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ABSTRACT OF THE DISSERTATION

COMPUTER AIDED ANALYSIS OF PROSTATE

HISTOPATHOLOGY IMAGES

By JIAN REN

Dissertation Director: David J. Foran

Prostate cancer is the most common non-skin related cancer affecting 1 in 7 men

in the United States. Treatment of patients with prostate cancer remains a difficult

decision-making process that requires physicians to balance clinical benefits, life ex-

pectancy, morbidities, and potential side effects. Gleason scores have been shown to

serve as the best predictors of prostate cancer outcomes. In spite of progress made in

trying to standardize the grading process, there still remains approximately a 30% grad-

ing discrepancy between the score rendered by general pathologists and those provided

by experts while reviewing needle biopsies for Gleason pattern 3 and 4, which accounts

for more than 70% of daily prostate tissue slides at most institutions. Therefore, we

present computational imaging methods for prostate gland analysis which we will utilize

to develop an automated reliable computer-aided Gleason grading system. The inspi-

ration for the project starts from the fact that prostate adenocarcinoma is diagnosed

by recognizing certain histology fields clinically. Recently, the Gleason grading criteria

used to perform Gleason grading was updated to allow more accurate stratification and

higher prognostic discrimination as compared to the traditional grading system.
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In this thesis work, we have gone beyond Gleason score analysis by introducing sur-

vival model assessment to predict patient outcomes. Using whole-slide images (WSIs)

generated from biopsy tissues from radical prostatectomy surgical specimens, we utilize

deep learning approaches to discover the most promising computational image biomark-

ers. The proposed method differs from existing survival analysis studies that use indi-

vidual patches or manually designed protocols to select a set of patches. In contrast to

those approaches, we develop an end-to-end methodology to learn from patches that

are analyzed sequentially while preserving their inter-spatial relationships within the

WSIs. We build the automatically cropped patches from a WSI as a sequence and

use the recurrent neural network to generate a salient representative computational

biomarker for the WSI.

Automatic and accurate Gleason grading of histopathology tissue slides is crucial

for reliable prostate cancer diagnosis, treatment, and prognosis. Usually, histopathol-

ogy tissue slides from different institutions show heterogeneous appearances because

of variation in tissue preparation and staining procedures, thus the predictable model

learned from one domain may not be applicable to a new domain, directly. Here we

propose to adopt unsupervised domain adaptation to transfer the discriminative knowl-

edge obtained from the source domain to the target domain without requiring labeling

of images at the target domain. The adaptation is achieved through adversarial train-

ing to find an invariant feature space along with the proposed Siamese architecture

on the target domain to add the regularization that is appropriate for the whole-slide

images. We validate the method on two prostate cancer datasets and obtain significant

classification improvement of Gleason score as compared with the baseline models.

Finally, we explore the possibility of utilizing cluster computing infrastructure to

speed up the analysis. The nuclei detection algorithm that was previously reported

extremely reliable in terms of accuracy, but suffered from the fact that performance

took an inordinate amount of time to run on a single machine. We have addressed

this challenge and present here a parallel nuclei detection algorithm that has been

implemented on CometCloud.
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Chapter 1

Introduction

1.1 Background

Prostate cancer is the second common cancer among men in the United States, and the

second leading cause of cancer death in American men, according to the latest statistics

from the American Cancer Society reported in 2017 [1]. Clinical factors including

the prostate-specific antigen (PSA) blood test value, patient’s age, tumor stage and

prostate biopsy grading et al are important prognostic features for prostate cancer

early detection and diagnosis [1, 2, 3]. After the biopsy of prostate tissue, the prostate

cancers are graded according to the Gleason system that assigns a Gleason score based

on cancerous cells fall into 5 distinct patterns as they change from normal cells to tumor

cells. The cell patterns are graded as a scale of 1 to 5, pattern 3 consists of infiltrative

well-formed glands, varying in size and shapes, pattern 4 consists of poorly formed,

fused or cribriform glands, pattern 5 consists of solids sheets or single cells with no

glandular formation. The Gleason grading system has been shown to be the strongest

prognostic factor for men with prostate adenocarcinoma.

The Gleason score is solely based on prostate glandular morphological architectures,

which is a sum of primary and secondary Gleason patterns exhibited in the tissue

pathology image. The newly established prostate cancer grading system which has

been developed by experts in the field, features a five-grade group system (group 1 to

5 as Gleason score ≤ 6, 3 + 4, 4 + 3, 8 and 9 – 10 respectively). Generally speaking,

prostate cancers with lower Gleason scores (2-4) tend to be less aggressive while prostate

cancers with higher Gleason scores (7-10) tend to be more aggressive. The prostate

Gleason score remains one of the best predictors for determining risks of prostate cancer

progression and predicting patient outcome [4, 5, 6, 7, 8, 9]. Patients with Gleason score
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of 7 are divided into two prognostic groups, group II for those with primary pattern

3 + secondary pattern 4, and group III for those with primary pattern 4 + secondary

pattern 3 [10]. The most conflicting group of the prognostic difference is Gleason score

7 on a biopsy depending on whether the primary Gleason pattern is 3 or 4. Numerous

studies have demonstrated that in radical prostatectomy specimens, Gleason score 4 +

3 has a worse prognosis than 3 + 4 [11, 12, 13, 14, 15, 16, 17, 18]. Since there is a

significant difference between pattern 4 + 3 and pattern 3 + 4, it is very important to be

able to separate pattern 3 and pattern 4 accurately. Unfortunately, since it is difficult at

times to objectively assign these patterns, a substantial interobserver variability exists,

especially among general pathologists who do not specialize in urologic pathology [19].

Furthermore, although many prediction tools [20, 21, 22, 23, 24, 25, 26] use whole-

slide images (WSIs) of biopsy tissue from radical prostatectomy surgical specimens

to assess prostate cancer progression risk and predict the likely outcomes resulting

from treatments, no reliable tools yet exist that simultaneously consider clinical factors

and tissue WSIs to stratify prostate patients into subgroups with different risks of

progression. Therefore, it is important to predict the prostate cancer progression using

computational image biomarkers discovered from WSIs. The WSIs are scanned from

the biopsy tissues of the radical prostatectomy surgical specimens. Considering the

high computational cost on the giga-pixel tissue WSIs, existing WSIs classification and

survival analysis approaches are focused on effectively utilizing the cropped patches from

region of interests (ROIs) [27, 28, 29, 30, 31]. However, the process of labeling ROIs

is labor-intensive and requires expert pathologists to review the ROIs under different

magnifications. In addition, the ROIs represent only partial information within the

WSIs, especially for the prostate images, where the Gleason grading is a sum of the

primary and secondary Gleason patterns for the entire tissue sample. Using the WSI

direcitly could preserve more information. Survival analysis is a very useful tool in

predicting patient outcome and provides invaluable information regarding intervention.

There are three primary goals of survival analysis: estimating and interpreting survival

and/or hazard functions from patients’ survival data; comparing survival and hazard

functions; and assessing the relationship of explanatory variables to survival time.
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Given that fact that histopathology WSIs obtained from different institutions usu-

ally present distinct glandular region distributions due to differences in appearance that

may be caused by using different microscope scanners and staining procedures, there-

fore such differences may render the supervised classification model used for predicting

the Gleason grade for one annotated dataset (source domain) ineffective on another

prostate dataset (target domain). A widely used approach to address the challenge is

to label new images on the target domain and fine-tune the model trained on source

domain [32]. Instead, methods that can learn from existing datasets and adapt to new

target domains, without the need for additional labeling, are highly desirable. With the

development of unsupervised domain adaptation [33, 34], it is possible to classify the

newly given prostate datasets into low and high Gleason grade through unsupervised

learning, which could same lots of time and money for labeling WSIs.

Considering the highly computational cost of many computer aiaided algorithms,

such as the robust nuclei segmentation algorithm has been reported in [35], which

includes two main sequential steps, seed detection and contour generation, it’s not very

efficient to run nuclei segmentation algorithm directly on the whole image which may

contains hundreds and thousands of nuclei. To accelerate the process, there have been

many applications using cloud computing on medical image analysis, but most of them

were focused on data parallelization instead of the algorithm parallelization [36, 37, 38,

39]. Thus we address the challenge of working with specimens which have not been

enhanced with specialized staining methods and can be used across a broader number

of application areas.

1.2 Outline

In Chapter 2, we present two computer aided analysis approaches for prostate gland

segmentation using pattern 3 and 4 Hematoxylin and Eosin (H&E) stained pathology

images. The first one is a region-based nuclei and gland grouping approach, it utilizes

the structure information to help segment each gland [25]. The second method that

we propose is a two-phase gland classification method. The classification of each gland

is based on the accurate segmentation of glandular regions on Hematoxylin and Eosin
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(H&E) stained images [26].

In Chapter 3, we conduct Gleason score-guided prostate cancer progression analysis

using deep learning approaches on WSIs of biopsy tissues and survival models to develop

a higher discriminative and predictive way in patients’ outcomes. The prostate cancer

patients’ disease-free time (months) since their initial treatment are applied as the time-

to-recurrence for progression analysis using survival models. we adopt a recurrent neural

network (RNN) model [40], namely the long short-term memory (LSTM) network [41] to

learn the fine-grained discriminative information among patches (e.g. Gleason pattern

3 and pattern 4) and the global representations of the WSI. Unlike the traditional RNN

that has vanishing and exploding gradients problem [40], LSTM incorporates memory

cells with several gates to obtain long-range dependencies by enabling the network to

learn at what time to forget previous hidden states as well as update hidden states

with new information. For one WSI, we systematically forward the cropped patches

into CNN and get the activations from the second to the last layer. On top of that,

the LSTM network maps the sequence of the activations into one feature vector that

encodes the global representative information of the WSI.

Futhermore, in chapter 4, we build a unified system using public available whole-slide

images and genomic data of histopathology specimens through deep neural networks to

identify a set of computational biomarkers. Using a survival model, experimental results

on the public prostate dataset showed that the computational biomarkers extracted

by our approach had hazard ratio as 5.73 and C-index as 0.74, which were higher

than standard clinical prognostic factors and other engineered image texture features.

Collectively, the results of this study highlight the important role of neural network

analysis of prostate cancer and the potential of such approaches in other precision

medicine applications [42, 43].

In Chapter 5, we propose a novel Factorized Adversarial Networks to tackle the unsu-

pervised domain adaptation in an effective way [44]. Furthermore, we adopt the domain

adaptation for unsupervised prostate histopathology WSIs classification in Chapter 7.

We apply adversarial training to minimize the distribution discrepancy at the fea-

ture space between the domains, with the loss function adopted from the Generative
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Adversarial Network (GAN) [45]. Furthermore, we developed a Siamese architecture

for the target network to serve as a regularization of patches within the WSIs. The

proposed method is validated on public prostate datasets and a newly collected local

dataset. The experimental results show the approach significantly improves the classi-

fication accuracy of Gleason score as compared with the baseline model. To the best of

our knowledge, this is the first study of domain adaptation for unsupervised prostate

histopathology WSIs classification [46, 47].

In Chapter 7, we propose a new approach to parallelize the nuclei detection al-

gorithm by utilizing CometCloud to speed up the whole process to make the nuclei

segmentation running in real-time a possibility.
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Chapter 2

Patch-based Gland Segmentation and Classification

2.1 Introduction

With the rapid development and adoption of whole-slide microscopic imaging and the

corresponding advances being made in terms of available computing power, the po-

tential for developing a reliable, automated computer-aided diagnosis (CAD) system

capable of performing objective, reproducible Gleason scoring while avoiding intra- and

inter-observer variability is now technically feasible. The newly established prostate

cancer grading system which has been developed by experts in the field, features a five-

grade group system. This methodology offers more accurate grade stratification than

traditional systems and provides the highest prognostic discrimination for all cohorts

on both univariate and multivariate analysis [4].

There have been many studies on computer-aided Gleason grading, however most

of them are not focused analyzing intact glandular regions. In general there are four

approaches on prostate Gleason pattern grading including color-statistical based [48],

texture-based [49, 50], structure-based [51], and tissue-component-based [52, 53]. To

achieve significant improvements in discriminating between Gleason score 3 and 4, it is

essential to first perform accurate segmentation of individual glandular regions.

In the following, we describe two computational imaging decision support frame-

works which are investigated as a deployable tool to allow accurate discrimination

among even the most challenging Gleason patterns 3 and 4 in prostate cancer diag-

noses. The first method is a region-based nuclei segmentation to get individual gland

without using lumen as prior information. The second one is a two-phase gland classi-

fication method. The classification of each gland is based on the accurate segmentation

of glandular regions on Hematoxylin and Eosin (H&E) stained images.
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Figure 2.1: Flow chart of region-based nuclei segmentation.

2.2 Region-based Nuclei Segmentation

The region-based nuclei and gland grouping approach segments individual gland by

grouping its surrounding nuclei without using lumen as prior information. The method

includes three main steps. First, image pre-processing is implemented for removal of

staining variations from different images. Second, all the nuclei and global gland regions

are identified respectively. Third, each individual gland is constructed from the distance

map of gland region with grouping of its adjacent surrounding nuclei.

The several steps of our approach are summarized in Figure 2.1. Using a well-

defined H&E stained image as a reference image, all the images are normalized for

removal staining variations. From their staining vectors, nuclei and glands regions are

identified by color deconvolution. Based on an assumption that only one whole lumen

locates in one single gland no matter grade 3 individual gland structure or grade 4

gland infusion, local maximum points in distance map of gland region are applied to

identify the number of glands in each gland region. Because many glands do not have

lumen and lumen usually located in the center of glands, surrounding adjacent nuclei
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on each gland region are classified to different local maximum points by Delaunary

triangulation grouping approach.

2.2.1 Color Normalization for removal stain variations

Because of stain variations within those H&E stained images, in which each comes from

different patient, color normalization is applied to have image quality control as its pre-

processing step. Figure 2.2 shows four examples of H&E stained prostate pathology

slides. They have different staining appearances for nuclei, cytoplasm, stroma, and

lumen, even come from the same institute. We use color map normalization method,

which is described in[54]. The reason to choose this normalization approach is that it

uses unique color in the image instead of color frequency of all the pixels. So we use a

well-defined H&E stained image as a reference image, and all the images are normalized

by the color map of the reference image for removal staining variations.

2.2.2 Identification nuclei region and gland region

After color normalization, color deconvolution [55] is applied to extract nuclear region

mask and glandular region mask.

Because stain vectors are automatically acquired from color deconvolution, shown

as two examples in Figure 2.3 (a). Given a different threshold to the stain vector image,

we can get nuclear region mask and glandular region mask. For the glandular region

mask, a small area threshold is used to remove noise, as shown in Figure 2.3 (b). And

the nuclear region mask is shown in Figure 2.3 (c).

2.2.3 Gland construction

Since we get the mask of nuclear region and glandular region, we can group each nuclei

region to each gland, and therefore construct each gland from gland regions. Assume

we have a gland region G, and use this gland region multiplies nuclei region to get nuclei

regions on the gland, suppose Nk, (k=1...m), where Nk denotes the kth nuclei region

on the gland and m denotes total number of nuclei regions on the gland. Figure 2.4
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(a) (b)

(c) (d)

Figure 2.2: Examples of four H&E stained images, but with quite different staining
appearance for nuclei, cytoplasm, stroma and lumen. (a) and (b) shows a trend of
gland infusion, many glands have touched other glands, while glands in (c) and (d)
have merged together and it’s more difficult than (a) and (b) to separate each gland.
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Figure 2.3: (a) Stain vector contains gland and nuclei information; (b) Glandular region
mask; (c) Nuclear region mask.

(a) is original image and Figure 2.4 (b) is the glandular region mask of original image

and there are three gland regions in the image. The gland construction includes three

steps.

Firstly, we transform the gland region to a distance image, then localize its local

maximal points on it. The distance map is shown in Figure 2.4 (c), and local maximum

points are shown in Figure 2.4 (d). Based on the assumption that only one whole

lumen locates in one single gland no matter grade 3 individual gland structure or grade

4 gland infusion, the local maximum points in distance map of gland region are applied

to identify the number of glands in each gland region. So we have several glands Gi,

(i=1...n), here n denotes number of local maximum points in each gland region and Gi

denotes the ith gland region. Figure 2.4 (d) shows the local maximum points on the

distance transform map.

Secondly, for the gland region with just one local maximum point, we consider

it as a single gland and use nuclei regions’ centroids and the local maximum point

to construct Delaunay triangulation and therefore find border of the gland; while for

others, the Algorithm 1 is applied to each gland region. Since each gland Gi has its
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nuclei regions, we can construct part of the complete gland by using local maximum

point and nuclei regions, as shown in Figure 2.4 (e).

Algorithm 1: Gland construction of region-based nuclei segmentation

1 while While there is nuclei region Nk unlabeled do
2 if The nuclei region Nk only directly connected with Gi then
3 Nk is classified as Gi’s nuclei

4 if The nuclei Nk directly connected with multiple local maximum points, such
as Gp ... Gq (1 ≤ p < q ≤ n) then

5 Nk is classified to the gland having the largest nuclei density

6 if The nuclei densities of Gp ... Gq are same then
7 Choose the gland with closest distance

Thirdly, for those non-directly connected nuclei regions, searching their adjacent

classified glands, they are assigned to the gland with smallest distance.

The glands have less than three nuclei region will be discarded because it’s not

enough to construct a triangulation. After all the nuclei regions are grouped, we recon-

struct each gland using Delaunay triangulation, the result is shown in Figure 2.4 (f),

and each black arrow denotes a segmented gland.

2.3 Two-Phase Gland Classification

The first part of two-phase gland classification is delineating each image by using the

segmentation network to generate an image mask. We use semantic pixel-wise classifi-

cation to get the binary mask of input RGB image. The segmentation networks includes

encoding the image and then decoding it. In the second phase, the features abstracted

from each segmented gland are subsequently used as the inputs for a random forest and

a score between 3 and 4 is given for each gland. Experimental results show that the

two-phase classification approach achieves improved prostate glandular segmentation

and classification results on H&E stained images compared to state-of-the-art.

2.3.1 Prostate image segmentation

The segmentation network that we have developed is based on a convolution neural

network (CNN) which can be trained end-to-end with stochastic gradient descent to
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Figure 2.4: (a) Original Image; (b) Gland region mask, in which there are three gland
regions in the images and are labeled by green arrows; (c) Distance transform of glandu-
lar region mask; (d) Local maximum points of distance transform image; (e) Grouping
the nuclei that connect with local maximum points directly; (f) Contours of final (in
red) image of gland segmentation, each black arrow indicates one gland.
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Figure 2.5: The architecture of the semantic segmentation network.

give the semantic pixel-wise segmentation of the original input RGB images. As shown

in Figure 2.5, CNN consists of encoding and decoding module but does not contain

a fully connected layer. Both the encoding portion of the network and the decoding

component contain 10 convolutional layers. The encoding part includes the typical

convolutional network and the convolutional layers are composed of kernel size 3×3

and padding size 1 and are followed by a rectified linear unit (ReLU) max(0, x), batch

normalization (BN) layer[56] and 2×2 max pooling layer with stride 2. The max pooling

layer is replaced by the upsampling layer[57] in the decoding component of the network.

The upsampling layer uses the location from the max pooling layer to reverse operation

of max pooling with stride 2. The final layer is the soft-max classifier for the binary

classification with the cross-entropy loss function as the objective function to train the

network.

In order to retain the boundary information during the test phase, each image is

mirrored by the four boundaries as shown in Figure 2.6. In this manner, the center

of each output image can be utilized to form the seamless segmentation mask and the

mask has the same size as the test image. Morphological operations are used as a

post-processing step to remove artifacts.
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Figure 2.6: Each test image is mirrored by four boundary sub-images in order to retain
the boundary information. And each test image is cropped into several sub-images.
Only the center of each predicted sub-image mask is kept to form the preliminary
mask.

