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Modern machine learning and signal processing relies on finding meaningful and suc-

cinct representations of data. While most works in the literature have focused on finding

representations of vector data, many of today’s data are collected using various sen-

sors and have a multidimensional structure. This dissertation addresses the problem

of feature learning for tensor (i.e., multiway) data, which are defined as data having

multiple modes. The work presented in this dissertation aims to study the theoretical

and algorithmic aspects of dictionary learning from tensor data and further investi-

gate the computational aspects of exploiting the structure of tensor data in wireless

communication systems. The dissertation has been divided into three main parts.

The first part of the dissertation is focused on the theoretical aspects of Kronecker-

structured dictionary learning from tensor data. Here, the structure of tensor data is

exploited by requiring that the dictionary underlying the vectorized versions of tensor

data samples be Kronecker structured. That is, it is comprised of coordinate dictionaries

that independently transform various modes of the tensor data. The presented results

are primarily stated in terms of lower and upper bounds on the sample complexity of
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dictionary learning, defined as the number of samples needed to reconstruct the true

structured dictionary underlying the tensor data from noisy samples. These results

highlight the effects of different parameters on the sample complexity of the problem

and also bring out the potential advantages of structured dictionary learning from tensor

data.

The second part of this dissertation focuses on extending the Kronecker-structured

dictionary learning model to a less restrictive class of dictionaries referred to as low-

separation-rank dictionary learning, while still exploiting the structure of tensor data

in the underlying dictionary. Various computational algorithms are developed to learn

such dictionaries in cases where tensor data are available in batch or are streaming in an

online manner. Numerical experiments are provided to demonstrate the performance of

the provided algorithms for synthetic tensor data representation and real-world image

data denoising. These experiments highlight the advantages of the low-separation-rank

dictionary learning model over Kronecker-structured dictionary learning for complex

data classes such as images in the denoising problem.

The final part of the dissertation focuses on another application of sparse repre-

sentations of tensor data and studies the sparse channel estimation problem in mas-

sive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-

OFDM) systems. By modeling the underlying wireless channel as a tensor, a sparse

tensor recovery technique is used to estimate the channel using lower computational

resources and storage at the receiver compared to vectorized representation methods.

Numerical experiments are provided to compare the performance of the estimation

algorithms corresponding to vectorized and tensor formulations. These results also

highlight the effects of various training signal parameters on the channel estimation

performance.
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Chapter 1

Introduction

Roughly speaking, data representation entails transforming raw data from its original

domain to another domain in which it can be processed more effectively and efficiently.

In particular, the performance of any information processing algorithm is dependent on

the representation on which it was built on [2]. Data-driven representation approaches

infer transforms from the data to yield efficient representations. Such techniques gen-

erally outperform model-based techniques that use predetermined bases to transform

data. This success is attributed to the fact that the learned transformations in data-

driven approaches are tuned to the input signals [3, 4].

Since contemporary data are often high dimensional and high volume, we need

efficient algorithms to manage them. In addition, rapid advances in sensing and data

acquisition technologies in recent years have resulted in individual data samples or

signals with multimodal structures. Such data are often termed tensors or multiway

arrays [5]. Examples of tensor data include hyperspectral images that have three modes

(two spatial and one spectral), colored videos that have four modes (two spatial, one

depth, and one temporal), and dynamic magnetic resonance imaging in a clinical trial

that has five modes (three spatial, one temporal, and one subject).

In this thesis, we primarily focus on data-driven representations for tensor data. As

data collection systems grow and proliferate, we will require efficient data representa-

tions for processing, storage, and retrieval of tensor data. Dictionary learning (DL) is

a technique for finding sparse representations of data and has applications in various

tasks such as image denoising and inpainting, audio processing, and classification [4, 6–

8]. In traditional DL literature, tensor data are converted into one-dimensional data by

vectorizing the signals. Recent works have shown that many multidimensional signals
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can be decomposed into a superposition of separable atoms [9–11]. In this case, a se-

quence of independent transformations on different data dimensions can be carried out

using Kronecker-structured (KS) matrices.

To provide some insights into the usefulness of KS dictionaries for tensor data,

consider the problem of finding sparse representations of 1024 × 1024 × 32 hyperspec-

tral images. Traditional DL methods require each image to be rearranged into a one-

dimensional vector of length 225 and then learn an unstructured dictionary that has a

total of (225p) unknown parameters, where p ≥ 225 is the number of dictionary columns.

In contrast, KS DL only requires learning three coordinate dictionaries of dimensions

1024× p1, 1024× p2, and 32× p3, where p1, p2 ≥ 1024, and p3 ≥ 32 are the number of

columns of the coordinate dictionaries. This gives rise to a total of [1024(p1+p2)+32p3]

unknown parameters in KS DL, which is significantly smaller than 225p. While such

parameter counting points to the usefulness of KS DL for tensor data, the fundamental

problem of theoretical limits on the learning of KS dictionaries underlying Kth-order

tensor data remains open.

Although KS-DL approaches may require lower sample and computational com-

plexity and have better storage efficiency over unstructured DL [12], the KS-DL model

makes a strong separability assumption among different modes of tensor data, namely,

various modes of data can be transformed using independent transformations. This

assumption is often too restrictive for many classes of data [13]. This results in an un-

favorable tradeoff between model compactness and representation power. To overcome

this limitation, a generalization of the KS-DL model referred to as learning a mixture of

separable dictionaries or low separation-rank DL (LSR-DL) can be used that assumes

the dictionary is comprised of summation of KS matrices. The LSR-DL model in-

terpolates between the under-parameterized KS-DL model and the over-parameterized

unstructured model.

Most of the focus of prior work on tensor data representation has been on the

application of image data representation [14–16]. Another application of tensor data

representation is the problem of channel estimation in multiple-input and multiple-

output orthogonal frequency division multiplexing (MIMO-OFDM) systems that can be
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modeled as a tensor with four modes (angle of arrival, angle of departure, delay spread,

Doppler spread). In the case where the underlying multipath channel is approximately

sparse in the angle-delay-Doppler domain, the channel estimation problem can be solved

using a compressed sensing (CS) framework in which the channel response is sparsely

represented in some predetermined bases [17]. Taking the tensor structure of the channel

into account, one can take advantage of sparse tensor recovery techniques to estimate

the channel using lower computational power and storage at the receiver compared to

vectorized recovery techniques.

1.1 Thesis Statement

To address the problem of feature extraction for tensor data, we can assume a struc-

ture on the tensor of interest through tensor decompositions such as the CANDE-

COMP/PARAFAC (CP) decomposition [18], Tucker decomposition [19], PARATUCK

decomposition [5], and Tensor-Train decomposition [20] to obtain meaningful repre-

sentations of tensor data. Because these decompositions involve fewer parameters, or

degrees of freedom, in the model, inference algorithms that exploit such decompositions

often perform better than those that assume the tensors to be unstructured. Moreover,

algorithms utilizing tensor decompositions tend to be more efficient in terms of storage

and computational costs: the cost of storing the decomposition can be substantially

lower and numerical methods can exploit the structure by solving simpler subprob-

lems [11, 14, 16].

Hence, the thesis of this dissertation is: “Taking the structure of tensor data into

account in representation learning has fundamental advantages over vectorized learning

techniques as it can lead to more compressed and efficient representations that can be

obtained using less number of data samples compared to vectorized learning techniques.

Furthermore, multidimensional processing techniques can be utilized to process tensor

data that require less computational power and storage compared to vectorized processing

methods.”



4

1.2 Major Contributions

In this thesis, we first aim to provide a theoretical understanding of the fundamental

limits of DL methods that explicitly account for the multidimensional structure of data

through KS dictionaries. We also provide structured DL algorithms for efficient tensor

data representation. Finally, we investigate the computational advantages of using

tensor recovery techniques over vectorized methods. In order to support our thesis, we

have developed new theory and methods in the dissertation for some of the fundamental

problems arising in finding sparse representations and processing of tensor data. Below,

we highlight some of the primary aspects of these contributions:

Our first major contribution, which appears in Chapter 3, is focused on using

an information-theoretic approach to provide lower bounds for the worst-case mean-

squared error (MSE) of KS dictionaries that generate Kth-order tensor data. Further-

more, we also show that for a special case of K = 2, there exists an estimator whose

MSE meets the derived lower bounds.

Our second major contribution, which appears in Chapter 4, examines the KS-DL

objective function and find sufficient conditions on the number of samples (or sample

complexity) for successful local identification of coordinate dictionaries underlying the

true KS dictionary that generate Kth-order tensor data.

These results suggest the sample complexity of KS-DL for tensor data can be sig-

nificantly lower than that for unstructured data: for unstructured data, the sample

complexity lower bound scales linearly with the product of the dictionary dimensions,

whereas for tensor data the bound scales linearly with the sum of the product of the

dimensions of the coordinate dictionaries comprising the KS dictionary. Furthermore,

we show that the sample complexity upper bound in the KS-DL problem scales with

the dimensions of the largest coordinate dictionary, as opposed to the dimensions of

the larger KS dictionary when the multidimensional structure is ignored.

Our third major contribution, which appears in Chapter 5, is generalizing the KS-

DL model to LSR-DL and developing various algorithms to learn LSR dictionaries in

both batch and online settings. We also conduct numerical experiments to show the
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effectiveness of the proposed model and the performance of the developed algorithms

for synthetic data representation and real-world data image denoising.

Our final major contribution, which appears in Chapter 6, is focused on the prob-

lem of sparse channel estimation in massive MIMO-OFDM systems. Here, two formula-

tions are investigated for training-based channel estimation. For the first formulation,

theoretical guarantees for reliable channel recovery are provided based on the total

number of parameters in the training signal. Moreover, a tensor recovery technique

is used to estimate the sparse channel in the second formulation. By exploiting the

tensor structure of the channel, computationally simpler sparse recovery algorithms are

utilized to recover the channel in this formulation. Finally, numerical experiments are

provided to investigate the channel estimation performance as a function of the used

formulation and other training parameters.

1.3 Notational Convention and Definitions

Underlined bold upper-case, bold upper-case and lower-case letters are used to denote

tensors, matrices and vectors, respectively, while non-bold lower-case letters denote

scalars. For a tensor X, its (i1, . . . , iK)-th element is denoted as xi1...iK . The i-th

element of vector v is denoted by vi and the ij-th element of matrix X is denoted as

xij . The k-th column of X is denoted by xk. Let XI be the matrix consisting of columns

of X with indices I, XT be the matrix consisting of rows of X with indices T and Id

be the d× d identity matrix. We use |I| for the cardinality of the set I. Sometimes we

use matrices indexed by numbers, such as X1, in which case a second index (e.g., x1,k)

is used to denote its columns. We also use matrices indexed by multiple letters, such

as X(a,b,c), in which case its j-th column is denoted by x(a,b,c),j .

The function supp(.) denotes the locations of the nonzero entries of X. We use

vec(X) to denote the vectorized version of matrix X, which is a column vector obtained

by stacking the columns of X on top of one another. We use diag (X) to denote the

vector comprised of the diagonal elements of X and Diag (v) to denote the diagonal

matrix whose diagonal elements are comprised of elements of v. The elements of the
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sign vector of v, denoted as sign(v), are equal to sign(vi) = vi/|vi|, for vi 6= 0, and

sign(vi) = 0 for vi = 0, where i denotes the index of any element of v. We also use

sin(v) to denote the vector with elements sin(vi) (used similarly for other trigonometric

functions). We use [K] to denote {1, 2, . . . ,K} and X1:K to denote {Xk}Kk=1.

Norms are given by subscripts, so ‖v‖0, ‖v‖1, and ‖v‖2 are the `0, `1, and `2 norms

of v, while ‖X‖2, ‖X‖F , and ‖X‖tr are the spectral, Frobenius, and trace (nuclear)

norms of X, respectively. Moreover, ‖X‖1 ,
∑

i,j |xi,j | denotes the sum of absolute

values of entries of X.

For matrices X1 and X2 of appropriate dimensions, we define their distance to be

d(X1,X2) = ‖X1 −X2‖F . For X0 belonging to some set X , we define

Sε(X0) ,
{
X ∈ X : ‖X−X0‖F = ε

}
,

Bε(X0) ,
{
X ∈ X : ‖X−X0‖F < ε

}
,

B̄ε(X0) ,
{
X ∈ X : ‖X−X0‖F ≤ ε

}
. (1.1)

Note that while Sε(X0) represents the surface of a sphere, we use the term “sphere”

for simplicity. Furthermore, PB1(u) denotes the projection of u on the closed unit ball,

i.e.,

PB1(u) =


u, if ‖u‖2 ≤ 1,

u
‖u‖2 , otherwise.

(1.2)

We use f(n) = O(g(n)) and f(n) = Ω(g(n)) if for sufficiently large n ∈ N, f(n) <

C1g(n) and f(n) > C2g(n), respectively, for some positive constants C1 and C2.We

define HX , (X>X)−1, X+ , HXX>, and PX , XX+ for full rank matrix X. In the

body, we sometimes also use ∆f(X; Y) , f(X)− f(Y).

A frame F ∈ Rm×p, m ≤ p, is defined as a collection of vectors {fi ∈ Rm}pi=1 in some

separable Hilbert space H, that satisfy c1 ‖v‖22 ≤
∑p

i=1 |〈fi,v〉|
2 ≤ c2 ‖v‖22 for all v ∈ H

and for some constants 0 < c1 ≤ c2 <∞. If c1 = c2, then F is a tight frame [21, 22].

We use the following definitions for a matrix X with unit-norm columns: δs(X)
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denotes the restricted isometry property (RIP) constant of order s for X [23]. We define

the worst-case coherence of X as µ1(X) = max i,j
i 6=j

∣∣x>i xj
∣∣. We also define the order-s

cumulative coherence of X as

µs(X) , max
|J |≤s

max
j 6∈J
‖X>Jxj‖1. (1.3)

Note that for s = 1, the cumulative coherence is equivalent to the worst-case coherence

and µs(X) ≤ sµ1(X) [24]. For X =
⊗

k∈[K] Xk, where Xk’s have unit-norm columns,

µ1(X) = maxk∈[K] µ1(Xk) [25, Corollary 3.6] and it can be shown that [12]:

µs(X) ≤ max
k∈[K]

µsk(Xk)

( ∏
i∈[K],
i 6=k

(1 + µsi−1(Xi))

)
. (1.4)

We define the outer product of two vectors of the same dimension, u and v, as

u � v = uv> and the inner product between matrices of the same size, X and Y,

as 〈X,Y〉 = Tr(X>Y). We write X ⊗ Y for the Kronecker product of two matrices

X ∈ Rm×n and Y ∈ Rp×q, defined as

X⊗Y =


x11Y x12Y . . . x1nY

...
...

. . .
...

xm1Y xm2Y . . . xmnY

 , (1.5)

where the result is an mp × nq matrix and we have ‖X ⊗ Y‖F = ‖X‖F ‖Y‖F [26].

Given matrices X1,X2,Y1, and Y2, where products X1Y1 and X2Y2 can be formed,

we have [27]

(X1 ⊗X2)(Y1 ⊗Y2) = (X1Y1)⊗ (X2Y2). (1.6)

Given X ∈ Rm×n and Y ∈ Rp×n, we write X ∗Y for their mp × n Khatri-Rao prod-

uct [27], defined by

X ∗Y =
[
x1 ⊗ y1 x2 ⊗ y2 . . . xn ⊗ yn

]
. (1.7)
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This is essentially the column-wise Kronecker product of matrices X and Y. We also

use
⊗

k∈K Xk = X1 ⊗ · · · ⊗XK and∗k∈K Xk = X1 ∗ · · · ∗XK . For X =
⊗

k∈[K] Xk,

where Xk’s have unit-norm columns, µ1(X) = maxk∈[K] µ1(Xk) [25, Corollary 3.6].

The separation rank of a matrix A ∈ R
∏
kmk×

∏
k pk is the minimum number R of

Kth-order KS matrices Ar =
⊗K

k=1 Ar
k such that A =

∑R
r=1 Ar, where Ar

k ∈ Rmk×pk .

1.3.1 Tensor Operations and Tucker Decomposition for Tensors

A tensor is a multidimensional array where the order of the tensor is defined as the

number of dimensions in the array.

Tensor Unfolding: A tensor X ∈ Rp1×p2×···×pK of order K can be expressed as a

matrix by reordering its elements to form a matrix. This reordering is called unfolding:

the mode-k unfolding matrix of a tensor is a pk ×
∏
i 6=k pi matrix, which we denote

by X(k). Each column of X(k) consists of the vector formed by fixing all indices of X

except the one in the kth-order. The k-rank of a tensor X is defined by rank(X(k));

trivially, rank(X(k)) ≤ pk.

Tensor Multiplication: The mode-k matrix product of the tensor X and a matrix

A ∈ Rmk×pk , denoted by X×k A, is a tensor of size p1 × . . . pk−1 ×mk × pk+1 · · · × pK

whose elements are (X×kA)i1...ik−1jik+1...iK =
∑pk

ik=1 xi1...ik−1ikik+1...iK
ajik . The mode-k

matrix product of X and A and the matrix multiplication of X(k) and A are related [5]:

Y = X×k A⇔ Y(k) = AX(k). (1.8)

Tucker Decomposition: The Tucker decomposition decomposes a tensor into a core

tensor multiplied by a matrix along each mode [5, 19]. We take advantage of the Tucker

model since we can relate the Tucker decomposition to the Kronecker representation of

tensors [28]. For a tensor Y ∈ Rm1×m2×···×mK of order K, if rank(Y(k)) ≤ pk holds for

all k ∈ [K] then, according to the Tucker model, Y can be decomposed into:

Y = X×1 D1 ×2 D2 ×3 · · · ×K DK , (1.9)
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where X ∈ Rp1×p2×···×pK denotes the core tensor and Dk ∈ Rmk×pk are factor matrices.

The following is implied by (1.9) [5]:

Y(k) = DkX(k)(DK ⊗ · · · ⊗Dk+1 ⊗Dk−1 ⊗ · · · ⊗D1)
>.

Since the Kronecker product satisfies vec(BXA>) = (A⊗B) vec(X), (1.9) is equivalent

to

vec(Y) =
(
DK ⊗DK−1 ⊗ · · · ⊗D1

)
vec(X), (1.10)

where vec(Y) , vec(Y(1)) and vec(X) , vec(X(1)).

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2 of the dissertation,

we review some of the theoretical results for DL from vector-valued data and provide

some background on DL from tensor data. In Chapter 3 of the dissertation, we focus on

the fundamental limits on the sample complexity of estimating dictionaries from tensor

data and use an information-theoretical approach to provide general lower bounds on

the minimax risk of KS-DL for tensor data. In Chapter 4 of the dissertation, we use tools

from real analysis and concentration of measure to derive sufficient conditions for local

recovery of coordinate dictionaries comprising a KS dictionary from tensor observations.

In Chapter 5 of the dissertation, we extend the KS-DL model to LSR-DL and provide

computational algorithms to learn LSR dictionaries using tools from low-rank tensor

recovery approaches. In Chapter 6, we study the sparse channel estimation problem

in MIMO-OFDM systems and use tools from probability theory and linear algebra

to provide theoretical guarantees for channel recovery. We also provide an efficient

tensor formulation for the estimation problem and use compressive sensing techniques

for tensors to recover the sparse multidimensional channel. Finally in Chapter 7, we

provide a summary of the dissertation and a brief overview of future work.
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Chapter 2

Background on Dictionary Learning for Vector- and

Tensor-Valued Data

During the last decade, dictionary learning has emerged as one of the most powerful

methods for data-driven extraction of features from data. While the initial focus on

dictionary learning had been from an algorithmic perspective, recent years have seen an

increasing interest in understanding the theoretical underpinnings of dictionary learn-

ing. Such results help us understand the fundamental limitations of different dictionary

learning algorithms. The first part of this chapter focuses on the theoretical aspects

of dictionary learning and summarizes existing results that deal with dictionary learn-

ing from vector-valued data. These results are primarily stated in terms of lower and

upper bounds on the sample complexity of dictionary learning, defined as the number

of samples needed to identify or reconstruct the true dictionary underlying data from

noiseless or noisy samples, respectively. The second part of this chapter formulates the

problem of dictionary learning from tensor-valued data.

2.1 Introduction

There are two major approaches to data representation. In model-based approaches, a

predetermined basis is used to transform data. Such a basis can be formed using pre-

defined transforms such as the Fourier transform [29], wavelets [30], and curvelets [31].

The data-driven approach infers transforms from the data to yield efficient representa-

tions. Prior works on data representation show that data-driven techniques generally

outperform model-based techniques as the learned transformations are tuned to the

input signals [3, 4].

Data-driven representations have successfully been used for signal processing and
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machine learning tasks such as data compression, recognition, and classification [3, 7,

32]. From a theoretical standpoint, there are several interesting questions surrounding

data-driven representations. Assuming there is an unknown generative model forming a

“true” representation of data, these questions include: i) What algorithms can be used

to learn the representation effectively? ii) How many data samples are needed to learn

the representation? iii) What are the fundamental limits on the number of data samples

needed to learn the representation? iv) How robust are the solutions addressing these

questions to parameters such as noise and outliers? In particular, state-of-the-art data

representation algorithms have excellent empirical performance but their nonconvex

geometry makes analyzing them challenging.

The goal of the first part of this chapter is to provide a brief overview of some of

the aforementioned questions for a class of data-driven representation methods known

as dictionary learning (DL) for vector-valued data. In the second part of the chapter,

we provide a formulation of the DL problem for tensor-valued data that is used in the

next chapters of the thesis.

2.1.1 Dictionary Learning: A Data-driven Approach to Sparse Rep-

resentations

Data-driven methods have a long history in representation learning and can be divided

into two classes. The first class includes linear methods, which involve transforming

(typically vector-valued) data using linear functions to exploit the latent structure in

data [3, 33, 34]. From a geometrical point of view, these methods effectively learn

a low-dimensional subspace and projection of data onto that subspace, given some

constraints. Examples of classical linear approaches for vector-valued data include

principal component analysis (PCA) [3], linear discriminant analysis (LDA) [33], and

independent component analysis (ICA) [34].

The second class consists of nonlinear methods. Despite the fact that linear repre-

sentations have historically been preferred over nonlinear methods because of ease of

computational complexity, recent advances in available analytical tools and computa-

tional power have resulted in an increased interest in nonlinear representation learning.
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These techniques have enhanced performance and interpretability compared to linear

techniques. In many nonlinear methods, data is transformed into a higher dimensional

space, in which it lies on a low dimensional manifold [4, 35–37]. In the world of nonlin-

ear transformations, nonlinearity can take different forms. In manifold-based methods

such as diffusion maps, data is projected onto a nonlinear manifold [35]. In kernel

(non-linear) PCA, data is projected onto a subspace in a higher dimensional space [36].

Autoencoders encode data based on the desired task [37–39]. DL uses a union of sub-

spaces as the underlying geometric structure and projects input data onto one of the

learned subspaces in the union. This leads to sparse representations of the data, which

can be represented in the form of an overdetermined matrix multiplied by a sparse vec-

tor [4]. Although nonlinear representation methods result in nonconvex formulations,

we can often take advantage of the problem structure to guarantee the existence of a

unique solution and hence an optimal representation.

DL is known to have slightly higher computational complexity in comparison to lin-

ear methods, but it surpasses their performance in applications such as image denoising

and inpainting [4], audio processing [6], compressed sensing [40], and data classifica-

tion [7, 8]. Compared to other nonlinear representation methods, DL provides better

interpretability. Furthermore, DL requires less number of samples and is less costly

to train compared to autoencoders [41]. More specifically, given input training signals

y ∈ Rm, the goal in DL is to construct a basis such that y ≈ Dx. Here, D ∈ Rm×p

is denoted as the dictionary that has unit-norm columns and x ∈ Rp is the dictionary

coefficient vector that has a few nonzero entries. While the initial focus in DL had been

on algorithmic development for various problem setups, works in recent years have also

provided fundamental analytical results that help us understand the fundamental limits

and performance of DL algorithms for vector-valued [1, 24, 42–47].

There are two paradigms in the DL literature: the dictionary can be assumed to be

a complete or an overcomplete basis (effectively, a frame [48]). In both cases, columns

of the dictionary span the entire space [43]; in complete dictionaries, the dictionary

matrix is square (m = p), whereas in overcomplete dictionaries the matrix has more

columns than rows (m < p). In general, overcomplete representations result in more
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Figure 2.1: A graphical representation of the scope of this chapter in relation to the
literature on representation learning.

flexibility to allow both sparse and accurate representations [4].

2.1.2 Chapter Outline

In this chapter, we first summarize key results in learning of overcomplete dictionaries

for the case where the data is vector valued. We focus on works that provide fundamen-

tal limits on the sample complexity for reliable dictionary estimation, i.e., the number

of observations that are necessary to recover the true dictionary that generates the data

up to some predefined error. We refer the reader to Fig. 2.1 for a graphical overview

of the relationship of this thesis to other themes in representation learning. We focus

here only on the problems of identifiability and fundamental limits; in particular, we

do not survey DL algorithms in depth apart from some brief discussion in Sections 2.2

and 2.3. The monograph of Okoudjou [49] discusses algorithms for vector-valued data.

In the second part of the chapter, we provide a formulation of the DL problem for

tensor-valued data that is used in the next chapters of the thesis.
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2.2 Dictionary Learning for Vector-valued Data

In this section, we address the problem of reliable estimation of dictionaries underly-

ing data that have a single mode, i.e., are vector valued. In particular, we focus on

the subject of the sample complexity of the DL problem from two prospectives: i)

fundamental limits on the sample complexity of DL using any DL algorithm, and ii)

number of samples that are needed for different DL algorithms to reliably estimate a

true underlying dictionary that generates the data.

2.2.1 Mathematical Setup

In the conventional vector-valued DL setup, we are given a total number N of vector-

valued samples, {yn ∈ Rm}Nn=1, that are assumed to be generated from a fixed dictio-

nary, D0, according to the following model:

yn = D0xn + wn, n ∈ [N ]. (2.1)

Here, D0 ∈ Rm×p is a (deterministic) unit-norm frame (m < p) that belongs to the

following compact set:

D0 ∈ D ,
{
D ∈ Rm×p, ‖dj‖2 = 1 ∀j ∈ [p]

}
, (2.2)

and is referred to as the generating, true, or underlying dictionary. The vector xn ∈ Rp

is the coefficient vector that lies in some set X ⊆ Rp, and wn ∈ Rm denotes the random

observation noise. Concatenating the observations into a matrix Y ∈ Rm×N , their

corresponding coefficient vectors into X ∈ Rp×N , and noise vectors into W ∈ Rm×N ,

we get the following generative model:

Y = D0X + W. (2.3)

Various works in the DL literature impose different conditions on the coefficient vectors

{xn} to define the set X . The most common assumption is that xn is sparse with one
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of several probabilistic models for generating sparse xn. In contrast to exact sparsity,

some works consider approximate sparsity and assume that xn satisfies some decay

profile [50], while others assume group sparsity conditions for xn [51]. The latter con-

dition comes up implicitly in DL for tensor data as we discuss in Section 2.3. Similarly,

existing works consider a variety of noise models, the most common being Gaussian

white noise. Regardless of the assumptions on coefficient and noise vectors, all of these

works assume the observations are independent for n = 1, 2, . . . , N .

We are interested here in characterizing when it is possible to recover the true dic-

tionary D0 from observations Y. There is an inherent ambiguity in dictionary recovery:

reordering the columns of D0 or multiplying any column by −1 yields a dictionary which

can generate the same Y (with appropriately modified X). Thus, each dictionary is

equivalent to 2pp! other dictionaries. To measure the distance between dictionaries, we

can either define the distance between equivalence classes of dictionaries or consider

errors within a local neighborhood of a fixed D0, where the ambiguity disappears.

The specific criterion that we focus on is sample complexity, defined as the number

of observations necessary to recover the true dictionary up to some predefined error.

The measure of closeness of the recovered dictionary and the true dictionary can be

defined in several ways. One approach is to compare the representation error of these

dictionaries. Another measure is the mean squared error (MSE) between the estimated

and generating dictionary, defined as

EY

{
d
(
D̂(Y),D0

)2}
, (2.4)

where d(·, ·) is some distance metric, and D̂(Y) is the recovered dictionary according

to observations Y. For example, if we restrict the analysis to a local neighborhood of

the generating dictionary, then we can use the Frobenius norm as the distance metric.

We now discuss an optimization approach to solving the dictionary recovery prob-

lem. Understanding the objective function within this approach is the key to under-

standing the sample complexity of DL. Recall that solving the DL problem involves

using the observations to estimate a dictionary D̂ such that D̂ is close to D0. In
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the ideal case, the objective function involves solving the statistical risk minimization

problem as follows:

D̂ ∈ arg min
D∈D

E
{

inf
x∈X

{
1

2
‖y −Dx‖22 +R(x)

}}
. (2.5)

Here, R(·) is a regularization operator that enforces the pre-specified structure, such as

sparsity, on the coefficient vectors. Typical choices for this parameter include functions

of ‖x‖0 or its convex relaxation, ‖x‖1. However, solving (2.5) requires knowledge of

exact distributions of the problem parameters as well as high computational power.

Hence, works in the literature resort to algorithms that solve the empirical risk mini-

mization (ERM) problem [52]:

D̂ ∈ arg min
D∈D

{
N∑
n=1

inf
xn∈X

{
1

2
‖yn −Dxn‖22 +R(xn)

}}
. (2.6)

In particular, to provide analytical results, many estimators solve this problem in lieu

of (2.5) and then show that the solution of (2.6) is close to (2.5).

There are a number of computational algorithms that have been proposed to solve

(2.6) directly for various regularizers, or indirectly using heuristic approaches. One of

the most popular heuristic approaches is the K-SVD algorithm, which can be thought

of as solving (2.6) with `0-norm regularization [4]. There are also other methods such

as method of optimal directions (MOD) [53] and online DL [8] that solve (2.6) with con-

vex regularizers. While these algorithms have been known to perform well in practice,

attention has shifted in recent years to theoretical studies to i) find the fundamental

limits of solving the statistical risk minimization problem in (2.5), ii) determine con-

ditions on objective functions like (2.6) to ensure recovery of the true dictionary, and

iii) characterize the number of samples needed for recovery using either (2.5) or (2.6).

In this chapter, we are also interested in understanding the sample complexity for the

DL statistical risk minimization and ERM problems. We summarize such results in the

existing literature for the statistical risk minimization of DL in Subsection 2.2.2 and

for the ERM problem in Subsection 2.2.3. Because the measure of closeness or error

differs between these theoretical results, the corresponding sample complexity bounds
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are different.

Remark 2.1. In this section, we assume that the data is available in a batch, centralized

setting and the dictionary is deterministic. In the literature, DL algorithms have been

proposed for other settings such as streaming data, distributed data, and Bayesian

dictionaries [54–57]. Discussions of these scenarios is beyond the scope of this chapter.

In addition, some works have looked at ERM problems that are different from (2.6) [7,

8, 58].

2.2.2 Minimax Lower Bounds on the Sample Complexity of DL

In this section, we study the fundamental limits on the accuracy of the dictionary recov-

ery problem that is achievable by any DL method in the minimax setting. Specifically,

we wish to understand the behavior of the best estimator that achieves the lowest worst-

case MSE among all possible estimators. We define the error of such an estimator as

the minimax risk, which is formally defined as:

ε∗ = inf
D̂(Y)

sup
D∈D̃

EY

{
d
(
D̂(Y),D

)2}
. (2.7)

Note that the minimax risk does not depend on any specific DL method and provides

a lower bound for the error achieved by any estimator.

The first result we present pertains to lower bounds on the minimax risk, i.e.,

minimax lower bounds, for the DL problem using the Frobenius norm as the distance

metric between dictionaries. The result is based on the following assumption:

A1.1 (Local recovery) The true dictionary lies in a neighborhood of a fixed, known

reference dictionary,1 D∗ ∈ D, i.e., D0 ∈ D̃, where

D̃ = {D|D ∈ D, ‖D−D∗‖F ≤ r} . (2.8)

The range for the neighborhood radius r in (2.8) is (0, 2
√
p]. This conditioning comes

1The use of a reference dictionary is an artifact of the proof technique and for sufficiently large r,
D ≈ D̃.
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from the fact that for any D,D′ ∈ D, ‖D−D′‖F ≤ ‖D‖F +‖D′‖F = 2
√
p. By restrict-

ing dictionaries to this class, for small enough r, ambiguities that are a consequence of

using the Frobenius norm can be prevented. We also point out that any lower bound

on ε∗ is also a lower bound on the global DL problem.

Theorem 2.1 (Minimax lower bounds [1]). Consider a DL problem for vector-valued

data with N i.i.d. observations and true dictionary D satisfying assumption A1.1 for

some r ∈ (0, 2
√
p]. Then for any coefficient distribution with mean zero and covariance

matrix Σx, and white Gaussian noise with mean zero and variance σ2, the minimax

risk ε∗ is lower bounded as

ε∗ ≥ c1 min

{
r2,

σ2

N ‖Σx‖2
(c2p(m− 1)− 1)

}
, (2.9)

for some positive constants c1 and c2.

Theorem 2.1 holds for both square and overcomplete dictionaries. To obtain this

lower bound on the minimax risk, a standard information-theoretic approach is taken

in [1] to reduce the dictionary estimation problem to a multiple hypothesis testing

problem. In this technique, given fixed D∗ and r, and L ∈ N, a packing DL =

{D1,D2, . . . ,DL} ⊆ D̃ of D̃ is constructed. The distance of the packing is chosen

to ensure a tight lower bound on the minimax risk. Given observations Y = DlX+W,

where Dl ∈ DL and index l is chosen uniformly at random from [L], and any estimation

algorithm that recovers a dictionary D̂(Y), a minimum distance detector can be used

to find the recovered dictionary index l̂ ∈ [L]. Then, Fano’s inequality can be used

to relate the probability of error, i.e., P(l̂(Y) 6= l), to the mutual information between

observations and the dictionary (equivalently, the dictionary index l), i.e., I(Y; l) [59].

Let us assume that r is sufficiently large such that the minimizer of the left hand

side of (2.9) is the second term. In this case, Theorem 2.1 states that to achieve any

error ε ≥ ε∗, we need the number of samples to be on the order of N = Ω

(
σ2mp

‖Σx‖2 ε

)
.

Hence, the lower bound on the minimax risk of DL can be translated to a lower bound

on the number of necessary samples, as a function of the desired dictionary error. This

can further be interpreted as a lower bound on the sample complexity of the dictionary
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recovery problem.

We can also specialize this result to sparse coefficient vectors. Assume xn has up to

s nonzero elements and the random support of the nonzero elements of xn is assumed

to be uniformly distributed over the set {S ⊆ [p] : |S| = s}, for n = [N ]. Assuming that

the nonzero entries of xn are i.i.d. with variance σ2x, we get Σx = (s/p)σ2xIp. Therefore,

for sufficiently large r, the sample complexity scaling to achieve any error ε becomes

Ω

(
σ2mp2

σ2xsε

)
. In this special case, it can be seen that in order to achieve a fixed error ε,

the sample complexity scales with the number of degrees of freedom of the dictionary

multiplied by number of dictionary columns, i.e., N = Ω(mp2). There is also an inverse

dependence on sparsity level s. Defining the signal-to-noise-ratio of the observations as

SNR =
sσ2x
mσ2

, this can be interpreted as an inverse relationship with SNR. Moreover,

if all parameters except data dimension, m, are fixed, increasing m requires a linear

increase in N . Evidently, this linear relation is limited by the fact that m ≤ p has to

hold to maintain completeness or overcompleteness of the dictionary: increasing m by

a large amount requires increasing p also.

While the tightness of this result remains an open problem, Jung et al. [1] have

shown that for a special class of square dictionaries that are perturbations of the identity

matrix, and for sparse coefficients following a specific distribution, this result is order-

wise tight. In other words, a square dictionary that is perturbed from the identity

matrix can be recovered from this sample size order. Although this result does not

extend to overcomplete dictionaries, it suggests that the lower bounds may be tight.

Finally, while distance metrics that are invariant to dictionary ambiguities have

been used for achievable overcomplete dictionary recovery results [46, 47], obtaining

minimax lower bounds for DL using these distance metrics remains an open problem.

