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ABSTRACT OF THE DISSERTATION

Tunable Biclustering Algorithm for Analyzing Large Gene

Expression Data Sets

By AMARTYA SINGH

Dissertation Director:

Hossein Khiabanian and Gyan Bhanot

Traditional clustering approaches for gene expression data are not well adapted to address the com-

plexity and heterogeneity of tumors, where small sets of genes may be aberrantly co-expressed in

specific subsets of tumors. Biclustering algorithms that perform local clustering on subsets of genes

and conditions help address this problem. We have proposed a graph-based Tunable Biclustering

Algorithm (TuBA) (Chapter 2) based on a novel pairwise proximity measure that leverages the size

of the data sets to identify subsets of tumor samples that co-express subsets of genes at their highest

or lowest levels relative to other samples.

We applied TuBA to three large gene expression datasets encompassing a total of 3,940 breast in-

vasive carcinoma (BRCA) patients (Chapter 3). We demonstrated that there was significant agree-

ment between the results obtained for each data set, and discovered that about 50% of the altered

co-expression signatures were associated with a subtype of the disease that exhibits low levels of ex-

pression of the estrogen hormone receptor 1 (ER) and the human epidermal growth factor receptor

2 (HER2) genes. Tumors belonging to this subtype are labelled as ER−/HER2−. Since only 15%

of all BRCA patients are estimated to have tumors that belong to this subtype, our algorithm was

able to highlight the tremendous heterogeneity in alterations within tumors of this subtype. Quite

significantly, more than 50% of these signatures were associated with alterations in the DNA that

results in amplification (or deletion) of genes copies, which subsequently result in higher (or lower)

level of gene expression. Thus, TuBA was especially effective in identifying transcriptionally active
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copy number variations in tumor samples. Finally, TuBA identified biclusters that were associated

with the tumor microenvironment, which included biclusters associated with infiltrating immune and

stromal cells. These can improve our understanding about the role played by the microenvironment

in modulating tumor progression.

We showed that TuBA outperforms other algorithms in identification of co-expressed genes located

in transcriptionally active copy number altered sites (Chapter 4). Moreover, from a differential co-

expression perspective, TuBA offers an advantage over other methods since no prior specification of

subsets of samples (conditions) is necessary; the nature of our proximity measure ensures that such

differential co-expression signatures are preferentially identified.

In summary, our method identified a multitude of altered transcriptional profiles associated with the

tremendous heterogeneity of diseased states in breast cancer. Exploring the diversity of these aber-

rant signatures can help identify potential biomarkers of clinical relevance that can further improve

treatment outcomes, especially for ER−/HER2− breast cancers. Although transcriptomic alter-

ations are not the ultimate determinants of progression of disease, our algorithm holds the promise

to improve therapeutic selection and design by identifying significantly altered transcriptional pat-

terns associated with tumors.
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1

Chapter 1

Background

“Answer. That you are here - that life exists and identity. That the powerful play goes on,

and you may contribute a verse.”

– Walt Whitman, Leaves of Grass

“..vices are sometimes only virtues carried to an excess!”

– Charles Dickens, Dombey and Son

1.1 A cell biology primer

Cells are the building blocks of all of life on Earth [2]. The building blocks themselves are made of

a diverse array of molecules that serve a variety of functions. Most of these molecules belong to one

of three classes of molecules - deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins.

The entire set of DNA within the nucleus of the cell is called the genome. According to Matt Ridley

[3], if we imagine the human genome as a book, it consists of 23 chapters, called chromosomes. Each

of these chapters contain thousands of stories, called genes. The paragraphs that convey parts of the

stories are called exons. Interspersed between such paragraphs are advertisements called introns.

All the words, called codons, are three letters long and use only 4 letters - A, T, C, G - called bases.

The bases are A - adenine, T - thymine, C - cytosine, and G - guanine. While the book analogy

provides a good perspective about the form of the genome, it does not suffice to explain how the

information manifests itself to enable life’s processes.

Described as the central dogma of molecular biology by Francis Crick in 1970 [4], the flow of infor-

mation between DNA, RNA, and proteins holds the key to the sustenance and perpetuation of life

in all its forms. Figure 1.1 shows the flow of information from DNA to RNA to protein as per the

central dogma. The solid arrows indicate the information flows that are ubiquitous and essential in

all cells. The dashed arrow indicates a flow that takes place occasionally. The steps numbered in

the figure refer to the following processes respectively:
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Figure 1.1: Central dogma of molecular biology.

1. Replication: Duplication of DNA during cell cycle of a parent cell while giving birth to two

daughter cells using an enzyme called the DNA polymerase

2. Transcription: Production of single-stranded RNA copies of DNA templates using an enzyme

called the RNA polymerase

3. Translation: Production of proteins based on RNA templates using a molecular machine made

up of RNAs and proteins called the ribosome

4. Reverse Transcription: Production of complementary DNA (cDNA) from RNA templates

using an enzyme known as the reverse transcriptase

All the cells in our body contain identical copies of DNA (some differences do exist, but the number of

such differences are small compared to differences between DNA of cells from different individuals).

This is because all of them are descendants of a single zygote (fertilized egg). Despite possessing

the same DNA, there is an enormous difference in the identities and functions of cells that make up

distinct tissues in our bodies (compare cells that make up your skin, to the cells that make up the

cornea in your eyes). This is a truly remarkable fact. How are these differences realized? Put in the

simplest possible way, these differences arise from choices about which stories get told when, where,

and how often. In slightly more formal terms, every cell assumes its identity by one way or another

arriving at answers to the following questions: (i) which genes should get transcribed, (ii) which of

the transcripts should get translated, and (iii) how many transcripts are produced for each gene?

Gene expression in cells is regulated through a number of mechanisms that operate at different levels

of the flow of information according to the central dogma. At the transcription level, transcription
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factors play the dominant role. Transcription factors (TF) are proteins that regulate transcription of

their target genes by binding to specific sequences in the DNA. Their presence increases or decreases

the likelihood of the binding of RNA polymerase to the DNA promoter regions near the target gene;

when a TF binding to its target sites leads to an increase in the level of the transcripts, it is said

to act as an activator, conversely, when it decreases the number of transcripts of the target gene

produced in the cell, it is said to act as a repressor.

Another level of gene regulation is through what are known as epigenetic factors. These refer to

heritable factors which influence gene expression, but are not associated with alterations in the

sequence of the DNA itself [5, 6]. These changes include:

1. DNA Methylation - A heritable chemical modification of the DNA that is also very dynamic

and can be created and/or modified due to external environmental stimuli. The most common

form of methylation occurs at cytosine (C) sites that are immediately followed by a guanine

(G). These are represented as CpGs. The regulatory regions of quite a few genes are enriched

in CpGs. These enriched regions are popularly known as CpG islands. Methylation of Cs in

these islands are frequently associated with a suppression of the expression levels of the gene

downstream [7].

2. Histone modifications - Histones are protein complexes that are responsible for efficient

packing of the DNA (chromatin) in the nucleus. The histones can get modified due to methy-

lation or acetylation, such that certain portions of the DNA are no longer accessible by the

transcriptional machinery. This leads to a suppression in the expression levels of the transcripts

of the affected genes [8, 9].

After a gene is transcribed into an RNA, there are further controls that a cell relies on to regulate the

expression levels of the final protein. These controls are refered to as post-transcriptional mechanisms

and include:

1. Alternative splicing - The exons in the transcribed RNA, called the pre-RNA, can be

rearranged and put together to yield different mRNAs, and as a result different proteins. This

explains in part the diversity of phenotypes observed with such a limited number of protein

coding genes in the genome [10, 11].

2. Regulation by non-coding RNA (ncRNA) - Based on research over the last few decades,

it is now clear that the majority of the genomes of most complex organisms do not code

for proteins. Are these regions never transcribed? Far from it. Several such regions in the

genome are in fact transcribed into RNA, but these RNA do not undergo translation to make
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corresponding proteins. These RNA molecules are called noncoding RNA (ncRNA). In fact,

the RNAs that code for proteins are called messenger RNA (mRNA) to distinguish them from

ncRNAs. The ncRNAs play a number of infrastructural roles (ribosomal RNAs, transfer RNAs

etc), as well as regulatory roles [12]. RNA interference mechanisms involving interactions

between ncRNAs and mRNAs have been described that have an inhibitory effect on gene

expression at the translation stage [13]. The small ncRNAs that play a role in regulating gene

expression are called micro RNAs (miRNAs). miRNAs have been predicted to have regulatory

influence on almost half of the protein-coding genes [14]. Note, this mechanism of regulation

is not captured within the paradigm of the central dogma.

Finally, even after the RNAs get translated into proteins, some of these proteins remain inactive

and do not perform any function until they are activated by what are called post-translational

modifications (PTMs). The most common PTM is phosphorylation, which is simply the addition

of a phosphate group to a protein molecule. External stimuli (could also include internal stimuli

such as DNA damage, osmotic pressure etc) undergo transduction by activating inactive proteins

in the cell through a series of phosphorylations mediated by proteins called kinases. For different

kinds of stimuli, there exist a large number of pathways related to particular cellular functions that

determine either the equilibrium or the dynamic state of the cell.

In multicellular organisms, all of the mechanisms described above are involved in a complex interplay

to ensure that each cell functions cooperatively, and fulfills its specific role. It is hardly a linear

sequential flow of information as the central dogma may appear to suggest. It is through changes

to these mechanisms that certain cells assume identities that are detrimental to the overall health

of the organism. One of these identities, perhaps the most well-known and the one most dreaded, is

that of cancer.

1.2 Cancer - A genetic disease

Cancer is not a singular disease. It is a constellation of diverse and evolving disorders manifested by

uncontrolled proliferation of cells which can eventually lead to the death of the host [15]. Notwith-

standing the diversity, as Vogelstein and Kinzler pithily observed [16], “Cancer is, in essence, a

genetic disease.” While the genetic nature of cancer is accepted as the gospel truth today, it was

only through the painstaking efforts of early geneticists in the 1970s that the first “cancer genes”

(proto-oncogenes) were discovered. Over the years with the help of screening assays, many new

oncogenes, as well as genes that fulfill tumor-suppressive roles have been discovered. At present,

there are 723 genes listed in the Cancer Gene Census [17] of the Catalogue of Somatic Mutations in
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Cancer (COSMIC) database (v88, 19-March-2019) that have been causally implicated in cancers.

Additional evidence in support of the genetic nature of cancer came through studies that examined

predisposition to diseases within families. The most compelling evidence for such familial predis-

position are the associations between germ line mutations of the BRCA1 and BRCA2 genes and

risk of breast cancers, and the germ line mutations of the RB1 gene and risk of development of

retinoblastoma, respectively. Individuals with mutated copies of BRCA1 and BRCA2 genes have a

10-fold lifetime risk of developing breast cancer, while individuals with mutated copies of the RB1

gene have more than 90% risk of developing a retinoblastoma.

Accumulation of such mutations by cancer cells leads to a change in the transcriptional and trans-

lational regulatory programs described in the previous section. For example, in their review article

[16], Vogel and Kinzler consider the TP53 gene which is a transcription factor that plays a crucial

role in normal cells as a tumor suppressor. Due to accumulation of mutations, a mutated version

of TP53 protein can no longer bind successfully to its target genes, and as a result fails to fulfill its

role as a tumor suppressor. Hypermethylation of CpG sites in promoter regions of tumor suppressor

genes has also been frequently observed, which leads to suppression in the expression levels of those

genes [18]. Histone methylation over large genomic regions leading to suppression in expression of

genes located within those regions has been reported for multiple cancer types [6, 19, 20]. Moreover,

alternative splice forms have been found in cancer cells that are not found in normal cells of the

same tissue type [21, 22]. These are just a few of the alterations that may be present in cancer

cells. From the point of view of the cancer cells, these are essential to enable them to survive and

evolve successfully in adverse environments against great odds. Despite the heterogeneity in their

alterations and identities, they nevertheless share some common traits highlighted by Hanahan and

Weinberg [23, 24], which we describe briefly in the next section.

1.3 Hallmarks of Cancer

In their paper on the hallmarks of cancer [23], Hanahan and Weinberg proposed 6 fundamental traits

that all cancers must exhibit for tumor growth and metastasis (spread of tumor cells to other tissues

in the body). They defined the hallmarks as acquired functional capabilities that allow cancer cells

to survive, proliferate, and disseminate:

1. Sustaining proliferative signalling: According to Hanahan and Weinberg, the most funda-

mental trait of cancer cells involves their ability to sustain proliferation. Cancer cells deregulate

the signals that ensure homeostasis of cell number. They do not remain dependent on growth

factors from external sources.
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Figure 1.2: Hallmarks of Cancer. Hallmarks shown in blue circles are the enabling characteristics,
and the ones in green are the emerging hallmarks [24]. Figure adapted from [23, 24].

2. Evading growth suppressors: Cancer cells gain the ability to circumvent programs that

negatively regulate cell proliferation, including cell-to-cell contact inhibition present in normal

cells.

3. Resisting cell death: The natural process of programmed cell death (apoptosis) is attenuated

in cancer cells. The most common way in which cancer cells achieve this is by losing the tumor

suppressive function of TP53.

4. Enabling replicative immortality: Cancer cells overcome the barriers that limit the number

of times cells can go through the cell growth-and-division cycles. They exhibit unlimited

replicative potential, and are therefore immortal.

5. Inducing angiogenesis: Angiogenesis is the term used to describe the process by which new

blood vessels are formed. In tumors, angiogenesis is always activated and remains on, causing

the surrounding blood vessels to continually sprout new vessels that help sustain expanding

new growth.

6. Activating invasion and metastasis: Cancer cells develop alterations in their shape as well

as in their attachment to other cells and to the extracellular matrix (ECM) (for example, by
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losing E-cadherin, a key cell-to-cell adhesion molecule). They also up-regulate the expression

of molecules associated with embryogenesis and inflammation which promote cell migration.

7. Reprogramming energy metabolism (Emerging Hallmark [24]): The chronic and of-

ten uncontrolled cell proliferation involves not only deregulated control of cell proliferation

but also corresponding adjustments of energy metabolism in order to fuel cell growth and divi-

sion. Cancer cells can reprogram their glucose metabolism, and thus their energy production,

by limiting their energy metabolism largely to glycolysis (normally favored under anaerobic

conditions) leading to a state called aerobic glycolysis.

8. Evading immune destruction (Emerging Hallmark [24]): Evidence suggests that the

immune system operates as a significant barrier to tumor formation and progression, at least

in some forms of non-virus-induced cancer. Therefore, cancer cells may be evading immune

destruction by avoiding detection or suppressing normal immune response.

In a follow up paper [24], they elaborated on these hallmarks and asserted that the acquisition of

the hallmarks is made possible by the following 2 enabling characteristics:

1. Genome instability and mutation: The mutations and chromosomal alterations enabled

by loss of integrity and instability of the genome confer selection advantage to subsets of cancer

cells. This characteristic is causally associated with the acquisition of hallmark capabilities.

2. Tumor-promoting inflammation: Inflammation can contribute to multiple hallmark capa-

bilities by supplying bioactive molecules to the tumor microenvironment. These may include

growth factors that sustain proliferative signaling, ECM-modifying enzymes that facilitate

angiogenesis etc.

