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ABSTRACT OF THE DISSERTATION

Data Driven Approaches for Improving Quantification

Accuracy in Surface Enhanced Raman Spectroscopy

Sensing

by Sakshi Sardar

Dissertation Director: Laura Fabris and Mehdi Javanmard

Surface enhanced Raman spectroscopy (SERS) is one of the most sensitive and se-

lective techniques available. In the past couple of decades numerous applications of

SERS for the development of sensors have been reported. Even though it is an excel-

lent qualitative technique, its full quantitative potential has yet to be realized. One

of the major categories of SERS based sensors are heterogeneous sensors, based on

nanostructured substrates. The performance of these sensors is highly dependent on

the distance between the enhancing nanostructure and the analyte, which in turn influ-

ences its sensitivity, and the reproducibility of the substrates. These factors play a very

important role in controlling the SERS intensity associated with the sensors. We aimed

to address these issues through different methodologies to improve the performance of

SERS-based sensors. SERS enhancements achieved with the heterogeneous platforms

are highly dependent on the surface morphology of the substrates used. For low-cost

substrates, which are usually prepared from bottom-up approaches, control over the

surface properties is low, resulting in variability among the substrates as well as at

different locations within the same substrate. In order to overcome the reproducibility
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issue, we developed a dual-modality multi-site sensing methodology. In this methodol-

ogy, we intentionally induced diversity on the substrate to modulate the SERS signal

from analyte . Electrochemistry was combined with SERS for dual modality sens-

ing to improve precision by adding redundancy and encoding features, thus increasing

measurement robustness and predictability. This technique works by calibrating the

SERS response with respect to the active surface area, a parameter known to be pro-

portional to charge, which can be estimated via electrochemical measurements. The

dual-modality multi-site measurement demonstrates at least 2.8x improvement in assay

precision compared to the traditional single-site Raman measurements. The technique

yields overall improved precision of measurement and is not limited to any particular

SERS substrate or geometry, and thus can be adapted and incorporated readily in any

SERS sensing assay .

Raman spectral variation can be analyzed with another perspective where the pat-

tern obtained for the same analyte for different spot measurements provide information

about the spot. In other words, the local environment at the measurement spot have

bearing on the Raman spectrum. For instance, the location and orientation of the

molecule on the substrate contribute to Raman spectral signature. In addition, the lo-

cation, orientation, and interaction of the nanoparticles used to prepare the substrates

also affect the spectral signature . As a result, the peak intensities and positions are

modulated by these factors. Thus, in turn, a Raman spectrum contains all this informa-

tion, and only by decoding it we can achieve a distinct picture of the local environment,

which includes the analyte molecules. In order to understand the contribution of ana-

lyte concentration in the spectra, we carried out supervised classification using support

vector machines. We found that the classification accuracy can be increased by prop-

erly incorporating different features contained in the spectrum.

Selectivity and sensitivity of the sensor are crucial properties for designing a SERS sys-

tem. The system has to be optimized to achieve acceptable sensitivity and selectivity

towards the analyte of interest. In order to improve upon these two properties, we chose

phenylalanine (Phe), an biomarker for Phenylketonuria(PKU), an in-born metabolic
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error that leads to errors in the metabolism of Phe. Patients with PKU can have com-

plications like intellectual disability, microcephaly, severe mental retardation, motor

deficits, eczematous rash, autism, difficulty swallowing, seizures/convulsions, develop-

mental problems, aberrant behavior, dystonias, dyskinesias, hyperreflexia, or spasticity,

and psychiatric symptom. The treatment usually involves reduce dietary Phe intake

and regular monitoring of Phe levels. The sensors were designed to detect Phe using

different sensing approaches.

In conclusion, our work addresses important properties and issues that can assist in

manufacturing better SERS-based sensors.
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Chapter 1

Introduction

1.1 Background

Surface enhanced Raman spectroscopy is one of the most sensitive and specific tech-

niques available. Virtually, all polyatomic molecules have characteristic vibrational

spectra through the oscillating induced dipoles. These induced dipoles have charac-

teristic vibrational frequencies giving rise thus giving rise to high specificity detection

through Raman shift information and the associated intensity [1, 2]. Rapid develop-

ments in the field of nanoscience in past couple of decades have led to an acceleration

in the rate of sensor design employing SERS. These sensors find application in various

fields ranging from materials science, biochemistry, biosensing, catalysis, and electro-

chemistry [3] . The unique high selectivity of Raman allows for analysis of multiple

components simultaneously, which enables the design of multiplexed sensing assays [4]

.These are great advancements in the field of commercially available Raman spectropho-

tometers, even the portable ones, which could be envisioned to soon become deployable

in low-resource settings. Faster analysis and ease of sample preparation are other advan-

tages associated with these sensors. [5] In this chapter I will discuss the basic principles

of Raman scattering and SERS to understand their importance in sensors design. These

sections will be followed by the scope of the thesis.

1.2 Raman Scattering

Raman scattering is the inelastic scattering of photons which occurs when the energy of

the incident photon is different from that of an emitted photon. The energy difference

corresponds to a transition between two vibrational/rotational states in the molecule.
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The scattering process in Raman is instantaneous and does not necessarily require the

existence of an electronic transition resonant with the incident wavelength. In other

words, in Raman scattering the absorption of the incident photon excites the molecule

to an intermediate virtual state. If this virtual state corresponds to an actual electronic

state, resonant scattering occurs, further increasing the efficiency of the process. Raman

scattering can broadly be divided into Stokes and anti-Stokes processes.

Figure 1.1: Simplified Jablonski diagram showing the Stokes and anti-Stokes Raman

scattering processes.

Stokes process occurs when the scattered photon has lower energy than the incident

photon, that is, when the incident photon excites the molecule from the ground state

to a virtual state, followed by a spontaneous emission of a scattered photon that brings

the molecule to an excited vibrational mode. The energy of the scattered photon is

lower than that of the incident one and this difference provides information about the

vibrational state of the molecule. Anti-Stokes processes take place when the energy of

the scattered photon is higher than that of the incident one. they usually occur when

the molecule is excited to a virtual state originally from one of the excited vibrational

states and relaxes to the ground state after spontaneous scattering. This leads to

the scattered photon having higher energy that the incident one. The intensity of
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anti-Stokes scattering bands is much lower than that of the Stokes scattering. The

measured Raman shift measures the energy lost by the photon in the scattering process

and is usually expressed in wavenumbers. The Raman spectrum is the variation of the

scattered intensity with energy or wavelength of Raman scattering for a given incident

wavelength [5].

1.3 Surface Enhanced Raman Scattering

Surface enhanced Raman scattering is the enhancement in the Raman signal of a

molecule when it is placed in close proximity to a plasmonic nanostructure. Plasmonic

structures are good substrates for SERS. For a metal to be plasmonic, the real part

of the dielectric function should be negative, preferable in range of -1 to -20 and the

imaginary part of the dielectric contact should be as small as possible (negative). These

conditions are met readily for metals like silver, gold, and copper. However, given var-

ious properties, such as stability and ease of surface functionalization, gold finds more

applications compared to the others. SERS intensity is proportional to the laser inten-

sity and the normal Raman cross section of the analyte. However, these intensities can

be affected by enhancements experienced by the molecule. These enhancements usually

come from two multiplicative contributions, namely, electromagnetic and chemical en-

hancement. Electromagnetic enhancements are generally due to coupling of the incident

and Raman electromagnetic fields with the SERS substrate. Chemical enhancements

occur when the molecule is chemisorbed on the surface leading to change in its elec-

tronic polarizability properties. Such changes can induce resonant Raman scattering as

well [6].

1.4 SERS Substrates

There are three main classes of SERS substrates: Metallic nanostructures in solution,

metallic nanostructures supported on a planar surface, and metallic electrodes [5, 7].

There have been extensive developments in the area of metallic colloids. The most

common ones involve reduction of metal salts for chemical synthesis [7] ). In addition
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to chemical synthesis, metallic colloids could be prepared through physical methods

like pulsed laser ablation of noble metal in liquid media [5]. The metallic nanostruc-

tures can be synthesized in different sizes and morphologies using different reaction

condition. The size of the particles plays a crucial role in the SERS enhancements,

enhancements, leading them to increase with the size of nanoparticles up to a certain

size and then to decrease again. The nanostructures shape also has a bearing on the

resulting enhancement. For instance, certain nanoparticles such as nanostars, which

possess sharp spikes that lead to the formation of hot spots, give much higher enhance-

ments [8, 9]. The metal colloid is usually stabilized using molecular species that form

a coating around the nanoparticles and prevent the nanostructures from coalescing [5].

SERS substrates can be created on plan surfaces through top-down and bottom-up ap-

proaches. Bottom-up approaches include functionalization of substrates with a linker

molecule that can immobilize the nanoparticles on the surface. The identity and func-

tional groups of these linker molecules depend on the composition of the surface and

that of the nanostructure. For gold, there are different functionalization ligand having

amino, thiol, or carboxyl groups. These nanoparticles can further be functionalized for

the specific purposes with appropriate surface functionalization [10] .Functionalization

of planar substrates can be carried out through drop-casting or dip-coating [5,7]. These

substrates can also be prepared by using nanolithography and nano-imprint lithography

techniques [5].

1.5 Scope

In order to create good SERS substrates there are a number of factors that must be

considered. Intensity response for an analyte depends on the adsorption efficiency and

analyte concentration (surface coverage). Another important aspect is the distance of

the analyte from the surface as the response decreases drastically when the separation

between analyte and the substrate increases. The orientation of a molecule enhances

different Raman peaks differently. Sometime adsorption leads to modifications in the

intrinsic Raman polarizability of the molecule. All these factors lead to variability in

the SERS response making the quantification of an analyte difficult [6]. SERS is an
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excellent qualitative technique providing high specificity and sensitivity. However, due

to lack of proper control over the different factors mentioned above, achieving quan-

tification in analyte detection proves challenging. With the projects described in this

dissertation, we address some of these issues through multiple approaches. In Chap-

ter 2, we address the issue of quantification through the implementation of a novel

dual-modality multi-site sensing approach. One of the major hurdles with SERS based

sensors is the reproducibility in morphology and optical response achievable in low

cost substrates. Lack of reproducibility among substrate leads to variability in SERS

enhancement, thus rendering quantification difficult and hindering the translation of

these platforms into the ones that could find application in real world situations. We

believe that this is an area holding SERS back from realizing its full potential in the

sensing field. With the development of this new methodology, we hope to advance the

field of SERS quantification and provide a stepping stone for more robust quantification

approaches and eventually enable quantitative SERS measurements with high accuracy

and precision. When combined with portable Raman spectrometers, such sensors could

find application in low-resource setting. In order to improve the quantification capa-

bility of the system, we induce diversity on the SERS substrate through intentional

induction of diversity. This diversity leads to modulation in the Raman response for

a same analyte concentration. Not only this, we keep track of the diversity induced

through electrochemical measurements. We chose to induce diversity through the con-

centration of nanoparticles being used for the substrate preparation. However, there

are other ways of inducing diversity, for instance, through the size of the nanoparticles

being used. We found that as we increased the concentration of nanoparticles, the

Raman intensity from the analyte also increased and so did the charge measured using

coulometry. Important observations in the study were the trade-off between the error

associated with the measurement and the signal intensity. The substrate with lower

concentration of nanoparticles had lower Raman intensity but the error associated with

the measurements was also low. As we increased the concentration, the intensity in-

creased but so did the error. Despite this trade-off, we find linear correlation between

charge and Raman intensity for different nanoparticle concentrations but for the same
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analyte concentration. There are multiple advantages of this approach. With this

approach, we can overcome the issue of reproducibility associated with low-cost sub-

strates. Any changes on the surface could be monitored through the electrochemical

parameters and, based on the response from the calibration curves for that analyte, we

can predict where the intensity would be. Another advantage of this approach is that

it is agnostic to the SERS substrate or the analyte. Thus, it is a generalizable approach

that can be followed for quantification on substrates made out of different morphology

of nanoparticles.

In Chapter 3, We worked on developing a heterogeneous SERS sensor for detection of

phenylalanine. Phenylealanine (Phe) was chosen as it is a biomaker for phenylketonuria

(PKU). PKU is an in-born metabolic error which leads to error in Phe metabolism.

Patients with PKU can have elevated levels of Phe in their blood with severe ensu-

ing complications, especially related to brain damage and dysfunctions. High levels of

Phe in blood streams eventually lead to elevated levels of Phe in the brain altering

the transport of other important amino acids to and from the brain. These effects

taken in combination lead to dopamine deficiency, neurotransmitter dysfunction, and

issues with protein synthesis. These primary effects lead to secondary complications like

intellectual disability, microcephaly, sever mental retardation, motor deficits, eczema-

tous rash, autism, difficulty swallowing, seizures/convulsions,, developmental problems,

aberrant behavior, dystonias, dyskinesias, hyperreflexia, or spasticity, and psychiatric

symptom [11–13]. Therefore, children suffering from PKU have to be put on treatment

as soon as possible. The treatment usually involves controlling the intake of dietary

Phe. Parents have to weigh everything the child eats or eliminate certain foods entirely.

