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The US Industrial manufacturers face numerous challenges such as increasing complexity 

of production processes, fluctuating customer demands and expansion of supply chains. 

Output is expected to increase only 3.5% in 2019, according to the International Monetary 

Fund. The global expansion has weakened, foreign trade is at historically low levels, and 

nationalist governments around the world are threatening to further undermine the free 

flow of goods, creating more uncertainty and constraints upon manufacturing growth. In 

such a slow-growth environment, productivity gains are essential and there is an 

opportunity to profit from innovative strategies. In the field of operations research and 

process systems engineering, the main strategy to combat the emerging challenges and 

improve the efficiency of process industry is the pursue of optimal operating conditions 

through an enterprise-wide optimization (EWO). 

EWO involves optimizing the operations of supply, manufacturing and 

distributions activities of a company. A major focus in EWO is the optimal operation of 

manufacturing facilities, which involves the decision-making processes of planning, 

scheduling and real-time operational control. Traditionally, these decision-making 
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problems are addressed individually and in a hierarchical manner, solved in a sequential 

way. An upper level problem is often solved with few or none information from lower 

levels. Its result is then transmitted to the lower levels, which must be optimized given the 

conditions already set by upper level problems. Consequently, sequential approaches may 

result in sub-optimal and infeasible solutions that can be avoided by an appropriate 

integration of different decision layers. 

The objective of this work is to provide tools and the technology to establish 

optimal operating conditions by modernizing and integrating the decision-making process 

within a company. The integration is achieved by using simulation-based optimization 

techniques, surrogate modelling and feasibility analysis to transmit the information from 

lower levels to upper levels of the decision-making hierarchy. The problem of integrating 

scheduling and control is first addressed, followed by the problem of integrating planning 

and scheduling problems. By coupling the fundamentals of the developed integration 

strategies, enterprise wide optimization is achieved. The problem of planning, scheduling 

and control of a complex industrial-sized problem is then solved to demonstrate the 

adaptability, viability and performance of the proposed framework. 
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Introduction 

 

1.1  Enterprise wide optimization 

The process manufacturing industry has a tremendous significance to the US economy. It 

accounted for 11.6% of gross domestic product income (GDP) in the economy in 2017, 

and it is directly responsible for 12.75 million jobs in the US, according to the Bureau of 

Economic Analysis. However, this segment faces numerous challenges such as the 

constantly growing world-wide competition, increasing complexity of production process, 

fluctuating customer demand and expansion of supply chains, as well as huge structural 

cost disadvantages when compared to its major competitors, according to the 

Manufacturing Institute [1]. In the field of operations research and process systems 

engineering (PSE), the main strategy to combat these emerging challenges and improve the 

efficiency of process industry is the pursue of optimal operation conditions through an 

enterprise-wide optimization. 

Enterprise-wide optimization proposes to optimize decision-making processes 

related to supply, manufacturing and distribution within a company. The major operational 

decisions include planning, scheduling and process control [2, 3], usually represented in a 

hierarchical way (Figure 1.1). On one end, tactical decisions determine allocation of 

resources on a time scale of months and years; on the other end, operational decisions 

address disturbances on a time scale of seconds. 
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In this hierarchy, planning problems are at the higher level of the decision-making. 

Based on demand forecasts and production orders, planning problems attempt to allocate 

resources and define production and inventory targets for manufacturing plants and storage 

facilities. The planning problem oversees the enterprise operation, coordinating it with 

market requirements and business considerations. Planning problems are usually modeled 

as linear or mixed integer linear problems, and are solved for a time horizon of months or 

years. 

Below the planning problem in the decision-making hierarchy, scheduling of 

production ensures the profitable and effective operation of an industrial process plant. A 

suitable and optimal schedule will guarantee that equipment, material, utilities, personnel 

and other resources are available whenever a production task must be performed. 

Therefore, the purpose of scheduling is to optimally allocate limited resources to 

processing tasks over time, while ensuring that demands are met and guarantying profitable 

operations [4]. In practice, scheduling has been done manually by expert individuals using 

spreadsheets in an ad-hoc basis [5]. However, increasing production volumes, larger 

product portfolios and volatile customer demands raised the complexity of the decision-

making process, and spurred the development of rigorous and mathematical formulations 

for scheduling problems. Many different classes and scheduling models can be found in 

the literature [6, 7], yet they all share the purpose of ensuring the feasible and optimal 

operation of a processing plant. Scheduling problems are usually modeled as mixed integer 

linear problems, and are solved for a time horizon of days or weeks. 

Process control is the lower-level decision-making process which supports the 

implementation of scheduling solutions at the production floor, while also attempting to 
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ensure the stability of the system and the control of qualitative properties of streams. A 

very powerful and widely adopted control technique is Model Predictive Control (MPC) 

[8]. MPC utilizes an explicit process model to predict the future state of a plant. At each 

control interval, control actions are obtained by solving online a finite horizon open-loop 

optimal control problem, which takes into consideration the current state of the plant and 

the future predictions. The optimization yields an optimal control sequence; the first control 

in this sequence is sent to the plant, and the entire calculation is repeated at subsequent 

control intervals [9]. MPC has the capability of tracking setpoints established by the 

scheduling layer, while considering constraints on control and state variables and 

contributing to throughput maximization and cost-efficient production [10]. MPC 

problems are usually formulated as quadratic or nonlinear optimization problems, and are 

implemented on a time scale of minutes or seconds. 

Traditionally, planning, scheduling and control problems are considered 

individually and solved in a sequential way. Planning problems usually set production 

targets for different manufacturing facilities which, in their turn, try to achieve the targets 

by defining an appropriate schedule. Scheduling decisions can be translated to setpoints 

and production sequences, which are transmitted to the control layer. The control attempts 

to implement the scheduling decisions, while handing disturbances over time. Such 

sequential strategies result in upper-level decisions made with little knowledge of the 

production constraints at the lower levels of the decision-making hierarchy.  The decisions 

are usually assumed to be inflexible, and lower-levels decision makers either achieve the 

targets at higher costs, or fail to achieve those targets [11]. 
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Driven by the possibility of determining an overall optimal and feasible solution, 

many researchers have explored the problems of integrating two or more decision making 

process, and techniques to solve the complex resulting problems have been developed. One 

of the major challenges in this integration is dealing with the different time scales related 

to each individual level. Usually, the simplest alternative for solving integrated problems 

is to adopt the time scale of the lower-level problem and formulate a single simultaneous 

model by incorporating the detailed lower-level problem as constraints in the upper-level 

model. However, this approach becomes computationally intractable when applied to large 

time horizons and high-dimensional problems [2]. To address these challenges, several 

approaches have been proposed in the literature and are discussed next. 
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Figure 1.1 - Decision-making hierarchy 

 

1.2 Background 

1.2.1 Integration of planning and scheduling 

Although associated with different time horizons, production planning and scheduling are 

closely related problems. While production planning determines the optimal allocation of 

resources and production targets over a time horizon of weeks or months, scheduling 
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determines the assignments of tasks to units and the sequencing of tasks over a time horizon 

of days or weeks. Owning to the interdependencies between planning and scheduling, the 

simultaneous consideration of these problems can guarantee solutions closer to optimality. 

As identified by Maravelias and Sung [12], a general formulation for the planning 

problem is given by resource constraints, production and holding costs constraints and 

material balances. The integration of planning and scheduling translates to incorporating 

scheduling information in order to determine the resource and production cost constraints. 

The formulations proposed in the literature can be classified into four categories: (a) 

detailed scheduling models, (b) relaxations/aggregations of scheduling models, and (c) 

surrogate model or approximations of the feasible scheduling region derived through off-

line analysis of manufacturing facilities. The first group includes intuitive ideas such as 

replacing the resource and production cost constraints by a monolithic scheduling model 

over the entire planning horizon. Clearly, such methods result in complex mathematical 

formulations that can become intractable for large time horizons and high-dimensional 

problems. The second group tries to handle the complexity problem by removing some of 

the scheduling constraints [13-16], or by aggregating some of the decisions of the original 

scheduling formulation [17-20]. The third group proposes to use surrogate models or multi-

parametric programming techniques to generate constraints that define the feasible region 

of the scheduling model and the production cost as function of production targets [21-24]. 

Such methods can generate more accurate and computationally tractable descriptions of 

resource and production costs constraints. 

Regarding the solution strategies, three methodologies have been proposed in the 

literature: hierarchical, iterative and full-space methods. In hierarchical methods, the 
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problem is decomposed into a master subproblem, which includes the planning model and 

approximate scheduling formulation, and a slave subproblem with detailed scheduling. The 

master problem is solved first, and its solution is used as input for the slave problem. 

Hierarchical methods can also be used within a rolling horizon framework, where detailed 

scheduling models are used in the master problem in a few early periods, and aggregate 

models are used in later periods. Since the production targets for the early periods are exact, 

they are implemented and the targets for later periods are updated as the horizon rolls[25]. 

Alternatively, iterative procedures have been proposed to close the information loop 

between the master and subproblem, and determine feasible production targets [18, 22, 26]. 

This can be achieved by the addition of integer cuts that exclude previously found 

solutions. Finally, the intuitive idea of integrating a detailed scheduling model to the 

planning formulation has been proposed in the literature (full-space models), usually 

associated to decomposition techniques to speed up computations of an otherwise 

intractable problem [27]. 

 

1.2.2 Integration of scheduling and control 

While process control and scheduling of production share the common objective of 

identifying (economically) optimal and feasible operational decisions [28], these problems 

have been traditionally approached in a hierarchical and irrespective manner. Decisions at 

the scheduling layer are made independently of the dynamic behavior and control of the 

system; the decisions are then transmitted to the control layer, which effectively 

implements the scheduling solutions. However, significant efforts have been made by the 

process systems engineering community to coordinate and integrate the scheduling and 
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process control problems in view of the possibilities of improving performance and 

profitability when decision-making processes are addressed simultaneously [2].  

Perhaps the most intuitive way of achieving the scheduling and control integration 

is to adopt the time scale of the control problem and formulate a single simultaneous model 

that incorporates the dynamic model of the process as constraints in the scheduling model. 

The result is a mixed integer dynamic optimization problem (MIDO), that is typically 

discretized into a Mixed Integer Nonlinear Program (MINLP) using, for example, 

collocation or implicit Runge Kutta methods. This approach was initially proposed by 

Flores-Tlacuahuac and Grossmann [29], and later extended by Terrazas-Moreno, Flores-

Tlacuahuac [30] and Zhuge and Ierapetritou [31]. Alternatively, decoupled modelling 

approaches were proposed by Kroll and coworkers [32, 33], who attempted to solve the 

integrated scheduling and control problem by iterating between a master problem 

formulated as a MILP (scheduling problem) and a primal problem formulated as a dynamic 

optimization problem (process control). However, the use of high-fidelity representations 

of the process dynamics as constraints in the scheduling problem usually introduces 

complexities, nonlinearities and discontinuities to the optimization model. These 

challenges have been addressed by You and coworkers, who proposed a series of 

decomposition strategies to improve the computational efficiency in the solution of the 

integrated problem [34, 35]. 

Although the contributions discussed so far brought significant theoretical 

advances to the integrated scheduling and control problem, they usually do not consider 

questions related to the stability and disturbance rejection at the dynamic level (problems 

extensively studied in the control literature). Most of the frameworks proposed to solve the 
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integrated problem offline, defining control actions for the entire scheduling horizon with 

no assessment of the online performance of the system. Motivated by these issues, Zhuge 

and Ierapetritou [36] proposed to integrate scheduling and model predictive control by 

deriving explicit control laws for the MPC problem using multi-parametric programming 

techniques, and further incorporating such laws in the scheduling problem. The strategy 

enables the definition of control actions that implicitly take into account the MPC 

objectives (stability, safety, robustness and fast-tracking). Zhuge and Ierapetritou [37] 

proposed an integrated scheduling and MPC framework consisting of the use of two control 

loops. An integrated problem at the outer loop generated the production schedule and the 

state references for the inner loop. The inner loop tracked state references using fast model 

predictive control, and the exact control solution was computed online. More recently, 

Simkoff and Baldea [38] proposed to integrate scheduling and linear MPC by deriving the 

KKT conditions of the control problem, and incorporating such conditions at the 

scheduling model. The main drawback of these approaches, however, is the exponential 

increase of computational expenses with the dimensionality of the control problem, 

restraining their use in industrial-size applications. 

A third strategy to handle the integrated scheduling and control problem is the use 

of surrogates derived from historical data and simulations. Surrogate models can capture 

the closed-loop behavior of the dynamic system in a time scale that is relevant to the 

scheduling problem. Such strategies have been applied to  small scale problems [39, 40] as 

well as Air Separation Units [41, 42]. Although efficient, the proposed frameworks rely on 

manually identifying a set of “scheduling-relevant” variables and active constraints in the 

control problem to be approximated and modeled at the scheduling level. 
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1.3   Challenges and opportunities 

Even though significant advances have been made by the process systems engineering 

community on the integration of planning-scheduling and scheduling-control problems, 

there is no unifying framework that systematically addresses high-dimensional problems. 

Few works attempted an overall integration of planning, scheduling and control, including 

a full-space formulation for short-period planning problems [43]; a decomposed 

framework with iterations between a MILP and DO problem [44]; and a nonlinear multi-

parametric programming approach for the derivation of explicit controllers and further 

integration with planning and scheduling [45]. There is little research work on the effects 

of uncertainties in the integrated problems [4]. Moreover, in an era of digitization and 

extensive gathering of information, relatively few works focused on the possibilities that 

Big-data technologies can bring to the process systems engineering community. Early 

attempts in this direction include the use of neural networks to approximate dynamic 

models of systems and the use of such approximations in model predictive controllers [46, 

47]; and the use of neural-networks to approximate explicit control laws [48, 49]. More 

recently, data-driven methods have been applied to construct polyhedron uncertainty sets, 

leveraging the power of machine learning and big data analytics for decision-making under 

uncertainty [50]. There is a huge potential in expanding the scope of data-driven 

methodologies within PSE and, in particular, within the problem of integrating decision 

making strategies. 
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1.4   Objectives 

The objective of this work is to develop a systematic approach for the integration of 

decision-making processes. This work recognizes that planning, scheduling and control 

problems are modeled using different mathematical optimization concepts, and they 

address problems with different time scales. However, the underlying problems of 

integrating planning-scheduling and scheduling-control have several common aspects that 

can be addressed with a standard framework. The framework is inspired and composed by 

the concepts of simulation-optimization [51, 52], feasibility analysis [53], and surrogate 

models [54]. Therefore, this work aims to investigate and address each of these components 

individually, and combine them in a unified framework for the integration of planning, 

scheduling and control problems. Furthermore, each of the components are developed to 

take advantage of big-data analytics, and to further integrate classical optimization and 

data-based methodologies. 

Specifically, the following research objectives will be studied: 

 

Specific aim 1: Integration of scheduling and model predictive control using a hybrid 

simulation-optimization method 

Model predictive control (MPC) has been widely and successfully adopted in 

manufacturing plants around the world. Therefore, the ideal framework for the integration 

of scheduling and control should take this factor into account. Beyond integrating 

scheduling and dynamic systems, the framework should aim in integrating scheduling and 

the closed-loop behavior of a dynamic system operating under MPC. To address this issue, 

a hybrid simulation-optimization approach for the integration of scheduling and control 
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was proposed. The framework consists of (i) solving a simulation-optimization problem to 

define the optimal integrated schedule and, (ii) tracking the schedule in closed-loop using 

the MPC controller.  

The proposed framework has limited applications which will be discussed in 

Chapter 2. Nevertheless, the theoretical developments of this dissertation were greatly 

inspired by the concept of simulation-optimization. This concept had not been implicitly 

applied to the integration of decision-making layers in previous works, and it served as the 

theoretical foundation for the development of the systematic framework for decision-

making integration, discussed in the next research aims. 

 

Specific aim 2: Integration of scheduling and robust model predictive control using 

surrogate models 

To achieve a systematic integration of decision-making processes, closed-loop information 

from the lower levels of the decision-making hierarchy should be transmitted to the higher 

levels. This work addressed this problem by employing surrogate models to approximate 

the closed-loop behavior of a system operating under different control strategies. 

Furthermore, it explores the issue of uncertainties at the control level, and it investigates 

how different control strategies can affect the integrated scheduling and control problem.  

 

Specific aim 3: Data-driven feasibility analysis for the integration of planning and 

scheduling 

One of the critical information that should flow among the different layers of the decision-

making hierarchy is the feasible space of each problem. In the integration of planning and 
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scheduling, for example, it is critical to model the feasible space of the scheduling problem, 

and integrate it to the planning model. However, defining the feasible space of the 

scheduling problem is challenging: these problems are usually modeled as Mixed Integer 

Linear Problems (MILP), and there are no mathematical approaches to rigorously 

determine the feasible space of a MILP problem in its entirety. To address this issue, a 

data-driven feasibility analysis methodology is proposed. The method is based on the use 

of different classification methodologies, and it is applied to the problem of integrating 

planning and scheduling. Chapter 4 will cover this research objective. 

 

Specific aim 4: Overall integration of planning, scheduling and control 

The ultimate goal of enterprise-wide optimization is the integration of planning, scheduling 

and control problems. Therefore, a systematic framework for the integration of these 

decision-making processes is proposed. The framework is an extension of the previous 

research aims, and it employs the feasibility analysis methods developed in specific aim 3, 

and the surrogate models developed in specific aim 2. The resulting integrated problem 

will take the form of a Mixed Integer Nonlinear Problem (MINLP). Since this problem can 

be challenging to solve, we propose to reduce its dimensionality by employing the concept 

of feature selection in the derivation of the surrogate models. This work is presented in 

chapter 5. 
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Simulation-optimization approaches for the integration of 

scheduling and control 

 

Abstract: In this chapter, a hybrid simulation-optimization framework is proposed to 

address the challenge of integrating scheduling and model predictive control (MPC). The 

framework consists on identifying scheduling-relevant process variables, building low-

order dynamic models to capture their evolution, and integrating scheduling and MPC by, 

(i) solving a simulation-optimization problem to define the optimal schedule and, (ii) 

tracking the schedule in closed-loop using the MPC controller. The efficacy of the 

framework is demonstrated via a case study that considers an air separation unit operating 

under real-time electricity pricing. The study shows that significant cost reductions can be 

achieved with reasonable computational times. 

 

2.1 Introduction 

Globalization and extensive information exchange supported by new technologies have 

given rise to an environment with fast changing market conditions, which must be taken 

into account in order to achieve optimal process operation. In the process systems 

engineering community, the search for the optimal operation has been translated to 

optimizing planning, scheduling and control decisions across the entire enterprise. In this 

chapter, we focus on strategies for the integration of scheduling and control problems. 

Specifically, we propose a nested decision-making structure, comprising two 

scheduling/control loops. In the outer loop, the scheduling problem is formulated as a 

simulation optimization problem, where the simulation involves solving a model predictive 

control problem for the entire scheduling horizon. The problem is solved to determine the 

optimal sequence of production rate setpoints. The solution is then communicated to the 
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inner loop, which tracks the setpoints over time while ensuring feasibility, stability and fast 

tracking. The inner loop is solved online and handles any disturbance that may affect the 

control layer. 

The concept of a hybrid simulation-optimization has been employed by several 

works addressing decision making-processes [55-57]. However, to the best out knowledge, 

such concept has not been applied in the integration of scheduling and control. Hybrid 

simulation-optimization frameworks are usually employed when detailed mathematical 

models describing the system cannot be derived or cannot capture the complexities of the 

system under investigation. Therefore, such frameworks are suitable for the representation 

of complex dynamic systems operating under a model predictive control, for which explicit 

control laws and closed-form expressions for the closed-loop behavior may be difficult or 

impossible to derive.  

The hybrid simulation-optimization framework proposed in this chapter will be 

applied to the problem of scheduling in an Air Separation Unit (ASU), extending the work 

proposed by Pattison, Touretzky [41]. Air separation units have a very high energy 

consumption, and the industrial gas sector utilized 19.97TWh of electricity in 2014, or 

about 2.55% of the amount consumed by the entire manufacturing sector in the U.S. [41]. 

Therefore, this industry may take advantage of the variations in electricity prices, which 

can change hourly (or faster) due to the change of grid-level electricity demand. Costs may 

be reduced by adjusting production rate according to electricity prices. Such frequent 

changes, however, may result in the process operating in a transient regime, possibly 

without ever reaching steady state conditions. This fact is contrary to the premise of most 
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current scheduling methodologies and emphasizes the necessity to account for the dynamic 

behavior of the system while making decisions at the scheduling level. 

This chapter is organized as follows: In section 2.2, the problem statement is 

presented, followed by a description of the ASU process. In section 2.3 we describe the 

problem formulation, discussing the process, control strategies, and scheduling model, 

followed by the integrated framework description. We demonstrate the application of the 

framework to the ASU process in section 2.4 and provide concluding remarks and future 

directions in section 2.5. 

 

2.2 Problem Definition and Motivating Example 

2.2.1 Problem Definition 

Consider the case of a continuous process that consume significant amounts of electricity. 

The process consists of several interconnected pieces of equipment/unit operations. Each 

unit may contribute to the power consumption of the overall plant. A storage system is 

available for the finished product; the product demand is given. Production rates can 

fluctuate (thereby changing the electricity demand of the process) and the product demand 

can be met either directly (i.e., by the plant itself) or by a combination of plant production 

and depleting the inventory of stored product. 

We assume electricity is purchased in a day-ahead market, for which accurate price 

forecasts are available. The goal is to define the production rates (and associated rate of 

inventory accumulation/depletion), that lead to the optimal operating cost for a given time 

horizon. The following summarizes the problem statement: 

Given  
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• Time horizon of the scheduling problem 

• Demand rates 

• Price forecasts 

• Dynamic process model 

• Dynamic model of storage system 

• Inventory constraints 

• Product quality constraints 

• Process operating constraints 

Determine 

• Optimal schedule: production rate targets and rate of inventory 

accumulation/depletion in each time 

• Optimal operating cost and/or profit for given time horizon 

• (Real-time) optimal control moves that implement the optimal schedule 

We assume deterministic conditions across all levels of the decision-making 

process. We also assume the only independent scheduling decisions are the definition of 

the production rate setpoint/target at each time interval of the scheduling horizon. No 

discrete decisions or multiple units have been considered. Moreover, we focus on 

continuous chemical processes that produce the same product(s) at variable production 

rates (rather than switching between a finite product palette). For simplicity, we assume 

that a single product is made, although the discussion below can be readily extended to the 

case where multiple products are made simultaneously.  

 We formulate and solve the above problem for an air separation unit, as a prototype 

electricity intensive process. The plant is described next.  
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2.2.2 Air Separation Unit Model 

We base our work on the model of a cryogenic air separation process as described by 

Pattison, Touretzky [41]. Air separation units (ASUs) are an important industrial utility 

provider, supplying oxygen, nitrogen, and argon to chemical, manufacturing, and energy 

generation industries. ASUs also have very high electricity consumption, and, in order to 

improve operating economics, researchers have investigated the possibility of taking 

advantage of electricity price fluctuations. By switching operating modes [58] or storing 

energy in the form of cryogenic liquids [59], significant cost reductions can be achieved. 

Several studies confirm these findings by integrating linear and nonlinear steady state 

models to represent process performance, and optimizing the operation of ASUs (in 

particular, by varying production rates) subject to time-varying electricity prices [60-62]. 

In general, if excess production capacity and storage capabilities are available, over-

production is sought in periods of low electricity prices (storing excess products), and low 

production rates are set (with the use of stored products to satisfy the demand) as electricity 

prices increase. Operating patterns characterized by the aforementioned paired events 

(production increases/decreases in response to fluctuations in electricity prices) belong to 

the broader operating paradigm referred to as “demand-side management” or “demand-

response”.  

 One important characteristic of ASUs that must be considered when exploring 

demand response and frequent transitions in production rates is the fact that their settling 

time (i.e., the time to reach steady state after a change in process inputs or controller set 

points)  is typically in the order of hours [63]. When utility prices (and, consequently 

production rate targets) change at a high (e.g., hourly) frequency, accurate dynamic models 
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of relevant process variables should be utilized to ensure that a sequence of scheduled 

production rate transitions is feasible and optimal. 

 The process flowsheet is presented in Figure 2.1. A single cryogenic distillation 

column is used for producing high-purity nitrogen. The inlet air feed is first compressed to 

6.8 bar and then cooled to the saturation point in a multi-stream primary heat exchanger 

(PHX). A fraction of the air is removed from the PHX and sent through a turbine to generate 

electricity, and the balance is liquefied in the PHX. Both the liquid and gas air streams are 

fed to the bottom of the cryogenic distillation column. The bottoms of the column, which 

is an oxygen-enriched mixture, is expanded adiabatically and sent to the reboiler where it 

provides cooling to the condenser in an integrated reboiler/condenser unit. The distillate of 

the column is purified nitrogen, and is split into a product stream and a reflux stream, where 

the reflux is sent to the condenser to be liquefied and returned to the column. The product 

stream is expanded in turbine 2, and both the waste from the reboiler and the nitrogen 

product stream exit the plant through the PHX to provide cooling for the inlet air. A 

separate nitrogen liquefier is included in the flowsheet along with a nitrogen product 

storage tank and an evaporator. This nitrogen storage allows the process to meet gas 

nitrogen demand with (evaporated) stored liquid nitrogen when electricity prices are high 

and production rate is decreased. During periods of low electricity price, production can be 

increased to build up liquid nitrogen inventory.  
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Figure 2.1 - Flowsheet for nitrogen production using a cryogenic air separation unit 

The process model was presented in detail in Johansson [64] and Pattison, 

Touretzky [41], which in turn is based on the models developed by Cao [65], Cao, Swartz 

[63] and Huang, Zavala [66]. We include a synopsis of the mathematical models describing 

the dynamic behavior of the unit operations of the ASU process shown in Figure 2.2Figure 

2.2, noting that the detailed process model comprises 6094 equations and has 430 state 

variables. 

Distillation Column Model. The cryogenic distillation column model is based on 

the work by Huang, Zavala [66]. The column consists of 30 equilibrium stages and the 
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condenser operating pressure is 6.4 bar with a 0.2 bar linear pressure drop along the 

column. The phase equilibrium is modeled using a Margules activity model for the 

nonideal liquid phase 𝑦𝑖𝑗𝑃𝑖 = 𝛾𝑖𝑗𝑃𝑖𝑗
𝑠𝑎𝑡𝑥𝑖𝑗, where index 𝑖 and 𝑗 represent the stage number 

and component, respectively. The vapor pressure, 𝑃𝑖𝑗
𝑠𝑎𝑡 is determined using Antoine’s 

equation and the activity coefficients, 𝛾𝑖𝑗 are determined using the Margules equations. 

Integrated Reboiler/Condenser Model. The oxygen rich stream at the bottom of the 

distillation column is expanded through a valve to 2.5 bar to provide cooling (via Joule-

Thomson effect) to the condenser in the heat-integrated reboiler/ condenser. The steady 

state model for the integrated reboiler/ condenser is adapted from the work of Cao [65]. 

The reboiler is modeled as an equilibrium stage, with an additional heat input equivalent 

to the condenser heat duty.  

PHX Model. The PHX is a brazed plate-fin multistream heat exchanger and the 

dynamic model is adapted from the work of Cao [65]. The model consists of two zones 

which are delimited by the location where a fraction of the inlet air gas stream is withdrawn 

from the PHX in the gas phase. The fraction of cooled air removed at this point is a 

manipulated variable for the control system. Zone 1 corresponds to sensible heat removal 

from the inlet air stream, while zone 2 corresponds to latent heat removal. The first zone is 

further discretized into 50 segments, while the second zone is modeled by a single lumped 

energy balance equation to simplify the phase transformation calculations. The geometry 

of the channels within each segment is accounted for when calculating energy 

accumulation of each stream in each finite volume. 

Compressor and Turbine Models.  Generators are coupled to the turbine expanders 

used in the process to reduce the compressor power demand. We assume that the turbine, 
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compressor and generator dynamics are fast and the units can be approximated with steady 

state conservation equations. We assume that the compression and expansion are 

polytropic processes with corresponding head and efficiencies calculated using the 

approach presented in Chapter 10 of Green and Perry [67]. 

Liquefier and Liquid Storage Tank Model. We assume that the liquefier dimensions 

are much smaller than those of the ASU, and, unlike the ASU, the liquefier does not contain 

any significant material holdup (e.g., sumps) resulting in a fast dynamic response. As a 

consequence, we model the liquefier using steady state conservation equations. Further, it 

is assumed that the liquefier operation can be represented as an ideal refrigeration cycle 

with 80% efficiency. We assume that the evaporator is at ambient conditions and does not 

require any additional energy input to operate. 

 

2.3 Framework for the integration of scheduling and MPC  

2.3.1 Process system representation 

The first-principles model of a chemical process is typically represented as a high-

dimensional system of nonlinear differential equations (DAEs). Nevertheless, in practice, 

the number of process variables that are of interest to scheduling is likely much lower than 

the number of process states [40]. Pattison et al. (2016) postulated that, given a set of 

operating and quality constraints of a system, only those constraint that become active 

during static or transient operation are relevant to the optimal scheduling calculation 

because they can hinder the agility of the process, and thus only the variable trajectories 

related to these constraints are of interest to the scheduling problem.  
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The relevant set of variables, 𝑊, can be identified by analyzing historical operating 

data or using a set of dynamic simulations (Pattison et al., 2016). Subsequently, data-driven 

models can be identified to approximate the dynamic behavior of all schedule relevant 

variables. Note that, as is the case in any data-driven modeling approach, the models used 

here are valid for the operating regions/conditions for which data are available. In case the 

operating conditions of the plant change, model reidentification may be needed. 

Focusing now on the air separation unit described above, we first note that the plant 

under consideration is capable of flexible operation, in the sense that the production rate 

(defined in terms of the flow rate of the gas nitrogen product) can assume any value in the 

range of 16mol/s to 24 mol/s. The nominal production rate is 20mol/s. The production rate 

set point/target is the independent variable in the integrated scheduling and control 

problem, and variations in this set point will define the performance and operating costs of 

the system. Therefore, the production rate is the first schedule relevant variable of our 

problem. The second schedule relevant variable is related to the purity of the nitrogen 

product stream. The maximum allowed impurity level (i.e., oxygen concentration) is 

2000ppm at all times, as given by Pattison et al. (2016). Given the critical nature of this 

constraint, a back-off constraint is used, and we set 𝐼𝑚𝑎𝑥 = 1800𝑝𝑝𝑚. The back off 

constraint compensates for possible inaccuracies in the state-space models that will be 

derived to describe the dynamics of impurity levels in the product stream. The third 

relevant variable is defined as the temperature driving force across the reboiler/condenser, 

since this temperature gradient must be maintained above 1.8 K at all times, and frequent 

changes in the production rate set points may result in violation of this constraint. We 

define the fourth scheduling-relevant variable as the reboiler holdup, which must be kept 
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around its steady state value (100kmol) in order to guarantee operational stability and 

prevent the system from draining its required cooling holdup to generate a (false) 

improvement in operational economics.  

The goal of the scheduling problem is to minimize the operational cost related to 

the energy consumption. Note that the energy consumed in the compressor, as well as 

energy produced in the turbines can be related to the feed air flow rate 𝐹𝑓𝑒𝑒𝑑 and the 

production rate. Therefore, 𝐹𝑓𝑒𝑒𝑑 also belongs to the set 𝑊 of schedule relevant variables. 

Some additional variables are defined as manipulated variables for our control problem; 

we define the control inputs 𝑢𝑝 ∈ ℝ
𝑚 and outputs 𝑦𝑝 ∈ ℝ

𝑞 of our problem as: 

• Production flow rate, 𝑦𝑝(1) = 𝐹𝑝 

• Product purity (modeled in terms of impurity concentration), 𝑦𝑝(2) = 𝐼𝑝 

• Temperature difference across the reboiler/condenser, 𝑦𝑝(3) = ∆𝑇𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 

• Liquid level in the reboiler, 𝑦𝑝(4) = 𝑀𝑟𝑒𝑏 

• Inlet air flow rate, 𝑢𝑝(1) = 𝐹𝑓𝑒𝑒𝑑 

• The split fraction in the PHX, 𝑢𝑝(2) = 𝑘𝑃𝐻𝑋 

• The fraction of vapor product sent to the condenser, 𝑢𝑝(3) = 𝑅𝑐𝑜𝑙 

• The liquid drain in the reboiler, 𝑢𝑝(4) = 𝐿𝑑𝑟𝑎𝑖𝑛 

Notice that all the scheduling relevant variables are classified either as manipulated 

variables or control outputs. The dynamics of the schedule relevant variables are captured 

using continuous state-space models of the form: 

𝑥̇𝑝 = 𝐴𝑥𝑝 + 𝐵𝑢𝑝 (1a) 

𝑦𝑝 = 𝐶𝑥𝑝 (1b) 
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where 𝑥𝑝 ∈ ℝ
𝑛 is the state, 𝐴 ∈ ℝ𝑛×𝑛 is the state transition matrix, 𝐵 ∈ ℝ𝑛×𝑚 is the input 

matrix, and 𝐶 ∈ ℝ𝑞×𝑛 is the output matrix. The state-space models were identified using a 

highly detailed dynamic model of the process described in section 2. To identify the state 

space models, we first performed a series of open-loop step tests on the detailed model, 

where the manipulated variables were subject to step changes (applied one variable at a 

time), and transfer function models were then identified to approximate the dynamic step 

response of each output variable. The identification of the transfer functions was carried 

out using the System Identification Toolbox on MATLAB. These transfer function models 

were then combined to form a state space model. The state space model for the Air 

Separation Unit is defined by 38 state variables, 4 control inputs and 4 control outputs. 