Note, the hallmarks of cancers are by no means independent. All of them are associated with gene

networks and signalling pathways that are intimately connected with each other. Thus, cancer as

a disease of genes is quintessentially a consequence of deregulation of these intimately linked gene

networks or pathways that modulate growth and dissemination. In the following section, we explore

the enabling characteristic of genome instability and mutation in a little more detail.

1.4 Chromosomal alterations in cancer

Cells with normal chromosomal configuration are said to be in the euploid karyotype state, where

karyotype refers to the number and visual appearance of chromosomes within the nuclei of a cell.

Aneuploidy (deviation from euploidy) is extremely common in cancers [25, 26]. Beyond a certain
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number of mutations, it is no longer possible to carry out error-free duplication due to the fact that

the defects induced by the mutations impair the DNA repair functions and also deregulate the cell

cycle checkpoints.

Theodor Boveri first proposed the idea that irreparable chromosomal defects may be responsible for

turning normal cells to cancer cells in 1902 [27, 28]. However, it’s only now after several decades that

the idea has been brought to the forefront of cancer research based on recent findings on chromosomal

rearrangements [29, 30]. The following chromosomal alterations are frequently observed in cancers:

1. Aneuploidy: refers to the state of cells with additional or missing copies of one or more

chromosomes.

2. Polyploidy: refers to the state of cells with more than 2 sets of chromosomes.

3. Translocation: refers to the movement of chromosomal segments either within the same

chromosome, or to another chromosome.

4. Inversion: refers to the reversal of the order of the genes in subsequences in the chromosome

relative to the neighbouring sequences.

5. Point mutations: refers to the substitution of bases in the DNA sequence with other bases

due to errors during replication or repair.

6. Amplification: refers to the presence of more than 2 copies of contiguous genes in some

regions within the chromosomes.

7. Deletion: refers to the loss of one or both copies of genes in some regions within the chromo-

somes.

Over the last few decades, technologies have evolved at a rapid pace and have enabled us to accu-

rately characterize each tumor sample based on these chromosomal alterations and other molecular

features. Techniques that enable an exhaustive characterization of the genomic profiles of samples

are called genome-wide techniques. In particular, techniques that investigate changes at the DNA

sequence level (such as point mutations, amplifications, and deletions) are called genomic techniques;

techniques that investigate the changes at the level of proteins are called proteomics techniques. In

this work, we have relied on data generated from high-throughput transcriptomic techniques that in-

vestigate the relative abundances of transcripts in the cells. In the following section, we describe how

the data for gene expression profiling is generated using technologies that simultaneously measure

the abundance levels of thousands of transcripts.
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1.5 Measuring gene expression

1.5.1 Why do it?

Because we can. This trivial response to the question posed above masks a number of complex factors

at play that make some biological measurements much more challenging compared to others. Since

it is the proteins that perform most of the functions, finding out which of them are expressed and

functionally active in the cells, and in what amounts, would appear to be the obvious course of action.

Except that these measurements are difficult. Rapid advances in proteomics techniques have been

made over the past decade but many challenges still remain [31]. High-throughput transcriptomic

techniques on the other hand are significantly simpler (for one, segregation and purification of

RNA is much easier compared to proteins). Because of studies based on these high-throughput

transcriptomic techniques, our understanding of the regulation of gene expression at the level of

the transcriptome has improved dramatically. However, there is a caveat. While associating gene

expression levels with phenotypes, we might be tempted to assume that gene expression levels

correlate perfectly with protein expression levels. In a landmark study of the correlation between

mRNA levels and protein expression levels in Yeast, Gygi et al. [32] showed that for some genes,

while the mRNA levels barely varied, the protein levels varied by more than 20-fold. Conversely, they

observed that while the levels for certain proteins were consistent, their respective mRNA transcript

levels varied by as much as 30-fold. Thus, one needs to be careful when associating transcript

abundance levels with phenotypes. Notwithstanding the caveat, understanding the regulation of

gene expression at the level of the transcriptome, especially for cancers, does help us build valuable

bridges between the genotypes and the tumor phenotypes. In the following subsections, we describe

the general principles behind the two widely adopted techniques used to measure gene expression.

1.5.2 DNA Microarrays

The two most commonly used types of DNA microarrays are: oligonucleotide microarrays, and

complementary DNA (cDNA) microarrays. While the two differ in their manufacturing, labelling,

and analysis approaches, the broad principles are similar:

1. Single-stranded DNA sequences complementary to the genes whose abundances we wish to

quantify, are fixed on some solid support (glass, silicon etc.). These are called probes. Several

copies of the probes are fixed very close to each other to form spots.

2. RNA is extracted from the sample.



10

3. The mRNA is copied into cDNA using reverse transcriptase and labelled fluorescent nu-

cleotides. These labelled cDNA are the targets.

4. The targets are allowed to hybridize to the probes. Targets only hybridize to probes with

complementary sequences.

5. The array is washed after hybridization and scanned with a fluorescence microscope.

6. The spots with higher intensity of fluorescence indicate higher relative abundance of the cor-

responding transcripts.

Limitations of microarrays

There are some key limitations of gene expression measurements using microarrays:

• Limited to known transcripts and organisms with sequenced genomes

• Non-specific hybridization or cross-hybridization of closely related gene family members

• Limited dynamic range (signal range) - for example, it is difficult to distinguish no expression

from low levels of expression due to background noise

1.5.3 RNA Sequencing (RNA-seq)

RNA-seq refers to the application of high-throughput sequencing technologies to quantify mRNA

abundances. These high-throughput technologies rely on diverse chemical and physical means to

perform these measurements. Despite differences in details of the particular means adopted, RNA-

seq broadly involves the following key steps:

1. Extraction: Total RNA is extracted from the sample and purified.

2. RNA Fragmentation: The mRNAs are fragmented into shorter fragments by random shearing.

3. Reverse transcription: The sheared fragments of the mRNAs are reverse transcribed to cDNA

using primers. Primers are DNA (or RNA) molecules whose 3′ end is the initiation point of

DNA synthesis by DNA polymerase.

4. Adapter ligation: The 5′ and 3′ ends of the cDNAs are repaired, and adapter sequences which

allow them to hybridize are added.

5. Amplification: Correctly ligated cDNA fragments are amplified by polymerase chain reaction

(PCR) to ensure there is sufficient signal.



11

6. Quantification: Transcript abundances are quantified based on the signal assessed by image

analysis.

Biases

While RNA-seq overcomes all the limitations of microarray analysis (quite importantly, RNA-seq

can quantify low abundance reads reliably). However, there are a few biases that one needs to be

mindful of when dealing with RNA-seq data:

• Bias can be introduced by PCR due to non-linear amplification of genomic regions with low

nucleotide complexity such as sequential GpCs [33].

• Total number of reads per transcript is proportional not just to the abundance of the transcript

but also to the transcript length. This is usually accounted for during the normalization step

prior to any form of clustering analysis (more on this below).

1.6 Normalization

1.6.1 Microarray

The idea behind normalization is to account for systematic variation in gene expression that can

arise as a consequence of:

• Biases introduced during experimental setup

• Variability in conditions (when the assumption is that the conditions are unchanged)

• Differences in sample collection and preparation

There are two kinds of normalizations that one may be required to perform depending on the question

of interest:

1. Within array normalization - Required to account for systematic differences in the intensities

(of spots) and location dependent biases of the fluorescent labels. This ensures an unbiased

comparison between genes within a sample.

2. Between array normalization - Necessary for comparing genes across different conditions (for

example, whether a given gene is differentially expresssed between two groups of samples rep-

resenting two different conditions). Usual approaches include scaling each array by a constant

factor to make sure that the median intensities of all the arrays are the same (global normal-

ization), or by matching the percentiles of each array (quantile normalization)
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1.6.2 RNA-seq

Even for RNA-seq gene expression data, depending on the question of interest one would need to

perform:

1. Within sample normalization: As pointed out earlier, the number of reads corresponding

to a transcript depends on its length (this is because longer transcripts will produce more

fragments during the random shearing process). Thus, in order to compare genes of different

lengths within a sample, the counts of the transcripts should be normalized by their lengths.

The most popular method is to convert the raw counts into a measure called transcripts per

million (TPM) [34]. TPM can be interpreted as follows: suppose we sequenced 1 million full

length transcripts, TPMi would be the number of reads we would see of type i, given the

abundances of the other transcripts in our sample.

2. Between sample normalization: As noted earlier for microarrays, between sample normalization

is required to enable us to compare expression features (genes, isoforms) across conditions. This

is necessary for standard differential expression analysis, as well as clustering analysis of gene

expression data [35]. Between sample normalization addresses the differences in the sequencing

depth (total number of reads) between the samples of an experiment. Most popular methods

(such as DESeq [36] and TMM [37]) broadly revolve around the same idea, which is that

most of the genes are not differentially expressed, thus one could find genes that are similarly

expressed across conditions and rely on these to determine the scaling factors for each sample.

1.7 Analyzing gene expression data

1.7.1 Clustering

Over the last decade and a half, comprehensive large-scale genomic studies have resulted in an un-

precedented increase in both the depth (number of molecular and clinical aspects explored) and

breadth (number of samples investigated) of well-curated data for the human genome and tran-

scriptome. Collaborative efforts such as The Cancer Genome Atlas (TCGA) and the International

Cancer Genome Consortium (ICGC), have undertaken large-scale studies to explore various aspects

of tumors at the molecular level. Many of these studies have generated large gene expression data

sets for multiple cancer types. Fig. 1.3 shows a typical gene expression data set with genes along

the rows and samples along the columns. The small es in the matrix can be any real number (raw

count data from RNA-seq measurements is in integer form).
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Figure 1.3: Schematic illustration of a typical gene expression data set.
.

A simple yet meaningful way to organize and comprehend large gene expression data sets is to

group together (cluster) similar variables (genes) or conditions (samples) based on some mathemat-

ical measure of proximity between the entities of interest. The most commonly used measure of

proximity or similarity is the Pearson’s correlation coefficient, defined as:

r(x, y) =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

where x =
∑n

i=1 xi

n is the mean of the values of vector x, and y =
∑n

i=1 yi

n is the mean of the values

of vector y. The two vectors x and y could correspond to expression values of a pair of genes across

the samples, or they could be expression values for a pair of samples across the genes. Based on

whether we group rows or columns, the results could respectively yield information about:

• Which sets of genes exhibit similar patterns of expression levels across all the different condi-

tions? Based on this, one could also classify a new gene by determining its proxmimity to a

particular cluster.

• Which conditions are similar to each other across all the genes? Once again, we could rely on

this information to classify a new sample.

Since very little is known about the variables as well as the conditions a priori, clustering is usu-

ally performed in an unsupervised manner whereby the genes are clustered based on pairwise

(dis)similarity assessed over all the conditions and vice versa [38]. This approach to clustering

is also known as global clustering. Some measure of success in analyzing gene expression data sets of

cancers was achieved by relying on partially supervised approaches based on histological and/or clin-

ical information [39, 40, 41]. In the following section, we introduce a form of unsupervised clustering

that groups together similar subsets of genes and similar subsets of samples simultaneously.
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1.7.2 Biclustering

Clustering approaches based on global proximity measures are not optimal for analyzing large gene

expression data sets of complex diseases such as cancers, because of the following reasons:

1. Generally, and this is true in normal cells as well, only subsets of genes participate in any given

cellular process.

2. A cellular process may be active only under a subset of conditions.

3. Cancers are heterogeneous, with distinct disease subtypes driven by deregulation of diverse

gene networks, even within a single tissue type.

However, biclustering algorithms that perform local clustering of gene expression data sets are

particularly well adapted to address these concerns. Such algorithms are subject to the following

constraints [42]:

1. Clusters of genes should be defined with respect to only a subset of conditions, and vice versa.

2. The clusters should not be exclusive and/or exhaustive a gene/condition may belong to more

than one cluster, or to none at all.

As described earlier, gene expression data sets are usually in the form of real valued matrices with

genes along the rows and the samples along the columns. Biclusters within these matrices can

broadly be defined as subsets of rows (genes) that exhibit similar or homogeneous behaviour across

a subset of columns (samples). Depending on how this similarity or homogeneity is defined, the type

of biclusters can be classified into 4 kinds that are briefly described below [42, 43].

1.7.3 Biclusters with constant values

Such a bicluster would correspond to a sub-matrix (I, J) where all the values in the sub-matrix are

equal, i.e.,

aij = µ ∀ (i, j) ∈ (I, J)

The most intuitive metric to find such biclusters is the variance. The variance for a bicluster is

defined as:

V AR(I, J) =
∑

i∈I, j∈J
(aij − aIJ)2

where aIJ is the mean of all the elements of the bicluster.

The ideal bicluster would be one for which the variance is 0. Of course, this would trivially be true

for sub-matrices of size 1 (single element). Thus, methods that seek constant-valued biclusters put

in constraints for the minimum number of rows that should be included in the biclusters [44].
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1.7.4 Biclusters with constant values on rows or columns

Biclusters with coherent variations across rows or columns of the matrix are of more practical

interest for gene expression data, since rows with constant values across a subset of columns would

correspond to genes that have the same expression value within a subset of conditions. Similarly,

columns with constant values along a subset of rows would correspond to conditions within which a

subset of genes have similar expression values.

Thus, the expression values within the bicluster (I, J) with constant rows can be given by either,

aij = µ+ αi ∀ (i, j) ∈ (I, J)

or,

aij = µ× αi ∀ (i, j) ∈ (I, J)

where µ is a base value within the bicluster (I, J) and αi is the additive or multiplicative scaling

factor for row i. Similarly, for a bicluster with constant columns, the expression values can be given

by either,

aij = µ+ βj ∀ (i, j) ∈ (I, J)

or,

aij = µ× βj ∀ (i, j) ∈ (I, J)

where βj is the additive or multiplicative scaling factor for column j. The usual way to find such

biclusters is to first normalize the rows or columns of the candidate sub-matrix by the row mean or

column mean, respectively [45]. This transforms the sub-matrix to a form similar to the one with

constant values described in the previous subsection. One can then employ biclustering methods

that can identify constant biclusters. We have provided simple illustrations of these two kind of

biclusters with constant values along rows and columns in Fig. 1.4.

1.7.5 Biclusters with coherent values

A more general and practical extension of value based biclusters is to consider biclusters with co-

herent values on both rows and columns (Fig. 1.4). For gene expression data, this would correspond

to subsets of genes that have coherent values across subsets of conditions, and vice versa. Two

types of models describe the values within biclusters that belong to this type, (i) additive, and (ii)

multiplicative.