It is not just about cutting down certain foods, the child also needs to reach the pre-

scribed daily intake of Phe or else the low levels of Phe can trigger muscle breakdown,

which in turn elevates the concentration of Phe in the bloodstream again. PKU is

a rare disease, occurring on overage once per 10,000 births in the UK, with different

rates in different regions. European guidelines on PKU prescribes that the blood Phe

levels should be monitored weekly for children under 1 year of age, once every fortnight

for children between the age 1 to 12, monthly for adolescents and adults, and twice a



7

week for pregnant women [14]. Currently, the blood is usually analyzed using expensive

instrumentation requiring highly trained personnel. In this project we develop a SERS

sensing platform for detecting Phe, characterized by high simplicity and low cost. Im-

portantly, we aimed to detect Phe in blood, which is much less invasive and be easily

performed by the patient. We based this assay on our novel multi-site approach. We

created the multi-site component by varying the pH of the analyte solution and the

nanomaterials used for the making the sensor. SERS intensities are highly dependent

on the orientation of the molecular analyte on the SERS substrates. Certain orien-

tations can enhance peaks by several orders of magnitude while certain orientations

could reduce them or even eliminate them altogether. We modulated this property by

changing the pH of analyte solution. This property can also be modulated by choosing

the properties of the nanomaterial employed. The interaction of molecular groups with

the underlying substrate is also dependent on the composition of the nanostructures,

thus providing another parameter for modulation. With the ability to modulate these

features, different modes can be enhanced by different magnitudes on different sub-

strates for the same analyte. We hypothesize that this process can help in detecting

the target molecule in a complex matrix against other molecules. Our results show that

the multi-site approach could provide a way to detect an analyte by validating its pres-

ence through different peak enhancements on different substrates and at different pH.

Future steps would entailing detecting it in presence of similarly structured molecules.

This work could provide a solid foundation for label-free detection of analytes through

the multi-site approach. In Chapter 4, we address the issue of SERS quantification

through machine learning. As mentioned before, the intensity of SERS signals varies

with the substrate features if those are not uniformly distributed, which is usually the

case for low cost substrates. In addition, the coverage and distribution could vary given

the incubation condition variations from one day to another unless the environment

is tightly controlled. Intensity variation could also be introduced through the location

of analyte on the nanostructure, especially for anisotropic particles like nanostars or

closely coupled nanostructures. Nanostars and coupled nanostructures provide sharp



8

tips and gaps, respectively, that have hot spots. Hot spots are characterized by in-

tense, localized electromagnetic fields associated, which lead to higher enhancements

in SERS signal compared to the remaining regions on the nanostructure. Thus, this

is an excellent way to enhance the signal and achieve low limits of detection. Apart

from this, even in case of the uniform nanostructure like spheres, there are still varia-

tions in the intensity measurements given to the possible coupling between the particle

and the substrate and among the nanoparticles, thus exposing the analytes to differ-

ent electromagnetic fields and causing different intensity enhancements for an analyte.

As could be seen, there are numerous factors that affect the way and the degrees by

which intensities are enhanced. All these factors contribute to variation in the SERS

spectrum,thus, it encompasses the state of the system. In other words, the spectrum

will be characterized by spectral signatures that carry information about the local en-

vironment of the analyte. The information about the enhancements, the orientation

and location of analyte, orientation and location of nanostructure is embedded in the

spectrum from that point. Given the multi component nature of a Raman spectrum,

our approach could allow us to extract different combinations of signatures associated

with the analyte for an individual sensing platform. This in turn could assist in clas-

sificating the analyte concentration on the sensor, if we can identify a way to decode

that information to reveal the underlying local environment at the measurement spot.

We started with analysis to classify the concentration of an analyte. With this goal in

mind, we used machine leaning algorithms like support vector machines with quadratic

kernel and decision trees to show that combining the information extracted from the

Raman spectra can provide a way to classify concentration of an analyte through single

point Raman measurements. Based on the SERS process involved in the system, we

decided to work with few characteristic vibrations of 4-aminotiophenol molecule. In

SERS there are shifts in the Raman characteristic peak positions because of local envi-

ronment effects on the molecule. Therefore, we had to extract the peak intensity for a

particular vibration from a small range Raman shift values around the exact peak from

the pure analyte . In addition, pre-processing has to be done while taking into account
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the physical phenomena associated with each measurement. We find that using ma-

chine learning can improve the classification accuracy depending upon the processing

done before training the data. In addition, we find that by adding multiple peaks for

analysis can increase the classification accuracy
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Chapter 2

Dual-Modality Multi-Site Sensing

2.1 Introduction

Accurate quantification of analytes using surface enhanced Raman spectroscopy (SERS)

is a desired, yet unfulfilled, ability that could enable a plethora of diagnostic- and

defense-related applications. The major hurdles to overcome to achieve this goal the

high manufacturing costs to produce highly ordered and reproducible substrates and,

the low reproducibility of substrates produced through low cost methods. A technology

that can set industry standards for manufacturing/ processing of SERS substrates is

still yet to be achieved. A dual modality multi-site sensing approach was developed

that overcomes the limitations experienced when fabricating bottom-up, reproducible,

sensitive, and low-cost SERS substrates. Electrochemistry was combined with SERS

for dual modality sensing to improve precision by adding redundancy and encoding

features, thus in-creasing measurement robustness and predictability. This technique

works by calibrating the SERS response with respect tothe active surface area, a param-

eter known to be proportional to charge, which can be estimated via electrochemical

measurements. The dual-modality multi-site measurement demonstrates at least 2.8x

improvement in assay precision compared to the traditional single-site Raman mea-

surements. The technique yields overall improved precision of measurement and is not

limited to any particular SERS substrate or geometry, and thus can be adapted and

incorporated readily in any SERS sensing assay

The integration of biosensors into various industries can transform the ability to

monitor personal and public health, food safety, and the environment. [15] The research
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community has already developed a plethora of sensors that have pushed detection lim-

its down to femtomolar and even attomolar concentrations by utilizing diverse sensing

modalities. In particular, among various modalities, high sensitivity and specificity has

been realized using surface enhanced Raman spectroscopy (SERS). The selectivity of

this technique can be attributed to the characteristic vibrations of a molecule, which

depend not only on its intrinsic molecular structure but also on its orientation with

respect to the surface of the sensing plat-form. This information can be very useful

in biomarker analysis. [16–18] The Raman probe can also be used as a biomolecule

receptor to provide intensity variation or even characteristic spectral changes to report

analyte binding events. [18] Given the above reasons, SERS has emerged as an excellent

tool for detection and characterization and has been a workhorse in qualitative sensing.

However, for quantitative measurements, due to variability in measurements from one

site to another on the same substrate, as a consequence of nanoparticle clustering and

variation in analyte, orientation on the substrate, averaging is required, and exact con-

centration estimates always strongly depend on the presence of internal standards and

ad hoc calibration curves. The nanoscale properties of the entire SERS substrate are of-

ten difficult to obtain given its macroscopic scale. Also, the mobility of atoms on noble

metal surfaces and the reorganization of the nanoparticles are well-studied phenomena

which can add to the complexity. Another issue to take into account is the enhancement

factor (EF) of the substrate, which should be kept high and reproducible within and

among plat-forms. To calculate EFs in SERS it is necessary to closely determine the

active surface area of the sensor to estimate the number of molecules contributing to

the SERS signal at any given location. This number is difficult to quantify, especially

for complex substrate morphology. The majority of the SERS substrates suffer from

spot to spot variability, substrate-to-substrate variability, instability, and reduced shelf

life, and the analyte of interest can be detected upon entering the SERS active area

of the substrate. Therefore, even though the end users of this technology are mainly

concerned with detection limit and dynamic range of the sensor, the manufacturers

need also to ensure batch-to-batch EF reproducibility and extended shelf life. [19, 20]

Furthermore, they need to be able to accurately and precisely determine EF values for
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their substrates, which can be a substantial hurdle when dealing with complex surfaces,

which is often the case for low-cost SERS substrates. To determine SERS EFs, one has

to take into account the following equation:

EF =
ISERS/NSurf

IRS/NV ol
(2.1)

Where, ISERS is the Raman intensity in presence of nanoparticles, Nsurf is the num-

ber of molecules probed, IRS is the Raman signal intensity, and Nvol is the number

of probed molecules in the absence of nanoparticles. To calculate Nvol we need to use

the equation Nvol = CRSV , where V is the scattering volume and CRS is the concen-

tration of analyte used. [21] One should expect an increase in the intensity of Raman

signal with increase in surface roughness as the number of molecules capable of ph-

ysisorbing or chemisorbing to the surface increases, provided that the surface has not

reached its jamming limit or the analyte in the solution itself has been not been fully

exhausted. The resulting Raman signal is further enhanced by the field enhancement

near the nanosized structures, with higher roughness (or smaller radius of curvature

for the nanoparticles) producing the highest enhancements. Based on this rationale,

the intensity of a SERS signal should always display a correlation with the surface area

of the substrate. We used electrochemical techniques to obtain information about the

available geometric surface area. This work also aims to address the issue of calculat-

ing exact EF by proposing a novel method in which electrochemical measurements are

employed in-conjunction with Raman measurements to precisely correlate the signal

intensity of SERS substrates built on screen printed electrodes directly to the surface

areas evaluated electrochemically, thus avoiding the hurdle of estimating EFs for each

of them.

Electrochemical techniques are also extremely sensitive and suitable for designing low

cost detection devices. In addition, they can similarly be used for analyte quantifica-

tion. [22] However, baseline drifts and sensitivity changes during the assay are common

issues associated with electrochemical detection, requiring therefore repetitive recali-

bration to ensure reproducible quantification. [23] SERS and electrochemistry are both
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sensitive and selective techniques that however suffer from an inability to provide repro-

ducible quantitation. In this work, we are strategically combining these two techniques

to perform a dual-modality measurement, so that they can work together to minimize

their limitations. In addition to this integration we perform the measurements at mul-

tiple sites, where the diversity of the SERS substrate modulates both Raman intensity

and electrochemical properties, allowing for more accurate calibration compared to a

traditional single-site Raman measurement. This approach could be extremely useful

for the low-cost fabrication of sensitive platforms for health/environmental monitoring,

and bio-surveillance applications, with a high degree of device-to-device reproducibility.

The order in which these techniques were performed within the experimental design was

important: Electrochemical measurements were carried out prior to the SERS assay to

gain the necessary surface area information. This approach eliminates the variation

caused in the measurements during the assay, which could arise due to electrochem-

ical activity of the analyte being tested. Randles-Sevcik and Cottrell equations were

chosen for the area calculation. Our measurements revealed that coulometry is more

sensitive to the surface changes in comparison to cyclic voltammetry. Furthermore,

we observed that the maximum charge of the coulometric measurements has a strong

correlation with the surface area on the electrode; hence, charge values were chosen for

the analysis. This approach can be a useful aid in sensor design through reduction of

data processing overhead associated with the sensing system as it involves extracting

the peak value associated with coulometry curve. The concept of combining SERS with

electrochemistry provided the dual modality element of the system.

A Dual Modality Multisite system was designed to increase precision in SERS quantifi-

cation. The idea of a multisite system, brings a core principle used in communication

systems, utilized to reduce the error through addition of diversity in the signal to be

transmitted. The use of multiple simultaneous measurements and the introduction of

diversity in measurement conditions is a well-established technique for maximizing sig-

nal to noise ratio and minimizing error rate in digital communications. [24] Here, this

principle is applied to the induced diversity in Raman signal through substrate diversity.

In this context, substrate diversity means variation in the surface area of the working
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SPE electrodes. On keeping the other parameters, the same, the concentration or size

of the nanoparticles used for working electrode functionalization introduced the vari-

ation in surface area. This diversity in turn modulated the Raman signal intensity in

proportion to the surface area. Multi-site can be defined as multiple substrates bearing

differences based on chosen parameters. For the present work we have chosen to work

with four different concentrations of nanoparticles,this providing four different kinds of

substrates in terms of surface area feature. These four substrates would comprise the

multi-site feature of the system. The Raman peak intensity is thus normalized with

respect to the substrate active surface area, which varies from device-to-device, allowing

for a higher precision measurement.
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Figure 2.1: Dual Modality Multi-Site Sensing platform. The system comprises nanopar-

ticles of different concentrations functionalized onto different working electrodes. This

entails the multiple-site feature of the system. Dual modality is achieved by performing

electrochemical measurements on the electrodes followed by Raman measurements on

the electrodes incubated with an analyte. Combining dual modality with multi-site fea-

ture leads to emergence of positive correlation that can be utilized to improve analyte

quantification.
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2.2 Experimental Section

Materials and Instrumentation: Gold(III) chloride trihy-drate (HAuCl43H2O) and

trisodium citrate dihydrate (C6H5O7Na2H2O) were purchased from Acros Organics.

Cysteamine, potassium hexacyanoferrate(III) (K3Fe(CN)6), potassium hexacyanofer-

rate(II) trihydrate (C6FeK4N63HO), and 4-aminothiophenol (4-ATP) were purchased

from Sigma Al-drich. Ultrapure water (18.2 Mcm) was used for preparing the solu-

tions. All glassware was aqua regia cleaned. The Raman spectra were obtained using a

Renishaw InVia Raman microscope. A Gamry Reference 600 potentiostat was used for

carrying out the electrochemical measurements. Dropsense DRP 220AT screen printed

electrodes (SPEs) were purchased from Metrohm USA.

2.2.1 Nanosphere Synthesis

Gold stock solution (0.75 ml of a 0.025 M HAuCl43H2O solution) was added to 149.25

ml of DI water. The solution was heated in an Erlenmeyer flask via a water bath. Once

the temperature reached 98 C, 8.5 ml of 1% wt. aqueous solution of trisodium citrate

dehydrate were added. The solution was allowed to boil for 35 minutes and then to

cool to room temperature while stirring.

