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ABSTRACT OF THE DISSERTATION 
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by TALIA ROBBINS 

Dissertation Director: 

Pernille Hemmer 

 

  In this dissertation, I will investigate how people make judgments and decisions in 

the domain of health. My overarching goal is to bridge the gap between behavioral health 

research and cognitive science. While both fields have made important strides in health 

decision making, insufficient communication between fields prevents health researchers 

from benefiting from important findings in cognition, and vice versa. For example, 

previous models in behavioral health are based mainly on patient health data, and have not 

been evaluated in terms of their implications for cognition, or computationally. Of 

particular interest in my research program is the importance of prior expectations, and I 

will focus on three inter-related questions bearing on the importance of prior expectations. 

Chapters 2 and 3 will evaluate people’s prior expectations for illness statistics; chapter 4 

will address how people use prior expectations for prediction of illness durations; and 

sections 5 and 6 will investigate how these prior expectations are integrated with new 

evidence (e.g., a diagnosis from a doctor). Furthermore, chapter 5 will propose a rational 

model to describe how people’s health judgments change as they encounter new 

information.  
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1 

Chapter 1: Introduction 
 
 Judgments and decisions are assumed to originate with a person’s experience with 

the world. People combine their prior expectations with the available evidence in order to 

arrive at a decision.  This means that when someone makes a suboptimal decision, one of 

two things is at play: the person is using a flawed process to arrive at the answer, or the 

person is working with faulty information. A particularly important question for decision-

making research concerns how expectations influence judgments and decisions. While 

much of the well-known work of Tversky and Kahneman suggests that decision processes 

are flawed (e.g., 1974, 1992), there is also evidence that people use their expectations 

optimally (e.g., Griffiths & Tenenbaum, 2006). For example, people’s predictions for life 

spans and movie run times are quite accurate in the aggregate.  

This suggests not only that the judgment process is optimal, but that people’s 

expectations are consistent with real-world statistics. When making a suboptimal decision, 

it is possible that rather than using a biased process, people are using a normative model, 

but with flawed information. For instance, if the decision process is rational (Bayesian), 

decisions are based on a combination of observed noisy data and an accurate probabilistic 

model of the environment (i.e., expectations). However, if those expectations are incorrect, 

it can lead to flawed judgments and decisions. This can account for flawed judgments under 

an optimal framework by assuming differences in prior expectations, or mapping 

expectations from a known domain to an unknown domain. Each time a person experiences 

a new event, they should update their prior probability for that event by integrating the new 

information. This should result in events that are experienced more often having prior 

expectations that more closely reflect environmental statistics. For those that are less 
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commonly experienced, people might use their prior expectations using events for which 

they have more knowledge, when making inferences.  

 Expectations are particularly important within the domain of health, where patient 

expectations directly impact health outcomes (Peters, 2006). For instance, when a person 

is diagnosed with a new illness, they are tasked with integrating this new information about 

their health in order to adapt their expectations and respond appropriately—which in some 

cases may mean daily medication or lifestyle changes. If a person does not have strong 

expectations (based on previous experience) for a new illness they are experiencing, such 

as duration, severity, and symptoms of that illness, they are unlikely to manage it correctly. 

As a person’s health is constantly changing, good decision makers must continually adjust 

their expectations to track these changes. 

 While cognitive research on how people adjust to environmental changes can be 

applied to understanding health behavior, health decisions have been suggested to operate 

differently from other decision processes. Health numeracy, for instance, is significantly 

worse than numeracy in other areas (Levy et al., 2014). In order to understand how people 

update expectations about their health, a prominent theoretical model in behavioral health, 

the Common Sense Model of illness cognition (CSM, Leventhal, 1990), has been used to 

describe patient behavior. The CSM argues that people have a model of illness that they 

can use to understand new illnesses and symptoms (Leventhal, 1992). Prior history of 

illness episodes is often based largely on acute illnesses because they are more commonly 

experienced, while for chronic illnesses expectations are based largely on an abstraction 

about the way illnesses function in general (Leventhal et al., 1992). Furthermore, the CSM 

argues that people apply expectations for illnesses they are familiar with (generally acute 
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illnesses) to illnesses they know less about (generally chronic illnesses). This model has 

been validated empirically mainly on the basis of patient health data, but has not been 

evaluated computationally, or in terms of its implications for cognition. However, it is 

important to examine both cognitive research from laboratory studies and from behavioral 

health research that focuses on patient outcomes and decisions in the real-world.   

 The overarching goal of this work is to bridge the gap between behavioral health 

research and cognitive science. This dissertation seeks to evaluate people’s prior 

expectations for health, and how these expectations influence judgments and decisions. My 

research focuses on three important and inter-related questions bearing on the importance 

of prior expectations; (1) What are peoples’ prior expectations for illness statistics? (2) 

How do people use prior expectations for prediction? And (3) How are prior expectations 

for illness statistics integrated with evidence to influence judgments? What follows is a 

brief overview of what will be covered in each of the chapters of this dissertation.    

 Chapters 2 and 3 evaluate people’s prior expectations for illness statistics. This 

work appears in the 2017 and 2018 Proceedings of the Annual Meeting of the Cognitive 

Science Society and was presented at the 2017 Annual Meeting of the Society for 

Mathematical Psychology, and the 2017 Annual Meeting of the Psychonomic Society. This 

work was also presented at the 2017 Annual Meeting for the Association of Psychological 

Science and received the NIDCR Building Bridges Travel Award. These chapters evaluate 

participant expectations for the mean and shape of illness duration distributions, as well as 

the distribution as a whole. Results illustrate that participants’ estimations for the mean 

duration and distributional form of illnesses they are familiar with (e.g., the common cold) 

closely reflect average illness duration data; while estimations for illnesses they have less 
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experience with (e.g., appendicitis) show a pattern of systematic overestimation. I also 

found that participants estimates for the form of chronic illness distributions were similar 

to those for acute illnesses—that is, they may have transferred their understanding of the 

shape of illness distributions from acute illnesses they are familiar with, to chronic illnesses 

they do not have experience with.  

 Chapter 4 will address how people use prior expectations for prediction. This work 

appears in the 2016 Proceedings of the Annual Meeting of the Cognitive Science Society, 

and was presented at the 2016 Annual Meeting of the Psychonomic Society and the 2016 

Annual Meeting of the Society for Mathematical Psychology. The results from this work 

suggest that participants predictions for illness durations for acute illnesses more closely 

match average illness duration data than do chronic illnesses. Additionally, results from 

predictions in this chapter are consistent with participant estimates from Chapters 2 and 3. 

  Chapter 5 will investigate how new information (e.g., a diagnosis from a doctor) is 

integrated into existing expectations when people are asked to make repeated judgments 

under uncertainty. This work was presented at the 2018 Annual Meeting of the 

Psychonomic Society and the 2018 International Convention of Psychological Science. The 

results in this chapter illustrate that judgments made in the domain of health are different 

than those made in other domains, and that the source of the information influences 

judgment change, such that authority figures are trusted more than online resources or 

experience judgments.  

 Chapter 5 will also propose a rational model to describe how people’s health 

judgments change as they encounter new information. Past work has suggested that people 

discount advice egocentrically—meaning that they underweight advice from others 
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relative to their own judgments (e.g., Yaniv & Kleinberger, 2000). However, those 

experiments have not measured people’s confidence both before and after receiving advice. 

For this reason, they cannot determine whether participant’s weighting of their own advice 

is appropriate given their level of confidence in their own judgment. I implement and 

compare several models, including a simple weighted confidence model, an egocentric 

discounting model, and a model which assumes that people simply take the average of 

source and personal judgments. I choose these models because the averaging model has 

been described as a normative model for how people should integrate advice, and the 

egocentric model as a descriptive model of how people do integrate advice (e.g., Yaniv & 

Kleinberger, 2000). However, it may be the case that what appears to be egocentric 

discounting is more accurately described as greater confidence in personal judgments than 

source information. The weighted confidence model assumes that initial judgments and 

source information are combined using a weighting structure based on a person’s 

confidence in their own judgment, as well as their confidence in the source.  

Chapter 5 will also ask whether the order in which health information is provided 

is important for judgment change, as the order of information has been found to influence 

decision-making with the last piece of information being weighted more strongly (Bergus, 

Chapman, Levy, Ely, & Opplinger, 1998). This experiment expands on those investigations 

by asking how differing levels of confidence in the source might interact with order effects. 

The combination of research in this dissertation provides a broad understanding of the 

cognitive mechanisms that influence prior expectations and judgments in the domain of 

health.  
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Chapter 2: Explicit Estimations for Illness Statistics 
 
This work appears in the 2017 Proceedings of the Annual Meeting of the Cognitive Science 

Society and was presented at the 2017 Annual Meeting of the Society for Mathematical 

Psychology, and the 2017 Annual Meeting of the Psychonomic Society. This work was also 

presented at the 2017 Annual Meeting for the Association of Psychological Science and 

received the NIDCR Building Bridges Travel Award. 

Abstract 

People’s predictions for real-world events have been shown to closely match 

environmental statistics (e.g., Griffiths and Tenenbaum 2006). However, health 

judgments have been shown to differ from judgments in other domains (Levy et al., 

2014). With this in mind, we focus on assessing participant expectations for illness 

durations.  Specifically, we assess expectations for both the mean and form of illness 

duration distributions. We assess understanding for both acute illnesses for which people 

might have experience, as well as chronic conditions for which people are less likely to 

have knowledge. Our data illustrates important differences in how people make 

estimations for the duration of acute and chronic illnesses.  
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Introduction 

Imagine that you have the flu and need to decide whether you will be better in time to travel 

to a conference this weekend. You are now faced with predicting how long you will be 

sick. For this inference, you will need to use your knowledge of real-world statistics, 

including both the mean duration and most likely form of the duration distribution.  

People have been shown to make optimal predictions for the duration of many real-

world events (Griffiths & Tenenbaum, 2006). In these domains, people’s beliefs about the 

underlying distribution of quantities (e.g., cake baking times are captured by a bimodal 

distribution) have been shown to be accurate in the aggregate. In order to extend these 

findings to the domain of health, in the current study, we assessed people’s expectations 

for illness durations by asking them directly what they thought the mean and form of illness 

duration distributions were. This allowed us to evaluate whether people have an internal 

model for real-world statistics that they can consciously access and use to make 

estimations.  

Understanding illness duration is critical for illness identification. For instance, 

imagine you have a cough and high fever, and thinking you have the flu you try to estimate 

how long you will be sick. One thing you will draw on is your understanding of the real-

world distribution of durations for different illnesses. If your symptoms begin to fade after 

three days, this may confirm your suspicion that you have the flu, since this is within the 

normal distribution for the flu. However, if you are still sick after 10 days, you might begin 

to believe you have a different illness such as the common cold, because you know that 10 

days is reasonable within the distribution of duration for the common cold. This estimation 

requires an understanding of the entire distribution of illness duration, rather than just the 
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mean or some conditional duration. With only the mean of the distribution, you would not 

know how much variation in duration is normal, or at which point a particular illness is 

unlikely given the duration of your symptoms.  

Illness further provides an interesting example for prediction because people have 

different levels of experience for different illnesses—e.g., common illnesses such as the 

cold, or less common illnesses such as appendicitis. Experience may also differ between 

acute (e.g., cold) and chronic (e.g., asthma) illnesses. An acute illness is defined as one 

which can be cured with treatment, while a chronic illness is defined as one that can be 

managed but not cured. Differing levels of experience between chronic and acute illnesses 

may influence the accuracy of a person’s expectations, and different expectations might be 

appropriate for different illnesses, given personal experience. 

The observer’s prior experiences play an important role, as optimal predictions are 

assumed to follow Bayesian principles. Bayes rule gives a principled account of how 

people should update their prior beliefs given evidence from the world. Each time a person 

experiences an illness, they should update their prior probability distributions for the 

duration of that illness. This would result in illnesses that are experienced more often 

having very accurate prior distributions. For illnesses that are less commonly experienced, 

people might adjust their prior beliefs to those of illnesses for which they have more 

knowledge of the correct form of the distribution, when making inferences. While people 

might use evidence from other sources when updating their priors, evidence that is 

personally experienced is better integrated than information acquired in other ways 

(Sallnas, Rassmus-Grohn, & Sjostrom, 2000).  

In Experiment 1, we simply asked participants to predict the mean duration of each 
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of six illnesses. In Experiment 2, we sought to assess whether people could make 

estimations of the correct form of illness distributions. To do this, we gave participants four 

distribution options—each fit to the clinical data for that illness—and asked them to select 

the distribution form that best described that illness. Because each of the distribution 

options was fit to the clinical data, consistent selection of the correct distribution would 

clearly illustrate that there is a correspondence between people’s internal model and the 

true statistics of the environment.  

Experiment 1 

Participants  

Ninety-Nine Mechanical-Turk workers from the United States participated in 

exchange for $1.  

