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Scientific findings abound with evidence that our behaviors are constrained by processes within 

our brain and body and by various external factors, leading us to wonder about the origin(s) of 

our behavior.  In this thesis, I define agency as the capacity to change (at will) the immediate 

environment through one’s behavior; and setting agency as an overarching reflection of many 

constraining factors, I introduce the embodied cognition analytics (ECA) framework. This 

framework is a tool to study varying degrees of agency with respect to the processes within the 

nervous systems.  

In a series of three experiments, I demonstrate a set of experimental and analytical 

paradigms that allow characterizing the dynamic stochasticity and self-emerging cohesiveness of 
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disparate biophysical signals generated by the brain, the body, and the heart during natural, 

unconstrained actions. The final goal is to characterize the degree of agency, by examining the 

range of these dynamical changes, and comparing across populations of different agency. In the 

thesis, I limit the study of agency to the cognitive-motor domain, and compare the 

characterization across different populations, where the patient populations are assumed to 

have compromised cognitive/motor capacity, and the neurologically healthy population to have 

high cognitive-motor agency.  

In the first study, I characterize the differing levels of motor control and cognitive load 

by adapting network analytics methods commonly used in the analyses of cortical signals 

(generated by the central nervous system; CNS) to the analyses of kinematics signal (generated 

by the peripheral nervous system; PNS), which were registered from motion sensors positioned 

across the upper body. In the second study, I extend the previous methods to capture the full 

CNS-PNS dynamical interactions, by co-registering and analyzing the biophysical signals 

generated by the CNS (of EEG data), PNS (of acceleration, magnetometer data), and ANS (of EKG 

data). I report on the changes in patterns of connectivity dynamically evolving across conditions 

(when the participant exerts control on his/her breathing pace) during naturalistic walking tasks, 

and compare them between healthy participants and patients with Autism Spectrum Disorder.  

In the last study, I examine the co-registered signals of the CNS (EEG data), PNS (magnetometer 

data), and ANS (EKG data), as in the second study, but have the participant perform a variety of 

tasks involving movements with different cognitive and memory processes. I later translate 

these tasks to the clinical realm by digitizing neurological diagnostic tests that assess cognition 

and memory in aging. Here, I present a set of analytics that we found to highlight the difference 

between Parkinson’s patients and healthy participants, with the aim to understand the 

interactive nature of the neurobiological system from individuals with varying degrees of 
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cognitive-motor agency. These three experiments and analytics are not exhaustive, but would 

serve as proof-of-concept examples of the general framework to study agency.  

Overall, the protocols and methods offered in this thesis provide a new unifying 

framework to characterize agency from the dynamical interaction of cognitive and motor 

processes registered by high resolution biophysical sensors. In this sense, the agency that I 

characterized is truly embodied, in that it is not a mere cognitive nor a motor capacity, but is a 

concerted and integrated capacity of both cognitive and motor behaviors. Furthermore, this 

framework enables an objective physical quantification of naturalistic cognitive activities in the 

laboratory and within clinical settings, thus providing new ways to connect basic and clinical 

sciences.   
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1 Introduction  

1.1 Origin of behavior   

It is Friday afternoon, and you have a long weekend ahead. What would you do? You have the 

option to enjoy the beach nearby, or meet up with friends, or spend a peaceful time at home 

watching movies. With these options ahead of you, you eventually decide on a certain choice 

and take control of how you would spend your weekend. As such, we make countless decisions 

for countless actions, and this gives us the sense of control - the feeling that we ourselves are 

the origin and cause of our own behavior, and thus can control that behavior. But do we have 

such control?  

1.2 Motivation of studying agency   

The sense of control leads one to think there is free-will, which I define as the ability to act on 

one’s accord unimpeded. Free-will has been an age-old topic of debate among philosophers and 

a curious pondering among laymen. Indeed, the existence of free-will is fundamental to our 

existence, as it provides a sense of empowerment to our everyday lives and confers moral 

responsibility to our actions. 

However, in the recent century, there have been an accumulation of scientific studies 

undermining the existence of such free-will. In the 20th century, Galton (1875) opened a nature 

versus nurture debate, and argued how genetics are a large determinant of an individual’s 

prospects. Many behaviorist psychologists (e.g.,(Pavlov, 1957; Skinner, 1947)) from the mid-20th 

century assumed that our behavior is a by-product of conditioning. Moreover, in a seminal study 

by Libet (1985), the cortical timing of motor planning was found to precede the timing of 

intention for a motor action, thereby alluding that intention may be a mere reconstructed 

notion. In the current scientific field, there abounds evidence in social psychology on how 
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social/external factors influence an individual’s behavior (e.g., (Asch, 1955; Bandura, 1969; Janis, 

2008) and in biological science including neuroscience on how the somatic state of the body 

influence the behavior (e.g.,(Adolphs, 2003; Green et al., 2008)). It does seem like there is little 

to no room for one’s free-will.  

Naturally, this leads us to limit this free-will to a more constrained notion - agency. 

Here, I define agency as the capacity to change one’s immediate environment through one’s 

behavior at will. Agency reflects the constraining factors that influence one’s behavior (e.g, 

sensory stimulation, bodily degrees of freedom, somatic state, climate of one’s location), by 

varying the degrees of capacity with which one can behave. Setting agency as the overall 

reflection of all these constraining factors, studying the mechanism of agency seems to be the 

next step in understanding the origins of our behavior.  

1.3 Challenges to studying agency  

Studying the mechanism of agency is not a simple problem. In the field of psychology, there 

have been studies on how the sense of agency impacts one’s affect and behavior (e.g., 

Baumeister (2008)), how the sense of agency can be evoked in non-verbal children with autism 

spectrum disorders (Torres, Yanovich, & Metaxas, 2013) and how sense of agency can be 

quantified (Arzy & Schacter, 2019; Haggard & Clark, 2003).  However, these do not address the 

main question on the mechanism of agency, which is the behavioral capacity to change one’s 

immediate environment at will.   

This question is challenging because the definition of agency is not clear to begin with. 

Agency is commonly defined as the “capacity to change one’s immediate environment through 

one’s behavior”, but the scale of such behavior is subjective. This behavior may be small-scaled 

and specific, such as lifting a hand to a certain direction, or large-scaled and abstract, such as 
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changing the fate of a nation. Even if we focus on the small and specific scale of behaviors (e.g., 

Harris and Wolpert (1998)), we are still confronted with the problem of conceptualizing agency.  

The common account of agency is a top-down perspective, where an organism 

computes the costs and benefits of performing a set of actions, decides on one action, and then 

performs that action according to that decision/goal (Haggard & Chambon, 2012; Miall & 

Wolpert, 1996). Here, the goal is determined based on the computation of risks and rewards 

that entail such action, and agency is the measure of how well the organism performed that 

action according to that goal.  

Another perspective of agency is a bottom-up one, where behaviors do not originate 

from one source (assumed to be the brain), but instead is an emergent phenomenon of self-

organization with control existing at multiple levels of the organism. From this perspective, it is 

affordance (defined as perceivable opportunities of the environment to perform action; (Gibson, 

1978) ) that guides an individual’s behavior, where there is no need to appeal to top-down goals 

to explain behavior (e.g., (Bruineberg & Rietveld, 2014; Clark, 2008; Hoffmann & Pfeifer, 2018)). 

For example, when we see a knob on a door, we instinctively turn it (instead of pinching or 

poking it). In this perspective, our ‘goals’ are formed through the constant interactive sensory-

motor processes within a horizontal-like structure (contrasting to a vertical-like structure, where 

the brain gathers sensory-motor information and makes decisions like a commander), and our 

‘goals’ are not localized in the brain, but is rather distributed throughout the brain and body to 

control at different levels (e.g., position and orient the wrist to grasp the knob, maintain 

standing posture to keep close distance between the hand and knob, maintain breathing to stay 

alive). It seems that most goals described by the bottom-up perspective reflect the varying levels 

of control that exists within the nervous systems, which are internally evoked as we sense our 

self-generated activity and act upon accordingly. In contrast, the goals described in the top-
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down perspective originate primarily from the external world and require some degree of 

awareness of that external world in relation to our internal one (Torres, 2011, 2018). 

These two perspectives are not alternatives, but rather are complementary to one 

another, as continuous interactions occur between the goals and their ensuing behaviors from 

both perspectives. Indeed, in the developmental stages of an individual, the bottom-up 

perspective of agency is more informative to explain behavior, as an infant’s motor actions are 

mostly spontaneous and reactive (Thelen, Kelso, & Fogel, 1987; Thelen & Smith, 1996). 

However, as maturation of neuromotor control settles in, the infant acquires cognitive control 

of self-generated actions and begins to discover cause and effect. It is within the healthy 

adulthood stage, that the top-down perspective of agency would be relatively more informative, 

as s/he makes more goal-directed actions with a better control of the body and the immediate 

surrounding. For an individual to achieve such agency would require a healthy maturation of the 

nervous systems to allow a proper foundation of self-organization that underlies the top-down 

control of one’s behavior. As an example, for a neonate to achieve the cognitive capacity to 

predict and confirm their impending actions, it is required to attain systematic stochastic shifts 

in their motor variability that differentiates between goal-oriented motion and its consequential 

spontaneous motions (this is further elaborated in section 2.2.4) (Torres, 2018; Torres, Brincker, 

et al., 2013; Torres, Smith, Mistry, Brincker, & Whyatt, 2016).  

Yet, most studies on agency fail to reflect the interactions and coordination between 

top-down and bottom-up control aspects of control. In fact, in the field of motor control, the 

bulk of the work focuses on planning and executing goal-directed actions that involve top-down 

control (Harris & Wolpert, 1998; van Beers, 2009; van Beers, Wolpert, & Haggard, 2002), but 

neglect to explain them in relation to the spontaneous self-organizing actions that unfold (i.e., 

bottom-up control) to support such goal-directed actions. On the other hand, studies that focus 
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on the coordination of rhythmic behaviors (e.g. using the non-linear complex dynamical systems 

approach) do not address top-down control, and instead favor interpretation of phenomena 

that primarily involves self-emerging synergies (e.g., Buchanan and Kelso (1999)). The need to 

integrate both approaches is evident in the nascent field of embodied cognition, where the 

mind and body interact and cooperate through the ebb and flow of shared control. 

One aspect that serves as a challenge to both approaches is the self-generating, self-

correcting nature of the neuromotor control that produces behaviors. This is because for the 

experimentalist focused on the top-down perspective, in order to control for extraneous factors, 

it is inevitable to externally impose a goal for the research participant to perform a set of 

actions. However, this approach neglects the processes of goals continuously changing and 

unfolding in the sequence of behaviors. In real life, these goals are not externally imposed (e.g., 

to press a target button), but emerge as the brain attends to shifting priorities which are in 

constant flux (Klein, 2008; Von Holst & Mittelstaedt, 1950). For the experimentalist with a 

bottom-up perspective, the self-generating nature of behaviors can be well observed, as the 

research participant is required to behave naturalistically with no specific goals imposed. 

However, in this case, the experimentalist has very little control over extraneous factors, and 

the internal/external goals are often unidentifiable. This results with the inability to disentangle 

the dynamical process of self-generating behaviors, and with little explanatory power.  

Indeed, the problem of low external validity within an experiment that was designed 

with a top-down perspective has implications for characterizing the rewards which are the 

motivating factors behind agency, as they determine the goals that are evoked and evolved. 

Rewards are well recognized in the affective domain, as positive affect serves as a reward to 

influence behaviors through the dopamine pathways involved in cognitive and motor control 

(Aston-Jones & Cohen, 2005; Roy, Shohamy, & Wager, 2012). However, in the context of 
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studying agency, the notion of rewards would need to be widened to reflect an entire array of 

rewards that contribute to generating behaviors. Specifically, akin to supervised and 

unsupervised learning, there are rewards that are explicit such as those that provide positive 

affect (e.g., money, self-esteem) as in a supervised learning context, and there are rewards that 

are implicit such as the information you gather when you spontaneously behave as in an 

unsupervised learning context (Barlow, 1989). For instance, when we observe a toddler, parents 

reward the child with praises and smiles for certain behaviors (e.g., pronouncing a word 

correctly) thereby reinforcing them to repeat such behaviors; much like a supervised learning 

process. However, a toddler does not only behave based on such reinforcement, but 

spontaneously explore the environment and one’s body in relation to the environment. This is 

not because the child has an explicit agenda to gather information to conquer the world and 

become omnipotent, but merely does so for the sake of learning which itself is a reward; much 

like an unsupervised learning process. As an adult, we are still learning with such implicit 

rewards, as we gaze into a distance and register countless perceptual information without an 

explicit intent to do so. As such, our behaviors are influenced by a wide range of rewards, which 

are dynamical and most often self-generated. However, imposing an artificial goal within a 

constrained environment (as in an experiment with a top-down perspective) fails to reflect such 

dynamicity and diversity of reward processing. On the other hand, the experiment with a 

bottom-up perspective will indeed reflect such dynamicity and thus contain high external 

validity, but due to little control of extraneous factors, this leads the experimenter with the 

problem of unidentifiable rewards and with little explanatory power.  Without a doubt, both are 

important and complement each other. 

Given the wide range of rewards, and their concomitant motor actions and behaviors, it 

is important to weigh the costs and benefits of external validity in designing experiments to 
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study agency. Because we are not concerned with a small aspect of an individual’s cognitive 

system (e.g., visual perception of a line), but with agency that is indeed a global aspect of an 

individual’s biophysical system, it is important to reflect both the top-down and bottom-up 

perspectives of agency in designing experiments, and to raise a certain level of external validity 

to study the self-generative and dynamical process of agency. With these criteria in mind, how 

can we study agency, and what is the appropriate framework to do this?  

1.4 Embodied framework to study agency  

Agency, according to Juarrero (2015), emerges from complex systems. Complex systems, which 

are ubiquitous in nature (e.g., brain, human, ecosystem, weather), are those that are influenced 

by many of its elements and by interactions among those many elements, and are self-

organizing in nature. For example, the nervous system is a complex system, composed of 

neurons (elements) that interact with one another through synapses, and are self-organizing in 

that the synaptic patterns that may seem spontaneous eventually result in an organized 

behavior such as thoughts and actions. Life is also a complex system composed of organisms 

(element) that interact with one another through reproduction, competition, predation, and 

communication. These interactions may seem spontaneous, but these result in an organized 

behavior of evolution and survival at a larger scale.  

Juarrero (2015) argues that for an individual to possess agency, one’s behavior must be 

caused not only by external factors, but also by internal factors along with the relations and 

contexts in which behaviors emerge. As such, she reasoned that agency must involve a recursive 

informational flow between two different levels of organization – part (element) and whole 

(system). This viewpoint highlights the necessity to stage the paradigm in an embodied manner. 

That is, the paradigm needs to incorporate activities of the multiple layers within the nervous 
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systems embodied by an individual. Indeed, Torres (2011) proposed that the level of control 

ranges on a spectrum, and Torres (2016) argued that to attain volition (the acquired voluntary 

control of actions at will), one requires developing a proper balance of control across the 

multiple nervous systems, ranging from the autonomic, to the automatic, and to the voluntary 

control  (Figure 1.1) .  

 

Figure 1.1. Conceptualization of Agency. (Left) The level of control ranges on a spectrum from 
those that are autonomic and involuntary (such as the heart-beat) to those that are automatic 
(such as walking) to those that are voluntary and deliberate (such as learning a new dance 
routine). Figure adapted from (Torres, 2011) (Right) In order to attain volition (i.e., the acquired 
voluntary control of actions at will), an individual needs to develop a proper balance of control 
that spans the different layers of the nervous system within one’s body, which entails a healthy 
range of interaction between the efferent and afferent signals running top-down and bottom-
up. Figure adapted from Torres (2011, 2016)). 
 

Currently, there are several frameworks that reflect the systems biology aspects in 

understanding cognition. Notably, Freund et al. (2016) used the term ‘embodied neurology’ and 

offered an integrative framework in understanding neurological disorders. They claimed that by 

using a unified biophysical model of the human’s nervous system structure and function, we 

could understand the interactions that occur on a multiple scale within the central and 
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peripheral nervous systems, and ultimately understand the nature of neural control and 

plasticity causing various mental disorders. Adams, Shipp, and Friston (2013) in the motor 

control field also argued for a systems biology perspective, as they considered both the efferent 

and afferent signals traveling within the multiple layers of the nervous system to be integral 

parts of the motor planning. In the cognitive science field, Torres, Isenhower, et al. (2016) have 

led the precision medicine approach in understanding neural disorders by examining data on a 

personalized basis (as opposed to an averaged group basis), referring to the uniqueness of each 

individual’s nervous system. These frameworks can serve as building blocks in designing a 

framework to study agency and in understanding the interactive nature of the complex nervous 

systems.  

1.5 Dissertation Overview  - Embodied Cognition Analytics (ECA) framework  

In this thesis, I introduce a set of studies that is based on a framework conducive to 

understanding agency – which I coin “Embodied Cognition Analytics”.  

In this framework, as a first step, I refine the definition of agency as “the capacity to 

control one’s behavior at will” as this is the preceding step to control one’s immediate 

environment (e.g., move an object, persuade a friend). In this thesis, I limit the study of agency 

to the cognitive-motor domain (for now) by comparing the characterization of agency between 

patients with compromised cognitive/motor control and healthy individuals. I attempt to 

characterize agency with respect to the processes within one’s neurobiological systems, 

particularly of the cognitive and somato-sensory-motor activities that are involved in expressing 

one’s agency. In this sense, the agency that I characterize is truly embodied, in that it is not a 

mere cognitive nor a motor capacity, but is an integrated capacity of both cognitive and motor 

behaviors, as I attempt to examine the biophysical signals generated by the CNS, PNS, and ANS, 
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and compare this across patients with different neurological disorders (which are accompanied 

by symptoms of both motor and cognitive difficulty). Indeed, a complete picture of agency 

would reflect all constraining factors, including external factors like the social environment, but 

for the purpose of this thesis, I limit it to the processes within one’s internal neurobiological 

system.  

In conceptualizing agency, the framework examines both goal-directed and 

spontaneous self-emerging behaviors that exhibit different coordination patterns of the full 

brain-body networks. To that end, we take the bottom-up perspective of agency, where 

behaviors are a byproduct of large interactive processes within a complex system (body), with 

goals distributed at numerous levels of control (e.g., low level set for autonomic control such as 

maintaining respiration, to high level set for cognitive control such as counting backwards). This 

entails examining naturalistic motor behaviors (e.g., spontaneous motions of automatically 

swinging arms during gait, or of spontaneously retracting motion as a consequence of touching 

a button) along with biophysical signals produced by different bodily functions (e.g., heart, 

kinematics, brain waves). Although this approach results with having much noise introduced by 

extraneous factors, the aim is to observe the forest through a holistic lens; with the hopes of 

making sense of the trees at a later stage. Indeed, although we are left with much noise using 

this approach, we are nevertheless able to take advantage of the signal variability emerging 

from some of these noise, as they do turn out to be the most informative signal (elaborated in 

section 2.2.4.1.1). 

Using this framework, in the next three chapters, I introduce three experimental 

paradigms that allow examining the range of stochasticity and connectivity of biophysical 

signals, that are varied by physiological control (e.g., motor, respiratory) and cognitive 

processes. I aim to characterize the level of cognitive-motor agency by examining how the 
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biophysical systems dynamically change as a result of various factors, and by comparing them 

between healthy individuals and those with compromised cognitive/motor abilities. For 

instance, the biophysical signals that are extracted from these experimental paradigms are 

classified by intent level (e.g., deliberate motion vs. spontaneous motion) and by the nervous 

systems that the signals are generated from (e.g., brain signals from the CNS vs. heart signals 

from the ANS). In so doing, we can characterize the range within which the brain and body 

networks’ patterns emerge across these varying conditions (whether that is by motor intent, or 

by the type of the nervous system). By comparing such range across populations with different 

cognitive/motor capability, the thesis attempts to understand the properties of cognitive-motor 

agency. Here, we assume high agency to be characterized as the patterns found among healthy 

individuals, and low agency as those exhibited by patients with compromised cognitive/motor 

control (Figure 1.2). Note, to be able to examine how they influence one’s physiological system, 

it is inevitable to control for extraneous factors to some degree. For that reason, the research 

participants are, at times, imposed with external/artificial top-down goals or instructed to 

perform a set of constrained actions. This is not an ideal scenario of observing one’s behavior 

naturally unfold, but it is a necessary compromise to facilitate interpretation of phenomena 

using statistical inference. 

Also, note, I raise a distinction between cognitive/motor control and cognitive-motor 

agency. Both terms are related in that being capable of exerting high cognitive/motor control is 

correlated with higher levels of cognitive-motor agency. However, higher agency does not refer 

to the instance when top-down control is executed successfully, but rather is a global state 

when both top-down and bottom-up controls are implemented successfully. To examine this 

global state of behavioral capacity (i.e., agency), throughout the chapters, I will examine the 

range of stochasticity and dynamic connectivity of biophysical signals with respect to factors 
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such as motor intent and cognitive load. By quantifying and tracking the range of different 

movement classes that emerge from differing cognitive processes within participants, I aim to 

understand the dynamical processes within the human complex system that contribute to 

agency, and by comparing across different populations with different cognitive/motor capacity, I 

aim to characterize different levels of cognitive-motor agency.  

 

Figure 1.2 General overview of the dissertation approach to build embodied cognition analysis 
(ECA)   

 

In doing so, I present a variety of analytics that are useful to characterize the different 

levels of control exhibited by the research participants’ biophysical signals obtained from these 

experiments. Because many of the data sets acquired from these experiments are datatypes 

that are not commonly analyzed in the field, we explored a variety of analytical methods 
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borrowed from fields outside of cognitive science (e.g., information theory, linear algebra, 

statistical mechanics and time series forecasting (Box, Jenkins, Reinsel, & Ljung, 2016)), with the 

aim of finding the best datatype and its analytics to characterize the behavior of our interest.  

After reviewing these experimental paradigms and analytics, I discuss the application 

value of using the ECA framework. In particular, the study of agency under this framework is 

informative to the health science field, as it can become an objective and precise approach to 

preventing and assessing neurological disorders with compromised cognitive-motor agency 

(e.g., Autism spectrum disorder, Parkinson’s disease). Here, I will review the studies described in 

the previous three chapters, highlighting the ways it can be used in the clinical domain.  

 

2 Cognitive load and control represented as a network 

2.1 Introduction  

When you aim to lift your hand to perform simple tasks such as pointing, this act requires motor 

planning processes to coordinate the different parts of the body to perform that very task, along 

with other physiological processes to support that performance. For example, the ANS needs to 

maintain a healthy balance (e.g., healthy heart beats to keep the blood flowing through the 

brain and body) to have the capacity to perform a pointing action. Also, one needs to have a 

limited amount of cognitive load to perform the task, as an individual who is overloaded with 

other complicated cognitive task (e.g., learning to dance a complicated choreograph) would not 

have the capacity to attend to the task of pointing. All these seemingly unrelated aspects, such 

as cognitive load and heart activity, are factors that dynamically influence the process of a 

simple task such as pointing (Malcolm, Foxe, Butler, Molholm, & De Sanctis, 2018; Ryu & Torres, 

2018). Conversely, such simple pointing tasks would also influence the processes of the 
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performing individual’s physiological process (e.g., an extended series of pointing gestures 

would tax the individual and influence his/her heart and muscle activity) (Ryu & Torres, 2018).  

 Indeed, in an earlier study Ryu and Torres (2018), such dynamical interactions were 

characterized by the change in stochastic signatures of one’s heart and kinematics activities due 

to additional levels of cognitive load.  Also, from a series of work by Torres (2018), such 

interactions were observed by the change in stochastic signatures of kinematics variability 

within an individual exerting varying levels of motor control, and between individuals with 

different demographics (e.g., different ages, the presence of neurological disorders).  These 

previous works highlight the interactive nature of physiological processes that span the different 

layers of the nervous systems (i.e., central and peripheral nervous system), and emphasize the 

informativeness of biophysical signals (e.g., heart, kinematics) in characterizing the varying 

degrees of cognitive processes and of motor control.  

In the current study, we expand an earlier work by Ryu and Torres (2018), and examine 

the kinematics of different body parts in relation to network connectivity dynamically changing 

over the course of the experimental session. Here, we focus on the interactive nature of the 

physical body, where the spotlight is not only on the active hand that is performing the task (i.e., 

pointing), but on the entire upper body complex, to understand how the active and inactive 

parts of the body work together synergistically to produce a coordinated movement. We 

capture how these interactions change under different levels of motor control and cognitive 

load. By examining the range of network connectivity dynamics across the different levels of 

exerted control and cognitive load, this study is a first step to characterize a healthy individual’s 

agency that emerges from a complex system.   
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To do this, we apply to a brain-body complex network connectivity framework that is 

commonly used to characterize complex systems (Barabasi & Oltvai, 2004). First we adapt the 

layout and analyses to the interconnected grid of sensors defining a dynamically changing 

network across the body; and then we extend it to the brain, heart, etc. This framework had 

been adopted by other labs to study the brain’s non-linear dynamical patterns of activity, as the 

brain is treated as an interconnected complex network. Indeed, that body of work has  

illuminated our understanding of complex patterns within the brain activity, and have 

demonstrated the importance of examining the brain as a whole (Sporns, 2010). However, such 

methods had never been used in the analyses of peripheral activities from controlled actions, 

nor had been extended to include brain-body-heart interactions until very recently (e.g. 

Kalampratsidou and Torres (2018); Torres, Nguyen, et al. (2016b)) 

In this study, we apply this framework by extending it to the entire body. Here, the 

peripheral nerves innervating the body can be construed as extensions of the brain networks, 

and thus be modelled using the network connectivity approach, by building an adjacency matrix 

reflecting the dynamically evolving pairwise relations across the nodes of the network. In this 

case, we conceptualize the network nodes as body parts where motion sensors capture the 

kinematics signals, as shown in Figure 2.1B. Among the network models that can be used are 

linear models involving cross-correlation, and non-linear models involving cross-coherence and 

phase locking values, among others. The adjacency matrices can be constructed using a variety 

of metrics, including similarity metric distances (e.g. earth mover’s distance) as well as 

synchronicity metrics (e.g. phase locking value, cross-coherence), to construct weighted directed 

or undirected graphs. For the purpose of this study, we examine the spatial and temporal 

domains of the kinematics signal, by using mutual information and cross-correlation metrics 

respectively in building an undirected adjacency matrix and its corresponding network. The 
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networks derived from such graphs can then be compared across different levels of cognitive 

load and motor control, to see how the body connectivity reflect different degrees of cognitive 

load and of motor control as it unfolds.  

2.2 Methods  

 Participants  

Nine undergraduate students (2 males and 7 females) between the ages 18 and 22 were 

recruited from the Rutgers human subject pool system. Two were left-handed and seven were 

right-handed, and all had normal or corrected-to-normal vision. All participants received credit 

for their participation, and provided informed consent, which was approved by the Rutgers 

University Institutional Review Board.  

 Motion Capture System    

For all participants, motion capture system and a wireless heart rate monitor were used 

to record the motor and heart activities. For the purpose of this study, motor signals were only 

analyzed. Other analyses of both motor and heart signals can be found in Ryu and Torres (2018).  

15 electromagnetic sensors at a sampling frequency of 240 Hz (Polhemus Liberty, 

Colchester, VT) were attached to the participant’s upper body in the following locations: center 

of the forehead, thoracic vertebrate T7, right and left scapula, right and left upper arm, right and 

left forearm, non-dominant hand, and the dominant hand’s index finger (Figure 2.1). These 

sensors were secured with sports bands to allow unrestricted movement during the recordings. 