The aforementioned quality and process constraints related to the schedule relevant 

variables can be summarized as: 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑝 ≤ 𝑦𝑚𝑎𝑥 (2a) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑝 ≤ 𝑢𝑚𝑎𝑥 (2b) 

We note here that a linear state-space model and linear process quality and constraints have 

been identified for the Air Separation Unit problem. However, this is not a requirement of 

this framework. The state-space model will be employed in the process control problem 

and the closed-loop simulations of the system while the scheduling problem is being 

optimized. Therefore, we seek to achieve a tradeoff between model accuracy and 

computational performance while simulating the closed-loop behavior of the system. In 

this work, a linear model had a satisfactory performance in predicting the behavior of the 

system for the given operating range and the closed-loop simulation was performed in an 

order of seconds, making this model suitable for the simulation-optimization algorithm.  
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2.3.2 Process Control 

Once the dynamic model of the system has been identified, a model predictive control 

(MPC) is designed for the process. This control layer is built to ensure the stability of the 

plant over its entire operation region, and it is assumed to be capable of imposing all 

changes in product type and production rate requested by the scheduling layer. The MPC 

controller is of the following form: 

min
𝒖𝒑

𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑥𝑝
0, 𝒖𝒑) =

1

2
∑ (|𝑦𝑝

𝑘 − 𝑦𝑝
𝑠𝑝,𝑘|

𝑄

2
+ |𝑢𝑝

𝑘 − 𝑢𝑝
𝑠𝑝,𝑘|

𝑅

2
) 

𝑁−1

𝑘=0

+ |𝑦𝑝
𝑁 − 𝑦𝑝

𝑠𝑝,𝑁|
𝑃𝑓

2
  (3) 

𝑠. 𝑡.

{
 
 

 
 
𝑥𝑝
0 = 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙               

𝑥𝑝
𝑘+1 = 𝐴𝑥𝑝

𝑘 + 𝐵𝑢𝑝
𝑘   

𝑦𝑝
𝑘 = 𝐶𝑥𝑝

𝑘                    

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑝
𝑘 ≤ 𝑦𝑚𝑎𝑥    

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑝
𝑘 ≤ 𝑢𝑚𝑎𝑥    

 

 

where the system described in (1) has been discretized and included as constraints in the 

MPC problem. 𝑘 is a nonnegative integer denoting the sample number, which is connected 

to time by 𝑡 = 𝑘𝑇𝑠 in which 𝑇𝑠 is the sample time. 𝑁 is the prediction horizon, 𝑦𝑝
𝑠𝑝 ∈ ℝ𝑞 

is the setpoint, and 𝑄 and 𝑅 are tuning parameters penalizing deviations from the setpoint 

and control moves, respectively. We allow the final state penalty to have a different 

weighting matrix 𝑃𝑓, for generality. Finally, 𝒖𝒑  is the input sequence for 𝑁 − 1 time steps, 

i.e., 𝒖𝒑 = {𝑢𝑝
0, 𝑢𝑝

1 , … , 𝑢𝑝
𝑁−1}. 

For the Air Separation Unit control problem, we will use a sample time 𝑇𝑠 = 6min. 

The production rate setpoints to be tracked by the control problem will be defined by 

optimizing the integrated scheduling and control problem. The set points for the remaining 

output variables are fixed at 𝑦𝑝
𝑠𝑝(2) = 𝐼𝑝

𝑠𝑝 = 500𝑝𝑝𝑚, 𝑦𝑝
𝑠𝑝(3) = ∆𝑇𝑝

𝑠𝑝 = 2.2𝑜𝐶 and 
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𝑦𝑝
𝑠𝑝(4) = 𝑀𝑟𝑒𝑏

𝑠𝑝
= 100𝑘𝑚𝑜𝑙. The MPC problem was implemented in MATLAB using the 

Model Predictive Control Toolbox.  

 

2.3.3 Production Scheduling 

One important consideration in any scheduling formulation is the time representation. In 

general, it is convenient to model time according to the frequency of change in the main 

drivers for making scheduling decisions. For the air separation unit problem operating 

under hourly change electricity prices, it is straightforward to define hourly time slots and 

assign different price values to different periods [68]. Furthermore, a natural choice for the 

time horizon for the scheduling problem is the amount of time for which economic 

forecasts (e.g. energy prices) are reliably available. Therefore, we follow such time 

representation, which can be expressed as: 

𝑡𝑒𝑛𝑑
𝑛 = 𝑡𝑠𝑡𝑎𝑟𝑡

𝑛 + 𝜏, ∀𝑛 ∈ 𝑁𝑛 (4a) 

𝑡𝑠𝑡𝑎𝑟𝑡
𝑛 = 𝑡𝑒𝑛𝑑

𝑛−1, ∀ 𝑛 ≠ 1 (4b) 

𝑡𝑠𝑡𝑎𝑟𝑡
1 = 0 (4c) 

𝑡𝑒𝑛𝑑
𝑁𝑒 = 𝑇𝑚 (4d) 

where 𝑛 ∈ {1, 2, … ,𝑁𝑛} is a positive integer value representing the time slots in the 

scheduling formulation, 𝜏 is the discretization period (i.e., 1 hour), 𝑡𝑠𝑡𝑎𝑟𝑡
𝑛  and  𝑡𝑒𝑛𝑑

𝑛  define 

the starting and ending time of the scheduling period 𝑛, respectively, and 𝑇𝑚 is the 

scheduling horizon.    

In the scheduling layer, we aim to minimize costs by changing production rate 

targets, while meeting demand and inventory constraints. We propose a formulation for the 

air separation unit problem where the only scheduling decisions are the production rate 
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setpoints 𝑦𝑝
𝑠𝑝,𝑛(1) = 𝐹𝑝

𝑠𝑝,𝑛
 defined for each time slot 𝑛. The setpoints are constrained by 

upper and lower bounds (Eq. 5). Furthermore, to account for operational constraints in the 

system which may prevent feasible transitions, we add rate-of-change constraints to the 

scheduling problem in order to guide the schedule towards feasible transitions (Eq. 6). Note 

that 𝐹𝑝
𝑠𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 is the setpoint for the air separation unit before the current scheduling 

horizon.  

𝐹𝑝,𝑚𝑖𝑛
𝑠𝑝 ≤ 𝐹𝑝

𝑠𝑝,𝑛 ≤ 𝐹𝑝,𝑚𝑎𝑥
𝑠𝑝 , ∀ 𝑛 ∈ 𝑁𝑛 (5) 

𝐹𝑝
𝑠𝑝,𝑛 ≤ 𝐹𝑝

𝑠𝑝,𝑛−1  + 𝑠, ∀ 𝑛 ≠ 1 (6a) 

𝐹𝑝
𝑠𝑝,𝑛 ≥ 𝐹𝑝

𝑠𝑝,𝑛−1 − 𝑠, ∀ 𝑛 ≠ 1 (6b) 

𝐹𝑝
𝑠𝑝,1 ≤ 𝐹𝑝

𝑠𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  + 𝑠 (6c) 

𝐹𝑝
𝑠𝑝,1 ≤ 𝐹𝑝

𝑠𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  + 𝑠 (6d) 

Note that the parameter 𝑠 is problem specific and can be determined by analyzing the 

performance of the schedule for different values of 𝑠. In this work, we assumed that the 

production rate can change by no more than 20% of the nominal production capacity each 

hour. 

The constraints described so far are modeled independently of the control level 

performance. However, constraints related to the inventory levels, demand fulfillment and 

operational costs cannot be accurately predicted without a closed-loop simulation of the 

control level problem since they depend on the values of control inputs and outputs of the 

system. The details for the incorporation of the closed-loop simulation as a constraint in 

the scheduling problem will be discussed in the next section. For now, it is important to 

highlight that constraints that are somehow related to the control inputs and outputs should 



29 

 

 

 

be defined in a time scale comparable to the sample time of the MPC problem. In other 

words, considering the sample time of MPC is 𝑇𝑠 and the scheduling horizon is 𝑇𝑚, the 

aforementioned constraints and costs of the system will be calculated for 𝑖 = 𝑇𝑚/𝑇𝑠 time 

intervals. For convenience, we defined the sample time of the MPC problem as an exact 

divisor of 𝜏, and therefore an exact divisor of 𝑇𝑚. 

 For the ASU problem, the scheduling constraints related to control inputs and 

outputs of the system (adapted from Pattison, Touretzky [41]) are: 

𝛼𝑖 = {

𝐹̅𝑖

𝐹𝑝
𝑖
            𝑖𝑓 𝐹𝑝

𝑖 ≥ 𝐹̅𝑖 , ∀𝑖 ∈ 𝐼

1              𝑖𝑓 𝐹𝑝
𝑖 < 𝐹̅𝑖, ∀𝑖 ∈ 𝐼

 

(7a) 

𝐹𝑖𝑛𝑣,𝑖𝑛
𝑖 = (1 − 𝛼𝑖)𝐹𝑝

𝑖, ∀𝑖 ∈ 𝐼 (7b) 

𝑀𝑖𝑛𝑣
𝑖 = 𝑀𝑖𝑛𝑣

0  (8a) 

𝑀𝑖𝑛𝑣
𝑖 ≥ 0, ∀𝑖 ∈ 𝐼 (8b) 

𝑀𝑖𝑛𝑣
𝑖 ≤ 𝑀𝑖𝑛𝑣

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝐼 (8c) 

𝑀𝑖𝑛𝑣
𝑇𝑚 ≥ 𝑀𝑖𝑛𝑣

𝑚𝑖𝑛 (8d) 

𝑀𝑖𝑛𝑣
𝑖 = 𝐹𝑝

𝑖 − 𝐹̅𝑖 +𝑀𝑖𝑛𝑣
𝑖−1, ∀𝑖|𝑖 ≠ 0 (8e) 

Equation 7 defines the split, 𝛼𝑖, of the production rate of the process sent to the product 

storage tank. The inlet flow rate to the inventory is defined as 𝐹𝑖𝑛𝑣,𝑖𝑛
𝑖 . If the production rate 

𝐹𝑝
𝑖 is greater than the demand, 𝐹̅𝑖, the excess production is sent to inventory. If the 

production rate is lower than the demand, there is no flow to the inventory. Equation 8a 

states that the inventory level 𝑀𝑖𝑛𝑣
𝑖  at period 𝑖 = 0 must be equal to the initial inventory 

level; equations 8b and 8c define upper and lower bounds for the inventory level at every 

period 𝑖; and equation 8d defines a minimum inventory level at the end of the scheduling 
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horizon, in order to guarantee stability of the schedule and prevent the complete depletion 

of inventory. In this case, we set 𝑀𝑖𝑛𝑣
𝑚𝑖𝑛 equal to 𝑀𝑖𝑛𝑣(0), its value at the beginning of the 

scheduling horizon. Note that is this scheduling framework were to be implemented in a 

rolling-horizon fashion, it would be beneficial to fix the terminal constraint to ensure 

recursive feasibility and stability [41]. Finally, equation 8e defines the inventory variation 

as the difference between the production rate and the product demand, which guarantees 

that any excess production will be sent to the storage, and any shortage on production will 

be compensated by the usage of stored nitrogen product.  

The objective of the scheduling problem is to minimize production costs, which are 

mostly related to electricity consumption. The main consumers of electricity in an ASU are 

the compressors. Furthermore, the turbines are used to generate electricity, and there is a 

cost penalty for liquefying product to be sent to the storage tank. We assume the network 

of the compressor, liquefier and turbines is proportional to the flow rate, and therefore the 

objective of the production scheduling can be formulated as follows: 

min
𝐹𝑝
𝑠𝑝
(𝑡)
𝐽𝑠𝑐ℎ𝑒𝑑 = ∫ 𝑝(𝑡)(𝛾𝑐𝐹𝑓𝑒𝑒𝑑(𝑡) − 𝛾𝑡1𝐹𝑓𝑒𝑒𝑑(𝑡) − 𝛾𝑡2𝐹𝑝(𝑡) + 𝛾𝑙𝐹𝑖𝑛𝑣,𝑖𝑛 

𝑖 (𝑡))𝑑𝑡
𝑇𝑚

0

 (9) 

where 𝛾𝑐, 𝛾𝑡1, 𝛾𝑡2 and 𝛾𝑙 are parameters (with units Watts/(mol/s)) which relate the flow 

rate in the compressor, turbine 1, turbine 2 and the liquefier, respectively, to the amount of 

electricity consumed (or generated) by the unit operation, and 𝑝(𝑡) is the forecasted 

electricity price throughout the scheduling horizon. Equation (9) can be approximated in a 

discrete-time form as: 

min
𝐹𝑝
𝑠𝑝,𝑛

𝐽𝑠𝑐ℎ𝑒𝑑 =∑𝑝𝑖𝑇𝑠(𝛾𝑐𝐹𝑓𝑒𝑒𝑑
𝑖 − 𝛾𝑡1𝐹𝑓𝑒𝑒𝑑

𝑖 − 𝛾𝑡2𝐹𝑝
𝑖 + 𝛾𝑙𝐹𝑖𝑛𝑣,𝑖𝑛

𝑖 )

𝑖

 (10) 
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2.3.4. Integrated scheduling and control 

2.3.4.1 Closed-loop simulation-optimization problem 

The integrated scheduling and control problem should include the closed-loop 

behavior of the system as constraints in the scheduling model. We represent this constraint 

by first defining a control law 𝜓(∙): 

𝜓(𝑥𝑝, 𝑦𝑝
𝑠𝑝) ≔ argmin

𝒖𝒑
𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙(∙) (11) 

 where 𝐽𝑐𝑜𝑛𝑡𝑟𝑜𝑙(∙) was defined in eq. (3). Then, constraints (12) can be included in the 

scheduling model: 

𝑢𝑝
𝑖 = 𝜓(𝑥𝑝, 𝑦𝑝

𝑠𝑝,⌈𝑖/𝜏⌉
) (12a) 

𝑥𝑝
𝑖+1 = 𝐴𝑥𝑝

𝑖 + 𝐵𝑢𝑝
𝑖  (12b) 

𝑦𝑝
𝑖 = 𝐶𝑥𝑝

𝑖  (12c) 

The integrated scheduling and control problem can be summarized as: 

Minimize Objective Function (10) 

Subject to: 

Closed-loop process behavior (Eq. 12) 

Bounds and smooth constraints (Eq. 5-6) 

Split equations (Eq. 7) 

Storage model and constraints (Eq. 8) 

(P1) 

 

We refer to this problem as problem P1. Note that the inclusion of a closed-loop 

process simulation using an advanced process control system in the integrated scheduling 

and control framework is the main contribution of this paper. In the past,  Zhuge and 

Ierapetritou [69] attempted to integrate scheduling and MPC by deriving explicit control 
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laws using multi-parametric programming techniques, and including such control laws in 

the scheduling formulation. However, as the problem size increases the number of critical 

regions in the multi-parametric problem increases exponentially, which limits the 

applicability of the framework. The integration of scheduling and MPC also imposes more 

challenges than the integration of scheduling and dynamic optimization problems. Such 

problems are usually formulated as Mixed Integer Dynamic Optimization problems 

(MIDO), which can be solved through sequential techniques or simultaneously through 

discretization and reformulation of the problem as a Mixed Integer Nonlinear Program 

(MINLP). However, the formulation in (P1) cannot be classified as a MINLP problem, nor 

can it be classified as a bilevel optimization problem. The closed-loop process simulation 

involves solving the MPC optimization problem 𝑖 times during each execution of the 

scheduling problem, where 𝑖 = 𝑇𝑚/𝑇𝑠, and  𝑇𝑠 is the sample time for the MPC.  

Therefore, we choose to rearrange problem (P1) as a closed-loop simulation 

optimization problem, where the simulation is equivalent to sequentially solving the model 

predictive control problem for the entire scheduling horizon, subject to constraints (7). In 

other words, if the scheduling time horizon is 10 hours, and the MPC execution frequency 

is 1 minute, the closed-loop simulation would involve solving the MPC problem 600 times. 

Such simulation is performed assuming there is no model mismatch, and no disturbances 

affect the system. The input arguments for the simulation are the production flow rate 

setpoints, 𝐹𝑝
𝑠𝑝,𝑛

. Using such setpoints, the MPC problem is solved and provides values for 

the production flow rate 𝐹𝑝
𝑖 and feed air flow rate 𝐹𝑓𝑒𝑒𝑑

𝑖 . Equation 7 is then used to calculate 

the product flow to inventory, 𝐹𝑖𝑛𝑣,𝑖𝑛
𝑖 , and since such equality constraint is being used 

within the simulation, it can be easily evaluated using a logic statement. Finally, the total 
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cost of operating the system is calculated through Eq. 10. Additionally, storage model and 

constraints that also depend on the closed-loop simulation of the system are evaluated. The 

optimization problem uses these simulation results to update the production setpoints using 

a gradient-based method. Figure 2.2 shows a schematic of the closed-loop simulation 

optimization framework applied to an air separation unit. 

 

Figure 2.2 - The closed-loop simulation-optimization schematic 

Simulation-optimization has become possible in the last decades due to advances 

in computing power and memory [51, 52]. Main approaches to solve the simulation-

optimization problem include response surface methods [70, 71], gradient based 

procedures  [72], and sample path optimization [73, 74]. In this paper, we solve the 

simulation-optimization problem using a sequential quadratic programming algorithm 

implemented in MATLAB, in which, at each major iteration, an approximation is made of 

the Hessian of the Lagrangian function, a quadratic programming subproblem is generated, 
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and it solution is used to form a search direction for a line search procedure. Hessian and 

gradients are approximated via finite differences.  

We note that we seek locally rather than globally optimal solutions for the 

simulation optimization problem considered in this work. The convergence of simulation 

optimization problems to global optima may not be possible or efficient, especially if the 

simulation is computationally expensive. Conversely, local solutions often represent 

significant improvements over the heuristics typically used in practice and can be obtained 

with lower computational effort. 

 

2.3.4.2 The inner and outer control loops 

Following the work of Zhuge and Ierapetritou [37], we propose to use two loops 

for the scheduling and control framework. The outer loop consists of solving the integrated 

scheduling and control problem described in section 2.3.4.1. Since we assume accurate 

price forecasts are available, the outer loop is solved with a much lower frequency when 

compared to the inner control problem. The outer loop provides the control set points that 

will be tracked by an inner control problem. The inner control consists of an equivalent 

control strategy to the one used in the closed-loop simulation optimization problem. 

Additionally, other supervisory and regulatory controllers may be implemented, assuming 

that such controllers do not affect the scheduling relevant variables. The inner control 

system ensures that plant-model mismatch and process disturbances are accounted for. 

Figure 2.3 presents a schematic of the inner and outer control loops. 
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Figure 2.3 - The inner and outer control loops schematic 

We note that the outer-loop problem can be optimized in a moving horizon fashion, 

which can be carried out periodically as new information is made available, or when 

disruptions to the scheduling layer affect the optimality of the current schedule. However, 

as observed by Subramanian, Maravelias [75], re-scheduling and moving horizon 

frameworks do not always yield good closed-loop scheduling solutions, especially in the 

presence of irregular demand. Defining the ideal scheduling optimization frequency while 

guaranteeing schedule stability is not straightforward [76], and is subject of ongoing work.   

 

2.3.4.3 Interpretation from the perspective of Economic Model Predictive Control 

(EMPC) 

We note that the problems addressed in this paper could in principle be handled by 

an economic model predictive controller (EMPC). EMPC has been proposed in an attempt 

to integrate economic process optimization and process control and incorporates a general 

cost function or performance index. The implementation strategy of the EMPC follows the 

same paradigm as conventional MPC. Specifically, EMPC is solved in a receding horizon 

fashion, where at every sample step the optimization problem is solved and the input 
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trajectory is defined over the prediction horizon 𝑁. The first control action is implemented 

and, at the next sampling period, the EMPC is re-solved. As in our framework, EMPC 

acknowledges that steady-state operation may not necessarily be the economically best 

operation strategy. However, the rigorous design of EMPC system that operate large-scale 

processes in a dynamically optimal fashion while maintaining stability (safe operation) of 

the closed-loop process system is challenging as traditional notions of stability may not 

apply to the closed-loop system under EMPC [77].  

Nevertheless, there are some significant differences and benefits of the proposed 

framework when compared to EMPC. Here, we propose to maintain a certain level of 

independence for each of the two decision layers. At the control layer, MPC focuses on 

handling disturbances and ensuring that the process operation is stabilized, while 

computing the manipulated variables’ trajectories over time intervals in the order of 

seconds or minutes. At the scheduling layer, the integrated problem is solved for a longer 

time horizon and with lower frequency. EMPC, on the other hand, completely integrates 

the two decisions and optimizes the economic performance on a time scale comparable to 

MPC with a time horizon comparable to the scheduling calculation. While such frequent 

optimization of the economic performance may seem beneficial, operational scheduling 

decisions usually establish the basis for scheduling of personnel, deliveries, maintenance 

and relations with third parties that, in a practical operation, cannot be updated frequently 

as they can lead to “schedule nervousness.” Further, it is not clear that such optimization 

calculations can be completed to optimality in a short amount of time (e.g., with minute 

frequency).  



37 

 

 

 

By maintaining two decision layers, we avoid transferring restrictions associated 

with the online solution of the control level problem to the integrated scheduling problem. 

This is particularly essential when choosing to control the system using nonlinear models 

to represent its dynamic behavior and when extending the scheduling problem to account 

for discrete decisions (such as starting up and shutting down of units, and accounting for 

multiple and parallel lines of operation). From an EMPC perspective, addressing this 

problem requires the extension of the current control theory to include discrete actuators 

coupled with the efficient solution of an MINLP problem online. For a hybrid simulation-

optimization framework, addressing this problem translates to implementing a nonlinear 

MPC coupled with the solution of a MINLP offline. We acknowledge that some initial 

efforts have been done to develop the theory of MPC with discrete actuators [78], and the 

inclusion of discrete decisions to the scheduling layer of the simulation-optimization 

framework is subject of ongoing work. Therefore, the advantage of the hybrid simulation-

optimization framework lies in its independence of the online solution of an MINLP, which 

may be a significant obstacle given current computational power and state-of-the-art 

MINLP algorithms. 

 

2.4 Case study  

To verify the potential of the proposed framework, we present a realistic operational 

scenario and compare the results of the optimal schedule to the nominal operation of the 

plant. We assume that the storage tank has a capacity of 200kmol of product, and the initial 

inventory level is 50kmol. The energy prices for a period of 48hours are shown in Figure 

2.4, and the scheduling horizon starts at 00:00h (midnight) of day 1. Knowing the energy 
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prices profile, we expect that inventory will deplete during the day (when energy prices are 

higher). Therefore, we set the minimum inventory level at the end of the scheduling horizon 

(𝑀𝑖𝑛𝑣
𝑚𝑖𝑛) at a quarter of the storage capacity, or 50𝑘𝑚𝑜𝑙. Likewise, the inventory is expected 

to refill at night. We assume there is a constant demand of 20mol/s over the 48hour horizon. 

Moreover, we assume that we can accurately predict the energy price 48 hours in advance. 

 

Figure 2.4 - Electricity prices 

 

 The 48-hour scheduling problem was then solved using the proposed simulation-

optimization framework (Case 1). The results were obtained in 381 seconds using 

MATLAB R2016b on a 64-bit Windows system with Intel Core i7-6700 CPU at 2.60 GHz 

and 8 GB RAM. In total, during the optimization procedure, 5,052 simulation calls were 

made. Note that, in each simulation call, 480 MPC problems were sequentially solved (as 
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described in section 3.4.1), since the scheduling horizon was 48 hours and the sampling 

time for the MPC was 6 minutes (𝑖 =
𝑇𝑚

𝑇𝑠
=

48ℎ×60

6𝑚𝑖𝑛
). MPC problems were implemented in 

MATLAB using the Model Predictive Control Toolbox. For comparison, the same 

scheduling problem was also solved using time scale-bridging models following closely 

the developments of Pattison et al. (2016) (Case 2) and using the full-order dynamic model 

of the plant (Case 3), also based on the work of Pattison et al., 2016. The time scale-

bridging models (SBMs) are nonlinear dynamic models of Hammerstein-Wiener form that 

approximate the closed-loop process dynamics, and the reader is referred to Pattison et al. 

(2016) for details about the SBMs and the full-order dynamic model. As opposed to an 

online controller, the control actions for Case 2 and Case 3 are optimized offline, and 

follow a heuristic control law that adjusts the manipulated variables through production 

rate changes, as described in Pattison, Touretzky [41]. Case 2 and Case 3 were solved in 

610 seconds and 59,923 seconds respectively, using a sequential dynamic optimization 

solver in gPROMS 5.0 (Process Systems Enterprise, 1997) on a 64-bit Windows system 

with Intel Core i7-2600 CPU at 3.40 GHz and 16 GB RAM. 
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Table 2.1 - Optimal schedule results. 

Case Predicted 

Overall Cost 

Actual  

Overall Cost 

Difference  

from Baseline 

Solution  

Time 

Baseline* $707.91 $707.91 0% - 

Case 1 (MPC) $697.43 $698.30 1.4% 381 s** 

Case 2 (SBM) $698.60 $698.67 1.3% 610 s 

Case 3 (Full-Order) $698.01 $698.01 1.4% 59,923 s 

*Baseline denotes the constant production rate case. 

**Solution time for Case 1 refers to the offline calculations. The online MPC evaluations 

are practically instantaneous. 

 

The predicted overall operational costs found in the solutions to all three 

optimization cases are presented in Table 2.1, along with the actual overall operational cost 

(calculated using the full-order dynamic model). Because it was assumed that electricity 

prices were known for the 48-hour horizon, deviations between the predicted and actual 

overall costs are only due to model mismatch between the reduced-order models and the 

full-order dynamic model. In our proposed framework, plant-model mismatch and 

disturbances are addressed by communicating schedule results with the online MPC, which 

tracks the setpoints over time. The MPC (as described in Section 3.2) was implemented 

online by using the full-order dynamic model to simulate the process and generate the 

sampled state variable values. The proposed integrated scheduling and MPC framework 

results in a lower overall operation cost compared to optimization with either the SBMs or 
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the full-order model, as a better and more flexible control strategy was implemented in the 

system.  

The production rate setpoints found by the simulation-optimization framework and 

the actual production rate throughout the online MPC implementation are shown in Figure 

2.5, along with the production rates found in the other optimization cases. The production 

rates closely track their predicted values from both the state-space model and the SBMs, 

leading to minimal deviations from the expected cost in both Case 1 and Case 2. In addition 

to the backoff impurity constraint, backoff temperature driving force constraint of 1.9 K 

was used to create the optimal schedule with SBMs (Case 2). As expected, production rates 

for all three optimal solutions increase when energy prices decrease, and vice versa. The 

temperature driving force across the reboiler/condenser limits the amount of 

overproduction possible, and the bound is exactly reached at some time points when the 

full-order model is used (Case 3). The profiles of the controller outputs from the full-order 

model for all three optimization cases are shown in Figure 2.6, along with any respective 

bounds. 
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Figure 2.5 - Optimal production rates and electricity prices over time  
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Figure 2.6 - Outputs of the control problem over time 

. Displayed profiles were simulated using the full-order dynamic model 

None of the variable bounds were violated in simulating the optimal schedules with 

the full-order dynamic model, although the back-off constraint of 1.9 K temperature 

driving force in Case 2 was clearly required. The prediction of reboiler holdup by the SBMs 

in Case 2 was also subject to some inaccuracy – the holdup was returned to only 9.95kmol 

at the end of the 48-hour window. Note that bounds on the production rate are imposed 

only for the setpoint; the actual production rates may violate the setpoint bounds. The three 

optimization cases presented similar economic performance: the variable production rate 

operation results in electricity cost savings of 1.4%, 1.3%, and 1.4% for the proposed 
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approach, scheduling with SBMs, and dynamic optimization with the full-order model, in 

comparison to a constant production profile set at the nominal rate (subject to the same 

variable electricity prices). These savings are substantial in the context of a well-

established, commoditized industry (air separation), which is essentially a utility provider 

for other manufacturers. Nevertheless, optimization with the full-order model required a 

lengthy amount of CPU time and is difficult to implement for (typically 2-to-4-day) 

practical scheduling horizons. While optimization with SBMs saves a significant amount 

of computational effort, the scheduling calculations are subject to inaccuracies and are done 

offline: they must be repeated periodically if control-level disturbances are present or new 

information is available (Pattison et al., 2017). In contrast, the proposed method requires 

an offline calculation that requires less CPU time than both other described approaches, 

and the integration with MPC allows for disturbances to be handled online, as the MPC 

solves almost instantaneously after the optimal schedule is computed. Therefore, the 

proposed simulation-optimization approach is not only capable of achieving better 

performance regarding cost reduction, but improves the computational efficiency required 

for scheduling and re-scheduling calculations. 

 

2.5. Conclusions 

In this chapter, we propose a novel framework for the integration of scheduling and model 

predictive control. The framework includes the initial identification of a set of schedule-

relevant variables, 𝑊. This step is followed by the identification of state space models 

which describes the dynamics of each variable belonging to 𝑊. We then proposed a model 

predictive control approach to track the corresponding varying set points over time, while 



45 

 

 

 

accounting for quality and process operating constraints, and integrate this control structure 

to the scheduling layer by solving a closed-loop simulation-optimization problem.  

We demonstrate the efficacy of our framework by applying it to an ASU producing 

high purity nitrogen. The ASU is outfitted with a liquid nitrogen storage tank, which 

enables the process to adjust the production rate in response to variable electricity prices 

while satisfying product demand by regasifying the liquid nitrogen inventory. The optimal 

schedule is obtained in reasonable times and provides operating cost reductions up to 1.4% 

of the nominal operation cost. Furthermore, we emphasize the value of this framework by 

comparing it to integrated scheduling and control problems using time-scale bridging 

models and full-order dynamic models of the process. The proposed simulation-

optimization approach is capable of achieving better performance regarding cost reduction, 

it improves the computational efficiency required for scheduling and re-scheduling 

calculations, and provides flexibility for handling online control-level disturbances and 

model mismatch.   

The simulation-optimization framework is a novel method for the integration of 

scheduling and control problems, providing an easy way of implementing integrated 

solutions and avoiding online computation of MINLP problems. The methodology is 

integrated in the sense that the scheduling problem is aware of the closed-loop dynamic 

behavior of the system, however a certain level of independency between scheduling and 

control problems is maintained in order to avoid that limitations from the control level 

problem are transferred to the scheduling problem. However, the framework presented here 

has some limitations: it cannot handle discrete decisions at the scheduling problem, and the 

class of algorithms that can be used to solve the integrated problem is limited. Therefore, 
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our future work includes the investigation of alternatives for the solution of the simulation-

optimization problem, including the use of metamodels. Such procedures also allow the 

performance of the simulations offline and/or using parallel computing, which will favor 

the scalability of the framework. 
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Nomenclature 

Indices  

𝑖 Time intervals for the simulation problem 

𝑛 Time slot of the scheduling problem 

𝑘 Sample number of the MPC problem 

Sets  

𝐼 Set of time intervals 

𝑁𝑛 Set of scheduling slots 

𝑊 Set of scheduling relevant variables 

Variables  

𝛼 Split fraction 

𝐹𝑝
𝑖 Product flow rate at sample period 𝑖 

𝐹𝑝
𝑠𝑝,𝑛

 Product flow rate setpoint at sample period 𝑛 

𝐹𝑓𝑒𝑒𝑑
𝑖  Feed air flow rate at sample period 𝑖 

𝐹𝑖𝑛𝑣,𝑖𝑛
𝑖  Inlet flow rate to the inventory at sample period 𝑖 

𝑘𝑃𝐻𝑋 Split fraction in the PHX  

𝐼𝑝 Product purity (modeled in term of impurity concentration) 

𝐿𝑑𝑟𝑎𝑖𝑛 Liquid drain rate in the reboiler 

𝑀𝑖𝑛𝑣
𝑖  Inventory holdup at sample period 𝑖 

𝑀𝑟𝑒𝑏 Liquid level in the reboiler 

𝑅𝑐𝑜𝑙 Fraction of vapor product sent to the condenser 

∆𝑇𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 Temperature driving force in the reboiler 
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𝑢𝑝 Manipulated variables 

𝑢𝑝
𝑠𝑝

  Setpoint for manipulated variables 

𝑥𝑝 Differential states 

𝑦𝑝 Outputs 

𝑦𝑝
𝑠𝑝

 Setpoint for output variables 

Parameters  

𝐹𝑝
𝑠𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 Initial product flow rate setpoint 

𝐹𝑝,𝑚𝑖𝑛
𝑠𝑝

 Lower bound for the product flow rate setpoint 

𝐹𝑝,𝑚𝑎𝑥
𝑠𝑝

 Upper bound for the product flow rate setpoint 

𝐹̅𝑖 Demand rate at sample period 𝑖 

𝑀𝑖𝑛𝑣
0  Initial inventory holdup 

𝑀𝑖𝑛𝑣
𝑚𝑖𝑛 Minimum inventory holdup 

𝑀𝑖𝑛𝑣
𝑚𝑎𝑥 Maximum inventory holdup 

𝑁  Prediction horizon for MPC 

𝑝𝑖 Electricity price at sample period 𝑖 

𝑃𝑓 Terminal penalty matrix 

𝑄 Output penalty matrix 

𝑅 Input penalty matrix  

𝑠 Limiting factor for changes in setpoint 

𝜏 Scheduling time slot duration 

𝑡𝑒𝑛𝑑
𝑛  End time for scheduling time slot 𝑛 

𝑡𝑠𝑡𝑎𝑟𝑡
𝑛  Start time for scheduling time slot 𝑛 
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𝑇𝑠 Sample time for the MPC problem 

𝑇𝑚 Scheduling horizon 

𝑢𝑚𝑖𝑛 Lower bound for manipulated variables 

𝑢𝑚𝑎𝑥 Upper bound for manipulated variables 

𝑦𝑚𝑖𝑛 Lower bound for output variables 

𝑦𝑚𝑎𝑥 Upper bound for output variables 
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Integration of Planning and Scheduling Problems 

 

Abstract: In this chapter, a framework for the integration of planning and scheduling using 

data-driven methodologies is proposed. First, the constraints at the planning level related 

to the scheduling problem are identified. This includes the feasibility of production targets 

assigned to each planning period (which are equivalent to scheduling horizons). Then, 

classification methods are used to identify feasible regions from large amounts of 

scheduling data, and an algebraic equation for the predictor is obtained. The predictor is 

incorporated in the planning problem, and the integrated problem is solved to optimality. 

Computational studies are presented to demonstrate the performance of the proposed 

framework, and results show that the approach is more efficient than current practices in 

the integration of planning and scheduling problems. 