Materials  

We selected six illnesses—five acute and four chronic (see Table 1.1)—intended 

to span a range of durations and familiarity. Familiarity was determined based on 

prevalence statistics for the number of people diagnosed with that illness each year (see 

Table 1.1). Table 1.1 also includes the source of the clinical data used for the illness 

duration distributions. We first needed to determine the mean and correct form of the six 

illness distributions. Illness durations have been found to be well modeled by a type of 

distribution known as a survival function, which includes Gamma, Exponential, and 

Weibull. The Erlang distribution is a special case of the Gamma distribution, where 𝛼	must 

be an integer, which is often used to model illness duration and illness stages in 
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transmission models of infectious disease, and to infer parameters from clinical data 

(Krylova & Earn, 2013). For this reason, we assume Erlang is the correct distribution for 

the six illnesses. The clinical data provides a context to understand the mean and form of 

distributions and compare to participant responses (see Table 1.1 for clinical data sources).   

Procedure  

Participants were asked to make an estimation about the total duration of each of 

the six illnesses. The question read: “Given that you meet someone with illness X, what do 

you think will be the total duration of their illness?” Participants responded by typing in a 

number and selecting a unit of time from a dropdown menu presented on the computer 

screen. The experiment was performed using the Qualtrics interface. The order of 

presentation was randomized.  

For the illnesses used in this experiment, duration can mean different things. For 

instance, for acute conditions, illness duration lasts from the time at onset, to the time at 

cure; whereas for chronic conditions, illness duration lasts from the time at onset to the 

time at death. In order to assess whether participants understood these important 

distinctions, they were also asked to categorize each illness using one of five labels: “Lasts 

a short time, will go away completely even without treatment”, “Can vary in length, 

Table 1.1: Sources for Clinical Data (from least to most prevalent) 
Illness Source of Clinical Data Prevalence (per 10,000) 

Acute (in order of prevalence) 
Appendicitis Atema et al. (2015) 9 

Seasonal Flu Kohno et al. (2010)  1250 

Common Cold Gwaltney (1967) 2360 

Chronic (in order of prevalence) 
COPD* Oswald-Mammosser et al. (1995)  4.5 

Type II Diabetes http://www.cdc.gov/diabetes 

/statistics/duration/fig1.htm 
860 

Chronic Heart Disease Proudfit et al. (1983) 1130 
*COPD refers to chronic obstructive pulmonary disease 
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requires immediate treatment, but can be cured”, “Is long term, requires treatment, but can 

eventually be cured”, “Lasts the rest of a person’s lifetime, treatment can only manage 

symptoms, it cannot be cured, but does not necessarily cause death”, “Varies in length, 

treatment can only manage symptoms, cannot be cured, eventually causes death”. 

Participants were also asked several basic demographic questions (e.g., age and experience 

with the six illnesses) which are not analyzed here.  

Results 

Given that participants could respond with any unit of time, we first normalized 

participant responses to the unit of time for the clinical distributions. Responses were then 

filtered for outliers. Data was excluded in the following way: unreasonably large responses 

(defined as those 3 standard deviations greater than the mean response for a given illness) 

and participants who had more than two data points excluded based on the above criteria. 

The responses analyzed were 85 for appendicitis, 90 for the seasonal flu, 90 for the 

common cold, 90 for COPD, 90 for chronic heart disease, and 90 for type II diabetes. 

First, we examined people’s ability to characterize the durations of acute and 

Table 1.2:  True and estimated illness durations 
Illness Mean 

Duration 
Participant Response % using unit of time (correct unit is 

bolded) 
   Hrs Days Wks Months Yrs 
Acute        
Appendicitis 42 hrs 471.6(SD=969.5) hrs 8.4 32.6 39.0 12.6 7.4 
Seasonal Flu 3.3 days 8.9(SD=4.5) days 2.1 37.9 56.8 3.2 0 
Common Cold 4.1 days 6.3(SD=3.2) days 1 65.3 33.6 0 0 
Chronic        
COPD* 7.5 yrs 36.6(SD=22.0) years 0 1 0 5.3 93.7 
Type II Diabetes 10.1 yrs 36.0(SD=22.5) years 0 1 0 5.3 93.7 
Chronic Heart 
Disease 

3.8 yrs 26.4(SD=20.0) years 0 1 2.1 2.1 94.7 

* COPD stands for Chronic Obstructive Pulmonary Disease  
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chronic illnesses. Chronic illnesses are lifelong, which is a critical difference from acute 

illnesses which are curable. To determine whether participants had basic knowledge of the 

illnesses they were making estimations about, we examined their responses to questions 

asking to characterize each illness. For the common acute illnesses—common cold and 

seasonal flu—92% of participants correctly responded that the illnesses were short term 

and curable. For the less common acute illness—appendicitis—81% and of participants 

respectively labeled these illnesses as short term. For the four chronic illnesses 74%-84% 

of participants correctly responded that these illnesses were lifelong. This clearly shows 

that people understand the chronicity of the chronic and common acute illnesses. 

 We then evaluated the accuracy of participant’s mean responses (see Table 1.2). A 

qualitative evaluation of the data illustrates that participant responses were close to the 

mean of the clinical data for more prevalent acute illnesses (i.e., common cold and seasonal 

flu), and that participants overestimated the duration of chronic illnesses. 

In order to assess the similarity between participant responses and the clinical data, 

we used a two one-sided t-test approach (e.g., Limentani et al., 2005). We used this 

approach as it allows us to test for practical equivalence (e.g., Rogers, Howard, & Vessey, 

1993). A one-sample t-test might find a significant difference between a population mean 

of seven days and a participant response mean of eight days. While this difference is 

significant, it places too rigid a standard for our purposes, leading to an inaccurate 

conclusion that participants do not understand the mean of that illness. For this reason, we 

set a criterion considering accuracy to be within one standard deviation of the mean of the 

empirical illness distributions (standard deviations for each illness are displayed in Figure 

1.1). We then conducted a t-test on either end of this threshold to determine if participant 
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responses were significantly greater than the lower threshold, and significantly less than 

the upper threshold.  

We found that for the common cold, responses were within the one standard 

deviation of the true mean—meaning the estimates were practically equivalent to the true 

mean (upper threshold: Common cold: t(89)=-6.9. p<.0; lower threshold: Common cold: 

t(89)=13.4. p<.01). For the other five illnesses, responses were found to be greater than the 

lower end of the threshold, but not less than the higher end of the threshold, suggesting a 

pattern of overestimation, (Appendicitis: t(84)=4.3. p<.01, Seasonal flu: t(89)=13.0, p<.01, 

COPD: t(89)=14.9, p<.01, Type II diabetes: t(89)=20.4, p<.01, Chronic heart disease: 

t(89)=20.0. p<.01). 

Given that participants were not within the one standard deviation threshold for five 

Figure 1.1: Red bars show the percentage of participants that were X number of standard 
deviations from the mean. Positive numbers indicate estimations above the mean, and 
negative numbers indicate estimations below the mean. 
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illnesses, we wanted to further examine participant mean responses. Therefore, we 

calculated the percentage of participants at each standard deviation from the mean (see 

Figure 1.1). For the common cold, the majority of participants (Approx. 80%) were within 

one standard deviation, as illustrated in the TOST. For the seasonal flu more than 70% of 

participants were within four standard deviations of the mean, which may seem like a large 

deviation from the correct response, however it is also important to note that the standard 

deviations varied greatly between illnesses. For the seasonal flu, the standard deviation was 

only 1.73 days, meaning that more than 70% of participants responded within 6.8 days of 

the true mean. Conversely, for the least prevalent acute illness, appendicitis, only 34% of 

participants were within four standard deviations of the true mean, with some participants 

being up to 80 standard deviations away (corresponding to 1416 hours or 59 days). This 

illustrates that participants had lower agreement, and mean estimations that were further 

from the average illness duration from the clinical data.  

For the chronic conditions, fewer participants were within four standard deviations 

of the mean, with 31% for COPD, 100% for type II diabetes, and 61% for chronic heart 

disease. Participant responses were all within four standard deviations of the mean for type 

II diabetes because the standard deviation is 24 years. 

We then examined the unit of time participants used to respond (see Table 1.2). For 

the acute illnesses, multiple units of time can be used to express the same value; i.e., a one 

week long illness can be characterized as seven days or one week. For seasonal flu and 

common cold, more than 80% of participants responded with either the clinical (days) or 

the adjacent and reasonable (weeks) unit of time. For the least prevalent acute illness—

appendicitis—participants used the clinical or adjacent unit of time only 40% of the time. 
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For the three chronic illnesses, 92% to 95% of participants chose the clinical unit of time. 

The results suggest that participants could reliably use the clinical unit of time when 

estimating durations of prevalent acute illnesses and chronic illnesses. 

Experiment 2 

Participants  

Forty Mechanical-Turk workers from the United States participated in exchange 

for $2. The participants had not participated in Experiment 1.  

Materials  

The same six illnesses from Experiment 1 were used. We selected four distributions 

as response options in the distributional form task: Erlang, Gaussian (a.k.a. Normal), 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: Screenshot of experimental interface for sample question (seasonal 
flu). Distribution types, top left to bottom right, are: Uniform, Normal, Erlang, 
and Bimodal. 
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Uniform, and Bimodal. These distributions were chosen as they can reasonably describe 

illness durations. The Erlang, which was always the correct answer, was chosen because 

illness distributions have been found to be well modeled by this distribution and provide a 

good fit for all the clinical distributions. Normal was chosen because the bell-curve is 

ubiquitous, and in some cases is very close to the Erlang distribution. This allows us to 

evaluate how well participants can discriminate very similar distributions.  Bimodal was 

chosen because for chronic illnesses it might be reasonable to assume that there is one 

group of people who die immediately, and another group that lives with the illness for a 

longer time. Lastly, uniform was chosen because simple Bayesian prediction models 

assume a single uninformative (or uniform) prior (e.g., Gott, 1993). Selecting the uniform 

form of the distribution might suggest observers using a heuristic insensitive to prior 

beliefs. 

Distributions were presented to participants as histograms of the average total 

duration of an illness. For each illness, the presented histograms were created by producing 

the best fit to the clinical data for that illness for each of the four distributions. In this way, 

participants’ choice of distribution would be based solely on distribution form. The 

histograms were presented with descriptive captions. The captions for each distribution 

form were consistent for all illnesses. Captions described several critical points on the 

graph using frequencies out of 100 (see Figure 1.2). The descriptions for each distribution 

form were matched to illustrate the same number of points on the histogram. Four naïve 

raters evaluated the relationship between the descriptors and the histograms and in all cases 

found them to be well-matched and easily understood. The experiment was presented using 

the Qualtrics interface. 
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Procedure 

Participants were first shown instructions on how to read graphs in our task. They 

then completed a training task, with two training sessions of four trials each. For each trial, 

participants were shown one histogram (illustrating one of the four distributions types used 

throughout this experiment) and asked to match it to one of four captions. The training 

trials were designed to illustrate duration without referencing illnesses. One set depicted 

the amount of time it takes for a person to turn into a zombie after being bitten, and the 

second set depicted the number of licks it takes to get to the center of a tootsie pop.  

After the training task, participants were asked to choose the appropriate histogram 

from the four distribution options for each of the six illnesses (presented one at a time) by 

selecting it with a radio button. Both question and choice order were randomized.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3: Red bars show the percentage of participants that chose a distribution 
choice.  
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Results 

Data were excluded if participants answered two or more questions incorrectly in 

each of the two four trial training-sets. This removed two participants’ data from analysis.   

 First, we assessed the proportion of trials for which participants chose the clinical 

distribution (Erlang). Participants chose Erlang 42% of the time, which was significantly 

greater than chance (25%), based on a one-sided Binomial test (p<.01). It was also chosen 

significantly more often than any of the other distributions: Normal X2(1,N=342)=11.8, 

p<.01, Uniform X2(1,N=342)=93.9, p<.01, and Bimodal X2(1,N=342)=48.0, p<.01.  

While participants selected Erlang with the greatest frequency overall, we were 

further interested in how frequently they chose the Erlang distribution for each individual 

illness. We performed a one-sided Binomial test and found that for four of six illnesses, 

participants chose the Erlang distribution at a level higher than chance (i.e., significantly 

more than 25% of participants): seasonal flu (53%, p<.01), common cold (50%, p<.01), 

COPD (45%, p<.01),  and type II diabetes (47%, p<.01). Participants did not select any of 

the other distributions at a level higher than chance.  See Figure 1.3 for the proportion of 

participants that chose each distribution option for the six illnesses. 

 Lastly, we performed a chi squared test to determine whether participants selected 

the Erlang distribution significantly more often than the other distribution choices. 

Participants chose Erlang more often than Uniform for five out of six illnesses: seasonal 

flu X2(1,N=38)=18.0, p<.01, common cold X2(1,N=38)=19.0, p<.01), COPD 

X2(1,N=38)=13.3, p<.01, chronic heart disease X2(1,N=38)=7.9, p<.01,  and type II 

diabetes X2(1,N=38)=8.8, p<.01.  
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 Erlang was chosen significantly more than Bimodal for five of six illnesses: 

seasonal flu X2(1,N=38)=9.7, p<.01, common cold X2(1,N=38)=4.5, p=.03, COPD 

X2(1,N=38)=9.2, p<.01, and type II diabetes X2(1,N=38) =23.6, p<.01.  

 Participants chose Erlang significantly more than Normal for two out of six 

illnesses: seasonal flu X2(1,N=38)=8.1, p<.01, and common cold X2(1,N=38)=8.4, p<.01. 

As shown above, Erlang was chosen significantly more often than any other distribution 

for both seasonal flu and common cold.  