2.3.2 Gland Grading based on segmentation

Superpixel Segmentation

For the Gleason pattern 3 glands, the lumen is typically surrounded by nuclei. While

glands begin to merge or fuse together in the Gleason pattern 4 glands, the lumen

may not be surrounded by nuclei and their spatial co-localization could be an arbitrary

pattern. Therefore we take advantage of the spatial structure pattern to differentiate

Gleason pattern 3 and 4. Using superpixel segmentation method[58], the segmented

glands from above step is then segmented into two sub-images: (1) the outer boundary

image and (2) the inner center image. The segmented region Si is classified to the

boundary image if they are adjacent to the background. Suppose the number of seg-

mented regions in the boundary image is m. Then the center of the original image is

extracted from the distance map. If there are m nearest superpixel regions adjacent to

the center, those m nearest regions form the center image. If the left superpixel regions

are less than m, all of them form the center image. An illustration of segmentation of

outer boundary image and inner center image is shown in Figure 2.7.
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Figure 2.7: (a) original image; (b) superpixel segmentation on the original image; (c)
distance map of the original image; (d) image contains boundary information; (e) image
contains center information.

Feature Extraction

Texture, shape and color features are extracted from the boundary images and the

center images to train the random forest classifier. The texture features are calculated

by using Bag-Of-Word on SIFT features. SIFT texture features are extracted from

training images and clustered by K-means algorithm. Using Bag-of-Word paradigm,

each image has k-bins of spatial histogram of K-means cluster centers as its texture

features. Here we use K equals 300 in our experiments after different K value testing.

The shape descriptor in each image is represented by HOG features. And we use mean,

standard deviation and the 5-bin histograms of intensities for each R, G, B channel to

represent the color feature. All the texture, shape and color features are consolidated

together. Suppose the set of features from the boundary image is represented by f bi and

the set of features from the center image is represented by f ci . To enhance the difference

between the boundary image and center image, we use fi =
w×fbi

(1−w)×fci
to represent the

features of the original gland image. w is is a weight parameter, varying from 0.1 to

0.9.
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Random Forest Regression

The grading of each gland between 3 and 4 is based on random forest regression. A

random forest is an ensemble of a number of decision trees, with each tree trained

using a randomly selected training sets. The output of a decision tree is produced by

branching an input left or right down the tree recursively until meet any leaf node. The

decision forest combines the predictions from individual tree using an ensemble model

and gives the regression output by averaging. The output score of the test image should

be in the range of 3 to 4.

2.4 Experiment Results

In this study, all the prostate images were from Pathology Department at Johns Hopkins

Medical Institutes. The images were stained by H&E. Our experiments consist of 22

prostate images from 22 difference patients. The images are under 20× magnification

with a size of 2400×1800.

Here we analyze the time complexity for the region-based nuclei segmentation. For

the glands which only have one local maximum points, the time complexity is O(X1),

where X1 is the number of glands with one local maximum points; while for other

glands, the time complexity is O(X2(N2 + M2)), where X2 is the number of glands

with multi local maximum points, N is the number of nuclei regions on the glands and

M is the number of local maximum points. For each image, using a computer with the

Intel Xeon processor and 16.0 GB RAM, the approach is implemented in MATLAB

and the average running time is less than one minute.

For the two-phase gland classification, we use 5-fold cross-validation to randomly

select 17 images as training images and others as testing images for the segmentation

network. 25 images are cropped from each image and the size of the cropped image is

480×360. Each cropped image is horizontal flip and vertical flip, so 1275 images are

used to train the image segmentation network. Precision (P ), recall (R) and F1 score

are used to measure the segmentation quantitatively. P is denoted as the intersection

between the segmentation results and the manually annotation results divided by the
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Figure 2.8: Results are shown for different methods. A score is given for each gland
after segmentation.

segmentation results while R is divided by the manually annotation results. So we

can have F1 = 2×P×R
P+R . We achieve F1 score as 0.8460 for the segmentation network.

Table 2.1 shows the segmentation performance comparison for different methods. The

segmentation network is implemented by using Caffe [59] on NVIDIA Quadro K5200

GPU with cuDNN acceleration.

After the each gland is segmented, we use the 634 labeled glands to train the random

forest classifier. All these glands are obtained from the 22 H&E stained images. Each

gland image is resized as 360×360. The weight parameter w for the feature exaction

equals to 0.7 for the best classification accuracy and the number of trees in the random

forest is 160 for a stable regression score. We use 10-cross validation to perform the

training. The sensitivity, specificity and accuracy for the classification are 0.70±0.15,

0.89±0.04 and 0.83±0.03 respectively. Figure 2.8 shows the segmentation results for

different methods and the scores given for each gland after the segmentation.
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Table 2.1: Segmentation Performance Comparison for Different Methods

Precision Recall F1 Score

Structure and Context[60] 0.4748 0.9530 0.6224
Region-based Nuclei Approach 0.8103 0.6703 0.7175
CNN without post-processing 0.8823 0.8235 0.8453
CNN with post-processing 0.8921 0.8123 0.8460

2.5 Conclusion

In this chapter, we present two methods for quantitatively analyzing histopathology

prostate cancer images representative of Gleason pattern 3 and 4. The computer-aided

analysis framework that we developed for performing prostate Gleason grading achieves

a better segmentation result compared to the state-of-the-art approaches. Meanwhile

it provides a quick reliable means for grading glandular regions especially those types

more often found in Gleason pattern 4. Based on these results, the methods described

may lead to a more reliable approach to assist pathologists in performing stratification

of prostate cancer patients and improves therapy planning.
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Chapter 3

Prostate Cancer Progression Analysis using

Computational Pathology Whole-Slide Images

3.1 Introduction

Survival analysis is a means for predicting patient outcomes, by providing invaluable

information for selecting treatment. Predicting prostate cancer survival outcomes is a

significant challenge. Following radical prostatectomy, men must be closely monitored

for evidence of recurrence. This is typically done via prostate-specific antigen (PSA)

blood tests. A detectable or rising PSA after surgery is evidence of biochemical re-

currence. The measure of time from surgery to biochemical recurrence is biochemical

recurrence-free survival (bRFS). Multiple studies have examined predictors of bRFS

using quantitative histopathology features with some survival models [61, 62, 63, 64].

Although numerous prediction tools [20, 21, 22, 23, 24, 25, 26] utilized whole-slide im-

ages (WSIs) to assess prostate cancer recurrence and predicted the likely outcomes

resulting from treatments, several of these studies simultaneously considered clinical

factors (primary and secondary Gleason patterns, PSA value, age, tumor stage) and

tissue WSIs to correlate with recurrence under different survival models.

The Gleason scoring system for prostate cancer remains one of the best predictors

for prostate cancer progression and recurrence [5, 6, 7, 8], despite significant inter-

observer reproducibility among pathologists [19, 65, 66]. A more recently adapted

grading system stratifies patients into 5 prognostic grade groups [4] based on their

Gleason patterns: grade group 1 (Gleason ≤3+3=6), grade group 2 (Gleason 3+4=7),

grade group 3 (Gleason 4+3=7), grade group 4 (Gleason 4+4=8, 3+5=8 and 5+3=8),

and grade group 5 (Gleason 4+5=9, 5+4=9 and 5+5=10). Figure 3.1 shows an example

of giga-pixel whole-slide image with different Gleason patterns. The green framed patch
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Figure 3.1: Example giga-pixel whole-slide images. The green framed patch is Gleason
pattern 3 section and the blue framed patch is Gleason pattern 4.

contains Gleason pattern 3; the blue frames patch contains Gleason pattern 4 and the

red frames patch contains Gleason pattern 5. In this study, we conducted experiments

on the public prostate cancer dataset using different feature quantification methods and

recurrence analysis using the different survival models. Histopathology image features

were quantified through texture methods and neural network-based approaches. We

focused on the prostate cancer grade groups of 1 to 4. The biochemical bRFS was

applied as the time-to-recurrence for prostate cancer progression analysis.

3.2 Materials

In this study, we used the prostate dataset from The Genomic Data Commons (GDC) [67].

The dataset included whole-slide histopathology images from patients and their corre-

sponding clinical reports including the primary and secondary Gleason pattern, pa-

tients’ prostate-specific antigen (PSA) value, age, and tumor stage. All the image data,

annotations of Gleason score, and clinical information were publicly available.

We selected the patients with low-risk (Gleason score 3+3), intermediate-risk (Glea-

son score 3+4 or 4+3), and high-risk prostate cancer (Gleason score 4+4) because those



21

Table 3.1: The number of WSIs and their corresponding automatically selected patches
under different Gleason scores composing from a sum of Gleason patterns 3+3, 3+4,
4+3 and 4+4 prostate prognostic grading groups.

Gleason Score 3 + 3 3 + 4 4 + 3 4 + 4

# WSIs 43 144 99 49

# patches 1229 4753 2997 1597

patient populations show a reasonable range of prognoses for our analysis. We excluded

patients with Gleason grade group 5 patients in this study due to the poor prognosis

of their disease [68]. Considering the high computational cost on the giga-pixel tissue

WSIs, existing WSIs classification and recurrence analysis approaches were focused on

effectively utilizing the cropped patches from region of interests (ROIs) [27, 28, 29,

30, 31]. For image preparation, we adopted the two-step cropping-selecting process.

First, original patches were automatically generated within each WSI under 40× ob-

jective magnification with a patch size of 4096×4096. Second, the patches with the

tissue accounting for at least 20% of the whole area were selected for our experiments.

The number of WSIs and cropped patches under different Gleason scores are shown in

Table 3.1.

3.3 Methods

Initially, we utilized various quantification methods to extract image features from

WSIs. Next, the recurrence analysis was performed on the combination of image fea-

tures and clinical factors utilizing different survival models, as shown in Figure 3.2.

Hazard ratios using different survival models were calculated to indicate correlation

between image features (or in context of clinical factors) and recurrence.

3.3.1 Image Feature Quantification

We adopted five approaches for the purpose of feature quantification including un-

supervised and supervised methods. The unsupervised texture methods consisted of

speeded-up robust features (SURF) [69], histogram of oriented gradients (HOG) [70],
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Figure 3.2: Different image features are extracted from WSIs and assessed by various
survival models.

Figure 3.3: The multi-task neural network architecture for computational image fea-
tures extraction from WSIs. The cropped patches are formed as a sequence by the
image coordinates. The LSTM is built on top of the convolutional neural network for
the long-term spatial modeling of the activation sequence. An average pooling layer
maps the activations into one feature vector.
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and local binary pattern (LBP) [71]. The two supervised methods are based on con-

volutional neural networks. For supervised methods, we randomly selected 20% of the

cases as testing set, 10% as validation set and the remainder as training set.

Texture Features

We chose three texture methods for prostate cancer histopathology image analysis.

They were rotation, translation, scale-and intensity-invariant which were suitable for

descriptions of the texture features within WSIs.

The SURF [69] is partly inspired by the scale-invariant feature transform (SIFT)

descriptors. The standard version of SURF is several times faster than SIFT and more

robust against different image transformations than SIFT. The image is transformed

into coordinates, using the multi-resolution pyramid technique, to copy the original im-

age with Pyramidal Gaussian or Laplacian Pyramid shape to obtain an image with the

same size but with reduced bandwidth. The HOG [70] counts occurrences of gradient

orientation in a local region of an image. It is similar to that of edge orientation his-

tograms, scale-invariant feature transform descriptors, and shape contexts, but differs

in that it is computed on a dense grid of uniformly spaced cells and uses overlapping

local contrast normalization for improved accuracy. The LBP [71] is used to model the

image local features in texture spectrum units in a multi-resolution gray-scale mode.

It is based on recognizing the certain local binary unit patterns for any quantization of

the angular space and spatial resolution.

The image features for each patch are generated by using bag-of-word approach [72]

from the texture features of different texture methods respectively. By treating image

features as words, a bag of words is a sparse vector of occurrence counts (histogram) of

a vocabulary of local image features. In the bag-of-word approach, it converts vector-

represented texture features to codewords, which also produce a codebook. The image

features are mapped to certain codewords through the clustering process and the image

is then represented by the histogram of the codewords. Empirically, we use 100 as

the number of cluster centers to report the best performance for texture features. In

order to select the texture features for WSIs, we apply principal component analysis
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Table 3.2: The convolutional neural network applied in our approach. All the con-
volution layers (Conv) are followed by Rectified Linear Units (ReLU). For the fully
connected layers (FC), the FC6 and FC7 are followed by the ReLU and dropout layer
with the dropout ratio as 0.5; FC8 and FC9 are both at the top of FC7.

Layer Filter size, stride Output W × H × N

Input - 256 × 256 × 3

Conv 11 × 11, 4 55 × 55 × 96

Max-pooling 3 × 3, 2 27 × 27 × 96

Conv 5 × 5, 1 27 × 27 × 256

Max-pooling 3 × 3, 2 13 × 13 × 256

Conv 3 × 3, 1 13 × 13 × 384

Conv 3 × 3, 1 13 × 13 × 384

Conv 3 × 3, 1 13 × 13 × 256

Max-pooling 3 × 3, 2 6 × 6 × 256

FC6 - 4096

FC7 - 4096

FC8, FC9 - 2, 4

(PCA) [73] of the image features for all patches within a WSI due to the correlations

among the patches.

Convolution Neural Network based Features

In the recent years, with the advances of deep learning, studies using Convolutional

Neural Networks (CNN) have demonstrated significant improvement on histopathology

image classification [74, 75, 76, 77, 78] and segmentation [79, 80, 75, 74]. For the WSIs,

applications based on CNNs are also widely developed [81, 82, 83]. In our study, we

adopt two approaches to get the CNN based features. The first one is using the neural

network to get image features for each patch, then the features for WSIs are obtained by

utilizing PCA on all patches. The convolutional neural network employed in the study

is shown in Table 3.2. The input to the network is the cropped patches from prostate

pathology WSIs, and the activations from the second to the last layer are considered as

the image features of the input samples. In order to train the network with patches, we

assign Gleason pattern as the ground truth annotation for the patch. The GDC WSIs

have been previously graded, with the primary and secondary patterns, as well as the
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final Gleason score given. To model variations among Gleason patterns within a WSI,

we use the multi-task architecture to enable the network to learn as much information

about the Gleason patterns from the patches of a WSI as possible. During the training

process, we give the primary pattern and the sum score as labels for each patch and

use the following multi-task loss function:

Lmulti-task = −
N∑
i=0

tpi · log t̂pi −
N∑
i=0

tsi · log t̂si (3.1)

where for the ith image within the batch of N images, tpi and tsi are respectively the

one-hot encoding of the Gleason grading for the primary pattern and the sum score, t̂pi

and t̂si are respectively the predicted grading of the model. The results suggested that

using the primary Gleason pattern and the Gleason score together achieved the best

estimate of risk of recurrence by capturing local and global image feature distribution

more efficiently than using either one alone.

For the second approach, we treated the cropped patches from the WSI as an image

sequence and used one type of recurrent neural network called long-short-term memory

(LSTM) to explore the long-term dynamic information of the patches spatial sequence

within the WSI. We denoted the method as CNN features with LSTM (CNN+LSTM).

The LSTM could fully leverage the patch spatial sequence within a WSI to get the

representative features that model the global Gleason score of the WSI and the distri-

bution of the Gleason patterns among the WSI. Recently, the LSTM model has been

successfully used in speech recognition [84, 85], language translation models [86], im-

age captioning [87] and video classification [88]. Compared with the traditional RNNs,

LSTM is more effectively in long range sequence modeling. In general, given an input

feature sequence (x1, x2, ..., xT ), the LSTM computes the output sequence as (y1, y2,

... , yT ). The hidden layer of LSTM is computed recursively from t = 1 to t = T with

the following equations:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.2)
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ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3.3)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (3.4)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.5)

ht = ottanh(ct) (3.6)

where xi is the network activations of the ith patch, ht is the hidden vector, it, ct,

ft and ot are respectively the activation vectors of the input gate, memory cell, forget

gate and output gate. W terms denote the weight matrices connecting different units,

b terms denote the bias vectors and σ is the logistic sigmoid function. From the above

equations, we can see the memory cell ci in LSTM has two inputs: the weighted sum

of the current inputs and the previous memory cell unit ct−1, which enables the model

to learn when to forget the old information and when to consider the new information.

The output gate ot controls the propagation of information to the following step.

Because we utilized the spatial characteristic encoded features from CNN, the train-

ing process of LSTM of patches within WSIs was formed in a spatial format instead

of time sequential manner. As shown in Figure 3.3, we use the image coordinates

to indicate the location of each patch in the patch spatial sequence. In this way, we

consider both the unique characteristics of each patch and the fine-grained variations

between patches. For one prostate WSI, the patches are fed into the network to get

the activations from the second to the last layer. Then we utilize a one layer LSTM

to recursively map the activations of each patch to a feature vector. In addition, the

average pooling layer is applied on top of the network to get the a feature vector as

the computational image features for the WSI. The number of hidden units for each

LSTM is 1024. During the training process, we apply the multi-task loss and assign

the primary pattern and the Gleason score for the WSIs.



27

3.3.2 Survival Models

To evaluate performance of various survival models using different image features quan-

tified by textural and CNN-based methods on patients with prostate cancer, we used

the bRFS since their initial treatment as a time-to-recurrence variable for survival mod-

els. Using survival models, we assess the image features related to recurrence hazard

risk scores in the context of other clinical prognostic factors, including the primary and

the secondary Gleason patterns, PSA, age, and clinical tumor stage.

The hazard risk scores of image features in the context of clinical mean a measure of

on prostate cancer recurrence risk ratio, commonly in time-to-event analysis or survival

analysis. The survival models tested in our study include multivariate Cox proportional

hazards model [89], Cox regression by an elastic net penalty (COX-EN) [90], parametric

proportional hazard model (PH-EX) [91], parametric proportional hazard model with

log normal distance (PH-LogN) [91] and parametric proportional hazard model with

log logistic distance (PH-LogL) [91].

For the high-dimensional data, univariate Cox regression is applied on the compu-

tational image features. Only those with Wald test p-value less than 0.05 are selected

in conjunction with clinical factors as inputs of the survival models.

The Cox proportional hazards model is a popular regression model for analysis of

survival data. It is a semi-parametric method for adjusting survival rate estimates to

quantify the effect of predictor variables. In contrast with parametric models, it makes

no assumptions about the shape of the so-called baseline hazard function. It represents

the effects of explanatory variables as a multiplier of a common baseline hazard function

H0. Given the patients (ti, li, Xi), where i = 1, 2, ..., N , we have the ti as the patient’s

recurrence time for individual i; li as the label of the censored data that equals 1 if

the recurrence occurred at that time and 0 if the patient has been censored; Xi as the

vector of covariates of the selected image features and clinical factors.

The hazard function is the nonparametric part of the Cox proportional hazards

regression function corresponding to
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H(Xi, li, ti) = H0(t)exp

p∑
j=1

xijβi (3.7)

Here xij is the image features j for patient i, where j = 1, 2, ...p and βi is the Cox

regression parameter for each patient.

The hazard ratio is derived from HR(Xi) = H(Xi,li,t)
H0

, representing the relative

risk of instant failure for patients having the predictive value Xi compared to the ones

having the baseline values. Here di is weighting parameters for each patient.

HR(Xi) =
N∑
i

di(Xiβi − log(

p∑
j

I(tj − ti)exp(Xiβi))) (3.8)

For the Cox regression by an elastic net penalty (COX-EN), the elastic net penalty

β̂ is given as below equation. It is a mixture of the L1 (Lasso) and L2 (ridge regression)

penalty. Here α is the ratio between L1 and L2 for elastic net.

β̂ = argmaxβ

 2

n

 N∑
i=1

xT
i(j)βi − log(

∑
j∈R4

ex
T
j βi)

− λP βiα
 (3.9)

where

λPα(βi) = λ(α

p∑
i=1

|βi|+
1

2
(1− α)

p∑
i=1

β2
i ) (3.10)

Base on the assumption that the effect of the covariates is to increase or decrease

the hazard by a proportionate amount at all durations, the parametric proportional

hazard model is a location-scale model for arbitrary transform of the time variable ti,

leading to accelerated failure time model with different penalty distance functions. The

distance functions we use for parametric proportional hazard models are exponential

transformation (PH-EX), log normal (PH-LogN) and log logistic (PH-LogL) distances.