 

3.1   Introduction 

To achieve the integration of decision-making problems, it is essential to estimate and 

transmit the feasible space from a lower-level problem to an upper-level. In the integration 

of planning and scheduling, for example, it is critical to model the feasible space of the 

scheduling problem, and integrate it to the planning model. However, defining the feasible 

space of scheduling problems is challenging: these problems are usually modeled as Mixed 

Integer Linear Problems (MILP), and there are no mathematical approaches to rigorously 

determine the feasible space of a MILP problem in its entirety.  

In this chapter, a data-driven feasibility analysis methodology for the integration of 

planning and scheduling problems is presented. In particular, we investigate the 

performance of classifications methods in identifying the feasible region of a scheduling 

problem. Three classification methods will be investigated, namely decision trees, support 

vector machines and neural networks. Algebraic equations for each of the classification 
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predictors will be derived, and the equations will be incorporated in the planning problem. 

The integrated problem is then solved, and the performance of the different classification 

methods in the final integrated problem is assessed through computational studies. 

Ultimately, the goal of this work is to demonstrate that the coupling of classical 

optimization methods and data-driven methodologies enables the solution of problems that 

so far have been considered intractable. With data analytics and mathematical models, the 

decisions in an enterprise can be taken in a more informed manner, faster, with higher 

responsiveness and accommodate increasing fluctuations in demand and complexities in 

supply chains. 

The remaining of this chapter is organized as follows. In section 3.2, well-known 

mathematical formulations for planning and scheduling problems are presented. In section 

3.3, the problem in consideration is summarized, and section 3.4 presents the 

methodologies proposed to solve the integrated problem. The performance of the proposed 

framework is demonstrated through case studies in section 3.5. Final conclusions and 

future work are discussed in section 3.6. 

 

3.2   Background 

3.2.1 Scheduling Problem 

Scheduling problems arise in almost all industrial sectors, including oil and gas, 

pharmaceuticals, chemicals, food and beverages, pulp and paper. The goal of a scheduling 

problem is to determine the assignment of given tasks to be processed on specified 

resources while minimizing costs, makespan, or maximizing profits within a horizon of 

days or weeks. The production must be appropriately planned to ensure that equipment, 
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material, utilities, personnel and other resources are available at the plant when they are 

needed to realize the production tasks [5]. In general, the scheduling problem can be 

summarized as: 

Given: 

i. Production network; e.g., processing units and storage vessel capacities, unit 

connectivity. 

ii. Production recipes; e.g., processing times, rates and utility requirements 

iii. Production costs; e.g., raw materials, utilities, etc. 

iv. Production targets 

Determine: 

i. Assignment of tasks to resources (equipment units and utilities) 

ii. Sequencing or tasks 

iii. Timing of tasks 

Traditionally, production scheduling has been done by experienced individuals, 

using spreadsheets and following best operating practices. However, with increasing 

complexities and dynamic environments, emerging from the volatility of customer orders, 

raw material and energy prices, it is very difficult to ensure a profitable production without 

any optimization support. Several optimization models have been proposed in the 

literature, most often expressed as mixed-integer programming (MIP) models. For 

extensive reviews on this subject, the reader may refer to Castro, Grossmann [79], Floudas 

and Lin [6] and Maravelias [7]. 

This work employs a discrete state-task network (STN) model for scheduling 

problems in batch manufacturing plants [80]. However, the frameworks proposed here can 
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be easily extended for other scheduling formulations and continuous processes. In the STN 

formulation, the scheduling horizon SH is discretized in time periods 𝑘 ∈ 𝐊 of duration 𝜏, 

such that 𝑆𝐻 = 𝜏 × 𝐾. Binary variables 𝑋𝑖𝑗𝑘 are 1 if task 𝑖 starts in unit 𝑗 at time 𝑘. Set 𝐈𝐣 

comprises tasks 𝑖 that can be performed in unit 𝑗, and set 𝐉𝐢 comprises units 𝑗 that can 

execute tasks 𝑖. Equation (1a) then determine that only one task 𝑖 can be assigned to a unit 

𝑗 in any time period 𝑘, and equation (1b) forbids tasks that would finish beyond the 

scheduling horizon. Equation (1c) is related to sequence-dependent changeovers and 

determines that a task 𝑖′ following task 𝑖 in unit 𝑗 can only be initialized after an appropriate 

cleaning period 𝜎𝑖′𝑖𝑗 has been completed. The batch size 𝐵𝑖𝑗𝑘 of a task is restricted between 

the minimum 𝑉𝑖𝑗
𝑚𝑖𝑛 and maximum 𝑉𝑖𝑗

𝑚𝑎𝑥 capacity (Eq. 1d), while the inventory 𝑊𝑠𝑘 of state 

𝑠 at time 𝑘 is limited by the storage capacity 𝐶𝑠 (Eq. 1e). Mass balances are enforced by 

equation (1f), where 𝜌𝑖𝑠 are stoichiometric coefficients of state 𝑠 in task 𝑖 related to 

production and consumption. Furthermore, sets 𝐈𝐂𝑠 comprises the tasks 𝑖 that consume 

state 𝑠, and set 𝐈𝐏𝑠 comprises the tasks 𝑖 that produce state 𝑠. Finally, equation (1g) 

determines that the production targets 𝑃𝑠𝑡 for states related to finished products 𝐒𝐅𝐏 should 

be achieved by the end of the scheduling horizon. Subscript 𝑡 is related to the planning 

problem discretization, and it will be discussed in the next section. 

∑ ∑ 𝑋𝑖𝑗𝑘′

𝑘

𝑘′=𝑘−𝜏𝑖𝑗+1𝑖∈𝐈𝐣

≤ 1, ∀𝑗 ∈ 𝐉, 𝑘 ∈ 𝐊 (1a) 

𝑋𝑖𝑗𝑘 = 0, ∀𝑗 ∈ 𝐉, 𝑖 ∈ 𝐈𝐣, 𝑘 > SH − 𝜏𝑖𝑗 (1b) 

𝑋𝑖𝑗𝑘 + 𝑋𝑖′𝑗𝑘′ ≤ 1, ∀𝑖, 𝑖′ ≠ 1, 𝑗, 𝑘, 𝑘 − 𝜏𝑖′𝑗 − 𝜎𝑖′𝑖𝑗 < 𝑘′ ≤ 𝑘 − 𝜏𝑖′𝑗 (1c) 

𝑋𝑖𝑗𝑘𝑉𝑖𝑗
𝑚𝑖𝑛 ≤ 𝐵𝑖𝑗𝑘 ≤ 𝑋𝑖𝑗𝑘𝑉𝑖𝑗

𝑚𝑎𝑥, ∀𝑗 ∈ 𝐉, 𝑖 ∈ 𝐈𝐣, 𝑘 ∈ 𝐊 (1d) 
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0 ≤ 𝑊𝑠𝑘 ≤ 𝐶𝑠, ∀𝑠 ∈ 𝐒, 𝑘 ∈ 𝐊 (1e) 

𝑊𝑠𝑘 = 𝑊𝑠,𝑘−1 + ∑ ∑𝜌𝑖𝑠𝐵𝑖,𝑗,𝑘−𝜏𝑖𝑗
𝑗∈𝐉𝑖𝑖∈𝐈𝐏𝑆

+ ∑ ∑𝜌𝑖𝑠𝐵𝑖𝑗𝑠
𝑗∈𝐉𝑖𝑖∈𝐈𝐂𝑠

, ∀𝑠 ∈ 𝐒, 𝑘 ∈ 𝐊 (1f) 

𝑊𝑠𝑘 = 𝑃𝑠𝑡 , ∀𝑠 ∈ 𝐒𝐅𝐏, 𝑘 = SH (1g) 

 

3.2.2 Planning Problem 

Production planning seeks to determine optimal production targets and product inventories 

for given demand forecasts, while considering a horizon of weeks or months. The planning 

horizon is usually divided in multiple planning periods with a horizon coinciding with the 

scheduling horizon (Fig. 3.1). The production targets are therefore defined for each 

scheduling horizon, and the scheduling problem is solved considering that such targets 

must be achieved. The planning problem may also consider multiple production and 

storage facilities, and simultaneously determine targets for each facility. This work, 

however, focus on a single manufacturing facility, for which the planning problem will be 

solved considering a large time horizon. The planning horizon 𝑃𝐻 is discretized into 𝑇 

time steps. The general planning formulation is then posed as follows: 

Given: 

(i) The demand 𝐷𝑠𝑡 for different products 𝑠 ∈ 𝐒𝑭𝑷 in each planning period 𝑡 ∈ 𝐓  

(ii) The production and storage capacities  

(iii)The production costs 𝐶𝑝𝑡 associated with the different production targets 𝑃𝑠𝑡 

(iv) The holding costs ℎ𝑐𝑠 and unmet demand penalties 𝑢𝑐𝑠 associated with each 

product 𝑠 ∈ 𝐒 

Determine: 
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(i) The production targets 𝑃𝑠𝑡 for each item 𝑠 ∈ 𝐒𝐅𝐏 in period 𝑡 ∈ 𝐓 

(ii) Inventory levels 𝐼𝑛𝑣𝑠𝑡 for each product 𝑠 ∈ 𝐒𝐅𝐏 and period 𝑡 ∈ 𝐓 

(iii)Unmet demand 𝑈𝑠𝑡 for each product 𝑠 ∈ 𝐒𝑭𝑷 and period 𝑡 ∈ 𝐓 

The objective of the planning problem is to minimize total cost of operating the 

manufacturing facility, including inventory costs and penalty costs for unmet demand. The 

planning problem can be written as a mathematical optimization problem as follows:  

min𝐶𝑇 =∑(𝐶𝑝𝑡 + 𝐶ℎ𝑡 + 𝐶𝑢𝑡)

𝑖∈𝑇

  (2a) 

𝐹(𝑃𝑠𝑡) ≤ 0, ∀𝑡, 𝑠 ∈ 𝐒𝐅𝐏 (2b) 

𝐶𝑝𝑡 = 𝐶(𝑃𝑠𝑡), ∀𝑡, 𝑠 ∈ 𝐒𝐅𝐏 (2c) 

𝐶ℎ𝑡 = ∑ ℎ𝑐𝑠𝐼𝑠𝑡
𝑠∈𝑆𝐹𝑃

, ∀𝑡 (2d) 

𝐶𝑢𝑡 = ∑ 𝑢𝑐𝑠𝑈𝑠𝑡
𝑠∈𝑆𝐹𝑃

, ∀𝑡 (2e) 

𝐼𝑛𝑣𝑠𝑡 = 𝐼𝑛𝑣𝑠𝑡−1 + 𝑃𝑠𝑡 − 𝐷𝑠𝑡 + 𝑈𝑠𝑡 , ∀𝑡, 𝑠 ∈ 𝐒𝐅𝐏 (2f) 

The feasibility of production targets is implicitly modeled via eq. (2b), and 

production cost 𝐶𝑝𝑡 in period 𝑡 is expressed via eq. (2c). Both equations are a function of 

production targets 𝑃𝑠𝑡. Holding cost 𝐶ℎ𝑡 and backlog cost 𝐶𝑢𝑡 are calculated in equations 

(2d) and (2e). Inventory and backlog flow balance constraints for product 𝑠 at the end of 

period 𝑡 are maintained by eq. (2f). It can be noted that constraints (2b) and (2c) are 

presented here in a general form and depend on the process network in consideration. 

Furthermore, it can be noted that equations (2a, 2d-2f) are linear equations. The nature of 

the final optimization problem will depend on the form of equations (2b) and (2c). Complex 

representations of these equations can bring nonlinearities and discrete decisions to the 
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planning problem, while simpler approximations can generate a simple linear optimization 

problem at the planning level. 

 

Figure 3.1 - Planning and scheduling horizons and information flow 

 

3.2.3 Integrated Approaches 

In planning problem 2, equations 2b and 2c are associated with the feasibility of production 

targets and cost of production, respectively. These equations depend on the characteristics 

of the process network and the solution of the scheduling problem. Therefore, to accurately 

provide feasibility and production cost information, the integration of planning and 

scheduling models becomes necessary.  

As suggested in Maravelias and Sung [12], the integrated planning and scheduling 

formulations proposed in the literature can be classified into three categories: (a) detailed 

scheduling models, (b) relaxations/aggregations of scheduling models, and (c) surrogate 

models derived through off-line analysis of manufacturing facilities. The first group 

includes intuitive ideas such as replacing the resource and production cost constraints by a 
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monolithic scheduling model over the entire planning horizon. Clearly, such methods result 

in complex mathematical formulations that can become intractable for large time horizons 

and high-dimensional problems [12]. The second group tries to handle the complexity 

problem by removing some of the scheduling constraints [13-16], or by aggregating some 

of the decisions of the original scheduling formulation [17-20]. The third group proposes 

to use surrogate models to generate constraints that define the feasible region of the 

scheduling model and the production cost as function of production targets [21-24]. Such 

methods can generate more accurate and computationally tractable descriptions of resource 

and production costs constraints. 

The work proposed here falls within the third category of integrated approaches, 

using data-driven models for the representation of scheduling information. For simplicity, 

production costs will be approximated by linear relationships, while strategies to define the 

feasibility of production targets will be extensively investigated. The basic idea behind this 

work relies on projecting the feasible region of a schedule onto the space of production 

targets. Although the work proposed in Sung and Maravelias [23] provides a conceptually 

attractive framework to obtain such projection when handling convex feasible regions, the 

extension to non-convex problems presented in Sung and Maravelias [24] is not trivial. 

Therefore, a more practical and easily implementable framework to obtain the feasible 

region of non-convex problems is developed and presented here. The framework will focus 

on machine learning methodologies to identify the scheduling feasible regions, and 

therefore it takes advantage of large amounts of historical information available in 

enterprises. In particular, the potential of supervised learning methods for the integration 

of planning and scheduling is investigated. Finally, it should be noticed that this work does 
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not rely on the existence of a scheduling formulation to solve the integrated problem, even 

though scheduling models can be used to generate data in cases where historical 

information is not available. 

 

3.2.4 Feasibility analysis 

The concept of feasibility analysis will play a major role in the integration of planning and 

scheduling problems. Given design variables 𝑑, the feasibility analysis problem attempts 

to determine if a process can meet all constraints 𝑓𝑗 for all the values in the uncertain space 

𝜃 by adjusting control variables 𝑧. Mathematical formulations for this problem were first 

proposed by Grossmann and co-workers [81, 82], and solution strategies were proposed by 

Halemane and Grossmann [83] and Grossmann and Floudas [84]. More recently, surrogate-

based feasibility analysis was proposed by Boukouvala and Ierapetritou [85] and Wang 

and Ierapetritou [86]. A comprehensive review on this subject can be find in Grossmann, 

Calfa [53]. 

The work proposed here explores a new direction for the solution of the feasibility 

problem, interpreting feasibility analysis as a classification problem. Such interpretation 

will enable the use of machine learning methods to identify the feasible region of a system. 

These methods are usually suitable to handle large amounts of data and therefore will take 

advantage of all the data that has been made available in an enterprise. Although 

implemented in planning and scheduling case studies, we foresee that the feasibility 

analysis methodology developed here can be extended to other areas within the process 

systems engineering research. 
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From a conceptual point of view, the feasibility analysis of a scheduling problem 

is conducted by assuming that the process network, batch recipes, equipment sizes and 

storage capacities are the design variables; the production targets for the scheduling 

horizon are the uncertain parameters; and the allocation of resources and sequencing and 

timing of tasks are the control variables. The feasibility analysis method developed here 

will attempt to identify the exact region in the uncertainty space in which all scheduling 

constraints are respected (Fig. 3.2a). Using available sample points and its respective 

labels, classifiers will be derived to predict the class (feasible or infeasible) of any point in 

uncertainty space.  

To analyze the performance of each classifier, the feasibility metrics proposed by 

Wang and Ierapetritou [86] are adopted in this work. The whole range of the uncertainty 

parameters is first divided in four regions (Fig. 3.2b): CF (Correct Feasible region) 

represents the overlapped feasible regions; CIF (Correct InFeasible region) represents 

overlapped infeasible region; ICF (InCorrect Feasible region) represents the area predicted 

by the classifier as feasible but in fact is a infeasible region; ICIF (InCorrect InFeasible 

region) represents the area predicted by the classifier as infeasible but in fact is a feasible 

region. With these definitions, four metrics for model accuracy are defined: 

CF% =
CF

CF + ICIF
× 100 

CIF% =
CIF

CIF + ICF
× 100 

NC% =
ICF

ICF + CF
× 100 

Total Error =
ICF + ICIF

CF + CIF + ICF + ICIF
× 100 

(3) 
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The first two metrics (CF% and CIF%) describe how well the uncertainty parameter space 

has been correctly explored and classified with respect to feasibility. CF% represents the 

percentage of the feasible region in the original space that has been correctly identified by 

the classifier; and CIF% represents the percentage of the infeasible region in the original 

space that has been correctly identified by the classifier. The third metric, NC%, represents 

the percentage of feasible region that have been overestimated by the classifier. Therefore, 

NC% evaluates the conservativeness of the feasible region predicted by the classifier. The 

fourth metric, Total Error, measures the total number of misclassifications in relation to 

the size of the testing set. A classifier can accurately approximate the feasible region if 

CF% and CIF% are close to 100%, and NC% and Total Error are close to 0. 

 

Figure 3.2 - Feasible region visualization 

On the left, a feasible region in the uncertain space is represented by the blue shaded area. 

On the right, an illustration of the model accuracy metrics for the given feasible region. 
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3.2.5 Classification methods 

As mentioned in the previous section, machine learning methodologies will be used to 

identify the feasible region of a scheduling problem. Machine learning uses three types of 

techniques: (i) supervised learning, which trains a model on known input and output data 

so that it can predict future outputs; (ii) unsupervised learning, which finds hidden patterns 

or intrinsic structures in input data; (iii) reinforcement learning, which attempts to 

maximize a reward given the current state of the system [87]. Supervised learning methods 

can be further classified in classification and regression techniques. While classification 

methods predict discrete responses, classifying input data into categories, regression 

techniques predict continuous responses and attempt to approximate unknown functions. 

In this work, we use supervised learning methods for the identification of feasible regions. 

In particular, we focus on three classification methods, namely decision trees, support 

vector machines and neural networks. Further details will be given in the next sections. 

It is important to highlight that this work will not address issues of data pre-processing or 

feature selection, two important steps in practical machine learning implementations. We 

are mainly interested in understanding how the different classifiers will affect the planning 

optimization model. The objective of obtaining a final model for the planning model that 

could be solved efficiently was the main criteria on the selection of the three 

aforementioned classification methods in this investigation. Methods such as k-nearest 

neighbors or gaussian process classifiers present a complex structure for the predictor, 

which would likely introduce too many complexities in the planning problem, and therefore 

are not considered in this work. 
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3.3   Problem Definition 

Consider the production planning problem for a single manufacturing facility operating a 

batch process, for which production targets 𝑃𝑠𝑡 should be defined for each planning period 

𝑡 ∈ 𝐓 in the planning horizon 𝑃𝐻. Each planning period 𝑡 corresponds to a scheduling 

horizon 𝑆𝐻, which is further discretized in 𝐾 time periods of duration 𝜏. Once production 

targets 𝑃𝑠𝑡 are defined, they are transferred to the scheduling problem, and appropriate 

scheduling decisions should be taken to achieve the production targets by the end of the 

scheduling horizon. Given are the inventory capacities, holding costs, penalties for unmet 

demand, and a demand forecast for the entire planning horizon. Demand is assumed to be 

deterministic. The planning problem is defined by Equation 2. To achieve integration with 

the scheduling problem and obtain an overall feasible solution, Eqs. (2b) and (2c) should 

be appropriately defined. 

In this work, it is assumed that the production costs associated to production targets 

(Eq. 2c) can be represented by linear relationships between production targets and raw 

material consumption (Eq. 4). In Eq. 4, 𝑟𝑐𝑠 represents the cost of raw material 𝑠 ∈ 𝐒𝑅, 

where 𝐒𝑅 is the subset of states related to raw materials. Furthermore, 𝛾𝑠𝑠′ relates the 

consumption of raw material 𝑠′ ∈ 𝐒𝑅 to the production of finished products 𝑠 ∈ 𝐒𝐹𝑃.  

𝐶𝑝𝑡 = ∑ ∑ 𝑟𝑐𝑠′𝛾𝑠𝑠′𝑃𝑠𝑡
𝑠′∈𝐒𝑅𝑠∈𝐒𝐹𝑃

 (4) 

Remark: It is reasonable to approximate production costs as a linear combination of 

production targets if the raw material prices are the main drivers of scheduling cost. 

However, this assumption is not accurate in the presence of significant changeover costs, 

variable processing times, utility costs and dynamic utility requirements/availabilities. In 
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such cases, the production costs are likely to present a discontinuous relationship with the 

production targets, as demonstrated by Li and Ierapetritou [88]. The approximation of 

discontinuous function is a challenging problem, and the identification of the points of 

discontinuity is not trivial [89-92]. This problem however is out of the scope of this work. 

The focus of this work is to obtain accurate representations of 𝐹(𝑃𝑠𝑡) in Eq. 2b 

which describes the feasibility of production targets. If this function is approximated by 

taking into consideration the detailed behavior of the scheduling problem, the final 

planning problem is considered to be integrated with scheduling. Solutions for this problem 

are expected to be feasible from both planning and scheduling perspectives, i.e., the 

production targets set for each period of the planning problem should be achievable within 

the scheduling horizon. 

To obtain representations of 𝐹(𝑃𝑠𝑡), it is assumed that either historical information 

about the feasibility of different production targets is available, or a scheduling model can 

be used to generate data and feasibility information. In other words, we are given instances 

in the production space 𝐱𝑚 = {𝑃1
𝑚, 𝑃2

𝑚, … , 𝑃𝑑
𝑚} (production targets) and labels 𝑦𝑚, 𝑚 =

{1,2, …𝑀} classifying each instance as feasible [−1] or infeasible [1]. Note that 𝑑 is the 

dimension of the problem (the number of products) and 𝑀 is the number of labeled 

instances. The set 𝐒𝐭 = {(𝐱1, 𝑦1), (𝐱2, 𝑦2), … (𝐱𝑀, 𝑦𝑀)} will be referred to as the training 

set. Using the training set 𝐒𝒕, we will attempt to obtain a classifier that accurately predicts 

the class of any unlabeled instance in the production space. The performance of this 

classifier will be evaluated by comparing predicted labels and actual labels in a testing set 

𝐓𝐞𝐬𝐭 = {(𝐱𝑇1, 𝑦𝑇1), (𝐱𝑇2, 𝑦𝑇2), … , (𝐱𝑇𝑁, 𝑦𝑇𝑁)}. This data will be used to calculate the 

feasibility metrics CF%, CIF% and NC% (Eq. 3). Finally, an algebraic equation for this 
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classifier will be obtained, and this equation will be integrated in the planning problem. 

The nature of the final planning model (LP, NLP, MILP) will depend on the nature of the 

classifier.  A summary of the proposed framework is shown in Figure 3.3.   

In the case studies presented in this paper, no historical information about the 

feasibility of production targets is available. Therefore, the training and testing sets will be 

generated by first using Latin Hypercubic Sampling to define instances in the production 

space. Each instance (or each production target) will be fed to a scheduling problem in the 

form of Equation 1, with a dummy objective (minimize 𝑜𝑏𝑗 = 0). The solution of this 

problem will determine if a production target is feasible or infeasible. The training and 

testing sets are then built using these results, finalizing step 1. 

In the next section, the different classification methods and the algebraic form of 

the predictors (steps 2 and 4 in the proposed framework) will be discussed in detail. 
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Figure 3.3 - Data driven feasibility analysis framework 

 

3.4   Frameworks for the integration of planning and scheduling 

In this work, five different methodologies will be used for the integration of planning and 

scheduling problems. The first three methodologies are the contributions of this work and 

follow the framework shown in Figure 3.3. For each methodology, a different classification 

method will be used to estimate the feasible region of a scheduling problem, and the derived 

classifiers will be incorporated in the planning model. The proposed methodologies will be 

described in sections 4.1 to 4.3. The fourth and fifth methodology will be used for 

comparison purposes and are described in section 4.4. 
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3.4.1 Integration using decision trees 

The first methodology for the integration of planning and scheduling problems uses 

decision trees to identify the feasible region of a schedule. Decision trees are a non-

parametric supervised learning method that creates a model to predict the target variable 

by learning simple and logical decision rules. In a decision tree, instances are classified 

based on feature values. Each node in a decision tree represents a feature in an instance to 

be classified, and each branch represents a value that the node can assume. Instances are 

classified starting at the root node and sorted based on their feature value [87]. 

Consider, for example, the decision tree in Figure 3.4. In this example, each 

instance is formed by two features, 𝑥1 and 𝑥2. At the root node, the decision tree checks if 

the feature 𝑥2 in an instance is less or equal to 6.23. If so, the decision path will follow the 

left branch, and the next node will evaluate if 𝑥1 ≤ 18.46. On the other hand, if 𝑥2 > 6.23, 

the decision path follows the right branch, and the next node evaluates if 𝑥1 ≤ 6.06. The 

procedure is repeat until a leaf node is reached, where a label [−1,1] will be assigned for 

the given instance. 

 

Figure 3.4 - A decision tree 
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Decision trees are simple to understand and to interpret, but they can be unstable 

(small variations in data can generate completely different trees) and are prone to 

overfitting. In this work, decision trees will be generated in python using the library scikit-

learn [93]. This library follow the CART algorithm [94] to generate the trees. In this 

algorithm, given the training vectors 𝐱𝑚 ∈ 𝐑𝑑, 𝑚 = {1,2, … ,𝑀} and label vector 𝐲 =

{𝑦1, 𝑦2, … , 𝑦𝑀}, the design space is recursively partitioned such that samples with the same 

labels are grouped together. The algorithm for generating the tree follows: 

Let the data at node at the parent node be represented by 𝑁𝑃. Each candidate split 

𝜃 = (𝑗, 𝑡𝑠𝑝𝑙𝑖𝑡) consisting of a feature 𝑗 and threshold 𝑡𝑠𝑝𝑙𝑖𝑡 partitions the data into 𝑁𝐿(𝜃) 

and 𝑁𝑅(𝜃) subsets: 

𝑁𝐿(𝜃) = (𝐱, 𝑦)|𝑥𝑗 ≤ 𝑡𝑠𝑝𝑙𝑖𝑡 

𝑁𝑅(𝜃) = 𝑁𝑝\𝑁𝐿(𝜃) 
(5a) 

The improvement (gain) 𝐼(∙) generated by a split of a parent node 𝑁𝑝, into left 

(𝑁𝐿(𝜃) ) and right children (𝑁𝑅(𝜃)) is given by Eq. (5b). 

𝐼(𝑁𝑝) = 𝐺(𝑁𝑝) − 𝑞𝐺(𝑁𝐿) − (1 − 𝑞)𝐺(𝑁𝑅) (5b) 

where 𝑞 is the fraction of instances going left and 𝐺(∙) is a measure of impurity. Common 

measures of impurity include the Gini measure, given by: 

𝐺(𝑁) = 1 − 𝑝(𝑁𝑚)
2 − (1 − 𝑝(𝑁𝑚))

2
 (5c) 

where 𝑝(𝑁𝑚) is the relative frequency of class 1 in node 𝑁𝑚. 

The algorithm to generate the decision tree will then select parameters 𝜃 that 

maximize the improvement 𝐼 at node 𝑁𝑝, and recurse for nodes 𝑁𝐿 and 𝑁𝑅 until the 

maximum allowable depth of the tree is reached, the minimum number of instances in a 

node is reached, or until all the instances in a leaf node belong to the same class.  
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A decision tree for the training set 𝐒𝐭 is generated using the python library skicit-

learn. Once the tree is generated, the performance of the tree is evaluated by predicting 

labels of a testing set 𝐓𝐞𝐬𝐭, and comparing the predictions with the actual labels. The 

overall prediction error is calculated, as well as metrics CF%, CIF% and NC%. If the 

performance of the tree is satisfactory, an algebraic equation for the predictor is derived. 

To derive the algebraic form of the predictor, we first note that the value of -1 will 

be attributed to feasible points. Then, we define the decision rules (or the paths) that will 

end in a leaf node of class -1. The combination of paths leading to feasible regions can be 

written using logic operators. For example, for the decision tree in Fig. 5 we have: 

𝑌1 = (𝑥1 ≤ 18.46) 

𝑌2 = ( 𝑥2 ≤ 6.23 ) 

𝑌3 = (𝑥1 ≤ 6.06) 

 

(𝑌1 ∧ 𝑌2) ∨ (𝑌3 ∧ (¬ 𝑌2)) (6a) 

The logic equation can be rewritten in the conjunctive normal form, in which the 

logic statement should be represented by a conjunction of clauses 𝑄1 ∧ 𝑄2 ∧ …∧ 𝑄𝑠 (i.e., 

connected by and operators ∧), where the clauses correspond to logic propositions that only 

involve the OR operator. For details, see [95]. The following is equivalent to Eq. (6a): 

(𝑌1 ∨ 𝑌3) ∧ (𝑌2 ∨ 𝑌3) ∧ (𝑌1 ∨ (¬𝑌2)) (6b) 

Equation (6b) then substitutes equation (2b) on the planning problem. The resulting 

integrated problem corresponds to a Disjunctive Programming Model that can be re-written 

as a Mixed Integer Linear Problem (MILP), and solved using GAMS/CPLEX.  
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3.4.2 Integration using support vector machines 

The second methodology for the integration of planning and scheduling problems uses 

support vector machines (SVM) to identify the feasible region of a schedule. Support 

vector machines attempt to find an optimal hyperplane that separates all data points of one 

class from those of the other class. Given 𝑀 training points in 𝐑𝑑, 𝐗 = {𝐱1, 𝐱2, … 𝐱M}, each 

point is associated with one of two classes characterized by a value of 𝑦𝑚 = ±1,𝑚 =

1, …𝑀. If the training data is linearly separable, then a pair (𝐰, 𝑏) exists such that: 

𝐰𝑇𝐱𝑚 + 𝑏 ≥ +1, for all 𝐱𝑚, 𝑦𝑚 = +1 

𝐰𝑇𝐱𝑚 + 𝑏 ≤ −1, for all 𝐱𝑚, 𝑦𝑚 = −1 

(7a) 

The SVM problem translates to finding an affine function 𝑔(𝐱) = 𝐰𝐱 + 𝑏 that 

classifies the points, i.e., 𝑦𝑚(𝐰𝐱𝑚 + 𝑏) ≥ 1 and 𝑦𝑚 ∈ {−1,1}. The optimal hyperplane 

𝐰𝐱 + 𝑏 = 0 is the unique one which separates the training data with a maximal margin. In 

other words, it determines the direction 𝐰/|𝐰| where the distance between the projections 

of the training vectors of two different classes is maximal. It can be shown [96] that the 

optimal separating hyperplane is found by minimizing the squared norm of 𝑤:  

𝑤∗ = min
1

2
||𝐰||

𝟐
 

 

𝑠. 𝑡. 𝑦𝑚(𝐰𝐱𝑚 + 𝑏) ≥ 1 

(7b) 

By deriving the Lagrangian of this problem, we obtain the dual function: 

max
𝛼
∑[𝛼𝑚 −

1

2
∑𝛼𝑚𝛼𝑛𝑦𝑚𝑦𝑛(𝐱𝑚 ∙ 𝐱𝑛)

𝑛

]

𝑚

 (7c) 
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𝑠. 𝑡. {
∑𝛼𝑚𝑦𝑚 = 0

𝑚

𝛼 ≥ 0           

 

The resulting problem is a convex optimization problem, which is solved with 

respect to 𝛼. The solution of this problem enables the computation of 𝒘∗ and 𝑏 (Eq. 7d), 

and therefore a predictor in the form 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝐰𝑇𝐱 + 𝑏) is obtained. 

𝐰∗ =∑𝛼𝑚𝑦𝑚𝑥𝑚
𝑚

 

𝑏 =
1

𝑁𝑠𝑣
∑ (𝑦𝑚 −𝐰 ∙ 𝐱𝑚)

𝑚∈𝑆𝑉

 

(7d) 

where 𝑁𝑆𝑉 refers to the number of support vectors, which are the sample points that lie on 

the plane 𝑦𝑚(𝐰𝐱𝑚 + 𝑏) = 1. 

If the data points are not linearly separable due to existence of outliers or 

misclassified instances, the problem can be addressed by using a soft margin concept. This 

is done by introducing positive slack variables 𝜉𝑚, 𝑚 = 1,…𝑀 in the constraints, as 

follows: 

𝐰𝑇𝐱𝑚 + 𝑏 ≥ +1 − 𝜉𝑚, for all 𝐱𝑚, 𝑦𝑚 = +1 

𝐰𝑇𝐱𝑚 + 𝑏 ≤ −1 + 𝜉𝑚, for all 𝐱𝑚, 𝑦𝑚 = −1 

𝜉𝑚 ≥ 0 

(7e) 

In this case, the dual optimization problem becomes: 

max
𝛼
∑[𝛼𝑚 −

1

2
∑𝛼𝑚𝛼𝑛𝑦𝑚𝑦𝑛(𝐱𝑚 ∙ 𝐱𝑛)

𝑛

]

𝑚

 

𝑠. 𝑡. {
∑𝛼𝑚𝑦𝑚 = 0

𝑖

0 ≤ 𝛼 ≤ 𝐶   

 

(7f) 
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Nevertheless, most real-problems involve non-separable data for which no 

hyperplane exists that successfully categorizes the data. We therefore seek to find a 

transformation of the input space that maps the data to a space 𝑍, and construct an optimal 

separating hyperplane in this space. We call 𝐳𝑚 = 𝜙(𝐱𝑚), where 𝜙(∙) is a transformation 

function. By substituting 𝐱𝑚 by its transformation in Eq. (7f), we obtain the following 

problem: 

max
𝛼
∑[𝛼𝑚 −

1

2
∑𝛼𝑚𝛼𝑛𝑦𝑚𝑦𝑛(𝜙(𝐱𝑚) ∙ 𝜙(𝐱𝑛))

𝑛

]

𝑚

 

𝑠. 𝑡. {
∑𝛼𝑚𝑦𝑚 = 0

𝑖

0 ≤ 𝛼 ≤ 𝐶   

 

(7g) 

Therefore, in order to solve the SVM problem for data mapped into 𝑍 space, we 

need to define the dot product 𝜙(𝐱𝑚) ∙ 𝜙(𝐱𝑛). We do not, however, need to map each point 

𝐱𝑚 to  𝑍 space. The dot product 𝜙(𝐱𝑚) ∙ 𝜙(𝐱𝑛) can be defined using results from the theory 

of reproducing kernels. The theory states that there is a space 𝑍 and a function 𝜙 mapping 

𝐱 to 𝑍 such that 𝐾(𝐱1, 𝐱2) =< 𝜙(𝐱1), 𝜙(𝐱2) >, where 𝐾(𝑥1, 𝑥2) is a class of functions 

denominated Kernel Functions. The dot product takes place in the 𝑍 space. Examples of 

kernel functions include the radial basis function (Eq. 7h), which is used in this study.  

