ξt‖22
‖vt−1‖22

=
‖(1/B)

∑B
i=1 ξi,t‖22

‖vt−1‖22

=
(1/B2)‖

∑B
i=1 ξi,t‖22

‖vt−1‖22
(a)

≤
(1/B2)

∑B
i=1B‖ξi,t‖22

‖vt−1‖22

=

∑B
i=1(xT

i,tvt−1)2‖xi,t − (xT
i,tv̂t−1)v̂t−1‖22

B‖vt−1‖22

≤ 1

B

B∑
i=1

‖xi,t‖22‖xi,t − (xT
i,tv̂t−1)v̂t−1‖22

=
1

B

B∑
i=1

‖xi,t‖22(‖xi,t‖22 − (xT
i,tv̂t−1)2)

≤
B∑
i=1

‖xi,t‖42
B

≤ max
i
‖xi,t‖42 ≤ r4. (2.31)

Here (a) is by using Cauchy-Schwartz inquality and last inequality is due to the Assumption

[A1]. Now substituting this in (2.29) completes the proof.

2.6.2 Proof of Lemma 2

E{(zt − E{zt})2|Ft−1} = E

{(
2γt(v

T
t−1q1)(ξT

t q1)

‖vt−1‖22
− E

{2γt(v
T
t−1q1)(ξT

t q1)

‖vt−1‖22

})2∣∣∣∣∣Ft−1

}
,

=
4γ2
t (vT

t−1q1)2

‖vt−1‖42
E

{(
ξT
t q1 − E

{
ξT
t q1

})2}
,
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substituting value of ξt we get

E{(zt − E{zt})2|Ft−1} =
4γ2
t (vT

t−1q1)2

‖vt−1‖42
E

{((
xtx

T
t vt−1 −

vT
t−1xtx

T
t vt−1vt−1

‖vt−1‖22

)T

q1

− E
{(

xtx
T
t vt−1 −

vT
t−1xtx

T
t vt−1vt−1

‖vt−1‖22

)T

q1

})2}
,

=
4γ2
t (vT

t−1q1)2

‖vt−1‖42
E

{((
xtx

T
t vt−1 −

vT
t−1xtx

T
t vt−1vt−1

‖vt−1‖22

)T

q1

− vT
t−1E{xtxT

t }q1 +
vT
t−1v

T
t−1E{xtxT

t }vt−1

‖vt−1‖22
q1

)2}
.

Since Σ := Extx
T
t is the covariance matrix, we get

E{(zt−E{zt})2|Ft−1}

=
4γ2
t (vT

t−1q1)2

‖vt−1‖42
E

{((
(xtx

T
t −Σ)vt−1 −

vT
t−1(xtx

T
t −Σ)vt−1vt−1

‖vt−1‖22

)T

q1

)2}
,

=
4γ2
t (vT

t−1q1)2

‖vt−1‖42
E

{((
qT

1 (xtx
T
t −Σ)vt−1 −

(
vT
t−1(xtx

T
t −Σ)vt−1

)
qT

1 vt−1

‖vt−1‖22

))2}

≤
8γ2
t (vT

t−1q1)2

‖vt−1‖42
E

{(
qT

1 (xtx
T
t −Σ)vt−1

)2

+

((
vT
t−1(xtx

T
t −Σ)vt−1

)
qT

1 vt−1

‖vt−1‖22

)2}

=
8γ2
t (vT

t−1q1)2

‖vt−1‖22
E

{(
qT

1 (xtx
T
t −Σ)vt−1

‖vt−1‖2

)2

+

(
vT
t−1(xtx

T
t −Σ)vt−1

‖vt−1‖22

)2(
qT

1 vt−1

‖vt−1‖2

)2}

≤ 8γ2
t E

{(
qT

1 (xtx
T
t −Σ)vt−1

‖vt−1‖2

)2

+

(
vT
t−1(xtx

T
t −Σ)vt−1

‖vt−1‖22

)2}
. (2.32)

The last inequality in (2.32) is due to the fact that

(
qT
1 vt−1

‖vt−1‖2

)2

≤ 1. We can see that both the

remaining terms are Rayleigh quotients of matrix (Σ− xtx
T
t ) and hence the largest eigenvalue

of (Σ− xtx
T
t ) maximizes the both terms. Using this fact we get

E{(zt − E{zt})2|Ft−1} ≤ 16γ2
t E{‖Σ− xtx

T
t ‖22} ≤ 16γ2

t E{‖Σ− xtx
T
t ‖2F }.

Using Definition 2 we get

E{(zt − E{zt})2|Ft−1} ≤ 16γ2
t σ

2
N .

2.6.3 Proof of Lemma 3

Now that we have computed the upper bound on variance of zt we are ready to compute the

upper bound on moment generating function of Ψt. Using Lemma 1 we can write the moment
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generating function of Ψt as follows

E{exp(sΨt)|Ft−1} ≤ E
{

exp
(
sΨt−1 + sγ2

t r
4 − szt

)∣∣∣Ft−1

}
= exp(sΨt−1 + sγ2

t r
4)E
{

exp
(
− szt

)∣∣∣Ft−1

}
= exp(sΨt−1 + sγ2

t r
4 − sE{zt|Ft−1})E

{
exp

(
− s(zt − E{zt})

)∣∣∣Ft−1

}
.

(2.33)

Now we can bound this using Bennett’s inequality (Proposition 2). In order to apply Bennett’s

inequality, we need to compute the variance and range of the random variable zt. We have

already computed the variance of zt in Lemma 2. Next we compute the range of (zt − E{zt})

as follows: ∣∣∣zt − E{zt}
∣∣∣ ≤ 2|zt| ≤ 2γt‖xt‖22 ≤ 2γtr

2 =: h.

Here last inequality is due to the Assumption [A1]. For parameters σ2
N and h using Bennett’s

inequality we get

E{exp(sΨt)|Ft−1} ≤ exp

(
sΨt−1 − sE{zt|Ft−1}+ sγ2

t r
4 + s2γ2

t σ
2
N

(
esh − 1− sh

(sh)2

))
.

For L ≥ L1 + L2, where L1 and L2 are given by (2.12), we show that ( e
sh−1−sh
sh ) ≤ 1 in

Proposition 3, which completes the proof as follows:

E{exp(sΨt)|Ft−1} ≤ exp

(
sΨt−1 − sE{zt|Ft−1}+ sγ2

t r
4 + s2γ2

t σ
2
N

)
.

2.7 Proof of Supporting Lemmas for Intermediate Epochs

of Improvement

2.7.1 Proof of Lemma 4

Using Lemma 3, we have

E{esΨt
∣∣Ft−1} ≤ exp

(
s

(
Ψt−1 + γ2

t r
4 − E{zt|Ft−1}+ sγ2

t σ
2
N

))
(a)

≤ exp

(
s

(
Ψt−1 − 2γt

(
λ1 − λ2

)
Ψt−1

(
1−Ψt−1

)
+ γ2

t r
4 + sγ2

t σ
2
N

))
(b)

≤ exp

(
s

(
Ψt−1 −

c0Ψt−1

(
1−Ψt−1

)
t+ L

+
c2r4

(t+ L)2
+

sc2σ2
N

(t+ L)2

))
. (2.34)

Here, (a) is due to [65, Lemma A.3] and (b) is by substituting γt = c/(t+L) = c0/2(λ1−λ2)(t+

L). Finally, for ω ∈ Ω
′

t we have Ψt−1(ω) ≤ 1− εj . Now taking expectation over Ω
′

t we get the

result.
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2.7.2 Proof of Lemma 5

Let αt = 1− c0εj
t+L and ξt(s) = sc2r4

(t+L)2 +
s2c2σ2

N

(t+L)2 . Substituting αt and ξt(s) in Lemma 4, we get

Et
{
esΨt

}
≤ Et

{
esαtΨt−1

}
exp

(
ξt(s)

)
≤ Et−1

{
esαtΨt−1

}
exp

(
ξt(s)

)
. (2.35)

Note that the second inequality in (2.35) is due to [65, Lemma 2.8]. Applying this procedure

repeatedly yields

Et
{
esΨt

}
≤ Etj+1

{
exp

(
sΨtjαt . . . αtj+1

)}
exp

(
ξt(s)

)
. . . exp

(
ξtj+1

(
sαt . . . αtj+1

))
≤ Etj+1

{
exp

(
sΨtjαt . . . αtj+1

)}
exp

(
ξt(s)

)
. . . exp

(
ξtj+1

(
s
))
.

Substituting values of αt and ξt(s) from here we have

Et
{
esΨt

}
≤ Etj+1

{
exp

(
sΨtj

(
1− c0εj

t+ L

)
. . .
(

1− c0εj
tj + L+ 1

))}
exp

((
sc2r4 + s2c2σ2

N

)( 1

(t+ L)2
+ · · ·+ 1

(tj + L+ 1)2

))

≤ exp
(
s(1− εj) exp

(
− c0εj

( 1

t+ L
+ · · ·+ 1

tj + L+ 1

)))
exp

((
sc2r4 + s2c2σ2

N

)( 1

(t+ L)2
+ · · ·+ 1

(tj + L+ 1)2

))
. (2.36)

Here last inequality is true because Ψtj (ω) ≤ 1 − εj for ω ∈ Ω
′

tj+1 and 1 − x ≤ e−x for x ≤ 1.

Next we bound summations as follows

1

t+ L
+ · · ·+ 1

tj + L+ 1
≥
∫ t+1

tj+1

dx

x+ L
= ln

t+ L+ 1

tj + L+ 1
,

1

(t+ L)2
+ · · ·+ 1

(tj + L+ 1)2
≤
∫ t

tj

dx

(x+ L)2
=

1

tj + L
− 1

t+ L
.

Substituting these bounds in (2.36) we get the desired result.

2.7.3 Proof of Lemma 6

Using result from Lemma 5, this lemma deals with specific value of t, i.e., t = tj+1. For t = tj+1,

(2.25) gives

Etj+1{esΨtj+1} ≤ exp

(
s(1− εj)

(
tj + L+ 1

tj+1 + L+ 1

)c0εj
+

(
sc2r4 + s2c2σ2

N

)(
1

tj + L
− 1

tj+1 + L

))
,

(2.37)

using conditions [C1] and [C2] and the fact that e−2x ≤ 1− x for 0 ≤ x ≤ 3/4 we get

(1− εj)
( tj + L+ 1

tj+1 + L+ 1

)c0εj
≤ e−εj (e−5/c0)c0εj = e−6εj ≤ 1− 3εj ≤ 1− εj+1 − εj .

Substituting this in (2.37) we finish the proof.
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2.7.4 Proof of Lemma 7

Constructing a super-martingale sequence, Mt in the same way as we did in Theorem 3 and

applying Doob’s martingale inequality, we get

Prtj
(

sup
t≥tj

Ψt ≥ 1− εj
)
≤ Prtj

(
sup
t≥tj

Mt ≥ es(1−εj)
)

≤
E{Mtj}
es(1−εj)

=
E
{

exp (sΨtj + sτtj )
}

es(1−εj)

=
E
{

exp (sΨtj )
}

exp (sτtj )

es(1−εj)
.

Using Lemma 6 results in

Prtj
(

sup
t≥tj

Ψt ≥ 1− εj
)

≤ 1

es(1−εj)
exp

(
s(1− εj)− sεj−1 +

(
sc2r4 + s2c2σ2

N

)( 1

tj−1 + L
− 1

tj + L

)
+ sτtj

)
.

Substituting value of τj from Theorem 3 (see (2.24)) we have

Prtj
(

sup
t≥tj

Ψt ≥ 1− εj
)
≤ exp

(
− sεj−1 +

(
sc2r4 + s2c2σ2

N

)( 1

tj−1 + L
− 1

tj + L

)
+ s
(
c2r4 + sc2σ2

N

) 1

tj + L

)

= exp

(
− sεj−1 + s

(
c2r4 + sc2σ2

N

) 1

tj−1 + L

)
.

Substituting s = (2/ε0) ln (4/δ), and using lower bound on L (verification in Proposition 5) we

get

Prtj
(

sup
t≥tj

Ψt ≥ 1− εj
)
≤ exp

(
− sεj−1

2

)
=

(
δ

4

)εj−1/ε0

≤ δ

2j+1
.

Summing over j we finish the proof.

2.8 Proof of Supporting Lemmas for Final Epoch

Final epoch deals with the case when Ψt ≤ 1/2. Following result captures the rate at which Ψt

decreases during this phase.
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2.8.1 Proof of Lemma 8

From Lemma 1 (Part 1)

Ψt ≤ Ψt−1 + 4γ2
t

(∥∥∥ 1

B

B∑
i=1

Ai,t −Σ
∥∥∥2

F
+ Ψt−1φ

)
− zt.

Taking expectation over t conditioned on filteration Ft−1, we get

E{Ψt|Ft−1} ≤ Ψt−1(1 + γ2
t φ) + γ2

t σ
2
N − E

{
zt
∣∣Ft−1

}
.

Here, second term is due to Lemma 9. Now using upper bound on −E
{
zt
∣∣Ft−1

}
from [65,

Lemma A.4] we get the following

E{Ψt|Ft−1} ≤ Ψt−1(1 + γ2
t φ) + γ2

t σ
2
N − 2γt(λ1 − λ2)Ψt−1(1−Ψt−1)

= Ψt−1

(
1 + γ2

t φ− 2γt(λ1 − λ2)(1−Ψt−1)
)

+ γ2
t σ

2
N .

Substituting γt = c0/(2(t + L)(λ1 − λ2)), using the fact that for t > tJ , Ψt−1 ≤ 1/2 and that

we lie in sample space Ω
′

t with probability greater than 1− δ (Theorem 3). Furthermore, Ω
′

t is

Ft−1-measurable, now taking expectation over Ω
′

t we have

Et{Ψt} ≤ Et

{
Ψt−1

(
1 +

c20φ
2

4(t+ L)2(λ1 − λ2)2
− c0

2(t+ L)

)}
+

c2σ2
N

(t+ L)2

=

(
1 +

c20φ
2

4(t+ L)2(λ1 − λ2)2
− c0

2(t+ L)

)
Et{Ψt−1}+

c2σ2
N

(t+ L)2

≤

(
1 +

c20φ
2

4(t+ L)2(λ1 − λ2)2
− c0

2(t+ L)

)
Et−1{Ψt−1}+

c2σ2
N

(t+ L)2
.

Proposition 1. For some constants a1, b > 0, a2 > 1, and ∀t > tJ , consider a nonnegative

sequence (ut : t > tJ)

ut ≤
(

1 +
a1

(t+ L)2
− a2

t+ L

)
ut−1 +

b

(t+ L)2
,

then we have:

ut ≤

(
L+ 1

t+ L+ 1

)a2
exp

( a1

L+ 1

)
u0 +

1

(t+ L+ 1)
exp

( a1

L+ 1

)(L+ 2

L+ 1

)2 b

a2 − 1
.

Proof. Recursive application of ut gives:

ut ≤

(
t∏

i=tJ+1

(
1 +

a1

(i+ L)2
− a2

i+ L

))
ut0 +

t∑
i=tJ+1

b

(i+ L)2

(
t∏

j=i+1

(
1 +

a1

(j + L)2
− a2

j + L

))
.

(2.38)
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Using [65, Lemma D.1] we can bound the product terms as

t∏
j=i+1

(
1 +

a1

(j + L)2
− a2

j + L

)
≤ exp

(
t∑
j=i

a1

(j + L)2
−

t∑
j=i

a2

j + L

)

≤

(
i+ L+ 1

t+ L+ 1

)a2
exp

(
t∑
j=i

a1

(j + L)2

)
. (2.39)

Next, we bound the last term here as

exp

(
t∑
j=i

a1

(j + L)2

)
≤ exp

(∫ t+1

i+1

a1

(x+ L)2
dx

)
= exp

( a1

i+ L+ 1
− a1

t+ L+ 1

)
≤ exp

( a1

i+ L+ 1

)
.

Substituting this in (2.39) we get

t∏
j=i+1

(
1 +

a1

(j + L)2
− a2

j + L

)
≤

(
i+ L+ 1

t+ L+ 1

)a2
exp

( a1

i+ L+ 1

)
.

Substituting this in (2.38) we get:

ut ≤

(
tJ + L+ 1

t+ L+ 1

)a2
exp

( a1

tJ + L+ 1

)
utJ +

t∑
i=tJ+1

b

(i+ L)2

(
t∏

j=i+1

(
1 +

a1

(j + L)2
− a2

j + L

))

≤

(
tJ + L+ 1

t+ L+ 1

)a2
exp

( a1

tJ + L+ 1

)
utJ +

t∑
i=tJ+1

b

(i+ L)2

(
i+ L+ 1

t+ L+ 1

)a2
exp

( a1

i+ L+ 1

)
≤

(
tJ + L+ 1

t+ L+ 1

)a2
exp

( a1

tJ + L+ 1

)
utJ + exp

( a1

tJ + L+ 1

) b

(t+ L+ 1)a2

t∑
i=1

(i+ L+ 1)a2

(i+ L)2

≤

(
tJ + L+ 1

t+ L+ 1

)a2
exp

( a1

tJ + L+ 1

)
utJ

+ exp
( a1

tJ + L+ 1

) b

(t+ L+ 1)a2

(L+ 2

L+ 1

)2 t∑
i=1

(i+ L+ 1)a2−2.

Again applying [65, Lemma D.1] we get the final result

ut ≤

(
tJ + L+ 1

t+ L+ 1

)a2
exp

( a1

tJ + L+ 1

)
utJ

+ exp
( a1

tJ + L+ 1

) b

(t+ L+ 1)a2

(L+ 2

L+ 1

)2 (t+ L+ 1)a2−1

a2 − 1

=

(
tJ + L+ 1

t+ L+ 1

)a2
exp

( a1

tJ + L+ 1

)
utJ +

1

(t+ L+ 1)
exp

( a1

tJ + L+ 1

)(L+ 2

L+ 1

)2 b

a2 − 1
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2.9 Other Results

Proposition 2 (Bennett’s Inequality [67]). Consider a zero-mean bounded random variable

|xi| ≤ h with variance σ2
i , then for any s ∈ R we have

E
{
esxi

}
≤ exp

(
σ2
i s

2
(esh − 1− sh

(sh)2

))
.

Proposition 3. For a network of N nodes and t > 0, we have the following upper bound on

conditional moment generating function of Ψt

E{exp(sΨt)|Ft−1} ≤ exp

(
sΨt−1 − sE{zt|Ft−1}+ sγ2

t r
4 + s2γ2

t σ
2
N

)
, (2.40)

Proof. In order to prove this proposition we need to show that using lower bound on t0 and the

upper bound on ‖xt‖2, we have sh ≤ 7/4. Now depending on value of s we need to prove the

result for two cases in the following.

Case i: For s = d/4ε, substituting value of h we get

sh =
dγtr

2

2ε
=

dcr2

2(t+ L)ε
≤ dcr2

2Lε
≤ dcr2

2εL1

(a)

≤ dcr2

2ε

ε

8dr4 max(1, c2) ln(4/δ)
≤ 1

16 ln(4/δ)
≤ 7

4
.

Case ii: For s = (2/ε0) ln(4/δ) we have:

sh =
2 ln(4/δ)cr2

ε0(t+ L)
≤ 2 ln(4/δ)cr2

ε0L1

≤ 2 ln(4/δ)cr2

ε0

ε0

8r4 max(1, c2) ln 4
δ

≤ 1

4
≤ 7

4
.

Proposition 4. For

L ≥ 8dr4 max(1, c2)

ε
ln

4

δ
+

8d2σ2
N max(1, c2)

ε2
ln

4

δ
, (2.41)

we have

c2

L

(
r4 + sσ2

N

)
≤ ε

d
. (2.42)

Proof. We will prove this by proving the following two statements:

c2r4

t0
≤ c2r4

L1
≤ ε

2d
and

sc2σ2
N

L
≤ sc2σ2

N

L2
≤ ε

2d
.