The values in an ideal bicluster (I, J) based on the additive model are given by,

aij = µ+ αi + βj ∀ (i, j) ∈ (I, J)
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50

Constant rows

50 50 50 50 50

80 80 80 80 80 80

36 36 36 36 36 36

55 55 55 55 55 55

41 41 41 41 41 41

64 64 64 64 64 64

50

Constant columns

80 36 55 41 64

50 80 36 55 41 64

50 80 36 55 41 64

50 80 36 55 41 64

50 80 36 55 41 64

50 80 36 55 41 64

50

Coherent values - additive

20 40 70 80 60

80 50 70 100 110 90

90 60 80 110 120 100

40 10 30 60 70 50

45 15 35 65 75 55

80 50 70 100 110 90

30

Coherent values - multiplicative

60 15 45 36 18

40 80 20 60 48 24

20 40 10 30 24 12

10 20 5 15 12 6

50 100 25 75 60 30

60 120 30 90 72 36

Figure 1.4: Illustration of biclusters with constant or coherent values. The upper two
biclusters are constant valued along rows and columns, respectively. The bottom two biclusters
have coherent values along their rows and columns. Figure adapted from [42].

.
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where once again, µ is a base value for the bicluster, αi is the additive scaling factor for row i, and

βj is the additive scaling factor for column j.

For the multiplicative model, the values in the bicluster (I, J) with coherent values would be given

by,

aij = µ′ × α′i × β′j ∀ (i, j) ∈ (I, J)

where µ′ is a base value for the bicluster, α′i is the multiplicative scaling factor for row i, and β′j is

the multiplicative scaling factor for column j.

1.7.6 Biclusters with coherent evolution

The biclusters described in the previous subsections were all based on models for the actual expression

values. Another approach to detect meaningful patterns in the data matrix is to seek coherent

evolution across subsets of rows and/or columns. For gene expression data in particular, the question

of interest may be to seek genes that are differentially regulated (up or down) within a subset of

conditions. Co-evolution patterns are found without relying on models for the actual expression

values in the data sets. This can be done by taking into account the ordinality (relative order) of

the genes and conditions based on the expression values. The magnitudes and/or uniformity of the

expression values is irrelevant. The only aspect of any relevance is their relative ranking. Quite

often, some kind of data discretization step is employed to transform the numerical data into a form

that is essentially categorical in nature [46, 47].

Broadly, these biclusters are of 4 types (see Fig. 1.5):

1. Overall coherent evolution - All the elements of the bicluster belong to the same category. For

example, imagine finding biclusters that only contains 1s in a binary matrix obtained from a

gene expression data set that was binarized using some threshold.

2. Coherent evolution on rows - The values in the rows of the bicluster fall within the same

category across its columns. If these categories correspond to ranges of expression values, then

lighter shades of red in Fig. 1.5 could be associated with lower expression values, and darker

shades of red associated with higher expression values.

3. Coherent evolution on columns - The values in the columns of the bicluster fall within the same

category across its rows. Once again, if these categories correspond to ranges of expression

values, then lighter shades of red could be associated with lower expression values, while darker

shades of red would be associated with higher expression values. A more general case that

does not correspond to such a situation is illustrated in the bottom right panel of Fig. 1.5.
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Coherent evolution on columns

Coherent evolution on rowsOverall coherent evolution

50

Coherent evolution on columns

65 32 20 40 75

80 90 34 10 52 100

30 55 18 8 20 60

46 70 25 13 37 84

55 79 43 40 50 81

61 72 56 49 58 77

Figure 1.5: Illustration of biclusters with coherent evolution along rows and/or columns.
Lighter shades of red may correspond to lower expression values for gene expression data, while
higher shades indicate higher expression values. Figure adapted from [42].

.

The columns in the illustrated matrix can be permuted such that the values in all the rows

are strictly increasing.

The algorithm proposed by us finds biclusters that seeks gene expression signatures associated with

up-regulation or down-regulation without relying on models of the actual gene expression values.

In that regard, our algorithm is similar to algorithms that find coherent evolution patterns in gene

expression data. However, the biclusters identified by our algorithm are markedly different in nature

from the ones described in this subsection. We describe our algorithm and the properties of its

biclusters in the next chapter.
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Chapter 2

The Algorithm

“Normals teach us rules; outliers teach us laws.”

– Siddhartha Mukherjee, The Laws of Medicine

“Okay you guys, pair up in threes!”

– Yogi Berra

2.1 Motivation

A significant amount of research on cancers revolves around the following questions:

• What makes tumor cells different from normal cells belonging to the same tissue of origin?

• What makes tumor cells of one tumor arising from a given tissue of origin, different from tumor

cells belonging to another tumor that also arises from the same tissue of origin? (Intertumoral

heterogeneity)

• What makes tumor cells different from each other even within the same tumor? (Intratumoral

heterogeneity)

In terms of gene expression, if these differences exist at the level of transcripts, they would be evident

in terms of differences in the real numbers that represent the relative abundances of these transcripts

in the gene expression matrix. In order to analyze these differences in the patterns of gene expression

that may be associated with altered mechanisms in tumors, one could pursue two courses of action:

1. Assume that the expression level of genes across conditions can be approximated by a para-

metric distribution and determine whether some subsets of conditions show up as outliers.

2. Without assuming any underlying distribution, employ a non-parametric statistical test to

determine differences in gene expression levels between subsets of conditions.
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There is a significant difference between the two approaches described above. While the first ap-

proach does not explicitly require prior knowledge about the conditions in order to ascertain the

subset of conditions that would qualify as outliers, implicitly it requires assumptions about the ex-

pected levels of expression across conditions. Given the heterogeneity of alterations exhibited by

tumors, it is extremely challenging to propose models of gene expression patterns that capture the

essential properties of all of the underlying alterations. The second approach on the other hand is

limited by the requirement of prior knowledge about the conditions.

In this chapter, we describe a novel biclustering method, called the Tunable Biclustering Algorithm

(TuBA), based on a measure of proximity that enables it to preferentially identify aberrantly co-

expressed genes and associated pathways in subsets of cancer patients. The proposed proximity

measure does not presume any parametric distribution for the expression levels of genes across con-

ditions, nor does it require prespecification of prior information about the conditions. As described

in greater detail in the following section, our proximity measure simply leverages the size of the

datasets (specifically, the number of samples in the datasets) to infer gene co-expression signatures

exhibited aberrantly within subsets of conditions.

2.2 Proximity measure underlying TuBA

TuBA’s proximity measure is a pairwise measure based on the hypothesis that if a cellular mechanism

is affected in a subset of tumors, genes relevant to the mechanism should co-exhibit similar up-

or down-regulation in a significant fraction of those tumors. To illustrate this more clearly, we

focus on the case corresponding to high expression. Assume there exists an underlying mechanism

responsible for an increase in the expression levels of genes A and B in a given tumor sample, such

that when the expression level of gene A goes up, so does the expression level of gene B, and vice

versa. This suggests that for a gene expression data set with a large number of samples, if we do

relative comparisons of the gene expression levels across tumors, the subset of tumors that harbor

the given altered/aberrant mechanism would rank higher than the rest of the tumors for both genes

A and B. Our pairwise proximity measure is essentially based on this idea and poses the following

question: which pairs of genes exhibit higher (or lower) expression levels in similar subsets of samples

(conditions) relative to the rest of the samples in the gene expression dataset? We can make this

more concrete. If we do pairwise comparisons between the top (or bottom) percentile sets - say, top

5% samples - of all the genes, we should be able to identify the pairs that share a large number of

samples in their percentile sets. The number of samples shared between percentile sets of any given

gene pair is expected to follow the hypergeometric distribution. Based on this expectation we can
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calculate the probability of observing the overlap of given number of samples between the percentile

sets with the null hypothesis that the two sets are independent, against the alternative hypothesis

that there is dependence/association between the two sets and the observed number of samples is

greater than what would be expected by chance alone. The details about the calculation of these

probabilities are provided in the subsection below.

2.2.1 Computation of the significance values (p-values) of overlaps

In order to succinctly describe the details of the computation that underlie TuBA’s proximity mea-

sure, we focus on the case corresponding to high expression. Let us pick a pair of genes from a gene

expression data set - say, gene 1 (red in Fig. 2.1) and gene 2 (blue in Fig. 2.1). For each gene,

we first rearrange the samples such that when we plot the normalized expression levels along the

vertical axis with the samples placed along the horizontal axis, then the samples with the highest

expression levels would lie at the right most end of the horizontal axis (see panel A in Fig. 2.1).

We then choose a percentile cutoff, and prepare the list of samples that make up the top percentile

sets for each gene, respectively. To illustrate this, we take the help of the Venn diagram in panel B

of Fig. 2.1. In the Venn diagram: (i) the red circle in the diagram represents the set of top (5%,

10%, etc.) percentile samples for gene 1, or the set of all non-zero samples for gene 1, whichever

is smaller, (ii) the blue circle represents the set of top percentile samples for gene 2, or the set of

all non-zero samples for gene 2, whichever is smaller, and (iii) the grey rectangular box (containing

both the circles) represents the set of all samples that have non-zero expression values for both gene

1 and gene 2.

Thus, the regions labeled by a, b, c and d in the Venn diagram represent:

• a: the set of samples that are found in the top percentile sets (or the subsets of samples with

non-zero values) of both gene 1 and gene 2

• b: the set of samples that are found only in the top percentile set (or the subset of samples

with non-zero values) of gene 1

• c: the set of samples that are found only in the top percentile (or the subset of samples with

non-zero values) of gene 2

• d: the set of samples that are neither found in the top percentile set (or the subset of samples

with non-zero values) of gene 1, nor in the top percentile set (or the subset of samples with

non-zero values) of gene 2
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Figure 2.1: Illustration of the idea underlying TuBA’s proximity measure. Panel A shows a
schematic representation of plots of expression levels of a gene pair, where the samples are arranged
along the horizontal axis such that ones with the highest expression levels are towards the right.
For a given percentile cutoff (dashed vertical lines), we compare the top samples for the gene pair.
Gene pairs with significant number of samples shared between their percentile sets are represented
as a pair of nodes linked by an edge. Panel B shows a Venn diagram (left) that illustrates the setup
of the contingency tables (right) for determining the significance of overlaps between the percentile
sets of gene pairs. Figure reproduced from [1].

.
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We use these four quantities - a, b, c and d - to set up 2×2 contingency tables, and then employ the

one-sided Fisher’s exact test to calculate the significance of the data in the table assuming that the

null hypothesis is true, namely that the rows and columns of the contingency table are independent.

Fisher showed that the probability of observing the set of values in any given 2×2 contingency table

is given by the hypergeometric distribution [48]. The hypergeometric probability mass function is

given by:

p(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
where for our case, N = a+ b+ c+ d = total number of samples in dataset , K = a+ b = maximum

number of samples that can match , n = a+ c = a+ b = number of samples in percentile set(s), and

k = a = number of matching samples.

Thus, for the contingency table,

p =

(
a+b
a

)(
c+d
c

)(
n

a+c

) =

(
a+b
b

)(
c+d
d

)(
n

b+d

)
Note, the equation above only gives the hypergeometric probability of observing an overlap or match

of exactly a samples. The calculation of the significance value (p−value) requires us to find not just

the probability of the number of matches observed but also for all possible number of matches that

exceed the observed number up till the maximum number of matches possible. The sum of all these

probabilities gives us the significance of overlap for each gene pair. However, even these p−values

are not the final significance values of overlaps used by TuBA. We need to keep in mind that because

we are computing significance values for every possible gene pair in the gene expression data set,

these values need to be corrected for multiple hypothesis testing. Therefore, TuBA corrects these

p−values for false discovery using the Benjamini-Hochberg method [49], and relies on the adjusted

p−values or false discovery rates (FDR) for subsequent steps.

2.2.2 Salient features of TuBA’s pairwise proximity measure and its relevance to bi-

ological systems

Some of the salient features of TuBA’s proximity measure that distinguishes it from other pairwise

measures of proximity are:

• It does not model the distributions of the measured expression levels of genes across samples.

Thus, the inherent uncertainties imposed by biological noise and technical noise that undermine

reliable modeling of actual expression values do not pose any problem.

• It does not quantify the differences between the expression levels of genes in samples that make

up the top (or bottom) percentile sets and the rest of the samples in the data set. This enables
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the identification of biologically relevant gene co-expression signatures without restricting the

analysis exclusively to genes that exhibit differential expression across subsets of samples. In

case of tumor data sets, this increases the likelihood for identification of gene co-expression

signatures associated with the microenvironment.

• It does not impose a penalty for relative changes in ranks of samples in the respective percentile

sets. This is a very important property that derives its value from the simple observation that

despite differences in the ranks of matching samples in the two percentile sets of any given gene

pair, there is still valuable information to be gleaned by virtue of the fact that these subsets

of matching samples exhibit higher (or lower) expression levels for a given gene-pair compared

to all the other samples. This feature of our proximity measure makes it less sensitive to noise

compared to other proximity measures such as the Spearman’s rank correlation.

TuBA’s proximity measure is especially relevant for analyzing gene expression data corresponding

to biological real systems. In these systems, we expect the following two scenarios to be prevalent:

1. Subsets of genes associated with particular biological processes/pathways are co-expressed

across all the samples.

2. Subsets of genes may be deregulated in subsets of samples because of the same underlying

mechanism(s), such that their expression levels are higher (or lower) compared to the rest of

the samples not influenced by that mechanism(s).

For the first scenario, one would reasonably expect significant matches between the sets of samples

that exhibit higher (or lower) expression levels of the involved genes. Thus, our proximity measure

would reliably capture these co-expression signatures. The second scenario is of particular interest for

data sets associated with diseased states, especially cancers, since these gene co-expression signatures

and their underlying mechanisms could help us identify potential biomarkers with prognostic and/or

predictive value. This is the basic motivation behind standard differential co-expression analyses as

well [50]. However, unlike usual differential co-expression analyses, our proximity measure does not

rely on any prior knowledge or specification of subtypes. Our proximity measure is especially effective

in capturing the co-expression signatures associated with alterations in the expression profiles of the

transcripts in disease states.

2.3 The bare minimum essentials about graphs

As TuBA is a graph-based method, in this section we introduce a few of the most basic concepts

about graphs that will be helpful to understand the design of the algorithm.
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All graphs consist of two basic elements -

1. Vertices (red circles in the graph in Fig. 2.2)

2. Edges (black lines connecting the vertices in the graph in Fig. 2.2)

Vertices are also frequently refered to as nodes, as we do in this chapter. The edges represent the

associations between the nodes that they link together. Depending on the nature of associations

they represent, the edges can be (i) directed or undirected, and/or (ii) weighted or unweighted.

The weights, denoted by real numbers, could represent the strength of the connections between the

respective nodes. We only consider the simplest graphs that have undirected, unweighted edges

between every pair of vertices. The graph in Fig. 2.2 is an undirected and unweighted graph, which

is the only kind of graph that TuBA prepares and examines for discovering biclusters.

A key concept in the analysis of graphs is that of the measure of centrality. A question that is

commonly asked is - which is the most important vertex or node in the graph? Of course, the

answer to this question depends on the notion of importance pertinent to the context of the data the

graph represents. Nevertheless, the simplest measure of centrality for an undirected and unweighted

graph is called the degree. The degree of a vertex or node in a graph is simply the number of edges

connected to it. For instance, in the graph in Fig. 2.2 the degree of node 4 is 5, while that of node

9 is 1.