2.2.2 Preparation of SERS Substrates

SPE electrodes, having three electrodes, namely, working, reference and counter elec-

trodes printed on the chip, were cleaned in 0.01 M H2SO4with cyclic voltammetry,

sweeping the voltage between 0 and 1.2 V for 12 cycles at a scan rate of 100 mV/s. The

number of cycles was chosen to be 12 as the voltammograms stabilized after 12 cycles.

2.2.3 Cysteamine Functionalization

10 l of 0.1 M cysteamine solution were drop casted on the working electrode (WE) and

left in a humidified chamber. Thereafter, the SPEs were washed with water. Three

different concentrations of nanospheres were chosen for immobilization on the working

electrode of the SPEs. 10 l of any given nanosphere concentration were dropcasted on



17

the cysteamine-functionalized SPEs. These SPEs were then left in humidified chamber

for functionalization. After incubation, the SPEs were washed twice with running

water from a squeeze bottle, dried, and characterized using cyclic voltammetry (CV)

and Coulometry.

2.2.4 Electrochemical Characterization

The electrodes were cycled in 9 ml of equimolar solution ofK3Fe(CN)6 andK4Fe(CN)6

at 0.5 mM each in 50 mM KCl for two cycles. The voltage for cyclic voltammetry was

swept from -0.2 V to 0.5 V at the scan rate of 20, 40, 60 ,80, and 100 mV/s with step size

of 2 mV for each. Chronocoulometry was performed next. The two-step potential was

from 800 mV to 0 mV for 5 seconds each. Thereafter, the EIS response was recorded

for the frequency range of 0.1 to 1 MHz.

2.2.5 4-ATP Functionalization

After electrochemical characterization, the nanospheres deposited on the SPE were

functional-ized with 4-ATP. Three different concentrations of 4-ATP were chosen for the

functionalization. 4-ATP was prepared initially in 0.5 ml ethanol followed by dilution

in DI water. 4-ATP was mixed with the equal amount of Clelands reagent to reduce

any disulphide bonds. The solution was kept on a shaker for an hour and then was

centrifuged at 10000 g for 5 minutes. The supernatant was removed and centrifuged

again at the same speed and for the same time. 10 l of 4-ATP at any given concentration

were then dropcasted on the nanoparticle-functionalized working electrode of the SPE.

Incubation was carried out for 24 hours in a humidified chamber and then the SPEs

were washed twice with DI water using the squeeze bottle. The SPEs were then dried.

2.2.6 Raman Characterization

Raman characterization of ATP-functionalized SPEs was carried out using 633 nm laser

exci-tation, one accumulation, 10 s exposure, 50x objective, and 22W laser power with

1200 g/mm grating. An average of 1500 spectra at different points on a single SPE were

taken to compare the Raman response of the different SPEs through maps. Control
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substrates used for the experiment were SPEs with working electrodes functionalized

with only 4-ATP or only nanospheres.

2.2.7 Capping nanostars with CTAB

In order to cap the nanostars with CTAB, 330 l of 0.2 M CTAB were added to 4 ml of

gold nanostars synthesized using the protocol.

2.2.8 Preparation of Substrates for Studying the Effects of Electro-

chemical Measurements

Substrates were prepared by depositing a 2 nm layer of chromium followed by 100 nm

gold on glass slides. The substrates were cut in 1cm x 0.5 cm size and incubated in

0.1 M cysteamine for four hours. The substrates were washed with water. Thereafter,

they were incubated in the 500 l of nanospheres, surfactant free nanostars, CTAB-

capped nanostars and Triton-x capped nanostar. SEM characterization was carried out

for each of the substrates followed by electrochemical measurements and then SEM

characterization again.

2.2.9 Electrochemical Characterization

The electrodes were cycled in 2 l of equimolar solution of K3Fe(CN)6 and K4Fe(CN)6

at 0.5 mM each in 50 mM KCl, dropcasted on the electrodes for two cycles. The voltage

for cyclic voltammetry was swept from -0.2 V to 0.5 V at the scan rate of 20, 40, 60

,80, and 100 mV/s with step size of 2 mV for each. Chronocoulometry was performed

next. The two-step potential was from 800 mV to 0 mV for 5 seconds each. Thereafter,

the EIS response was recorded for the frequency range of 0.1 to 1 MHz.

2.3 Results and Discussion

In this study, we used dual modality sensing with Raman spectroscopy and electro-

chemistry. Figure 2.1 shows the schematic of the working principle of the sensor. In

our assay, diversity was introduced at each site to provide Raman signal modulation
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capability to encode the signal in different amplitudes. The result of the dual-modality

multi-site measurement for each analyte concentration is a two-dimensional array of

data points that can be mapped to a line using linear regression. This data manip-

ulation approach results in the decrease of mean-squared error variation compared to

a standard Raman bioassay, where repeated measurements are performed on a single

substrate in a single dimension. The sequence of steps followed to develop the system

is described in the next sections.

2.3.1 Electrochemical Modality Design and Characterization

The electrochemical modality was designed for measurement of diversity induced on

the SPEs by the addition of nanoparticles. The major steps in engineering the elec-

trochemical modality were the functionalization of the working electrodes surface with

a tether molecule, cysteamine, followed by nanoparticle immobilization via the thiol

group. In order to modulate the surface area in this modality, we varied the concen-

tration of the nanoparticles being functionalized. The variation in the surface area

produced because of these processes were studied using electrochemical techniques of

Cyclic Voltammetry and Chronocoulometry. In addition to these, imaging tools were

used for studying the surface features of the working electrodes and the shape and size

of the nanoparticles used. The working electrodes on the SPEs were characterized us-

ing scanning electron microscopy (SEM) (Figure 2.2 a). The synthesized nanospheres

were characterized using TEM and UV-Vis spectrophotometry. Figure 2.2 b shows the

TEM micrograph of the nanospheres used for the study. The average diameter was

measured to be around 30 nm with a standard deviation of 5 nm, as shown in the

distribution reported in Figure2.2 c. The nanospheres were further characterized with

UV-Vis spectroscopy. Figure 2.2 d shows the UV-Vis data with the localized surface

plasmon resonance (LSPR) peak around 522 nm.
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Figure 2.2: Characterization of SPEs and the nanoparticles used for developing the sys-

tem. a) SEM of the working electrode. b) A TEM micrograph of the nanospheres used

for functionalization. c) Distribution of nanoparticle diameters with average diameter

of 30 5 nm. d) UV-vis spectra of different nanoparticle concentrations used for working

electrode functionalization

. Three different concentrations of nanoparticles, 5.2 nM, 2.5 nM, and 1.7 nM, were

used in the study. The concentration of the particles was calculated using the following

equations. [25]

ln(ε) = κln(D) + a (2.2)

where is the extinction coefficient in M-1 cm−1, D is the diameter of the nanoparticles,

and the coefficients k and a are 3.3211 and 10.80505, respectively. The values of k and

a were obtained from Liu et al. [25] Subsequently, the Beer-Lambert law was used for
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the calculation of the concentration.

A = εbC (2.3)

Where, A is the absorbance, b is the path length, and C is the concentration.The

path length for the UV-Vis spectrophotometer used was 1 mm. The chronocoulometric

response of the substrates was examined with K3Fe(CN)6 /K4Fe(CN)6 as the elec-

trochemical probe. Coulometric measurements were performed for plain SPEs, after

cysteamine functionalization, and then after nanoparticle functionalization. The max-

imum charge for the curves and the slopes increased after each functionalization step.

Figure 2.3a shows this increment.

Figure 2.3: a)Coulometric characterization of working electrodes carried out for the

bare electrode, electrodes functionalized with cysteamine, and electrodes functionalized

with cysteamine and nanoparticles. b) Cyclic voltammetry characterization of working

electrodes carried out for the bare electrode and for an electrode functionalized with

nanoparticles.

The voltammetric response of the substrates was also examined with the redox cou-

ple K3Fe(CN)6 /K4Fe(CN)6 as the electrochemical probe. Well-defined reduction
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and oxidation peaks were observed: The peaks were symmetric and had similar oxida-

tion and reduction peak current values. On plot-ting the peak current vs the square

root of the scan rates, a linear increase was observed. More information on this anal-

ysis is available in the supplementary information at the end of the chapter. Cyclic

voltammograms for the SPE reveals that the ferri-ferrocyanide redox system that we

are using is quasi-reversible as the difference in peak potential, ∆Ep , is > 59 mV. The

quasi-reversible nature observed could be explained by the findings on the kinetics of

ferri/ferro cyanide redox system, which has been shown to be influenced by the surface

functionalities on the electrodes. [26]

E1/2 app, the half-wave potential of the system, can shift based on the surface charge

of the electrode. A negative shift in the E1/2 app was observed after nanoparticle func-

tionalization, which could be attributed to increase in surface negative charge due to

the presence of citrate. [27,28] Figure 2.3 b shows these variations after the nanoparti-

cle functionalization. Apart from these characterization results, we also found that the

coulometric response had a positive correlation with the concentration of nanoparticles

functionalized on the substrates. Therefore, coulometry was chosen as the electro-

chemical modality to be incorporated with the data from the Raman sensing modality.

The next section discusses the Ra-man sensing modality in more detail.

2.3.2 Raman Sensing Modality Design and Characterization

As mentioned earlier, the second modality chosen for the system was Raman spec-

troscopy. The Raman modality design shared the same platform as the electrochemical

modality (nanoparticles functionalized on SPE) and could thus provide not only a cor-

relation feature but also a way to circumvent the issue of calculating EFs for each

substrate. In order to test the system, we chose 4-Aminothiophenol (4-ATP) as the

target analyte. Apart from its significance in molecular electronics, 4-ATP is a well-

studied probe molecule in SERS given its strong chemical interaction with noble metal

surfaces, which results in strong signal enhancements with metals like gold and silver,

and its large Raman cross section. [29] 4-ATP, despite having a simple molecular struc-

ture, exhibits a complex Raman-active vibrational fingerprint. Since the fundamental
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SERS fingerprinting region for 4-ATP in SERS lies in the wavenumber range below 1650

cm−1, we chose the range of 100 cm−1 to 2000 cm -1 for further analysis. [30] Table 2.1 1

shows the Raman vibrational assignments for the major peaks. The binding interaction

be-tween 4-ATP and gold nanoparticles can result in vibrational frequency shifts due to

changes of the electronic structures and the vibrational coupling. [30] The major peaks

in the spectra for 4-ATP on the substrate were located around 1078, 1144, 1173, 1278,

1304, 1353, 1391, 1435, 1490, 1528, 1576, 1588, and 1642 cm−1. More information on

the spectral analysis of 4-ATP is provided in the supplementary information.

Figure 2.4 shows the Raman spectra for 4-ATP on the SPE functionalized with gold

nanospheres (black curve). In addition to this, it reports three control spectra for

SPEs with 4-ATP without nanoparticles, SPE with nanoparticles and no 4-ATP, and

SPEs with nanoparticles and Clelands reagent without 4-ATP. Clelands reagent is used

to cleave any disulphide bond that might form between two 4-ATP molecules, thus

producing thiol groups amenable to interact with gold nanoparticles.
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Figure 2.4: Raman spectrum for 4-ATP, the analyte used for testing the system, and

the various controls. Analysis of spectra leads to using the 1079 cm−1 peak for demon-

strating the concept of dual modality multi-site system. The purple spectrum is for

a control experiment where the working electrode was incubated with 4-ATP with-

out any nanoparticles. The blue spectrum is for the working electrode functional-

ized with nanoparticles. The red spectrum is for the control experiment where the

working electrode functionalized with the nanoparticles was incubated with Clealands

reagent without any 4-ATP. The black spectrum is for the electrode functionalized with

nanoparticles and 4-ATP following the described protocol.
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4-ATP on Nanospheres Clealand’s 4-ATP Peak
SPE with nanosphers on SPE Reagent on SPE assignment

266 274 δCN+δCS
392 390 392 τCC
407 406 τCC
468 478 γCCC
701 πCH+πCS+πCC
818 810 820 νCH+νCS+yCC+πCH
841 833 πCH

941 πCH
1007 1002 1034 γCC+γCCC
1078 1082 νCS+νCC

1121 δCH
1144 1146 δCH
1172 1174 1174 1173 δCH+νCN
1279 1283 νCH
1303 νCC+δCH

1379 νCC+δCH
1392 1399 1403 1403 νCC+δCH+νNN+δCN
1435 1446 1444 1445 νNN+δCH
1490 νCC+δCH
1588 1599 1599 1584 δNH

Table 2.1: Raman Peak assignment for the substrates

a) ν-stretching, δ and γ- bending, π-wagging, τ -torsinal [31,32]

It can be seen from Figure 2.4 that the characteristic Raman peaks for 4-ATP are

much less intense than the SERS peaks collected in the presence of nanoparticles (pur-

ple curve). Spectra from the substrates having Clelands reagent on the nanoparticles

reveal that there is not any significant contribution from this reagent to the peaks ob-

served for 4-ATP (red curve). SERS spectra without 4-ATP or Clelands reagent shows

only the contribution from the functionalized nanoparticles (blue curve). Based on the

comparison between various curves in Figure 2.4 and the rationale derived from the

literature, [31, 32] the peak around 1079 cm−1 was chosen for further analysis for the

system.