We start by proving the first statement:

c2r4

L1
≤ c2r4 ε

8dr4 max(1, c2) ln 4
δ

≤ ε

2d
,
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Now we prove the second statement as follows:

c2sσ2
N

L2
≤ c2dσ2

N

4ε

ε2

8d2σ2
N max(1, c2) ln 4

δ

≤ ε

2d
.

Proposition 5. For L ≥ 8r4 max(1,c2)
ε0

ln 4
δ +

8σ2
N max(1,c2)

ε20
ln 4

δ , we have

(a) c2r4

(tj−1+L) ≤
ε0
4 , and

(b) 2c2σ2
N

ε0(tj−1+L) ln 4
δ ≤

ε0
4 .

Proof.

c2r4

(tj−1 + L)
≤ 2c2r4

L
≤ 2c2r4

L1

≤ 2c2r4 ε0

8r4 max(1, c2) ln 4
δ

≤ ε0
4
.

Next we prove the second statement as follows:

2c2σ2
N

ε0(tj−1 + L)
ln

4

δ
≤ 2c2σ2

B

ε0L
ln

4

δ
≤ 2c2σ2

N

ε0L2
ln

4

δ
≤ 2c2σ2

N

ε0
ln

4

δ

ε20
8σ2

N max(1, c2) ln(4/δ)
≤ ε0

4
.

2.10 Numerical Results

In this section we will provide numerical results to show the effectiveness of distributed mini-

batch Krasulina’s method (Algorithm 2). To support our theoretical findings, numerical results

in this section will highlight the performance of Krasulina’s method in terms of important

problem parameters for streaming PCA, namely, eigengap (λ1 − λ2), dimensionality (d), upper

bound on inputs (‖xt‖2 ≤ r), and variance in samples (σ2
B). In the following we first provide

experiments on synthetic data to highlight the impact of λ1 − λ2, r, and d on the performance

of Algorithm 2, then we will provide detailed experiments on synthetic and real-world data to

show the improvement in convergence rate using mini-batches which is the main contribution of

this chapter. For mini-batching experiments the goal is to show that for some fixed number of

samples T Algorithm 2 can achieve same final error in top eigenvector estimate as the classical

sample-by-sample approach if mini-batch size B is not too large.
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Figure 2.2: Impact eigengap λ1 − λ2 on the convergence of Krasulina’s method.

2.10.1 Synthetic Data

In the following experiments we generate T = 106 samples from some probability distribution

and for each experiment we perform 200 Monte-Carlo trials. In all the experiments in the

following we use step size of the form γt = c/t. To choose value of c we perform simulations

with different values of c and plot the results with the value of c giving the best convergence

rate. Specific details of setup for each experiment are given in the following as well.

Impact of the eigengap on the performance of Algorithm 2

For this experiment we generate data in R5 from a normal distribution, N (0,Σ). Here, co-

variance matrix, Σ, has largest eigenvalue λ1 = 1. We vary the values of eigengap from

{0.1, 0.2, 0.3, 0.4, 0.5}. Values of c giving the best convergence rates are c = {180, 110, 90, 70, 60}.

We can observe from Figure 2.2 that after observing T = 106 the final gap in error for different

values of eigengap is on the order of O(1/(λ1−λ2)2) as predicted by the theoretical guarantees.

Impact of dimension on the performance of Algorithm 2

For this experiment we generate data from a normal distribution, N (0,Σ) with largest eigen-

value of the covariance matrix, Σ, to be λ1 = 1. We fix the eigengap to 0.2 and vary the



41

10
0

10
2

10
4

10
6

10
-6

10
-4

10
-2

10
0

Figure 2.3: Convergence of Krasulina’s method with varying dimensionality.

dimension to d = {5, 10, 15, 20}. Values of c providing the best convergence rate in this case

are {110, 110, 100, 100}. Convergence behavior of Algorithm 2 is give in Figure 2.3. These two

observations show that dimension does not impact convergence as well as the choice of step size

which is not aligned with our theoretical guarantees. The main implication here is that our

theoretical results are not tight in terms of dimensions.

Impact of upper bound on the performance of Algorithm 2

In order to demonstrate the impact of the upper bound ‖xt‖2 ≤ r on the convergence of

Krasulina’s method we generate data from Uniform distribution U(−a, a). Values of a are varied

from {1, 2, 3, 10}. These values of a approximately result in r = {1.45, 2.9, 4.5, 14.5}. Values of

c providing best convergence are c = {8, 2, 1, 0.08}. Convergence behavior in Figure 2.4 shows

that if we vary r and all the other parameters are kept constant then the convergence behavior

will stay the same. The value of r appears in the convergence results in a lower bound on L

(see (2.12)) and in the non-dominant term in the error bound. Hence, although our results are

not independent of r its dependence is only through a non-dominant term. Furthermore, the

dependence of value of L on upper bound r reflects in the choice of step size parameter c in our

experiments here as well.



42

10
0

10
2

10
4

10
6

10
-8

10
-6

10
-4

10
-2

10
0

Figure 2.4: Convergence of Krasulina’s method with varying upper bound on the inputs.

Impact of minibatching on the performance of Algorithm 2

For this experiment we generate data in R5 from a normal distribution, N (0,Σ). Here, covari-

ance matrix, Σ, has largest eigenvalue λ1 = 1 and eigengap is, λ1 − λ2 = 0.2. We generate

T = 106 samples from this distribution and perform 200 Monte-Carlo trials of experiment. We

use mini-batches of sizes B = 1, B = 10, B = 100, B = 500, B = 1000, and B = 2000 in

our experiments. For each value of mini-batch we use step size of the form c/t and we provide

results here with values of c which give us the best convergence rates in Figure 2.5(a). Values of

c resulting in best performance for these step sizes are 70, 80, 80, 90, 110, and 100 respectively.

Results of these experiments are shown in Figure 2.5(a). From these results we can see that we

achieve the same final error as we increase the batch size from 1 to 100 and it gets worse for

B = 1000. Hence, as suggested by our analysis, for some fixed number of samples T , we will

not achieve optimal error if mini-batch size is too large.

Next, we demonstrate the performance of Algorithm 2 with delays in distributed computa-

tion. We use similar data generation setup as in Section 2.10.1 and for a network of 10 nodes

(N = 10) we use mini-batch of size B = 100. For comparison we also plot the error curve for

case when we discard 1/N of total samples, i.e., we perform mini-batching using 100 samples

that are available locally at any given node. We vary the delay in distributed computation such

that the number of discarded samples is µ = {10, 100, 200}. From Figure 2.5(b) we can see that
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the estimation error achieved after seeing T samples does not increase much as we increase the

number of data samples lost due to resource constraints.

2.10.2 Impact of mini-batching on Real-world Datasets

In this section, we demonstrate the performance of Algorithm 2 over two real-world datasets:

the Higgs dataset [2] and MNIST dataset [1]. Among these, Higgs dataset consists of 1.1× 107

samples with d = 28 and the MNIST dataset consists of roughly 6×104 samples with d = 784.

Results for the MNIST dataset are given in Figure 2.7. For the MNIST dataset we use step

size γ = c/t, with c = 0.6, 0.9, 1.1, 1.5, 1.6 for mini-batch of sizes B = {1, 10, 100, 300, 1000}.

Results in Figure 2.6 show that for MNIST dataset the final error achieved decreases as we

change the batch size from B = 1 to B = 100 while it starts increasing as we change batch

size to B = 300 and B = 1000. To demonstrate the impact of latency on the convergence of

Algorithm 2 for MNIST dataset we fix batch size to B = 100 and consider latency such that

number of discarded samples is µ = {0, 10, 20, 40, 100}. Here, we can see that error increases as

increase µ = B which is what our theory predicted as well. For Higgs dataset we used c = 0.07

and mini-batch of sizes, B = {1, 102, 103, 104, 2 × 104}. We can see the same trend here with

suboptimal rate for batches of size B = 104 and B = 2 × 104, while all the other batch-size

choices give us O(1/t) rate. Furthermore, with latency in computing network wide average we

observe that for batch size B = 103 we achieve optimal error rate as far as we are discarding

up to 103 samples per iteration round.

2.11 Conclusion

In this chapter, we proposed algorithms (D-Krasulina and DM-Krasulina) for computing the

top eigenvector of a covariance matrix in high rate streaming settings. We further showed

theoretically that the proposed algorithms achieve the order optimal convergence rate in high

rate streaming settings where the classical single processor approaches will not be optimal

anymore. Finally, with the help of synthetic and real world data we demonstrate the efficacy of

the proposed methods.
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(a) Impact of batch size on convergence of Krasulina’s method.
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(b) Performance of Krasulina’s method for a mini-batch of size B = 100 with latency in
distributed computation.

Figure 2.5: Impact of batch size on convergence of Krasulina’s method for synthetic data.
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(a) Fast streaming data arriving at a single processor, we only process T/N samples and
discard rest of the samples.
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(b) Convergence of distributed Mini-batch Krasulina’s method while increasing the latency
such that number of discarded samples per iterate update is µ = {0, 10, 20, 40}.

Figure 2.6: Impact of batch size on convergence of Krasulina’s method for MNIST dataset [1].
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(a) Fast streaming data arriving at a single processor, we only process T/N samples and
discard rest of the samples.
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(b) Convergence of distributed Mini-batch Krasulina’s method while increasing the latency
such that number of discarded samples per iterate update is µ = {0, 10, 20, 40}.

Figure 2.7: Performance of distributed mini-batch Krasulina’s method for Higgs dataset [2].
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Chapter 3

Cloud K-SVD: A Decentralized

Dictionary Learning Algorithm for

Big, Distributed Data

This chapter studies the problem of data-adaptive representations for big, distributed data. It

is assumed that a number of geographically-distributed, interconnected sites have massive local

data and they are interested in collaboratively learning a low-dimensional geometric structure

underlying these data. In contrast to previous works on subspace-based data representations,

this work focuses on the geometric structure of a union of subspaces (UoS). In this regard,

it proposes a decentralized algorithm—which we call cloud K-SVD—for collaborative learning

of a UoS structure underlying distributed data of interest. The goal of cloud K-SVD is to

learn a common overcomplete dictionary at each individual site such that every sample in the

distributed data can be represented through a small number of atoms of the learned dictionary.

Cloud K-SVD accomplishes this goal without requiring exchange of individual samples between

sites. This makes it suitable for applications where sharing of raw data is discouraged due to

either privacy concerns or large volumes of data. This chapter also provides an analysis of cloud

K-SVD that gives insights into its properties as well as deviations of the dictionaries learned at

individual sites from a centralized solution in terms of different measures of local/global data

and topology of interconnections. Finally, the efficacy of cloud K-SVD is illustrated through

numerical simulations on real and synthetic data.
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3.1 Motivation

Modern information processing is based on the axiom that while real-world data may live in

high-dimensional ambient spaces, relevant information within them almost always lies near low-

dimensional geometric structures. Knowledge of these (low-dimensional) geometric structures

underlying data of interest is central to the success of a multitude of information processing

tasks. But this knowledge is unavailable to us in an overwhelmingly large number of applications

and a great deal of work has been done in the past to learn the geometric structure of data from

the data themselves. Much of that work, often studied under rubrics such as principal component

analysis (PCA) [68], generalized PCA [69], hybrid linear modeling [70], and dictionary learning

[4, 71, 72], has been focused on centralized settings in which the entire data are assumed

available at a single location. In recent years, there has been some effort to extend these works

to decentralized settings; see, e.g., [73–84]. The setup considered in some of these works is

that each distributed entity is responsible for either some dimensions of the data [73–75] or

some part of the learned geometric structure [74, 75, 80]. Other works in this direction also

focus on learning under the assumption of data lying near (linear) subspaces [73–77], require

extensive communications among the distributed entities [78], and ignore some of the technical

details associated with processing among distributed entities having interconnections described

by graphs of arbitrary, unknown topologies [76–79].

In this chapter, we are interested in a setting in which a number of geographically-distributed

sites have massive local data and these sites are interested in collaboratively learning a geo-

metric structure underlying their data by communicating among themselves over public/private

networks. The key constraints in this problem that distinguish it from some of the prior works

are: (i) sites cannot communicate “raw” data among themselves; (ii) interconnections among

sites are not described by a complete graph; and (iii) sites do not have knowledge of the global

network topology. All these constraints are reflective of the future of big, distributed data,

some of the examples include medical data [22], object detection in videos [9], images on social

media [85, 86], etc. . In particular, the first constraint is justified because of the size of local

data compilations as well as privacy concerns in the modern age. Similarly, the latter two

constraints are justified because linking geographically-distributed sites into a complete graph

can be cost-prohibitive and since enterprises tend to be protective of their internal network

topologies.
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3.1.1 Our Contributions

The first main contribution of this chapter is formulation of a decentralized method, which

we call cloud K-SVD, that enables data-adaptive representations in distributed settings. In

contrast to works that assume a linear geometric structure for data [73–77], cloud K-SVD is

based on the premise that data lie near a union of low-dimensional subspaces. The union-of-

subspaces (UoS) model is a nonlinear generalization of the subspace model [87]. The task of

learning the UoS underlying data of interest from data themselves is often termed dictionary

learning [4, 71, 72], which involves data-driven learning of an overcomplete dictionary such that

every data sample can be approximated through a small number of atoms of the dictionary.

Dictionary learning—when compared to linear data-adaptive representations such as the PCA

and the linear discriminant analysis [88]—has been shown to be highly effective for tasks such as

compression [71], denoising [89], object recognition [90], and inpainting [91]. Cloud K-SVD, as

the name implies, is a decentralized variant of the popular dictionary learning algorithm K-SVD

[4] and leverages a classical iterative eigenvector estimation algorithm, the power method [31,

Ch. 8], and consensus averaging [92] for collaborative dictionary learning.

The second main contribution of this chapter is a rigorous analysis of cloud K-SVD that

gives insights into its properties as well as deviations of the dictionaries learned at individual

sites from the centralized K-SVD solution in terms of different measures of local/global data

and topology of the interconnections. Using tools from linear algebra, convex optimization,

matrix perturbation theory, etc., our analysis shows that—under identical initializations—the

dictionaries learned by cloud K-SVD come arbitrarily close to the one learned by (centralized)

K-SVD as long as appropriate number of power method and consensus iterations are performed

in each iteration of cloud K-SVD. Finally, the third main contribution of this chapter involves

numerical experiments on synthetic and real-world data that demonstrate both the efficacy of

cloud K-SVD and the usefulness of collaborative dictionary learning over dictionary learning

only using data available at the individual sites.

3.1.2 Relationship to Previous Work

Some of the earliest works in decentralized processing date back nearly three decades [93, 94].

Since then a number of decentralized methods have been proposed for myriad tasks. Some

recent examples of this that do not involve a centralized fusion center include decentralized

methods for classification [95–97], localization [98, 99], linear regression [100], and (multitask)
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estimation [83, 84, 101]. But relatively little attention has been paid to the problem of data-

driven decentralized learning of the geometric structure of data. Notable exceptions to this

include [75–82]. While our work as well as [75–79] rely on consensus averaging for computing the

underlying geometric structure, we are explicit in our formulation that perfect consensus under

arbitrary, unknown topologies cannot be achieved. In contrast, developments in [75–79] assume

that there is no numerical error due to consensus averaging which means performing infinite

consensus iterations which is not feasible in practice . Further, [75–77] assume a subspace data

model, while [78] advocates the use of consensus averaging for computing sample covariance—an

approach that requires extensive communications among the distributed entities.

Our work is most closely related to that in [80–82], which also study dictionary learning

in distributed settings. But [80] focuses only on learning parts of the dictionary at each site

as opposed to the setup of this chapter in which we are interested in learning a complete

dictionary at each site. While this chapter and [81, 82] share the same setup, our work as well

as [82] are fundamentally different from [81]. The method proposed in [81] involves learning

local dictionaries at different sites and then diffusing these local dictionaries to obtain a global

dictionary. In contrast, our work and [82] are based on the centralized K-SVD algorithm, which

is known to be superior to other dictionary learning methods [4], and involve updating each

atom of the local dictionaries in a collaborative fashion. The difference between this work

and [82] lies in the fact that cloud K-SVD uses a decentralized variant of the power method to

update each atom, whereas [82] relies on decentralized optimization for this purpose. This helps

us rigorously analyze the performance of cloud K-SVD, whereas no such analysis is provided

in [82].

We conclude by noting that the decentralized power method component of cloud K-SVD

has similarities with the work in [76, 102]. However, unlike [76, 102], we do not assume perfect

consensus during iterations of the power method, which leaves open the question of convergence

of the decentralized variant of the power method. While analyzing cloud K-SVD, we in fact

end up addressing this question also. That part of our analysis is reminiscent of the one carried

out in [103] in the context of convergence behavior of decentralized eigenanalysis of a network

using a power method-like iterative algorithm. However, there are fundamental differences in

the analysis of [103] and our work because the exact place where consensus averaging is carried

out differs in the two applications.
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3.1.3 Notation and Chapter Organization

We use lower-case letters to represent scalars (v), while we use boldface lower-case letters to

represent vectors (v), and boldface upper-case letters to represent matrices V. The operator

sgn : R → {+1,−1} is defined as sgn(x) = x/|x|, while supp(v) returns indices of the nonzero

entries in vector v. Superscript (·)T denotes the transpose operation, ‖ · ‖0 counts the number

of nonzero entries in a vector, ‖v‖p denotes the usual `p norm of vector v, and 〈u,v〉 denotes

the inner product between vectors u and v. Given a set I, v|I and A|I denote a subvector and

a submatrix obtained by retaining entries of vector v and columns of matrix A corresponding

to the indices in I, respectively, while ‖A‖2, ‖A‖F , and ‖A‖max denote the operator norm,

Frobenius norm, and max norm (i.e., maximum absolute value) of matrix A, respectively.

Given matrices {Ai ∈ Rni×mi}Ni=1, diag{A1, . . . ,AN} denotes a block-diagonal matrix A ∈

R
∑
ni×

∑
mi that has Ai’s on its diagonal. Finally, given a matrix A, aj and aj,T denote the

jth column and the jth row of A, respectively.

The rest of this chapter is organized as follows. In Section 3.2, we formulate the problem

of collaborative dictionary learning from big, distributed data. In Section 3.3, we describe the

cloud K-SVD algorithm. In Section 3.4, we provide an analysis of cloud K-SVD algorithm. We

provide some numerical results in Section 3.5 and proofs of the main theorems are provided in

Sections 3.6–3.9. Finally, concluding remarks are given in Section 3.10.

3.2 Problem Formulation

In this chapter, we consider a collection of N geographically-distributed sites that are intercon-

nected to each other according to a fixed topology. Here, we use “site” in the broadest possible

sense of the term, with a site corresponding to a single computational system (e.g., sensor, drone,

smartphone, tablet, server, database), a collection of co-located computational systems (e.g.,

data center, computer cluster, robot swarm), etc. Mathematically, we represent this collection

and their interconnections through an undirected graph G = (N , E), where N = {1, 2, · · · , N}

denotes the sites and E denotes edges in G with (i, i) ∈ E , while (i, j) ∈ E whenever there is

a connection between sites i and j. The only assumption we make about the topology of G is

that it is a connected graph.

Next, we assume each site i has a collection of local data, expressed as a matrix Yi ∈ Rn×Si

with Si representing the number of data samples at the ith site. We can express all this

distributed data into a single matrix Y =
[
Y1 . . . YN

]
∈ Rn×S , where S =

∑N
i=1 Si denotes

the total number of data samples distributed across the N sites; see Figure 3.1 for a schematic
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representation of this. In this setting, the fundamental objective is for each site to collaboratively

learn a low-dimensional geometric structure that underlies the global (distributed) data Y.