General Discussion 

We evaluated people’s estimations for the mean and form of duration distributions within 

the domain of health. Examining people’s representations of illness duration statistics is 

important, because it allows us to understand the correspondence between people’s beliefs 

and the statistics of the environment—in this case—illness statistics. In addition, these 

experiments shed light on people’s internal representations of real-world statistics.   

When examining participants’ estimates for the mean, we found that for more 

prevalent acute illnesses (i.e., common cold and seasonal flu), participant estimations more 

closely reflected clinical data for average illness durations. We also found a pattern of 

overestimation for chronic illnesses and less-prevalent acute illnesses. 

The pattern of overestimation for chronic illnesses might be explained by people 

applying a probabilistic model of life expectancy to their understanding of the distribution 

form for illness durations.  Because they have little experience with chronic illnesses, and 

they understand that chronic illnesses are life-long, their overestimation might be due to a 

strategy of applying parameters from the true distribution of lifespans (adjusted slightly to 

account for decreased life-expectancy with a chronic illness) to their knowledge that 



 20 

 

illnesses follow the form of an Erlang distribution. Their ability to select the appropriate 

distribution form for these illnesses suggests that they can use knowledge of the form of 

other illness distributions even if they do not have enough experience to set the parameters. 

This overestimation might also be adaptive in terms of planning for the future. For chronic 

illnesses, it may be safer to assume a longer duration to plan sufficiently for the future, i.e., 

retirement savings. 

 When evaluating participant understanding of the form of illness duration 

distributions, participants show knowledge of the form of the underlying illness 

distributions, choosing the assumed clinical distribution (Erlang) more frequently than any 

other distribution. When broken down by illness, they chose the clinical distribution more 

frequently for the most prevalent acute illnesses: seasonal flu and common cold.  

 While participants often inferred the form to be the normal distribution, this may 

be explained by the similarity of many of the normal fits to the Erlang fits. This occurred 

because the normal distributions were truncated by a lower duration bound of zero. We 

deliberately included the Normal distribution because of the potential confusability with 

the clinical distribution. As such, the fact that participants still chose the clinical 

distribution as the correct form overall, suggests they have strong beliefs about the form of 

illness duration distributions and that these correspond to the environmental statistics.  

A logical next step for this work would be to ask participants to independently 

generate distributions, rather than asking them to select from a limited number of options. 

Goldstein & Rothschild (2014) have shown that participants can generate these 

distributions when presented with data, which suggests that this method could be used to 

evaluate peoples’ internal representations of real-world statistics. 
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 Our results shed light on people’s representations for both the form and mean of 

illness duration distributions. Significantly, the most prevalent acute illnesses—the 

common cold and seasonal flu—are also the ones for which participants consistently 

demonstrate knowledge of the distribution mean form that closely resembles average 

clinical data. Taken together, the data suggests that people may have an internal 

representation of illness statistics that they can consciously access.  
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Chapter 3: Independent Generation of Illness Statistics 

This work appears in the 2018 Proceedings of the Annual Meeting of the Cognitive Science 

Society.  

Abstract 

Our central question is: what are laypeople’s statistical intuitions about probability 

distributions within the domain of health? Specifically, can participants produce entire 

probability distributions for the duration of illnesses? While a large body of decision 

making research has suggested that people use a flawed process to arrive at decisions, we 

posit that participants may be using an optimal process, but with flawed information. To 

this end, we assess expectations in terms of both the mean and form of distributions for 

both acute illnesses for which people might have experience, and chronic conditions for 

which people are less likely to have experience. We find that participants can estimate 

the mean and form of distributions for acute illnesses.  
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Introduction 

What are laypeople’s statistical intuitions about probability distributions within the 

domain of health? Decision processes are assumed to originate with a person’s experience 

with the world, meaning that when someone makes a suboptimal decision, one of two 

things is at play: the person is using a flawed process to arrive at the answer, or the person 

is working with faulty information. In this paper, we focus on the latter: that is, what are 

people’s prior expectations? 

Biased vs. Optimal use of Expectations 

Decision making research often focuses on people’s apparent inability to make 

rational choices. People have discounted future outcomes (Koopsman, 1960) and anchored 

their judgments to irrelevant starting points (Tversky & Kahneman, 1974). While it has 

been assumed that this is due to a flawed decision process, it is also conceivable that people 

are working with flawed information.  

 While much of the Tversky and Kahneman work suggests that decision processes 

are flawed (e.g., 1974, 1992), there is also evidence that people use their expectations 

optimally (Griffiths & Tenenbaum, 2006). For example, people’s predictions for life spans 

and movie run times are quite accurate in the aggregate. This suggests not only that 

judgments are optimal, but that people’s expectations are consistent with real-world 

statistics. However, it is not clear what expectations people hold for the full probability 

distributions for events.  

Normative Model 

An alternative explanation for biased decision making is that people are using a 

normative model, but with flawed information. Assuming that the decision process is 
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rational (Bayesian), decisions are based on a combination of observed noisy data and an 

accurate probabilistic model of the environment (i.e., expectations). However, if those 

expectations are incorrect, it can lead to flawed decisions. This framework can account for 

flawed decisions under an optimal framework by assuming differences in prior 

expectations, or mapping expectations from a known domain to an unknown domain. Each 

time a person experiences a new event, they should update their prior probability for that 

event by integrating the new information. This should result in events that are experienced 

more often having very fine-tuned prior expectations. For those that are less commonly 

experienced, people might adjust their prior expectations using events for which they have 

more knowledge, when making inferences.  

Probability Distributions Underlying Health Decisions 

In this paper, we specifically investigate people’s ability to produce the entire 

probability distribution for illness durations. There are many situations where 

understanding only the descriptive statistics (e.g., the mean) of a probability distribution is 

inadequate, and knowledge of the full probability distribution is required. Imagine you 

have a cough and high fever, and think you have the flu. The mean duration of the flu is 3 

days, and the range is between 1 and 7 days. Additionally, there is a diminishing likelihood 

of the flu after 3 days. If you are applying the wrong probability distribution, you might 

misestimate the rate of improvement you should be expecting, i.e., the decrease after the 

mean. Conversely, if you have an understanding of this distribution that closely reflects the 

environmental statistics, and find yourself still sick after 7-10 days, you might begin to 

believe you have a different illness. Not only are you outside the range, but also, you have 

reached a point in the distribution where the likelihood of having the flu is very small. This 
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estimation can be critical, as illness durations outside the true distribution of durations 

might signal an urgent need to seek care. 

Furthermore, this investigation is important in the domain of health for three 

reasons: (1) health decisions have been assumed to be irrational, for example, people fail 

to adhere to medication regimens with up to 50% non-adherence (Baroletti & Dell’Orfano, 

2010), neglect preventative care (Peters, McCaul, Stefanek, & Nelson, 2006), and fail to 

seek care when necessary (Finnegan et al., 2000). However, it is unclear whether this is 

due to a flawed process or a flawed understanding of illness statistics. (2) Little work has 

been done to assess people’s expectations for illness durations. (3) Illnesses provide a 

simple way to assess the normative model, as different illnesses have different degrees of 

experience (e.g., between acute and chronic illnesses). For instance, while you have 

probably personally experienced the cold many times, you may not have experienced heart 

disease, and therefore you would need to use a different approach when making inferences 

about heart disease. People may have different representations of the underlying 

probability distributions in cases where they do or do not have personal experience. We 

use this to motivate our experimental task, in which we ask participants to construct illness 

distributions for both acute and chronic illnesses, to evaluate how their prior expectations 

might differ between the two. While participants are being asked a different question about 

chronic illnesses (as they are evaluating time until death) previous work in this area has 

illustrated that people do, in fact, understand that these chronic illnesses terminate in death 

(See Chapter 2).  

In addition to an influence of experience, there might also be individual differences in 

the representation of probability distributions. To measure both individual differences, and 
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differences between acute and chronic illnesses, we adapt this Distribution Builder of 

Goldstein, Johnson, & Sharpe (2008), to measure people’s prior expectations for illness 

duration probability distributions. This paradigm has previously been used to measure 

people’s ability to reproduce data they have recently experienced (e.g., numbers on balls 

in a bag), finding that people can accurately represent the mean and form of probability 

distributions.  

In this experiment, we sought to answer the following questions: (1) how do people 

 
Figure 2.1: Sample distribution builder as seen by the participants. Participants could 
add or remove ‘virtual people’ from each bin (which represented an amount of time 
with an illness) using the plus and minus signs below that bin. Here, the circles are 
white because they have not been filled with ‘virtual people’, if the plus button is 
selected the empty bin is filled with a red circle. 
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represent the form of illness distributions? (2) how do people represent the mean of illness 

distributions? (3) are there differences in estimations between acute and chronic illnesses? 

(4) are there individual differences in the strategies people use to generate these 

distributions?  

Experiment 

Participants  
 
Twenty Mechanical-Turk workers participated in exchange for $1 (based on the number 

of participants used by Goldstein et al. (2014) in the same task). The task lasted 8.75 

minutes on average. 

Materials  

We use a variation of the Distribution Builder of Goldstein et al. (2008). See Figure 

2.1. Participants were asked to indicate how many people out of fifty would have an illness 

for a given period of time. They were given fifty ‘virtual people’ to build their distribution. 

The number of bins in each column corresponded to the number of ‘virtual people’ 

(represented as red circles) the participants needed to place (i.e., the question was to 

indicate how many people out of 50 would have an illness for a particular period of time). 

These 50 bins allowed participants to assign all ‘virtual people’ to one column if they chose 

to.  

Below each column were plus and minus buttons that could be used to add or 

remove ‘virtual people’ from each bin. Below the plus and minus signs was the unit of 

time, in either hours, days, or years. The columns of the distribution builder correspond to 

the periods of time that participants could use to respond. For each illness, we used the 

most common reporting unit of time and the range of available durations from the clinical 
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data. We chose the amount of time and number of columns to be equivalent within the 

chronic and acute illness categories. Each column corresponded to 12 hrs. for appendicitis 

(12 col.), 1 day for seasonal flu and common cold (14 col.), 1 year for COPD (18 col.), and 

2 years for chronic heart disease and type-II diabetes (18 col.).  

Procedure 

Participants were first given instructions on how to read and understand the distribution 

builder (e.g., what the number of circles above the durations mean), as well as how to read 

a sample graph with a distribution of movie grosses. They were then randomly shown one 

of two check questions, to evaluate whether they understood the probability distributions. 

For example, they were shown a distribution of cake baking times and asked: “The graph 

below shows how many of 50 cakes will bake for each amount of time (in minutes). 

According to this graph, how many cakes out of 50 will bake for 40 minutes?” If they 

answered the first question incorrectly, they were corrected and given a second check 

question. If they first received the cake question, they received a question about movie run 

times. After these questions, participants saw task-specific instructions, explaining how 

they would use the distribution builder to create illness duration distributions (e.g., how to 

add and subtract ‘virtual people’ by using the plus and minus buttons). They were then 

given two questions to evaluate whether they read the instructions (i.e., “do you need to 

use all 50 people when answering a question?”, and “do the units of time change between 

questions?”). 

Lastly, participants were directed to the task. For each of six illnesses, presented in 

random order, participants were asked “how many people out of 50 have illness x for each 
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period of time?” Participants could not continue to the next trial until all 50 ‘virtual people’ 

had been assigned to bins.  

Results 

For each of the six illnesses we assumed a functional form of Erlang. Illness durations have 

been found to be well modeled by a type of distribution known as a survival function, 

which includes Gamma, Exponential, and Weibull. The Erlang distribution is a special case 

of the Gamma distribution, where 𝛼	must be an integer, which is often used to model illness 

duration and illness stages in transmission models of infectious disease, and to infer 

parameters from clinical data  (Krylova & Earn, 2013). See Figure 2.2 for the clinical 

duration distributions for the six illnesses in this experiment, with corresponding Erlang 

distribution fits. 

We first assess participants expectations as compared to the clinical data as a whole. 

We calculated the fractiles for the distributions of all 6 illnesses. A fractile is defined as 

the value of a distribution for which some fraction of the sample lies below (e.g., the 90th 

fractile is the value 90% of the sample lies below). We performed a quantitative analysis 

of the accuracy for each of the six illnesses, for the seven key fractiles: 1st, 11th, 26th, 50th, 

75th, 90th, and 100th in the same way as Goldstein et al. (2014). Figure 2.2 shows the 

subjective estimates as a function of normative values of the fractile, where correct answers 

fall on the solid black line. The figure shows that participants are more accurate for the 

acute illnesses, i.e., their responses lie closer to the black line than for the chronic illnesses, 

which show a systematic pattern of overestimation. The figure further shows that 

participants, on average, did not use all the available units of time for any of the illnesses, 

as evidenced by the fact that the 100th percentile is not the maximum available unit of time. 
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distribution, where 𝛼	must be an integer, which is often used to model illness duration and 

 

 
 
Figure 2.3: The first and third rows show histograms of clinical data for six illnesses 
with best fitting Erlang distributions (excluding diabetes, which could not be fit by the 
Erlang distribution). Grey bars show the frequency of each illness duration, black lines 
show the Erlang fit to clinical data. M gives the distribution mean. The second and 
fourth rows (red bars) show histograms of participant data displayed in the same 
manner as the clinical data. 
 