Another important concept for analyzing graphs is that of complete subgraphs, or cliques. Cliques

are subgraphs within graphs that are composed of subsets of vertices that are all mutually connected

to each other by edges. For example in Fig. 2.2, nodes 11 and 12 constitute a clique of size 2, nodes

5, 6, and 7 constitute a clique of size 3 and so on (the size of the cliques is given by the number of

vertices or nodes it contains). One kind of clique is of particular interest to us, namely the maximal

clique. Maximal cliques are cliques that cannot be extended further by addition of other vertices in

the graph. A special kind of maximal clique is the maximum clique or largest clique, which as the

name suggests is the largest possible maximal clique within a graph. For example, the clique made

up of nodes 1, 2, 3, and 4 is the largest clique within the graph in Fig. 2.2.

2.4 The Bron-Kerbosch (BK) algorithm for finding maximal cliques in

undirected graphs

The task of identifying the maximal cliques within a graph is known to be computationally hard [51].

One could try brute force approaches by testing every possible subset of vertices in the graph to see

if they are all mutually connected. However, for large graphs such an approach would be extremely
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Figure 2.2: Example of an undirected graph. In this graph, the edges do not have any weights
as well.

inefficient. In 1973, Bron and Kerbosch [52] proposed a recursive backtracking algorithm to find

maximal cliques in undirected graphs. Improvements and variants of the BK algorithm are reported

to be more efficient than the alternatives [53]. Here, we briefly describe the original Bron-Kerbosch

algorithm along with a simple example to illustrate how it works in practice.

The BK algorithm requires three disjoint sets of vertices - R,S and X - as its argument. At the

beginning, both R and X are kept empty, while P contains the entire set of vertices present in the

graph. The subsequent steps of the algorithm are listed below:

1. Choose a vertex v from the set P

2. Add v to the set R

3. Remove non-neighbours of v from P and X (of course, if X is an empty set, it will remain

empty)

4. Pick another vertex from the new P , and repeat steps 2 and 3.

5. Repeat till P becomes empty. If X is also empty then R is a new maximal clique.

6. Restore R,P , and X to how they were before the choice of vertex v

7. Remove v from P , and add it to X

8. Repeat the steps above till there are no more vertices left in P .

The pseudocode of the BK algorithm is provided below:
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BronKerbosch(R, P, X)

if P and X are both empty then

report R as a maximal clique

end if

for every vertex v in P apply

BronKerbosch(R union v, P intersect N(v), X intersect N(v))

P = P excluding v

X = X union v

end for

N(v) stands for the set of vertices that are neighbours of vertex v.

We illustrate how the BK algorithm works by applying it to the graph in Fig. 2.2. Let us choose

node 4 as our initial vertex v. Then, using the BK algorithm we get:

• R = {4}, P = {1,2,3,5,8}, and X = φ

• If we now pick node 3 as v, we get R = {3,4}, P = {1,2}, and X = φ

• Repeating with node 2 as v this time, we get R = {2,3,4} , P = {1}, and X = φ

• Since there is only one node left in P , we add it to R to get R = {1,2,3,4}, while P = X = φ.

• Since P and X are both empty, R = {1,2,3,4} must be a maximal clique (in this case, it is

also a maximum clique)

Suppose, instead of node 3 we had chosen node 5 in step 2 above, then the sequence of steps from

the beginning (with node 4 as the initial v) would be:

• R = {4}, P = {1,2,3,5,8}, and X = φ

• Picking node 5 as v, we get R = {4,5}, P = {8}, and X = φ

• With only one node left in P , we add it to R to get R = {4,5,8}, while P = X = φ.

• Since P and X are both empty, R = {4,5,8} must be a maximal clique

Similarly, with the choice of node 8 instead of 3 and 5, the sequence of steps from the beginning

(with node 4 as the initial v) would be:

• R = {4}, P = {1,2,3,5,8}, and X = φ

• Picking node 8 as v, we get R = {4,8}, P = {1,5}, and X = φ
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• Repeating with node 1 as v this time, we get P = φ, and X = φ

• Since P and X are both empty, R = {1,4,8} must be a maximal clique

The entire process is repeated for other vertices after excluding node 4 from P , and adding it to X

(X = {4}).

2.5 TuBA’s graph-based iterative approach to identify biclusters

TuBA’s proximity measure offers an elegant way to organize the information of the identified genes

and their associations - all the gene pairs that share significant number of samples between their

percentile sets can be represented as pairs of nodes linked by edges. The nodes represent the genes,

and the edge linking the pair of nodes is representative of the set of samples that are common between

the percentile sets of the two genes. After plotting the complete set of such pairwise associations

we obtain large graphs that are then analyzed by the iterative approach described below to identify

the most robust co-expression signatures (also see Fig. 2.3):

1. Prune the graph such that it is only made up of complete subgraphs (cliques) of size 3 (trian-

gles). Thus, the elementary units of our graphs are triangles.

2. Identify the largest clique(s) (using a modified version of the Bron-Kerbosch algorithm [54])

and list the nodes belonging to the largest clique(s). If there are several cliques that qualify as

largest, take the union of the sets of nodes of the ones that have a non-zero intersection. We

call this subgraph a seed. The seeds represent the most robust gene co-expression signatures

within the graphs.

3. Reduce the graph by removing the nodes of the seed identified in Step 2 and all the edges that

contain any of the nodes contained in the seed. This step significantly reduces the computation

time required to identify all the maximum cliques in the graph.

4. Repeat steps 2 and 3 on the reduced graph such that there are no more cliques of size 3 left.

5. Reintroduce the seeds in the original pruned graph and proceed sequentially to identify and

add the nodes that share edges with at least two nodes in the seed. Add these edges and nodes

to the seeds to obtain the final biclusters.

Note that the gene sets in the seeds identified by the recursive application of steps 2 and 3 to the

pruned graph obtained after step 1 are mutually exclusive, i.e., they do not share any gene between

them. There may be additional associations between subsets of genes in the seeds and other genes
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Figure 2.3: TuBA’s iterative graph-based pipeline. Panel A shows the flowchart describing the
steps of TuBA’s iterative process, panel B shows an illustration of how TuBA discovers biclusters
for a simple schematic graph. Figure reproduced from [1].
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in the graph that were excluded simply because those genes were not members of the maximum

cliques. It is to mitigate this limitation imposed by the criteria for a subgraph to qualify as a seed,

we introduced step 5. In panel A of Fig. 2.3, we show the flowchart detailing all the steps that

TuBA goes through to discover biclusters in any graph; panel B in Fig. 2.3 actually illustrates how

the iterative process of TuBA works for the simple schematic graph of Fig. 2.2. Note, that TuBA’s

graph-based iterative process is only applicable for undirected, unweighted graphs.

2.6 Nature of TuBA’s biclusters

One of the key steps in our algorithm is the identification of mutually exclusive largest cliques as

the seeds of our biclusters. This enables the identification of shared altered mechanisms in subsets

of samples that exhibit relatively higher (or lower) expression levels of genes co-expressed due to

the altered mechanism. Of course, the co-expressed genes may also be associated with functionally

related pathways that may or may not have been altered in the given subset of samples.

A crucial assumption implicit in the requirement of largest cliques as seeds is that the sets of

genes comprising the seeds are co-expressed within subsets of samples that make up the edges. It

is extremely important to note that this assumption is not the same as requiring all gene-pairs

comprising the seed to share identical sets of samples, nor is it the same as assuming that all the

samples comprising the final biclusters co-express all the genes present in the bicluster at the highest

(or lowest) levels. Instead, our expectation is that the samples present in the final biclusters are

enriched in the top (or bottom) samples for each gene comprising the biclusters. Another way to

put it is that the samples in the bicluster exhibit higher (lower) expression levels of the genes in the

bicluster relative to most samples that are not members of the bicluster. We illustrate and expand

on this expectation in the following subsection below.

2.6.1 What do TuBA’s biclusters look like?

In Chapter 1, we described four major classes of biclusters. TuBA’s biclusters belong to the fourth

class - biclusters with coherent evolution - since biclustering algorithms that look at coherent evo-

lution essentially seek subsets of genes that are up-regulated or down-regulated across subsets of

conditions without relying on the actual expression values.

However, TuBA’s biclusters are quite distinct from the kinds of biclusters the other biclustering

algorithms that belong to this class identify. We illustrate this with the help of Fig. 2.4. In panel A,

we show a bicluster identified by TuBA that contains 6 genes (rows) and 6 samples (columns). We

identified the gene within this bicluster that had the highest average expression across the samples,
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and placed it as row 1 of the matrix. We then resorted the samples in increasing order of expression

levels such that the sample with the lowest expression (light red) for the given gene was placed at

the top left corner, and the sample with the highest expression was placed at the top right corner

of the matrix. The order of the samples was kept the same as the one for the gene placed on row 1.

We can observe that there is no explicit coherence in the expression values (higher expression values

represented by deeper shades of red) across the columns or the rows of the matrix; contrast this

with the biclusters associated with coherent evolution discovered by other biclustering algorithms

that seek biclusters with coherent evolution (see Fig. 1.5).

This might appear to be a drawback of our algorithm, however for real gene expression data sets

it is in fact of tremendous value. TuBA not only identifies patterns of coherent evolution identified

by other methods (provided these patterns exist among the subset of samples that make up the top

(or bottom) sample sets for the genes in the bicluster), but it actually accommodates a much more

diverse array of expression patterns that nevertheless fulfill the basic expectation that the samples

present in the final biclusters are enriched in the top (or bottom) samples for each gene comprising

the biclusters. To make it easier to understand this expectation we have shown a schematic repre-

sentation of TuBA’s bicluster (panel A in Fig. 2.4) in comparison to a 6 × 6 submatrix made up

of samples picked randomly from the gene expression matrix for the same set of genes as the ones

in the bicluster (panel B in Fig. 2.4). There is a significant difference between the two matrices -

for any given gene, the samples in TuBA’s bicluster predominantly exhibit higher expression levels

for than the samples in the random submatrix. This is the quintessential property of the biclusters

discovered by TuBA.

The ability of TuBA to accommodate a diverse array of expression patterns stems from a salient

feature of the proximity measure described earlier - it does not penalize differences in ranks of sam-

ples in the percentile sets. Instead, it relies on the simple fact that disease states are highly likely to

exhibit aberrant co-expression of genes due to alterations in the underlying transcriptional programs.

If the genes involved with the alteration exhibit higher (or lower) expression levels within the same

subsets of samples, our proximity measure would be able to capture their co-expression signature.

2.6.2 Enrichment of TuBA’s bicluster in top (or bottom) sample sets

We make the expectation that the samples present in the final biclusters are enriched in the top (or

bottom) samples for each gene comprising the biclusters more concrete with the help of the following

example: Suppose we have a data set that consists of 1000 samples. We apply TuBA to this data

set (assume we are analyzing high expression), and discover a bicluster made up of 100 genes and

200 samples. For each of the 100 genes in the bicluster, we then:
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A B

Figure 2.4: TuBA’s bicluster in comparison to a randomly chosen submatrix from a gene
expression data set. Panel A shows a schematic illustration of a bicluster with 6 genes and 6
samples found by TuBA, panel B shows a schematic illustration of a submatrix from the same data
with 6 samples chosen randomly for the same set of genes as the bicluster.

1. Identify the top 200 samples

2. Test whether these 200 samples are enriched in the 200 samples present in the bicluster.

In order to calculate the significance values for the enrichment of the top samples in the samples in

the bicluster, we can use the one-sided Fisher’s exact test. Since we are performing the tests for each

gene in the bicluster, we need to correct the p−values to obtain FDRs using the Benjamini-Hochberg

method. A similar analysis can be performed for the samples in the bicluster. For the same bicluster

with 100 genes and 200 samples, this time for each of the 200 samples:

1. Identify the genes in the bicluster that have the given sample present within their respective

top 200 samples.

2. Test whether this subset of genes have a significant overlap with the complete set of genes that

make up the bicluster.

Once again, we can use the one-sided Fisher’s exact test to determine whether the overlaps between

the two gene sets is significant. These need to be corrected for multiple hypothesis testing as well,

since we are performing the tests for each sample in the bicluster.

2.6.3 Quality of TuBA’s biclusters

The tests described above generate FDRs for each and every gene and sample in all the biclusters

discovered by TuBA for any given data set. In a given bicluster, the FDR value for a gene (sample)

can be viewed as a measure of its relevance to the respective bicluster the closer the value of the
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FDR is to 0, the stronger is the association of the gene (sample) to the bicluster. We can use the

FDR values for the genes and samples within any bicluster i to evaluate its overall quality, Q(Bi).

We define Q(Bi) as the minimum of the proportion of genes in bicluster i with FDR < 0.05 or the

proportion of samples in bicluster i with FDR < 0.05. Q(Bi) takes values between 0 and 1; values

close to 0 indicate weak associations between the constituent genes and samples within the bicluster

while values close to 1 would indicate strong associations.

2.7 Tuning TuBA

TuBA has two adjustable parameters that determine the nature of the undirected graph, and con-

sequently, the final biclusters:

1. Percentile cutoff : Dictates the number of samples considered for comparison between genes

2. Overlap significance cutoff : Dictates the minimum number of samples that must be shared

between the percentile sets of a pair of genes for them to be represented on the graph

To illustrate how the choice of the percentile cutoff influences the graph, we consider a hypothetical

data set consisting of 200 samples. Consider an ideal case wherein a gene pair is up-regulated in

exactly the same 5% of tumors within this cohort, i.e., both the genes in the gene pair have the

same top 10 samples. In Fig. 2.5, we show the p−values for overlaps as a function of the fraction of

samples that overlap. We can see that the overlap significance value for this hypothetical case will

be p < 10−15 (see the dark blue curve at Fraction of Overlap = 1). If instead we had picked a top

10−percentile cutoff, we would have 20 samples in the top percentile sets of each gene. Out of these

20 only 10 would overlap, resulting in a drop in overlap significance to 10−10 < p < 10−5 (see green

curve at Fraction of Overlap = 0.5).

Thus, an increase in the size of the percentile set may result in loss of significance for aberrant

gene-pair signatures found only in subsets of samples. This does not automatically imply that the

best policy is to reduce the size of the percentile set, because a reduction in the size of the percentile

set increases the likelihood that a number of samples match purely by chance. We can see this by

comparing the p−values for Fraction of Overlap = 1 for the three cases in Fig. 2.5.

In reality, there is no optimal choice for the size of the percentile set. This is because of both

the differences in the prevalence of aberrant gene expression signatures within and among tumors,

and the differences in frequency of occurrence of disease subtypes in the population. The choice of

the percentile cutoff should be viewed as a knob that determines the level of heterogeneity in the

population that we aim to capture.
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Figure 2.5: TuBA’s tunable parameters and their influence on the graphs. Panel A shows
the significance of overlap corresponding to fractions of overlap ranging between 0 and 1 for the top
percentile sets of sizes: (i) 20% (dark green), (ii) 10% (red), and (iii) 5% for a hypothetical data set
with 200 samples. Panel B shows the divergence of the total number of edges in the graphs as the
overlap significance cutoff is lowered. Figure reproduced from [1].