The basic premises behind collaborative structure learning of global data, as opposed to local

structure learning of local data, are manifold. First, since the number of global samples is much

larger than the number of local samples, we expect that collaborative learning will outperform

local learning for data representations. Second, local learning will be strictly suboptimal for

some sites in cases where sampling density, noise level, fraction of outliers, etc., are not uniform

across all sites. Collaborative learning, on the other hand, will even out such nonuniformities

within local data.

Our main assumption is that the low-dimensional geometric structure underlying the global

data corresponds to a union of T0-dimensional subspaces in Rn, where T0 � n. One possible

means of learning such a structure is studied under the moniker dictionary learning, which

learns an overcomplete dictionary D such that each data sample is well approximated by no

more than T0 columns (i.e., atoms) of D [4, 71, 72]. Assuming the global data Y is available

at a centralized location, this problem of dictionary learning can be expressed as

(
D,X

)
= arg min

D,X
‖Y −DX‖2F s.t. ∀s, ‖xs‖0 ≤ T0, (3.1)

where D ∈ Rn×K with K > n is an overcomplete dictionary having unit `2-norm columns,

X ∈ RK×S corresponds to representation coefficients of the data having no more than T0 � n

nonzero coefficients per sample, and xs denotes the sth column in X. Note that (3.1) is non-

convex in
(
D,X

)
, although it is convex in D alone. One of the most popular approaches to

solving (3.1) involves alternate minimization in which one alternates between solving (3.1) for

D using a fixed X and then solving (3.1) for X using a fixed D [4, 104].

Unlike classical dictionary learning, however, we do not have the global data Y available

at a centralized location. Data aggregation either at a centralized location or at any one of

the individual sites is also impractical due to communications and storage costs of big data.

Furthermore, privacy issues may also preclude aggregation of data. Instead, our goal is to have

individual sites collaboratively learn dictionaries {D̂i}i∈N from global data Y such that these

collaborative dictionaries are close to a dictionary D that could have been learned from Y in

a centralized fashion. In the following section, we present a decentralized variant of a popular

dictionary learning algorithm that accomplishes this goal without exchanging raw data between

sites. This is followed by a rigorous analysis of the proposed algorithm in Section 3.4, which

establishes that the collaborative dictionaries learned using our proposed algorithm can indeed

be made to come arbitrarily close to a centralized dictionary.
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Figure 3.1: A schematic representing global data Y distributed across N sites. Here, n denotes
the dimension of each data sample, while Si denotes the total number of data samples available
at the ith site.

3.3 Cloud K-SVD

In this chapter, we focus on the K-SVD algorithm [4] as the basis for collaborative dictionary

learning. We have chosen to work with K-SVD because of its iterative nature and its reliance on

the singular value decomposition (SVD), both of which enable its exploitation for distributed

purposes. In the following, we first provide a brief overview of K-SVD, which is followed by

presentation of our proposed algorithm—termed cloud K-SVD—for collaborative dictionary

learning.

3.3.1 Dictionary Learning Using K-SVD

The K-SVD algorithm initializes with a (often randomized) dictionary D(0) and solves (3.1) by

iterating between two stages: a sparse coding stage and a dictionary update stage [4]. Specif-

ically, for a fixed estimate of the dictionary D(t−1) at the start of iteration t ≥ 1, the sparse

coding stage in K-SVD involves solving (3.1) for X(t) as follows:

∀s, x(t)
s = arg min

x∈RK
‖ys −D(t−1)x‖22 s.t. ‖x‖0 ≤ T0, (3.2)

where ys denotes the sth column of Y. While (3.2) in its stated form has combinatorial complex-

ity, it can be solved approximately by either convexifying (3.2) [105] or using greedy algorithms

[106].

After the sparse coding stage, K-SVD fixes X(t) and moves to the dictionary update stage.

The main novelty in K-SVD lies in the manner in which it carries out dictionary update, which

involves iterating through the K atoms of D(t−1) and individually updating the kth atom,
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Algorithm 3: Cloud K-SVD for dictionary learning
Input: Local data Y1,Y2, . . . ,YN , problem parameters K and T0, and
doubly-stochastic matrix W.
Initialize: Generate dref ∈ Rn and Dinit ∈ Rn×K randomly, set t← 0 and
D̂

(t)
i ← Dinit, i = 1, . . . , N .

1: while stopping rule do
2: t← t+ 1
3: (Sparse Coding) The ith site solves ∀s, x̃(t)

i,s ← arg min
x∈RK

‖yi,s − D̂
(t−1)
i x‖22 s.t. ‖x‖0 ≤ T0

4: for k = 1 to K (Dictionary Update) do
5: Ê

(t)
i,k,R ← YiΩ̃

(t)
i,k −

∑k−1
j=1 d̂

(t)
i,j x̂

(t)
i,j,T Ω̃

(t)
i,k

−
∑K
j=k+1 d̂

(t−1)
i,j x̃

(t)
i,j,T Ω̃

(t)
i,k

6: M̂i ← Ê
(t)
i,k,RÊ

(t)T

i,k,R

7: (Initialize Distributed Power Method) Generate qinit randomly, set tp ← 0 and
q̂

(tp)
i ← qinit

8: while stopping rule do
9: tp ← tp + 1

10: (Initialize Consensus Averaging) Set tc ← 0 and z
(tc)
i ← M̂iq̂

(tp−1)
i

11: while stopping rule do
12: tc ← tc + 1
13: z

(tc)
i ←

∑
j∈Ni

wi,jz
(tc−1)
i

14: end while
15: v̂

(tp)
i ← z

(tc)
i /[Wtc

1 ]i

16: q̂
(tp)
i ← v̂

(tp)
i /‖v̂(tp)

i ‖2
17: end while
18: d̂

(t)
i,k ← sgn

(
〈dref , q̂

(tp)
i 〉

)
q̂

(tp)
i

19: x̂
(t)
i,k,R ← d̂

(t)T

i,k Ê
(t)
i,k,R

20: end for
21: end while
Return: D̂

(t)
i , i = 1, 2, . . . , N .

k ∈ 1, . . . ,K, as follows:

d
(t)
k := arg min

d∈Rn

∥∥∥∥∥(Y −
k−1∑
j=1

d
(t)
j x

(t)
j,T −

K∑
j=k+1

d
(t−1)
j x

(t)
j,T

)
− dx

(t)
k,T

∥∥∥∥∥
2

F

= arg min
d∈Rn

‖E(t)
k − d x

(t)
k,T ‖

2
F . (3.3)

Here, E
(t)
k is the representation error for Y using first k− 1 atoms of D(t) and last k+ 1, . . . ,K

atoms of D(t−1). In order to simplify computations, K-SVD in [4] further defines an ordered

set ω(t)
k = {s : 1 ≤ s ≤ S,x

(t)
k,T (s) 6= 0}, where x

(t)
k,T (s) denotes the sth element of x

(t)
k,T , and

an S × |ω(t)
k | binary matrix Ω

(t)
k that has ones in (ω

(t)
k (s), s) locations and zeros everywhere

else. Then, defining E
(t)
k,R = E

(t)
k Ω

(t)
k and x

(t)
k,R = x

(t)
k,TΩ

(t)
k , it is easy to see from (3.3) that

d
(t)
k = arg mind∈Rn

∥∥∥E(t)
k,R − d x

(t)
k,R

∥∥∥2

F
. Therefore, solving (3.3) is equivalent to finding the best

rank-one approximation of E
(t)
k,R, which is given by the Eckart–Young theorem as d

(t)
k x

(t)
k,R =

σ1u1v
T
1 , where u1 and v1 denote the largest left- and right-singular vectors of E

(t)
k,R, respectively,
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while σ1 denotes the largest singular value of E
(t)
k,R. The kth atom of D(t) can now simply be

updated as d
(t)
k = u1. It is further advocated in [4] that the kth row of the “reduced” coefficient

matrix, x
(t)
k,R, should be simultaneously updated to x

(t)
k,R = σ1v

T
1 . The dictionary update stage

in K-SVD involves K such applications of the Eckart–Young theorem to update the K atoms of

D(t−1) and the K “reduced” rows of X(t). The algorithm then moves to the sparse coding stage

and continues alternating between the two stages till a stopping criterion (e.g., a prescribed

representation error) is reached.

3.3.2 Collaborative Dictionary Learning Using Cloud K-SVD

We now present our decentralized dictionary learning algorithm based on K-SVD. The key to

distributing K-SVD is understanding ways in which both the sparse coding and the dictionary

update stages can be distributed. To this end, at iteration t ≥ 1 of decentralized dictionary

learning algorithm each site i has a local estimate D̂
(t−1)
i of the desired dictionary from the

previous iteration. In order for the sparse coding stage to proceed, a key observation here is

that as long as the local dictionary estimates D̂
(t−1)
i remain close to each other (established in

Section 3.4) each site can “locally” compute representation coefficients of its local data without

collaborating with other sites by locally solving Step 3 of Algorithm 3, i.e.,

∀s, x̃
(t)
i,s = arg min

x∈RK
‖yi,s − D̂

(t−1)
i x‖22 s.t. ‖x‖0 ≤ T0, (3.4)

where yi,s and x̃
(t)
i,s denote the sth sample and its coefficient vector at site i, respectively.

The next challenge in collaborative dictionary learning based on K-SVD arises during the

dictionary update stage. Recall that the dictionary update stage in K-SVD involves computing

the largest left- and right-singular vectors of the “reduced” error matrix E
(t)
k,R = E

(t)
k Ω

(t)
k , k ∈

{1, . . . ,K}. However, unless the local dictionary estimates D̂
(t−1)
i happen to be identical,

we end up with N such (reduced) error matrices in a distributed setting due to N different

local dictionary estimates. To resolve this, we propose to use the following definition of the

reduced error matrix in a distributed setting: Ê
(t)
k,R =

[
Ê

(t)
1,k,R . . . Ê

(t)
N,k,R

]
, where Ê

(t)
i,k,R =

YiΩ̃
(t)
i,k−

(∑k−1
j=1 d̂

(t)
i,j x̂

(t)
i,j,T +

∑K
j=k+1 d̂

(t−1)
i,j x̃

(t)
i,j,T

)
Ω̃

(t)
i,k. Here, x̃

(t)
i,j,T denotes the jth row of coefficient

matrix X̃
(t)
i computed at site i during the sparse coding step performed on Yi using D̂

(t−1)
i at

the start of iteration t, while x̂
(t)
i,j,T denotes the jth row of the updated coefficient matrix X̂

(t)
i

available at site i due to the update in coefficient matrix performed during the dictionary update

step. Furthermore, Ω̃
(t)
i,k is similar to Ω

(t)
k defined for K-SVD except that it is now defined for

only local coefficient matrix X̃
(t)
i at site i.

Next, in keeping with the K-SVD derivation in [4], we propose that each of the N sites
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updates the kth atom of its respective local dictionary and the kth row of its respective “reduced”

coefficient matrix, x̂
(t)
i,k,R = x̂

(t)
i,k,T Ω̃

(t)
i,k, by collaboratively computing the dominant left- and

right-singular vectors of the distributed error matrix Ê
(t)
k,R, denoted by u1 and v1, respectively.1

In fact, since uT
1 Ê

(t)
k,R = σ1v1 with σ1 being the largest singular value of Ê

(t)
k,R, it follows that

if a site has access to the dominant left-singular vector, u1, of Ê
(t)
k,R then it can simply update

the kth row of its respective “reduced” coefficient matrix by setting d̂
(t)
i,k = u1 and setting

x̂
(t)
i,k,R = d̂

(t)T

i,k Ê
(t)
i,k,R. Therefore, we need only worry about collaborative computation of u1 in

this setting. To this end, we define M̂(t) = Ê
(t)
k,RÊ

(t)T

k,R and note that u1 corresponds to the

dominant eigenvector of M̂(t). Now express M̂(t) as M̂(t) =
∑N
i=1 M̂

(t)
i and notice that each

M̂
(t)
i = Ê

(t)
i,k,RÊ

(t)T

i,k,R is a matrix that is readily computable at each local site. Our goal now is

computing the dominant eigenvector of M̂(t) =
∑N
i=1 M̂

(t)
i in a collaborative manner at each

site. In order for this, we will make use of decentralized power method, which has been invoked

previously in [76, 77, 103] and which corresponds to a decentralized variant of the classical

power method for eigenanalysis [31].

Decentralized Power Method: Power method is an iterative procedure for computing

eigenvectors of a matrix. It is simple to implement and assuming that the largest eigenvalue λ1

of a matrix is strictly greater than its second-largest eigenvalue λ2 it converges to the subspace

spanned by the dominant eigenvector at an exponential rate. We are interested in a decentralized

variant of the power method to compute the dominant eigenvector of M̂(t) =
∑N
i=1 M̂

(t)
i , where

the M̂
(t)
i ’s are distributed across N sites. To this end, we proceed as follows.

First, all sites initialize to the same (unit-norm) estimate of the eigenvector q̂
(0)
i = qinit.2

At iteration tp of the decentralized power method, each site computes M̂
(t)
i q̂

(tp−1)
i locally,

where q̂
(tp−1)
i is the estimate of the dominant eigenvector of M̂(t) at the ith site after (tp − 1)-

th iteration of the decentralized power method. In the next step, the sites collaboratively

compute an approximation v̂
(tp)
i of

∑
i M̂

(t)
i q̂

(tp−1)
i in a decentralized manner (Steps 10–14 of

Algorithm 3). Finally, each site normalizes its estimate of the dominant eigenvector of M̂(t)

locally: q̂
(tp)
i = v̂

(tp)
i /‖v̂(tp)

i ‖2.

It is clear from the preceding discussion that the key in decentralized power method is

the ability of the sites to collaboratively compute an approximation of
∑
i M̂

(t)
i q̂

(tp−1)
i in each

1An alternative is to compute an estimate of Ê
(t)
k,R at each site using consensus averaging, after which

individual sites can compute SVD of Ê
(t)
k,R locally. Despite its apparent simplicity, this approach will have

significantly greater communication overhead compared to our proposed method.
2This can be accomplished, for example, through the use of (local) random number generators initialized

with the same seed. Also, note that a key requirement in power method is that 〈u1,qinit〉 6= 0, which holds
with probability one in the case of a random initialization.
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iteration. In order for this, we make use of the popular consensus averaging method [107].

To perform consensus averaging, we first design a doubly-stochastic weight matrix W that

adheres to the topology of the underlying graph G. In particular, we have that wi,j = 0

whenever (i, j) 6∈ E . We refer the reader to [107–109] for designing appropriate weight matrices

in a decentralized manner without relying on the knowledge of the global network topology.

In order to compute
∑
i M̂

(t)
i q̂

(tp−1)
i using consensus averaging each site initializes consensus

averaging routine (Steps 10–14 of Algorithm 3) with their local estimates of the top eigenvectors

at iteration tp of the power method, z
(0)
i = M̂

(t)
i q̂

(tp−1)
i . Next, we define Ni = {j : (i, j) ∈ E}

to be the neighborhood of site i and Z(0) =
[
z

(0)
1 . . . z

(0)
N

]T
be the concatenation of all the

local initial eigenvector estimates. Then consensus averaging at iteration, tc, works by having

each site carry out the following update through communications with its neighbors: z
(tc)
i =∑

j∈Ni
wi,jz

(tc−1)
j . The dynamics of the overall system in this case evolve as Z(tc) = WtcZ(0). It

then follows that Z
(tc)
i,T

tc−→ 1TZ(0)/N [107], where Z
(tc)
i,T denotes the ith row of Z(tc) and 1 ∈ RN

denotes a (column) vector of all ones. This in particular implies that each site achieves perfect

consensus averaging as tc →∞ and obtains Z
(∞)
i,T

T
= 1

N

∑N
j=1 z

(0)
j = 1

N

∑N
j=1 M̂

(t)
j q̂

(tp−1)
j .

But one cannot perform infinite consensus iterations in practice within each iteration of

the decentralized power method. Instead, we assume a finite number of consensus iterations,

denoted by Tc, in each power method iteration and make use of the modification of standard

consensus averaging proposed in [103] to obtain v̂
(tp)
i = Z

(Tc)
i,T

T
/[WTc

1 ]i, where WTc
1 is the first

column of WTc and [·]i denotes the ith entry of a vector. Note that this leads to an error ε(tp)
i,c

within v̂
(tp)
i at each site for any finite Tc, i.e., v̂

(tp)
i = Z

(Tc)
i,T

T
/[WTc

1 ]i =
∑N
j=1 M̂jq̂

(tp−1)
j +

ε
(tp)
i,c . After the completion of consensus iterations, each site i in iteration tp of power method

normalizes this vector v̂
(tp)
i to get an estimate of the dominant eigenvector of M̂(t). Finally, we

carry out enough iterations of the distributed power method at each site that the error between

successive estimates of the eigenvector falls below a prescribed threshold.

We have now motivated and described the key components of our proposed algorithm and the

full collaborative dictionary learning algorithm, termed cloud K-SVD, is detailed in Algorithm 3.

Notice the initialization of cloud K-SVD differs from K-SVD in the sense that each site also

generates a common (random) reference vector dref ∈ Rn and stores it locally. The purpose

of dref is to ensure that the eigenvectors computed by different sites using the distributed

power method all point in the same quadrant, rather than in antipodal quadrants (Step 18 in

Algorithm 3). While this plays a role in analysis, it does not have an effect on the workings of

cloud K-SVD. Notice also that we have not defined any stopping rules in Algorithm 3. One set

of rules could be to run the algorithm for fixed dictionary learning iterations Td, power method
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iterations Tp, and consensus iterations Tc. It is worth noting here that algorithms such as cloud

K-SVD are often referred to as two time-scale algorithms in the literature. Nonetheless, cloud

K-SVD with the stopping rules of finite (Td, Tp, Tc) can be considered a quasi one time-scale

algorithm. Accordingly, our analysis of cloud K-SVD assumes these stopping rules.

Remark 4. A careful reading of Algorithm 3 reveals that normalization by [Wtc
1 ]i in Step 15 is

redundant due to the normalization in Step 16. We retain the current form of Step 15 however

to facilitate the forthcoming analysis.

3.4 Analysis of Cloud K-SVD

Since power method and consensus averaging in Algorithm 3 cannot be performed for an infinite

number of iterations, in practice this results in residual errors in each iteration of the algorithm.

It is therefore important to understand whether the dictionaries {D̂i} returned by cloud K-

SVD approach the dictionary that could have been obtained by centralized K-SVD [4]. In order

to address this question, we need to understand the behavior of major components of cloud

K-SVD, which include sparse coding, dictionary update, and distributed power method within

dictionary update. In addition, one also expects that the closeness of D̂i’s to the centralized

solution will be a function of certain properties of local/global data. We begin our analysis

of cloud K-SVD by first stating some of these properties in terms of the centralized K-SVD

solution.

3.4.1 Preliminaries

The first thing needed to quantify deviations of the cloud K-SVD dictionaries from the central-

ized K-SVD dictionary is algorithmic specification of the sparse coding steps in both algorithms.

While the sparse coding steps as stated in (3.2) and (3.4) have combinatorial complexity, vari-

ous low-complexity computational approaches can be used to solve these steps in practice. Our

analysis in the following will be focused on the case when sparse coding in both cloud K-SVD

and centralized K-SVD is carried out using the lasso [110]. Specifically, we assume sparse coding

is carried out by solving

xi,s = arg min
x∈RK

1
2‖yi,s −Dx‖22 + τ‖x‖1 (3.5)

with the regularization parameter τ > 0 selected in a way that ‖xi,s‖0 ≤ T0 � n. This can be

accomplished, for example, by making use of the least angle regression algorithm [111]. Note
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that the lasso also has an alternate constrained form which is given by

xi,s = arg min
x∈RK

1
2‖yi,s −Dx‖22 s.t. ‖x‖1 ≤ η, (3.6)

and (3.5) & (3.6) are identical for an appropriate ητ = η(τ) [112].