 
 

 
 
Figure 2.2: Accuracy for the 1st, 11th, 26th, 50th, 75th, 90th, and 100th fractiles. Light grey 
squares are individual responses, sized proportionately to number of responses. Black 
squares and error bars represent the mean of individual responses and standard errors 
for a given normative value. Dashed lines are linear trends of individual responses with 
standard error in dark grey. Axes are scaled for the y axis to include all responses in 
light grey squares. Normative 100th fractile can be read off the x axis.  
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i  We then evaluated participants’ ability to represent the form of the illness 

distributions. To compare participant responses to the true clinical data, we simply 

aggregated participant responses to reveal the aggregate probability distributions for each 

of the six illnesses (see Figure 2.3). We first performed a qualitative evaluation of whether 

participant responses reflected the distributional form, specifically the Erlang. For five of 

the six illnesses (excluding type-II diabetes) participant responses appear to be well fit by 

an Erlang distribution (see Figure 2.3). 

 To evaluate whether the Erlang distribution provided a good fit to participant data, 

a chi square goodness of fit test was calculated comparing the observed data to the Erlang 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: Samples of strategies used by participants in our task. Each pair of 
panels shows two samples, one from an acute (seasonal flu) and one from a chronic 
illness (type-II diabetes). See figure 2.2 for clinical data (ground truth). From top 
left to bottom right: 1. correctly estimate the distribution for all illnesses (2 pps.) 
2. correctly estimate the distribution for acute but not chronic (6 pps.) 3. 
consistently use the normal distribution (3 pps.) 4. consistently use the uniform 
distribution (3 pps.) 5. consistently overestimate (5 pps.) 6. show no consistent 
pattern (1 pps.). 
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distributional fits. For the five illnesses for which we could calculate an Erlang fit 

(excluding type-II diabetes) there was no significant deviation from the Erlang distribution 

fits, meaning that the Erlang provided a good fit to the data. To evaluate whether another 

distribution might also provide a good fit, we checked whether people were using the 

normal distribution, as it is a common distribution in the environment, and one for which 

there is a standardized test. We use the Kolmogorov-Smirnov test of normality, and all 

distributions were found to significantly deviate from normality: appendicitis: D(359)=.86, 

p<.001, seasonal flu: D(359)=.85, p<.001, common cold: D(359)= .72, p<.001, COPD: 

D(359)=.76, p<.001, chronic heart disease: D(359)=.89, p<.001, type-II diabetes: 

D(359)=.93, p<.001.  

Next, we sought to evaluate participant expectations for the mean of illness duration 

distributions. A qualitative comparison illustrates that the means calculated from 

participant data closely aligned with the clinical means for all the acute illnesses, while 

overestimating for the chronic illnesses. See Figure 2.2 for means.  

To perform a quantitative evaluation of whether mean responses were accurate 

relative to the clinical mean, we used a two-one-sided t-test approach (TOST; e.g., 

Limentani et al., 2005). This approach allows us to test for practical equivalence (e.g., 

Lakens et al., 1993). A one-sample t-test might find a significant difference between a 

population mean of seven days and a participant response mean of eight days. This places 

too rigid a standard for our purposes, leading to an inaccurate conclusion that participants 

responses do not reflect the clinical illness distribution. Another advantage of the TOST 

approach is its utility for large data sets like ours (20 participants x 50 estimates) so that 
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the null hypothesis can be supported in situations where a one sample t-test might indicate 

a significant difference (Lakens, 2017). 

For this reason, we set a criterion for accuracy to be two bins from the true illness 

duration distributions (see procedure and Figure 2.2 for bin sizes). We then conducted a t-

test on either end of this threshold to determine if participant responses were significantly 

greater than the lower threshold, and less than the upper threshold.  

Given that we showed our data is not normally distributed, to perform a t-test 

(which assumes normality), we log transform our data. We found that for appendicitis, 

seasonal flu, the common cold, and type-II diabetes, responses were within threshold of 

the true mean, i.e., practically equivalent to the true mean (upper threshold: appendicitis: 

t(999)=25.5, p<.001; seasonal flu: t(999)=46.5, p<.001; Common cold: t(999)=19.9, 

p<.001; type II diabetes: t(999)=7.3, p<.01; lower threshold: Appendicitis: t(999)= -23.1, 

p<.001; seasonal flu: t(999)= -10.1, p<.01; common cold: t(999)= -24.5, p<.001; Type II 

diabetes: t(999)= -10.2, p<.01). For the other two illnesses, responses were found to be 

greater than the lower end of the threshold, but not less than the higher end of the threshold, 

suggesting a pattern of overestimation, (COPD: t(999)=41.5. p<.001, chronic heart disease: 

t(999)=63.5, p<.001).   

To examine how participants approached this task on an individual level, we 

examined each participant’s distributions, and divided them into 6 strategies: participants 

that 1. correctly estimate the distribution for all illnesses (2 participants (pps.)) 2. correctly 

estimate the distribution for acute but not chronic illnesses (6 pps.) 3. consistently use the 

normal distribution (3 pps.) 4. consistently use the uniform distribution (3 pps.) 5. 

consistently overestimate (5 pps.) 6. show no consistent pattern (1 pp.). Figure 2.4 provides 
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examples of these strategies. It is important to note that for those who used a strategy of 

overestimation 2 out of 5 still used an approximation of the Erlang distribution.  

Discussion 
 

The primary question we sought to answer was: what are people’s statistical 

intuitions for probability distributions in the domain of health? We found that, on average, 

people have mental representations of probability distributions for illness duration that 

closely reflect clinical data, and can produce the full probability distribution.  

Recall that this investigation had four central questions, the first of which was: can 

people accurately reproduce the form of illness distributions? We found that for five out of 

the six illnesses participant data in the aggregate reflected the correct form of the 

distribution (see Figure 6).  

Our second question was: can people accurately reproduce the mean of illness 

distributions? We found that for acute illnesses, participants produced a mean that closely 

reflected the clinical distributions, while overestimating for 2 of the 3 chronic illnesses. 

Importantly, we limited the range of responses for each illness, meaning participants could 

not overestimate as significantly as they might have, had a wider range of values been 

available. However, as illustrated by Figure 2.2, they appear to understand that these 

illnesses have a limited range, as their mean subjective estimate at the 100th fractile was 

less than the maximum available value for all illnesses.  

Our third question was, are there differences between acute and chronic illnesses? 

It is clear that differences exist, such that participants could produce the approximate mean 

and form of the clinical distribution for all three acute illnesses, but only produced the mean 

of one and form of two chronic illnesses. High accuracy for the distributional form of 
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chronic illnesses illustrates that participants used their understanding of how illness 

durations are generally distributed, and apply this to their understanding of illnesses they 

had less experience with.  

Our fourth question was, are there individual differences in the strategies people 

use to generate these distributions? While participants used the appropriate Erlang 

distribution in the aggregate, we identified six strategies that participants used on an 

individual level. Importantly, 8 out of 20 participants used the Erlang distribution as their 

main strategy, which was the most popular. Some of the participants who used a strategy 

of overestimation also produced Erlang distributions, meaning a total of 10 participants 

could produce the Erlang distributional form.  

Taken together, these results help to answer a central question of this investigation: 

when a person makes poor decisions, is the process flawed, or are the prior expectations 

flawed? Our results indicate that people’s prior expectations are, on average, accurate for 

acute illnesses, but may be flawed for chronic illnesses. This result helps to inform research 

showing that medication adherence for chronic illnesses is worse than for acute illnesses 

(Baroletti & Dell’Orfano, 2010). If people are using the right process to make decisions 

about their health, poor short-term decisions with long term consequences for chronic 

illnesses may be caused by the expectations participants hold about the duration of those 

illnesses. 

Future work should focus on how those expectations for the durations of chronic 

illnesses might be reduced. For instance, doctor’s expectations for the knowledge of their 

patients are often misaligned (Street & Haidet, 2011). Doctors could use this method to 

understand and improve their patient’s expectations. This direction is further supported by 
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work in which eliciting full probability distributions allowed financial planners to gain 

improved insight into the monetary expectations of people when planning for retirement 

(Goldstein et al., 2008).  

The work presented here illuminates how people internally represent real-world 

statistics, illustrating that people can produce entire probability distributions. Eliciting 

these distributions can help us gain important insight into the information people are using 

when making decisions.  
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Chapter 4: Implicit Predictions for Illness Statistics 
 
This work appears in the 2016 Proceedings of the Annual Meeting of the Cognitive Science 

Society and was presented at the 2016 Annual Meeting of the Society for Mathematical 

Psychology, and the 2016 Annual Meeting of the Psychonomic Society. 

Abstract 

People have been shown to make predictions for many real world events that closely reflect 

the environmental statistics. The ability to make accurate predictions might be particularly 

important in the domain of health, where illness knowledge directly influences patient 

outcomes. Therefore, we sought to investigate people’s ability to make predictions for 

illness durations. We evaluated predictions for both acute and chronic illnesses, as 

judgments for chronic illnesses have been shown to be influenced by people’s knowledge 

of acute illnesses. In two experiments, we asked participants to estimate the duration of six 

illnesses—three acute and three chronic—and we compared their judgments to the 

Bayesian optimal prediction determined from clinical distributions. For acute illnesses, 

people were able to estimate both the median duration and the shape of the distribution of 

illness durations. For chronic illnesses, people estimated the shape of the distribution, but 

overestimated the median duration. We discuss the possible strategies people may be 

employing that lead to systematic overestimation.
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Introduction 

Imagine that you have had a cold for a week, and need to decide if you will feel 

better in time for a trip beginning in two days. You are now faced with a question: How 

much longer will I be sick? Likewise, later in life, you could find yourself diagnosed with 

a chronic illness such as diabetes, and would then be faced with a new question: Given this 

diagnosis, what is my life expectancy? In both cases, you must make the best calculation 

possible to prepare for the future, and you will likely use your past experience with illnesses 

to make this estimation. The internal calculation must be based not only on your 

understanding of the average illness duration, but also on the shape of the duration 

distribution. In this way, as you progress further into an illness, you can adapt your duration 

estimate. 

 How people make judgments and predictions is dependent on their understanding 

of the statistical regularities of the world. People are well-calibrated to these regularities, 

and their predictions are, on average, quite accurate (e.g., Brady & Oliva, 2008; Griffiths 

& Tenenbaum, 2006; Hemmer & Persaud, 2014; Huttenlocher, Hedges, & Duncan, 1991; 

Huttenlocher, Hedges, & Vevea, 2000). For example, when people were asked to make 

predictions about events including movie grosses and life spans, they could accurately 

capture both the shape and median of the distributions for these events (Griffiths & 

Tenenbaum, 2006). For less ubiquitous areas, such as the reign of pharaohs, people were 

able to capture the shape of the distribution (i.e., approximately Erlang distributed) but 

overestimated the duration. This is likely because they were able to apply their 

understanding of lifespan, but did not account for the age of mortality in the era of 

pharaohs. As such, it appears that people are calibrated for many events, and can apply 
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their expectations to those events for which they have less knowledge. 

 Our ability to use our understanding of the regularities of the environment to make 

accurate judgments and predictions is particularly important within the domain of health. 

Everyone faces a problem of estimating illness statistics at some point, and these internal 

calculations can directly impact patient health (Peters, McCaul, Stefanek, & Nelson, 2006). 

For instance, people’s estimates of cancer risk directly influence their likelihood to receive 

cancer screenings (Peters et al., 2006); people who inaccurately estimate their risk are 

therefore unlikely to be screened regularly, increasing the chance of having a cancer go 

undetected. 

 While little is known about people’s understanding of illness statistics, prominent 

theoretical models of illness cognition make explicit assumptions about peoples’ 

understanding of illness statistics. For example, CSM (Leventhal et al., 1992) makes 

specific claims about how patients make predictions and decisions concerning their health. 

The CSM asserts that people construct representations of an illness based on symptoms, 

and that these representations guide their decisions and behavior. The CSM also argues 

that patients tend to apply their over-learned model for managing acute illnesses (whereby 

symptoms are temporary and the illness is cured with some treatment) when attempting to 

manage chronic illnesses. This feedback loop, in which treatment reduces symptoms (often 

leading to a cure), does not exist for chronic illnesses, and is suggested as a factor in low 

adherence for chronic illnesses within the CSM framework. However, the CSM argues that 

people can still use strategies such as applying their understanding for the acute illness 

statistics when making predictions for chronic illnesses, and health decision making more 

generally.   
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In this experiment, I sought to evaluate people’s understanding of illness statistics, 

namely the median and shape of illness duration distributions. Motivated by the common 

sense hypothesis that people have a well-learned model for acute illnesses, and less defined 

models for chronic illnesses, we asked participants to make estimations for both acute and 

chronic illnesses. As such, in cases where participants have very little knowledge of an 

illness, the best strategy may be to use their understanding of the distribution of other 

illnesses for which they have more experience. We used the median of the distribution as 

a good estimate for illness duration, as it is the point at which the illness duration is equally 

likely to be longer or shorter.  

In Condition 1, we tested participants’ ability to capture the median and shape of 

both acute and chronic illness distributions by asking them to predict total illness duration 

based on current duration. In Condition 2, we repeated this task with older populations, to 

evaluate whether age played a role in these estimations, either due to increased experience, 

or an effect of using themselves as a reference point in estimations (e.g., assuming a later 

age of onset).  