Motor signals were recorded in real-time by Motion Monitor (Innovative Sports Training Inc., 

Chicago, IL) software, where the participant’s body was constructed by a biomechanical model, 
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and movement data were preprocessed by an embedded filtering algorithm of the software, 

providing the location and kinematics of each sensor.   

 Experimental procedure  

Participants sat at a desk facing an iPad tablet (Apple, Cupertino, CA), which was used to 

display stimuli during the experiment, and participants responded by touching the tablet screen. 

The tablet display on was controlled with an in-house developed MATLAB (Release 2015b, The 

MathWorks, Inc., Natick, Massachusetts) program and TeamViewer (Ver 14, TeamViewer 

Germany) application. 

As shown in Figure 2.1, for each trial, the participant was presented with a circle on the 

tablet screen. This circle served as a prompt for the participant to touch the tablet screen within 

five seconds. Subsequent to the touch - after 100ms, 400ms, or 700ms - the participant heard a 

tone at 1000Hz for 100ms. Then, on the tablet screen, the participant was presented with a 

sliding scale (ranging from 0 to 1 second) to indicate how long he/she perceived the elapsed 

time between the touch and the tone. The response was to be made within five seconds upon 

the display of the sliding scale. The five seconds time-window was considered sufficient for the 

participant to provide a response, as it took approximately 1.5 s to touch the screen and retract 

the hand back to its original position. There were a total of three conditions – control, low 

cognitive load, high cognitive load - and each condition consisted of 60 trials. In the control 

condition, the participant simply performed each trial with no additional task; under the low 

cognitive load condition, the participant performed each trial while repeatedly counting forward 

1 through 5; under the high cognitive load condition, they counted backwards from 400 

subtracting by 3 while they performed each trial. Participants counted forward and backward at 
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their own comfortable pace, and they took breaks in between each condition. The experiment 

set up took about 30 minutes, and the recording took about 40 minutes.  

 

Figure 2.1. Experimental Procedure and Setup. (A) Experimental procedure. In a single trial, the 
participant was presented with a display screen as shown in the top panel. During the first 5 
seconds, the participant was presented with a circle as a prompt to touch a circle on the screen. 
After the touch, the participant heard a tone. The duration between the touch and the tone was 
randomly set to be 100ms, 400ms, or 700ms. In the next 5 seconds, the participant was 
presented with a sliding scale, where he/she indicated how long they perceived the time to have 
elapsed between the touch and the tone, by touching the corresponding the number on the 
scale. For each trial, the participant made two pointing gesture - to touch the circle and to 
indicate their time estimation on the sliding scale. Such pointing gesture was composed of a 
goal-directed segment (red) and a spontaneous segment (blue) as shown in the bottom panel. 
(B) Motion capture sensor positions. The sensors were attached on the following body parts: 
center of the forehead, thoracic vertebrate T7, right and left scapula, right and left upper arm, 
right and left forearm, non-dominant hand, and the dominant hand’s index finger. (C) Snapshot 
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of the experiment. During the experiment, the participant was seated in front of the tablet 
screen to perform the tasks, and the wired sensors were secured with athletic tape.  

 

  Data analysis  

2.2.4.1 Standardized Micro-movement Spike (MMS) Amplitude Data  

The current study applies a statistical platform for individualized behavioral analysis 

(SPIBA), which was created for personalized assessments as required in Precision Medicine 

(Hawgood, Hook-Barnard, O'Brien, & Yamamoto, 2015), by harnessing biophysical signals from 

the peripheral, autonomic, and central nervous systems to understand cognition and a variety of 

neural disorders. Within the SPIBA framework, we use a new datatype coined “micro-

movements spikes (MMS)” of biophysical signals. Biophysical waveforms are generated by the 

nervous systems and are registered from different sensors (e.g., electrocardiogram, 

electroencephalography, motion-tracking magnetometer). These waveforms give rise to a time 

series of peaks (spikes) and valleys, but different modes of waveforms reside in different ranges, 

making it difficult to analyze them in tandem as they are not comparable apples-to-apples. 

Moreover, long term drifts in biophysical signals, which fail to be eliminated by certain signal 

processing methods, also make it difficult to compare a single mode of biophysical waveform at 

different time segments. In order to overcome this barrier, MMS waveforms can be utilized, 

which is a spike train derived from a time series of biophysical signals, where the spike 

amplitudes are standardized to [0,1] range, and non-spikes set to zero. The standardized spike 

amplitude values are computed by taking the regional minima and maxima values from the raw 

time series, thereby bringing different modes of signals to the same range and avoiding noise 

due to long term drifts. Using the MMS waveforms, we are able to reflect the fluctuations in the 

amplitude and timing of the biophysical signal, which are assumed to follow a continuous 

random process under the general rubric of Poisson Random Process, and are independently 
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and identically distributed, IID. In our approach we can relax the IID assumption by allowing 

sampling from the raw time series with overlapping windows and as such introducing co-

dependencies of future events on prior events variations. However, in this thesis I will focus on 

the IID sampling whereby blocks are independently sampled, without overlapping. 

In this study, we focused on the standardized spike amplitudes of the MMS data, 

obtained from the instantaneous angular accelerations from each body parts. There are many 

kinematic parameters that can be examined, but we focused on the angular acceleration for this 

study. Although motion sensors yield linear and angular positional data and their higher order 

derivatives - linear velocity, angular velocity, linear acceleration, angular acceleration – because 

the current analysis relies on the statistical power of the data set (i.e., number of normalized 

amplitudes), a larger number of data sets would be most desirable. For that reason, we chose to 

focus on the parameter - angular acceleration - which produced the largest number of spikes in 

the least amount of time. This way, we avoid fatiguing the participant just to gather more 

samples. Notice here that we can restrict the MMS to minute fluctuations beneath certain peak 

amplitudes, but in this thesis, we examine all peaks which could possibly contain 

instrumentation noise. Separating instrumentation noise from physiologically relevant signal has 

been the topic of other work in our lab (Wu, Jose, Nurnberger, & Torres, 2018). My work will 

focus on all existing peaks from the MMS train extracted from motion sensors’ angular 

acceleration outputs.    
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To compute standardized spike amplitudes, we took each spike amplitude from the raw 

angular acceleration data, and divided by the sum of raw spike amplitude and average of the 

signals sampled within the two adjacent minima surrounding the spike (see  

Eq 2.1). This is a common method to address possible allometric effects (Mosimann, 

1970) that occurs due to individual anatomical differences (Figure 2.3B) 

Eq 2.1 

For analysis, we segmented the motion by deliberate (high control, involving higher 

awareness) and spontaneous (low control, involving lower awareness) segments, to observe the 

difference in connectivity when an individual exerts different levels of control. We segmented 

such motions by examining the continuous trajectory of the dominant hand index finger 

performing repeated pointing movements, and decomposed it into forward (deliberate; from 

the time when the hand is resting on the table to the time the finger arrives at the target) and 

backward (spontaneous; from the time the finger reaches the target to the time the hand 

retracts back to its resting position) segments. We can safely assume that the forward 

movement is a deliberate movement requiring more control, as the individual has a goal in mind 

to move the hand in a certain way, while the backward movement is a spontaneous one 

demanding less control, since the individual performs such action without any instruction 

(Nguyen, Papathomas, Ravaliya, & Torres, 2014; Torres, Heilman, & Poizner, 2011a; Torres, 

Raymer, Gonzalez Rothi, Heilman, & Poizner, 2010). The timing of the start and end of the two 

movement segments were determined by examining the linear velocity of the dominant hand 

finger, and identifying the time when the linear velocity reached instantaneous zero, as this 

would occur when the hand reached the target and when it returned back to its resting position 

(Figure 2.3A). The timing derived from the dominant hand’s kinematics was used to extract the 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  
𝑅𝑎𝑤 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

𝑅𝑎𝑤 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑖𝑛 𝑡𝑜 𝑀𝑖𝑛 
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corresponding deliberate and spontaneous segments of angular acceleration from other body 

parts. It is worth noting that, the spontaneous/backward motion segment is an immediate 

consequence of the deliberate segment. In the past, patients with lower cognitive-motor agency 

such as ASD have shown less distinction in stochasticity between deliberate and spontaneous 

motion segments (Torres, 2013), implying that they may not be able to differentiate and 

understand the cause (deliberate motion) and effect (spontaneous motion) of their motions as 

well as their healthy counterparts would be able to. As such, it is meaningful to compare 

between these two movements, as they would inform us about the extent to which healthy 

individuals have awareness and control of the many co-existing motion segments that their 

complex behaviors possess (Torres, 2011). 

We also separated the data by the location of the body parts - dominant and non-

dominant side. If the person was right-handed, the dominant side corresponded to the body 

parts: right scapula, right upper arm, right forearm, right hand; and the non-dominant side 

corresponded to the body parts: left scapula, left upper arm, left forearm, left hand; and for the 

left-handed person, vice versa. This allowed us to further differentiate movement by motions 

that are active and goal-oriented (i.e., dominant side) and motions that are passive and 

spontaneous (i.e., non-dominant side).  

2.2.4.1.1 Noise-to-Signal Ratio  

For each dominance side (i.e., dominant or non-dominant) of body parts, and for each 

deliberate and spontaneous segment, a set of standardized spike amplitudes were extracted 

and input to a Gamma process. During a typical participant’s single pointing movement (either 

deliberate or spontaneous movement segment), a single body part’s angular acceleration time 

series produce approximately 15 spikes, and aggregating these across the three conditions 

(control, low cognitive load, high cognitive load conditions) and trials (60 trials per condition) 
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yields approximately 2500 spike amplitude data. These data were plotted on a frequency 

histogram using Freedman-Diaconis binning rule (Freedman & Diaconis, 1981), and fitted to a 

Gamma probability distribution function using maximum likelihood estimation (MLE).  

In the past, our lab explored the differences between multiplicative (e.g., lognormal 

family) and additive (e.g., exponential families) random processes of the kinematics MMS data 

across thousands of individuals from different population (e.g., athletes (Torres, 2011), patients 

with autism spectrum disorder (Torres & Donnellan, 2015), patients with Parkinson’s disease 

(Torres, Cole, & Poizner, 2014), patients with schizophrenia (Nguyen, Majmudar, Papathomas, 

Silverstein, & Torres, 2016) ) and during different motor performance (e.g., 

deliberate/spontaneous reaching (Torres, Heilman, & Poizner, 2011b; Torres et al., 2010) , 

natural walking (Torres, Nguyen, et al., 2016a) , involuntary head motions in resting position 

during fMRI experiments (Torres, Mistry, Caballero, & Whyatt, 2017) (E. B. Torres & Kristina 

Denisova, 2016) ). Our experiences with these data showed that the continuous Gamma family 

of probability distribution functions (PDF) have the best fit to the kinematics data, according to 

MLE. For that reason, we chose to fit the standardized spike amplitude data to the Gamma PDF 

(see Figure A 1 for PDF fitness).  

The Gamma PDF is given by:  

 
Eq 2.2 

 
where there are two parameters – shape parameter (𝑎), and scale parameter (𝑏) - and 𝛤 as the 

Gamma function (Ross, 1996). Noticeably, the scale parameter is equivalent to the noise-to-

signal ratio (NSR), since the fraction of the variance over the mean of this PDF results to be the 

scale parameter, as such: 

𝑦 = 𝑓(𝑥|𝑎, 𝑏) =  
1

𝛤(𝑎)𝑏𝑎 𝑥𝑎−1𝑒
−𝑥

𝑏   for x>0  
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      Eq 2.3 

Along the scale parameter, distributions with high scale value (i.e., high NSR) tends 

towards an Exponential PDF, which is considered a memory-less distribution, where past events 

provide little value to predict future events; conversely, distributions with low scale value (i.e., 

low NSR) tends towards a Gaussian distribution, where past events predict future events with 

high certainty. This finding has been useful in interpreting the kinematics data, particularly 

among the patients with neurological disorders, who have shown to have high NSR than their 

healthy counterparts (Torres, Isenhower, et al., 2016).  

For the purpose of this study, the NSR (i.e., the fitted scale parameter) was computed 

for each body part, and the values were compared between different dominance side of the 

body parts, and between different movement segment, in order to understand how much noise 

there is when different levels of control is exerted during one’s motor movement.  

2.2.4.1.2 Mutual Information (MI) 

The frequency distribution of the standardized spike amplitudes of angular acceleration 

time series can also be analyzed with an approach based on information theory by Shannon 

(1948). According to the theory, with an obtained data set X = < 𝑥𝑖 >, information is computed 

in bits as:  

𝐼(𝑥𝑖) = 𝑙𝑜𝑔2 (
1

𝑃𝑋(𝑥𝑖)
)        Eq 2.4 

which is the logarithm of the ratio of uncertainty before 𝑥𝑖 was observed to the uncertainty 

after 𝑥𝑖 was observed. For instance, if we have 2 unbiased coins, the probability of observing 2 

heads (HH) is  𝑃𝑋(𝑥𝑖 =  𝐻𝐻) =  
1

4
 . The ratio of uncertainty before HH occurred is 1, because 

2a b
b

a b
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anything can happen at that point. Once HH occurred, the probability space of anything 

happening (i.e., uncertainty) is reduced to  
1

4
 . Essentially, the less likely the event is, the larger 

that event’s information is. That is, if the event is predictable, we learn little from that event, 

and there is little uncertainty and information; if the event is unpredictable, we learn a lot and 

there is more uncertainty, and obtain much information from that event. 

Information entropy is the weighted average of these information bits across the event 

space X (or source X), where 𝑃𝑋(𝑥𝑖) are weights for 𝐼(𝑥𝑖), and is computed as:  

 𝐻(𝑋) =  𝐸(𝐼(𝑋)) =  − ∑ 𝑃𝑋(𝑥𝑖)𝑙𝑜𝑔2𝑃𝑋(𝑥𝑖)𝑥𝑖
     Eq 2.5 

Using the information entropy from two sources, mutual information (MI) can be computed. MI 

is the amount of uncertainty (information) reduced from obtaining the information from 

another source. Between sources X and Y, MI is the information entropy from X reduced by the 

information entropy of X if information of source Y is known. This can be computed as such:  

𝐼𝑋𝑌 = 𝐻(𝑋) − 𝐻(𝑋|𝑌)         Eq 2.6 

where the conditional entropy can be computed as:  

𝐻(𝑋|𝑌) =  ∑ 𝑃𝑌(𝑦𝑗)𝐻(𝑋|𝑌 = 𝑦𝑗)

𝑦𝑗

 

=  − ∑ 𝑃𝑌(𝑦𝑗) {∑
𝑃𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

𝑃𝑌(𝑦𝑗)
𝑥𝑖

 𝑙𝑜𝑔2

𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)

𝑃𝑌(𝑦𝑗)
}

𝑦𝑗

 

=  − ∑ 𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)𝑙𝑜𝑔2 (
𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)

𝑃𝑌(𝑦𝑗)
)

𝑥𝑖,𝑦𝑗

 

=  − ∑ 𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)𝑙𝑜𝑔2𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗) + 

𝑥𝑖,𝑦𝑗

∑ 𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)𝑙𝑜𝑔2𝑃𝑌(𝑦𝑗) 

𝑥𝑖,𝑦𝑗

 

=  − ∑ 𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)𝑙𝑜𝑔2𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗) + 

𝑥𝑖,𝑦𝑗

∑ 𝑃𝑌(𝑦𝑗)𝑙𝑜𝑔2𝑃𝑌(𝑦𝑗) 

𝑦𝑗

 



26 
 

 
 

=  𝐻(𝑋, 𝑌) − 𝐻(𝑌)       Eq 2.7 

Hence,  

𝐼𝑋𝑌 = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) =  ∑ 𝑃𝑋𝑌(𝑥𝑖 , 𝑦𝑗)𝑙𝑜𝑔2
𝑃𝑋𝑌(𝑥𝑖,𝑦𝑗)

𝑃𝑋(𝑥𝑖)𝑃𝑌(𝑦𝑗)𝑥𝑖,𝑦𝑗
  Eq 2.8 

As such, MI values are roughly dependent on the following factors: entropy of X, entropy of Y, 

and overlap of X and Y. Within the context of comparing two distributions, if either X (or Y) had a 

larger spread, the uncertainty would be higher, and this would lead to a higher entropy value 

(i.e., H(X) or H(Y)). If X and Y had a larger overlap, such that the joint distribution has a smaller 

spread, the joint entropy of X and Y would be smaller (i.e., H(X,Y)). Given these, if the two 

sources are independent, MI equals 0. Assuming the dependence is constructed randomly (as 

explained in the following paragraph), if the variability of the single distribution(s) is higher, this 

leads to a higher MI value. In addition, if there is a large overlap in two distributions, this would 

also lead to a higher MI value. (Figure 2.2).  

 

Figure 2.2. Mutual Information of two frequency distributions. (Top) Example of 2 frequency 
distributions, where the two are either independent, similar in range and spread, similar in 
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range but dissimilar in spread, and dissimilar in range but similar in spread (from left to right). 
(Bottom) Corresponding joint probability distribution of the corresponding above graphs, where 
the x-axis represents the blue histograms, and y-axis represents the orange histograms. In the 
context of this study, distributions that have larger spread will result with high MI, and those 
with larger overlap will result with high MI.  

 

In the current study, MI was computed between histograms of two body part’s 

standardized spike amplitudes of angular acceleration. Single probability distributions 𝑃𝑋(𝑥) for 

each body part were computed by constructing a histogram with 31 sampling bins set to range 

from 0.5 to 0.8, which encompasses the minimum and maximum fluctuations in amplitude 

values. This bin size is a close number to the sampling bin size if Freedman-Diaconis binning rule 

(Freedman & Diaconis, 1981) was applied. Note, we also tested with increments set at 0.015 

with 21 bins (i.e., larger sampling bin), but this did not change the overall results. Joint 

probability distributions 𝑃𝑋𝑌(𝑥, 𝑦) for a pair of different body parts could not be empirically 

determined, because the angular acceleration spikes from different body parts do not happen 

simultaneously. For that reason, the joint probability distribution was estimated by randomly 

sampling a pair from each body parts, X and Y, without replacement, and by constructing a joint 

histogram from these sampled pairs. Using the estimated joint probability distributions 

 𝑃𝑋𝑌(𝑥, 𝑦), along with the empirical single probability distribution 𝑃𝑋(𝑥), we computed the 

mutual information 𝐼𝑋𝑌 , and repeated this computation 100 times. The median of the 100 

estimated mutual information 𝐼𝑋𝑌 values was determined as the final value (Figure A 2).  
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Figure 2.3 - Analytical and Visualization Methods. (A) Typical movement trajectory of the 
dominant hand performing a single pointing action towards a target. Each trajectory was 
separated by deliberate (red) and spontaneous segments (blue). (B) Time series of angular 
acceleration of the dominant hand’s index finger during a typical pointing task. Peaks (spikes; 
maxima) and valleys (minima) are shown in red and black dots, respectively. The inset shows a 
zoomed-in picture of a single angular acceleration segment (i.e., two local minima and a single 
spike in between). This is a schematic of computing the standardized spike amplitude from a 
continuous time series of signal data, where the standardized spike amplitude is computed as 
dividing the spike value by the sum of the spike value and the average of the signal values 
between the two local minima as shown in Eq 2.1. (C) MMS train for a typical pointing task. All 
spike values from (B) were standardized between 0 and 1, while all non-spike values were set to 
0. (D) Frequency histogram of MMS Amplitudes fitted to a Gamma PDF. All standardized spikes 
were gathered across trials and/or movement segments, and its histogram was used to compute 
the noise-to-signal ratio (NSR), and mutual information (MI) between different pairs of body 
parts per conditions and/or movement segments. (E) Estimated Gamma parameters for each 
fitted histogram. The histograms were fitted with a Gamma PDF using maximum likelihood 
estimation. For each fitted histogram, the Gamma parameters were plotted on a Gamma 
parameter plane (with shape parameter representing the x-axis and scale parameter 
representing the y-axis), with marker lines representing the 95% confidence interval. The fitted 
scale parameters (i.e., NSR) were later used for comparison between conditions and movement 
segments. (F) Cross-correlation between different pairs of body parts. For each trial, cross-
correlation was computed for different pairs of body parts’ angular acceleration time series. (G) 
Matrix of maximal cross-correlation between different pairs of body parts. From the cross-
correlation results, maximal cross-correlation values were extracted from each trial. (H) 
Network analysis of the weighted undirected matrix of cross-correlation. Using the weighted 
undirected matrix of cross-correlations, networks were constructed, where the nodes 
corresponded to each body part, and the links corresponded to the maximal correlation values. 
From this network, modules and clusters were computed as a measure of segregation. Later, the 
medians of these measures were compared between conditions and/or movement segments. 

 



29 
 

 
 

2.2.4.2 Maximal Cross-Correlation data  

In order to capture the temporal correlation across different parts of the body, we 

examined cross-correlations between the angular acceleration time series from all pairs of body 

part combinations. For each movement segment within a single trial, and for all three 

conditions, we computed the cross-correlations and between each pair of body sensors, and 

searched for the maximal correlation values (Figure 2.3F). This produced a matrix of maximal 

cross-correlation values across all pairs of body parts for each movement segment within a 

single trial.  

Using these matrices, we were able to construct a peripheral bodily network, where the 

nodes corresponded to each body part, and the weight as the cross-correlations between each 

pair of nodes (Ryu & Torres, 2017; Torres, Nguyen, et al., 2016a; Whyatt & Torres, 2017). Using 

these networks, we computed the modularity and cluster coefficients, which are measures that 

characterize the local connectivity (i.e., functional segregation).  

2.2.4.2.1 Cluster Coefficient  (CC) 

Network degrees between a set of nodes form triangles, and the fraction of triangle 

numbers formed around each node is known as the cluster coefficient. This measure essentially 

reflects the proportion of the node’s neighbors (i.e., nodes that are one degree away from the 

node of interest) that are also neighbors of each other (Watts & Strogatz, 1998). Here, we 

computed the average intensity (geometric mean) of all triangles associated with each node, 

where the triangles reflect the degree strength, and is computed as shown below, using an 

algorithm by Onnela, Saramäki, Kertész, and Kaski (2005). For comparison, we computed this 

coefficient for each condition and movement segment, and took the median cluster coefficient 

as the summarizing value.   
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 Eq2.9 

 

 

 

2.2.4.2.2 Modularity Togetherness (MT) 

Modularity is another measure of functional segregation, but unlike the cluster 

coefficient metric, this is done by subdividing the nodes into groups, which is configured to 

maximally connect within each group, and minimally connect between groups (Girvan & 

Newman, 2002), using an optimization algorithms by Leicht and Newman (2008). Through this 

subdivision, each node is grouped to a module; and this is done for each movement segment 

within a single trial for all three conditions.  

One disadvantage of the modularity metric, when used to assess connectivity patterns 

in repetitive trials, is that node participation is not always guaranteed to be within the same 

module. For example, the network in trials 1-3 may consistently show 3 modules, with a certain 

number of nodes participating in each. The identity of the nodes in module 1 of trials 1-3 may 

differ from trial to trial. As such, we developed the notion of togetherness by examining 

consistent node participation in module from trial to trial. If the pair of nodes belonged to the 

same module, we called the pair being together. This approach gave us the advantage to track 

the node’s participation in modules in a more systematic way, so we can rank self-emerging 

(kinematic) synergies within the body part nodes. Essentially, the modularity togetherness 

metric computes the proportion of the pair of nodes being together across the entire set of 

trials, as such:  

𝐶𝑖 =  ∑
𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

 

𝑁: set of all nodes (composed of 10 body parts)  
𝐶𝑖: cluster coefficient for node 𝑖  (𝑖 ∈ 𝑁) 
𝑡𝑖: geometric mean of triangles links formed around node 
𝑖  (𝑖 ∈ 𝑁) 
𝑘𝑖: number of degrees (links) formed around node 𝑖  (𝑖 ∈ 𝑁) 
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  Eq 2.10 

    

 

 

 

2.3 Results  

  Standardized MMS Amplitude data (Spatial Domain)  

As a first set of analysis, standardized spike amplitudes extracted from the angular 

acceleration data from each body part were aggregated across all trials, and arranged by 

different movement segments and different dominance side. The fitted histograms of these 

standardized spike amplitude data show an overall pattern, where a higher level of deliberate 

control (of moving the arm to complete the task) leads to higher noise-to-signal ratio (NSR) and 

higher mutual information (MI). Specifically, when an individual exerted motor control such as 

on the dominant side of the body and during a deliberate forward motion, NSR and MI was the 

highest. Conversely, when an individual did not deliberately intend to move the arm, as 

exhibited on the non-dominant side and during a spontaneous retracting motion, NSR and MI 

was the lowest. This relationship between NSR and MI can be appreciated in Figure 2.4A, B.   

Examining this outcome for each participant, as shown Figure 2.4C, the median MI is 

higher on the dominant side than the non-dominant side for all participants, with statistical 

significance on 7 participants and one approaching statistical significance (Table A 1). Also, when 

comparing the median NSR between dominant and non-dominant side, all participants have 

higher values on the dominant side, with all but one showing statistical significance (Table A 3).  

When we examine the MI and NSR difference between dominant and non-dominant parts, 

separately for deliberate and spontaneous motion, we also find that participants exhibit a wider 

𝑀𝑜𝑑𝑢𝑙𝑎𝑖𝑟𝑡𝑦 𝑇𝑜𝑔𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑠𝑠𝑖,𝑗 =  
1

𝑇𝑟
∑

𝛿𝑚𝑖,𝑚𝑗

2
𝑖,𝑗∈𝑁

 

𝑚𝑖: module containing node 𝑖  (𝑖 ∈ 𝑁) 
𝛿𝑚𝑖,𝑚𝑗

: 1 if 𝑚𝑖 = 𝑚𝑗, and 0 otherwise  

𝑇𝑟: total number of trials  



32 
 

 
 

difference for both MI and NSR during their deliberate motions, and show higher statistical 

significance (Table A 1, Table A 3).   

Comparing between deliberate and spontaneous motions, as shown in Figure 2.4D, the 

median MI is higher during deliberate motions than spontaneous motions for all but one 

participant, and among those participants, 6 participants show statistical significance and one 

approach statistical significance (Table A 2). The median NSR is also higher during deliberate 

motions, and this is the case for all participants, with all but one showing statistical significance 

(Table A 4).  When we examine the MI and NSR difference between deliberate and spontaneous 

motions, separately for the dominant and non-dominant side, we also find all but one 

participant exhibit a wider difference for both MI and NSR during their deliberate motions, and 

show higher statistical significance (Table A 2, Table A 4).   

The distinctions that we observe from these findings, on how different levels of motor 

control (i.e., deliberate vs. spontaneous; dominant vs. nondominant) have separable stochastic 

and entropy characteristics allude to how the complex (brain/body) network of a healthy 

individual (with high cognitive-motor agency) transmits information so that the system as a 

whole  can perceive the consequence of the action that is performed at each moment, and 

eventually construct a model of the consequential variations of impending actions. This type of 

predictive model compensates for the inherent transduction and transmission delays in sensory 

processing, sensory integration and sensory-motor transformations. Under the present 

methodology we can characterize such compensations by estimating  the impending 

consequences in a precise statistical inferential and theoretical information ways.