Remark 5. While extension of our analysis to other sparse coding methods such as orthogonal

matching pursuit (OMP) [106] is beyond the scope of this work, such extensions would mainly

rely on perturbation analyses of different sparse coding methods. In the case of OMP, for

instance, such perturbation analysis is given in [113], which can then be leveraged to extend

our lasso-based cloud K-SVD result to OMP-based result.

Our analysis in the following is also based on the assumption that cloud K-SVD and cen-

tralized K-SVD are identically initialized, i.e., D̂
(0)
i = D(0), i = 1, . . . , N , where D(t), t ≥ 0,

in the following denotes the centralized K-SVD dictionary estimate in the tth iteration. While

both cloud K-SVD and centralized K-SVD start from the same initial estimates, the cloud K-

SVD dictionaries get perturbed in each iteration due to imperfect power method and consensus

averaging. In order to ensure these perturbations do not cause the cloud K-SVD dictionaries

to diverge from the centralized solution after Td iterations, we need the dictionary estimates

returned by centralized K-SVD in each iteration to satisfy certain properties. Below, we present

and motivate these properties.

[P1] Let x
(t)
i,s denote the solution of the lasso (i.e., (3.5)) for D = D(t−1) and regularization

parameter τ = τ (t), t = 1, . . . , Td. Then there exists some C1 > 0 such that the following

holds:

min
t,i,s,j 6∈supp(x

(t)
i,s)

τ (t) −
∣∣〈d(t)

j ,yi,s −D(t−1)x
(t)
i,s〉
∣∣ > C1.

In our analysis in the following, we will also make use of the smallest regularization

parameter among the collection
{
τ (t)
}Td

t=1
, defined as τmin = min

t
τ (t), and the largest

value of parameter ητ (defined in (3.6)) among the collection
{
η

(t)
τ = η(τ (t))

}Td

t=1
, defined

as ητ,max = max
t
η

(t)
τ .

[P2] Define ΣT0
=
{
I ⊂ {1, . . . ,K} : |I| = T0

}
. Then there exists some C ′2 >

C4
1τ

2
min

1936 such that

the following holds:

min
t=1,...,Td,I∈ΣT0

σT0

(
D

(t−1)
|I

)
≥
√
C ′2,

where σT0
(·) denotes the T th0 (ordered) singular value of a matrix. In our analysis, we will

be using the parameter C2 =
(√

C ′2 −
C2

1τmin

44

)2

. As explained in the notation section,

here, D
(t−1)
|I is the submatrix of D(t−1) containing only the columns at indices I.
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[P3] Let λ(t)
1,k > λ

(t)
2,k ≥ . . . λ

(t)
n,k ≥ 0 denote the eigenvalues of the centralized “reduced” matrix

E
(t)
k,RE

(t)T

k,R , k ∈ {1, . . . ,K}, in the tth iteration, t ∈ {1, . . . , Td}. Then there exists some

C ′3 < 1 such that the following holds:

max
t,k

λ
(t)
2,k

λ
(t)
1,k

≤ C ′3.

Now define C3 = max
{

1, 1

mint,k λ
(t)
1,k(1−C′3)

}
, which we will use in our forthcoming analysis.

We now comment on the rationale behind these three properties. Properties [P1] and [P2]

correspond to sufficient conditions for x
(t)
i,s to be a unique solution of (3.5) [114] and guarantee

that the centralized K-SVD generates a unique collection of sparse codes in each dictionary

learning iteration. Property [P3], on the other hand, ensures that algorithms such as the power

method can be used to compute the dominant eigenvector of E
(t)
k,RE

(t)T

k,R in each dictionary

learning iteration [31]. In particular, [P3] is a statement about the worst-case spectral gap of

E
(t)
k,RE

(t)T

k,R . In addition to these properties, our final analytical result for cloud K-SVD will also

be a function of a certain parameter of the centralized error matrices
{
E

(t)
k

}K
k=1

generated by

the centralized K-SVD in each iteration. We define this parameter in the following for later use.

Let E
(t)
i,k, i = 1, . . . , N , denote part of the centralized error matrix E

(t)
k associated with the data

of the ith site in the tth iteration, i.e., E
(t)
k =

[
E

(t)
1,k · · · E

(t)
N,k

]
, k = 1, . . . ,K, t = 1, . . . , Td.

Then

C4 = max
{

1,max
t,i,k
‖E(t)

i,k‖2
}
. (3.7)

3.4.2 Main Result

We are now ready to state the main result of this paper. This result is given in terms of the

‖·‖2 norm mixing time, Tmix, of the Markov chain associated with the doubly-stochastic weight

matrix W, defined as

Tmix = max
i=1,...,N

inf
t∈N

{
t : ‖eT

i Wt − 1
N 1T‖2 ≤

1

2

}
. (3.8)

Here, ei ∈ RN denotes the ith column of the identity matrix IN . Note that the mixing time

Tmix can be upper bounded in terms of inverse of the absolute spectral gap of W, defined as

1 − |λ2(W)| with λ2(W) denoting the second largest (in modulus) eigenvalue of W [115]. As

a general rule, better-connected networks can be made to have smaller mixing times compared

to sparsely connected networks. We refer the reader to [116] and [115, Chap. 15] for further

details on the relationship between Tmix and the underlying network topology.
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Theorem 5 (Stability of Cloud K-SVD Dictionaries). Suppose cloud K-SVD (Algorithm 3)

and (centralized) K-SVD are identically initialized and both of them carry out Td dictionary

learning iterations. In addition, assume cloud K-SVD carries out Tp power method iterations

during the update of each atom and Tc consensus iterations during each power method itera-

tion. Finally, assume the K-SVD algorithm satisfies properties [P1]–[P3]. Next, define α =

maxt,k
∑N
i=1 ‖Ê

(t)
i,k,RÊ

(t)T

i,k,R‖2, β = maxt,tp,k
1∥∥∥Ê(t)

k,RÊ
(t)T

k,R q
(tp)

c,t,k

∥∥∥
2

, γ = maxt,k

√∑N
i=1 ‖Ê

(t)
i,k,RÊ

(t)T

i,k,R‖2F ,

ν = maxt,k
λ̂
(t)
2,k

λ̂
(t)
1,k

, θ̂(t)
k ∈ [0, π/2] as θ̂(t)

k = arccos

( ∣∣∣〈u(t)
1,k,q

init
〉∣∣∣

‖u(t)
1,k‖2‖qinit‖2

)
, µ = max

{
1,maxk,t tan(θ̂

(t)
k )
}
,

and ζ = K
√

2Smax

(
6
√
KT0

τminC2
+ ητ,max

)
, where Smax = maxi Si, u

(t)
1,k is the dominant eigenvector

of Ê
(t)
k,RÊ

(t)T

k,R , λ̂(t)
1,k and λ̂(t)

2,k are first and second largest eigenvalues of Ê
(t)
k,RÊ

(t)T

k,R respectively,

and q
(tp)
c,t,k denotes the iterates of a centralized power method initialized with qinit for estimation

of the dominant eigenvector of Ê
(t)
k,RÊ

(t)T

k,R . Then, assuming mint,k
∣∣〈u(t)

1,k,q
init〉

∣∣ > 0, and fixing

any ε ∈
(

0,min
{

(10α2β2)−1/3Tp , ( 1−ν
4 )1/3

})
and δd ∈

(
0,min

{
1√
2
,
C2

1τmin

44
√

2K

})
, we have

max
i=1,...,N
k=1,...,K

∥∥∥d̂(Td)
i,k d̂

(Td)T

i,k − d
(Td)
k d

(Td)T

k

∥∥∥
2
≤ δd (3.9)

as long as the number of power method iterations

Tp ≥
2(TdK − 2) log(8C3C

2
4N + 5) + (Td − 1) log(1 + ζ) + log(8C3C4µN

√
nδ−1
d )

log[(ν + 4ε3)−1]

and the number of consensus iterations Tc = Ω
(
TpTmix log (2αβε−1) + Tmix log (α−1γ

√
N)
)
.

The proof of this theorem is given in Section 3.8. We now comment on the major implications

of Theorem 5. First, the theorem establishes that the decentralized dictionaries {D̂(Td)
i } can

indeed remain arbitrarily close to the centralized dictionary D(Td) after Td dictionary learning

iterations (cf. 3.9). Second, the theorem shows that this can happen as long as the number of

decentralized power method iterations Tp scale in a certain manner. In particular, Theorem 5

calls for this scaling to be at least linear in TdK (modulo the logN multiplication factor), which

is the total number of SVDs that K-SVD needs to perform in Td dictionary learning iterations.

On the other hand, Tp need only scale logarithmically with Smax, which is significant in the

context of big data problems. Other main problem parameters that affect the scaling of Tp

include T0, n, and δ−1
d , all of which enter the scaling relation in a logarithmic fashion. Finally,

Theorem 5 dictates that the number of consensus iterations Tc should also scale at least linearly

with TpTmix (modulo some log factors) for the main result to hold. Notice that the effect of

network topology on the number of consensus iterations is captured through the dependence

of Tc on the mixing time Tmix. Combining all the iterative steps we end up performing

Td × Tp × Tc communications throughout the dictionary learning process which in terms of
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number of samples scales as Ω(log2 Smax) which makes cloud K-SVD a good candidate for big

data settings. In summary, Theorem 5 guarantees that the decentralized dictionaries learned by

cloud K-SVD can remain close to the centralized dictionary without requiring excessive numbers

of power method and consensus averaging iterations.

We now discuss briefly the main analytical challenges that one needs to address to prove

Theorem 5. In the first dictionary learning iteration (t = 1), we have {D̂(t−1)
i ≡ D(t−1)}

due to identical initializations. While this means both K-SVD and cloud K-SVD result in

identical sparse codes for t = 1, the distributed dictionaries begin to deviate from the centralized

dictionary after this step. The perturbations in {d̂(1)
i,k} happen due to the finite numbers of power

method and consensus averaging iterations for k = 1, whereas they happen for k > 1 due to this

reason as well as due to the earlier perturbations in {d̂(1)
i,j , x̂

(1)
i,j,T }, j < k. In subsequent dictionary

learning iterations (t > 1), therefore, cloud K-SVD starts with already perturbed distributed

dictionaries {D̂(t−1)
i }. This in turn also results in deviations of the sparse codes computed by

K-SVD and cloud K-SVD, which then adds another source of perturbations in {d̂(t)
i,k} during

the dictionary update steps. To summarize, imperfect power method and consensus averaging

in cloud K-SVD introduce errors in the top eigenvector estimates of (centralized) E
(1)
1,RE

(1)T

1,R

at individual sites, which then accumulate for (k, t) 6= (1, 1) to also cause errors in estimate

Ê
(t)
k,RÊ

(t)T

k,R of the matrix E
(t)
k,RE

(t)T

k,R available to cloud K-SVD. Collectively, these two sources

of errors cause deviations of the distributed dictionaries from the centralized dictionary and

the proof of Theorem 5 mainly relies on our ability to control these two sources of errors. In

the following we provide the roadmap towards addressing the above mentioned challenges and

hence proving Theorem 5.

3.4.3 Roadmap to Theorem 5

The first main result needed for the proof of Theorem 5 looks at the errors in the estimates

of the dominant eigenvector u1 of an arbitrary symmetric matrix M =
∑N
i=1 Mi obtained

at individual sites using imperfect power method and consensus averaging when the Mi’s are

distributed across the N sites (cf. Section 3.3.2). The following result effectively helps us control

the errors in cloud K-SVD dictionaries due to Steps 7–17 in Algorithm 3.

Theorem 6 (Stability of Decentralized Power Method). Consider any symmetric matrix M =∑N
i=1 Mi with dominant eigenvector u1 and eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λn|. Suppose

each Mi, i = 1, . . . , N , is only available at the ith site in our network and let q̂i denote an

estimate of u1 obtained at site i after Tp iterations of the distributed power method (Steps
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7–17 in Algorithm 3). Next, define αp =
∑N
i=1 ‖Mi‖2, βp = maxtp=1,...,Tp

1

‖Mq
(tp)
c ‖2

, and

γp =
√∑N

i=1 ‖Mi‖2F , where q
(tp)
c denotes the iterates of a centralized power method initialized

with qinit. Then, fixing any ε ∈
(
0, (10α2

pβ
2
p)−1/3Tp

)
, we have

max
i=1,...,N

∥∥u1u
T
1 − q̂iq̂

T
i

∥∥
2
≤ tan (θ)

∣∣∣∣λ2

λ1

∣∣∣∣Tp

+ 4ε3Tp , (3.10)

as long as |〈u1,q
init〉| > 0 and the number of consensus iterations within each iteration of the

distributed power method (Steps 10–14 in Algorithm 3) satisfies Tc = Ω
(
TpTmix log (2αpβpε

−1)+

Tmix log (α−1
p γp

√
N)
)
. Here, θ denotes the angle between u1 and qinit, defined as:

θ = arccos(|〈u1,q
init〉|/(‖u1‖2‖qinit‖2)).

The proof of this theorem is given in Section 3.6. Theorem 6 states that q̂i
Tp−→ ±u1

geometrically at each site as long as enough consensus iterations are performed in each iteration

of the distributed power method. In the case of a finite number of distributed power method

iterations, (3.10) in Theorem 6 tells us that the maximum error in estimates of the dominant

eigenvector is bounded by the sum of two terms, with the first term due to finite number of

power method iterations and the second term due to finite number of consensus iterations.

The second main result needed to prove Theorem 5 looks at the errors between individual

blocks of the reduced distributed error matrix Ê
(t)
k,R =

[
Ê

(t)
1,k,R, · · · , Ê

(t)
N,k,R

]
and the reduced

centralized error matrix E
(t)
k,R =

[
E

(t)
1,k,R, · · · ,E

(t)
N,k,R

]
for k ∈ {1, · · · ,K} and t ∈ {1, · · · , Td}.

This result helps us control the error in step 5 of Algorithm 3 and, together with Theorem 6,

characterizes the major sources of errors in cloud K-SVD in relation to centralized K-SVD.

The following theorem provides a bound on error in E
(t)
i,k,R.

Theorem 7 (Perturbation in the matrix Ê
(t)
i,k,R). Recall the definitions of Ω

(t)
k and Ω̃

(t)
i,k from

Section 3.3.1 and Section 3.3.2, respectively. Next, express Ω
(t)
k = diag{Ω(t)

1,k, · · · ,Ω
(t)
N,k}, where

Ω
(t)
i,k corresponds to the data samples associated with the ith site, and define B

(t)
i,k,R = Ê

(t)
i,k,R −

E
(t)
i,k,R. Finally, let ζ, µ, ν, ε, and δd be as in Theorem 5, define ε = µνTp + 4ε3Tp , and assume

ε ≤ δd
8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) . Then, if we perform Tp power method iterations and

Tc = Ω
(
TpTmix log (2αβε−1) + Tmix log (α−1γ

√
N)
)
consensus iterations in cloud K-SVD and

assume [P1]–[P3] hold, we have for i ∈ {1, . . . , N}, t ∈ {1, · · · , Td}, and k ∈ {1, · · · ,K}

‖B(t)
i,k,R‖2 ≤


0, for t = 1, k = 1,

ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−2, o.w.

Proof of Theorem 7 along with the proofs of supporting lemmas is given in Section 3.7.

Theorem 7 tells us that the error in matrix E
(t)
i,k,R can be made arbitrarily small through a
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Figure 3.2: Performance of cloud K-SVD on synthetic data. (a) Average error in eigenvector
estimates of distributed power method. (b) Average error in dictionary atoms returned by
cloud K-SVD. (c) Average representation error of cloud K-SVD. (d) Average representation
error and average deviation per dictionary atom (from centralized dictionary learned in a full-
batch setting) of K-SVD in an online setting as a function of dictionary learning iterations.

suitable choice of Tp and ε as long as all of the assumptions of Theorem 5 are satisfied. The

proof of Theorem 5, given in Section 3.8, relies on these two aforementioned theorems. In

particular, the proof of Theorem 5 shows that the assumption on ε in Theorem 7 is satisfied

as long as we are performing power method iterations and consensus iterations as required by

Theorem 5.

3.5 Numerical Experiments

We present numerical results in this section for demonstrating the usefulness of cloud K-SVD

and also validating some of our theoretical results. In the first set of experiments, synthetic data

is used to demonstrate efficacy of cloud K-SVD for data representation. Furthermore, behavior
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of decentralized power method (Steps 7–17 in Algorithm 3) as a function of the number of

consensus iterations and deviations in cloud K-SVD dictionaries from centralized dictionary as

a function of number of power method iterations are also shown with the help of simulations.

In the second set of experiments, MNIST dataset is used to motivate an application of cloud

K-SVD that can benefit from collaboration between distributed sites.

3.5.1 Experiments Using Synthetic Data

These experiments correspond to a total of N = 100 sites, with each site having Si = 500 local

samples in R20 (i.e., n = 20). Interconnections between the sites are randomly generated using

an Erdős–Rényi graph with parameter p = 0.5. In order to generate synthetic data at individual

sites, we first generate a dictionary with K = 50 atoms, D ∈ R20×50, with columns uniformly

distributed on the unit sphere in R20. Next, we randomly select a 45-column subdictionary of

D for each site and then generate samples for that site using a linear combination of T0 = 3

randomly selected atoms of this subdictionary, followed by addition of white Gaussian noise

with variance σ2 = 0.01. All data samples in our experiments are also normalized to have unit

`2 norms. Sparse coding in these experiments is performed using an implementation of OMP

provided in [117]. Finally, in order to carry out consensus averaging, we generate a doubly-

stochastic weight matrix W according to the local-degree weights method described in [107,

Section 4.2].

In our first set of experiments we illustrate the convergence behavior of the decentralized

power method component within cloud K-SVD (Steps 7–17 in Algorithm 3) as a function of

the number of consensus iterations. The results of these experiments, which are reported in

Figure 3.2(a), correspond to five different values of the number of consensus iterations (3, 4,

5, 10, 15) within each iteration of the decentralized power method. Specifically, let q denote

the principal eigenvector of the matrix
∑N
i=1 M̂i in Algorithm 3 (Step 6) computed using Mat-

lab (ver. 2014a) and q̂
(tp)
i denote an estimate of q obtained at site i after the tthp iteration

of the decentralized power method. Then Figure 3.2(a) plots E
(tp)
eig , which is the average of

‖qqT − q̂
(tp)
i q̂

(tp)T
i ‖2 over all sites i ∈ {1, . . . , N}, dictionary update steps k ∈ {1, . . . ,K},

dictionary learning iterations Td, and 100 Monte-Carlo trials, as a function of the number of

decentralized power method iterations tp. It can be seen from this figure that the distributed

power method of Algorithm 3 hits an error floor with increasing number of decentralized power

method iterations, where the floor is fundamentally determined by the number of consensus

iterations within each power method iteration, as predicted by Theorem 6.
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Using the same setup our second set of experiments demonstrate the effectiveness of collabo-

ratively learning a dictionary using cloud K-SVD, as opposed to each site learning a local dictio-

nary from its local data using the canonical K-SVD algorithm (referred to as local K-SVD in the

following). Moreover, these experiments also demonstrate the variations in cloud K-SVD results

when we change the number of power method iterations (Tp) and consensus iterations (Tc). In

Figure 3.2(c), we plot average representation error, defined as 1
nS

∑N
i=1

∑Si

j=1 ‖yi,j −Dxi,j‖2,

as a function of the number of dictionary learning iterations for three dictionary learning meth-

ods, namely, centralized (canonical) K-SVD, cloud K-SVD, and local K-SVD. It can be seen

from this figure, which corresponds to an average of 100 Monte-Carlo trials, that cloud K-SVD

and centralized K-SVD have similar performance and both of them perform better than local

K-SVD. In particular, the local K-SVD error is ≈ 0.06 after 40 iterations, while it is ≈ 0.03

for cloud K-SVD and centralized K-SVD. Notice that changes in the number of power method

iterations induce relatively minor changes in the representation error of cloud K-SVD. Next,

Figure 3.2(b) highlights the average error in dictionary atoms learned using cloud K-SVD as

compared to centralized K-SVD. For this experiment, number of consensus iterations are either

Tc = 1 or Tc = 10, and for each of these values, the number of power method iterations used

are Tp = 2, 3, 4, 5. These experiments show the effect of changing Tp and Tc on the error in

collaborative dictionaries. This error is averaged over all dictionary atoms and sites in each iter-

ation for 100 Monte-Carlo trials, defined as E
(t)
average = 1

NK

∑K
k=1

∑N
i=1 ‖d

(t)
k d

(t)T

k − d̂
(t)
i,kd̂

(t)T

i,k ‖2.