Modeling Approach 

 We followed the modeling approach of Griffiths and Tenenbaum (2006) to compare 

subjective performance to the optimal prediction from the clinical distributions using Bayes 

rule, under the assumption that people’s prediction judgments follow optimal statistical 

principles. Bayes rule gives a principled account of how people should make predictions 

about the total duration of a particular illness given the duration of the illness thus far. In 

Equation 1, below, if dtotal indicates the amount of time the average person experiences an 

illness, and d indicates the duration of the illness thus far, we can estimate dtotal given d as 
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follows:  

    p(dtotald) ∝ p(d|dtotal)p(dtotal)    (1)  

The posterior probability p(dtotal|d) is based on a combination of p(dtotal), the prior 

probability of the total illness duration, and p(d|dtotal), the likelihood of the current duration 

given the average total duration.  

To model prediction for illness duration we obtained the clinical data for the 

duration of 6 illnesses. Optimal predictions from an Erlang distribution follow an 

approximately linear function (see Figure 3.1 bottom panels) with a slope of 1 and a non-

zero intercept. 

 
 
Figure 3.1: Top row shows probability density functions, bottom row shows simulated 
optimal prediction for Erlang distributions. Column 1 shows the Erlang distribution with 
𝛼=2, which is a special case of the Gamma distribution. Column 2 shows the Erlang 
distribution with	𝛼=1, this reduces to an exponential distribution 
 

As a concrete example, the common cold is approximately Erlang distributed with 

median of M=4.5 days. Using Equation 1, the participant’s task is to calculate p(dtotal|d) for 

every possible cold duration for someone met on day d of their cold. If someone has had a 

cold for 3 days, you would expect their total duration to be around 4.5 days. Likewise, if 
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someone has had a cold for 6 days (which is longer than the median), you might estimate 

approximately 9.5 days. In this way, prediction would include both an understanding of the 

median duration and the Erlang distribution of duration. 

Condition 1 
Participants 

 One-hundred and eighty-eight Rutgers students participated in exchange for course 

credit. 

Materials  

For each illness we sampled five data points from the distribution over duration to 

be used as probes in the experimental task (see Table 3.1 for illnesses, median durations 

and duration probes, listed in order of median duration). Following the procedure of 

Griffiths and Tenenbaum (2006), samples were obtained by fitting Erlang distributions to 

each of the six distributions. See Figures 3.2 and 3.3, top row, for the Erlang fits to the 

empirical illness distributions, and Table 3.1 for parameter values. 

Procedure 

Each participant completed one duration prediction trial for each of the six illnesses, 

given the duration probe. On each trial participants were asked: “Given that you meet 

someone who has had illness X for time period Y, what do you think will be the total 

duration of their illness?” They responded by entering a number, and choosing a unit of 

time from a dropdown menu (options included hours, days, weeks, months, and years). The 

duration probe was randomly selected from the fixed set of 5 possible probes and illness 

presentation order was randomized  

Participants were instructed that they were being asked to predict total duration, not 

remaining duration (see Appendix A for the experimental instructions) and given a sample 
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question to evaluate whether they understood the instructions (see Appendix B for 

experimenter instructions for administering sample questions). If participants answered the 

test question incorrectly, the task was explained again, followed by a second sample 

question. If they answered the second question incorrectly, they would be excused from 

participating in the experiment. No participants failed the second sample question. 

One hundred and thirteen participants received the experimental procedure as described 

above. Seventy-five participants received three additional questions asking about their 

personal experience, however this data is not presented here. 

Results 

The following data was excluded from analysis: data points smaller than the 

presented duration (dtotal<d), unreasonably large responses (defined as those 3 standard 

deviations greater than the median response for a given illness duration probe), participants 

who responded using negative numbers, and participants who had more than two data 

points excluded based on the above criteria. The responses analyzed were 162 for 

appendicitis, 171 for the seasonal flu, 170 for the common cold, 170 for COPD, 173 for 

Table 3.1: Illnesses and Durations  
    Presented Durations Parameters 

Illness 
 Median 

Duration 
Time 
Unit T1 T2 T3 T4 T5 ! b 

Acute  
Appendicitis  42 Hours 15 20 28 41 67 5 .9 
Seasonal Flu  3.3 Days 1 2 3 5 7 5 .7 
Common Cold  4.7 Days 2 4 5 8 20 1 3 
Chronic           
COPD  7.5 Years 1 2 4 6 11 3 2.8 
Chronic Heart Disease  3.8 Years 1 3 5 10 16 2 4 
Type II Diabetes  10.1 Years 1 5 9 14 32 3 .4 
*COPD refers to chronic obstructive pulmonary disease 
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chronic heart disease, and 170 for type II diabetes.   

To evaluate whether people’s predictions for illness durations captured the median and 

shape of the real-world distribution, we first calculated optimal predictions from the Erlang 

prior: d*= d + βlog2, where d* is the predicted value of dtotal and d is the duration probe (see 

Griffiths and Tenenbaum, 2006 appendix for the derivation of the prediction equation). 

Figures 3.2 and 3.3, second row, show participant predictions for total durations given the 

duration probe with optimal predictions calculated from the Erlang distributions, as well 

as best-fitting Erlang predictions to participant data. 

  

Figure 3.2: The top row shows real world distributions for the durations of the three acute 
illnesses and corresponding Erlang distribution fits. The second row shows participant 
predictions for illness duration in Experiment 1. Red circles show the median predicted 
duration as a function of presented duration, with error bars indicating the 68% confidence 
interval (estimated by a 1000 sample bootstrap). The red dashed line is the fits from the 
Erlang prior to participant responses and the gray line shows the Bayesian optimal 
prediction, and the black dotted line illustrates an uninformative prior.  
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Figure 3.3:  The top row shows real world distributions for the durations of the three 
chronic illnesses and corresponding Erlang distribution fits. The second row shows 
participant predictions for illness duration in Experiment 1. Red circles show the median 
predicted duration as a function of presented duration, with error bars indicating the 68% 
confidence interval 
 

A qualitative comparison for the three acute illnesses suggested that the best fitting 

predictions to the participant data was relatively close to the Bayesian optimal prediction 

for the clinical distributions. This can be seen by the closeness of the red line to the grey 

line, as well as the closeness of the respective medians (see Figure 3.2 row 2). In this way, 

participants’ predictions for acute conditions were consistent both with the median and 

shape (following a linear trend with a slope of 1) of the assumed Erlang distribution of the 

empirical data. For chronic conditions (see Figure 3.3 row 2) participants overestimated 

the median, while they still captured the form of the distributions. It is also important to 

note that for all illnesses where participants did not accurately estimate the median, the 

pattern was to systematically overestimate the duration, a result elaborated on in the 

conclusions.  

In order to quantitatively evaluate the difference between participant predictions 
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and the Bayesian optimal prediction, we performed a bootstrap analysis. For each illness, 

we drew a random sample with replacement from participant responses for each duration 

probe. We then used these samples to fit the optimal Erlang prediction (as we did for the 

red dashed line in Figures 9 and 10), recording the median. This procedure was repeated 

1000 times, resulting in 1000 medians for each illness. Finally, we computed the bootstrap 

95 percentile confidence interval. If the accurate median fell within that confidence 

interval, the bootstrapped samples were all practically equivalent to the true median. For 

confidence intervals see Table 3.2. 

The bootstrap analysis found that the clinical median fell within the bootstrap 

confidence interval for 2 out of 3 acute illnesses (i.e., appendicitis and the common cold), 

and 1 of the 3 chronic illnesses. For the chronic illnesses, it is important to note that the 

confidence intervals were very large, suggesting low agreement within subjects. This 

pattern was also the case for appendicitis, which is the least prevalent acute illness. This 

illustrates that participant predictions closely reflected the clinical data for the common 

acute illnesses overall, but did not when making predictions for the chronic illnesses. While 

 

Table 3.2: Bootstrap 95 percentile confidence intervals for means fit to 
participant data as compared to means for the real world distribution  
  Experiment 1  

Confidence Interval 
Experiment 2  

Confidence Interval 
Illness True Median Lower Upper Lower  Upper 
Acute      
Appendicitis 42 29.7 654.7 16.2 324.0 
Seasonal Flu 3.3 4.0 13.9 3.8 14.4 
Common Cold 4.1 2.6 8.9 2.9 9.8 
Chronic      
COPD 7.5 4.6 47.9 7.8 49.3 
Chronic Heart Disease 8.9 9.5 57.1 11.3 54.5 
Type II Diabetes 10.1 18.5 73.0 21.4 67.5 
*COPD refers to chronic obstructive pulmonary disease 
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the clinical median for the seasonal flu fell outside the confidence interval for participant 

responses, participants may have been using a prior expectation for the duration of the 

common cold when making these estimations, causing them to overestimate the duration.  

Condition 2 
 

In condition 1 we found that participants were generally able to capture the shape 

of illness distributions, and more closely captured the median for acute than chronic 

conditions. Very few participants had personal experience or familiarity with the chronic 

illnesses which may be a result of the sample being drawn from college students ranging 

in age from 18-24. An older population might have more experience, and thus, their 

predictions might be closer to the optimal prediction for chronic conditions. It is also 

possible that an older population would assume a later age of onset than younger 

participants, who may be using themselves as a reference point. Estimating a later age of 

onset might lead to lower estimations of total duration, making them closer to the clinical 

duration. Therefore, in condition 2 we sought to examine prediction from an older 

participant sample. In this experiment we used the same experimental paradigm with 

participants on Mechanical Turk who were aged 40 or older. 

Participants  

One hundred and thirty-five Mechanical Turk workers aged 40 or older from the 

United States were paid $1 for their participation. 

Procedure   

Both the materials and procedure were identical to that of condition 1. 

Results 

Data in this experiment was analyzed using the same exclusion criteria from 
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condition 1. The responses analyzed were 112 for appendicitis, 120 for the seasonal flu, 

114 for the common cold, 119 for COPD, 117 for chronic heart disease,  and 116 for type 

II diabetes. 

In the same manner as condition 1, we calculated optimal predictions as well as the 

best fitting Erlang prediction to the observed participant data (see Figures 3.4 and 3.5). The 

most striking result is illustrated by comparing results to those in condition 1. A qualitative  

comparison of the best-fitting predictions to the data relative to the Bayesian optimal 

prediction revealed that participant performance in this task closely paralleled that of 

condition 1, as reflected in the similarity of the median estimations, and the shape of the 

predictions fitting the Erlang prediction function.  

For the quantitative assessment, we replicated the bootstrap procedure from 

condition 1, and calculated the bootstrap 95 percentile confidence intervals for the 

responses of the older adults ((see Table 3.2). When comparing the results to the true 

distributions, we found that the true median fell within the confidence interval for 2 out of 

3 acute illnesses (i.e., appendicitis, and the common cold) and none of the 3 chronic 

illnesses.  

Using the bootstrap samples, we also compared the medians between experiments. 

The confidence intervals for both conditions overlapped for all 6 illnesses, illustrating that 

the two groups responses were practically equivalent to one another. These results indicate 

that overall, older participants did not perform differently than college aged participants.   
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Figure 3.4: The top row shows real world distributions for the durations of the 
three acute illnesses and corresponding Erlang distribution fits. The second 
row shows participant predictions for illness duration in Experiment 1. Red 
circles show the median predicted duration as a function of presented duration, 
with error bars indicating the 68% confidence interval (estimated by a 1000 
sample bootstrap).  The red dashed line is the fits from the Erlang prior to 
participant responses, the gray line shows the Bayesian optimal prediction, 
and the black dotted line illustrates an uninformative prior.  
 

Figure 3.5: The top row shows real world distributions for the durations of the 
three chronic illnesses and corresponding Erlang distribution fits. The second 
row shows participant predictions for illness duration in Experiment 1. Red 
circles show the median predicted duration as a function of presented duration, 
with error bars indicating the 68% confidence interval (estimated by a 1000 
sample bootstrap). The red dashed line is the fits from the Erlang prior to 
participant responses, the gray line shows the Bayesian optimal prediction, and 
the black dotted line illustrates an uninformative prior.  
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Discussion 
 

In this paper, we applied the paradigm of Griffiths and Tenenbaum (2006) assessing 

optimal prediction for everyday events to the domain of health. We measured how people 

make predictions about illness durations and compared performance for acute and chronic 

conditions. The data show that participant responses closely matched the optimal 

predictions for both the form and median of the illness distributions for acute conditions, 

with near perfect performance for the common cold. While previous research has suggested 

that health decisions operate differently from other decision processes (Levy et al., 2014), 

we show that for acute illnesses for which people have experience, participants follow 

optimal statistical principles and have understanding of the regularities of illness 

distributions.  

Furthermore, for chronic conditions the data show that while responses follow the 

form of the clinical distribution, the median durations are systematically overestimated. 

This is in line with the common sense model (Leventhal et al., 1992) which suggests that 

people should be able to apply their understanding of acute illnesses to judgments about 

chronic illnesses, but that a lack of experience with chronic illnesses might also lead to 

misalignment when applying the acute model (e.g., overestimating duration). 

 A strategy of overestimation might be adaptive in terms of planning for the future 

(whether that be short or long term). Recall the opening scenario where you were asked to 

imagine that you had a cold for a week, and needed to predict if you would be feeling better 

in time for a trip beginning in two days. For other illnesses, where you might be unsure of 

the duration, how would you make an estimation of when you are likely to recover? You 

might take an illness you understood better, such as a cold, and adjust upward to ensure 
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yourself an adequate recovery time. The same may be true for chronic illnesses. When 

planning for the future (e.g., retirement savings), it may be safer to assume a longer 

duration. Indeed, when planning for the future, it may be safer to overestimate the duration 

of an illness rather than risk underestimating the duration.  