The survival model performance for different image feature methods were quantified

by Akaike Information Criterion (AIC) [92].

AIC = −2log(likelihood) + 2K (3.11)

where likelihood is a measure of model fitness and K represents the number of model

parameters The smaller value of the AIC, the better goodness fit of survival models.
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3.4 Experimental Results

In this section, we conducted the experiments on the public prostate cancer dataset

to make statistical analysis on various survival models using different histopathology

image feature quantification methods.

3.4.1 Implementation Details

For the CNN based approaches to extract image features, we first use the patches to

train the CNN with multi-task loss. Each patch is resized as 256×256 and assigned

two labels according to the Gleason score of the WSI, one is the primary pattern and

another is the Gleason score. The CNN is trained with mini-batch stochastic gradient

descent. The momentum is 0.9 and weight decay is 5× 10−5. The initial learning rate

is 10−3 and annealed by 0.1 after 104 iterations. To train the LSTM, we set the same

momentum, weight decay and the initial learning rate. The learning rate is annealed

by 0.1 after 2× 103 iterations. The implementation is based on the Caffe toolbox [59].

3.4.2 Comparison of Image Features

First, only using image features from tissue specimens, including clinical Gleason pri-

mary and secondary patterns and the quantified image features from various image im-

age methods, their Cox hazard ratios are calculated and results are shown in Table 3.3.

CNN achieves better results than texture methods including SURF [69], HOG [70], and

LBP [71] Using CNN with LSTM to model the spatial relation of patches achieves the

highest Cox hazard ratio, which indicates the best performance on progression corre-

lation for recurrence data. Meanwhile the image features obtained from texture based

methods and CNN approaches achieve a higher Cox hazard ratios compared to utilizing

primary and secondary patterns alone.

Second, in addition to the image features, PSA levels, age, and clinical tumor stage

are included in the Cox survival model besides the primary and the secondary Gleason

patterns. The results of combining clinical factors and image features are shown in

Table 3.4 demonstrate the image features generated from CNN based approaches are
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Table 3.3: The Cox hazard ratios of only using clinical Gleason primary and secondary
patterns and image features from different image analysis methods. The texture feature
quantificaiton methods include SURF [69], HOG [70], and LBP [71]. Using CNN with
LSTM to model the spatial relation of patches achieves the highest Cox hazard ratio,
which indicates the best performance on progression prediction for the recurrence data.
Meanwhile the image features from texture and CNN approaches achieve the higher
Cox hazard ratios compared to the ones from clinical Gleason primary and secondary
patterns.

Methods
Primary
Pattern

Secondary
Pattern

Image
Features

SURF 0.76 0.58 1.15

HOG 0.84 0.55 1.09

LBP 0.77 0.60 1.10

CNN 0.80 0.73 1.83

CNN + LSTM 0.90 0.71 3.54

Table 3.4: The Cox hazard ratios and AICs of using clinical factors including Gleason
primary and secondary patterns, patient’s PSA, age and clinical tumor stages and image
features from different image analysis methods. The texture feature quantification
methods include SURF[69], HOG[70], and LBP[71]. Using CNN+LSTM to achieves the
highest Cox hazard ratio and lowest value of AIC, which indicates the best performance
on progression prediction for the recurrence data.

Methods
Primary
Pattern

Sec-
ondary
Pattern

PSA Age
Tumor
Stage

Image
Features

AIC

SURF 0.99 0.67 0.84 0.98 1.04 1.13 38.93

HOG 1.21 0.65 0.82 1.01 1.13 1.10 51.97

LBP 0.97 0.76 0.84 1.00 1.08 1.08 35.97

CNN 1.10 1.13 0.80 1.00 1.17 2.58 38.02

CNN +
LSTM

1.38 0.75 0.76 0.97 1.14 7.10 35.60
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Table 3.5: The Cox hazard ratios of the clinical factors.

Primary
Pattern

Secondary
Pattern

PSA Age
Tumor
Stage

2.15 1.09 0.73 0.9 1.3

Table 3.6: The hazard ratios and AICs of CNN-based approaches on patient progres-
sion analysis using three different training strategies. Using multi-task architecture
achieves the highest Cox hazard ratio and lowest AIC values than training using the
primary Gleason pattern or Gleason score alone, which indicates the best performance
on progression prediction for the recurrence data.

Methods
Training
Strategy

Primary
Pattern

Sec-
ondary
Pattern

PSA Age
Tu-
mor

Stage

Image
Features

AIC

CNN
Primary
Pattern

1.11 1.12 0.80 1.00 1.16 1.34 46.13

CNN
Gleason

Score
1.26 1.03 0.75 0.98 1.12 1.53 44.29

CNN
Multi-
task

1.10 1.13 0.80 1.00 1.17 2.58 38.02

CNN +
LSTM

Primary
Pattern

1.35 0.84 0.78 0.98 1.14 1.63 44.27

CNN +
LSTM

Gleason
Score

1.09 0.66 0.81 0.99 1.11 2.76 41.47

CNN +
LSTM

Multi-
task

1.38 0.75 0.76 0.97 1.14 7.10 35.60

more representative than the texture features by having higher values of hazard ratio.

Additionally, those features are more representative than the clinical prognostic factors.

We also show the AIC values in Table 3.4, from which we can see CNN+LSTM achieves

the best fitness on the Cox regression model.

Finally, without any image features, we show the Cox hazard ratios of the clinical

factors in Table 3.5. From the results in Table 3.5, Table 3.3, and Table 3.4, we can see

primary Gleason patterns has higher Cox hazard ratios than the ones of other clinical

factors, which is consistent with its high prediction power for prostate cancers [63, 64].

Besides image-related clinical factors, in conjugation with other clinical factors, such

as patient’s PSA, age and clinical tumor stage could increase the Cox hazard ratios of

image features.
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3.4.3 Ablation Study on Training Strategies

Furthermore, considering the multiple Gleason patterns within WSIs, we design two

training strategies to train the CNN-based approaches. The first one is to use multi-

task loss to learn both the primary Gleason pattern and the sum of the primary and

secondary patterns (namely, the Gleason score). The second one is to use the primary

Gleason pattern or the Gleason score alone to learn the patterns within the patches or

WSIs.

The performance of two CNN-based approaches on patient survival analysis are

compared using different training strategies. The results are shown as in Table 3.6. We

can see the multi-task architecture achieves better survival performance than training

label using the primary Gleason pattern or Gleason score alone as it has much higher

recurrence hazard ratios and lower AIC values. Because the primary Gleason pattern

and the Gleason score together could better reflect the local and global image features

in the WSIs than use each alone.

3.4.4 Comparison of Survival Models

In this section, we do the statistical analysis on various survival models, including COX-

EN [90], PH-EN [91], PH-LogN [91], and PH-LogL [91], using prostate images with

Gleason score 6 to 8 and clinical factors. The Cox proportional hazards model does

not need an assumption of a particular survival distribution of the patients’ survival

data. The only assumption in the mode is about the proportional hazards. Unlike the

Cox proportional hazards model, the parametric model with different penalty distance

functions (such as exponential, log-normal and log-logistic) need to specify the hazard

functions [93, 94]. Studies have indicated that under certain circumstances, such as

strong effect or strong time trend in covariates or follow-up depending on covariates,

parametric models are good alternatives to the Coxs regression model [94].

We assess different survival models and show the hazard ratios of image features

and patients’ clinical prognostic factors in Table 3.7. Based on these results, first, we

can see the image features quantified from WSIs outperform other clinical factors in all
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Table 3.7: Hazard ratios and AICs of different survival models using texture methods
and CNN-based approaches. The survival models include COX-EN [90], PH-EX [91],
PH-LogN [91], and PH-LogL [91].

Survival
Models

Meth-
ods

Primary
Pattern

Sec-
ondary
Pattern

PSA Age
Tu-
mor

Stage

Image
Fea-
tures

AIC

COX-
EN

SURF 0.10 0.27 0.33 0.06 0.03 3.38 42.93

COX-
EN

HOG 0.10 0.25 0.32 0.06 0.03 3.85 59.72

COX-
EN

LBP 0.10 0.19 0.30 0.06 0.03 2.40 39.83

COX-
EN

CNN 0.23 0.21 0.33 0.06 0.04 7.57 29.86

COX-
EN

CNN +
LSTM

0.13 0.27 0.36 0.06 0.03 15.85
29.83

PH-EX SURF 0.07 0.09 0.29 0.03 0.03 1.94 41.26

PH-EX HOG 0.05 0.12 0.29 0.04 0.03 2.41 61.56

PH-EX LBP 0.07 0.06 0.28 0.03 0.03 1.49 41.22

PH-EX CNN 0.08 0.07 0.29 0.04 0.04 4.50 35.60

PH-EX
CNN +
LSTM

0.08 0.10 0.29 0.04 0.03 10.22 31.22

PH-
LogN

SURF 0.18 0.22 0.30 0.02 0.08 2.03 47.27

PH-
LogN

HOG 0.18 0.23 0.30 0.02 0.08 2.70 47.58

PH-
LogN

LBP 0.21 0.18 0.29 0.02 0.08 1.38 45.99

PH-
LogN

CNN 0.16 0.15 0.30 0.02 0.08 4.33 42.51

PH-
LogN

CNN +
LSTM

0.20 0.18 0.31 0.02 0.08 11.92 33.31

PH-
LogL

SURF 0.11 0.15 0.29 0.02 0.07 1.89 43.74

PH-
LogL

HOG 0.07 0.20 0.28 0.02 0.06 2.91 44.45

PH-
LogL

LBP 0.79 0.29 1.09 0.77 0.18 1.46 44.39

PH-
LogL

CNN 0.09 0.08 0.29 0.03 0.07 4.39 35.96

PH-
LogL

CNN +
LSTM

0.12 0.13 0.29 0.02 0.07 9.92 33.02
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texture and CNN-based approaches. Second, CNN-based approaches achieve a better

progression prediction due to their higher hazard ratios than other texture methods for

all survival models. Third, by comparing with Table 3.4, COX-EN achieves the lowest

AIC value with image features obtained from CNN+LSTM, proving that the model is

more suitable for recurrence analysis for prostate patients with low, intermediate, and

high risk than other survival models.

3.5 Discussion and Conclusion

In this paper, we present three texture methods (SURF, HOG and LBP) and two con-

volution neural network (CNN) based methods to quantify features from histopathology

images. Five survival models were assessed on those image features in the context with

prostate clinical prognostic factors including the primary and the secondary Gleason

patterns, PSA, age and clinical tumor stage to perform recurrence analysis for prostate

cancer.

From statistical comparisons among different image feature quantification methods

with survival models, the CNN-LSTM provided the highest hazard ratio of prostate

cancer recurrence under Cox regression by an elastic net penalty (COX-EN). It out-

performs other image quantification methods with other survival models respectively.

From our approach, patient outcomes were better correlated with their histopathology

images. Due to the limited size of the public prostate dataset, the results achieved from

our experiments are preliminary. In order to further validate its generalizability of our

approach, more prostate images from local institutions are needed to perform extensive

experiments.
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Chapter 4

Recurrence Analysis on Prostate Cancer Patients with

Gleason Score 7 using Integrated Histopathology

Whole-Slide Images and Genomic Data through Deep

Neural Networks

4.1 Introduction

Prostate cancer remains the most common non-cutaneous malignant tumor in the west-

ern world accounting for approximately 1 in 5 of newly diagnosed tumors in men [1].

In the United States, approximately 1 in 7 men will be diagnosed with this disease [1].

Based on Gleason score, prostate specific antigen (PSA) value, tumor stage, age and

race, patients with prostate cancer are stratified into low-risk, intermediate-risk and

high-risk groups [95].

A strong predictor of survival among men with prostate cancer is the Gleason score

that is rendered by a pathologist based upon a microscopic evaluation of a representative

histopathology specimen [96]. These scores are based solely upon morphology and

structural patterns of the constituent cells and glands. Patients with Gleason score 6

or lower often undergo active surveillance as there is reduced risk of tumor progression

for those patients compared to patients with score 7 or higher[97, 98]. Tumors that

are assigned Gleason score 7 can be delineated into a primary region exhibiting a

histopathology pattern graded as 4 and a secondary region exhibiting a histopathology

pattern graded as 3. Such samples are referred to as Gleason 4+3 tumors, whereas the

inverse pattern exhibiting a primary pattern of 3 and a secondary pattern of 4 would

constitute a Gleason 3+4 tumors. Patients with Gleason 4+3 tumors have an increased

risk of recurrence and progression leading to an increased risk of prostate cancer specific

mortality when compared to those afflicted with Gleason 3+4 tumors [99, 100, 101].
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The literature clearly shows that predicting disease recurrence in a man with Gleason

score 7 prostate cancer can have a significant impact on a his disease management and

survival [100, 101, 17].

Phenotypically, tumor regions with Gleason pattern 3 are composed of single glands

with distinct size and shape whereas ones with Gleason pattern 4 exhibit large irregular

cribriform glands or fused, ill-defined glands with poorly formed glandular lumina [102].

In spite of established guidelines, Gleason grading remains a relatively subjective pro-

cess that results in an approximately 30% grading discrepancy among the scores pro-

vided by pathologists [102]. There have been many attempts to develop computer-aided

Gleason grading methods and systems [103, 52, 102, 50, 25, 26, 104] in order to intro-

duce objective, reproducible criteria into the process of Gleason pattern quantification

and grading. One previous study has explored an integration of image features along

with protein expression to predict recurrent prostate cancer [61]. However, to date

there has been no study focused on utilizing patients’ pathology images and genomic

pathway analyses in combination to predict recurrence-free survival (RFS) for men with

prostate cancer.

Microarray-based gene expression signatures have been used in various studies to

identify cancer subtypes, determine the RFS of disease and and characterize response

to specific therapies [105]. Multiple investigations have also shown that gene expres-

sion signatures can be used to analyze oncogenic pathways and these signatures have

been used to identify differences between specific cancer types and tumor subtypes.

Moreover, patterns of oncogenic pathway activity have been used to identify differences

in underlying molecular mechanisms and have been shown to correlate with clinical

outcomes of patients afflicted with specific cancers [106, 107, 108, 42].

In recent years, whole-slide image (WSI) has been more widely used in histopathol-

ogy diagnosis. With a fast development of deep learning, histopathology image analysis

approaches have demonstrated significant advances in cellular segmentation [79, 80, 75,

74] and tissue classifications [74, 75, 76, 77, 78] using Convolutional Neural Networks

(CNN). Some research groups reported their studies using histopathology WSI for many

applications [81, 82, 83]. Due to a giga-pixel size of a WSI’s, it is often impractical to
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train the CNN using WSIs directly. Consequently, patch-based algorithms are widely

applied in histopathology image analysis [27, 28, 29, 30, 31, 46].

In this study, we developed a computational biomarker quantification system by

integrating histopathology WSIs and genomic data into one deep neural network. In

order to use the distribution of Gleason patterns on a WSI, we applied patches as inputs

to the network. The patches were forwarded through a CNN to get the images features.

Then based on the patches’ spatial relationship, the image features were modeled using

a recurrence neural network (RNN) [40], namely long short-term memory (LSTM) [41].

The pathway scores calculated from the genomic data were forwarded to a multilayer

perceptron (MLP) to get the genomic features. And the image and genomic features

were integrated together to get the computational biomarkers. Moreover, we used RFS

(months) since their initial treatment as the time-to-recurrence variable for a survival

model. We chose a Cox proportional-hazard regression model [94, 109], since it is

commonly used in medical research for investigating associations between the survival

time of patients and predictor variables.

4.2 Methods

In this section, we introduced our approach on building a unified system using WSI

and genomic data through deep neural networks to quantify computational biomarkers,

which were fed into a survival model for patients’ recurrence analysis. Our methods

consisted of four steps. Firstly, the pathway activities of prostate cancer were quantified

by pathway scores using RNA sequences. Secondly, the histopathology WSIs were

pre-processed to obtain the region-of-interest (ROI) as the image patches preparation.

Thirdly, the image patches and pathway scores were integrated into a unified system

using the deep learning approach to extract computational biomarkers. Finally, we

used the computational biomarkers in conjunction with clinical prognostic factors as the

input of the survival model to calculate the disease recurrence ratios and probabilities.

Figure 4.1 illustrates the overview of the pipeline of the whole study.
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Figure 4.1: An overview of the pipeline of our study using histopathology WSIs and
genomic data for prostate cancer recurrence prediction for patients with Gleason score
7. (a) WSI images and genomic data were collected from patients with prostate cancer;
(b) A prostate WSI exhibits different Gleason patterns. For example, a region in a
green square has the Gleason pattern 3 while regions in blue squares have the Gleason
pattern 4; (c) The pathway scores were quantified using RNA sequences. Patches of
region of interests were automatically selected from WSIs. The image patches and
pathway scores were integrated into deep neural networks to extract computational
biomarkers, which were fed into a Cox regression model in conjunction with clinical
prognostic factors for disease recurrence analysis.
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4.2.1 Experiment dataset

In this study, we used publicly available prostate cancer data downloaded from the data

portal1 of the Genomic Data Commons (GDC) [110]. GDC is the largest public available

data portal that includes image data from The Cancer Genome Atlas (TCGA) [67],

genomic data and clinical data. The TCGA barcode2 is the primary identifier of GDC

data acquisition protocol. For this study, in total, there were 43 Gleason 3+3, 146

Gleason 3+4, 101 Gleason 4+3 and 49 Gleason 4+4, which contains 1229, 4753, 2997

and 1597 patches respectively. For the recurrence study of patients with Gleason 7,

we used all the data from Gleason 6, 7 and 8 to train the networks to extract the

computational biomarkers. In this way, the training data contained more images of

Gleason patterns 3 and 4 compared to a training data if only use patients’ data with

Gleason 7 (3+4 or 4+3). For the recurrence study of patients with Gleason 7, the

computational biomarkers of patients with Gleason 7 were fed into a survival model,

while the patients with other Gleason score were withheld.

The patients were randomly divided into the training set, validation set and testing

test with the ratio of 70%, 10% and 20%; these groups were utilized for the recurrence

analyses. In addition to the Gleason score, we compared the computational biomarkers

quantified from the unified image and genomic data system with other clinical factors

including patients’ PSA, age and tumor stage, which are publicly available from GDC

data portal.

The WSI patches preparation was a two-step cropping-selection process. Firstly,

the image patches within each WSI were automatically cropped under 40× objective

magnification with a patch size 4096×4096. The patches were cropped with a stride

as 4096 to avoid overlapping. We resized all the patches to the size of 256×256 using

Lanczos filtering [111]. Secondly, any specimens with insufficient tissue patches were

automatically eliminated from the experiments due to the heterogeneous quality of the

prostate WSIs. The patches with the tissue accounting for at least 20% of the whole

1https://portal.gdc.cancer.gov

2https://docs.gdc.cancer.gov/Encyclopedia/pages/images/TCGA-TCGAbarcode-080518-1750-
4378.pdf
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area were selected.

4.2.2 Pathway scores quantification from RNA sequencing data

To quantify pathway scores, we used the gene expression data, which were RNA (Illu-

mina HiSeq) sequencing data from patients with Gleason score 7. The data are publicly

available through GDC data portal. We preprocessed the RNA data by log transformed

and median centered. A panel of previously published 265 experimentally derived gene

expression signatures were applied to the entire cohort to identify patterns of oncogenic

signaling in each tumor. To apply a given signature, the expression data were filtered

to contain only those genes included in the given signature and the mean expression

value of these genes was calculated to provide a score for each sample [107, 108] .

4.2.3 Computational biomarkers extraction

In order to obtain computational biomakers from the WSIs and genomic data, we built

a unified feature quantification system using CNN to model WSI histopathology image

patches and genomic data together. Furthermore, we leveraged the RNN to model the

spatial relationship of the cropped patches within the WSI. The network architecture

is shown in Figure 4.2.

Modeling histopathology image patches and genomic data

In order to combine the image information along with the genomic data, we used the

patches and pathway scores as the input to the network. We forwarded the pathway

scores into a multilayer perceptron that includes three fully connected (FC) layers, with

1024, 512 and 256 hidden units, respectively. The genomic features were the output of

the last FC layer. Meanwhile, we incorporated the AlexNet [112] to extract the features

from image patches. We concatenated the genomic features obtained from the pathway

scores with the image features from the second to the last layer of the AlexNet. The

concatenated features were served as the input to the a FC layer before LSTM.