In this section, we discussed the number of necessary samples for reliable dictionary

recovery (sample complexity lower bound). In the next subsection, we focus on achiev-

ability results, i.e., the number of sufficient samples for reliable dictionary recovery

(sample complexity upper bound).
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2.2.3 Achievability Results

The preceding lower bounds on minimax risk hold for any estimator or computational

algorithm. However, the proofs do not provide an understanding of how to construct

effective estimators and provide little intuition about the potential performance of prac-

tical estimation techniques. In this section, we direct our attention to explicit recon-

struction methods and their sample complexities that ensure reliable recovery of the

underlying dictionary. Since these achievability results are tied to specific algorithms

that are guaranteed to recover the true dictionary, the sample complexity bounds from

these results can also be used to derive upper bounds on the minimax risk. As we will

see later, there remains a gap between the lower bound and the upper bound on the

minimax risk. Alternatively, one can interpret the sample complexity lower bound and

upper bound as the number of necessary samples and sufficient samples for reliable dic-

tionary recovery, respectively. In the following, we only focus on identifiability results:

the estimation procedures are not required to be computationally efficient.

One of the first achievability results for DL were derived in [43, 44] for square

matrices. Since then, a number of works have been carried out for overcomplete DL

involving vector-valued data [24, 42, 45–47, 50]. These works differ from each other in

terms of their assumptions on the true underlying dictionary, the dictionary coefficients,

presence or absence of noise and outliers, reconstruction objective function, the distance

metric used to measure the accuracy of the solution, and the local or global analysis

of the solution. In this section, we summarize a few of these results based on various

assumptions on the noise and outliers and provide a brief overview of the landscape of

these results in Table 2.1. We begin our discussion with achievability results for DL for

the case where Y is exactly given by Y = D0X, i.e., the noiseless setting.

Before proceeding, we provide an assumption that will be used for the rest of this

section. We note that the constants that are used in the presented theorems change

from one result to another.

(Random support of sparse coefficient vectors). For any xn that has up to s

nonzero elements, the support of the nonzero elements of xn is assumed to be
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distributed uniformly at random over the set {S ⊆ [p] : |S| = s}, for n = [N ].

Noiseless Recovery

We begin by discussing the first work that proves local identifiability of the overcomplete

DL problem. The objective function that is considered in that work is

(
X̂, D̂

)
= arg min

D∈D,X
‖X‖1 subject to Y = DX. (2.10)

This result is based on the following set of assumptions:

A2.1 (Gaussian random coefficients). The values of the nonzero entries of xn’s are

independent Gaussian random variables with zero mean and common standard

deviation σx =
√
p/sN .

A2.2 (Sparsity level). The sparsity level satisfies s ≤ min
{
c1/µ(D0), c2p

}
for some

constants c1 and c2.

Theorem 2.2 (Noiseless, local recovery [45]). There exist positive constants c1, c2 such

that if assumptions A2.1–A2.2 are satisfied for true (X,D0), then (X,D0) is a local

minimum of (2.10) with high probability.

The probability in this theorem depends on various problem parameters and implies

that N = Ω
(
sp3
)

samples are sufficient for the desired solution, i.e., true dictionary

and coefficient matrix, to be locally recoverable. The proof of this theorem relies on

studying the local properties of (2.10) around its optimal solution and does not require

defining a distance metric.

We now present a result that is based on the use of a combinatorial algorithm, which

can provably and exactly recover the true dictionary. The proposed algorithm solves the

objective function is (2.6) with R(x) = λ ‖x‖1, where λ is the regularization parameter

and the distance metric that is used is the column-wise distance. Specifically, for two

dictionaries D1 and D2, their column-wise distance is defined as

d(d1
j ,d

2
j ) = min

l∈{−1,1}

∥∥ld1
j − d2

j

∥∥
2
, j ∈ [p] (2.11)



22

where d1
j and d2

j are the jth column of D1 and D2, respectively. This distance metric

avoids the sign-permutation ambiguity among dictionaries belonging to the same equiv-

alence class. To solve (2.6), Agarwal et al. provide a novel DL algorithm that consists of

an initial dictionary estimation stage and an alternating minimization stage to update

the dictionary and coefficient vectors [46]. The provided guarantees are based on using

this algorithm to update the dictionary and coefficients. The result in Theorem 2.3 is

based on the following set of assumptions:

A3.1 (Bounded random coefficients). The nonzero entries of xn’s are drawn from a

zero-mean unit-variance distribution and their magnitude satisfies xmin ≤ |xn,i| ≤

xmax.

A3.2 (Sparsity level). The sparsity level satisfies s ≤ min
{
c1/
√
µ(D0), c2m

1/9 , c3p
1/8
}

for some positive constants c1, c2, c3 that depend on xmin, xmax, and the spectral

norm of D0.

A3.3 (Dictionary assumptions). The true dictionary has bounded spectral norm, i.e.,∥∥D0
∥∥
2
≤ c4

√
p/m, for some positive c4.

Theorem 2.3 (Noiseless, exact recovery [46]). Consider a DL problem with N i.i.d.

observations and assume that assumptions A3.1–A3.3 are satisfied. Then, there exists

a universal constant c such that for given η > 0, if

N ≥ c
(
xmax

xmin

)2

p2 log
2p

η
, (2.12)

there exists a procedure consisting of an initial dictionary estimation stage and an alter-

nating minimization stage such that after T = O(log(1ε )) iterations of the second stage,

with probability at least 1− 2η − 2ηN2, d(d̂j ,d
0
j ) ≤ ε,∀j ∈ [p], ∀ε > 0.

This theorem guarantees that the true dictionary can be recovered to an arbitrary

precision given N = Ω(p2 log p) samples. This result is based on two steps. The first

step is guaranteeing an error bound for the initial dictionary estimation step. This step

involves using a clustering-style algorithm to approximate the dictionary columns. The

second step is proving a local convergence result for the alternating minimization stage.
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This step involves improving estimates of the coefficient vectors and the dictionary

through Lasso [60] and least-square steps, respectively. More details for this work can

be found in the paper by Agarwal et al. [46].

While some other works study the sample complexity of the overcomplete DL prob-

lem, they do not take noise into account [45, 46]. Next, we present works that obtain

sample complexity results for noisy reconstruction of dictionaries.

Noisy Reconstruction

The next result we discuss is based on the following objective function:

max
D∈D

1

N

N∑
n=1

max
|S|=s

‖PS(D)yn‖22 , (2.13)

where PS(D) denotes projection of D onto the span of DS = {dj}j∈S .2 Here, the

distance metric that is used is d(D1,D2) = maxj∈[p]

∥∥∥d1
j − d2

j

∥∥∥
2
. In addition, the

results are based on the following set of assumptions:

A4.1 (Unit-norm tight frame). The true dictionary is a unit-norm tight frame, i.e., for

all v ∈ Rm we have
∑p

j=1

∣∣∣〈d0
j ,v〉

∣∣∣2 =
p‖v‖22
m .

A4.2 (Lower isometry constant). The lower isometry constant of D0, defined as δs(D
0) ,

max|S|≤s δS(D0) with 1−δS(D0) denoting the minimal eigenvalue of D0
S
∗
D0
S , sat-

isfies δs(D
0) ≤ 1− s

m .

A4.3 (Decaying random coefficients). The coefficient vector xn is drawn from a sym-

metric decaying probability distribution ν on the unit sphere Sp−1.3

2This objective function can be thought of as a manipulation of (2.6) with the `0-norm regularizer
for the coefficient vectors. See [50, Equation 2] for more details.

3A probability measure ν on the unit sphere Sp−1 is called symmetric if for all measurable sets
X ⊆ Sp−1, for all sign sequences l ∈ {−1, 1}p and all permutations π : {1, . . . , p} → {1, . . . , p}, we have

ν(lX ) = ν(X ), where lX = {(l1x1, . . . , lpxp) : x ∈ X} , and

ν(π(X )) = ν(X ), where π(X ) =
{(

xπ(1), . . . ,xπ(p)
)

: x ∈ X
}
. (2.14)



24

A4.4 (Bounded random noise). The vector wn is a bounded random white noise vector

satisfying ‖wn‖2 ≤Mw almost surely, E {wn} = 0 and E {wnwn
∗} = ρ2Im.

A4.5 (Maximal projection constraint). Define c(xn) to be the non-increasing rear-

rangement of the absolute values of xn. Given a sign sequence l ∈ {−1, 1}p and a

permutation operator π : [p] → [p], define cπ,l(xn) whose ith element is equal to

lic(xn)π(i) for i ∈ [p]. There exists κ > 0 such that for c(xn) and Sπ , π−1 ([s]),

we have

ν

(
min
π,l

( ∥∥PSπ(D0)D0cπ,l(xn)
∥∥
2
− max
|S|=s,S6=Sπ

∥∥PS(D0)D0cπ,l(xn)
∥∥
2

)
≥ 2κ+ 2Mw

)
= 1. (2.15)

Theorem 2.4 (Noisy, local recovery [50]). Consider a DL problem with N i.i.d. ob-

servations and assume that assumptions A4.1–A4.5 are satisfied. If for some 0 < q <

1/4, the number of samples satisfies:

2N−q +N−2q ≤
c1
√

1− δs(D0)

√
s

(
1 + c2

√
log

(
c3p(ps)

c4s(1−δs(D0)

)) , (2.16)

then, with high probability, there is a local maximum of (2.13) within distance at most

2N−q of D0.

The constants c1, c2, c3 and c4 in Theorem 2.4 depend on the underlying dictionary,

coefficient vectors, and the underlying noise. The proof of this theorem relies on the

fact that for the true dictionary and its perturbations, the maximal response, i.e.,∥∥∥PS(D̃)D0xn

∥∥∥
2
,4 is attained for the set S = Sπ for most signals. A detailed explanation

of the theorem and its proof can be found in the paper of Schnass [50].

In order to understand Theorem 2.4, let us set q ≈ 1
4−

log p
logN . We can then understand

this theorem as follows. Given N/ logN = Ω(mp3), except with probability O(N−mp),

there is a local minimum of (2.13) within distance O(pN−1/4) of the true dictionary.

4D̃ can be D0 itself or some perturbation of D0.
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Moreover, since the objective function that is considered in this work is also solved

for the K-SVD algorithm, this result gives an understanding of the performance of

the K-SVD algorithm. Compared to results with R(x) being a function of the `1-

norm [45, 46], this result requires the true dictionary to be a tight frame. On the flip

side, the coefficient vector in Theorem 2.4 is not necessarily sparse; instead, it only has

to satisfy a decaying condition.

Next, we present a result obtained by Arora et al. [47] that is similar to that of The-

orem 2.3 in the sense that it uses a combinatorial algorithm that can provably recover

the true dictionary given noiseless observations. It further obtains dictionary recon-

struction results for the case of noisy observations. The objective function considered

in this work is similar to that of the K-SVD algorithm and can be thought of as (2.6)

with R(x) = λ ‖x‖0, where λ is the regularization parameter.

Similar to Agarwal et al. [46], Arora et al. [47] define two dictionaries D1 and D2

to be column-wise ε close if there exists a permutation π and l ∈ {−1, 1} such that∥∥∥d1
j − ld2

π(j)

∥∥∥
2
≤ ε. This distance metric captures the distance between equivalent

classes of dictionaries and avoids the sign-permutation ambiguity. They propose a DL

algorithm that first uses combinatorial techniques to recover the support of coefficient

vectors, by clustering observations into overlapping clusters that use the same dictionary

columns. To find these large clusters, they provide a clustering algorithm. Then, the

dictionary is roughly estimated given the clusters, and the solution is further refined.

The provided guarantees are based on using the proposed DL algorithm. In addition,

the results are based on the following set of assumptions:

A5.1 (Bounded coefficient distribution). Nonzero entries of xn are drawn from a zero-

mean distribution and lie in [−xmax,−1]∪[1, xmax], where xmax = O(1). Moreover,

conditioned on any subset of coordinates in xn being nonzero, nonzero values of

xn,i are independent from each other. Finally, the distribution has bounded 3-wise

moments, i.e., the probability that xn is nonzero in any subset S of 3 coordinates

is at most c3 times
∏
i∈S P {xn,i 6= 0}, where c = O(1).5

5This condition is trivially satisfied if the set of the locations of nonzero entries of xn is a random
subset of size s.
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A5.2 (Gaussian noise). The wn’s are independent and follow a spherical Gaussian

distribution with standard deviation σ = o(
√
m).

A5.3 (Dictionary coherence). The true dictionary is µ̃-incoherent, that is, for all i 6= j,

〈d0
i ,d

0
j 〉 ≤ µ̃(D0)/

√
m and µ̃(D0) = O(log(m)).

A5.4 (Sparsity level). The sparsity level satisfies s ≤ c1 min
{
p2/5,

√
m

µ̃(D0) logm

}
, for some

positive constant c1.

Theorem 2.5 (Noisy, exact recovery [47]). Consider a DL problem with N i.i.d. ob-

servations and assume that assumptions A5.1–A5.4 are satisfied. Provided that

N = Ω

(
σ2ε−2p log p

(
p

s2
+ s2 + log

1

ε

))
, (2.17)

there is a universal constant c1 and a polynomial-time algorithm that learns the under-

lying dictionary. With high probability, this algorithm returns D̂ that is column-wise ε

close to D0.

For desired error ε, the run time of the algorithm and the sample complexity depend

on log 1
ε . With the addition of noise, there is also a dependency on ε−2 for N , which

is inevitable for noisy reconstruction of the true dictionary [47, 50]. In the noiseless

setting, this result translates into N = Ω
(
p log p

( p
s2

+ s2 + log 1
ε

))
.

Noisy Reconstruction with Outliers

In some scenarios, in addition to observations Y drawn from D0, we encounter observa-

tions Yout that are not generated according to D0. We call such observations outliers

(as opposed to inliers Y). In this case, the observation matrix is Yobs = [Y,Yout],

where Y is the inlier matrix and Yout is the outlier matrix. In this part, we study the

robustness of dictionary identification in the presence of noise and outliers. The follow-

ing result studies (2.6) with R(x) = λ ‖x‖1, where λ is the regularization parameter.

Here, the Frobenius norm is considered as the distance metric. In addition, the result

is based on the following set of assumptions:
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A6.1 (Cumulative coherence). The cumulative coherence of the true dictionary D0

satisfies µs(D
0) ≤ 1/4.

A6.2 (Bounded random coefficients). Assume nonzero entries of xn are drawn i.i.d.

from a distribution with absolute mean E {|x|} and variance E
{
x2
}

. We de-

note ln = sign(xn). Dropping the index of xn and ln for simplicity of notations,

the following assumptions are satisfied for the coefficient vector: E
{
xSx

T
S |S
}

=

E
{
x2
}

Is, E
{
xS l

T
S |S
}

= E {|x|} Is, E
{
lS l

T
S |S
}

= Is, ‖x‖2 ≤Mx, and mini∈S |xi| ≥

xmin. We define κx , E{|x|}√
E{x2}

as a measure of the flatness of x. Moreover,the

following inequality is satisfied:

E
{
x2
}

MxE {|x|}
>

cs

(1− 2µs(D0))p

(∥∥D0
∥∥
2

+ 1
) ∥∥∥D0TD0 − I

∥∥∥
F
, (2.18)

where c is a positive constant.

A6.3 (Regularization parameter). The Regularization parameter satisfies λ ≤ xmin/4.

A6.4 (Bounded random noise). Assume nonzero entries of wn are drawn i.i.d. from a

distribution with mean 0 and variance E
{
w2
}

. Dropping the index of vectors for

simplicity, w is a bounded random white noise vector satisfying E
{
wwT |S

}
=

E
{
w2
}

Im, E
{
wxT |S

}
= E

{
wlT |S

}
= 0, and ‖w‖2 ≤Mw. Furthermore, denot-

ing λ̄ , λ
E{|x|} :

Mw

Mx
≤ 7

2
(cmax − cmin) λ̄, (2.19)

where cmin and cmax depend on problem parameters such as s, coefficient distri-

bution, and D0.

A6.5 (Sparsity level) The sparsity level satisfies s ≤ p

16(‖D0‖2+1)
2 .

A6.6 (Radius range) The error radius ε > 0 satisfies ε ∈
(
λ̄cmin, λ̄cmax

)
.

A6.7 (Outlier energy). Given inlier matrix Y = {yn}Nn=1 and outlier matrix Yout =
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{y′n}Noutn=1 , the energy of Yout satisfies

‖Yout‖1,2
N

≤
c1ε
√
sE
{
‖x‖22

}
λ̄E {|x|}

(
A0

p

)3/2
[

1

p

(
1− cminλ̄

ε

)
− c2

√
mp+ η

N

]
,

(2.20)

where ‖Yout‖1,2 denotes the sum of the `2-norms of the columns of Yout, c1 and

c2 are positive constants, independent of parameters, and A0 is the lower frame

bound of D0, i.e., A0 ‖v‖22 ≤
∥∥∥D0>v

∥∥∥2
2

for any v ∈ Rm.

Theorem 2.6 (Noisy with outliers, local recovery [24]). Consider a DL problem with

N i.i.d. observations and assume that assumptions A6.1–A6.6 are satisfied. Suppose

N > c0(mp+ η)p2

 M2
x

E
{
‖x‖22

}
2
ε+

(
Mw
Mx

+ λ̄
)

+
(
Mw
Mx

+ λ̄
)2

ε− cminλ̄

 , (2.21)

then with probability at least 1 − 2−η, (2.6) admits a local minimum within distance ε

of D0. In addition, this result is robust to the addition of outlier matrix Yout, provided

that the assumption in A6.7 is satisfied.

The proof of this theorem relies on using the Lipschitz continuity property of the

objective function in (2.6) with respect to the dictionary and sample complexity analysis

using Rademacher averages and Slepian’s Lemma [61]. Theorem 2.6 implies that

N = Ω

((
mp3 + ηp2

)(Mw

Mxε

)2
)

(2.22)

samples are sufficient for the existence of a local minimum within distance ε of true

dictionary D0, with high probability. In the noiseless setting, this result translates into

N = Ω
(
mp3

)
, and sample complexity becomes independent of the radius ε. Further-

more, this result applies to overcomplete dictionaries with dimensions p = O(m2).
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2.2.4 Summary of Results

In this section, we have discussed DL minimax risk lower bounds [1] and achievability

results [24, 45–47, 50]. These results differ in terms of the distance metric they use. A

summary of the general scaling of the discussed results for sample complexity of (over-

complete) DL are provided in Table 2.1. We note that these are general scalings that

ignore other technicalities. Here, the provided sample complexity results depend on the

present or absence of noise and outliers. All the presented results require the underlying

dictionary satisfies incoherence conditions in some way. For a one-to-one comparison of

these results, the bounds for the case of absence of noise and outliers can be compared.

A detailed comparison of the noiseless recovery for square and overcomplete dictionar-

ies can be found in [24, Table I]. While dictionary identifiability has been well studied

for vector-valued data, there remains a gap between the upper and lower bounds on

the sample complexity. The lower bound presented in Theorem 2.1 is for the case of a

particular distance metric, i.e., the Frobenius norm, whereas the presented achievabil-

ity results in Theorems 2.2–2.6 are based on a variety of distance metrics. Restricting

the distance metric to the Frobenius norm, we still observe a gap of order p between

the sample complexity lower bound in Theorem 2.1 and upper bound in Theorem 2.6.

The partial converse result for square dictionaries that is provided in [1] shows that

the lower bound is achievable for square dictionaries close to the identity matrix. For

more general square matrices, however, the gap may be significant: either improved

algorithms can achieve the lower bounds or the lower bounds may be further tight-

ened. For overcomplete dictionaries the question of whether the upper bound or lower

bound is tight remains open. For metrics other than the Frobenius norm, the bounds

are incomparable, making it challenging to assess the tightness of many achievability

results.

Finally, the works reported in Table 2.1 differ significantly in terms of the mathe-

matical tools they use. Each approach yields a different insight into the structure of

the DL problem. However, there is no unified analytical framework encompassing all

of these perspectives.
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2.3 Dictionary Learning for Tensors

Many of today’s data are collected using various sensors and tend to have a multidimen-

sional/tensor structure. To find representations of tensor data using DL, one can follow

two paths. A naive approach is to vectorize tensor data and use traditional vectorized

representation learning techniques. A better approach is to take advantage of the mul-

tidimensional structure of data to learn representations that are specific to tensor data.

While the main focus of the literature on representation learning has been on the for-

mer approach, recent works have shifted focus to the latter approaches [11, 14, 16, 62].

These works use various tensor decompositions to decompose tensor data into smaller

components. The representation learning problem can then be reduced to learning the

components that represent different modes of the tensor. This results in reduction in

the number of degrees of freedom in the learning problem, due to the fact that the

dimensions of the representations learned for each mode are significantly smaller than

the dimensions of the representation learned for the vectorized tensor. Consequently,

this approach gives rise to compact and efficient representation of tensors.

To understand the fundamental limits of DL for tensor data, one can use the sample

complexity results in Section 2.2, which are a function of the underlying dictionary

dimensions. However, considering the reduced number of degrees of freedom in the

tensor DL problem compared to vectorized DL, this problem should be solvable with a

smaller number of samples. In the next sections of this thesis, we formalize this intuition

and address the problem of reliable estimation of dictionaries underlying tensor data.

Similar to the previous section, we will focus on the subject of sample complexity of

the DL problem from two prospectives; i) fundamental limits on the sample complexity

of DL for tensor data using any DL algorithm, and ii) number of samples that are

needed for different DL algorithms to reliably estimate the true dictionary from which

the tensor data is generated.
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2.3.1 Mathematical Setup

In this chapter, we consider the Tucker decomposition due to the following reasons: i) it

represents a sequence of independent transformations, i.e., factor matrices, for different

data modes, and ii) Kronecker-structured matrices have successfully been used for

data representation in applications such as magnetic resonance imaging, hyperspectral

imaging, video acquisition, and distributed sensing [11, 16].

2.3.2 Kronecker-structured Dictionary Learning (KS-DL)

In order to state the main results of this section, we begin with a generative model for

tensor data based on Tucker decomposition. Specifically, we assume we have access to a

total number of N tensor observations, Yn ∈ Rm1×···×mK , that are generated according

to the following model:6

vec(Yn) =
(
D0

1 ⊗D0
2 ⊗ · · · ⊗D0

K

)
vec(Xn) + vec(Wn), n = 1, . . . , N. (2.23)

Here, {D0
k ∈ Rmk×pk}Kk=1 are the true fixed coordinate dictionaries, Xn ∈ Rp1×···×pK

is the coefficient tensor, and Wn ∈ Rm1×···×mK is the underlying noise tensor. In this

case, the true dictionary D0 ∈ Rm×p is Kronecker-structured (KS) and has the form

D0 =
⊗
k

D0
k, m =

K∏
k=1

mk and p =
K∏
k=1

pk,

where D0
k ∈ Dk =

{
Dk ∈ Rmk×pk , ‖dk,j‖2 = 1 ∀j ∈ [pk]

}
. (2.24)

We define the set of KS dictionaries as

DKS =

{
D ∈ Rm×p : D =

⊗
k

Dk,Dk ∈ Dk ∀k ∈ [K]

}
. (2.25)

Comparing (2.23) to the traditional formulation in (2.1), it can be seen that KS-DL

also involves vectorizing the observation tensor, but it has the main difference that the

6We have reindexed Dk’s here for simplicity of notation.



33

VectorizedDL

KS-DL ⌦

Figure 2.2: Illustration of the distinctions of KS-DL versus vectorized DL for a 2nd-
order tensor: both vectorize the observation tensor, but the structure of the tensor is
exploited in the KS dictionary, leading to the learning of two coordinate dictionaries
with reduced number of parameters compared to the dictionary learned in vectorized
DL.

structure of the tensor is captured in the underlying KS dictionary. An illustration of

this for a 2nd-order tensor is shown in Figure 2.2. Similar to (2.3), we can stack the

vectorized observations, yn = vec(Yn), vectorized coefficient tensors, xn = vec(Xn),

and vectorized noise tensors, wn = vec(Wn), in columns of Y, X, and W, respectively.

We now discuss the role of sparsity in coefficient tensors for dictionary learning. While

in vectorized DL it is usually assumed that the random support of nonzero entries of

xn is uniformly distributed, there are two different definitions of the random support

of Xn for tensor data:

1) Random sparsity: The random support of xn is uniformly distributed over the

set {S ⊆ [p] : |S| = s}.

2) Separable sparsity: The random support of xn is uniformly distributed over the set

S that is related to {S1 × . . .SK : Sk ⊆ [pk], |Sk| = sk} via lexicographic indexing.

Here, s =
∏
k sk.

Separable sparsity requires nonzero entries of the coefficient tensor to be grouped in

blocks. This model also implies that the columns of Y(k) have sk-sparse representations

with respect to D0
k [28].

The aim in KS-DL is to estimate coordinate dictionaries, D̂k’s, such that they are
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close to D0
k’s. In this scenario, the statistical risk minimization problem has the form:

(
D̂1, . . . , D̂K

)
∈ arg min
{Dk∈Dk}Kk=1

E

{
inf
x∈X

{
1

2

∥∥∥∥y − (⊗
k

Dk

)
x

∥∥∥∥2
2

+R(x)

}}
, (2.26)

and the ERM problem is formulated as:

(
D̂1, . . . , D̂K

)
∈ arg min
{Dk∈Dk}Kk=1

{
N∑
n=1

inf
xn∈X

{
1

2

∥∥∥∥yn − (⊗
k

Dk

)
xn

∥∥∥∥2
2

+R(xn)

}}
,

(2.27)

where R(.) is a regularization operator on the coefficient vectors. Various KS-DL algo-

rithms have been proposed that solve (2.27) heuristically by means of optimization tools

such as alternative minimization [16] and tensor rank minimization [63], and by taking

advantage of techniques in tensor algebra such as the higher-order SVD for tensors [64].

In the case of theory for KS-DL, the notion of closeness can have two interpretations.

One is the distance between the true KS dictionary and the recovered KS dictionary,

i.e., d
(
D̂(Y),D0

)
. The other is the distance between each true coordinate dictionary

and the corresponding recovered coordinate dictionary, i.e., d
(
D̂k(Y),D0

k

)
. While

small recovery errors for coordinate dictionaries imply a small recovery error for the KS

dictionary, the other side of the statement does not necessarily hold. Hence, the latter

notion is of importance when we are interested in recovering the structure of the KS

dictionary.

In Chapters 3 and 4, we focus on the sample complexity of the KS-DL problem.

The questions that we address in these chapters are i) What are the fundamental limits

of solving the statistical risk minimization problem in (2.26)? ii) Under what kind of

conditions do objective functions like (2.27) recover the true coordinate dictionaries and

how many samples do they need for this purpose? iii) How do these limits compare to

their vectorized DL counterparts? Addressing these question will help in understanding

the benefits of KS-DL for tensor data.
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Chapter 3

Fundamental Limits on the Minimax Risk of

Kronecker-structured Dictionary Learning

In this chapter, we study the fundamental limits on the sample complexity of estimating

dictionaries for tensor data. The specific focus of this chapter is on Kth-order tensor

data and the case where the underlying dictionary can be expressed in terms of K

smaller dictionaries. It is assumed the data are generated by linear combinations of these

structured dictionary atoms and observed through white Gaussian noise. This chapter

first provides a general lower bound on the minimax risk of dictionary learning for such

tensor data and then adapts the proof techniques for specialized results in the case of

sparse and sparse-Gaussian linear combinations. A partial converse is provided for the

case of 2nd-order tensor data to show that the bounds in this chapter can be tight.

This involves developing an algorithm for learning highly-structured dictionaries from

noisy tensor data. Finally, numerical experiments highlight the advantages associated

with explicitly accounting for tensor data structure during dictionary learning.1

3.1 Introduction

In traditional DL literature, multidimensional data are converted into one-dimensional

data by vectorizing the signals. Such approaches can result in poor sparse representa-

tions because they neglect the multidimensional structure of the data [68]. This suggests

that it might be useful to keep the original tensor structure of multidimensional data

for efficient DL and reliable subsequent processing.

1The results presented in this chapter have been published in Proceedings of 2016 IEEE Interna-
tional Symposium on Information Theory [65], Proceedings of 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing [66], and IEEE Transactions on Information Theory [67].



36

There have been several algorithms proposed in the literature that can be used to

learn structured dictionaries for multidimensional data [14–16, 62, 68–73]. In [14], a

Riemannian conjugate gradient method combined with a nonmonotone line search is

used to learn structured dictionaries. Other structured DL works rely on various tensor

decomposition methods such as the Tucker decomposition [15, 16, 19, 62, 70, 71], the

CP decomposition [18, 73], the HOSVD decomposition [64, 69], the t-product tensor

factorization [72], and the tensor-SVD [68, 74]. Furthermore learning sums of structured

dictionaries can be used to represent tensor data [70].

In this chapter, our focus is on theoretical understanding of the fundamental limits

of DL algorithms that explicitly account for the tensor structure of data in terms

of Kronecker structured (KS) dictionaries. KS matrices have successfully been used

for data representation in hyperspectral imaging, video acquisition, and distributed

sensing[11].

To the best of our knowledge, none of the prior works on KS DL [14–16, 69, 70]

provide an understanding of the sample complexity of KS-DL algorithms. In contrast,

we provide lower bounds on the minimax risk of estimating KS dictionaries from tensor

data using any estimator. These bounds not only provide means of quantifying the

performance of existing KS-DL algorithms, but they also hint at the potential benefits

of explicitly accounting for tensor structure of data during DL.

3.1.1 Our Contributions

Our first result is a general lower bound for the mean squared error (MSE) of estimat-

ing KS-dictionaries consisting of K ≥ 2 coordinate dictionaries that sparsely represent

Kth-order tensor data. Here, we define the minimax risk to be the worst-case MSE that

is attainable by the best dictionary estimator. Our approach uses the standard proce-

dure for lower bounding the minimax risk in nonparametric estimation by connecting

it to the maximum probability of error on a carefully constructed multiple hypothe-

sis testing problem [59, 75]: the technical challenge is in constructing an appropriate

set of hypotheses. In particular, consider a dictionary D ∈ Rm×p consisting of the

Kronecker product of K coordinate dictionaries Dk ∈ Rmk×pk , k ∈ {1, . . . ,K}, where
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m =
∏K
k=1mk and p =

∏K
k=1 pk, that is generated within the radius r neighborhood

(taking the Frobenius norm as the distance metric) of a fixed reference dictionary. Our

analysis shows that given a sufficiently large r and keeping some other parameters con-

stant, a sample complexity of N = Ω(
∑K

k=1mkpk) is necessary for reconstruction of the

true dictionary up to a given estimation error. We also provide minimax bounds on

the KS-DL problem that hold for the following distributions for the coefficient vectors

{xn}:

• {xn} are independent and identically distributed (i.i.d.) with zero mean and can

have any distribution;

• {xn} are i.i.d. and sparse;

• {xn} are i.i.d., sparse, and their non-zero elements follow a Gaussian distribution.

Our second contribution is development and analysis of an algorithm to learn dictio-

naries formed by the Kronecker product of 2 smaller dictionaries, which can be used to

represent 2nd-order tensor data. To this end, we show that under certain conditions on

the local neighborhood, the proposed algorithm can achieve one of the earlier obtained

minimax lower bounds. Based on this, we believe that our lower bound may be tight

more generally, but we leave this for future work.

3.1.2 Relationship to Previous Work

In terms of relation to prior work, theoretical insights into the problem of DL have

either focused on specific algorithms for non-KS dictionaries [24, 42, 46, 47, 50, 58, 76]

or lower bounds on minimax risk of DL for one-dimensional data [1, 77]. The former

works provide sample complexity results for reliable dictionary estimation based on

appropriate minimization criteria. Specifically, given a probabilistic model for sparse

coefficients and a finite number of samples, these works find a local minimizer of a

nonconvex objective function and show that this minimizer is a dictionary within a

given distance of the true dictionary [24, 50, 58]. In contrast, Jung et al. [1, 77] pro-

vide minimax lower bounds for DL from one-dimensional data under several coefficient
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vector distributions and discuss a regime where the bounds are tight in the scaling

sense for some signal-to-noise (SNR) values. In particular, for a given dictionary D

and sufficiently large neighborhood radius r, they show that N = Ω(mp) samples are

required for reliable recovery of the dictionary up to a prescribed MSE within its local

neighborhood. However, in the case of tensor data, their approach does not exploit the

structure in the data, whereas our goal is to show how structure can potentially yield

a lower sample complexity in the DL problem.

To provide lower bounds on the minimax risk of KS DL, we adopt the same general

approach that Jung et al. [1, 77] use for the vector case. They use the standard approach

of connecting the estimation problem to a multiple-hypothesis testing problem and

invoking Fano’s inequality [59]. We construct a family of KS dictionaries which induce

similar observation distributions but have a minimum separation from each other. By

explicitly taking into account the Kronecker structure of the dictionaries, we show that

the sample complexity satisfies a lower bound of Ω(
∑K

k=1mkpk) compared to the Ω(mp)

bound from vectorizing the data [1]. Although our general approach is similar to that

in [1], there are fundamental differences in the construction of the KS dictionary class

and analysis of the minimax risk. This generalizes our preliminary work [65] from 2nd-

order to Kth-order and provides a comprehensive analysis of the KS dictionary class

construction and minimax lower bounds.

Our results essentially show that the sample complexity depends linearly on the

degrees of freedom of a Kronecker structured dictionary, which is
∑K

k=1mkpk, and

non-linearly on the SNR and tensor order K. These lower bounds also depend on

the radius of the local neighborhood around a fixed reference dictionary. Our results

hold even when some of the coordinate dictionaries are not overcomplete2. Like the

previous work [1], our analysis is local and our lower bounds depend on the distribution

of multidimensional data.

We next introduce a KS-DL algorithm for 2nd-order tensor data and show that

in this case, one of the provided minimax lower bounds is achievable under certain

2Note that all coordinate dictionaries cannot be undercomplete, otherwise D won’t be overcomplete.
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conditions. We also conduct numerical experiments that demonstrate the empirical

performance of the algorithm relative to the MSE upper bound and in comparison to

the performance of a non-KS DL algorithm [1].

3.2 Problem Formulation

We assume the observations are Kth-order tensors Yn ∈ Rm1×m2×···×mK . According

to the Tucker model, given coordinate dictionaries D0
k ∈ Rmk×pk , a coefficient tensor

Xn ∈ Rp1×p2×···×pK , and a noise tensor Wn, we can write yn , vec(Yn) using (1.10)

as3

yn =

( ⊗
k∈[K]

D0
k

)
xn + wn, (3.1)

where xn , vec(Xn) and wn , vec(Wn). Let

m =
∏
k∈[K]

mk and p =
∏
k∈[K]

pk. (3.2)

Concatenating N i.i.d. noisy observations {yn}Nn=1, which are realizations according to

the model (3.1), into Y ∈ Rm×N , we obtain

Y = D0X + W, (3.3)

where D0 ,
⊗

k∈[K] D
0
k is the unknown KS dictionary, X ∈ Rp×N is a coefficient

matrix consisting of i.i.d. random coefficient vectors with known distribution that has

zero-mean and covariance matrix Σx, and W ∈ Rm×N is assumed to be additive white

Gaussian noise (AWGN) with zero mean and variance σ2.

Our main goal in this chapter is to derive necessary conditions under which the KS

dictionary D0 can possibly be learned from the noisy observations given in (3.3). We

assume the true KS dictionary D0 consists of unit-norm columns and we carry out local

analysis. That is, the true KS dictionary D0 is assumed to belong to a neighborhood

3We have reindexed Dk’s in (1.10) for ease of notation.
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around a fixed (normalized) reference KS dictionary

D∗ =
⊗
k∈[K]

D∗k, (3.4)

and D∗ ∈ DKS , where DKS is defined in (2.25). We assume the true generating KS

dictionary D0 belongs to a neighborhood around D∗:

D0 ∈ X (D∗, r) ,
{
D′ ∈ DKS :

∥∥D′ −D∗
∥∥
F
< r
}

(3.5)

for some fixed radius r.4 Note that D∗ appears in the analysis as an artifact of our

proof technique to construct the dictionary class. In particular, if r is sufficiently large,

then X (D∗, r) ≈ DKS and effectively D ∈ DKS .