As can be observed in the spectrum, there are high levels of background signal around

1500 cm−1 which could be indicative of amorphous carbon generation. Amorphous

carbon can be generated as a result of damage to the substrate from high power laser

excitation. We carried out a study to determine the appropriate laser power for the
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measurements. Figure 2.5a shows the Raman spectra at various laser excitation pow-

ers. In this case, high background was observed even for a laser power as low as 22µW

(figure 2.5 b), probably due to the in-tense electric field enhancement at the surface of

nanoparticles. One drawback of using such low laser power was that the peak intensity

also decreases drastically, thus impacting the sensitivity of the assay. Overall, we found

53 W laser power to be a good compromise to achieve low background and sufficient

signal intensity, in comparison to the other values.

Figure 2.5: Power variation study to select the appropriate power level for carrying out

Raman measurements. a) show the Raman spectra for 4-ATP at different laser powers.

b) shows that the comparatively high background was still being observed for the low

power, as low as 22 µW, indicating that the background could not be eliminated by

laser power reduction without compromising the signal intensity. Laser power of 53 µW

was therefore chosen as the best com-promised between background and signal intensity

for the Raman mapping.
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2.3.3 Induction of Diversity for Multi-Site by Varying Nanoparticle

Concentration and Size

Diversity in the Raman and electrochemical measurements can be induced by param-

eters that would modify the surface area. We chose to test two such parameters,

namely, size and concentration of nanoparticles. We functionalized the substrates with

two different concentrations (5 nM and 2.5 nM) and two sizes (15 nm and 30 nm) of

nanoparticles for a given concentration of 4-ATP. Figure 2.6 shows the modulation ca-

pability because of different sizes and concentrations of particles. These results show

that it is feasible to modulate the Raman and electrochemical measurements through

variation of nanoparticle size or concentration. After discovering this modulation ca-

pability, we decided to apply it for increasing the precision of the SERS quantification.

In this study, we chose to use nanoparticle concentration to induce diversity.

Figure 2.6: The blue and red curve show the modulation of the Raman intensity at

1079 cm−1 with increasing substrate charge using different nanoparticle concentrations

for 30 and 15 nm nanospheres. This modulation capability was one of the major

contributors in engineering the multi-site measurement capability for the system. In

addition to the nanoparticle concentration, the Raman and coulometric measurements

can be modulated using the different sized nanoparticles.
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2.3.4 Application of Dual-Modality Multi-Site Sensing for Improved

Precision for SERS Quantification

We set out to use this system for improving the precision of SERS quantification. As

mentioned earlier, induction of diversity is a well-established technique in communica-

tion systems to minimize error-rates in data transmission. In Raman measurements, we

applied a similar principle. We designed our experimental setup analogous to a com-

munication system. Concentration of 4-ATP was the source of information, transduced

through laser excitation and then modulated and encoded through the nanoparticles.

The transmitted signal from the nanoparticle-functionalized substrates travels to the

receiver, Raman microscope, through the aerial medium. In addition to this, a multiple

input single output (MISO) scheme was applied to the data being transmitted- same

data were transmitted by 4 different transmitters and received by the Raman micro-

scope. Although we use only a single excitation laser and a single Raman detector at

a time, we are mimicking a MISO communication system because we are carrying out

multiple measurements. For this particular system, it is irrelevant whether the mea-

surements are done in parallel (like a typical wireless communication system) or serially

(like our system) since our measurement does not require the high data rates necessary

for a communication system.

In our analysis of the Raman spectra of 4-ATP in various conditions including controls,

we found that the peak around 1079 cm−1 can be a good candidate for an information

source to be used for further analysis of the system. The spectrum collected through

the Raman microscope was used for further processing. The mean baseline subtracted

peak value for the 1079 cm−1 peak was extracted from the 1500 data points collected

on each substrate through Raman maps.
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Figure 2.7: Mean baseline subtracted Raman Intensity of the 1079 cm−1 peak for

different nanoparticle and 4-ATP concentrations for single site measurements. The

intensity values have low deviation for lower nanoparticle concentrations, at the cost

however of reduced peak intensity. For higher nanoparticle concentrations, the signal

intensity improves at the cost of standard deviation. This trade-off inspired us to come

up with a technique to off-set these drawbacks.

Figure 7, shows the distribution of the mean baseline-subtracted Raman intensity

for all the different concentrations of nanoparticles and 4-ATP. It can be deduced from

Figure 8, that these measurements allow us to find a range of expected Raman intensity

for a given nanoparticle and 4-ATP concentration. Even though the intensity variation

is very low for lower concentrations of nanoparticles, which provides higher precision,

it comes at the cost of reduced sensitivity. Figure 2.8 summarizes the trade-off between

the sensitivity and precision. In an ideal scenario, we would always obtain a very

narrow intensity distribution at identical surface functionalization. Even though we
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were not able to achieve this ideal result, we were able to observe a positive correlation

be-tween the peak charge measured electrochemically for the substrate and the Raman

signal intensity. Therefore, even if the variations in functionalization were induced

by uncontrollable parameters, the measured charge provided a correction factor for

intensity normalization at each given concentration. Baseline-subtracted mean Raman

intensity data were plotted against the peak charge value measured using coulometry.

Figure 2.8: Variation of the mean baseline-subtracted intensity of the 1079 cm−1 Raman

peak plotted against the coulometric charge measured for multi-site measurements.

Linear trends emerge with introduction of multi-site measurements with decreasing

slopes for lower analyte concentration.

Figure 2.8 shows the trends observed for such a dual modality multi-site sensing

system. Linear regression analysis was carried out for the system and the dotted lines

represent the curve fit for different 4-ATP concentrations. In analogy to a communica-

tion system, these linear regression curves can represent the information being received

at the receiver and could be further processed for deduction of the information that
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was transmitted.

In addition to the correction capability provided by the dual-modality multi-site ap-

proach, an additional improvement that we observed was that by carrying out measure-

ments on substrates with different nanoparticle concentrations, we observed a tighter

root mean squared error variation as can be seen in Figure 2.9. It shows the root mean

squared errors of the fits calculated for the different combination of nanoparticle concen-

trations used for the multi-site set up. The root mean squared error (RMSE) variation

has higher spread for the single site. When we used two sites, there was reduction in the

RMSE even for the worst (the highest error) combination in comparison to the single

site. As we increased the number of sites, we observed a progressive decrease in this

spread with the increase in the number of sites. Similar trends were observed for dif-

ferent 4-ATP concentrations. This reduction in RMSE provides proof for improvement

in predictability of measurements with increase in measurement diversity.
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Figure 2.9: The variation in the root mean squared error decreased with the number

of simultaneous measurements. The standard error in the root mean squared errors

decreased by at least 2.8-fold from single site to 3-site measurements.
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2.3.4.1 Studies to Improve Dual-Modality Multi-Site

Effects of electrochemical measurements on the functionalization of different kinds of

nanoparticles on the substrates was studied. Figure 2.10, 2.11,2.12,2.13 shows the SEM

of the substrates before and after the electrochemical measurements. On comparing the

SEM images, it was found that electrochemical measurement affected the morphology

of the gold nanostars. Thus, it was decided to use electrochemical modifications after

the Raman measurements are already performed.

Figure 2.10: a. SEM image of nanospheres functionalized on the glass slides coated with

gold film. b. SEM of the substrates after running the electrochemical measurements

Figure 2.11: a. SEM image of CTAB coated gold nanostars functionalized on the glass

slides coated with gold film. b. SEM of the substrates after running the electrochemical

measurements
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Figure 2.12: a. SEM image of surfactant free gold nanostars functionalized on the glass

slides coated with gold film . b. SEM of the substrates after running the electrochemical

measurements

Figure 2.13: a. SEM image of TritonX coated gold nanostars functionalized on the glass

slides coated with gold. b. SEM of the substrates after running the electrochemical

measurements

2.3.5 Conclusion

In conclusion, we introduced a novel substrate-independent technique to improve the

precision of SERS quantification through a multi-site dual-modality sensing system.

The over-all reduction in the root mean squared error allows for better predictability

in the determination of analyte concentration and has the potential to be used for

quantification of important biomarkers, especially in point-of-care, low-cost as-says.
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Devices or techniques with fast response and low cost are required for rapid and accurate

diagnosis. Further improved versions of our approach could represent solutions for such

requirements. Another important finding of this study is that this system is analogous to

existing communications systems. We showed that the Raman signal can be modulated

in intensity by varying nanoparticle concentration and size. These findings can provide

foundations for fundamental research in development of novel communications schemes

at the molecular or nanoscale regimes, which could be a major step in enabling molecular

communication systems. [33]

In addition, this study provides means and motivation to explore some fundamental

questions related to the determination of the Raman-active surface area of a SERS

substrate using electrochemical techniques.

Based on the improvement studies, we concluded that electrochemical measure-

ments should better be performed after the Raman measurement for certain kinds of

nanoparticles used. the future work would include using this system for detection of

analyte of interest.

2.3.6 Supplementary Information

2.3.6.1 4-ATP Raman

4-ATP Raman Spectra In the Raman spectra of 4-ARP 27 in-plane and 12 out-of-

plane vibrations are present. [34] Wu et al. classified the vibrational modes into three

wavenumber regions. (a) Seven high frequency fundamentals within the range of 2000-

3500 cm−1. (b) Thirteen fundamentals in the range of 1000-1650 cm−1 ,fundamen-

tals of high interest in SERS spectra.(c) Nineteen in the wavenumber region lower

than 1000 cm−1. The peak around 917 cm−1 on the spectrum was assigned to the

bending vibrations of the SH bond. The absence of this peak indicates that the 4-

ATP is bound to the working electrode via a Au-S bond. [35] The peaks around 1078

and 1588 cm -1 correspond to the CS and CC stretching for the a1 mode. [34, 36–43]

The CS stretching mode around 1078 cm−1 is believed to be enhanced mainly by the
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EM mechanism. [36, 43] There are several reports of 4-ATP transformation into 4,4-

dimercaptoazobenzene (DMAB) during the spectroscopic measurements. [43–45] Peaks

near 1500, 1460 and 1407 cm−1 and a doublet near 1150 cm−1 are attributed to the

azodibenzoate. [43, 44] Huang et al. have demonstrated that the b2 mode band orig-

inates from 4,4-dimercaptoazobenzne (DMAB) which is produced during the SERS

measurements. However, the functional group in the para position of benzenethiol has

only a negligible influence on the binding interaction of benzenethiol with the metal

surface, as the metalsulfur bond is electronically decoupled from the benzene ring,

therefore, one should not expect a dependence on the bonding interaction for different

derivatives on different surfaces of identical composition. [43] Also, DMAB can give

peaks at similar positions to those of a1 modes of 4-ATP (1075 and 1594 cm−1) with

comparable signal intensity but with a slight shift in frequency. [45] Based on these

factors, it seems like a good approximation that the number of molecules bound to

the surface can be correlated with the peak intensity around 1077 cm−1 wavenumber.

Raman maps of 1500 points were taken on each sample and then the peak intensity at

1077 cm−1 was used for further processing. Figure2.14 shows the spectra from one of

the sample sets used in the analysis.

Figure 2.14: Mean Raman spectra for 1500 different points taken on five different

samples functionalized using 5 nM nanosphere concentration.
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2.3.6.2 Correlation Between the Electrochemical Measurement and Con-

centration of Nanoparticles

Charge measured for the SPE was used to calculate the mean values of the charge

associated with a given concentration of nanoparticles. We found that there is a posi-

tive correlation between the concentration of nanoparticles used for functionalizing the

substrates and the charge measured using the electrochemical measurements. The ob-

jective of changing nanoparticle concentration was to modulate the surface area. This

in turn would modulate the electrochemical measurement and hence, charge measured

during the electrochemical measurements would give information about the available

surface area indirectly. Thus, as the nanoparticle concentration increases, surface area

also increases. Increased surface area leads to increased charge measurement for elec-

trochemical measurements. This could be seen in figure 2.15.

Figure 2.15: The graph shows the variation of charge measured with the concentration

of nanoparticles used for making the substrates. The plot gives information on how

modulation of nanosphere concentration could enable modulation of charge measure-

ments.
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2.3.6.3 Calibration Curve for Dual-Modality Multi-Site

Multi-site measurements provide the correction factor. When these measurements for

a given concentration of analyte are used in the regression analysis, we can obtain

a slope associated with each concentration. The curves provided above show the re-

lationship between the slope of the regression line and the concentration of analyte.

Therefore, when estimating the concentration of an analyte, one would first carry out

the multi-site measurement, then find the slope of the regression line, and finally use the

calibration curve as above to determine the analyte concentration. Figure 2.16 shows

the calibration curve for the 4-ATP concentration.

Figure 2.16: Calibration curve for a dual-modality multi-site sensing scheme .

2.3.6.4 Comparing 633 nm and 514 Laser for the Substrate Response

In order to carry out the Raman measurements 633 nm laser was chosen. Although the

absorption peak of the gold nano-spheres is around 520 nm, we chose the 633 nm laser
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excitation based on the preliminary results collected in our initial feasibility study. We

found that the Raman response was significantly stronger when using the 633 nm laser

compared to the 514 nm laser that we used for our substrate measurements.Figure 2.17

shows the response on the substrate for 4-ATP using 514 and 633 nm laser.

Figure 2.17: Comparison of response of substrate to 633 and 514 nm lasers.