Results in Figure 3.2(b) show that this error in dictionary atoms increases sharply at the start,

but it stabilizes after some iterations. Important point to note here is that as we increase the

number of power method iterations and consensus iterations we get smaller average error in

dictionary atoms as predicted by our analysis.

Next, we discuss the usage of cloud K-SVD in online settings. Since it has already been

demonstrated that cloud K-SVD achieves performance similar to that of K-SVD, we focus here

on the representation error of centralized K-SVD in online settings. The setup corresponds to a

mini-batch of 500 training samples being periodically generated at each site and the assumption

that each site has a buffer limit of 1000 samples. Thus only samples from the last two periods

can be used for dictionary learning. After arrival of each new mini-batch of training samples, we

use the dictionary learned in the last period to warm-start (centralized) K-SVD and carry out

60 dictionary learning iterations. Figure 3.2(d) shows the representation error of the learned

dictionary in this case, along with the deviation per dictionary atom when compared to a

dictionary learned using full-batch centralized K-SVD. These results are plotted as a function

of dictionary learning iterations for six periods, where the ending of a period is marked by
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a circle. The representation error curve in this figure shows that K-SVD takes more time to

converge, but it (and thus cloud K-SVD) is a viable option for online settings. Similarly, the

deviation curve shows that while the dictionary error initially increases with the arrival of more

data, it stabilizes afterward. Note that further improvements in these results can be obtained

by using methods like [118] for active sample selection.

Finally, we perform experiments to report actual values of the parameters C1–C4. To this

end, we generate samples belonging to R17, where each sample is a linear combination of T0 = 3

atoms of a dictionary D ∈ R17×40. We perform sparse coding in these experiments using the

lasso package in Matlab 2014a, while we perform dictionary learning using K-SVD. Average

values obtained for parameters C1–C4 over 100 Monte-Carlo trials in this case are 0.0586,

0.1633, 4.544, and 1.5947, respectively. Using cloud K-SVD, average values of µ and ν are 9000

and 0.3242, respectively. Based on these values, we get Tp ≈ 16, 000. This suggests that the

constants in our bounds are rather loose, and our analysis should mainly be used to provide

scaling guidelines.

3.5.2 Classification of MNIST Images

In this section, we demonstrate an application of cloud K-SVD in solving classification problem

for a real-world dataset. Some of the methods for discriminative dictionary learning (dictionary

learning for classification) in centralized settings include [119–121], while some of the decentral-

ized methods are [122, 123]. The purpose of our experiments here is to show the advantage of

collaborating with other sites in the network using cloud K-SVD on real-world data as com-

pared to using only the local data at any given site. It is important to note here that K-SVD is

not the best method for solving image classification and that the purpose of these experiments

is to show that cloud K-SVD can have similar performance as the centralized K-SVD.

For evaluation of cloud K-SVD on real world dataset, we perform classification of digits

{0, 3, 5, 8, 9} from MNIST dataset [124]. For each digit 6000 samples are used, where 5000

samples are used for training purposes and remaining 1000 for testing purposes. The data

are five-times randomly split into training and test samples. For cloud K-SVD, Erdős–Rényi

graph with connectivity parameter p = 0.5 (probability of edge between any pair of vertices

in the network) is used to generate a network with 10 sites and data is equally distributed

among them. Before performing dictionary learning, data is down sampled from R784 to R256.

After downsampling, a separate dictionary is learned for each digit using centralized K-SVD,

cloud K-SVD, and K-SVD using only local data. Each dictionary has dimensions R256×400, i.e.,
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Figure 3.3: Average detection rate for five classes of MNIST dataset using centralized K-SVD,
cloud K-SVD, and local K-SVD.

K = 400, and sparsity level of T0 = 10 is used. Minimum residue based rule [125, Section II-A]

is used for classification, more details on which are given in the following paragraph.

Let {Dc}5c=1 be the set of dictionaries for 5 classes and let D =
[
D1 D2 D3 D4 D5

]
be the complete dictionary. For any test sample ys, we perform sparse coding using dictionary

D with sparsity constraint of T0 = 10 to get coefficients xs ∈ R2000. Then we partition xs into

five segment {xs,c}5c=1, where xs,c are the coefficients corresponding to dictionary Dc of class

c. Next we define residue for class c as rc = ‖ys−Dcxs,c‖2. Finally, the detected class is given

by c∗ = arg minc rc. Performance of each method (centralized K-SVD, cloud K-SVD, and local

K-SVD) is measured in terms of average detection rate on the test samples, which is defined

as:

Rc =
Number of samples in class c detected correctly

Total number of samples of class c
.

Results of this experiment are given in Figure 3.3. We see that centralized K-SVD and cloud

K-SVD have comparable performance. But in the case of local K-SVD where we only use the

local data for learning representations, classification rate deteriorates considerably. The error

bars in local K-SVD show the highest and lowest detection rates achieved among the 10 sites,

which highlights the variation in effectiveness of models learned across different sites when using

only the local data.
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3.6 Proof of Theorem 6

The proof of this theorem relies on a lemma that guarantees that if the estimates obtained at

different sites using the decentralized power method are close to the estimate obtained using

the centralized power method at the start of a power method iteration then the decentralized

estimates remain close to the centralized estimate at the end of that iteration. To prove such a

lemma, we first need a result from the literature that characterizes the convergence behavior of

vector consensus averaging as a function of the number of consensus iterations.

Proposition 6. [103, Theorem 5] Consider the n × 1 vector sum z =
∑N
i=1 z

(0)
i and suppose

each vector z
(0)
i , i = 1, . . . , N , is only available at the ith site in our network. Let b be a

vector whose entries are the sum of absolute values of the initial vectors z
(0)
i (i.e., jth entry of

b is bj =
∑N
i=1 |z

(0)
i,j |) and z

(tc)
i be the n × 1 vector obtained at the ith site after tc consensus

iterations. Then, fixing any δ > 0, we have that
∥∥∥ z

(tc)
i

[Wtc
1 ]i
−z
∥∥∥

2
≤ δ‖b‖2 ∀i as long as the number

of consensus iterations satisfies tc = Ω(Tmix log δ−1).

We use Proposition 6 to state and prove the desired lemma.

Lemma 10. Suppose we are at the start of (tp + 1) ≤ Tp power method iteration. Let qc

and qi,d denote the outputs of centralized power method and decentralized power method at ith

site after tp iterations, respectively. Similarly, let q′c and q′i,d denote the outputs of centralized

power method and decentralized power method at ith site after tp + 1 iterations, respectively.

Next, fix an ε ∈ (0, 1), define δ =
αp

γp
√
N

(
ε

2αpβp

)3Tp , and assume that ∀i, ‖qc − qi,d‖2 +
δγp
√
N

αp
≤

1
2αpβ2

p(2αp+δγp
√
N)

. Then, assuming Ω(Tmix log δ−1) consensus iterations, we have that

∀i, ‖q′c − q′i,d‖2 ≤ (2αpβp)
3

(
max

i=1,...,N
‖qc − qi,d‖2 +

δγp
√
N

αp

)
.

Proof. Define v = Mqc and v̂ =
∑N
i=1 Miqi,d. Next, fix any i ∈ {1, . . . , N} and let v̂i be

the vector obtained at the ith site in Step 15 of Algorithm 3 during the (tp + 1) iteration of

decentralized power method. Notice that v̂i can be expressed as v̂i = v̂+εi,c, where εi,c denotes

the error introduced in v̂ at the ith site due to finite number of consensus iterations. Next, define

r = ‖v‖2 and r̂i = ‖v̂i‖2 and notice that q′c − q′i,d = v(r−1 − r̂−1
i ) + (v − v̂i)r̂

−1
i . It therefore

follows from the triangle inequality that

‖q′c − q′i,d‖2 ≤ ‖v‖2|r−1 − r̂−1
i |+ ‖v − v̂i‖2r̂−1

i . (3.11)

We now need to bound ‖v‖2, |r−1 − r̂−1
i |, ‖v − v̂i‖2, and r̂−1

i . To this end, notice that

v−v̂i =
[∑N

i=1 Mi(qc − qi,d)
]
−εi,c. It also follows from Proposition 6 and some manipulations
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that ‖εi,c‖2 ≤ δγp
√
N . We therefore obtain

‖v − v̂i‖2 ≤
N∑
i=1

‖Mi‖2‖qc − qi,d‖2 + δγ
√
N. (3.12)

Next, notice |r−1− r̂−1
i | = |r− r̂i|r−1r̂−1

i and further it can be shown that |r− r̂i| ≤ r−1|r̂2
i −r2|.

Now, |r̂2
i − r2| = |v̂T

i v̂i − vTv| ≤ ‖v̂i − v‖2(‖v̂i‖2 + ‖v‖2). Since v̂i = v̂ + εi,c, it can also be

shown that ‖v̂i‖2 ≤ αp + δγp
√
N . In addition, we have ‖v‖2 ≤ αp. Combining these facts with

(3.12), we get

|r̂2
i − r2| ≤ (2αp + δγp

√
N)

(
N∑
i=1

‖Mi‖2‖qc − qi,d‖2 + δγp
√
N

)

≤ (2αp + δγp
√
N)
(
αp max

i
‖qc − qi,d‖2 + δγp

√
N
)
. (3.13)

We can now use this inequality to obtain |r−1 − r̂−1
i | ≤ r̂−1

i β2
p(2αp + δγp

√
N)(αp maxi ‖qc −

qi,d‖2 + δγp
√
N).

The only remaining quantity we need to bound is r̂−1
i . To this end, notice that |r − r̂i| ≥

(r−1)−1 − (r̂−1
i )−1. Since |r − r̂i| ≤ r−1|r̂2

i − r2|, we obtain from (3.13) that

(r−1)−1 − (r̂−1
i )−1 ≤ αpr−1(2αp + δγp

√
N)

(
max
i
‖qc − qi,d‖2 +

δγp
√
N

αp

)
.

It then follows from the lemma’s assumptions along with some algebraic manipulations that

r̂−1
i ≤ 2βp. Finally, plugging the bounds on r̂−1

i , |r−1 − r̂−1
i |, ‖v‖2, and ‖v− v̂i‖2 in (3.11), we

obtain

‖q′c − q′i,d‖2 ≤ 2αpβ
3
p

(
αp max

i
‖qc − qi,d‖2 + δγp

√
N
) (

2αp + δγp
√
N
)

+ 2βp

(
αp max

i
‖qc − qi,d‖2 + δγp

√
N
)

=

(
4α3

pβ
3
p + 2α3

pβ
3
p

δγp
√
N

αp
+ 2αpβp

)(
max
i
‖qc − qi,d‖2 +

δγp
√
N

αp

)
.

Finally, δγp
√
N

αp
≤
(
ε
2

)3Tp
< 1 since (i) δ =

αp

γp
√
N

(
ε

2αpβp

)3Tp , (ii) ε < 1, and (iii) αpr−1 ≥ 1,

which implies αpβp ≥ 1. Plugging this into the above expression and noting that αpβp ≤ α3
pβ

3
p ,

we obtain the claimed result.

Lemma 10 provides an understanding of the error accumulation in the decentralized power

method due to finite number of consensus iterations in each power method iteration. And

while the factor of (2αpβp)
3 in the lemma statement might seem discouraging, the fact that the

decentralized power method starts with a zero error helps keep the total error in control. We

now formally argue this in the proof of Theorem 6 below.
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Proof of Theorem 6. We begin by defining qc as the estimate of u1 obtained using Tp iterations

of the centralized power method that is initialized with the same qinit as the decentralized power

method. Next, fix an i ∈ {1, . . . , N} and notice that∥∥u1u
T
1 − q̂iq̂

T
i

∥∥
2
≤ ‖u1u

T
1 − qcq

T
c ‖2 + ‖qcq

T
c − q̂iq̂

T
i ‖2. (3.14)

The convergence rate of the centralized power method is well studied and can be expressed as

[31]

‖u1u
T
1 − qcq

T
c ‖2 ≤ tan (θ)

∣∣∣∣λ2

λ1

∣∣∣∣Tp

. (3.15)

In order to bound ‖qcq
T
c − q̂iq̂

T
i ‖2, we make use of Lemma 10. To invoke this lemma, we first

need to show that the main assumption of the lemma holds for all iterations tp ≤ (Tp − 1).

We start with tp = 0 for this purpose and note that q
(0)
c = q̂

(0)
i = qinit, which trivially

implies ‖q(0)
c − q̂

(0)
i ‖2 +

δγp
√
N

αp
≤ ( ε2 )3Tp , where δ is as defined in Lemma 10. Further, under

the assumptions of the theorem, it can be shown through elementary algebra that
(
ε
2

)3Tp ≤
1

2αpβ2
p(2αp+δγp

√
N)

. We now invoke mathematical induction and claim that the main assumption

of Lemma 10 is satisfied for all tp ≤ m < Tp. Then we obtain from a recursive application of

the statement of the lemma that for tp = (m+ 1), we have

‖q(m+1)
c − q̂

(m+1)
i ‖2 +

δγp
√
N

αp

≤ δγp
√
N

αp

m∑
i=0

(2αpβp)
3i

(a)

≤ 2 · δγp
√
N

αp
(2αpβp)

3m

= 2 · ε3Tp
(2αpβp)

3m

(2αpβp)3Tp

(b)

≤ 1

2αpβ2
p(2αp + δγp

√
N)

, (3.16)

where (a) follows from the geometric sum and the fact that (2αpβp)
3 > 2, while (b) follows

from the theorem assumptions and the fact that m < Tp. We have now proved that the main

assumption of Lemma 10 holds for all tp ≤ (Tp − 1). In order to compute ‖qcq
T
c − q̂iq̂

T
i ‖2,

therefore, we can recursively apply the result of this lemma up to the T thp iteration to obtain

‖qc − q̂i‖2 ≤
δγp
√
N

αp

Tp∑
i=0

(2αpβp)
3i

(c)

≤ 2ε3Tp , (3.17)

where (c) follows from the same arguments as in (3.16). The proof of the theorem now follows

by noting the fact that ‖qcq
T
c − q̂iq̂

T
i ‖2 ≤ (‖qc‖2 + ‖q̂i‖2)‖qc − q̂i‖2 ≤ 4ε3Tp .

3.7 Proof of Theorem 7

Notice from Algorithm 3 that sparse coding is always performed before update of the first dic-

tionary atom. However, we do not perform sparse coding before updating any other dictionary
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atom. Due to this distinction, we answer how error is accumulated in matrix E
(t)
i,k,R for first

dictionary atom differently than for any other dictionary atom. In the following, we first provide

an overview of how to bound ‖B(t)
i,k+1,R‖2 when we know a bound on ‖B(t)

i,k,R‖2. Then we will

talk about bounding ‖B(t+1)
i,1,R ‖2 when we know bounds on {‖B(t)

i,j,R‖2}Kj=1.

Recall from Step. 5 in Algorithm 3 that

Ê
(t)
i,k,R = YiΩ̃

(t)
i,k −

k−1∑
j=1

d̂
(t)
i,j x̂

(t)
i,j,T Ω̃

(t)
i,k −

K∑
j=k+1

d̂
(t−1)
i,j x̃

(t)
i,j,T Ω̃

(t)
i,k.

Now, if one assumes that Ω̃
(t)
k = Ω

(t)
k , which we will argue is true, then the error in E

(t)
i,k,R

is due to errors in {x(t)
i,j,T,R}Kj=1 and {d(t)

j }Kj=1. Infact, we will show that ‖B(t)
i,k+1,R‖2 can be

bounded by knowing bounds on errors in d̂
(t)
i,k and x

(t)
i,k,T,R only. Next, recall from Step. 19 in

Algorithm 3 that x̂
(t)
i,k,R = d̂

(t)
i,kÊ

(t)T

i,k,R, which means we only need to know a bound on d
(t)
k to

bound ‖B(t)
i,k+1,R‖2. Another challenge for us will be to bound error in d

(t)
k from a given bound

on ‖B(t)
i,k,R‖2. We will accomplish this by noting that there are two sources of error in d̂

(t)
k . The

first source is the difference in eigenvectors of Ê
(t)
k,RÊ

(t)T

k,R and E
(t)
k,RE

(t)T

k,R . We will bound this

difference using Proposition 8 in Section 3.9. In order to use this proposition, we will need a

bound on ‖Ê(t)
k,RÊ

(t)T

k,R −E
(t)
k,RE

(t)T

k,R ‖F , which we will also prove using a given bound on ‖B(t)
i,k,R‖2

(Lemma 11). The second source of error in d̂
(t)
k is the error in eigenvector computation, which

in our case is due to the decentralized power method. It follows from Theorem 6 and statement

of Theorem 7 that this error is bounded by ε. Combining these two sources of error, we will

first bound the error in d̂
(t)
k (Lemma 12), and then using this we will finally bound ‖B(t)

i,k+1,R‖2

(Lemma 14).

In order to bound ‖B(t+1)
i,1,R ‖2 when we know bounds on {‖B(t)

i,j,R‖2}Kj=1, the difference from

previous case is that now we cannot write sparse code {x̂(t+1)
i,j,T }Kj=1 in terms of dictionary atoms

{d̂(t)
i,j}Kj=1. Therefore, in addition to bounding errors in dictionary atoms {d̂(t)

i,j}Kj=1, we also need

to bound errors in sparse codes due to perturbations in dictionaries after iteration t. Since we

know {‖B(t)
i,k,R‖2}Kj=1, we can use the bounds on {d̂(t)

i,j}Kj=1 derived earlier (Lemma 12). Next,

using error bounds on {d̂(t)
i,j}Kj=1, we can use Proposition 7 in Section 3.9 to bound errors in

{x̂(t+1)
i,j,T }Kj=1. Finally, using these error bounds on {d̂(t)

i,j}Kj=1 and {x̂(t+1)
i,j,T }Kj=1 we will bound

‖B(t+1)
i,1,R ‖2 (Lemma 13). This will be followed by the remaining proof of Theorem 7.

Our first result in support of Theorem 7 shows that the assumption of Proposition 8 in

Section 3.9 is satisfied under certain conditions, which will make it possible for us to bound the

difference in the principal eigenvector of E
(t)
k,RE

(t)T

k,R and Ê
(t)
k,RÊ

(t)T

k,R .
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Lemma 11. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε and ζ be as defined in Theorem 7. Fix δd as in Theorem 5, and sup-

pose (i) [P1]–[P3] are satisfied, (ii) Ω
(t)
i,k = Ω̃

(t)
i,k, and (iii) ε ≤

δd
8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) .

Then ∀i ∈ {1, . . . , N} and for any t ∈ {1, · · · , Td} and k ∈ {1, · · · ,K}, if

‖B(t)
i,k,R‖2 ≤


0, t = 1, k = 1,

ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−2, o.w,

then ∆M
(t)
k = E

(t)
k,RE

(t)T

k,R − Ê
(t)
k,RÊ

(t)T

k,R is bounded as ‖∆M
(t)
k ‖F ≤

1
5C3

.

Proof. Since our starting dictionaries are same, therefore, for (t, k) = (1, 1) we have E
(1)
1,R =

Ê
(1)
1,R, which means ∆Mk = 0. Hence, claim is true for (t, k) = (1, 1). In the following, proof is

provided for the claim for case (t, k) 6= 1.