Due to the giga-pixel WSI’s, we considered an integrity of the whole tissue regions

on a single WSI instead of using the individual patches to quantify image features as
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Figure 4.2: Network architecture for extracting computational biomarkers from the WSI
and genomic data. We used seven LSTM cells in the network. The calculated pathway
scores from the genomic data were forwarded into a multilayer perceptron (MLP) that
contains three fully connected layers. The last layer of the MLP was connected with
the features extracted from the image patches to serve as the input for the LSTM after
a fully connected layer. On top of the LSTM, we utilized an average pooling layer.
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shown in previous studies. [30, 28] The spatial relationship of the adjacent patches

was modeled as an image sequence. We adopted a type of recurrent neural network

(RNN) [40], long short-term memory (LSTM) [41], to model the features extracted from

the image patches and genomic data given LSTM has shown its successes among various

applications including speech recognition [84, 85], language translation models [86],

image captioning [87] and video classification [88]. Compared with the traditional

RNN that has vanishing and exploding gradients problems, LSTM is more effectively

in sequence modeling by incorporating memory cells with several gates to obtain long-

range dependencies.

More formally, for the input feature sequence (x1, x2, ..., xT ) that xi represents

the activations from the CNN of the ith patch, we used LSTM to compute the output

sequence (y1, y2, ... , yT ), where the layer layer of LSTM was computed recursively

from t = 1 to t = T following the equations:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (4.1)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4.2)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (4.3)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (4.4)

ht = ottanh(ct) (4.5)

where ht is the hidden vector, it, ct, ft and ot represents the activation vectors of the

input gate, memory cell, forget gate and output gate, respectively. W terms denote the

weight matrices connecting different units, b terms denote the bias vectors and σ is the

logistic sigmoid function. The memory cell ci has the inputs of the the weighted sum

of the current inputs and the previous memory cell unit ct−1, which could learn when
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Figure 4.3: The visualization of a LSTM cell.

to forget the old information and when to consider the new information. The output

gate ot controls the propagation of information to the following step. The visualization

of the LSTM cell is shown in Figure 4.3.

Since it is a sequential task to train LSTM, patches from a WSI were formed by a

specific routine. As demonstrated in Figure 4.2, we used center coordinates of patches

to remark the location of each patch. The sequence of patches within a single WSI

was arranged from right up patch down to lower left one, which was illustrated by the

dotted lines with black arrows on an example of a WSI on Figure 4.2. In this way,

it allowed us to consider both unique characteristics of each patch and fine-grained

variations among patches within a single WSI. For each tumor WSI, the patches and

the pathway scores were fed into the network to get features and then incorporated

into the LSTM recursively. In addition, the average pooling layer was applied on top

of the network to get the computational biomarkers for the WSI and the genomic data.

The number of hidden units for each LSTM was 1024. During the training process, we

applied the multi-tasks loss and assigned the primary pattern and the Gleason score

for the WSIs and genomic data.

Multi-tasks loss function

For the TCGA prostate WSIs, the primary Gleason pattern, the secondary Gleason

pattern and the sum of both patterns (i.e. Gleason score) were publicly available from
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GDC data portal. To model the variations among Gleason patterns, we utilized the

multi-task loss to enable the network to learn as much information about the Gleason

pattern distributions from the patches of a WSI as possible. Therefore, we gave the

primary pattern and the sum score as labels for each patch along with the pathway

score and use the following multi-task loss function:

Lmulti-task = −
N∑
i=0

tpi · log t̂pi −
N∑
i=0

tsi · log t̂si (4.6)

where for the ith input sample within the batch of N samples, tpi and tsi are respectively

the one-hot encoding of the Gleason grading for the primary pattern and the sum score,

t̂pi and t̂si are respectively the predicted grading of the model.

4.2.4 Survival model

In conjunction with clinical prognostic factors including the primary and secondary

Gleason patterns, PSA, age and tumor stage, computational biomarkers were fed into

a Cox regression model [94, 109] for studying patients RFS. In our study, we used RFS

(months) as the time variable for a survival model. For high dimensional data, only

those with Wald test[113, 114] p-value < 0.05 were selected and used in conjunction

with clinical prognostic factors as input variables for the Cox regression model.

One of the most popular regression techniques for survival analysis is Cox pro-

portional hazards regression, which is used to relate several risk factors or exposures,

considered simultaneously, to assess differences in overall survival. In a Cox propor-

tional hazards regression model, the measure of effect is the hazard ratio, which is the

risk of failure (i.e., here is the risk or probability of the recurrence of the disease), given

that the participant has survived up to a specific time. Given the patients (ti, li, Xi),

where i = 1, 2, ..., N , we have the ti as the patient’s recurrence time for individual i; li

as the label of the censored data that equals 1 if the recurrence occurred at that time

and 0 if the patient has been censored; Xi as the vector of covariates of the selected

image features and clinical factors. The hazard function is the nonparametric part of
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the Cox proportional hazards regression function corresponding to

H(Xi, li, ti) = H0(t)exp

p∑
j=1

xijβi (4.7)

Here xij is the computational biomarkers j for patient i, where j = 1, 2, ...p and βi is

the Cox regression parameter for each patient. Here H0 is the baseline hazard function.

The hazard ratio is derived from HR(Xi) = H(Xi,li,t)
H0

, representing the relative risk of

instant failure for patients having the predictive value Xi compared to the ones having

the baseline values. Here di is weighting parameters for each patient.

HR(Xi) =

N∑
i

di(Xiβi − log(

p∑
j

I(tj − ti)exp(Xiβi))) (4.8)

In the study, we assessed the computational biomarkers in conjunction with other

clinical prognostic factors by their recurrence hazard ratios and concordance indices (C-

index)[115, 116]. The hazard ratio and C-index both are global indices for validating

the predictive ability of prognostic features of a given survival model. Under a given

survival model, higher values mean that prognostic features predict higher risks and

probabilities of survival for higher observed survival times. In our study we examined

RFS; the higher the hazard ratio and C-index, the greater the likelihood of disease

recurrence.

4.3 Experiments and Results

In this section, we validated our approach on a publicly available prostate cancer

dataset from the GDC data portal. The experimental results showed the computational

biomarkers discovered by the proposed method were effective for recurrence correlation

for patients with Gleason score 7.

4.3.1 Implementation details

The training process of our network included two steps. We first trained the CNN using

mini-batch Stochastic Gradient Descent (SGD) with batch size as 32, momentum as

0.9, and weight-decay as 5×10−5. The initial learning rate was 10−3 and annealed by
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0.1 after every 10, 000 iterations. We trained the CNN for total of 50, 000 iterations

until the loss converge. Then we utilized the genomic data to train the MLP to extract

the genomic features and used image and genomic features to train LSTM. We kept

the same momentum, weight-decay and learning rate except we annealed the learning

rate by 0.1 after every 2, 000 iterations and trained the network for a total of 5, 000

iterations. The implementation was based on Caffe toolbox[59].

4.3.2 Pathway analysis

Multiple studies have shown that gene expression signatures reflect the activation status

of oncogenic pathways irrespective of specific mutations driving signaling[106, 108, 107].

Thus we examined genomic-based patterns of oncogenic pathway activity in prostate

cancer patients with Gleason score 7 using a panel of previously published 265 gene

expression signatures.

In order to qualitatively assess unique patterns of pathway activity that define the

4+3 and 3+4 subset of Gleason score 7 tumors, pathway signatures in each group, us-

ing all tumors across the entire cohort (i.e. training, test and validation tumors) were

assessed by a Student’s two tailed t-test. Significant pathway scores were clustered

using Cluster 3.0 [117] and visualized by Java TreeView [118]. Quantitative assessment

of patterns of pathway activity of Gleason score 4+3 and 3+4 subgroups is shown in

Figure 4.4, which displayed a heatmap identifying 27 differentially expressed signatures

(p<0.01). Of these, we determined that 14 signatures including three unique prolifera-

tion signatures (Wirapati [119], UNC [120], and Murine Proliferation [120]) as well as

several proliferation-associated signatures predicative of BMYB [121], RB-LOSS [122],

PIK3CA [123] and HERI [124] signaling were significantly higher in patients with Glea-

son score 4+3. We further determined that 13 signatures were up-regulated in Gleason

3+4 patients including immune systems signatures associated with Th17 cells [125],

Tcm [125], NK-CD56 [125], HGF [126] and STAT3 [108] signaling. Consistent with

our findings, many studies report [62, 63, 64] that Gleason 3+4 tumors have a better

prognosis than Gleason 4+3 tumors which would correlate with relatively higher levels

of proliferation as well as lower levels of immune-related signaling evident in Gleason
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4+3 tumors compared to Gleason 3+4 samples.

4.3.3 Integrated recurrence analysis in conjunction with clinical fac-

tors

Image data on recurrence analysis

For the integrated recurrence analysis using a survival model, we first conducted the

experiments where only the WSIs of tissue slides were used. Thus the networks were

trained without integrating the genomic features. This setting of experiment is denoted

as CNN-LSTM. We also considered the setting that only CNN was applied on the image

patches without considering their spatial relation on a WSI and the image features

were extracted from the second to the last layer of AlexNet. The setting is denoted

as CNN-Only. To compare the effectiveness of the feature extraction from the images,

we applied three texture feature methods including SURF[69], HOG[70] and LBP[71]

on the WSIs to obtain image features. The image features were concatenated with

clinical prognostic factors as multivariate inputs of the Cox regression model. During

each iteration, each image feature in conjunction with clinical factors were fed into the

Cox regression model to calculate the corresponding hazard ratios and C-indices. The

survival model implementation was based on a R survival package [127].

The maximum hazard ratios of recurrence of image features in conjunction with

clinical factors are shown in Table 4.1. Within our study, we used the disease RFS

times as the time variable in the Cox regression model, the higher values of hazard

ratio and C-index of the features indicated that the image features had the higher

correlations with the disease recurrence and progression. From the result of using

texture features, there was no significance differences between LBP, HOG and SURF

for recurrence ratios. CNN-LSTM analysis determined that image features identified by

computational image analysis outperformed other texture features and CNN-Only with

higher hazard ratio and C-index. When conjunction with CNN-LSMT, the primary

pattern still showed greater hazard ratio and C-index relative to those identified using

other methods.
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Figure 4.4: Differential patterns of pathway activity in Gleason score 3+4 and 4+3
prostate tumors. Comparative analysis of Gleason Score 4+3 (n=101) and Gleason
Score 3+4 (n=146) tumors identified 27 significantly altered signaling pathways (t-
test, p<0.01) as defined by mRNA-based gene expression signature scores. Tumors
with a Gleason score 4+3 showed higher proliferation, BMYB, RB-LOH and histone
modification signature scores while tumors with a Gleason score 3+4 showed higher
levels of immune system related pathway signatures including Th17 cells, Tcm and
STAT3.



49

Table 4.1: Recurrence hazard ratios and corresponding C-indices of clinical prognostic
factors and different image features from various image quantification methods. The
results are obtained by using image features quantified from the WSIs. LBP, HOG
and SURF are the texture methods. CNN-LSTM is using the image features obtained
from CNN with LSTM while CNN-Only is using the image features obtained from CNN
without considering patches’ spatial relation on a WSI.

Methods
Primary
Pattern

Secondary
Pattern

PSA Age
Tumor
Stage

Image
Features

C-index

LBP 1.05 0.94 0.85 1.00 1.03 1.05 0.68

HOG 1.04 0.94 0.85 1.00 1.03 1.05 0.64

SURF 1.07 0.97 0.86 1.00 1.03 1.05 0.61

CNN-Only 1.11 1.12 0.80 1.00 1.17 2.44 0.70

CNN-LSTM 1.70 1.06 0.80 0.99 1.26 5.06 0.71

Image and genomic data on recurrence analysis

Before integrating image features and pathway scores, we first analyzed the correlation

between them. Because the number of image features and the number of pathway scores

were different, to calculate their correlation coefficients, we randomly chose the same

number of image features paired with the same number of pathway scores and repeated

the process N times until all image features had been paired. Here the image features

included features quantified from texture methods (LBP, HOG, and SURF) and CNN-

LSTM. Using a t-test on correlation coefficients, the mean and standard deviation

of p-values is shown in Table 4.2. Because p-value > 0.05, there was no significant

correlations between image features and pathway scores. This showed that the two

types of data provided complementary information for prostate cancer diagnosis and

prognosis. It was reasonable to integrate image and genomic data together for predicting

patients’ recurrence.

Then we showed the experimental results by combining image features obtained

from WSIs and the genomic features obtained from the pathway scores. We utilized all

265 gene expression signatures integrated with image data to identify the computational

biomarkers as shown in Figure 4.2. The setting was denoted as CNN-LSTM+PS. We

also considered the setting where LSTM was deactivated when obtained the biomark-

ers from image and genomic data. We denoted the approach as CNN-Only+PS. The
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Table 4.2: Correlation analysis of image features and pathways scores using a test-test
on their correlation coefficients.

Image Features
mean of
p-value

standard deviation of
p-value

LBP 0.50 0.29

HOG 0.49 0.30

SURF 0.43 0.30

CNN-LSTM 0.48 0.29

methods using texture features obtained from WSIs together with pathway scores for

the recurrence analysis were denoted as LBP-PS, HOG-PS and SURF-PS. We also con-

sidered only using pathway scores with clinical factors together as the input of the Cox

regression model and denote it as PS. The maximum hazard ratios of the computa-

tional biomarkers from WSIs and pathway scores in conjunction with clinical factors

are shown in Table 4.3.

Compared with other clinical factors, using pathway scores alone achieved equiva-

lent hazard ratio. For the texture methods, the recurrence hazard ratios were equivalent

to the ones without pathway scores. Using CNN-LSTM+PS, the Gleason primary pat-

tern and computational biomarkers showed the increased recurrence ratios compared to

the ones without pathway scores. In addition, the Gleason primary pattern and com-

putational biomarkers showed the highest recurrence ratios compared to other clinical

factors. The result showed CNN-LSTM-PS outperformed other methods in prostate

cancer recurrence analysis due to its highest recurrence hazard ratio.

Furthermore, we show the C-index of the clinical factors and computational features

under the Cox regression model for prostate cancer recurrence probability prediction

in the last column of Table 4.1 and the last row and column of Table 4.3. As a global

index for validating the predictive ability of a survival model, in our study, the C-index

was equivalent to a rank correlation of the risk of a recurrence of disease. High values

mean that the model predicts higher probabilities of recurrence for higher observed

recurrence times. From the clinical results, PSA showed higher C-index values which

were correlated to a higher recurrence prediction probability compared to other clinical
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Table 4.3: Recurrence hazard ratios and corresponding C-indices of clinical prognos-
tic factors and computational biomarkers under a Cox regression model using different
image feature quantification methods along with the genomic data. Given the ge-
nomic data, we show the results using image features with pathway scores (PS). Here
LBP+PS, HOG+PS, SURF+PS, CNN-Only+PS and CNN-LSTM+PS are image fea-
tures quantified from LBP, HOG, SURF, CNN-Only and CNN-LSTM methods with
PS.

Methods
Primary
Pattern

Sec-
ondary
Pattern

PSA Age
Tu-
mor

Stage

Image
Fea-
tures

C-
index

PS 0.95 0.98 0.86 1.00 1.04 1.02 0.65

LBP+PS 1.04 1.00 0.87 1.00 1.02 1.08 0.69

HOG+PS 1.04 1.00 0.87 1.00 1.02 1.08 0.65

SURF+PS 1.07 1.00 0.86 1.00 1.03 1.07 0.62

CNN-
Only+PS

1.13 1.11 0.80 1.00 1.17 2.58 0.71

CNN-
LSTM+PS

2.56 0.63 0.66 1.01 1.05 5.73 0.74

C-index for
Clinical
Factors

0.61 0.59 0.66 0.55 0.53 - -

factors. Interestingly, texture features on WSIs or pathway scores individually showed

an equivalent recurrence probability.

4.4 Discussion

From the experimental results, our proposed method achieved the highest recurrence

hazard ratio and the strongest C-index related to prostate cancer recurrence probability

compared to other clinical prognostic factors and methods. It demonstrated that the

approach was beneficial for recurrence analysis on the patients with Gleason score 7.

The unified WSIs and genomic data analysis through the proposed networks could be

applied to other prostate cancer risk group such as Gleason 6 [128, 129, 130] or other

cancer recurrence analysis, such as breast cancer [131].

Pathway analysis, albeit with the caveat of a small sample size, identified 27 differ-

entially expressed pathway activities in tumors with Gleason score 3+4 and 4+3. Thus

these signatures could be utilized to differentiate patients with Gleason score 7 as two
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sub-groups which corresponds with a favorable or unfavorable prognosis [132]. While

the recurrence analysis (Table 4.3), using pathway scores alone did not show an advan-

tage over other clinical prognostic factors. The integration of pathway score with WSIs

achieved the best recurrence prediction on patients with Gleason score 7. The compari-

son indicated using the pathway scores directly had a limited contribution in recurrence

prediction on patients with Gleason score 7. However, the embedded genomic features

obtained through MLP were more effective for prostate cancer recurrence analysis.

There are other clinical factors for prostate cancer prognosis besides those used in

the study, such as patients race. Because in the study less than 2% men were Asian

or African, 30% were Caucasian and the rest were unknown, we excluded patients

race factor in the recurrence analysis. Other clinical factors, such as American joint

committee on cancer metastasis stage, neoplasm disease stage codes and so on, were

not available for all the patients in the GDC prostate cancer datasets.

The prostate cancer datasets were acquired from various institutions and each in-

stitution may have different scanners or WSI scanning protocols. Thus there was color

heterogeneity among the prostate cancer WSIs. In the study, we did not adopt color

normalization [133] on the randomly selected testing set because it was not feasible to

determine the reference image from the training set for color normalization. When ap-

ply the approach to a new dataset, we could fine-tune the network based on the training

data from that dataset. Given the limited size of the public prostate dataset, the results

achieved from our experiments were preliminary. In order to further validate the gen-

eralizability of our approach on a wider population of prostate cancer patients, we will

collect more prostate images from local institutions to perform extensive experiments.

4.5 Conclusion

In this study, we performed recurrence analyses for prostate cancer patients with Glea-

son score 7 integrating histopathology WSIs and genomic data. The image features and

genomic features were obtained using CNN and MLP respectively. The combination of
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the features were modeled using LSTM to get the computational biomarkers. Exper-

imental results utilizing on publicly available prostate cancer dataset showed that the

computational biomarkers extracted by our approach were more closely correlated with

patients recurrence risk compared to standard clinical prognostic factors and engineered

image texture features. The results of our study suggest that these approaches could

be utilized to predict recurrence and progression for patients with prostate cancer.
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Chapter 5

Factorized Adversarial Networks for Unsupervised

Domain Adaptation

5.1 Introduction

Rapid development of deep convolutional neural networks (CNN) has led to promising

performance on various computer vision tasks [112, 134, 135], especially with the help of

large-scale annotated datasets, such as ImageNet [136]. However, when a model learned

from a large dataset in one domain (source domain) is applied to another domain (target

domain) with some different characteristics, it is not guaranteed to generalize well. In

order to mitigate the influence caused by domain shift [137], two major approaches are

widely employed. One popular approach is to fine-tune the model learned from source

domain using annotated data from target distribution [32]. However, this requires

data annotation in target domain, which is costly and labor intensive. The other

approach is to generate synthetic data that is analogous to the distribution of target

domain [138, 139]. Although this approach could provide unlimited synthetic training

data, the model trained may not perform well as compared to real data with much

more complicated distributions.

In this work, we focus on the image classification task and aim to solve the unsuper-

vised domain adaptation problem. In our problem setting, the source domain contains

a large amount of annotated data, but there is no annotation available for the images

in the target domain. The two domains share the same high level categories although

they are drawn from different distributions.