3.2.1 Minimax Risk

We are interested in lower bounding the minimax risk for estimating D0 based on

observations Y, which is defined as the worst-case mean squared error (MSE) that can

be obtained by the best KS dictionary estimator D̂(Y). That is,

ε∗ = inf
D̂

sup
D0∈X (D∗,r)

EY

{∥∥D̂(Y)−D0
∥∥2
F

}
, (3.6)

where D̂(Y) can be estimated using any KS-DL algorithm. In order to lower bound

this minimax risk ε∗, we employ a standard reduction to the multiple hypothesis testing

used in the literature on nonparametric estimation [59, 75]. This approach is equivalent

to generating a KS dictionary Dl uniformly at random from a carefully constructed class

DL = {D1, . . . ,DL} ⊆ X (D∗, r), L ≥ 2, for a given (D∗, r). To ensure a tight lower

bound, we must construct DL such that the distance between any two dictionaries in

DL is large but the hypothesis testing problem is hard; that is, two distinct dictionaries

Dl and Dl′ should produce similar observations. Specifically, for l, l′ ∈ [L], and given

4Note that our results hold with the unit-norm condition enforced only on D0 itself, and not on
the subdictionaries D0

k. Nevertheless, we include this condition in the dictionary class for the sake of
completeness as it also ensures uniqueness of the subdictionaries (factors of a K-fold Kronecker product
can exchange scalars γk freely without changing the product as long as

∏
k∈[K] γk = 1).
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error ε ≥ ε∗, we desire a construction such that

∀l 6= l′, ‖Dl −Dl′‖F ≥ 2
√
γε and DKL

(
fDl

(Y)||fDl′ (Y)
)
≤ αL, (3.7)

where DKL

(
fDl

(Y)||fDl′ (Y)
)

denotes the Kullback-Leibler (KL) divergence between

the distributions of observations based on Dl ∈ DL and Dl′ ∈ DL, while γ, αL, and

ε are non-negative parameters. Observations Y = DlX + W in this setting can be

interpreted as channel outputs that are used to estimate the input Dl using an arbitrary

KS dictionary algorithm that is assumed to achieve the error ε. Our goal is to detect

the correct generating KS dictionary index l. For this purpose, a minimum distance

detector is used:

l̂ = min
l′∈[L]

∥∥∥D̂(Y)−Dl′

∥∥∥
F
. (3.8)

Then, we have P(l̂(Y) 6= l) = 0 for the minimum-distance detector l̂(Y) as long as

‖D̂(Y) −Dl‖F <
√
γε. The goal then is to relate ε to P(‖D̂(Y) −Dl‖F ≥

√
γε) and

P(l̂(Y) 6= l) using Fano’s inequality [59]:

(1− P(l̂(Y) 6= l)) log2 L− 1 ≤ I(Y; l), (3.9)

where I(Y; l) denotes the mutual information (MI) between the observations Y and the

dictionary Dl. Notice that the smaller αL is in (3.7), the smaller I(Y; l) will be in (3.9).

Unfortunately, explicitly evaluating I(Y; l) is a challenging task in our setup because

the underlying distributions are mixture of distributions. Similar to [1], we will instead

resort to upper bounding I(Y; l) by conditioning it on some side information T(X)

that will make the observations Y conditionally multivariate Gaussian (in particular,

from [1, Lemma A.1], it follows that I(Y; l) ≤ I(Y; l|T(X))).5 We will in particular

focus on two types of side information: T(X) = X and T(X) = supp(X). A lower

bound on the minimax risk in this setting depends not only on problem parameters

5Instead of upper bounding I(Y; l|T(X)), similar results can be derived by using Fano’s inequality

for the conditional probability of error, P(l̂(Y) 6= l|T(X))[78, Theorem 2].
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such as the number of observations N , noise variance σ2, dimensions {mk}Kk=1 and

{pk}Kk=1 of the true KS dictionary, neighborhood radius r, and coefficient covariance

Σx, but also on the structure of the constructed class DL [75]. Note that our approach

is applicable to the global KS-DL problem, since the minimax lower bounds that are

obtained for any D0 ∈ X (D∗, r) are also trivially lower bounds for D0 ∈ DKS .

After providing minimax lower bounds for the KS-DL problem, we develop and

analyze a simple KS-DL algorithm for K = 2 order tensor data. Our analysis shows

that one of our provided lower bounds is achievable, suggesting that they may be tight.

3.2.2 Coefficient Distribution

By making different assumptions on coefficient distributions, we can specialize our lower

bounds to specific cases. To facilitate comparisons with prior work, we adopt somewhat

similar coefficient distributions as in the unstructured case [1]. First, we consider any

coefficient distribution and only assume that the coefficient covariance matrix exists.

We then specialize our analysis to sparse coefficient vectors and, by adding additional

conditions on the reference dictionary D∗, we obtain a tighter lower bound for the

minimax risk for some SNR regimes.

General Coefficients

First, we consider the general case, where x is a zero-mean random coefficient vector

with covariance matrix Σx = Ex

{
xx>

}
. We make no additional assumption on the

distribution of x. We condition on side information T(X) = X to obtain a lower bound

on the minimax risk in the case of general coefficients.

Sparse Coefficients

In the case where the coefficient vector is sparse, we show that additional assumptions

on the non-zero entries yield a lower bound on the minimax risk conditioned on side

information supp(x), which denotes the support of x (the set containing indices of

the locations of the nonzero entries of x). We study two cases for the distribution of
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supp(x):6

• Random Sparsity. In this case, the random support of x is distributed uniformly

over E1 = {S ⊆ [p] : |S| = s}:

P(supp(x) = S) =
1(
p
s

) , for any S ∈ E1. (3.10)

• Separable Sparsity. In this case we sample sk elements uniformly at random

from [pk], for all k ∈ [K]. The random support of x is E2 = {S ⊆ [p] : |S| =

s}, where S is related to {S1 × · · · × SK : Sk ⊆ [pk], |Sk| = sk, k ∈ [K]} via

lexicographic indexing. The number of non-zero elements in x in this case is

s =
∏
k∈[K] sk. The probability of sampling K subsets {S1, . . . ,SK} is

P(supp(x) = S) =
1∏

k∈[K]

(
pk
sk

) , for any S ∈ E2. (3.11)

In other words, separable sparsity requires non-zero coefficients to be grouped in

blocks. This model arises in the case of processing of images and video sequences [28].

Remark 3.1. If X follows the separable sparsity model with sparsity (s1, . . . , sK), then

the columns of the mode-k matrix Y(k) of Y have sk-sparse representations with respect

to D0
k, for k ∈ [K] [28].

For a signal x with sparsity pattern supp(x), we model the non-zero entries of x,

i.e., xS , as drawn independently and identically from a probability distribution with

known variance σ2a:

Ex{xSxTS |S} = σ2aIs. (3.12)

Any x with sparsity model (3.10) or (3.11) and nonzero entries satisfying (3.12) has

covariance matrix

Σx =
s

p
σ2aIp. (3.13)

6These sparse coefficient models were also briefly discussed in 2.3.2.
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3.3 Lower Bound for General Distribution

We now provide our main result for the lower bound for minimax risk of the KS-DL

problem for the case of general coefficient distributions.

Theorem 3.1. Consider a KS-DL problem with N i.i.d. observations generated ac-

cording to model (3.1). Suppose the true dictionary satisfies (3.5) for some r and fixed

reference dictionary D∗ satisfying (3.4). Then for any coefficient distribution with mean

zero and covariance Σx, we have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p,

r2

2K
,

σ2

4NK‖Σx‖2

(
c1

( ∑
k∈[K]

(mk − 1)pk

)
− K

2
log2 2K − 2

)}
, (3.14)

for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

The implications of Theorem 3.1 are examined in Section 3.6.

Outline of Proof: The idea of the proof is that we construct a set of L distinct KS

dictionaries, DL = {D1, . . . ,DL} ⊂ X (D∗, r), such that any two distinct dictionaries

are separated by a minimum distance. That is for any pair l, l′ ∈ [L] and any positive

ε <
tp

4
min

{
r2,

r4

2Kp

}
:

‖Dl −D′l‖F ≥ 2
√

2ε, for l 6= l′. (3.15)

In this case, if a dictionary Dl ∈ DL is selected uniformly at random from DL, then con-

ditioned on side information T(X) = X, the observations under this dictionary follow

a multivariate Gaussian distribution. We can therefore upper bound the conditional

MI by approximating the upper bound for KL-divergence of multivariate Gaussian dis-

tributions. This bound depends on parameters ε,N, {mk}Kk=1, {pk}Kk=1,Σx, s, r,K, and

σ2.

Assuming (3.15) holds for DL, if there exists an estimator achieving the minimax risk

ε∗ ≤ ε and the recovered dictionary D̂(Y) satisfies ‖D̂(Y)−Dl‖F <
√

2ε, the minimum

distance detector can recover Dl. Then, using the Markov inequality and since ε∗ is

bounded, the probability of error P(D̂(Y) 6= Dl) ≤ P(‖D̂(Y) −Dl‖F ≥
√

2ε) can be
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upper bounded by 1
2 . Further, according to (3.9), the lower bound for the conditional

MI can be obtained using Fano’s inequality [1]. The lower bound is a function of L only.

Finally, using the obtained bounds for the conditional MI, we derive a lower bound for

the minimax risk ε∗.

Remark 3.2. We use the constraint in (3.15) in Theorem 3.1 for simplicity: the number

2
√

2 can be replaced with any arbitrary γ > 0.

The complete technical proof of Theorem 3.1 relies on the following lemmas, which

are formally proved in the appendix. Although the similarity of our model to that

of Jung et al. [1] suggests that our proof should be a simple extension of their proof

of Theorem 1, the construction for KS dictionaries is more complex and its analysis

requires a different approach. One exception is Lemma 3.3 [1, Lemma 8], which connects

a lower bound on the Frobenius norms of pairwise differences in the construction to a

lower bound on the conditional MI used in Fano’s inequality [59].

Lemma 3.1. Let α > 0 and β > 0. Let {Al ∈ Rm×p : l ∈ [L]} be a set of L matrices

where each Al contains m× p independent and identically distributed random variables

taking values ±α uniformly. Then we have the following inequality:

P
(
∃(l, l′) ∈ [L]× [L], l 6= l′ : |〈Al,Al′〉| ≥ β

)
≤ 2L2 exp

(
− β2

4α4mp

)
. (3.16)

Lemma 3.2. Consider the generative model in (3.1). Fix r > 0 and a reference

dictionary D∗ satisfying (3.4). Then there exists a set DL ⊆ X (D∗, r) of cardinality

L = 2bc1(
∑
k∈[K](mk−1)pk)−

K
2
log2(2K)c such that for any 0 < t < 1, any 0 < c1 <

t2

8 log 2 ,

any ε′ > 0 satisfying

ε′ < r2 min

{
1,

r2

2Kp

}
, (3.17)

and all pairs l, l′ ∈ [L], with l 6= l′, we have

2p

r2
(1− t)ε′ ≤ ‖Dl −Dl′‖2F ≤

4Kp

r2
ε′. (3.18)

Furthermore, if X is drawn from a distribution with mean 0 and covariance matrix Σx
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and conditioning on side information T(X) = X, we have

I(Y; l|T(X)) ≤ 2NKp‖Σx‖2
r2σ2

ε′. (3.19)

Lemma 3.3 (Lemma 8 [1]). Consider the generative model in (3.1) and suppose the

minimax risk ε∗ satisfies ε∗ ≤ ε for some ε > 0. If there exists a finite set DL ⊆ D with

L dictionaries satisfying

‖Dl −Dl′‖2F ≥ 8ε (3.20)

for l 6= l′, then for any side information T(X), we have

I(Y; l|T(X)) ≥ 1

2
log2(L)− 1. (3.21)

Proof of Lemma 3.3. The proof of Lemma 3.3 is identical to the proof of Lemma 8 in

Jung et al. [1].

Proof of Theorem 3.1. According to Lemma 3.2, for any ε′ satisfying (3.17), there exists

a set DL ⊆ X (D∗, r) of cardinality L = 2bc1(
∑
k∈[K](mk−1)pk)−

K
2
log2(2K)c that satisfies

(3.19) for any 0 < t′ < 1 and any c1 <
t′

8 log 2
. Let t = 1 − t′. If there exists an

estimator with worst-case MSE satisfying ε∗ ≤ 2tp

8
min

{
1,

r2

2Kp

}
then, according to

Lemma 3.3, if we set 2tp
r2
ε′ = 8ε∗, (3.20) is satisfied for DL and (3.21) holds. Combining

(3.19) and (3.21) we get

1

2
log2(L)− 1 ≤ I(Y; l|T(X)) ≤ 16NKp‖Σx‖2

c2r2σ2
ε∗, (3.22)

where c2 =
2tp

r2
. We can write (3.22) as

ε∗ ≥ tσ2

16NK‖Σx‖2

(
c1

( ∑
k∈[K]

(mk − 1)pk

)
− K

2
log2 2K − 2

)
. (3.23)
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3.4 Lower Bound for Sparse Distributions

We now turn our attention to the case of sparse coefficients and obtain lower bounds

for the corresponding minimax risk. We first state a corollary of Theorem 3.1 for sparse

coefficients, corresponding to T(X) = X.

Corollary. Consider a KS-DL problem with N i.i.d. observations generated according

to model (3.1). Suppose the true dictionary satisfies (3.5) for some r and fixed reference

dictionary D0 satisfying (3.4). If the random coefficient vector x is selected according

to (3.10) or (3.11), we have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p,

r2

2K
,

σ2p

4NKsσ2a

(
c1

( ∑
k∈[K]

(mk − 1)pk

)
− K

2
log2 2K − 2

)}
, (3.24)

for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

This result is a direct consequence of Theorem 3.1, obtained by substituting the

covariance matrix of sparse coefficients given in (3.13) into (3.14).

3.4.1 Sparse Gaussian Coefficients

In this section, we make an additional assumption on the coefficient vectors generated

according to (3.10) and assume non-zero elements of the vectors follow a Gaussian

distribution. By additionally assuming the non-zero entries of x are i.i.d. Gaussian

distributed, we can write xS as

xS ∼ N (0, σ2aIs). (3.25)

As a result, conditioned on side information T(xn) = supp(xn), observations yn follow

a multivariate Gaussian distribution.

We now provide a lower bound on the minimax risk in the case of coefficients selected

according to (3.10) and (3.25).
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Theorem 3.2. Consider a KS-DL problem with N i.i.d. observations generated accord-

ing to model (3.1). Suppose the true dictionary satisfies (3.5) for some r and fixed refer-

ence dictionary satisfying (3.4). If the reference coordinate dictionaries {D0,k, k ∈ [K]}

satisfy RIP(s, 12) and the random coefficient vector x is selected according to (3.10) and

(3.25), we have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p

s
,
r2

2K
,

σ4p

36(34K)Ns2σ4a

(
c1

( ∑
k∈[K]

(mk − 1)pk

)
− 1

2
log2 2K − 2

)}
,

(3.26)

for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

Note that in Theorem 3.2, D (or its coordinate dictionaries) need not satisfy the

RIP condition. Rather, the RIP is only needed for the coordinate reference dictionaries,

{D0,k, k ∈ [K]}, which is a significantly weaker (and possibly trivial to satisfy) condi-

tion. We state a variation of Lemma 3.2 necessary for the proof of Theorem 3.2 — the

proof is provided in the appendix.

Lemma 3.4. Consider the generative model in (3.1). Fix r > 0 and reference dic-

tionary D∗ satisfying (3.4). Then, there exists a set DL ⊆ X (D∗, r) of cardinality

L = 2bc1(
∑
k∈[K](mk−1)pk)−

1
2
log2(2K)c such that for any 0 < t < 1, any 0 < c1 <

t2

8 log 2 ,

any ε′ > 0 satisfying

0 < ε′ ≤ r2 min

{
1

s
,
r2

2Kp

}
, (3.27)

and any l, l′ ∈ [L], with l 6= l′, we have

2p

r2
(1− t)ε′ ≤ ‖Dl −Dl′‖2F ≤

4Kp

r2
ε′. (3.28)

Furthermore, assuming the reference coordinate dictionaries {D∗k, k ∈ [K]} satisfy
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RIP(s, 12), the coefficient matrix X is selected according to (3.10) and (3.25), and con-

sidering side information T(X) = supp(X), we have:

I(Y; l|T(X)) ≤ 36(34K)
(σa
σ

)4 Ns2
r2

ε′. (3.29)

Proof of Theorem 3.2. According to Lemma 3.4, for any ε′ satisfying (3.27), there

exists a set DL ⊆ X (D∗, r) of cardinality L = 2bc1(
∑
k∈[K](mk−1)pk)−

K
2
log2(2K)c that

satisfies (3.29) for any 0 < t′ < 1 and any c1 <
t′

8 log 2 . Denoting t = 1− t′ and provided

there exists an estimator with worst case MSE satisfying ε∗ ≤ tp

4
min

{1

s
,
r2

2Kp

}
, if we

set
2tp

r2
ε′ = 8ε∗, (3.20) is satisfied for DL and (3.21) holds. Consequently,

1

2
log2(L)− 1 ≤ I(Y; l|T(X)) ≤ 36(34K)

c2

(σa
σ

)4 Ns2
r2

ε∗, (3.30)

where c2 =
p(1− t)

4r2
. We can write (3.30) as

ε∗ ≥
( σ
σa

)4 tp(c1 (∑k∈[K](mk − 1)pk

)
− K

2 log2 2K − 2
)

144(34K)Ns2
. (3.31)

Focusing on the case where the coefficients follow the separable sparsity model,

the next theorem provides a lower bound on the minimax risk for coefficients selected

according to (3.11) and (3.25).

Theorem 3.3. Consider a KS-DL problem with N i.i.d. observations generated accord-

ing to model (3.1). Suppose the true dictionary satisfies (3.5) for some r and fixed refer-

ence dictionary satisfying (3.4). If the reference coordinate dictionaries {D∗k, k ∈ [K]}

satisfy RIP(s, 12) and the random coefficient vector x is selected according to (3.11) and

(3.25), we have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p,

r2

2K
,

σ4p

36(34K)Ns2σ4a

(
c1

( ∑
k∈[K]

(mk − 1)pk

)
− 1

2
log2 2K − 2

)}
,

(3.32)
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for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

We state a variation of Lemma 3.4 necessary for the proof of Theorem 3.3. The

proof of the lemma is provided in the appendix.

Lemma 3.5. Consider the generative model in (3.1). Fix r > 0 and reference dictio-

nary D∗ satisfying (3.4). Then, there exists a set of dictionaries DL ⊆ D of cardinality

L = 2bc1(
∑
k∈[K](mk−1)pk)−

K
2
log2(2K)c such that for any 0 < t < 1, any 0 < c1 <

t2

8 log 2 ,

any ε′ > 0 satisfying

0 < ε′ ≤ r2 min

{
1,

r2

2Kp

}
, (3.33)

and any l, l′ ∈ [L], with l 6= l′, we have

2p

r2
(1− t)ε′ ≤ ‖Dl −Dl′‖2F ≤

4Kp

r2
ε′. (3.34)

Furthermore, assuming the coefficient matrix X is selected according to (3.11) and

(3.25), the reference coordinate dictionaries {D∗k, k ∈ [K]} satisfy RIP(sk,
1
2), and con-

sidering side information T(X) = supp(X), we have:

I(Y; l|T(X)) ≤ 36(34K)
(σa
σ

)4 Ns2
r2

ε′. (3.35)

Proof of Theorem 3.3. The proof of Theorem 3.3 follows similar steps as the proof of

Theorem 3.2. The dissimilarity arises in the condition in (3.33) for Lemma 3.5, which

is different from the condition in (3.27) for Lemma 3.4. This changes the range for the

minimax risk ε∗ in which the lower bound in (3.31) holds.

In the next section, we provide a simple KS-DL algorithm for 2nd-order tensors and

study the corresponding DL MSE.

3.5 Partial Converse

In the previous sections, we provided lower bounds on the minimax risk for various

coefficient vector distributions and corresponding side information. We now study a
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special case of the problem and introduce an algorithm that achieves the lower bound in

Corollary 3.4 (order-wise) for 2nd-order tensors. This demonstrates that our obtained

lower bounds are tight in some cases.

Theorem 3.4. Consider a DL problem with N i.i.d observations according to model (3.1)

for K = 2 and let the true dictionary satisfy (3.5) for D∗ = Ip and some r > 0. Further,

assume the random coefficient vector x is selected according to (3.10), x ∈ {−1, 0, 1}p,

where the probabilities of the nonzero entries of x are arbitrary. Next, assume noise

standard deviation σ and express the KS dictionary as

D0 = (Ip1 + ∆1)⊗ (Ip2 + ∆2), (3.36)

where p = p1p2, ‖∆1‖F ≤ r1 and ‖∆2‖F ≤ r2. Then, if the following inequalities are

satisfied:

r1
√
p2 + r2

√
p1 + r1r2 ≤ r, (r1 + r2 + r1r2)

√
s ≤ 0.1

max

{
r21
p2
,
r22
p1

}
≤ 1

3N
, σ ≤ 0.4, (3.37)

there exists a DL scheme whose MSE satisfies

EY

{
‖D̂(Y)−D0‖2F

}
≤ 8p

N

(
p1m1 + p2m2

mSNR
+ 3(p1 + p2)

)
+ 8p exp

(
−0.08pN

σ2

)
,

(3.38)

for any D0 ∈ X (D∗, r) that satisfies (3.36) .

To prove Theorem 3.4, we first introduce an algorithm to learn a KS dictionary for

2nd-order tensor data. Then, we analyze the performance of the proposed algorithm

and obtain an upper bound for the MSE in the proof of Theorem 3.4, which is provided

in the appendix.7 Finally, we provide numerical experiments to validate our obtained

results.

7Theorem 3.4 also implicitly uses the assumption that max {p1, p2} ≤ N .



52

3.5.1 KS Dictionary Learning Algorithm

We analyze a remarkably simple, two-step estimator that begins with thresholding the

observations and then ends with estimating the dictionary. Note that unlike traditional

DL methods, our estimator does not perform iterative alternating minimization.

Coefficient Estimate: We utilize a simple thresholding technique for this purpose.

For all n ∈ [N ]:

x̂n = (x̂n,1, . . . , x̂n,p)
>, x̂n,l =


1 if yn,l > 0.5,

−1 if yn,l < −0.5,

0 otherwise.

(3.39)

Dictionary Estimate: Denoting A , Ip1 + ∆1 and B , Ip2 + ∆2, we can write

D0 = A ⊗ B. We estimate the columns of A and B separately. To learn A, we take

advantage of the Kronecker structure of the dictionary and divide each observation

yn ∈ Rp1p2 into p2 observations y′(n,j) ∈ Rp1 :

y′(n,j) = {yn,p2i+j}
p1−1
i=0 , j ∈ [p2], n ∈ [N ]. (3.40)

This increases the number of observations to Np2. We also divide the original and

estimated coefficient vectors:

x′(n,j) = {xn,p2i+j}
p1−1
i=0 ,

x̂′(n,j) = {x̂n,p2i+j}
p1−1
i=0 , j ∈ [p2], n ∈ [N ]. (3.41)

Similarly, we define new noise vectors:

w′(n,j) = {wn,p2i+j}
p1−1
i=0 , j ∈ [p2], n ∈ [N ]. (3.42)

To motivate the estimation rule for the columns of A, let us consider the original

DL formulation, yn = D0xn+wn, which we can rewrite as yn = xn,ld
0
l +
∑

i 6=l xn,id
0
i +
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wn. Multiplying both sides of the equation by xn,l and summing up over all training

data, we get
∑N

n=1 xn,lyn =
∑N

n=1(x
2
n,ld

0
l +

∑
i 6=l xn,lxn,id

0
i + xn,lwn). Using the facts

Ex

{
x2
n,l

}
= s

p , Ex {xn,lxn,i} = 0 for l 6= i, and Ex,w {xn,lwn} = 0, we get the following

approximation, d0
l ≈

p
Ns

∑N
n=1 xn,lyn.8 This suggests that for estimating the columns

of A, we can utilize the following equation:

ãl =
p1
Ns

N∑
n=1

p2∑
j=1

x′(k,j),ly
′
(n,j), l ∈ [p1]. (3.43)

To estimate the columns of B, we follow a different procedure to divide the ob-

servations. Specifically, we divide each observation yn ∈ Rp1p2 into p1 observations

y(n,j′′) ∈ Rp2 :

y′′(n,j) =
{
yn,i+p1(j−1)

}p2
i=1

, j ∈ [p1], n ∈ [N ]. (3.44)

This increases the number of observations to Np1. The coefficient vectors are also

divided similarly:

x′′(n,j) =
{
xk,i+p1(j−1)

}p1−1
i=0

,

x̂′′(n,j) =
{
x̂n,i+p1(j−1)

}p1−1
i=0

, j ∈ [p1], n ∈ [N ]. (3.45)

Similarly, we define new noise vectors:

w′′(n,j) =
{
wn,i+p1(j−1)

}p2
i=1

, j ∈ [p1], n ∈ [N ]. (3.46)

Finally, using similar heuristics as the estimation rule for columns of A, the estimate

for columns of B can be obtained using the following equation:

b̃l =
p2
Ns

N∑
n=1

p1∑
j=1

x′′(n,j),ly
′′
(n,j), l ∈ [p2]. (3.47)

8Notice that the i.i.d. assumption on xn,l’s is critical to making this approximation work.
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The final estimate for the recovered dictionary is

D̂ = Â⊗ B̂,

Â = (â1, . . . , âp1), âl = PB1(ãl),

B̂ = (b̂1, . . . , b̂p2), b̂l = PB1(b̃l), (3.48)

where the projection on the closed unit ball ensures that ‖âl‖2 ≤ 1 and ‖b̂l‖2 ≤ 1. Note

that although projection onto the closed unit ball does not ensure the columns of D̂ to

have unit norms, our analysis only imposes this condition on the generating dictionary

and the reference dictionary, and not on the recovered dictionary.

Remark 3.3. In addition to the heuristics following (3.42), the exact update rules for Ã

and B̃ in (3.43) and (3.47) require some additional perturbation analysis. To see this

for the case of Ã, notice that (3.43) follows from writing A ⊗ B as A ⊗ (Ip2 + ∆2),

rearranging each yn and (A ⊗ Ip2)xn into y′(n,j)’s and Ax′(n,j)’s, and using them to

update Ã. In this case, we treat (A ⊗∆2)xn as a perturbation term in our analysis.

A similar perturbation term appears in the case of the update rule for B̃. The analysis

for dealing with these perturbation terms is provided in the appendix.

3.5.2 Empirical Comparison to Upper Bound

We are interested in empirically seeing whether our achievable scheme matches the

minimax lower bound when learning KS dictionaries. To this end, we implement the

preceding estimation algorithm for 2nd-order tensor data.

Figure 3.1a shows the ratio of the empirical error of the proposed KS-DL algorithm

in Section 3.5.1 to the obtained upper bound in Theorem 3.4 for 50 Monte Carlo

experiments. This ratio is plotted as a function of the sample size for three choices

of the number of columns p: 128, 256, and 512. The experiment shows that the ratio

is approximately constant as a function of sample size, verifying the theoretical result

that the estimator meets the minimax bound in terms of error scaling as a function of

sample size. Figure 3.1b shows the performance of our KS-DL algorithm in relation

to the unstructured DL algorithm provided in [1]. It is evident that the error of our
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(a) (b)

Figure 3.1: Performance summary of KS-DL algorithm for p = {128, 256, 512}, s = 5
and r = 0.1. (a) plots the ratio of the empirical error of our KS-DL algorithm to the
obtained error upper bound along with error bars for generated square KS dictionaries,
and (b) shows the performance of our KS-DL algorithm (solid lines) compared to the
unstructured learning algorithm proposed in [1] (dashed lines).

algorithm is significantly less than that for the unstructured algorithm for all three

choices of p. This verifies that taking the structure of the data into consideration can

indeed lead to lower dictionary identification error.

3.6 Discussion

We now discuss some of the implications of our results. Table 3.1 summarizes the lower

bounds on the minimax rates from previous papers and this chapter. The bounds are

given in terms of the number of component dictionaries K, the dictionary size parame-

ters (mk’s and pk’s), the coefficient distribution parameters, the number of samples N ,

and SNR, which is defined as

SNR =
Ex

{
‖x‖22

}
Ew

{
‖w‖22

} =
Tr(Σx)

mσ2
. (3.49)

These scalings result hold for sufficiently large p and neighborhood radius r.

Comparison of minimax lower bounds for unstructured and KS DL: Com-

pared to the results for the unstructured DL problem [1], we are able to decrease

the lower bound for various coefficient distributions by reducing the scaling Ω(mp) to

Ω(
∑

k∈[K]mkpk) for KS dictionaries. This is intuitively pleasing since the minimax
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Table 3.1: Order-wise lower bounds on the minimax risk for various coefficient distri-
butions

Distribution

Dictionary Side Information
T(X)

Unstructured [1] KS (this chapter)

1. General X
σ2mp

N‖Σx‖2
σ2(
∑

k∈[K]mkpk)

NK‖Σx‖2

2. Sparse X
p2

N SNR

p(
∑

k∈[K]mkpk)

NKmSNR

3. Gaussian Sparse supp(X)
p2

NmSNR2

p(
∑

k∈[K]mkpk)

34KNm2 SNR2

lower bound has a linear relationship with the number of degrees of freedom of the KS

dictionary, which is
∑

k∈[K]mkpk.

The results also show that the minimax risk decreases with a larger number of

samples, N , and increased number of tensor order, K. By increasingK, we are shrinking

the size of the class of dictionaries in which the parameter dictionary lies, thereby

simplifying the problem.

Looking at the results for the general coefficient model in the first row of Table 3.1,

the lower bound for any arbitrary zero-mean random coefficient vector distribution with

covariance Σx implies an inverse relationship between the minimax risk and SNR due

to the fact that ‖Σx‖2 ≤ Tr(Σx).

Comparison of general sparse and Gaussian sparse coefficient distribu-

tions: Proceeding to the sparse coefficient vector model in the second row of Table 3.1,

by replacing Σx with the expression in (3.13) in the minimax lower bound for the gen-

eral coefficient distribution, we obtain the second lower bound given in (3.24). Recall

that for s-sparse coefficient vectors,

SNR =
sσ2a
mσ2

. (3.50)

Using this definition of SNR in (3.24), we observe a seemingly counter-intuitive increase

in the MSE of order Ω (p/s) in the lower bound in comparison to the general coefficient

model. However, this increase is due to the fact that we do not require coefficient
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vectors to have constant energy; because of this, SNR decreases for s-sparse coefficient

vectors.

Next, looking at the third row of Table 3.1, by restricting the class of sparse coeffi-

cient vector distributions to the case where non-zero elements of the coefficient vector

follow a Gaussian distribution according to (3.25), we obtain a minimax lower bound

that involves less side information than the prior two cases. However, we do make the

assumption in this case that reference coordinate dictionaries satisfy RIP(s, 12). This

additional assumption has two implications: (1) it introduces the factor of 1/34K in the

minimax lower bound, and (2) it imposes the following condition on the sparsity for the

“random sparsity” model: s ≤ mink∈[K]{pk}. Nonetheless, considering sparse-Gaussian

coefficient vectors, we obtain a minimax lower bound that is tighter than the previ-

ous bound for some SNR values. Specifically, in order to compare bounds obtained in

(3.24) and (3.26) for sparse and sparse-Gaussian coefficient vector distributions, we fix

K. Then in high SNR regimes, i.e., SNR = Ω(1/m), the lower bound in (3.24) is tighter,

while (3.26) results in a tighter lower bound in low SNR regimes, i.e., SNR = O(1/m),

which correspond to low sparsity settings.

Comparison of random and separable sparse coefficient models: We now

focus on our results for the two sparsity pattern models, namely, random sparsity and

separable sparsity, for the case of sparse-Gaussian coefficient vector distribution. These

results, which are reported in (3.26) and (3.32), are almost identical to each other,

except for the first term in the minimization. In order to understand the settings in

which the separable sparsity model in (3.11)—which is clearly more restrictive than the

random sparsity model in (3.10)—turns out to be more advantageous, we select the

neighborhood radius r to be of order O(
√
p); since we are dealing with dictionaries that

lie on the surface of a sphere with radius
√
p, this effectively ensures X (D∗, r) ≈ D. In

this case, it can be seen from (3.26) and (3.32) that if s = Ω(K) then the separable

sparsity model gives a better minimax lower bound. On the other hand, the random

sparsity model should be considered for the case of s = O(K) because of the less

restrictive nature of this model.

Achievability of our minimax lower bounds for learning KS dictionaries:
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To this end, we provided a simple KS-DL algorithm in Section 3.5 for the special scenario

of 2-dimensional tensors and analyzed the corresponding MSE, EY

{
‖D̂(Y) −D0‖2F

}
.

In terms of scaling, the upper bound obtained for the MSE in Theorem 3.4 matches the

lower bound in Corollary 3.4 provided p1 + p2 <
m1p1+m2p2
m SNR holds. This result suggests

that more general KS-DL algorithms may be developed to achieve the lower bounds

reported in this chapter.

3.7 Conclusion

In this chapter, we followed an information-theoretic approach to provide lower bounds

for the worst-case mean-squared error (MSE) of Kronecker-structured dictionaries that

generate Kth-order tensor data. To this end, we constructed a class of Kronecker-

structured dictionaries in a local neighborhood of a fixed reference Kronecker-structured

dictionary. Our analysis required studying the mutual information between the obser-

vation matrix and the dictionaries in the constructed class. To evaluate bounds on

the mutual information, we considered various coefficient distributions and interrelated

side information on the coefficient vectors and obtained corresponding minimax lower

bounds using these models. In particular, we established that estimating Kronecker-

structured dictionaries requires a number of samples that needs to grow only linearly

with the sum of the sizes of the component dictionaries (
∑

k∈[K]mkpk), which repre-

sents the true degrees of freedom of the problem. We also demonstrated that for a

special case of K = 2, there exists an estimator whose MSE meets the derived lower

bounds. While our analysis is local in the sense that we assume the true dictionary

belongs in a local neighborhood with known radius around a fixed reference dictionary,

the derived minimax risk effectively becomes independent of this radius for sufficiently

large neighborhood radius.
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3.8 Appendix

3.8.1 Proof of Lemma 3.1

Fix L > 0 and α > 0. For a pair of matrices Al and Al′ , with l 6= l′, consider the

vectorized set of entries al = vec(Al) and al′ = vec(Al′) and define the function

f(a>l ,a
>
l′ ) , |〈Al,Al′〉| = |〈al,al′〉| . (3.51)

For ã , (a>l ,a
>
l′ ) ∈ R2mp, write ã ∼ ã′ if ã′ is equal to ã in all entries but one. Then f

satisfies the following bounded difference condition:

sup
ã∼ã′

∣∣f(ã)− f(ã′)
∣∣ = (α− (−α))α = 2α2. (3.52)

Hence, according to McDiarmid’s inequality [79], for all β > 0, we have

P (|〈Al,Al′〉| ≥ β) ≤ 2 exp

(
−2β2∑2mp
i=1 (2α2)2

)

= 2 exp

(
− β2

4α4mp

)
. (3.53)

Taking a union bound over all pairs l, l′ ∈ [L], l 6= l′, we have

P
(
∃(l, l′) ∈ [L]× [L], l 6= l′ : |〈Al,Al′〉| ≥ β

)
≤ 2L2 exp

(
− β2

4α4mp

)
. (3.54)

3.8.2 Proof of Lemma 3.2

Fix r > 0 and t ∈ (0, 1). Let D∗ be a reference dictionary satisfying (3.4), and let

{U(k,j)}
pk
j=1 ∈ Rmk×mk , k ∈ [K], be arbitrary unitary matrices satisfying

d∗k,j = U(k,j)e1, (3.55)

where d∗k,j denotes the j-th column of D∗k.
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To construct the dictionary class DL ⊆ X (D∗, r), we follow several steps. We

consider sets of

Lk = 2bc1(mk−1)pk−
1
2
log2 2Kc (3.56)

generating matrices G(k,lk):

G(k,lk) ∈

{
− 1

r1/K
√

(mk − 1)
,

1

r1/K
√

(mk − 1)

}(mk−1)×pk

(3.57)

for k ∈ [K] and lk ∈ [Lk]. According to Lemma 3.1, for all k ∈ [K] and any β > 0, the

following relation is satisfied:

P
(
∃(lk, l′k) ∈ [Lk]× [Lk], l 6= l′ :

∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ ≥ β)
≤ 2L2

k exp

(
−r

4/K(mk − 1)β2

4pk

)
. (3.58)

To guarantee a simultaneous existence of K sets of generating matrices satisfying

∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ ≤ β, k ∈ [K], (3.59)

we take a union bound of (3.58) over all k ∈ [K] and choose parameters such that the

following upper bound is less than 1:

2KL2
k exp

(
−r

4/K(mk − 1)β2

4pk

)
= exp

(
−r

4/K(mk − 1)β2

4pk
+ 2 ln

√
2KLk

)
,

which is satisfied as long as the following inequality holds:

log2 Lk <
r4/K(mk − 1)β2

8pk log 2
− 1

2
− 1

2
log2K. (3.60)

Now, setting β =
pkt

r2/K
, the condition in (3.60) holds and there exists a collection of
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generating matrices that satisfy:

∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ ≤ pkt

r2/K
, k ∈ [K], (3.61)

for any distinct lk, l
′
k ∈ [Lk], any t ∈ (0, 1), and any c1 > 0 such that

c1 <
t2

8 log 2
. (3.62)

We next construct matrices that will be later used for the construction of unit-norm

column dictionaries. We construct D(k,1,lk) ∈ Rmk×pk column-wise using G(k,lk) and

unitary matrices {U(k,j)}
pk
j=1. Let the j-th column of D(k,1,lk) be given by

d(k,1,lk),j = U(k,j)

 0

g(k,lk),j

 , k ∈ [K], (3.63)

for any lk ∈ [Lk]. Moreover, defining

D1 ,

{ ⊗
k∈[K]

D(k,1,lk) : lk ∈ [Lk]

}
, (3.64)

and denoting

L , {(l1, . . . , lK) : lk ∈ [Lk]} , (3.65)

any element of D1 can be expressed as

D(1,l) =
⊗
k∈[K]

D(k,1,lk),∀ l ∈ [L], (3.66)
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where |L| = L ,
∏
k∈[K] Lk and we associate an l ∈ [L] with a tuple in L via lexico-

graphic indexing. Notice also that

∥∥d(1,l),j

∥∥2
2

(a)
=
∏
k∈[K]

∥∥d(k,1,lk),j

∥∥2
2

=
∏
k∈[K]

1

r2/K
=

1

r2
, and

∥∥D(1,l)

∥∥2
F

=
p

r2
, (3.67)

where (a) follows from properties of the Kronecker product. From (3.63), it is evident

that for all k ∈ [K], d(k,0),j is orthogonal to d(k,1,lk),j and consequently, we have

〈
D∗k,D(k,1,lk)

〉
= 0, k ∈ [K] (3.68)

Also,

〈
D(k,1,lk),D(k,1,l′k)

〉
=

pk∑
j=1

〈
d(k,1,lk),j ,d(k,1,l′k),j

〉

=

pk∑
j=1

〈
U(k,j)

 0

g(k,lk),j

 ,U(k,j)

 0

g(k,l′k),j

〉

(b)
=

pk∑
j=1

〈
g(k,lk),j ,g(k,l′k),j

〉
=
〈
G(k,lk),G(k,l′k)

〉
, (3.69)

where (b) follows from the fact that {U(k,j)} are unitary.