33 
 

 
 

 

Figure 2.4. MI and NSR Comparison across different levels of motor control. (A)  Mutual information (MI) and noise-to-signal ratio (NSR) of a 
right-handed representative participant. Mutual information (MI) was computed based on a set of histograms of angular acceleration 
standardized spikes across different pairs of body parts; and noise-to-signal ratio (NSR) was computed based on the fitted Gamma PDF of those 
histograms. MI is represented in line weight and NSR in node size, and both metrics are graphed in the same scale across different movement 
segment (i.e., deliberate and spontaneous segments). (B) MI and NSR for different movement segment and dominance side.  Median of all MI 
and NSR values for each participant’s different movement segments (left) and dominance side (right) are plotted. Generally, MI and NSR are 
higher during deliberate movement segment (Del; red) than during spontaneous segment (Sp; blue), and on the dominant side (D; pink) than the 
non-dominant side (ND; cyan). (C)  MI and NSR difference between dominant vs. non-dominant side. Left panel shows the MI and NSR median 
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difference between the dominant and non-dominant side for each participant, denoted as a single marker. In general MI and NSR is higher on 
the dominant side for all participants. Right panel shows the MI and NSR median difference between the dominant and non-dominant side for 
deliberate motion (Del; red) and spontaneous motion (Sp; blue). When the difference between the dominant and non-dominant side is 
examined separately for each motion segment, the difference is wider during deliberate motion segments (Del; red) than during spontaneous 
motion segments (Sp; blue). (D) MI and NSR difference between deliberate vs. spontaneous movement segment. Left panel shows the MI and 
NSR median difference between the deliberate and spontaneous motion segment for each participant, denoted as a single marker. In general, 
NSR is higher during deliberate motions than spontaneous motions for all participants, and MI is higher during deliberate motions for most 
participants. Right panel shows the MI and NSR median difference between deliberate and spontaneous motion segment on the dominant side 
(D; pink) and non-dominant side (ND; cyan). When the difference between the two motion segments is examined separately for different 
dominance side, the dominant side (D; pink) shows a wider difference for both MI and NSR than the non-dominant side (ND; cyan).
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  Maximal Cross-Correlation data (Temporal Domain) 

As a second set of analysis, for each trial, cross-correlation was performed across all 

pairs of body parts’ angular acceleration time series, and the maximal correlation values were 

extracted to represent a matrix, where the maximal correlation denoted the connection 

strength. Borrowing methods from the network connectivity toolbox in MATLAB (Rubinov & 

Sporns, 2010), we designed matrices of pairwise cross-correlation as input, and two metrics of 

functional segregation were examined – cluster coefficient (CC) and modularity togetherness 

(MT). Overall, a higher level of cognitive load led to higher MT and CC; and a higher level of 

deliberate control led to higher CC (Figure 2.5A,B).  

Comparing between high and low cognitive load conditions, the median MT is higher 

during high cognitive load than during low cognitive condition for 6 (out of 8) participants, and 

among those participants, 5 participants show statistical significance (Table A 5). The median CC 

is also higher during high cognitive load condition, and this is the case for all participants, 

showing statistical significance (Table A 6). When we examine the MT and CC difference 

between high and low cognitive load conditions, separately for deliberate and spontaneous 

motions, we find that the difference for both MT and CC are wider during spontaneous motions, 

with higher statistical significance. Note, the input matrices (maximal cross-correlation) for 

computing CC and MT for the entire pointing segment (Figure 2.5C-left), and for the separate 

deliberate and spontaneous segment (Figure 2.5C- right) are not additive in their relations. That 

is, the maximal cross-correlation for the entire pointing segment is not necessarily a value in 

between those values observed for the deliberate segment and the spontaneous segment. For 

that reason, the range of MT and CC values for the entire segment, would not necessarily fall 

between the range of values for the two separate movement segments.  
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For each participant, the median MT is higher during deliberate motions for 3 

participants and higher during spontaneous motions for the other 5 participants, and all but two 

show no statistical significance (Table A 7). The median CC, on the other hand, is higher during 

deliberate motions for all participants, and all show statistical significance (Table A 8). When we 

examined the MT and CC difference between deliberate and spontaneous motions, separately 

for high and low cognitive load conditions, we find a difference in the MT pattern, such that 

under the low cognitive load condition participants generally show little difference between 

deliberate and spontaneous motions, and under the high cognitive load condition they generally 

show a lower MT during deliberate motions, with 5 people showing statistical significance. Also, 

the CC difference between the two motion segments is generally wider with higher statistical 

significance under the low cognitive load condition.  

The distinctions that we observe from these findings, on how different levels of motor 

control (i.e., deliberate vs. spontaneous) and cognitive load (i.e., high vs. low) have separable 

network connectivity patterns, illustrates how the network topography transforms with the 

changes in one’s cognitive processes. As we observe and characterize the changes in the 

patterns of healthy individuals (with high cognitive-motor agency), we gain knowledge on the 

types of network topography that embodies high agency. Also, given that these data are from 

healthy individuals, these can later be used to buildnormative criteria to measure the departure 

from typical levels of agency for other patient populations.  
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Figure 2.5. Modularity togetherness (MT) and cluster coefficient (CC) comparison across different levels of motor control and cognitive load  
(A) MT and median CC of a representative participant. MT and CC are visualized, where the MT is represented in the line weight and CC in the 
node size, during low cognitive load condition (left) and high cognitive load condition (right), and during deliberate movement segment (top) and 
spontaneous movement segment (bottom); both metrics are graphed in the same scale across different cognitive load condition and movement 
segment. (B) MT and CC across different cognitive load conditions and movement segment. Median of all MT and CC values for each 
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participant’s different movement segment (left) and cognitive load conditions (right) were plotted. CC is higher for deliberate movement 
segment (red) than spontaneous movement segment (blue), and higher during high cognitive load (pink) than low cognitive load (cyan). (C) MT 
and CC difference during high vs. low cognitive load condition. Left panel shows the MT and CC median difference between high and low 
cognitive load conditions for each participant, denoted as a single marker. In general, CC is higher during high cognitive load condition. Right 
panel shows the MT and CC median difference between high and low cognitive load conditions during deliberate motions (red) and spontaneous 
motions (blue). Overall, the difference for both MT and CC is more pronounced during spontaneous motion than during deliberate motion. (D)  
MT and CC difference between deliberate vs. spontaneous motion segment. Left panel shows the median ΔMT and ΔCC between deliberate 
motions and spontaneous motions for each participant, denoted as a single marker. Aggregating across all three cognitive load conditions, ΔMT 
is found to have mixed result when comparing between the deliberate and spontaneous motion segment; on the other hand, the ΔCC has a 
higher value during deliberate motion than during spontaneous motion. Right panel shows the median ΔMT and ΔCC between deliberate and 
spontaneous motions during high cognitive load (pink) and low cognitive load condition (cyan).When comparing the difference between 
cognitive load conditions, MT is generally higher for spontaneous motion when under high cognitive load condition, and similar between 
movement segments under low cognitive load condition. The ΔCC between the movement segments shows to be slightly wider during low 
cognitive load condition than the high load condition. 
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2.4 Discussion   

In this study, we focused on examining the interconnectivity of kinematic signals (i.e., signals as 

part of the somato-sensory-motor streams flowing between the peripheral and the central 

nervous system) across different parts of the body – both active (e.g., dominant arm; actively 

engaging in the task) and less active (e.g., non-dominant side; supportive of performing the 

task). By observing the changes in connectivity due to varying levels of cognitive load and motor 

control, we demonstrated the interactive nature of biophysical signals that flow across the brain 

and the body. By assessing the system of healthy individuals, particularly regarding the ranges 

and patterns of connectivity across their body, we are able to understand how the complex 

system of individuals with high agency communicate within the system.  In this sense, we offer a 

first characterization of agency as defined in this thesis. Here, we borrowed concepts from 

stochasticity, information theory and network analysis, and adapted them to apply such 

analyses to the kinematic signals. We characterized such interactions and abstract concepts in 

an embodied manner. (Figure 2.6) 

 

Figure 2.6. Schematic overview of the study   
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Overall, when we examine the spatial domain of the kinematics signal (i.e., standardized 

spike amplitude of angular acceleration), we find that higher motor control (represented during 

deliberate motions and on the body’s dominant side) is characterized by higher NSR and 

informational dependency (MI). Here, NSR can be a misnomer, as it seems to imply the 

presence of useless noise. However, in this context, NSR represents the variability of the 

biophysical signals, and large variability implies a signal ranging on a wide scale with flexibility. 

For that reason, when we conceptualize the spatial network of the kinematics signal, we can 

visualize the active and controlled parts of the body to be exchanging a wide range of 

information while keeping its range of stochasticity flexible as possible.  

When we look at the temporal domain of the signals (i.e., cross-correlation of angular 

acceleration), and observe the functional segregation of the participant’s kinematics network 

represented by CC, we find higher segregation under higher motor control (represented during 

deliberate motion segment) and higher cognitive load conditions. In this context, a node with 

high CC can be visualized as a well-connected hub within a network. As such, when more 

cognitive processes are involved (as in experiencing higher cognitive load or exerting more 

control on motor action), we find a pattern where a set of body parts are organized in a more 

concentrated synergistic manner.  

MT is also a measure of functional segregation, representing small-world organizations 

(subgroups) within a network. Higher MT implies a concentrated group as a whole with less 

small-worlds (subgroups) within a network; conversely, lower MT implies a more distributed 

network with multiple subgroups. Under this measure, there were mixed results across 

participants when comparing across different motor segments and cognitive load conditions. 

However, when these comparisons were further subdivided, we find that during spontaneous 

motions, different levels of cognitive load are better characterized, such that the network is 
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more distributed under low cognitive load conditions. Also, during high cognitive load condition, 

different levels of motor control are better characterized, such that the network is more 

distributed during deliberate motor segments.  

Aside from the properties of a healthy individual’s (i.e., of high cognitive-motor agency) 

network connectivity mentioned above, it is worth to highlight several merits of this study. First, 

the study remarkably demonstrates how the peripheral signals can broadcast cognitive 

processes so clearly, thus suggesting the usage of motor activities as a proxy of the brain 

activities, when we examine through the lens of kinesthetic reafference (as the variability of 

kinesthetics becomes a content of information). Indeed, pointing motions have commonly been 

used in motor control studies, starting with experiments involving movements constrained to a 

plane and allowing only 2 joints to rotate and translate the hand to the target (Flash & Hogan, 

1985; Uno, Kawato, & Suzuki, 1989), to experiments within a more naturalistic, unconstrained 

setting (Flanders, Daghestani, & Berthoz, 1999; Flanders, Pellegrini, & Geisler, 1996; Torres, 

2011). The novelty of this study is in capturing the relationship between motor control and 

cognitive load across the body, as it captures the moment by moment changes in the internally 

generated activities of the nervous systems during simple pointing tasks, while participants 

process different types/levels of cognitive processes. This is a new embodied approach of 

studying cognitive phenomena, which is an improvement from the old methods of relying on an 

external observant. Furthermore, by segmenting motions as deliberate and spontaneous, the 

study provides a new way to see how the system inherent of healthy/high agency is able to 

perceive its cause (deliberate motion) and effect (spontaneous motion) effectively. Indeed, we 

visually perceive the difference between dominant and nondominant side of the arm, and the 

deliberate and spontaneous segments of actions. However, the data we analyzed are not visible 

to the naked eye, as they are minute fluctuations (MMS) of the kinematic signal. Hence, it is 
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illuminating to see how such miniscule type of biophysical signal is informative of the cognitive 

processes unfolding within the span of an experimental session. Such information of motor 

action is communicated to the brain by kinesthetic channels, and these re-entrant information 

(reafference) offers a new way to monitor the levels and quality of kinesthetic sensory feedback 

that the brain may be experiencing from moment to moment. Through the connectivity patterns 

of these kinematic signals, we were able to illustrate the communicative pattern that occurs 

within the system; particularly in the presence of high agency.  

In conclusion, the study describes how different body parts and movement segments 

respond differently to changes in cognitive processes, revealing the different movement classes 

that self-organize and dynamically change under different contexts. We introduced an 

experimental paradigm and analytical methods that characterized such topographic 

organizations of the kinematics signals, and provided novel means to study how the body 

connectivity broadcasts different degrees of cognitive processes and of motor control. 

Furthermore, this approach to embodied cognition offers new avenues to bridge the currently 

disconnected fields of motor control and cognitive phenomena. 

In this study, we examined the properties of a complex system characteristic of high 

agency. In the next study, we compare this with systems of lower agency (exhibiting 

compromised motor control), to understand how the connectivity patterns differ across varying 

levels of cognitive-motor agency.  

 

3 Impact of entrained breathing on the nervous systems 

3.1 Introduction  
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In the study from Chapter 2, we learned how complex systems of high agency (of healthy 

individuals) exhibit cognitive processes with varying degrees of cognitive demand as reflected by 

the topography of their kinematics networks. We uncovered the range of stochasticity and 

connectivity of biophysical signals within the peripheral nervous system (i.e., kinematics), clearly 

broadcasting different levels of motor control and awareness, and well-defined levels of 

cognitive load. In addition to the bodily kinematics, there are other biophysical signals that can 

be registered, and thus examined as integrative parts of the physical body, conceived as a 

complex non-linear dynamical system. Moreover, the act of control is not limited to the motor 

domain, as it includes other domains as well (e.g., respiratory control in the autonomic domain, 

and attention in the cognitive domain).  

 In the current study, we attempt to extend our analysis to the biophysical signals 

generated by the central nervous system (CNS), peripheral nervous system (PNS), and the 

autonomic nervous system (ANS), and explore a different kind of control – entrained breathing.  

Breathing is an autonomic process that occurs beneath our awareness, as with other 

autonomic processes of the ANS (e.g. processes within blood vessels, stomach, bladder). 

However, breathing can be brought up to awareness and deliberately controlled by voluntarily 

pacing the time point of inhaling and exhaling (Herrero, Khuvis, Yeagle, Cerf, & Mehta, 2017; 

Sasaki & Maruyama, 2014). The time points can be cued through sounds that occur with 

discernable periodicity, such as that of a metronome. Such cues can spontaneously entrain 

one’s biophysical rhythms, by having the person naturally behave while passively hearing a 

metronome beat; and the cues can also entrain the biorhythm through the person’s deliberate 

effort, where the person would actively synchronize the breathing rate to the pace of the 

metronome. Indeed, if we had to attend to our breathing and consciously maintain a fixed pace 

all the time, it would be cognitively taxing. This leads us to question - what connectivity pattern 
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would be exhibited when effort is exerted to consciously entrain (pace) the breathing rate to a 

fixed beat, as opposed to when no conscious effort is exerted to such entrainment (when you 

are passively hearing a fixed beat) ?   

This question motivated us to study this in the context of agency, since we can examine 

the direct impact of top-down conscious control (exerted by the CNS) on the different nervous 

system (ANS and PNS). In particular, we can examine the change in the connectivity due to a 

top-down control (when one deliberately paces the breathing rate) and a bottom-

up/spontaneous control (when one passively hears the metronome beat while breathing 

naturally). In the end, by comparing the range of connectivity patterns between individuals with 

different levels of cognitive-motor agency - neurotypical population (NT) vs. patient population 

(with ASD), as the patterns evolve across conditions of different entrainments, we may be able 

to discern the difference in characteristics of complex systems exhibiting different levels of 

cognitive-motor agency. Furthermore, this characterization of agency in the context of healthy 

vs. compromised systems can provide a range of network connectivity patterns, that would 

inform us how much the system of those with neurological disorders departs from the 

normative healthy system.  

To do this, we first observe an individual naturalistically walk for a fixed amount of time 

as a baseline; and add in a metronome sound in the background without instructing the person 

to do anything. This allows us to observe how naturally breathing, while passively hearing the 

metronome sound, may affect the temporal dynamics across bodily signals (metronome 

condition; spontaneous breathing). Lastly, upon instructing the person to breathe at the tempo 

of the metronome, we characterize deliberate entrainment of one’s breathing rate to the 

metronome’s beat. Then we ask how this voluntary state of breathing to a rhythm affects the 

bodily signals (paced breathing condition; deliberate breathing).  
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 We note, however, that the implementation of such a study is a challenge, particularly 

because we aim to record the signals from multiple nervous systems in tandem. Since there are 

no research devices that allow us to simultaneously register multiple signals from different 

nervous systems (specifically, the cortical signals of the CNS, kinematics signals of the PNS, and 

heart signals of the ANS), it is a challenge to record these in tandem, and furthermore, to 

analyze them as a single datatype (as opposed to analyzing them separately).  Some studies 

have made such an attempt to record multiple modes of signals in tandem (e.g., (Bulea, 

Kilicarslan, Ozdemir, Paloski, & Contreras-Vidal, 2013; Bulea, Kim, Damiano, Stanley, & Park, 

2014; Butkevičiūtė et al., 2019; Cheron et al., 2016; Nordin, Hairston, & Ferris, 2019; Snyder, 

Kline, Huang, & Ferris, 2015)) but most do not offer the means to analyze these multimodal data 

as a single datatype. To complicate the matter, the cortical signals obtained by the 

electroencephalography (EEG) is inherently loaded with artefacts and extraneous noise, which is 

why the majority of EEG studies require the participants to stay sedentary with minimal 

movements and perform numerous repetitive trials to obtain an averaged dataset (e.g., (Luck, 

2012)). However, EEG is the only non-invasive brain imaging device that is light enough to use 

during naturalistic actions with good time resolution. Indeed there have been few studies that 

attempted to record the cortical signals within a naturalistic task such as gait (e.g., (Gwin, 

Gramann, Makeig, & Ferris, 2011; Jung et al., 2000) ) but they nevertheless constrain the 

motions to some extent, by e.g., walking on treadmills, and perform artificially repetitive tasks 

to obtain an average. These approaches where bodily motions are constrained, defy the 

overarching goal of our study, where we aim to observe the naturalistic behaviors dynamically 

unfolding.  

 In the following section, we describe the experimental and analytical methods that we 

employed to partially overcome these challenges. Notably, we integrate signals of different 
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modes into a single datatype, by incorporating the MMS train (see section 2.2.4.1) to represent 

multiple types of signals into a standard unitless representation of fluctuations in amplitude and 

timing.  We then present the findings on how entraining one’s breathing pace impacts the 

biophysical signals, and how they differ between individuals with different cognitive-motor 

agency (i.e., between healthy individuals and those with Autism Spectrum Disorder (ASD)).  

3.2 Methods  

 Participants  

A total of 13 participants partook in this study. Of those, 6 undergraduate students (2 

males and 4 females) between the ages 18 and 20 were recruited from the Rutgers human 

subject pool system, and received credit for their participation. 3 patients with a medical 

diagnosis of Autism Disorder (2 males and 1 female) between the ages 13 and 18 were 

introduced to this study after participating in a related study within the Sensorimotor 

Integration lab, and received $25 in compensation for their participation (Table A 9). 4 

researchers from the Sensorimotor Integration Lab (1male and 3 females; including the author) 

between the ages 22 and 35 also participated in this study as volunteers and received no 

compensation. All (but one) were right-handed, and all had normal or corrected-to-normal 

vision. All provided informed consent, which was approved by the Rutgers University 

Institutional Review Board.  

 Instrumentation and Data Preprocessing     

Participants wore three different types of wireless sensors to capture the 

biophysiological signals from the central (CNS), peripheral (PNS), and autonomic nervous system 

(ANS), with electroencephalography (EEG), inertial measurement units (IMU) and 

electrocardiogram (EKG) respectively.  
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Cortical signals from the CNS were captured with a wireless EEG device (Enobio, 

Barcelona, Spain) at 500Hz sampling rate with 32 sensors positioned across the scalp, and the 

wireless device positioned on the back of the participant’s head. These signals were recorded 

and preprocessed with 60Hz AC line noise removal using Neuroelectrics software (Enobio, 

Barcelona, Spain). Further preprocessing was done in Matlab (Release 2015b, The MathWorks, 

Inc., Natick, Massachusetts)-based toolbox EEGLab (Delorme & Makeig, 2004) and PrepPipeline 

(Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015). Through the PrepPipeline toolbox, 

channels were referenced via a robust average reference procedure, where channels were 

iteratively referenced to the average signal, while bad channels, such as those showing extreme 

amplitudes (deviation z-score exceeds 5) or lacked correlation with any other channel 

(correlation less than 0.4) were excluded and interpolated in this process.  

Motor signals from PNS were captured with Opal IMUs (APDM Inc., Portland, OR) at 

128Hz sampling rate, and were acquired with Motion Studio software (APDM Inc., Portland, OR). 

10 opal IMUs were attached to the participant with Velcro belts on the following body parts – 

left and right wrist, left and right upper arm, left and right foot, left and right ankle, posterior 

trunk and anterior chest (Figure 3.1). From each of the ten sensors, linear acceleration (m/s2), 

and magnetometer (μT), and temperature (°C) was registered, and for the purpose of this study, 

linear acceleration and magnetometer were mainly examined.  

The heart signals from the ANS were obtained using a wireless Nexus-10 device (Mind 

Media, The Netherlands) and Nexus 10 software Biotrace (Version 2015B; Mind Media, The 

Netherlands) at a sampling rate of 256Hz. Three electrodes were placed on the chest according 

to the standardized lead II method, and were attached with adhesive tape (Figure 3.1). In a 

typical EKG data, there are a set of QRS complexes, and in this study, inter-beat-interval (IBI) 

was examined by extracting the time points of the R-peaks, which are commonly known as the 
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heart beat. R-peaks were detected and extracted by band pass filtering the EKG signals at 5-

20Hz using Butterworth IIR filter at 2nd order. The range of the band pass filter was selected 

based on the finding that a QRS complex is present in the frequency range of 5-30Hz (Kathirvel, 

Manikandan, Prasanna, & Soman, 2011).  

Within the study, we attempted to temporally co-register the cortical and motor signals 

to record and analyze in tandem. To do so, we used an open-source package Lab Stream Layer 

(LSL) where the signals were streaming in LSL on the same computer, and were timestamped 

with mouse clicks on the display screen of that computer. Because the motor and cortical signals 

were registered at different sampling rates, EEG signals were down-sampled to 128Hz, so that 

the two signals could be analyzed as a single datatype.  

Note, it is common to reject time segments and a variety of motor artefacts within the 

EEG data; however, for the purpose of this study, we are mainly focused on understanding the 

continuous dynamical process that flows internally within an individual’s brain and body, so 

eliminating a certain time segment would undermine that purpose. Also, because the 

participant is continuously moving, it is inevitable to find large amount of motor artefacts in the 

cortical signals. If we removed these artefacts, there would be very little signals left. Needless to 

say, the large amount of data obtained from this study makes it infeasible to visually inspect and 

hand-pick to remove those artefacts. It is possible to apply bandpass filtering to remove the 

influence of gross motor movement, but this would result in losing the delta band waves (<4Hz) 

within the cortical signals. For that reason, we decided to forgo such signal preprocessing, and 

assume that the cortical signals are inevitably and inherently mixed with motor signals 

(particularly reflecting the head and facial muscle movements) with varying degrees across time 

and spatial positions of the electrodes.  
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Figure 3.1. Experimental Paradigm (Top) Three modes of devices were used to register the 
biophysical signals – IMU accelerometer to capture motor signals, EEG to capture cortical 
signals, and EKG to capture heart signals. (Bottom) There were three conditions within the 
experiment. Under the control condition (C1), the participant naturally walked around the room; 
under the metronome condition (C2), the participant naturally walked around the room with the 
metronome sound playing in the background; under the paced breathing condition (C3), the 
participant walked naturally, while pacing the breathing rate to the metronome playing in the 
background.  

 

 Experimental procedure  

The participant wore three different types of sensors - electroencephalography (EEG), 

inertial measurement units (IMU) and electrocardiogram (EKG). Once these sensors were 

calibrated, the participant was instructed to walk at their own pace for 10 minutes under three 

different conditions in a closed room. In the control condition (C1), the participant walked 

naturally for 10 minutes; in the second condition (C2), the participant walked naturally for 10 

minutes while the metronome was beating in the background at 12 beats per minute. The 

metronome was set to play from a computer, and the volume was approximately 45 dBA. The 



50 
 

 
 

participant was notified of such metronome beats prior to starting condition C2, and was asked 

to consider it like background music and that he/she need not need change anything in the 

manner of their walking. In the third condition (C3), the participated walked for another 10 

minutes as in condition C2, but paced the breathing rate to follow the metronome beat. Note, 

this breathing rate is slow and is known to provide therapeutic/calming effect to most 

individuals (Vaschillo, Vaschillo, & Lehrer, 2006). The setup of the experiment took about 30 

minutes, and the walking tasks took about 40 minutes reflecting the optional breaks participants 

took between conditions.  

This experimental paradigm was designed to examine the dynamical interactions 

occurring across the CNS, PNS, and ANS during naturalistic behaviors. The walking task was 

chosen as it requires the entire body to move in concert, thus providing abundant motor 

information, while allowing some restrictions (to walk in a confined space for a certain time) 

within a naturalistic setting. The paced breathing task in condition C3 was chosen to 

characterize the CNS activities when control is exerted on the autonomic processes that typically 

occurs automatically (i.e., breathing), and to characterize the change in ANS activities as a result 

of such control, all the while capturing the PNS activities that interact between the two systems 

(CNS, ANS). Here, the metronome condition (C2) was included as an intermediate step between 

conditions C1 and C3, allowing us to examine the spontaneous effect on the nervous systems 

when a constant beat is heard in the background.  

 Data analysis  

Among the 13 participants’ data, 5 participants data (comprised of 3 healthy controls 

and 2 patients with ASD) were fully synchronized between the three devices EKG, EEG, and IMU. 

For the remaining 8 participants, either the EEG or the IMU sensor failed to synchronize to EKG, 
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due to varying lengths of latency, or had software crashes in the middle of streaming. For that 

reason, the entire 3 modes of data (EKG, EEG, IMU) were analyzed as a single datatype for 5 

people, and EKG data were analyzed as a single datatype for all 13 participants. For one ASD 

patient whose data was fully synchronized between the three modes of devices, the EKG signal 

crashed midstream during condition C1 and C2. For that reason, data for these two conditions 

were truncated and analyzed for the first few minutes when the signals were streaming 

successfully.  

3.2.4.1 Stochasticity of Heart Signal (IBI)   

IBI data extracted from the EKG signals were plotted as a histogram, and the stochastic 

characteristics were compared across conditions and across participants. In particular, because 

the histogram of IBI’s showed to a good fit to the Gamma PDF (Ryu & Torres, 2018), the scale 

parameter of the Gamma PDF (i.e., NSR; see section 2.2.4.1.1 Noise-to-Signal Ratio) was 

compared across conditions and participants. In addition, to compare the stochastic change 

across conditions, mutual information (MI) of the IBI histograms between conditions were 

quantified (see section 2.2.4.1.2 Mutual Information (MI)) to understand the change in IBI 

stochasticity when different tasks were performed by the participant.   

 

Figure 3.2. Analyzing the stochasticity of heart signal (IBI) (Left) EKG waveform sample. Within 
the EKG waveform are QRS peaks, where the R-peaks are denoted by the red nots. The time 
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between the red dots are inter-beat intervals (IBI). (Right) Histogram of IBI is fitted to a Gamma 
PDF to characterize the stochasticity of one’s heart signals.  