We propose Factorized Adversarial Networks (FAN) to address this unsupervised

domain adaptation problem. FAN encodes input data from both domains to a latent
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Figure 5.1: The proposed unsupervised domain adaptation approach factorizes source
and target latent feature space into two subspaces using two different networks. The
domain-specific subspace stores domain-specific information, while the task-specific sub-
space stores the category information. We use adversarial training to minimize the
discrepancy between the two task-specific subspaces.
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embedding space which is factorized into two complementary subspaces, a domain-

specific subspace (DSS) and a task-specific subspace (TSS), as illustrated in Figure 5.1.

In an image recognition scenario, the task-specific subspace should ideally only contain

image category related information, while the domain-specific subspace contains domain

characteristics that are irrelevant to classification, e.g., different backgrounds should not

impact digit recognition. We use a mutual information loss to enforce the orthogonality

constraint between the two subspaces. The motivation of this factorization is to allow

us to adapt only the task-specific subspace of the target domain to that of the source

domain. In order to do the adaptation, we apply an adversarial network to minimize

the distribution discrepancy between the two task-specific subspaces, with loss function

adopted from the Generative Adversarial Network (GAN) [45].

A two-stage training process is used to train our FAN. In the first stage, we train

a convolutional network in source domain to predict the image labels as well as recon-

struct the input images. The features in task-specific subspace are used to predict the

image labels, while the domain-specific subspace features, concatenated with the image

classification logits, are used to reconstruct the input images. In the second stage, we

train the network in target domain using the adversarial loss and reconstruction loss

to generate a task-specific subspace that is indistinguishable from the one generated in

source domain. A discriminator network is used to judge from which domain the task-

specific features are generated. The network at target domain and the discriminator

network are updated by the gradients in an adversarial way so that the task-specific

subspace of target domain is adapted to that subspace of source domain.

We apply our proposed method to visual domain adaptation using the benchmark

digits datasets, including MNIST [140], USPS [141] and SVHN [142], and achieve su-

perior results compared to the state-of-the-art approaches. We also apply the method

to two real-world tagging datasets that we collected, one from crawling images using

search engines such as Google and Flickr, and the other from photos shot by mobile

phones. The two datasets share the same 100 classes with each dataset containing more

than 115,000 images and we achieve significant improvement on the classification task

compared with the state-of-the-arts.
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In summary, our contributions are three-fold:

• A novel Factorized Adversarial Networks to tackle the unsupervised domain adap-

tation in an effective way.

• Detailed analysis on the design of the network architecture along with visualiza-

tion of the factorized subspaces.

• New state-of-the-art domain adaptation results on digits benchmark datasets as

well as newly collected larger-scale real-world tagging datasets.

5.2 Related Work

Unsupervised domain adaptation. Extensive studies on unsupervised domain

adaptation have been conducted in recent years in order to effectively transfer the

representative features learned in source domain to target domain. In this section, we

focus on research utilizing deep neural networks as they have a better generalization

ability even for the complex distributions [112, 143, 144].

One category of unsupervised domain adaptation applies the Maximum Mean Dis-

crepancy (MMD) [145] loss as a metric to learn the domain invariant features. The

MMD loss computes the distance between the embedding spaces of two domains using

kernel tricks. Deep domain confusion (DDC) [146] minimizes both classification loss and

MMD loss in one layer. Deep adaptation network proposed in [147] places MMD loss at

multiple task-specific layers that have been embedded in a reproducing kernel Hilbert

space, while other layers are shared between source and target domains. Similarly,

the domain separation network (DSN) [148] maintains a shared embedding between

two domains as well as the individual domain representations. Deep Reconstruction-

Classification Network (DRCN) [149] shares the encoding for both source and target

domains. On the contrary, the work in [150] demonstrates that it is effective to re-

late the weights in the form of linear transformations instead of sharing. Unlike the

above discussed approaches, the authors in [151] proposed deep correlation alignment

(CORAL) algorithm to match the covariance of the source features and the target

features to learn a transformation from the source domain to the target domain.
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Based on the idea of adversarial training [45], several studies propose using a domain

classifier built on top of the networks to distinguish the represented features from the

two distributions. Features extracted from the two domains are utilized to train the

domain classifier, along with the classification loss for the source domain [152]. The

gradient reversal algorithm (RevGrad) algorithm [153] trains the domain classifier by

reversing its gradients. The authors of [33] propose an adversarial discriminative domain

adaptation (ADDA) model in which weights are not shared between the source and

target domains, and the network in target domain is trained to fool the domain classifier

so that it cannot predict the two domains reliably.

Generative adversarial networks. GAN [45] related approaches are also used to

synthesize images and perform unsupervised domain adaptation in the joint distribution

space. A generator is trained to model the image distribution and generate the synthetic

images while a discriminator is trained to differentiate the synthesized distribution and

the real distribution. Coupled GAN (CoGAN) [154] uses two GANs on source and

target domain to generate images from the two distributions. The two GANs have

the same noise as input and domain adaptation is implemented by training a classifier

on the input of the discriminator. The work in [138] uses images from source domain

as a condition for the generator. Both the generated images and the source images

are applied to train the classifier. The authors of [155] propose a learning strategy

to generate cross domain images and train a task-specific classifier with the generated

images and the source distributions.

Hidden factors discovery. There has been some research work on discovering

the higher-order factors of variation from the latent space on the image classification

and generation tasks [156, 157, 158, 159]. For example, the work at [156] utilizes

the autoencoder to disentangle the various transformations from input distributions.

The network is jointly trained to reconstruct input images as well as estimate the

image category. On the contrary, InfoGAN [157] is proposed to learn disentangled

representations from images in an unsupervised fashion by decomposing the latent

code from input noise vector. In this study, we propose learning the task-specific

feature in an effective way instead of learning interpretable hidden factors, and we find
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Figure 5.2: The architecture of FAN. The encoders from two domains map input images
into two feature spaces. Both feature spaces are factorized into two subspaces, the
domain-specific subspace (DSS) and the task-specific subspace (TSS). The adaptation
is accomplished by jointly training the discriminator and target network using both the
GAN loss and reconstruction loss to find the domain invariant feature in TSS.

that factorizing the domain representations helps to adapt the knowledge between two

domains.

Comparison with similar studies. The motivation of our proposed FAN is

to find a subspace where unsupervised domain adaptation for classification is most

appropriate. It shares similarities with previous studies, especially DSN [148] and the

ADDA [33]. While domain separation [156, 160, 161] and adversarial training [138, 152]

have been extensively explored in many tasks in existing liturature, we unify the two

appoaches in one novel framework for unsupervised domain adaptation and demonstrate

its clear advantage over DSN [148] and ADDA [33] in experiments.

5.3 Our Approach

In this section, we present our Factorized Adversarial Networks (FAN) for unsuper-

vised domain adaptation. The architecture of FAN is illustrated in Figure 5.2, where

we have two encoder-decoder structured neural networks, one for source domain and

one for target domain, that mirror each other except for the training losses, as well as

a discriminator network. We aim to find a domain invariant feature space that retains
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the classification information through adversarial training. To achieve this, we explic-

itly factor the latent feature space into a task-specific subspace and a complementary

domain-specific subspace, where the task-specific subspace aims to minimize the classi-

fication loss across domains while the domain-specific subspace combined with classifi-

cation logits targets at reconstructing the input samples. The task-specific subspace, if

indistinguishable by the adversarial discriminator which domain it comes from, should

retain the classification information invariant to domain shifts; the domain-specific sub-

space, on the other hand, should capture the domain-specific but classification-irrelevant

information for reconstruction. The proposed explicit feature space factorization helps

to remove some domain-specific information and relieve the burden of adversarial train-

ing for more effective domain adaptation.

More formally, in our unsupervised domain adaptation, we have a source distribution

S that includes N s labeled images {(xsi ,ysi )}
Ns

i=1 where ysi is a one-hot vector encod-

ing the image class label, and a target distribution T contains N t unlabeled images{
(xti)

}Nt

i=1
. Our goal is to first find a mapping M s that maps the source task-specific

subspace to the source logit space with labeled training data, and then find a mapping

function M t for the target domain that maps the target task-specific subspace into the

target logit space that is indistinguishable from the source logit space. The target map-

ping function M t thus retains the discriminative information needed for target domain,

and therefore, inference in target domain could be easily done with M t and softmax.

Our learning procedure consists of two steps: we first train a source domain network

that factors the latent feature space, and we then update the target domain network by

adapting the target domain task-specific subspace to its source domain counterpart with

the help of adversarial training. We discuss these two steps in the following sections.

5.3.1 Feature Space Factorization

Our networks contain two convolutional encoder-decoder networks and the latent fea-

ture space generated by the encoders is factorized into complementary task-specific

subspace and domain-specific subspace. In the first step of our approach, we train



61

our factorization network in source domain as shown in Figure 5.2. To avoid clut-

tered notations, we drop domain indicator superscripts s in the following when there

is no confusion. Let h = Enc(x; θe) denote the encoder function Enc that encodes

the input sample x into a latent feature h with parameter θe in source domain. We

split the latent feature h into two parts hd and ht, where hd represents the feature

in the domain-specific subspace and ht represents the feature in the task-specific sub-

space. The mapping hl = M(ht; θm) maps the task-specific subspace into a logit space

with parameters θm. We then concatenate hd and hl and feed them into a decoder

Dec(hd,hl; θd) to reconstruct the input sample x, where hl includes the necessary at-

tributes for reconstruction. Ideally, ht should contain discriminant information that

is invariant to different domains while hd retains information that is specific to the

domain, less relevant to classification but necessary for reconstruction. We optimize

the following objective function in order to obtain the two desired subspaces in source

domain:

Lsource = αLc + βLm + Lr (5.1)

where α, β are hyper parameters that control the trade-off among loss terms.

Lc is the cross-entropy loss to train the source network for classification with the

parameters {θe, θm} using source domain labeled training data.

Lc = −
N∑
i=1

yi · log ŷi (5.2)

where ŷ is the softmax output of the classification branch, ŷ = softmax (M(ht; θm)).

We add a mutual information loss term Lm to encourage orthogonality between the

domain-specific subspace and task-specific subspace:

Lm =

N∑
i=1

∥∥hT
tihdi

∥∥2
(5.3)

where hti and hdi denote the domain-specific feature and task-specific feature for the

i-th sample, respectively.

We use the reconstruction loss Lr to minimizes the squared error between the input

sample and the reconstructed one:

Lr =
N∑
i=1

‖xi −Dec(hdi,hli; θd)‖2 (5.4)
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where hli denote the logit vector for the i-th sample.

The three loss terms play together in the optimization of Eqn. 5.1. The classification

loss Lc encourages the learned feature ht to retain discriminative information as much as

possible, the reconstruction loss Lr relies on domain-specific information from hd with

the logit input hl for reconstruction, and the mutual loss Lm encourages the separation

of the two subspaces. Thus we can obtain a task-specific space ht that is discriminative

with much less domain-specific information, and hence more invariant to domain shifts.

Without duplicate elaboration, the target domain network holds the same archi-

tecture as the source domain network. In the second step of our approach, we fix the

learned source domain factorization network and train the target factorization network

with adversarial adaptation, as discussed in following section.

5.3.2 Adversarial Domain Adaptation

Our factorization network is designed to capture discriminant information in the task-

specific subspace while dropping domain-specific information as much as possible. We

leverage adversarial training to minimize the discrepancy between the task-specific sub-

space of the target domain and that of the source domain so that we can easily transfer

the knowledge learned from source domain to target domain. Specifically, we learn our

target domain neural network by optimizing the following objective function:

Ltarget = µLadvD
+ νLadvM

+ Lr (5.5)

where µ and ν are the hyper parameters that balance the contributions of adversarial

training loss.

The reconstruction loss Lr in target domain is similarly defined as Eqn. 5.4 over

target domain network parameters. The adversarial training losses are defined similarly

to the GAN loss [45]. Instead of using the task-specific subspace directly, we use the logit

space obtained from the source domain to guide the learning in the target domain, which

works better in practice. The discriminator D maps the input logit space into a binary

label, where “true” denotes the source domain and “false” denotes the target domain.

The target domain network is learned in an adversarial way to fool the discriminator
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so that the discrepancy between the two logit spaces is minimized. Specifically, the

adversarial losses LadvD
for optimizing the discriminator D and LadvM

for optimizing

the target domain encoder are defined as

min
D
LadvD

= −Exs∼S logD(M s(hst ; θ
s
m))− Ext∼T log(1−D(M t(htt; θ

t
m)) (5.6)

min
Θ
LadvM

= −Ext∼T log(D(M t(htt; θ
t
m))) (5.7)

where Θ denote the network parameters for the target domain encoder and logit map-

ping. As the task-specific subspace at target domain aims to learn a similar distribution

as the one from source domain, the mutual information loss is not necessary for the

target domain. In the experiments, we did try using Eqn. 5.3 at target domain , but

did not observe further improvement.

Unlike the symmetric structure of our network as demonstrated in Figure 5.2, we

perform asymmetric adaptation during optimization where the target domain network

is fine-tuned from source domain network instead of weight sharing for the two networks.

Previous efforts explored using shared weights between source and target networks to

reduce model parameters [34, 152], or leave the target network completely untied [150,

33]. We found that it is not necessary to share the weights for shallow networks such

as LeNet [140], but imperative to partially share some early network layers for deeper

neural networks, such as ResNet [143], which is the standard practice to train the deep

nets. By jointly optimizing the adversarial loss and reconstruction loss, we force the

target domain task-specific subspace to match the distribution of the source domain

task-specific subspace, which is discriminative for the classification task, while leaving

the less relevant target domain-specific representations for the domain-specific subspace

to capture. Together, the two terms encourage the network to learn more discriminative

and domain invariant feature representations for the task.
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5.4 Experiments

We evaluate the proposed FAN on the tasks of unsupervised domain adaptation using

benchmark datasets including MNIST [140], USPS [141] and SVHN [142], as well as

much larger real-world tagging datasets we collected that contain more than 100,000

images, respectively. We demonstrate that our approach is significantly improved com-

pared to previous state-of-the-art methods.

5.4.1 Digits Datasets

We use three digits datasets, MNIST [140], USPS [141] and SVHN [142], as the bench-

mark and follow the previous studies [149, 152, 153, 33, 154] to perform three unsuper-

vised adaptation settings including MNIST → USPS, USPS → MNIST and SVHN →

MNIST. The benchmark datasets contain images of 10 digits ranging from 0 to 9. Some

sample images from the three datasets are shown in Figure 5.3a. To run experiments in

an unsupervised manner, the labels of the target domain training images are withheld.

Network architecture The network we use in the experiments contains an encoder

and a decoder and has the same structure under the three experiment settings. Follow-

ing the recent work [33] for fair comparison, we adopt a similarly modified LeNet [140]

as the encoder that differs only in utilizing batch normalization (BN). We also applied

BN for [33] but observed no improvement. Specifically, the encoder consists of two

convolutional layers with kernel size 5 and the number of filters 20 and 50, respectively.

Each convolutional layer is followed by rectified linear units (ReLU), BN, and max

pooling layers. After that we have two fully connected (FC) layers with 500 and 100

hidden units respectively. The activations from the last FC layer is split into two parts,

one for domain-specific subspace and the other for task-specific subspace. The task-

specific feature is connected to an FC layer to get the classification logits for prediction,

while the domain-specific feature is concatenated with the classification logits as input

for decoding phase. The decoder employs a deconvolution architecture [162] including

one FC layer with 300 hidden units, two 5×5×16 convolutional layers, one upsampling

layer to 28×28, and two 3×3 convolutional layers with 16 and 1 filters, respectively.
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(a) Example images from the three digits
datasets. Left three columns: MNIST; mid-
dle three columns: USPS; right three columns:
SVHN.

(b) Example images from the Crawling dataset
(left two columns) and the Mobile dataset (right
two columns). Top row: forest; bottom row:
steering wheel.

Figure 5.3: Visualization of example images from the five datasets used in the study.

The FC layers and convolutional layers are followed by ReLU and BN, except for the

last convolutional layer that gives the reconstruction output. The logit activations from

the two domains are sent to the discriminator network which contains three FC layers.

The first two FC layers have 500 hidden units followed by ReLU and BN. The last FC

layer provides the domain label estimation for the input samples.

Implementation details Since images in different datasets varies in size, we resize

the images in USPS and SVHN datasets to 28×28 in order to match the input image

size in MNIST. In addition, we convert the RGB images from SVHN to gray scale

images. All the pixel values are normalized to a range of 0 to 1. For the unsupervised

adaptation between MNIST and USPS, two training paradigms are implemented. The

first one follows the training strategy introduced in [163], which sampled 2,000 training

images from MNIST and 1,800 training images from USPS. For the second training

protocol, we consider utilizing all the training data from the two domains and denote

it as MNIST→USPS (full) and USPS→MNIST (full). For both training protocols, the

testing set remains the same. For adaptation from SVHN to MNIST, we use all the

training images from the two datasets. The training process contains two steps. The

first step is to train a model in the source domain using Eqn. 5.1 with α as 2 and β as 1.

In the second step, we fix the trained model in source domain and train the recognition

model in the target domain using the Eqn. 5.5, where µ is 2 and ν is 1. We initialize

the target domain network using the weights of the model trained in source domain.

No data augmentation setting is utilized in the experiments.
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Table 5.1: Experimental results on unsupervised domain adaptation for the digits
datasets including MNIST, USPS, and SVHN. Full denotes using the entire training
set for the domain adaptation between MNIST and USPS. The last column shows the
largest improvement over each method out of the three experiments.

Method MNIST→USPS USPS→MNIST SVHN→MNIST
Largest Im-
provement

Baseline 0.752 ± 0.016 0.571 ± 0.017 0.601 ± 0.011 0.339

DSN[148][164] 0.913 - 0.827 0.098

RevGrad[153] 0.771 ± 0.018 0.730 ± 0.020 0.739 0.186

DDC[152] 0.791 ± 0.005 0.665 ± 0.033 0.681 ± 0.003 0.245

CoGAN[154] 0.912 ± 0.008 0.891 ± 0.008 - 0.019

DRCN[149] 0.918 ± 0.0009 0.737 ± 0.0004 0.820 ± 0.0016 0.173

ADDA[33] 0.894 ± 0.002 0.901 ± 0.008 0.760 ± 0.018 0.165

Ours 0.921 ± 0.014 0.910 ± 0.011 0.925 ± 0.011 -

Ours (full) 0.963 ± 0.002 0.971 ± 0.008 - -

Comparison results Table 5.1 shows our results as compared with recent meth-

ods. Our approach clearly achives the best overall performance on all three domain

adaptation experiments under the same settings. Compared with previous methods,

our method significantly outperforms each of them at least on one of the three experi-

ments, with a gap of over 10% in many cases, as shown in the last column in Table 5.1.

For the adaptation between MNIST and USPS, we also show results using the full set

of training data from both domains and observe that it significantly improves the ac-

curacy, implying that our adaptation network can better minize the distribution shift

with more training data.

Ablation analysis of our network design We conduct ablation study on the

design of our factorization architecture. The structure for four network settings are

shown in Figure 5.4 with the following details.

• Joint feature: As shown in Figure 5.4a, we learn a joint feature space for both

image reconstruction and classification, and use reconstruction losses in both do-

mains along with the classification loss in source domain to train the network.

• Feature separation: As shown in Figure 5.4b, in this setting, we separate the

latent features into two parts. One part is used for reconstruction and the other
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Figure 5.4: Four network architectures for the study of feature factorization.

part is used for classification.

• Feature concatenation: As shown in Figure 5.4c, the previous reconstruction

features are concatenated with the classification logits as new reconstruction fea-

tures.

• Full factorization: As shown in Figure 5.4d, we add mutual information loss

in this setting to explicitly enforce the orthogonality between the two separated

features, thus factorizing the latent feature space into a domain-specific subspace

and a task-specific subspace.

For all four settings, we conduct the same two-stage training process and apply the

adversarial learning at the second stage. The results shown in Table 5.2 indicate that

we could obtain stronger results by better separating the features, and our factorization

method yields the best results.