Substituting B
(t)
i,k,R in the definition of ∆M

(t)
k , we get

∆M
(t)
k =

N∑
i=1

E
(t)
i,k,RB

(t)T

i,k,R + B
(t)
i,k,RE

(t)T

i,k,R + B
(t)
i,k,RB

(t)T

i,k,R.

Simple algebraic manipulations, along with submultiplicativity of matrix 2-norm, result in

‖∆M
(t)
k ‖2 ≤ 2

N∑
i=1

(
‖E(t)

i,k,R‖2‖B
(t)
i,k,R‖2 + ‖B(t)

i,k,R‖
2
2

)
≤ 2N max

i

(
C4‖B(t)

i,k,R‖2 + ‖B(t)
i,k,R‖

2
2

)
, (3.18)

where the last inequality is due to (3.7). Now, using the assumptions on bound of ‖B(t)
i,k,R‖2

and ε, we get

‖∆M
(t)
k ‖2 ≤ 2Nε(1 + ζ)t−1

(
C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2

+ε(1 + ζ)t−1C2
4 (8C3NC

2
4 + 5)2(t−1)K+2k−4

)
≤ 2Nε(1 + ζ)t−1

(
C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2

+
1

8N
√
nC3

(1 + ζ)t−1C2
4 (8C3NC

2
4 + 5)2(t−1)K+2k−4δd

(1 + ζ)Td−1C2
4 (8C3NC2

4 + 5)2(TdK−2)K

)
(a)

≤ 2Nε(1 + ζ)t−1

(
C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2 +

1

8N
√
nC3

)
≤ 4Nε(1 + ζ)t−1C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2,

where (a) is true because (1+ζ)t−1C2
4 (8C3NC

2
4+5)2(t−1)K+2k−4δd

(1+ζ)Td−1C2
4 (8C3NC2

4+5)2(TdK−2) ≤ 1. Finally, using once again the

assumption on ε, performing algebraic manipulations and using the fact that δd ≤ 1 , we get

‖∆M
(t)
k ‖2 ≤

(8C3NC
2
4 + 5)(t−1)K+k−2

2
√
nC3(8C3NC2

4 + 5)2(TdK−2)

≤ 1√
n(8C3NC2

4 + 5)(TdK−2)
≤ 1√

n(5C3)
.
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Now using the fact that rank(∆M
(t)
k ) ≤ n, we get ‖∆M

(t)
k ‖F ≤

√
rank(∆M

(t)
k )‖∆M

(t)
k ‖2 ≤

√
n‖∆M

(t)
k ‖2 ≤

1
5C3

.

We are now ready to prove that if we know a bound on ‖B(t)
i,k,R‖2 then we can bound the

error in dictionary atom d̂
(t)
i,k. This result is given in the following lemma.

Lemma 12. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε and ζ be as defined in Theorem 7, also perform Tc consensus

iterations as given in Theorem 7. Now fix δd as in Theorem 5, and suppose (i) [P1]–[P3]

are satisfied, (ii) Ω
(t)
i,k = Ω̃

(t)
i,k, and (iii) ε ≤ δd

8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) . Then for all

i ∈ {1, . . . , N} and for any t ∈ {1, 2, · · · , Td} and k ∈ {1, 2, · · · ,K} if we know

‖B(t)
i,k,R‖2 ≤


0, t = 1, k = 1,

ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−2, o.w,

then, ‖d̂(t)
i,kd̂

(t)T

i,k − d
(t)
k d

(t)T

k ‖2 ≤ ε(1 + ζ)t−1(8C3NC
2
4 + 5)(t−1)K+k−1.

Proof. To prove this lemma we first need to decompose error in dictionary atom into two

different components i.e., error in principal eigenvector due to perturbation in E
(t)
k,RE

(t)T

k,R and

error due to decentralized power method. Let d
(t)
k be the updated kth atom of centralized

dictionary at iteration t, which is the principal eigenvector of E
(t)
k,RE

(t)T

k,R . In cloud K-SVD, d̂
(t)
i,k

corresponds to the principal eigenvector estimate of Ê
(t)
k,RÊ

(t)T

k,R obtained at the ith site. Let

us denote the true principal eigenvector of Ê
(t)
k,RÊ

(t)T

k,R by d̃
(t)
k and let d̂

(t)
i,k be the eigenvector

of Ê
(t)
k,RÊ

(t)T

k,R computed using decentralized power method at the ith site. Using this notation,

notice that ‖d(t)
k d

(t)T

k − d̂
(t)
i,kd̂

(t)T

i,k ‖2 ≤ ‖d
(t)
k d

(t)T

k − d̃
(t)
k d̃

(t)T

k ‖2 + ‖d̃(t)
k d̃

(t)T

k − d̂
(t)
i,kd̂

(t)T

i,k ‖2, where

the first term is due to perturbation in E
(t)
k,RE

(t)T

k,R and the second term is due to imperfect power

method and consensus iterations. We can now use Theorem 6 to obtain

‖d(t)
k d

(t)T

k − d̂
(t)
i,kd̂

(t)T

i,k ‖2 ≤ ‖d
(t)
k d

(t)T

k − d̃
(t)
k d̃

(t)T

k ‖2 + tan (θ̂
(t)
k )

(
λ̂

(t)
2,k

λ̂
(t)
1,k

)Tp

+ 4ε3Tp

(a)

≤ ‖d(t)
k d

(t)T

k − d̃
(t)
k d̃

(t)T

k ‖2 + µνTp + 4ε3Tp

(b)
= ‖d(t)

k d
(t)T

k − d̃
(t)
k d̃

(t)T

k ‖2 + ε,

where (a) is due to definition of parameters µ and ν in Theorem 5, and (b) is due to definition

of ε in Theorem 7.

Next, for symmetric matrices M
(t)
k =

∑
i E

(t)
i,k,RE

(t)T

i,k,R and M̂
(t)
k =

∑
i Ê

(t)
i,k,RÊ

(t)T

i,k,R such that

M̂
(t)
k = M

(t)
k + ∆M

(t)
k , we can use Lemma 11 and Proposition 8 to find a bound on deviation in

principal eigenvector of M
(t)
k due to perturbation ∆M

(t)
k . Since we have from Lemma 11 that
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‖∆M
(t)
k ‖F ≤

1
5C3

, it follows from Proposition 8 that

‖d(t)
k d

(t)T

k − d̂
(t)
i,kd̂

(t)T

i,k ‖2 ≤ 4C3‖∆M
(t)
k ‖2 + ε

≤ 8C3N max
i

(
C4‖B(t)

i,k,R‖2 + ‖B(t)
i,k,R‖

2
2

)
+ ε, (3.19)

where the last inequality is due to (3.18). Now using the bound on ‖B(t)
i,k,R‖2 in the lemma

statement, it can be shown using some algebraic manipulations that

‖d̂(t)
i,kd̂

(t)T

i,k − d
(t)
k d

(t)T

k ‖2 ≤ ε(1 + ζ)t−1C4

(
8C3NC

2
4 (8C3NC

2
4 + 5)(t−1)K+k−2

+8ε(1 + ζ)t−1C4C3N(8C3NC
2
4 + 5)2(t−1)K+2k−4 + 1

)
.

The claim in the lemma now follows by replacing the bound on ε in the parentheses of the

above inequality, followed by some manipulations.

The next lemma shows that if we know bounds on errors in {Ê(t)
i,k,R}Kk=1 for any t then we

can bound the error in Ê
(t+1)
i,1,R .

Lemma 13. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε and ζ be as defined in Theorem 7, also perform Tc consensus itera-

tions as given in Theorem 7. Now fix δd as in Theorem 5 and suppose (i) [P1]–[P3] are satisfied,

(ii) Ω
(t+1)
i,k = Ω̃

(t+1)
i,k , (iii) Ω

(t)
i,k = Ω̃

(t)
i,k , and (iv) ε ≤ δd

8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) , then

for any t ∈ {1, · · · , Td − 1}, and for all k ∈ {1, · · · ,K} and i ∈ {1, · · · , N}, if ‖B(t)
i,k,R‖2 ≤

ε(1 + ζ)t−1C4(8C3C
2
4N + 5)(t−1)K+k−2 then, ‖B(t+1)

i,1,R ‖2 ≤ ε(1 + ζ)tC4(8C3C
2
4N + 5)tK−1.

Proof. The error in Ê
(t+1)
i,1,R is due to error in dictionary in the previous iteration t and sparse cod-

ing at the start of iteration (t+1). Specifically, B(t+1)
i,1 = E

(t+1)
i,1 −Ê

(t+1)
i,1 = Yi−

∑K
j=2 d

(t)
j x

(t+1)
i,j,T −

Yi +
∑K
j=2 d̂

(t)
i,j x̃

(t+1)
i,j,T . It then follow that

‖B(t+1)
i,1 ‖2 ≤

K∑
j=2

‖d̂(t)
i,j x̃

(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2 ≤

K∑
j=1

‖d̂(t)
i,j x̃

(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2.

In reality we are interested in finding a bound on ‖B(t+1)
i,1,R ‖2. But since Ω

(t+1)
i,k = Ω̃

(t+1)
i,k we can

define B
(t+1)
i,1,R as B

(t+1)
i,1,R =

(∑K
j=2

(
Yi − d̂

(t)
i,j x̃

(t+1)
i,j,T

)
−
∑K
j=2

(
Yi − d

(t)
j x

(t+1)
i,j,T

))
Ω

(t+1)
i,1 . It can

be seen from this definition that B
(t+1)
i,1,R is a submatrix of B

(t+1)
i,1 , which implies

‖B(t+1)
i,1,R ‖2 ≤ ‖B

(t+1)
i,1 ‖2 ≤

K∑
j=1

‖d̂(t)
i,j x̃

(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2. (3.20)

Now, defining d̂
(t)
i,j = d

(t)
j + e

(t)
i,j , where e

(t)
i,j denotes the error in dictionary atom d

(t)
j , and
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substituting this in (3.20) we get

‖B(t+1)
i,1,R ‖2 ≤ K max

j

(
‖d(t)

j x̃
(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2 + ‖ei,jx̃(t+1)

i,j,T ‖2
)

≤ K max
j

(
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2 + ‖d̂(t)

i,j − d
(t)
j ‖2‖x̃

(t+1)
i,j,T ‖2

)
= K max

j

(
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2 + ‖d̂(t)

i,j − d
(t)
j ‖2‖x̃

(t+1)
i,j,T + x

(t+1)
i,j,T − x

(t+1)
i,j,T ‖2

)
≤ K max

j

(
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2(1 + ‖d̂(t)

i,j − d
(t)
j ‖2) + ‖d̂(t)

i,j − d
(t)
j ‖2‖x

(t+1)
i,j,T ‖2

)
. (3.21)

Now, let X(t+1) =
[
X

(t+1)
1 X

(t+1)
2 . . . X

(t+1)
N

]
∈ RK×S be the sparse coding matrix associated

with the centralized K-SVD (see, e.g, Sec 3.3.1). Notice that x
(t+1)
i,j,T is the jth row of X

(t+1)
i . It

then follows that

‖x(t+1)
i,j,T ‖2 ≤

√
Si‖X(t+1)

i ‖max ≤
√
Si‖X(t+1)

i ‖1.

We therefore obtain under P1 that ‖x(t+1)
i,j,T ‖2 ≤

√
Smaxητ,max. Next, using the bound on

‖B(t)
i,k,R‖2 and applying Lemma 12, we get

‖d̂(t)
i,kd̂

(t)T

i,k − d
(t)
k d

(t)T

k ‖2 ≤ ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−1.

Now, under the assumption that both cloud K-SVD and centralized K-SVD use the same dref ,

we have d̂
(t)T

i,k d
(t)
k ≥ 0 and therefore it follows from Lemma 16 in Section 3.9 that

‖d̂(t)
i,k − d

(t)
k ‖2 ≤ ε

√
2(1 + ζ)t−1C4(8C3NC

2
4 + 5)(t−1)K+k−1

(a)

≤
√

2δd
(b)

≤ 1, (3.22)

where (a) follows from the assumption on ε and (b) is true for any fixed δd as defined in

Theorem 5. Using this bound we can write

‖D(t) − D̂
(t)
i ‖2 ≤ ‖D

(t) − D̂
(t)
i ‖F =

√√√√ K∑
j=1

‖d̂(t)
i,j − d

(t)
j ‖22

≤
√
K max

j∈{1,··· ,K}
‖d̂(t)

i,j − d
(t)
j ‖2

≤
√

2K(1 + ζ)t−1εC4(8C3NC
2
4 + 5)tK−1. (3.23)

Furthermore, using lemma assumption on ε we get

‖D(t) − D̂
(t)
i ‖2 ≤

√
2Kδd = min

{√
K,

C2
1τmin

44

}
. (3.24)

We can now use (3.24) and Proposition 7 in Section 3.9 to bound ‖x(t+1)
i,j,T − x̃

(t+1)
i,j,T ‖2 in (3.21).

Notice that Proposition 7 assumes the error in dictionary to be smaller than C2
1τmin

44 , which is
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satisfied by (3.24). Other assumptions of Proposition 7 are satisfied due to [P1] and [P2].

Therefore, we get ∀ i ∈ {1, . . . , N} and j ∈ {1, . . . , Si},

‖x(t+1)
i,j − x̃

(t+1)
i,j ‖2 ≤

3
√
T0

τminC2
‖D(t) − D̂

(t)
i ‖2. (3.25)

Now defining X
(t+1)
i and X̃

(t+1)
i as before, we note that

‖x(t+1)
i,j,T − x̃

(t+1)
i,j,T ‖2 ≤

√
Smax‖X(t+1)

i − X̃
(t+1)
i ‖max

≤
√
Smax max

j∈{1,...,Si}
‖x(t+1)

i,j − x̃
(t+1)
i,j ‖2

≤ 3
√

2KSmaxT0

τminC2
ε(1 + ζ)t−1C4(8C3NC

2
4 + 5)tK−1, (3.26)

where the last inequality follows from (3.25) and (3.23). Now using bounds on ‖x(t+1)
i,j,T ‖2

and (3.26) we get the following from (3.21):

‖B(t+1)
i,1,R ‖2

(c)

≤ 2K max
j
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2 + max

j
‖d̂(t)

i,j − d
(t)
j ‖2‖x

(t)
i,j,T ‖2

(d)

≤ 2K
3
√
SmaxT0

τminC2

√
2Kε(1 + ζ)t−1C4(8C3NC

2
4 + 5)tK−1

+ ε
√

2(1 + ζ)t−1C4(8C3NC
2
4 + 5)tK−1

√
Smaxητ,max

(e)

≤ ε(1 + ζ)tC4(8C3NC
2
4 + 5)tK−1.

Here, (c)–(d) follow by application of (3.22) and (3.23), and (e) is by definition of ζ.

The last lemma that we need bounds ‖B(t)
i,k+1,R‖2 when we have a bound on ‖B(t)

i,k,R‖2.

Lemma 14. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε, and ζ be as defined in Theorem 7, also perform Tc consensus

iterations as given in Theorem 7. Now fix δd as in Theorem 5, and suppose (i) [P1]–[P3]

are satisfied, (ii) Ω
(t)
i,k = Ω̃

(t)
i,k, and (iii) ε ≤ δd

8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) . For any fixed

k ∈ {1, · · · ,K}, t ∈ {1, · · · , Td}, and all i ∈ {1, · · · , N}, if ‖B(t)
i,k,R‖2 ≤ ε(1+ζ)t−1C4(8C3C

2
4N+

5)(t−1)K+k−2 then ‖B(t)
i,k+1,R‖2 ≤ ε(1 + ζ)t−1C4(8C3C

2
4N + 5)(t−1)K+k−1.

Proof. Recall once again that we can write

B
(t)
i,k+1,R = Ê

(t)
i,k+1,R −E

(t)
i,k+1,R

=

K∑
j=k+2

(
d

(t−1)
j x

(t)
i,j,R − d̂

(t−1)
i,j x̃

(t)
i,j,R

)
−

k∑
j=1

(
d̂

(t)
i,j x̂

(t)
i,j,R − d

(t)
j x

(t)
i,j,R

)
,

now using relation x̂
(t)
i,k,R = d̂

(t)T

i,k Ê
(t)
i,k,R and doing some rearrangements we get,

B
(t)
i,k+1,R = d̂

(t)
i,kd̂

(t)T

i,k Ê
(t)
i,k,R − d

(t)
k d

(t)T

k E
(t)
i,k,R −

(
d

(t−1)
k+1 x

(t)
i,k+1,R − d̂

(t−1)
i,k+1x̃

(t)
i,k+1,R

)
+ B

(t)
i,k,R.
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It then follows that

‖B(t)
i,k+1,R‖2 ≤ ‖B

(t)
i,k,R‖2 +

∥∥∥d̂(t)
i,kd̂

(t)T

i,k (E
(t)
i,k,R + B

(t)
i,k,R)− d

(t)
k d

(t)T

k E
(t)
i,k,R

∥∥∥
2

+
∥∥∥d(t−1)

k+1 x
(t)
i,k+1,R − d̂

(t−1)
i,k+1x̃

(t)
i,k+1,R

∥∥∥
2

(a)

≤ 2‖B(t)
i,k,R‖2 + ‖d̂(t)

i,kd̂
(t)T

i,k − d
(t)
k d

(t)T

k ‖2C4 +
∥∥∥d(t−1)

k+1 x
(t)
i,k+1,R − d̂

(t−1)
i,k+1x̃

(t)
i,k+1,R

∥∥∥
2

(b)

≤ εC4(1 + ζ)t−1
(

(8C3NC
2
4 + 5)(t−1)K+k−2(8C3NC

2
4 + 3)

+ε8C3NC
2
4 (1 + ζ)t−1(8C3NC

2
4 + 5)2(t−1)K+2k−4 +

1

(1 + ζ)t−1

)
.

Here (a) is due to the fact that E
(t)
i,k,R is a submatrix of E

(t)
i,k and the definition of C4 in (3.7),

(b) is obtained by applying (3.19), using assumption on ‖B(t)
i,k,R‖2 and finally using the same

procedure as in Lemma 13 after (3.20) to bound
∑K
j=1

∥∥∥d(t−1)
j x

(t)
i,j,T,R − d̃

(t−1)
i,j x̃

(t)
i,j,T,R

∥∥∥
2
. The

proof of the lemma now follows by using the assumption on ε and some algebraic manipulations.

The proof of Theorem 7 now can be given by combining Lemmas 11– 14. Since these lemmas

require the supports of both centralized and decentralized problems to be the same, the main

challenge in proving Theorem 7 lies in showing this fact.

Proof of Theorem 7. We will prove this theorem by mathematical induction over t. To be

specific, we will prove the following two cases:

1. For base case, we will show that the claim holds for ‖B(1)
i,k,R‖2 ∀k ∈ {1, 2, · · · ,K}.

2. For induction step we assume that for any q ∈ {1, 2, · · · , Td − 1} the claim is true for

‖B(q)
i,k,R‖2 ∀k ∈ {1, 2, · · · ,K} and Ω

(q)
i,k = Ω̃

(q)
i,k . Then we need to show that Ω

(q+1)
i,k = Ω̃

(q+1)
i,k

and claim holds for ‖B(q+1)
i,k,R ‖2 ∀k ∈ {1, 2, · · · ,K}.