𝐾(𝐱1, 𝐱2) = exp(−𝛾||𝐱1 − 𝐱2||
2
) (7h) 

The kernel-based support vector machine translates to computing matrix 𝐾(∙,∙) for the 

training set and solving the quadratic optimization problem in (7g). The classification 

function (eq. 7i) can be used to classify untested points. 
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𝑓(𝐱) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑣𝑦𝑣𝐾(𝐱𝑣, 𝐱) + 𝑏

𝛼𝑣>0

) , 𝑣 = 1,… ,𝑁𝑆𝑉 (7i) 

For any support vector 𝛼𝑣 > 0. 

Note that the predictor (7i) takes the form of a non-convex nonlinear function. We 

will identify this predictor from the training data 𝐒𝐭 in our problem, evaluate the 

performance of the predictor using metrics CF%, CIF% and NC%, and incorporate this 

predictor in the planning optimization problem. Equation (2b) takes the form: 

∑ 𝛼𝑣𝑦𝑣𝐾(𝐱𝑣, 𝐱) + 𝑏

𝛼𝑣>0

≤ 0 (7j) 

and the resulting optimization problem corresponds to a nonlinear nonconvex optimization 

problem, that is solved to local optimality using GAMS/CONOPT. 

 

3.4.3 Integration using neural networks 

The third methodology for the integration of planning and scheduling problems uses 

artificial neural networks (ANN) to identify the feasible region of a schedule. A neural 

network is an interconnected group of nodes (Fig. 3.5). Considering a neural network with 

a single hidden layer as shown in Figure 3.5,  the neural network will take inputs, multiply 

each input by a weight 𝐰𝑖𝑛𝑝𝑢𝑡 ∈ 𝐑
1×𝑁 and add a bias term 𝐛𝑖𝑛𝑝𝑢𝑡 ∈ 𝐑

1×𝑁, where 𝑁 is the 

number of nodes in the hidden layer. The results will feed a hidden layer, where an 

activation function is applied to the net input. In this work, the activation function has the 

form of the logistic sigmoid function, 𝑓(𝑥) = 1/(1 + exp(−𝑥)). Each node in the hidden 

layer generates an output which in its turn will be multiplied by weights 𝐰ℎ and bias 𝐛ℎ to 

generate the output layer. The training of the neural network then consists in determining 
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weights and bias values that minimize the mean squared error between predicted outputs 

and the actual output of the system. 

When training a neural network, the weights and bias are initially set to random 

values. Then, a forward pass on the neural network calculate predicted outputs, and a loss 

function is computed to prediction errors. Next, weights are updated using a gradient 

descent step, i.e., 

𝑤 ← 𝑤 − 𝜂 (
𝛼𝜕𝑅(𝑤)

𝜕𝑤
+
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
) (8a) 

where 𝜂 is a learning rate which controls the step-size in the parameter search space, 𝐿𝑜𝑠𝑠 

is the loss function used for the network, and 𝑅 is the predictor. The procedure is repeated 

until a certain number of iterations has been reached, or when the improvement in loss is 

below a certain threshold. 

Neural networks have an inherent ability to learn and approximate complex and 

nonlinear functions. There are efficient identification algorithms for the estimation of 

parameters in the neural network, and neural nets usually have a simple structure for the 

predictor. However, different random weights initializations can lead to different 

accuracies, and neural networks require tuning a number of hyperparameters such as the 

number of hidden neuros, layers and iterations. 

 

Figure 3.5 - A neural network representation 
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In this work, a neural network is identified for training set 𝐒𝐭 using the scikit-learn 

library in python. Once the neural network is trained, the performance of the predictor is 

evaluated using metrics CF%, CIF% and NC% for a testing set 𝐓𝐞𝐬𝐭. The predictor of a 

neural network with one hidden layer, a single output and logistic activation function takes 

the form of equation 8b. The predictor is then incorporated in the planning optimization 

problem, substituting equation 2b by Eq. 8c. Note that we enforce the prediction to be less 

than 0 since feasible points are classified as -1 and infeasible points are classified as 1. 

𝑓(𝐱) = 𝐰ℎ × (
1

1 + exp(𝐰𝑖𝑛𝑝𝑢𝑡 × 𝐱 + 𝐛𝑖𝑛𝑝𝑢𝑡)
) + 𝑏ℎ (8b) 

𝐰ℎ × (
1

1 + exp(𝐰𝑖𝑛𝑝𝑢𝑡 × 𝐱 + 𝐛𝑖𝑛𝑝𝑢𝑡)
) + 𝑏ℎ ≤ 0 (8c) 

The resulting planning problem corresponds to a nonlinear nonconvex optimization 

problem that is solved to local optimality using GAMS/CONOPT. 

 

3.4.4 Benchmark methodologies 

Two methodologies are used in the integration of planning and scheduling for comparison 

purposes. First, a detailed scheduling model is solved for the entire planning horizon, and 

this methodology is referred as “Detailed scheduling for 𝑃𝐻”. This problem provides the 

overall optimal solution for the integrated problem. However, the resulting integrated 

problem corresponds to a large-scale MILP problem, which can become intractable when 

handling large-dimensional problems.  

The second methodology consists on obtaining an over estimation of the feasible 

region by solving several scheduling problems that maximize the production of final 
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products 𝑠 in given “directions” 𝑤𝑠
𝑖, 𝑖 = {1,2,3, …𝑀}. In other words, problem (1) is solved 

with an objective given by Eq. 9a: 

max
Ps

𝑧 =∑𝑤𝑠
𝑖𝑃𝑠𝑡

𝑠

 (9a) 

where 𝑡 = {1}. The solution of this problem results in feasible production targets 𝑃𝑠𝑡
𝑖  and 

an OE inequality in the form: 

𝑂𝐸𝑖 =∑𝑤𝑠
𝑖𝑃𝑠𝑡 ≤ ∏𝑖 

𝑠

 (9b) 

where ∏𝑖 is the best upper bound of problem 1. If problem 1 is solved to optimality, then 

the best upper bound is the optimal objective value 𝑧. The methodology follows an iterative 

approach to define directions 𝑤𝑠
𝑖, and the final set of 𝑂𝐸𝑖 inequalities is incorporated in the 

planning problem. This methodology will be referred as “Integration with OE inequalities”, 

and the reader should refer to the work by Sung and Maravelias [23] for details on the 

algorithm. This methodology represents the state-of-the-art in the integration of planning 

and scheduling, and the resulting integrated problem will be a linear programing model 

that can be solved very efficiently. However, inaccuracies in the approximation of non-

convex feasible regions may result in poor integrated solutions. 

 

3.5   Case studies 

In this section, three case studies will be solved following the five methodologies presented 

in section 3 and 4. First, a simple two-dimensional case will be presented to illustrate all 

the steps. Then, a three-dimensional problem and a more challenging seven-dimensional 

problem will be investigated. 
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3.5.1 Two-dimensional problem 

Consider the process network shown in Figure 3.6. Raw materials RMA and RMB are 

converted by two parallel units into products A and B. The two units can operate at up to 

1kg/h (“slower” unit) and 3kg/h (“faster” unit), respectively. For both units, 2h of cleanup 

between products A and B are required. We aim to define the feasible region of a 6-hour 

scheduling problem, discretized in hourly periods, and integrate planning and scheduling 

problems considering a 30-day planning horizon. We assume that demand forecasts for the 

entire planning horizon are available. Product recipes, unit capacities and inventories 

capacities are given. The objective of the planning problem is to define production targets 

for each 6-hour period in the planning horizon. The demands, capacities, holding costs and 

penalty costs for this problem are given in Appendix A. 

 

Figure 3.6 - Process network for the scheduling problem 

To generate “historical data”, an MILP model for the scheduling problem in the 

form of equation (1) is defined, and the problem is solved for different production targets 

𝐏𝑖, 𝑖 = {1,2, … ,𝑚},𝑚 = 100. The production targets are generated by sampling the 

production space using Latin Hypercube Sampling. Then, each target is labeled as feasible 

or infeasible (𝑦𝑖 = −1 and 𝑦𝑖 = 1, respectively), according to the results of the MILP, and 
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a training set 𝐒 = {(𝐏1, 𝑦1), (𝐏2, 𝑦2), … (𝐏𝑚, 𝑦𝑚)} is obtained. The data from the training 

set is standardized, and three different classifiers are generated. Then, the classifiers are 

used to predict the labels of a testing set containing 3600 points in the production space, 

and the performance of the classifiers is evaluated using the feasibility metrics CF%, CIF% 

and NC%. Furthermore, an over-estimation of the feasible region is also generated 

according to the methodology “Integration with OE inequalities”. The performance of this 

over-estimation is also evaluated, and the results are shown in Table 3.1 and Figure 3.7. In 

table 2, the CPU time required to generate the classifier for each novel methodology is 

mainly related to the generation of the training set, and therefore would show significantly 

lower values if historical information was available. The computational time for pre-

processing the data (standardization) and training the classifiers is in the order of 

milliseconds. Figure (3.7a) was generated using an additional set of 3600 points obtained 

by a grid sampling strategy, and the feasibility of each sample (or production target) was 

verified by solving a scheduling problem in the form of Equation 1, with a dummy 

objective (minimize 𝑜𝑏𝑗 = 0). Finally, Figure 3.8 shows the structure of the generated 

decision tree. Note that 𝑃𝐴 refers to product A and 𝑃𝐵 refers to product B in Fig. 3.8. 

All classifiers were trained using scikit-learn library in python and default 

configurations.  

Table 3.1 - Performance of different classifiers in the prediction of the feasible region. 

 CF (%) CIF (%) NC (%) 
Total 

Error (%) 

CPU(s) 

(sampling) 

CPU (s) 

(training) 

OE  100 76.71 29.18 14.88  3.67 

Decision Tree 89.37 99.25 1.47 4.32 12.86 0.001 

SVM 91.25 98.75 2.37 3.96 12.86 0.001 

ANN 94.13 98.75 2.30 2.92 12.86 0.009 
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Figure 3.7 - Performance of different classification methods. 

Red represents the feasible region, and blue represents infeasible regions. On the top left, 

the actual feasible region. On the top right, the feasible region predicted by SVM. On the 

bottom left, the feasible region predicted by decision trees. On the bottom right, the 

feasible region as predicted by neural networks. 
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Figure 3.8 - Decision tree for the study in consideration 

As seen in Figure 3.7, all classification methods misclassified several points in the 

feasibility boundaries. However, they present an overall good performance in identifying 

the feasible region. Therefore, we proceed to integrate the predictors with the planning 

problem and solve the integrated problem to local optimality. The explicit constraints 

representing the decision tree, SVM, and neural network predictors are given by Eqs. (10), 

(11) and (12) respectively 

𝑃𝐴𝑡 ≤ 18.46 (10a) 

𝑃𝐵𝑡 ≤ 18.56 (10b) 

𝑃𝐴𝑡 ≤ 6.06 + 𝑀(1 − 𝑦1𝑡) (10c) 

𝑃𝐵𝑡 ≤ 6.23 + 𝑀(1 − 𝑦2𝑡) (10d) 

𝑦1𝑡 + 𝑦2𝑡 = 1 (10e) 
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∑ 𝛼𝑣𝑦𝑣 exp(−𝛾||𝐱𝑣 − 𝐏𝑡||
2
) + 𝑏

𝛼𝑣>0

≤ 0 (11) 

𝐰ℎ × (
1

1 + exp(𝐰𝑖𝑛𝑝𝑢𝑡 × 𝐏𝑡 + 𝐛𝑖𝑛𝑝𝑢𝑡)
) + 𝑏ℎ ≤ 0 (12) 

Where 𝐏𝑡 is the vector of production targets at planning period 𝑡, i.e., 𝐏𝑡 =

{𝑃1𝑡, 𝑃2𝑡}. Note that Eq. 10 was obtained following the procedure described in Section 

3.4.1, and the disjunctions were translated to algebraic constraints using Big-M formulation 

[95]. Therefore, 𝑦1𝑡 and 𝑦2𝑡 are binary variables in this formulation. The support vector 

predictor (Eq. 11) was formed by 10 support vectors, and the values for 𝛼𝑣,  𝑦𝑣, 𝑥𝑣, 𝑏 and 

𝛾 are given in Appendix B. The neural networks were trained using 1 hidden later and 10 

hidden nodes, and the values for 𝐰ℎ, 𝒘𝑖𝑛𝑝𝑢𝑡, 𝐛ℎ and 𝐛𝑖𝑛𝑝𝑢𝑡 are given in Appendix B. 

Once the solutions (production targets) for each planning period are obtained, the 

targets are transferred to the scheduling model, which solves equation (1) with a 

modification in equation (1h) and the following objective function: 

min∑(ℎ𝑐𝑠 × ℎ𝑠 + 𝑢𝑐𝑠 × 𝑢𝑠)

𝑠

 

𝑊𝑠𝑘 = 𝑃𝑠 + ℎ𝑠 − 𝑢𝑠 , ∀𝑠 ∈ 𝐒𝐅𝐏, 𝑘 = SH (13) 

Therefore, we solve the scheduling problem attempting to achieve the production 

targets 𝑃𝑠, penalizing any excess of production ℎ𝑠 and unmet production targets 𝑢𝑠. 

The scheduling problems for the entire planning horizon will be solved in a 

sequential manner. We highlight here that all state information at the end of one scheduling 

horizon (final inventories, current usage of units and last processing task in each unit) will 

be transferred to the following scheduling problem. Therefore, we can enforce changeover 

constraints between different scheduling periods with appropriate linking constraints.  
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The integrated problem is also solved using the two benchmark methods, and the 

results are shown in Table 3.2.  

Table 3.2 - Integrated planning and scheduling results 

Strategy 

Holding 

Cost 

Unmet 

demand 

Production 

cost 

Total cost CPU(s) 

Detailed scheduling for PH $    649.78 $         0.00 $ 7,234.19 $   7,883.97 10 

Integration with OE ineq.  $         0.00 $ 9,495.21 $ 7,115.50 $ 16,610.71 ~0 

Integration with decision tree  $ 1,087.95 $ 2,317.38 $ 7,205.23 $ 10,610.55 0.03 

Integration with SVM  $ 1,334.00 $ 2,515.99 $ 7,202.76 $ 11,051.75 0.29 

Integration with ANN $    616.05 $ 2,721.65 $ 7,200.17 $ 10,538.87 0.08 

 

The results for the integrated problem show how the proposed approach for the 

integration of planning and scheduling may fail to find the global optimal solution. This 

could be a result of poor approximations of the feasible region, the result of obtaining a 

local optimum in the solution of the NLP problem, or the result of the choice of features in 

the feasibility problem.  

It should be also noticed that we assumed throughout this entire work that the 

feasible space was a function of the production targets. However, production targets are 

not the only variables influencing the feasible space. The initial state of the system (the last 

task performed on each unit, for example) will also affect the feasibility of a schedule. The 

significance of this effect in the final integrated problem will depend on scheduling 

horizon, process network and the relation between demand and operating capacity of the 

plant. These complex relationships will be subject of future work. 

Nevertheless, the novel integrated problem was solved in reasonable time and is 

expected to scale well with the problem dimensionality. Due to the combinatorial nature of 
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MILP, the detailed scheduling model size grows exponentially with problem 

dimensionality, which is not the case of the nonlinear programming models proposed here. 

The proposed approach also demonstrates great potential when compared to OE 

inequalities approach. Although they result in lower computational times in the solution of 

the integrated problem, the integration with OE inequalities will result in several infeasible 

production targets that will be penalized at the scheduling level, generating large penalties 

for unmet demands. 

 

3.5.2 Three-dimensional problem 

In this section we consider a three-dimensional case study adopted from [23] that uses the 

process network shown in Figure 3.9. Six processing units and two raw materials are used 

to produce products A, B and C through 10 different tasks. The cleanup time between 

different tasks in unit 1, unit 5 and unit 6 is 1 hours. The cleanup time between different 

tasks in unit 4 is 2 hours. A 24h scheduling horizon and 60-day planning horizon are 

considered. The scheduling problem is discretized in hourly intervals. Relevant data for 

this problem is presented in Appendix A. We aim to solve the integrated planning and 

scheduling problem for given demand forecasts, determining production targets for each 

planning period of 24h. 

To solve the integrated approach, we first generate historical data by solving the 

MILP scheduling problem for 1000 different production targets 𝐏𝑖, 𝑖 = {1,2, … 1000}, and 

obtaining a feasible/infeasible classification. We form the training set 𝐒 =

{(𝐏1, 𝑦1), (𝐏2, 𝑦2), … (𝐏𝑚, 𝑦𝑚)}, standardize the data, and generate three classifiers for 

this data, including a decision tree, a support vector machine and a neural network. All 
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classifiers were trained using scikit-learn library in python and default configurations. 

Then, the classifiers are used to predict the labels of a testing set containing 1000 points in 

the production space, and the performance of the classifiers is evaluated using the 

feasibility metrics CF%, CIF% and NC%. Furthermore, an over-estimation of the feasible 

region is also generated according to the methodology “Integration with OE inequalities”. 

The performance of this over-estimation is also evaluated, and the results are shown in 

Table 3.3. The computational times shown in Table 3.3 for the three novel methodologies 

are mainly related the generation of the training set, since the training of classifiers was 

performed in the order of milliseconds. Finally, Figure 3.10 shows the structure of the 

generated decision tree. The labels for each ramification of the decision tree have been 

omitted, as the sole purpose of Fig. (3.10) is to illustrate the structure of the tree. 

 

 

Figure 3.9 - Process network for the scheduling problem 
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Table 3.3 - Performance of different classifiers 

 CF (%) CIF (%) NC (%) 

Total 

Error (%) 

CPU(s) 

(Sampling) 

CPU(s) 

(Training) 

OE 100 96.41 6.02 2.30  12.08 

Decision Tree 93.31 95.16 8.47 5.5 150 0.003 

SVM 98.89 97.19 4.82 2.2 150 0.018 

ANN 98.60 97.50 4.32 2.1 150 0.13 

 

 

 

Figure 3.10 - Decision tree for the study in consideration 

 

In this study, we note how a small change on dimension can affect the structure of 

the decision tree. As the complexity of the decision tree increase, it becomes more 

troublesome to obtain the disjunctive equations to be integrated in the scheduling problem. 

Furthermore, the performance of the decision tree according to the feasibility metrics is 

much inferior to the performance of SVMs and Neural Networks. In general, decision trees 

are not expected to perform well in highly nonlinear and complex problems [87]. 
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Therefore, we will not integrate decision trees and planning problems for this case study. 

The integrated results for SVMs and Neural Networks, as well as the two benchmark 

methodologies are shown in Table 3.4. Once again, the costs for the proposed frameworks 

are lower when compared to the OE inequality methodology, but still fail in finding the 

global solution obtained with the detailed scheduling problem. 

Table 3.4 - Integrated planning and scheduling results 

Strategy 

Holding 

Cost* 

Unmet 

demand* 

Production 

cost* 

Total 

cost* 

CPU (s) 

Detailed scheduling for PH $ 0 $ 0 $ 47.80 $ 47.80 17.23 

Integration with OE ineq.  $ 3.18 $ 4.42 $ 47.74 $ 55.35 0 

Integration with SVM  $ 3.56 $ 2.09 $ 47.78 $ 53.43 20.19 

Integration with ANN $ 3.42 $ 2.09 $ 47.78 $ 53.28 0.66 

*Values in thousands of dollars. 

 

3.5.3 Seven-dimensional problem 

In this case study we target a more realistic network with many products and a multistage 

structure, such as the ones found in the food and chemical industries. This problem was 

adopted from [23] and involves a process network PN1 (Figure 3.11), which has six 

processing units and seven final products. In the first stage, orders (batches) passing 

through units U1 or U2 take 2 hours. In the second stage, orders passing through unit U3 

take 1 hour. In the third stage, the processing time is 2 hours for tasks on unit U4 and 1 

hour for tasks on units U5 and U6. The cleanup time between different tasks performed in 

the same unit is 1 hour. Product A can be produced by task T7 or T8. Products E and F are 

produced by different tasks but involve the same precursor on the same unit. Relevant data 
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for this problem is provided in Appendix A. For the integrated scheduling and planning 

problem, a 52-week horizon will be considered, with scheduling horizon of 168 hours. The 

scheduling problem is discretized in hourly intervals. Given demand forecasts, our goal is 

to determine production targets for each planning period by solving the integrated problem. 

 

Figure 3.11 - Process network for the scheduling problem 

To solve this problem, 5000 production targets were generated, the feasibility of 

each production target was verified, and the final training set was formed. The training set 

was then used to build classifiers, and the performance of the classifiers evaluated in a 1000 

points testing set is shown in Table 3.5. The predictors for the SVM and Neural Networks 

were then incorporated in the planning problem, and the integrated problem was solved to 

local optimality. The solutions were transmitted to a scheduling problem, which attempts 

to achieve the production targets within the scheduling horizon. The final results for the 
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integrated problem as well as the solution of benchmark methodologies are shown in Table 

3.6. 

Table 3.5 - Performance of different classifiers in the prediction of the feasible region 

 CF (%) CIF (%) NC (%) 

Total 

Error (%) 

CPU 

(sampling) 

CPU (s) 

(training) 

Decision Tree 74.09 66.83 23.80 28.89 ~11 hours 0.184 

SVM 93.44 91.34 6.07 7.43 ~11 hours 4.883 

ANN 93.78 91.09 6.22 7.33 ~11 hours 2.345 

 

Table 3.6 - Integrated planning and scheduling results 

Strategy 

Holding 

Cost* 

Unmet 

demand* 

Production 

cost* 

Total cost* CPU(s) 

Detailed scheduling for PH $ 0 $ 40,57 $ 0   $ 40,574 600 

Integration with OE ineq.  $ 0,253 $ 1,461 $ 0,473 $ 2,187 0.03 

Integration with SVM  $ 0,791 $ 0,043 $ 0,496 $ 1,330 60.19 

Integration with ANN $ 0,458 $ 0,712 $ 0,485 $ 1,655 0.31 

*In million dollars. 

In this study, the detailed scheduling model fails to provide reasonable solutions 

within a resource limit of 600 seconds. In fact, the detailed scheduling model only found a 

better solution than the SVM model after 8500 seconds. After 10 hours, the best solution 

found corresponded to a total cost of $ 0.861 MM, and the solution still presented a 9.23% 

optimality gap. The potential of the integrated problems using classification methods 

becomes clear in this study, and it is expected to show even more benefits as dimensions 

increase.  
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3.5   Conclusions 

In this work, a framework for the integration of planning and scheduling problems was 

presented. The solution of the integrated problem determined production targets for each 

planning period. The goal of the integrated approach was to provide solutions (production 

targets) that were feasible from both planning and scheduling perspectives. The framework 

then consists on using classification methods to define the feasible region of a scheduling 

problem projected onto the product space from large amounts of historical data, and 

incorporating the built classifiers in the planning problem. Three different classification 

methods were investigated, namely decision trees, support vector machines and neural 

networks. The nature of the final integrated problem depended on the nature of the 

classifier; a MILP problem was obtained when integrating planning and decision tree 

classifiers; an NLP problem was obtained when integrating SVM or Neural Networks and 

planning problems. The integrated problems were solved for three different case studies, 

and the solutions were compared to other integrating methodologies found in the literature. 

As the dimension of the case-studies increase, the proposed framework generated better 

and more efficient solutions when compared to other methodologies. Ultimately, the 

framework shows the potential of machine learning and big-data analytics on the solution 

of integrated problems. Furthermore, the proposed feasibility analysis methodology can be 

implemented to a variety of problems in the process systems engineering, and it will be 

implemented on the integration of scheduling and control in the next chapter. 

Perhaps the main drawback of this framework is an approximation error that can 

still be considered large, even for the 7-dimension problem. Practitioners should evaluate 

the trade-off between the possibility of finding a better solution when using the monolithic 
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approach, the computational time that this approach entails, and the practicality that an 

approximated integrated solution offers. To further prove the value of the proposed 

framework, future work should include the solution of multi-facility planning problems.  

This work did not address the issue of feature selection. Throughout this work, it 

was assumed that the feasibility of the scheduling problem was a function of the production 

targets, a straightforward assumption based on ad-hoc knowledge. Nevertheless, the case 

studies demonstrated that other features may impact the feasible region of the scheduling 

problem, which will be mainly related to the initial state of the system. The significance of 

this impact will depend on the scheduling horizon, process network and relationships 

between demand and operating capacity of the plant. Future work should investigate how 

feature selection methodologies can capture the effects of different features in the feasible 

space and improve the performance of classifiers. 

Future work should also focus on the different activation functions and kernels that 

can be used in neural networks and support vector machines, respectively. The choice of 

kernels and activation functions will normally fall within the context of model selection in 

machine learning. Nevertheless, the use of the predictors in optimization problems defines 

a new criterion for model selection, since the complexity of the predictor affects the 

complexity of the final planning problem. In our case studies, for example, the solution of 

the integrated problem using neural networks was consistently more efficient than the 

integration with SVM. Therefore, an in-depth investigation of the structure of the classifies 

and how they affect the complexity of the nonlinear optimization problem should be 

conducted.   
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Finally, future work should address the solution of the integrated problem 

considering uncertainties in demand and uncertainties in the feasible region. More robust 

classifiers can be built by manipulation of parameters or by simple considerations when 

evaluating the predictor. The work could investigate how robust decisions can impact the 

final operation of a manufacturing facility.  
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Nomenclature 

Sets 

𝑖 ∈ 𝐈 Processing tasks 

𝑗 ∈ 𝐉 Units 

𝑘 ∈ 𝐊 Scheduling time points/periods 

𝑠 ∈ 𝐒 States 

𝑡 ∈ 𝐓 Planning time points/periods 

𝑚 Set of data points used to generate classifiers 

Subsets 

𝐈𝑗  Set of tasks 𝑖 that can be performed in unit 𝑗 

𝐉𝑖 Set of units 𝑗 that can performed task 𝑖 

𝐈𝐂𝑠 Set of tasks 𝑖 that consume state 𝑠 

𝐈𝐏𝑠 Set of tasks 𝑖 that produce state 𝑠 

𝐒𝐅𝐏 Set of states related to finished products 

𝐒𝐑 Set of states related to raw materials 

Scheduling Variables 

𝐵𝑖𝑗𝑘 Batch size of task 𝑖 processed in unit 𝑗 starting at time point 𝑘 

𝑋𝑖𝑗𝑘 Binary variable which is 1 if task 𝑖 is processed in unit 𝑗 starting at time point 𝑘 

𝑊𝑠𝑘 Inventory level of state 𝑠 at time point 𝑘 
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Scheduling Parameters 

𝐶𝑠 Storage capacity for state 𝑠 

𝑃𝑠𝑡 Production targets for state 𝑠 

𝑆𝐻 Scheduling horizon 

𝑉𝑖𝑗
𝑚𝑖𝑛 The minimum capacity for unit 𝑗 processing task i 

𝑉𝑖𝑗
𝑚𝑎𝑥 The maximum capacity for unit 𝑗 processing task 𝑖 

𝜌𝑖𝑠 Stoichiometric coefficients related to production of state 𝑠 in task 𝑖 

𝜏 Scheduling discretization time 

Planning variables 

𝐶ℎ𝑡 Holding cost at period 𝑡 

𝐶𝑝𝑡 Processing cost at period 𝑡 

𝐶𝑢𝑡 Unmet demand penalty at period 𝑡 

𝐼𝑛𝑣𝑠𝑡 Inventory levels for product 𝑠 in period 𝑡 

𝑃𝑠𝑡 Production targets for state 𝑠 in planning period 𝑡 

𝑈𝑠𝑡 Unmet demand 𝑈𝑠𝑡 for each product 𝑠 and period 𝑡 

Planning Parameters 

𝐷𝑠𝑡 Demand for product 𝑠 in planning period 𝑡 

ℎ𝑐𝑠 Holding cost for state 𝑠 

𝑢𝑐𝑠 Unmet demand penalty for product 𝑠 

𝑟𝑐𝑠 Cost of raw material 𝑠 

𝛾𝑠𝑠′ Stoichiometric coefficients related to production of state 𝑠 and raw material 𝑠′ 

𝑃𝐻 Planning horizon 
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Data Set 

𝐱𝑚 Vector of production targets used to train the classifiers 

𝐗 The set of vectors 𝐱𝑚 

𝑦𝑚 Label that classifies vector 𝐱𝑚 in feasible or infeasible 

𝐲 Label vector, 𝐲 = {𝑦1, 𝑦2, … , 𝑦𝑀} used to train the classifiers 

𝑑 Number of products (features) in the planning problem 

𝑀 Number of data points used to obtain classifiers 

𝐒𝐭 Training set  

𝐓𝐞𝐬𝐭 Testing set 

Decision Trees variables 

𝐺(∙) Measure of impurity 

𝑗 Features, or the components of vector 𝐱𝑚  

𝑡𝑠𝑝𝑙𝑖𝑡 A threshold for partitioning the data 

𝐼(∙) Improvement gain 

𝑁𝑝 Data at the parent node 

𝑁𝐿 Data at the left node 

𝑁𝑅 Data at the right node 

𝑝(𝑁𝑚) Relative frequency of class 1 in node 𝑁𝑚 

𝑞 Fraction of instances going left 

𝜃 Candidate split 
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Support Vector Machines variables 

𝑏 Bias 

𝑁𝑠𝑣 Number of support vectors 

𝑣 Set of support vectors 

𝐰 Weight 

𝛼 Lagrangian multiplier 

𝜉 Slack variables 

Neural Network variables 

𝐛𝑖𝑛𝑝𝑢𝑡 Bias in the input layer 

𝐛ℎ Bias in the output layer 

𝐿𝑜𝑠𝑠 Loss function 

𝑁 Number of nodes in the hidden layer 

𝑅 Predictor 

𝐰𝑖𝑛𝑝𝑢𝑡 Weights in the input layer 

𝐰ℎ Weights in the output layer 
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Integration of Scheduling and Robust Model Predictive 

Control Using Surrogate Models 

 

Abstract: In order to achieve optimal operational conditions, the integration of decision-

making across different layers of a company and the consideration of uncertain parameters 

in view of dynamic market conditions are essential. In this study, we propose a framework 

for the integration of scheduling and control for nonlinear systems under process 

uncertainties. The proposed approach includes the use of a tube-based robust model 

predictive control to handle disturbances affecting the control layer of the problem; the use 

of classification methodologies to determine the feasible space of operation of the process; 

and the use of surrogate models to derive the closed-loop input-output behavior of the 

dynamic system. Case studies are utilized to illustrate the performance of the proposed 

framework and evaluate the impact of control-level disturbances in scheduling solutions. 

 

4.1   Introduction 

Dynamic market conditions and increasing pressure for competitive performance in the 

process industries have led to significant efforts in the pursuit of optimal operation 

conditions. In addition to improved process designs, these circumstances have spurred the 

development of strategies aimed at vertical integration and coordination of decision-

making across all the layers of the chemical supply chain. Several strategies have been 

proposed in the literature to achieve the integration of scheduling and control, but they are 

usually limited to small dimensional problems [28]. Furthermore, there are few studies 

about the integration of scheduling and control problems under uncertainties [4], an issue 

that is a very important concern in the daily operation of real plants. 

In a manufacturing facility, disturbances such as flow and rate temperature 

variations, stream quality fluctuations and dynamic model mismatches can impact the 
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process operation and considerably affect the feasibility of a scheduling solution if they are 

not taken into account in the integrated scheduling and control problem. Some attempts to 

incorporate uncertainty considerations in the integrated problem includes the work by 

Mitra, Gudi [97], who proposed to analyze the trade-off between profit maximization and 

reliability of solutions in view of parametric uncertainties; and the work by Patil, Maia 

[98], who proposed to quantify the worst-case variability in controlled variables via 

frequency response analysis in the problem of design, scheduling and control integration. 

A thorough review on the integration of scheduling and control under uncertainties is given 

by Dias and Ierapetritou [4]. 

In this chapter, a novel framework for the integration of scheduling and model 

predictive control under process uncertainties is proposed. First, we implement 

deterministic and robust model predictive control strategies to continuous production 

processes that are affected by disturbances in their operation. Then, we simulate the system 

operation while varying the production setpoints and generate sets of data that mimic 

historical data usually available in production sites. Each data point holds the information 

of whether any quality and production constraints were violated within a determined time 

period and determined production setpoints. Next, we use classification methods to 

approximate the feasible region of operation of a system as a function of production 

setpoints. The classification predictors, coupled with surrogate models that capture the 

closed loop behavior of the system, are incorporated in the scheduling problem, and the 

integrated problem is optimized. In this work, we explore the use of neural networks as 

surrogate models, due to its inherent capability of predicting highly nonlinear functions 
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and handling high-dimensional problems, two characteristics that are critical when 

deriving surrogate models from large sets of industrial data.  

The remaining of this chapter is organized as follows. In section 4.2, a background 

in uncertainty, model predictive control formulations, and neural networks is provided, 

building the theoretical basis of the proposed framework. In section 4.3, the problem in 

consideration is summarized, and section 4.4 presents the methodology proposed to 

integrate scheduling and control problems. The performance of the proposed framework is 

demonstrated through case studies in section 4.5. Final conclusions and future work are 

discussed in section 4.6. 