In addition, optimism about lifespan for chronic illnesses may be important for 

positive health behaviors. People who report higher levels of optimism about their 

condition report being less bothered by symptoms (Scheier & Carver, 1985) and show 

faster recovery from surgery (Scheier, Owens, Magovern, Leferebve, Abbot, & Carver, 

1989). For this reason, it might be advantageous to overestimate the duration of chronic 

illnesses. This could signal optimism, which might, in turn, help patients to engage in 

behaviors that are good for their health, and remain healthier longer.  

A critical feature of chronic illnesses that might make prediction for total duration 

more complex is that by definition persons with chronic conditions have not yet 

experienced the duration of that illness in its entirety, and therefore do not have knowledge 

of the total duration. There is evidence that successful predictions require not just some 

experience in a domain, but a relevant amount of experience. For instance, when asked to 

estimate the duration of bus routes, participants systematically underestimated the 

durations (Stephens, Dunn, Rao, & Li, 2015). The authors posited that this was because 

bus riders rarely complete a journey through an entire bus route, and rather only know the 

length of their typical journey. This may explain why participant performance seemed to 

improve for younger participants who had personally experienced the seasonal flu, but not 

for those who had experienced chronic heart disease. Participants who have experienced 
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the flu have experienced it in its entirety, and therefore have some firsthand knowledge of 

its duration. 

Understanding illness duration information has important implications for health 

decision making (McAndrew et al., 2008). People’s understanding of illness duration is 

directly linked to their health decisions, and ultimately to their health care seeking 

behavior. For example, if you attribute your symptoms to the common cold, but still find 

yourself sick after three weeks, you may re-evaluate your illness assignation. Furthermore, 

accurate understanding of illness statistics impacts patient doctor communication. Doctors 

often have misaligned expectations of their patients’ illness knowledge (Street & Haidet, 

2011), incorrectly believing that their patients have knowledge more closely matching their 

own. This causes poor communication about illnesses and treatment, and ultimately affects 

patient health decision making leading to low adherence to treatment regimens. 

  The significance of the work presented here is both in its novelty—to our 

knowledge this is the first investigation assessing people’s judgments for illness 

statistics—and in its importance in understanding people’s ability to make optimal 

statistical judgments. The findings extend our knowledge of how people make judgment 

about everyday events to health-based decisions. As such, provides an important step in 

understanding how people reason about illnesses and illness outcomes, and it provides a 

foundation for future investigations into patient judgments and decisions. 
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Chapter 5: Information Integration and Judgment Change for Health 
 
This work was presented at the 2018 Annual Meeting of the Psychonomic Society, and the 

2019 International Convention of Psychological Science. 

Abstract 

How is new information integrated into existing expectations? This question has important 

implications for how people make judgments and decisions as they gather new evidence 

from various sources. The current investigation is focused on understanding the influence 

that both the domain the problem is presented in and the source of incoming evidence have 

on repeated judgments. Previous work has suggested that the best strategy is to simply take 

an average of all the available evidence, while people tend to be egocentric, weighting their 

own judgments more strongly than those of others (e.g., Yaniv & Kleinberger, 2000). 

However, it may be the case that judgments can be approximated by a weighted confidence 

model which assumes that judgments are a weighted combination of prior expectations and 

third-party evidence. In the following experiments, participants are asked to judge the 

likelihoods of different problems given a set of symptoms both before and after receiving 

evidence from either 1 or 2 outside sources. Results show a main effect of source and an 

interaction between source and domain. Participant responses in the two judgment tasks 

are also found to be well approximated by the weighted confidence model. 
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Introduction 

An important area in both cognition and health research deals with how new information 

is integrated into existing expectations when people are asked to make repeated judgments 

under uncertainty. There are many factors that have been shown to be important when 

making a judgment given information from a third party. For instance, people have been 

shown to form opinions about the quality of advice for different advisors (Yaniv & 

Kleinberger, 2000) and are sensitive to the number of cues that are available to each advisor 

(Budescu, Rantilla, Yu, & Karelitz, 2003).  

 In the domain of health, this issue often arises when making a judgment about what 

illness you are likely to have given particular symptoms. In this case, your initial judgment 

is based on your prior expectations for what different illnesses tend to look like. Each time 

you receive a new piece of information (e.g., information from WebMD), you are likely to 

update this initial judgment to reflect the new information. In this way, the source of 

information can be an important predictor of judgment change. More specifically, sources 

that are trusted more may prompt a greater change in judgment. Indeed, the credibility of 

a source has been shown to positively influence judgments such that people rely more on 

sources they believe are credible (e.g., Birnbaum & Stegner, 1979).  

 The following experiments focus on three sources of information that people often rely 

on when seeking healthcare information: doctors, WebMD, and past illness experience of 

the person in question. More than 90% of people express at least some level of trust in their 

doctors (Hall, Dugan, Zheng, & Mishra, 2001) and this trust is a strong predictor of 

medication adherence (Piette, Heisler, Krein, & Kerr, 2005). Online resources also appear 

to have a significant influence, with 70% of people saying they were prepared to act upon 
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information obtained on the web (Silence, Briggs, Harris, & Fishwick, 2007); however, 

this may be problematic, as symptom checkers have low accuracy, with the correct 

diagnosis being listed within the top 20 diagnoses only 58% of the time (Semigram, Linder, 

Gidengil, & Mehrotra, 2015). Lastly, past experience with illness is an important 

component of how people treat and manage their illnesses (e.g., McAndrew et al., 2008; 

Leventhal et al., 1992).  

 One factor that might interact with the source of new information is the domain the 

problem is presented in. For instance, health judgments have been shown to differ from 

judgments in other domains. Specifically, health numeracy is worse than numeracy in pure 

math or finance (Levy et al., 2014). More broadly, decision processes often differ based on 

the domain the problem is presented in. For instance, in the case of the Wason Card 

Selection task (Wason, 1960), participants performed significantly better when the problem 

was presented in a real word domain (Cosmides, 1989). With this in mind, I will be 

comparing judgments across three domains: health, laptops, and cars. I chose these 

domains because the task in each is identical: to judge the likelihood of a problem given 

particular symptoms. Additionally, participants in each domain are given information from 

an authority figure, an online resource, and an evaluation based on the past experience of 

the person experiencing the problem.  

 The following three experiments endeavor to answer several questions about how 

health information is integrated. The first experiment will focus on two questions: (1) Is 

the source of incoming information an important predictor of judgment change? (2) Are 

judgments made in the domain of health updated differently from judgments made in other 

domains? These questions drive the experimental paradigm, which first measures people’s 
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expectations by asking them to make a judgment about the likelihood of a problem given 

symptoms, and then measures the change in their judgment after new evidence is presented. 

This evidence was presented in the form of (1) an authority figure (e.g., doctor or 

mechanic); (2) an online resource (e.g., WebMD or AutoMD); or (3) an evaluation made 

by the person they are being asked about, based on that person’s experience.  

 Experiment 2 replicates the methods from Experiment 1, with the important difference 

that I asked participants to rate their confidence in each of the sources. These confidence 

ratings allow me to inform the weighted confidence model which assumes that participants 

weight advice based on their confidence in the source of that advice. I implement and 

compare three models, including a simple weighted confidence model, an egocentric 

discounting model, and a model which assumes that people simply take the average of 

source and personal judgments. While averaging opinions has been suggested as the 

normative model of how people should make judgments—and people do indeed use this 

strategy in some cases (e.g., Anderson, 1981; Fishcer & Harvey, 1999)—this strategy is 

only optimal when all pieces of information are equally informative. In most cases, 

however, not every piece of information is equally informative. Past work has suggested 

that rather than averaging opinions, people often discount advice egocentrically—meaning, 

they underweight advice from others relative to their own judgments (e.g., Yaniv & 

Kleinberger, 2000).  However, those experiments have not measured people’s confidence 

both before and after receiving advice. For this reason, they cannot determine whether 

participant’s weighting of their own advice is appropriate given their level of confidence 

in their own judgment. It may be the case that what appears to be egocentric discounting is 

more accurately described as greater confidence in personal judgments than source 
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information. Importantly, the weighted confidence model assumes that initial judgments 

and source information are combined using a weighting structure based on a person’s 

confidence in their own judgment, as well as their confidence in the source.    

In the third and final experiment, I ask participants about the likelihood of different 

problems given particular symptoms, and then provide them with information from two 

sources, asking participants to make a judgment three times—(1) one initial judgment 

based on symptoms; (2) one judgment after receiving information from the first source; 

and (3) a final judgment after receiving information from the second source. This task 

allows for the evaluation of the model with multiple pieces of information. Previous 

research has shown that the order of information has been found to influence decision-

making with the last piece of information being weighted more strongly (Bergus, 

Chapman, Levy, Ely, & Opplinger, 1998). This experiment expands on those investigations 

by asking how differing levels of confidence in the source might interact with order effects.  

Experiment 1 
 
Participants 

Fifty-nine Rutgers students participated in exchange for course credit. 

Material 

For this experiment, we presented problems from three domains: health, car, and 

laptops. See tables 4.1-4.3 for a list of problems and symptoms. For the health domain, 

symptom sets were taken from Epocrates.com, an online database of vignettes created by 

physicians. For each symptom set, an alternate illness (one with similar symptoms) was 

chosen by entering the symptoms into WebMD. As such, participants were either presented 

with the true cause of the symptoms or an alternate reasonable explanation of symptoms.  
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For the car and laptop domains, car problems were chosen to span a range of severity and 

familiarity.  

Procedure 

 Participants were asked to answer questions about the probability of a health, car, or laptop 

problem given symptoms. For instance, “Your friend Jane (30 years old) has been 

experiencing a fever, cough, headache, and weakness. She asks for your opinion, how likely 

do you think it is that she has sinusitis?” They would then judge the likelihood on a scale 

from 0 to 100, to two decimal places. Additionally, participants were asked to rate their 

confidence in their estimation on a scale from 1 to 5. They were asked questions about all 

6 symptom sets in each of the three domains. The questions were grouped by domain, and 

participants received the questions and domains in a random order. For each symptom set, 

they were randomly presented with a possible cause of their symptoms (either the true 

problem or the alternate problem). After their initial response, they were then provided 

with input from a third party. For instance: “Jane went to the doctor. The doctor thinks 

Jane does have sinusitis. Jane asks you again, how likely do you think it is that she has  

Figure 4.1: A visual representation of the procedure for Experiments 1 and 2. 
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Table 4.1: Problems and Associated Symptoms for Health Domain 

 
sinusitis?”. They then responded using the same scale for probability and confidence. For  

each domain there were three available third parties and participants randomly received 

feedback from either an authority (i.e., a doctor, mechanic, or laptop specialist), an online 

resource (i.e., WebMD, AutoMD, or LaptopMD), or the persons past experience (i.e., that 

the person in question had experienced the problem before and had an intuition).  Each 

authority could either confirm or disconfirm the suggested problem. In each domain, 

participants received each 3rd party source and yes/no combination, exactly once. See 

figure 4.1 for a visual representation of the procedure. 

True Illness Alternate illness Symptoms 
Appendicitis Gastroenteritis abdominal pain moving from the 

middle to lower right stomach, 
nausea, and a low-grade fever 

Bacterial Meningitis Gastroenteritis a severe headache, fever, light 
sensitivity, and a stiff neck 

Seasonal Flu Sinusitis a fever, cough, headache, and 
weakness 
 

Stroke Alzheimer’s blurred vision, fatigue, dry skin, 
frequent urination, and increased 
thirst 

Asthma Generalized Anxiety Disorder shortness of breath, wheezing, and 
waking from sleep from wheezing  

Type-II Diabetes Urinary Tract Infection  blurred vision, fatigue, dry skin, 
frequent urination, and increased 
thirst 
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Table 4.2: Problems and Associated Symptoms for Car Domain 

 
 
Table 4.3: Problems and Associated Symptoms for Laptop Domain 

 
 

True Problem Alternate Problem Symptoms 
Dead Battery Bad Starter an inability to start, slow engine 

crank, and a lit-up check engine 
light 

Faulty Spark Plugs Bad Ignition Component hard starts, trouble starting, engine 
misfires, high fuel consumption, 
and a lack of acceleration 

Bad Brake 
Pads/Rotors 

Loose Wheel Bearing loud squeaking or squealing, a 
vibrating steering wheel and brake 
pedal and needing to press down 
hard to brake 

Failing Gas Cap 
 

Fuel Filter Leak a lit-up check engine light, fuel 
smell, and the gas cap will not 
tighten all the way 

Failing Transmission Coolant Leak leaking fluid, a strange smell, and 
a delay in acceleration 

Overheating Blown Head Gasket  steam pouring out of the hood, 
high temperature gauge, and a 
weird smell from engine 

True Problem Alternate Problem Symptoms 
Bad Computer Fan Damaged Hard Drive weird noises, overheating, and 

error messages 
Battery Dying Dirty Air Vents reduced charge capacity, 

overheating, and sudden 
shutdowns 

Hard Drive Failure Loose Screws slow speed, frequent freezing, blue 
screen, corrupted data, and weird 
sounds 

Computer Virus 
 

Disk Cache Overload slowdown, pop-ups, computer 
crashing, new homepage, and 
programs starting without warning 

Memory/RAM failure Hard Drive Failure slowdown, random restarts and 
freezing, blue screen, corrupted 
files, and problems installing 
software 

Graphics Card Failure CPU Failure  slow animation, pictures looking 
wrong, wavy lines, fuzzy picture, 
and black screen 
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Results 

The measurement used to evaluate judgment change in this task is the relative 

proportion of change. To illustrate how this was calculated, imagine the participant made 

an initial estimate of 30% and then after receiving the source information estimated 60%. 