Note: Reprinted (adapted) with permission from Sakshi Sardar, Laura Fabris, and

Mehdi Javanmard. Improved precision in surface-enhanced raman scattering quan-

tification of analyte through dual-modality multi-site sensing.Analytical Chemistry,

91(7):43234330, 2019. PMID: 30561991. Copyright (2019) American Chemical So-

ciety. [46]
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Chapter 3

Development of Sensor for Phenylalanine

3.1 Introduction

Phenylketonuria (PKU) is an autosomal recessive inborn error of the phenylalanine

metabolism. [14, 47] This disease is usually characterized by mutations in the pheny-

lalanine hydroxylase (PAH) gene. PAH along with cofactor tetra hydrobiopterin (BH4)

is essential for converting phenylalanine into tyrosine . The deficiency in this hepatic-

based enzyme ( PAH) leads to increase in the blood concentration levels of phenylala-

nine. There are several mechanisms through which the high levels of blood phenylala-

nine levels can have harmful effects on the brain development and function. One of

the mechanisms, proposes that the high blood concentration of phenylalanine (Phe)

eventually allows the molecule to cross the blood brain barrier leading an excessive

accumulation in the brain and decrease in the concentration of other large neutral

amino acids. [11, 47] L-amino acid transporter 1 (LAT1), which mediates the entry of

large amino acids into the brain, can subsequently inhibit entry of other large amino

acid in presence of high Phe concentrations. Large amino acids include tyrosin and

tryptophan. These are precursors for dopamine and norepinephrine, and serotonin,

respectively. Their deficiency can lead to neurotransmitter dysfunction or issues with

protein synthesis. [13] There are couple of more mechanisms reported by Blau et al.

that can be harmful for brain functions. As a result of complications arising from

the high concentration of Phe, PKU can cause intellectual disability, microcephaly,

sever mental retardation, motor deficits, eczematous rash, autism, difficulty swallowing,

seizures/convulsions, developmental problems, aberrant behavior, dystonias, dyskine-

sias, hyperreflexia, or spasticity, and psychiatric symptoms. [11–13]

For diagnosis, newborns are screened for Phe levels in blood. Phe is a primary
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marker for PKU and requires robust measurements for directing treatments. Com-

mon methods for detection of phenylalanine include, high performance chromatogra-

phy, amino acid analyzers and tandem mass spectrometry. [13,47] According to Wegber

et al. as per European guidelines on PKU the treatment should start as early possi-

ble to minimize its impact on the well-being in later years of patients. Studies have

shown that every 4 weeks delay can decrease the IQ by 4 points. In addition, the

treatment must be continued for life for best results. Stopping the treatment during

childhood or pre-adolescence could be harmful. [14] PKU management mainly involves

dietary restrictions on the amount of Phe being ingested. [13]. In addition, frequent

Phe sampling is required to ensure that the levels are within the acceptable range. The

frequency of sampling depends upon the age group of the patient. It is recommended

for children of less than one year of age to undergo weekly testing; kids between the age

of 1 and 12 should undergo fortnightly testing, adolescents and adults should undergo

monthly testing, and pregnant women should undergo twice a week testing for blood

Phe levels. [14, 14]

Based on these issues, there is a need for rapid detection of Phe levels in new

born and older patients. Motivated by the relevance of this disease, and the limited

available methods for Phe Testing, we wanted to develop a sensor that could provide

rapid detection of Phe, possibly in urine for minimal invasiveness for the patients. In

order to develop the sensing system, we decided to manufacture the sensing substrates

as gold thin film-coated glass slides. For sensing we chose SWCNT and Nanostars for

creating the nano-scale surface features, as both have been shown to be effective SERS

enhancing materials.

Carbon nanotubes are 1D nanostructures that have unique physiochemical prop-

erties. [48] They also have high mechanical and chemical stability. [49–51] In addition

to this, they have superior thermal and electrical properties [50–52](2,3,7). As a re-

sult, they can find application in numerous areas ranging from additives for polymers

and catalysts, transistors , microelectronic devices composite materials, high frequency

nanoelectronics, field emission sensors and supercapacitors. [48, 50, 52, 53] The high
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surface area associated with CNT along with their very sensitive electronic proper-

ties make them a good choice as the sensing platform. [48, 53] CNT can broadly be

divided into single walled carbon nanotubes (SWCNT )and multi walled carbon nan-

otubes(MWCNT). SWCNT are created by rolling the graphene sheet once. [49,53]they

are generally chemically inert and therefore physisorption or non-covalent interaction

are the more likely mechanisms of binding with analyte for sensors. Although, func-

tional groups could be covalently bonded to the tubes to induce covalent with analyte,

this is rather cumbersome and time synthetically challenging [53] Given to their area

and properties, CNT perform well as gas-based sensors, even though they suffer of the

issue of limited selectivity. [51] For biosensing purposes their ability to undergo func-

tionalization with targeting moieties renders them amenable to selective sensing.For

instance, Zhou et al. showed that DNA-decorated CNT could assist in the detection of

circulating tumor cells. [54] There have also been great efforts towards increasing the

signal to noise ratio and the possible miniaturization of sensors through the use of these

nanostructures. [51]

Apart from being used in the above mentioned areas, CNTs have also been used

employed in Raman-based sensing . In particular,they have been employed to create

3D sensing substrates. These substrates, functionalized with a high density of upright

CNTs provide a high density of hot spots in 3D. [55] Not only this, but SWCNT can

be decorated with nanoparticles or DNA to create composite materials for sensing.

Wang et al. used such composites for selectively labelling cancer cells and identify-

ing them through Raman spectroscopy. [56] There have also been reports of colloidal

probes functionalized with SWCNT and nanoparticle aggregates to study the intracel-

lular trafficking and surface presentation of small peptide-MHC1 class complexes by

decoding their Raman peak pattern. [57] The use of SWCNTs for SERS-based sensing

has also become a promising field of study. With this thought in mind, we created

SWCNT-functionalized substrates, by combining the bottom-up substrate functional-

ization approach described in Chapter 2 to detect Phe, the main biomarker for PKU.

The sensing scheme is shown in Figure 3.1 and 3.2

In addition to SWCNT, we are also interested in using gold nanostars for sensing
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Phe levels. Nanoparticles are usually materials with at least one dimension smaller

than 100 nm. The small size of nanoparticles is usually associated with high surface to

volume ratio, thus providing large numbers of interaction sites for the analyte sought.

Physical properties of nanoparticles can readily be altered by chemical modification

that could involve the composition or morphology. [58] The field of nanotechnology has

come long way in terms of control over the shape, size, morphology, and functionaliza-

tion of nanoparticles. [58, 59] As a result of this development, nanoparticles have re-

cently found substantial application in biomedicine. There are different kinds of metallic

nanoparticles, but gold nanoparticles have garnered special interest from the scientific

community. This could mainly be attributed to their ease of synthesis and manipulatin,

strong binding affinity to thiols, disulfides and amines, and tunable optical, electronic

and physicochemical properties. [59] In particular, the optical response, which in the

noble metal nanoparticles is uniquely defined by the surface plasmon resonances,can be

readily altered by changing the shape, size, morphology, and the surrounding environ-

ment of these nanoparticles, including the generated functionalization steps. All these

properties enable the user to design transduction mechanisms that can find numer-

ous applications based on the design scope. [58] For instance, these nanoparticles find

application in the field of sensing, targeted drug delivery, imaging, photothermal and

photodynamic therapy, therapeutics, detection and diagnostics and biolabeling. [59]

Not only the material makes a difference but also the shape. According to Elahi et

al. anisotropy in the structure and size of nanoparticle induce changes in structural,

optical, electronic, magnetic, and catalytic properties and can be usually have better

performance than the spherical gold nanoparticles. [59] Currently, there are well es-

tablished protocols for the synthesis of gold nanospheres, nanostars, nanorods. [60–63]

Not only this, the protocols have been extensively studied for the effect of different

parameters on the size and morphology results for a particular synthesis. Thus, these

aspects can be readily modulated. [61–63]

According to Nathaniel et al. the size of the nanostructures is highly advantageous

as it provides means to transduce the physical and chemical signals that might otherwise

go unnoticed in bulk materials. [58] As a result, nanostructure are a very useful tool for



44

developing sensing assays. The nanoparticles cab be conjugated with antibodies and

aptamers to provide high selectivity. Apart from labeled detection schemes, there have

been a lot of work being done on label-free assay. Zheng et al. have discussed in details

the label free SERS in details. [64]

3.1.1 Sensing Modality Design

Multiple sensing modalities were developed for Phe detection. We found that it was

difficult to detect Phe with nanostars in neutral pH. However, due to the structure of

CNT, Phe readily adsorbed on the sensor, giving response. However, we were able to

detect Phe with nanostar-based substrates at extreme pH values.

The sensing modality for neutral to slightly basic pH conditions was engineered

using SWCNT. SWCNT have a large surface area that is available for π − π interac-

tions with Phe. [65] The system was designed as shown in the figure 3.1 and 3.2. First,

the thin-film-gold substrates were functionalized with cysteamine. Thereafter, SWCNT

were functionalized on the resulting substrate. Zhang et al. have reported the function-

alization of SWCNT through interaction between COOH group on SWCNT and NH2

group from cysteamine. [66] This sensing modality provide peaks for two different pH

values (5.6 and 9.3 ) that overlaps with certain Phe peaks.



45

Figure 3.1: Scheme showing the functionalization of thin-flim-gold substrates with cys-

teamine. This process is common for all the substrates prepared in this study

Figure 3.2: Functionalization of SWCNT and nanostars for the SWCNT-based sensors

and nanostar-based sensors, respectively on cysteamine-functionalized substrates

For the second scheme, nanostars were functionalized on gold-thin-film substrate.

Figure 3.1 and figure 3.2 schematically describes the functionalization scheme, which
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leverages, for recognition, the interaction of Phe with gold via amino and carboxy

moieties. The pH for this scheme was 12.8 and 0.05 as the nature of amino and carboxy

group would be different at these two pH values. This schemes were chosen to get a

different response from the same analyte. Through this approach we found that the

interaction is different depending on the pH of the solution, with almost negligible

interaction at neutral pH.

For the third scheme, we functionalized the thin-gold-film substrates with gold

nanostars, followed by the thiolated- β-cyclodextrine-ferrocene complex. This modi-

fication is required to achieve a detectable signal transduction in conditions at which

Phe does not effectively interact with metallic nanoparticles. [67] In order to do that, we

functionalized the nanoparticle surface with cyclodextrins, which are naturally occur-

ring macrocyclic glucose polymers containing a minimum of six D( +)-glucopyranose

units. [68](1) For our study purposes, we used thiolated-β-cyclodextrine (β-CD ) con-

sisting of seven glucopyranose units. β-CD is shown to from inclusion complexes with

ferrocene (figure 3.3). [68–70] (1,2,3).

Figure 3.3: Structure of the thiolated-β-cyclodextrine used for creating cages that can

host ferrocene. thiolated-β-cyclodextrine will be equivalently represented as a cage for

simplicity in the scheme for the rest of the figures.
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The reasoning behind this approach was to alter the Raman response as Phe in-

teractes with the substrate. When the substrate is exposed to Phe, which has higher

affinity for cyclodextrine in comparison to ferrocene, ferrocene is replaced by Phe, lead-

ing to a modification in the Raman peak pattern. [69] This design would detect Phe

concentration through decrease in the intensity of signal of the substrate itself, render-

ing it an ON/OFF sensor. Figure 3.3 shows the thiolated-β-cyclodextrine used as a cage

for Phe capture. Figure 3.4 shows the addition of these cages to the nano-structured

surfaces and figure 3.5 shows the replacement of ferrocene by Phe.
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Figure 3.4: Schematic representation of the process flow to functionalize the substrate

with the thiolated-β-cyclodextrine-Ferrocene complex. Gold nanostar-coated slides are

incubated with thiolated-β-cyclodextrine and Ferrocene. Thiol groups will have affinity

for gold and allow for binding the cuclodextrine to the substrate, while ferrocene is

known to form complexes with β-cyclodextrines, as host-guest complex.
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Figure 3.5: Representation of the sensing mechanism for the host-guest

configuration.Thiolated-β-cyclodextrine-Ferrocene functionalized on the substrate are

characterized by the Raman response of ferrocene. However, Phe is shown to have

higher affinity for β-cyclodextrine thereby replacing the ferrocene from the cages. The

removal of ferrocene from the cages causes a decrease in the Raman signal intensity

from ferrocene and hence can be used to indirectly detect Phe.

Though the first two schemes ideal for Phe detection without labels, the ability of

these sensors to detect Phe in complex matrices can be difficult due to contribution of

similar peaks from other molecules. For instance, there could be peaks for Phe that

might overlap with vibrations from the other similar molecular vibrations from other

molecules present in biological fluids. As mentioned earlier, nanostructures provide an

effective means to for signal transduction. By changing the morphology and composition

of the material,we are changing the transduction mechanism and hence the response.

Taking this approach can open up opportunity for label-free detection of analytes based

on the alteration in the interaction environment around the analyte. In order to achieve

specificity through this mechanism, a multi-site approach similar to the one we followed

for the Dual Modality Multi-site sensing was taken. In order to detect the Phe we

varied the pH of the system. Multi-site in this case was achieved by using different
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nanostructure displaying different interactions with Phe, leading to different response

for it. In addition, we chose distinct values of pH for these nanostructured based

substrates. Value of pH have bearing on the interaction of Phe with these substrates.

The aim of this diversity is to pave path for label-free robust detection of Phe.