Based on the construction, for all k ∈ [K], lk, l
′
k ∈ [Lk], lk 6= l′k, we have

∥∥D(1,l) −D(1,l′)

∥∥2
F

=
∥∥D(1,l)

∥∥2
F

+
∥∥D(1,l′)

∥∥2
F
− 2

〈
D(1,l),D(1,l′)

〉
=

p

r2
+

p

r2
− 2

∏
k∈[K]

〈
D(k,1,lk),D(k,1,l′k)

〉
≥ 2

(
p

r2
−
∏
k∈[K]

∣∣∣〈D(k,1,lk),D(k,1,l′k)

〉∣∣∣ )
(c)
= 2

(
p

r2
−
∏
k∈[K]

∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ )
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(d)

≥ 2

(
p

r2
−
∏
k∈[K]

pk
r2/K

t

)

=
2p

r2
(
1− tK

)
, (3.70)

where (c) and (d) follow from (3.69) and (3.61), respectively.

We are now ready to define DL. The final dictionary class is defined as

DL ,

{ ⊗
k∈[K]

D(k,lk) : lk ∈ [Lk]

}
(3.71)

and any Dl ∈ DL can be written as

Dl =
⊗
k∈[K]

D(k,lk), (3.72)

where D(k,lk) is defined as

D(k,lk) , ηD∗k + νD(k,1,lk), k ∈ [K], (3.73)

and

η ,

√
1− ε′

r2
, ν ,

√
r2/Kε′

r2
(3.74)

for any

0 < ε′ < min

{
r2,

r4

2Kp

}
, (3.75)

which ensures that 1 − ε′

r2
> 0 and Dl ∈ X (D∗, r). Note that the following relation

holds between η and ν:

η2 +
ν2

r2/K
= 1. (3.76)



64

We can expand (3.72) to facilitate the forthcoming analysis:

Dl =
∑

i∈{0,1}K
ηK−‖i‖1ν‖i‖1

( ⊗
k∈[K]

D(k,ik,lk)

)
, (3.77)

where i , (i1, i2, . . . , iK) and D(k,0,lk) , D∗k. To show DL ⊆ X (D∗, r), we first show

that any Dl ∈ DL has unit-norm columns. For any j ∈ [p] and jk ∈ [pk], k ∈ [K]

(associating j with (j1, . . . , jK) via lexicographic indexing), we have

‖dl,j‖22 =
∏
k∈[K]

∥∥d(k,lk),jk

∥∥2
2

=
∏
k∈[K]

(
η2‖d∗k,jk‖

2
2 + ν2

∥∥d(k,1,lk),jk

∥∥2
2

)

=
∏
k∈[K]

(
η2 + ν2

( 1

r2/K
))

(e)
= 1, (3.78)

where (e) follows from (3.76). Then, we show that ‖Dl −D∗‖F ≤ r:

‖Dl −D∗‖2F =

∥∥∥∥ D∗ −
∑

i∈{0,1}K
ηK−‖i‖1ν‖i‖1

⊗
k∈[K]

D(k,ik,lk)

∥∥∥∥2
F

=

∥∥∥∥(1− ηK)D∗ − ∑
i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1
⊗
k∈[K]

D(k,ik,lk)

∥∥∥∥2
F

=
(
1− ηK

)2 ‖D∗‖2F +
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∏
k∈[K]

∥∥D(k,ik,lk)

∥∥2
F
. (3.79)

We will bound the two terms in (3.79) separately. We know

(1− xn) = (1− x)(1 + x+ x2 + · · ·+ xn−1). (3.80)
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Hence, we have

(
1− ηK

)2 ‖D∗‖2F =
(
1− ηK

)2
p

(f)

≤
(
1− ηK

)
p

≤
(
1− η2K

)
p

(g)
=
(
1− η2

) (
1 + η2 + · · ·+ η2(K−1)

)
p

=
ε′

r2

(
1 + η2 + · · ·+ η2(K−1)

)
p

(h)

≤ Kpε′

r2
, (3.81)

where (f) and (h) follow from the fact that η < 1 and (g) follows from (3.80).

Similarly for the second term in (3.79),

∏
k∈[K]

∥∥D(k,ik,lk)

∥∥2
F

=

( ∏
k∈[K]
ik=0

‖D∗k‖2F
)( ∏

k∈[K]
ik=1

‖D(k,1,lk)‖
2
F

)

=

( ∏
k∈[K]
ik=0

pk

)( ∏
k∈[K]
ik=1

pk
r2/K

)

=

( ∏
k∈[K]

pk

)(
1

r2/K

)‖i‖1
. (3.82)

Replacing values for η and ν from (3.74) and using (3.82) and the fact that
∏
k∈[K] pk =

p, we can further reduce the second term in (3.79) to get

∑
i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∏
k∈[K]

‖D(k,ik,lk)‖
2
F

= p

K−1∑
k=0

(
K

k

)(
1− ε′

r2

)k ( ε′
r2

)K−k
= p

(
1−

(
1− ε′

r2

)K)
(i)
= p

(
ε′

r2

)(
1 +

(
1− ε′

r2

)
+ · · ·+

(
1− ε′

r2

)K−1)

≤ Kpε′

r2
, (3.83)
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where (i) follows from (3.80). Adding (3.81) and (3.83), we get

‖Dl −D∗‖2F ≤ ε
′
(

2Kp

r2

)
(j)

≤ r2, (3.84)

where (j) follows from the condition in (3.75). Therefore, (3.78) and (3.83) imply that

DL ⊆ X (D∗, r).

We now find lower and upper bounds for the distance between any two distinct

elements Dl,Dl′ ∈ DL.

Lower bounding ‖Dl −Dl′‖2F : We define the set Ii ⊆ [K] where |Ii| = i, i ∈ [K].

Then, given distinct lk, l
′
k, k ∈ Ii, we have

∥∥∥∥⊗
k∈Ii

D(k,1,lk) −
⊗
k∈Ii

D(k,1,l′k)

∥∥∥∥2
F

(k)

≥
2
(
1− ti

)
r2i/K

∏
k∈Ii

pk

≥ 2 (1− t)
r2i/K

∏
k∈Ii

pk, (3.85)

where (k) follows using arguments similar to those made for (3.70).

To obtain a lower bound on ‖Dl − Dl′‖2F , we emphasize that for distinct l, l′ ∈

[L], it does not necessarily hold that lk 6= l′k for all k ∈ [K]. In fact, it is sufficient

for Dl 6= Dl′ that only one k ∈ [K] satisfies lk 6= l′k. Now, assume only K1 out of

K coordinate dictionaries are distinct (for the case where all smaller dictionaries are

distinct, K1 = K). Without loss of generality, we assume l1, . . . , lK1 are distinct and

lK1+1, . . . , lK are identical across Dl and Dl′ . This is because of the invariance of the

Frobenius norm of Kronecker products under permutation, i.e.,

∥∥∥∥ ⊗
k∈[K]

Ak

∥∥∥∥
F

=
∏
k∈[K]

‖Ak‖F =

∥∥∥∥ ⊗
k∈[K]

Aπ(k)

∥∥∥∥
F

, (3.86)

where π(.) denotes a permutation of [K]. We then have

‖Dl −Dl′‖2F
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=

∥∥∥∥(D(1,l1) ⊗ · · · ⊗D(K1,lK1
) ⊗D(K1+1,lK1+1) ⊗ · · · ⊗D(K,lK))

− (D(1,l′1)
⊗ · · · ⊗D(K1,l′K1

) ⊗D(K1+1,lK1+1) ⊗ · · · ⊗D(K,lK))

∥∥∥∥2
F

(l)
=

∥∥∥∥( ⊗
k∈[K1]

D(k,lk) −
⊗
k∈[K1]

D(k,l′k)
)

)
⊗D(K1+1,lK1+1) ⊗ · · · ⊗D(K,lK ))

∥∥∥∥2
F

=

∥∥∥∥ ⊗
k∈[K1]

D(k,lk) −
⊗
k∈[K1]

D(k,l′k)

∥∥∥∥2
F

K∏
k=K1+1

∥∥D(k,lk)

∥∥2
F

=

( K∏
k=K1+1

pk

)∥∥∥∥ ∑
i∈{0,1}K1

‖i‖1 6=0

ηK1−‖i‖1ν‖i‖1
( ⊗
k∈[K1]

D(k,ik,lk) −
⊗
k∈[K1]

D(k,ik,l
′
k)

)∥∥∥∥2
F

(m)
=

( ∑
i∈{0,1}K1

‖i‖1 6=0

η2(K1−‖i‖1)ν2‖i‖1
∏

k∈[K1]
ik=0

‖D∗k‖
2
F

∥∥∥∥ ⊗
k∈[K1]
ik=1

D(k,1,lk) −
⊗
k∈[K1]
ik=1

D(k,1,l′k)

∥∥∥∥2
F

)

(n)

≥
( K∏
k=K1+1

pk

)( ∑
i∈{0,1}K1

‖i‖1 6=0

η2(K1−‖i‖1)ν2‖i‖1
( ∏
k∈[K1]
ik=0

pk

)(
2

r2‖i‖1/K

∏
k∈[K1]
ik=1

pk

)
(1− t)

)

(o)
= 2p (1− t)

K1−1∑
k=0

(
K1

k

)(
1− ε′

r2

)k ( ε′
r2

)K1−k

(p)
= 2p (1− t)

(
1−

(
1− ε′

r2

)K1
)

≥ 2p (1− t)
(

1−
(

1− ε′

r2

))
=

2p

r2
(1− t) ε′, (3.87)

where (l) follows from the distributive property of Kronecker products, (m) follows the

fact that terms in the sum have orthogonal columns (from (1.6) and (3.68)), (n) follows

from (3.85), (o) follows from substituting values for η and ν, and (p) follows from the

binomial formula.

Upper bounding ‖Dl−Dl′‖2F : In order to upper bound ‖Dl−Dl′‖2F , notice that

‖Dl −Dl′‖2F =
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∥∥∥∥ ⊗
k∈[K]

D(k,ik,lk) −
⊗
k∈[K]

D(k,ik,l
′
k)

∥∥∥∥2
F
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(q)

≤
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
(∥∥∥∥ ⊗

k∈[K]

D(k,ik,lk)

∥∥∥∥
F

+

∥∥∥∥ ⊗
k∈[K]

D(k,ik,l
′
k)

∥∥∥∥
F

)2

= 4
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∥∥∥∥ ⊗
k∈[K]

D(k,ik,lk)

∥∥∥∥2
F

= 4
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∏
k∈[K]
ik=0

‖D∗k‖2F
∏
k∈[K]
ik=1

‖D(k,1,lk)‖
2
F

= 4
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
( ∏
k∈[K]
ik=0

pk

)( ∏
k∈[K]
ik=1

pk
r2/K

)

(r)
= 4p

K−1∑
k=0

(
K

k

)(
1− ε′

r2

)k ( ε′
r2

)K−k
(s)

≤ 4Kp

r2
ε′, (3.88)

where (q) follows from the triangle inequality, (r) follows from substituting values for

η and ν, and (s) follows from similar arguments as in (3.83).

Upper bounding I(Y; l|T(X)): We next obtain an upper bound for I(Y; l|T(X))

for the dictionary set DL according to the general coefficient model and side information

T(X) = X.

Assuming side information T(X) = X, conditioned on the coefficients xn, the ob-

servations yn follow a multivariate Gaussian distribution with covariance matrix σ2I

and mean vector Dxn. From the convexity of the KL divergence [80], following similar

arguments as in [1, 78], we have

I(Y; l|T(X)) = I(Y; l|X)

=
1

L

∑
l∈[L]

EX

{
DKL

(
fDl

(Y|X)
∥∥ 1

L

∑
l′∈[L]

fDl′ (Y|X)

)}

≤ 1

L2

∑
l,l′∈[L]

EX

{
DKL

(
fDl

(Y|X)
∥∥fDl′ (Y|X)

)}
, (3.89)
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where fDl
(Y|X) is the probability distribution of the observations Y, given the coeffi-

cient matrix X and the dictionary Dl. From Durrieu et al. [81], we have

DKL

(
fDl

(Y|X)
∥∥fDl′ (Y|X)

)
=
∑
n∈[N ]

1

2σ2
‖(Dl −Dl′)xn‖22

=
∑
n∈[N ]

1

2σ2
Tr
{

(Dl −Dl′)
>(Dl −Dl′)xnx

>
n

}
. (3.90)

Substituting (3.90) in (3.89) results in

I(Y; l|T(X)) ≤ EX

{ ∑
n∈[N ]

1

2σ2
Tr
{

(Dl −Dl′)
>(Dl −Dl′)xnx

>
n

}}

=
∑
n∈[N ]

1

2σ2
Tr
{

(Dl −Dl′)
>(Dl −Dl′)Σx

}
(t)

≤
∑
n∈[N ]

1

2σ2
‖Σx‖2‖Dl −Dl′‖2F

(u)

≤ N

2σ2
‖Σx‖2

(
4Kpε′

r2

)
=

2NKp‖Σx‖2
r2σ2

ε′, (3.91)

where (u) follows from (3.88). To show (t), we use the fact that for any A ∈ Rp×p and

Σx with ordered singular values σi(A) and σi(Σx), i ∈ [p], we have

Tr {AΣx} ≤ |Tr {AΣx}|

(v)

≤
p∑
i=1

σi(A)σi(Σx)

(w)

≤ σ1(Σx)

p∑
i=1

σi(A)

= ‖Σx‖2 Tr{A}, (3.92)

where (v) follows from Von Neumann’s trace inequality [82] and (w) follows from the

positivity of the singular values of Σx. The inequality in (t) follows from replacing

A with (Dl −Dl′)
>(Dl −Dl′) and using the fact that Tr{(Dl −Dl′)

>(Dl −Dl′)} =

‖Dl −Dl′‖2F .
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3.8.3 Proof of Lemma 3.4

The dictionary class DL constructed in Lemma 3.2 is again considered here. Note that

(3.27) implies ε′ < r2, since s ≥ 1. The first part of Lemma 3.4, up to (3.28), thus

trivially follows from Lemma 3.2. In order to prove the second part, notice that in this

case the coefficient vector is assumed to be sparse according to (3.10). Denoting xSn

as the elements of xn with indices Sn , supp(xn), we have observations yn as

yn = Dl,SnxSn + wn. (3.93)

Hence conditioned on Sn = supp(xn), observations yn’s are zero-mean independent

multivariate Gaussian random vectors with covariances

Σ(n,l) = σ2aDl,SnD>l,Sn + σ2Is. (3.94)

The conditional MI I(Y; l|T(X) = supp(X)) has the following upper bound [1, 83]:

I(Y; l|T(X)) ≤ ET(X)

{ ∑
n∈[N ]
l,l′∈[L]

1

L2
Tr
{[

Σ−1(n,l) −Σ−1(n,l′)

][
Σ(n,l) −Σ(n,l′)

]}}

≤ rank
{
Σ(n,l) −Σ(n,l′)

}
ET(X)

{ ∑
n∈[N ]

1

L2

∑
l,l′∈[L]

∥∥∥Σ−1(n,l) −Σ−1(n,l′)

∥∥∥
2

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2

}
.

(3.95)

Since rank(Σ(n,l)) ≤ s, rank{Σ(n,l) −Σ(n,l′)} ≤ 2s [1].

Next, note that since non-zero elements of the coefficient vector are selected accord-

ing to (3.10) and (3.25), we can write the subdictionary Dl,Sn in terms of the Khatri-Rao

product of matrices:

Dl,Sn = ∗
k∈[K]

D(k,lk),Snk , (3.96)

where Snk = {jnk}snk=1, jnk ∈ [pk], for any k ∈ [K], denotes the support of xn according

to the coordinate dictionary D(k,lk) and Sn corresponds to the indexing of the elements

of (S1 × . . .SK). Note that Dl,Sn ∈ R(
∏
k∈[K]mk)×s and in this case, the Snk ’s can be
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multisets.9 We can now write

Σ(n,l) = σ2a

( ∗
k1∈[K]

D(k1,lk1 ),Snk1

)( ∗
k2∈[K]

D(k2,lk2 ),Snk2

)>
+ σ2Is. (3.97)

We next write

1

σ2a
(Σ(n,l) −Σ(n,l′)) =

( ∗
k1∈[K]

D(k1,lk1 ),Snk1

)( ∗
k2∈[K]

D(k2,lk2 ),Snk2

)>
−
( ∗
k1∈[K]

D(k1,l′k1
),Snk1

)( ∗
k2∈[K]

D(k2,l′k2
),Snk2

)>
=

( ∑
i∈{0,1}K

ηK−‖i‖1ν‖i‖1 ∗
k1∈[K]

D(k1,ik1 ,lk1 ),Snk1

)
( ∑

i′∈{0,1}K
ηK−‖i

′‖1ν‖i
′‖1 ∗

k2∈[K]

D(k2,i′k2
,lk2 ),Snk2

)>
−
( ∑

i∈{0,1}K
ηK−‖i‖1ν‖i‖1 ∗

k1∈[K]

D(k1,ik1 ,l
′
k1

),Snk1

)
( ∑

i′∈{0,1}K
ηK−‖i

′‖1ν‖i
′‖1 ∗

k2∈[K]

D(k2,i′k2
,l′k2

),Snk2

)>
=

∑
i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1

( ∗
k1∈[K]

D(k1,ik1 ,lk1 ),Snk1

)( ∗
k2∈[K]

D(k2,i′k2
,lk2 ),Snk2

)>
−

∑
i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1

( ∗
k1∈[K]

D(k1,ik1 ,l
′
k1

),Snk1

)( ∗
k2∈[K]

D(k2,i′k2
,l′k2

),Snk2

)>
. (3.98)

We now note that

‖A1 ∗A2‖2 = ‖(A1 ⊗A2)P‖2

≤ ‖(A1 ⊗A2)‖2‖P‖2
(a)
= ‖A1‖2‖A2‖2, (3.99)

9Due to the fact that Snk ’s can be multisets, D(k,lk),Snk
’s can have duplicated columns.
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where P ∈ Rp×s is a selection matrix that selects s columns of A1 ⊗A2 and pj = ei

for j ∈ [s], i ∈ [p]. Here, (a) follows from the fact that ‖P‖2 = 1 (P>P = Is). From

(3.27), it is apparent that

√
sε′

r2
≤ 1. Furthermore,

∥∥∥D(k,0),Snk

∥∥∥
2
≤
√

3

2
,
∥∥∥D(k,1,lk),Snk

∥∥∥
2
≤
√

s

r2/K
, k ∈ [K], (3.100)

where the fist inequality in (3.100) follows from the RIP condition for
{
D(0,k), k ∈ [K]

}
and the second inequality follows from the fact that ‖A‖2 ≤ ‖A‖F . We therefore have

1

σ2a

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2

(b)

≤ 2
∑

i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1
∥∥∥∥ ∗
k1∈[K]

D(k1,ik1 ,lk1 ),Snk1

∥∥∥∥
2

∥∥∥∥ ∗
k2∈[K]

D(k2,i′k2
,lk2 ),Snk2

∥∥∥∥
2

(c)

≤ 2
∑

i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1
∏

k1∈[K]
ik1=0

∥∥D(k1,0),Snk1

∥∥
2

∏
k1∈[K]
ik1=1

∥∥D(k1,1,lk1 ),Snk1

∥∥
2

( ∑
i′∈{0,1}K

ηK−‖i
′‖1ν‖i

′‖1
∏

k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2 ),Snk2

∥∥
2

)

+ 2
∑

i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1
∏

k1∈[K]
ik1=0

∥∥D(k1,0),Snk1

∥∥
2

∏
k1∈[K]
ik1=1

∥∥D(k1,1,lk1 ),Snk1

∥∥
2

( ∑
i′∈{0,1}K
‖i′‖1 6=0

ηK−‖i
′‖1ν‖i

′‖1
∏

k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2 ),Snk2

∥∥
2

)

(d)
= 2

( K−1∑
k1=0

(
K

k1

)
ηk1νK−k1

(√
3

2

)k1(√ s

r2/K

)K−k1)
( K∑
k2=0

(
K

k2

)
ηk2νK−k2

(√
3

2

)k2 (√
s

r2/K

)K−k2 )

+ 2

(
η

√
3

2

)K( K−1∑
k2=0

(
K

k2

)
ηk2νK−k2

(√
3

2

)k2(√ s

r2/K

)K−k2)
(e)

≤ 2

( K−1∑
k1=0

(
K

k1

)(√
3

2

)k1(√sε′

r2

)K−k1)( K∑
k2=0

(
K

k2

)(√
3

2

)k2(√sε′

r2

)K−k2)

+ 2

(√
3

2

)K( K−1∑
k2=0

(
K

k2

)(√
3

2

)k2(√sε′

r2

)K−k2)
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= 2

√
sε′

r2

( K−1∑
k1=0

(
K

k1

)(√
3

2

)k1(√sε′

r2

)K−1−k1)
( K∑
k2=0

(
K

k2

)(√
3

2

)k2(√sε′

r2

)K−k2
+

(√
3

2

)K)
(f)

≤ 2

√
sε′

r2

((√
3

2

)K−1 K∑
k1=0

(
K

k1

))((√
3

2
+ 1

)K
+

(√
3

2

)K)

≤ 2

√
sε′

r2

((√
3

2

)K−1
2K
)((

3

2

)K
2K +

(
3

2

)K)
≤ 32K+1

√
sε′

r2
, (3.101)

where (b) follows from triangle inequality, (c) follows from (3.99), (d) follows from

(3.100), (e) and (f) follow from replacing the value for ν and the fact that η < 1 and

sε′/r2 < 1 (by assumption). Denoting the smallest eigenvalue of Σ(n,l) as λmin(Σ(n,l)),

λmin(Σ(n,l)) ≥ σ2 holds; thus, we have ‖Σ−1(n,l)‖2 ≤
1
σ2 and from [84], we get

∥∥∥Σ−1(n,l) −Σ−1(n,l′)

∥∥∥
2
≤ 2

∥∥∥Σ−1(n,l)

∥∥∥2
2

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2

≤ 2

σ4
∥∥Σ(n,l) −Σ(n,l′)

∥∥
2
. (3.102)

Now (3.95) can be stated as

I(Y; l|T(X)) ≤ 4Ns

σ4L2

∑
l,l′

∥∥Σ(n,l) −Σ(n,l′)

∥∥2
2

≤ 4Ns

σ4
∥∥Σ(n,l) −Σ(n,l′)

∥∥2
2

(g)

≤ 4Ns

σ4
(34K+2)

(
σ2a

√
sε′

r2

)2

= 36(34K)
(σa
σ

)4 Ns2
r2

ε′, (3.103)

where (g) follow from (3.101). Thus, the proof is complete.



74

3.8.4 Proof of Lemma 3.5

Similar to Lemma 3.4, the first part of this Lemma trivially follows from Lemma 3.2.

Also, in this case the coefficient vector is assumed to be sparse according to (3.11).

Hence, conditioned on Sn = supp(xn), observations yn’s are zero-mean independent

multivariate Gaussian random vectors with covariances given by (3.94). Similar to

Lemma 3.4, therefore, the conditional MI has the upper bound given in (3.95). We now

simplify this upper bound further.

When non-zero elements of the coefficient vector are selected according to (3.11)

and (3.25), we can write the dictionary Dl,Sn in terms of the Kronecker product of

matrices:

Dl,Sn =
⊗
k∈[K]

D(k,lk),Snk , (3.104)

where Snk = {jnk}
sk
nk=1, jnk ∈ [pk], for all k ∈ [K], denotes the support of xn on

coordinate dictionary D(k,lk) and Sn corresponds to indexing of the elements of (S1 ×

· · · × SK). Note that Dl,Sn ∈ R(
∏
k∈[K]mk)×s. In contrast to coefficient model (3.10), in

this model the Snk ’s are not multisets anymore since for each D(k,lk), k ∈ [K], we select

sk columns at random and D(k,lk),Snk are submatrices of D(k,lk). Therefore, (3.94) can

be written as

Σ(n,l) = σ2a

( ⊗
k1∈[K]

D(k1,lk1 ),Snk1

)( ⊗
k2∈[K]

D(k2,lk2 ),Snk2

)>
+ σ2Is. (3.105)

In order to find an upper bound for ‖Σ(n,l) − Σ(n,l′)‖2, notice that the expression for

Σ(n,l) − Σ(n,l′) is similar to that of (3.98), where ∗ is replaced by
⊗

. Using the

property of Kronecker product that ‖A1 ⊗A2‖2 = ‖A1‖2‖A2‖2 and the fact that

∥∥∥D(k,0),Snk

∥∥∥
2
≤
√

3

2
,
∥∥∥D(k,1,lk),Snk

∥∥∥
2
≤
√

sk
r2/K

,∀k ∈ [K], (3.106)
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we have

1

σ2a

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2

≤ 2
∑

i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1
∥∥∥∥ ⊗
k1∈[K]

D(k1,ik1 ,lk1 ),Snk1

∥∥∥∥
2

∥∥∥∥ ⊗
k2∈[K]

D(k2,i′k2
,lk2 ),Snk2

∥∥∥∥
2

= 2
∑

i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1
∏

k1∈[K]
ik1=0

∥∥D(k1,0),Snk1

∥∥
2

∏
k1∈[K]
ik1=1

∥∥D(k1,1,lk1 ),Snk1

∥∥
2

( ∑
i′∈{0,1}K

ηK−‖i
′‖1ν‖i

′‖1
∏

k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2 ),Snk2

∥∥
2

)

+ 2

(
ηK

∏
k1∈[K]

∥∥D(k1,0),Snk1

∥∥
2

)( ∑
i′∈{0,1}K
‖i′‖1 6=0

ηK−‖i
′‖1ν‖i

′‖1

∏
k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2 ),Snk2

∥∥
2

)

(a)

≤ 2
√
s

[( K−1∑
k1=0

(
K

k1

)
ηk1νK−k1

(√
3

2

)k1(√ 1

r2/K

)K−k1)
( K∑
k2=0

(
K

k2

)(
η

√
3

2

)k2)
+

(
η

√
3

2

)K
( K−1∑
k2=0

(
K

k2

)
ηk2ν(K−k2)

(√
3

2

)k2(√ 1

r2/K

)K−k2)]
(b)

≤ 2

√
sε′

r2

( K−1∑
k1=0

(
K

k1

)(√
3

2

)k1)(( K∑
k2=0

(
K

k2

)(√
3

2

)k2)
+

(√
3

2

)K)
(c)

≤ 32K+1

√
sε′

r2
, (3.107)

where (a) follows from (3.106), (b) follows from replacing the value for ν and the fact

that η < 1, ε′/r2 < 1 (by assumption), and (c) follows from similar arguments in

(3.101). The rest of the proof follows the same arguments as in Lemma 3.4 and (3.103)

holds in this case as well.
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3.8.5 Proof of Theorem 3.4

Any dictionary D0 ∈ X (Ip, r) can be written as

D0 = A⊗B

= (Ip1 + ∆1)⊗ (Ip2 + ∆2), (3.108)

We have to ensure that ‖D0 − Ip‖F ≤ r. We have

‖D0 − Ip‖F = ‖Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2‖F

≤ ‖Ip1 ⊗∆2‖F + ‖∆1 ⊗ Ip2‖F + ‖∆1 ⊗∆2‖F

= ‖Ip1‖F ‖∆2‖F + ‖∆1‖F ‖Ip2‖F + ‖∆1‖F ‖∆2‖F

≤ r2
√
p1 + r1

√
p2 + r1r2

(a)

≤ r, (3.109)

where (a) follows from (3.37). Therefore, we have

D0 ∈
{

A⊗B = (Ip1 + ∆1)⊗ (Ip2 + ∆2)
∣∣ ‖∆1‖F ≤ r1, ‖∆2‖F ≤ r2,

r2
√
p1 + r1

√
p2 + r1r2 ≤ r, ‖al1‖2 = 1, l1 ∈ [p1], ‖bl2‖2 = 1, l2 ∈ [p2]

}
. (3.110)

In this case, the new observation vectors y′(n,j) can be written as

y′(n,j) = Ax′(n,j) + Apxn, j ∈ [p2], n ∈ [N ], (3.111)

where Ap , (A ⊗∆2)
Tn denotes the matrix consisting of the rows of (A ⊗∆2) with

indices Tn , ip2 + j, where i = {0} ∪ [p1 − 1] and j =
(
(n− 1) mod p2

)
+ 1.

Similarly, for y′′(n,j) we have

y′′(n,j) = Bx′′(n,j) + Bpxn, j ∈ [p1], n ∈ [N ], (3.112)

where Bp , (∆1 ⊗ B)In denotes the matrix consisting of the rows of (∆1 ⊗ B) with
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indices In , jp2 + i, where i = {0} ∪ [p2 − 1] and j = (n − 1) mod p1. Given the fact

that xn ∈ {−1, 0, 1}p, σ2a = 1 and ‖xn‖22 = s, after division of the coefficient vector

according to (3.41) and (3.45), we have

Exn

{
x2n,l
}

= Ex′
(n,j1)

{
x′

2
(n,j1),l1

}
= Ex′′

(n,j2)

{
x′′

2
(n,j2),l2

}
=
s

p
, (3.113)

for any n ∈ [N ], j1 ∈ [p2], j2 ∈ [p1], l ∈ [p], l1 ∈ [p1], and l2 ∈ [p2]. The SNR is

SNR =
Ex

{
‖x‖22

}
Ew

{
‖w‖22

} =
s

mσ2
. (3.114)

We are interested in upper bounding EY

{∥∥∥D̂(Y)−D0
∥∥∥2
F

}
. For this purpose we first

upper bound EY

{∥∥∥Â(Y)−A
∥∥∥2
F

}
and EY

{∥∥∥B̂(Y)−B
∥∥∥2
F

}
. We can split these MSEs

into the sum of column-wise MSEs:

EY

{∥∥∥Â(Y)−A
∥∥∥2
F

}
=

p1∑
l=1

EY

{
‖âl(Y)− al‖22

}
. (3.115)

By construction:

‖âl(Y)− al‖22 ≤ 2
(
‖âl(Y)‖22 + ‖al‖22

)
(b)

≤ 4, (3.116)

where (b) follows from the projection step in (3.48). We define the event C to be

C ,
⋂
n∈[N ]
l∈[p]

{|wn,l| ≤ 0.4} . (3.117)

In order to find the setting under which P
{

X̂ = X|C
}

= 1, i.e., when recovery of

the coefficient vectors is successful, we observe the original observations and coefficient

vectors satisfy:

yn,l − xn,l = (Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2)
l xn + wn,l (3.118)
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and

∣∣∣(Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2)
l xn + wn,l

∣∣∣
≤
∥∥∥(Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2)

l
∥∥∥
2
‖xn‖2 + |wn,l|

≤ (‖∆1‖F + ‖∆2‖F + ‖∆1‖F ‖∆2‖F ) ‖xn‖2 + |wn,l|

≤ (r1 + r2 + r1r2)
√
s+ |wn,l|. (3.119)

By using the assumption (r1 + r2 + r1r2)
√
s ≤ 0.1 and conditioned on the event C,

|wn,l| ≤ 0.4, we have that for every n ∈ [N ] and l ∈ [p]:


yn,l > 0.5 if xn,l = 1,

−0.5 < yn,l < 0.5 if xn,l = 0,

yn,l < −0.5 if xn,l = −1,

(3.120)

thus, ensuring correct recovery of coefficients (X̂ = X) using the thresholding tech-

nique (3.39) when conditioned on C. Using standard tail bounds for Gaussian random

variables [1, (92)], [85, Proposition 7.5] and taking a union bound over all pN i.i.d.

variables {wn,l}, n ∈ [N ], l ∈ [p], we have

P {Cc} ≤ exp

(
−0.08pN

σ2

)
. (3.121)

To find an upper bound for EY

{
‖âl(Y)− al‖22

}
, we can write it as

EY

{
‖âl(Y)− al‖22

}
= EY,W

{
‖âl(Y)− al‖22 |C

}
P(C) + EY,W

{
‖âl(Y)− al‖22 |C

c
}
P(Cc)

(c)

≤ EY,W

{
‖âl(Y)− al‖22 |C

}
+ 4 exp

(
−0.08pN

σ2

)
, (3.122)

where (c) follows from (3.116) and (3.121). To bound EY,W

{
‖âl(Y)− al‖22 |C

}
, we
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have

EY,W

{
‖âl(Y)− al‖22 |C

}
= EY,W

{
‖PB1(ãl(Y))− al‖22 |C

}
(d)

≤ EY,W

{
‖ãl(Y)− al‖22 |C

}
(e)
= EY,W

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x̂′(n,j),ly
′
(n,j) − al

∥∥∥∥2
2

∣∣∣∣C}
(f)
= EY,X,W

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x′(n,j),ly
′
(n,j) − al

∥∥∥∥2
2

∣∣∣∣C}
(g)
= EX,W

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x′(n,j),l
(
Ax′(n,j) + Apxn + w′(n,j)

)
− al

∥∥∥∥2
2

∣∣∣∣C}
(h)

≤ 2EX,W

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x′(n,j),lw
′
(n,j)

∥∥∥∥2
2

∣∣∣∣C}

+ 4EX,W

{∥∥∥∥al − p1
Ns

N∑
n=1

p2∑
j=1

x′(n,j),l

p1∑
t=1

atx
′
(n,j),t

∥∥∥∥2
2

∣∣∣∣C}

+ 4EX,W

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x′(n,j),l

p∑
t=1

ap,txn,t

∥∥∥∥2
2

∣∣∣∣C}, (3.123)

where (d) follows from the fact that ‖al‖2 = 1, (e) follows from (3.43), (f) follows from

the fact that conditioned on the event C, X̂ = X, (g) follows from (3.111) and (h) follows

from the fact that ‖x1 +x2‖22 ≤ 2(‖x1‖22 +‖x2‖22). We bound the three terms in (3.123)

separately. Defining ν , Q(−0.4/σ) − Q(0.4/σ), where Q(x) ,
∫∞
z=x

1√
2π

exp(− z2

2 )dz,

we can bound the noise variance conditioned on C, σ2wn,t , by [1]

σ2wn,t ≤
σ2

ν
. (3.124)

The first expectation in (3.123) can be bounded by

EX,W


∥∥∥∥ p1Ns

N∑
n=1

p2∑
j=1

x′(n,j),lw
′
(n,j)

∥∥∥∥2
2

∣∣∣∣C


=
( p1
Ns

)2 N∑
n,n′=1

p2∑
j,j′=1

EX,W

{
x′(n,j),lx

′
(n′,j′),lw

′>
(n′,j′)w

′
(n,j)|C

}
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=
( p1
Ns

)2 N∑
n=1

p2∑
j=1

m1∑
t=1

EX,W

{
x′

2
(n,j),l|C

}
EX,W

{
w′

2
(n,j),t|C

}
(i)
=
( p1
Ns

)2
Np2EX

{
x′

2
(n,j),l

}
EW

{
w′

2
(n,j),t|C

}
(j)

≤
( p1
Ns

)2
Np2

(
s

p

)(
m1σ

2

ν

)
(k)

≤ 2m1p1σ
2

Ns
, (3.125)

where (i) follows from the fact that x′(n,j) is independent of the event C, (j) follows from

(3.113) and (3.124), and (k) follows from the fact that ν ≥ 0.5 under the assumption

that σ ≤ 0.4 [1].