Analysis of the embedding spaces Besides the quantitative results, we visualize

the high-dimensional features of the factorized subspaces in the 2D plane for adaptation

from SVHN to MNIST using the t-SNE [165]. We randomly select 1,000 images from

the two testing sets and show visualization results in Figure 5.5. We set perplexity to

35 for all four visualization results. The embedding of the logits space before and after
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Table 5.2: Analysis of the effects of feature factorization under different network struc-
tures.

Method
Joint

feature
Feature

separation

Feature
concatena-

tion

Full factor-
ization

MNIST →
USPS (full)

0.955 ±
0.004

0.958 ±
0.002

0.961 ±
0.002

0.963 ±
0.002

USPS →
MNIST (full)

0.933 ±
0.017

0.936 ±
0.014

0.958 ±
0.009

0.971 ±
0.008

SVHN →
MNIST

0.829 ±
0.019

0.858 ±
0.024

0.905 ±
0.006

0.925 ±
0.011

(a) Embedding of the
logit space before the
adaptation.

(b) Embedding of the
logit space after the
adaptation.

(c) Embedding of
the domain-specific
subspace before the
adaptation.

(d) Embedding of
the domain-specific
subspace after the
adaptation.

Figure 5.5: Visualization of the domain adaptation from SVHN (source domain, red
color) to MNIST (target domain, blue color). We show the visualization of t-SNE
embedding for the logits space before adaptation (a) and after adaptation (b), and the
domain-specific subspace before adaptation (c) and after adaptation (d).

adaptation for the two domains are shown in Figure 5.5a and Figure 5.5b, respectively.

As expected, after adaptation, the samples from the target domain are clustered into

more obvious groups and match better with the clusters in the source domain.

The visualization of the domain-specific subspaces before and after adaptation are

shown in Figure 5.5c and Figure 5.5d, respectively. After adaptation, we simultaneously

learn a good task-specific subspace on the target domain and a good domain-specific

subspace. The domain-specific subspace should capture information specific to the

domain, and therefore, the two domain-specific subspaces are further divided after

adaptation, which proves our learning algorithm is effective.
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(a) (b)

Figure 5.6: Reconstruction results using the target domain reconstruction network
for domain adaptation from SVHN to MNIST. (a) Reconstruction results using the
testing samples from target domain. (b) Reconstruction results using the concatenation
of domain specific features from target domain and classification logits from source
domain.

Furthermore, we analyze the embedding subspaces of the target domain by show-

ing two reconstruction results. Figure 5.6a demonstrates the reconstruction results

using features extracted from target domain testing samples. We also concatenate the

domain-specific features of the target domain samples with the logits activations of

randomly selected testing images from source domain of the same class, and show the

reconstruction results in Figure 5.6b. Although reconstruction quality of Figure 5.6b is

not as good as that of Figure 5.6a, the images are still very similar, which proves that

task-specific subspaces for the two domains indeed share similar distributions and that

the target domain-specific subspace stores the domain characteristics for reconstruction.

5.4.2 Real-world tagging Datasets

While many studies in the literature tackle unsupervised domain adaptation, they

mostly evaluate their algorithms on small and simple datasets such as digits dataset [140,

141, 142], and the office dataset [166]. The capasity for domain adaptation algorithms

to work for large-scale real-world complex applications remains unclear. Previous work

[148] points out some problems with evaluation on office dataset [166, 167], where pre-

trained models from ImageNet have to be used [168]. So instead of working on the toy
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office dataset, we collected two real-world tagging datasets to benchmark unsupervised

domain adaptation algorithms, where we have sufficient images to train deep networks

from scratch.

The first dataset is collected from the search engines and named Crawling dataset,

while the second dataset is collected from the photos shot by mobile phones and titled

Mobile dataset. The two datasets contain the same 100 classes. Some example images

from the two datasets are shown in Figure 5.3b. There are two major differences

between the two datasets: 1) the images in Crawling dataset usually have good quality

and clear background while the images in the Mobile dataset suffer from several defects

such as image blur and out of focus, as well as noisy background and various image

filters and stickers; 2) the Mobile dataset contains mostly vertical images while the

images from the Crawling dataset have various image ratios. We use the Crawling data

as the source domain and the Mobile data as the target domain because we can easily

collect crawling data with labels by keyword searching. The Crawling dataset includes

150,000 training images. The Mobile dataset contains 115,000 images out of which we

randomly select 100,000 images as the training set, 10,000 images as the testing set,

and others as the validation set. Compared with the digits datasets, the real-world

tagging datasets not only have a larger scale but also are more suitable for the study

on real-world scenarios.

Network architecture The encoder part of our network uses the ResNet-50 [143]

architecture. The activations from the last average pooling layer are factorized equally

into two parts. The task-specific subspace features are followed by a FC layer to estimate

the classification logits, and the domain-specific features are concatenated with the

classification logits to serve as the input for the decoder. The decoder network uses

architecture from DCGAN [169]. It contains 5 fractionally-strided convolutions layers

with 256, 256, 128, 64 and 3 filters respectively. Each layer is followed by ReLU and

BN, except for the last layer. The discriminator network contains three FC layers. The

first two FC layers have 1024 and 2048 hidden units respectively, followed by ReLU and

BN. The last FC layer output is used for label domain classification.

Implementation Detail All images are resized to 256×256 and randomly cropped
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Table 5.3: Top-1 and Top-5 accuracies on the testing set of the Mobile dataset.

Method Top-1 Top-5

No adaptation 0.3571 0.6607

ADDA[33] (full set of target training) 0.4386 0.7533

Ours (10% of target training) 0.3946 0.6976

Ours (50% of target training) 0.4041 0.7018

Ours (full set of target training) 0.4632 0.7838

to 224×224 during the training process. α is set to 5 and β is set to 1 for Equation 5.1.

And we set µ as 2 and ν as 1 for Eqn. 5.5.

In order to measure whether more unlabeled training images in target domain would

contribute to the generalizability of the target model, we perform three sets of experi-

ments in addition to that without adaptation. In the first two sets, we randomly select

10% and 50% images from each class of the target training set, while in the third set, we

use the full target training set. The Top-1 and Top-5 accuracy for the testing set of the

target domain are shown in Table 5.3. Compared with the model without adaptation,

using 10% training images from each class could improve the the Top-1 and Top-5 ac-

curacy as 3.75% and 3.69% respectively. Using the full training set improves the Top-1

accuracy by more than 10% and Top-5 accuracy more than 12%. We also compared our

results with ADDA [33] using the full target training set, as shown in Table 5.3. Our

approach outperforms ADDA on both Top-1 and Top-5 accuracy as 2.46% and 3.05%

respectively. These results demonstrate that our method can significantly improve the

performance over baselines in real-world applications. In addition, we show that more

unlabeled training data from the target domain helps the unsupervised adaptation.

5.5 Conclusion

In this work, we introduce FAN for unsupervised domain adaptation. We factorize the

latent feature space into task-specific subspace and domain-specific subspace for both

source and target domains and consider the domain adaptation only on task-specific

subspace. The network in source domain is jointly trained with image classification
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and reconstruction under the factorization architecture to learn the discriminative task-

specific subspace while pushing away domain-specific information as much as possible.

The network in target domain is learned under the same factorization structure with

GAN loss to adapt the target domain task-specific subspace to the source domain task-

specific subspace. We evaluate our proposed framework on four domain adaptation

tasks, all achieving state-of-the-art results. For future work, we would like to extend

our algorithm to other vision tasks beyond image classification.
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Chapter 6

Unsupervised Domain Adaptation forClassification of

Histopathology Whole-Slide Images

6.1 Introduction

Advances in whole-slide scanner technology have increased the speed and reliability with

which histopathology slides and other microscopic specimens are digitized. As a result

of these improvements, there has been a sharp increase in the number of investigators

and health-care providers adopting the use of these devices in routine research and clin-

ical workflows. The sheer volume of digitized specimens now being generated at both

small and large institutions has grown accordingly. Once digitized, these specimens are

well suited for the application of sophisticated pattern recognition and machine-learning

algorithms and strategies that can facilitate automated decision-support and computer-

assisted diagnosis. Over the course of hundreds of years, scientists and pathologists have

gone to great length to develop and optimize staining methods that augment and en-

hance the contrast of biological components of interest within these samples at the

tissue, cell and sub-cellular levels. Hematoxylin & Eosin (H&E) is a popular stain that

is applied to specimens, routinely, that results in nuclei exhibiting a bluish color with

cytoplasmic regions rendered in pink [170]. In spite of the best efforts of the technicians

preparing the specimens, however, slight variations in the manner in which these stains

are applied to specimens often results in histopathology sections that are inconsistent

in visual appearance and samples often containing processing artifacts. While there

have been many attempts to completely standardize these methods, the current tech-

nology still grapples with these challenges [171, 172, 133, 173]. Since these inherent

issues described can lead to variations in the results obtained using image-based quan-

tification approaches to analyze the specimens, our team has been investigating new
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methods to remove color variation across digitized specimens originating from different

institutions as well as batches of imaged specimens that may have been acquired at

a single institution at different time points. In earlier attempts to mitigate the color

normalization issue, some investigators chose to convert the color images into gray-scale

versions before performing quantitative analysis [49, 174, 175, 176, 177, 174]. However,

the conversion from color space to grayscale eliminates some informational content from

the digitized specimens that may be essential for rendering proper classifications and

accurate diagnosis.

While the noted color variations in digital specimens present formidable technical

challenges for any image analysis algorithm, mechanical distortions that can sometimes

be introduced during tissue sectioning and slight variations in the underlying mor-

phologic and structural patterns within imaged specimens can further complicate the

process of automating classifications [48, 49, 178, 25, 26, 179]. In spite of all of the

difficulties, investigators throughout the scientific community continue to pursue this

line of research because of the the potential impact that automated, computer-aided

analyses could have in clinical practice and investigative research by accelerating the

throughput while reducing or eliminating the negative effect of inter- and intra-observer

variations during the assessment of microscopic images. Methods based on convolu-

tional neural networks (CNN) are currently considered state-of-the-art due to the high

performance rates recently reported by some recent investigations [78, 180, 181]. Most

of these studies, however, focused on supervised classification. Unfortunately, super-

vised classification models used on one annotated dataset (source domain) may render

ineffective for another set (target domain) collected at a different institute. A widely

used approach to address the challenge is to label new images on the target domain

and fine-tune the model trained on source domain [32]. In fact, methods that can learn

from existing datasets and adapt to new target domains, without the need for addi-

tional labeling, are among the most desirable approaches because they lend themselves

to high-throughput clinical environments and big data research experiments involving

large patient cohorts [46].

In this study, we aim to address the challenges presented by variations in staining,
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morphologic and architectural profiles within histopathology whole-slide images (WSIs)

in a completely unsupervised manner. We use two approaches to achieve knowledge

transfer from the source domain to the target domain. In the first approach, we adopt

two off-the-shelf color normalization [55, 182] on the images from the target domain,

where the model learned from the source domain is applied to the target images after

being normalized to the reference image chosen from the source domain. In the second

approach, we adopt an unsupervised domain adaptation paradigm to align the image

distributions along the annotated source domain and the unlabeled target domain [33,

34]. We apply adversarial training to minimize the distribution discrepancy in the

feature space between the domains, using the loss function adopted from the Generative

Adversarial Network [45]. We subsequently develop a Siamese architecture for the

target network to serve as a regularization of patches within the WSI’s. We validate

the proposed methods on a set of publicly available histopathology datasets and then

further test performance using a new dataset that is collected locally at Rutgers Cancer

Institute of New Jersey. The experimental results show the merit of these strategies.

6.2 Related Works

6.2.1 Color Normalization

In an attempt to address the challenge of the previously described color batch effects,

many investigators have applied color normalization methods to the imaged histopathol-

ogy specimens prior to analysis [183, 184, 185, 133, 182, 186, 187, 188, 189, 190, 191,

192]. One common approach for analyzing tissue samples is to treat stains as agents

exhibiting selective affinities for specific biological substances. With an implicit as-

sumption that the proportion of pixels associated with each stain is same in source

and target images, histogram-based methods are investigated [193, 194, 195, 48, 196,

197, 198, 186, 199]. The main drawback of histogram-based methods is that they

often introduce visual artifacts into the resulting images. Color deconvolution strate-

gies [55, 200, 201] have been utilized extensively in the analysis imaged histopathology

specimens by separating RGB images into individual channels such as by converting
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from RBG to Lab [171] or HSV space [202]. The limitation of this approach is that both

the image-specific stain matrix and a control tissue stained with a single stain is required

to perform the color deconvolution. Another strategy that has been explored is to utilize

blind color decomposition which is achieved by applying expectation and maximization

operations on color distributions within the Maxwell color triangle [201]. This strategy

requires a heuristic randomization function to select stable colors for performing the

estimation, thus it is prone to be affected by achromatic pixels at the weak stain pixels.

Tissue inherent morphological and structural features may not be preserved after color

deconvolution since statistical characteristics of decomposition channels are modified

during this process. Model-based color normalization has also been studied in such

applications by including Gaussian mixture models [203, 198, 171, 133, 173], matrix

factorization [182], sparse encoder [190], and wavelet transformation with independent

component analysis [187]. Other studies utilize generative models [45] to achieve the

stain normalization [204, 205, 206, 207]. Typically, a reference image is needed from a

group of image dataset. The different reference image would give the different domain

adaptation performance. Color normalization models can provide stain estimation, but

they are solely dependent on image color information, while the morphology and spa-

tial structural dependency among imaged tissues is not considered [201, 199, 202, 186],

which could lead to unpredictable results especially when strong staining variations

appear in the imaged specimens.

6.2.2 Adversarial Domain Adaptation

In recent years, there have been many studies on unsupervised domain adaptation

for transferring the learned representative features from the source to the target do-

main [208, 209, 164, 210]. The works based on CNN show significant advantages due to

better generalization across different distributions [112, 144]. With the development of

the Generative Adversarial Networks (GAN) [45], studies show the synthesized images

could be used to perform unsupervised domain adaptation in a learned feature space

where a generator is applied to learn the image distribution and generate the synthetic

images while a discriminator is trained to differentiate the synthesized and the real
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distribution [154, 138]. For example, Generate-to-Adapt [189] proposes to learn a joint

embedding space between the source and target domain, where the embedding space

could be used to synthesize both the source and target images. Inspired by previous

studies, we utilize the adversarial training to find a discriminative feature space that

can be used to transfer the knowledge from source to target domain. Furthermore, we

introduce a Siamese architecture at target domain which can be used to regularize the

classification of WSIs in an unsupervised manner.

6.3 MATERIALS

For the purposes of the current study, we focus on unsupervised domain adaptation of

imaged prostate cancer histopathology specimens. Prostate cancer is the most common

non-cutaneous malignancy afflicting 1 in 7 men in the United States [211]. Over the

years, Gleason scores have consistently served as a reliable predictor for differential

prostate cancer diagnosis [178]. Unfortunately, Gleason grading can be extremely time-

consuming when attempting to systematically evaluate large, giga-pixel-sized WSIs.

Furthermore, inter- and intra-observer variability errors often arise when pathologists

are called upon to render diagnoses based on WSIs. In order to provide an objective and

reproducible Gleason grading score on such datasets, reliable computational methods

are required for detection, extraction, and recognition of the underlying histopatho-

logical patterns. Much of the progress in this area of research has focused on super-

vised classification of the imaged tissues [48, 102, 212, 51, 53]. However, the fact that

histopathology WSIs obtained from different institutions often present divergent glan-

dular appearances due to the fact that the acquisitional and optical properties of the

specific type of scanners used and differences in the sectioning and staining procedures

utilized introduce significant variations in the resulting images. Additionally, WSIs

scanned by from different institution may have different image resolution as they were

scanned under various microscopy. Figure 6.1 shows representative prostate cancer

tissue images originating from different institutions. Note the variations in glandular

distributions and staining appearance.

Our team investigated the use of unsupervised domain adaptation for histopathology
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Figure 6.1: Examples of prostate cancer histopathology WSIs from TCGA (A) and
RCINJ (B). The WSIs from different institutes present different glandular distribution
and staining appearance.

images and tested the approach on two datasets. The first which is publicly available is

called The Cancer Genome Atlas (TCGA) dataset [67]. The other is a dataset collected

locally at Rutgers Cancer Institute of New Jersey (RCINJ) after obtaining institutional

review board (IRB) approval. All the histopathology images are H&E stained. For

the first setting of unsupervised domain adaptation, we only use the TCGA dataset.

The TCGA prostate cancer dataset includes histopathology WSIs uploaded from 32

institutions that have been acquired at 40× and 20× magnifications. We crop the

WSIs into patches of size 2048×2048. We calculate the tissue area on the grayscale

images and remove the images with tissue area less than half of the patch size. The

dataset includes Gleason scores, ranging from 6 to 10, that have been annotated by

pathologists. As the University of Pittsburgh (UP) had contributed more images than

other institutions, we treat the UP images as the target domain where the annotations

are withheld and the images from other institutions as the source domain, which we

denote as TCGA (w/o UP). We show the total number of WSIs and the cropped patches

from TCGA in Table 6.1 and UP in parentheses. We denote the adaptation setting as

TCGA (w/o UP)→ UP. For the second setting of the unsupervised domain adaptation,

we use all the images from TCGA as the source domain, and images from RCINJ as

the target domain. The images from RCINJ are acquired at 20× magnification. More

details of the RCINJ dataset are shown in Table 6.2. The dataset was labeled as Gleason

scores as 6 or 8 by a board-certified pathologist. We denote this adaptation as TCGA

→ RCINJ.
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Table 6.1: The number of WSIs and patches of the prostate histopathology images from
TCGA under different Gleason scores. The images from University of Pittsburgh (UP)
are shown in parentheses.

Gleason 6 Gleason 7 Gleason 8 Gleason 9 Gleason 10

# WSIs 115 (32) 395 (95) 94 (20) 128 (24) 4 (0)

# Patches
16293
(6517)

67162
(26583)

16204
(4968)

23978
(9606)

342 (0)

Table 6.2: The number of WSIs and patches of the prostate histopathology images from
RCINJ under different Gleason scores.

Gleason 6 Gleason 8

# WSIs 57 26

# Patches 3933 666

For the two sets of unsupervised adaptation, we aimed to transfer the knowledge

gained from the source image data to the images in target domain so that a network

could reliably classify the WSIs in the target domain into low- and high-Gleason score

categories. Specifically, the methods were used to divide the TCGA dataset into low

Gleason grade for the WSIs with score as 6 and 7, and high Gleason grade for the WSIs

with score as 8, 9 and 10. In the case of the RCINJ dataset, the WSIs with Gleason

score of 6 belong to the low-Gleason grade whereas those assigned a Gleason score of 8

belonging to high Gleason grade.

6.4 Methods

In this section, we introduce the two different unsupervised methods to solve the domain

variation necessary for rendering accurate classification of histopathology images.

6.4.1 Problem Formulation

For the purposes of the experimental design, the annotated images are established at

source domain whereas the unlabeled images are housed at the target domain. To

facilitate the study, for the source domain, we denote S as the image distribution, Ns

as the total number of annotated images, {(xsi ,ysi )}
Ns

i=1 as the ith image xs with the

one-hot category information of ys. Similarly, for the target domain, we denote T as
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the image distribution, Nt as the total number of unlabeled images,
{

(xti)
}Nt

i=1
as the

ith image unlabeled image xt.

We use the images from the source domain to learn a mapping function Ms that

can reliably transform the images to the feature space. Then we apply two approaches

for the unsupervised domain adaptation. The first transfers the staining information

from the images of the source domain to the images of the target domain so that the

classification of target domain can be easily achieved by using Ms. The second identifies

the mapping Mt that must occur at the target domain to obtain a similar feature space

to that found within the source domain. The prediction for images at the target domain

can be obtained by using Mt directly. Each domain makes use of training, validation

and test sets while the labels for the training images in the target domain are withheld.

6.4.2 Learning at Source Domain

Images from the source domain are annotated and the classification of each is indepen-

dently confirmed by a board-certified pathologist. These images are subsequently used

to teach the source domain CNN to map the images into a discriminative feature space.

Due to the giga-pixel size of histopathology WSI, each was cropped into manageable

sized patches and the cross-entropy loss was adopted Lc to optimize the performance

of the classifier C in a supervised manner.