 

3.2.4.2 Cross-Correlation between EEG sensors  

 As a second set of analytics, for each 32 EEG sensor data, the sensor time series were 

normalized to a value between 0 and 1, by subtracting the minimum value of that sensor, and 

dividing it by the range of that sensor data as such:   

Eq 3.1 

Then, these normalized EEG sensor data were segmented by the time segment of each IBI (i.e., 

time between two consecutive R-peaks). For each IBI segment, cross-correlation between all 

normalized 32 EEG sensors were computed, yielding a matrix of maximal cross-correlation 

values. Then, median of each matrices (i.e., cross-correlation values between all pairs of EEG 

sensors) were computed and plotted on a parameter space, where the x-axis represents the 

sequential order of IBI segment, and y-axis is the median cross-correlation value between all 

pairs of EEG sensors during that IBI segment. This depiction provides a dynamical 

characterization of the change in relations among the EEG signals. Note, we explored the change 

in cross-correlations between fixed time segment (instead of IBI segments), and with motor 

signals such as linear acceleration and magnetometer data  (instead of EEG signals), but found 

the EEG signals per IBI segment to be most informative in portraying the dynamical changes 

across conditions and participants. (Figure 3.3)  

  

Normalized data = (Raw data – MinRaw data) / (MaxRaw data – MinRaw data) 
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Figure 3.3. Analyzing the cross-correlations between EEG sensors. (A) For each EEG sensor waveform, the time points of R-peaks from the EKG 
timeseries were extracted, and accordingly, EEG sensor waveforms were segmented by each IBI segment. (B) For each IBI segment, cross-
correlation was computed for all pairs of EEG sensor waveforms. To examine the dynamical change of the connectivity across time (i.e., IBI 
segment), the median cross-correlation value per IBI-segment was computed and plotted.  
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3.2.4.3 Mutual Information (MI) between EEG, Acceleration, and Magnetometer  

From the time series obtained from the 32 channels of EEG signals, along with 10 body 

parts’ linear acceleration and magnetometer data, the timing of spikes were extracted. From the 

52 sets of time series (composed of 32 EEG data, 10 linear acceleration, and 10 magnetometer 

time series), inter-spike intervals (ISI) were computed in frame unit at 128Hz. Histograms of the 

ISI were constructed as single probability distributions 𝑃𝑋(𝑥) , and with 21 sampling bins set to 

range from 2 to 128. This bin size is a close number to the sampling bin size if Freedman-

Diaconis binning rule (Freedman & Diaconis, 1981) was applied. Note, because the sampling rate 

of these data are 128Hz, we discarded ISI values that exceed 128 (frame), as this corresponds to 

data with frequency less than 1Hz, which were deemed an outlier (z-score > 5). Also, because 

signals with frequency beyond 64Hz would be noisy (i.e., above the Nyquist rate), we also 

discarded ISI values less than 2 (frame). Joint probability distributions 𝑃𝑋𝑌(𝑥, 𝑦) for a pair of the 

ISI histograms could not be empirically determined, as these data do not occur simultaneously. 

For that reason, the joint probability distribution was estimated by randomly sampling a pair 

from each histogram’s ISI and constructing a joint histogram from these sampled pairs. Using 

the estimated joint probability distributions  𝑃𝑋𝑌(𝑥, 𝑦), along with the empirical single 

probability distribution 𝑃𝑋(𝑥), the mutual information 𝐼𝑋𝑌 was computed, and this process was 

repeated 100 times. The median of the 100 estimated mutual information 𝐼𝑋𝑌 values was then 

determined as the final value. The final MI values were then compared across different pairs of 

sensor categories (e.g., pairs comprised of 2 EEG sensors; pairs comprised of 1 EEG sensor and 1 

body part’s acceleration; pairs comprised of 1 EEG sensor and 1 body part’s magnetometer), and 

across the three conditions (Figure 3.4).  
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Figure 3.4. Analyzing mutual Information (MI) between EEG, Acceleration, and Magnetometer 
data (A) The timing of the spikes within signals obtained from EEG (top), accelerometer 
(middle), and magnetometer (bottom) data were extracted. (B) Histogram of time between 
spikes (ISI; inter-spike interval) were plotted for all sensor signals. (C) MI was computed from all 
pairs of ISI histograms. Because the distribution of the histograms vary across different modes of 
signals (as shown in (B)), the median MI of different signal categories were compared separately 
across the three conditions.   

 

3.3 Results  

 Stochasticity of heart signals (IBI)   

The IBIs were gathered and compared across the three conditions for all participants, 

and histograms were constructed to fit a Gamma PDF. The fitted Gamma parameters along with 

the 95% confidence intervals are shown in the Figure 3.5A for all participants. For most 

participants, stochastic parameters of their IBIs are separable across the three conditions, and 

for all participants, control (C1) and paced breathing (C3) conditions are separable by 95% 

confidence interval. In particular, when participants pace their breathing rate to 12 bpm (C3), 

the IBI stochasticity for all but one have a higher scale and lower shape parameters than when 
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they breathe at their own natural pace (C1); that is, the IBI PDF tend to have a wider and less 

kurtotic shape, exhibiting a larger variability in the IBI values (Figure 3.5B). Noticeably, one 

participant (P06) that does not show this pattern is a female patient with ASD, who instead 

shows a narrower range in IBI values when paced breathing (C3) is performed, as shown by its 

lower scale and higher shape parameter in its fitted Gamma PDF.  

When the fitted Gamma parameters of IBI histograms are compared across all 

participants for C1 condition, ASD patients tend to have a higher scale (NSR) and lower shape 

parameters than NT as shown in Figure 3.5C. That is, their IBI PDFs tend to be wider in shape 

with larger variability in their IBI values. In order to understand how much stochastic changes 

are observed across the three conditions, mutual information was computed between the 

histograms of condition C1 and C2 (MI1), and between condition C1 and C3 (MI2). In this 

context, higher MI values imply that the IBI variability from later conditions (C2 or C3) are 

dependent to the past IBI variability (condition C1), as there is more information dependency to 

the past. The 3 ASD patients exhibit an overall higher MI than their counterpart NT participants, 

illustrating a stronger dependence of IBI stochasticity across tasks. Moreover, participants who 

tend to have a larger MI in their  IBI stochasticity between condition C1 to C2, also tended to 

have a larger MI between conditions C1 to C3; and vice versa (Figure 3.5D).  
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Figure 3.5. Stochasticity of heart signals (IBI) (A) Fitted Gamma parameters plotted on the 
Gamma parameter plane for each participant (subplot) for each condition (marker color). Most 
participants show a high scale and low shape parameter value during the C3 (paced breathing) 
condition with the exception of one ASD participant (P06). (B) Fitted PDF of a typical healthy 
participant’s IBI distribution. The Gamma PDF of a high scale and low shape parameter is 
characterized by a wide and flat shape (red) than a PDF with low scale and high shape 
parameters (green).  (C) Comparison of stochasticity between ASD patients and healthy 
individuals during condition C1. Noticeably, ASD patients (red) showed a high scale and lower 
shape parameter in their fitted IBI distribution, characterized by a more flat and wider PDF. (D) 
Change in stochasticity across conditions. The change was characterized by MI between IBI 
distributions from two conditions. X-axis (MI1) denotes MI between conditions C1 (control) vs. 
C2 (metronome), and y-axis (MI2) denotes MI between conditions C1 (control) and C3 (paced 
breathing). Overall, there is a larger change in the stochasticity between conditions for ASD 
patients (red) compared to the healthy participants (blue).  

 

The stochastic changes across conditions exhibited in Figure 3.5 imply that the different 

tasks performed in conditions C2 and C3 influence IBI. However, because these tasks were 

performed sequentially at different times, the changes may also be due to the natural variability 

inherent in the signals. In order to see whether the change in stochasticity is due to the inherent 

variability, regardless of the tasks performed in different conditions, the first and last 200 IBIs 
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within the same condition were extracted, fitted to the Gamma PDF, and plotted on the Gamma 

parameter space with 95% confidence intervals. As shown in Figure 3.6, we find that indeed the 

IBI stochasticity varies across time within the same condition, showing that the dynamical 

changes are due to both inherent variability of the signal and the different tasks performed. 

Moreover, given the little separation shown between conditions C1 and C2, as shown in the 

large overlap of the fitted Gamma parameters for these conditions, we can infer that the 

stochasticity change from condition C1 to C2 is influenced by the inherent variability of the heart 

signal, relatively more so than the changes from conditions C1 to C3 .  

 

Figure 3.6. Fitted Gamma parameters plotted on the parameter plane For each participant 
(subplot), and for each three conditions, the first 200 IBI and the last 200 IBI within each 
condition were fitted to a Gamma PDF to see how the IBI stochasticity varies due to factors that 
are not relevant to the experimental variable (task required by each condition). As a general 
trend, the C3 condition tends to preserve its position on the parameter plane (red, magenta); 
however, the stochastic difference between C1 and C2 conditions are not clear.  
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Figure 3.7. Fitted Gamma PDF moments For each participant (subplot; same order as in Figure 
3.6), and for each three conditions, the first 200 IBI and the last 200 IBI within each condition 
were fitted to a Gamma PDF, and the first 3 moments (mean, variance, skewness) were plotted 
on the 3 axes of each subplot; and the black arrow indicates the temporal order within each 3 
conditions. For most participants, datapoints from the condition C3 stands out with higher 
skewness value than the other two conditions.  

 

  Cross-Correlation between EEG sensors  

Cross-correlation between all pairs of EEG sensors were computed for each sequential 

IBI segment for all 3 conditions, and the median of all pairs of sensors per IBI segment were 

extracted and plotted in Figure 3.8A. The magnitude change (absolute value of change) in the 

median cross-correlation between sequential IBI segments were computed and plotted as 

shown in Figure 3.8B. Such magnitude change from condition C1 to C3 was found to have 

statistical significance at 0.05 level, based on the Kolmogorov-Smirnov test for the three NT 

participants; however, this was not the case for the two ASD participants. Note, the 

Kolmogorov-Smirnov test was used, as this test is appropriate for data that do not follow a 

Gaussian distribution, and has a large sample size (n>1000) that may yield low statistical power.   
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In order to compare between the five participants, we assessed the magnitude change 

(absolute value of change) in the median cross-correlation between sequential IBI segments 

across participant pairs using the pairwise Kolmogorov-Smirnov test, from data obtained from 

condition C1, and find that the 2 ASD patients and one NT (NT1) do not show much statistical 

difference; while the other 2 NT participants show statistical difference from the rest of the 

participants (Table A 11).  

To compare between the five participants, we also computed the median of the 

magnitude change in the median cross-correlations of all EEG sensor pairs for each three 

conditions, and the change in this magnitude was compared across conditions for each 

participant. As shown in Figure 3.8C, the direction of change in this median magnitude between 

conditions are different for each participant. However, we observe that the range in this 

magnitude values are noticeably different between NT and ASD participants, such that NT 

participants have a wider range of cross-correlation magnitude changes than ASD participants 

between conditions.  
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Figure 3.8. Trajectory of median cross-correlations between EEG sensors across IBI segments. 
(A) Median cross-correlation per IBI segment of all EEG sensor pairs during condition C1 (green), 
C2 (blue), and C3 (red) for 3 healthy participants (top) and 2 ASD patients (bottom). (B) 
Dynamical trajectory of median cross-correlation per IBI segment of all EEG sensor pair, where 
the y-axis is the absolute change in median cross-correlation from the previous IBI segment. ASD 
patients generally show a narrower range in change of the EEG connectivity. (C) Difference in 
median absolute change of cross-correlations between conditions (Δ Cross-correlation 
between EEG sensors), where the x-axis (Δ C2) denotes change from condition C1 to condition 
C2, and y-axis (Δ C3) denotes change from condition C1 to condition C3. ASD patients show little 
change in the cross-correlations, in comparison to the healthy participants.  

 

  Mutual Information (MI) between EEG, Acceleration, and Magnetometer Data  

Inter-spike intervals (ISI) were gathered for each sensor of three modes of data (EEG, 

linear acceleration, and magnetometer) resulting in 52 sets of ISI. Histograms were plotted 

based on these 52 sets of ISI, and MI between each pair of histograms were computed. Median 

of the MI’s were then computed for different pairs of data modes, and plotted for each 
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individual in Figure 3.9.  In this context, high value of MI implies there is more information to 

learn from one another (informational dependence). In Figure 3.9, MI during condition C1 is 

represented in the z-axis, and changes in MI value from condition C1 to C2, and from C1 to C3 

are represented in x and y-axis respectively. Here, on the x- and y- axes, a large change in MI 

implies a large change in the information dependence across tasks.  

Focusing on the difference between the 3 NT and 2 ASD participants, the overall MI is 

lower for ASD than NT for the pairs that involve the EEG sensors; specifically the following pairs: 

pair of 2 EEG sensors, 1 acceleration and 1 EEG sensor, 1 magnetometer and 1 EEG sensor. On 

the other hand, there are mixed results for the pairs: pair of 2 acceleration sensors, 1 

magnetometer and 1 acceleration sensor. Also, ASD participants tend to have higher MI than NT 

for the 2 magnetometer sensor pairs. Overall, ASD participants show less information 

dependence in the EEG sensor signals; while showing more dependence in the magnetometer 

signals. Also, there is a slight trend, where overall small MI values tend have small change in the 

MI across conditions for all three modes of data. In fact, ASD participants tend to show smaller 

change in the MI for pairs that involve the EEG sensors. This is in line with the small magnitude 

change in cross-correlations among EEG sensors shown among ASD participants from section 

3.3.2.  
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Figure 3.9. MI between EEG, Acceleration, and Magnetometer Data. Median MI across 
different sensor pair categories are plotted for ASD patients (red) and healthy participants (blue) 
during condition C1 on the z-axis. On the x-axis (ΔMI1), the absolute difference between median 
MI’s during condition C2 and C1 are plotted; on the y-axis (ΔMI2), the absolute difference 
between median MI’s during condition C3 and C1. Overall ASD patients show small MI values 
and small range of change for pairs that include the EEG sensor signals; on the other hand, ASD 
patients show large MI values and large range of change for pairs that include only 
magnetometer sensors.  

 

3.4 Discussion 

In this study, we analyzed the biophysical signals generated by the CNS (EEG data), PNS 

(acceleration, magnetometer data), and ANS (EKG data), in tandem, and compared them across 

the different conditions (conditions varied by spontaneous vs. deliberate entrainment), and 

between healthy participants and ASD patients.  
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Figure 3.10. Schematic overview of the study  

First, we analyzed the heart signals separately, and demonstrated the stochastic 

changes in heart-beat signals (i.e., IBI) becoming more variable in its range, when an individual 

exerts conscious control on one’s breathing pace. We also found ASD patients to exhibit a more 

variable range in their IBI’s (shown by the high NSR), and its stochastic changes due to paced 

breathing to be larger than the healthy participants. This implies that the heart activity of ASD 

patients respond differently to respiratory control than their healthy counterparts. Since we 

can safely assume that neurotypical controls have better cognitive-motor agency, and given the 

finding that their ranges of heart variability are more stable than those with ASD, we can then 

infer that more variable fluctuations in the autonomic system of the participants with ASD may 

define lower cognitive-motor agency. 

Next, we analyzed the CNS, PNS, ANS data in tandem for 5 participants, composed of 3 

healthy participants and 2 ASD patients, and found differences between the two demographics. 

Specifically, the dynamic change in cross-correlations between EEG sensor pairs was found to be 

narrower in range for ASD patients. Relatedly, the change in cross-correlations between such 

EEG sensor pairs were found to be small across the three conditions for ASD patients than their 

healthy counterparts. These findings allude to the narrow range of connectivity in cortical 

signals among ASD patients, regardless of whether deliberate effort was exerted or not. 
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However, we also note that the EEG signals were not exclusively composed of cortical signals, 

but were inevitably mixed with other signals (supposedly of head, muscle, and eye movement). 

Given that ASD patients exhibit unusual motor behaviors (e.g. the presence of ticks, late reflexes 

and involuntary head motions (Teitelbaum et al., 2004; E. B. Torres & K. Denisova, 2016)), it is 

possible that these unusual motions produced non-cortical signals that inevitably impacted the 

patterns of EEG signals. As we caveat that this EEG connectivity characteristics may represent 

both micro-muscle motions and cortical signals, the differences between controls and ASD may 

largely reflect the differences in motor behavior. This is important moving forward, as many of 

the cognitive issues in autism have not been interpreted in light of their motor phenomena. As 

such, the present framework opens a new door to re-interpret cognitive phenomena in autism. 

Lastly, we studied the interactions between the CNS and PNS signals (from 3 modes of 

sensors EEG, acceleration, magnetometer) and their dynamical change across different 

conditions. Here, we computed the MI between different sensor pairs, and examined them by 

categories of sensor pairs. In general, informational dependency of EEG sensor signals with 

other EEG sensor signals or kinematics signals (acceleration, magnetometer) were generally 

lower for ASD patients, and this dependency changed in a narrower range across the 3 

conditions for these patients. This is in line with the findings of cross-correlations varying by a 

narrow range for ASD patients. On the other hand, we found the magnetometer sensors to vary 

by a wider range for ASD patients than the healthy participants.  

Overall, this study illustrates the interactive nature of biophysical signals along with the 

impact of conscious control (i.e., paced breathing) on such interactions, and highlights the 

different connectivity structures across different individuals with different levels of agency. In 

particular, by comparing the connectivity characteristics (shown by cross-correlation and MI 

metrics) between ASD patients (who exhibit a compromised degree of cognitive-motor agency) 
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and healthy participants (with higher cognitive-motor agency), we are able to observe how ASD 

symptoms of low cognitive-motor agency is manifested in the physiological connectivity. 

Noticeably, the narrow range of connectivity within the cortical signals (CNS), and 

wider/variable range of connectivity within the kinematics (PNS) and heart (ANS) activity seem 

to be characteristic of ASD’s low cognitive-motor agency. Our results suggest that different 

connectivity patterns across the brain and body may serve to define different levels of cognitive-

motor agency in ASD relative to NT controls.  

However, this study had several limitations. Due to technical difficulty, we were able to 

synchronize the 3 modes of datasets for only 5 participants. For that reason, although we found 

some characteristic patterns of ASD patients that are distinguishable from their healthy 

counterparts, the small sample size does not yet allow for generalization. Another 

methodological difficulty in this study was the inevitable presence of motor/mechanical 

artefacts in the EEG signal (i.e., instrumental noise). It is well known that there are much non-

brain related signals that are mixed in the EEG data, particularly if the participant is performing 

large motions such as gait, and signal preprocessing methods (as used in this study) provide 

limited relief. For that reason, although we found our analytics based on EEG data to be 

informative in revealing the biophysical connectivity, we caveat that this is not necessarily a 

product of mere cortical signals but rather a mixture with other factors (e.g., facial muscle 

movement, head movement, minute motions of EEG cap). Nevertheless, given the disparity in 

cognitive-motor agency and the profound differences in motor behavior, and their impact on 

EEG signals between ASD patients and NT participants, it may be possible to extend these 

methods to study on a larger sample in the future. Importantly, our results open new questions 

in autism research at the intersection of cognitive and motor control. 
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In the next chapter, I introduce an extended version of this pilot experiment with 

improved technical approaches to better probe into the brain and body connectivity across 

different population.  

 

4 Paradigm to study embodied cognition 

4.1 Introduction  

In the previous two studies, I introduced experimental paradigms of pointing and walking, which 

was found to be informative of the interactive nature of the nervous systems, with regards to 

different levels of control/cognitive load. However, there were some limitations to these 

approaches. In the first study that involved pointing, we were restricted to examining just the 

kinematics connectivity (of PNS) without analyzing them in relation to the CNS/ANS processes. 

In the second study that involved walking, we were able to harness the biophysical signals from 

the brain and the heart along with the kinematics, and were able to combine the different 

modes of signals into a single datatype. However, due to technical difficulty, we were unable to 

gather sufficient number of participant data to analyze these signals and find generalized 

patterns in their connectivity.  

In this study, we addressed these limitations by applying the same tasks (i.e., pointing 

and walking) in the experiment, but changing some features of the instrumental set up 

(described in section 4.2.2). We also added additional tasks of cognitive activities, selected from 

standardized cognitive tests (e.g., Montreal Cognitive Assessment) that require different 

cognitive capacities. In some of these tasks that involve drawing, we recorded the pen 

movement as well. While the participant performed a series of tasks that involved different 

levels of control and cognitive processes, we co-registered the EEG signal (CNS), magnetometer 
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signal (PNS), heart signal (ANS), and analyzed these signals in tandem to characterize the change 

in connectivity. Here, we present a set of analytics that examine the stochasticity and 

connectivity of signals (previously demonstrated in section 2.2.4), and of positional geometry of 

body motions using concepts from linear algebra.  

We recruited patients with Parkinson’s disease (PD) along with one patient with ASD 

and another patient with essential tremor (ET). While we explored a variety of analytical 

methods that inform the interactive processes within the different layers of the nervous 

systems, we focused on finding a set of analytics that best characterize the behaviors of 

Parkinson’s patients. Since these patients exhibit a range of compromised cognitive-motor 

agency, the analytics that we find from this study would allow us to see the structure and 

dynamics of the nervous systems, when a lower degree of cognitive-motor agency is involved.   

We note that this work was published in the Journal of Visual Experimentation and is 

openly accessible in video form at https://www.jove.com/video/59827/dynamic-digital-

biomarkers-motor-cognitive-function-parkinson-s 

4.2 Methods  

 Participants  

A total of 31 participants partook in this study. However, 9 participants’ data had too 

much instrumental noise or could not be synchronized across different modes of devices. For 

that reason, a total of 22 participants’ data were analyzed in this study. We note that although 9 

participants’ data were excluded in this study, they would be further analyzed as a set of 

unsynchronized datatypes in a subsequent study. Their data is not lost, but for the purposes of 

providing proof of concept in this thesis (that we can study several layers of functionality in the 

https://www.jove.com/video/59827/dynamic-digital-biomarkers-motor-cognitive-function-parkinson-s
https://www.jove.com/video/59827/dynamic-digital-biomarkers-motor-cognitive-function-parkinson-s
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nervous systems using non-invasive means), we will restrict the description of our methods and 

results to the subset of 22 participants. 

Among these 22 participants, 11 individuals were healthy undergraduate students with 

ages ranging from 18 to 26  (10 female, 2 male), recruited from the Rutgers human subject pool 

system, and received credit for their participation. 7 participants diagnosed with Parkinson’s 

disorder (PD) with age ranging from 64 to 77 (3 female, 4 male) were recruited from the Robert 

Woodrow Johnson Medical Center at Rutgers University, and received $50 for their 

participation. Their Movement Disorders Society Unified Parkinson’s Disease Rating Scale 

(UPDRS) (Fahn & Elton, 1987) ranged from 16 to 44, and Hoehn and Yahr scale (Hoehn & Yahr, 

1967) ranged from 2 to 4. 2 participants were healthy age-matched individuals with ages 65 and 

68 (1 female, 1 male), and were either a family member of the patient participant or recruited 

from ClinicalTrials.gov. Lastly, 1 participant was diagnosed with Essential Tremor (age 39, male) 

and 1 participant was diagnosed with ASD (age 15, female). Both of these participants were high 

functioning individuals that did not show stark observable movement disorders. However, in our 

experience, it is at the micro-motion level (of the minute fluctuations in the biophysical signal 

time series that is undetectable by the naked eye) that these disorders manifest. These 

participants were recruited from ClinicalTrials.gov, and received $25 for their participation. 

Among the healthy young participants, one was left-handed, and among the Parkinson’s patient 

participants, one was left-handed, and all had normal or corrected-to-normal vision. All 

participants provided informed consent, which was approved by the Rutgers University 

Institutional Review Board.  

  Instrumentation and Data Preprocessing   
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Participants wore two different types of wireless sensors to capture the biophysiological 

signals from the central (CNS), peripheral (PNS), and autonomic nervous system (ANS), with 

electroencephalography (EEG) and inertial measurement units (IMU).  

Cortical signals from the CNS were captured with a wireless EEG device (Enobio; 

Barcelona, Spain) at 500Hz sampling rate with 31 sensors positioned across the scalp.  The 

electrodes were spatially distributed as shown in Figure 4.1A, with the sensor Oz placed on the 

left abdominal. This sensor was used as a proxy of electrocardiogram (EKG) to capture the heart 

signals. The wireless device was positioned on the back of the participant’s head, and the 

reference sensor was attached behind the left ear. Both EEG and EKG signals were recorded 

from the Neuroelectrics software (Enobio; Barcelona, Spain). Further preprocessing for the EEG 

signals were done in Matlab (Release 2015b, The MathWorks, Inc., Natick, Massachusetts)-

based toolbox EEGLab (Delorme & Makeig, 2004) and PrepPipeline (Bigdely-Shamlo et al., 2015). 

Using the PrepPipeline toolbox, line noise at 60Hz was removed, and referenced via a robust 

average reference procedure, where channels were iteratively referenced to the average signal, 

while bad channels, such as those showing extreme amplitudes (deviation z-score exceeds 5) or 

lacked correlation with any other channel (correlation less than 0.4) were excluded and 

interpolated in this process. To eliminate the trend while preserving the cortical signals as much 

as possible, the EEG signals were further band-passed at 1-100Hz using Butterworth IIR filter at 

1st order (Niedermeyer, 2011). The EKG signals were band-passed at 5-30Hz using Butterworth 

IIR filter at 1st order (Kathirvel et al., 2011; Tereshchenko & Josephson, 2015) to eliminate trend 

while preserving the heart signal’s QRS complex as much as possible.  

Note, in a previous study (Chapter 3), the EKG signals were analyzed by examining the R-

peaks within the QRS complex. However, because the heart signal was recorded with the 

reference channel positioned in less-than-optimal space (behind the left ear), the R-peaks were 
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not detectable with signal processing method. This positioning was inevitable, because if we 

recorded the heart signal from a separate device and a separate software, with the reference 

channel positioned in the optimal location, there would be three different modes of signals 

recording through three different software’s on the same computer. This runs the risk of 

computer crash due to limited computation power. Indeed, when we attempted to do this in 

the previous study (section 3.2.2) , 13 participants data were recorded but only 5 participants’ 

data were fully synchronized across the different modes of signals. In order to avoid this risk, we 

attempted to record the heart signal by using one of the EEG sensor on the abdominal and 

sharing the same the reference channel with other EEG sensors intended to record the cortical 

signals. This way, the computer would record from two devices (EEG and IMU) and two 

softwares, and thus avoid the risk of having frequent computer crashes. However, the downside 

was the rampant noise in the obtained EKG signal and the inability to extract R-peaks. For that 

reason, in this study, we analyzed the overall inter-spike interval (ISI) where the spikes were 

composed of all peaks from the QRS complex (i.e., P,Q,R,S,T peaks), instead of the inter-beat 

interval (composed of R-peaks only).  

Motor signals from the PNS were captured with IMUs based on Xsens motion capture 

technology (Roetenberg, Luinge, & Slycke, 2009) sampled at 60Hz, and were acquired with 

Xsens MVN Studio software (Xsens; Netherlands). 17 sensors were attached to the participant 

with Velcro belts and additionally secured with athletic tape on the following body parts – head, 

sternum, posterior trunk, left and right shoulder, left and right upper arm, left and right wrist, 

left and write hand, left and right upper leg, left and right lower leg, left and right foot. These  

sensors allowed for creating the participant’s avatar (Figure 4.1B), and registering each body 

part’s position, kinematics (linear (m/s) and angular velocity (deg/s), linear (m/s2) and angular 

acceleration (deg/s2)), and magnetometer data (arbitrary unit; normalized from G). For the 
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purpose of this study, linear velocity, position, and magnetometer data were mainly examined. 

Linear velocity, the first derivative of position was chosen as it provided the least signal noise. 

When higher derivatives (e.g., acceleration) are computed, instrumentation noise is amplified, 

so it is safer to use the first order change, while we watch for any possible noise artifacts. The 

magnetometer data was chosen as it is relatable (and convertible) to the EEG signal which is in 

μV unit.   

In addition, the voice of the participant and the experimenter was recorded with a 

microphone sampled at 48,000Hz. However, the audio data was not examined in this thesis, and 

will be further analyzed in subsequent study.  

As with the previous study (described in section 3.2.2), these biophysiological signals 

were temporally synchronized by using an open-source package Lab Stream Layer (LSL). All 

softwares along with LSL were run on the same computer, and events were timestamped with 

mouse clicks on the display screen of that computer (Figure 4.1C). Because the EEG (cortical and 

heart) and motor signals were registered at different sampling rates, the EEG signals were 

down-sampled to 60Hz, so that all modes of signal could be analyzed as a single datatype.   