 

4.2   Background 

4.2.1 Uncertainties in process operation 

The nature of uncertainties, its sources, and the appropriate method to deal with them has 

been a topic of discussion by scientists for a long time [99]. In practice, it is useful to 

categorize the uncertainties within a problem and systematically address each category 

according to its nature and its importance to the problem. In the context of integrated 

scheduling and control using surrogate models, we adapt the classification of uncertainties 

proposed by Pistikopoulos [100] and identify three main sources of uncertainties: 

(i) Uncertainties related to the control level, including model-inherent uncertainty 

(such as kinetic constants, physical properties, mass/heat transfer coefficients); 

and process-inherent uncertainty (such as flow rate and temperature variations) 

(ii) Uncertainties related to the scheduling level, including external uncertainties 

(such as product demands, raw material and utilities costs, and product prices); 



98 

 

 

 

and discrete uncertainties (such as equipment breakdown and personnel 

absence) 

(iii) Uncertainties related to the inaccuracies of the surrogate models, which will be 

derived to represent the closed-loop behavior of the control level in the 

integrated scheduling and control problem. 

Furthermore, uncertainties can be modeled in different ways based on the 

availability of information. Li and Ierapetritou [101] classify the models of uncertainties 

as: 

(i) Bounded description, where upper and lower bounds are defined for an 

uncertain parameter representing the range of all possible realizations of the 

parameter 

(ii) Probability description, where uncertainties are characterized by a probability 

distribution function 

(iii) Fuzzy description, where fuzzy sets are used to model the uncertainty 

Finally, approaches for dealing with uncertainties in scheduling can be classified as 

preventive or reactive [101]. In reactive approaches, solutions for scheduling and control 

problems are based on nominal models, and are updated in response to the occurrence of 

uncertainties. Preventive approaches, on the other hand, incorporate the model of 

uncertainty in the scheduling and control formulations and generate robust solutions prior 

to the occurrence of a disturbance. 

This work addresses uncertainties at the control level of the integrated problem. It 

assumes the only description available about the uncertainties are their lower and upper 

bounds, and it takes a preventive approach to handle the uncertainties. More specifically, 
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robust optimization is employed at the control problem in order to handle uncertainties and 

avoid constraint violations.  

 

4.2.2 Model Predictive Control 

The basic idea of model predictive control (MPC) is to use a dynamic model to forecast 

system behavior and select control actions that will drive the system to a desired state. At 

each control interval, the MPC is implemented by: (1) measuring the current state of the 

system, 𝐱𝑖𝑛𝑖𝑡𝑖𝑎𝑙; (2) setting future control inputs 𝐔 = {𝐮0, 𝐮1, … , 𝐮𝑁−1} for a prediction 

horizon 𝑁 by solving an online optimization problem, where tracking errors are minimized; 

(3) applying the first element of the optimization solution, 𝐮0, to the system and going back 

to step 1 at time 𝑘 = 𝑘 + 1. 

The MPC optimization problem for a nonlinear dynamic system can be formulated 

as: 

min
𝐔={𝒖𝒌}𝒌=𝟏

𝑵
𝐽𝑠𝑡𝑑(𝐱0, 𝐔) =

1

2
∑(|𝐱𝑘 − 𝐱

𝑠𝑝|𝑄
2 + |𝐮𝑘 − 𝐮

𝑠𝑝|𝑅
2) 

𝑁−1

𝑘=0

+ |𝐱𝑁 − 𝐱𝑁
𝑠𝑝|

𝑃𝑓

2
  (1) 

𝑠. 𝑡. {

𝐱0 = 𝐱𝑖𝑛𝑖𝑡𝑖𝑎𝑙               

𝐱𝑘+1 = 𝑓(𝐱𝑘, 𝐮𝑘)     
𝐱𝑘 ∈ 𝕏, ∀𝑘                   
𝐮𝑘 ∈ 𝕌, ∀𝑘                   

  

where 𝑘 is a nonnegative integer denoting the sample number, which is connected to time 

by 𝑡𝑖𝑚𝑒 = 𝑘∆ and ∆ is the sample time. 𝑁 is the prediction horizon, 𝐱𝑠𝑝 ∈ ℝ𝑛 and 𝐮𝑠𝑝 ∈

ℝ𝑚 are the setpoints, and 𝑄 and 𝑅, are tuning parameters penalizing deviations from the 

setpoint and control moves, respectively. We allow the final state penalty to have a 

different weighting matrix 𝑃𝑓, for generality. Finally, 𝐔  is the input sequence for 𝑁 − 1 

time steps, i.e., 𝐔 = {𝐮0, 𝐮1, … , 𝐮𝑁−1}. We assume throughout this paper that the state is 
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perfectly measured and the outputs of the system 𝐲𝑘 are modeled as 𝐲𝑘 = 𝐼𝐱𝑘, where 𝐼 is 

the identity matrix. The outputs 𝐲𝑘 are omitted in all system representations. 

An important feature of MPC is its ability to cope with constraints on input and 

state variables, and therefore MPC has been applied to a variety of industries where 

satisfaction of constraints is particularly important to increase efficiency and meet safety 

requirements [9]. In general, input constraints are modeled as hard constraints and state 

constraints are modeled as soft constraints. 

If uncertainties affect the dynamic system, a robust MPC strategy might be more 

successful in tracking setpoints and avoiding constraint violations. Robust MPC was first 

proposed by Campo and Morari [102], who considered the possibility of model mismatch 

and assumed that the system behavior could be described by a set of linear time invariant 

(LTI) models instead of a single LTI. They proposed to minimize the worst-case tracking 

error for the family of linear plants, and showed how to recast the resulting minimax 

optimization problem as a linear program. This approach was further extended by 

Allwright and Papavasiliou [103] and Zheng and Morari [104], and can be classified as 

open-loop robust MPC formulation. Open-loop MPC solves optimization problems in 

which the decision variable is a sequence of control actions, and ignores the fact that the 

controller will react to the uncertainty in the next steps, which may lead to infeasibilities 

and conservative solutions. Therefore, closed-loop robust MPC was proposed by Kothare, 

Balakrishnan [105] and Lee and Yu [106], and the optimization problem was solved for a 

control policy, which is a sequence of control laws, overcoming the drawbacks of open-

loop robust MPC.  
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While closed-loop MPC (or feedback MPC) is superior to standard MPC in the 

presence of uncertainty, the associated optimal control problem is vastly more complex 

than the optimal control problem employed in deterministic MPC [107]. Hence a lot of 

research effort has been devoted to different forms of feedback MPC that sacrifice 

optimality for simplicity. Tube-based MPC falls within this category of problems [108, 

109]. Tube-based MPC takes into consideration both open-loop and feedback control 

responses, in the presence of uncertainty, a bundle or tube of trajectories, where each 

trajectory corresponds to a particular realization of the uncertainty. The control of uncertain 

systems can therefore be viewed as the control of tubes rather than trajectories. Tube-based 

MPC therefore requires a modified form of the online control problem in which the 

constraints are tightened in order to constrain the trajectories of the uncertain system to lie 

in a tube centered on the nominal trajectories. The reader is referred to Rawlings and Mayne 

[107] for a comprehensive discussion of the theory and stability of tube-based MPC. 

For a system with bounded additive disturbance, 𝐰 ∈ 𝕎 ⊂ ℝ𝑛, satisfying the 

following difference equation: 

𝐱𝑘+1 = 𝑓(𝐱𝑘, 𝐮𝑘) + 𝐰 (2) 

in which 𝐱𝑘 ∈ 𝕏 and 𝐮𝑘 ∈ 𝕌, and the sets 𝕏 and 𝕌 are polyhedral. Let the nominal system 

be described by: 

𝐳𝑘+1 = 𝑓(𝐳𝑘, 𝐯𝑘) (3) 

The algorithm for the implementation of tube-based MPC can be summarized as 

follows [107]: 

Initialization. At time 0, set 𝑖 = 0, 𝐱0 = 𝐱𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝐳0 = 𝐱0. Solve ℙ̅𝑁 for 𝑁 time steps 

to obtain the nominal closed-loop state and control sequences 𝐕∗ = 𝐕∗(𝑧0) =
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{𝐯0
∗(𝑧0), 𝐯1

∗(𝑧0),… , 𝐯𝑁−1
∗ (𝑧0)}, and  𝐙∗ = 𝐙∗(𝐳0) = {𝐳0

∗(𝐳0), 𝐳1
∗(𝐳0), … , 𝐳𝑁−1

∗ (𝐳0)}, and set 

𝐮 = 𝜅̅𝑁(𝐳0) = 𝐯0
∗(𝑧0).  

Step 1 (Compute control): At time 𝑖, compute 𝐮 = 𝜅𝑁(𝐱0, 𝐳0) by solving ℙ𝑁(𝐱0, 𝐳0). 

Step 2 (Control): Apply 𝐮 to the system being controlled. 

Step 3 (Update 𝒙): Set 𝐱𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐱𝑘+1 where 𝐱𝑘+1 = 𝑓(𝐱0, 𝐮) + 𝐰 is the successor state 

Step 4 (Update 𝑧, 𝐯∗ and 𝐳∗): Compute 𝐯∗ = 𝜅̅𝑁(𝐳𝑁
∗ ) and 𝐳∗ = 𝑓(𝐳𝑁

∗ , 𝐯∗) by solving 

ℙ𝑁(𝐳𝑁
∗ ). Set 𝐳 = 𝐳∗(1). Set 𝐕∗ = {𝐯1

∗, … , 𝐯𝑁−1
∗ , 𝐯∗} and set 𝐳∗ = {𝑧1

∗, … , 𝑧𝑁
∗ , 𝑧∗}. 

Step 5 (Repeat): Set 𝑖 = 𝑖 + 1. Go to step 1. 

Problems ℙ̅𝑁 and ℙ𝑁 are given by Eq. (4) and (5), respectively. 

ℙ̅𝑁(𝑧0) =  min
𝐕={v𝒌}𝒌=𝟏

𝑵

1

2
∑(|𝐳𝑘 − 𝐳

𝑠𝑝|𝑄̅
2 + |𝐯𝑘 − 𝐯

𝑠𝑝|𝑅̅
2) 

𝑁−1

𝑘=0

+ |𝐳𝑁 − 𝐳𝑁
𝑠𝑝|

𝑃̅𝑓

2
  (4) 

𝑠. 𝑡. {

𝐳0 = 𝐳𝑖𝑛𝑖𝑡𝑖𝑎𝑙               

𝐳𝑘+1 = 𝑓(𝐳𝑘, 𝐯𝑘)     
𝐳𝑘 ∈ ℤ, ∀𝑘                  
𝐯𝑘 ∈ 𝕍, ∀𝑘                  

  

ℙ𝑁(𝐳0, 𝐱0) = min
𝐔={𝒖𝒌}𝒌=𝟏

𝑵

1

2
∑(|𝐱𝑘 − 𝐳𝑘|𝑄

2 + |𝐮𝑘 − 𝐯𝑘|𝑅
2) 

𝑁−1

𝑘=0

+ |𝐱𝑁 − 𝐯𝑁|𝑃𝑓
2   (5) 

𝑠. 𝑡. {

𝐱0 = 𝐱𝑖𝑛𝑖𝑡𝑖𝑎𝑙               

𝐱𝑘+1 = 𝑓(𝐱𝑘, 𝐮𝑘)     
𝐱𝑘 ∈ 𝕏, ∀𝑘                   
𝐮𝑘 ∈ 𝕌, ∀𝑘                   

  

The tightened constraint sets ℤ and 𝕍 are defined as ℤ = 𝛼𝕏 and 𝕍 = 𝛽𝕌 where 

𝛼, 𝛽 ∈ (0,1) are chosen in order to avoid constraints violation in the robust control 

implementation, and tested by Monte Carlo simulation of the controlled system. For each 

choice of 𝛼 and 𝛽, the controller provides a degree of robustness that can be adjusted by 

modifying the “tuning” parameters 𝛼 and 𝛽. 
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In this work, both standard and tube-based control strategies will be implemented 

in the control problems under investigation, and the impact of the choice of the controller 

in the scheduling problem will be analyzed. 

 

3.2.3 Neural Networks 

Neural networks and machine learning concepts have been discussed in sections 3.4.3. 

Here, we briefly overview the use of neural networks in classification and regression 

problems. For a regression problem, the predictor of a neural network with one hidden 

layer, a single output and logistic activation function takes the form of Eq. 6a.  For a 

classification problem, the predictor of a neural network with the same structure takes the 

form of Eq. 6b. Note that classification problems will classify inputs into one of two 

categories, labeling them to belong to category +1 or -1. 

𝑓(𝐱) = 𝐰ℎ × (
1

1 + exp(𝐰𝑖𝑛𝑝𝑢𝑡 × 𝐱 + 𝐛𝑖𝑛𝑝𝑢𝑡)
) + 𝑏ℎ (6a) 

𝑓(𝐱) = sign (𝐰ℎ × (
1

1 + exp(𝐰𝑖𝑛𝑝𝑢𝑡 × 𝐱 + 𝐛𝑖𝑛𝑝𝑢𝑡)
) + 𝑏ℎ) (6b) 

In this work, neural networks will be used (i) as a classification method, in order to 

determine the feasible region of operation of the control problem (following the 

methodologies presented in Chapter 3); and (ii) as a regression method, in order to identify 

the closed-loop behavior of a subset of control variables that need to be represented in the 

scheduling problem. The details of the implementation of the neural networks in the 

integrated scheduling and control problem will be discussed in section 3.4.  
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4.3   Problem definition 

Consider the integrated production scheduling and control problem for a continuous 

operation, for which production setpoints 𝐱𝑡
𝑠𝑝

 and 𝐮𝑡
𝑠𝑝

 should be defined for each 

scheduling period 𝑡 ∈ T, where T is the number of scheduling slots of the integrated 

problem. A rigorous and general representation of the integrated scheduling and control 

problem is given by problem (7).  

min
𝐱𝑡
𝑠𝑝
,𝐮𝑡
𝑠𝑝
∑∑𝐶𝑜𝑠𝑡𝑡(𝐱𝑘𝑡, 𝐮𝑘𝑡)

𝑘𝑡

 (7a) 

𝑙(𝐱𝑘𝑡, 𝐮𝑘𝑡) = 0 (7b) 

𝐱0,𝑡+1 = 𝐱𝐾,𝑡, 𝐮0,𝑡+1 = 𝐮𝐾,𝑡 (7c) 

𝐱𝑘+1,𝑡 = 𝑓(𝐱𝑘𝑡, 𝐮𝑘𝑡) + 𝐰 (7d) 

𝐮𝑘,𝑡 = 𝜓(𝐱𝑘𝑡, 𝐮𝑘−1,𝑡, 𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝) (7e) 

𝐱𝑘𝑡 ∈ 𝕏, 𝐮𝑘𝑡 ∈ 𝕌 (7f) 

In this formulation, each scheduling slot 𝑡 of duration 𝜏 is discretized into 𝐾 control 

steps 𝑘 = {0,1, . . , 𝐾}, such that 𝜏 = 𝐾∆, and ∆ is the sample time of the control problem. 

It is assumed throughout this paper that the state of the system 𝐱𝑘𝑡 is perfectly measurable, 

and that the system outputs 𝐲𝑘𝑡 are connected to 𝐱𝑘𝑡 by 𝐲𝑘𝑡 = 𝐼𝐱𝑘𝑡, where 𝐼 is the identity 

matrix. Therefore, 𝐲𝑘𝑡 is omitted for clarity. 𝜓(∙) is the control law defined by the solution 

of (1) (if a standard MPC is employed) or (5) (if tube-based MPC is employed), and hence 

it defines the control actions 𝐮𝑘𝑡. Note that 𝐮𝑘𝑡 will depend on the previous manipulated 

variables 𝐮𝑘−1,𝑡 only if rate of change constraints are utilized in the MPC formulation. This 

is not the case for the MPC formulations implemented in this work. However, we include 

this possible dependency in Equation (7) for completeness. The objective function (7a) 



105 

 

 

 

includes the production costs of operating the system. Constraint (7b) ensures that that 

demands are met at all times, and that the amount of product stored does not deplete/exceed 

the physical capacity of the storage system. 𝑙(∙) may also involve discrete decisions such 

as the assignment of products to scheduling slots, or the assignment of equipment to tasks. 

Constraint (7c) links the final state of the system at scheduling period 𝑡 to the initial state 

of the system at scheduling period 𝑡 + 1. Constraint (7d) is the dynamic representation of 

the system, subject to an additive unmeasured bounded disturbance 𝐰 ∈ 𝕎. Finally, 

constraint (7f) defines that the state and input variables should be contained in the 

polyhedral sets 𝕏 and 𝕌 at all times. 

While problem (7) is an adequate formulation of the integrated problem, it 

represents a complex bilevel optimization problem that includes non-convexities and non-

linearities. Therefore, this problem is very challenging to solve in reasonable computational 

times. The use of surrogate models on the integration of scheduling and control diminishes 

the complexity of the problem since it enables its reformulation as:  

min
𝐱𝑡
𝑠𝑝
,𝐮𝑡
𝑠𝑝
∑𝐶𝑜𝑠𝑡𝑡(𝐱̅𝑡

𝑠, 𝐮̅𝑡
𝑠)

𝑡

 (8a) 

𝑙(𝐱̅𝑡
𝑠, 𝐮̅𝑡

𝑠) = 0 (8b) 

𝐱̃𝑡+1
0 = 𝐱̃𝑡, , 𝐮̃𝑡+1

0 = 𝐮̃𝑡 (8c) 

𝐱̃𝑡 = 𝜙
𝑥̃(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝 , 𝐱̃𝑡

0, 𝒖̃𝑡
0) (8d) 

𝐮̃𝑡 = 𝜙𝑢(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱̃𝑡
0, 𝒖̃𝑡

0) (8e) 

𝐱̅𝑡
𝑠 = 𝜙 𝑥̅(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝, 𝐱̃𝑡

0, 𝒖̃𝑡
0) (8f) 

𝐮̅𝑡
𝑠 = 𝜙𝑢(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝, 𝐱̃𝑡

0, 𝒖̃𝑡
0) (8g) 

𝜉(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱̃𝑡
0, 𝒖̃𝑡

0) ≤ 0 (8h) 
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In this problem, the scheduling model is represented by Eqs. (8a) to (8b). Eq. (8c) 

is the linking constraint, which connects the final state and input of the system at scheduling 

period 𝑡 to the initial state and input of the system at scheduling period 𝑡 + 1. The closed-

loop behavior of the dynamic system is represented by Eqs. (8d) to (8h). In other words, 

equations (8d) to (8h) are surrogate models approximating the original full-space control 

problem previously described by Eqs. (7d) to (7f).   

A few assumptions have been made in this reformulation:  

(i) It can be inferred from (7) that both 𝐱𝑘𝑡 and 𝐮𝑘𝑡, ∀𝑘 = {1,2, . . , 𝐾} are functions of 

the setpoints of the system, 𝐱𝑡
𝑠𝑝

 and 𝐮𝑡
𝑠𝑝

, as well as its initial conditions, 𝐱0𝑡, 𝐮0𝑡. 

Therefore, the average values 𝐱̅𝑡 = ∑ 𝐱𝑘𝑡𝑘 /K and 𝐮̅𝑡 = ∑ 𝐮𝑘𝑡𝑘 /K, as well as the 

final state of the system at each scheduling slot, 𝐱𝐾𝑡, can be accurately described 

by functions Φ(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱0𝑡, 𝐮0𝑡) in a deterministic system (i.e., 𝐰 = 0); and 

reasonably approximated by 𝜙(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱0𝑡, 𝐮0𝑡) in a non-deterministic system if 

𝐰 is sufficiently small. 

(ii) If the scheduling discretization time is appropriately chosen, it is reasonable to 

expect that the production costs of the system (𝐶𝑜𝑠𝑡𝑡), as well as the scheduling 

constraints 𝑙(∙) can be modeled as functions of a subset of 𝐱̅𝑡 and 𝐮̅𝑡, namely  𝐱̅𝑡
𝑠 ⊆

𝐱̅𝑡 = ∑ 𝐱𝑘𝑡𝑘 /K and 𝐮̅𝑡
𝑠 ⊆ 𝐮̅𝑡 = ∑ 𝐮𝑘𝑡𝑘 /K 

(iii) We assume it is possible to determine a classification model ξ(∙) as a function of 

(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱0𝑡, 𝐮0𝑡), such that ξ(∙) results in +1 if any violation of state and input 

constraints, 𝐱𝑘 ∈ 𝕏 and 𝐮𝑘 ∈ 𝕌, ∀𝑘 = {0,1, … , 𝐾} occur during simulations of the 

control system; and ξ(∙) assumes the values -1 otherwise. 

(iv) We define 𝐱̃0
𝑡 ≈ 𝐱0𝑡, 𝐱̃𝑡 ≈ 𝐱𝐾𝑡, 𝐮̃0

𝑡 ≈ 𝐮0𝑡, 𝐮̃𝑡 ≈ 𝐮𝐾𝑡 
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(v) We recognize that the setpoints of a system 𝐱𝑡
𝑠𝑝

 and 𝐮𝑡
𝑠𝑝

 may present strong 

correlations if they are defined based on the steady state of the system. In such 

cases, including both 𝐱𝑠𝑝 and 𝐮𝑠𝑝 as inputs, or features, in the surrogate model 

training is redundant and may cause degeneracies [110]. Therefore, we will include 

either 𝐱𝑠𝑝 or 𝐮𝑠𝑝 in the surrogate model training. With this strategy, the 

dimensionality of problem (8) is further reduced. 

The integrated scheduling and control problem using surrogate models consists of 

the use of detailed dynamic models of the system, 𝐱𝑘+1,𝑡 = 𝑓(𝐱𝑘𝑡, 𝐮𝑘𝑡) + 𝐰 and control 

strategies (described in section 4.2.2) to simulate the closed-loop behavior of the control 

problem; and the use of surrogates to extract input-output relationships from the simulation 

data in order to approximated equations (8d) to (8g). In practice, the integrated problem 

would define scheduling decisions and production setpoints for the entire scheduling 

horizon, and transmit these decisions to the control layer, which would in fact implement 

the solutions.  

In the next section, a framework to achieve the integration of scheduling and robust 

model predictive control is discussed in detailed. 

 

4.4. Framework for the integration of scheduling and control 

The integrated scheduling and control framework proposed in this work consists of four 

basic steps, as shown in Figure 4.1. 

Step 1: Implement standard Model Predictive Control and Tube-based Model Predictive 

Control to the systems under consideration 
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Step 2: Obtain historical process operating data representative of typical production 

schedules by simulating the control system 

Step 3: For each control strategy and related simulation data, obtain surrogate models 

𝜙 𝑥̃, 𝜙𝑥̅ and 𝜙𝑢 using neural network regressors to approximate 𝐱̃𝑡, 𝐱̅𝑡
𝑠 and 𝐮̅𝑡

𝑠 

Step 4: Obtain model ξ(∙) using neural network classification methods to classify data 

points (𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱0𝑡) as feasible (ξ(∙) = −1) or infeasible (ξ(∙) = +1) using the 

simulation data 

Step 5: Solve the integrated scheduling and control problem by incorporating the neural 

network predictors in the scheduling optimization problem 

 

Figure 4.1 - Framework for the integration of scheduling and control 
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In Step 2, the control problem will be simulated for randomly generated values of  

(𝐮𝑖
𝑠𝑝, 𝐱0𝑖), 𝐱01 ∈ 𝕏 and 𝐮𝑖

𝑠𝑝 ∈ 𝕌, where 𝑖 denotes an integer, 𝑖 = {1,2, … , 𝑆𝑥}, and 𝑆𝑥 is 

the number of sample points. For every sample point 𝑖, the setpoint of the state variables 

𝐱𝑖
𝑠𝑝

 will be defined based on the steady state conditions of the system and such that 𝐱𝑖
𝑠𝑝 ∈

𝕏. The inputs of the simulation 𝑖 will consist of 𝑆𝑖 = (𝐱𝑖
𝑠𝑝, 𝐮𝑖

𝑠𝑝 , 𝐱0𝑖). For each sample point, 

the simulation will take place for a 𝜏 period of time, where 𝜏 is the scheduling discretization 

interval. At the end of the simulation, the values of 𝐱̃𝑖, 𝐱̅𝑖
𝑠 and 𝐮̅𝑖

𝑠 are computed and stored 

as 𝐲𝑖 = (𝐱̃𝑖, 𝐱̅𝑖
𝑠, 𝐮̅𝑖

𝑠). A value for 𝐟𝑖 is also stored, where 𝐟𝑖 takes the value of +1 if, at any 

point throughout the simulation, state and input constraints are violated. 𝐟𝑖 = −1 otherwise. 

For every sample point 𝑖, the disturbance 𝐰 will follow a different trajectory that is 

unknown to the controller. Therefore, it is not unexpected that two set of data points 𝑖 and 

𝑗, such that (𝐱𝑖
𝑠𝑝, 𝐮𝑖

𝑠𝑝, 𝐱0𝑖) = (𝐱𝑗
𝑠𝑝, 𝐮𝑗

𝑠𝑝, 𝐱0𝑗), generate different simulation outputs 𝐲𝑖 ≠

𝐲𝑗. The regressive nature of the neural network in step 3 will handle such cases with no 

further issues.  

Furthermore, it is expected that tube-based MPC will take conservative control 

actions when compared to standard MPC. The different control performances will generate 

different outputs, even though simulations will be performed for the same values of 

disturbances 𝐰 and the same data points (𝐱𝑖
𝑠𝑝, 𝐮𝑖

𝑠𝑝 , 𝐱0𝑖), 𝑖 = {1,2, … 𝑆}. While 

conservative, it is expected that tube-based MPC will result in feasible operation for a wider 

range of data points, and the effects of this feasible region in the scheduling problem are 

analyzed. 

Steps 3 and 4 will be carried out based on the simulation data generated in step 2, 

using neural network regression and classification methodologies. The implementation was 



110 

 

 

 

performed in MATLAB using the Deep Learning Toolbox. All the neural networks were 

designed with one hidden layer and logistic activation function.  

In Step 5, the predictors for the neural networks (which take the form of Equation 

(6a) for the regression case, and Equation (6b) for the classification case), are incorporated 

in the scheduling model, providing an integrated scheduling and control formulation. The 

integrated problem will be solved to local optimality, and the solution of the problem will 

be implemented in the control layer. 

In the next section, the proposed framework is implemented in two case studies, 

demonstrating its performance and the differences between the preventive and 

deterministic approaches regarding the disturbances at the control problem. 

 

4.5   Case studies 

4.5.1 Integration of scheduling and control for a CSTR 

We will first consider a simple, low-dimension, scheduling problem, in order to 

demonstrate the concepts of the framework. Consider the problem of integrating 

scheduling and control in a continuously operated stirred tank reactor followed by a well-

mixed storage tank as shown in Figure 4.2. An irreversible, first-order reaction  𝑅 → 𝑃 

occurs in the liquid phase, and the reactor temperature is regulated with external cooling. 

Mass and energy balances are given by Eq. 9a and 9b; respectively. 

𝑑𝑐

𝑑𝑡
=
𝐹0 ∙ (𝐶0 − 𝐶)

𝜋 ∙ 𝑟2 ∙ ℎ
− 𝑘0 ∙ 𝐶 ∙ exp (−

𝐸

𝑅 ∙ 𝑇
) (9a) 

𝑑𝑇

𝑑𝑡
=
𝐹0 ∙ (𝑇0 − 𝑇)

𝜋 ∙ 𝑟2 ∙ ℎ
−

∆𝐻

𝜌 ∙ 𝐶𝑝
𝑘0 exp (−

𝐸

𝑅 ∙ 𝑇
) +

2 ∙ 𝑈

ℎ ∙ 𝜌 ∙ 𝐶𝑝
(𝑇𝑐 − 𝑇) + 𝑤 (9b) 
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Figure 4.2 - CSTR and storage tank schematic 

The state vector 𝐱𝑡 includes the molar concentration of 𝑅, c, and the reactor 

temperature, 𝑇, i.e., 𝐱𝑡 = [𝑐𝑡, 𝑇𝑡]. The manipulated variables are the inlet flow rate 𝐹0, and 

the coolant liquid temperature 𝑇𝑐, and therefore 𝐮𝑡 = [𝑇𝑐𝑡, 𝐹0𝑡]. Additionally, we assume 

an unmeasured disturbance 𝑤 affects the reactor temperature. The disturbance takes the 

form 𝑤𝑘 = 𝐴 sin(𝜔 ∙ 𝑘 ∙ ∆), where 𝐴 and 𝜔 are independent uniformly distributed random 

variables, taking values in the sets [0, 5] and [−1,1], respectively. However, such model is 

unknown to the controller. The parameters of the CSTR are shown in Table 4.1. 

The scheduling of the CSTR consists of setting different setpoints for each hour in 

a 24-hour scheduling horizon, while considering a varying cost of raw material. The cost 

of raw material varies at each scheduling slot as shown in Figure 4.3. Deliveries to the 

customer are made every 4 hours. A bound on the hourly average impurity concentration 

of the outlet stream is imposed at all times according to customer specifications. 

Furthermore, a storage tank with limited capacity can hold finished products throughout 

the entire scheduling horizon. It is assumed that the storage tank is well-mixed and that no 

further reaction occurs in the tank.  
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Table 4.1 - Parameters of the CSTR dynamic model 

Parameter Nominal Value 

𝐶0 1 kmol/m3 

𝑇0 350 K 

ℎ 0.219 m 

𝑘0 7.2 × 1010 min−1 

𝐸/𝑅 8750 K 

𝑈 54.94 kJ/(min ∙ m2 ∙ K) 

𝜌 1000 kg/m3 

𝐶𝑝 0.239 kJ/(kg ∙ K) 

∆𝐻 −50000 kJ/kmol 

 

 

 

Figure 4.3 - The cost of raw material varying with time 
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The discrete-time scheduling model of this problem (corresponding to equations 

(8a) and (8b)) is given by: 

min
𝐱𝑡
𝑠𝑝
,𝐮𝑡
𝑠𝑝
∑𝑝𝑡

𝑟

𝑡

∙ 𝑢̅𝑡
2 ∙ 𝜏 (10a) 

𝐼𝑡 = 𝐼𝑡−1 + 𝑢̅𝑡
2 ∙ 𝜏 − 𝐷𝑡, ∀𝑡 (10b) 

𝐼0 = 0 (10c) 

0 ≤ 𝐼𝑡 ≤ 𝐼,̅ ∀𝑡 (10d) 

𝑥̅𝑡
1 ≤ 𝐶̅ (10e) 

The objective of this problem is the minimization of costs, given by Eq. (10a). The 

cost is a function of the cost of raw materials 𝑝𝑡
𝑟, and the raw material consumption in each 

slot, 𝑢̅𝑡
2 = 𝐹0̅̅̅̅ 𝑡. Equation (10b) corresponds to mass balances determining the inventory 

levels at the end of each scheduling slot. The inventory level 𝐼𝑡 is a function of the inventory 

level at the previous scheduling slot, 𝐼𝑡−1; a function of the production levels, 𝑢̅𝑡
2 ∙ 𝜏; and a 

function of the demand at scheduling slot 𝑡, 𝐷𝑡. Equations (10c) assigns the initial inventory 

level to 0, and Eq. (10d) determines lower and upper bounds for the inventory. Equation 

(10e) sets an upper bound to the average impurity concentration in the outlet stream of the 

CSTR, a quality requirement that is allowed to vary from one scheduling horizon to the 

other.  

Following the proposed framework, we first implement standard and robust MPC 

strategies to the CSTR in consideration. The MPC strategies were implemented using 

MPCTools/CasADi in MATLAB interface [111, 112]. The performance of standard and 

tube-based MPC in a deterministic operation (𝑤 = 0) is shown in Figure 4.4. The 

performance of standard and robust MPC in a non-deterministic operation is shown in 

Figure 4.5. In this case, 10 different values for 𝐴 and 𝜔 were randomly generated, and the 
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simulation was repeated for each value of 𝑤 = 𝐴 sin(𝜔 ∙ 𝑘 ∙ ∆). In both cases, the system 

was simulated for 1 hour, the sampling time of the control problem was 0. 25𝑠, and the 

prediction horizon of the control problem was 𝑁 = 15. The initial state of the system was 

given by 𝐱0 = [0, 300], and the setpoints were given by 𝐱𝑠𝑝 = [0.53, 348.42], 𝐮𝑠𝑝 =

[300.5, 0.1]. 
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Figure 4.4 - The state and input trajectories of a deterministic system 

On the left, a standard MPC was implemented. On the right, a tube-based MPC was 

implemented. 
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Figure 4.5 - Simulations of state and input trajectories for a system affected by  

disturbances. On the left, a standard MPC was implemented. On the right, a tube-based 

MPC was implemented. 
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Tube-based MPC sacrifices setpoint tracking in order to obtain feasible operation. 

This can be concluded by analyzing the average value of state and input variables in the 

deterministic simulation. For standard MPC, 𝐱̅ and 𝐮̅ take the values of [0.53, 348.42] and 

[300.5, 0.1], respectively. For tube-based MPC, 𝐱̅ and 𝐮̅ take the values of [0.5685, 346.5] 

and [300.78, 0.102], respectively. In this case study, the higher levels of impurity in the 

flow stream will also affect the economics of the problem. However, tube-based MPC 

outperforms standard MPC in the non-deterministic simulations when analyzing constraint 

violation. Tube-based MPC is also able to maintain a smoother trajectory of the state of the 

system, albeit at the cost of aggressive control actions.  