Lc = Exs∼S −
Ns∑
i=1

ysi · logC(Ms(x
s; θS)). (6.1)

In the above equation, θS represents the weights of the source domain CNN. We used

a modified fully convolutional AlexNet [112] as the source domain CNN for the clas-

sification task. The network does not include a fully connected (FC) layer, instead

it only contains convolutional layers. All of the convolutional layers are followed by

the Batch Normalization layer [56] and Rectified Linear Units (ReLU), except for the

last layer that provides the actual prediction. The details of the network are shown in

Figure 6.2A. To achieve the classification for the WSIs, we apply a majority vote on all

cropped patches within each WSI which, in turn, provides the prediction.

Due to the high number of domain variations that are exhibited in histopathology
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Figure 6.2: Detailed architectures of source domain network, discriminator and Siamese
network of target network: (A) The convolutional neural network applied in the source
domain. All the convolution layers (Conv) are followed by the Batch Normalization
layer (BN) and Rectified Linear Units (ReLU), except for the last Conv layer that gives
the classification. The Conv5 and Conv6 layers are also followed by a Dropout layer
with the ratio as 0.5. (B)The architecture of the discriminator. All the FC layers
are followed by the BN and ReLU, except for the last FC layer that gives the domain
prediction. (C) The Siamese network applied in the target domain. The Conv5 and
Conv6 layers from the two branches are followed by a Dropout layer with the ratio as
0.5. And the two branches share the same parameters. The feature maps from Conv6
are concatenated to feed into a FC layer to give the similarity prediction between input
patches. The Conv6 layers are also followed by a Conv7 layer with the same kernel size
as shown in the source domain CNN.

images, the network learned from the source domain may not always generalize suffi-

ciently within the target domain. To address this issue, we introduced two approaches

to minimize the domain variations with the details followed.

6.4.3 Color Normalization for Target Domain

The first approach for achieving unsupervised domain adaptation in the histopathology

images of target domain utilizes the color normalization. As it can be applied to

improve the automated diagnostic performance of histopathology images by decreasing

the staining variation among the entire cohort [205, 213, 25, 207].

In order to apply the source mapping Ms on the target domain directly, we transfer

the H&E staining information from source domain to the target domain by normalizing
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the target images according to a reference image chosen from the source domain. In this

case, only the test images from target domain are required to validate the performance

while the training images from the target domain are withheld. However, choosing the

reference image from source domain is a non-trivial process given the large number of

candidate images. Therefore, we uniformly sample a total of Nl reference images from

source domain. For each image xt in the target domain, we normalize it using each

reference image and forward the normalized image xtj into the source domain CNN

to generate the logits feature vector. Then we adopt unweighted averaging, as it has

been shown as a reasonable ensemble method in deep learning networks [214, 143], to

construct the ensemble logits feature lNl
of xt for the Nl iterations, as shown below:

lNl
=

1

Nl

Nl∑
j=1

Ms(x
t
j ; θ

S). (6.2)

Thus the class prediction for xt could be achieved by using softmax on lNl
. In

this study, we apply two color normalization methods, which are Macenko [55] and

SPCN [182], as their advantages have been shown in histopathology images [215].

6.4.4 Adversarial Adaptation for Target Domain

The color normalization process makes it possible to perform the stain transfer from

source domain to target domain on images directly. The second approach we inves-

tigated was unsupervised domain adaptation of histopathology images, in which we

explored the adaptation of knowledge on feature space from source to target domain.

Therefore we learn a target mapping function Mt, which is a CNN, to map the images

from target domain into a discriminate feature space. In order to optimize the target

network, we leverage the adversarial training to minimize the discrepancy between the

feature space of the target domain and the one of the source domain. We perform

asymmetric adaptation where the network at the target domain is fine-tuned from the

network of the source domain. Through optimization, the feature space of the target

domain learns to mimic the distribution of the source feature space. Thus the target

network is trained to extract the domain invariant features from input samples, which
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have the same distribution as the source domain. In the process, the training images

of target domain are used to carry out the adversarial adaptation.

Adversarial Training

We implement adversarial training following the idea from GAN loss [45] on the feature

spaces of source and target domain. The feature vectors generated from the network

of source domain or the network of target domain are fed into the discriminator D.

D is trained to map the input feature vectors into a binary domain label, where the

“true” denotes the input feature vectors are from source domain and “false” denotes the

feature vectors are from target domain. Additionally, the target mapping Mt is learned

in an adversarial manner to purposely misdirect the discriminator D by reversing the

domain label so that the discriminator cannot distinguish between the two feature

spaces. Since the mapping parameterization of source model is determined before the

adversarial training, we only optimize the target mapping step Mt. By using adversarial

learning, we minimize the discrepancy of feature spaces between the source and target

domain. Therefore, estimating the category information for the images from target

domain can be implemented by Mt. More specifically, the adversarial loss LadvD
for

optimizing the discriminator D is represented as:

min
D
LadvD

= −Exs∼S logD(Ms(x
s; θS); θD)− Ext∼T log(1−D(Mt(x

t; θT ); θD). (6.3)

where θT represents the weights of the target domain CNN and θD represents the

weights of the discriminator. The discriminator is composed of three fully connected

layers where each is followed by a Batch Normalization layer and a ReLU layer with

the exception of the last one. The details for the architecture of the discriminator are

shown in Figure 6.2B. The mapping loss LadvM
for optimizing the target mapping Mt

is represented as:

min
Mt

LadvM
= −Ext∼T log(D(Mt(x

t; θT ); θD)). (6.4)

For the adversarial training, we optimize the La, where La = LadvD
+ LadvM

.
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Figure 6.3: The architecture of the networks for the adversarial domain adaptation.
The source network and the target network map the input samples into the feature
space. The adaptation is accomplished by jointly training the discriminator and target
network using the GAN loss to find the domain invariant feature. A Siamese network
at target domain adds constrains for patches within the same WSIs.

Siamese Architecture for Target Network

Although there are no annotations for the images at the target domain, the patches

cropped from the same WSI should be estimated as the same class by the network

at target domain. However, the adversarial loss only forces the distribution of the

feature spaces across the two domains to be similar, it can not constrain the target

network to determine the similarity of the input samples. Therefore, we introduce a

Siamese architecture [216] at target domain to explicitly regularize patches from the

same WSI to be classified into the same category. As shown in Figure 6.3, the two

identical networks in the target domain share the same weights with the input as a pair

of images (xt1, xt2) ⊆ T × T . The feature maps obtained from the second to the last

layer of the two networks, namely the Conv6 feature maps as shown in Figure 6.2C, are

concatenated together to serve as the input vector for a one-layer perceptron to classify

the features. Therefore, the input samples are classified by the function f(xt1,x
t
2; θF ),

that f : T × T 7→ ȳ and θF ⊆ θT , where ȳ=1 indicates input patches belong to the

same WSI while ȳ=0 denotes not. We learn the binary classifier f using categorical

cross-entropy loss Ls as following:
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Ls = E(xt
1,x

t
2)∼T −

Np∑
i=1

ȳi · f(xti1,x
t
i2; θF ). (6.5)

where Np denotes the total number of training pairs.

To learn the network at target domain by adversarial adaptation, we adopt a two-

stage training process. For the first stage, we train the network at source domain,

which is the same as using the color normalization in the adaptation process. For the

second stage, we optimize the Siamese network at target domain by applying Lt where

Lt = La + Ls. For optimizing Ls, we sample the images pairs in the training set of

target domain both from the patches cropped from the same WSI and the patches from

different WSIs. The learning algorithm for the target network is shown in Algorithm 2.

Algorithm 2: Learning Algorithm for the Network at Target Domain

Input: Initialized target network from source network with weights θT = θS

1 for number of training iterations do
2 sample two same number of mini-batches xs ∼ S, xt ∼ T ;
3 obtain the estimation y = Ms(x

s; θS), y′ = Mt(x
t; θT );

4 θD ← back propagate with stochastic gradient OLadvD
(y,y′);

5 θT ← back propagate with stochastic gradient OLadvM
(y′);

6 sample mini-batches with paired of images xt1,x
t
2 ∼ T ;

7 obtain the estimation ȳ = f(xt1,x
t
2; θF );

8 θF ← back propagate with stochastic gradient OLs(ȳ);

6.5 Experiments

In this section, we validate the proposed approaches using the unsupervised domain

adaptation for the classification of the histopathology images.

6.5.1 Implementation Details

We conducted two sets of unsupervised domain adaptation for classification of prostate

histpathology images, which are TCGA (w/o UP) → UP and TCGA → RCINJ. We

firstly use the images in source domain to train a binary classification network. The

data from source domain is randomly divided into the training and the testing sets at

a ratio of 80% (validation set is randomly selected from the training set) / 20%. The
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patients with more than one WSI can only contribute the images to the training set

or the testing set. During the training process, the images are resized as 256×256 and

randomly cropped to 224×224 to feed into the network. During the testing process, all

the patches are resized to 256×256, we do the single center-crop for all testing patches.

The network is trained from scratch. For the adaptation using color normalization,

we utilize the source domain CNN as the network for target domain to determine the

prediction from the testing set. For the adversarial adaptation, we optimize the Siamese

network at target domain by fixing the parameters of source domain CNN and training

the target network and the discriminator network at the same time. The prostate

images at the target domain are randomly divided into the training and the testing sets

at a ratio of 80% and 20%.

Our implementation is based on Tensorflow [217]. To train the source network, we

use mini-batch Stochastic Gradient Descent (SGD) with mini-batch size as 128. The

momentum is 0.9 and the weight decay is 0.0005. The initial learning rate is 0.001 and

periodically annealed by 0.1. To train the target network for the adversarial adaptation,

we use Adam optimization [218] with the fixed learning rate as 0.00001. The mini-batch

size for optimizing La and Ls is set as 128.

6.5.2 Source Domain Performance

As the training process contains two steps, we first show the performance of the network

at the source domain. The comparison between the source network and the previous

study [188] is shown in Table 6.3. From the results, we can see both of our models

have better performance than [188]. However, the study at [188] uses less WSIs than

ours and the network with the best performance reported in [188] is wider and deeper

than our study. Although such differences lead to biased comparison, it could still

demonstrate the source domain network is well trained to classify the TCGA prostate

images into low Gleason score and high Gleason score. We have tried deeper network,

such as ResNet-50 [143], but the modified AlexNet used in the study has a better

performance. For example, the modified AlexNet has the accuracy of 83.0% on TCGA

while the ResNet-50 [143] has the accuracy as 79.8%.
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Table 6.3: The source domain network performance. The source domain classification
network outperforms previous study [188] using prostate cancer data from TCGA with-
out UP and TCGA. The source domain network using one all TCGA prostate cancer
data achieves higher classification accuracy than using TCGA without UP because of
more data included for training the network.

Accuracy (%)

Previous Study [188] 73.5

TCGA (w/o UP) 76.9

TCGA 83.0

6.5.3 Comparison Results

In this section, we show the comparative results using different approaches for learning

the classification model at the target domain.

Adaptation using Color Normalization

First, we show the domain adaptation results only using color normalization. The

qualitative results for the color normalization are shown in Figure 6.4. We sample

different number of reference images, which is Nl in Equation 6.2, due to the large

number of training set in source domain. For each color normalization method, we

use Nl-Ensemble to indicate the number of reference images. For each Nl, we run the

experiments for 10 times and report the mean and the standard deviation values in

Table 6.4. Additionally, we show the baseline results in Table 6.4 where the source

domain CNN is applied on the original images from target directly. We can see that

due to the different image distributions of the source and target domains, the network

learned from source domain is not working appropriately when applied on target domain

directly. For the adaptation of TCGA (w/o UP) → UP, the results show using the two

color normalization methods both improve the classification accuracy and with more

reference images, it could achieve the better classification. Furthermore, SPCN [182]

achieves better results compared to Macenko [55] as it has higher mean classification

accuracy and less standard deviation. While for the adaptation of TCGA → RCINJ,

no better result is observed by using the color normalization, which indicates color

normalization may not be robust when applied for the domain adaptation of the prostate
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Figure 6.4: Example images selected from the testing set of target domain are nor-
malized by the reference images sampled from the training set of source domain using
two color normalization methods including Macenko [55] and SPCN [182]. (A) The
adaptation of TCGA (w/o UP) → UP. (B) The adaption of TCGA → RCINJ.

histopathology images. For both TCGA (w/o UP) → UP and TCGA → RCINJ, using

more reference images could decrease the standard deviation of the ensemble results.

On the other hand, the high standard deviation indicates the high sensitivity when

choosing a reference image, which makes the color normalization less practicable for

unsupervised domain adaptation given the difficulty of deciding the optimal reference

image within the source domain.

Additionally, we show the comparison with color augmentation, which has been

proved effective for the data augmentation of histopathology images [220, 221, 219].

We follow the methods introduced in [219] where random color perturbations is applied

on each patch in the training set. Experimental results in Table 6.4 show the color

augmentation is more effective than color normalization on the two sets of experiments.

Adversarial Adaptation

Second, we show the results of using the adversarial domain adaptation for TCGA

(w/o UP) → UP and TCGA → RCINJ. The quantitative results for the adaptation

are shown in Table 6.4. Through the adversarial adaptation, we could effectively adopt

the discriminative knowledge from TCGA (w/o UP) to the UP and from TCGA to
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Table 6.4: Unsupervised domain adaptation for TCGA (w/o UP) → UP and TCGA
→ RCINJ using color normalization and adversarial adaptation. The classification ac-
curacy of two color normalization methods including Macenko [55] and SPCN [182]
with different number of ensembles, and the target network with adversarial loss (La)
only and the target network with adversarial loass and Siamese loss together (Lt) are
shown for two sets of adaptations. We also compare our approach with color augmenta-
tion [219]. Our proposed approach has a better performance than other state-of-the-art
study [189] on the unsupervised adaptation task.

TCGA (w/o UP) → UP TCGA → RCINJ

Baseline 54.3 56.3

Macenko [55] 1-Ensemble 65.7 ± 11.9 51.3 ±6.1

Macenko [55] 2-Ensemble 70.0 ± 5.9 53.8 ±8.5

Macenko [55] 5-Ensemble 72.3 ± 3.8 55.0 ± 7.3

Macenko [55] 10-Ensemble 72.6 ± 2.3 55.0 ± 4.7

SPCN [182] 1-Ensemble 70.0 ± 7.3 56.3 ± 13.4

SPCN [182] 2-Ensemble 71.7 ± 6.7 55.0 ± 15.3

SPCN [182] 5-Ensemble 72.9 ± 2.6 55.6 ± 9.8

SPCN [182] 10-Ensemble 73.4 ± 1.8 54.4 ± 8.4

Color Augmentation [219] 74.5 56.3

Generate-to-Adapt [189] 71.7 62.5

La only 71.4± 1.1 62.5 ± 2.5

Lt 77.1± 1.1 75.0 ± 2.5
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Figure 6.5: The confusion matrix of the target network before and after the adaptation
for TCGA (w/o UP) → UP and TCGA → RCINJ. (A) The confusion matrix for UP
before domain adaptation. (B) The confusion matrix for UP after domain adaptation.
(C) The confusion matrix for RCINJ before domain adaptation. (D) The confusion
matrix for RCINJ after domain adaptation.

RCINJ without requiring additional annotations. Compared with the adaptation us-

ing color normalization, the adversarial adaptation achieves better classification results

for the two setting of experiments, which demonstrates its effectiveness and robust-

ness. Additionally, we compare our approach with the Generate-to-Adapt [189] on the

two tasks and our approach outperforms the current, state-of-the-art algorithm of the

unsupervised domain adaptation.

We further calculate the statistically significance of the accuracy improvement be-

tween the adapted network and the baseline network using McNemar Test [222] and

demonstrates the improvement of classification accuracy is statistically significant with

a p-value less than 0.05. In addition, we show the result of the ablation study in Ta-

ble 6.4 that using Lt achieves better classification accuracy than La only. Figure 6.5A-

6.5B show the confusion matrices for the adaptation for TCGA (w/o UP) → UP and

Figure 6.5A-6.5B show the confusion matrices for the adaptation of TCGA → RCINJ.

Compared to before domain adaptation and after domain adaptation, the true low-

grade classification accuracy are significantly improved. It is crucial for prostate cancer

diagnosis for patients with low Gleason grade is one of the main criteria for active

surveillance and intervention.

We show the qualitative results for TCGA→ RCINJ in Figure 6.6. We use the prob-

ability predicted by the network on the patches to generate a classification probability

heatmap and overlay the heatmap on the original image. The red color indicates the
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high Gleason score and blue color indicates the low Gleason score. Figure 6.6A-B show

example prostate WSIs from RCINJ with the low Gleason score and the ground-truth

heatmap overlaid on it. Figure 6.6C shows the WSI with high Gleason score. After

the unsupervised domain adaptation, the target network could correctly classify most

of patches into the correct Gleason score.

6.6 Discussion and Conclusion

In this paper, we investigate viable approaches for addressing the challenges presented

by the heterogeneous characteristics exhibited within digitized specimens, that arises

when analyzing samples that have been prepared at disparate laboratories and insti-

tutes. We present two different unsupervised domain adaptation methods to resolve

the domain variations to make it possible to render accurate classification of imaged

histopathology specimens. To meet the requirements of this endeavor required color

normalization to transfer the staining information from images in source domain to

the images in target domain whereas adversarial training was implemented to transfer

the discriminate information in feature space from the source to the target domain.

Throughout these experiments, our team utilized a well trained CNN at source do-

main that was shown to outperform other methods used on the TCGA prostate cancer

dataset. This work shows that when compared with color normalization, adversarial

training is more robust for performing unsupervised domain adaptation, indicating that

adversarial training may also serve to decrease the differences in the morphologic and

structural patterns for histopathology images that can be introduced during processing

at disparate institutions. In this research, we further proposed to leverage a Siamese

architecture to add the regularization for the target domain to achieve better results

than that resulting from utilizing the state-of-the-art method for unsupervised domain

adaptation. Due to the limited size of the datasets in these feasibility studies, we

plan to conduct expanded experiments using a wider range of histopathology image

classification problems.
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Figure 6.6: (A) and (B) show the example images from RCINJ with Gleason score
6. (C) shows the example image from RCINJ with Gleason score 8. The left column
shows the original images with heatmaps overlaid on them; the middle column shows
the heatmaps generated from the baseline model (using source domain network); the
right column shows the heatmaps generated from the model optimized by Lt.
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Chapter 7

Nuclei Detection Ensemble Workflows Across Clustered

Infrastructure

7.1 Introduction

In this part, we propose a new approach to parallelize the nuclei detection algorithm by

utilizing CometCloud to speed up the whole process to make the nuclei segmentation

running in real-time a possibility.

Diseases such as cancer can cause changes in tissue morphology at the sub-cellular

levels. The shape and texture properties of nuclei and changes in these properties pro-

vide diagnostic value to determine disease stage and are sources of rich information

with which to study disease biology. Traditionally pathologists have examined tissues

under high power microscopes. Advances in digital microscopy technologies have en-

abled high-resolution images from whole slide tissues. Analyses of tissue images allow

for a quantitative assessment of nuclear morphology and can lead to a better under-

standing of the mechanisms of disease onset and progress and to better strategies for

curing disease. The Cancer Genome Atlas (TCGA) project, for example, has collected

about 30,000 whole slide tissue images from over 25 cancer types. In this work we use

tissue images from the TCGA repository. While tissue images contain rich morpho-

logical information, the extraction of this information (via segmentation of nuclei and

computation of shape and texture features) is a computationally challenging problem.

A robust nuclei segmentation algorithm has been reported in [35], which includes

two main sequential steps, seed detection and contour generation. Within the medi-

cal images, some nuclei are isolated ones; some are overlapping with each other. It’s

not very efficient to run our previous nuclei segmentation algorithm directly on the

whole image which may contains hundreds and thousands of nuclei. To accelerate the
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Figure 7.1: CometCloud Federation Model.

process, there have been many applications using cloud computing on medical image

analysis, but most of them were focused on data parallelization instead of the algorithm

parallelization [36] [37] [38] [39]. Our earlier work focused on fluorescence images

while this work addresses the challenge of working with specimens which have not been

enhanced with specialized staining methods and can be used across a broader number

of application areas.