As with the previous study, the preprocessing of EEG signals did not include rejection of 

artefact components or certain time segments, as this would undermine the purpose of 

examining the dynamical process of biophysiological interactions across the different nervous 

systems (for rationale, see section 1.3). However, for certain parts of the analysis, EEG signals 

were decomposed into components that were categorized as either cortical and non-cortical; 

this way, it was possible to differentiate the signals that were generated by cortical activities, 

and those that were generated from elsewhere. Details of this process is explained in section 

4.2.4.4.  
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Lastly, certain tasks required drawing with a digital pen (Wacom; Japan) on a white 

paper which was taped on top of a digitizing tablet (Wacom; Japan). The pen movement was 

recorded from the software MovAlyzer (Neuroscript; Tempe, AZ), which sampled the position of 

the pen tip motion at 133Hz. These pen motion data were not synchronized to the other 

instruments (EEG, IMU), and were later analyzed separately (Figure 4.1D).  

 

Figure 4.1. Instrumental Setup. (A) (Left) Location of EEG sensors, reference channel, and of the 
sensor (Oz) that recorded the heart activity; (Right) Sample EEG signals and EKG signal obtained 
from select EEG sensors. (B) (Left) Picture of the participant performing a drawing tasks along 
with his avatar registered in real-time. (Right) Positions of the IMU sensors. (C) Lab Streaming 
Layer synchronized the signals registered from multiple modes – mouse clicks, voice, kinematics, 
EKG, EEG. (D) During a series of drawing tasks, the participant’s pen movement (position and 
velocity) on a digitizing tablet was registered.    

 

  Experimental Procedure  

The setup of the instruments took about 30 to 45 minutes, which included donning the 

sensors and calibration of the systems. After the setup was complete, the participant performed 

the following tasks in the order described. Each of these tasks involve some movement (limited 

to the hand as in drawing, or the full body as in walking), and our goal is to probe into the 
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cognitive processes and their interactions with the body that unfolds during these tasks. Full 

description of the entire protocol can be found in Ryu, Vero, Dobkin, and Torres (2019). 

4.2.3.1 Drawing task  

The participant was seated at a chair with a table in front. On the table was a digitizing 

pen and tablet, with which he/she was instructed to use to complete a total of seven drawing 

tasks. These drawing tasks were subtasks from multiple standardized clinical diagnostic tests.  

First, they were instructed to copy a Benson Complex Figure (Possin, Laluz, Alcantar, 

Miller, & Kramer, 2011), and to memorize the figure, as they would draw the same figure from 

memory at a later point during the experiment. This task is used to assess visuo-constructional 

and visual memory function (Figure 4.2A). Next, they were instructed to complete four trail 

making tasks, which is to connect circles composed of either numbers and/or alphabet letters in 

an ascending order. Specifically, the first trail making test was a sample test (Maze1) for the 

subsequent test (Maze2), where the sample test consisted of 8 numbers and the actual test 

consisted of 25 numbers. The third test was another practice test (Maze3) for the subsequent 

test (Maze4), where the sample test consisted of 4 numbers and 4 letters, and the actual test 

consisted of 13 numbers of 12 letters. These trail making tests are a component of the Army 

Individual Test Battery (1944), that assesses processing speed and executive function and 

visuomotor and perceptual-scanning skills. (Figure 4.2B). Next, they were asked to draw an 

analog clock with numbers 1 through 12, and to set the time to 10 past 11. This test is part of 

the Montreal Cognitive Assessment (Nasreddine et al., 2005) and assesses the participant’s 

visuo-constructional skills (Figure 4.2C). As a last task in the drawing task segment, the 

participant was asked to draw the Benson Complex Figure (Possin et al., 2011) from memory.  
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Figure 4.2. Drawing tasks (A) Benson complex figure. The participant copied the Benson 
complex figure shown (middle) and also drew the figure from memory at a later point (right). 
The blue lines represent the trajectory of pen motion when it was pressed on the tablet; the 
dotted lines represent the motion when the pen was lifted from the tablet. (B) Trail making. The 
participant connected the dots in sequential order for numbers (top) and for a combination of 
numbers and alphabets (bottom). (C) Clock drawing. The participant drew an analog clock with 
the time set to 11:10.  

 

4.2.3.2 Memory Task - Number Span Test   

Subsequent to the drawing tasks, the participant continued to sit at the same chair, and 

started the memory task. Here, the experimenter instructed the participant to repeat the 

numbers in the same order for the forward memory task, and in the reverse order for the 

backward memory task. For both tests, the experimenter read a sequence of numbers (Beekly et 

al., 2007) ranging from 3 to 9 digits for the forward task, and 2 to 8 digits for the backward task, 

in the order of small to large length of digits. The experimenter continued testing until the 

participant failed to correctly repeat two number strings of the same length. Here, the forward 
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task measures the capacity to briefly hold information, while the backward task also measures 

the ability to manipulate numbers as the participant is required to reverse the sequence.  

4.2.3.3 Pointing task  

The participant continued to sit at the same location, and started the pointing task, 

which consisted of three conditions. In condition P1 (control), the participant pointed at a target 

with the dominant hand repeatedly 40 times freely at one’s own pace. For each pointing 

motion, the participant was instructed to start with the dominant hand in a resting position on 

the table, and to touch the target in front and retract the hand back to its resting position. In 

condition P2 (metronome), the participant performed the same task as in condition P1, but did 

so while the metronome was beating in the background at 35 beats per minute. The metronome 

was set to play from a computer, and the volume was approximately 45 dBA. The participant 

was instructed to freely point at the target without being mindful of the metronome beating in 

the background. In the last condition P3 (paced pointing), the experimenter continued to keep 

the metronome beating at 35 bpm. However, now, the participant was instructed to touch the 

target at the pace of the metronome beat, where the participant would either touch the target 

or start reaching for that target at each metronome beat. This experimental paradigm was 

designed to examine the connectivity of biophysical signals, while the dominant hand is either 

moving at one’s natural pace (condition P1); or moving at one’s natural pace while passively 

hearing a constant metronome beat (condition P2); or consciously/actively pacing one’s 

movement to an external metronome beat (condition P3). This would allow understanding the 

dynamical flow of the underlying biophysical signals when one is either spontaneously entrained 

by the metronome beat, or when one is actively exerting control to entrain to the metronome 

beat by pacing the motions accordingly. Moreover, the pointing task allows to further 

distinguish motions when it is deliberate/goal-oriented (i.e., exert a relatively higher level of 
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motor control) and when it is spontaneous (i.e., lower level of motor control) by differentiating 

between forward and backward motions of the pointing trajectory (for details, see section 

2.2.3).  

4.2.3.4 Walking task  

For this task, the participant was taken to a different space, where there was ample 

room to walk around. Here, the participant was instructed to walk around the room for 15 

minutes under three different conditions. In condition W1 (control), the participant naturally 

walked around the room at one’s natural speed and in any direction for 5 minutes. In condition 

W2 (metronome), the participant naturally walked for another 5 minutes but with the 

metronome beating in the background at 12 bpm. In condition W3 (paced breathing), the 

participant walked for another 5 minutes while pacing the breathing rate to the metronome 

beat. These tasks were identical to those described in the previous study (see section 3.2.3), but 

with shortened length.  

  Data Analysis  

There are many parameters that we can extract from the biophysical signals generated 

by the person’s nervous systems. Here, we focused on the EEG waveforms’ inter-spike interval 

(representing CNS output); pen movement, body segments’ position and linear velocity, and 

body segments’ magnetometer data’s inter-spike interval (representing PNS output); and the 

heart signals’ inter-spike interval (representing ANS output). There are many ways of 

characterizing and analyzing these data, but for the purpose of this study, five analytics will be 

discussed that we found to best physiologically characterize and separate patterns of patients 

with Parkinson’s disorder in relation to healthy participants and patients with other neurological 



78 
 

 
 

disorders, as this approach would allow us to find characteristics of varying levels of cognitive-

motor agency.  

4.2.4.1 Gamma PDF fit of pen movement during drawing tasks  

The position trajectory of the pen tip was registered, and its linear velocity of the pen 

movement was computed. The time series of this linear velocity was then converted to a 

unitless micromovement data, where the spike amplitudes were standardized by using the 

equation :  

Eq 4.1 

 

In the case of standardized spikes of pen movements, we observed that most values 

were concentrated at 0.5, and its frequency histogram to exhibit a shifted exponential-like 

distribution shape, which did not allow a good fit with many of the family of distributions. Here, 

the smallest possible value of such standardized spikes is 0.5, as the largest possible “Average” 

component would equal the “Raw Spike Amplitude” in the equation. For that reason, the 

standardized spike amplitude values were shifted by subtracting 0.5 uniformly from all the 

amplitude values. As a result, the histogram of such shifted standardized spike showed the best 

fit to a Gamma PDF, in comparison to other family of distributions based on MLE (Details of 

distribution fit can be found in Figure A 3). In this study, in order to find patterns of different 

participant cohorts, for each participant, the fitted Gamma parameters were plotted on a 

Gamma parameter plane, and the fitted Gamma PDF moments (i.e., mean, variance, skewness) 

were also plotted on a 3-dimensional graph.  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  
𝑅𝑎𝑤 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

𝑅𝑎𝑤 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑖𝑛 𝑡𝑜 𝑀𝑖𝑛 
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Figure 4.3. Analyzing the stochasticity of pen movement. Example from a clock drawing task (A) 
The position of pen motion was recorded at 133Hz. (B) Based on the position data, 
instantaneous linear velocity was computed and plotted as a waveform. (C) Peaks (spikes) and 
valleys within the linear velocity waveform were extracted to compute standardized spike 
amplitudes. Histogram of standardized spike amplitudes was plotted, and showed to have a bad 
fit to a Gamma PDF. (D) In order to allow a better fit to a Gamma PDF, the histogram from (C) 
was shifted by 0.5 to the left and then fitted a Gamma PDF. (E) The fitted Gamma parameters 
were plotted on a Gamma parameter plane with colors denoting different demographic cohort. 
(F) The first 3 moments of the fitted Gamma PDFs were computed and plotted on a 3-
dimensional graph with colors denoting different demographic cohort.  

 

4.2.4.2 Gamma PDF fit of center of mass (COM) during walking tasks  

The position trajectory of the center of mass (COM) was computed based on 

accelerometry by the Xsens MVN software (Fuschillo, Bagalà, Chiari, & Cappello, 2012). With the 

position data, linear velocity of the COM was computed, and the time series of this linear 

velocity were then converted to a unitless micromovement data, where the spike amplitudes 

were standardized by using Eq 4.1 

Eq 4.1. 

As with the 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  
𝑅𝑎𝑤 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

𝑅𝑎𝑤 𝑆𝑝𝑖𝑘𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑖𝑛 𝑡𝑜 𝑀𝑖𝑛 
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standardized spikes of pen movements, the histograms of COM standardized spikes were 

concentrated around the minimum value 0.5, with an exponential-like distribution shape, and 

did not allow a good fit with many of the family of distributions. For that reason, the 

standardized spike amplitudes were uniformly reduced by 0.5, and fitted to the Gamma PDF. 

Such shifted standardized spike amplitudes also showed a good fit to the Gamma PDF in 

comparison to other family of distributions (as shown in Figure A 3). Similar to the pen data, the 

Gamma parameters and the Gamma moments were plotted for all participants, to find 

stochastic patterns of different participant cohorts.  

In this study, the COM data was collected for all tasks during the study, but the three 

walking tasks showed to be the most informative in separating different participant cohorts. For 

that reason, we focused on analyzing the COM data obtained during those three walking 

conditions. Also, among the many kinematics data we obtained from the motion capture system 

(e.g., of left hand, torso, right foot), we chose to focus on the COM data as it is a reflection of 

the entire body parts’ movement.  
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Figure 4.4. Analyzing the stochasticity of COM. Example from the walking task (A) The position 
of COM was recorded at 60Hz. (B) Instantaneous linear velocity was plotted as a waveform. (C) 
Peaks (spikes) and valleys within the linear velocity waveform were extracted to compute 
standardized spike amplitudes. Histogram of standardized spike amplitudes were plotted, and 
showed to have a bad fit to a Gamma PDF. (D) In order to allow a better fit to a Gamma PDF, the 
histogram from (C) was shifted by 0.5 to the left and then fitted a Gamma PDF. (E) The fitted 
Gamma parameters were plotted on a Gamma parameter plane with colors denoting different 
demographic cohort. (F) The first 3 moments of the fitted Gamma PDFs were computed and 
plotted on a 3-dimensional graph with colors denoting different demographic cohort. 

 

4.2.4.3 Dynamical changes in body part distances from center of mass (COM)  

As a third set of analytics, we used the positions of all body parts and COM, and 

computed the distances of each body parts in relation to the COM, and the trajectory of these 

distances were analyzed. In general, when an individual is performing a cyclical task, such as 

walking, the distance of the foot in relation to the COM would form a cycle, where the distance 

would be large when the foot is away from the torso (which is an approximate location of COM), 

and small when the foot is close to the torso.  

Here, we focused on the moment-to-moment dynamical change of such distances 

across each sampled frame at 60Hz. Specifically, the distance was converted into 3 dimensional 

dataset, where the coordinates are the distance at time (t, t+1, t+2). Such datapoint reflects the 

instantaneous position at 3 sequential frames by its coordinate values, along with its velocity 

and acceleration by its displacement from the vector that spans in the direction (1,1,1). We 

observed the pattern of these 3-dimensional datapoints for each body parts (Figure 4.5A) during 

the three walking tasks, and we found that these could approximately fit a plane.  

Regression onto a plane was done with these 3-dimensional datasets, by computing the 

distance from each point (x,y,z) to a plane ax + by + cz + d = 0, and finding the coefficients of the 

plane that minimizes the total distance as such:  

𝐷𝑖  =  Distance between point P(xi, yi, zi) and plane ax + by + cz + d = 0  
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Eq 4.2 

First we set the plane equation to reduce one coefficient (𝑑), by taking the derivative with 

respect to 𝑑:  

  

  Eq 4.3 

𝐷 is minimized when we set the numerator (above) to 0, thus providing the following equation:  

 

   Eq 4.4 

 

where 𝑥𝑜, 𝑦𝑜, 𝑧𝑜 are means of their respective data points. Using the 𝑑 information above yields 

the following plane equation:  

   Eq 4.5 

Using the obtained plane equation, we re-formulate the total distance, and minimize this 

distance as such:  
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 Eq 4.6 

Here, 𝐷∗ is represented in a Rayleigh Quotient form, and can thus be minimized by the 

eigenvector corresponding to the smallest eigenvalue of 𝑋𝑇𝑋. Eigenvectors and values were 

obtained by singular value decomposition (SVD) of 𝑋𝑇𝑋. From the decomposed vectors, the two 

eigenvectors with larger eigenvalues were set as the axes of the plane, while the eigenvector 

corresponding to the smallest eigenvalue was set as the normal vector to that plane.  

Then, 3D datapoints were projected onto the plane for each body parts as shown in 

Figure 4.5B. In general, body parts that were the most active in its movement (such as the foot 

during walking, or the dominant hand during pointing) had the most circle-like shape with a hole 

in the center when it was projected onto the plane. These active body parts also had larger 

residuals of the plane fitting.  

 

Figure 4.5. Trajectory of distances between a single body part and COM Example from the 
walking task. (A) Trajectory of distances between a certain body part and COM was represented 
in a 3-dimensional coordinate, by the distance at time t, t+1, t+2 as x, y, and z coordinate 
respectively. (B) The trajectory of these coordinates were regressed onto a 2-dimensional plane, 
and the projection of those 3-dimensional coordinates on this plane were plotted for each body 

where A = [
𝑎
𝑏
𝑐

] , X = [
(𝑥1 −  𝑥0) (𝑦1 −  𝑦0) (𝑧1 −  𝑧0)

⋮ ⋮ ⋮
(𝑥𝑁 −  𝑥0) (𝑦𝑁 − 𝑦0) (𝑧𝑁 − 𝑧0)

] 
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part. In general, we found a donut-like structure on the projections from the body part that was 
most actively moving.  
 

Given the 2 axes vectors and normal vector of the fitted plane, we then examined the 

angle between the normal vector and the reference vector. Here, the reference vector refers to 

the vector that spans (1,1,1) coordinate. If datapoints lie on this reference vector, we can 

interpret that there was no movement of that body part, since the distance is the same at time 

(frame) t, t+1, and t+2. The eigenvector with the largest eigenvalue is generally close to this 

reference vector, as main datapoints hover around this reference vector, but deviates from it in 

relation to the magnitude of the body part movement. Hence, if the angle between the 

reference vector and the normal vector is exactly 
𝜋

2
 , that implies that there were no movement; 

conversely, if the angle deviates much from 
𝜋

2
, then that implies that there were large 

movements (Figure 4.6 C,D). We analyzed this angle across the different tasks and compared it 

between different cohorts of participants (Figure 4.6F). Note, this parameter choice reflects the 

magnitude of body movement, and one may think this can simply be represented by the linear 

velocity instead. However, incorporating the position of each body part at 3 sequential frames 

(time t, t+1, t+2) allows us to reflect both the velocity and acceleration of the movement, which 

we found to be more useful in characterizing the patient cohorts against NT participants.  

For the purpose of this study, we focused on the pointing and walking tasks, as it 

entailed repetitive motions that is necessary to observe the cyclical shape and to perform planar 

regression within these analytics. 
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Figure 4.6. Analyzing the dynamical changes of body positions in 
relation to COM. (A) Trajectory of positions of the right foot (red) and 
COM (blue) during walking. The trajectory of the distance between the 2 
positions was measured. (B) Trajectory of distances between the right 
foot and COM was represented in a 3-dimensional coordinate, by the 
distance at time t, t+1, t+2 as x, y, and z coordinate respectively. (C) The 
trajectory of the 3-dimensional coordinates was regressed onto a 2-
dimensional plane, with the correspondent axes of the plane and the 
vector that is normal to that plane shown in green and red respectively. 
(D) The regressed plane is illustrated with unit vectors (axes) that reflects 
the most variation of the data marked in dark green, and the residual 
variation of the data marked in light green, and a vector that is normal to 
that plane marked in red. A normalized reference vector denoted in black 
is also shown to point towards (1,1,1) coordinate, which represents the 
instance when there is no change in the distance between time t, t+1, 
and t+2 (which most likely reflects no movement for 3 consecutive 
frames).  (E) The projection of the 3-dimensional coordinates in (B) on 
the regressed plane were plotted, and the shape of such projection was 
examined. (F) The parameter of interest was the deviation of the angle 
between the normal vector (red) and reference vector (black) in (D) from 
𝜋

2
  (i.e., abs(angle - 

𝜋

2
 )). In general, a large deviation value would imply 

large motions across 3 consecutive time frames. The angle deviations 
were computed for each  walking tasks (W1, W2, W3) and plotted on the 
3-dimensional graph, where each axis denoted the deviation value from 
the 3 walking tasks, and marker color represented different demographic 
cohort . 
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4.2.4.4 Mutual information of inter-spike interval (ISI) between EEG independent 

components, EKG, and magnetometer data  

As a fourth set of analytics, we extracted the ISIs from three modes of data – EEG to 

reflect the CNS, magnetometer to reflect the PNS, and EKG to reflect the ANS. To represent the 

PNS, we chose to use the magnetometer data, as this would represent a more apples-to-apples 

comparison with the other two modes of data – EEG, EKG – since its unit is a function of voltage. 

The motion capture device used in this study yields magnetometer data in arbitrary unit (au), 

which is a normalized value of Gauss unit. For the purpose of this study, we are focused on the 

timing of the spikes, and not the amplitude, so the normalization of the values should not affect 

the result of this analytics.  

The EEG data used in this study were not obtained directly from the 31 channels of EEG 

sensors, but instead were decomposed through independent component analysis (ICA) using 

the Infomax ICA algorithm (Delorme & Makeig, 2004; Makeig, Bell, Jung, & Sejnowski, 1996; 

Whitmer, Worrell, Stead, Lee, & Makeig, 2010) with at most 512 iterations. Such decomposition 

allows locating a set of sources from which the signal originated from. This decomposition was 

done per task (condition), and provided a set of time series of 15 to 31 components (depending 

on how many rank/null space was present across task/participant), which were a set of spatially 

static, and maximally independent component processes. Subsequently, source localization of 

each of these components was performed, using Dipole fitting method (Oostenveld & 

Oostendorp, 2002) that computed an equivalent current dipole modeling co-registered to fit the 

scalp topography of a Spherical Four-Shell (BESA) head model (Figure 4.7). The locations of the 

obtained sources of each independent component were then categorized into ‘in-brain’ and 

‘out-brain’. Components that were categorized as ‘in-brain’ were those with sources located 

within 83 mm from the center of the BEM head model; and sources located beyond 83 mm from 
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the center of the head model were categorized as ‘out-brain’. Given that channel sensors were 

located uniformly 85 mm away from the center, 83 was a conservative choice that accounted 

for sources that were located on the scalp, which is supposedly due to head and facial muscle 

movements. The separation of components inside and outside the brain allowed us to 

distinguish signals that are generated within the brain and those generated from the muscle and 

other non-brain related artefacts. In general, there were approximately 0-5 components (out of 

15-31 components) whose dipole locations were categorized to be ‘in-brain’, and the rest were 

considered ‘out-brain’. The fitness of each component dipole modeling is summarized by the 

residual variance, which is the unexplained fraction of the data variance. Although there is not a 

set standard on what is an acceptable threshold for this residual variance, a recent study by 

Gwin et al. (2011) which measured the EEG signals during treadmill walking eliminated 

components with residual variance that was more than 20%. In our study, the residual variance 

of a typical participant during walking task ranged from 5% to 45%. Given the small number of 

in-brain components per task/participant, excluding some components with large residual 

would lead to loss of data altogether. For that reason, we kept all components that were 

provided by the dipole fitting, while taking notice of the diverse range of model fitness.  
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Figure 4.7. Source locations of independent component (IC) from a typical participant’s EEG 
data. (A) IC source locations from the top viewpoint, (B) sagittal viewpoint, and (C) coronal 
viewpoint. Some are located along the boundaries of the scalp, implying them to be signals 
generated by non-cortical activities (e.g., facial muscle movement, EEG cap movement, head 
movement). (D) Location of these IC’s denoted in red, and of physical channel sensors denoted 
in green.  

 

After the ISIs of the EEG components, magnetometer, and EKG were gathered for each 

condition per participant, histograms of ISIs were created for all EEG sensors, all magnetometer 

sensors, and EKG sensor, yielding 33-49 histograms per condition (depending on how many 

independent components were derived from the EEG data) (Figure 4.8B). Based on these 

histograms, pairwise mutual information was computed to understand the ISI information 

dependence of signals across different tasks. These histograms were constructed as single 
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probability distributions 𝑃𝑋(𝑥) with bin width as 1 frame (1/60s), minimum bin value as the 

minimum ISI, and maximum bin value as the lower of 30 and the maximum ISI. Any ISI that 

exceeded 30 frames (0.5s) were not included in this analysis, as this would most likely be due to 

instrumental noise.  Joint probability distributions 𝑃𝑋𝑌(𝑥, 𝑦) for a pair of the ISI histograms could 

not be empirically determined, as the ISIs do not occur simultaneously. For that reason, the joint 

probability distribution was estimated by randomly sampling a pair from each histogram’s ISI 

and constructing a joint histogram from these sampled pairs. Using the estimated joint 

probability distributions  𝑃𝑋𝑌(𝑥, 𝑦), along with the empirical single probability distribution 

𝑃𝑋(𝑥), the mutual information 𝐼𝑋𝑌 was computed, and this process was repeated 100 times (see 

section 2.2.4 for details). The median of the 100 estimated mutual information 𝐼𝑋𝑌 values was 

then determined as the final value. The final MI values were compared across different pairs of 

sensor categories (e.g., pairs comprised of 2 EEG sensors; pairs comprised of 1 EEG sensor and 1 

body part’s magnetometer; pairs comprised of 1 EKG sensor and 1 body part’s magnetometer), 

and across the three conditions (Figure 4.8C).  

MI values were compared across participants, by plotting the values of MI in the control 

condition (W1 or P1), and the absolute change in the median MI values during the metronome 

condition (W2 or P2) and paced condition (W2, P3) from the control condition (W1 or P1) as 

shown in Figure 4.8D. Different marker colors were used to denote different cohorts to observe 

any clustering patterns emerging from this plot.  
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Figure 4.8. Analyzing MI of inter-spike intervals (ISI) between 3 modes of signals (A) 
Biophysical waveforms of the EEG independent component in μV (top), magnetometer in 
arbitrary unit (middle), and EKG in μV with spikes denoted in red. (B) Time between spikes (ISI) 
were computed for all sensors, and a frequency histogram was plotted. In order to make these 
histograms comparable across different modes of sensors, the frequency was normalized to 
values between 0 and 1. (C) Matrix of MI for all pairs of sensors (from 3 modes of signals – EEG, 
Magnetometer, EKG) was plotted for each participant/task. (D) For each category of sensor 
pairs, the median MI was computed for each condition. The median MI during the control 
condition (P1,W1) was represented on the z-axis (MI); the absolute change in the median MI to 
the metronome condition (P2, W2) from control condition (P1,W1) was represented on the x-
axis (ΔMI1); the absolute change in the median MI to the paced condition (P3,W3) from control 
condition (P1,W1) was represented on the y-axis (ΔMI2); and different demographic cohorts 
was represented by marker color.  

 

In addition, to understand the relations of EEG sensor signals with magnetometer/EKG 

signals, with respect to those generated from within the brain and outside the brain, the same 

analysis was done by separately examining the EEG component signals for those from the ‘in-

brain’ category, and those in the ‘out-brain’ category.  

While the above analytics examine the overall MI value across different participants, we 

also examined the variability of the MI values between different sensor pairs. Specifically, for 
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each participant, there are approximately 80,000 MI values per task condition, since there are 

approximately 40 sensor’s ISI histograms per participant (ranging between 33 and 49). As such, a 

pairwise computation of MI on these ISI histograms would yield approximately 800 MI values 

(=40 x 40 / 2) , and 100 runs of MI computation yields approximately 80,000 MI values. Based on 

these MI values, we compiled a set of 3 dimensional coordinates, where for a certain pair of 

sensors at a certain iteration (out of 100 runs),  the x – coordinate correspond to the absolute 

change in MI value between the metronome condition (P2 or W2) and the control condition (P1 

or W1); the y-coordinate correspond to the absolute change in MI value between the paced 

condition (P3 or W3) and the control condition (P1 or W3); and the z-coordinate correspond to 

the MI value at control condition (P1 or W1).  

Note, the number of total sensors is different for each condition, as the number of EEG 

IC are different across tasks. For that reason, when comparing the change across conditions for 

pairs that included the EEG IC, the choice of EEG component was random. For example, if there 

were a total of 10 EEG components in the control condition, 12 components in the metronome, 

and 14 components in the paced condition, we took the minimum number of components (i.e., 

10) from the 3 conditions, and randomly chose 10 components among the 12 in the 

metronome, and 10 components among the 14 in the paced condition. As a result, the 3-

dimensional coordinates pertaining to the EEG data do not exactly correspond to each other; 

that is, the x- and y- coordinate of the paired sensors that include the EEG IC do not exactly 

reflect the change in MI of the pairs represented in the z-coordinate. That is, if the z-coordinate 

was the MI between EEG component #1 and #2, the x-coordinate may be the difference in MI of 

EEG component #1 and #2 in the control condition and the MI of EEG component #10 and #11 in 

the metronome condition; while the y-coordinate may be the difference in MI of the EEG 

component #1 and #2 in the control condition and the MI of EEG component #10 and #14 in the 
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paced condition. We note that such arbitrary correspondence was inevitable, as there is rarely 

an exact spatial correspondence between different IC. Nevertheless, given the large amount of 

data used in these analytics, we argue that such difference would be minor in characterizing the 

patterns of different participant cohorts (Figure 4.9A).  