To bound the second expectation in (3.123), we use similar arguments as in Jung

et al. [1]. We can write

EX

{
x′(n,j),lx

′
(n,j),tx

′
(n′,j′),lx

′
(n′,j′),t′

}
=



( sp)2 if (n, j) = (n′, j′) and t = t′ 6= l,

( sp)2 if (n, j) 6= (n′, j′) and t = t′ = l,

s
p if (n, j) = (n′, j′) and t = t′ = l,

0 otherwise,

(3.126)

and we have

EX,W

{∥∥∥∥al − p1
Ns

N∑
n=1

p2∑
j=1

x′(n,j),l

p1∑
t=1

atx
′
(n,j),t

∥∥∥∥2
2

∣∣∣∣C}

≤ a>l al −
2p1
Ns

N∑
n=1

p2∑
j=1

p1∑
t=1

a>l atEX

{
x′(n,j),lx

′
(n,j),t

}

+
( p1
Ns

)2 N∑
n,n′=1

p2∑
j,j′=1

p1∑
t,t′=1

a>t′ atEX

{
x′(n′,j′),lx

′
(n′,j′),t′x

′
(n,j),lx

′
(n,j),t

}
= 1−

(
2p1
Ns

)
(p2N)

(
s

p

)
+
( p1
Ns

)2
(p2N)

(
s

p
+ (p1 − 1)

(
s

p

)2

+ (p2N − 1)

(
s

p

)2)
=
p1
N

(
1

s
+

1

p2
− 2

p

)
≤ 2p1

N
. (3.127)
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To upper bound the third expectation in (3.123), we need to bound the `2 norm of

columns of Ap. We have

∀t ∈ [p] : ‖ap,t‖22
(l)

≤ ‖(A⊗∆2)t‖22

≤ ‖al‖22‖∆2‖2F

= r22, (3.128)

where (A ⊗∆2)t denotes the t-th column of (A ⊗∆2) and (l) follows from the fact

that Ap is a submatrix of (A ⊗∆2). Moreover, similar to the expectation in (3.126),

we have

EX

{
x′(n,j),lx

′
(n′,j′),lxn,txn′,t′

}
=



( sp)2 if (n, j) = (n′, j′) and t = t′ 6= l′,

( sp)2 if (n, j) 6= (n′, j′) and t = t′ = l′,

s
p if (n, j) = (n′, j′) and t = t′ = l′,

0 Otherwise,

(3.129)

where l′ denotes the index of the element of xn corresponding to x′(n,j),l. Then, the

expectation can be bounded by

EX,W

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x′(n,j),l

p∑
t=1

ap,txn,t

∥∥∥∥2
2

∣∣∣∣C}

=
( p1
Ns

)2 N∑
n,n′=1

p2∑
j,j′=1

p∑
t,t′=1

a>p,t′ap,tEX

{
x′(n,j),lx

′
(n′,j′),lxn,txn′,t′

}
(m)

≤ r22

( p1
Ns

)2
Np2

(
s

p
+ (p− 1)

(
s

p

)2

+ (Np2 − 1)

(
s

p

)2)
≤ r22

( p1
Ns

+
p1
N

+ 1
)

(n)

≤ p1
N
, (3.130)

where (m) follows from (3.128) and (n) follows from the assumption in (3.37). Summing
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up (3.125), (3.127), and (3.130), we have

EY

{
‖âl(Y)− al‖22

}
≤ 4p1

N

(
m1σ

2

s
+ 3

)
+ 4 exp

(
−0.08pN

σ2

)
. (3.131)

Summing up the MSE for all columns, we obtain:

EY

{∥∥∥Â(Y)−A
∥∥∥2
F

}
≤ 4p21

N

(
m1σ

2

s
+ 3

)
+ 4p1 exp

(
−0.08pN

σ2

)
. (3.132)

We can follow similar steps to get

EY

{∥∥∥B̂(Y)−B
∥∥∥2
F

}
≤ 4p22

N

(
m2σ

2

s
+ 3

)
+ 4p2 exp

(
−0.08pN

σ2

)
. (3.133)

From (3.132) and (3.133), we get

EY

{∥∥∥D̂(Y)−D0
∥∥∥2
F

}
= EY

{∥∥∥Â(Y)⊗ B̂(Y)−A⊗B
∥∥∥2
F

}
= EY

{∥∥∥(Â(Y)−A)⊗ B̂(Y) + A⊗ (B̂(Y)−B)
∥∥∥2
F

}
≤ 2

(
EY

{∥∥∥(Â(Y)−A)⊗ B̂(Y)
∥∥∥2
F

}
+ EY

{∥∥∥A⊗ (B̂(Y)−B)
∥∥∥2
F

})
≤ 2

(
EY

{∥∥∥(Â(Y)−A)
∥∥∥2
F

}
EY

{∥∥∥B̂(Y)
∥∥∥2
F

}
+ ‖A‖2F EY

{∥∥∥(B̂(Y)−B)
∥∥∥2
F

})
≤ 2

(
p2EY

{∥∥∥(Â(Y)−A)
∥∥∥2
F

}
+ p1EY

{∥∥∥(B̂(Y)−B)
∥∥∥2
F

})
≤ 8p

N

(
σ2

s

2∑
k=1

mkpk + 3

2∑
k=1

pk

)
+ 8p exp

(
−0.08pN

σ2

)
(o)
=

8p

N

(∑2
k=1mkpk
mSNR

+ 3
2∑

k=1

pk

)
+ 8p exp

(
−0.08pN

σ2

)
, (3.134)

where (o) follows from (3.114).
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Chapter 4

Sample Complexity Upper Bounds for Identification of

Kronecker-structured Dictionaries

This chapter derives sufficient conditions for local recovery of coordinate dictionar-

ies comprising a Kronecker-structured dictionary that is used for representing Kth-

order tensor data. Tensor observations are assumed to be generated from a Kronecker-

structured dictionary multiplied by sparse coefficient tensors that follow the separable

sparsity model. This chapter provides sufficient conditions on the underlying coor-

dinate dictionaries, coefficient and noise distributions, and number of samples that

guarantee recovery of the individual coordinate dictionaries up to a specified error, as

a local minimum of the objective function, with high probability. In particular, the

sample complexity to recover K coordinate dictionaries with dimensions {mk × pk} up

to estimation errors {εk} is shown to be maxk∈[K]O(mkp
3
kε
−2
k ).1

4.1 Introduction

We focus on the problem of finding sparse representations of tensors that admit a Tucker

decomposition. More specifically, we analyze the dictionary learning (DL) problem

for tensor data. To account for the Tucker structure of tensor data, we require that

the dictionary underlying the vectorized versions of tensor data samples be Kronecker

structured (KS). That is, it is comprised of coordinate dictionaries that independently

transform various modes of the tensor data. In this chapter, we examine the KS-DL

objective function and find sufficient conditions on the number of samples (or sample

complexity) for successful local identification of coordinate dictionaries underlying the

1The results presented in this chapter have been published in Proceedings of 2017 IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing [86] and IEEE Journal of
Selected Topics in Signal Processing [12].
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KS dictionary. To the best of our knowledge, this is the first work presenting such

identification results for the KS-DL problem.

4.1.1 Our Contributions

We derive sufficient conditions on the true coordinate dictionaries, coefficient and noise

distributions, regularization parameter, and the number of data samples such that the

KS-DL objective function has a local minimum within a small neighborhood of the true

coordinate dictionaries with high probability. Specifically, suppose the observations

are generated from a true dictionary D0 ∈ Rm×p consisting of the Kronecker product

of K coordinate dictionaries, D0
k ∈ Rmk×pk , k ∈ [K], where m =

∏K
k=1mk and p =∏K

k=1 pk. Our results imply that N = maxk∈[K] Ω(mkp
3
kε
−2
k ) samples are sufficient

(with high probability) to recover the underlying coordinate dictionaries D0
k up to the

given estimation errors εk, k ∈ [K].

4.1.2 Relationship to Prior Work

Among existing works on structured DL that have focused exclusively on the Tucker

model for tensor data, several have only empirically established the superiority of KS

DL in various settings for 2nd and 3rd-order tensor data [14–16, 62, 69, 70].

In the case of unstructured dictionaries, several works do provide analytical results

for the dictionary identifiability problem [1, 24, 42, 46, 47, 50, 58, 76]. These results,

which differ from each other in terms of the distance metric used, cannot be trivially

extended for the KS-DL problem. In this chapter, we focus on the Frobenius norm as

the distance metric. Gribonval et al. [24] and Jung et al. [1] also consider this metric,

with the latter work providing minimax lower bounds for dictionary reconstruction er-

ror. In particular, Jung et al. [1] show that the number of samples needed for reliable

reconstruction (up to a prescribed mean squared error ε) of an m× p dictionary within

its local neighborhood must be at least on the order of N = Ω(mp2ε−2). Gribonval et

al. [24] derive a competing upper bound for the sample complexity of the DL problem

and show that N = Ω(mp3ε−2) samples are sufficient to guarantee (with high probabil-

ity) the existence of a local minimum of the DL cost function within the ε neighborhood



85

of the true dictionary. In Chapter 3, we have obtained lower bounds on the minimax

risk of KS DL for 2nd-order [65] and Kth-order tensors [66, 67], and have shown that

the number of samples necessary for reconstruction of the true KS dictionary within its

local neighborhood up to a given estimation error scales with the sum of the product of

the dimensions of the coordinate dictionaries, i.e., N = Ω(p
∑K

k=1mkpkε
−2). Compared

to this sample complexity lower bound, our upper bound is larger by a factor maxk p
2
k.

In terms of the analytical approach, although we follow the same general proof

strategy as the vectorized case of Gribonval et al. [24], our extension poses several

technical challenges. These include: (i) expanding the asymptotic objective function

into a summation in which individual terms depend on coordinate dictionary recovery

errors, (ii) translating identification conditions on the KS dictionary to conditions on

its coordinate dictionaries, and (iii) connecting the asymptotic objective function to

the empirical objective function using concentration of measure arguments; this uses

the coordinate-wise Lipschitz continuity property of the KS-DL objective function with

respect to the coordinate dictionaries. To address these challenges, we require additional

assumption on the generative model. These include: (i) the true dictionary and the

recovered dictionary belong to the class of KS dictionaries, and (ii) dictionary coefficient

tensors follow the separable sparsity model that requires nonzero coefficients to be

grouped in blocks [28, 67].

The rest of the chapter is organized as follows. We formulate the KS-DL problem

in Section 4.2. In Section 4.3, we provide analysis for asymptotic recovery of coordi-

nate dictionaries composing the KS dictionary and in Section 4.4, we present sample

complexity results for identification of coordinate dictionaries that are based on the

results of Section 4.3. Finally, we conclude the chapter in Section 4.5. In order to keep

the main exposition simple, proofs of the lemmas and propositions are relegated to the

appendix.
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4.2 System Model

We assume the observations are Kth-order tensors Y ∈ Rm1×m2×···×mK . Given gener-

ating coordinate dictionaries D0
k ∈ Rmk×pk , coefficient tensor X ∈ Rp1×p2×···×pK , and

noise tensor W, we can write y , vec(Y) using (1.10) as2

y =

( ⊗
k∈[K]

D0
k

)
x + w, ‖x‖0 ≤ s, (4.1)

where x = vec(X) ∈ Rp denotes the sparse generating coefficient vector, D0 =
⊗

D0
k ∈

Rm×p denotes the underlying KS dictionary, and w = vec(W) ∈ Rm denotes the

underlying noise vector. Here, D0
k ∈ Dk = {Dk ∈ Rmk×pk , ‖dk,j‖2 = 1,∀j ∈ [pk]} for

k ∈ [K], p =
∏
k∈[K] pk and m =

∏
k∈[K]mk.

3 We use
⊗

for
⊗

k∈[K] in the following

for simplicity of notation. We assume we are given N noisy tensor observations, which

are then stacked in a matrix Y = [y1, . . . ,yN ]. To state the problem formally, we first

make the following assumptions on distributions of x and w for each tensor observation.

Coefficient distribution: We assume the coefficient tensor X follows the random

“separable sparsity” model. That is, x = vec(X) is sparse and the support of nonzero

entries of x is structured and random. Specifically, we sample sk elements uniformly at

random from [pk], k ∈ [K]. Then, the random support of x is {J ⊆ [p], |J | = s} and is

associated with

{J1 × J2 × · · · × JK : Jk ⊆ [pk], |Jk| = sk, k ∈ [K]}

via lexicographic indexing, where s =
∏
k∈[K] sk, and the support of x1:N ’s are assumed

to be independent and identically distributed (i.i.d.). This model requires nonzero

entries of the coefficient tensors to be grouped in blocks and the sparsity level associated

with each coordinate dictionary to be small [28].4

2We have reindexed Dk’s in (1.10) for ease of notation.

3Note that the Dk’s are compact sets on their respective oblique manifolds of matrices with unit-
norm columns [24].

4In contrast, for coefficients following the random non-separable sparsity model, the support of the
nonzero entries of the coefficient vector are assumed uniformly distributed over {J ⊆ [p] : |J | = s}.
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We now make the same assumptions for the distribution of x as assumptions A

and B in Gribonval et al. [24]. These include: (i) E
{
xJx>J |J

}
= E

{
x2
}

Is, (ii)

E
{
xJσ

>
J |J

}
= E {|x|} Is, where σ = sign(x), (iii) E

{
σJσ

>
J |J

}
= Is, (iv) magnitude

of x is bounded, i.e., ‖x‖2 ≤ Mx almost surely, and (v) nonzero entries of x have a

minimum magnitude, i.e., minj∈J |xj | ≥ xmin almost surely. Finally, we define κx ,

E {|x|} /
√

E {x2} as a measure of the flatness of x (κx ≤ 1, with κx = 1 when all

nonzero coefficients are equal [24]).

Noise distribution: We make following assumptions on the distribution of noise,

which is assumed i.i.d. across data samples: (i) E
{
ww>

}
= E

{
w2
}

Im, (ii) E
{
wx>|J

}
=

E
{
wσ>|J

}
= 0, and (iii) magnitude of w is bounded, i.e., ‖w‖2 ≤Mw almost surely.

Our goal in this chapter is to recover the underlying coordinate dictionaries, D0
k,

from N noisy realizations of tensor data. To solve this problem, we take the empirical

risk minimization approach and define

fy (D1:K) , inf
x′∈Rp

{
1

2

∥∥∥y − (⊗Dk

)
x′
∥∥∥2
2

+ λ‖x′‖1
}
, and

FY (D1:K) ,
1

N

N∑
n=1

fyn (D1:K) , (4.2)

where λ is a regularization parameter. In theory, we can recover the coordinate dictio-

naries by solving the following regularized optimization program:

min
Dk∈Dk
k∈[K]

FY (D1:K) . (4.3)

More specifically, given desired errors {εk}Kk=1, we want a local minimum of (4.3) to be

attained by coordinate dictionaries D̂k ∈ Bεk(D0
k), k ∈ [K]. That is, there exists a set

{D̂k}k∈[K] ⊂
{
Dk ∈ Bεk(D0

k)
}
k∈[K]

such that FY(D̂1:K) ≤ FY(D1:K).5 To address this

5We focus on the local recovery of coordinate dictionaries (i.e., D̂k ∈ Bεk (D0
k)) due to ambiguities

in the general DL problem. This ambiguity is a result of the fact that dictionaries are invariant to
permutation and sign flips of dictionary columns, resulting in equivalent classes of dictionaries. Some
works in the literature on conventional overcome this issue by defining distance metrics that capture
the distance between these equivalent classes [46, 47, 76].
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problem, we first minimize the statistical risk:

min
Dk∈Dk
k∈[K]

fP (D1:K) , min
Dk∈Dk
k∈[K]

Ey {fy (D1:K)} . (4.4)

Then, we connect FY (D1:K) to fP (D1:K) using concentration of measure arguments

and obtain the number of samples sufficient for local recovery of the coordinate dictio-

naries. Such a result ensures that any KS-DL algorithm that is guaranteed to converge

to a local minimum, and which is initialized close enough to the true KS dictionary,

will converge to a solution close to the generating coordinate dictionaries (as opposed

to the generating KS dictionary, which is guaranteed by analysis of the vector-valued

setup [24]).

4.3 Asympototic Identifiability Results

In this section, we provide an identifiability result for the KS-DL objective function in

(4.4). The implications of this theorem are discussed in Section 4.5.

Theorem 4.1. Suppose the observations are generated according to (4.1) and the dic-

tionary coefficients follow the separable sparsity model of Section 4.2. Further, assume

the following conditions are satisfied:

sk ≤
pk

8
(∥∥D0

k

∥∥
2

+ 1
)2 , max

k∈[K]

{
µsk(D0

k)
}
≤ 1

4
, µs(D

0) <
1

2
, (4.5)

and

E
{
x2
}

MxE {|x|}
>

24
√

3(4.5K/2)K

(1− 2µs(D0))
max
k∈[K]

{
sk
pk

∥∥∥D0
k
>

D0
k − I

∥∥∥
F

(∥∥D0
k

∥∥
2

+ 1
)}

. (4.6)

Define

Ck,min , 8(3
K+1

2 )κ2x

(
sk
pk

)∥∥∥D0
k
>

D0
k − I

∥∥∥
F

(∥∥D0
k

∥∥
2

+ 1
)
,

Cmax ,
1

3K(1.5)K/2
E {|x|}
Mx

(1− 2µs(D
0)). (4.7)
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Then, the map D1:K 7→ fP (D1:K) admits a local minimum D̂ =
⊗

k∈[K] D̂k such that

D̂k ∈ Bεk(D0
k), k ∈ [K], for any εk > 0 as long as

λ ≤ xmin

8× 3(K−1)/2
, (4.8)

λCk,min

E {|x|}
< εk <

λCmax

E {|x|}
, k ∈ [K], (4.9)

and

Mw

Mx
< 3(1.5)K/2

(
λKCmax

E {|x|}
−
∑
k∈[K]

εk

)
. (4.10)

4.3.1 Discussion

Theorem 4.1 captures how the existence of a local minimum for the statistical risk

minimization problem depends on various properties of the coordinate dictionaries and

demonstrates that there exists a local minimum of fP (D1:K) that is in local neighbor-

hoods of the coordinate dictionaries. This ensures asymptotic recovery of coordinate

dictionaries within some local neighborhood of the true coordinate dictionaries, as op-

posed to KS dictionary recovery for vectorized observations [24, Theorem 1].

We now explicitly compare conditions in Theorem 4.1 with the corresponding ones

for vectorized observations [24, Theorem 1]. Given that the coefficients are drawn from

the separable sparsity model, the sparsity constraints for the coordinate dictionaries in

(4.5) translate into

s

p
=
∏
k∈[K]

sk
pk
≤ 1

8K
∏
k

(∥∥D0
k

∥∥
2

+ 1
)2 . (4.11)

Therefore, we have
s

p
= O

(
1∏

k‖D0
k‖

2

2

)
= O

(
1

‖D0‖22

)
. Using the fact that

∥∥D0
∥∥
2
≥

‖D0‖F /
√
m =

√
p/
√
m, this translates into sparsity order s = O (m). Next, the left

hand side of the condition in (4.6) is less than 1. Moreover, from properties of the

Frobenius norm, it is easy to show that
∥∥∥D0

k
>

D0
k − I

∥∥∥
F
≥
√
pk(pk −mk)/mk. The fact
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that
∥∥D0

k

∥∥
2
≥ √pk/

√
mk and the assumption µsk(D0

k) ≤ 1/4 imply that the right hand

side of (4.6) is lower bounded by Ω
(

maxk sk

√
(pk −mk)/m

2
k

)
. Therefore, Theorem 4.1

applies to coordinate dictionaries with dimensions pk ≤ m2
k and subsequently, KS dic-

tionaries with p ≤ m2. Both the sparsity order and dictionary dimensions are in line

with the scaling results for vectorized data [24].

4.3.2 Proof Outline

For given radii 0 < εk ≤ 2
√
pk, k ∈ [K], the spheres Sεk(D0

k) are non-empty. This

follows from the construction of dictionary classes, Dk’s. Moreover, the mapping

D1:K 7→ fP (D1:K) is continuous with respect to the Frobenius norm ‖Dk −D′k‖F on

all Dk,D
′
k ∈ Rmk×pk , k ∈ [K] [87]. Hence, it is also continuous on compact constraint

sets Dk’s. We derive conditions on the coefficients, underlying coordinate dictionaries,

Mw, regularization parameter, and εk’s such that

∆fP (r1:K) , inf
Dk∈Sεk (D

0
k)

∆fP
(
D1:K ; D0

1:K

)
> 0. (4.12)

This along with the compactness of closed balls B̄εk(D0
k) and the continuity of the map-

ping D1:K 7→ fP (D1:K) imply the existence of a local minimum of fP (D1:K) achieved

by D̂1:K in open balls, Bεk(D0
k)’s, k ∈ [K].

To find conditions that ensure ∆fP (r1:K) > 0, we take the following steps: given

coefficients that follow the separable sparsity model, we can decompose any DJ , |J | =

s, as

DJ =
⊗

Dk,Jk , (4.13)

where |Jk| = sk for k ∈ [K].6 Given a generating σ = sign(x), we obtain x̂ by solving

fy (D1:K) with respect to x′, conditioned on the fact that sign(x̂) = σ̂ = σ. This

eliminates the dependency of fy (D1:K) on infx′ by finding a closed-form expression for

6The separable sparsity distribution model implies sampling without replacement from columns of
Dk.
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fy (D1:K) given σ̂ = σ, which we denote as φy (D1:K |σ). Defining

φP (D1:K |σ) , E {φy (D1:K |σ)} , (4.14)

we expand ∆φP
(
D1:K ; D0

1:K |σ
)

using (4.13) and separate the terms that depend on

each radius εk = ‖Dk − D0
k‖F to obtain conditions for sparsity levels sk, k ∈ [K],

and coordinate dictionaries such that ∆φP
(
D1:K ; D0

1:K |σ
)
> 0. Finally, we derive

conditions on Mw, coordinate dictionary coherences and εk’s that ensure σ̂ = σ and

∆fP
(
D1:K ; D0

1:K

)
= ∆φP

(
D1:K ; D0

1:K |σ
)
.

Remark 4.1. The key assumption in the proof of Theorem 4.1 is expanding DJ ac-

cording to (4.13). This is a consequence of the separable sparsity model for dictionary

coefficients.

Remark 4.2. Although some of the forthcoming lemmas needed of Theorem 4.1 impose

conditions on Dk’s as well as true coordinate dictionaries D0
k’s, we later translate these

conditions exclusively in terms of D0
k’s and εk’s.

The proof of Theorem 4.1 relies on the following propositions and lemmas. The

proofs of these are provided in Appendix A.

Proposition 4.1. Suppose the following inequalities hold for k ∈ [K]:

sk ≤
pk

8(‖D0
k‖2 + 1)2

and max
k∈[K]

{
δsk(D0

k)
}
≤ 1

4
. (4.15)

Then, for

λ̄ ,
λ

E {|x|}
≤ 1

8× 3(K−1)/2
, (4.16)

any collection of {εk : εk ≤ 0.15, k ∈ [K]}, and for all Dk ∈ Sεk(D0
k), we have :

∆φP
(
D1:K ; D0

1:K |σ
)
≥ sE{x2}

8

∑
k∈[K]

εk
pk

(
εk − εk,min(λ̄)

)
, (4.17)
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where

εk,min(λ̄) ,
3(K−1)/2

2

(
1.5

K−1
2 + 2(K+1)λ̄

)
λ̄Ck,min.

In addition, if

λ̄ ≤ 0.15

maxk∈[K]Ck,min
, (4.18)

then εk,min(λ̄) < 0.15. Thus, ∆φP
(
D1:K ; D0

1:K |σ
)
> 0 for all εk ∈ (εk,min(λ̄), 0.15], k ∈

[K].

The proof of Proposition 4.1 relies on the following lemmas as well as supporting

lemmas from the analysis of vectorized data [24, Lemmas 4,6,7,15,16].

Lemma 4.1. Let D =
⊗

Dk where δs(Dk) < 1 for k ∈ [K], and J be a support set

generated by the separable sparsity model. Then any DJ , |J | = s, can be decomposed

as DJ =
⊗

Dk,Jk , where |Jk| = sk and rank(Dk,Jk) = sk, for k ∈ [K]. Also, the

following relations hold for this model:7

PDJ =
⊗

PDk,Jk
,D+
J =

⊗
D+
k,Jk ,HDJ =

⊗
HDk,Jk

, (4.19)

where P and H are defined in Section 1.3.

Lemma 4.2. Given D1:K and D0
1:K , the difference

⊗
Dk −

⊗
D0
k =

∑
k∈[K]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K , (4.20)

where without loss of generality, each D̃k,i is equal to either D0
i or Di, for k ∈ [K].

We drop the k index from D̃k,i for ease of notation throughout the rest of the

chapter.

7The equations follow from basic properties of the Kronecker product [26].
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Lemma 4.3. Let σ ∈ {−1, 0, 1}p be an arbitrary sign vector and J = J (σ) be its

support. Define8

φy (D1:K |σ) , inf
x∈Rp

supp(x)⊂J

1

2

∥∥∥y − (⊗Dk

)
x
∥∥∥2
2

+ λσ>x. (4.21)

If D>k,JkDk,Jk is invertible for k ∈ [K], then x̂ minimizes φy (D1:K |σ), where

x̂J =
(⊗

D+
k,Jk

)
y − λ

(⊗(
D>k,JkDk,Jk

)−1)
σJ , (4.22)

and x̂J c = 0. Thus, φy (D1:K |σ) can be expressed in closed form as:

φy (D1:K |σ) =
1

2
‖y‖22 −

1

2
y>
(⊗

PDk,Jk

)
y

+ λσ>J

(⊗
D+
k,Jk

)
y − λ2

2
σ>J

(⊗
HDk,Jk

)
σJ . (4.23)

Lemma 4.4. Assume max
{
δsk(D0

k), δsk(Dk)
}
< 1 for k ∈ [K] and let D̃k be equal to

either D0
k or Dk. For

∆φP
(
D1:K ; D0

1:K

∣∣σ) , φP (D1:K |σ)− φP
(
D0

1:K |σ
)
, (4.24)

we have

∆φP
(
D1:K ; D0

1:K

∣∣σ)
=

E{x2}
2

∑
k∈[K]

EJ1
{

Tr
[
D0

1
>

P
D̃1,J1

D0
1

]}
. . .

EJk
{

Tr
[
D0
k
>

(Imk −PDk,Jk
)D0

k

]}
. . .EJK

{
Tr
[
D0
K
>

P
D̃K,JK

D0
K

]}
− λE{|x|}

∑
k∈[K]

EJ1
{

Tr
[
D̃+

1,J1D
0
1

]}
. . .

EJk
{

Tr
[
Isk −D+

k,JkD
0
k

]}
. . .EJK

{
Tr
[
D̃+
K,JKD0

K

]}
+
λ2

2

∑
k∈[K]

EJ1
{

Tr
[
H

D̃1,J1

]}
. . .

8The quantity φy (D1:K |σ) is not equal to φy (D1:K) conditioned on σ and the expression is only
used for notation.
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EJk
{

Tr
[
HD0

k,Jk
−HDk,Jk

]}
. . .EJK

{
Tr
[
H

D̃K,JK

]}
. (4.25)

Lemma 4.5. For any Dk ∈ Dk satisfying RIP of order sk, given Jk ⊂ [pk] and |Jk| =

sk, the following relations hold:

‖Dk,Jk‖2 =
∥∥∥Dk,Jk

>
∥∥∥
2
≤
√

1 + δsk(Dk), (4.26)

δsk(Dk) ≤ µsk−1(Dk). (4.27)

Lemma 4.6 (Lemma 4 [24]). Let Dk’s be coordinate dictionaries such that δsk(Dk) < 1.

Then for any Jk ⊂ pk, |Jk| = sk, HDk,Jk
exists and

∥∥∥HDk,Jk

∥∥∥
2
≤ 1

1− δsk(Dk)
,
∥∥∥D+

k,Jk

∥∥∥
2
≤ 1√

1− δsk(Dk)
, (4.28)

and for any D′k such that ‖Dk −D′k‖F ≤ εk <
√

1− δsk(Dk):

1− δsk(D′k) ≥ (
√

1− δsk(Dk)− εk)2 , 1− δk. (4.29)

Lemma 4.7 (Lemma 6 [24]). Given any D1
k,D

2
k ∈ Dk, there exist Vk ∈ Rmk×pk with

diag
(
D1
k
>

Vk

)
= 0 and diag

(
V>k Vk

)
= Ipk and a vector θk , θk(D

1
k,D

2
k) ∈ [0, π]pk ,

such that

D2
k = D1

kCk(θk) + VkSk(θk), (4.30)

where Ck(θk) , Diag (cos(θk)) and Sk(θk) , Diag (sin(θk)). Moreover,

2

π
θk,j ≤ ‖d2

k,j − d1
k,j‖2 = 2 sin

(
θk,j
2

)
≤ θk,j , and

2

π
‖θk‖2 ≤ ‖D2

k −D1
k‖F ≤ ‖θk‖2, (4.31)

where j ∈ [pk]. Similarly, there exists V′k such that D1
k = D2

kCk(θk)+V′kSk(θk), where

diag
(
D2
k
>

V′k

)
= 0.
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Lemma 4.8. Fix D1:K and D0
1:K , and suppose {Ak} , {Bk} , {δk} satisfy the following:

Ak ≥ max
{
‖D>k Dk − Ipk‖F , ‖D

0
k
>

D0
k − Ipk‖F

}
,

Bk ≥ max
{
‖Dk‖2, ‖D0

k‖2
}
, and

δk ≥ max
{
δsk(Dk), δsk(D0

k)
}
. (4.32)

Then for all θk , θk(Dk,D
0
k), k ∈ [K], we have

∆φP
(
D1:K ; D0

1:K |σ
)
≥ sE{x2}

2

∑
k∈[K]

‖θk‖2
pk

[
‖θk‖2

(
1− sk

pk

B2
k

1− δk
− λ̄κ2xδ−k

)

−
(
δ−k + 2λ̄

∏
i∈[K]

1

1− δi

)
λ̄κ2x

sk
pk

2AkBk
1− δk

]
, (4.33)

where λ̄ ,
λ

E {|x|}
and δ−k ,

∏
i∈[K]
i 6=k

√
1 + δi
1− δi

.

Proposition 4.1 shows ∆φP
(
D1:K ; D0

1:K |σ
)
> 0. However, given x̂, the solution of

φy (D1:K |σ), σ̂ = sign (x̂) is not necessarily equal to the sign of the generating σ. We

derive conditions that ensure x̂ is almost surely the unique minimizer of fy (D1:K) and

σ̂ = σ. We introduce the following proposition for this purpose.

Proposition 4.2. Let the generating coordinate dictionaries {D0
k ∈ Dk} satisfy:

µs(D
0) <

1

2
, max

k
{δsk(D0

k)} <
1

4
. (4.34)

Suppose λ̄ =
λ

E {|x|}
≤ xmin

2E {|x|}
and

max
k∈[K]

{εk} ≤ min
{
λ̄Cmax, 0.15

}
. (4.35)

If the following is satisfied:

Mw

Mx
< 3(1.5)K/2

(
λ̄KCmax −

∑
k∈[K]

εk

)
, (4.36)

then for any D1:K such that Dk ∈ Sεk(D0
k), for k ∈ [K], x̂ that is defined in (4.22)
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is almost surely the minimizer of the map x′ 7→ 1
2 ‖y − (

⊗
Dk) x′‖22 + λ‖x′‖1 and

∆φP
(
D1:K ; D0

1:K |σ
)

= ∆fP
(
D1:K ; D0

1:K

)
.

Remark 4.3. Note that µs(D
0) < 1

2 in (4.34) can be satisfied by ensuring that the right

hand side of (1.4) is less than 1
2 . One way this can be ensured is by enforcing strict

conditions on coordinate dictionaries; for instance, µsk(D0
k) ≤

1
2K

.

The proof of Proposition 4.2 relies on the following lemmas and [24, Lemmas 10–13].

Lemma 4.9 (Lemma 13 [24]). Assume µs(D) <
1

2
. If

min
j∈J
|xj | ≥ 2λ, and ‖y −Dx‖2 < λ(1− 2µs(D)) (4.37)

hold for generating x, then x̂ defined in (4.22) is the unique solution of minx′
1
2

∥∥y−
(
⊗

Dk) x′
∥∥
2

+λ‖x′‖1.

Lemma 4.10. For any D0 =
⊗

D0
k and D =

⊗
Dk such that Dk ∈ B̄εk(D0

k), for

k ∈ [K], suppose the following inequalities are satisfied:

max
k∈[K]

{δsk(D0
k)} ≤

1

4
, and max

k∈[K]
εk ≤ 0.15. (4.38)

Then, we have

µs(D) ≤ µs(D0) + 2(1.5)K/2
√
s

( ∑
k∈[K]

εk

)
. (4.39)

Proof of Theorem 4.1. To prove this theorem, we use Proposition 4.1 to show that

∆φP
(
D1:K ; D0

1:K |σ
)
> 0, and then use Proposition 4.2 to show that ∆φP

(
D1:K ; D0

1:K |σ
)

=

∆fP
(
D1:K ; D0

1:K

)
. The assumptions in (4.5) ensure that the conditions in (4.15) and

(4.34) are satisfied for Proposition 4.1 and Proposition 4.2, respectively. Assumptions

(4.6) and (4.8) ensure that the conditions in (4.16) and (4.18) are satisfied for Proposi-

tion 4.1, λ̄ ≤ xmin

2E {|x|}
holds for Proposition 4.2, and maxk∈[K]{Ck,min} < Cmax. Hence,

according to Proposition 4.1, ∆φP
(
D1:K ; D0

1:K |σ
)
> 0 for all εk ∈ (λ̄Ck,min, 0.15], k ∈

[K]. Finally, using the assumption in (4.10) implies ∆φP
(
D1:K ; D0

1:K |σ
)

= ∆fP
(
D1:K ; D0

1:K

)
for all εk ≤ λ̄Cmax, k ∈ [K]. Furthermore, the assumption in (4.8) implies Cmaxλ̄ ≤ 0.15.
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Consequently, for any {εk > 0, k ∈ [K]} satisfying the conditions in (4.9), D1:K →

fP (D1:K) admits a local minimum D̂ =
⊗

D̂k such that D̂k ∈ Bεk(D0
k), k ∈ [K].

4.4 Finite Sample Identifiability Results

We now focus on leveraging Theorem 4.1 and solving (4.3) to derive finite-sample

bounds for KS dictionary identifiability. Compared to Gribonval et al. [24], who use

Lipschitz continuity of the objective function with respect to the larger KS dictionary,

our analysis is based on “coordinate-wise Lipschitz continuity” with respect to the

coordinate dictionaries.

Theorem 4.2. Suppose the observations are generated according to (4.1) and the dic-

tionary coefficients follow the separable sparsity model of Section 4.2 such that (4.5) to

(4.10) are satisfied. Next, fix any ξ ∈ (0,∞). Then, for any number of observations

satisfying

N = max
k∈[K]

Ω

(
p2k(ξ +mkpk)

(εk − εk,min(λ̄))2

(
2K(1 + λ̄2)M2

x

s2E{x2}2
+

(
Mw

sE{x2}

)2))
, (4.40)

with probability at least 1−e−ξ, D1:K 7→ FY (D1:K) admits a local minimum D̂ =
⊗

D̂k

such that D̂k ∈ Bεk(D0
k), for k ∈ [K].