The choice of the second parameter, the extent of patient/sample overlap between percentile

sets, is primarily dictated by its impact on the size of the graph of connected gene-pairs. When

the overlap significance cutoff p−value is raised (lowering of significance), new genes and samples

appear, resulting in an increase in the number of edges in the graph. We can best understand this

effect with the help of Fig. 2.6 that depicts the impact of the choice of overlap significance cutoffs on

the respective graphs corresponding to 3 real gene expression data sets (examined in greater detail

in the following chapter). Assume that in these data sets there is an aberrant tumor-specific gene

co-expression signature in a subset of samples that is frequently (but not always) accompanied by

an enhanced immune response/infiltration. Thus, we would expect that genes associated with the

immune cells would be found to be expressed at relatively higher levels in these subset of samples

compared to the rest of the samples that do not have immune cells infiltrating into the tumor. Since

the subsets of samples that have the aberrant signature and higher immune infiltration have similar

samples, the association between the aberrant signature and the immune response/infiltration would

appear in the form of edges that link the two in the graph. As we increase the overlap cutoff further

(lowering the level of significance), more such edges would get added to the graph that would indicate

an association between various signatures identified in the graph (panels). However, as far as the

biclusters are concerned this increase in the number of edges in the graphs is accompanied by only
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Figure 2.6: Effect of the choice of the overlap significance cutoff on the number of genes,
samples and links in the graphs. Left to right: Plots showing the number of genes added to
the graphs, the number of samples in the graphs, and the total number of links in the graphs for
incremental decreases in the significance level by an order of magnitude, respectively. Panels A,
B, and C correspond to the TCGA, METABRIC, and GEO data sets (described in Chapter 3),
respectively. Figure reproduced from [1].
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a modest gain in information in terms of the addition of new genes or samples to the biclusters

themselves. Thus, the choice of the p-value cutoff is dictated by the consideration of this trade-off

between the gain of new information (genes and samples) in the biclusters, and the number of edges

that get added to our graph. We propose the following heuristic for choosing the overlap significance

cutoff value: the cutoff for the significance level of overlap should be such that a decrease in the

significance level by an order of magnitude leads to an 40 − 60% increase in the number of edges

that get added to the graph (in panel B of Fig. 2.5, observe the divergence in the total number of

edges in the graph as the significance is lowered below 10−20).

2.8 Implementation and availability of TuBA

TuBA was implemented using R, which is an open source programming language and environment

for statistical computing [55]. In addition to using the base packages in R, we relied on the following

packages to perform all the required computations to analyze the gene expression data sets:

1. data.table [56]

2. plyr [57]

3. igraph [58]

4. ggplot2 [59]

5. survival [60, 61] - for survival analysis

The graphs that show the co-expressed genes in the biclusters were made with the help of the

Cytoscape software [62].

The source code for TuBA (currently in the form of R functions) is licensed under the GNU GPL

v3 protocol and can be downloaded from https://github.com/KhiabanianLab/TuBA
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Chapter 3

Application to Breast Invasive Carcinoma

“To confront cancer is to encounter a parallel species, one perhaps more adapted to survival

than even we are.”

– Siddhartha Mukherjee, The Emperor of All Maladies

“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.”

– Samuel Beckett, Worstward Ho

3.1 Breast Cancers - An overview

Breast cancer is one of the most common malignancies that affects millions of women across the

globe. In 2018, more than 260,000 cases were diagnosed in the United States (US) alone. Moreover,

the number of deaths from breast cancer of women in the US in 2018 is estimated to be more than

40,000 women [63]. It is the most common cancer amongst women in the US, and it alone accounts

for 30% of all new cancer diagnoses.

Breast cancer is genetically, clinicopathologically, as well as clinically, heterogeneous. Over the

last several decades, a large number of clinically relevant factors have been identified that have

associations with response to therapy and/or patient survival. These include factors such as the

size of the tumor, tumor histology, cellular proliferation rate, lymph node status, age at diagnosis.

Quite significantly, the expression of specific molecular markers such as oestrogen (ER), progesterone

(PR), and the human epidermal growth factor receptor 2 (HER2) are crucial aids in determining the

choice of therapy for the patient. Encouraged by the improvements in patient management decisions

based on the molecular markers together with the other clinical factors, several studies have been

undertaken in the past two decades aimed at classifying breast cancer into robust subtypes. These

studies have revolved around comprehensive gene profiling of hundreds of breast tumor samples. In

an extremely influential work published in 2000, Perou et al [64] identified groups of co-expressed

genes that exhibited substantial variations in their expression levels between subsets of tumors in
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Subtype Suggested Therapy Notes
Lum A Endocrine Some need cytotoxic
Lum B (HER2−) Endocrine + Cytotoxic No cytotoxic for some
Lum B (HER2+) Endocrine + Cytotoxic + Anti-HER2
HER2+ (non-luminal) Anti-HER2+Cytotoxic
Basal-like (ductal) Cytotoxic

Table 3.1: Treatment recommendations for BRCA based on PAM50 subtypes. This table
has been adapted from Table 3 in [69]. Cytotoxic refers to cytotoxic drugs that inhibit cell division
and are used to destroy cancer cells, Endocrine refers to hormonal agents (such as tamoxifen)
that block natural hormones to inhibit tumor growth, and Anti-HER2 refers to monoclonal clonal
antibodies that specifically bind to the HER2 and induce immune-mediated response.

their data set. Based on these gene sets (which they called the intrinsic gene set), they classified

their breast invasive carcinoma (BRCA) samples into 4 subtypes -

• Luminal-like - tumors within the ER+ subtype that also expressed breast luminal cell markers

• Her2-enriched - tumors with ER−, but HER2+

• Basal-like - tumors within the ER−/HER2− subtype that exhibited high expression of ker-

atins 5,6 and 17

• Normal-like - tumors within the ER−/HER2− subtype that exhibit gene expression signa-

tures similar to the ones expressed by normal breast tissue

With the addition of more samples to their analysis, they later identified two sub-classes within the

luminal-like subtype [65] - (i) luminal A (Lum A), and (ii) luminal B (Lum B). Lum B breast tumors

are known to exhibit higher risks of recurrence compared to Lum A tumors [66].

There have been a few criticisms of this classification scheme based on the observation that the

subtypes are relatively unstable, and exhibit dependence on the original genes and samples used

by the authors [67, 68]. Despite this criticism, this subtype classification has been widely adopted

in the breast cancer research community, and even serves a crucial role in clinical decision making.

Table 3.1 gives an overview of the treatment recommendations based on these subtypes (adapted

from Table 3 in Goldhirsch [69]).

3.2 The datasets

3.2.1 TCGA

The Cancer Genome Atlas (TCGA) is an ambitious cancer genomics program that was initiated in

2006 as a joint effort by the National Cancer Institute and the National Human Genome Research
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Institute. The program brought together a large number of institutions and researchers from di-

verse backgrounds to enable the molecular characterization of more than 20,000 primary tumors and

matched normal samples spanning 33 different cancer types.

BRCA was one of the 33 types that was investigated by the TCGA study. In fact, BRCA is the one

with the most number of studied samples (from more than a thousand patients). The TCGA study

relied on the Illumina HiSeq 2000 RNA sequencing platform to measure gene expression which pro-

vides better dynamic range than microarray data. The log2(x + 1) transformed RSEM normalized

counts of Level 3 data (2016-08-16 version), the clinical data (including relapse status and PAM50

subtype annotation from the 2012 Nature study [70]) (2016-04-27 version), and gene-level copy num-

ber variation (CNV) data were all downloaded from the UCSC Xena Portal (http://xena.ucsc.edu).

Genes with zero expression in all samples, as well as the samples with NA values for any gene were

removed from the analysis.

3.2.2 METABRIC

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) is a collaborative

project jointly supported by Canada and UK to specifically investigate breast tumors for identi-

fication of novel subcategories. The expectation is that based on the molecular signatures of the

subcategories it will be possible to refine and plan the optimal course of treatment for the particular

forms of breast tumors.

In a paper published in 2012 [71], the authors of the study classified breast cancer into 10 subtypes

based on grouping by common genetic features, which they further demonstrated to correlate with

survival. The gene expression data used in this study was generated using the the Illumina HT-12

v3 microarray platform. We downloaded the normalized gene expression data, copy number data,

and the file containing the clinical information from the cBioPortal (http://www.cbioportal.org) on

2017-05-14 [72, 73]. Gene expression dataset of 1,970 samples that had both relapse status and

PAM50 subtype annotation were used in this study

3.2.3 GEO

The Gene Expression Omnibus (GEO) data set actually consists of data from 6 independent cohorts

that relied on the same microarray platform (Affymetrix HGU133A) to measure gene expression in

the breast tumor samples in these studies. The GEO accession numbers of the data corresponding to

these studies are: GSE1456, GSE2034, GSE3494, GSE4922, GSE6532, and GSE7390. Normalized

gene expression data and the clinical data with relapse status were downloaded from the supplemen-

tary data of Gyorrfy et al. [74] on 2017-05-10.
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Dataset No. of Samples No. of Genes Percentile Set Overlap Significance No. of Biclusters
TCGA 908 20241 5% 1.00E-16 353
METABRIC 1970 24368 5% 1.00E-26 340
GEO 1062 13031 5% 1.00E-10 369
TCGA (PAM50) 522 20207 5% 1.00E-07 480
TCGA - Low 908 20241 Bottom 5% 1.00E-20 202
TCGA - Low (PAM50) 522 20207 Bottom 5% 1.00E-07 445

Table 3.2: Summary of BRCA data sets analyzed by TuBA. The table also contains the
details of the two parameters (percentile set size and overlap significance cutoff) used to apply
TuBA to each data set. Separate data sets for the TCGA data (TCGA & TCGA (PAM50) were
created due to the fact that in this data PAM50 subtype annotation was available for only a subset
(522 tumors) of primary tumors.

Table. 3.2 summarizes the basic information of all 3 data sets, along with the respective parameters

chosen for TuBA.

3.3 Permutation test confirms gene pair associations in TuBA’s graphs

are significant

How likely is it for gene pair associations to be identified in our graphs due to chance alone? We

decided to investigate this question by performing a permutation test on the METABRIC dataset

(1970 samples) with the top percentile set size cutoff set to 5%. For each gene, we permuted the labels

of the samples prior to preparing the list of samples that corresponded to the top 5%, respectively.

The significance values for overlaps between every pair of genes were computed using the one-sided

Fisher’s exact test with contingency tables similar to the one shown in panel B of Fig. 2.1. The

histogram for the distribution of the p−values is shown in Fig. 3.1. After adjusting for multiple

hypothesis testing, none of the gene pair p−values were found to be significant (panel B in Fig. 3.1).

We performed 100 iterations of these permutations for the entire data set, and did not identify a

single significant gene pair association in any of those iterations.

3.4 TuBA’s proximity measure benchmarked against standard pairwise

correlation measures

Even before we perform biclustering on gene expression data sets using TuBA. It is important to

assess the performance of its proximity measure against other well-known pairwise proximity mea-

sures. Pearson’s correlation coefficient and Spearman’s correlation coefficient are two of the most

commonly used pairwise proximity measures for clustering.

We expect that genes that are co-expressed across all samples would also have significant overlaps

between the subsets of samples that correspond to their top (or bottom) percentile sets. Also,
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Figure 3.1: Permutation test shows that it is extremely unlikely to observe gene pair
associations at the overlap significance cutoffs chosen for all 3 datasets. Panel A shows
the histogram for the number of gene pairs with significance of overlaps (more accurately −log10(p))
shown along the horizontal axis; panel B shows the histogram after correcting the p−values for
multiple hypothesis testing. Figure reproduced from [1].

Pearson’s correlation coefficient, is susceptible to the influence of outliers, which would mean that

co-expression signatures associated with these outliers that are captured by our proximity measure

should also show higher correlation coefficient values.

Given these observations, we tested the hypothesis that gene sets identified by global proximity mea-

sures have significant overlap with those identified by TuBA within its biclusters. We computed the

Pearson’s correlation coefficients between all possible pairs of genes in the TCGA and METABRIC

data sets, respectively. The gene pairs with the correlation coefficient greater than or equal to 0.6

were identified. Graphs using these gene pairs were made, where in this case the edges just indicate

that the gene pair has correlation coefficient greater than or equal to 0.6. We then employed our

graph-based algorithm to identify gene co-expression modules within the graphs.

For TCGA and METABRIC, we obtained 569 and 298 gene co-expression modules, respectively.

We investigated the association between the gene sets in biclusters discovered by TuBA’s proximity
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Genes in module j Genes not in module j
Genes in bicluster i a b
Genes not in bicluster i c d

Table 3.3: Contingency table for testing enrichment between biclusters and co-expression
modules based on their gene sets.

measure and the gene co-expression modules identified by these two global correlation metrics by

relying on the one-sided Fisher’s exact test. The form of the 2 × 2 contingency table for the tests

is shown in Table 3.3. Since we calculated significance values between all pairs of biclusters and

co-expression modules, we corrected them for multiple hypothesis testing to get FDRs.

The quantities a, b, c and d in the contingency table respectively represent:

• a: the subset of genes shared between bicluster i and co-expression module j

• b: the subset of genes in bicluster i not present in co-expression module j

• c: the subset of genes in co-expression module j not present in bicluster i

• d: the set of all the genes in the data sets that are not members of bicluster i and co-expression

module j

We observed that more than 89% (316 out of 353 biclusters) of the biclusters discovered by TuBA in

the TCGA dataset were made up of gene sets that were enriched in at least one gene co-expression

module (FDR < 0.001), while 86% (293 out of 340 biclusters) of the biclusters discovered by TuBA

in the METABRIC dataset were enriched in at least one co-expression module.

We performed a similar analysis using the Spearman’s rank correlation, with the same cutoff of 0.6 for

the correlation coefficient as well. We obtained 524 and 232 gene co-expression modules for TCGA

and METABRIC, respectively. More than 80% (285 out of 353 biclusters) of TuBA’s biclusters in

the TCGA data set were made up of gene sets that were enriched in at least one gene co-expression

module (FDR < 0.001), while 73% (249 out of 340 biclusters) of the biclusters discovered by TuBA

in the METABRIC data set were enriched in at least one co-expression module. Thus, we observed

a strong agreement between gene sets in TuBA’s biclusters and the co-expression modules based on

the two global proximity measures.

This agrees with our expectation. As noted earlier, due to samples that exhibit aberrant/outlier

expression of some genes, the linear correlation coefficients can often get skewed to reflect greater

pairwise correlations between such sets of genes. These are captured by our graph-based algorithm,

however the global nature of these proximity measures means that the graphs made with these

correlation measures lack any information about the samples that might be associated with the
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aberrant expression of these sets of genes; unlike the graphs based on our proximity measure, the

edges in these graphs do not represent any subset of samples. Thus, the simple yet novel design

of our proximity measure not only makes it possible to identify co-expressed sets of genes, but also

enables us to discern the subsets of samples that exhibit higher (or lower) expression levels of those

genes relative to the rest of the samples.

3.5 TuBA’s biclusters are enriched in extremal sample sets of the biclus-

ter genes

We discussed the nature of TuBA’s biclusters in section 2.6, where we explained that TuBA’s

biclusters are associated with the sets of samples that belong to the extremal (top or bottom) sets

for the genes in the bicluster. In subsection 2.6.2, we explained with the help of an example how

we can perform the enrichment tests for each gene and sample in biclusters to determine whether

they are associated with these extremal sets.