Once these 3-dimensional coordinates were obtained, these datapoints were used to 

create a set of Delaunay triangulation surfaces. Given a set number of discrete points, Delaunay 

triangulation (Delaunay, 1934) creates a matrix of N x 3, where the 3 columns represent the 

datapoint indexes that would form the 3 vertices of each N triangle.  These triangles are formed 

such that no other point is inside the circumcircle of the formed triangle (Figure 4.9B). Here, we 

took a list of these triangles and computed the surface area for each, and plotted a frequency 

histogram. In order to compare the frequency histograms across different participants, it is 

necessary to keep the total frequency to be the same across all participants. For that reason, the 

minimum number of triangle areas across all participants was computed (which was 59500); 

then, for all participants with a larger number of triangle areas, 59500 (i.e., minimum number of 

triangle areas) of the triangle areas were randomly sampled (Figure 4.9C-left) and reflected on 

the frequency histogram. Here, the triangle areas represent the spread of these datapoints, 

where a larger value would imply wider range of informational dependency of across conditions.  

Because of the large number of triangles and skewed distribution of such histograms (as 

shown in Figure 4.9C-left), these were examined by applying logarithm to both axes of the 

histogram (Figure 4.9C-right). Given the linear shape of such power-law distribution, we then 

regressed this to a line, to examine the spread of such triangle areas. Essentially, the wide 

spread of triangle areas (represented by a flatter slope and lower intercept of the power-law 

distribution) would imply a wider range of information dependency between different sensors; 

conversely, a narrower spread of triangle areas (represented by steeper slope and higher 
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intercept of the power-law distribution) would imply a narrower range of information 

dependency between different sensors.  

This way of representing the MI data is different from those shown in Figure 4.8, which 

essentially reflects the median triangle areas; that is, the median magnitude of change in 

information dependency across different conditions. Here in Figure 4.9, the shape of the power-

law distribution of triangle areas reflects the variability of dependencies between different 

modes and location of sensors, where a flatter shape would imply a wide variability of 

dependency across different physiological signals.  

 

Figure 4.9. Analyzing dispersion of connectivity structure and dynamics characterized by MI. 
(A) For all sensor pairs, the corresponding MI values from the control condition (z-axis, MI) and 
its change to the other two conditions (x-axis, ΔMI1; y-axis, ΔMI2) were plotted. Note, for each 
sensor pair, there are 100 MI values, as they were repeatedly computed with random selections 
of ISI’s. (B) Using Delaunay’s triangulation method, triangles were formed among the 3-
dimensional coordinates, and the areas of these triangles were computed. (C) Frequency 
distribution of these triangle areas were plotted (left), and the log-log plot of the frequency 
distribution (right) was examined. The log-log plot was later regressed to a line, and the slope 
and intercept were compared across different demographic cohorts.  
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4.2.4.5 Cross-correlation between different pairs magnetometer sensors  

As a last set of analytics, cross-correlation was examined between different pairs of 

magnetometer sensors. Here, the time series of magnetometer data were normalized to values 

0 to 1 following Error! Reference source not found.. (Figure 4.10B) Then, they were separated 

into 5 second segments. For each segment, cross-correlation was computed for each sensor 

pairs (Figure 4.10D). This is similar to the analytics described in section 3.2.4, but is different in 

that it was segmented by a fixed time unit rather than a variable inter-heart beat interval time. 

This is because the EKG data captured by the current study’s instrument had too much noise to 

extract the exact timing of the R-peaks. For that reason, we resorted to a fixed time unit, and 5 

second was the time frame that was best in characterizing different participant cohorts. Once 

cross-correlation was computed for each time segment, the median of these the cross-

correlation values for all pairs were computed from each segment, and the median of all time 

segment’s medians (of all paired sensors) were computed to obtain a single summarizing cross-

correlation value per condition. These were then plotted for all participants, where the z-axis 

represented the median cross-correlation value during the control condition (W1 or P1), and  x- 

and y-axis to represented the values during the metronome (W2 or P2) and paced (W3 or P3) 

condition respectively (Figure 4.10E).  

We also computed cross-correlations of magnetometer data that were high-passed at 

6Hz using Butterworth IIR filter at 2nd order, and compared this across the different participant 

cohorts. Tremor is one of the main symptoms of Parkinson’s patients, and this tremor of the 

body motion is known to exist in the 4-6Hz range (Deuschl, Bain, Brin, & Committee, 1998; 

Jankovic, Schwartz, & Ondo, 1999; Lee et al., 2016). For that reason, we excluded the tremor by 

high-pass filtering the magnetometer data, to understand how the tremor impacts 

characterizations based on the cross-correlation analytics (Figure 4.10C).  
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Note, the same analysis had been done on the EEG component data as well, and similar 

results had been found as with those from using magnetometer data. However, we found the 

magnetometer data to be more informative in characterizing the Parkinson’s patient cohort 

than the EEG data. Hence, in this study, we only share the magnetometer data results. 
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Figure 4.10. Analyzing cross-correlations between different magnetometer sensor data. (A) Magnetometer data of the left foot in arbitrary 
unit is plotted. (B) For all body sensors, the raw data was normalized as values to range between 0 and 1. (C) For all body sensors, the raw data 
was also high-passed at 6Hz (left), and then normalized as values  to range between 0 and 1. (D) For each 5 second segment, cross-correlation 
between all sensor pairs for both normalized magnetometer data (from (B)), and high-passed and normalized data (from (C)). Maximal cross-
correlation value was extracted for each pairs, and were plotted on a matrix. (E) The median maximal cross-correlation was computed for all 
sensor pairs and for all 5 second segments, and was plotted on a 3-dimensional plot, where the z-axis (CC) denoted the median value during 
control condition (P1, W1), x-axis (CC2) denoted the value from the metronome condition (P2,W2), and y-axis (CC3) denoted the value from the 
paced condition (P3,W3). The marker color denoted the different demographic cohort. 
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4.3 Results  

 Gamma PDF fit of pen movement during drawing tasks 

Standardized spikes of the pen movement linear velocity were reduced by 0.5, and the 

histogram of such shifted standardized spikes were fitted with a Gamma PDF.  The fitted 

Gamma parameters and their moments were plotted for all participants for each drawing task 

and is shown in Figure 4.11.  For all drawing tasks, Parkinson’s patients tend to have a lower 

scale and higher shape parameter than the NT cohorts. Here, the single participant with ASD 

and the patient with Essential Tremor did not show noticeable difference in its stochasticity 

compared to the NT cohorts. This separation is most pronounced during the clock and Benson2 

(drawing the Benson figure from memory) task, which are the two tasks where the participant is 

given a blank sheet of paper and is instructed to draw with more freedom. These two tasks 

contrast with other drawing tasks, where participants are given a paper with some form of 

figures printed on it (e.g., circles with letters and/or numbers), and thus have relatively less 

freedom in their pen movement.  

When we examine the general shape of the PDF in relation to the fitted parameters by 

plotting the Gamma moments (as shown in Figure 4.11B,C), skewness (3rd moment) is the most 

contrasting aspect that differentiates the Parkinson’s patients to their NT cohorts. Overall, the 

Parkinson’s patients tend to have a flatter distribution and is less skewed than the NT 

participants.  Such separation is most pronounced in the clock and Benson2 tasks. Within these 

two tasks, we also observe the patient with ASD and patient with ET to be clustered within the 

Parkinson’s patient cohort. In these representations, the two age-matched NT participants do 

not show much difference from their younger NT cohorts.  These findings allude to the nature of 

contact control (control while body is in contact with an object) among individuals with low 
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cognitive-motor agency pertaining to Parkinson’s disease, where they tend to exhibit less NSR in 

their hand motion stochasticity, especially in cases where there is less restrictions to their 

movement (as was shown in the clock and Benson figure tasks). 
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Figure 4.11. Stochasticity of pen movement. (A) Fitted Gamma parameters (of the frequency histogram of shifted standardized spike 
amplitudes from the pen motion linear velocity) are plotted on the Gamma parameter plane for each drawing task (subplot), with marker color 
denoting different demographic cohort.  Overall, the healthy participant (green) tends to have a higher scale and lower shape parameter than 
the Parkinson’s patient (red) (B)  Fitted PDF of  frequency histograms  (of shifted standardized spike amplitudes  from the pen motion linear 
velocity) of a typical healthy young participant (green), healthy age-matched participant (blue), and Parkinson’s patient (red). The Parkinson’s 
patient tended to have a flatter shape in its distribution.   (C) Moments of the fitted PDF (x-axis denotes mean; y-axis denotes variance; and z-
axis denotes skewness) for each drawing task (subplot). The Parkinson’s patent tended to have a lower skewness value. The separation between 
the healthy and patient cohorts are most pronounced in the clock drawing (Clock) and Benson delayed task (Benson2). 
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 Gamma PDF fit of center of mass (COM) during walking tasks 

The trajectory of the COM was first examined for each participant during their walking 

tasks. In particular, when we compare the control condition (W1) across all participants, there is 

a noticeable difference in its regularity, where the NT participant would exhibit a pattern of 

regular cycles in their walking trajectories; while patients with Parkinson’s disorder exhibit a 

pattern of a more variable and degraded cycle as shown in Figure 4.12.  

 

  

Figure 4.12. COM trajectory during a walking task (left) of a healthy young (NT) participant, 
(middle) of a Parkinson’s patient with least severity, and (right) of a Parkinson’s patient with 
most severity. We observe a degradational pattern in the COM trajectory as the symptoms of 
Parkinson’s disease worsen.  

 

To quantify such pattern, as with the pen movement data in Figure 4.11, standardized 

spike amplitudes of the COM linear velocity was reduced by 0.5, and aggregated across 

conditions to fit a Gamma PDF, allowing us to understand the stochastic nature of the COM 

kinematics.  

When examining the fitted Gamma parameters, consistent with the patterns found in 

previous studies on Parkinson’s patients (Torres et al., 2014), Parkinson’s patients show a higher 

scale and lower shape parameters compared to their NT cohorts for all three walking tasks 

(Figure 4.13A). Noticeably, the most severe patient shows to be at the extreme end of the 

cluster within these Gamma parameter plots, while the least severe patient was shown to be at 
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the boundary of the cluster between the NT and Parkinson’s cohort. When we examine the 

distributional shape of the Gamma PDF, by plotting the three Gamma moments, contrast to the 

pen movement data, skewness is noticeably high for the Parkinson’s patients compared to their 

NT cohort, with the most severe Parkinson’s patient showing a relatively high skewness level 

compared to the rest of the participants. Alongside, Parkinson’s patient shows a higher mean 

and variance in its fitted PDF, compared to their NT cohort (Figure 4.13B,C).   

In addition, one age-matched (old) NT participant shows a slight difference from their 

younger NT cohorts, as its fitted parameters and moments are positioned somewhere in the 

middle between the clusters of Parkinson’s patient and the typical younger NT cohort; the other 

age-matched NT does not show much difference against their younger cohort. The patients with 

ASD and ET also do not show much difference from the NT cohort as well.  

Lastly, the change in clustering pattern across the three conditions is not noticeable 

from the plots of Gamma parameters nor the moments.  As such, the impact of actively pacing 

one’s breathing rate does not seem to affect much to the stochasticity of COM. However, the 

clear separation of the COM stochasticity for all conditions between healthy individuals and 

Parkinson’s patients illustrates how varying degrees of cognitive-motor agency can be 

characterized by the stochasticity of an individual’s walking pattern. 
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Figure 4.13. Stochasticity of COM during walking tasks (A) Fitted Gamma parameters (of the frequency histogram of shifted standardized spike 
amplitudes  from COM linear velocity) are plotted on the Gamma parameter plane for each walking tasks (condition W1, W2, W3), with marker 
color denoting different demographic cohort. Overall, the Parkinson’s patient (red) tends to have a higher scale and lower shape parameter than 
the NT participant (green) (B) Moments of the fitted PDF (x-axis denotes mean; y-axis denotes variance; and z-axis denotes skewness) for each 
walking tasks (subplot). The Parkinson’s patient tends to have a higher skewness value. The separation between the NT and patient cohorts are 
noticeable for all walking conditions. (C)  Fitted PDF of frequency histograms (of shifted standardized spike amplitudes from the COM linear 
velocity) of a NT participant (green), healthy age-matched participant (blue), and Parkinson’s patient (red). The Parkinson’s patient tends to have 
a flatter shape in its distribution. 
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  Dynamical changes in body part distances from center of mass (COM)  

The trajectory of the distance between right foot and COM were plotted on 3-

dimensional graph with coordinates as the distance at time (t,t+1,t+2). These datapoints were 

then regressed onto a plane, and the projection of these datapoints onto the regressed plane 

was plotted in Figure 4.14. Here, we find contrasting shapes in the projection between the NT 

cohorts and the patient cohorts, such that the NT form a donut-like shape with a hole in the 

middle; while the patient cohort (Parkinson, ASD, ET) do not show such shape but shows a 

rather squashed version of those found among NT participants.  

As interpretation, the hole in the middle is a reflection of the distance in datapoints 

diverging from the reference rector (1,1,1); that is, if the body part moves fast at each moment 

(i.e., instantaneous frame-by-frame change in position of the body part is large), which is most 

often the case for the most active body part (as shown in Figure 4.5), the datapoints would 

diverge from the reference vector, and if this fast action is regular and cyclical, the projection 

trajectory would exhibit a hole in the middle. The typical NT participant seems to show that 

pattern; whereas the patient participants have a relatively slow and irregular pattern in their 

trajectory cycle.  
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Figure 4.14. Projection of the 3-dimensional coordinates (of distance between right foot and 
COM) onto a regressed plane for each participant, with color denoting different demographic 
cohort. For most Parkinson’s patients (red), we observe an absence of the donut-like shape in 
the projection trajectories, contrasted by the NT participants (green, blue). 

 

In order to quantify the extent of how much these distance datapoints deviate from the 

reference vector, the angle between the reference vector and the normal vector of the 

regressed plane were computed. If the datapoints did not deviate at all (i.e., there were no 

motions), this angle would be exactly 
𝜋

2
 ; conversely if the datapoints deviated a lot (i.e., there 

were lots of cyclical fast motions) this angle would be different by a large degree from 
𝜋

2
. This 

angle deviation from 
𝜋

2
 was plotted for all participants and for each body parts in Figure 4.15, 

with each axis denoting different conditions of the walking task (W1, W2, W3). Overall, the 

clustering pattern is consistent across all body parts, such that NT cohorts tend to have a large 

angle deviation than the Parkinson’s patients, and this is the case for all three conditions. 

However, the separation between the NT and Parkinson’s patients do not seem as pronounced 
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in the extremities of the upper body (e.g., right upper arm, right forearm, left forearm) while the 

separation is better noticeable in the truck and lower body extremities.  

Among the two age-matched NT participants, the datapoint of one participant generally 

lied within the cluster of the younger NT cohort, while the other participant’s lied on the 

boundary between the NT and Parkinson cluster. The ASD patient’s datapoint generally lied 

within the cluster of the younger NT cohort, while the ET patient’s was found to lie within the 

Parkinson’s cluster. This tendency is most visible in the torso and lower body parts (e.g., torso, 

right toe); while this is not necessarily the case in the upper body extremities (e.g., right hand, 

left forearm). 
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Figure 4.15. Deviation of the angle between the normal vector and reference vector from π/2 (i.e., abs(angle - π/2 ), where the normal vector 
is obtained from planar regression of the 3-dimensional coordinates of distance between body part and COM at time (t,t+1,t+2). (A) The angle 
deviations are plotted for each body part (subplot) and for each participant with color denoting different demographic cohort during condition 
W1 (z-axis), W2 (x-axis) and W3 (y-axis). In general, a small deviation value would imply small change in motions across 3 consecutive time 
frames; and this is found to be the case for Parkinson’s patients (red) for all body parts, but most pronounced from the foot area (which is 
supposedly the most active body part during a walking task). (B) Magnified plot of (A) of Left Toe. We observe that the datapoint of a Parkinson’s 
patient with the most severity (red triangle) lies on the lower end of the Parkinson’s patient cluster; while the datapoint of a patient with least 
severity (inverted red triangle) to lie on the higher end of angle deviation values within the cluster.  
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For further analysis, we focused on the distance between left toe and COM as our 

parameter of interest for walking tasks, and the distance between the dominant hand and COM 

as the parameter for pointing task. These body parts were chosen, because the most active 

body part was shown to be the most informative in separating between different cohorts. We 

also examined the distance between left toe and COM during pointing tasks, to compare 

between walking versus pointing tasks.  

During the three walking tasks, for the left toe, Parkinson’s patients showed little angle 

deviation than their NT cohorts, with the most severe patient showing the least deviation, and 

the least severe patient showing the most deviation among the patients. For this particular body 

part, the two age-matched NT did not show much difference from their younger cohort. While 

the ASD participant showed similar tendencies as the NT, the ET participant exhibited similar 

pattern as the Parkinson’s patient. Across the three conditions, there were little difference in 

this clustering pattern (Figure 4.16-left).  

On the other hand, during the three pointing tasks, for the same body segment data 

(left toe), there is some difference in clustering pattern across the different tasks. Specifically, 

there is little separation between the Parkinson’s patient and NT participants for conditions P1 

and P2; however, there is significant separation between the two cohorts for condition P3, such 

that the Parkinson’s patient tend to have little angle deviation, while the NT participants tend to 

have larger angle deviation. Among the two age-matched NT participants, one’s datapoint lied 

closer to the Parkinson’s cluster, while the other participant’s datapoint lied closer to the NT 

cluster. Also, the ET participant’s datapoint lied closer to the NT cluster, while the ASD 

participant, in this case, lied closer to the Parkinson’s cluster (Figure 4.16-middle).  This was also 

shown as a trend for the dominant hand during the pointing tasks (with no statistical 

significance), where we found similar clustering patterns, with more separation between the NT 
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and Parkinson’s cohort for condition P3 (Figure 4.16-right).  See Table A 12 for details of the 

statistics.  

In general, patients with impeded motor control seemed to move slower, which is why 

they showed lower angle deviations in general. However, this was only noticeable during the 

walking tasks. This was not necessarily the case for pointing tasks, implying the lower cognitive-

motor agency in PD is most characteristic when the entire body is balancing on its own (as in 

standing and walking) than when part of the body is not required to maintain balance (as in 

sitting). In addition, the smaller angle deviation in the toe during the paced pointing task for 

Parkinson’s patient is an interesting pattern of an individual with limited agency, which we 

elaborate the finding in the Discussion.  As NT controls have better cognitive-motor agency than 

PD patients, we can safely assume that the patterns found among PD patients are characteristics 

of lower cognitive-motor agency pertaining to the PD symptoms.  
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Figure 4.16 Angle deviations from π/2 of walking vs. pointing. (A) (Left) Angle deviation of the left toe during walking tasks (W1, W2, W3), 
(middle) left toe during pointing tasks (P1,P2,P3), (right) and dominant hand during pointing tasks (P1,P2,P3) are plotted for each participant 
with color denoting the demographic cohort. Separation between the NT and Parkinson’s cohort are most visible during the walking tasks than 
the pointing tasks, and to a lesser degree during pointing tasks with similar level of separation for the most active body part (dominant hand) 
and the least active body part (left toe). (B) Box plot of the angle deviation values for NT and Parkinson’s cohort for all 3 conditions of walking 
and pointing tasks, with statistical significance denoted by * (p<0.05) and ** (p<0.01).  
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  Mutual information (MI) of inter-spike interval (ISI) between EEG 

independent components, EKG, and magnetometer data 

The medians MI of ISI histograms between different modes of sensors were examined 

during the 3 walking tasks for all participants and plotted for all participants in Figure 4.17. 

Overall, Parkinson’s patients exhibit less information dependency across all paired sensors, and 

show a narrower range of change in their dependences across conditions. We also observe that 

for some participants, the change in MI values are higher from condition W1 to W3, than from 

condition W1 to W2, as can be seen from the range of x- and y- values shown in Figure 4.17-

right. That is, the change in connectivity is larger when the individual exerts control on the 

breathing rate, than when conscious control is not exerted.  

The most severe Parkinson’s patient shows a more similar pattern to the NTs, and the 

least severe patient showed a more similar pattern with a typical Parkinson patient. Also, among 

the two age-matched NT participants, one showed more similarity with the Parkinson’s patients 

while the other was more similar to its younger NT cohort. Here, the ET participant showed a 

similar pattern with the NT participants; while the ASD participant showed more similarity with 

the Parkinson’s patient. 

 

Figure 4.17. MI of inter-spike interval (ISI) between all sensor pairs (EEG, magnetometer, EKG). 
(Left) Median MI (informational dependency) during condition W1 is plotted on the z-axis (MI), 
and the change in median MI value from condition W1 to W2 is plotted on the x-axis (ΔMI1), 
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and from condition W1 to W3 on the y-axis (ΔMI2) for all participants, with colors denoting 
different demographic cohort. (Right) Same plot as the left, but from the viewpoint to observe 
the change in median MI values only. Overall, Parkinson’s patients had lower MI values and 
narrower range in change across conditions, implying less informational dependency 
(connectivity) between the brain and body signals.  

 

To further examine the interactions between different modes of sensors, these MI 

comparisons were subdivided by different categories of sensor pairs as shown in Figure 4.18. 

The range of MI is different by the category of sensor pairs that the computation is based on, 

with pairs of 1 magnetometer data and 1 EKG data having the most information dependency 

(shown from the large range of MI), and pairs of 2 EEG component data having the least 

information dependency (shown by the small range of MI). Consistent with the pattern shown in 

Figure 4.17, Parkinson’s patients tend to have lower MI values than the NT cohorts for all sensor 

pairs, and the difference was found statistically significant for the pairs of: 1 magnetometer data 

and 1 EEG component data; 2 magnetometer data; and 2 EEG component data.  Details of the 

statistical test can be found in Table A 13Table A 13. 
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Figure 4.18 MI of inter-spike interval (ISI) for different sensor pair categories (A) Median MI (informational dependency) for condition W1 is 
plotted on the z-axis (MI1), for condition W2 on the x-axis (MI2), and for condition W3 on the y-axis (MI3); for different sensor pair categories 
(subplot) of each participant, with colors denoting different demographic cohort. (B) Box plot of median MI values were plotted and compared 
between NT participants (including young NT and age-matched NT) and Parkinson’s patients. For all modes of signals, Parkinson’s patients show 
a lower informational dependency; and this is most pronounced in the magnetometer data, and least pronounced in the EKG data. (C) Median 
MI from all sensor pairs are plotted for condition W1 on the z-axis (MI1), for condition W2 on the x-axis (MI2), and for condition W3 on the y-axis 
(MI3). We observe an observe an overall lower MI values for Parkinson’s patients.  
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In order to see if such pattern persists when the EEG component data is analyzed 

separately for those that are generated by the brain activity, and those that are generated by 

non-brain activity (e.g., muscle motion), the same analysis was done as in shown in Figure 4.19, 

but separately for EEG components data from within the brain (IN EEG) and those outside the 

brain (OUT EEG).  

Although the pattern remains the same, where the overall MI is lower for the 

Parkinson’s patients than the NT cohort, the statistical significance is most pronounced in the 

pairs comprised of 1 OUT EEG and 1 magnetometer data. Given that much of the EEG 

component localized outside the brain are mostly due to motion artefacts (Delorme & Makeig, 

2004), it can be assumed that the information dependency differs the most among the signals 

coming from the PNS, such that those with lower cognitive-motor agency exhibit less 

information connectivity in the bodily signals than those with higher cognitive-motor agency. 

However, we also caution that there were 4 less participant data within IN EEG data, compared 

to the OUT EEG data. This is because for those 4 participants, there were no ICs that were 

categorized as IN EEG from their EEG data. For that reason, we note that the statistical test 

performed on this comparison, in regards to the IN EEG data, has less statistical power to draw 

conclusions (Table A 14Table A 14).   
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Figure 4.19. MI of inter-spike interval (ISI) for sensor pairs with EEG IC localized inside vs. outside.  (A) Median MI (informational dependency) 
for condition W1 is plotted on the z-axis (MI1), for condition W2 on the x-axis (MI2), and for condition W3 on the y-axis (MI3); for different 
sensor pair categories (subplot) of each participant, with colors denoting different demographic cohort. Top row shows the sensor pairs that 
include EEG IC localized within the brain, and bottom row shows the sensor pairs that include EEG IC localized outside the brain. The separation 
between Parkinson’s patients and NT cohorts are most pronounced among EEG IC data that are localized outside the brain. (B) Box plot of 
median MI values were plotted and compared between NT participants (including young NT and age-matched NT) and Parkinson’s patients for 
sensor pairs that include the EEG IC data localized within the brain (top) and outside the brain (bottom). For all modes of signals, Parkinson’s 
patients show a lower informational dependency; and this is most pronounced in the magnetometer data and EEG IC data localized outside the 
brain.  

 

 



115 
 

 
 

We further analyzed the overall variability of MI values across different modes and 

spatial location of sensor pairs within each condition, by plotting the histogram of the MI values 

of all sensor pairs, and fitting the logarithm of this histogram to a line. The slope of this 

regressed line was the parameters of interest. In particular, a steeper slope would imply less 

variability of MI values across sensor pairs than a flatter slope; conversely, a flatter slope would 

imply more variability of MI values.  

Here, Parkinson’s patients generally show a flatter slope than the NT cohort, implying 

more variability across their information dependency. As shown from this logarithm applied 

histogram, the Parkinson’s patients generally have lower MI values across sensor pairs (Figure 

4.20-left). However, when we examine the regressed line of such, we observe that the range of 

MI values are slightly wider for the Parkinson’s patients. In fact, for the same intercept value of 

the regression line, the Parkinson’s patient tends to have a flatter slope than the NT cohort. For 

interpretation, in this context, the typical Parkinson’s patient’s lower mean MI value imply less 

information flowing across the biophysical signals; and a wider variability of the MI values imply 

that this information flow is more variable across context (condition) and type of signals 

(sensor).  
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Figure 4.20. Dispersion of connectivity structure and dynamics characterized by MI. (Left) 
Areas of the triangles formed by Delaunay’s triangulation method of MI datapoints of all sensor 
pairs were computed, and its frequency histogram is shown on a log-log plot, with colors 
denoting different demographic cohorts. The Parkinson’s patients tend to have a smaller area 
values, implying lower level of connectivity. (Middle) The log-log plot of the frequency 
histogram is linearly regressed for each participant. We observe that the Parkinson’s patient 
tend to have a lower intercept value and a flatter slope. (Right) The parameters of the linear 
regression are plotted on the x- (intercept) and y-axis (slope). For the same intercept, 
Parkinson’s patient tends to have a flatter slope, and for the same slope value, Parkinson’s 
patient tends to have a lower intercept value.  
 