Following the proposed framework, once the MPC strategies are implemented, a 

series of simulations are performed in order to obtain historical process operating data. In 

this case, 1000 data points (𝐮𝑖
𝑠𝑝, 𝐱0𝑖) were randomly generated. For each data point 𝑖, 𝐱𝑖

𝑠𝑝
 

was obtained as the steady state of the dynamic system (10), given 𝐮𝑖
𝑠𝑝

. Since the CSTR 

described by problem (9)` may present multiple steady states, 𝐱𝑖
𝑠𝑝 = [𝑐𝑖

𝑠𝑝, 𝑇𝑖
𝑠𝑝] was chosen 

to minimize 𝑐𝑖
𝑠𝑝

 while satisfying 𝐱𝑖
𝑠𝑝 ∈ 𝕏. The inputs for simulation 𝑖 were then defined as 

𝑆𝑖 = (𝐱𝑖
𝑠𝑝, 𝐮𝑖

𝑠𝑝, 𝐱0𝑖). Each simulation run was equivalent to one hour of operation, as 𝜏 =

1 hour in the scheduling problem. Therefore, the performance of the control and the 

dynamic system was simulated for a period equivalent to 6 weeks of operation. In each run, 

both standard and tube-based MPC were simulated. At the end of each simulation 𝑖, the 

values for 𝐲𝑖
𝐬𝐭𝐝 = (𝐱̃𝑖, 𝐱̅𝑖

𝑠, 𝐮̅𝑖
𝑠) and 𝐲𝑖

𝐭𝐮𝐛𝐞 = (𝐱̃𝑖, 𝐱̅𝑖
𝑠, 𝐮̅𝑖

𝑠) were computed and stored. Values 

for 𝐟𝑖
𝑠𝑡𝑑 and 𝐟𝑖

𝑡𝑢𝑏𝑒 were also stored, where the values of +1 or -1 were assigned to 𝐟𝑖
𝑠𝑡𝑑 and 

𝐟𝑖
𝑡𝑢𝑏𝑒 depending on the existence of constraint violations in each one of the control 

strategies simulations. 
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Next, the data sets 𝐒 = {𝑆1, 𝑆2, … 𝑆1000}, 𝐘
𝑠𝑡𝑑 = {𝐲1

𝑠𝑡𝑑 , 𝐲2
𝑠𝑡𝑑 , … , 𝐲1000

𝑠𝑡𝑑 } and 𝐘𝑡𝑢𝑏𝑒 =

{𝐲1
𝑡𝑢𝑏𝑒 , 𝐲2

𝑡𝑢𝑏𝑒 , … , 𝐲1000
𝑡𝑢𝑏𝑒} were used to train neural networks to estimate 𝑥̅𝑡

1, 𝑢̅𝑡
2 and 𝐱0𝑡 as 

functions of (𝐮𝑖
𝑠𝑝 , 𝐱0𝑖) for each control strategy. Two important points were considered in 

this step. First, 𝐱𝑖
𝑠𝑝

 was not utilized in the neural network training procedure since it is 

strongly correlated to 𝐮𝑖
𝑠𝑝

, and therefore its addition to the input set would be redundant. 

Second, the surrogate model building procedures were restricted to the subsets 𝑥̅𝑡
1 ⊆ 𝐱̅𝑡 

and 𝑢̅𝑡
2 ⊆ 𝐮̅𝑡 since the average raw material consumption, 𝑢̅𝑡

2, and the average impurity 

concentration out of the reactor, 𝑥̅𝑡
1 are the only subset of variables relevant to the 

scheduling problem. The neural networks were trained using MATLAB Deep Learning 

Toolbox, and predictors in the form of Eq. (6a) were obtained.  

The data sets 𝐒 = {𝑆1, 𝑆2, … 𝑆1000} and 𝐅𝑠𝑡𝑑 = {𝐟1
𝑠𝑡𝑑 , 𝐟2

𝑠𝑡𝑑 , … , 𝐟1000
𝑠𝑡𝑑 } and 𝐅𝑡𝑢𝑏𝑒 =

{𝐟1
𝑡𝑢𝑏𝑒, 𝐟2

𝑡𝑢𝑏𝑒, … , 𝐟1000
𝑡𝑢𝑏𝑒} were then used to train neural network classifiers to estimates 

feasibility functions 𝜉𝑠𝑡𝑑(∙) and 𝜉𝑡𝑢𝑏𝑒(∙). The neural networks were trained using 

MATLAB Deep Learning Toolbox, and predictors in the form of Eq. (6b) were obtained. 

Finally, two integrated scheduling and control problems were formulated: 1. The standard 

integrated problem, obtained by incorporating the surrogates trained with standard MPC 

simulation data in the scheduling model; and 2. The robust integrated problem, obtained 

by incorporating the surrogates trained with tube-based MPC simulation data in the 

scheduling model. The resulting integrated problems belong to the class of Nonlinear 

Programming Problems (NLP), and were solved using GAMS CONOPT on a 64-bit 

Windows system with Intel Core i7-6700 CPU at 2.60 GHz and 8GB RAM. The 

optimization results are shown in Table 4.2. 
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The optimization solution includes setpoints 𝐮𝑡
𝑠𝑝

 that are used to simulate the 

system, and calculate the actual costs of operation. Difference between predicted costs and 

actual costs of operation are expected because of the approximation due to the neural 

network regressors, and because of the disturbances affecting the system. The actual costs 

of operation are included in Table 4.2, and Figure 4.6 shows the state and control dynamic 

behavior for the entire scheduling horizon. 

The robust strategy results in a slightly higher operational cost when compared to 

the standard strategy. However, the benefits regarding the feasibility of the scheduling 

solution from a control perspective are incontestable. Tube-based MPC manages to avoid 

constraints violation throughout most of the operation, while standard MPC fails to respect 

both the control and the scheduling constraints. It is safe to say that tube-based MPC 

outperforms standard MPC from both scheduling and control perspectives. 

 

Table 4.2 - Optimal schedule results for case study 1 

Case Solution Time Predicted Cost ($) Actual cost ($) Difference (%) 

Standard  0.608 s $ 367.42 $ 369.66 0.61% 

Robust 1.216 s $ 369.81 $ 370.58 0.21% 
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Figure 4.6 - State and input closed-loop behavior of the system in a 24hr simulation.  

Two control strategies (standard MPC and tube-based MPC) are tracking setpoints 

defined by the scheduling optimization 
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4.5.2 Milk powder optimization using a Spray Dryer 

In this section, a more complex scheduling and control problem is addressed. Consider the 

operation of a spray dryer, such as the one presented by Petersen, Poulsen [113]. The spray 

dryer is used to produce milk powder, and the main challenges in its operation are related 

to bringing the residual moisture of the powder below some specification, while avoiding 

that powder sticks to the chamber walls and reducing energy consumption. The spray dryer 

under consideration is depicted in Figure 4.7. 

 

Figure 4.7 -A schematic of the spray dryer 

Hot inlet air feeds the spray dryer chamber (SD) around the high-pressure nozzles. 

The nozzles disperse the liquid feed into droplets. Water from the droplets evaporates by 

absorbing heat from the hot air. In this process, the residual moisture of the droplets 

decreases. The dried product then enters a static fluid bed (SFB) where it is further dried. 

Mass and energy balances for this system are given in Eq. 11.  

𝑚𝑎

𝑑𝑌𝑎𝑏
𝑑𝑡

= (𝐹𝑚𝑎𝑖𝑛 + 𝐹𝑠𝑓𝑏)(𝑌𝑎𝑚𝑏 − 𝑌𝑎𝑏) + 𝐹𝑎𝑑𝑑(𝑌𝑎𝑑𝑑 − 𝑌𝑎𝑏) + 𝑅𝑎𝑤 (11a) 
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𝑚𝑏

𝑑𝑋𝑎𝑏
𝑑𝑡

= 𝐹𝑠(𝑋𝑓 − 𝑋𝑎𝑏) − 𝑅𝑎𝑤 (11b) 

𝐶𝑎
𝑑𝑇𝑆𝐷
𝑑𝑡

= −𝜆𝑅𝑎𝑤 + 𝐹𝑚𝑎𝑖𝑛∆ℎ𝑑𝑎,𝑚𝑎𝑖𝑛
𝑎 + 𝐹𝑠𝑓𝑏∆ℎ𝑑𝑎,𝑠𝑓𝑏

𝑎 + 𝐹𝑎𝑑𝑑∆ℎ𝑑𝑎,𝑎𝑑𝑑
𝑎 + 𝐹𝑚𝑎𝑖𝑛𝑌𝑎𝑚𝑏

𝐹𝑠𝑓𝑏𝑌𝑎𝑚𝑏∆ℎ𝑣,𝑠𝑓𝑏
𝑎 + 𝐹𝑎𝑑𝑑𝑌𝑎𝑑𝑑∆ℎ𝑣,𝑎𝑑𝑑

𝑎 + 𝐹𝑠∆ℎ𝑠
𝑎 + 𝐹𝑠𝑋𝑓∆ℎ𝑤

𝑎 − 𝑄𝑎𝑏 − 𝑄𝑎

 (11c) 

𝐶𝑏
𝑑𝑇𝑆𝐹𝐵
𝑑𝑡

= 𝐹𝑠𝑓𝑏∆ℎ𝑑𝑎
𝑏 + 𝐹𝑠𝑓𝑏∆ℎ𝑣

𝑏 + 𝐹𝑠∆ℎ𝑠
𝑏 + 𝐹𝑠𝑋𝑎𝑏∆ℎ𝑤

𝑏 +𝑄𝑎𝑏 − 𝑄𝑏 (11d) 

where  

∆ℎ𝑖,𝑗
𝑎 = ∫ 𝐶𝑝,𝑖

𝑇𝑗

𝑇𝑆𝐷

(𝑇)𝑑𝑇, 𝑖 = {𝑑𝑎, 𝑣, 𝑤, 𝑠},   𝑗 = {𝑚𝑎𝑖𝑛, 𝑠𝑓𝑏, 𝑎𝑑𝑑} (11e) 

∆ℎ𝑖,𝑗
𝑏 = ∫ 𝐶𝑝,𝑖

𝑇𝑗

𝑇𝑆𝐹𝐵

(𝑇)𝑑𝑇, 𝑖 = {𝑑𝑎, 𝑣, 𝑤, 𝑠},   𝑗 = {𝑚𝑎𝑖𝑛, 𝑠𝑓𝑏, 𝑎𝑑𝑑} (11f) 

𝑄𝑎𝑏 = 𝑘1(𝑇𝑆𝐷 − 𝑇𝑆𝐹𝐵) + 𝑘2𝑋𝑓 + 𝑘3𝑇𝑓 − 𝑘4 (11g) 

𝑄𝑎 = 𝑘5(𝑇𝑆𝐷 − 𝑇𝑎𝑚𝑏) (11h) 

𝑄𝑏 = 𝑘6(𝑇𝑆𝐹𝐵 − 𝑇𝑎𝑚𝑏) (11i) 

It is assumed that the air and the product are in equilibrium, i.e., that the temperature 

of the air, 𝑇𝑆𝐷 and 𝑇𝑆𝐹𝐵, and the temperature of the product are identical. ∆ℎ{∙}
𝑎  and ∆ℎ{∙}

𝑝
 

are the enthalpy changes for the humid air and powder inlets and outlets on the 𝑆𝐷 and 

𝑆𝐹𝐵 stages. 𝐶𝑎 and 𝐶𝑏 are the heat capacities of the hold-up of air and powder. 𝜆𝑅𝑎𝑤 is the 

heat of evaporation and 𝑄𝑎𝑏 describes the heat exchange between the SD and SFB stages. 

𝑄𝑎 and 𝑄𝑏 are heat losses to the surroundings. 𝐹𝑚𝑎𝑖𝑛 and 𝐹𝑠𝑓𝑏 are the dry base inlet air 

flows. The parameters 𝑌𝑎𝑑𝑑, 𝐹𝑎𝑑𝑑 and 𝑇𝑎𝑑𝑑 are used to compensate for air leakages and un-

modeled inlet air flows such as nozzle cooling air. 𝐹𝑠 is the flow of feed solids, 𝐹𝑠 = 𝐹𝑓𝑆𝑓. 

𝑋𝑓 and 𝑇𝑓 are the dry base feed concentration and feed temperature. 𝑚𝑎 is the mass of dry 

air and 𝑚𝑏 is the mass of dry powder. The parameters for this problem are given in Table 

4.3. 
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Table 4.3 - Parameters for the spray dryer model 

Symbol Value Unit 
 

𝐶𝑎 61.634 kJ/K 
 

𝐶𝑏 148.26 kJ/K 
 

𝑘1 0.2725 kW/K 
 

𝑘2 1.5017 kW 
 

𝑘3 0.0605 kW 
 

𝑘4 27.276 kW 
 

𝑘5 0.24735 kW/K 
 

𝑘6 -0.03198 kW/K 
 

𝐹𝑎𝑑𝑑 248.54 kg/h 
 

𝑌𝑎𝑑𝑑 9.4566 g/kg 
 

𝑇𝑎𝑑𝑑 60.018+273.15 K 
 

𝑇𝑓 324.66 K 
 

𝑆𝑓 0.4897  
 

 

We assume that the evaporation takes place in the SD stage only with the drying 

rate determined from conditions in the SFB. The product drying rate is governed by the 

thin layer equation: 

𝑅𝑎𝑤 =
𝑘7𝑘8
𝑘8 + 𝐹𝑠

(
𝑇𝑓

𝑇0
)
𝑘9

(𝑋𝑎𝑏 − 𝑋𝑒𝑞)𝑚𝑏 (12) 

where 𝑚𝑏 is the mass of dry powder. The equilibrium moisture, 𝑋𝑒𝑞, describes the moisture 

content at which water cannot be evaporated from the powder any longer, and it is given 

by Eq. 13. 
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𝑋𝑒𝑞 = 𝐶 ∙ 𝐾 ∙ 𝑋𝑚 ∙
𝑅𝐻

(1 − 𝐾 ∙ 𝑅𝐻)(1 − 𝐾 ∙ 𝑅𝐻 + 𝐶 ∙ 𝐾 ∙ 𝑅𝐻)
 (13) 

where 𝑋𝑚 = 0.030723, 𝐶 = 2.6535 ∙ 10−7exp (
6292.1

𝑇
) and 𝐾 = 0.057882 exp (

945.16

𝑇
). 

𝑋𝑚, 𝐶 and 𝐾 are Guggenheim-Anderson-de-Boer constants related to monolayer and 

multilayer properties. The relative humidity 𝑅𝐻 is calculated from 𝑇𝑆𝐹𝐵 and 𝑌𝑎𝑏.  

One important consideration in the spray dryer operation is the stickiness of the 

produced particles. Sticky particles form depositions on the walls of the spray dryer, and 

therefore should be avoided during operation. Stickiness can be predicted by glass 

transition temperature given by: 

𝑇𝑔 =
𝑇𝑔𝑝 + 𝑘𝑍𝑇𝑔𝑤

1 + 𝑘𝑍
 (14) 

in which 𝑇𝑔𝑝 = 144.8
𝑜𝐶 and 𝑇𝑔𝑤 = −137𝑜𝐶. The obtained glass transition temperatures, 

𝑇𝑔
𝑆𝐷 and 𝑇𝑔

𝑆𝐹𝐵, are the upper limiting temperatures of which deposits form on the chamber 

walls of the spray dryer. The moisture content of the powder is given by Eq. (15) 

𝑍 = {
(𝐴𝑝 + 𝐵𝑝𝑇𝑆𝐷) exp𝐶𝑝𝑅𝐻(𝑇𝑆𝐷 , 𝑌𝑎𝑏)        𝑓𝑜𝑟 𝑆𝐷         

𝑋𝑎𝑏                                                           𝑓𝑜𝑟 𝑆𝐹𝐵  
 (15) 

in which 𝐴𝑝 = 0.193, 𝐵𝑝 = −0.000435 and 𝐶𝑝 = 4.51.  

Control and state constraints of the problem include the maximum capacity of the 

feed pump, which limits the feed flow such that 0𝑘𝑔/ℎ ≤ 𝐹𝑓 ≤ 120𝑘𝑔/ℎ. The risk of 

powder explosions and the risk of scorched particles creates upper limits on the allowable 

inlet temperatures and, consequently, 𝑇𝑚𝑎𝑖𝑛 ≤ 120𝑜𝐶 and 𝑇𝑠𝑓𝑏 ≤ 200𝑜𝐶. To avoid 

depositions of sticky particles on the spray dryer surfaces, the temperatures 𝑇𝑆𝐷 , 𝑇𝑆𝐹𝐵 must 

be below the glass transition temperatures in the 𝑆𝐷 stage, 𝑇𝑆𝐷 ≤ 𝑇𝑔
𝑆𝐷, and the SFB stage, 
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𝑇𝑆𝐹𝐵 ≤ 𝑇𝑔
𝑆𝐹𝐵. Finally, the powder moisture must be below a maximum limit, 𝑋𝑎𝑏 ≤

𝑋𝑚𝑎𝑥 = 35 g/kg.  

In summary, the state variables of the system include the powder moisture 𝑋𝑎𝑏, the 

air humidity in the outlet of the spray dryer, 𝑌𝑎𝑏, the temperature of the spray dryer 

chamber, 𝑇𝑆𝐷 , and the temperature on the static fluid bed, 𝑇𝑆𝐹𝐵. Therefore, 𝐱 =

[𝑌𝑎𝑏 , 𝑋𝑎𝑏, 𝑇𝑆𝐷 , 𝑇𝑆𝐹𝐵]. The input variables include the powder feed flow, 𝐹𝑓, as well as the 

temperature of the main air inlet, 𝑇𝑚𝑎𝑖𝑛, and the temperature of the SFB air inlet, 𝑇𝑠𝑓𝑏. 

Therefore, 𝐮 = [𝐹𝑓 , 𝑇𝑚𝑎𝑖𝑛, 𝑇𝑠𝑓𝑏]. The constraints include soft bounds on state variables and 

hard bounds on the input variables. In the MPC implementation, Eq. 14 was linearized 

around the nominal state in order to keep the constraint set polyhedral.  

We further assume that the ambient humidity, 𝑌𝑎𝑚𝑏, acts as a disturbance to the 

system, taking the form 𝑌𝑎𝑚𝑏 = 𝐴 sin(𝜔𝑘), where 𝐴 and 𝜔 are random values generated 

within the intervals [0,0.0002] and [0,1], respectively.  

Before implementing MPC, the dynamic model of this system was linearized 

around the nominal setpoint 𝐱𝑠𝑝 = [19.7, 34.8, 59,68] and 𝐮𝑠𝑝 = [90, 128,117]. The 

resulting system assumed the generic form a state space system with additive disturbance, 

𝐱𝑘+1 = 𝐴𝐱𝑘 + 𝐵𝐮𝑘 +𝐰𝑘. Both standard and tube-based MPC were implemented using 

MPCtoolbox/CasADi, using a Matlab interface [111, 112].  Simulations for the non-

deterministic system for 10 random choices of 𝐴 and 𝜔 are shown in Figure 4.8. The initial 

state of the system was 𝐱0 = [19, 34.7, 71, 65], and the setpoints were 𝐱𝑠𝑝 =

[21.7, 34.8, 58, 67] and 𝐮𝑠𝑝 = [80, 119, 117]. 
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Figure 4.8 - Simulatiom of the state trajectory for a system affected by disturbances 

On the left, a standard MPC was implemented. On the right, a tube-based MPC was 

implemented 

In this problem, we assume that the only independent setpoint is the feed flow rate, 

𝐹𝑓
𝑠𝑝

. The remaining setpoints are defined as steady states of the system meeting all control 

and state constraints previously defined, while minimizing the air temperature setpoints 

𝑇𝑚𝑎𝑖𝑛
𝑠𝑝

 and 𝑇𝑠𝑓𝑏
𝑠𝑝

. The system was then simulated for 1000 sample points 𝑆𝑖 =
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(𝐱𝑖
𝑠𝑝, 𝐮𝑖

𝑠𝑝, 𝐱0𝑖), and the simulation data for 𝐲𝑖
𝐬𝐭𝐝 = (𝐱̃𝑖, 𝐱̅𝑖

𝑠, 𝐮̅𝑖
𝑠),  𝐲𝑖

𝐭𝐮𝐛𝐞 = (𝐱̃𝑖, 𝐱̅𝑖
𝑠, 𝐮̅𝑖

𝑠), 𝐟𝑖
𝑠𝑡𝑑 

and 𝐟𝑖
𝑡𝑢𝑏𝑒 was stored. The data sets 𝐒 = {𝑆1, 𝑆2, … 𝑆1000}, 𝐘

𝑠𝑡𝑑 = {𝐲1
𝑠𝑡𝑑 , 𝐲2

𝑠𝑡𝑑 , … , 𝐲1000
𝑠𝑡𝑑 }, 

𝐘𝑡𝑢𝑏𝑒 = {𝐲1
𝑡𝑢𝑏𝑒 , 𝐲2

𝑡𝑢𝑏𝑒 , … , 𝐲1000
𝑡𝑢𝑏𝑒}, 𝐅𝑠𝑡𝑑 = {𝐟1

𝑠𝑡𝑑, 𝐟2
𝑠𝑡𝑑 , … , 𝐟1000

𝑠𝑡𝑑 } and 𝐅𝑡𝑢𝑏𝑒 =

{𝐟1
𝑡𝑢𝑏𝑒, 𝐟2

𝑡𝑢𝑏𝑒, … , 𝐟1000
𝑡𝑢𝑏𝑒} were used to build surrogate models of the system, that were further 

incorporated in the scheduling model given by Eq. 15. 

min
𝐮𝑡
𝑠𝑝
∑𝑝𝑓

𝑡

∙ 𝑢̅𝑡
1 ∙ 𝜏 +∑𝑝𝑡

ℎ∆𝐻

𝑡

 (15a) 

𝐼𝑡 = 𝐼𝑡−1 + 𝑢̅𝑡
1 ∙ 𝜏 − 𝐷𝑡, ∀𝑡 (15b) 

𝐼0 = 0 (15c) 

0 ≤ 𝐼𝑡 ≤ 𝐼,̅ ∀𝑡 (15d) 

∆ℎ𝑑𝑎,𝑚𝑎𝑖𝑛,𝑡
𝑎 = ∫ 𝐶𝑝,𝑑𝑎

𝑇̅𝑚𝑎𝑖𝑛,𝑡

𝑇𝑆𝐷

(𝑇)𝑑𝑇 (15e) 

∆ℎ𝑣,𝑚𝑎𝑖𝑛,𝑡
𝑎 = ∫ 𝐶𝑝,𝑣

𝑇̅𝑚𝑎𝑖𝑛,𝑡

𝑇𝑆𝐷

(𝑇)𝑑𝑇 (15f) 

∆ℎ𝑑𝑎,𝑡
𝑏 = ∫ 𝐶𝑝,𝑑𝑎

𝑇̅𝑠𝑓𝑏,𝑡 

𝑇𝑆𝐷

(𝑇)𝑑𝑇 (15g) 

∆ℎ𝑣,𝑡
𝑏 = ∫ 𝐶𝑝,𝑣

𝑇̅ 𝑠𝑓𝑏,𝑡

𝑇𝑆𝐷

(𝑇)𝑑𝑇 (15h) 

∆𝐻𝑡 = 𝐹𝑚𝑎𝑖𝑛(∆ℎ𝑑𝑎,𝑚𝑎𝑖𝑛,𝑡
𝑎 + 𝑌𝑎𝑚𝑏∆ℎ𝑣,𝑚𝑎𝑖𝑛,𝑡

𝑎 ) + 𝐹𝑠𝑓𝑏(∆ℎ𝑑𝑎,𝑡
𝑏 + 𝑌𝑎𝑚𝑏∆ℎ𝑣,𝑡

𝑏 ) (15i) 

The scheduling problem for the spray dryer consists of selecting setpoints 𝐮𝑡
𝑠𝑝

 in 

order to minimize the costs of operating the system. A single product is produced by the 

spray dryer, and the production flow can vary over time. The cost related to the raw material 

consumption, as well as costs related to energy consumption of the system. The energy 

consumption is directly related to the spray dryer inlet air temperatures, since these 
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temperatures must be heated in an energy intensive operation prior to SD feeding step. The 

energy price profile is shown in Figure 4.9. Equations (15e) to (15i) represent the energy 

consumption calculations, and the parameters for these equations were obtained from 

Green and Perry [67]. The energy prices vary at every scheduling slot of duration 𝜏 = 1 

hour. Therefore, it is expected that production levels will rise whenever the energy 

consumption cost is low, building up inventory to be consumed when energy prices spike. 

Equations (15b) to (15d) set material balances for the storage unit, inventory capacity 

constraints and initial inventory levels. A 1-week scheduling horizon is considered, with 

scheduled deliveries 𝐷𝑡 at the end of each day, i.e., 𝑡 ∈ {24, 48, 72, 96, 120, 144, 168}. We 

assume a steady demand of 900kg/day. 

 

Figure 4.9 - The energy cost profile 

Note that 𝐮̅𝑡 = [𝐹̅𝑓,𝑡 , 𝑇̅𝑚𝑎𝑖𝑛,𝑡, 𝑇̅𝑠𝑓𝑏,𝑡] are needed for scheduling calculations. 

Predictors for these variables are built based on the sets of data generated in the simulation, 

as well as a classification model that determines the feasible space of operation of standard 

and tube-based MPC. The surrogate models are incorporated in the scheduling problem, 

and the problem is solved to local optimality using GAMS IPOPT on a 64-bit Windows 
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system with Intel Core i7-6700 CPU at 2.60 GHz and 8GB RAM. The optimization results 

are shown in Table 4.4. 

The solution of the optimization problem is implemented in the control simulation, 

and the results are shown in Table 4.4 and Figure 4.10. As in case study 1, differences 

between actual and predicted costs can be noted, and such differences are attributed to 

inaccuracies of the neural network regressors and disturbances affecting the system. The 

profile of the state variables reflects the variations in production flows, which decreases 

whenever spikes on the energy costs can be observed. The results show that, while robust 

MPC is seem as a conservative control solution when compared to deterministic MPC, the 

differences from a scheduling and economical point of view may be insignificant. 

Furthermore, while tube-based MPC manages to avoid constraints violation throughout the 

entire operation, standard MPC fails to respect the quality requirements of the finished 

product, i.e. 𝑋𝑎𝑏 ≤ 35 g/kg at several points. It was expected that the feasibility constraints 

in the integrated problem would avoid such violations. However, uncertainties can make 

the feasible region of standard MPC unpredictable.  

Table 4.4 - Optimal schedule results for case study 2 

Case Solution Time Predicted Cost ($) Actual cost ($) Difference (%) 

Standard  72 s $ 6609.89 6627.43 0.27% 

Robust 60 s $ 6618.71 6626.93 0.12% 
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Figure 4.10 - The state behavior of the system in a 168-hour simulation  

Two control strategies (standard MPC and tube-based MPC) are tracking setpoints 

defined by the scheduling optimization 

 



131 

 

 

 

4.6   Conclusions 

In this work, a framework for the integration of scheduling and control problems 

was proposed. Uncertainties at the control level of the problem were considered, and two 

process control strategies were implemented: a standard Model Predictive Control strategy, 

and a tube-based Model Predictive Control strategy. Tube-based MPC implicitly takes into 

account the effect of disturbances and the feedback nature of the control when making 

control decisions. Therefore, tube-based MPC can cope with disturbances affecting the 

system, and presents a superior performance when compared to standard MPC regarding 

constraint violations. Both MPC strategies were used to generate a data set representative 

of historical operation of the systems in consideration. The data sets were then used to train 

neural networks to approximate functions 𝜙 𝑥̃, 𝜙 𝑥̅, 𝜙𝑢 and 𝜉, capturing the closed loop 

behavior of scheduling relevant variables, as well as the feasible space of operation of the 

control system. The neural network predictors were incorporated in the scheduling 

problem, and two optimization problems were solved for each case study: the first problem 

integrating scheduling and standard MPC, and the second problem integrating scheduling 

and robust MPC. The optimization solutions were then implemented in the control layer of 

the problem, and the system was simulated for the entire scheduling horizon. The 

simulation results clearly show the advantages of utilizing a robust approach in relation to 

the uncertainties at the control level, from both scheduling and control perspectives. 

This work extends the concept of simulation-optimization for integration of 

decision-making processes, first introduced in Chapter 2. To address limitations of the 

previous approach, the simulation-optimization is solved using surrogate models. By 

obtaining an algebraic model for the input-output relationship for the control level 
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simulation, we expand the variety of problems that can be solved through the framework, 

opening the possibility of including discrete decisions in the integrated problem, and the 

possibility of using a variety of optimization algorithms that could not be employed in the 

previous framework 

Future works should focus on handling dimensional problems, taking advantage of 

techniques that the machine learning field provides, specially related to rigorous 

approaches for feature selection in the surrogate training step of the framework. Future 

works should also address uncertainties in multiple levels of the integrated problem, as 

well as the uncertainties related to the surrogate models. 
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Nomenclature 

Control Problem  

𝛼 Tightening state constraint set factor 

𝛽 Tightening input constraint set factor 

∆ Control sample time 

𝑘 Discretization steps of the control problem 

𝑁 Prediction horizon of the control problem 

𝑃𝑓 Terminal penalty matrix 

ℙ𝑁 Tube-based control problem 

ℙ̅𝑁 Nominal control problem  

𝑄 State penalty matrix 

𝑅 Input penalty matrix 

𝐮𝑘 Control input (manipulated variables) vector  

𝐮𝑠𝑝 Input setpoints 

𝐔 Input sequences for 𝑁 − 1 time steps 

𝕌 Input constraint set 

𝐯𝑘 Nominal input vector 

𝐯𝑠𝑝 Nominal input setpoint 

𝕍 Nominal input constraint set 

𝐰 Disturbances at control problem 

𝐱𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Current state of the system 

𝐱𝑘 State vector 

𝐱𝑠𝑝 State setpoints 
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𝐱𝑁 Terminal state of the system 

𝕏 State constraint set 

𝐳𝑘 Nominal state vector  

𝐳𝑠𝑝 Nominal state setpoint 

ℤ Nominal state constraint set 

 

Neural Networks 

𝐛𝑖𝑛𝑝𝑢𝑡 Bias in the input layer 

𝐛ℎ Bias in the output layer 

𝐿𝑜𝑠𝑠 Loss function 

𝑂 Number of nodes in the hidden layer 

𝑅 Predictor 

𝐰𝑖𝑛𝑝𝑢𝑡 Weights in the input layer 

𝐰ℎ Weights in the output layer 

 

Integrated Problem 

𝜉 Classification model approximating feasible region of operation of 

control problem 

𝜏 Duration of each scheduling slot 

𝜙 Surrogate models 

𝜓 Control law 

𝐶𝑜𝑠𝑡𝑡 Operation cost at time 𝑡 

𝑘 Control discretization periods 
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𝐾 Number of control steps 𝑘 within a scheduling slot 𝑡 

𝑙 Scheduling constraints 

𝑡 Scheduling discretization periods 

𝐱𝑘𝑡 State vector at step 𝑘 in scheduling slot 𝑡 

𝐱𝑡
𝑠𝑝

 State setpoints for scheduling slot 𝑡 

𝐱̃𝑡 State vector estimation at scheduling slot 𝑡 

𝐱̅𝑡 Average state values at scheduling slot 𝑡 

𝐱̅𝑡
𝑠 Average state values for a subset 𝑠 of variables at scheduling slot 𝑡 

𝕏 State constraint set 

𝐮𝑘𝑡 Input vector at step 𝑘 in scheduling slot 𝑡 

𝐮𝑡
𝑠𝑝

 Input setpoints for scheduling slot 𝑡 

𝐮̃𝑡 Input vector estimation at scheduling slot 𝑡 

𝐮̅𝑡 Average input values at scheduling slot 𝑡 

𝐮̅𝑡
𝑠 Average input values for a subset 𝑠 of variables at scheduling slot 𝑡 

𝕌 Input constraint set 
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Integration of Planning, Scheduling and Control 

 

Abstract: In this chapter, we present a framework to achieve integration of planning, 

scheduling and control problems. The framework builds upon the concepts of data-driven 

feasibility analysis and surrogate models discussed in the previous chapter, as well as the 

concept of feature selection. We apply the proposed methodology to a complex case study, 

involving the optimization of an enterprise of air separation plants.  

 

 

5.1   Introduction 

The ultimate goal of enterprise-wide optimization is the integration of planning, scheduling 

and control decisions. Few works in the literature attempted to address this problem, which 

poses challenges related to the dimensionality and the complexity of the resulting model. 

In this chapter, we present a systematic framework to achieve the overall integration of 

decision-making processes. The framework consists of formulating the integrated problem 

as a grey-box optimization problem, and using data-driven feasibility analysis and 

surrogate models to approximate the unknown black-box constraints. We follow a 

systematic procedure to achieve this integration, consisting of two building blocks (Figure 

5.1): first, we address the integration of scheduling and control. Next, we address the 

integration of planning and scheduling.  To handle dimensionality issues, we introduce the 

concept of feature selection when building the surrogate models. The methodology is 

applied to the optimization of an enterprise of air separation plants.  

This chapter is organized as follows. In section 5.2, a background in grey-box 

optimization and feature selection methodologies is provided, building the theoretical basis 
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of the proposed framework. In section 5.3, the problem in consideration is summarized, 

and section 5.4 presents the methodology proposed to integrate planning, scheduling and 

control problems. The performance of the proposed framework is demonstrated through 

case studies in section 5.5. Final conclusions and future work are discussed in section 5.6. 

 

Figure 5.1 - Building blocks for enterprise-wide optimization 

 

5.2   Background 

5.2.1 Grey-box optimization 

Grey-box problems are characterized by partial or total lack of closed-form equations 

describing the constraints and the objective of the problem. Such problems arise in a variety 

of fields including chemical engineering, geosciences, financial management, molecular 

engineering and aerospace engineering [114]. Grey-box problems primarily rely on 

expensive simulations, input/output data, or phenomena which have not yet been defined 

by physics-based mathematical equations. 

A general constrained grey-box nonlinear optimization problem is defined as: 
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min
𝒙
𝑓(𝐱) 

𝑠. 𝑡. 𝑔𝑚(𝐱) ≤ 0, ∀𝑚 ∈ {1,… ,𝑀} 

𝑔𝑘(𝐱) ≤ 0, ∀𝑘 ∈ {1,… , 𝐾} 

𝐱 ∈ 𝕏 

(1) 

where 𝐾 represents the total number of constraints with known closed-form while 𝑀 

represents the total number of constraints with unknown closed-form. Since no explicit 

equations for 𝑔𝑚(∙) are available, the direct use of deterministic optimization algorithms 

based on analytical 𝐶2 functions is prohibitive.  

The general formulation in Eq. (1) can be adopted in the integration of decision-

making processes as follows: in the integration of scheduling and control, scheduling 

constraints take the place of 𝑔𝑘(∙) while closed-loop control behavior of the dynamic 

system takes the place of 𝑔𝑚(∙). In the integration of planning and scheduling, planning 

constraints take the form of 𝑔𝑘(∙), while closed-loop scheduling-control behavior takes the 

place of 𝑔𝑚(∙). In this work, surrogate models and data-driven feasibility methodologies 

will be used to approximate 𝑔𝑚(∙), which provides an algebraic expression for such 

equations and allows the use of deterministic optimization algorithms to solve problem 1. 

In a sense, the grey-box structure has been implicitly utilized in the previous chapters. 