We applied these test for each of TuBA’s biclusters in the TCGA, METABRIC, and GEO data sets.

For high expression, we observed that all the genes in all (353) the biclusters from TCGA showed

significant enrichment (FDR < 0.001). In case of METABRIC, we observed 2 biclusters out of 340

biclusters with only 1% of their constituent genes not exhibiting enrichment, while in case of GEO

we observed only 1 bicluster out of 369 with 1% of its constituent genes not exhibiting enrichment.

A key observation we made for all 3 data sets was that even in the few biclusters that included a

few genes with enrichment FDR > 0.001, none of those genes were constituents of the seeds of those

biclusters. Based on this observation we decided to rely on the subsets of genes in our biclusters

that make up the seeds for future gene set enrichment tests. These enrichments would reveal the

core functional signatures of the biclusters.

A similar analysis for the samples revealed that 95% of biclusters (336 out of 353) from the TCGA,

97% of biclusters (329 out of 340) from the METABRIC, and 89% of biclusters (328 out of 369)

from the GEO data set, respectively, had more than 95% of samples enriched in the top sample sets

of the bicluster genes (FDR < 0.001).

3.6 TuBA consistently discovers biclusters made up of similar gene sets

within a data set

We investigated whether TuBA could consistently discover biclusters within the same data set. For

this, we picked the TCGA data set that consisted of 908 samples. These 908 samples were split
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No. of matching biclusters in data set 1 No. of matching biclusters in data set 2
Split 1 225 out of 306 (73%) 230 out of 303 (76%)
Split 2 220 out of 313 (70%) 219 out of 299 (73%)
Split 3 207 out of 278 (74%) 224 out of 310 (72%)
Split 4 235 out of 323 (73%) 214 out of 305 (70%)
Split 5 221 out of 298 (74%) 225 out of 305 (74%)

Table 3.4: Consistency of TuBA’s biclusters obtained from subsets of the TCGA data
set.

randomly into two groups of 454 samples each. This was done 5 times to generate 5 pairs of data sets.

TuBA was applied to all 5 pairs of data sets with the same choice of parameters to minimize bias -

the percentile cutoff was set at 5%, and the overlap significance cut-off was fixed at FDR ≤ 10−08.

For each pair of split data sets, we compared the biclusters obtained from the application of TuBA

using the one-sided Fisher’s exact test. To illustrate the setup of the contingency tables for the

tests, we take the aid of the Venn diagram in panel B of Fig. 2.1. For this particular case, the grey

rectangular box in the Venn diagram represents the set of all the genes present in the data sets,

the red circle represents the set of genes present in bicluster i from data set 1, and the blue circle

represents the set of genes present in bicluster j from data set 2. The regions labeled by a, b, c and

d in the Venn diagram then respectively represent:

• a: the subset of genes shared between biclusters i and j

• b: the subset of genes in bicluster i not present in bicluster j

• c: the subset of genes in bicluster j not present in bicluster i

• d: the set of all the genes in the data sets that are not members of biclusters i and j

Table 3.3 shows the 2× 2 contingency table for these tests. Once again, the p−values obtained

from each test were corrected for multiple hypothesis testing to get FDRs.

Table 3.4 presents summary of the results from the pairwise comparisons (between sets of genes) of

all the biclusters between the 5 pairs of split data sets. On average, 73% biclusters from one data

set in each pair were enriched (FDR < 0.001) in at least one bicluster from the other data set.

We also investigated whether there was a significant difference in the sizes (in terms of number of

genes) of the biclusters that matched, compared to the biclusters that did not match between the

data set pairs. We used the Mann-Whitney U test [75], which is a non-parametric test of the null

hypothesis that it is equally likely that a randomly selected value from one sample will be less than

or greater than a randomly selected value from a second sample. We found a significant difference

(p < 10−05) in the number of genes contained in biclusters that matched among the pairs, compared



45

Dataset (Compared With) No. of Genes Percentile Set Size Overlap Significance Cutoff
TCGA (METABRIC) 17209 5% 1.00E-15
METABRIC (TCGA) 17209 5% 1.00E-25
TCGA (GEO) 11979 5% 1.00E-12
GEO (TCGA) 11979 5% 1.00E-09
METABRIC (GEO) 11186 5% 1.00E-22
GEO (METABRIC) 11186 5% 1.00E-09

Table 3.5: Details of the data sets used for comparing TuBA’s biclusters. The table also
contains the details of the two parameters (percentile set size and overlap significance cutoff) used
to apply TuBA to each data set.

to the number of genes in biclusters that did not - the biclusters that did not match contained fewer

genes than the biclusters that matched; the median size of biclusters that matched was 20 (range:

3− 840), while the median size of biclusters that did not match was 3 (range: 3− 18) (Note, 3 is the

minimum size of the biclusters discovered by TuBA). Thus, TuBA robustly identified co-expression

signatures that involved larger numbers of genes. Overall, TuBA was able to consistently identify

matching sets of co-expressed genes from randomly sampled subsets of data within a data set.

3.7 TuBA’s biclusters are consistent across independent datasets

It is quite reasonable to expect consistency of biclusters discovered within the same data. However,

what is of greater interest is to see whether the algorithm can discover biclusters in data sets

of independent cohorts are similar to each other. While breast cancers in particular are quite

heterogeneous, we still expect to observe gene co-expression signatures that are consistent due to

shared alterations, or common underlying mechanisms in subsets of tumors within these independent

cohorts. We compared biclusters discovered by TuBA between the following data sets:

1. TCGA and METABRIC

2. TCGA and GEO

3. METABRIC and GEO

For each case, we prepared each data set to ensure that each member of the pair had the same

set of genes. The details of the data sets and the parameters used for TuBA for each data set are

summarized in Table 3.5. We performed pairwise comparisons of biclusters between each pair of data

sets to identify the ones that share a significant proportion of their genes. For these comparisons,

we used the one-sided Fisher’s exact test with contingency tables similar to the one shown in Table

3.3. We made the following observations for each comparison:

1. TCGA vs. METABRIC - We found 64% of the biclusters obtained for one dataset enriched

(FDR < 0.001) in at least one bicluster from the other
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Percentile Cutoff Overlap Significance Cutoff Number of Matching Biclusters
5 (Reference) 1.00E-16 353
7.5 1.00E-19 334
10 1.00E-23 327
12.5 1.00E-26 322
15 1.00E-30 304

Table 3.6: Robustness of TuBA’s biclusters to different choices of its two parameters for
the TCGA data set.

2. TCGA vs GEO - We found 69% of the biclusters obtained for one dataset enriched (FDR <

0.001) in at least one bicluster from the other

3. METABRIC vs GEO - We found 76% of the biclusters obtained for one dataset are enriched

(FDR < 0.001) in at least one bicluster from the other.

Thus, TuBA’s biclusters were consistent to a remarkable extent in data sets from three indepen-

dent sources which also involved distinct technologies for measuring gene expression (RNA-seq and

Microarray).

3.8 TuBA’s biclusters are robust over a range of choices of its tunable

parameters

The principal goal of TuBA is to identify subsets of genes that are co-expressed at high (or low)

levels within subsets of samples. The exact number of biclusters is not biologically meaningful; it

is possible to have some differences in the total number of biclusters as the knobs of TuBA (the

two parameters) are varied. We investigated the robustness of TuBA’s results by making multiple

different choices of its parameters and inquiring whether there was agreement between the respective

sets of biclusters obtained for a given data set. We decided to keep the biclusters obtained for TCGA

(high expression) with the following choices for the parameters: (i) percentile set size: 5%, and (ii)

overlap significance cutoff: 10−16, as our reference. We then applied TuBA to the TCGA dataset

with the following choices for the the sizes of the top percentile sets - 7.5%, 10%, 12.5%, 15% (note,

all the percentile set sizes are larger than the reference percentile set size). For each of these choices

of the percentile set size, we also had to make different choices for the overlap significance cutoffs

that were consistent with our proposed heuristic. All the choices of TuBA’s parameters are summa-

rized in Table 3.6. Pairwise comparisons (using one-sided Fisher’s exact test) between the reference

biclusters and the biclusters obtained by application of TuBA with the other sets of parameters,

identified those reference biclusters that shared a significant proportion of their genes and samples
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Percentile Cutoff Overlap Significance Cutoff Number of Matching Biclusters
5 (Reference) 1.00E-16 353
10 1.00E-23 327
10 1.00E-24 327
10 1.00E-25 317
10 1.00E-26 303
10 1.00E-27 290
10 1.00E-28 288

Table 3.7: Robustness of TuBA’s biclusters to different choices of the overlap significance
cutoff for the TCGA data set.

with biclusters obtained from other parameter choices. We observed that 95% of our reference bi-

clusters (334 out of 353 biclusters) were enriched (FDR < 0.001) in at least one bicluster in the

set of biclusters corresponding to the percentile cutoff of 7.5%, and the overlap significance cutoff of

10−19. However, the agreement steadily decreased as we increased the size of the percentile sets -

only about 86% of the reference biclusters (304 out of 353 biclusters) were enriched (FDR < 0.001)

in at least one bicluster in the set of biclusters corresponding to the percentile cutoff of 15%, and the

overlap significance cutoff of 10−30. Once again, we observed that there was a significant difference

(Mann-Whitney U test p < 10−05) in the number of genes contained in the biclusters that matched,

compared to the ones that did not match; the median size of biclusters that matched was 20 (range:

3 − 1012), while the median size of biclusters that did not match was 4 (range: 3 − 60). Thus, we

can conclude that some of the smaller biclusters that correspond to alterations/deregulation in small

subsets of tumors were not identified as we increased the size of the percentile sets. Nonetheless, we

were able to validate most of our reference biclusters in the sets of biclusters obtained with other

choices of the parameters, thereby demonstrating their robustness over a range of choices for the

percentile set size cutoff.

Another aspect that we investigated was the level of agreement between the reference biclusters

and the biclusters obtained for different choices of just the overlap significance cutoff. Our refer-

ence biclusters once again corresponded to the ones obtained for TCGA (high expression) with the

following choices of parameters for TuBA: (i) Percentile Cutoff: 5%, and (ii) Overlap Significance

Cutoff: 10−16. We compared the reference biclusters to the ones obtained for the choice of the per-

centile cutoff fixed at 10%, and the overlap significance cutoffs ranging between 10−23 to 10−28 (in

decrements of orders of 10) (see Table 3.7). For the overlap significance cutoff of 10−23, we observed

that 93% (327 out of 353 biclusters) of the reference biclusters were enriched (FDR < 0.001) in at

least one bicluster in the set of biclusters corresponding to the percentile cutoff of 10%. However,

as we decrease the overlap significance cutoff (higher significance) the agreement decreases - at the

overlap significance of 10−28, only 81% (288 out of 353 biclusters) of the reference biclusters had
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corresponding matches. This is reasonable, since an increase in overlap significance would lead to

a decrease in the total number of gene-pairs in the entire graph(s). This leads to fewer genes and

samples in the graphs overall, and would therefore lead to an omission of gene-pair associations

that correspond to some of our reference biclusters. However, inspite of a five-fold difference in

the significance level of overlap, the agreement between the reference biclusters and the biclusters

obtained with other choices of the overlap significance cutoff is quite respectable.

3.9 Utility of TuBA’s tunable knobs

The results of the robustness analyses may appear to indicate that TuBA’s biclusters are impervious

to changes in the choices of its parameters. That is certainly not the case. In fact, the tunable aspect

of our algorithm is precisely due to the influence of our parameters (knobs) on the final biclusters.

The influence of the choices of the parameters on the determination of the final biclusters can best be

illustrated with help of two real examples from the application of TuBA to the TCGA data set. For

this data set, with the choice of top 5% percentile cutoff and overlap significance cutoff of p ≤ 10−16,

one of the biclusters we discovered was made up exclusively of genes from the Cancer-Testis Antigen

family: MAGEA2, MAGEA3, MAGEA6, MAGEA10, CSAG1, CSAG2. However, this bicluster

was not identified for percentile set cutoff choices of top 10% and 20% with overlap significance

cutoffs of p ≤ 10−25 and p ≤ 10−36, respectively. This clearly suggests that these genes are only

expressed in approximately 5% of all BRCAs. Thus, an increase in the percentile cutoff results in the

omission of aberrant co-expression signatures found in comparatively small subsets of tumors within

the population, such as this one. In sharp contrast, we observed another small bicluster made up

of genes exclusively from the Cancer-Testis Antigen family (CTAGE4, CTAGE6, CTAGE9 ) for all

three upper percentile cutoffs (5%, 10% and 20%) and the respective overlap cutoffs, suggesting that

these genes exhibit aberrant co-expression in a larger proportion of tumors within the population

(at least 10%).

The second example is that of the bicluster corresponding to the HER2 (ERBB2 gene) amplicon

(17q12). Panel A in Fig.3.2 shows the number of samples present in the bicluster for the top

percentile cutoff of 5%, as the overlap cutoff is lowered from 10−20 to 10−16. We can observe that

no new samples get added to the bicluster, even though there is a reduction in the significance level

of overlap by four orders of magnitude. We can infer that the choice of the upper percentile cutoff

at 5% put a cap on the maximum number of samples that can belong to the bicluster; lowering of

the overlap cutoff does not lead to an increase in the number of samples in the bicluster precisely

because almost all of them were identified at the higher significance level of 10−20. However, when
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Figure 3.2: Effect of the choice of percentile cutoff on the bicluster associated with the
HER2 amplicon. Panel A shows the number of samples in the bicluster as the overlap significance
is lowered from 10−20 to 10−16 for percentile set size of 5%, and panel B shows the number of samples
in the bicluster as the overlap significance is lowered from 10−35 to 10−23 for percentile set size of
10%. Figure reproduced from [1].
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the top percentile cutoff is chosen at 10%, we see a steady increase in the number of samples in the

bicluster as we lower the overlap cutoff from 10−35 to 10−23, with a gradual reduction in the number

of samples that get added as we approach p = 10−23 (panel B in Fig. 3.2). Further reduction in the

overlap cutoff results in the addition of only a handful of samples to the bicluster, however, it leads

to a significant increase in the number of edges in the overall graph. This is the trade-off that we

need to keep in mind while making our choice for the second parameter.

3.10 TuBA can be used for RNA-seq data to find biclusters associated

with low expression levels of the associated genes

One of the biggest advantages of RNA sequencing over microarray assays is the reliable measurement

of transcripts at low levels of expression. Theoretically, only the depth of sequencing limits the

dynamic range of RNA-seq data [76, 77]. Out of the three data sets, only TCGA used an RNA-seq

platform for measuring transcript abundances. Given that the TCGA data has adequate sequencing

depth, we can expect a reliable quantification of transcripts that are expressed at low levels in

subsets of tumors. We therefore applied TuBA to the TCGA data set to explore transcriptional

profiles associated with low expression.