Base case: t = 1 ∀ k ∈ {1, 2, · · · ,K} To prove the base case, we will do mathematical induc-

tion over k by fixing t = 1. Hence, the first thing we need to prove is that the bound is true

for ‖B(1)
i,1,R‖2. Since both cloud K-SVD and Centralized K-SVD start with the same initial

dictionary, we have d
(0)
j = d̂

(0)
i,j , ∀ j ∈ {1, 2, · · · ,K}. Therefore, we get Ω

(1)
i,j = Ω̃

(1)
i,j , ∀ j ∈

{1, 2, · · · ,K}. It then follows that

B
(1)
i,1,R = E

(1)
i,1,R − Ê

(1)
i,1,R =

K−1∑
j=1

(
d

(0)
j x

(1)
i,j,TΩ

(1)
i,j − d̂

(0)
j x̃

(1)
i,j,T Ω̃

(1)
i,j

)
= 0,

thereby proving the claim.
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Next, for induction argument we fix k = p ∈ {1, . . . ,K − 1} for t = 1. Then we need

to show that it holds for k = p + 1. Using the induction assumption we have ‖B(1)
i,p,R‖2 ≤

εC4(8C3NC
2
4 + 5)p−2. Since Ω

(1)
i,j = Ω̃

(1)
i,j , we have B

(1)
i,p+1,R = Ê

(1)
i,p+1,R −E

(1)
i,p+1,R. This results

in

‖B(1)
i,p+1,R‖2 =

∥∥∥ K∑
j=p+2

(
d

(0)
j x

(1)
i,j,R − d̂

(0)
i,j x̃

(1)
i,j,R

)
−

p∑
j=1

(
d̂

(1)
i,j x̂

(1)
i,j,R − d

(1)
j x

(1)
i,j,R

)∥∥∥
2

(a)
=
∥∥∥− p∑

j=1

(
d̂

(1)
i,j x̂

(1)
i,j,R − d

(1)
j x

(1)
i,j,R

)∥∥∥
2

=
∥∥∥d̂(1)

i,p x̂
(1)
i,p,R − d(1)

p x
(1)
i,p,R +

p−1∑
j=1

(
d̂

(1)
i,j x̂

(1)
i,j,R − d

(1)
j x

(1)
i,j,R

)∥∥∥
2

=
∥∥∥d̂(1)

i,p x̂
(1)
i,p,R − d(1)

p x
(1)
i,p,R + B

(1)
i,p,R

∥∥∥
2
, (3.27)

where (a) is true because d
(0)
j x

(1)
i,j,R − d̂

(0)
i,j x̃

(0)
i,j,R = 0. Substituting x̂

(1)
i,p,R = d̂

(1)T

i,p Ê
(1)
i,p,R, we get

‖B(1)
i,p+1,R‖2 ≤ 2‖B(1)

i,p,R‖2 + ‖d̂(1)
i,p d̂

(1)T

i,p − d(1)
p d(1)T

p ‖2‖E(1)
i,p,R‖2

(b)

≤ 2‖B(1)
i,p,R‖2 + ‖d̂(1)

i,p d̂
(1)T

i,p − d(1)
p d(1)T

p ‖2C4

(c)

≤ 2‖B(1)
i,p,R‖2 + C4

(
8C3N max

i

(
‖B(1)

i,p,R‖2C4 + ‖B(1)
i,p,R‖

2
2

)
+ ε
)

(d)

≤ εC4

(
(8C3NC

2
4 + 5)p−2(8C3NC

2
4 + 2) + ε8C3NC

2
4 (8C3NC

2
4 + 5)2p−4 + 1

)
.

Here, (b) is true since E
(t)
i,k,R is a submatrix of E

(t)
i,k and due to the definition of C4 in (3.7), (c)

is due to (3.19) and (d) follows from using the bound on ‖B(1)
i,p,R‖2 and some manipulations.

Now using the assumption on ε, we get ‖B(1)
i,p+1,R‖2 ≤ εC4(8C3NC

2
4 + 5)p−1.

Induction step:

(Bound on ‖B(q)
i,k,R‖2 holds for t = q ∈ {1, . . . , Td − 1} and ∀ k ∈ {1, 2, · · · ,K}.)

We need to show the bound holds for ‖B(q+1)
i,k,R ‖2 ∀ k ∈ {1, . . . ,K}. To show this, we will be

using induction argument over k by fixing t = q+1. As base case we bound ‖B(q+1)
i,1,R ‖2. To bound

‖B(q+1)
i,1,R ‖2, we will be using Lemma 13, which assumes Ω̃

(q+1)
i,1 = Ω

(q+1)
i,1 . Using the induction

assumptions, we get the following bound on error in dictionary D̂
(q)
i using Lemma 12 and

performing same steps as we carried out in Lemma 13 to get (3.22) and (3.23): ‖D(q)−D̂
(q)
i ‖2 ≤

ε
√

2KC4(8C3NC
2
4 + 5)(q−1)K+k−2. Using the assumption on ε, we then have ‖D(q)− D̂

(q)
i ‖2 ≤

δd
√

2K. It then follows from arguments similar to the ones made in Lemma 13 that Ω
(q+1)
i,1 =

Ω̃
(q+1)
i,1 . We can now use Lemma 13 to bound ‖B(q+1)

i,1,R ‖2 ≤ ε(1+ζ)qC4(8NC3C
2
4 +5)qK−1. Having

proved the base case, we now suppose that the claim is true for some k = p ∈ {1, . . . ,K−1}. We
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then need to show it holds for ‖B(q+1)
i,p+1,R‖2. That claim, however, simply follows from Lemma 14.

This concludes the proof of theorem.

3.8 Proof of Theorem 5

To prove Theorem 5 we need an upper bound on error in matrices Ê
(t)
i,k,R, which is given by

Theorem 7. Applying Theorem 7 to get a bound on the error in dictionary atom d̂
(t)
i,k is a

trivial task. But before using Theorem 7, we need to show that our assumption on ε is indeed

satisfied. In the following, we will prove that the assumption on ε is satisfied if we perform

Tp power method and Tc consensus iterations that are given according to the statement of

Theorem 5.

Proof of Theorem 5. After Td iterations of cloud K-SVD, error in any kth dictionary atom d̂
(Td)
i,k

at site i is a function of the error in Ê
(Td)
i,k,R. Specifically, notice from (3.19) that we can write

‖d(Td)
k d

(Td)T

k − d̂
(Td)
i,k d̂

(Td)T

i,k ‖2 ≤ 8NC3 max
i

(‖B(Td)
i,k,R‖2C4 + ‖B(Td)

i,k,R‖
2
2) + ε. (3.28)

We can now upper bound ‖B(Td)
i,k,R‖2 in (3.28) using Theorem 7, but we first need to show that the

statement of Theorem 5 implies the assumption on ε in Theorem 7 is satisfied. That is, we need

to show ε ≤ δd
8N
√
nC3(1+ζ)Td−1C4(8C3NC2

4+5)2(TdK−2) . Recall that by definition ε = µνTp + 4ε3Tp .

Substituting this, we must show that

µνTp + 4ε3Tp ≤ δd
8N
√
nC3(1 + ζ)Td−1C4(8C3NC2

4 + 5)2(TdK−2)
.

Since ν > 0 and ε > 0, therefore, µνTp + 4ε3Tp < µ(ν + 4ε3)Tp . It is therefore sufficient to show

that µ(ν + 4ε3)Tp ≤ δd
8N
√
nC3(1+ζ)Td−1C4(8C3NC2

4+5)2(TdK−2) for our selected values of Tp and Tc.

Showing that, however, is a simple exercise and is left out for brevity. It therefore follows

from Theorem 7 that ‖d(Td)
k d

(Td)T

k − d̂
(Td)
k d̂

(Td)T

k ‖2 ≤ ε(1 + ζ)Td−1(8C3NC
2
4 + 5)(Td−1)K+k−1.

Substituting the upper bound on ε, we get ‖d(Td)
k d

(Td)T

k − d̂
(Td)
k d̂

(Td)T

k ‖2 ≤ δd.

3.9 Other results

In this section, we collect some supporting results that are used in the proofs of our main results.

Lemma 15 (Perturbation of singular values). Let D2 be a perturbed version of dictionary

D1 such that ‖D1 − D2‖2 ≤ ε2 and let ΣT0 be as defined in Section 3.4.1. Then assuming

minI∈ΣT0
σT0

(
D1|I

)
≥
√
C ′2 > ε2, we have minI∈ΣT0

σT0

(
D2|I

)
≥
√
C ′2 − ε2.
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Proof. Using [126, Theorem 1], perturbation in T th0 singular value of D1|I can be bounded as

|σT0

(
D1|I

)
− σT0

(
D2|I

)
| ≤ ‖D1|I − D2|I‖2 ≤ ‖D1 − D2‖2 ≤ ε2. Using reverse triangular

inequality, we therefor get ∀I ∈ ΣT0
, ε2 ≥ |σT0

(
D1|I

)
| − |σT0

(
D2|I

)
| ≥

√
C ′2 − |σT0

(
D2|I

)
|,

which leads to the claimed result.

Proposition 7 (Stability of sparse coding). [127, Theorem 1] Let D2 be a perturbed version

of dictionary D1 such that ‖D1 − D2‖2 ≤ ε2. Given any sample y ∈ Rn, suppose sparse

codes x ∈ RK and x̂ ∈ RK are computed by solving the lasso problem (3.5) using D1 and D2,

respectively. Next, let minj 6∈supp(x) τ − |〈d1,j ,y −D1x〉| > C1, where d1,j denotes the jth atom

of D1, and suppose D1 satisfies P2. Then, as long as ε2 ≤ C2
1τ

44 , we have that supp(x) = supp(x̂)

and ‖x− x̂‖2 ≤ 3‖D1−D2‖2
√
T0

τC2
, where T0 = |supp(x)|.

Note that [127, Theorem 1] also requires D2 to satisfy [P2]. Proposition 7 in its current

form, however, is a simple consequence of [127, Theorem 1] and Lemma 15.

Proposition 8 (Perturbation of principal eigenvector). [31, Chap. 8] Let A ∈ Rn×n be a

symmetric matrix and define Â = A + E to be a perturbed, but symmetric version of A.

Define Q =
[
q1 | Q2

]
to be an orthogonal matrix comprising eigenvectors of A, where

q1 denotes the principal eigenvector of A. Next, define QTAQ =

λ 0

0 Λ2

 and QTEQ =

ε eT

e E22

. Then, using eig(Λ2) to denote the (n − 1) smallest eigenvalues of A, it follows

that if g = min%∈eig(Λ2) |λ− %| > 0, and ‖E‖F ≤ g
5 then there exists p ∈ Rn−1 satisfying

‖p‖2 ≤ 4
g‖e‖2, such that q̂1 = q1+Q2p√

1+pTp
is a unit 2-norm principal eigenvector for Â. Moreover,

‖q1q
T
1 − q̂1q̂

T
1 ‖2 ≤ 4

g‖e‖2.

Lemma 16 (Errors in vectors and their outerproducts). For two unit `2-norm vectors u and

v if ‖uuT − vvT‖2 ≤ ε and uTv ≥ 0 then ‖u− v‖2 ≤
√

2ε.

Proof. Let θ = ∠(u,v) and notice that ‖uuT − vvT‖2 = sin θ. This implies 1 − cos2 θ =

sin2 θ = ‖uuT − vvT‖22 ≤ ε2. Since u and v are unit norm and uTv ≥ 0, we can write

cos θ = uTv. It then follows that 1 − uTv ≤ ε2

1+uTv < ε2. The claim follows by noting that

‖u− v‖2 =
√

2(1− uTv).

3.10 Conclusion

In this chapter, we proposed a new dictionary learning algorithm, termed cloud K-SVD, that fa-

cilitates collaborative learning of a dictionary that best approximates massive data distributed
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across geographical regions. Mathematical analysis of proposed method was also provided,

which under certain assumptions shows that if we perform enough number of power method

and consensus iterations then the proposed algorithm converges to the centralized K-SVD solu-

tion. Furthermore, the efficacy of the proposed algorithm was demonstrated through extensive

simulations on synthetic and real data.
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Chapter 4

Decentralized Methods for Through

the Wall Radar Imaging

This chapter considers a distributed network of radars for through-the-wall imaging and provides

a solution for accurate indoor scene reconstruction in the presence of multipath propagation.

A sparsity-based method is proposed for eliminating ghost targets under imperfect knowledge

of interior wall locations. Instead of aggregating and processing the observations at a central

fusion station, joint scene reconstruction and estimation of interior wall locations is carried

out in a decentralized manner across the network. Using alternating minimization approach,

the sparse scene is reconstructed using the recently proposed MDOMP algorithm [128]. Main

contribution of this chapter is proposing two decentralized methods for estimating wall loca-

tions, i) distributed quasi-Newton method (D-QN) which is a gradient based approach and ii)

decentralized particle swarm optimization (DPSO) which is a greedy method for solving opti-

mization problems. The efficacy of the proposed approaches is demonstrated using numerical

simulations.

4.1 Introduction

Through-the-wall radar imaging (TWRI) technology has improved significantly over the last

decade. However, effectively dealing with the uncertainty caused by high amount of multipath

propagation remains a challenge [129, 130]. A number of approaches, both under conventional

and sparse reconstruction frameworks, have been recently proposed in the literature to deal with

this challenge [131–138]. However, these methods require prior knowledge of the exact interior
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layout of the building being imaged to eliminate ghost targets (accumulation of unwanted energy

at incorrect target locations) and provide enhanced image quality. In practice, such information

may not be perfectly available in advance, resulting in ghost targets and poor image quality.

The problem of TWRI with uncertainties in the room layout information has been addressed

by Leigsnering et al. [3]. In [3], this problem is posed as a parametric dictionary learning

problem, where the dictionary to be learned is parametrized by unknown wall locations w.

Similar to standard dictionary learning [4, 6], the authors in [3] pose parametric dictionary

learning as an optimization problem, which is solved using alternating minimization approach

involving a dictionary update step and a sparse recovery step (coefficient update). Although the

overall objective function considered in traditional dictionary learning is nonconvex, it is convex

for each individual step, i.e., when one considers dictionary and coefficient variables separately.

Because of this, one can use tools from convex optimization to solve these individual steps. In

contrast, parametric dictionary learning in TWRI results in a dictionary update step that is

nonconvex and hence needs special attention. One main contribution of [3] is to empirically

show that using particle swarm optimization (PSO) and a quasi-Newton method one can recover

the dictionary parameter w.

The parametric dictionary learning method proposed in [3] requires data measurements from

each individual radar unit to be collected at a centralized location for processing (see Figure 4.1).

In practical settings, where we have a large-scale network of radar units interrogating a scene,

such as a large building, it is not feasible to accumulate data at one centralized location and

hence we need to deploy decentralized methods. Furthermore, decentralized solutions are more

robust to a variety of issues, such as bad communication links, node failures, etc., which can

occur in adverse settings where we need to deploy radar units, e.g., military or rescue missions.

As such a decentralized approach may be preferred over a centralized solution [3] in practical

settings. Hence, proposing decentralized variants of PSO and quasi-Newton method for TWRI

is the main focus of this chapter.

In terms of prior work on decentralized quasi-Newton method, Eisen et al. [30] have pro-

posed a decentralized variant of quasi-Newton method for convex optimization problems. That

solution is not directly applicable to the parametric dictionary learning problem here because

our objective function is nonconvex and Lipschitz continuity constants of gradient can vary

widely across the domain of function. Due to this using one value of step size as proposed

in [30] is not a feasible option here . Because of these reasons, we need to design a decentral-

ized variant of quasi-Newton method that takes into account the specific properties of TWRI

objective function. Specifically, since the function gradient can have large Lipschitz continuity
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Fusion	
Center

Figure 4.1: Setup in [3] requires accumulation of data at a fusion center using links shown by
solid blue lines. In the absence of the fusion center we end up with a distributed TWRI setup
where data communication only happens between radar units, shown by dotted red lines.

constant resulting in large values of gradients in the vicinity of stationary points. This can

result in slow convergence towards the stationary point. Instead we propose a reconstruction

error-based stopping rule that is provided in Section 4.4.3. This procedure cannot provide an

accurate solution but it is good enough for the application at hand. Secondly, we cannot use

a constant or a decreasing step size, which are common choices in decentralized optimization

literature [139–143]; rather, we need to perform line search in order for our method to converge.

We are assuming that side information regarding rough estimate of wall locations is available

globally across the network and since the problem dimensionality is small as well this makes

line search a feasible option in this case.

Our second strategy to solve the optimization problem for estimation of wall locations in

distributed settings is based on applying consensus averaging [107] to develop a decentralized

variant of the PSO algorithm. There have been previous attempts at developing decentralized

versions of PSO [144–147]. A master-slave architecture is employed in [144]; each node is respon-

sible for computing the objective function for a subset of particles, which are then aggregated

at the master node to update the particles. A peer-to-peer algorithm for PSO is proposed in

[145], where each node is capable of computing the objective function locally and is responsible

for updating a subset of particles. However, all of the aforementioned PSO variants are not
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decentralized in the true sense, since they require centralized control to operate. Further, these

algorithms assume each node to be capable of computing the objective function at any particle

value. The proposed algorithm eliminates these shortcomings of the aforementioned methods.

In the following, we first formally state the problem in Section 4.2. We provide an overview of

methods that will be used for solving distributed TWRI problem in Section 4.3. In Section 4.4,

we describe in detail the proposed approaches, while supporting numerical results are provided

in Section 4.6. Finally, conclusions are drawn in Section 4.7.

4.2 Problem Formulation

4.2.1 System Model

Consider S radar units located at known positions either along the front wall or surrounding

the building being imaged. Each radar unit is equipped with M transmitters and N receivers,

where both M and N are assumed to be small. An ‘across-units’ mode of operation is con-

sidered, wherein transmission-reception occurs across multiple radar units. While operating in

this mode, each transmitted pulse is received simultaneously by all receivers from all units. We

assume that radars are operating in a time division multiplexing manner which enables individ-

ual radar units to transmit and receive signals without interference from others and each radar

can associate the received signal with a specific transmitter.

Let s1 and s2 be the indices of the transmitting and receiving radar units, respectively, where

s1 = 0, 1, . . . , S− 1, and s2 = 0, 1, . . . , S− 1. The scene of interest is divided into P grid points,

which defines the target space. Let σs1s2p be the complex reflection coefficient associated with

grid point p corresponding to the transmitting unit s1 and receiving unit s2, with σs1s2p = 0

representing the absence of a target. Neglecting multipath contributions, the baseband signal

transmitted from m-th transmitter (here m = 0, 1, . . . ,M − 1) of the s1-th radar unit and

recorded at receiver n = 0, 1, . . . , N − 1 of the s2-th radar unit can be expressed as,

zs1s2mn (t) =

P−1∑
p=0

σs1s2p s(t−mTr − s1MTr − τs1s2pmn)exp (−j2πfc(mTr + s1MTr + τs1s2pmn)). (4.1)

Here, s(t) is the transmitted wideband pulse in complex baseband, fc is the carrier frequency,

Tr is the pulse repetition interval, and τs1s2pmn is the propagation delay from transmitter m of

unit s1 to the grid point p and back to the receiver n of unit s2. We sample zs1s2mn (t) at or

above the Nyquist rate to obtain a signal vector zs1s2mn of length NT . Stacking signal vec-

tors corresponding to the M transmitters and N receivers, we obtain an MNNT × 1 mea-

surement vector z̄s1s2 , which, using (4.1), can be expressed as, z̄s1s2 = Ψ
(0)
s1s2σ

(0)
s1s2 , where
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σ
(0)
s1s2 = [σs1s20 , σs1s21 , . . . , σs1s2P−1]T with the superscript ‘(0)’ indicating direct path propagation,

‘[.]T’ denotes matrix transpose, and, for i = 0, . . . , NT −1, the elements of the dictionary matrix

Ψ
(0)
s1s2 ∈ CMNNT×P are given by[

Ψ(0)
s1s2

]
i+nNT +mNTN,p = s(ti −mTr − s1MTr − τs1s2pmn)×

exp (−j2πfc(ti − (mTr + s1MTr + τs1s2pmn))).