4.4.1 Discussion

Let us make some remarks about implications of Theorem 4.2. First, sample complexity

has an inverse relationship with signal to noise ratio (SNR),9 defined as

SNR ,
E{‖x‖22}
E{‖w‖22}

=
sE{x2}
mE{w2}

. (4.41)

Looking at the terms on the right hand side of (4.40) in Theorem 4.2, Mx/(sE
{
x2
}

) is

related to the deviation of ‖x‖2 from its mean, E {‖x‖2}, and depends on the coefficient

distribution, while Mw/(sE
{
x2
}

) is related to 1/ SNR and depends on the noise and

coefficient distributions.

9Sufficient conditioning on N implies O-scaling for sample complexity.
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Table 4.1: Comparison of upper and lower bounds on the sample complexity of dictionary
learning for vectorized DL and KS DL.

Vectorized DL KS DL

Minimax Lower Bound
mp2

ε2
[1]

p
∑

kmkpk
ε2

Achievability Bound
mp3

ε2
[24] max

k

mkp
3
k

ε2k

Second, we notice dependency of sample complexity on the recovery error of coordi-

nate dictionaries. We can interpret εk as the recovery error for D0
k. Then, the sample

complexity scaling in (4.40) is proportional to maxk ε
−2
k . We note that the sample com-

plexity results obtained in [24] that are independent of ε ,
∥∥D−D0

∥∥
F

only hold for

the noiseless setting and the dependency on ε−2 is inevitable for noisy observations [24].

Furthermore, given the condition on the range of εk’s in (4.9), εk’s cannot be arbitrarily

small, and will not cause N to grow arbitrarily large.

Third, we observe a linear dependence between the sample complexity scaling in

(4.40) and coordinate dictionaries’ dimensions, i.e., maxkO(mkp
3
k). Comparing this to

the O(mp3) = O
(∏

kmkp
3
k

)
scaling in the unstructured DL problem [24], the sample

complexity in the KS-DL problem scales with the dimensions of the largest coordinate

dictionary, as opposed to the dimensions of the larger KS dictionary.

We also compare this sample complexity upper bound scaling to the sample complex-

ity lower bound scaling in Corollary 3.4, where we obtained N = Ω
(
p
∑

kmkpkε
−2/K

)
as a necessary condition for recovery of KS dictionaries.10 In terms of overall error ε,

our result translates into N = maxk Ω
{

2KK2p(mkp
3
k)ε
−2} as a sufficient condition for

recovery of coordinate dictionaries. The lower bound depended on the average dimen-

sion of the coordinate dictionaries,
∑

kmkpk/K, whereas we observe here a dependence

10We have the following relation between ε and εk’s:

ε ≤
∑
k∈[K]

( ∏
i∈[K]
i 6=k

∥∥∥D̃k

∥∥∥
F

)∥∥Dk −D0
k

∥∥
F
≤ √p

∑
k∈[K]

εk.

Assuming all εk’s are equal, this then implies ε2k ≥ ε2/(K2p).
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on the dimensions of the coordinate dictionaries in terms of the maximum dimension,

maxkmkpk. We also observe an increase of order maxk p
2
k in the sample complexity

upper bound scaling. This gap suggests that tighter bounds can be obtained for lower

and/or upper bounds. A summary of these results is provided in Table 4.1 for a fixed

K.

4.4.2 Proof Outline

We follow a similar approach used in [24, Theorem 2] for vectorized data. We show

that, with high probability,

∆FY(r1:K) , inf
Dk∈Sεk (D

0
k)

∆FY

(
D1:K ; D0

1:K

)
(4.42)

converges uniformly to its expectation,

∆fP(r1:K) , inf
Dk∈Sεk (D

0
k)

∆fP
(
D1:K ; D0

1:K

)
. (4.43)

In other words, with high probability,

|∆FY(r1:K)−∆fP(r1:K)| ≤ ηN , (4.44)

where ηN is a parameter that depends on the probability and other parameters in the

problem. This implies ∆FY(r1:K) ≥ ∆fP(r1:K) − 2ηN . In Theorem 4.1, we obtained

conditions that ensure ∆fP(r1:K) > 0. Thus, if 2ηN < ∆fP(r1:K) is satisfied, this implies

∆FY(r1:K) > 0, and we can use arguments similar to the proof of Theorem 4.1 to show

that D1:K 7→ FY (D1:K) admits a local minimum D̂ =
⊗

D̂k, such that D̂k ∈ Bεk(D0
k),

for k ∈ [K].

In Theorem 4.1, we showed that under certain conditions, fP(D1:K ; D0
1:K) =

∆φP
(
D1:K ; D0

1:K |σ
)
. To find ηN , we uniformly bound deviations of D1:K 7→

∆φy
(
D1:K ; D0

1:K |σ
)

from its expectation on
{
Sεk(D0

k)
}K
k=1

. Our analysis is based on

the coordinate-wise Lipschitz continuity property of ∆φy
(
D1:K ; D0

1:K |σ
)

with respect

to coordinate dictionaries. Then, to ensure 2ηN < ∆φP
(
D1:K ; D0

1:K |σ
)
, we show that
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2ηN is less than the right-hand side of (4.17) and obtain conditions on the sufficient

number of samples based on each coordinate dictionary dimension and recovery error.

The proof of Theorem 4.2 relies on the following definition and lemmas. The proofs

of these are provided in Appendix B.

Definition 4.3 (Coordinate-wise Lipschitz continuity). A function f : D1×· · ·×DK →

R is coordinate-wise Lipschitz continuous with constants (L1, . . . , LK) if there exist real

constants {Lk ≥ 0}Kk=1, such that for {Dk,D
′
k ∈ Dk}

K
k=1:

∣∣f (D1:K)− f
(
D′1:K

)∣∣ ≤ ∑
k∈[K]

Lk
∥∥Dk −D′k

∥∥
F
. (4.45)

Lemma 4.11 (Rademacher averages [24]). Consider F to be a set of measurable func-

tions on measurable set X and N i.i.d. random variables X1, . . . , XN ∈ X . Fix any

ξ ∈ (0,∞). Assuming all functions are bounded by B, i.e., |f(X)| ≤ B, almost surely,

with probability at least 1− e−ξ:

sup
f∈F

(
1

N

∑
n∈[N ]

f (Xn)− EX {f (X)}
)

≤ 2

√
π

2
EX,β1:N

{
sup
f∈F

(
1

N

∑
n∈[N ]

βnf (Xn)

)}
+B

√
2ξ

N
, (4.46)

where β1:N ’s are independent standard Gaussian random variables.

Lemma 4.12. Let H be a set of real-valued functions on Dk ∈ Bεk(D0
k), k ∈ [K], that

are bounded by B almost everywhere and are coordinate-wise Lipschitz continuous with

constants (L1, . . . , LK) . Let h1, h2, . . . , hN be independent realizations from H with

uniform Haar measure on H. Then, fixing ξ ∈ (0,∞), we have with probability greater

than 1− e−ξ that:

sup
Dk∈Bεk (D

0
k)

k∈[K]

∣∣∣∣ 1

N

∑
n∈[N ]

hn(D1:K)− E {h(D1:K)}
∣∣∣∣

≤ 4

√
π

2N

( ∑
k∈[K]

Lkεk
√
Kmkpk

)
+B

√
2ξ

N
. (4.47)
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Lemma 4.13 (Lemma 5 [24]). For any δk < 1, Dk,D
′
k such that max(δsk(Dk), δsk(D′k)) ≤

δk, and Jk ⊂ pk, |Jk| = sk, we have

‖I−D+
k,JkD

′
k,Jk‖2 ≤ (1− δk)−1/2‖Dk −D′k‖F ,

‖HDk,Jk
−HD′k,Jk

‖2 ≤ 2(1− δk)−3/2‖Dk −D′k‖F ,

‖D+
k,Jk −D′

+
k,Jk‖2 ≤ 2(1− δk)−1‖Dk −D′k‖F , and

‖PDk,Jk
−PD′k,Jk

‖2 ≤ 2(1− δk)−1/2‖Dk −D′k‖F . (4.48)

Lemma 4.14. Consider D0
k ∈ Dk and εk’s such that εk <

√
1− δsk(D0

k), for k ∈ [K]

and define
√

1− δk ,
√

1− δsk(D0
k) − εk > 0. The function ∆φy

(
D1:K ; D0

1:K |σ
)

is almost surely coordinate-wise Lipschitz continuous on
{
Bεk(D0

k)
}K
k=1

with Lipschitz

constants

Lk , (1− δk)−1/2
(
Mx

( ∏
k∈[K]

√
1 + δsk(D0

k)

)
+Mw + λ

√
s
∏
k∈[K]

(1− δk)−1/2
)2

,

(4.49)

and
∣∣∆φy (D1:K ; D0

1:K |σ
)∣∣ is almost surely bounded on

{
Bεk(D0

k)
}K
k=1

by
∑

k∈[K] Lkεk.

Proof of Theorem 2. From Lemmas 4.12 and 4.14, we have that with probability at

least 1− e−ξ:

sup
Dk∈Bεk (D

0
k)

k∈[K]

∣∣∆φy (D1:K ; D0
1:K |σ

)
−∆φP

(
D1:K ; D0

1:K |σ
) ∣∣

≤
√

2

N

∑
k∈[K]

Lkεk

(
2
√
πmkpk +

√
ξ
)
, (4.50)

where Lk is defined in (4.49). From (4.50), we obtain

∆φy
(
D1:K ; D0

1:K |σ
)
> ∆φP

(
D1:K ; D0

1:K |σ
)
− 2ηN , (4.51)

where ηN =
√

2
N

∑
k∈[K] Lkεk

(
2
√
πmkpk +

√
ξ
)
. In Theorem 4.1, we derived condi-

tions that ensure ∆fy(D1:K ; D0
1:K) = ∆φy

(
D1:K ; D0

1:K |σ
)

and ∆fP(D1:K ; D0
1:K) =
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∆φP
(
D1:K ; D0

1:K |σ
)
. Therefore, given that the conditions in Theorem 4.1 are satisfied,

∆FY(r1:K) > ∆fP(r1:K) − 2ηN , and the existence of a local minimum of FY(D1:K)

within radii εk around D0
k, k ∈ [K], is guaranteed with probability at least 1− e−ξ as

soon as 2ηN < ∆fP(r1:K). According to (4.17),

∆φP
(
D1:K ; D0

1:K |σ
)
≥ sE{x2}

8

∑
k∈[K]

εk
pk

(
εk − εk,min(λ̄)

)
; therefore, it is sufficient to

have for all k ∈ [K]:

√
8

N
Lkεk

(
2
√
πmkpk +

√
ξ
)
<
sE{x2}εk

(
εk − εk,min(λ̄)

)
8pk

,

which translates into N ≥ maxk∈[K]Nk, where

Nk =
(

2
√
πmkpk +

√
ξ
)2( 24.5Lkpk

sE{x2}(εk − εk,min(λ̄))

)2

. (4.52)

Furthermore, we can upper bound Lk by

Lk
(a)

≤
√

2

(
1.25K/2Mx +Mw + 2K/2λ

√
s

)2

(b)

≤
√

2c1

((
1.25K + 2K λ̄2

)
M2
x +M2

w

)
, (4.53)

where c1 is some positive constant, (a) follows from the fact that given the assumption

in (4.15), assumptions in Lemma 4.14 are satisfied with
√

1− δk ≥
√

1/2 for any

εk ≤ 0.15, and (b) follows from the following inequality:

λ = λ̄E {|x|} =
1

s
λ̄E {‖x‖1} ≤

1√
s
λ̄E {‖x‖2} ≤

1√
s
λ̄Mx.

Substituting (4.53) in (4.52) and using
(√
ξ + 2

√
πmkpk

)2 ≤ c2(ξ + mkpk) for some

positive constant c2, we get

Nk = Ω

(
p2k(mkpk + ξ)

(
2K(1 + λ̄2)M2

x +M2
w

s2E{x2}2(εk − εk,min(λ̄))2

))
= Ω

(
p2k(mkpk + ξ)

(εk − εk,min(λ̄))2

(
2K(1 + λ̄2)M2

x

s2E{x2}2
+

M2
w

s2E{x2}2

))
.

and N ≥ maxk∈[K]Nk.
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Remark 4.4. To bound deviations of ∆φy
(
D1:K ; D0

1:K |σ
)

from its mean, we can also

use the bound provided in [87, Theorem 1] that prove uniform convergence results

using covering number arguments for various classes of dictionaries. In this case, we

get ηN ≤ c

√
(
∑

kmkpk + ξ) logN

N
for some constant c, where an extra

√
logN term

appears compared to (4.47). Therefore, Lemma 4.12 provides a tighter upper bound.

4.5 Conclusion

In this chapter, we focused on local recovery of coordinate dictionaries comprising a

Kronecker-structured dictionary used to represent Kth-order tensor data. We derived

a sample complexity upper bound for coordinate dictionary identification up to spec-

ified errors by expanding the objective function with respect to individual coordinate

dictionaries and using the coordinate-wise Lipschitz continuity property of the objec-

tive function. This analysis is local in the sense that it only guarantees existence of

a local minimum of the KS-DL objective function within some neighborhood of true

coordinate dictionaries. Global analysis of the KS-DL problem is left for future work.

Our results hold for dictionary coefficients generated according to the separable spar-

sity model. This model has some limitations compared to the random sparsity model

and we leave the analysis for the random sparsity model for future work also. Another

future direction of possible interest includes providing practical KS-DL algorithms that

achieve the sample complexity scaling of Theorem 4.2.

4.6 Appendix

4.6.1 Proof of Lemma 4.2

To prove the existence of such a formation for any K ≥ 2, we use induction. For K = 2,

we have

(D1 ⊗D2)−
(
D0

1 ⊗D0
2

)
=
(
D1 −D0

1

)
⊗D0

2 + D1 ⊗
(
D2 −D0

2

)
=
(
D1 −D0

1

)
⊗D2 + D0

1 ⊗
(
D2 −D0

2

)
. (4.54)
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For K such that K > 2, we assume the following holds:

⊗
k∈[K]

Dk −
⊗
k∈[K]

D0
k =

∑
k∈[K]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K . (4.55)

Then, for K + 1, we have:

⊗
k∈[K+1]

Dk −
⊗

k∈[K+1]

D0
k =

( ⊗
k∈[K]

Dk

)
⊗DK+1 −

( ⊗
k∈[K]

D0
k

)
⊗D0

K+1

(a)
=

( ⊗
k∈[K]

Dk −
⊗
k∈[K]

D0
k

)
⊗D0

K+1

+

( ⊗
k∈[K]

Dk

)(
DK+1 −D0

K+1

)
(b)
=

( ∑
k∈[K]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K

)

⊗D0
K+1 +

( ⊗
k∈[K]

Dk

)(
DK+1 −D0

K+1

)
(c)
=

∑
k∈[K+1]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K+1, (4.56)

where (a) follows from (4.54), (b) follows from (4.55) and (c) follows from replacing

D0
K+1 with D̃k,K+1 in the first K terms of the summation and Dk’s with D̃K+1,k, for

k ∈ [K], in the (K + 1)th term of the summation.

4.6.2 Proof of Lemma 4.3

Using the same definition as Gribonval et al. [24, Definition 1], taking the derivative of

φy (D1:K |σ) with respect to x and setting it to zero, we get the expression in (4.22) for

x̂. Substituting x̂ in (4.21), we get

φy (D1:K |σ) =
1

2

[
‖y‖22 −

((⊗
D>k,Jk

)
y − λσJ

)>
(⊗

(D>k,JkDk,Jk)−1
)((⊗

D>k,Jk

)
y − λσJ

)]
(a)
=

1

2
‖y‖22 −

1

2
y>
(⊗

PDk,Jk

)
y + λσ>J

(⊗
D+
k,Jk

)
y − λ2

2
σ>J

(⊗
HDk,Jk

)
σJ ,

(4.57)
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where (a) follows from (4.19).

4.6.3 Proof of Lemma 4.4

We use the expression for φy (D1:K |σ) from (4.23). For any D =
⊗

Dk,D
′ =

⊗
D′k,

Dk,D
′
k ∈ Dk, we have

∆φy
(
D1:K ; D′1:K |σ

)
= φy (D1:K |σ)− φy

(
D′1:K |σ

)
=

1

2
y>
(⊗

PD′k,Jk
−
⊗

PDk,Jk

)
y − λσ>J

(⊗
D′

+
k,Jk −

⊗
D+
k,Jk

)
y

+
λ2

2
σ>J

(⊗
HD′k,Jk

−
⊗

HDk,Jk

)
σJ . (4.58)

We substitute y =
(⊗

D0
k

)
x+w =

(⊗
D0
k,Jk

)
xJ +w and break up the sum in (4.58)

into 6 terms:

∆φy
(
D1:K ; D′1:K |σ

)
=
∑
i∈[6]

∆φi
(
D1:K ; D′1:K |σ

)
, (4.59)

where

∆φ1
(
D1:K ; D′1:K |σ

)
=

1

2
x>
(⊗

D0
k

)> (⊗
PD′k,Jk

−
⊗

PDk,Jk

)(⊗
D0
k

)
x

(a)
=

1

2
x>
(⊗

D0
k

)>( ∑
k∈[K]

P
D̃1,J1

⊗ · · ·⊗

(
PD′k,Jk

−PDk,Jk

)
⊗ · · · ⊗P

D̃K,JK

)(⊗
D0
k

)
x

=
1

2
x>
( ∑
k∈[K]

(
D0

1
>

P
D̃1,J1

D0
1

)
⊗ · · ·⊗

(
D0
k
>

(PD′k,Jk
−PDk,Jk

)D0
k

)
⊗ · · · ⊗

(
D0
K
>

P
D̃K,JK

D0
K

))
x,

∆φ2
(
D1:K ; D′1:K |σ

)
= w>

( ∑
k∈[K]

(
P

D̃1,J1
D0

1

)
⊗ · · ·⊗

(
(PD′k,Jk

−PDk,Jk
)D0

k

)
⊗ · · · ⊗

(
P

D̃K,JK
D0
K

))
x,

∆φ3
(
D1:K ; D′1:K |σ

)
=

1

2
w>
( ∑
k∈[K]

P
D̃1,J1

⊗ · · ·⊗

(
PD′k,Jk

−PDk,Jk

)
⊗ · · · ⊗P

D̃K,JK

)
w,
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∆φ4
(
D1:K ; D′1:K |σ

)
= −λσ>J

( ∑
k∈[K]

(
D̃+

1,J1D
0
1

)
⊗ · · ·⊗

(
(D′

+
k,Jk −D+

k,Jk)D0
k

)
⊗ · · · ⊗

(
D̃+
K,JKD0

K

))
x,

∆φ5
(
D1:K ; D′1:K |σ

)
= −λσ>J

( ∑
k∈[K]

D̃+
1,J1 ⊗ · · ·⊗(

D′
+
k,Jk −D+

k,Jk

)
⊗ · · · ⊗ D̃+

K,JK

)
w, and

∆φ6
(
D1:K ; D′1:K |σ

)
=
λ2

2
σ>J

( ∑
k∈[K]

H
D̃1,J1

⊗ · · ·⊗

(
HD′k,Jk

−HDk,Jk

)
⊗ · · · ⊗H

D̃K,JK

)
σJ , (4.60)

where (a) follows from Lemma 4.2 and analysis for derivation of {∆φi (D1:K ; D′1:K |σ)}6i=2

are omitted due to space constraints. Now, we set D′ = D0 and take the expectation of

∆φy
(
D1:K ; {D0

k}|σ
)

with respect to x and w. Since the coefficient and noise vectors

are uncorrelated,

E
{

∆φ2
(
D1:K ; D0

1:K |σ
)}

= E
{

∆φ5
(
D1:K ; D0

1:K |σ
)}

= 0.

We can restate the other terms as:

∆φ1
(
D1:K ; D0

1:K |σ
)

(b)
=

1

2
Tr

[
xJx>J

∑
k∈[K]

(
D0

1
>

P
D̃1,J1

D0
1

)
⊗ · · ·⊗

(
D0
k
>

(Imk −PDk,Jk
)D0

k

)
⊗ · · · ⊗

(
D0
K
>

P
D̃K,JK

D0
K

)]
,

∆φ3
(
D1:K ; D0

1:K |σ
)

=
1

2
Tr

[
ww>

( ∑
k∈[K]

P
D̃1,J1

⊗ · · · ⊗
(
PD0

k,Jk
−PDk,Jk

)
⊗ · · · ⊗P

D̃K,JK

)]
,

∆φ4
(
D1:K ; D0

1:K |σ
)

(c)
= −λTr

[
xJσ

>
J

( ∑
k∈[K]

(
D̃+

1,J1D
0
1

)
⊗ · · · ⊗

(
Isk −D+

k,JkD
0
k

)
⊗ · · · ⊗

(
D̃+
K,JKD0

K

))]
,

∆φ6
(
D1:K ; D0

1:K |σ
)
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=
λ2

2
Tr

[
σJσ

>
J

( ∑
k∈[K]

H
D̃1,J1

⊗ · · · ⊗
(
HD0

k,Jk
−HDk,Jk

)
⊗ · · · ⊗H

D̃K,JK

)]
,

(4.61)

where (b) and (c) follow from the facts that PD0
k,Jk

D0
k = D0

k and D0+
k,JkD

0
k = Isk ,

respectively. Taking the expectation of the terms in (4.61), we get

E
{

∆φ1
(
D1:K ; D0

1:K |σ
)} (d)

=
E{x2}

2
EJ
{ ∑
k∈[K]

Tr
[
D0

1
>

P
D̃1,J1

D0
1

]
. . .

Tr
[
D0
k
>

(Imk −PDk,Jk
)D0

k

]
. . .Tr

[
D0
K
>

P
D̃K,JK

D0
K

]}
=

E{x2}
2

∑
k∈[K]

EJ1
{

Tr
[
D0

1
>

P
D̃1,J1

D0
1

]}
. . .

EJk
{

Tr
[
D0
k
>

(Imk −PDk,Jk
)D0

k

]}
. . .EJK

{
Tr
[
D0
K
>

P
D̃K,JK

D0
K

]}
,

E{∆φ3
(
D1:K ; D0

1:K |σ
)
}

=
E{w2}

2
EJ
{

Tr

[ ∑
k∈[K]

P
D̃1,J1

⊗ · · · ⊗
(
PD0

k,Jk
−PDk,Jk

)
⊗ · · · ⊗P

D̃K,JK

]}

=
E{w2}

2
EJ
{ ∑
k∈[K]

Tr
[
P

D̃1,J1

]
. . .Tr

[
PD0

k,Jk
−PDk,Jk

]
. . .Tr

[
P

D̃K,JK

]}
(e)
= 0,

E
{

∆φ4
(
D1:K ; D0

1:K |σ
)}

= −λE{|x|}
∑
k∈[K]

EJ1
{

Tr
[
D̃+

1,J1D
0
1

]}
. . .

EJk
{

Tr
[
Isk −D+

k,JkD
0
k

]}
. . .EJK

{
Tr
[
D̃+
K,JKD0

K

]}
,

E
{

∆φ6
(
D1:K ; D0

1:K |σ
)}

=
λ2

2

∑
k∈[K]

EJ1
{

Tr
[
H

D̃1,J1

]}
. . .

EJk
{

Tr
[
HD0

k,Jk
−HDk,Jk

]}
. . .EJK

{
Tr
[
H

D̃K,JK

]}
. (4.62)

where (d) follows from the relation Tr(A ⊗ B) = Tr[A] Tr[B] [26] and (e) follows

from the fact that PDk,Jk
’s are orthogonal projections onto subspaces of dimension sk

and Tr
[
PD0

k,Jk
−PDk,Jk

]
= sk − sk = 0. Adding the terms in (4.62), we obtain the

expression in (4.25).
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4.6.4 Proof of Lemma 4.5

Equation (4.26) follows from the definition of RIP and (4.27) follows from Gerschgorin’s

disk theorem [26, 84].

4.6.5 Proof of Lemma 4.8

To lower bound ∆φP
(
D1:K ; D0

1:K |σ
)
, we bound each term in (4.25) separately. For the

first term E
{

∆φ1
(
D1:K ; D0

1:K |σ
)}

, we have

EJk
{

Tr
[
D0
k
>

P
D̃k,Jk

D0
k

]}
= EJk

{∥∥∥PD̃k,Jk
D0
k,Jk

∥∥∥2
F

}
. (4.63)

If D̃k = D0
k, then

EJk

{∥∥∥PD0
k,Jk

D0
k,Jk

∥∥∥2
F

}
(a)
=
sk
pk

∥∥D0
k

∥∥2
F

= sk, (4.64)

where (a) follows from [24, Lemma 15]. If D̃k = Dk, then

EJk

{∥∥∥PDk,Jk
D0
k,Jk

∥∥∥2
F

}
(b)
= EJk

{∥∥[DkC
−1
k ]Jk

∥∥2
F

}
(c)
=
sk
pk

∥∥DkC
−1
k

∥∥2
F

(d)
=
sk
pk

pk∑
j=1

1

cos2(θ(k,j))

(e)

≥ sk
pk
pk = sk,

where (b) is a direct consequence of Lemma 4.7; we can write D0
k = DkC

−1
k −VkTk

where Ck = Diag (cos(θk)), Tk = Diag (tan(θk)) and θk,j denotes the angle between

dk,j and d0
k,j . Hence PDk,Jk

D0
k,Jk = [DkC

−1
k ]Jk . Moreover, (c) follows from [24,

Lemma 15], (d) follows from the fact that ‖dk,j‖2 = 1, and (e) follows from the fact

that cos(θk,j) < 1. Similarly, we have

EJk
{

Tr
[
D0
k
>

(Imk −PDk,Jk
)D0

k

]}
= EJk

{∥∥∥(Imk −PDk,Jk
)D0

k,Jk

∥∥∥2
F

}
(f)

≥ sk
pk
‖θk‖22

(
1− sk

pk

B2
k

1− δk

)
, (4.65)
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where (f) follows from similar arguments as in Gribonval et al. [24, Equation (72)].

Putting it all together, we have

E
{

∆φ1
(
D1:K ; D0

1:K |σ
)}
≥ E{x2}

2

∑
k∈[K]

( ∏
i∈[K]
i 6=k

si

)
sk
pk
‖θk‖22

(
1− sk

pk

B2
k

1− δk

)

=
sE{x2}

2

∑
k∈[K]

‖θk‖22
pk

(
1− sk

pk

B2
k

1− δk

)
. (4.66)

Next, to lower bound E
{

∆φ4
(
D1:K ; D0

1:K |σ
)}

, we upper bound∣∣E{∆φ4
(
D1:K ; D0

1:K |σ
)}∣∣. If D̃k = D0

k, we have

EJk
{

Tr
[
D0+

k,JkD
0
k,Jk

]}
= EJk {Tr [Isk ]} = sk, (4.67)

otherwise, if D̃k = Dk, we get

∣∣EJk {Tr
[
Dk,Jk

+D0
k

]}∣∣ (g)≤ skEJk
{∥∥∥D+

k,JkD
0
k,Jk

∥∥∥
2

}
≤ skEJk

{
‖D+

k,Jk‖2‖D
0
k,Jk‖2

}
(h)

≤ sk

(
1√

1− δsk(Dk)

)(√
1 + δsk(D0

k)

)
(i)

≤ sk

√
1 + δk
1− δk

, (4.68)

where (g) follows from the fact that for a square matrix A ∈ Rq×q, Tr [A] ≤ q‖A‖2,

(h) follows from (4.26) and (4.28) and (i) follows from (4.32). Similar to [24, Equation

(73)], we also have

∣∣∣EJk {Tr
[
Isk −D+

k,JkD
0
k

]}∣∣∣ ≤ sk
pk

‖θk‖22
2

+
s2k
p2k

AkBk
1− δk

‖θk‖2. (4.69)
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Thus, defining δ−k ,
∏
i∈[K]
i 6=k

√
1 + δi
1− δi

, we get

E
{

∆φ4
(
D1:K ; D0

1:K |σ
)}

≥ −λE{|x|}
∑
k∈[K]

δ−k

( ∏
i∈[K]
i 6=k

si

)(
sk
pk

‖θk‖22
2

+
s2k
p2k

AkBk
1− δk

‖θk‖2
)

= −λsE{|x|}
∑
k∈[K]

δ−k
pk

(
‖θk‖22

2
+
sk
pk

AkBk
1− δk

‖θk‖2
)
. (4.70)

To lower bound E
{

∆φ6
(
D1:K ; D0

1:K |σ
)}

, we upper bound
∣∣E{∆φ6

(
D1:K ; D0

1:K |σ
)}∣∣.

For any D̃k, we have

∣∣∣EJk {Tr
[
H

D̃k,Jk

]}∣∣∣ ≤ EJk
{
sk

∥∥∥HD̃k,Jk

∥∥∥
2

} (j)

≤ sk
1− δk

, (4.71)

where (j) follows from (4.28) and (4.32). Similar to Gribonval et al. [24, Equation (74)],

we also have

∣∣∣EJk {Tr
[
HD0

k,Jk
−HDk,Jk

]}∣∣∣ ≤ s2k
p2k

4AkBk
(1− δk)2

‖θk‖2.

Thus, we get

E{∆φ6
(
D1:K ; D0

1:K |σ
)
} ≥ −λ

2

2

∑
k∈[K]

( ∏
i∈[K]
i 6=k

si
1− δi

)(
s2k
p2k

4AkBk
(1− δk)2

‖θk‖2
)

= −λ
2s

2

∑
k∈[K]

1

pk

( ∏
i∈[K]

1

1− δi

)(
sk
pk

4AkBk
1− δk

‖θk‖2
)
. (4.72)

Adding (4.66), (4.70), and (4.72), we get (4.33).

4.6.6 Proof of Proposition 4.1

To show that ∆φP
(
D1:K ; D0

1:K |σ
)
> 0, we use Lemma 4.8 and prove that the right

hand side of (4.33) is positive under certain conditions. First, we ensure the conditions

in (4.29) and (4.32) hold for Lemma 4.6 and Lemma 4.8, respectively. We set δk =
1

2
,
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δsk(Dk) =
1

2
and δsk(D0

k) =
1

4
, for k ∈ [K]. For εk ≤ 0.15, this ensures:

√
1− δsk(Dk) ≥

√
1− δsk(D0

k)− εk, and max
{
δsk(D0

k), δsk(Dk)
}
≤ δk, (4.73)

and implies δk < 1 (condition for Lemmas 4.4 and 4.13). Next, we find conditions that

guarantee:

sk
pk

B2
k

1− δk
+ λ̄κ2xδ−k

(a)
=

2B2
ksk
pk

+ λ̄κ2x (3)(K−1)/2 ≤ 1

2
, (4.74)

where (a) follows from replacing δk with
1

2
. If we take

sk
pk
≤ 1

8B2
k

and λ̄ ≤ 1

8× 3(K−1)/2
,

given the fact that κ2x ≤ 1, (4.74) is satisfied.11 Consequently, we can restate (4.33) as

∆φP
(
D1:K ; D0

1:K |σ
)

≥ sE{x2}
4

∑
k∈[K]

‖θk‖2
pk

[
‖θk‖2 − 8

(
3(K−1)/2 + 2(K+1)λ̄

)
λ̄κ2x

sk
pk
AkBk

]
. (4.75)

From [24, Proof of Proposition 2], we use the following relations:

Bk ≤ B0
k + εk ≤ B0

k + 1, Ak ≤ A0
k + 2Bkεk, k ∈ [K], (4.76)

where A0
k ,

∥∥∥D0
k
>

D0
k − Ipk

∥∥∥
F

and B0
k ,

∥∥D0
k

∥∥
2

and (4.76) follows from matrix norm

inequalities [24]. Defining γk , 16

(
3(K−1)/2 +2(K+1)λ̄

)
λ̄κ2x

B2
ksk
pk

for k ∈ [K] and using

κ2x ≤ 1, we have

γk ≤ 2

(
3(K−1)/2 +

2(K+1)

8× 3(K−1)/2

)(
1

8× 3(K−1)/2

)
≤ 2

(
1

8
+

4

64

)
≤ 1

2
. (4.77)

11These numbers are chosen for a simplified proof and can be modified.
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Then, for Dk ∈ Sεk(D0
k), k ∈ [K], we get

∆φP
(
D1:K ; D0

1:K |σ
) (b)

≥ sE{x2}
4

∑
k∈[K]

εk
pk

(
εk −

γk
2

Ak
Bk

)
(c)

≥ sE{x2}
4

∑
k∈[K]

εk
pk

(
εk −

γk
2

A0
k + 2Bkεk
Bk

)

≥ sE{x2}
4

∑
k∈[K]

εk
pk

(
εk(1− γk)−

γk
2

A0
k

Bk

)
(d)

≥ sE{x2}
8

∑
k∈[K]

εk
pk

(
εk − γk

A0
k

Bk

)
, (4.78)

where (b) follows from (4.75), (c) follows from (4.76), and (d) follows from (4.77).

Hence, we can write

∆φP
(
D1:K ; D0

1:K |σ
)
≥sE{x

2}
8

∑
k∈[K]

εk
pk

(
εk − εk,min(λ̄)

)
, (4.79)

where we define

εk,min(λ̄) , γk
A0
k

Bk

= 16
(

3(K−1)/2 + 2(K+1)λ̄
)
λ̄κ2x

sk
pk
A0
kBk

=
2

3(K+1)/2

(
3(K−1)/2 + 2(K+1)λ̄

)
λ̄Ck,min, (4.80)

and Ck,min is defined in (4.7). The lower bound in (4.79) holds for any εk ≤ 0.15

and Dk ∈ Sεk(D0
k), k ∈ [K]. Finally, since 3(K−1)/2 + 2(K+1)λ̄ ≤ 0.5 × 3(K+1)/2,

the assumption λ̄ ≤ 0.15/(maxk∈[K]Ck,min) implies that εk,min(λ̄) ≤ 0.15 for k ∈ [K].

Therefore, ∆φP
(
D1:K ; D0

1:K |σ
)
> 0 for all εk ∈ (εk,min(λ̄), 0.15], k ∈ [K].

4.6.7 Proof of Lemma 4.10

Considering j 6∈ J , associated with (j1, . . . , jk) 6∈ (J1 × · · · × JK), we have

‖D>Jdj‖1
(a)

≤ ‖D0
J
>

d0
j‖1 + ‖D0

J
>

(dj − d0
j )‖1 + ‖(DJ −D0

J )>dj‖1

≤ µs(D0) +
√
s
[
‖D0
J
>

(dj − d0
j )‖2 + ‖(DJ −D0

J )>dj‖2
]
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≤ µs(D0) +
√
s

[ ∥∥∥⊗D0
k,Jk

>
∥∥∥
2

∥∥∥⊗(
dk,jk − d0

k,jk

)∥∥∥
2

+
∥∥∥⊗Dk,Jk −

⊗
D0
k,Jk

∥∥∥
2
‖dj‖2

]
(b)

≤ µs(D
0) +

√
s

[( ∏
k∈[K]

√
1 + δsk(D0

k)

)
( ∑
k∈[K]

∥∥∥d̃1,j1

∥∥∥
2
. . .
∥∥dk,jk − d0

k,jk

∥∥
2
. . .

∥∥∥d̃k,jK∥∥∥
2

)

+
∑
k∈[K]

∥∥∥D̃1,J1

∥∥∥
2
. . .
∥∥Dk,Jk −D0

k,Jk
∥∥
2
. . .

∥∥∥D̃k,Jk

∥∥∥
2

]
(c)

≤ µs(D
0) +

√
s

[( ∏
k∈[K]

√
1 + δsk(D0

k)

)( ∑
k∈[K]

εk

)

+
∑
k∈[K]

( ∏
i∈[K]
i 6=k

∥∥∥D̃i,Ji

∥∥∥
2

)
εk

]

(d)

≤ µs(D
0) + 2(1.5)K/2

√
s

( ∑
k∈[K]

εk

)
, (4.81)

where (a) follows from the triangle inequality, (b) follows from (4.20), (c) follows from

(4.27), and, (d) follows from substituting the upper bound value from (4.38) for δsk(D0
k).

For D̃i = D0
i ,
∥∥∥D0

i,Ji

∥∥∥
2
≤
√

1 + δsi(D
0
i ) ≤

√
5
4 < 1.5 and for D̃i = Di, according to

(4.76), we have ‖Di,Ji‖2 ≤
∥∥∥D0

i,Ji

∥∥∥
2

+ εi ≤
√

5
4 + 0.15 < 1.5.