The protocol followed to identify relevant gene pairs using our proximity measure is slightly different

to the one used for identifying gene pairs corresponding to high expression. For low expression, (i)

the grey rectangular box in the Venn diagram in panel B of Fig. 2.1 represents the set of all the

samples in the data set, (ii) the red circle represents the set of bottom (5%,10%, etc.) percentile

samples for gene 1 or the set of all samples with zero expression for gene 1, whichever is larger, and

(iii) the blue circle represents the set of bottom (5%, 10% etc.) percentile samples for gene 2 or the

set of all samples with zero expression for gene 2, whichever is larger. Consequently, the regions

labeled by a, b, c and d in the Venn diagram respectively represent:

• a: the set of samples that are found in the bottom percentile sets (or the subset of samples

with expression value zero) of both gene 1 and gene 2

• b: the set of samples that are found only in the bottom percentile (or the subset of samples

with expression value zero) set of gene 1

• c: the set of samples that are found only in the bottom percentile (or the subset of samples

with expression value zero) set of gene 2

• d: Set of samples that are neither found in the bottom percentile set of gene 1 (or the subset of

samples with expression value zero), nor in the bottom percentile set (or the subset of samples
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with expression value zero) of gene 2

The contingency table corresponding to this would be exactly the same as the one shown in panel

B of Fig. 2.1. Once again, since we are calculating significance values for all possible gene pairs, we

need to correct them for multiple hypothesis testing to get FDRs.

3.11 TuBA identifies biclusters enriched in known subtypes of BRCA

3.11.1 Enrichment in ER/HER2 based subtypes

Based on the expression levels of the ESR1 (ER) and the ERBB2 (human epidermal growth

factor receptor 2 [HER2]) genes, breast tumors can be classified into four known subtypes: (i)

ER−/HER2−, (ii) ER+/HER2−, (iii) ER−/HER2+, and (iv) ER+/HER2+ (where + corresponds

to over expressed and − corresponds to under expressed). The classification of breast tumors based

on the expression levels of these genes allows for systemic treatment protocols to be adopted based

on the subtype.

To find whether some of our biclusters were associated with one or more of these subtypes, we relied

on the following information: (i) For METABRIC, we used the ER and HER2 status available in the

clinical file, and (ii) for TCGA and GEO, we used the expression levels of the transcripts to classify

the samples into one of the four subtypes described above. Once again we relied on the one-sided

Fisher’s exact test to determine whether there is enrichment of the biclusters within sets of samples

that belong to certain subtypes. In the Venn diagram in panel B of Fig. 2.1, the grey rectangular

box (containing both the circles) in this case represents the set of all samples that have an unam-

biguous ER/HER2 subtype status. The red circle represents the set of all the samples belonging to

the bicluster, the blue circle represents the set of samples that belong to a given subtype. Therefore,

the regions labeled by a, b, c, and d respectively represent:

• a: the set of samples in the bicluster that also belong to the given ER/HER2 subtype

• b: the set of samples in the bicluster that do not belong to the given ER/HER2 subtype

• c: the set of samples for the given subtype that are not present in the bicluster

• d: the set of samples that are neither present in the bicluster, nor are they of the given subtype

For each of the four ER/HER2 subtypes, we prepared such contingency tables for every bicluster

and tested for enrichment within the subtype. The generic form of the contingency tables for these

tests is shown in Table. 3.8.
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Samples belonging to subtype X Samples not belonging to subtype X
Samples in bicluster a b
Samples not in bicluster c d

Table 3.8: Contingency table for calculating enrichment of biclusters in subtypes.

High expression

Quite remarkably, we observed that a majority of biclusters for all three data sets were enriched

in the ER-/HER2- subtype (Fig. 3.3 shows the subtype enrichments of biclusters for TCGA and

METABRIC; the association with copy number is explained in a following section). The overall

result of the enrichments for each data set is summarized below -

• 53% of the biclusters (180 out of 340 biclusters) for METABRIC were enriched in ER−/HER2−

• 54% of the biclusters (191 out of 353 biclusters) for TCGA were enriched in ER−/HER2−

• 40% of the biclusters (148 out of 369 biclusters) for GEO were enriched in ER−/HER2−

Low expression (TCGA)

Similar to what we observed for biclusters corresponding to high expression for TCGA, a majority

of the biclusters corresponding to low expression were enriched in the ER-/HER2- subtype - to be

precise, 46% of the biclusters (94 out of 203 biclusters) from TCGA were enriched in the ER-/HER2-

subtype. Fig. 3.4 shows the subtype enrichments of biclusters for TCGA (low); the association with

copy number is explained in a separate section below.

3.11.2 Enrichment in the PAM50 subtypes

According to the subtype classification based on the Prosigna Breast Cancer Prognostic Gene Sig-

nature Assay (PAM50), there are five subtypes of BRCA: (i) Basal-like, (ii) Her2-enriched, (iii)

Luminal A, (iv) Luminal B, and (v) Normal-like [78]. To determine whether our biclusters were

associated with one or more of these subtypes, we used the following information - for METABRIC,

we used the PAM50 subtype labels for the samples provided in the clinical file, while for TCGA we

used the PAM50 calls available for a subset of samples in the clinical file from the paper published by

the TCGA group in 2012 [70]. For GEO, no such information was available, thus the GEO data set

was not included in the subtype enrichment analysis for PAM50. For both TCGA and METABRIC,

we identified the samples that had been assigned to at least one of the five PAM50 subtypes and

prepared new data sets that only contained samples with the PAM50 subtype information.

The setup for the one-sided Fisher’s exact test is similar to the one for the ER/HER2 subtypes.



53

Figure 3.3: TuBA’s biclusters are enriched in ER/HER2 subtypes and are also associated
with copy number gains. The biclusters are represented by horizontal bars in each panel. For
CNA associated biclusters with proximally located genes (panels A and C) the bars are color-coded
according to the chromosome number of their constituent genes for METABRIC and TCGA data
sets, respectively. Panels B and D show the remaining biclusters arranged according to their serial
numbers. The ones associated with copy number gains of genes (not located proximally) are shown
in red, while the rest are shown in black. The thickness of the bar in each panel depends on the total
number of biclusters displayed in the given panel and does not represent its chromosomal extent.
Figure reproduced from [1].
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Figure 3.4: TuBA’s biclusters are enriched in ER/HER2 subtypes and are also associated
with copy number losses. The biclusters are represented by horizontal bars in each panel. For
copy number loss associated biclusters with proximally located genes (panel A) the bars are color-
coded according to the chromosome number of their constituent genes. Panels B and D show the
remaining biclusters arranged according to their serial numbers. The ones associated with copy
number losses of genes (not located proximally) are shown in green, while the rest are shown in
black. The thickness of the bar in each panel depends on the total number of biclusters displayed
in the given panel and does not represent its chromosomal extent. Figure reproduced from [1].
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For the case of PAM50, in the Venn diagram in panel B of Fig. 2.1: (i) the grey rectangular box

represents the set of all samples that have an unambiguous PAM50 subtype assignment available,

(ii) the red circle represents the set of all the samples belonging to the bicluster, and (iii) the blue

circle represents the set of samples that belong to the given PAM50 subtype. Therefore, the regions

labeled by a, b, c and d respectively represent:

• a: the set of samples in the bicluster that also belong to the given PAM50 subtype

• b: the set of samples in the bicluster that do not belong to the given PAM50 subtype

• c: the set of samples for the given subtype that are not present in the bicluster

• d: the set of samples that are neither present in the bicluster, nor are they of the given subtype

The forms of the contingency tables are exactly the same as the one shown in Table. 3.8. After the

significance values were calculated for every bicluster, they were corrected for multiple hypothesis

testing.

High expression

In the case of PAM50 subtypes, we observed that the majority of biclusters, for both TCGA and

METABRIC, were enriched in the Basal-like subtype -

• 52% of the biclusters (177 out of 340 biclusters) for METABRIC were enriched in the Basal-like

subtype

• 55% of the biclusters (264 out of 480 biclusters) for TCGA were enriched in the Basal-like

subtype

Low expression (TCGA)

For the low expression analysis of the TCGA (PAM50) data set, we observed that 48% of the bi-

clusters (231 out of 480 biclusters) from TCGA were enriched in the Basal-like subtype (panels E

and F in Fig. 3.5). Therefore, a substantial proportion of biclusters were enriched in the Basal-like

subtype for both high and low expression.

This is a truly remarkable observation, especially given that ER−/HER2− and/or Basal-like sub-

types only account for 15%− 20% of all BRCAs. Thus, TuBA is able to uncover several biclusters

that are associated with altered transcriptional programs within tumors of this subtype, further

highlighting their tremendous heterogeneity.



56

Figure 3.5: TuBA’s biclusters are enriched in PAM50 subtypes and are also associated
with copy number gains and losses. The biclusters are represented by horizontal bars in each
panel. For copy number alteration associated biclusters with proximally located genes (panels A,
C and F) the bars are color-coded according to the chromosome number of their constituent genes
for METABRIC and TCGA data sets, respectively. Panels B and D show the remaining biclusters
arranged according to their serial numbers. The ones associated with CNA of genes (not located
proximally) are shown in red, the ones associated with while the rest are shown in black. Panel F
shows the biclusters arranged according to their serial numbers, with the ones associated with copy
number loss of genes (not located proximally) shown in green. Figure reproduced from [1].



57

3.12 TuBA discovers biclusters with proximally located genes

In all three data sets, TuBA discovered several biclusters almost exclusively made up of genes that

are known to be located near each other on the chromosomes. One of the underlying mechanisms

responsible for such co-expression signatures could be copy number alterations. There are two kinds

of copy number of alterations that influence the expression levels in completely opposite ways:

1. Copy Number Amplification (CNA) - CNA refers to significant gains in the number of copies

of the affected genes beyond the 2 copies that are normally present in the genome. If the

affected site(s) is transcriptionally active, the expression levels of the affected genes would be

up-regulated.

2. Copy Number Deletion or Loss - This refers to the loss of one or both the copies of the affected

genes in the genome. If the affected site(s) is transcriptionally active, the expression levels of

the affected genes would be down-regulated.

In order to determine the associations of copy number alterations with our biclusters, we used

thresholded copy number data for both TCGA and METABRIC. In these copy number data sets,

for any given gene the values for a sample could be: (i) +2: high level amplification, (ii) +1: copy

number gain, (iii) 0: neutral, or no change, (iv) -1: hemizygous deletion (deletion of one copy of

given gene), or (v) -2: homozygous deletion (deletion of both copies of the given gene in the genome).

In the following subsections we describe the results of the associations between copy number altered

sites and our observed biclusters for the three data sets.

3.12.1 Biclusters associated with CNA

We adopted the following stepwise process in order to identify whether gain in copy number might

be the underlying mechanism for some of our biclusters -

1. List the genes that constitute the bicluster.

2. Pick a gene from the list prepared in step 1.

3. List all the samples that have a gain in copy number for the chosen gene (sample values > 0)

and are also present in the gene expression dataset.

4. List all the samples that are in the top percentile set for the given gene and have copy number

data available.
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Samples with CNA Samples without CNA
Top samples in bicluster a b
Samples not in bicluster c d

Table 3.9: Contingency table for testing bicluster enrichment in copy number gain asso-
ciated samples.

We used the one-sided Fisher’s exact test to look for enrichment of samples with copy number gains

for the given gene in the bicluster. To understand the setup of the contingency tables for the test,

we again refer to the Venn diagram in panel B of Fig. 2.1. The grey rectangular box (containing

both the circles) now represents the set of all the samples that have both copy number and gene

expression data available, the red circle represents the set of top percentile samples corresponding

to the given gene present in the bicluster, and the blue circle represents the set of samples that have

a gain in copy number for the given gene. Thus, the regions labeled by a, b, c and d in the Venn

diagram respectively represent:

• a: the set of top percentile samples in the bicluster that also have a gain in copy number for

the given gene

• b: the set of top percentile samples in the bicluster that do not have a copy number gain for

the given gene

• c: the set of samples that have a gain in copy number for the given gene but are not present

in the bicluster

• d: the set of samples that are neither present in the bicluster nor do they have a gain in copy

number for the given gene

The corresponding 2 × 2 contingency table is of the form shown in Table. 3.9. Note, there is a

contingency table set up for each individual gene in all the biclusters discovered by TuBA. Thus,

after calculating the p−values for each gene, we corrected them for multiple hypothesis testing to

obtain FDRs.

In order to discern the biclusters associated with CNA, we decided to calculate the overall en-

richment of the biclusters in copy number gain samples. We did this by combining the FDRs of

all the genes within the biclusters using Fisher’s method [79] to yield a single significance value for

every bicluster. Based on this, we observed that 56% and 64% of biclusters from the METABRIC

and TCGA datasets were associated with CNA (p < 0.001), respectively. These biclusters included

those that contained genes from multiple locations across different chromosomes. In order to short-

list those biclusters that were composed exclusively of genes that were located near each other, we
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imposed the following constraint: only those CNA-associated biclusters were kept, whose seeds were

made up exclusively of genes located on the same chromosome. Based on this criteria, only 60 (18%)

biclusters from METABRIC were associated exclusively with CNA of proximally located genes (see

panel A in Fig. 3.3), the remaining biclusters associated with CNA were enriched in genes from

distant chromosomal locations (panel B in Fig. 3.3). Similarly, 112 (32%) biclusters from TCGA

were associated with CNA of proximally located genes (panel C in Fig. 3.3C). Several of these were

associated with chromosomal loci shown to exhibit copy number gains in BRCAs in previous studies

[80, 81].

3.12.2 Biclusters associated with copy number loss

In order to explore the association between the biclusters obtained from the low expression analysis

and loss of copy number, we repeated the copy number analysis described above, except that this

time, the samples in row 1 of the contingency table in Table 3.9 corresponded to the bottom percentile

set, and the samples in the column 1 corresponded to samples with copy number deletion or loss.

We observed that 52% biclusters from the TCGA dataset were enriched in copy number losses (Fig.

3.4). However, only 21 biclusters contained genes located near each other on the same chromosome

(panel A in Fig. 3.4), the remaining biclusters associated with copy number loss contained genes

located in different chromosomes.

3.12.3 Biclusters not associated with copy number gains or losses

We also observed some biclusters with proximally located genes that were not associated with gain

or loss in copy number. We focused on the ones discovered for high expression, since these may be

of greater prognostic value.

For TCGA, 14 biclusters out of 353 consisted of genes located next to each other within the chro-

mosome, while 18 biclusters out of 340 for METABRIC consisted of genes located near each other.