(4.2)

Next, we assume that multipath for each target is generated due to secondary reflections at

one or more interior walls. Parameterizing the interior wall locations as w ∈ R3 and employing

geometric optics to model R − 1 additive multipath contributions in the received signal, we

obtain the signal model under multipath propagation for the s1-th transmitting unit and s2-th

receiving unit as

z̄s1s2 = Ψ(0)
s1s2σ

(0)
s1s2 +

R−1∑
r=1

Ψ(r)
s1s2(w)σ(r)

s1s2 . (4.3)

Here Ψ
(r)
s1s2 is defined according to (4.2) with τs1s2pmn replaced by the propagation delay τs1s2,(r)pmn

between transmitter m, grid point p, and receiver n along the r-th multipath [135]. Note

that the multipath time delays τs1s2,(r)mnp , r = 1, . . . , R − 1, depend on the wall locations and,

therefore, the dictionary matrices {Ψ(r)
s1s2}R−1

r=1 are all functions of w. Defining Ψ̃s1s2(w) =[
Ψ

(0)
s1s2 · · ·Ψ

(R−1)
s1s2 (w)

]
and σ̃s1s2 = [σ

(0)T

s1s2 · · ·σ
(R−1)T

s1s2 ]T, and assuming additive noise n̄ , we

can rewrite (4.3):

z̄s1s2 = Ψ̃s1s2(w)σ̃s1s2 + n̄s1s2 . (4.4)

4.2.2 Centralized Problem Formulation

In the case of centralized processing, the S2 measurement vectors, {z̄s1s2 , s1 = 0, . . . , S −

1, s2 = 0, . . . , S − 1}, corresponding to the ‘across-units’ operation of the S radar units, are

communicated to a fusion center where the scene reconstruction is performed [3]. Specifically,

the S2 measurements can be collectively represented as

z̆ = Ă(w)σ̆ + n̆, (4.5)

where

z̆ =
[
z̄T

0 0, . . . , z̄
T
S−1S−1

]T
, σ̆ =

[
σ̃T

0 0, . . . , σ̃
T
S−1S−1

]T
,

n̆ =
[
n̄T

0 0, . . . , n̄
T
S−1S−1

]T
, and

Ă(w) = blkdiag{Ψ̃0 0(w), . . . , Ψ̃S−1S−1(w)}, (4.6)
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and blkdiag{.} denotes a block-diagonal matrix.

Given the measurements z̆ in (4.5), the aim is to determine the wall locations w as well as

reconstruct the scene reflectivity vector σ̆. Since the same physical scene is observed via all

paths by the various radar units, the scene reflectivity vector exhibits a group sparse structure

[3]. As such, for a regularization parameter λ, the scene recovery and wall location estimation

can be posed as the following optimization problem:

min
σ̆,w
‖z̆− Ă(w)σ̆‖22 + λ‖σ̆‖1,2, (4.7)

where ‖σ̆‖1,2 =
∑P−1
p=0

∥∥[σ
(0)
0 0p

, . . . ,σ
(R−1)
0 0p

, . . . ,σ
(0)
S−1S−1p

, . . . ,σ
(R−1)
S−1S−1p

]T
∥∥

2
and σ

(0)
s1 s2p is the

p-th element of vector σ
(0)
s1 s2 . The optimization problem in (4.7) is nonconvex as the matrix

Ă(w) has a nonlinear dependence on the wall locations. An iterative approach proposed in [3]

solves (4.7) by alternating between optimization over σ̆ and w.

4.2.3 Distributed Problem Formulation

The focus of this work is on wall location estimation and scene reconstruction, i.e., solving (4.7),

in a decentralized manner across the S radar units, with each radar unit having access to only

a subset of the measurements z̆. Substituting Ă(w), z̆, and σ̆ from (4.6) in (4.7), we can write

the problem as

min
σ̆,w

S−1∑
s2=0

S−1∑
s1=0

‖z̄s1 s2 − Ψ̃s1 s2(w)σ̃s1 s2‖22 + λ‖σ̆‖1,2. (4.8)

Using alternating minimization framework, we need to solve this optimization problem in a

decentralized manner. For decentralized optimization over σ̆, we use the Modified Distributed

orthogonal matching pursuit (MDOMP) method proposed in [128]. Then for a fixed σ̆, the

objective function is just the first term in (4.8). That is,

min
w

f(w) := min
w

S−1∑
s2=0

fs2(w), (4.9)

where,

fs2(w) :=

S−1∑
s1=0

‖z̄s1 s2 − Ψ̃s1 s2(w)σ̃s1 s2‖22

is the objective function at radar unit s2. In this chapter, we develop decentralized variants

of quasi-Newton method and particle swarm optimization (PSO) to solve this optimization

problem.
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4.3 Technical background

4.3.1 Consensus Averaging

For some scalar values {xi}S−1
i=0 that are distributed across S radar units, consensus averaging

provides an iterative method for computing the average (1/S)
∑S−1
i=0 xi. Let us first represent the

connectivity among the distributed radar units by a graph G = (N , E), where N = {0, 1, . . . , S−

1} denotes the set of nodes (radar units in the underlying application) in a network and E are

the edges defining the interconnection among the nodes, i.e., (i, i) ∈ E and (i, j) ∈ E when node

i can communicate with node j. From graph G, we generate a doubly stochastic matrix A such

that its (i, j)-th entry, Ai,j , satisfies the condition Ai,j = 0, ∀(i, j) /∈ E . Then, starting from

x(0) = [x0, . . . , xS−1]T, the update at iteration tc of consensus averaging is given by

x(tc) = Ax(tc−1). (4.10)

Previous work on consensus averaging [107, 108] shows that if A is doubly stochastic then as

tc →∞, each element of x(tc) approaches the mean of the values in x(0).

4.3.2 MDOMP for Decentralized Sparse Scene Recovery

MDOMP has been proposed in [128] for sparse scene recovery in the case of a distributed network

of TWRI units. MDOMP is a decentralized version of the orthogonal matching pursuit (OMP)

algorithm [148]. At each radar unit, a communication step is performed in each iteration of

MDOMP, wherein each radar unit computes a correlation vector using the local measurements

only and shares it with all other radar units. Each unit then adds all correlation vectors, selects

the index corresponding to the largest element in the correlation vector sum, and updates its

set of active indices. The remaining part of the algorithm is similar to OMP.

4.4 Decentralized Quasi-Newton Method for TWRI

4.4.1 Quasi-Newton Method for Optimization

Gradient-based descent direction methods are a popular choice for solving optimization problems

[149]. First-order methods like gradient descent are computationally efficient but can result in

slow convergence for some problems. To overcome this issue we can use second-order methods

such as Newton’s method, which for step size γt, is given as follows:

wt+1 = wt − γt∇2f(wt)
−1∇f(wt). (4.11)
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However, computing the Hessian matrix and its inverse for Newton’s method can be computa-

tionally prohibitive in practice for high-dimensional problems. Quasi-Newton method resolves

this issue by using only gradient information to approximate the Hessian matrix. For an ap-

proximation Vt of inverse of the Hessian matrix, i.e., Vt ≈ ∇2f(wt)
−1, we can rewrite (4.11)

as:

wt+1 = wt − γtVt∇f(wt). (4.12)

A number of methods exist in the literature to compute matrix Vt, with BFGS [149, Chap. 8]

being one of the most widely used. Using vectors

pt := wt+1 −wt and qt := ∇f(wt+1)−∇f(wt),

BFGS method computes Vt as follows:

Vt+1 = Vt +

(
1 +

qT
t Vtqt
pT
t qt

)
ptp

T
t

pT
t qt
− ptq

T
t Vt + Vtqtp

T
t

pT
t qt

.

For the distributed TWRI problem, the objective function is distributed across radar units;

hence, we cannot use centralized quasi-Newton method. Instead, we will employ consensus

averaging [107, 108] to develop a decentralized variant of the quasi-Newton method. In the

following, we overview consensus averaging before presenting the proposed decentralized quasi-

Newton method. Lack of access to the complete objective function in distributed settings does

not permit quasi-Newton update as given in (4.12). Instead, we prospose that starting from

same initial value of the minimizer winit and Hessian approximate Vinit at each radar unit, we

compute the update in (4.12) locally at each radar unit as follows:

ws2,t+1 = ws2,t − τs2,tVs2,t∇fs2(ws2,t). (4.13)

Note that since we started from same initial values at each radar unit, we can express the global

update as:

wt+1 =

S−1∑
s2=0

ws2,t+1

=

S−1∑
s2=0

( 1

S
ws2,t − τs2,tVs2,t∇fs2(ws2,t)

)
. (4.14)

Now we can use consensus averaging to compute this summation. Note that we will have

numerical errors in the summation due to finite number of consensus iterations. This leads to

biased estimates of qt and pt, as shown in Steps 21–22 of Algorithm 4. These biases in qt and

pt will result in an error in the estimate of Vt (Step 23 of Algorithm 4). Defining εc,s2 as the
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Algorithm 4: Distributed Quasi-Newton Method (D-QN).
Input: Local data {z̄0 0, . . . , z̄S−1S−1}, σ̆i computed using MDOMP, constraint set W,
and a doubly stochastic matrix A.
Initialize: Randomly pick a starting wall position ŵs2,0 ← winit and a positive-definite
matrix Vs2,0 ← Vinit at each radar unit s2, and t← 0.

1: while stopping rule do
2: d̂s2,t ← −V̂s2,t∇f(ŵs2,t)

3: γs2,t ← arg minγ
∑
s2
fs2
(
ŵs2,t + γd̂s2,t

)
4: w̄s2,t+1 ← ŵs2,t + γs2,td̂s2,t
5: if w̄s2,t+1 ∈ W then
6: ŵs2,t+1 ← w̄s2,t+1

7: else
8: (Projection onto constraint set)
9: P(w̄s2,t+1) = arg miny∈W ‖w̄s2,t+1 − y‖2

10: d̂s2,t ← P(w̄s2,t+1)− ŵs2,t

11: γs2,t ← arg minγ<1

∑
s2
fs2
(
ŵs2,t + γd̂s2,t

)
12: ŵs2,t+1 ← ŵs2,t + γs2,td̂s2,t
13: end if
14: (Consensus Averaging)
15: Initialize tc ← 0 and w̄s2,0 ← ŵs2,t+1

16: while stopping rule do
17: w̄s2,tc+1 ←

∑
j∈Ns2

As2,jw̄s2,tc

18: tc ← tc + 1
19: end while
20: (Update p̂s2,t, q̂s2,t, and V̂s2,t):
21: p̂s2,t ← ŵs2,t+1 − ŵs2,t

22: q̂s2,t ← ∇f̂s2(ŵs2,t+1)−∇f̂s2(ŵs2,t)

23: V̂s2,t+1 ← V̂s2,t +

(
1 +

q̂T
s2,tV̂s2,tq̂s2,t

p̂T
s2,tq̂s2,t

)
p̂s2,tp̂

T
s2,t

p̂T
s2,tq̂s2,t

− p̂s2,tq̂
T
s2,tV̂s2,t+V̂s2,tq̂s2,tp̂

T
s2,t

p̂T
s2,tq̂s2,t

24: t← t+ 1
25: end while
Return: ŵs2,t

error in the estimate of Vt then we can re-write (4.14) as follows:

wt+1 =

S−1∑
s2=0

( 1

S
ws2,t − τs2,tVs2,t∇fs2(ws2,t)

)

=

S−1∑
s2=0

( 1

S
ws2,t − τs2,t(Vt + εc,s2)∇fs2(ws2,t)

)

=

S−1∑
s2=0

( 1

S
ws2,t − τs2,tVt∇fs2(ws2,t)

)
+ εt. (4.15)

Thus, if we perform enough consensus iterations such that εt stays sufficiently small then we

can acheive similar results as the centralized quasi-Newton method.
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4.4.2 Projection onto Constraint Set

After consensus averaging, we have estimate of wall locations w̄s2,t+1 at each radar unit s2.

Assuming we know initially the wall locations with an accuracy of ±0.5m, if w∗ is the initial

given wall location then we constrain our estimates to be in an interval [w∗−0.5,w∗+ 0.5]. We

formally define constraint set as follows:

W :=
{
w ∈ R3 : w∗ − 0.5 ≤ w ≤ w∗ + 0.5

}
. (4.16)

In order to project our estimates onto these box constraints, we use the method proposed in

[150]. In Algorithm 4, each radar unit has new estimate of wall locations after Step 4. Next,

we test whether the new estimate is within the costraint set defined in (4.16). If wall location

estimates are outside the constraint set W then we use the method in [150]. The first step

involves projection of w̄s2,t onto setW as shown in Step 9 of Algorithm 4, while the second step

finds a descent direction within the constraint set that is the difference between the projection

we obtained and the previous iterate as shown in Step 10 of Algorithm 4. Finally, we compute

the step size in the descent direction given as Step 11 of Algorithm 4.

4.4.3 Stopping Criterion

Empirical evidence suggests that the function gradient in our problem changes very rapidly,

especially in the neighborhood of stationary points. Due to this, using gradient information

as a stopping criterion is not feasible. On the other hand, from Figure 4.2, we can see that

the TWRI objective function has very small value within a small neighborhood of the global

minimum as compared to anywhere else within the constraint set. Using this insight, we use

reconstruction error as a stopping criterion.

4.5 Decentralized Particle Swarm Optimization

4.5.1 Overview of Particle Swarm Optimization

In order to optimize an objective function f(x), PSO is initialized with Q particles at positions

{qj}Qj=1, which are points in the domain of f(x). We define the variable qmin,j , which contains

the value of qj corresponding to the obtained minimum value of the objective function thus far

for the particle j. In each iteration of PSO, we compute the value of the objective function for

each particle {qj}Qj=1 and update the variables {qmin,j}Qj=1. Then we update the variable gmin,

which is the particle value at which we have observed the minimum value of objective function
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Figure 4.2: Normalized objective function (4.9) when varying wall locations over an interval of
±0.4 in each dimension around true wall locations.

so far. That is,

gmin = arg min
q∈{qj}Qj=1

f(q).

Finally, we update the particle velocity vj and particle value qj , where the velocity vj provides

the displacement of the particle qj in the domain of objective function f(x). The velocity

update is based on the particle’s current value qj , minimum value at the particle qmin,j , and

the minimum value across all particles gmin. The velocity update equation for centralized PSO

is the same as for decentralized PSO, which is given in Step 20 of Algorithm 5.

4.5.2 Decentralized approach

We develop a decentralized variant of the PSO algorithm (D-PSO), whose pseudocode is pro-

vided in Algorithm 5. Similar to the conventional PSO, we start by initializing with Q particles

{q(0)
s2,j
}Qj=1 at the s2th node/radar unit. We assume that each radar unit has the same initial

values for the particles. One way of achieving this is by initializing particles randomly with

the same seed at each node. The first step towards updating the value of a particle consists of

computing the objective function (4.8) at the current value of the particle. In the decentralized

case, each radar unit can only compute a part of the objective function, as specified in Step 3
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Algorithm 5: Decentralized Particle Swarm Optimization algorithm (D-PSO).
Input: Local data {z̄0 0, . . . , z̄S−1S−1}, σ̆i computed using MDOMP, and
doubly-stochastic matrix A.
Initialize: Generate particles with positions {q(0)

s2,j
}Qj=1 and velocities {v(0)

s2,j
}Qj=1

randomly at each site s2. hmin,j,s2 ←∞, bmin,s2 ←∞. t← 0.

1: while stopping rule do
2: for j = 1, . . . , Q do
3: Calculate at each radar unit s2: hs2 ←

∑S−1
s1=0 ‖z̄s1 s2 − Ψ̃s1 s2(q

(t)
s2,j

)σ̃s1 s2‖22
4: (Inititalize Consensus Averaging) Set tc ← 0 and ĥ(0) ←

[
h0 . . . hS−1

]T
5: while stopping rule do
6: ĥ

(tc)
s2 ←

∑
j∈Ns2

As2,j ĥ
(tc−1)
j

7: tc ← tc + 1
8: end while
9: if ĥs2 < hmin,j,s2 then

10: hmin,j,s2 ← ĥs2
11: qmin,j,s2 ← q

(t)
s2,j

12: end if
13: end for
14: ks2 ← arg minj{hmin,j,s2}
15: if hmin,ks2 ,s2 < bmin,s2 then
16: bmin,s2 ← hmin,ks2 ,s2
17: gmin,s2 ← {qmin,ks2 ,s2}
18: end if
19: for j = 1, . . . , Q do
20: Update velocity: v

(t+1)
s2,j

← v
(t)
s2,j

+ c1U(0, 1)(qmin,j,s2 − q
(t)
i,j ) + c2U(0, 1)(gmin − q

(t)
s2,j

)

21: Update positions: q
(t)
s2,j
← q

(t)
s2,j

+ v
(t)
s2,j

.
22: end for
23: t← t+ 1
24: end while
Return: {q(t)

s2,j
}Qj=1.

of Algorithm 5. Using consensus averaging, we compute the complete value of the objective

function, as delineated in Steps 4–8 of Algorithm 5. Next, in Steps 9–12, we update the mini-

mum objective value achieved by the particle qs2,j . We repeat Steps 3–12 for all Q particles at

the radar unit s2. The velocity vs2,j and particle values qs2,j are updated as detailed in Steps

20–21 of Algorithm 5. Note that in Step 20, U(0, 1) is a random number chosen from a uniform

distribution over the interval [0, 1].

4.6 Simulation Results

We consider a square room with four walls, each of length 2 m. We deploy S = 5 radar units,

uniformly distributed over an extent of 2 m in crossrange, at a standoff distance of 1.5 m from

the front wall. Each radar unit is equipped with M = 1 transmitter and N = 3 receivers.
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Table 4.1: Performance comparison of decentralized gradient descent (D-GD), decentralized
quasi-Newton method (D-QN), and decentralized particle swarm optimization (D-PSO) meth-
ods.

Optimization
Method

Estimates
within ±0.1
accuracy

Estimates
within ±0.01
accuracy

D-GD 94.8% 86.8%
D-QN 96.8% 92.6%
D-PSO 83% 50%

We assume that at any given time instant, only one radar unit transmits and all units receive

the reflections. For each transmission, we use a Gaussian pulse with 50% relative bandwidth,

modulating a sinusoid of carrier frequency fc = 2 GHz. The received signal at each radar unit

is sampled at the Nyquist rate and NT = 150 samples are collected over the interval of interest.

In addition to the direct signal, we assume two multipath contributions arising from the side

walls, i.e., R = 3. Multipath returns are assumed to be attenuated by 6 dB as compared to

the direct path signal. Further, the received signals are assumed to be corrupted by complex

circular Gaussian noise, resulting in a signal-to-noise ratio (SNR) of 20 dB.

The region of interest covers the room interior and is divided into 32×32 pixels in crossrange

and downrange. Four point targets are assumed to be located within the room at distinct

locations. In the simulation, starting from a random point in interval w∗ ± 0.5, our goal is

to estimate the correct wall positions and reconstruct the scene. For comparison with other

gradient methods, we also implemented a decentralized variant of gradient descent method (D-

GD) tailored for the TWRI problem. Instead of using the descent direction given in Step 2

of Algorithm 4, we employ gradient as a descent direction for D-GD. Rest of the algorithm

works same as Algorithm 4. The results comparing D-PSO, D-QN, and D-GD are provided

in Table 4.1. In the simulation, we are only assuming unknown side wall locations and we

set the true wall locations to be [−1 1]T. First and second columns of Table 4.1 provide the

percentage of times a method estimates the wall location within ±0.1 and ±0.01 of the true

value, respectively. We can see that D-QN method estimates wall locations with higher accuracy

as compared to the D-GD and D-PSO methods.

4.7 Conclusion

In this chapter we have proposed decentralized variants of quasi-Newton method and particle

swarm optimization for wall position estimation in TWRI problem. Due to the properties of the

objective function, we propose using a line search approach for step-size computation and we
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provide a stopping criterion specifically for the TWRI problem for decentralized quasi-Newton

method. Finally, simulation results are provided to show the effectiveness of the proposed

solution.
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