However, by explicitly defining the integration of decision-making processes as a grey-

box optimization problem, we expand the class of strategies that can be used to solve the 

integrated problem. A variety of strategies have been proposed in the literature in the field 

of grey-box optimization [115-119], and the integration of decision-making can greatly 

benefit from the implementation of theses strategies.  
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5.2.2 Feature selection 

Feature selection methodologies are the focus of much research in the area of machine 

learning applications. Feature selection can be viewed as the systematic selection of a 

subset of variables 𝐳 ∈ ℤ ⊆ 𝕏 that are most relevant to predicting 𝑦. The objectives of 

feature selection is three-fold: improving the prediction performance, providing faster and 

more cost-efficient predictors, and providing a better understanding of the underlying 

process that generated the data [110]. A wide variety of feature selection procedures has 

been proposed in the literature, and they are usually classified in filter methods, wrapper 

methods and embedded methods.  

 Filter methods apply statistical tests to the dataset in order to quantify the 

correlation between a variable (or attribute) and the output 𝑦 in consideration [120]. They 

are a pre-processing step in the predictor training process, and they are independent of the 

choice of the predictor. Examples of statistical tests include the Pearson correlation, 

Fisher’s criterion and mutual information estimation. Filter methods are usually univariate, 

i.e., they consider features independently, one at a time. After a statistical test has been 

applied to the dataset, a score is assigned to each feature, and a subset of features with high 

scores are selected to be further used in the training of the predictor (surrogate model). The 

ranking of features may not be optimal. However, filter methods are efficient (since they 

only require the computation of 𝑑 scores, where 𝑑 is the total number of features); and 

statistically scalable [121].  

 Wrapper methods utilize the learning machine (the predictor, or the surrogate) of 

interest to score subsets of variables according to their usefulness to a given predictor. They 

essentiality treat the machine as a black-box, and use a greedy search strategy to include or 
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remove variables into the subset of selected features according to the performance of the 

predictor. Performance is usually measure using a validation set or by cross-validation. 

Wrapper methods usually achieve better recognition rates when compared to filter 

methods, since they are tuned to the specific interactions between the predictors and the 

dataset. However, wrapper methods are computationally expensive and can become 

infeasible when applied to datasets with large number of features. In this work, a forward 

selection wrapper methodology is implemented for feature selection, and the methodology 

is further described in section 5.4. 

 Embedded methods perform variable selection in the process of training and are 

usually specific to given learning machines. An example of embedded method is the use 

of the sensitivity of the objective function used for machine training purposes to a 

determined feature 𝑥𝑖. The subset of features with highest impact in the objective function 

is selected as the final set to be used in predictions [110]. 

It is important to note the differences between feature selection and dimensionality 

reduction strategies, such as principal component analysis and singular value 

decomposition. Both methods seek to reduce the number of attributes in a dataset. 

However, dimensionality reduction techniques do so by creating new combinations of 

attributes, while feature selection techniques include and exclude attributes from a dataset 

without modifying them. Therefore, while dimensionality reduction techniques may 

preserve a higher level of information from the original dataset, feature selection 

techniques preserve the identity and the physical meaning of each attribute. Therefore, 

feature selection provides a useful way of reducing the dimensionality of a problem while 

also providing insights of the underlying physical process.  
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5.3   Problem definition 

Consider an air separation unit that produces gas nitrogen (GN2), gas oxygen (GO2), and 

liquid nitrogen (LN2). The unit operates by first compressing ambient air in a large 

multistage compressor, followed by removal of water, carbon dioxide and hydrocarbons, 

and by cooling in a multi-stream heat exchanger. This air feed mixture of oxygen, nitrogen 

and argon is then split into two substreams. The first stream consists of pure air entering 

the bottom of the high-pressure column (MA) and the second stream consists of expanded 

air entering the 8th tray of the low-pressure column (EA). The high-pressure column (HPC) 

contains 40 trays and operates at 6.2-6.4 bars, while the low-pressure column operates at 

1.2-1.35 bars and also contains 40 trays. The reboiler of the low-pressure column is 

integrated with the condenser of the high-pressure column. The main products of the high-

pressure column are pure nitrogen (GN2) (99.99%) and crude liquid oxygen (~50%). The 

crude oxygen stream is fed into the 20th tray of the low-pressure column. A high purity 

separation is achieved in the low-pressure column, leading to nitrogen gas (GN2) with 

~99.9% purity, liquid nitrogen (LN2) with ~99.9% and oxygen (GO2) with ~95% purity 

as products. A schematic of the air separation unit is given in Figure 5.2.  

 The air separation unit operates in a continuous mode and is capable of flexible 

operation, in the sense that the production rate (defined in terms of the flow rate of the gas 

nitrogen product) can assume any value within a given range. Furthermore, the operation 

of the air separation unit consumes significant amounts of electricity, specially related to 

the unit operations of compression. It is assumed the electricity needed for the plant 

operation is purchased in a day-ahead market, for which accurate price forecasts for an 
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entire week are available. The electricity prices in the day-ahead market fluctuate in an 

hourly basis. 

 

Figure 5.2 - Air separation unit schematic 

We aim to solve a scheduling problem which takes into consideration the 

electricity prices fluctuations to optimize the operation of an air separation plant. We 

assume that a storage system is available for the finished liquid product; gas nitrogen can 

be liquefied and further vaporized to meet gas demand; and the production targets for each 

product (GN2, GO2, LN2) are given. The production targets for gas products are given as 

a steady flow rate that must be satisfied throughout the entire schedule, while the 

production targets for the liquid nitrogen should be met by the end of the scheduling 

horizon. A scheduling horizon of one week is considered, and it is discretized in hourly 

periods. Production rates can fluctuate (thereby changing the electricity demand of the 
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process) and the product demand can be met either directly (i.e., by the plant itself) or by 

a combination of plant production and depleting the inventory of stored product. Therefore, 

the goal of the scheduling problem is to define hourly production rates setpoints that 

minimize operation costs, which achieving the given production targets. A simplified 

network of the air separation process is given in  

The scheduling problem is highly dependent on the control performance of the 

system: the energy consumption varies with the flows of main air 𝑀𝐴 and expanded air 

𝐸𝐴; and the production rates of GN2, LN2 and GO2 vary with the initial state of the system, 

control actions, and changes in the setpoints. Therefore, it is essential to consider the 

closed-loop control behavior, and solved an integrated scheduling and control problem 

in order to define the overall optimal production cost. 

Once the scheduling and control problem is formulated, we aim to solve a planning 

problem for an enterprise of three air separation plants. Each plant produces high purity 

nitrogen and oxygen in cryogenic distillation columns, at different production rates and 

subject to different electricity contracts. Each plant is associated to one liquid nitrogen 

storage unit, 𝐿1, 𝐿2 and 𝐿3. The enterprise delivers gas and liquid products to six 

customers, and the possible routes between plant/storage facility and customers are shown 

in Figure 5.3. 

We aim to solve a planning problem for a horizon of 52 weeks. Demand forecasts 

for each customer in the enterprise is available. It is assumed that the delivery of liquid 

products happens at the end of each week, and the demand of gas products from each 

customer remains constant within the week horizon. Furthermore, the average cost of 

electricity prices for each week and each plant is available. Note that, while the scheduling 



144 

 

 

 

problem considers electricity prices varying in an hourly basis, the planning problem 

aggregates this information in as a weekly energy cost. We aim to determine production 

targets and inventory levels for each air separation plant and storage facility, at each week 

of the planning horizon. 

 

Figure 5.3 – Enterprise network 

In order to solve the planning model, some essential information from the 

scheduling problem is needed: (i) the planning problems requires an estimate of the energy 

consumption in each production plant, as a function of the production targets; (ii) the 

planning problem also requires information about the feasible space of the scheduling 

problem as a function of production targets. The energy consumption and the energy price 

forecasts are used to estimate the costs of operating the enterprise, which is minimized at 

the planning level. The planning problem attempts to determine feasible production targets, 

given the scheduling information. 

Since the planning problem depends on the scheduling behavior, which in its turn 

depends on the dynamic behavior of the system, we aim to formulate an integrated 

planning, scheduling and control problem to determine the optimal operation of the 

enterprise. In the next section, a systematic framework for the integration of planning, 

scheduling and control problems is proposed. 
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5.4 Framework for the integration of planning, scheduling and control 

The systematic methodology for the integration of planning, scheduling and control 

includes two building blocks. First, the integration of scheduling and control is performed 

by treating the control problem as a black box. Input-output data is obtained by simulating 

the control problem. Algebraic expressions for unknown constraints are obtained using 

feasibility analysis and surrogate models. Therefore, an algebraic model for the scheduling-

control problem is obtained, and can be solved to optimality. In the second building block, 

the scheduling-control problem is treated as a black box, as it is used to generate input-

output data to be incorporated in the planning problem. Algebraic expressions to represent 

the scheduling-control behavior are obtained and incorporated in the planning problem, 

providing a model for enterprise-wide optimization. 

 The implementation of each building block follows five steps, shown in Figure 5.4. 

First, a higher-level optimization problem is formulated. In other words, the mathematical 

model for the scheduling problem is defined (in the problem of integrating scheduling and 

control), or the mathematical model for the planning problem is defined (in the overall 

integration). Once the problem is formulated, the unknown constraints and all the 

information needed from the black box problem is identified. The unknown constraints will 

include feasibility equations and equality constraints. In the third step, a subset of features 

is selected, followed by the identification of surrogate models. Step 3 and 4 may have an 

iterative aspect, depending on the feature selection procedure of choice. Finally, in the last 

step, the surrogate models are incorporated in the optimization problem, which is solved to 

(local) optimality.  
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In the next subsections, each step of the proposed framework is described in detail. 

We first describe the block of integrating scheduling and control, followed by the block of 

integration of the overall integration. 

 

Figure 5.4 - Framework for the integration of planning, scheduling and control 

 

5.4.1 Scheduling and control integration 

5.4.1.1 Higher-level optimization problem and black-box constraint identification 

A general formulation for the scheduling model was presented in section 4.3: 

min
𝐱𝑡
𝑠𝑝
,𝐮𝑡
𝑠𝑝
∑𝐶𝑜𝑠𝑡𝑡(𝐱̅𝑡

𝑠, 𝐮̅𝑡
𝑠)

𝑡

 (2a) 

𝑙(𝐱̅𝑡
𝑠, 𝐮̅𝑡

𝑠) = 0 (2b) 

𝐱̃𝑡+1
0 = 𝐱̃𝑡, , 𝐮̃𝑡+1

0 = 𝐮̃𝑡 (2c) 

𝐱̃𝑡 = 𝜙
𝑥̃(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝, 𝐱̃𝑡

0, 𝐮̃𝑡
0) (2d) 

𝐮̃𝑡 = 𝜙
𝑢(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝 , 𝐱̃𝑡

0, 𝐮̃𝑡
0) (2e) 

𝐱̅𝑡
𝑠 = 𝜙 𝑥̅(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝, 𝐱̃𝑡

0, 𝐮̃𝑡
0) (2f) 

𝐮̅𝑡
𝑠 = 𝜙𝑢(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝, 𝐱̃𝑡

0, 𝐮̃𝑡
0) (2g) 
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In this formulation, Eq. (2a) represents the scheduling cost, as a function of the state 

and input variables of the system. Eq. (2b) represents scheduling constraints, and ensures 

that demands are met at all times, and that the amount of product stored does not 

deplete/exceed the physical capacity of the storage system. 𝑙(∙) may also involve discrete 

decisions such as the assignment of products to scheduling slots, or the assignment of 

equipment to tasks. Equation (2c) links the final state of the system at scheduling period 𝑡, 

to the initial state of the system at scheduling period 𝑡 + 1. Equations (2d) to (2g) are 

related to the prediction of state 𝐱 and input 𝐮 variables which are relevant to the scheduling 

problem. 

We now derive the scheduling model for the specific problem of scheduling of air 

separation units, following the format of equation (2) and based on the following process 

network: 

 

Figure 5.5 - ASU process network 

In the case of operation of an air separation plant, the scheduling cost can be written as: 

min
𝐱𝑠𝑝,𝑦

𝑆𝐶 =∑𝑒𝑡𝜏(𝛾𝑐(𝑀𝐴̅̅ ̅̅̅𝑡 + 𝐸𝐴̅̅ ̅̅ 𝑡) − 𝛾𝑡𝐸𝐴̅̅ ̅̅ 𝑡 + 𝛾𝐿𝐹𝐿𝑘𝑡)

𝑡

 (3) 
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in which 𝑀𝐴̅̅̅̅̅𝑡 is the average flow of main air into the distillation column and 𝐸𝐴̅̅ ̅̅ 𝑡 is the 

average flow of expanded air. 𝛾𝑐, 𝛾𝑡 and 𝛾𝐿 are parameters (with units Watts/(mol/s)) which 

relate the flow rate in the compressor, turbine and liquefier, respectively, to the amount of 

electricity consumer (or generated) by the unit operation. 𝑒𝑡 is the forecasted electricity 

price throughout the scheduling horizon, and 𝜏 is the scheduling discretization time. 

 Mass balances for the scheduling problem, derived according to the process 

network in Figure 5.5, are given by Eq. (4a) – (4b).  

𝐼𝑘𝑡 = 𝐼𝑘,𝑡−1 + 𝑃𝐷̅̅ ̅̅ 𝑘𝑡 + 𝜌𝑘
𝑙𝑖𝑞𝐹𝐿𝑘𝑡 − 𝑇𝑘𝑡 − 𝑉𝑃𝑘𝑡, ∀𝑘 ∈ 𝐾𝐿 , 𝑡 ∈ 𝑇 (4a) 

𝑃𝐷̅̅ ̅̅ 𝑘𝑡 + 𝜌𝑘
𝑑𝑟𝑖𝑉𝑃𝑘𝑡 − 𝑉𝑇𝑘𝑡 − 𝜌𝑘

𝑙𝑖𝑞𝐹𝐿𝑘𝑡 − 𝑇𝑘𝑡 = 0, ∀𝑘 ∈ 𝐾𝐺 , 𝑡 ∈ 𝑇 (4b) 

The ASU produces liquid and gaseous products, which are defined by the product 

sets 𝐾𝐿 and 𝐾𝐺  respectively, that is, 𝐾𝐿 = {𝐿𝑁2} and 𝐾𝐺 = {𝐺𝑂2, 𝐺𝑁2}. 𝑃𝐷̅̅ ̅̅ 𝑘𝑡 is the 

average product flow from the air separation unit for product 𝑘 at for the entire scheduling 

period 𝑡.  𝐹𝐿𝑘𝑡 is the flow of products into and out of the liquefier. 𝑉𝑃𝑘𝑡 is the flow products 

which are vaporized to satisfy the production target 𝑇𝑘𝑡. 𝑉𝑇𝑘𝑡 is the flow of gas nitrogen 

and oxygen, vented to the ambient. 𝜌𝑘
𝑑𝑟𝑖 and 𝜌𝑘

𝑙𝑖𝑞
 take care of the conversions between 

liquid and gaseous flows. Finally, 𝐼𝑘𝑡 are the inventory levels of liquid products for 

products 𝑘 ∈ 𝐾𝐿 at scheduling period 𝑡. The inventory levels are further constrained with 

equations (5a)-(5c). There is no storage for gaseous products 𝑘 ∈ 𝐾𝐺 . 

𝐼𝑘0 = 𝐼𝑘
𝑖𝑛𝑖, ∀𝑘 ∈ 𝐾𝐿 (5a) 

𝐼𝑘,𝑡𝑓 ≥ 𝐼𝑘
𝑓
, ∀𝑘 ∈ 𝐾𝐿 (5b) 

𝐼𝑘
𝑙 ≤ 𝐼𝑘𝑡 ≤ 𝐼𝑘

𝑢, ∀𝑘 ∈ 𝐾𝐿 , 𝑡 ∈ 𝑇 (5c) 
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Equation (5a) states the initial inventory level for products 𝑘 ∈ 𝐾𝐿. Equation (5b) 

ensures that the final inventory level is above certain value 𝐼𝑘
𝑓
, avoiding the depletion of 

stored products at the end of the scheduling horizon. 𝐼𝑘
𝑙  and 𝐼𝑘

𝑢 define the upper and lower 

bounds for the product storage. 

 To allow different modes of operation in the air separation plant, binary variables 

𝑦𝑚𝑡 are introduced. The modes include “on”, “off”, and “startup”. 𝑦𝑚𝑡 takes the value of 1 

is the plant is operating at mode 𝑚 in scheduling period 𝑡. The associated constraints are 

given by Eq. (6a)-(6c), adopted from Zhang, Sundaramoorthy [68] 

∑𝑦𝑚𝑡
𝑚

= 1, ∀𝑡 (6a) 

∑ 𝑧𝑚′,𝑚,𝑡−1

𝑚′∈𝑇𝑅𝑚
𝑓

− ∑ 𝑧𝑚,𝑚′,𝑡−1

𝑚′∈𝑇𝑅𝑚
𝑖

= 𝑦𝑚,𝑡 − 𝑦𝑚,𝑡−1, ∀𝑚, 𝑡 
(6b) 

𝑦𝑚′𝑡 ≥ ∑ 𝑧𝑚,𝑚′,𝑡−𝑘

𝜃
𝑚𝑚′

𝑘=1

, ∀𝑖, (𝑚,𝑚′) ∈ 𝑇𝑅𝑖 , 𝑡 (6c) 

Equation (6a) states that the air separation plant can operate in one operation mode 

𝑚 at every scheduling period 𝑡. Equation (6b) introduces binary variables 𝑧𝑚′,𝑚𝑡, which 

define the transitions between operating modes. A transition can only occur if (𝑚,𝑚′) ∈

𝑇𝑅, with 𝑇𝑅 being the set of all possible transitions. Furthermore, 𝑇𝑅𝑚
𝑓
=

{𝑚′: (𝑚′,𝑚) ∈ 𝑇𝑅} and 𝑇𝑅𝑚
𝑖 = {𝑚′: (𝑚,𝑚′) ∈ 𝑇𝑅}. The restriction that a process has to 

remain in a certain mode for a minimum amount of time is expressed with equation (6c). 

The ASU scheduling constraints (3) – (6) replace constraint (2b) from the general 

scheduling formulation. An analysis of these constraints shows a clear relationship with 



150 

 

 

 

state and manipulated variables of the system, 𝑃𝐷̅̅ ̅̅ 𝑘𝑡, 𝑀𝐴̅̅̅̅̅𝑘𝑡, 𝐸𝐴̅̅ ̅̅ 𝑘𝑡. Suitable approximation 

of these variables should be obtained, and they can be initially expressed as:  

𝐱̃𝑡+1
0 = 𝐱̃𝑡, , 𝐮̃𝑡+1

0 = 𝐮̃𝑡 (7a) 

𝐱̃𝑡 = 𝜙
𝑥̃(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝, 𝐱̃𝑡

0, 𝐮̃𝑡
0) (7b) 

𝐮̃𝑡 = 𝜙
𝑢(𝐱𝑡

𝑠𝑝, 𝐮𝑡
𝑠𝑝 , 𝐱̃𝑡

0, 𝐮̃𝑡
0) (7c) 

𝑃𝐷̅̅ ̅̅ 𝑘𝑡 = 𝑓(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱̃𝑡
0, 𝐮̃𝑡

0, 𝑦𝑚𝑡) (7d) 

𝑀𝐴𝑡 = 𝑓(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝 , 𝐱̃𝑡
0, 𝐮̃𝑡

0, 𝑦𝑚𝑡) (7e) 

𝐸𝐴𝑡 = 𝑓(𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱̃𝑡
0, 𝐮̃𝑡

0, 𝑦𝑚𝑡) (7f) 

In the next steps, a subset of variables 𝐳 ⊂ {𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝 , 𝐱̃𝑡
0, 𝐮̃𝑡

0} will be defined and the 

predictors for 𝑃𝐷̅̅ ̅̅ 𝑘𝑡, 𝑀𝐴̅̅̅̅̅𝑡, 𝐸𝐴̅̅ ̅̅ 𝑡 and 𝐳 will be  obtained. 

 

5.4.1.2 Feature selection and surrogate models 

To identify a subset of features 𝐳 ⊂ {𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝 , 𝐱̃𝑡
0, 𝐮̃𝑡

0}, we propose to use a sequential 

forward selection (SFS) method as the feature selection methodology, coupled with a 

simple linear regressor as the surrogate model. As it will be seen in section 5.5, the 

prediction accuracy of the linear regressor in the ASU problem was satisfactory, and 

therefore there is no need to employ more complex surrogate models that would later 

introduce nonlinearities to the integrated problem. The feature selection methodology will 

be employed using a set 𝐒 of 𝑁 data points, 𝐒 = {𝑆1, 𝑆2, … , 𝑆𝑁} where each 𝑆𝑖  =

{𝐱𝑖
𝑠𝑝, 𝐮𝑖

𝑠𝑝 , 𝐱̃𝑖
0, 𝐮̃𝑖

0}, 𝑖 = {1,2… . , 𝑁} is an input to a simulation of the control problem. The 

simulation of the control problem is performed for a horizon 𝜏, where 𝜏 is equivalent to the 

discretization step in the scheduling problem. The simulation generates an output 𝑌𝑖 =

{𝑃𝐷𝑘𝑖 , 𝑀𝐴𝑖, 𝐸𝐴𝑖 , 𝐱̃𝑖+1
0 , 𝐮̃𝑖+1

0 }, and an output dataset 𝐘 = {𝑌1, 𝑌2, … 𝑌𝑁} is complied. 
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Following a similar approach, testing sets 𝐒𝑡𝑒𝑠𝑡 and 𝐘𝑡𝑒𝑠𝑡 are generated to later evaluate 

the performance of the surrogate models.  

The feature selection method is implemented next. SFS has two components:  

1) An objective function, or criterion, which the methods seeks to minimize over all 

feasible feature subsets. The criterion employed by this work is mean squared error 

MSE.   

2) A sequential search algorithm which adds features to a candidate subset until the 

addition of further features does not improves the criterion 

 SFS follows an iterative greedy search algorithm. Starting from an empty set 𝒛 =

{∅}, SFS adds the feature 𝑧+ that results in the smallest criterion 𝐽(𝐳, 𝑧+) when combined 

with the features 𝐳 that have already been selected. The 𝐽(𝐳, 𝑧𝑖) is evaluated using k-fold 

cross validation and training the linear regression model k times for every candidate feature 

𝑧𝑖. The procedure stops when the improvement in the criterion 𝐽(∙) is smaller than a 

tolerance 𝜖. This tolerance can be used as a tuning parameter in the integration of 

scheduling and control: small values of 𝜖 will result in better accuracy of the predictor, 

while selecting a larger number of features that will later increase the dimensionality of the 

integrated problem.  

 In this work, the feature selection and surrogate model training procedure was 

implemented in Matlab using the Statistics and Machine Learning Toolbox. 

 

5.4.1.3 Integrated problem 

Once the feature selection and surrogate model training procedure is finalized, the 

following model are formulated to take the place of Eq. (7): 
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𝑃𝐷̅̅ ̅̅ 𝑘𝑡 ≤ 𝐀𝐳𝑡 + 𝐛 +𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡,𝑚 = {on}                (8a) 

𝑃𝐷̅̅ ̅̅ 𝑘𝑡 ≥ 𝐀𝐳𝑡 + 𝐛 −𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡,𝑚 = {on}                 (8b) 

𝑀𝐴̅̅̅̅̅𝑡 ≤ 𝐂𝐳𝑡 + 𝐝 +𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡, 𝑚 = {on, startup} (8c) 

𝑀𝐴̅̅̅̅̅𝑡 ≥ 𝐂𝐳𝑡 + 𝐝 −𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡, 𝑚 = {on, startup} (8d) 

𝐸𝐴̅̅ ̅̅ 𝑡 ≤ 𝐄𝐳𝑡 + 𝐟 +𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡,𝑚 = {on, startup} (8e) 

𝐸𝐴̅̅ ̅̅ 𝑡 ≥ 𝐄𝐳𝑡 + 𝐟 −𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡,𝑚 = {on, startup} (8f) 

𝐳𝑡+1 ≤ 𝐆𝐳𝑡 + 𝐡 +𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡,𝑚 = {on, startup} (8g) 

𝐳𝑡+1 ≥ 𝐆𝐳𝑡 + 𝐡 −𝑀(1 − 𝑦𝑚𝑡), ∀𝑘, 𝑡,𝑚 = {on, startup} (8h) 

𝐳0 = 𝐳
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (8i) 

Note that binary variable 𝑦𝑚𝑡 is included in Equation (8) to account for the different 

modes of operation. 𝑀 is a big value. Using similar constraints, The variables 𝑃𝐷̅̅ ̅̅ 𝑘𝑡 , 𝑀𝐴 ̅̅ ̅̅ ̅
𝑘𝑡 

and 𝐸𝐴̅̅ ̅̅ 𝑘𝑡 are set to zero if the operation mode at period 𝑡 is “off”. Furthermore, 𝑃𝐷̅̅ ̅̅ 𝑘𝑡 is set 

to zero is the operation mode at period 𝑡 is set to “startup”. 

The integrated scheduling and control problem can be summarized as: 

Minimize Objective Function (2) 

Subject to: Mass balances (Eq. 3) 

                  Inventory constraints (Eq. 4) 

                  Assignment constraints (Eq. 5) 

                  Black-box constraints (Eq. 8) 

(P1) 

 The resulting integrated model is a mixed integer linear problem which is solved 

using GAMS/CPLEX. The integration of scheduling and control is achieved. Next, we 

discuss the second building block in enterprise optimization. 
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5.4.2 Overall integration of planning, scheduling and control problems 

5.4.1.1 Higher-level optimization problem and black-box constraint identification 

In the overall integration, the planning problem is the “higher-level” problem, while the 

integrated scheduling and control problem are treated as a black-box. A general 

formulation for planning problems was given in section 3.2.2. Here, the formulation is 

extended to account for multiple production facilities and multiple customers. 

min𝑃𝐶 =∑(𝐶𝑝𝑤 + 𝐶ℎ𝑤 + 𝐶𝑢𝑤)

𝑤

  (9a) 

𝐹𝑃(𝐪𝑤𝑝) ≤ 0, ∀𝑘,𝑤, 𝑝 (9b) 

𝐶𝑝𝑤 =∑𝑒𝑙𝑝𝑤 × 𝐸
𝑝(𝐪𝑤𝑝)

𝑝

, ∀𝑘, 𝑤 (9c) 

𝐶ℎ𝑤 =∑∑ℎ𝑘𝑝
𝑝𝑘

× 𝐼𝑇𝑘𝑤𝑝, ∀𝑤 (9d) 

𝐶𝑢𝑡 =∑∑𝑢𝑘𝑐
𝑐𝑘

× 𝑈𝑘𝑤𝑐, ∀𝑤 (9e) 

𝐼𝑇𝑘𝑤𝑝 = 𝐼𝑇𝑘,𝑤−1,𝑝 + 𝑃𝑇𝑘𝑤𝑝 − ∑ 𝐷𝑒𝑙𝑘𝑤𝑝𝑐
𝑐∈𝐶𝑃

, ∀𝑤, 𝑝, 𝑘 ∈ 𝐾𝐿 (9f) 

𝑃𝑇𝑘𝑤𝑝 = ∑ 𝐷𝑒𝑙𝑘𝑤𝑝𝑐
𝑐∈𝐶𝑃

, ∀𝑤, 𝑝, 𝑘 ∈ 𝐾𝐺  (9g) 

𝑈𝑘𝑤𝑐 = 𝐷𝑒𝑚𝑘𝑤𝑐 − ∑ 𝐷𝑒𝑙𝑘𝑤𝑝𝑐
𝑝∈𝑃𝐶

, ∀𝑘, 𝑤, 𝑐 (9h) 

The feasibility of the scheduling-control problem for each week 𝑤 and for each 

production facility 𝑝 is modeled via eq. (9b). The production cost 𝐶𝑝𝑤 in period 𝑤 is 

expressed via eq. (9c) as a function of the weekly electricity prices forecasted for each 

plant, 𝑒𝑙𝑝𝑤, and the electricity consumption, 𝐸𝑝(∙). Both equations (9b) and (9c) are a 
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function of a subset of scheduling-control variables, 𝐪𝑤𝑝. Holding cost 𝐶ℎ𝑤 and unmet 

demand penalty 𝐶𝑢𝑤 are calculated in equations (9d) and (9e), respectively. Holding costs 

are dependent on the product 𝑘 ∈ {𝐺𝑁2, 𝐺𝑂2, 𝐿𝑁2} and the production facility 𝑝, while 

unmet demand penalties are related to the product 𝑘 and customer 𝑐. Inventory targets 

𝐼𝑇𝑘𝑤𝑝 for each production facility are calculated according to equation (9f). In equation 

(9f), 𝐷𝑒𝑙𝑘𝑤𝑝𝑐 refers to the amount of product 𝑘 delivered from production facility 𝑝 to 

customer 𝑐 at planning period 𝑤. The subset 𝐶𝑃 relates the customers which are connected 

to production facilities, according to the enterprise network in Figure 5.3. Equation (9g) is 

the mass balance for gaseous products. Unmet demand is calculated in equation (9h) as the 

difference between the forecasted demand 𝐷𝑒𝑚𝑘𝑤𝑐 and the total deliveries to the customer 

𝑐 from the various plants in the enterprise. 

 In this planning model, the black-box constraints related to the scheduling-control 

problem are given by equations (9b) and (9c). With this identification, steps 1 and 2 of the 

proposed framework are concluded, and we move to steps 3 and 4 in the next subsection. 

 

5.4.2.2 Feature selection and surrogate models 

The selection of features 𝐪 which will be used to estimate the feasibility of the scheduling-

control problem and its associated cost will be performed based on ad-hoc knowledge. Ad-

hoc feature selection methodologies are recommended whenever domain knowledge is 

existent [110]. We therefore select 𝐪 as the production targets 𝑃𝑇𝑘𝑤𝑝, where 𝑃𝑇𝑘𝑤𝑝 is 

related to scheduling target 𝑇𝑘𝑡 of plant 𝑝 as 𝑇𝑘𝑡 = 𝑃𝑇𝑘𝑤𝑝/H, and 𝐻 is the number of 

discretization periods in the scheduling problem. Then, the feasibility constraints 

𝐹𝑃(𝑃𝑇𝑘𝑤𝑝) ≤ 0 are defined according to the methodologies described in Chapter 3: for a 
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training set of production targets 𝐒𝒑 = {𝑆1, 𝑆2, … 𝑆𝑁}, 𝑆𝑖 = 𝑃𝑇𝑘𝑤𝑝, 𝑖 ∈ {1,2, …𝑁}, the 

feasibility of each sample is verified by solving the integrated scheduling and control 

problem. The results are compiled as 𝐅𝒑 = {𝐹1, 𝐹2, … , 𝐹𝑁}, where 𝐹𝑖 = −1 if sample 𝑖 is 

feasible, and +1 otherwise. Neural networks are trained and used to predict the feasibility 

of any point in the design space. A similar procedure is followed to estimate the energy 

consumption 𝐸𝑃(𝑃𝑇𝑘𝑤𝑝). First, a training set of feasible production targets is generated, 

𝐒𝒑 = {𝑆1, 𝑆2, … 𝑆𝑁}, 𝑆𝑖 = 𝑃𝑇𝑘𝑤𝑝, 𝑖 ∈ {1,2, …𝑁}, 𝐹(𝑃𝑇𝑘𝑤𝑝) ≤ 0. The minimum energy 

consumed to achieve each production targets is calculated by solving the integrated 

scheduling and control problem, and the results are compiled in a vector 𝐘. Then, neural 

networks are trained and used to predict the energy consumption of any point in the design 

space. 

 After the training of neural networks, equations (9b) and (9c) take the form of Eq. 

(10a) and (10b), respectively: 

𝐰ℎ
𝑝 ×

(

 
 
 
 

1

1 + exp(𝐰𝑖𝑛𝑝𝑢𝑡
𝑝 × [

𝑃𝑇𝐺𝑁2,𝑤,𝑝
𝑃𝑇𝐺𝑂2,𝑤,𝑝
𝑃𝑇𝐿𝑁2,𝑤,𝑝

] + 𝐛𝑖𝑛𝑝𝑢𝑡
𝑝 )

)

 
 
 
 

+ 𝑏ℎ ≤ 0 (10a) 

𝐶𝑝𝑤 =∑𝑒𝑙𝑝𝑤 ×𝒎ℎ
𝑝 ×

(

 
 
 
 

1

1 + exp(𝒎𝑖𝑛𝑝𝑢𝑡
𝑝 × [

𝑃𝑇𝐺𝑁2,𝑤,𝑝
𝑃𝑇𝐺𝑂2,𝑤,𝑝
𝑃𝑇𝐿𝑁2,𝑤,𝑝

] + 𝒄𝑖𝑛𝑝𝑢𝑡
𝑝 )

)

 
 
 
 

+ 𝑐ℎ
𝑝

 (10b) 
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5.4.1.3 Integrated problem 

The planning, scheduling and control problem can be summarized as: 

Minimize Objective Function (9a) 

Subject to: Feasibility constraints (Eq. 10a) 

                  Operational costs (Eq. 10b) 

                  Holding and unmet demand costs (Eq. 9d-9e) 

                  Material balances and demand considerations (Eq. 9f-9h) 

(P2) 

Due to the linear nature of the planning constraints, and due to the nonlinearities introduced 

by the black-box constraints (Eq. 10), the resulting problem is a nonlinear optimization 

problem, which is solved in GAMS/CONOPT to determine a local optimal solution. 

 

5.5 Case study 

The framework for the integration of planning, scheduling and control was implemented 

in the enterprise of air separation plants described in section 5.3. In this section, we give a 

brief overview of the dynamic control simulation, followed by the results of integrating 

scheduling and control. Finally, we discuss the results of the overall planning, scheduling 

and control optimization. 

 

5.5.1 Air Separation Unit Model 

A first principle model for the dynamic behavior of an air separation unit was been derived. 

The models for the cryogenic distillation column, integrated reboiler/condenser, multi-

stream heat exchanger, compressor and turbines were obtained, following previously 



157 

 

 

 

published works [64, 66]. A summary of the dynamic equations employed in the model is 

given in Appendix C. 

 Following this derivation, system identification procedures were used to identify a 

state-space model, which would be used in a Model Predictive Control implementation. 