4.6.8 Proof of Proposition 4.2

We follow a similar approach to Gribonval et al. [24]. We show that the conditions

in (4.37) hold for Lemma 4.9. We have

∥∥∥y − (⊗Dk

)
x
∥∥∥
2

≤
∥∥∥(⊗D0

k,Jk −
⊗

Dk,Jk

)
xJ

∥∥∥
2

+ ‖w‖2

≤Mx

∑
k∈[K]

∥∥D̃1,J1 ⊗ · · · ⊗
(
D0
k,Jk −Dk,Jk

)
⊗ · · · ⊗ D̃K,JK

∥∥
2

+Mw

≤Mx

∑
k∈[K]

∥∥∥D̃1,J1

∥∥∥
2
. . .
∥∥D0

k,Jk −Dk,Jk
∥∥
2
. . .
∥∥∥D̃K,JK

∥∥∥
2

+Mw
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≤Mx

∑
k∈[K]

( ∏
i∈[K]
i 6=k

∥∥∥D̃i,Ji

∥∥∥
2

)
εk +Mw

(a)

≤ (1.5)(K−1)/2Mx

∑
k∈[K]

εk +Mw, (4.82)

where (a) follows from (4.34) and the fact that for D̃i = D0
i ,
∥∥∥D0

i,Ji

∥∥∥
2
≤
√

1 + δsi(D
0
i ) ≤√

5
4 < 1.5 and for D̃i = Di, according to (4.76), we have ‖Di,Ji‖2 ≤

∥∥∥D0
i,Ji

∥∥∥
2

+ εi ≤√
5
4 + 0.15 < 1.5. Hence, we get

λ(1− 2µs(D))−
∥∥∥y − (⊗Dk

)
x
∥∥∥
2

≥ λ(1− 2µs(D))− (1.5)(K−1)/2Mx

∑
k∈[K]

εk −Mw

(b)

≥ λ(1− 2µs(D
0))− (1.5)K/2

(
4λ
√
s+ (1.5)−1/2Mx

) ∑
k∈[K]

εk −Mw

(c)

≥ λ(1− 2µs(D
0))− 3(1.5)K/2Mx

∑
k∈[K]

εk −Mw

= 3(1.5)K/2Mx

(
Kλ̄Cmax −

∑
k∈[K]

εk

)
−Mw, (4.83)

where (b) follows from (4.39) and (c) follows from (4.37) (2λ
√
s ≤ xmin

√
s ≤ Mx)

and (4.39). If εk < Cmaxλ̄, k ∈ [K], the assumption on the noise level in (4.36)

implies that the right-hand side of (4.83) is greater than zero and λ(1 − 2µs(D)) >

‖y − (
⊗

Dk) x‖2. Thus, according to Lemma 4.9, x̂ is almost surely the unique solution

of minx
1
2 ‖y − (

⊗
Dk) x′‖2 + λ‖x′‖1 and ∆φP

(
D1:K ,D

0
1:K |σ

)
= ∆fP

(
D1:K ,D

0
1:K

)
.

4.6.9 Proof of Lemma 4.12

According to Lemma 4.11, we have to upper bound

E
{

supDk∈Bεk (D
0
k),k∈[K]

∣∣∣ 1N ∑n∈[N ] βnhn(D1:K)
∣∣∣}. Conditioned on the draw of func-

tions h1, . . . , hN , consider the Gaussian processes AD1:K
= 1

N

∑
n∈[N ] βnhn(D1:K) and

CD1:K
=
√

K
N

∑
k∈[K]

(
Lk
∑

i∈[mk]
∑

j∈[pk] ζ
k
ij(Dk −D0

k)ij

)
,

where {βn}Nn=1’s and
{
ζkij

}
, k ∈ [K], i ∈ [mk], j ∈ [pk]’s are independent standard
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Gaussian vectors. We have

E
{∣∣∣AD1:K

−AD′1:K

∣∣∣2} =
1

N2

∣∣∣∣ ∑
n∈[N ]

hn(D1:K)− hn(D′1:K)

∣∣∣∣2
(a)

≤ 1

N

( ∑
k∈[K]

Lk‖Dk −D′k‖F
)2

(b)

≤ K

N

∑
k∈[K]

L2
k‖Dk −D′k‖2F

= E
{∣∣∣CD1:K

− CD′1:K

∣∣∣2} , (4.84)

where (a) follows from coordinate-wise Lipschitz continuity of h and (b) follows from

Cauchy-Schwartz inequality. Hence, using Slepian’s Lemma [61], we get

E
{

sup
Dk∈Bεk (D

0
k)

k∈[K]

AD1:K

}
≤ E

{
sup

Dk∈Bεk (D
0
k)

k∈[K]

CD1:K

}

=

√
K

N

( ∑
k∈[K]

LkεkE
{
‖ζk‖F

})

=

√
K

N

( ∑
k∈[K]

Lkεk
√
mkpk

)
. (4.85)

Thus, we obtain E

supDk∈Bεk (D
0
k)

k∈[K]

∣∣∣ 1N ∑n∈[N ] βnhn(D1:K)
∣∣∣


≤ 2
√

K
N

(∑
k∈[K] Lkεk

√
mkpk

)
.

4.6.10 Proof of Lemma 4.14

We expand ∆φy
(
D1:K ; D0

1:K |σ
)

according to (4.59) and bound each term of the sum

separately. Looking at the first term, we get

∣∣∆φ1 (D1:K ; D0
1:K |σ

)∣∣ (a)=

∣∣∣∣12x>D0>
( ∑
k∈[K]

P
D̃1,J1

⊗ · · ·⊗

(
PD′k,Jk

−PDk,Jk

)
⊗ · · · ⊗P

D̃K,JK

)
D0x

∣∣∣∣
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(b)

≤ 1

2
‖x‖22

( ∏
k∈[K]

∥∥D0
k,Jk

∥∥2
2

)( ∑
k∈[K]

∥∥∥PD0
k,Jk
−PDk,Jk

∥∥∥
2

( ∏
i∈[K]
i 6=k

∥∥∥PD̃i,Ji

∥∥∥
2

))

(c)

≤ M2
x

( ∏
k∈[K]

(
1 + δsk(D0

k)
))( ∑

k∈[K]

(1− δk)−1/2‖Dk −D0
k‖F

)
, (4.86)

where (a) follows from (4.60), (b) follows from the fact that
∥∥D0
J
∥∥
2

=
∏
k∈[K]

∥∥∥D0
k,Jk

∥∥∥
2
,

and (c) follows from the definition of RIP, equation (4.48), and
∥∥P

D̃i,Ji

∥∥
2

= 1. Following

a similar approach and expanding the rest of the terms, we get

∣∣∆φ2 (D1:K ; D0
1:K |σ

)∣∣
≤ ‖w‖2 ‖x‖2

( ∏
k∈[K]

∥∥D0
k,Jk

∥∥2
2

)( ∑
k∈[K]

∥∥∥PD0
k,Jk
−PDk,Jk

∥∥∥
2

( ∏
i∈[K]
i 6=k

∥∥∥PD̃i,Ji

∥∥∥
2

))

(d)

≤ 2MwMx

( ∏
k∈[K]

(
1 + δsk(D0

k)
)1/2)( ∑

k∈[K]

(1− δk)−1/2‖Dk −D0
k‖F

)
,

∣∣∆φ3 (D1:K ; D0
1:K |σ

)∣∣
≤ 1

2
‖w‖22

( ∑
k∈[K]

∥∥∥PD0
k,Jk
−PDk,Jk

∥∥∥
2

( ∏
i∈[K]
i 6=k

∥∥∥PD̃i,Ji

∥∥∥
2

))

≤M2
w

( ∑
k∈[K]

(1− δk)−1/2‖Dk −D0
k‖F

)
,

∣∣∆φ4 (D1:K ; D0
1:K |σ

)∣∣
= λ ‖σJ ‖2 ‖x‖2

( ∏
k∈[K]

∥∥D0
Jk
∥∥
2

)( ∑
k∈[K]

∥∥∥D0+
k,Jk −D+

k,Jk

∥∥∥
2

( ∏
i∈[K]
i 6=k

∥∥∥D̃+
i,Ji

∥∥∥
2

))

(e)

≤ 2λ
√
sMx

( ∏
k∈[K]

(
1 + δsk(D0

k)
)1/2)

( ∑
k∈[K]

(1− δk)−1
( ∏
i∈[K]
i 6=k

(1− δi)−1/2
)
‖Dk −D0

k‖F
)
,

∣∣∆φ5 (D1:K ; D0
1:K |σ

)∣∣
= λ ‖σJ ‖2 ‖w‖2

( ∑
k∈[K]

∥∥∥D0+
k,Jk −D+

k,Jk

∥∥∥
2

( ∏
i∈[K]
i 6=k

∥∥∥D̃+
i,Ji

∥∥∥
2

))
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≤ 2λ
√
sMw

( ∑
k∈[K]

(1− δk)−1
( ∏
i∈[K]
i 6=k

(1− δi)−1/2
)
‖Dk −D0

k‖F
)
,

∣∣∆φ6 (D1:K ; D0
1:K |σ

)∣∣
=
λ2

2
‖σJ ‖22

( ∑
k∈[K]

∥∥∥HD0
k,Jk
−HDk,Jk

∥∥∥
2

( ∏
i∈[K]
i 6=k

∥∥∥HD̃i,Ji

∥∥∥
2

))

(f)

≤ λ2s

( ∑
k∈[K]

(1− δk)−
3
2

( ∏
i∈[K]
i 6=k

(1− δi)−1
)
‖Dk −D0

k‖F
)
, (4.87)

where (e) and (f) follow from (4.28) and (4.48). Adding all the terms together, we get

∣∣∆φy (D1:K ; D0
1:K |σ

)∣∣ ≤ ∑
k∈[K]

Lk‖Dk −D0
k‖F . (4.88)

where Lk is defined in (4.49).

4.6.11 Proof of the coherence relation for KS dictionaries

To prove (1.4), we define the set A = {∀jk ∈ Jk, (j1, . . . , jK) 6∈ (J1, . . . ,JK)}. We have

µs(X) = max
|J |≤s

max
j 6∈J
‖X>Jxj‖1

= max
|Jk|≤sk
k∈[K]

max
A

∥∥∥(⊗X>k,Jk

)(⊗
xk,jk

)∥∥∥
1

= max
|Jk|≤sk
k∈[K]

max
A

∥∥∥⊗X>k,Jkxk,jk

∥∥∥
1

= max
|Jk|≤sk
k∈[K]

max
A

∏
k∈[K]

∥∥∥X>k,Jkxk,jk∥∥∥1
≤ max

k∈[K]
µsk(Xk)

( ∏
i∈[K],
i 6=k

(1 + µsi−1(Xi))

)
. (4.89)
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Chapter 5

Learning Mixtures of Separable Dictionaries

for Tensor Data

This chapter addresses the problem of learning sparse representations of tensor data

using a mixture of separable dictionaries. This model better captures the structure of

tensor data by generalizing the Kronecker-structured dictionary learning model. Var-

ious algorithms are developed to solve the problem of learning mixture of separable

dictionaries in both batch and online settings. Numerical experiments are provided to

show the usefulness of the proposed model and the efficacy of the developed algorithms

for synthetic data representation and real-world data image denoising.1

5.1 Introduction

In Chapters 3 and 4, we focused on the Kronecker-structured dictionary learning (KS-

DL) model for tensor data representation. While existing KS-DL methods enjoy lower

sample/computational complexity and better storage efficiency over unstructured DL

[12], the KS-DL model makes a strong separability assumption among different modes

of tensor data, which is often too restrictive for many classes of data [13]. This results

in an unfavorable tradeoff between model compactness and representation power. In

this chapter, we overcome this limitation by taking advantage a generalization of KS-

DL that we interchangeably refer to as learning a mixture of separable dictionaries or

low separation-rank DL (LSR-DL). More specifically, the separation rank of a matrix

1The work presented in this chapter was done in collaboration with graduate student Mohsen Ghas-
semi and the results have been published in the Proceedings of 2017 IEEE International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing [62] and submitted to IEEE Transac-
tions on Signal Processing [88]. This work includes theoretical and experimental contributions. In this
chapter, we focus solely on algorithms and numerical experiments.
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Figure 5.1: Dictionary atoms for representing RGB image Barbara for separation rank
(left-to-right) 1, 4, and 256.

A is defined as the minimum number of KS matrices whose sum equals A [89, 90]. The

LSR-DL model interpolates between the under-parameterized KS-DL model (a special

case of LSR-DL model with separation rank 1) and the over-parameterized unstructured

model. Figure 5.1 provides an illustrative example of the usefulness of LSR-DL for image

data representation. While KS-DL learns dictionary atoms that cannot reconstruct

diagonal structures because of horizontal/vertical (DCT-like) structures, increasing the

separation rank results in dictionary atoms with pronounced diagonal structures.

5.1.1 Main Contributions

We develop DL algorithms that enforce the LSR structure on the underlying dictio-

nary. In this regard, we first study a simple block coordinate descent-based algorithm

called SubDil that alternates between solving the problem with respect to each co-

ordinate dictionary. Despite its good performance in learning structured dictionaries

in certain settings, this algorithm suffers in accuracy and speed when searching for

higher separation-rank dictionaries. To address this issue, we take advantage of a con-

nection between LSR matrices and low-rank tensors [62] which allows us to leverage

ideas and tools from the tensor recovery literature. We provide a LSR-DL algorithm

called STARK that takes advantage of a convex regularizer to impose LSR structure

on the underlying dictionary. However, this algorithm only outputs the dictionary

D ∈ Rm×p and not the coordinate dictionaries {Dk ∈ Rmk×pk}Kk=1. Moreover, this

method does not allow for explicit tuning of the separation rank to control the number
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of parameters of the model. We then develop a LSR-DL algorithm called TeFDiL that

employs tensor CP decomposition to impose LSR structure on the dictionary. This algo-

rithm estimates the coordinate dictionaries and allows explicit tuning of the separation

rank. All our provided LSR-DL algorithms allow tuning of the number of KS compo-

nents in the dictionary to avoid underfitting (inadequately small model) and overfitting

(excessively large model). We also provide a variation of SubDil called OSubDil for

online data representation.

Finally, we validate the usefulness of LSR-DL using numerical experiments on syn-

thetic data representation and real-world image data denoising and provide a compar-

ison of the performance of our algorithms with unstructured and KS DL.

5.1.2 Relation to Prior Work

In terms of computational algorithms, several works have proposed methods for learning

KS dictionaries [14–16, 69, 91]. Focusing on LSR-DL, Dantas et al. have proposed

an LSR-DL algorithm that employs a convex regularizer to impose LSR structure on

the dictionary for tensors of order K = 2 [70]. In contrast, our regularization-based

algorithm STARK can find LSR dictionaries for tensors of any order K ≥ 2. Moreover,

an algorithm based on dictionary rearrangement that uses CP decomposition to perform

LSR-DL has been proposed in [92]. The dictionary update stage of this method is a

projected gradient descent algorithm that involves a CP decomposition after every

gradient step. Our TeFDiL algorithm is also based on dictionary rearrangement and

uses CP decomposition, but only requires a single CP decomposition at the end of each

dictionary update stage. Finally, while there exist a number of online algorithms for

DL [54, 93, 94], the online algorithm developed here is the first that enables learning

of structured (either KS or LSR) dictionaries.

5.2 Problem Formulation

We propose the LSR-DL model in which the separation rank of the underlying dictio-

nary is relatively small so that 1 ≤ R(D0) � min{m, p}, where R(D0) denotes the
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separation rank of D0. This generalizes the KS-DL model to a generating dictionary of

the form

D0 =

R∑
r=1

[Dr
K ]0 ⊗ [Dr

K−1]
0 ⊗ · · · ⊗ [Dr

1]
0, (5.1)

where R is the separation rank of D0. Note that the KS-DL model corresponds to

separation rank 1.

Consequently, defining DRKS , {D ∈ D|R(D) ≤ R}, the empirical rank-constrained

LSR-DL problem is

min
D∈DRKS

1

N

N∑
n=1

fyn(D), where fyn(D) , inf
x∈Rp

{
1

2
‖yn −Dxn‖22 + λ ‖xn‖1

}
. (5.2)

Lemma 5.1. Any Kth-order KS matrix A = A1 ⊗A2 ⊗ · · · ⊗AK can be rearranged

as a rank-1, Kth-order tensor Aπ = aK ◦ · · · ◦ a2 ◦ a1 with ak , vec(Ak).

It follows immediately from Lemma 5.1 that if D =
∑R

r=1 Dr
1⊗Dr

2⊗· · ·⊗Dr
K , then

we can rearrange matrix D into the tensor Dπ =
∑R

r=1 drK ◦ drK−1 ◦ · · · ◦ dr1, where

drk = vec(Dr
k). Therefore, we have the following equivalence:

R(D) ≤ R⇐⇒ rank(Dπ) ≤ R.

This correspondence between separation rank and tensor rank highlights a challenge

with the LSR-DL problem: finding the rank of a tensor is NP-hard [95] and thus so is

finding the separation rank of a matrix. This makes Problem (5.2) in its current form

(and its variants) intractable. To overcome this, we introduce two tractable relaxations

to the rank-constrained Problem (5.2) that do not require explicit computation of the

tensor rank.

The first relaxation uses a convex regularization term to implicitly impose low tensor

rank structure on Dπ, which results in a low separation rank D. The resulting empirical
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regularization-based LSR-DL problem is

min
D∈D

1

N

N∑
n=1

fyn(D) + λ1g1(D
π), (5.3)

where g1(D
π) is a convex regularizer to enforce low-rank structure on Dπ. The second

relaxation is a factorization-based LSR-DL formulation in which the LSR dictionary is

explicitly written in terms of its coordinate dictionaries. The resulting empirical risk

minimization problem is

min
{Dr

k}:
∑R
r=1

⊗K
k=1 D

r
k∈D

1

N

N∑
n=1

inf
x∈Rp

∥∥∥∥∥y −
( R∑
r=1

K⊗
k=1

Dr
k

)
x

∥∥∥∥∥
2

+ λ ‖x‖1 . (5.4)

Next, we propose algorithms to find solutions to Problems (5.3) and (5.4).

5.3 LSR-DL Algorithms

Solving Problems (5.3) and (5.4) require minimization with respect to (w.r.t.) X.

Therefore, similar to conventional DL algorithms, we introduce alternating minimization-

type algorithms that at every iteration, first perform minimization of the objective

function w.r.t. X (sparse coding stage) and then minimize the objective w.r.t. the

dictionary (dictionary update stage).

5.3.1 STARK: A Regularization-based LSR-DL Algorithm

We first discuss an algorithm, which we term STructured dictionAry learning via Regu-

larized low-ranK Tensor Recovery (STARK), that helps solve the regularized LSR-DL

problem given in (5.3) using the Alternating Direction Method of Multipliers (ADMM)

[96].

The regularizer that we use here is a commonly used convex proxy for the tensor

rank function, the sum-trace-norm [97], which is defined as the average of the trace

(nuclear) norms of the unfoldings of the tensor: g1(D
π) = ‖Dπ‖str ,

∑K
k=1

∥∥∥Dπ
(k)

∥∥∥
tr

.

The main novelty in solving (5.3) with g1(D
π) = ‖Dπ‖str is the dictionary update

stage. This stage, which involves updating D for a fixed set of sparse codes X, is
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particularly challenging for gradient-based methods because the dictionary update in-

volves interdependent nuclear norms of different unfoldings of the rearranged tensor

Dπ. Inspired by many works in the literature on low-rank tensor estimation [97–99],

we instead suggest the following reformulation of the dictionary update stage of (5.3):

min
D∈D,W1,··· ,WK

1

2
‖Y −DX‖2F + λ1

K∑
k=1

∥∥Wk,(k)

∥∥
tr
, s.t. ∀k Wk = Dπ, (5.5)

where Wk,(k) denotes the kth-mode unfolding of Wk. In this formulation, although

the nuclear norms depend on one another through the introduced constraint, we can

decouple the minimization problem into separate subproblems. To solve this problem,

we first find a solution to the problem without the constraint D ∈ D, then project the

solution onto D by normalizing the columns of D. We can solve the objective function

(5.5) (without D ∈ D contraint) using ADMM, which involves decoupling the problem

into independent subproblems by forming the following augmented Lagrangian:

Lγ =
1

2
‖Y −DX‖2F +

K∑
k=1

(
λ1
∥∥Wk,(k)

∥∥
tr
− 〈Ak, Dπ −Wk〉+

γ

2
‖ Dπ −Wk‖

2
F

)
,

(5.6)

where Lγ is shorthand for Lγ(Dπ, {Wk}, {Ak}). In order to find the gradient of (5.6)

with respect to Dπ, we rewrite the Lagrangian function in the following form:

Lγ =
1

2
‖ỹ − T (Dπ)‖22 +

K∑
k=1

(
λ1
∥∥Wk,(k)

∥∥
tr
− 〈Ak, Dπ −Wk〉+

γ

2
‖ Dπ −Wk‖

2
F

)
,

(5.7)

where ỹ , vec(Y) and the linear operator T (Dπ) , vec(DX) = X̃>Π> vec(Dπ),

where X̃ = X ⊗ Im and Π is a permutation matrix such that vec(Dπ) = Π vec(D).

The procedure to find Π is explained in the Appendix. In the rest of this section, we

discuss derivation of the update steps of ADMM.

ADMM Update Rules: Each iteration τ of ADMM consists of the following steps
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[96]:

Dπ(τ) = arg min
Dπ

Lγ(Dπ,Wk(τ − 1),Ak(τ − 1)), (5.8)

Wk(τ) = arg min
Wk

Lγ(Dπ(τ),Wk,Ak(τ − 1)), ∀k ∈ [K], (5.9)

Ak(τ) = Ak(τ − 1)− γ (Dπ(τ)−Wk(τ)) , ∀ k ∈ [K]. (5.10)

The solution to (5.8) can be obtained by taking the gradient of Lγ(·) w.r.t. Dπ and

setting it to zero. Suppressing the iteration index τ for ease of notation, we have

∂Lγ
∂Dπ = T ∗(T (Dπ)− ỹ)−

K∑
k=1

Ak +

K∑
k=1

γ (Dπ −Wk) , (5.11)

where T ∗(v) = vec−1
(
ΠX̃v

)
is the adjoint of the linear operator T [99]. Setting the

gradient to zero results in

T ∗(T (Dπ)) + γK Dπ = T ∗(ỹ) +

K∑
k=1

(Ak + γWk) . (5.12)

Equivalently, we have

vec−1
([

ΠX̃X̃>Π> + γKI
]

vec(Dπ)
)

= vec−1(ΠX̃ỹ) +
K∑
k=1

(Ak + γWk) . (5.13)

Therefore, the update rule for Dπ is

Dπ(τ) = vec−1
( [

ΠT X̃X̃>Π + γKImp

]−1
·
[
ΠT X̃ỹ + vec

( K∑
k=1

(Ak(τ − 1) + γWk(τ − 1))
)])

. (5.14)

To update {Wk}, we can further split (5.9) into N independent subproblems (suppress-

ing the index τ):

min
Wk

LW =λ1
∥∥Wk,(k)

∥∥
tr
− 〈Ak, Dπ −Wk〉+

γ

2
‖ Dπ −Wk‖

2
F .
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We can reformulate LW as

λ1
∥∥Wk,(k)

∥∥
tr

+
γ

2

∥∥∥∥Wk,(k) −
(
Dπ

(k) −
Ak,(k)

γ

)∥∥∥∥2
F

+ const. (5.15)

The minimizer of LW with respect to Wk,(k) is shrink
(
Dπ

(k) −
1
γAk,(k),

λ1
γ

)
where

shrink(A, z) applies soft thresholding at level z on the singular values of matrix A

[100]. Therefore,

Wk(τ) =refold
(

shrink
(
Dπ

(k)(τ)− 1

γ
Ak,(k)(τ − 1),

λ1
γ

))
, (5.16)

where refold(·) is the inverse of the unfolding operator. Algorithm 1 summarizes this

discussion and provides pseudocode for the dictionary update stage in STARK.

Algorithm 1 Dictionary Update in STARK for LSR-DL

Require: Y, Π, λ1 > 0, γ > 0, X(t)2

1: repeat
2: Update Dπ according to update rule (5.14)
3: for k ∈ [K] do
4: Update Wk according to (5.16)
5: end for
6: for k ∈ [K] do
7: Ak ← Ak − γ (Dπ −Wk)
8: end for
9: until convergence

10: Normalize columns of D
11: return D(t+ 1)

5.3.2 TeFDiL: A Factorization-based LSR-DL Algorithm

While our experiments in Section 5.4 validate good performance of STARK, the algo-

rithm finds the dictionary D and not the coordinate dictionaries {Dr
k}, k ∈ [K], r ∈ [R].

Moreover, STARK only allows indirect control over the separation rank of the dictionary

through the regularization parameter λ1. This motivates developing a factorization-

based LSR-DL algorithm that can find the coordinate dictionaries and allows for direct

tuning of the separation rank to control the number of parameters of the model. To this

2In the body of Algorithms 1–3 we drop the iteration index t for simplicity.
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end, we propose a factorization-based LSR-DL algorithm termed Tensor Factorization-

Based DL (TeFDiL) in this section for solving Problem (5.4).

We discussed earlier in Section 5.3.1 that the error term ‖Y − DX‖2F can be re-

formulated as ‖ỹ − T (Dπ)‖2 where T (Dπ) = X̃>Π> vec(Dπ). Thus, the dictionary

update objective in (5.4) can be reformulated as ‖ỹ − T (
∑R

r=1 drK ◦ · · · ◦ dr1)‖2 where

drk = vec(Dr
k). To avoid the complexity of solving this problem, we resort to first

obtaining an inexact solution by minimizing ‖ỹ − T (A)‖2 over A and then enforc-

ing the low-rank structure by finding the rank-R approximation of the minimizer of

‖ỹ−T (A)‖2. TeFDiL employs CP decomposition to find this approximation and thus

enforce LSR structure on the updated dictionary.

Assuming the matrix of sparse codes X is full row-rank3, then X̃> is full column-

rank and A = T +(ỹ) = vec−1
(
Π
(
X̃X̃>

)−1
X̃ỹ
)

minimizes ‖ỹ − T (A)‖2. Now, it

remains to solve the following problem to update {drk}:

min
{drk}

∥∥∥∥∥
R∑
r=1

drK ◦ · · · ◦ dr1 − T +(ỹ)

∥∥∥∥∥
2

F

. (5.17)

Although finding the best rank-R approximation (R-term CP decomposition) of a tensor

is ill-defined in general [101], various numerical algorithms exist in the tensor recovery

literature to find a “good” rank-R approximation of a tensor [5, 101]. TeFDiL can

employ any of these algorithms to find the R-term CP decomposition, denoted by

CPDR(·), of T +(ỹ). At the end of each dictionary update stage, the columns of D =∑⊗
Dr
k are normalized. Algorithm 2 describes the dictionary update step of TeFDiL.

Algorithm 2 Dictionary Update in TeFDiL for LSR-DL

Require: Y, X(t), Π, r

1: Construct T +(Y) = vec−1
(
Π
(
X̃X̃>

)−1
X̃ỹ
)

2: Dπ ← CPDR(T +(ỹ))
3: D← vec−1

(
Π> vec(Dπ)

)
4: Normalize columns of D
5: return D(t+ 1)

3In our experiments, we add δI to XX> with a small δ > 0 at every iteration to ensure full-rankness.
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5.3.3 OSubDil: An Online LSR-DL Algorithm

Both STARK and TeFDiL are batch methods in that they use the entire dataset for

DL in every iteration. This makes them less scalable with the size of datasets due to

high memory and per iteration computational cost and also makes them unsuitable

for streaming data settings. To overcome these limitations, we now propose an online

LSR-DL algorithm termed Online SubDictionary Learning for structured DL (OSubDil)

that uses only a single data sample (or a small mini-batch) in every iteration (see Algo-

rithm 3). This algorithm has better memory efficiency as it removes the need for storing

all data points and has significantly lower per-iteration computational complexity. In

OSubDil, once a new sample Y(t+ 1) arrives, its sparse representation X(t+ 1) is found

using the current dictionary estimate D(t) and then the dictionary is updated using

Y(t+ 1) and X(t+ 1). The dictionary update stage objective function after receiving

the T -th sample is

JT ({Dr
k}) =

1

T

T∑
t=1

‖y(t)−
( R∑
r=1

K⊗
k=1

Dr
k

)
x(t)‖2. (5.18)

We can restate this objective as

JT ({Dr
k}) =

T∑
t=1

‖Y(k)(t)−
R∑
r=1

Dr
kX(k)(t)C

r
k(t)‖2F

=

T∑
t=1

‖Ŷ(k)(t)−Dr
kX(k)(t)C

r
k(t)‖2F

= Tr
(
Dr
k
>Dr

kA
r
k(t)

)
− 2 Tr

(
Dr
k
>Br

k(t)
)

+ const.,

where dropping the iteration index t, Cr
k ,

(
Dr
K ⊗ · · · ⊗Dr

k+1 ⊗Dr
k−1 · · · ⊗Dr

1

)>
,

Ŷ(k) , Y(k) −
∑R

i=1
i 6=r

Di
kX(k)C

i
k,

Ar
k(t) ,

t∑
τ=1

X(k)(t)C
r
k(τ)Cr

k(τ)>X(k)(τ)>, and

Br
k(t) ,

t∑
τ=1

Ŷ(k)(τ)Cr
k(τ)>X(k)(τ)>. (5.19)
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To minimize JT ({Dr
k}) with respect to each Dr

k, we take a similar approach as in

Mairal et al. [54] and use a (block) coordinate descent algorithm with warm start to

update the columns of Dr
k in a cyclic manner. Algorithm 3 describes the dictionary

update step of OSubDil.

Algorithm 3 Dictionary Update in OSubDil for LSR-DL

Require: Y(t), {Dr
k(t)}, Ar

k(t), Br
k(t), X(t)

1: for all r ∈ [R] do
2: for all k ∈ [K] do

3: Cr
k ←

(
Dr
K ⊗ · · · ⊗Dr

k+1 ⊗Dr
k−1 · · · ⊗Dr

1

)>
4: Ŷ(k) ← Y(k) −

∑R
i=1
i 6=r

Di
kX(k)C

i
k

5: Ar
k ← Ar

k + X(k)C
r
kC

r
k
>X(k)

>

6: Bk
r ← Br

k + Ŷ(k)C
r
k
>X(k)

>

7: for j = 1, · · · , pk do
8: drk,j ←

1
ark,jj

(brk,j −Dr
ka

r
k,j) + drk,j

9: end for
10: end for
11: end for
12: Normalize columns of D =

∑R
r=1

⊗K
k=1 Dr

k

13: return {Dr
k(t+ 1)}

5.4 Numerical Experiments

We evaluate our algorithms on synthetic and real-world datasets to understand the

impact of training set size and noise level on the performance of LSR-DL. In particular,

we want to understand the effect of exploiting additional structure in representation

accuracy and denoising performance. We compare the performance of our proposed

algorithms with existing DL algorithms in each scenario and show that in almost every

case our proposed LSR-DL algorithms outperform K-SVD. Our results also offer in-

sights into how the size and quality of training data can affect the choice of the proper

DL model. Specifically, our experiments on image denoising show that when noise level

in data is high, TeFDiL performs best when the separation rank is 1. On the other

hand, in low noise regimes, the performance of TeFDiL improves as we increase the

separation rank. Furthermore, our synthetic experiments confirm that when the true

underlying dictionary follows the KS (LSR) structure, our structured algorithms clearly

outperform K-SVD, especially when the number of training samples is very small. This
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implies the potential of the LSR-DL model and our algorithms in applications where

the true dictionary follows the LSR structure more closely.

Synthetic Experiments: We compare our algorithms to K-SVD[4] (standard

DL) as well as a simple block coordinate descent (BCD) algorithm that alternates

between updating every coordinate dictionary in problem (5.4). This BCD algorithm

can be interpreted as an extension of the KS-DL algorithm [16] for the LSR model.

We show how structured DL algorithms outperform the unstructured algorithm K-

SVD[4] when the underlying dictionary is structured, especially when the training set

is small. We focus on 3rd-order tensor data and we randomly generate a KS dictionary

D = D1 ⊗ D2 ⊗ D3 with dimensions m = [2, 5, 3] and p = [4, 10, 5]. We select i.i.d

samples from the standard Gaussian distribution, N (0, 1), for the coordinate dictionary

elements, and then normalize the columns of the coordinate dictionaries. To generate

x, we select the locations of s = 5 nonzero elements uniformly at random. The values of

those elements are sampled i.i.d. from N (0, 1). We assume observations are generated

according to Y = DX. In the initialization stage of the algorithms, D is initialized

using random columns of Y for K-SVD and random columns of the unfoldings of

Y for the structured DL algorithms. Sparse coding is performed using OMP [102].

Due to the invariance of DL to column permutations in the dictionary, we choose

reconstruction error as the performance criteria. For L = 100, K-SVD cannot be used

since p > L. Reconstruction errors are plotted in Figure 5.2a. It can be seen that

TeFDiL outperforms all the other algorithms.

Real-world Experiments: In this set of experiments, we evaluate the image

denoising performance of different DL algorithms on four RGB images, House, Castle,

Mushroom, and Lena, which have dimensions 256×256×3, 480×320×3, 480×320×3, and

512× 512× 3, respectively. We corrupt the images using additive white Gaussian noise

with standard deviations σ = {10, 50}. To construct the training data set, we extract

overlapping patches of size 8×8 from each image and treat each patch as a 3-dimensional

data sample. We learn dictionaries with parameters m = [3, 8, 8] and p = [3, 16, 16].

In the training stage, we perform sparse coding using FISTA [103] (to reduce training

time) with regularization parameter λ = 0.1 for all algorithms. To perform denoising,
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(a) (b)

Figure 5.2: (a) Normalized representation error of various DL algorithms for 3rd-order
synthetic tensor data. (b) Performance of online DL algorithms for House.

we use OMP with s = dp/20e. To evaluate the denoising performances of the methods,

we use the resulting peak signal to noise ratio (PSNR) of the reconstructed images [104].

Table 5.1 demonstrates the image denoising results.

LSR-DL vs Unstructured DL: We observe that STARK outperforms K-SVD

in every case when the noise level is high and in most cases when the noise level is

low. Moreover, TeFDiL outperforms K-SVD in both low-noise and high-noise regimes

for all four images while having considerably fewer parameters (one to three orders of

magnitude).

LSR-DL vs KS-DL: We compare our results with KS-DL algorithms SeDiL [14]

and BCD [16]. Our LSR-DL methods outperform SeDiL and while BCD has a good

performance for σ = 10, its denoising performance suffers when noise level increases.4

Table 5.2 demonstrates the image denoising performance of TeFDiL for Mushroom

based on the separation rank of TeFDiL. When the noise level is low, performance

improves with increasing the separation rank. However, for higher noise level σ =

50, increasing the number of parameters has an inverse effect on the generalization

performance.

Comparison of LSR-DL Algorithms: We compare LSR-DL algorithms BCD,

4Note that SeDiL results may be improved by careful parameter tuning.
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STARK and TeFDiL. As for the merits of our LSR-DL algorithms over BCD, our ex-

periments show that both TeFDiL and STARK outperform BCD in both noise regimes.

In addition, while TeFDiL and STARK can be easily and efficiently used for higher

separation rank dictionaries, when the separation rank is higher, BCD with higher rank

does not perform well. While STARK has a better performance than TeFDiL for some

tasks, it has the disadvantage that it does not output the coordinate dictionaries and

does not allow for direct tuning of the separation rank. Ultimately, the choice be-

tween these two algorithms will be application dependent. The flexibility in tuning the

number of KS terms in the dictionary in TeFDiL (and indirectly in STARK, through

parameter λ1) allows selection of the number of parameters in accordance with the size

and quality of the training data. When the training set is small and noisy, smaller sep-

aration rank (perhaps 1) results in a better performance. For training sets of larger size

and better quality, increasing the separation rank allows for higher capacity to learn

more complicated structures, resulting in a better performance.

OSubDil vs Online (Unstructured) DL: Figure 5.2b shows the PSNR for recon-

structing House using OSubDil and Online DL in [54] based on the number of observed

samples. We observe that in the presence of high level of noise, our structured algorithm

is able to outperform its unstructured counterpart with considerably less parameters.