Their judgment change is 30, and the total possible change they could have made is 70. 

The relative proportion of change is calculated as the judgment change over the total 

possible change.  

A three-way ANOVA revealed no significant main effect of domain (see figure 

4.2). There was a significant main effect of source, F(2,1053)=41.64, p<.001 (see figure 

4.3).  

 

     

Figure 4.2: The plot shows the relative proportion of change for each of the 
three domains.  
 

Health Car Laptop 
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A post hoc Tukey test showed that the authority and online sources differed significantly 

at p < .05, and the authority and past experience sources differed significantly at p < .05. 

Lastly, there was a significant interaction between source and domain F(4,1053)=2.3, 

p=.05.  

I also examined the influence of source and domain on confidence in judgements. 

For each repeated judgment a difference in confidence is measured as confidence 2- 

confidence 1. A two-way ANOVA revealed no significant main effect of domain. There 

was a significant main effect of source, F(2,1053)=20.5, p<.001.  A post hoc Tukey test 

showed that the authority and online sources differed significantly at p < .05, and the 

authority and past experience sources differed significantly at p < .05. Lastly, there was a 

significant interaction between source and domain F(4,1053)=4.43, p<.01. 

Figure 4.3: The plot shows the relative proportion of change for each of the 
three sources, separated by domain. The red dots represent health domain, the 
green dots represent the laptop domain, and the blue dots represent the car 
domain. Lastly, the black dots represent the relative proportion of change for 
each source, averaged across all domains.     
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Experiment 2 
 
Participants  

Fifty-nine Mechanical-Turk workers from the United States participated in 

exchange for $1 each.  

Materials  

The materials were identical to those in Experiment 1 with the removal of all 

questions in the domain of laptops. These questions were removed as Experiment 1 

illustrated that the car and laptop domains yielded identical results.  

Procedure  

  The procedure was identical to that of Experiment 1, with the important difference 

that participants were asked two additional questions to assess their expectations about 

each of the sources. First, they were asked how confident they were in the advice provided 

by that source. Second, they were asked two questions about the sources own confidence 

in their opinion. For instance “When the doctor says that they think a person does have an 

illness, what do they think the probability of that illness is?” and “When the doctor says 

that they think a person does NOT have an illness, what do they think the probability of 

that illness is?”. Lastly, the confidence scale was changed to 1-10 (rather than 1-5 as in 

Experiment 1). This was to provide participants with a wider range of confidence values. 

Results 

I first replicated the results of Experiment 1. A two-way ANOVA revealed no 

significant main effect of domain. However, there was a significant main effect of source, 

F(2,714)=15.12, p<.001 (see figure 4.4).  A post hoc Tukey test showed that the authority 

and online sources differed significantly at p < .05, and the authority and past experience 
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sources differed significantly at p < .05. Lastly, there was a significant interaction between 

source and domain F(4,714)=5.19, p<.01.  

Next, I examined the influence of source and domain on confidence in judgements. 

For each repeated judgment a difference in confidence is measured as confidence 2 -  

confidence 1. A three-way ANOVA revealed no significant main effect of domain. There 

was a significant main effect of source, F(2,708)=14.2, p<.001. A post hoc Tukey test 

showed that the authority and online sources differed significantly at p < .05, and the 

authority and past experience sources differed significantly at p < .05. Lastly, there was a 

significant interaction between source and domain F(4,708)=11.04, p<.001.  

I also evaluated participant confidence in each of the three sources. As a reminder, 

each participant was asked to rate their confidence in each of the three sources out of 10. 

A two-way ANOVA revealed no significant main effect of domain. There was a significant 

main effect of source, F(2,354)=66.49, p<.001. A post hoc Tukey test showed that the 

Figure 4.4: The plot shows the relative proportion of change for each of the three 
sources, separated by domain. The red dots represent health domain and the green 
dots represent the car domain. Lastly, the black dots represent the relative proportion 
of change for each source, averaged across all domains.     
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authority and online sources differed significantly at p < .05, and the authority and past 

experience sources differed significantly at p < .05. There was no significant interaction 

between domain and source. 

Lastly, I evaluated what probability participants thought each source was assigned 

to its own judgment. A two-way ANOVA revealed no significant main effect of domain. 

There was a significant main effect of source, F(2,708)=7.6, p<.001. A post hoc Tukey test 

showed that the authority and online sources differed significantly at p < .05, and the 

authority and past experience sources differed significantly at p < .05. This illustrates that 

participants thought that an authority who confirmed a diagnosis was much more 

confidence in their judgment than an online resources or a person speaking from 

experience. Lastly, there was no significant interaction between domain and source. See 

table 4.4 for means.  

Table 4.4: Means and standard deviations of source probabilities 

Modeling 
 
To investigate the observed patterns of participant judgments, I compared three generative 

models that make conflicting assumptions about how people integrate evidence when 

making judgment: (1) a simple weighted confidence model; (2) an egocentric discounting 

model; and (3) a model which assumes that people simply take the average of source and 

personal judgments. I chose these models because the averaging model has been described 

as a normative model for how people should integrate advice, while the egocentric model 

as a descriptive model of how people do integrate advice (e.g., Yaniv & Kleinberger, 2000).  

 Authority Online  Past experience 
Yes 81.0 (16.0) 66.8 (18.2) 67.9 (16.3) 
No  41.4 (32.6) 39.9 (22.2) 42.4 (22.0) 
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 For the following section, I will be referring to the source judgment as SJ, the 

participants initial judgment as IJ, the participants confidence in their initial judgment as 

IC, and their confidence in the source judgment as SC. Recall from the procedure that for 

each source, participants were asked how likely that source thought the probability of a 

problem was when they said yes, and how likely they thought a problem was when they 

said no. These responses were used as the source judgment in each of the models. In the 

case of the averaging model, the data was generated by calculating: Final 

Judgment=(0.5*IJ) + (0.5*SJ). For the egocentric model, we assume that people are 

weighting their own advice 70% against the source judgment, as previous research has 

suggested that people tend to weight their own estimates at this rate (Yaniv & Kleinberger, 

2000), such that Final Judgment=(0.7*IJ) + (0.3*SJ). The weighted confidence model takes 

into account their confidence in their initial judgment, and their confidence in the source’s 

judgment, such that Final Judgment=(w*IJ) + ((1-w)*SJ). W was calculated as 

1/((SC/IC)+1). In order to evaluate which model provided the best fit to the data, I first 

calculated difference scores between the participant data and the model predictions (see 

figure 4.5 for error distributions). I then calculated the mean absolute deviation (MAD). A 

one-way ANOVA revealed no significant differences in the MAD between the three 

models.  

 While each model performed equally well when examining error in the aggregate, 

it is important to examine which of the models can provide a fit to the patterns of 

participant data. Figure 4.7 shows the simulated data for each of the models. I performed a 

three-way ANOVA on the simulated model data, in the same way as for the data in 

experiments 1 and 2. For the averaging model, there was no significant main effect of 
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domain or source on relative proportion of change. There was an interaction between 

source and domain, F(2,714)=3.62, p<.05. For the egocentric model, there was no 

significant main effect of domain or source. There was a significant interaction between 

source and domain, F(2,714)=3.62, p<.01. For the weighted confidence model, there was 

no significant main effect of domain. There was a significant main effect of source, 

F(2,714)=5.88, p<.001, and a significant interaction between source and domain, 

F(2,714)=3.54, p<.05. 

 I computed the log likelihood of the data under each of the models for the relative 

proportion of change. The summed log likelihood for the averaging model was -1030.9, -

3569.2 for the egocentric model, and -816.7 for the weighted confidence model. This 

illustrates that with the lowest log likelihood, the weighted confidence model provides a 

better fit to the data. 

 To examine individual participants, I rank-ordered the models in terms of their fit 

for each participant. Figure 4.7 shows the distribution of ranks assigned to each model 

Authority Past 
Experience 

Online Past 
Experience 

Online 

 
Figure 4.5: histograms show the distribution of errors from the three models 
(calculated as model prediction-participant response). The first panel shows the 
averaging model, the second shows the egocentric model, and the third shows the 
Bayesian model. Values above zero indicate that the model overestimated, while values 
below zero indicate that the model underestimated.  
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Figure 4.6: The plots show the relative proportion of change for each of the three 
sources, separated by domain. The red dots represent health domain and the green 
dots represent the car domain. Lastly, the black dots represent the relative 
proportion of change for each source, averaged across all domains. Starting on the 
left, the first plot illustrates the results of the averaging model, the second plot 
illustrates the results of the egocentric model, and the last illustrates the results of 
the Bayesian model. 

Figure 4.7: Distribution of closeness of fit of three models to participant data.   
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across the participants in our task; the weighted confidence model fit best for 26 out of 60 

participants, and it was ranked either first or second in 50 of 60 participants. 

Experiment 3  
Participants 

One-hundred and eighty Mechanical-Turk workers from the United States 

participated in exchange for $2.  

Materials  

The materials were identical to those from Experiment 2, with the addition of two problems 

in both the health and car domains. This was in the interest of accommodating the 

procedure (see procedure). See table 4.5 for a list of added problems and associated 

symptoms.  

 

Procedure 

The procedure in this experiment was identical to that of Experiment 2, with the 

addition of a second piece of source information. In this experiment, participants were 

asked to judge the probability of each problem three times: (1) after they were given the 

Table 4.5: Problems and Associated Symptoms for Laptop Domain 
True Problem Alternate Problem Symptoms 
Car   
Oil Leak leaking valve cover dark puddles under car, smoke 

from engine, dashboard oil light, 
engine overheating, smell of 
burning oil  

Bad Alignment loose suspension 
component 

vibration, wheels pulling to one 
side, crooked steering wheel 

Health   
Mononucleosis Strep throat a fever, sore throat, and fatigue 
COPD Bronchitis shortness of breath, a chronic 

cough, yellow mucus 



 70 

 

symptom set; (2) after a source initially provided information; and (3) after a second source 

provided information. Participants were divided into three conditions, each of which only 

included two of the sources: authority and online resource; authority and past experience; 

or online resource and past experience. For each symptom set they received one of four 

combinations: source 1 confirmed the diagnosis and source 2 also confirmed the diagnosis; 

source 1 confirmed the diagnosis and source 2 refuted the diagnosis; source 1 refuted the 

diagnosis and source 2 confirmed the diagnosis; or source 1 refuted the diagnosis and 

source 2 also refuted the diagnosis.  

Results 

First, I assessed the proportion of trials for which participants chose to side with 

the first or last piece of evidence. For this assessment, I only included the trials for which    

the two sources did not agree.  Overall, participants chose the last piece of evidence more               

frequently than the first, X2(1,N=1438)=15.1, p<.001. When dividing the data by source, 

the last piece of evidence was chosen more frequently than the first for the authority 

Figure 4.8: Percentage of participants relying on the first or last piece of 
evidence, separated by source. 
 

Authority Online        Past 
Experience     
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X2(1,N=1438)=5.7, p<.05, and past experience X2(1,N=1438)=7.4, p<.01, but not for the 

online resource (see figure 4.8). This suggests that certain sources may not be more 

influential when placed last.    

      Additionally, the source of the information influenced which piece of evidence the 

participant sided with. Participants sided with the authority more frequently than the online 

resource X2(1,N=1438)=83.2,  p<.001, and past experience X2(1,N=1438)=185.7, p<.001. 

They also sided with the online resource more frequently than the past experience 

X2(1,N=1438) =21.3, p<.001.  

 A three-way ANOVA revealed no significant main effect of domain. However, 

there was a significant main effect of source, F(2,5748)=231.28, p<.001 (see figure 4.9). 

A post hoc Tukey test showed that the authority and online sources differed significantly 

at p < .05, and the authority and past experience sources differed significantly at p < .05. 

There was also a significant main effect of whether it was the first or last judgment 

F(1,5748)=4.36, p<.01. Lastly, there was a significant interaction between the domain and 

Figure 4.9: The plot shows the relative proportion of change for each of the 
three sources, separated by first and last judgments. The green dots represent 
first judgments and the red dots represent the last judgments.  
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source F(1,5748)=9.82, p<.001 and between whether it was the first or last judgment and 

the source F(2,5748)=3.13, p=.05.  

I also evaluated participant confidence in each of the three sources. As a reminder, 

each participant was asked to rate their confidence in each of the three sources out of 10. 

A two-way ANOVA revealed no significant main effect of domain. There was a significant 

main effect of source, F(2,714)=104.9, p<.001. A post hoc Tukey test showed that the 

authority and online sources differed significantly at p < .05, and the authority and past 

experience sources differed significantly at p < .05. There was no significant interaction 

between domain and source. 