The output variables of the model are the flows of gas nitrogen leaving the distillation 

column, 𝐺𝑁2; the flow of gas oxygen leaving the distillation column, 𝐺𝑂2; the reboiler 

holdup, 𝑀𝑟𝑒𝑏; the temperature driving force in the integrated reboiler/condenser, ∆𝑇; the 

impurity level of the gas oxygen stream, 𝐼𝑚𝑝𝐺𝑂2; and the impurity level in the gas nitrogen 

stream, 𝐼𝑚𝑝𝐺𝑁2. The control (manipulated) variables were selected as the main air flow 

rate, 𝑀𝐴; the expanded air flow rate, 𝐸𝐴; the reflux rate from the condenser, 𝑅𝑐𝑜𝑛; the 

reflux rate from the reboiler, 𝑅𝑟𝑒𝑏; and the liquid nitrogen stream, 𝐿𝑁2.  

 A model predictive control was implemented to drive changes of the setpoints of 

the system. The MPC was implemented with sample step of 360s, and a prediction horizon 

of 1 hour. The MPC problem attempts to track setpoints for the output variables, while also 

imposing rate of change penalties for the input variables. Additionally, hard input 

constraints are imposed to the main air and expanded air flows (𝑀𝐴, 𝐸𝐴), and soft control 

constraints are imposed to the impurity levels in the product streams, 𝐼𝑚𝑝𝐺𝑂2 ≥ 0.946 and 

𝐼𝑚𝑝𝐺𝑁2 ≥ 0.997.  

 The control level simulation then consists of: (1) measuring the current state of the 

system, (2) solving the MPC problem, (3) implementing the control actions defined by 

MPC in the first-principle dynamic model, (4) returning to step (1) after the dynamic 

system has been simulated for 360s. The procedure is repeated until the horizon of the 

simulation (which is defined based on the scheduling discretization step) has been reached. 
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5.5.2 Integration of scheduling and control 

We first consider the problem of integrating scheduling and control for a single air 

separation plant, which is capable of flexible operation, in the sense that the production 

rate (defined in terms of the flow rate of gas nitrogen product) can assume any value in the 

range of 40 mol/s to 60 mol/s. The nominal production rate is 50mol/s. The scheduling 

problem takes into consideration a forecast of energy prices varying at every hour, as well 

as a constant demand of gas nitrogen, set at 50mol/s. The scheduling problem then defines 

production flows and setpoints for every point of the scheduling horizon while minimizing 

operational costs. Since flows and operational costs depend the dynamic behavior of the 

system, the integration of scheduling and control is sought.  

We follow the proposed methodology to achieve the integration of scheduling and 

control. First, the higher-level optimization model is formulated, as described in section 

5.4.1.1. Then, the feature selection and surrogate model training is performed, in order to 

identify a subset of variables 𝐳 ⊂ {𝐱𝑡
𝑠𝑝, 𝐮𝑡

𝑠𝑝, 𝐱̃𝑡
0, 𝐮̃𝑡

0} which will be used to predict the flows 

𝑃𝐷𝑘𝑡, 𝑀𝐴𝑡, 𝐸𝐴𝑡. The set of candidate features include 𝐱𝑡
0 =

{ 𝐺𝑁20, 𝐺𝑂20, 𝑀𝑟𝑒𝑏
0 , ∆𝑇0, 𝐼𝑚𝑝𝐺𝑂2

0 , 𝐼𝑚𝑝𝐺𝑁2
0 }, 𝐮̃𝑡

0 = { 𝑀𝐴, 𝐸𝐴, 𝑅𝑐𝑜𝑛, 𝑅𝑟𝑒𝑏, 𝐿𝑁2}, and 𝐱𝑡
𝑠𝑝 =

{𝐺𝑁2𝑠𝑝 , 𝐺𝑂2𝑠𝑝}. The remaining control input setpoints are not considered since they are 

kept at a constant value throughout out simulations. Furthermore, the input variable 

setpoints are not relevant to this problem, since the MPC implemented here only weights 

the rate of change values for control variables (instead of tracking a setpoint). The feature 

selection and training steps were performed in Matlab using the Statistical and Machine 

Learning toolbox. After the feature selection procedure was completed, the following 

subset of variables were obtained: 
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𝑃𝐷̅̅ ̅̅ 𝐺𝑁2,𝑡 = 𝑓(𝐺𝑁2
0, 𝐺𝑁2𝑠𝑝) 

𝑃𝐷̅̅ ̅̅ 𝐺𝑂2,𝑡 = 𝑓(𝐺𝑁2
0, 𝐺𝑂20, 𝐺𝑁2𝑠𝑝) 

𝑃𝐷̅̅ ̅̅ 𝐿𝑁2,𝑡 = 𝑓(𝑀𝐴
0, 𝐿𝑁20, 𝐺𝑁2𝑠𝑝) 

𝑀𝐴̅̅̅̅̅𝑡 = 𝑓(𝐺𝑁20, 𝐺𝑂20, 𝐺𝑁2𝑠𝑝) 

𝐸𝐴̅̅ ̅̅ = 𝑓(𝐸𝐴0, 𝐿𝑁20, 𝐺𝑁2𝑠𝑝) 

𝐺𝑁2+ = 𝑓(𝐺𝑁2𝑠𝑝) 

𝐺𝑂2+ = 𝑓(𝐿𝑁20, 𝐺𝑁2𝑠𝑝) 

𝐿𝑁2+ = 𝑓(𝐸𝐴0, 𝐿𝑁20, 𝐺𝑁2𝑠𝑝) 

𝑀𝐴+ = 𝑓(𝐿𝑁20, 𝐺𝑁2𝑠𝑝) 

𝐸𝐴+ = 𝑓(𝐿𝑁20, 𝐺𝑁2𝑠𝑝) 

In the above equations, the superscript 0 is used to denote the state/input values of 

the system at the beginning of the simulation; the superscript + is used to denote the 

state/input values of the system at the end of the simulation; 𝑥̅ denotes an average flow rate 

for the entire simulation. It is interesting to see how the selection of features provides 

insights of the underlying behavior of the system, such as a strong and mutual relationship 

between the values for expanded air 𝐸𝐴 and liquid nitrogen flows 𝐿𝑁2. 

The above equations are rewritten using big-M formulations to take the form of Eq. 

(8), and the integrated problem P1 is solved to global optimality. The results of this problem 

are shown in Table 5.1. The performance of the integrated scheduling solution is compared 

to the baseline case of keeping the production levels constant throughout the entire 

schedule, i.e., 𝑃𝐷𝐺𝑁2,𝑡 = 50𝑚𝑜𝑙/𝑠, in order to satisfy the constant demand of 50mol/s of 

nitrogen gas. Finally, the scheduling solutions are implemented in the control problem 

simulation, which is now solved for the entire scheduling horizon. The simulation provides 
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the actual costs of operating the system, as well as the state and control variables behavior 

throughout the entire schedule. The results are shown in Figure 5.6 and Figure 5.7. The 

problems are implemented in a 64-bit Windows system with Intel Core i7-2600 CPU at 

3.40 GHz and 16 GB RAM. 

 

Table 5.1 – Optimal schedule results 

Case Predicted 

Overall Cost 

Actual  

Overall Cost 

Difference  

from Baseline 

Solution  

Time 

Baseline* $ 3124.79 $ 3124.79 0% - 

Case 1 (MPC) $ 3012.33 $ 3019.29 3.38% 67 s 

 

 

Figure 5.6 - Optimal production rates and electricity prices over time 
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Figure 5.7 - Outputs of the control problem over time 

 

 The integrated scheduling and control problem results outperforms the baseline 

case, achieving a 3.38% reduction of operational costs. Furthermore, the predicted 

operational costs show a deviation of only 0.23% from the actual operational costs, which 

demonstrates the accuracy of the surrogate models and validates the proposed methodology 

for scheduling and control integration. By analyzing Figure 5.6, we observe that the 

behavior of the scheduling-control problem follows intuitive predictions: it sets the 

production rates to higher levels whenever the energy prices are low. The scheduling 

problem also makes the choice of shutting down the operation during a peak of energy 

price. Finally, the impurity levels of nitrogen and oxygen flow are maintained above the 
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quality specifications throughout the entire operation, and the ASU produces off-spec 

material only during the starting up of the plant. 

 In the next section, three different air separation plants will be considered in an 

enterprise. Therefore, the integrated scheduling and control model for each plant should be 

obtained. To obtain three different models, we first replicate the dynamic model for each 

ASU. By modifying constraints on production and air flows, as well as the efficiency 

parameters for different operation units, two new production facilities are modeled. Plant 

1 is defined as the original problem. Plant 2 produces nitrogen in a smaller range, varying 

from 40mol/s to 50mol/s. Furthermore, the energy consumption for the operation of Plant 

2 can be compared to the energy consumption in Plant 1 in a 1.1 to 1 ratio. Plant 3 also 

consumes higher levels of energy for the operation of the same production flows when 

compared to Plant 1, in a ratio of 1.05 to 1.  

 

5.5.3 Integration of planning, scheduling and control 

After the model for the scheduling and control integration has been obtained, it can be used 

as a black-box in an enterprise-wide optimization. In this section, we consider the problem 

of defining weekly production targets for an enterprise consisting of three air separation 

plants. The enterprise network is demonstrated in Figure 5.3. We assume that demand 

forecasts related to each customer is available. Furthermore, we assume that the different 

production facilities are subject to different electricity contracts, and a forecast for the 

average weekly electricity prices is available. A planning horizon of 52 weeks is 

considered. To define production targets for each facility, a planning problem with 

scheduling considerations should be solved. Since the scheduling of air separation units is 
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highly dependent on the dynamic behavior of the system, the integration of planning, 

scheduling and control is sought.  

Following the proposed framework, the higher-level optimization problem is 

formulated, taking the form of equation 9. The features for the integrated problem are 

selected (based on ad-hoc knowledge) as the production targets 𝑃𝑇𝑘𝑤𝑝, for each product 

𝑘 = {𝐺𝑁2, 𝐺𝑂2, 𝐿𝑁2}, each week of the planning horizon 𝑤, and each production facility 

𝑝. Then, a training set is generated by solving the integrated scheduling and control 

problem for different production targets 𝑃𝑇𝑘𝑤𝑝. The results are used to derive feasibility 

constraints and energy consumption predictors using neural networks, as described in 

section 5.4.2. The neural networks are incorporated in the planning problem, and the 

resulting integrated planning, scheduling and control problem is solved to local optimality. 

The resulting problem is a nonlinear problem which is solved using 

GAMS/CONOPT in a 64-bit Windows system with Intel Core i7-2600 CPU at 3.40 GHz 

and 16 GB RAM. Results are obtained in 6.377 s. The overall cost of operating the 

enterprise for the entire planning horizon is defined as $ 319,263.69. The resulting target 

levels for each product and each production facility are shown in Figure 5.8. Furthermore, 

the predicted energy prices and predicted energy consumption for each facility are shown 

in Figure 5.9. 

The production targets for Plant 1 show a higher degree of fluctuation, 

demonstrating the higher flexibility of operating this plant. Plant 2 operates near its lower 

bound for most of the planning horizon, a result of the higher energy consumption levels 

at this plant. A higher level of production targets for Plant 2 can be observed when the 
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energy prices of Plant 1 are high, around week 32. This demonstrates the capability of the 

integrated problem is defining cooperative decisions across time and space scales. 

 

 

 

 

Figure 5.8 - Production targets for each Air Separation Plant 
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Figure 5.9 – Predicted energy consumption and average electricity prices 

 

 Next, the results for the integrated problem for Plant 1 are implemented at the 

scheduling level, for the entire planning horizon. In other words, 52 scheduling and control 

problems are solved, given the weekly production targets defined by the overall integrated 

problem, and given electricity prices varying on an hourly basis. Figure 5.10 shows the 

results of this implementation. The predicted energy consumption and operational costs are 
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very similar to the actual values obtained in the scheduling and control simulation. The 

black-box constraints approximation were successful, and the integrated planning, 

scheduling and control integration is validated. 

 

 

 

Figure 5.10 – Planning predictions and actual realizations of operational costs 

 

5.6 Conclusions 

In this work, a systematic methodology for the integration of planning, scheduling and 

control problems was proposed. The framework consists of two-building blocks, which are 

addressed following principles of grey-box optimization, feature selection, and surrogate 

modeling. The proposed framework was implemented in the problem of optimization an 

enterprise of air separation plants, taking into consideration varying electricity prices and 
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flexible operation of production facilities. Results of the integrated problem were compared 

to baseline solutions, and validated through comparisons of predictions versus actual 

operational costs. 

 One of the main challenges that has not been addressed in this work is related to 

uncertainties affecting all the levels of the decision-making processes. Throughout this 

entire chapter, we assumed the existence of accurate demand and energy forecasts, as well 

as deterministic operation of the dynamic system. Future work should focus in addressing 

the challenges of uncertainties that arise in all of the different levels of the decision-making 

hierarchy, as well as uncertainties introduced by inaccuracies in the surrogate models. 
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Summary and Future Work 

The integration of planning, scheduling and control problems is a challenging task, given 

the high dimensionality of industrial sized problems and the complexities of enterprises. 

Complex frameworks will not find its way to real applications, and major organizational 

challenges need to be addressed before the integration of decision-making processes can 

become a reality. Nevertheless, this work demonstrates the economic benefits that 

integrated processes can provide. The frameworks presented here may seem complex, as 

they carry in their core concepts of simulation-optimization, feasibility analysis, grey-box 

optimization, machine learning, model predictive control, and robust optimization. 

However, the methodologies proposed here can be summarized as a simple combination 

of data-driven methodologies and classical optimization techniques, which are gradually 

and reliably being adopted in industrial applications. 

Throughout the chapters, several possibilities and future directions for enterprise-

wide optimization have been discussed. We summarize here the main opportunities and 

venues for future research: 

• Data-driven feasibility analysis can be implemented in a variety of problems within 

the process systems engineering field. We foresee interesting applications in the 

fields of modular design and design optimization 

• Feature selection methodologies were not implemented in the data-driven 

feasibility analysis for the integrating planning and scheduling. Nevertheless, the 

case studies in chapter 3 demonstrate that the initial state of the system has an 

important impact in the feasibility of the schedule. The significance of this impact 
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will depend on the scheduling horizon, process network, and capacity utilization. 

Future work should investigate these relationships, and how feature selection can 

be employed in the selection of a subset of scheduling states for the optimal 

prediction of the feasible production region. 

• The choice of kernels and activation functions for neural networks and support 

vector machines usually fall within the context of machine learning. Nevertheless, 

the use of the predictors in optimization problems defines a new criterion for model 

selection, since the complexity of the predictor affects the complexity of the final 

planning problem. Future work should investigate the structure of different 

predictors, how they cope with different solvers, and how the increase the 

complexity of optimization problems  

• Black-box problems involving discrete decisions are likely to provide 

discontinuous outputs. To better implement surrogate models in such black-boxes, 

surrogate model techniques need to be coupled with methodologies for the 

identification of discontinuities 
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Appendix A 

Data for the case studies in Chapter 3. 

Figure A1. Demand for two-dimensional problem 

 
 

Table A1. Data for two-dimensional problem 

  RMA RMB A B 

 𝑊𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (kg) ∞ ∞ 0 0 

 𝐶𝑠
𝑚𝑎𝑥  (kg) ∞ ∞ ∞ ∞ 

 ℎ𝑠 ($/kg)   20 20 
 𝑢𝑠($/𝑘𝑔)   400 400 

𝜌𝑖𝑠  T1 -1  1  

 T2  -1  1 

 T3 -1  1  

 T4  -1  1 

 

Table A2. Data for two-dimensional problem 

 𝑉𝑖𝑗
𝑚𝑖𝑛/𝑉𝑖𝑗

𝑚𝑎𝑥 (kg/h) 

 U1 U2 

T1 0/3  

T2 0/3  

T3  0/1 

T4  0/1 
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Figure A2. Demand for three-dimensional problem 

 
Table A3. Data for three-dimensional problem 

  F

1 

F2 S1 S2 S3 S4 S5 S6 INT

1 

INT

2 

A B WS C 

 𝑊𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (kg) ∞ ∞ 0 0 0 50 0 0 0 0 0 0 0 0 

 𝐶𝑠
𝑚𝑎𝑥  (kg) ∞ ∞ 10

0 

10

0 

10

0 

∞ 10

0 

10

0 

100 100 ∞ ∞ ∞ ∞ 

 ℎ𝑠 ($
/kg) 

          20 20  20 

 𝑢𝑠($
/𝑘𝑔) 

          40
0 

400  40
0 

𝜌𝑖𝑠  T1 -1   1            

 T2   -1  1           

 T3    -1      1      

 T4      1    -1      

 T5     -1      1    

 T6     -1       0.9

8 

0.0

2 

 

 T7  -

0.9

5 

   -

0.0

5 

 1        

 T8      0.1 -1    0.9     

 T9         1 -0.5 -0.5     

 T10        -1      1 

 

Table A4. Data for three-dimensional problem 

 Time (h) 𝑉𝑖𝑗
𝑚𝑖𝑛/𝑉𝑖𝑗

𝑚𝑎𝑥 (kg/h) 

 𝜏𝑖 U1 U2 U3 U4 U5 U6 
T1 2 0/50      
T2 1  0/80     
T3 1   0/60    
T4 2 0/50      
T5 2    0/80   
T6 2    0/80   
T7 4     0/30  
T8 2      0/40 
T9 2     0/30  
T10 3      0/40 
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Figure A3. Demand for the seven-dimensional problem 

 
Table A5. Data for seven-dimensional problem 
  F1 F2 S1 S2 S3 S4 A B C D E F G 

 𝑊𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (kg) ∞ ∞ 0 0 0 0 0 0 0 0 0 0 0 

 𝐶𝑠
𝑚𝑎𝑥 (kg) ∞ ∞ 30 30 30 30 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

 ℎ𝑠 ($/kg)       20 20 10 10 5 30 40 
 𝑢𝑠($/𝑘𝑔)       400 500 400 300 200 400 500 

𝜌𝑖𝑠  T1 -1  1           

 T2  -1  1          

 T3 -1  1           

 T4  -1  1          

 T5   -1  1         

 T6    -1  1        

 T7   -1    1       

 T8   -1    1       

 T9     -1   1      

 T10      -1   1     

 T11     -1     1    

 T12      -1     1   

 T13      -1      1  

 T14    -1         1 
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Table A6. Data for seven-dimensional problem 

 Time (h) 𝑉𝑖𝑗
𝑚𝑖𝑛/𝑉𝑖𝑗

𝑚𝑎𝑥 (kg/h) 

 𝜏𝑖 U1 U2 U3 U4 U5 U6 

T1 2 0/10      

T2 2 0/10      

T3 2  0/15     

T4 2  0/15     

T5 1   0/10    

T6 1   0/10    

T7 2    0/15   

T8 1     0/10  

T9 1     0/10  

T10 1     0/10  

T11 1     0/10  

T12 1      0/10 

T13 1      0/10 

T14 1      0/10 

 

Raw material costs for all raw materials and all the problems is $5/kg. 
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Appendix B 

Data for the classifiers from the case studies in Chapter 3. 

Table B1. Parameters for the support vector predictor in case study 1.  

Vector 𝛼𝑣 × 𝑦𝑣 𝐱𝑣 

1 -2.79 5.35381 9.851428 

2 -88.11 5.957423 13.24697 

3 -0.54 0.367904 2.452296 

4 -7.12 10.00091 5.295165 

5 -45.01 12.12963 5.242975 

6 31.71 12.25763 6.558401 

7 5.31 3.043823 19.40842 

8 74.91 7.234538 10.66534 

9 25.94 6.157956 17.35169 

10 5.69 19.02077 4.623234 

 

𝛾 = 0.5, 𝑏 = 0.9741 

 

Table B2. Parameter for the neural network predictor in case study 1. 

𝐰𝑖𝑛𝑝𝑢𝑡
𝑇  𝐛𝑖𝑛𝑝𝑢𝑡

𝑇  𝐰ℎ 𝑏ℎ 

-5.36648 -3.75728 -4.03665 -9.63628 0.7934 

10.05838 -11.7339 -11.7753 -16.4666  

-4.28878 -1.67988 -1.62722 -5.88031  

0.838191 1.240411 -1.07853 1.636828  

8.869156 -8.20985 7.649089 16.24723  

7.543368 12.09633 -1.48232 12.58419  

-4.2947 -8.91592 -6.6844 -10.649  

16.44189 7.568852 -5.25047 14.86137  

0.526034 -1.12809 -3.37523 -0.97602  

8.532768 8.379034 1.542781 7.329913  
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Appendix C 

A detailed air separation model is derived under the following simplifying assumptions: 

• Negligible vapor holdups on each tray 

• Ideal vapor phases 

• Well-mixed streams entering each tray 

• Constant pressure drop on each tray 

• Vapor liquid equilibrium is established on each tray 

 

Distillation column 

Overall Mass Balance 

𝑑𝑀𝑖

𝑑𝑡
= 𝐿𝑖−1 + 𝑉𝑖+1 − 𝐿𝑖 − 𝑉𝑖 + 𝐹𝑖 (1) 

where 𝑖 is the index of each tray, starting from the top of the column. 𝑀𝑖 is the liquid mole 

holdup ([mol]) on tray 𝑖, 𝐿𝑖 and 𝑉𝑖 are liquid and vapor molar flow rates, and 𝐹𝑖 is the molar 

feed ([mol/min]). The only nonzero values of 𝐹𝑖 are those corresponding to expanded air 

(𝐸𝐴, 𝑢1), pure air (𝑀𝐴, 𝑢2), and crude oxygen stream (𝐶𝑂). 

   

In the first tray of the high pressure column: 

𝑑𝑀1
ℎ

𝑑𝑡
= 𝐿𝑐𝑜𝑛𝑑 ∗ 𝑅𝑐𝑜𝑛𝑑 + 𝑉2

ℎ − 𝐿1
ℎ − 𝑉1

ℎ 

𝐿𝑐𝑜𝑛𝑑 = 𝑉1
ℎ 
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The total liquid leaving the condenser, 𝐿𝑐𝑜𝑛𝑑 is equal to the vapor sent to the condenser, 

𝑉1. 𝑅𝑐𝑜𝑛𝑑 is the reflux ratio in the condenser. The liquid nitrogen and the crude oil sent to 

the LPC are given by: 

LN = (1 − 𝑅𝑐𝑜𝑛𝑑) ∗ 𝐿𝑐𝑜𝑛𝑑 − PLNI 

CO = 𝐿40
ℎ  

In the last tray of the low-pressure column: 

𝑑𝑀40
𝑙

𝑑𝑡
= 𝐿39

𝑙 + 𝑉𝑟𝑒𝑏 ∗ 𝑅𝑟𝑒𝑏 − 𝐿40
𝑙 − 𝑉40

𝑙  

𝑉𝑟𝑒𝑏 = 𝐿40 (𝑖𝑓 𝑖𝑛 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒) 

POX = 𝑉𝑟𝑒𝑏(1 − 𝑅𝑟𝑒𝑏) 

Finally, all the vapor leaving the first tray of the LPC is pure nitrogen:  

PNI = 𝑉1
𝑙 

 

Component Balances 

𝑑(𝑀𝑖𝑥𝑖𝑗)

𝑑𝑡
= 𝐿𝑖−1𝑥𝑖−1,𝑗 + 𝑉𝑖+1𝑦𝑖+1,𝑗 − 𝐿𝑖𝑥𝑖,𝑗 − 𝑉𝑖𝑦𝑖,𝑗 + 𝐹𝑖𝑥𝑖,𝑗

𝑓 (2) 

where 𝑗 ∈ 𝐶𝑂𝑀𝑃 is the index of each component, 𝑥𝑖𝑗 and 𝑦𝑖𝑗 are component mole fractions 

in the liquid and vapor phases, 𝑥𝑖𝑗
𝑓

 are the mole fractions of the feed. We can rewrite this 

equation as: 

𝑀𝑖

𝑑𝑥𝑖𝑗

𝑑𝑡
= 𝐿𝑖−1(𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗) + 𝑉𝑖+1(𝑦𝑖+1,𝑗 − 𝑥𝑖,𝑗) − 𝑉𝑖(𝑦𝑖,𝑗 − 𝑥𝑖,𝑗) + 𝐹𝑖(𝑥𝑖,𝑗

𝑓
− 𝑥𝑖,𝑗) (3) 

Note that, similar to the mass balance, the equations for first, last, and feed trays are 

modified. For example: 

𝑀1
ℎ
𝑑𝑥1𝑗

ℎ

𝑑𝑡
= 𝐿𝑐𝑜𝑛𝑑𝑅𝑐𝑜𝑛𝑑(𝑥𝑐𝑜𝑛𝑑,𝑗 − 𝑥1,𝑗

ℎ ) + 𝑉2
ℎ(𝑦2,𝑗

ℎ − 𝑥1,𝑗
ℎ ) − 𝑉1

ℎ(𝑦1,𝑗
ℎ − 𝑥1,𝑗

ℎ ) 
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𝑀40
ℎ
𝑑𝑥40𝑗

ℎ

𝑑𝑡
= 𝐿39

ℎ (𝑥39,𝑗
ℎ − 𝑥40,𝑗

ℎ ) − 𝑉40
ℎ (𝑦40,𝑗

ℎ − 𝑥40,𝑗
ℎ ) + MA40(𝑥𝑀𝐴,𝑗

𝑓
− 𝑥40,𝑗

ℎ ) 

 

Energy balance 

𝑑(𝑀𝑖ℎ𝑖
𝐿)

𝑑𝑡
= 𝐿𝑖−1ℎ𝑖−1

𝐿 + 𝑉𝑖+1ℎ𝑖+1
𝑉 − 𝐿𝑖ℎ𝑖

𝐿 − 𝑉𝑖ℎ𝑖
𝑉 + 𝐹𝑖ℎ𝑖

𝑓 (4) 

where ℎ𝑖
𝐿 = 𝑓ℎ𝑙(𝑇𝑖, 𝑃𝑖)and ℎ𝑖

𝑉 = 𝑓ℎ𝑣(𝑇𝑖, 𝑃𝑖) are liquid and vapor enthalpies in [
𝑘𝐽

𝑚𝑜𝑙
], and 

ℎ𝑖
𝑓
 is the feed enthalpy.  

ℎ𝑖
𝐿 =∑(𝑎𝑗

𝐿𝑇𝑖 + 𝑏𝑗
𝐿)𝑥𝑖𝑗

𝑗

 

ℎ𝑖
𝑉 =∑(𝑎𝑗

𝑉𝑇𝑖 + 𝑏𝑗
𝑉)𝑦𝑖𝑗

𝑗

 

The energy balance can be rewritten as: 

𝑀𝑖

𝑑ℎ𝑖
𝐿

𝑑𝑡
= 𝐿𝑖−1(ℎ𝑖−1

𝐿 − ℎ𝑖
𝐿) + 𝑉𝑖+1(ℎ𝑖+1

𝑉 − ℎ𝑖
𝐿) − 𝑉𝑖(ℎ𝑖

𝑉 − ℎ𝑖
𝐿) + 𝐹𝑖(ℎ𝑖

𝑓
− ℎ𝑖

𝐿) (5) 

Note that, similar to the mass balance, the equations for first, last, and feed trays are 

modified. 

 

Summation equation 

∑𝑦𝑖,𝑗
𝑗

= 1 (6) 

 

Hydraulic Equation 

𝐿𝑖 = 𝑘𝑑𝑀𝑖 (7) 

where 𝑘𝑑 = 0.5 𝑚𝑖𝑛
−1 is a tuning constant determined from empirical data. 
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Vapor-Liquid Equilibrium 

𝑦𝑖𝑗𝑝𝑖 = 𝛾𝑖𝑗𝑥𝑖𝑗𝑝𝑖𝑗
𝑠𝑎𝑡 (8) 

where 𝑝𝑖 is the total pressure on tray 𝑖, and 𝑝𝑖𝑗
𝑠𝑎𝑡 = 𝑓(𝑇𝑖) is the saturation pressure of pure 

component 𝑗 on tray 𝑖. Symbol 𝛾𝑖𝑗 denotes the liquid activity coefficient describing the 

non-ideal vapor liquid equilibrium calculated from: 

𝛾𝑖,𝑁2 = exp [
𝐴𝑁2𝑂2𝑥𝑖,𝑂2

2 + 𝐴𝑁2𝐴𝑟𝑥𝑖,𝐴𝑟
2 + (𝐴𝑁2𝑂2 + 𝐴𝑁2𝐴𝑟 − 𝐴𝑂2𝐴𝑟)𝑥𝑖,𝑂2𝑥𝑖,𝐴𝑟

𝑅𝑇𝑖
] (9𝑎) 

𝛾𝑖,𝑂2 = exp [
𝐴𝑁2𝑂2𝑥𝑖,𝑁2

2 + 𝐴𝑂2𝐴𝑟𝑥𝑖,𝐴𝑟
2 + (𝐴𝑁2𝑂2 + 𝐴𝑂2𝐴𝑟 − 𝐴𝑁2𝐴𝑟)𝑥𝑖,𝑁2𝑥𝑖,𝐴𝑟

𝑅𝑇𝑖
] (9𝑏) 

𝛾𝑖,𝐴𝑟 = exp [
𝐴𝑁2𝐴𝑟𝑥𝑖,𝑁2

2 + 𝐴𝑂2𝐴𝑟𝑥𝑖,𝑂2
2 + (𝐴𝑁2𝐴𝑟 + 𝐴𝑂2𝐴𝑟 − 𝐴𝑁2𝑂2)𝑥𝑖,𝑁2𝑥𝑖,𝑂2

𝑅𝑇𝑖
] (9𝑐) 

where 𝑅 is the ideal gas constant and the coefficient 𝐴𝑗𝑘 account for the liquid phase 

interactions between components 𝑗 and 𝑘. These can be calculated using Margules 

equations. 

 

Condenser 

𝐿𝑐𝑜𝑛𝑑 = 𝑉1
ℎ (10) 

𝐿𝑐𝑜𝑛𝑑 is the liquid molar flow leaving the condenser, which is equal to 𝑉1, the top stage 

vapor rate. 

𝑄𝑐𝑜𝑛𝑑 = 𝐿𝑐𝑜𝑛𝑑 ∙ ℎ1
𝑉 − 𝐿𝑐𝑜𝑛𝑑ℎ𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟

𝐿 = 𝐿𝑐𝑜𝑛𝑑(ℎ1
𝑉 − ℎ𝑐𝑜𝑛𝑑

𝐿 ) (11) 

where ℎ1
𝑉 is the top tray molar vapor enthalpy, ℎ𝑐𝑜𝑛𝑑

𝐿  is the liquid molar enthalpy in the 

condenser and 𝑄𝑐𝑜𝑛𝑑 is the heat extracted from the condensation of vapor.  

Because all of the inlet vapor is condenser, the composition of the outlet liquid is the same 

as the inlet vapor 
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𝑦1,𝑗 = 𝑥𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,𝑗 (12) 

where 𝑦1𝑗 is the top stage composition fo component 𝑗 and 𝑥𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,𝑗 is the liquid molar 

composition in the condenser of component 𝑗.  

Furthermore, because the liquid is assumed to be saturated, the condenser pressure can be 

calculated using the saturation pressure of each component and the liquid composition: 

𝑝𝑐𝑜𝑛𝑑 =∑𝑥𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,𝑗𝑝𝑗
𝑠𝑎𝑡

𝑗

(13) 

Note that 𝑝𝑐𝑜𝑛𝑑 corresponds to the bubble point pressure under the assumption that 

Raoult’s law applies. In this study, the condenser pressure is treated as a modeling 

specification. 

 

Reboiler 

Mass balance 

𝑑𝑀𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

𝑑𝑡
= 𝐿40 − 𝑉𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 − 𝐿𝑑𝑟𝑎𝑖𝑛 (14) 

where 𝐿40 is the liquid flow from the bottom tray in the column, 𝐿𝑑𝑟𝑎𝑖𝑛 is the drain flow 

from the reboiler, and 𝑉𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 is the waste vapor flow from the reboiler.  

 

Component balance 

𝑑𝑥𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟
𝑑𝑡

=
𝐿40(𝑥40,𝑗 − 𝑥𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟,𝑗) − 𝑉𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟(𝑦𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟,𝑗 − 𝑥𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟,𝑗)

𝑀𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

(15) 
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Energy balance:  

As there is no material or energy accumulation in the expansion valve, the expansion valve 

and the reboiler models are lumped together for simplicity. 

(
𝜕ℎ𝑟𝑒𝑏

𝐿

𝜕𝑇𝑟𝑒𝑏
𝑇̅𝑟𝑒𝑏 + ∑

𝜕ℎ𝑟𝑒𝑏
𝐿

𝜕𝑥𝑟𝑒𝑏,𝑗
𝑥̅𝑟𝑒𝑏,𝑗) =

𝐿40(ℎ40
𝐿 − ℎ𝑟𝑒𝑏

𝐿 ) − 𝑉𝑟𝑒𝑏(ℎ𝑟𝑒𝑏
𝑉 − ℎ𝑟𝑒𝑏

𝐿 ) + 𝑄𝑟𝑒𝑏
𝑀𝑟𝑒𝑏

 

where 𝑄𝑟𝑒𝑏 = 𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 

The pressure at the reboiler was held constant at 1.3bar.  

𝑥̅𝑟𝑒𝑏𝑗 =
𝑑𝑥𝑟𝑒𝑏,𝑗

𝑑𝑡
=
𝐿30(𝑥30,𝑗 − 𝑥𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟,𝑗) − 𝑉𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟(𝑦𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟,𝑗 − 𝑥𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟,𝑗)

𝑀𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟

 

𝑇̅𝑟𝑒𝑏 =
𝑑𝑇𝑟𝑒𝑏
𝑑𝑡

= −

∑ [𝑥𝑟𝑒𝑏𝑗 ∑ (
𝜕𝐾𝑟𝑒𝑏,𝑗
𝜕𝑥𝑟𝑒𝑏,𝑘

𝑥̅𝑟𝑒𝑏,𝑘)𝑘 + 𝐾𝑟𝑒𝑏,𝑗𝑥̅𝑟𝑒𝑏,𝑗] 𝑗

∑ 𝑥𝑟𝑒𝑏,𝑗
𝜕𝐾𝑟𝑒𝑏,𝑗
𝜕𝑇𝑟𝑒𝑏

𝑗

 