Figure 3.6: Multi-site sensing paradigm for label-free detection of Phe withimproved

selectivity without labels. Multi-site conditions are created by inducing diversity in

the sensing substrates and sensing environment. (a) and (b) are the substrates made

using SWCNT and, (c) and (d) are the substrates made using nanostars. The sensing

environment of sample (a) is at a neutral pH, for (b) the sensing environment contains 1

mM NaOH making making pH slightly basic (9.8), for (c) sensing environment is highly

acidic(1 N HCl,pH close to 1) and for (d) the sensing environment is highly basic (95

mM NaOH, close to 13)

In the current project,we developed multiple sensing modalities for Phe. In order

to carryout the multi-site measurements, the scheme shown in figure 3.6 was followed.

The measurements for the system were carried out for four different site, each giving a

different response. When carrying-out a multi-site measurement the cost-benefit ratio

should be high enough and therefore, we followed a low-cost bottom-up design approach.

The detection scheme would involve four substrates, two made with SWCNT and two
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made with nanostars.

3.2 Materials and methods

3.2.1 Materials and Instrumentation

Gold(III) chloride trihy-drate (HAuCl43H2O) was purchased from Acros Organics.

Trisodium citrate dihydrate (C6H5O7Na2H2O) was purchased from Acros Organics

Cysteamine, 4-aminothiophenol (4-ATP) and single-walled carbon nanotubes, conduc-

tive aqueous ink were purchased from Sigma Aldrich. Ultrapure water (18.2 Mcm) was

used for preparing the solutions. All glassware was aqua regia cleaned. The Raman

spectra were obtained using a Renishaw InVia Raman microscope. Dropsense DRP

220AT screen printed electrodes (SPEs) were purchased from Metrohm USA. Sodium

Hydroxide (NaOH) and Hydrochloric acid (HCl) were purchased from Fisher Scientific.

3.2.2 SWCNT-based substrate preparation

Gold-coated glass slides were incubated in 0.1 M aqueous cysteamine overnight and

washed with DI water after incubation. Next, 300 ul of 0.033mg/ml of SWCNT were

used to incubate the substrates, which were then washed with deionized (DI) water

after incubation.

3.2.3 Effect of pH on the Raman Signal from SWCNT-based Phe

Sensors

1 N HCl, 95 mM NaOH, and 1mM NaOH aqueous solutions were prepared and em-

ployed to dissolve Phe to a concentration of 1mM. A control solution in pure DI water

was also prepared . 2 ul of 1mM Phe in DI, 1mM NaOH, 95 mM NaOH, and 1 N HCl

were dropcasted on the substrates and left in a humidified chamber for 30 minutes. For

control studies, 2 uL of DI, NaOH, 95 mM NaOH and 1 N HCl were dropcasted on

the substrates. The solution was wicked with kimwipe before Raman measurements.

Raman measurements were carried out on the samples using a Renishaw InVia Raman
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microspectrophotometer employing 633 nm laser excitation, 1 accumulation, 3 s expo-

sure, 10 % laser power. A 50x objective was used to acquire the 36 static points map on

each substrates. The spectra were baseline subtracted followed by averaging to obtain

the final spectrum.

3.2.4 Surfactant-Free Nanostar Synthesis

Gold stock solution (2 ml of a 0.025 M HAuCl43H2O solution) was added to 48 ml DI

water while stirring. 200 l of 1 N HCl were added to the solution, followed by 70 l of 15

nm gold nanospheres having absorbance of 1. Path length of the measurement was 1

mm. Thereafter, 2 ml of 3 mM AgNO3 and 1 ml of 100 mM ascorbic acid were added,

simultaneously. The synthesis was stirred for additional 7 minutes.

3.2.5 Nanostars-Based Substrate Preparation

Gold-coated glass slides were incubated in 0.1 M aqueous cysteamine overnight and then

washed with DI water. Next,300µl surfactant free gold nanostars with absorbamce value

of 0.2 in a 1mm path length measurement were used for functionalization on this slide

through incubation for two hours. The slides were then washed with DI.

3.2.6 Cyclodextrin Ferrocene Complex-Based Substrate Preparation

0.6 mM each of cyclodextrin and ferrocene in ethanol were added to nanostar functional-

ized substrates and left overnight for incubation. Later, the substrates were washed with

ethanol. Raman measurements were carried out on the substrates following dropcasting

the sample solutions on the prepared substrates. Details of different measurement are

added in the results and discussion section for ease of reference.

3.3 Results and Discussions

3.3.1 SWCNT-Based Phenylalaine Detection Scheme

SWCNT provide high surface area for interaction with analytes. The possibility of

interaction increases when the analyte being tested has an aromatic structure that can
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interact with SWCNT through π − π stacking. With this rationale, we designed the

substrates functionalized with SWCNT. Figure 3.2 shows the schematic of the sensor

used. We then tested the sensor for detection of Phe aqueous solution . Figure 3.7

shows the sensor response in presence and absence of Phe. The extended Raman scan

measurements were carried out at 633 nm laser.

Figure 3.7: Response of SWCNT-based sensors for 1 mM Phe in DI water. The high

response can be attributed to π − π interactions between the Phe and SWCNT

The selectivity of the system was tested by employing glycine and alanine. Raman

spectra for 25 point maps were collected for 2 µl of 1mM of phenylalanine, alanine

and glycine on the SWCNT- based substrates. As can be seen the figure 3.8, there

are detectable Raman peaks for phenylalanine but not for alanine and glycine. As

the amino acid group is same in all the three analytes, we believe that the detection

mechanism has a little contribution from capture of these molecules through amino or

carboxy group on aliphatic molecules. Thus, the major interaction for capture can be

due to π − π electron interaction from the phenylalanine ring and the SWCNT walls.

There has been a systematic study carried out by Piao et al. elucidating the interaction

between SWCNT and Phe in great detail. [65]
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Figure 3.8: Averaged Raman spectra from the maps collected on the substrate for

alanine(red), glycine(blue) and phenylalanine (yellow). The spectra show that the

interaction between Phe and SWCNT gives good response in comparison to alanine and

glycine, suggesting that the interaction is mainly driven by π−π stacking interactions.

SWCNT functionalization was also carried out on the screen printed electrodes

(SPEs) reported in Chapter 2. This approach, however, led to very intense Raman

signature from SWCNT, leading to an inability to distinguish the Phe peaks from the

Raman pattern, as shown in 3.9. Thus, there is further need of optimization of this

process if these measurements are to be carried on the SPE.
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Figure 3.9: Average of 5 Raman spectra for 1mM Phe dropcasted on SPE functional-

ized with CNT. The spectral difference between the control and 1 mM Phe cannot be

observed.

3.3.2 Cyclodextrine- Ferrocene Complex-Based Phenylalanine Detec-

tion Scheme

Another set of substrates were prepared by functionalizing nanostars on the thin-film-

gold coated slides. Thereafter, a β-CD and ferrocene (Fc) mixture was added to func-

tionalize β-CD and Fc complex . According to Alvarez-Puebla et al [71], CD has a

very small Raman cross-section making its contribution to the overall Raman signature

very small. Fc has a very characteristic Raman signature. The samples were then

tested to identify the unique Raman signature. Once the tests were done, 1mM Phe

was dropcasted on the substrate and the Raman measurements were taken again. As

can be seen in figure 3.13, there are peaks from the nanostar based substrates and some

additional peaks from the CD and Fc functionalized on the substrates.

We compared the response from nanostar-β-CD-Fc functionalized substrate,nanostar-

β-CD and Fc spectra. Figure 3.10, 3.11 and 3.12. The highlighted regions show the
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peaks in the nanostar-CD-Fc response which are distinct from the Nanostar-CD re-

sponse but clearly assignable to Fc. 831, 845, 1108,1190 and 1355 cm−1 are the main

peaks identified. 845 cm−1 can be assigned to A1g CH bending (⊥), 1108 cm−1 to

E1g CH bending (‖), 1190 cm−1 to CH bending (‖) and 1355 to CC stretch. [72, 73]

Normalization of spectra was carried out to compare the peaks. High peak intensity at

1108 cm−1 leads to a difficulty in analyzing smaller peaks in the spectra. Therefore,

for figures 3.11 and 3.12, normalization of spectra was carried in the range 500 to 1000

cm−1 and 1100 to 1960 cm−1.

Figure 3.10: Figure shows the SERS response for the nanostar-based substrate func-

tionalized with thiolated-β-CD (blue), nanostar-based substrate functionalized with

thiolated-β-CD-ferrocene complex and ferrocene. The spectra were normalized for ease

of peak comparison. Peaks common only between Fc and thiolated-β-CD-ferrocene

complex substrates are highlighted
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Figure 3.11: Normalized spectra in the range 500 to 1000 cm−1 to have better vi-

sualization of smaller intensity peaks of Fc. Characteristic peaks of Fc evident in

thiolated-β-CD-ferrocene complex substrates are highlighted

Figure 3.12: Normalized spectra in the range 1100 to 1960 cm−1 to have better vi-

sualization of smaller intensity peaks of Fc. Characteristic peaks of Fc evident in

thiolated-β-CD-ferrocene complex substrates are highlighted
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Upon incubation with Phe, the samples show reduction in the Fc peaks, as expected.

Phe is shown to have higher affinity towards CD than Fc leading to the replacement

of Fc from CD-Fc complex. [69] This system acts by measuring the reduction in signal

from Fc for detection of Phe. There are several SERS detection systems which rely on

decrease in signal intensity from a probe molecule to carry out detection, especially for

molecules with small Raman Cross sections.
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Figure 3.13: Average Raman spectra for nanostars, nanostars functionalized with CD-

Fc complex and thereafter incubated with 1mM Phe, nanostars substrate functionalized

with Cd-Fc complex, nanostars incubated with Fc and nanostars substrates incubated

with CD. The figure shows that there is Raman signature from FC in the CD-Fc complex

functionalized on the substrates. This signal reduces in strength after incubation of 1

mM Phe on this substrate
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3.3.3 SWCNT-Based Phenylalanine Sensors

Dependence of peak intensity on molecular adhesion was studied by varying the pH of

the solution. NaOH and HCl were used to set the pH of the solutions. 1mM Phe solution

was prepared using 1 mM and 95 mM NaOH aqueous solution to have basic solutions

and 1 mM Phe in HCl was used to make the acidic solution. These concentrations of

NaOH and HCL were chosen given to pKa values of Phe(pKa1 1.83 and pKa2 9.13).

Figure 3.14 shows the baseline subtracted averaged spectrum for 1 mM Phe in

different pH solutions. The response is good for the DI and 1 mM NaOH being used

for making the solutions.
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Figure 3.14: Average Raman spectra for 1 mM Phe in DI, 1mM NaOH, 95 mM NaOH

and 1 N HCl for SWCNT-based substrates. As can be seen the figure the peak intensities

are highest for 1mM Phe which is at the pH of 9.3. pH of 5.6 also provides detectable

response.

1 mM Phe in 1mM NaOH (pH 9.8) has the highest peak intensities. These findings

are similar to the pH dependence study reported by Jha et al. [74]. The height of the

peaks increases with increase in pH. Figure 3.15 shows the comparison for 1mM Phe

in 1 mM NaOH against a 1 mM NaOH control, both on SWCNT based substrates.

It is also compared with the pure Raman spectrum of Phe. The highlighted bands

show the Phe peaks, which are present only for the positive control. The peaks at 914,

1412 ad 1587 cm−1 are the peaks that are unique to Phe. The peak at 914 cm-1 can

be assigned to C-C stretch, the peak at 1412 could be attributed to COO- stretching
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or ring stretching/CH bending, [75] While the peak at 1587 cm−1 can be assigned to

in-plane ring stretching. [75].

Figure 3.15: Average Raman spectra for 1 mM Phe in 1mM NaOH, for only 1 mM

NaOH control and for pure Phe. Phe characteristic peaks detected only in the positive

control are highlighted.

We also looked into the response of the same system at 95 mM NaOH instead of

1 mM NaOH. Upon this change, we do not see any peaks from the Phe. This could

be inferred as the molecule does not have interactions with SWCNT at this pH that

could give rise to SERS. Figure 3.16 shows the response for this system. At a very high

pH the molecule will have a negative charge which might be the reason for reduced

interaction with SWCNT.
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Figure 3.16: Comparison of spectra from 1 mM Phe in 95 mM NaOH and just 95 mM

NaOH on the SWCNT-based substrates with pure Phe. There was no response from

Phe in such highly basic solution for SWCNT-based substrates

A similar study was carried out at 1 N HCl with a very low pH to get information

on the interaction, which shows that the SERS response of Phe is again very low. At a

very low pH, Phe molecule will posses an overall positive charge that can again could

be the reason for reduced interaction with CNT.