7.2 CometCloud

CometCloud is an autonomic framework designed to enable highly heterogeneous, dy-

namically federated computing and data platforms that can support end-to-end applica-

tion workflows with diverse and dynamic changing requirements. CometCloud provides
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interfaces to independently describe application workflows and resources. Application

workflows are currently described using XML documents, as a set of stages defining

input and output data, dependencies to other stages, scheduling policies, and possibly

annotated with specific objectives and policies.

Objectives and polices leverage CometCloud autonomic mechanisms to drive re-

source provisioning and execution of application workflows while satisfying user con-

straints (e.g., budget, deadline) and application requirements (e.g., type of resources).

The autonomic mechanisms in place not only provision the right resources when needed,

but also monitor the progress of the execution and adapt the execution to prevent vio-

lations of established agreements [223].

CometCloud uses a federation approach to aggregate heterogeneous and geograph-

ically distributed resources. These resources are exposed to users as a seamless elas-

tic pool of resources. The CometCloud federation, illustrated in Figure 7.1, is cre-

ated dynamically and collaboratively, where resources/sites can join or leave at any

point, identify themselves (using security mechanisms such as public/private keys),

negotiate terms of federation, discover available resources, and advertise their own re-

sources and capabilities [224]. This federation is coordinated using tuple-spaces, called

CometSpaces [225]. Specifically, we define two types of coordination spaces. First, a

single management space spans across all resource sites creating and orchestrating the

federation. Second, multiple shared execution spaces are created on-demand during ap-

plication workflow executions to satisfy computational or data needs. Execution spaces

can be created within a single resource site, or can burst to others, such as public clouds

or external HPC systems.

7.3 Enabling nuclei detection workflow on CometCloud

Running the large image dataset on CometCloud means that we can’t adjust the pa-

rameters of nuclei detection for each image, so it’s important to set the parameters for

each image automatically. Also, in order to increase the efficiency and parallelize the

algorithm, each image needs to be divided into many sub-images, here are the nuclei
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(a) (b)

Figure 7.2: (a) is the image with false multiple seeds within one single nucleus (b) is
the image with merging seeds on the elongated shape nuclei. The red lines indicate
nuclei contour and the green dots indicate seed in the nuclei.

region images. And the sub-images can be sent to each agent to implement nuclei

detection algorithm.

7.3.1 Parallelizing each image into multiple nuclei region images

Each image contains many nuclei. To parallelize the nuclei segmentation process, each

image is divided into multiple sub-images, within which each contains individual nuclear

region. Because the nuclei in LGG and GBM are more similar than the nuclei in COAD,

LUAD and PAAD, we use two different pre-processing algorithms on them. For the

LGG and GBM images, the color of nuclei is almost homogenous and solid; while for

the other three data sets, there are white areas in the nuclei and the boundary of nuclei

is not clear.

Pre-processing for LGG and GBM

For the LGG and GBM images, we use color deconvolution to get stain vector that

includes the nuclei regions [55]. Then a small structure element is used to reconstruct

the image to remove the small connected objects. The shape of the structure is a disk

shape since it’s very similiar to the shape of the nuclei. The reconstruction process is

morphological opening the image followed by morphological closing the image. Because
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the image after color deconvolution may contain small objects that connect different

nuclei regions, the reconstruction process can remove these small objects and keep

each nuclei region in whole. Using multi-class SVM classifier, a threshold is predicted.

Training image feature from LGG and GBM datasets is the index image with 255 color

vectors. Using the predicted threshold, a binary image is extracted accordingly.

Pre-processing for COAD, LUAD and PAAD

For the COAD, LUAD and PAAD images, we also use color deconvolution to get stain

vector that includes the nuclei region. But the image reconstruction process is different

from the process of LGG and GBM. Because there are white areas in the nuclei region

and it leads to one nuclei area may be separated into two parts after color deconvolution.

So we reconstruct the image by morphological closing and opening with a small structure

element. The shape of the structure element is also a disk shape. Therefore if one

nuclei is separated into two parts, they can be connected again and also the small

objects will be removed. Then we use Fast Radial Symmetry Transform(FRST) on the

reconstructed image to get the binary image [226].

Parallelizing the nuclei segmentation

After having the binary image from pre-processing, we use the nuclei regions to calculate

the average diameter in each image, which is used for seed detection step within nuclei

segmentation. The nuclei regions whose areas are less than 80th percentile of the whole

image and the whose ratio of the maximum length to minimum length less than 1.3

are chosen as the regions with only one nuclei inside. The number of nuclei regions

equals to the number of the newly generated images, denoted as sub-images of the

original one. The nuclei region images can contain only one single nucleus or multiple

overlapping nuclei. The seed detection is implemented directly on those nuclei region

images followed by their corresponding contour generation.
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Figure 7.3: Nuclei Detection Workflow

Merging seeds on elongated nuclei

For the elongated nuclei, our previous seed detection method may create multiple false

seeds inside the single nucleus. To address this issue, merging the seeds on elongated

nuclei is proposed. If the nuclei region has concave points and the standard deviation of

gray image of the nuclei region is less than the standard deviation of gray image of all

the nuclei region, the multiple seeds within the nuclei region are merged by averaging

the coordinates of all the seeds to create a single one, as show in Figure 7.2.
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Table 7.1: Average running time comparison.

LGG GBM COAD LUAD PAAD

Average running time with
CometCloud for each image

(seconds)
2013 5348 5228 3444 6210

Average running time with only
pre-processing for each image

(seconds)
3318 8682 10636 6656 8068

Average running time with
previous algorithm for each

image (seconds)
6754 7885 11728 9920 8340

7.3.2 Workflow on CometCloud

There are three sequential steps for the workflow running on CometCloud, as shown in

Figure 7.3. Before running step 1, all the original images are read from a directory and

pre-processing is applied for the two main types of images as indicated above. Within

Step 1, the processed images are divided into multiple nuclei region images. Within

step 1, because there are different number of nuclei including isolated and overlapping

ones within each image, different number of nuclei region images are created for a single

original image. Within step 2, nuclei detection algorithm is implemented on each nuclei

region image which is treated as a single task. It includes two sequential tasks, seed

detection and contour generation on each individual nuclei region image. After finishing

step 2, step 3 is to collect all the result from contour generation and integrate them on

the original image. Figure 7.4 shows five example images after running nuclei detection

with CometCloud.

7.4 Experiment Results

We use five different datasets from TCGA, which include LGG, GBM, COAD, LUAD

and PAAD. They include 25 LGG images, 15 GBM images, 15 COAD images, 10

LUAD images and 10 PAAD images. Those images are all 1024×1024 and under 20×

objective. The new parallelization algorithm and the previous algorithm are both tested

on the same machine. The whole process is implemented on clusters with Intel Xeon
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Figure 7.4: (a) and (b) are LGG images, (c) and (d) are GBM images, (e) and (f) are
COAD images, (g) and (h) are LUAD images, (i) and (j) are PAAD images. (a), (c),
(e), (g) and (i) are original images and (b), (d), (f), (h) and (j) are the images with
nuclei detected using CometCloud.
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Figure 7.5: Average speedup ratio of with and without using parallelization on Comet-
Cloud using 32 machines

Figure 7.6: Average running time comparison of previous algorithm and using Comet-
Cloud with different number of machines
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E56620 of 8 cores and 24GB memory each. The algorithms are written with Octave

3.4.3 and used Octave image package 1.0.15. For step 1 and step 3 in the workflow,

there are 25, 15, 15, 10 and 10 tasks for LGG, GBM, COAD, LUAD and PAAD images

respectively. Because the number of tasks equals to the number of images in the two

steps. And for step 2 in the workflow, there are 6830, 9823, 6960, 4727 and 8827

tasks for LGG, GBM, COAD, LUAD and PAAD images respectively. Because step 1

generated thousands of images for each dataset, so each image is an individual task and

the number of tasks are different for different types of dataset. The results are shown

in Figure 7.5 and Table 7.1. Table 7.1 denotes the average running time for various

image types. Figure 7.5 represents the average speedup ratio of with and without using

parallelization on CometCloud using 32 machines. Also, the running time decreases

significantly if we increase the number of machines for agents, as shown in Figure 7.6.

7.5 Conclusion

In this work, we develop a new parallelization nuclei segmentation algorithm based on

CometCloud. The algorithm is tested on five types of TCGA datasets. The running

time could be significantly decreased by using this new parallelization algorithm com-

pared with the previous nuclei segmentation algorithm. From the results, by increasing

the number of machines for agent, nuclei detection in the workflow takes much less

time, that makes the nuclei segmentation running in real-time in practice. Meanwhile

this work addresses the challenge of working with specimens which have not been en-

hanced with specialized staining methods and it can be used across a broader number

of application areas.
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Chapter 8

Discussion

In conclusion, the thesis introduces robust computer-aided methods to have a better

diagnosis and prognosis for prostate cancer, especially for Gleason pattern 3 and 4. We

propose a method for quantitatively analyzing histopathology prostate cancer images

by segmenting glandular regions and grade those regions. The proposed approach may

lead to a more reliable method to assist pathologists in performing the stratification

of prostate cancer patients and improves therapy planning. Furthermore, we study

how to quantify image features from histopathology images and use the features for

recurrence analyses on different survival models. Additionally, we introduce an effective

way to combine histopathology images and genomic features to obtain computational

biomarkers, which are more closely correlated with patients’ recurrence risk compared to

standard clinical prognostic factors and engineered image texture features. The results

of our study suggest that these approaches could be utilized to predict recurrence and

progression for patients with prostate cancer. Moreover, to have robust models, we

study viable approaches for addressing the challenges presented by the heterogeneous

characteristics exhibited within digitized specimens, that arise when analyzing samples

that prepared at different laboratories and institutes. We show the introduced method

is robust for performing unsupervised domain adaptation, indicating it may also serve

to decrease the differences in the morphologic and structural patterns for histopathology

images that can be introduced during processing at different institutions. Finally, we

study how to develop more efficient algorithms and propose a new parallelization nuclei

segmentation algorithm based on CometCloud. The algorithm is tested on five types

of TCGA datasets. The running time can be significantly decreased by using this new

parallelization algorithm compared with the previous nuclei segmentation algorithm.
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In the following, we show several potential future directions that can be based on

our current studies and can be serverd on a wider purpose.

Searching Neural Networks Although CNN has gained tremendous success in

recent years, choosing or designing neural networks for analyzing histopathology images

is still a challenging task, especially there are many different kinds of cancer images. Re-

cent studies have shown the advantage of automatically searching CNN [227]. Searching

CNN can be applied on the analysis of histopathology images that new networks can

be found to achieve better performance on different datasets.

Generating New Data Currently, preparing and labeling histopathology images

are still time and money consuming. Also, getting the genomic information from pa-

tients is very expensive that not everyone could afford. The algorithms that could

synthesize genomic data given histopathology images will benefit the community a lot

because it can save money on obtaining genomic data from patients and the combination

of genomic data and histopathology images can provide better diagnosis information.



105

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2017,” CA: a cancer
journal for clinicians, vol. 67, no. 1, pp. 7–30, 2017.
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[127] M. S. Schröder, A. C. Culhane, J. Quackenbush, and B. Haibe-Kains, “survcomp:
an r/bioconductor package for performance assessment and comparison of survival
models,” Bioinformatics, vol. 27, no. 22, pp. 3206–3208, 2011.

[128] Y.-S. Ha, A. Salmasi, M. Karellas, E. A. Singer, J. H. Kim, M. Han, A. W. Partin,
W.-J. Kim, D. H. Lee, and I. Y. Kim, “Increased incidence of pathologically
nonorgan confined prostate cancer in african-american men eligible for active
surveillance,” Urology, vol. 81, no. 4, pp. 831–836, 2013.

[129] H. B. Carter, A. W. Partin, P. C. Walsh, B. J. Trock, R. W. Veltri, W. G. Nelson,
D. S. Coffey, E. A. Singer, and J. I. Epstein, “Gleason score 6 adenocarcinoma:
should it be labeled as cancer?” Journal of Clinical Oncology, vol. 30, no. 35, p.
4294, 2012.

[130] E. A. Singer, A. Kaushal, B. Turkbey, A. Couvillon, P. A. Pinto, and H. L. Parnes,
“Active surveillance for prostate cancer: past, present and future,” Current opin-
ion in oncology, vol. 24, no. 3, pp. 243–250, 2012.



116

[131] A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen, M. J. Van
De Vijver, R. B. West, M. Van De Rijn, and D. Koller, “Systematic analysis of
breast cancer morphology uncovers stromal features associated with survival,”
Science translational medicine, vol. 3, no. 108, pp. 108ra113–108ra113, 2011.

[132] A. C. Raldow, D. Zhang, M.-H. Chen, M. H. Braccioforte, B. J. Moran, and
A. V. Damico, “Risk group and death from prostate cancer: implications for ac-
tive surveillance in men with favorable intermediate-risk prostate cancer,” JAMA
oncology, vol. 1, no. 3, pp. 334–340, 2015.

[133] A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, “A nonlinear mapping
approach to stain normalization in digital histopathology images using image-
specific color deconvolution,” IEEE Transactions on Biomedical Engineering,
vol. 61, no. 6, pp. 1729–1738, 2014.

[134] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[135] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detec-
tion,” in Advances in neural information processing systems, 2013, pp. 2553–2561.

[136] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

[137] A. Gretton, A. J. Smola, J. Huang, M. Schmittfull, K. M. Borgwardt, and
B. Schölkopf, “Covariate shift by kernel mean matching,” 2009.

[138] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsuper-
vised pixel-level domain adaptation with generative adversarial networks,” arXiv
preprint arXiv:1612.05424, 2016.

[139] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learn-
ing from simulated and unsupervised images through adversarial training,” arXiv
preprint arXiv:1612.07828, 2016.

[140] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[141] J. J. Hull, “A database for handwritten text recognition research,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 16, no. 5, pp. 550–554,
1994.

[142] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning,” in NIPS workshop
on deep learning and unsupervised feature learning, vol. 2011, no. 2, 2011, p. 5.

[143] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.



117

[144] Z. Luo, Y. Zou, J. Hoffman, and L. F. Fei-Fei, “Label efficient learning of trans-
ferable representations acrosss domains and tasks,” in Advances in Neural Infor-
mation Processing Systems, 2017, pp. 164–176.

[145] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A
kernel two-sample test,” Journal of Machine Learning Research, vol. 13, no. Mar,
pp. 723–773, 2012.

[146] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confu-
sion: Maximizing for domain invariance,” arXiv preprint arXiv:1412.3474, 2014.

[147] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with
deep adaptation networks,” in International Conference on Machine Learning,
2015, pp. 97–105.

[148] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, “Domain
separation networks,” in Advances in Neural Information Processing Systems,
2016, pp. 343–351.

[149] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, “Deep
reconstruction-classification networks for unsupervised domain adaptation,” in
European Conference on Computer Vision. Springer, 2016, pp. 597–613.

[150] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights for deep domain
adaptation,” arXiv preprint arXiv:1603.06432, 2016.

[151] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain
adaptation,” in Computer Vision–ECCV 2016 Workshops. Springer, 2016, pp.
443–450.

[152] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer
across domains and tasks,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 4068–4076.

[153] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropaga-
tion,” in International Conference on Machine Learning, 2015, pp. 1180–1189.

[154] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Advances
in neural information processing systems, 2016, pp. 469–477.

[155] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised cross-domain image genera-
tion,” arXiv preprint arXiv:1611.02200, 2016.

[156] B. Cheung, J. A. Livezey, A. K. Bansal, and B. A. Olshausen, “Discovering hidden
factors of variation in deep networks,” arXiv preprint arXiv:1412.6583, 2014.

[157] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets,” in Advances in Neural Information Processing Systems, 2016,
pp. 2172–2180.

[158] M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprechmann, and Y. LeCun,
“Disentangling factors of variation in deep representation using adversarial train-
ing,” in Advances in Neural Information Processing Systems, 2016, pp. 5040–5048.



118

[159] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial au-
toencoders,” arXiv preprint arXiv:1511.05644, 2015.

[160] M. Salzmann, C. H. Ek, R. Urtasun, and T. Darrell, “Factorized orthogonal latent
spaces,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 2010, pp. 701–708.

[161] Y. Jia, M. Salzmann, and T. Darrell, “Factorized latent spaces with structured
sparsity,” in Advances in Neural Information Processing Systems, 2010, pp. 982–
990.

[162] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional net-
works,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on. IEEE, 2010, pp. 2528–2535.

[163] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature learning with
joint distribution adaptation,” in Proceedings of the IEEE international confer-
ence on computer vision, 2013, pp. 2200–2207.

[164] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsuper-
vised pixel-level domain adaptation with generative adversarial networks,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1,
no. 2, 2017, p. 7.

[165] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[166] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

[167] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models
to new domains,” in European conference on computer vision. Springer, 2010,
pp. 213–226.

[168] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adapta-
tion.” in AAAI, vol. 6, no. 7, 2016, p. 8.

[169] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[170] M. Titford and B. Bowman, “What may the future hold for histotechnologists?”
Laboratory Medicine, vol. 43, no. suppl 2, pp. e5–e10, 2012.

[171] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between
images,” IEEE Computer graphics and applications, vol. 21, no. 5, pp. 34–41,
2001.

[172] M. N. Gurcan, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot, and B. Yener,
“Histopathological image analysis: A review,” IEEE reviews in biomedical engi-
neering, vol. 2, p. 147, 2009.



119

[173] X. Li and K. N. Plataniotis, “A complete color normalization approach to
histopathology images using color cues computed from saturation-weighted statis-
tics,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 7, pp. 1862–
1873, 2015.

[174] A. N. Basavanhally, S. Ganesan, S. Agner, J. P. Monaco, M. D. Feldman, J. E.
Tomaszewski, G. Bhanot, and A. Madabhushi, “Computerized image-based de-
tection and grading of lymphocytic infiltration in her2+ breast cancer histopathol-
ogy,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 3, pp. 642–653,
2010.

[175] P. W. Hamilton, P. H. Bartels, D. Thompson, N. H. Anderson, R. Montironi, and
J. M. Sloan, “Automated location of dysplastic fields in colorectal histology using
image texture analysis,” The Journal of Pathology: A Journal of the Pathological
Society of Great Britain and Ireland, vol. 182, no. 1, pp. 68–75, 1997.

[176] A. Ruiz, O. Sertel, M. Ujaldon, U. Catalyurek, J. Saltz, and M. Gurcan, “Patho-
logical image analysis using the gpu: Stroma classification for neuroblastoma,”
in Bioinformatics and Biomedicine, 2007. BIBM 2007. IEEE International Con-
ference on. IEEE, 2007, pp. 78–88.

[177] H. Qureshi, O. Sertel, N. Rajpoot, R. Wilson, and M. Gurcan, “Adaptive dis-
criminant wavelet packet transform and local binary patterns for meningioma
subtype classification,” in International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention. Springer, 2008, pp. 196–204.

[178] J. I. Epstein, M. J. Zelefsky, D. D. Sjoberg, J. B. Nelson, L. Egevad, C. Magi-
Galluzzi, A. J. Vickers, A. V. Parwani, V. E. Reuter, S. W. Fine et al., “A con-
temporary prostate cancer grading system: a validated alternative to the gleason
score,” European urology, vol. 69, no. 3, pp. 428–435, 2016.

[179] M. W. Lafarge, J. P. Pluim, K. A. Eppenhof, P. Moeskops, and M. Veta, “Domain-
adversarial neural networks to address the appearance variability of histopathol-
ogy images,” in Deep Learning in Medical Image Analysis and Multimodal Learn-
ing for Clinical Decision Support. Springer, 2017, pp. 83–91.

[180] G. Litjens, C. I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs,
C. Hulsbergen-Van De Kaa, P. Bult, B. Van Ginneken, and J. Van Der Laak,
“Deep learning as a tool for increased accuracy and efficiency of histopathological
diagnosis,” Scientific reports, vol. 6, p. 26286, 2016.
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