Lastly, I evaluated the probability judgments that participants thought each source 

had assigned to its own judgment. A two-way ANOVA revealed no significant main effect 

of domain. There was a significant main effect of source, F(2,1434)=5.61, p<.001. A post 

hoc Tukey test showed that the authority and online sources differed significantly at p < 

.05, and the authority and past experience sources differed significantly at p < .05. Lastly, 

there was no significant interaction between domain and source. See table 4.6 for means.  

Table 4.6: Means and standard deviations of source probabilities 

 

Modeling 
For each of the models, the second judgment was calculated in the same way as in 

Experiment 2, so I will now discuss how the third and final judgment was calculated. In 

the case of the averaging model, the data was generated by calculating: Final 

Judgment=(IJ+SJ1+SJ2)/3. For the egocentric model, we continued to assume that people  

 Authority Online  Past experience 
Yes 79.4 (17.4) 63.2 (20.9) 67.8 (16.8) 
No  45.4 (32.1) 39.9 (22.2) 48.0 (22.3) 
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Figure 4.11: Percentage of participants relying on the first or last piece of 
evidence, separated by source for the three models: averaging, egocentric, 
and weighted confidence (from left to right).  
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Figure 4.10: histograms show the distribution of errors from the three 
models (calculated as model prediction-participant response). The first 
panel shows the averaging model, the second shows the egocentric 
model, and the third shows the weighted confidence model. Values 
above zero indicate that the model overestimated, while values below 
zero indicate that the model underestimated.  
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Figure 4.12: Distribution of closeness of fit of three models to participant data.   
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are weighting their own advice 70% against the source judgments, such that Final 

Judgment=(0.7*IJ) + (0.3*(SJ1+SJ2/2)). The weighted confidence model takes into 

 into account participants’ confidence in their initial judgment, and their confidence in the 

source’s judgment, such that Final Judgment=(w*J2) + ((1-w)*SJ). J2 was calculated in 

the same way as Experiment 2. W was calculated as 1/((SC/judgment 2 confidence)+1). 

In order to evaluate which model provided the best fit to the data, I first calculated 

difference scores between the participant data and the model predictions for participants 

final judgment (see figure 4.10 for error distributions). I then calculated the mean absolute 

deviation (MAD). A one-way ANOVA revealed no significant differences in the MAD 

between the three models. 

 While each model performed equally well when examining error in the aggregate, 

it is important to examine which of the models can provide a fit to the patterns of 

participant data. First, for each of the models I assessed the proportion of trials for which 

the simulations chose to side with the first or last piece of evidence. For this assessment, I 

only included the trials for which the two sources did not agree. For the averaging model, 

the last piece of evidence was chosen more frequently than the first, X2(1,N=1438)=5.0, 

p<.05. When dividing the data by source, I did not find any significant difference between 

the percentage of participants choosing the first or last judgment (see figure 4.11). For the 

egocentric model, the first piece of evidence was chosen more frequently than the last, 

X2(1,N=1438)=5.0, p<.05. When dividing the data by source, I did not find any significant 

difference between the percentage of participants choosing the first or last judgment. For 

the weighted confidence model, the first and last piece of evidence were chosen equally 

frequently overall.  
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 Participant results showed that the source of the information influenced which piece 

of evidence the participant sided with. I repeated this calculation for each of the three 

models.  

For the averaging model the data sided with the authority more frequently than the online 

resource X2(1,N=1438)=6.8, p<.01, and past experience X2(1,N=1438)=4.2, p<.05. For the 

egocentric model the data sided with the authority more frequently than the online resource 

X2(1,N=1438)=6.8, p<.01, and past experience X2(1,N=1438)=4.2, p<.05. For the 

weighted confidence model, participants the data with the authority more frequently than 

the online resource X2(1,N=1438)=24.2,  p<.001, and past experience X2(1,N=1438)=12.9, 

p<.001. 

 I computed the log likelihood of the data under each of the models for the relative 

proportion of change. The summed log likelihood for the averaging model was -8850, -

19,463 for the egocentric model, and -2814 for the weighted confidence model. This 

illustrates that the weighted confidence model still provides the best fit to the relative 

proportion of change in this task. 

 In order to examine individual participants, I rank-ordered the three models in terms 

of their fit for each participant. Figure 4.12 shows the distribution of ranks assigned to each 

model across the participants in my task. While it appears that very few participants had 

data that most closely matched the averaging model, 68 participants’ data ranked the 

weighted confidence model first, and 94 participants’ data ranked the egocentric model 

first. These results suggest that participants as a whole may not have used a consistent 

strategy. 
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General Discussion 
 
There were four central questions that this chapter focused on answering: (1) Is the source 

of incoming information an important predictor of judgment change? (2) Are judgments 

made in the domain of health updated differently than judgments made in other domains? 

(3) Can repeated judgments be approximated by a rational model? (4) How might the order 

of information interact with the source of information?  

 First, I found the source of information is an important predictor of judgment 

change, with the greatest overall judgment change found in relation to the authority. This 

is not necessarily surprising, given that previous research has shown that people are 

influenced by the expertise of advisors when making judgments (e.g., Birnbaum & Stegner, 

1979). However, it is an important indication that any model which does not explicitly 

account for confidence in the source of information will not adequately describe the data. 

This is also reflected not only in participants’ confidence in each of the sources, but also in 

their estimations of what the source thought the probability was. Participants felt that 

doctors who confirmed a particular illness assigned a fairly high probability (around 80%), 

while online resources or people with past experience assigned a lower probability (around 

66%). This suggests that not only do people have different levels of confidence in different 

sources, but they assign different probabilities to the words “yes” and “no” depending on 

who is saying it. 

 The lack of a main effect for domain (for either judgment change or change in 

confidence), illustrates that the domain the problem was presented in was not an important 

predictor of how participants responded in our task. While previous work has found an 

influence of domain (e.g., Levy et al., 2014; Cosmides, 1989), it is possible that the 
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important difference in our task is the introduction of uncertainty. While in the tasks 

described above, participants were shown to perform better in one domain than another, 

there is no “better” in this task. It would appear from the results above that the mechanism 

underlying how judgments change with new information remains consistent when making 

judgments under uncertainty. 

While there was no main effect of domain, there was an interaction between domain 

and source, such that the online resource was trusted significantly less in the domain of 

health. This is important to note, as previous work demonstrated that people are willing to 

act upon information obtained from online health resources (Silence, Briggs, Harris, & 

Fishwick, 2007). It may be the case that while people rely on online resources to make 

decisions about whether or not to seek care, these resources do not significantly influence 

their internal calculation of the likelihood of a given illness. For instance, if WebMD tells 

you that you may be having a stroke, this may not have a large influence on the probability 

you assign to the likelihood that you have a stroke, but may still lead you to rush to the 

hospital. In this case, while you are still assigning a low probability to the stroke, the 

potential cost of not seeking care may be large enough to overcome it. For instance, in 

emergency departments, physicians often use the rule out worst-case scenario strategy, in 

which they first evaluate hypotheses for the most serious illnesses, to begin treatment 

(Croskerry, 2002). This suggests that the cognitive process for arriving at a decision to seek 

care and the process for judging the likelihood of an illness may be related, but distinct.  

The modeling data from Experiment 2 provides some support for the idea that 

participants use a weighted combination of the source information and their prior 

expectations to make judgments. While all three models do equally well in the aggregate, 
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only the weighted confidence model can predict all the patterns seen in the data. Finally, 

the data from Experiment 3 illustrate that there may be an important interaction between 

order effects and the source of information. Taken together, the data in this Chapter 

contribute to our understanding of how judgments change with new evidence. 
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Chapter 6: Conclusion 
 
This dissertation is centered around expanding our understanding of what expectations for 

illness statistics look like and how they influence judgment and prediction. These 

expectations have important consequences. For instance, people often do not seek care for 

a heart attack because they have misaligned expectations about their symptoms, believing 

them to be gastrointestinal rather than heart-related, and believing them to be too mild to 

be consistent with a heart attack (Bunde & Martin, 2006). This misalignment in 

expectations has been attributed to popular media, as many people expect a heart attack to 

present the way it does in the movies—i.e., a sharp crushing pain that appears 

instantaneously—whereas symptoms are often more mild, and present more gradually 

(Finnegan et al., 2006). This pattern is consistent across multiple chronic illnesses, as 75% 

of stroke patients could not correctly identify their symptoms as indicating a stroke. 

Importantly, patients who had previously experienced a stroke were more likely to have 

accurate expectations about their symptoms (Williams, Bruno, Rouch, & Marriott, 1997), 

another indication that experience matters. Deciding whether to seek care from a doctor 

can be broken down into three stages: (1) the perception of symptoms, which leads to 

prediction about whether those symptoms suggest an illness; (2) a decision about whether 

that illness requires care from a doctor; and (3) a prediction about whether the benefits of 

seeking care outweigh the costs (Bunde & Martin, 2006). 

This dissertation focuses on stage 1, assessing how people mentally represent 

illness information. Chapter 2 illustrates that people generally agree on the mean and form 

of the duration distributions for acute illnesses, but do not have as fine-grained prior 

expectations for chronic illnesses. This supports the idea that illness experience may 
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influence prior expectations, causing illnesses that are experienced often to have more fine-

grained expectations. This is consistent with patient health data, which illustrates that 

chronic illnesses are mismanaged at a higher rate than acute illnesses (e.g., Davis, Wagner, 

& Grovers, 2000; Wagner et al., 2001), with as much as 50% non-adherence (WHO, 2003). 

For instance, according to the American Heart Association, patient adherence to 

medication after a heart attack reduces with time (Ho, Bryson, & Rumsfeld, 2009). 

Diminishing adherence suggests that misaligned expectations for the duration and proper 

treatment of chronic illnesses and leads to negative consequences, such as increased 

mortality (Baroletti and Dell’Orfano, 2013). 

In Chapter 3, we see that not only do people have expectations for the descriptive 

statistics of illness duration distributions for acute illnesses, but they can also produce these 

distributions as a whole. These distributions were more closely aligned with clinical data 

for acute than chronic illnesses. This illustrates that people do have a representation of 

illness statistics (whether or not this representation closely aligns with clinical data), and 

that they can consciously access this information. In Chapter 4, participants make 

predictions that reflect the environmental statistics for more common illnesses, and 

importantly, reflect the expectations that they illustrated in Chapters 2-3. This demonstrates 

that participants are in fact able to use their expectations to make predictions about the 

future. 

In Chapter 5, we see that these expectations change over time as participants are 

presented with new information. The source of information plays an important role, with 

information from authorities (such as a doctor or mechanic) prompting greater judgment 

change. The pattern of changes we observed were best approximated by a weighted 
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confidence model; weighted confidence models provide a principled account both of how 

we update our expectations given observed data, and in turn, how these expectations 

learned from experience influence cognitive processes. When participants combine their 

prior expectations with new evidence, they assign weights based on their confidence in 

their own judgment, and their confidence in the source. Chapter 5 also illustrates that 

repeated judgments can be approximated by a weighted confidence model, and that effects 

of the order of information may interact with the source of information.  

The question posed in Chapter 1 of this dissertation was as follows: When people 

make bad judgments or decisions, are they using a flawed process, or are they working 

with faulty information? The research in this dissertation suggests that the process by which 

people make judgments may be optimal—people weigh information more strongly when 

it comes from a source they deem reliable. However, it may also be the case that people 

are working with flawed information, as we saw people’s expectations for chronic illnesses 

were less consistent than their expectations for acute illnesses, suggesting that flawed 

information, rather than a flawed process that contributes to poor judgments. 

The overarching message of the work discussed in this dissertation is that people 

form prior expectations for illness statistics, and that these prior expectations are combined 

optimally with evidence when making judgments in the domain of health. This expanded 

understanding of what people’s expectations for illnesses are and how they change over 

time may help to improve our understanding of patient health decisions. As doctors’ 

knowledge of their patient’s expectations is often poor (Street & Haidet, 2011), further 

work should focus on how patients’ expectations regarding the likelihood of an illness 

might influence health decisions 
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Appendix A 

Participant Instructions: 

 

 In this experiment, you will be asked to make predictions based on a single piece 

of information. Please read each question carefully. We are interested in your intuition so 

please do not make complicated calculations, just tell us what you think. 

 

 Specifically, you will be asked to estimate the total duration of different illnesses, 

based on how long someone has already had the illness. To give you an example of how to 

think about this question, imagine that you meet a man that is 50 years old and you are 

asked to estimate the total duration of his life. You might guess that his lifespan is likely 

to be 79 years of age (because this is the national average). 

 

 Importantly, you are NOT being asked how much longer he is likely to live, but 

rather the total age that he would reach. 

 

PLEASE CALL OVER THE EXPERIMENTER BEFORE CLICKING TO CONTINUE.  
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Appendix B 

Experimenter Instructions: 

 

After participants read the instructions, give them the following test question to 

ensure that they understand the task: 

 

Given that you meet someone who has had food poisoning for 2 days, what do you expect 

the total duration of this illness will be? 

 

If they answer with any value LESS than 2 days, explain the task to them again and 

then ask this follow up question: 

 

Given that you have had a headache for 1 hour, what do you expect the total duration of 

this illness will be? 

 

If participants answer with any value LESS than 1 hour, they should be excluded 

from the experiment. 

 
 
 
 
 
 
 
 
 
 