5.5 Conclusion

We provided the low-separation-rank dictionary learning model (LSR-DL) to learn

structured dictionaries for tensor data. This model bridges the gap between unstruc-

tured and separable DL models. We presented two LSR-DL algorithms and showed

that they have better generalization performance for image denoising in comparison to

unstructured DL algorithm K-SVD [4] and existing KS-DL algorithms SeDiL [14] and

BCD [16]. We also presented OSubDil that to the best our knowledge is the first online

algorithm that results in LSR or KS dictionaries. We show that OSubDil results in

a faster reduction in the reconstruction error in terms of number of observed samples

compared to the state-of-the-art online DL algorithm [54] when the noise level in data

is high.
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Figure 5.3: Rearranging a KS matrix (K = 2) into a rank-1 matrix.

5.6 Appendix

5.6.1 Rearrangement of Kronecker Product to a Low Rank Tensor

To illustrate the procedure that rearranges a KS matrix into a rank-1 tensor, let us first

consider A = A1 ⊗A2. The elements of A can be rearranged to form Aπ = d2 ◦ d1,

where dk = vec(Ak) for k = 1, 2 [105]. Figure 5.3 depicts this rearrangement for A.

Similarly, for A = A1 ⊗A2 ⊗A3, we can write Dπ = d3 ◦ d2 ◦ d1, where each frontal

slice5 of the tensor Dπ is a scaled copy of d3 ◦ d2. The rearrangement of A into Aπ is

performed via a permutation matrix Π such that vec(Aπ) = Π vec(A). Given index l

of vec(A) and the corresponding mapped index l′ of vec(Aπ), our strategy for finding

the permutation matrix is to define l′ as a function of l. To this end, we first find

the corresponding row and column indices (i, j) of matrix A from the lth element of

vec(A). Then, we find the index of the element of interest on the Kth order rearranged

tensor Aπ, and finally, we find its location l′ on vec(Aπ). Note that the permutation

matrix needs to be computed only once in an offline manner, as it is only a function of

the dimensions of the factor matrices and not the values of elements of A.

We now describe the rearrangement procedure in detail for the case of KS matrices

that are Kronecker product of K = 3 factor matrices. Throughout this section, we

define a k-th order “tile” to be a scaled copy of AK−k+1 ⊗ · · · ⊗ AK for K > 0. A

zeroth order tile is just an element of a matrix.

5A slice of a 3-dimensional tensor is a 2-dimensional section defined by fixing all but two of its
indices. For example, a frontal slice is defined by fixing the third index.
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Kronecker Product of 3 Matrices

In the case of 3rd-order tensors, we take the following steps to find permutation matrix

Π:

i) Find index (i, j) in A that corresponds to the l-th element of vec(A).

ii) Find the corresponding index (r, c, s) on the third order tensor Aπ.

iii) Find the corresponding index l′ on vec(Aπ).

iv) Set Π(l′, l) = 1.

Let A = A1⊗A2⊗A3, with A ∈ Rm×p and Ak ∈ Rmk×pk for k ∈ [3]. For the first

operation, we have

(i, j) =

(⌈
l

m

⌉
, l −

⌊
l − 1

m

⌋
m

)
. (5.20)

The rearrangement procedure works in the following way. For each element indexed

by (i, j) on matrix A, find the 2nd-order tile to which it belongs. Let us index this

2nd-order tile by T2. Then, find the 1st-order tile (within the 2nd-order tile indexed

T2) on which it lies and index this tile by T1. Finally, index the location of the element

(zeroth-order tile) within this first-order tile by T0. After rearrangement, the location

of this element on the rank-1 tensor is (T0, T1, T2).

In order to find (T0, T1, T2) that corresponds to (i, j), we first find T2, then T1, and

then T0. To find T2, we need to find the index of the 2nd-order tile on which the element

indexed by (i, j) lies:

T2 =

⌊
j − 1

p2p3

⌋
︸ ︷︷ ︸

S2
j

m1 +

⌊
i− 1

m2m3

⌋
︸ ︷︷ ︸

S2
i

+1, (5.21)

where S2
j and S2

i are the number of the 2nd-order tiles on the left and above the tile

to which the element belongs, respectively. Now, we find the position of the element in
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this 2nd-order tile:

i2 = i− S2
im2m3 = i−

⌊
i− 1

m2m3

⌋
m2m3,

j2 = j − S2
j p2p3 = j −

⌊
j − 1

p2p3

⌋
p2p3. (5.22)

For the column index, T1, we have

T1 =

⌊
j2 − 1

p3

⌋
︸ ︷︷ ︸

S1
j

m2 +

⌊
i2 − 1

m3

⌋
︸ ︷︷ ︸

S1
i

+1. (5.23)

The location of the element on the 1st-order tile is

i1 = i2 − S1
im3 = i2 −

⌊
i2 − 1

m3

⌋
m3,

j1 = j2 − S1
j p3 = j2 −

⌊
j2 − 1

p3

⌋
p3. (5.24)

Therefore, T0 can be expressed as

T0 = (j1 − 1)m3 + i1. (5.25)

Finally, in the last step we find the corresponding index on vec(Aπ) using the

following rule.

l′ =(T2 − 1)m2m3p2p3 + (T1 − 1)m3p3 + T0. (5.26)
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Chapter 6

Computationally Efficient Processing of Tensor Data

through Exploitation of Multidimensional Structure

This chapter focuses on the computational advantages of taking the multidimensional

structure of tensor data into account for tensor data processing. More specifically, it

studies training-based sparse channel estimation in massive MIMO-OFDM systems.

In contrast to prior works, the focus here is on the setup in which (training) pilot

tones are spread across multiple OFDM symbols. Within this setup, two training

models—termed distinct block diagonal (DBD) model and repetitive block diagonal

(RBD) model—are investigated. The restricted isometry property, which leads to sparse

recovery guarantees, is proven for the DBD model. Further, it is established that the

RBD model, through exploitation of its tensor structure, leads to computationally

simpler sparse recovery algorithms. Finally, numerical experiments are provided that

compare and contrast the channel estimation performance under the two models as

a function of the number of pilot tones per OFDM symbol and the total number of

OFDM symbols.1

6.1 Introduction

Employing multiple antennas in communication systems creates multiple parallel data

streams and enhances system reliability [107]. Massive MIMO systems offer many

advantages such as increased data throughput and link reliability that are a result

of adding extra antennas to MIMO systems [108]. In such systems, coherent signal

detection and low bit-error rates rely on the channel state information available at the

1The results presented in this chapter have been accepted into the Proceedings of 2019 IEEE Inter-
national Workshop on Signal Processing Advances in Wireless Communications [106].
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receiver. This requires the channel to be periodically estimated at the receiver [17, 107].

The large number of transmit (Tx) and receive (Rx) antennas in massive MIMO

systems gives rise to large number of channel parameters, which require considerable

spectral resources to estimate them. To reduce spectral resources used for channel

estimation, many works exploit the fact that wireless channels associated with a num-

ber of scattering environments tend to be highly sparse at high signal space dimen-

sion [17, 108]. In this case, training-based channel estimation techniques, which involve

transmitting known data to the receiver, can exploit the literature on sparse recovery

for reduction in training spectral resources [17, 107, 109].

In this chapter, we study sparse channel estimation of massive MIMO-OFDM chan-

nels. Most prior works on sparse channel estimation in MIMO-OFDM systems require

the (training) pilot subcarriers (tones) to be interleaved with data subcarriers within

one OFDM symbol [17, 107]. But practical systems tend to spread pilot tones across

multiple OFDM symbols [110]. While one might anticipate that spreading training

resources across frequency and time will result in the same channel estimation perfor-

mance as using the same number of resources in one OFDM symbol, no prior work has

formally investigated this problem to the best of our knowledge. Specifically, let Nt

denote the number of OFDM symbols and let Nf be the number of OFDM pilot tones

per OFDM symbol. Then the total number of training resources is Ntr = NtNf and

the question we want to address is: Does the performance of sparse channel estimation

in massive MIMO-OFDM systems depend on Ntr alone or is it also a function of Nt

and Nf?

In order to address this question, we focus on two models for training in massive

MIMO-OFDM systems. In the first model, termed the distinct block diagonal (DBD)

model, we assume independent training data are transmitted over different pilot tones.

Under this model, we show that a channel with no more than S non-zero parameters

can be reliably recovered from training observations as long as Ntr = Ω(S log2 S log3 p),

where p denotes the number of channel parameters per Rx antenna. While this result

suggests that estimation of (massive) MIMO-OFDM channels is largely a function of

the total number of training spectral resources Ntr, we rush to add that this is just
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a sufficient condition and it comes with a few caveats that are discussed later in the

paper.

The second training model discussed in this chapter is termed the repetitive block

diagonal (RBD) model, in which same training data are transmitted across different pi-

lot tones. The motivation for this model comes from the need to reduce computational

and storage complexity at the receiver in downlink settings. Consider, for instance,

the setup involving 64 Tx antennas, 4 Rx antennas, and 320 delay taps per Tx-Rx

pair. This results in an 81,920-dimensional channel estimation problem at the receiver,

requiring large computational and storage resources. The RBD model, however, can

be formulated as a Tucker decomposition of the observations [111]. In this case, we

show the channel coefficient “tensor” can be recovered using the sparse tensor recovery

technique referred to as Kronecker-OMP [28], which has similar performance as the

classical orthogonal matching pursuit (OMP) algorithm [112], but has significantly less

computational complexity and memory requirements. While we do not derive theoret-

ical guarantees for the RBD model, we provide numerical experiments to compare its

performance to that of the DBD model.

In our numerical experiments, we also study the impact of different values of Nt,

Nf , and Ntr on the performance of both DBD and RBD models. We further investigate

the use of overcomplete DFT bases, instead of the canonical bases, to model the angles

of arrival (AoA) and angles of departure (AoD) in MIMO channels. Our results show

that this leads to enhanced channel estimation. This suggests that data-driven bases

can be learned using methods such as dictionary learning to achieve improved channel

estimation performance [113].

The rest of this chapter is organized as follows. In Section 6.2, we formulate the

MIMO-OFDM channel estimation problem and define our two models. In Section 6.3,

we provide recovery guarantees for sparse channels recovered from observations follow-

ing the DBD model. In Section 6.4, we provide numerical experiments to demonstrate

the performance of both modeling techniques. Finally, we conclude the chapter in

Section 6.5.
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6.2 Problem Formulation

Consider a massive MIMO-OFDM system communicating over a broadband multipath

channel G. Let NT and NR denote the number of Tx and Rx antennas, respectively,

that are half-wavelength spaced linear arrays. Moreover, given channel bandwidth W

and symbol duration T , denote N0 = WT as the temporal signal space dimension,

i.e, the number of OFDM subcarriers. Assuming W � 1/τmax, where τmax denotes

the maximum delay spread of the channel, the frequency response of channel G can be

expressed as2

G(f) =

Np∑
n=1

βnaR(θR,n)aH
T (θT,n)e−j2πτnf , (6.1)

where Np is the number of physical paths and aR(θR,n) and aT (θT,n) are the receive

and transmit steering vectors, respectively. Here, βn, θR,n, θT,n, and τn denote the com-

plex path gain, AoA, AoD, and delay associated with the n-th path, respectively. The

physical channel model (6.1) involves a large number of parameters. This motivates

a virtual channel representation G of G that can compactly and linearly model inter-

actions between the Tx and Rx antennas. This involves a discretized approximation

of G by sampling the angle-delay space at Nyquist rate to obtain a 3rd-order tensor

G ∈ RNR×NT×N0 that can be expressed via the Tucker decomposition [19] as

G = H×1 AR ×2 AT ×3 AF , (6.2)

where H ∈ CNR×NT×L denotes the virtual channel coefficient tensor with L , dWτmaxe+

1, AR ∈ CNR×NR , AT ∈ CNT×NT , and AF ∈ CN0×L are the canonical DFT bases as-

sociated with AoA, AoD, and delay spread that are used to map H to G [111]. In

particular, each element of H can be expressed in terms of the physical propagation

2We do not consider the Doppler spread in the scope of this work for simplicity.
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path parameters as

H(i, k, l) =

Np∑
n=1

βnfNR(
i

NR
− θR,n)f∗NT (

k

NT
− θT,n) sinc(l −Wτn), (6.3)

where fNR(θR) and fNT (θT ) denote the Tx and Rx smoothing kernels defined as fN (θ) ,

1
N

∑N−1
i=1 e−j2πiθ, and sinc(x) , sin(πx)/πx.

In wideband scenarios, majority of the entries of H tend to be below the noise

floor. Our goal is to estimate the resulting “sparse” (or approximately sparse) channel

coefficient tensor H using pilot training sequences transmitted over pilot subcarriers

spread across Nt OFDM symbols (we assume that the channel stays constant over Nt

OFDM symbols). We specifically focus on the setting in which the same set of Nf (out

of N0) subcarriers per OFDM symbol are reserved for training purposes, resulting in a

total of Ntr = NtNf pilot tones. Let Nf denote the indices of the pilot tones per OFDM

symbol and F ∈ RNf×N0 denote the subcarrier selection matrix that is comprised of

rows of IN0 corresponding to Nf . Then, each slice of training data Y ∈ CNR×Nt×Nf

observed at the Rx antennas after Nt symbols can be expressed as

Y(:, :, i) = H×1 AR ×2 XiAT ×3 fiAF + W(:, :, i), (6.4)

where i ∈ [Nf ], fi denotes the i-th row of F, and W ∈ CNR×Nt×Nf is the additive

noise tensor. Here, Xi = X0
iB denotes the pilot sequence transmitted over the i-th

subcarrier in which X0
i = {±1}Nt×Nt is a square orthogonal matrix and B ∈ CNt×NT is

a beamforming matrix that has unit-modulus entries with random phases. This ensures

the matrix XiAT will have similar norm columns.

We refer to the training model described by (6.4) as the distinct block diagonal

(DBD) model. This model can be simplified further by assuming that Xi , X for all

i ∈ [Nf ], which reduces (6.4) to

Y = H×1 AR ×2 XAT ×3 FAF + W. (6.5)
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Using properties of the Tucker decomposition [19], we can rewrite (6.5) as

vec(Y) = (FAF ⊗XAT ⊗AR) vec(H) + vec(W), (6.6)

where ⊗ denotes the matrix Kronecker product and vec(Y) denotes the vectorized

version of Y. We refer to this training model as the repetitive block diagonal (RBD)

model.

Our focus in this chapter is addressing the questions: Can we guarantee recovery

of sparse H under the DBD and RBD models? What are the computational advan-

tages of using the RBD model compared to the DBD model? We first address the first

question theoretically for the DBD model in the next section. Afterwards, we focus on

the numerical aspects of this question for both DBD and RBD models in Section 6.4.

In particular, due to the fact that (6.5) follows the Tucker decomposition, the RBD

model allows recovery of H using tensor recovery techniques. Specifically, Kronecker-

OMP is a method introduced in [28] that does not require explicit computation of the

Kronecker-structured measurement matrix (FAF ⊗XAT ⊗AR) in (6.6), thus facili-

tating recovering of H using less computation complexity and memory requirements

compared to regular OMP.

In the next section, we show that under the DBD model in (6.4), H is recoverable

under certain conditions on the measurement matrix.

6.3 Sparse Channel Estimation Under the DBD Model

Let us consider the linear observation model y = Ah + vec(W) in which h is S-sparse

(i.e., has no more than S non-zero entries). We first describe a property that is essential

for recovering h from y.

Proposition 6.1. Let A ∈ Cnk×p be a matrix with unit-norm columns. To ensure

reliable recovery of an S-sparse h ∈ Cp from y, A has to satisfy the restricted isometry

property (RIP) of order S, i.e., A ∈ RIP(S, δS) with δS ∈ (0, 1) if for all S-sparse h,

(1− δS)‖h‖22 ≤ ‖Ah‖22 ≤ (1 + δS)‖h‖22. (6.7)
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Notice that A ∈ RIP(S, δS) if we have

max
T ⊂[p],|T |≤S

∥∥∥AH
TAT − I|T |

∥∥∥
2
≤ δS , (6.8)

where AT denotes the matrix consisting of columns of A with indices T and I|T | denotes

the identity matrix of size |T | × |T |. Using the non-negative function ‖.‖T ,S : Cp×p →

[0,∞) that is defined as ‖P‖T ,S , maxT ⊂[p],|T |≤S ‖PT ×T ‖2, where PT ×T is a submatrix

of P constructed by collecting entries of P with indices in the set T × T , (6.8) can be

restated as

∥∥∥AHA− Ip

∥∥∥
T ,S
≤ δS . (6.9)

We now provide a theorem that shows that a special class of structured matrices

satisfies the RIP under certain conditions. The ensuing discussion then relates this class

of matrices to the observations arising within the DBD model.

Theorem 6.1. Let U ∈ Cp×p be a unitary matrix. Define X ,
{
xi,i′

}
, where i ∈ [mk],

i′ ∈ [k′], and k′ , p/m is an integer factor of p, to be a generating sequence whose

elements are independent realizations of Rademacher random variables taking values

±1 with probability 1/2. Let R ∈ Rmk×p be a block diagonal row-mixing matrix with

mk ≤ p, defined as

R ,



R1 0 . . . 0

0 R1 . . . 0

...
...

. . .
...

0 0 . . . Rm


, (6.10)

where

Ri ,


x(i−1)k+1,1 . . . x(i−1)k+1,k′

...
. . .

...

xik,1 . . . xik,k′

 . (6.11)
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Next, define Φ , RU. Further, given a subset Ω of cardinality |Ω| = n chosen uniformly

at random without replacement from [m], define Ω′ of cardinality |Ω′| = nk with ele-

ments Ω′ = {(i− 1)k + j, i ∈ Ω, j ∈ [k]}. Also, let A ∈ Cnk×p be the result of sampling

nk rows of Φ with indices in Ω′ and normalizing the resulting columns by
√
m/(kn).

Finally, define µU ,
√
pmaxi,j |uij | as the coherence of U. Then, for each integer p,

S > 2, and for any z > 1 and any δS ∈ (0, 1), there exist positive constants c1 and

c2 such that if nk ≥ c1zµ
2
US log2 S log3 p, then A satisfies RIP(S, δS) with probability

higher than 1− 20 max
{

exp
(
− c2δ2Sz

)
, p−1

}
.

Similar to the proof provided by Bajwa et al. [114], we prove this theorem by first

assuming that the block sampling variables in Ω follow Bernoulli distribution, and

then translate the results for uniform distribution. To this end, let ξ = {ξi}mi=1 be

independent Bernoulli random variables taking value 1 with probability n/m and let

Ω , {i : ξi = 1}. Also, define η = {ηj}mkj=1 = ξ⊗1k and Ω′ = {j : ηj = 1}. We then have

the following lemmas. In all lemmas, it is assumed that A is a structurally-subsampled

unitary matrix, as defined in Theorem 6.1, generated from Φ according to the Bernoulli

sampling model.

Lemma 6.1. We have E
[
AHA

]
= Ip.

Proof. The proof follows from steps similar to those in [115, Lemma 3.10] after some

algebraic manipulations.

Lemma 6.2. For any integer p > 2 and any r ∈ [2, 2 log p], we have

(E [‖A‖rmax])1/r ≤
√
m

nk
(E [‖Φ‖rmax])1/r ≤

√
16µ2U log p

nk
. (6.12)

Proof. The proof relies on the Khintchine inequality [116, Lemma 4.1], and follows

similar steps as in [115, Lemma 3.13].

Lemma 6.3. For any integer p > 2 and any ε ∈ (0, 1), we have E
[∥∥AHA− Ip

∥∥
T ,S

]
≤
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kε provided

nk ≥ c3ε−2µ2US log2 S log3 p, (6.13)

for some positive constant c3.

Proof. We have

E
[∥∥∥AHA− Ip

∥∥∥
T ,S

]
(a)

≤
k∑
l=1

E

[∥∥∥∥AH
l Al −

1

k
Ip

∥∥∥∥
T ,S

]
, (6.14)

where Al denotes the matrix comprised of rows of A with indices {(i− 1)k + l}mi=1

and (a) follows from Jensen’s inequality since ‖.‖T ,S is a norm [115]. We can show

that E
[∥∥AH

l Al − 1
kIp
∥∥
T ,S

]
≤ ε using similar steps as in[115, Lemma 3.14] that takes

advantage of the Rudelson-Vershynin inequality [117, Lemma 3.8].

Proof of Theorem 6.1. A result from [118, Section 2.3] states that if subsampled ma-

trices from a certain class satisfy RIP with probability exceeding 1− ζ for the Bernoulli

sampling model, then they also satisfy RIP with probability exceeding 1 − 2ζ for the

uniformly-at-random sampling model. It can be shown that this result holds for the

case of our block Bernoulli and uniformly-at-random sampling models as well. Hence, it

is sufficient to show that A satisfies RIP(δS , S) for the block Bernoulli sampling model.

We next define

Yi ,
m

nk
ξiΦ

H
i Φi −

1

m
Ip, Ỹi ,

m

nk

(
ξiΦ

H
i Φi − ξ′iΦ′i

H
Φ′i

)
, (6.15)

for i ∈ [m]. Here, Φi denotes the matrix comprised of rows of Φ with indices {(i −

1)k + l}kl=1, ξ
′
i and Φ′i are independent copies of ξi and Φi, and hence,

∑m
i=1 Ỹi is a

symmetric version of
∑m

i=1 Yi. Defining Ỹ ,
∥∥∑m

i=1 Ỹi

∥∥
T ,S and Y , ‖

∑m
i=1 Yi‖T ,S ,

from [116], we have for all u > 0:

E
[
Ỹ
]
≤ 2E [Y] , P [Y > 2E [Y] + u] ≤ 2P

[
Ỹ > u

]
. (6.16)
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Hence, from Lemma 6.3, E
[
Ỹ
]
≤ 2kε. We can use Lemma 6.2 and Markov’s inequality

to show that with probability exceeding 1− 2p−1, maxi
∥∥Ỹi

∥∥
T ,S ≤ 2SB1, where B1 ,

16eµ2U log p
n . Conditioned on the event F ,

{
maxi

∥∥Ỹi

∥∥
T ,S ≤ 2SB1

}
, using Lemma 6.3

and the Ledoux-Talagrand inequality [117, Lemma 3.10], if (6.13) is satisfied, then for

any integer r ≥ q, any t > 0, some absolute constant c4 > 0, and any ε ∈ (0, 1/k):

P
[
Ỹ ≥ 16qkε+ 4rSB1 + t|F

]
<
cr4
qr

+ 2 exp

(
−t2

1024qk2ε2

)
. (6.17)

Next, choose q = dec4e, t = 32
√
qζkε and r = d t

2SB1
e for some ζ > 1, and define

c1 , max
{
e
√
q, c3

}
. Given P(F c) ≤ 2p−1, if nk ≥ c1ε

−2µ2US log2 S log3 p, then r ≥ q

and

P
[
Ỹ ≥ (16q + 96

√
qζ)kε

]
< exp

(
−
√
qζεkn

3µ2US log p

)
+ 2 exp(−ζ2) + 2p−1. (6.18)

We can translate this result for Y using (6.16). If (6.13) is satisfied, then E [Y] ≤ kε

from Lemma 6.3. In this case, we get

P [Y ≥ (2 + 16q + 96
√
qζ)kε] < 2 exp

(
−
√
qζεkn

3µ2US log p

)
+ 4 exp(−ζ2) + 4p−1

(a)
< 10 max

{
exp

(
−c2δ2Sz

)
, p−1

}
, (6.19)

where (a) follows from defining c5 , 2 + 16q+ 96
√
q (which implies c5ζkε > (2 + 16q+

96
√
qζ)kε), choosing ζ = δS

c5kε
, and denoting c2 , 1/c5 and z , 1/(kε)2.

6.3.1 Discussion

Theorem 6.1 implies that if nk = Ω(µUS log2 S log3 p), A will satisfy RIP(S, δS) with

δS = Ω(kε) for an appropriately small ε ∈ (0, 1) and an S-sparse h is recoverable

from y with high probability. Notice however that for large values of k, δS > 1 and

Theorem 6.1 will not hold. This restriction is a limitation of our proof technique.

Connecting Theorem 6.1 to the MIMO-OFDM observation model in (6.4), let yr ∈

CNtNf , r ∈ [NR], denote the vectorized observation received at antenna r. Also, let the



146

indices of the Nf pilot tones be selected uniformly at random from [N0]. In this case,

yr can be divided into Nf blocks: yr =
[
yr(1)> . . . yr(Nf )>

]>
. We can write

yi(r) = Xi(fiAF ⊗AT )hr + wi(r), i ∈ [Nf ], (6.20)

where hr ∈ CNTL is a vectorized version of channel coefficients H(r, k, l), where k ∈ [NT ]

and l ∈ [L]. This corresponds to the observation model in Theorem 6.1 where Ri = Xi,

U consists of stacking 1√
N0

(aF,i⊗AT ) on top of each other, where aF,i denotes the ith

row of AF for i ∈ [N0], k = Nt, n = Nf , and p = NTL. Here, µU = 1. This means

that for reliable recovery of hr, NtNf = Ω(S log2 S log3NTL) has to be satisfied. In

comparison to the result provided by Bajwa et al. [114] for the case of Nt = 1 that

requires scaling of Nf = Ω(S log2 S log3NTL), it can be seen that the total number of

parameters in Xi, i.e. Ntr = NtNf , is the determining factor for reliable recovery of hr

in our setup. However, note that the theorem does not hold for large values of Nt since

in that case δS > 1.

Our discussion so far has been focused on sufficient conditions. In the next section,

we show numerically that the sparse channel estimation performance actually depends

on individual values of Nt and Nf as well as on Ntr.

6.4 Numerical Results

In this section, we evaluate the performance of sparse channel estimation under the

DBD and RBD models in terms of the number of OFDM pilot subcarriers per symbol

Nf and the number of symbols Nt. The experimental setup corresponds to NR = 4,

NT = 64, N0 = 1024, Np = 200. We assume W = 25.12MHz and τn’s are uniformly dis-

tributed over [0, 12.7µsec], resulting in L = 320. Moreover, (θR,n, θT,n)’s are uniformly

distributed over [−1/2, 1/2]× [−1/2, 1/2] and βn’s follow the normal distribution. We

use Gaussian noise with standard deviation σ = 0.2
√

2. We select the set of pilot

subcarriers Nf uniformly-at-random from [N0]. We generate random Xi’s according to

the description in Section 6.2. We generate channel realization coefficients according

to (6.3) and conduct experiments for Nt = [4, 8, 16, 32] and Nf = [16, 32, 64, 128, 256].
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(a)

(b)

(c)

Figure 6.1: Normalized reconstruction error for DBD and RBD models as a function
of (a) Nf and (b) Ntr. In (c), we plot the normalized reconstruction error for complete
(C) and overcomplete (OC) AoA and AoD bases (RBD model only).
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We use OMP and Kronecker-OMP with sparsity level S = 1000 to reconstruct H from

noisy observations Y for DBD and RBD models, respectively.

We evaluate the channel estimation performance via the normalized reconstruction

error, i.e.,
‖G−Ĝ‖2

F

‖G‖2F
. In all experiments, we average the error over 100 Monte Carlo

experiments for random channel, additive noise, and training pilot realizations.

We conduct two sets of experiments. In both sets, the reconstruction error is plotted

against Nf for various Nt’s. In the first set, we compare the performance of channel

estimation using the DBD and the RBD models. Figure 6.1a shows the reconstruc-

tion performance for both models (solid lines represent RBD model while dotted lines

represent DBD model). For both models, it can been seen that lower error levels are

achieved by increasing Nf for all Nt’s. We also achieve better reconstruction when we

choose a larger Nt. It can also be seen that although the DBD model outperforms the

RBD model for smaller values of Nt and Nf , their performance is similar for larger val-

ues, especially for Nf = 256. This shows that given sufficient training pilot tones, both

models have a similar performance and one can use the RBD model to take advantage

of Kronecker-OMP to reduce storage costs and required computational resources at the

Rx.

Figure 6.1b shows the error for both training models as a function of the total

number of pilot tones, Ntr = NtNf . While it is clear that the general trend is downward

based on Ntr, it is observed that Ntr is not the only determining factor and values of

Nf and Nt individually matter as well in determining the error.

In the second set of experiments, we compare the performance of channel estima-

tion using complete (C) and overcomplete (OC) bases under the RBD model. We use

factor matrices AR, XAT , and FAF to form the measurement matrix in the complete

case (solid lines in Figure 6.1c) and we use overcomplete DFT matrices instead of AR

and AT in the overcomplete setup (dotted lines in figure 6.1c). It can be observed

in Figure 6.1c that the use of overcomplete DFT bases results in a reduction in the

reconstruction error. This suggests that perhaps these matrices can be carefully de-

signed using dictionary learning techniques similar to those in [88, 113] for enhanced

reconstruction performance.
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6.5 Conclusion

In this chapter, we focused on the computational aspects of multidimensional processing

of tensor data and we studied the sparse channel estimation problem for (massive)

MIMO-OFDM systems. Here, the underlying channel can be modeled as a tensor with

three modes (angle of arrival, angle of departure, and delay spread). We introduced

the distinct block diagonal model for training data and obtained theoretical guarantees

for channel recovery based on number of training pilot tones. Moreover, we studied the

repetitive block diagonal model for training data that results in a Tucker decomposition

for the observations. This formulation allows recovery of channel coefficients using

sparse tensor recovery techniques that use less computational measures and memory

compared to traditional recovery techniques.

We further provided a comparison of the performance of the two models via nu-

merical experiments. While our theory states that the total number of parameters

determine the channel estimation performance, our numerical experiments show that

the performance is also a function of the number of OFDM symbols and pilot tones.

Consequently, there is a lot more that needs to be understood about the performance

of these models. Future work includes providing formal guarantees for the repetitive

block diagonal model using proof techniques similar to those in [119]. Our perspectives

also include the use of dictionary learning techniques to improve the channel estimation

performance for more challenging scenarios.
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Chapter 7

Conclusion and Future Work

In this dissertation, we provided key results for the fundamental limits of DL meth-

ods that explicitly account for the multidimensional structure of tensor data through

KS dictionaries. We also proposed structured DL algorithms for efficient tensor data

representation. Finally, we investigated the computational advantages of using tensor

recovery techniques over vectorized methods for channel estimation in MIMO-OFDM

systems. In this chapter, we summarize our results and discuss related open problems

and future work.

7.1 Kronecker Structured Dictionary Learning for Tensor Data

In Chapter 3, we followed an information-theoretic approach to provide lower bounds

for the worst-case MSE of KS dictionaries that generate Kth-order tensor data. We

established that estimating a KS dictionary comprising of K coordinate dictionaries

with dimensions {mk × pk} requires a number of samples that needs to grow only

linearly with the sum of the sizes of the component dictionaries, i.e.,
∑

k∈[K]mkpk. We

also demonstrated that for a special case of K = 2, there exists an estimator whose MSE

meets one of our derived lower bounds. While our analysis is local in the sense that we

assume the true dictionary belongs in a local neighborhood with known radius around

a fixed reference dictionary, the derived minimax risk effectively becomes independent

of this radius for sufficiently large neighborhood radius.

Furthermore, in Chapter 4, we derived sufficient conditions for local recovery of

coordinate dictionaries comprising a KS dictionary that is used to represent Kth-order

tensor data. Tensor observations are assumed to be generated from a KS dictionary

multiplied by sparse coefficient tensors that follow the separable sparsity model. This
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work provides sufficient conditions on the underlying coordinate dictionaries, coefficient

and noise distributions, and number of samples that guarantee recovery of the individual

coordinate dictionaries up to a specified error, as a local minimum of the objective

function, with high probability. In particular, the sample complexity to recover K

coordinate dictionaries with dimensions {mk × pk} up to estimation errors {εk} is

shown to be maxk∈[K]O(mkp
3
kε
−2
k ).

7.1.1 Extensions of Sample Complexity Bounds

In terms of theoretical results, there are many aspects of KS-DL that have not been

addressed in the literature so far. Firstly, our achievability result holds for dictionary

coefficients generated according to the separable sparsity model. This model has some

limitations compared to the random sparsity model and we leave the analysis for the

random sparsity model for future work. Also, we showed that there exists a gap between

our provided sample complexity lower bounds and upper bounds. Hence, another future

direction of possible interest includes using other techniques to find tighter bounds.

Moreover, the results that are obtained in Chapters 3 and 4 are based on the Frobe-

nius norm distance metric and only provide local recovery guarantees. Open questions

include corresponding abounds for other distance metrics and global recovery guaran-

tees. In particular, getting global recovery guarantees requires using a distance metric

that can handle the inherent permutation and sign ambiguities in the dictionary.

7.1.2 Algorithmic Open Problems

In terms of algorithmic open problems, a future direction of our work includes providing

practical KS-DL algorithms that achieve the sample complexity scaling provided in

Chapters 3 and 4.

Furthermore, in some cases we may not know a priori the parameters for which a

KS dictionary yields a good model for the data. In particular, given dimension p, the

problem of selecting the pk’s for coordinate dictionaries such that p =
∏
k pk has not

been studied. For instance, in case of RGB images, selection of pk’s for the spatial

modes is somewhat intuitive, as each column in the separable transform represents a
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pattern in each mode. However, selecting the number of columns for the depth mode,

which has 3 dimensions, is less obvious. This gives rise to the question: Given a fixed

number of overall columns for the KS dictionary, how should we divide it between the

number of columns for each coordinate dictionary?

7.2 Low Separation Rank Dictionary Learning for Tensor Data

In Chapter 5, we addressed the problem of learning sparse representations of tensor

data using a mixture of separable dictionaries. For this purpose, we proposed the

LSR-DL model to learn structured dictionaries. This model bridges the gap between

unstructured and KS-DL models. We presented two LSR-DL algorithms called STARK

and TeFDiL and showed that they have better generalization performance for image

denoising in comparison to unstructured DL algorithm K-SVD [4] and existing KS-DL

algorithms SeDiL [14] and BCD [16]. We also presented OSubDil that to the best our

knowledge is the first online algorithm that results in LSR or KS dictionaries. We

show that OSubDil results in a faster reduction in the reconstruction error in terms of

number of observed samples compared to the state-of-the-art online DL algorithm [54]

when the noise level in data is high.

7.2.1 Alternative Structures on Underlying Dictionary

In terms of future work, extensions of dictionary identifiability results to structures

other than KS and LSR is an open problem. Examples of these structures include DL

using the CP decomposition [120] and the tensor t-product [72]. Characterizing the DL

problem and understanding the practical benefits of these models remain interesting

questions for future work.

7.3 Massive MIMO Channel Estimation

In Chapter 6, we focused on multidimensional processing of tensor data and studied

the advantages associated with taking the structure of data into account in tensor data

representation. To this end, we studied the problem of sparse channel estimation in
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(massive) MIMO-OFDM systems. We introduced the distinct block diagonal model

for training data and obtained theoretical guarantees for channel recovery based on

number of training pilot tones. Moreover, we studied the repetitive block diagonal

model for training data that results in a Tucker decomposition for the observations.

This formulation allows recovery of channel coefficients using sparse tensor recovery

techniques that use less computational measures and memory compared to traditional

recovery techniques. We further provided a comparison of the performance of the two

models via numerical experiments. Future work in this regard includes providing formal

guarantees for the repetitive block diagonal model.

7.3.1 Structured DL for Massive MIMO Channel Estimation

Future work in this regard includes the use of structured DL techniques to improve

the channel estimation performance in massive MIMO-OFDM systems. Prior work by

Ding and Rao [113] has shown that using a dictionary learning-based channel model

for MIMO channel estimation results in an improved channel estimation performance

compared to using predefined bases. This is attributed to the fact that the learned

dictionary can adapt to the cell characteristics, can be applied to an arbitrary array

geometry, and does not require accurate array calibration [113].

7.4 Joint Sparse Representations for Multimodal Data

Another interesting future direction of our work includes the problem of joint sparse

representation of general multimodal data. Examples of such data include fMRI and

EEG signals for a patient or a video with its corresponding audio signal. While various

components of such multimodal data can be represented as tensors, the overall multi-

modal structure cannot be modeled as a multiway array. Although DL approaches that

are based on tensor decompositions have resulted in efficient representations for tensor

data, such methods cannot be extended to the problem of multimodal data representa-

tion. Prior works addressing this problem employ canonical correlation analysis (CCA)

and its variants to boost cross-modal correlation for various modalities [121, 122] as well
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as extensions of Latent Dirichlet Allocation (LDA) to model correlations of multimodal

data at latent semantic (topic) level across modalities [123, 124]. Furthermore, Zhuang

et al. [125] proposed a supervised coupled DL model with group structures for multi-

modal retrieval. This approach exploits the correlation between modalities using a set

of linear mappings between sparse codes. Future work in this regard includes building

upon these approaches to further exploit the tensor structure in the components as well

as the overall multimodal structure in the data.



155

Bibliography
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