  Cross-correlation between different pairs magnetometer sensors 

As a last set of analytics, cross-correlation was performed on each 5 second segment 

magnetometer data for walking and pointing tasks, and on magnetometer data that were high-

pass filtered at 6Hz. When comparing the two tasks – pointing and walking – Parkinson’s 

patients tend to have more separation from their NT cohorts during the three walking tasks 

(Figure 4.21), such that their cross-correlation show statistically higher values (χ(1,17) = 7.78, 

p<0.01) than the pointing tasks(χ(1,17) = 3.78, p=0.05) (Table A 15). Within these tasks, the 

most severe patient exhibits the highest value, while the least severe patient shows the lowest 

among the Parkinson’s patient cohort. However, when we examine the clustering pattern of 

these cross-correlation based on the high-pass filtered data, the pattern no longer exists, and 

both Parkinson’s patients and NT cohort show a similar range of cross-correlation. Moreover, 

we observe that datapoints of patients with ASD and ET to lie within the NT cluster for cross-

correlation values of both filtered and un-filtered data.  
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Figure 4.21. Median cross-correlation between all magnetometer sensor pairs of all 5 second 
segments for pointing vs. walking and for normalized data vs. high-passed and normalized 
data (A) Median cross-correlation between all magnetometer sensor pairs for the three pointing 
tasks (condition P1 in z-axis CC1; P2 in x-axis CC2; P3 in y-axis CC3) are denoted as a single data 
point for each participant, with colors representing different demographic cohorts. (B) Same as 
(A) but for the three walking tasks (condition W1 in z-axis CC1; W2 in x-axis CC2, and W3 in y-
axis CC3). Parkinson’s patients tend to show a higher cross-correlation across the different parts 
of the body, with the patient with highest severity to exhibit the higher end of the value. Also, 
separation between Parkinson’s patients and NT participants are more pronounced during 
walking tasks than pointing tasks. (C) Same as (A) but for data that were high-passed at 6Hz. (D) 
Same as (A) but for data that were high-passed at 6Hz and obtained during the 3 walking tasks.  
 

4.4 Discussion  

In this study, we designed an experiment where the participant performs a variety of tasks that 

involve different cognitive and motor processes, while capturing the biophysical signals from the 

CNS, PNS, and ANS. We presented a set of analytics that reveal the connectivity of biophysical 

signals that varies with stochasticity. In particular, we found several methods that highlight the 

difference between Parkinson’s patients and healthy participants, with the aim to understand 

the interactive nature of the biological system from individuals with differing levels of cognitive-

motor agency.  
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Figure 4.22 Schematic overview of the study  

Based on the results of pen movement’s stochasticity, we found that Parkinson’s 

patients had lower NSR in their pen motions. However, when we examine the stochasticity of 

the rest of the body during the same drawing tasks, we did not see such separation between 

Parkinson’s patients and their healthy counterparts (see Figure A 4 for the Gamma fit of other 

body parts). This contrasts with the findings of the COM stochasticity during the 3 walking tasks, 

where the patients exhibited higher NSR in their kinematics signal, as was the case in previous 

studies (Torres et al., 2011b). It is important to note here that these are different types of motor 

control tasks. Walking and pointing do not engage the hands in contact with an object, as there 

is no direct haptic feedback. In contrast, drawing provides continuous haptic feedback to the 

brain. In the presence of tremor and involuntary micro-motions, the systems of the PD patient 

may compensate and reduce the NSR by closely monitoring the pressure of the pen against the 

tablet, as he/she may be interacting with an opposing force (force of the direction from the 
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tablet towards the pen) in a different manner than the healthy participant. Perhaps the patient 

pressed harder (or softer) onto the paper than the healthy individual, and thus relied more (or 

less) on the friction between the pen tip and tablet, leading to a different range of NSR from 

what would otherwise be observed if the patient freely moved the pen tip in the air. Indeed 

such ‘contact control’ have been found to possess different stochasticity than when control is 

exerted without contact (Yanovich, Isenhower, Sage, & Torres, 2013). We did not record the pen 

pressure/grip that the participant was exerting in this study, but in the future, this may be 

informative to understand the patterns that we observed.  

We also introduced a new metric that borrows concepts from linear algebra, where we 

plotted a dynamical trajectory of distance between two body parts (e.g., left toe and COM) in a 

3-dimensional coordinate (denoting the distance from 3 consecutive frames; thereby reflecting 

both linear velocity and acceleration), regressed these datapoints to a the plane, and observed 

the projections of such datapoints on the plane, and quantified how much those datapoints 

deviated from the reference vector (i.e., no motion). From the shape of the projections, we 

revealed the irregularity in body motions among the patient participants, which contrasted the 

regularity exhibited by the healthy participants’ projected datapoints (described by the donut 

shaped projection in Figure 4.14). We also used a measure of angle deviation from the reference 

vector to quantify how much the body motion deviated from ‘no motion’, and found this to be 

small for Parkinson’s patients. This was most pronounced during walking, which involved all 

body parts to actively move. Not surprisingly, the difference between the patients and healthy 

participants were insignificant during pointing tasks, as there are less motions across the body 

during this task. However, we noticed some difference in the paced pointing motions between 

the two cohorts. Although all participants moved the dominant hand at the same pace during 

this paced pointing condition (P3), the difference may be from the faster instantaneous motions 
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and jerks shown during the paced condition among the healthy participants (imagine a young 

person moving the hand fast to touch the target and retract, and waiting for a longer time to 

wait for the next metronome beat). However, it is interesting to see such separation to be more 

significant when this measure is based on the distance between left toe and COM (as opposed 

to the distance between the dominant hand and COM), as we would assume there to be 

minimal difference between the two cohort (since all participants are seated and merely moving 

the upper body). We conjecture that perhaps Parkinson’s patients have limited motor control, 

and so during their paced pointing motions, as most control is exerted on the arm, there may be 

less energy left to exert all the way down to the toe. For that reason, it may be that these 

patients try to preserve that energy by minimizing the motions of non-acting body parts such as 

the foot. This finding alludes to the importance of the spontaneous motions (nonactive motions) 

as they inform us of the systems interactions, and of the cognitive/motor processes that underly 

it; particularly, among individuals with lower cognitive-motor agency. We also see this pattern 

from the ASD patient, but not from the Essential Tremor patient. As such, this may not 

necessarily be the characteristic of lower cognitive-motor agency in general, but of a lower 

cognitive-motor agency pertaining to Parkinson’s disease.  

In another analysis, as with the studies from previous chapters, we also looked at the MI 

across different modes of signals. Here, we further examined the informational dependency 

separately for EEG signals that were generated by sources within the brain, and those from the 

scalp and beyond (e.g., muscle artefacts). In general, as with the findings among ASD patients 

shown in Figure 3.9, Parkinson’s patients had an overall smaller informational dependency 

across sensors, and a narrower range of change in dependency across time/condition. However, 

we found this to be most pronounced from the magnetometer signals, and with the EEG signals 

that are presumed to be due to muscle motions. These findings suggest that the low 
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informational dependency across different parts of the body for the Parkinson’s patient may be 

a characterization and perhaps reason for the motor symptoms that they experience. This is 

because lower MI was found to be a description of less motor control among healthy 

individuals, as was to be found in their non-dominant side of the body and during their 

spontaneous actions (see Figure 2.4). For the Parkinson’s patient with lower cognitive-motor 

agency, we conjecture that they are not able to exert as much motor control, since they have an 

overall reduced informational connectivity between the brain and body, hindering them to 

differentiate actions with varying levels of motor intent. In a later study, it would be informative 

to specifically quantify the MI range between different levels of motor intent (e.g., between 

deliberate and spontaneous motions) among PD patients, to see whether their differentiation is 

indeed muted compared to their NT counterparts.  

As another measure of connectivity, we also examined the cross-correlations across 

different body parts while the participants performed pointing and walking tasks. In general, 

Parkinson’s patients exhibited more similarity in their motions across the body, and these were 

more pronounced during the walking tasks. However, when we removed the tremor aspects in 

these motor signals, the correlation level was similar between the patients and healthy 

participants, implying that a main factor that contributes to such connectivity characteristics is 

tremor. To further understand the nature of this tremor, we can further examine the tremors 

within motor signals in a subsequent study.  

Although this study introduces many analytics that are conducive to understanding the 

interactive processes of our nervous systems, these analytics nevertheless have some 

limitations. The main source of limitation is the imprecision of the EEG signals. The EEG data is 

fraught with signals that are not from the cortical processes, and ICA method was applied to 

relieve such concern. However, ICA does not allow extracting the same spatial components of 
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EEG signals for all participants (e.g., some participants’ components are mainly from the frontal 

area, while another participants components are mainly from the parietal area), making it 

impossible to get a precise picture and comparison of the brain activities across individuals. 

Needless to say, the presence of artefacts (in the EEG data) that cannot be clearly identified 

further complicates the problem. However, the current technological state of brain measures, 

unfortunately, do not have a quick solution to this problem. Also, the small patient population 

data we obtained in this study is not large enough to make generalized characterization of the 

lower cognitive-motor agency pertaining to Parkinson’s disease. To obtain a clearer picture of 

such disorder, we would need to collect more data from age-matched control, and other patient 

populations with compromised motor control.  

Despite such limitation, the study nevertheless is informative in revealing methods and 

results of characterizing an individual’s neurobiological system with varying levels of cognitive-

motor agency. In particular, we found how lower cognitive-motor agency pertaining to 

Parkinson’s disease symptoms is characterized by the lower NSR in their kinematics during 

contact control, and higher NSR during natural walking; narrower range of motions during 

pointing and walking; and narrower range of connectivity across the body kinematics. By 

comparing different demographic cohorts and finding clustering patterns among the cohorts, 

these methods provide clinical application value as a biomarker. I next discuss the research 

significance from a perspective of translational research.  

 

5 Translational Research 

In this thesis, I defined agency as the capacity to control one’s behavior at will, and 

limited the study of agency to the cognitive-motor domain. I attempted to characterize the 
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different levels of cognitive-motor agency with respect to the processes within one’s internal 

neurobiological system, in the face of various cognitive and memory demands. In this sense, the 

agency that I characterized is truly embodied, in that it is not a mere cognitive nor a motor 

capacity (as in physical volition), but is a concerted and integrated capacity of both cognitive and 

motor behaviors. This was done by examining multiple biophysical signals generated by the CNS, 

PNS, and ANS, and by viewing these signals taking the role of both cause and effect of each 

other in a recurrent manner (e.g., motor signals as efferent and afferent signals to the brain). By 

examining the variability of these signals in different cognitive states, and comparing these 

across patients with different neurological disorders (which are accompanied by symptoms of 

compromised motor and cognitive capacity), I presented analytics that are informative in 

characterizing different levels of cognitive-motor agency.  

These analytics follow a series of work by E.B. Torres (2018), adhering to the theoretical 

and statistical framework, called ‘Statistical Platform for Individualized Behavioral Analyses 

(SPIBA by E. B. Torres and Jose (2012))’, that harnesses biophysical signals from the peripheral, 

autonomic, and central nervous systems to understand different levels of cognition, as it 

develops and as it decays in a variety of neural disorders. This framework was created to assess 

biophysical data on a personalized basis, according to the tenets of the Precision Medicine and 

mobile Health concepts (Hawgood et al., 2015). SPIBA makes use of the variability of biophysical 

waveforms (e.g., fluctuations of speed or acceleration during motor movement, heart’s inter-

beat-interval, brain signals obtained from electroencephalogram), as these are a rich source of 

information that is processed by the physical body. Specifically, the statistical properties of 

fluctuations in the ever-present biophysical waveforms are an output of the body, but are also 

an input to the entire system in the form of re-afferent signals, enabling coordination and 

forecasting of the subsequent moment’s behavior. Examining the trajectory of various signals’ 
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statistical properties at different time scales -from minutes to years – allows us to objectively 

and quantitatively track neural development, maintenance, and degeneration across different 

populations (e.g., neurotypical individuals, patients with ASD, patients with Parkinson’s disease, 

female versus male).  

As such, the analytics introduced in this thesis (embodied cognition analytics; ECA) can 

serve as dynamic digital biomarkers to both categorize the status of an individual’s neurological 

health at a time point, and to track longitudinally as the disease progresses. Moreover, the ever-

developing technology of wearable sensors (e.g., mobile phone, smartwatch) provide an 

affordable and convenient means to capture the biophysical signals to be used as biomarkers, as 

they have demonstrated to reliably capture the various statuses of the individual in previous 

studies (e.g., (Torres, Vero, & Rai, 2018)). Indeed, this is an improvement from the current 

diagnostic methods, because many of the clinical diagnostic tests (e.g., ADOS, MOCA, UPDRS) 

include components that primarily depend on the participant’s self-reports and/or the 

experienced clinician’s observation, which are inevitably subjective. As a result, the current 

diagnostic methods unfortunately leave out important information that transpires largely 

beneath their awareness. With the analytics offered by ECA (and of SPIBA), the biophysical data 

registered by wearable sensors can therefore complement the current diagnostic methods with 

more objectivity.  
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Figure 5.1. Translational research of ECA (A) Wearable sensors such as smartphones can be 
used with affordability and convenience to register the biophysical signals of an individual to 
characterize different statuses with the use of SPIBA (figure from Torres et al. (2018)). (B) The 
biophysical signals registered by wearable biosensors and analyzed through ECA (and of SPIBA) 
can be used as dynamic digital biomarkers to complement the current clinical diagnostic 
methods with more objectivity. 
 

However, these are not the only merits of ECA (and of SPIBA) on improving the current 

clinical diagnostic methods. In fact, current diagnostic tests are most often criterion-reference 

tests rather than norm-referenced tests (Torres, Rai, Mistry, & Gupta, 2019). This means that 

they do not have a proper metric scale relative to normative data. Because they do not have 

normative data and lack a proper similarity metric, they are inefficient to track changes in an 

individual’s nervous systems with respect to the neurotypical person’s trajectory. This problem 

has only recently been recognized in the context of neurodevelopment, but applies to other 

disorders of neurodegeneration (e.g., PD) as well. Furthermore, these clinical tests are based on 

discrete scales with arbitrarily set ranges (with no correspondence to the biophysical data) and 

are built on a one-size-fits-all static model that assumes and imposes a given probability 

distribution function a priori; and this approach neglects the age-dependent shifts in stochastic 

signatures that needs to be assessed empirically (Torres, 2018).  
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The ECA (following the SPIBA platform) addresses these limitations of the current 

clinical diagnostic tests, as it characterizes the neurotypical data to provide norm-reference 

scales to these criterion-reference tests. Also, as ECA does not assume any distribution a priori, 

but rather empirically estimates the most adequate one for each person, it provides a range of 

stochastic regimes that allow an objective and accurate assessment of the patient in reference 

to the neurotypical person. The deviations of the stochastic regime from the neurotypical 

person are indicative of the compensatory strategies that the patient’s nervous systems develop 

along the course of a disorder; by quantifying these deviations, we are able to objectively and 

empirically assess the individual’s neural disorder in a personalized manner. The ECA presented 

in this thesis are, therefore, an improvement from the status quo, as they offer objective metric 

scales that reflect normative data, and empirically estimate the stochasticity of the biophysical 

signals on an individualized manner; thus allowing a more accurate dynamic assessment of the 

disorder of interest.  

In assessing cognitive-motor agency among different populations, I have demonstrated 

the versatility of ECA and its use in clinical studies. Using this framework, I was able to 

characterize two disorders that are clinically defined by different criteria: ASD based on 

cognitive deficits and PD based on motor deficits. Through the lens of ECA, we were able to see 

that ASD also has somatic-sensory-motor deficits and that PD also has cognitive deficits, thus 

providing a motor criterion for the cognitive-based disorders (ASD) and a cognitive criterion for 

the motor-based disorder (PD). In this sense, defining agency in the cognitive-motor domain 

offers a new bridging solution to develop new lines of inquiry in the field of embodied cognition. 

By objectively measuring the physiological streams during cognitively controlled tasks (by 

systematically changing levels of cognitive control and types of cognitive processes), I posit that 
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the ECA framework would introduce a new avenue to inquire about mental spaces, and would 

thus be conducive to developing a more comprehensive digital biomarker.  

 

6 Conclusion  

In this thesis, I defined agency as the capacity to control behaviors at will, and 

attempted to characterize different levels of cognitive-motor agency through the lens of ECA , 

where the fluctuations of biophysical signals (MMS) were assessed and compared across 

different populations with varying levels of cognitive-motor agency. As part of the (coined) 

embodied cognition analytics framework (ECA), I introduced a set of experimental and analytical 

paradigms that allow characterizing these varying degrees of agency, through the dynamical 

patterns of connectivity across the brain and body, while an individual performs naturalistic 

tasks. By varying the levels of cognitive and memory demands within these experimental 

settings, alongisde capturing biophysical signals generated by the CNS, PNS, and ANS, I 

characterized agency through the cognitive-motor processes that unfold within a naturalistic 

setting. Furthermore, by finding patterns across different patient cohorts, I demonstrated that 

these characterizations have clinical value in serving as digital biomarkers of neurological 

disorders.  

The novelty of the ECA framework is in capturing the interrelations between motor and 

cognitive processes that occur across the brain and body, by examining the internally generated 

activities of the nervous systems during simple drawing/pointing/walking tasks within a 

naturalistic setting. This framework allows representing both top-down (goal-directed) and 

bottom-up (spontaneous self-emerging) perspectives of agency (as described in section 1.3), as 

an individual’s behavior is quantified and tracked during their self-generative, self-monitoring 
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and self-correcting behaviors, while they perform a few externally imposed tasks (e.g., paced 

pointing, count backward). Moreover, by observing the range of stochasticity/connectivity 

across different levels of control, the framework provides a new way to see how systems of 

varying agency perceives and differentiates the diverse behaviors that oneself makes. For 

instance, by segmenting motions as deliberate and spontaneous (as done in section 2.2.4), we 

were able to see how the system perceives its cause (deliberate motion) and effect 

(spontaneous motion); and by comparing this differentiation across different populations, we 

were able to see how different systems effectively (or ineffectively) perceives such 

differentiation. Indeed, the data analyzed within this framework are those that are not visible to 

the naked eye, as they are minute fluctuations of one’s biophysical signal (MMS). Hence, it is 

revealing to see how such miniscule type of signal is informative of the cognitive processes that 

unfolds. Indeed, these re-entrant MMS signals (reafference) offers a new way to monitor the 

levels and quality of information feedback that the brain may be experiencing from moment to 

moment.  

The data analyzed in this thesis provides a snapshot of an individual’s performance 

under different contexts, as s/he exerts varying levels of control while performing a variety of 

tasks that require different cognitive-motor skills. As a next step, we can explore these analytics 

on a longitudinal basis, thereby track the trajectory of one’s biophysical signal over longer 

periods of time. Also, in this thesis, we focused on characterizing the biophysical signals that 

varied across a range of motor and respiratory control, but as a next step, it would be useful to 

see them vary by other types of control (e.g., attention). Moreover, exploring different domains 

of agency (e.g., affect, social) would provide a more complete picture on characterizing agency. 

However, we should continue to look for ways to minimize instrumentation and extraneous 

noise in collecting these data as well.  
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In conclusion, the ECA is a framework that allows studying agency within a naturalistic 

setting, thereby reflecting the nature of the human body as a complex non-linear dynamical 

system, as it captures the interactive processes within the multiple layers of the nervous 

systems. It is an embodied approach to study cognition, and can potentially serve as a bridge to 

connect the various findings from different fields – from psychology to medical science.  

   



130 
 

 
 

Reference 

Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: active inference in the 
motor system. Brain Structure and Function, 218(3), 611-643.  

  
Adolphs, R. (2003). Cognitive neuroscience: Cognitive neuroscience of human social behaviour. 

Nature Reviews Neuroscience, 4(3), 165.  

  
Arzy, S., & Schacter, D. L. (2019). Self-Agency and Self-Ownership in Cognitive Mapping. Trends 

in cognitive sciences.  

  
Asch, S. E. (1955). Opinions and social pressure. Scientific American, 193(5), 31-35.  

  
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine 

function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403-450.  

  
Bandura, A. (1969). Social-learning theory of identificatory processes. Handbook of socialization 

theory and research, 213, 262.  

  
Barabasi, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell's functional 

organization. Nature reviews genetics, 5(2), 101.  

  
Barlow, H. B. (1989). Unsupervised learning. Neural computation, 1(3), 295-311.  

  
Battery, A. I. T. (1944). Army Individual Test Battery. Manual of directions and scoring.  

  
Baumeister, R. F. (2008). Free will in scientific psychology. Perspectives on Psychological Science, 

3(1), 14-19.  

  
Beekly, D. L., Ramos, E. M., Lee, W. W., Deitrich, W. D., Jacka, M. E., Wu, J., . . . Kukull, W. A. 

(2007). The National Alzheimer's Coordinating Center (NACC) database: the uniform 
data set. Alzheimer Disease & Associated Disorders, 21(3), 249-258.  

  
Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP pipeline: 

standardized preprocessing for large-scale EEG analysis. Frontiers in neuroinformatics, 9, 
16.  

  



131 
 

 
 

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis : 
forecasting and control. In Wiley series in probabilit and statistics (pp. 1 online 
resource).   

Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal 
grip on a field of affordances. Frontiers in human neuroscience, 8(599). 
doi:10.3389/fnhum.2014.00599 

  
Buchanan, J., & Kelso, J. (1999). To switch or not to switch: Recruitment of degrees of freedom 

stabilizes biological coordination. Journal of Motor Behavior, 31(2), 126-144.  

  
Bulea, T. C., Kilicarslan, A., Ozdemir, R., Paloski, W. H., & Contreras-Vidal, J. L. (2013). 

Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and 
whole-body segmental inertial recording for multi-modal neural decoding. JoVE (Journal 
of Visualized Experiments)(77), e50602.  

  
Bulea, T. C., Kim, J., Damiano, D. L., Stanley, C. J., & Park, H.-S. (2014). User-driven control 

increases cortical activity during treadmill walking: An EEG study. Paper presented at the 
Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International 
Conference of the IEEE. 

  
Butkevičiūtė, E., Bikulčienė, L., Sidekerskienė, T., Blažauskas, T., Maskeliūnas, R., Damaševičius, 

R., & Wei, W. (2019). Removal of movement artefact for mobile EEG analysis in sports 
exercises. IEEE Access, 7, 7206-7217.  

  
Cheron, G., Petit, G., Cheron, J., Leroy, A., Cebolla, A., Cevallos, C., . . . Clarinval, A.-M. (2016). 

Brain oscillations in sport: toward EEG biomarkers of performance. Frontiers in 
Psychology, 7, 246.  

  
Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension: OUP USA. 

  
Delaunay, B. (1934). Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i 

Estestvennyka Nauk, 7(793-800), 1-2.  

  
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG 

dynamics including independent component analysis. Journal of neuroscience methods, 
134(1), 9-21.  

  
Deuschl, G., Bain, P., Brin, M., & Committee, A. H. S. (1998). Consensus statement of the 

movement disorder society on tremor. Movement Disorders, 13(S3), 2-23.  

  



132 
 

 
 

Fahn, S., & Elton, R. (1987). UPDRS program members. Unified Parkinsons disease rating scale. 
Recent developments in Parkinson’s disease, 2, 153-163.  

  
Flanders, M., Daghestani, L., & Berthoz, A. (1999). Reaching beyond reach. Exp Brain Res, 126(1), 

19-30. doi:10.1007/s002210050713 

  
Flanders, M., Pellegrini, J. J., & Geisler, S. D. (1996). Basic features of phasic activation for 

reaching in vertical planes. Exp Brain Res, 110(1), 67-79. doi:10.1007/bf00241376 

  
Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed 

mathematical model. J Neurosci, 5(7), 1688-1703.  

  
Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator: L theory. 

Probability Theory, 57(4), 453-476.  

  
Freund, P., Friston, K., Thompson, A. J., Stephan, K. E., Ashburner, J., Bach, D. R., . . . 

Mohammadi, S. (2016). Embodied neurology: an integrative framework for neurological 
disorders. Brain, 139(6), 1855.  

  
Fuschillo, V. L., Bagalà, F., Chiari, L., & Cappello, A. (2012). Accelerometry-based prediction of 

movement dynamics for balance monitoring. Medical & biological engineering & 
computing, 50(9), 925-936.  

  
Galton, F. (1875). The history of twins, as a criterion of the relative powers of nature and 

nurture. Fraser's Magazine, 12(71), 566-576.  

  
Gibson, J. J. (1978). The ecological approach to the visual perception of pictures. Leonardo, 

11(3), 227-235.  

  
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. 

Proceedings of the national academy of sciences, 99(12), 7821-7826.  

  
Green, A. E., Munafò, M. R., DeYoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using 

genetic data in cognitive neuroscience: from growing pains to genuine insights. Nature 
Reviews Neuroscience, 9(9), 710.  

  
Gwin, J. T., Gramann, K., Makeig, S., & Ferris, D. P. (2011). Electrocortical activity is coupled to 

gait cycle phase during treadmill walking. Neuroimage, 54(2), 1289-1296.  

  



133 
 

 
 

Haggard, P., & Chambon, V. (2012). Sense of agency. Current Biology, 22(10), R390-R392.  

  
Haggard, P., & Clark, S. (2003). Intentional action: Conscious experience and neural prediction. 

Consciousness and Cognition, 12(4), 695-707.  

  
Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. 

Nature, 394(6695), 780.  

  
Hawgood, S., Hook-Barnard, I. G., O'Brien, T. C., & Yamamoto, K. R. (2015). Precision medicine: 

Beyond the inflection point. Science translational medicine, 7(300), 300ps317. 
doi:10.1126/scitranslmed.aaa9970 

  
Herrero, J. L., Khuvis, S., Yeagle, E., Cerf, M., & Mehta, A. D. (2017). Breathing above the brain 

stem: volitional control and attentional modulation in humans. Journal of 
neurophysiology, 119(1), 145-159.  

  
Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: onset, progression, and mortality. Neurology, 

17(5), 427-427.  

  
Hoffmann, M., & Pfeifer, R. (2018). Robots as powerful allies for the study of embodied 

cognition from the bottom up. arXiv preprint arXiv:1801.04819.  

  
Janis, I. L. (2008). Groupthink. IEEE Engineering Management Review, 36(1), 36.  

  
Jankovic, J., Schwartz, K. S., & Ondo, W. (1999). Re-emergent tremor of Parkinson’s disease. 

Journal of Neurology, Neurosurgery & Psychiatry, 67(5), 646-650.  

  
Juarrero, A. (2015). What does the closure of context-sensitive constraints mean for 

determinism, autonomy, self-determination, and agency? Progress in biophysics and 
molecular biology, 119(3), 510-521.  

  
Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. 

(2000). Removing electroencephalographic artifacts by blind source separation. 
Psychophysiology, 37(2), 163-178.  

  
Kalampratsidou, V., & Torres, E. B. (2018). Peripheral Network Connectivity Analyses for the 

Real-Time Tracking of Coupled Bodies in Motion. Sensors (Basel), 18(9). 
doi:10.3390/s18093117 

  



134 
 

 
 

Kathirvel, P., Manikandan, M. S., Prasanna, S., & Soman, K. (2011). An efficient R-peak detection 
based on new nonlinear transformation and first-order Gaussian differentiator. 
Cardiovascular Engineering and Technology, 2(4), 408-425.  

  
Klein, G. (2008). Naturalistic decision making. Human factors, 50(3), 456-460.  

  
Lee, H. J., Lee, W. W., Kim, S. K., Park, H., Jeon, H. S., Kim, H. B., . . . Park, K. S. (2016). Tremor 

frequency characteristics in Parkinson's disease under resting-state and stress-state 
conditions. Journal of the neurological sciences, 362, 272-277.  

  
Leicht, E. A., & Newman, M. E. (2008). Community structure in directed networks. Physical 

review letters, 100(11), 118703.  

  
Libet, B. (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. 

Behavioral and Brain Sciences, 8(4), 529-539.  

  
Luck, S. J. (2012). Event-related potentials. APA handbook of research methods in psychology, 1, 

523-546.  

  
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1996). Independent component analysis of 

electroencephalographic data. Paper presented at the Advances in neural information 
processing systems. 

  
Malcolm, B. R., Foxe, J. J., Butler, J. S., Molholm, S., & De Sanctis, P. (2018). Cognitive load 

reduces the effects of optic flow on gait and electrocortical dynamics during treadmill 
walking. Journal of neurophysiology, 120(5), 2246-2259.  