64

Figure 3.17: Response of 1 mm Phe in 1 N HCl and just 1 NHCl on the SWCNT-based

substrates compared with pure Phe Raman. There was no response from Phe at highly

acidic pH

We did similar studies using DI water for the solution preparation and the results

are shown in figure 3.18. The peaks that are present only for the positive control

are highlighted. The peaks at 950 cm1 can be assigned to CH out of plane bending

mode, [76] peak at 1038 cm−1 can be assigned to in plane CH bending. The peaks at

1308 cm1 can be assigned to CH2 wag and ring stretching.
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Figure 3.18: Response of 1 mM Phe in DI and just DI on the SWCNT-based substrates

compared with pure Phe Raman. There are a number of characteristic peaks of Phe

identified that were present only in the positive controls

3.3.4 Nanostar-Based Phenylalanine Sensors

Next we tested the nanostar-based sensor for 1 mM Phe prepared in 1 mM NaOH

solution. The unique peaks are highlighted in the plot. Peaks at 468,608, 624, 1587

and 1697 cm1 were found to be present in the positive control only, which belong to

Phe characteristic vibrations. The Peak at 1587 cm-1 can be assigned to in-plan ring

stretching, [75,77,78] that at 624 cm1 can be assigned to one of the phenyl ring breathing

vibrations and COO−1 wag, [79] while the peak at 1697 cm1 very close to 1710 cm1

has also been assigned to the NH+
3 asymmetric band according to Hernandez et al.
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Figure 3.19: Response of 1 mm Phe in 1 mM NaOH and just 1 mM NaOH on the

nanostar-based substrates compared with pure Phe. The characteristic peaks of Phe

present only in the positive control are highlighted.

The sensor was also tested in 95 mM NaOH similar to SWCNT-based substrate,

but the response for it was much better giving 840, 850, 914, 1002, 1042, 1280, 1487,

1583 and 1611 cm1 distinct peaks in the positive control in comparison to the negative

control. The peaks at 840 and 850 cm1 could be assigned to Fermi resonance between

ring breathing and out of plane ring bend overtone. [75]. The peak at 914 cm1 can be

assigned to CC stretching, while the peaks at 1002 and 1042 cm1 to the symmetric CC

stretching and in-plan CH bending, respectively. The peaks at 1583 and 1611 cm1 have

both been associated to the in-plane ring stretching. [75].
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Figure 3.20: Response of 1 mM Phe in 95 mM NaOH and just 95 mM NaOH on the

nanostar-based substrates compared with pure Phe. The characteristic peaks of Phe

present only in the positive control are highlighted.

We tested the response for the nanostars-based sensors with control solution of Phe

in pure DI water. Figure 3.21 shows the response for the sensors. We did not find

any unique peak in the positive control when compared with the negative control that

might correspond to the vibrations present in the Phe.
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Figure 3.21: Figure shows the response of 1 mm Phe in DI and just DI on the nanostar-

based substrates compared with pure Phe Raman. The are no characteristic peaks of

Phe present only in the positive control.

Testing nanostar-based substrates with 1N HCl gave a good response with 689,

750,832,850,1031,1211,1308 and 1606 cm1 as distinct peaks present only in the spectrum

for the positive control in comparison to the negative control. The peak at 750 cm1

can be assigned to the phenyl ring breathing mode. [79]. The peaks at 832 and 850

cm1 could be assigned to Fermi resonance between ring breathing and out of plane ring

bend overtone. [75], while the peak at 1031 cm1 can be assigned to the ring breathing

vibrations.The peak at 1211 cm1 can be assigned to phenyl-C stretching and the peak

at 1308 cm1 can be assigned to CH2 wag or ring stretch. The peak at 1606 cm1 was

assigned to in-plane ring stretch. [80]
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Figure 3.22: Response of 1 mM Phe in 1 N HCl and just 1 N HCl on the nanostar-based

substrates compared with pure Phe. The characteristic peaks of Phe present only in

the positive control are highlighted

3.3.5 Multi-Site Measurements for Phenylalanine Detection

In order to detect phenylalanine, we aimed to employ the multi-site measurement ap-

proach similar to the one we applied for the Dual-Modality Multi-Site sensing, as de-

scribed in Chapter 2. For Dual-Modality Multi-Site sensing, we were using the concen-

tration of analyte as the main parameter for inducing diversity. In the present work, we

introduced diversity through the substrate material and pH. As shown in the previous

section, the response for the sensor with CNT is good for 1mM NaOH and DI based

solutions while the response for nanostars-based substrates are good for 1 N HCl and 95
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mM NaOH based solutions. Responses from such configuration of sensors when com-

bined can provide opportunities to develop ways of detecting the Phe with specificity

without need of any labeling entity.

3.4 Conclusions

We developed multiple methods for the detection of Phe. Detection response is highly

dependent on the nanomaterials used for the substrate preparation and the pH of

the system, as shown in the results sections. Depending upon the response from the

combination of pH and substrate multi-site feature definition was chosen. Finalized

multi-site features included SWCNT-based sensing sites for 5.6 pH to slightly basic

solution pH(9.8) and nanostar-based sensing sites for highly acidic and highly basic

solutions. The combined response from the multi-site can be used to pave way for

detection of Phe in a robust fashion. Future directions would involve testing the system

out in the sample matrix like urine to assess the system performance.
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Chapter 4

Quantification of SERS using Machine Learning

4.1 Introduction

Production cost for SERS substrates could be lowered by using bottom-up approaches

that rely mainly on self-assembly processes. Colloidal nanoparticles are often used for

producing such substrates. As the control over the spatial distribution of nanoparticle

is low, such substrates suffer however from reproducibility issues, which lead to varia-

tion in SERS intensities not only among different substrates but also within the same

substrate at different locations. The surface selection rules, orientation and location

of nanoparticle also plays an important role in the resulting intensities. [81] There is a

need to develop robust methodologies that can address unexpected enhancements issue

commonly encountered for low-cost substrates when trying to quantify the analyte con-

centrations using SERS intensities. There can different approaches that could be taken

to address it. One can be the better control over the self assembly process and the

molecular interactions. This approach can be difficult to achieve as it would require op-

timization for different analyte and nanostructure combinations. Another approach can

be analyzing the existing variation in the system and coming up with a process to map

the variation pattern with the analyte concentration. In chapter 2 and 3 we addressed

this need by using a multi-site measurement approach. In this chapter, we use machine

learning on measurements from SERS substrates to develop methods that can provide

robust quantification processes. There are studies that suggest that the orientation of

molecules can be determined using the SERS. [82,83] Therefore, the relative intensities

can provide information about the orientation. In other words, there would be a specific

intensity associated with certain orientation and concentration of the molecule. When

working with SERS substrates made from the colloidal gold, we usually consider certain
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peak information from multiple places on the substrate. Thereafter, an average is taken

to provide a representative quantity for a concentration of analyte when building a cal-

ibration curve. Therefore, the process of averaging is to overcome the point to point

variation arising from surface features, molecular orientation, and location. Herein, we

aim to implement an approach to correlate the spectral signature to the concentration

using supervised machine learning and eventually use it for concentration prediction

purposes. We decided to use machine learning for the classification of data into differ-

ent concentration classes. Currently, there are only few data driven studies available for

quantification of analyte concentration through Raman. Though literature in analyte

classification using data driven approaches is comparatively more prevalent. Ellis et al.

showed that Raman spectroscopy along with Fourier-transform infrared spectroscopy in

combination with appropriate machine learning strategies could differentiate between

closely related foods. [84] Madden et al. used Neural Networks and k-Nearest Neigh-

bours for estimating the concentration of cocaine in solid mixtures. [85] Lopez-Diez et

al. used multivariate and evolutionary computational-based methods to test the abil-

ity of Raman spectroscopy to discriminate between chemically very closely related oils

and quantified hazelnut oils used to adulterate extra virgin olive oil using partial least

squares and genetic programming. (3) Alharbi et al. combined surface-enhanced Ra-

man scattering (SERS) with artificial neural networks to quantify caffeine and its two

major metabolites theobromine and paraxanthine. [86] Muhamadali et al. combined

chemometrics for detection and quantification of novel psychoactive substances. [87]

These are some of the examples of studies that show the importance of combining the

SERS with data driven approaches. In the present chapter, we try to achieve quan-

tification capability using machine learning. We used the data sets generated from

the SERS sensors to carry our supervised machine learning classification using support

vector machine with quadratic kernel function to train the models. The data were

generated using the sensor scheme shown in figure 4.1. As can be seen, the sensor was

fabricated by functionalizing cysteamine linker molecule followed by gold nanostars.

We fabricated 5 such sensors for each concentration to be tested. Three sensors were

used for training purposes, while the remaining two were used for testing.
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Figure 4.1: Sensor preparatio scheme. We first functionalize the thin-film- gold coated

glass slides with cysteamine. Thereafter, the sensors are functionalized with nanostars

to create a surface features that can provide high SERS enhancement.

Figure 4.2: Data from three sensors were used to train the models and then the data

from two sensors were used to test the models.
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4.2 Materials and Methods

4.2.1 Materials and Instrumentation

Gold(III) chloride trihy-drate (HAuCl4.3H2O) was purchased from Acros Organics.

Trisodium citrate dihydrate (C6H5O7Na.2H2O) was purchased from Acros Organics.

Cysteamine and 4-aminothiophenol (4-ATP) were purchased from Sigma Aldrich. Ul-

trapure water (18.2 Mcm) was used for preparing the solutions. All glassware was

aqua regia cleaned. The Raman spectra were obtained using a Renishaw InVia Raman

microscope.

4.2.1.1 Surfactant free nanostar synthesis

Gold stock solution (2 ml of a 0.025 M HAuCl4.3H2O solution) was added to 48 ml DI

water being stirred. 200 µl of 1 N HCl was added to the solution, followed by 70 l of 15

nm gold nanospheres having 1 abs absorbance. Thereafter, 2 ml of 3 mM AgNO3 and

1 ml of 100 mM ascorbic acid were added, simultaneously. The synthesis was stirred

for additional 7 minutes.

4.2.1.2 Nanostars-based substrate preparation

Gold coated glass slides were incubated in 0.1 M aqueous cysteamine overnight and

then washed with DI water. Next, 300µl of surfactant free gold nanostars with 0.2

absorbance for path length of 1 mm measurement were used for functionalization on

this slide through incubation for two hours. The slides were then washed with DI water.

4.2.1.3 Sample preparation

Five sensors were prepared for each concentration of 4-ATP (0 nM, 1 nM, 10 nM, 100

nM, 1 uM, 10 uM, 100uM, 1 mM and 10 mM). Three sensors from the system were used

for training purposes and the two remaining sensors were kept for testing purposes.
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4.2.2 Datasets

In order to acquire the data, Raman mapping was carried out. Two maps in total with

following specifications were taken on each sample: 80 µm x 80 µm with 20 µm step

size.Figure 4.3 shows the map acquisition information of a sensor. In total 50 point

measurements were collected on each sensor. The 50x 0.75NA objective lens was used

for doing the measurements. 785 nm laser at 119.7µW laser power, 10 s exposure and

1 accumulation were used for the acquisition purposes.

Mathematically, the data collection process can be described as following. The

data was acquired on nine different concentrations of analyte represented by Ci ,where

i={0 nM, 1 nM, 10 nM, 100 nM, 1 µM , 10 µM, 100 µM, 1mM, 10 mM}. For each

of the concentrations, Ci, five sensors were fabricated denoted by Ai,j , where j={1,

2, 3, 4, 5}. These sensors are assumed to be statistically independent. On each of

these sensors,Ai,j , two maps were used that were collected at randomly chosen sites

on the sensing substrate. These two sites are represented by Bi,j,k, where k={1, 2}.

The Raman map for each site consists of 25 point maps. Each point are statistically

assumed to be independent of each other. The Raman point on a given map is denoted

by Di,j,k,l, where l={1, 2, 3,....., 25}.

The spectra are individually baseline-subtracted using the msbackadj Matlab func-

tion. Figure 4.4 shows a generic spectrum before and after baseline subtraction. Sub-

sequently, the highest intensity peaks from the following ranges: 1076 to 1084, 1579

to 1584, 1478 to 1488, 1170 to 1180 and 1000 to 1003 cm−1, were extracted as these

are some of the prominent characteristic peaks for Phe. In addition to this, the peak

spectral locations was also extracted.
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Figure 4.3: Raw spectrum collected for a point on the sensor. There is usually a back-

ground associated with these measurements. We carried out background subtraction

using an built-in Matlab function. Blue plot shows the same spectrum after baseline

subtraction.

4.3 Results and Discussions

In order to extract meaningful information from the spectrum for training purposes, we

subtracted baseline form individual spectrum. Figure 4.4 shows the raw spectrum in red

and baseline subtracted spectrum in blue. In order to do the analysis, we first worked

with the Raman peak intensity at 1079 cm−1and build calibration curve for it. We then

discuss the shortcomings of this approach and quantification issues for concentration

below certain range. Thereafter, in order to improve the quantification capability, we

take the ratio of baseline subtracted Raman peak intensity to baseline. It gives us better

quantification capability. Based on these comparison we chose 1079 cm−1peak to be

compared with the multiple peaks for supervised classification. Classification accuracy

was first compared for 1 nM, 1µM and 1 mM 4-ATP for baseline-subtracted Raman

peak intensities, scaled baseline subtracted peak intensities and log transformed peak

intensities. Scaling was done based on the baseline variation in the spectrum. Based on
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the best accuracy, the scaling and log transformation technique was chosen for the rest

of the analysis. Next, performance of classifier using one the feature from 1079 cm−1

and features from multiple peak intensities we compared.

Figure 4.4: Raw spectrum collected for a point on the sensor. There is usually a back-

ground associated with these measurements. We carried out background subtraction

using an built-in Matlab function. Blue plot shows the same spectrum after baseline

subtraction.

In concentration dependent studies, characteristic peak from the spectrum is cho-

sen that shows variation with concentration and hence, could be used for making the

calibration curve. We chose to work with 4-ATP which is one of the most extensively

studied Raman active molecule.The highest peak around 1079 cm−1 was extracted for

each of the spectra and plotted against the concentration. Figure 4.5 shows the varia-

tion of peak intensity with concentration. Error bars show the standard error associated

with each measurement.
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Figure 4.5: Variation of average Raman peak intensities with concentration for 1079

cm−1 peak location. Error bars show the standard error associated with measurements.