  
Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural 

Networks, 9(8), 1265-1279.  

  
Mosimann, J. E. (1970). Size Allometry: Size and Shape Variables with Characterizations of the 

Lognormal and Generalized Gamma Distributions. Journal of the American Statistical 
Association, 65(330), 930-945.  

  
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., . . . 

Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool 
for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-
699.  

  



135 
 

 
 

Nguyen, J., Majmudar, U., Papathomas, T. V., Silverstein, S. M., & Torres, E. B. (2016). 
Schizophrenia: The micro-movements perspective. Neuropsychologia, 85, 310-326. 
doi:10.1016/j.neuropsychologia.2016.03.003 

  
Nguyen, J., Papathomas, T., Ravaliya, J., & Torres, E. B. (2014). Methods to Explore the Influence 

of Top-Down Visual Processes on Motor Behavior. J. of Vis. Exp.(86). doi:e51422, 
doi:10.3791/51422 

  
Niedermeyer, E. (2011). Niedermeyer's electroencephalography: basic principles, clinical 

applications, and related fields: Lippincott Williams & Wilkins. 

  
Nordin, A. D., Hairston, W. D., & Ferris, D. P. (2019). Human electrocortical dynamics while 

stepping over obstacles. Scientific Reports, 9(1), 4693.  

  
Onnela, J.-P., Saramäki, J., Kertész, J., & Kaski, K. (2005). Intensity and coherence of motifs in 

weighted complex networks. Physical Review E, 71(6), 065103.  

  
Oostenveld, R., & Oostendorp, T. F. (2002). Validating the boundary element method for 

forward and inverse EEG computations in the presence of a hole in the skull. Human 
Brain Mapping, 17(3), 179-192.  

  
Pavlov, I. P. (1957). Experimental psychology and other essays.  

  
Possin, K. L., Laluz, V. R., Alcantar, O. Z., Miller, B. L., & Kramer, J. H. (2011). Distinct 

neuroanatomical substrates and cognitive mechanisms of figure copy performance in 
Alzheimer's disease and behavioral variant frontotemporal dementia. Neuropsychologia, 
49(1), 43-48.  

  
Roetenberg, D., Luinge, H., & Slycke, P. (2009). Xsens MVN: full 6DOF human motion tracking 

using miniature inertial sensors.  

  
Ross, S. M. (1996). Stochastic processes. 1996. In: Wiley, New York. 

  
Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and 

the generation of affective meaning. Trends in cognitive sciences, 16(3), 147-156.  

  
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and 

interpretations. Neuroimage, 52(3), 1059-1069.  

  



136 
 

 
 

Ryu, J., & Torres, E. B. (2017). Methods for Dynamically Coupled Brain Body Tracking. Paper 
presented at the Fourth International Symposium on Movement and Computing, 
MOCO'17, London, UK. 

  
Ryu, J., & Torres, E. B. (2018). Characterization of Sensory-Motor Behavior Under Cognitive Load 

Using a New Statistical Platform for Studies of Embodied Cognition. Frontiers in human 
neuroscience, 12, 116.  

  
Ryu, J., Vero, J., Dobkin, R., & Torres, E. B. (2019). Dynamic Digital Biomarkers of Motor and 

Cognitive Function in Parkinson's Disease. J. Vis. Exp, 149, e59827.  

  
Sasaki, K., & Maruyama, R. (2014). Consciously controlled breathing decreases the high-

frequency component of heart rate variability by inhibiting cardiac parasympathetic 
nerve activity. The Tohoku journal of experimental medicine, 233(3), 155-163.  

  
Shannon, C. (1948). A mathematical theory of communication Bell System Technical Journal, 27, 

379-423, 623-656.  

  
Skinner, B. (1947). Experimental psychology.  

  
Snyder, K. L., Kline, J. E., Huang, H. J., & Ferris, D. P. (2015). Independent component analysis of 

gait-related movement artifact recorded using EEG electrodes during treadmill walking. 
Frontiers in human neuroscience, 9, 639.  

  
Sporns, O. (2010). Networks of the Brain: MIT press. 

  
Teitelbaum, O., Benton, T., Shah, P. K., Prince, A., Kelly, J. L., & Teitelbaum, P. (2004). Eshkol-

Wachman movement notation in diagnosis: the early detection of Asperger's syndrome. 
Proc Natl Acad Sci U S A, 101(32), 11909-11914. doi:10.1073/pnas.0403919101 

  
Tereshchenko, L. G., & Josephson, M. E. (2015). Frequency content and characteristics of 

ventricular conduction. Journal of electrocardiology, 48(6), 933-937.  

  
Thelen, E., Kelso, J. S., & Fogel, A. (1987). Self-organizing systems and infant motor 

development. Developmental Review, 7(1), 39-65.  

  
Thelen, E., & Smith, L. B. (1996). A dynamic systems approach to the development of cognition 

and action: MIT press. 

  



137 
 

 
 

Torres, E. B. (2011). Two classes of movements in motor control. Experimental brain research, 
215(3-4), 269-283.  

  
Torres, E. B. (2013). Atypical signatures of motor variability found in an individual with ASD. 

Neurocase, 19(2), 150-165.  

  
Torres, E. B. (2016). Rethinking the Study of Volition for Clinical Use. In J. Laczko & M. L. Latash 

(Eds.), Progress in Motor Control: Theories and Translations (pp. 229-254). Cham: 
Springer International Publishing. 

  
Torres, E. B. (2018). Objective Biometric Methods for the Diagnosis and Treatment of Nervous 

System Disorder: Elsevier. 

  
Torres, E. B., Brincker, M., Isenhower, R. W., Yanovich, P., Stigler, K. A., Nurnberger, J. I., . . . Jose, 

J. V. (2013). Autism: the micro-movement perspective. Frontiers in Integrative 
Neuroscience, 7, 32. doi:10.3389/fnint.2013.00032 

  
Torres, E. B., Cole, J., & Poizner, H. (2014). Motor output variability, deafferentation, and 

putative deficits in kinesthetic reafference in Parkinson's disease. Frontiers in human 
neuroscience, 8, 823. doi:10.3389/fnhum.2014.00823 

  
Torres, E. B., & Denisova, K. (2016). Motor noise is rich signal in autism research and 

pharmacological treatments. Sci Rep, 6, 37422. doi:10.1038/srep37422 

  
Torres, E. B., & Denisova, K. (2016). Motor noise is rich signal in autism research and 

pharmacological treatments. Scientific Reports, 6.  

  
Torres, E. B., & Donnellan, A. M. (2015). Autism: The movement perspective: Frontiers Media SA. 

  
Torres, E. B., Heilman, K. M., & Poizner, H. (2011a). Impaired endogenously evoked automated 

reaching in Parkinson's disease. J Neurosci, 31(49), 17848-17863. 
doi:10.1523/JNEUROSCI.1150-11.2011 

  
Torres, E. B., Heilman, K. M., & Poizner, H. (2011b). Impaired endogenously evoked automated 

reaching in Parkinson's disease. Journal of Neuroscience, 31(49), 17848-17863. 
doi:31/49/17848 [pii] 

10.1523/JNEUROSCI.1150-11.2011 

  



138 
 

 
 

Torres, E. B., Isenhower, R. W., Nguyen, J., Whyatt, C., Nurnberger, J. I., Jose, J. V., . . . Cole, J. 
(2016). Toward Precision Psychiatry: Statistical Platform for the Personalized 
Characterization of Natural Behaviors. Frontiers in Neurology, 7, 8. 
doi:10.3389/fneur.2016.00008 

  
Torres, E. B., Mistry, S., Caballero, C., & Whyatt, C. P. (2017). Stochastic Signatures of Involuntary 

Head Micro-movements Can Be Used to Classify Females of ABIDE into Different 
Subtypes of Neurodevelopmental Disorders. Front Integr Neurosci, 11, 10. 
doi:10.3389/fnint.2017.00010 

  
Torres, E. B., Nguyen, J., Mistry, S., Whyatt, C., Kalampratsidou, V., & Kolevzon, A. (2016a). 

Characterization of the statistical signatures of micro-movements underlying natural 
gait patterns in children with Phelan McDermid syndrome: towards precision-
phenotyping of behavior in ASD. Frontiers in Integrative Neuroscience, 10.  

  
Torres, E. B., Nguyen, J., Mistry, S., Whyatt, C., Kalampratsidou, V., & Kolevzon, A. (2016b). 

Characterization of the Statistical Signatures of Micro-Movements Underlying Natural 
Gait Patterns in Children with Phelan McDermid Syndrome: Towards Precision-
Phenotyping of Behavior in ASD. Front Integr Neurosci, 10, 22. 
doi:10.3389/fnint.2016.00022 

  
Torres, E. B., Rai, R., Mistry, S., & Gupta, B. (2019). Hidden Aspects of the Research-ADOS are 

Bound to Affect Autism Science. bioRxiv, 717827. doi:10.1101/717827 

  
Torres, E. B., Raymer, A., Gonzalez Rothi, L. J., Heilman, K. M., & Poizner, H. (2010). Sensory-

spatial transformations in the left posterior parietal cortex may contribute to reach 
timing. J Neurophysiol, 104(5), 2375-2388. doi:jn.00089.2010 [pii] 

10.1152/jn.00089.2010 

  
Torres, E. B., Smith, B., Mistry, S., Brincker, M., & Whyatt, C. (2016). neonatal Diagnostics: 

Toward Dynamic growth charts of neuromotor control. Frontiers in Pediatrics, 4.  

  
Torres, E. B., Vero, J., & Rai, R. (2018). Statistical platform for individualized behavioral analyses 

using biophysical micro-movement spikes. Sensors, 18(4), 1025.  

  
Torres, E. B., Yanovich, P., & Metaxas, D. N. (2013). Give spontaneity and self-discovery a chance 

in ASD: spontaneous peripheral limb variability as a proxy to evoke centrally driven 
intentional acts. Front Integr Neurosci, 7, 46. doi:10.3389/fnint.2013.00046 

  



139 
 

 
 

Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human 
multijoint arm movement. Minimum torque-change model. Biol Cybern, 61(2), 89-101.  

  
van Beers, R. J. (2009). Motor learning is optimally tuned to the properties of motor noise. 

Neuron, 63(3), 406-417.  

  
van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than 

seeing in sensorimotor adaptation. Current Biology, 12(10), 834-837.  

  
Vaschillo, E. G., Vaschillo, B., & Lehrer, P. M. (2006). Characteristics of resonance in heart rate 

variability stimulated by biofeedback. Applied psychophysiology and biofeedback, 31(2), 
129-142.  

  
Von Holst, E., & Mittelstaedt, H. (1950). The principle of reafference: Interactions between the 

central nervous system and the peripheral organs. In P. C. Dodwell (Ed.), Perceptual 
Processing: Stimulus equivalence and pattern recognition (pp. 41-72). New York: 
Appleton-Century-Crofts. 

  
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 

393(6684), 440.  

  
Whitmer, D., Worrell, G., Stead, M., Lee, I. K., & Makeig, S. (2010). Utility of independent 

component analysis for interpretation of intracranial EEG. Frontiers in human 
neuroscience, 4, 184.  

  
Whyatt, C. P., & Torres, E. B. (2017). The social-dance: decomposing naturalistic dyadic 

interaction dynamics to the'micro-level'. Paper presented at the Proceedings of the 4th 
International Conference on Movement Computing. 

  
Wu, D., Jose, J. V., Nurnberger, J. I., & Torres, E. B. (2018). A Biomarker Characterizing 

Neurodevelopment with applications in Autism. Sci Rep, 8(1), 614. doi:10.1038/s41598-
017-18902-w 

  
Yanovich, P., Isenhower, R. W., Sage, J., & Torres, E. B. (2013). Spatial-orientation priming 

impedes rather than facilitates the spontaneous control of hand-retraction speeds in 
patients with Parkinson's disease. Plos One, 8(7), 1-19.  

  

 

  



140 
 

 
 

Appendices  

 

Figure A 1. MLE of angular acceleration standardized spike amplitudes  

(Top) Histogram of normalized spike amplitude for different body parts (dominant body part 
extracted from right hand index finger motion; non-dominant body part extracted from left 
shoulder motion) and movement segment (deliberate forward; spontaneous backward) for a 
typical right-handed participant. These histograms were fitted to a Gamma probability 
distribution function, shown in red. (Bottom) Maximum likelihood estimated values for the 
corresponding histogram on top of each graph. The horizontal axis contains the value of the 
gradient at the end of the optimization process (-3x10-3 ~ 6x10-3 range according to the set 
tolerance value of 10-30 for the optimization process). The vertical axis contains the maximum 
likelihood estimation (MLE) value for the Gamma, normal, exponential and lognormal 
distributions. The respective MLE values of each probability distributions are: for dominant 
deliberate amplitude data [4053.7, 4036.5, -1058.3, 4059.4], for non-dominant deliberate 
amplitude data [5578.0, 5574.2, -1285.2, 5577.6], for dominant spontaneous amplitude data 
[4706.8, 4701.6, -1116.4, 4707.2], for non-dominant spontaneous amplitude data 
[6305.7,6304.8,-1413.8,6303.9]. Overall, we found that the Gamma and lognormal distributions 
have a good fit to these kinematics data. However, because Gamma distributions have shown to 
be a better fit to the kinematics data from individuals with neurological disorders (Cite) than 
lognormal distributions, for consistency, we chose to use the Gamma probability distribution for 
fitting purpose.  
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Figure A 2. Pipeline for computing mutual information. Because joint probability distributions 
P(X,Y) for a pair of different body parts P(X) and P(Y) could not be empirically determined, joint 
probability distributions were estimated by randomly sampling a pair from each body parts, X 
and Y, without replacement, and by constructing a joint histogram from these sampled pairs. 
Using the estimated joint probability distributions P(X,Y) along with the empirical single 
probability distribution P(X) and P(Y), we computed the mutual information (MI), and repeated 
this computation 100 times. The median of the 100 estimated mutual information values was 
determined as the final value.   
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Figure A 3. MLE of Pen and COM linear velocity normalized spike amplitudes  

(Top) Histogram of shifted normalized spike amplitude for pen linear velocity (left) and COM 
linear velocity (right) during a typical drawing task and a walking task, respectively. These 
histograms were fitted to a Gamma probability distribution function, shown in red. (Bottom) 
Maximum likelihood estimated values for the corresponding histogram on top of each graph. 
The horizontal axis contains the value of the gradient at the end of the optimization process (-
2x10-4 ~ 5x10-4 range according to the set tolerance value of 10-30 for the optimization process). 
The vertical axis contains the maximum likelihood estimation (MLE) value for the Gamma, 
normal, exponential and lognormal distributions. The respective MLE values of each probability 
distributions are: for pen data [1350, 1050, 1350, 1319], and for COM data [6024, 5253, 5926, 
5968]. Overall, we found that the Gamma distributions have the best fit to these kinematics 
data.  
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Figure A 4. Gamma fit for all body parts including COM during clock drawing  Fitted Gamma parameters of each body part (R denotes Right; L 
denotes Left; U denotes Upper; F denotes Fore; LL denotes Left Lower; RL denotes Right Lower; U denotes Upper) for each individual during a 
clock drawing task. The fitted Gamma PDF is based on the shifted normalized spike amplitudes of the linear velocity of each body part. There is 
no observable cluster among different demographic cohorts.  
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Figure A 5. Gamma fit of pen movement when pen was on the tablet (Pen On) and lifted from the tablet (Pen Off). Shifted and normalized 
spike amplitudes of pen movement linear velocity was fitted to a Gamma PDF, separately for motions when the pen was on the tablet, and when 
it was lifted from the tablet. We notice more separation between Parkinson’s patients and NT participants when the pen was on the tablet, but 
we also caveat that there are fewer participant data for the “Pen Off” case, so the finding is not conclusive.  
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Figure A 6. Comparison of time percentage when pen tip was lifted from the tablet. There 
were little difference between Parkinson’s patients and NT participants for all tasks, except the 
Maze4 task (to connect dots alternating between sequences of numbers and alphabet) which 
had statistical significance (χ (1,18) = 7.47, p<0.01).  
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Table A 1-  Kruskal Wallis Test (p-values) on Mutual Information comparison: Dominant (D) vs. 
Non-Dominant (ND)  

 
D vs ND 
𝞦(1,22) 

Deliberate:  
D vs ND 
𝞦(1,10) 

Spontaneous:  
D vs ND 
𝞦(1,10) 

P1 4.08 (p=0.04) * 8.31 (p<0.01) ** 7.41 (p<0.01) ** 

P2 6.75 (p<0.01) ** 8.31 (p<0.01) ** 6.56 (p=0.01) * 

P3 3.00 (p=0.08) 8.31 (p<0.01) ** 3.69 (p=0.05) 

P4 4.32 (p=0.04) * 8.31 (p<0.01) ** 8.31 (p<0.01) ** 

P5 15.87 (p<0.01) ** 8.31 (p<0.01) ** 5.77 (p=0.02) * 

P6 17.28 (p<0.01) ** 8.31 (p<0.01) ** 8.31 (p<0.01) ** 

P7 11.21 (p<0.01) ** 8.31 (p<0.01) ** 5.03 (p=0.03) * 

P8 11.60 (p<0.01) ** 8.31 (p<0.01) ** 3.69 (p=0.05) 
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Table A 2 - Kruskal Wallis Test (p-values) on Mutual Information comparison: Deliberate (Del) 
vs. Spontaneous (Sp) 

 
Del vs Sp 

𝞦(1,88) 

Dominant:  

Del vs Sp 

𝞦(1,10) 

Non-Dominant:  

Del vs Sp 

𝞦(1,10) 

P1 66.76 (p<0.01)** 8.31 (p<0.01) ** 8.31 (p<0.01) ** 

P2 64.54 (p<0.01) ** 8.31 (p<0.01) ** 8.31 (p<0.01) ** 

P3 66.49 (p<0.01) ** 8.31 (p<0.01) ** 8.31 (p<0.01) ** 

P4 66.63 (p<0.01) ** 8.31 (p<0.01) ** 8.31 (p<0.01) ** 

P5 0.37 (p=0.54) 5.03 (p=0.03) * 4.33 (p=0.04) * 

P6 12.07 (p<0.01) ** 3.69 (p=0.05) 1.64 (p=0.20) 

P7 40.90 (p<0.01) ** 8.31 (p<0.01) ** 1.26 (p=0.26) 

P8 33.71 (p<0.01) ** 0.23 (p=0.63) 8.31 (p<0.01) ** 
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Table A 3. Kruskal Wallis Test (p-values) on NSR comparison: Dominant (D) vs. NonDominant 
(ND) 

 
D vs ND 
𝞦(1,14) 

Deliberate:  
D vs ND 
𝞦(1,6) 

Spontaneous:  
D vs ND 
𝞦(1,6) 

P1 4.41 (p=0.04) * 5.33 (p=0.02) * 3.00 (p=0.08) 

P2 4.86 (p=0.03) * 4.08 (p=0.04) * 1.33 (p=0.25) 

P3 2.16 (p=0.14) 5.33 (p=0.02)  * 0.33 (p=0.56) 

P4 6.35 (p=0.01) * 5.33 (p=0.02) * 5.33 (p=0.02) * 

P5 4.41 (p=0.04) * 4.08 (p=0.04) * 1.33 (p=0.25) 

P6 9.93 (p<0.01) ** 5.33 (p=0.02) * 5.33 (p=0.02) * 

P7 8.04 (p<0.01) ** 4.08 (p=0.02) * 5.33 (p=0.02) * 

P8 9.27 (p<0.01) ** 5.33 (p=0.02) * 5.33 (p=0.02) * 

 

  



149 
 

 
 

Table A 4. Kruskal Wallis Test (p-values) on NSR comparison: Deliberate (Del) vs Spontaneous 
(Sp) 

 
Del vs Sp 
𝞦(1,18) 

Dominant:  
Del vs Sp 
𝞦(1,6) 

Non-Dominant:  
Del vs Sp 
𝞦(1,6) 

P1 8.25 (p<0.01) ** 3.00 (p=0.08) 5.33 (p=0.02) * 

P2 5.49 (p=0.02) * 4.08 (p=0.04) * 4.08 (p=0.04) * 

P3 8.69 (p<0.01) ** 5.33 (p=0.02) * 3.00 (p=0.08) 

P4 7.00 (p<0.01) ** 5.33 (p=0.02) * 4.08 (p=0.04) * 

P5 3.86 (p=0.05) * 3.00 (p=0.08) 0.08 (p=0.77) 

P6 3.02 (p=0.08) 3.00 (p=0.08) 4.08 (p=0.04) * 

P7 3.86 (p=0.05) * 5.33 (p=0.02) * 2.08 (p=0.15) 

P8 5.14 (p=0.02) * 5.33 (p=0.02) * 5.33 (p=0.02) * 
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Table A 5. Pair-wise Kolmogorov-Smirnov Test on Modularity Togetherness comparison: Low 
vs. High Cognitive Load Condition  

 
Low vs High Deliberate:  

Low vs. High 

Spontaneous:  

Low vs High 

 KS p-value KS p-value KS p-value 

P1 0.28 <0.01** 0.24 0.12 0.33 0.01* 

P2 0.21 0.03* 0.16 0.61 0.27 0.07 

P3 0.26 <0.01** 0.18 0.44 0.42 <0.01** 

P4 0.13 0.38 0.13 0.79 0.29 0.04* 

P5 0.22 0.02* 0.20 0.30 0.44 <0.01** 

P6 0.23 0.01* 0.16 0.61 0.40 <0.01** 

P7 0.26 <0.01** 0.24 0.12 0.38 <0.01** 

P8 0.38 <0.01** 0.31 0.02* 0.67 <0.01** 
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Table A 6. Pair-wise Kolmogorov-Smirnov Test on Cluster Coefficient comparison: Low vs. High 
Cognitive Load Condition  

 
Low vs High Deliberate:  

Low vs. High 

Spontaneous:  

Low vs High 

 KS p-value KS p-value KS p-value 

P1 0.30 <0.01** 0.23 <0.01** 0.37 <0.01** 

P2 0.21 <0.01** 0.15 <0.01** 0.29 <0.01** 

P3 0.23 <0.01** 0.33 <0.01** 0.32 <0.01** 

P4 0.23 <0.01** 0.28 <0.01** 0.22 <0.01** 

P5 0.28 <0.01** 0.27 <0.01** 0.31 <0.01** 

P6 0.35 <0.01** 0.21 <0.01** 0.52 <0.01** 

P7 0.27 <0.01** 0.38 <0.01** 0.32 <0.01** 

P8 0.46 <0.01** 0.53 <0.01** 0.43 <0.01** 
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Table A 7. Pair-wise Kolmogorov-Smirnov Test on Modularity Togetherness comparison: 
Deliberate (Del) vs. Spontaneous (Sp) 

 
Del vs Sp Low Cognitive Load:  

Del vs Sp 
High Cognitive Load: 

Del vs Sp 

KS p-value KS p-value KS p-value 

P1 0.12 0.28 0.16 0.61 0.18 0.44 

P2 0.13 0.22 0.13 0.79 0.24 0.12 

P3 0.15 0.09 0.11 0.93 0.38 <0.01** 

P4 0.12 0.28 0.20 0.30 0.16 0.61 

P5 0.21 0.01* 0.16 0.61 0.49 <0.01** 

P6 0.13 0.17 0.22 0.19 0.36 <0.01** 

P7 0.07 0.84 0.13 0.79 0.33 0.01* 

P8 0.19 0.01* 0.22 0.19 0.58 <0.01** 
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Table A 8. Pair-wise Kolmogorov-Smirnov Test on Cluster Coefficient comparison: Deliberate 
(Del) vs. Spontaneous (Sp)  

 
Del vs Sp Low Cognitive Load:  

Del vs Sp 

High Cognitive Load:  

Del vs Sp 

 KS p-value KS p-value KS p-value 

P1 0.50 <0.01** 0.43 <0.01** 0.45 <0.01** 

P2 0.61 <0.01** 0.61 <0.01** 0.58 <0.01** 

P3 0.32 <0.01** 0.26 <0.01** 0.44 <0.01** 

P4 0.22 <0.01** 0.21 <0.01** 0.26 <0.01** 

P5 0.16 <0.01** 0.19 <0.01** 0.18 <0.01** 

P6 0.17 <0.01** 0.29 <0.01** 0.07 0.10 

P7 0.46 <0.01** 0.44 <0.01** 0.61 <0.01** 

P8 0.12 <0.01** 0.34 <0.01** 0.15 <0.01** 
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Table A 9. Demographics of Patient Participant  

ASD Patient 
Sex Age ADOS Class 

1 F 13 Module 3 / Score 11 Autism 

2 M 13 Module 1 / Score 7 Autism, moderate 

3 M 18 Module 3 / Score 10 Autism 
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Table A 10. Pair-wise Kolmogorov-Smirnov Test for absolute delta CC per IBI  
 

C1 vs. C2 C1 vs. C3 C2 vs. C3 

 
KS p-value KS p-value KS p-value 

NT1 (P08) 0.04 0.50 0.17 <0.01** 0.16 <0.01** 

NT2 (P11) 0.13 <0.01** 0.42 <0.01** 0.48 <0.01** 

NT3 (P12) 0.05 0.17 0.10 <0.01** 0.14 <0.01** 

ASD1 (P09) 0.07 <0.01** 0.05 0.10 0.05 0.12 

ASD2 (P10) 0.08 0.37 0.09 0.05 0.08 0.08 
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Table A 11. Pairwise Kolmogorov-Smirnov test for absolute delta CC per IBI during Condition 
C1  

 
KS statistic p-value 

NT1 vs. NT2 0.45 <0.01** 

NT1 vs. NT3 0.35 <0.01** 

NT2 vs. NT3 0.15 <0.01** 

NT1 vs. ASD1 0.07 0.01* 

NT1 vs. ASD2 0.06 0.37 

NT2 vs. ASD1 0.50 <0.01** 

NT2 vs. ASD2 0.46 <0.01** 

NT3 vs. ASD1 0.40 <0.01** 

NT3 vs. ASD2 0.36 <0.01** 

ASD1 vs. ASD2 0.06 0.42 

* Corresponding Participant ID number for the category names are found in Table A 10.  
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Table A 12. Kruskal Wallis test for angle deviations  

Body Part Condition χ (1,18) p-value 

Left Toe W1 9.31 p<0.01** 

W2 13.00 p<0.01** 

W3 13.00 p<0.01** 

Left Toe P1 3.18 0.07 

P2 0.83 0.36 

P3 4.41 0.04* 

Dominant Hand P1 0.69 0.41 

P2 0.69 0.41 

P3 1.71 0.19 
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Table A 13. Kruskal Wallis test for median MI values  
 

χ (1,18) p-value 

EEG 3.77 0.05* 

Mag-EEG 13.00 <0.01** 

Mag-Mag 11.88 <0.01** 

EKG-EEG 0.45 0.50 

EKG-Mag 3.47 0.06 
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Table A 14. Kruskal Wallis Test on MI (separated by EEG components generated within the 
brain and those outside the brain)  

 
χ df p-value 

IN EEG 1.42 (1,14) 0.23 

IN EEG - Mag 1.42 (1,14) 0.23 

IN EEG - EKG 1.21 (1,17) 0.27 

OUT EEG 3.47 (1,18) 0.06 

OUT EEG-Mag 12.43 (1,18) <0.01** 

OUT EEG-EKG 0.69 (1,18) 0.41 
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Table A 15. Kruskal Wallis Test on Median Cross Correlation between Participant Cohort  
 

χ df p-value 

Pointing 3.78 (1,17) 0.05 

Walking 7.78 (1,17) <0.01 ** 

Pointing HP 2.07 (1,17) 0.15 

Walking HP 0.30 (1,17) 0.58 

 