In order to improve the quantification capability, baseline-subtracted Raman inten-

sity to baseline ratios were calculated for the data extracted. These values were plotted

in figure 4.6 for peaks at 1003, 1180, 1488, and 1579 cm−1. As can be seen different

peaks follow different models for concentration to ratio of intensity to baseline . The

average response decreases for 10 mM concentration for all the peaks except for the

1079 cm−1 peak. The peak at 10079 cm−1 shows better differentiation capability in

than other peaks shown in the figure. The individual plots are plotted along with the

error bars for ease of visualization.
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Figure 4.6: Variation of baseline subtracted Raman intensity to baseline ratio for peaks

around 1003, 1180, 1488 and 1579 cm−1

.

Figure 4.7, 4.8, and 4.9 shows the calibration curve for different ratios of baseline

subtracted Raman intensity to baseline associated with different concentrations of ana-

lyte, for 1003, 1079, 1180, 1488 and 1579 cm−1 peaks. Figure 4.7 shows the calibration

curves for 1003 and 1079 cm−1 peaks. There are high variations associated with 10 mM

concentration for both the peaks. The error bars show standard deviation associated

with each measurement from each concentration for three sensors. Both the calibration

curves follow different models. We could not find good models that could assist in

high precision quantification when considering the standard deviation associated.The

1079 cm−1 peak is one of the peaks which can provide good differentiation capability
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between 1 µM, 10 µM and 100µM.
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Figure 4.7: Calibration curve for baseline-subtracted Raman intensity to baseline ratio

for peaks and their standard deviation for peaks around 1003(a and b) and 1079 (c and

d)cm−1. b. and c. are zoomed in versions to visualize the variation better.

.
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Figure 4.8: Calibration curve for baseline-subtracted Raman intensity to baseline ratio

for peaks around 1180 (a and b) and 1488 (c and d)cm−1. Error bars represent the

standard deviation associated with the measurements.

.
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Figure 4.9: Calibration curve for baseline-subtracted Raman intensity to baseline ratio

for peaks around 1579 cm−1. Error bars represent the standard deviation associated

with the measurement. Figure (a) shows the calibration for the entire range of concen-

tration while (b) shows the zoomed-in version of calibration.

.

As can be seen from these calibration curves, quantification of the analyte is still

a difficult task from a single point measurement. In the presented work we show that

by combining the peak features from different peaks, we can predict 1000x and 100x

increments in the test data with higher accuracy in comparison to using a single peak

measurement. In order to achieve this,we carried out supervised machine learning for

the training datasets taken from 3 sensors. Support vector machine (SVM) were used to

understand the performance of the system. SVM is classifying the data using quadratic

kernels. Intensity follows enhancements in fourth the power and therefore, the quadratic

kernel was chosen. 5-fold validation was performed to prevent over-fitting during data

training. We first trained the system with only the baseline subtracted peaks abstracted
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from the system to understand the contribution from the peak intensities. Figure 4.10

shows the confusion matrix for the test data classified using the quadratic SVM model.

The accuracy of the system was 89.8% for using 5-fold cross validation for training the

data.

Figure 4.10: Confusion matrix for test data when the features used for training were

the selected peaks after baseline subtraction. The concentrations have 1000x incre-

ments(1nM, 1 µM and 1 mM). The accuracy for classification for this SVM-based

model was low, especially for nM and µM

.

As the classification accuracy was low, we scaled the data to improve the perfor-

mance of the classifier. In order to scale the data, we chose baseline value at the Raman

shift position of the highest peak intensity in the decided range and then scaled the

intensities with that. When we trained the SVM models with scaled features, the accu-

racy increased to 92.2% for the 5-fold cross validated trained data. Figure 4.11 shows
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the confusion matrix for the data tested from two different sensors.

Figure 4.11: Confusion matrix for test data when the features used for training were

the ratio of selected peaks after baseline subtraction to baseline. By taking the ratio,

we are scaling the features through information present in the spectrum to improve

the classification accuracy. The accuracy for classification for this SVM-based model

increases for nM and µM concentration.

We further tried to increase the accuracy of the model being trained by log trans-

forming the scaled data. We took the logarithm of the baseline-subtracted peak to

baseline ratio and used these features for training the SVM model. As a result of this

manipulation, the accuracy further increased to 96.7% for the 5-fold cross-validated

trained data. Figure 4.12 shows the confusion matrix for the test data classified using

the trained model. As can be seen, this model can classify analyte the concentrations

from single point measurements without the need for data averaging.
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Figure 4.12: Confusion matrix for test data when the features used for training were

the logarithm of the ratio of selected peaks after baseline subtraction to baseline. Log

transformation of features was carried out by taking the logarithm of the ratio of peak

intensity to baseline. As a result of log transformation, the accuracy for classification

for this SVM-based model increases.

We also compared the performance of a multiple-peak model with the similar models

created for the peak at 1079 cm−1. The accuracy of this model for classification of 1nM,

1uM and 1mM concentrations was 94%. Figure 4.13 shows the prediction capability of

the model from the single point measurements on the test sensor data.



87

Figure 4.13: Confusion matrix for test data for classification at 1000x concentration

increments (1 nM, 1µM and 1 mM) when the features taken from 1079 cm−1 using

quadratic SVM model .

We find that the performance of the machine learning model using the logarithm

of the baseline-subtracted Raman peak intensity to baseline ratio much better than

what could be achieved using baseline-subtract Raman peak intensity to the baseline

ratio. Next, we carried out the scaling and log transformation for classifying 100x

concentration increments. Data from 0 nM, 10 nM, 1 µM and 100 µM were used for

training quadratic SVM model. We found that the accuracy was 84.7 % for the 5-fold

cross validated data trained for SVM. Figure 4.14 shows the confusion matrix for the

classification carried out for test data.
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Figure 4.14: Confusion matrix for test data for classification of 100x (0 nM, 10nM, 1µM

and 100µM)concentration increments when multiple scaled and Log transformed peaks

( 1003, 1079, 1180, 1488 and 1579 cm−1 ) features were used for classification.

We compared this model for 100x concentration increments with the results obtained

for the 1079 cm−1 peak model, which showed accuracy of 79.8% for 5-fold cross validated

data trained. Figure 4.15 shows the prediction capability for the models using single

point measurements from test sensors data.
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Figure 4.15: Confusion matrix for test data for classification of 100x (0 nM, 10nM, 1µM

and 100µM)concentration increments when 1079 cm−1 scaled and Log transformed peak

feature was used for classification.

Next, 100x increment model was also trained for 1 nM, 100nM, 10 µM and 1 mM

concentrations for multiple peaks and for single 1079 cm−1 peak. The accuracy for

multiple peak quadratic SVM model was 82.8% while that of the 1079 cm−1 was 76.2

%. Figure 4.16 and 4.17 shows the confusion matrix for the test data using multiple

peaks and 1079 cm−1 peak model.
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Figure 4.16: Confusion matrix for test data for classification at 100x (1 nM, 100nM,

10µM and 100mM)concentration increments when multiple scaled and Log transformed

peaks features ( ( 1003, 1079, 1180, 1488 and 1579 cm−1 )were used for classification.
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Figure 4.17: Confusion matrix for test data for classification at 100x (1 nM, 100nM,

10µM and 100mM)concentration increments when 1079 cm−1 scaled and Log trans-

formed peak feature was used for classification.

A similar process for 10x increments for multiple peaks was carried out. The accu-

racy was calculated to be 72.6% for the 5-fold cross validated data trained for SVM.

Figure 4.18 shows the confusion matrix for the classification done by the model for test

data.
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Figure 4.18: Confusion matrix for test data for classification at 10x concentration in-

crements when the multiple peaks features ( 1003, 1079, 1180, 1488 and 1579 cm−1

)were scaled and Log transformed.

Classification accuracy for 10x increments using 1079 cm−1 peak features was 51.9%.

When comparing the prediction capabilities, models using multiple peaks feature per-

form better than the ones using features from only one peak ( in our case 1079 cm−1).

Table 4.1 shows the summary of accuracies obtained with different models. We find

that the performance of model increases as we scale the peak intensity data based on

the baseline for each peak and also through log transformation. In addition, having

multiple peaks performs better then single peak feature model.
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S.No. Model Trained Peaks used Accuracy

1. 1 nM, 1µM and 1 mM Raman peak intensities at 89.8%
1079, 1003, 1180,1488 and 1579 cm−1

2. 1 nM, 1µM and 1 mM Scaled Raman peak 92.2%
intensities at 1079, 1003,
1180,1488 and 1579 cm−1

3. 1 nM, 1µM and 1 mM Log transformed and scaled 94%
Raman peak intensities at 1079 cm−1

4. 1 nM, 1µM and 1 mM Log transformed and scaled Raman 96.6%
peak intensities at 1079, 1003,
1180,1488 and 1579 cm−1

5. 0 nM, 10 nM, Log transformed and scaled Raman 79.8%
1µM and 100µM peak intensities at 1079 cm−1

6. 0 nM, 10 nM, Log transformed and scaled Raman 84.7%
1µM and 100µM peak intensities at 1079, 1003,

1180,1488 and 1579 cm−1

7. 1 nM, 100 nM, Log transformed and scaled Raman 76.2%
10µM and 1 mM peak intensities at 1079 cm−1

8. 1 nM, 100 nM, Log transformed and scaled Raman 82.8%
10µM and 1 mM peak intensities at 1079, 1003,

1180,1488 and 1579 cm−1

9. 10x concentration Log transformed and scaled Raman 51.9%
increments peak intensities at 1079 cm−1

10. 10x concentration Log transformed and scaled Raman 72.6%
increments peak intensities at 1079, 1003,

1180,1488 and 1579 cm−1

Table 4.1: Accuracy of different models trained using quadratic SVM
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4.4 Conclusion and Future Directions

Our results shows that the prediction accuracy increases as we scale the individual

peaks with the baseline. We see further improvements in classification accuracy for the

log transformation of these features. We also show that the predictive accuracy from

the single point measurements increase as we include multiple peaks for training rather

than using a single peak. We find that the accuracy for the ensemble bagged trees is

much superior to the quadratic SVM and even the prediction capability is very high for

test data. However, the mechanistic reasoning behind it is yet to be understood.Future

direction for the project would involve identifying classification methods to take into

additional consideration based on the physics of the signal enhancement process of the

sensor to render the algorithm more powerful.
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Chapter 5

Conclusion and Future Work

In this chapter, I will be summarizing the results obtained and how they frame the

future work that can be implemented to improve the system performance. We intro-

duced a novel substrate-independent technique, dual-modality multi-site sensing, to

improve the precision of SERS quantification. The overall reduction in the root mean

squared error we obtained allows for better predictability in the determination of an-

alyte concentration and has the potential to be used for quantification of important

biomarkers, especially in point-of-care, low-cost assays. This approach also helps in

predicting the expected intensity for a given concentration of analyte when there are

changes in the underlying nanostructured substrates. Hence, it can help in overcoming

the reproducibility issue associated with substrate morphology, a well-recognized issue

in SERS. Further improved versions of our approach could represent solutions for such

requirements; Improvements to this version could be made using low roughness sur-

faces to minimize the contribution from the supporting planer substrate. In addition,

functionalization with nanoparticles like nanostars which have much higher SERS en-

hancements could also improve systems performance. In addition, this study provides

means and motivation to explore some fundamental questions related to the determi-

nation of the Raman-active surface area of a SERS substrate using electrochemical

techniques. Based on the few improvement studies, we concluded also that electro-

chemical measurements should better be performed after the Raman measurement for

certain kinds of nanoparticles used. Future work would include optimizing the system

for biomarker detection.. We also developed multiple methods for detection of Phe. We

found that the detection response is highly dependent on the nanomaterials used for
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the substrate preparation and the pH of the system. The combination of pH and sub-

strate material can be used to create multi-site . Hence, it can provide different spectral

features in the resulting spectra depending upon the varying molecular vibrations from

one substrate to another . Thus, a combination of these could give robust information

about the identity of the molecule being tested through different signature Raman peak

enhancements . Finalized multi-site features included SWCNT-based sensing sites for

neutral to slightly basic solution pH (9.8) and nanostar-based sensing sites for highly

acidic and basic solutions. The future directions would involve testing the system out

in complex matrix like urine to assess the system performance in realistic conditions.

A robust sensing technique for this analyte could reduce the dependence on the moni-

toring Phe levels in blood, thus providing a simple, low-cost, non-invasive alternative.

For machine learning with sensors, we found that the prediction accuracy increases as

we scale the individual peaks with the baseline. This feature scaling is based on the

information that is already embedded in the Raman spectra collected. We found fur-

ther improvements in classification accuracy for the normalization of these features. We

also found that the predictive accuracy from the single point measurements increases

as we include multiple peaks for training rather than using a single peak. We found

that the accuracy for the ensemble bagged trees is much superior to the quadratic SVM

and even the prediction capability is very high for test data. However, the mechanistic

reasoning behind it is yet to be understood. Another, area that could be explored is

the identification of spectral signatures from changes in orientation of molecule of the

nanoparticles . This could enable to understand the local environment of the spot on

the substrate, in turn leading to real-time studies to understand the processes occurring

on the substrate.
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