Details of the genes and subtype-specific enrichments for some of these biclusters are summarized in

Table 3.10. Examples of biclusters from this category include the biclusters consisting of genes from

the Cancer-Testis antigens family - MAGEA2, MAGEA3, MAGEA6, MAGEA10, CSAG1, CSAG2,

CSAG3 (Xq28)/CT45A3, CT45A5, CT45A6 (Xq26.3). Previous studies have shown these genes to

exhibit aberrant expression in ER-/HER2- breast tumors [82], as well as in a few other tumor types

[83].
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Cytoband Locus Genes Subtype Enrichment
1p13.3 NBPF4, NBPF6, NBPF22P (5q14.3) ER+/HER2- for TCGA
1p31.1 PRKACB, SAMD13, DNASE2B ER+/HER2+ for TCGA

ER+/HER2-, LumA & LumB for METABRIC
1q21.2 PPIA (7p13), PPIAL4C, PPIAL4G ER-/HER2- for TCGA
1q21.3 S100A7, S100A8, S100A9 ER-/HER2+ for METABRIC

Her2-enriched (PAM50) for METABRIC
1q23.1 CD1B, CD1C, CD1E ER-/HER2- for TCGA
2q21.1 TUBA3C (13q12.11), TUBA3D, TUBA3E ER+/HER2- for TCGA

ER+/HER2- for METABRIC
4q13.2 UGT2B7, UGT2B10, UGT2B11, UGT2B28 ER-/HER2+ for TCGA

Her2-enriched (PAM50) for METABRIC
4q32.2 NAF1, NPY1R, NPY5R, TKTL2 ER+/HER2- for TCGA
7p15.2 HOXA2, HOXA3, HOXA5, HOXA6, HOXA7, HOXA9, HOXA10 None in TCGA

Basal-like for METABRIC
12p12.3 WBP11, C12orf60 ER+/HER2- for TCGA

ER+/HER2- & LumB for METABRIC
12p13.1 HEBP1, HTR7P1 ER+/HER2- for TCGA
12q13-q13.13 KRT81, KRT83, KRT86, KRT6A, KRT6B, KRT6C ER-/HER2- for TCGA

ER-/HER2- & Basal-like for METABRIC
15q21.1 DUOX1, DUOX2, DUOXA1, DUOXA2 ER-/HER2- for TCGA
16p13.3 HBA1, HBA2, HBB (11p15.4) None
19q13-q13.41 KLK5, KLK6, KLK7, KLK8 ER-/HER2- for TCGA
Xq22.1-q22.2 TCEAL1, TCEAL3, TCEAL4, TCEAL6 ER+/HER2- for TCGA

ER+/HER2-, LumA & LumB for METABRIC
Xq28 CSAG1, CSAG2, CSAG3, MAGEA2, MAGEA3, MAGEA6, MAGEA10, MAGEA12 ER-/HER2- for TCGA

ER-/HER2- & ER-/HER2+ for METABRIC
Basal-like & Her2-enriched (PAM50) for METABRIC

Table 3.10: Biclusters with genes that are located near each other but are not associated
with copy number changes.

3.13 TuBA identifies biclusters associated with the immune and stromal

cells present in the tumor samples

One of the most commonly used methods to validate the results of clustering or biclustering analysis

is Gene Ontology (GO). It is based on a hierarchical graph structure in which the nodes represent

terms dealing with biological processes, molecular functions, cell components etc., and the edges

connecting the nodes indicate dependency/association between them. The usual approach is to

perform a statistical analysis (hypergeometric test) to look for over-representation in GO. By that

we mean, that given a subset of genes (genes in the bicluster) from a larger population (the set of

all the genes in the data set), we are interested in knowing if the frequency of an annotation to a

GO term is more than what would be expected from chance alone, given the overall population. We

obtain a p−value for all those terms in GO in which the genes of the bicluster are enriched. We

used GeneSCF [84], a functional enrichment tool, to perform GO term enrichment for our biclusters.

We relied on the Benjamini-Hochberg FDRs (FDR < 0.001) to identify GO terms enriched in our

biclusters.

Based on the GO term enrichment analysis, we discovered that multiple biclusters identified by

TuBA appear to be associated with non-tumor cells. For instance, some of the largest biclusters

independently identified in all three data sets were associated with immune response. The top five

Gene Ontology - Biological Processes (GO-BP) terms for the biclusters associated with immune

response were: T cell co-stimulation, T cell receptor signaling pathway, T cell activation, regulation

of immune response, and positive regulation of T cell proliferation. This indicated immune cell

infiltration in a significant number of tumor samples. In order to corroborate these results, we
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Samples in group (i) Samples not in group (i)
Samples in bicluster a b
Samples not in bicluster c d

Table 3.11: Contingency table for determining enrichment of bicluster samples in samples
with high immune infiltration/high stromal scores.

took the help of a tool called ESTIMATE (Estimation of STromal and Immune cells in MAlignant

Tumor tissues using Expression data) developed by Yoshihara et al [85] to predict tumor purity,

and the presence of infiltrating stromal/immune cells in tumor tissues using gene expression data.

The algorithm of ESTIMATE is based on Gene Set Enrichment Analysis (GSEA) and generates 3

scores for a given sample:

1. Stromal score - captures the presence of stroma in the tumor tissue.

2. Immune score - captures the extent of infiltration of immune cells in the tumor tissue.

3. Estimate score - uses the two scores above to infer tumor purity.

We calculated the immune scores for the samples in the TCGA data set, and stratified the samples

based on these scores into three groups: (i) top 25 percentile (samples with highest immune infil-

tration), (ii) intermediate 50 percentile, and (iii) bottom 25 percentile (samples with lowest immune

infiltration). We then prepared contingency tables of the form shown in Table. 3.11 for the one-sided

Fisher’s exact test. The quantities a, b, c, and d in the table correspond to:

• a: the set of samples in the bicluster that also belong to group (i)

• b: the set of samples in the bicluster that do not belong to group (i)

• c: the set of samples in group (i) not present in the bicluster

• d: the set of samples neither present in group (i), nor in the bicluster

Based on these tests, we verified that samples in the biclusters enriched in GO-BP terms associated

with immune response were indeed enriched in samples with the highest levels of immune infiltration

as calculated by ESTIMATE (FDR < 0.001).

Additionally for all three datasets, we also observed a bicluster associated with the stromal adipose

tissue. The top 5 GO-BP terms for this bicluster were: response to glucose, triglyceride biosynthetic

process, triglyceride catabolic process, retinoid metabolic process, and retinol metabolic process.

Once again based on a test similar to the one described above for immune infiltration (but with

stromal scores this time), we confirmed that these biclusters were enriched within the top 25 per-

centile samples based on stromal scores determined by ESTIMATE.
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Gene pairs enriched in GTEx Gene pairs not enriched in GTEx
Gene pairs in bicluster a b
Gene pairs not in bicluster c d

Table 3.12: Contingency table for determining enrichment of biclusters in gene co-
expression signatures associated with normal mammary tissues.

Thus, to summarize it appears that TuBA can identify the subsets of samples that exhibit greater

presence of non-tumor cells within the biopsied tumor tissues. In this process, it also identifies the

same gene sets that ESTIMATE relies on to arrive at its scores for immune infiltration, stromal

presence, and overall tumor purity.

3.14 TuBA identifies gene co-expression signatures associated with nor-

mal tissue

We were curious about how many of TuBA’s biclusters represented co-expression signatures asso-

ciated with normal breast tissues. In order to investigate this we decided to use gene expression

data obtained from normal tissues in the Genotype-Tissue Expression (GTEx) database available

at www.gtexportal.org/home/. The aim of the GTEx project is to collect and analyze multiple

human tissues from donors in order to assess genetic variation within their genomes, and to seek

expression quantitative trait loci (eQTLs) that explain variations in gene expression based on the

genetic variants.

Instead of biclustering the GTEx gene expression data set consisting of 214 normal breast tissue

samples, we simply used our proximity measure to compare the top 10 percentile samples between

all those pairs of genes that are also present in the graph analyzed by TuBA for the TCGA dataset.

We thus calculated the significance of overlaps to obtain a matrix of p−values for all theses pairs of

genes. For each bicluster, we listed all its constituent gene pairs and identified the number of gene

pairs that were found to have a level of overlap significance above a preset cutoff (p ≤ 10−05). We

then set up contingency tables for each bicluster of the form shown in Table 3.12 to test for the

significance of the proportion of gene pairs that are also enriched in GTEx. The quantities a, b, c,

and d in Table 3.12 respectively represent:

• a: the set of gene pairs present in bicluster as well as enriched in GTEx

• b: the set of gene pairs present present in bicluster from TCGA but not enriched in GTEx

• c: the set of gene pairs enriched in GTEx but not present in bicluster
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• d: the set of gene pairs not enriched in GTEx and not present in bicluster

We observed that only 6.75% of biclusters obtained for the TCGA versus GTEx comparison were

enriched in gene-pair associations identified in the GTEx dataset. The bicluster associated with the

adipose tissue signature was one of the biclusters found enriched in GTEx. Another group of biclus-

ters enriched in the three cancer datasets as well as in GTEx, were those associated with translation

and ribosomal assembly. The top 5 GO-BP terms for these biclusters were: translation, rRNA pro-

cessing, ribosomal small subunit biogenesis, ribosomal large subunit assembly, and ribosomal large

subunit biogenesis. These biclusters were enriched in the ER−/HER2− subtype (FDR < 0.001).

3.15 TuBA identifies biclusters of clinical relevance

Given that the core objective of identification of biomarkers of prognostic, or predictive value is to

improve the clinical outcome for the patients. It is only natural that emphasis be placed on those

molecular signatures that show the strongest associations with the outcomes of the disease.

To ascertain if some of the discovered biclusters showed differential clinical outcomes for the patients

whose tumors exhibited gene co-expression signatures captured by the bicluster, we performed a

Kaplan-Meier (KM) survival analysis using recurrence free survival (RFS) times for the patients in

the METABRIC and GEO data sets (the TCGA cohort had insufficient number of patients with

incidence of recurrence for this kind of simplistic survival analysis to be statistically robust). The

idea of the survival analysis was quite simple. For each bicluster, we generated survival curves for

two groups -

1. Patients whose tumor samples belong to the bicluster

2. Patients whose tumors samples do not belong to the bicluster

We then used the logrank test [86] to test the null hypothesis that there is no difference between the

two sets of patients in the probability of a recurrence at any time point.

One of the biclusters reaffirmed what is already known to the community. For METABRIC,

patients in the bicluster associated with the HER2 amplicon (17q12) had significantly shorter RFS

times compared to the rest (Fig. 3.6). This is because patients in the METABRIC study were

enrolled before the general availability of trastuzumab [71].

In addition to the HER2 amplicon, We also observed biclusters associated with CNA at the 8q24.3

locus in all three datasets. The patients belonging to these biclusters also exhibited significantly

shorter RFS times compared to those patients whose tumors did not have amplification at this locus

(panels A, B and C in Fig. 3.7).
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Figure 3.6: HER2 amplicon is associated with poor prognosis of patients in the
METABRIC data set. On the left: The KM survival curve (red) for the patients belonging
to the bicluster associated with the HER2 amplicon for the METABRIC data set compared to the
survival curve for the rest of the patients (blue). On the right: the graph of the bicluster associated
with the HER2 amplicon for the METABRIC data set. Figure reproduced from [1].

We observed a similar result when we restricted the set of samples to include just the ER+/HER2-

tumors, which validated an observation made earlier that copy number gain of the 8q24.3 locus may

confer resistance to ER targeted therapy [87]. However, it must be pointed out that in all three

data sets, the biclusters associated with amplification of the 8q24.3 locus were enriched in the

ER−/HER2− subtype (p < 0.001).

Based on the degrees of the genes in the biclusters associates with copy number gain at 8q24.3, a few

promising candidates would include PUF60, EXOSC4, COMMD5, and HSF1. Specifically, PUF60

is an RNA-binding protein known to contribute to tumor progression by enabling increased MYC

expression and greater resistance to apoptosis [88].

In all 3 data sets, we also observed a robust bicluster exhibiting co-expression of genes located at the

8p11.22-p11.23 locus. For both METABRIC and GEO, patients in biclusters associated with copy

number gains of the 8p11.21-p11.23 locus had significantly shorter RFS times compared to patients

that did not have copy number gains at this locus (panels D, E and F in Fig. 3.7). We found that

patients in this bicluster were enriched in the luminal B subtype. Patients with tumors of luminal
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Figure 3.7: Transcriptionally active copy number amplified sites associated with higher
risk of recurrence identified by TuBA. Panel on the left show the KM curves for the groups
of patients (red curve) exhibiting copy number amplifications at (top to bottom) (i) 8q24.3, (ii)
8p11.22-p11.23, and (iii) 17q22-q23.3, respectively, compared to the rest of the patients (blue curves)
in the METABRIC data set. corresponding patients belonging to the bicluster associated with the
HER2 amplicon for the METABRIC data set compared to the survival curve for the rest of the
patients (blue). On the right: the graph of the bicluster associated with the HER2 amplicon for the
METABRIC data set. Figure reproduced from [1].
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B subtype are known to have poorer prognosis than patients with the luminal A subtype among

ER+/HER2− tumors [66]. This suggests to us that amplification of the 8p11.21-p11.23 loci may be

another marker of higher risk of recurrence post ER targeted therapy.

The third bicluser we wish to highlight is the one associated with copy number gains at the 17q22-

q23.3 locus. In both METABRIC and GEO data sets, patients belonging to the associated biclusters

had significantly shorter RFS times compared to patients whose tumors did not exhibit such copy

number gains at this locus (panels G, H, and I in Fig. 3.7). For METABRIC, the samples in these

biclusters were enriched in the luminal B (PAM50), ER+/HER2+, and ER−/HER2+ subtypes

(FDR < 0.001), while for GEO, the samples in these biclusters were enriched in the ER+/HER2+

and ER−/HER2+ subtypes (FDR < 0.05). Therefore, copy number gains at this locus may confer

added risk of recurrence in HER2+ breast cancers.

There were several other biclusters that exhibited differential relapse outcomes (not all associated

with CNA). For METABRIC, 61 biclusters out of 340 were found to exhibit differential relapse

outcomes (poor prognosis) for the patients present in the biclusters. Out of these 61 biclusters, 69%

were enriched in the ER−/HER2− subtype (64% for basal-like). Out of these, (67%) were associated

with copy number gains. For GEO, there were 48 such biclusters (13%) that exhibited differential

relapse outcomes (poor prognosis), 25% of these were enriched in the ER−/HER2− subtype.

We also looked at other clinically relevant variables such as tumor grade and the lymph node

status to determine if some of our biclusters were particularly enriched in tumors of advanced stages

and/or positive lymph node status. Enrichment tests for bicluster samples in tumors of higher grades

revealed that 8 biclusters from TCGA were enriched in tumors of grade 3C. GO-BP enrichment of the

gene sets in these biclusters revealed that these were associated with terms related to angiogenesis,

vasculogenesis, blood vessel maturation etc. For METABRIC, 4 biclusters were enriched in tumors of

grade 3. Out of these, 2 were associated with the HER2 amplicon (17q12). For GEO, 68 biclusters

were enriched in tumors of grade 3, including one associated with CNA at the HER2 amplicon.

Enrichment tests for lymph node status of patients in our biclusters revealed that 4 biclusters in

TCGA that were enriched in positive lymph node status - one associated with the HER2 amplicon,

others associated with CNA at the 8q22.1-q22.3 locus, the 17q23.1-q23.3 locus, and the 19q13.43

locus, respectively. For METABRIC, we also observed 4 biclusters enriched in samples with positive

lymph node status in the corresponding patients - 2 of them were associated with copy number gains

at the HER2 amplicon, the other 2 were associated with copy number gains at the 19q13.11-q13.12

locus and the 1q21.3-q25.1 locus, respectively. What is interesting is that, biclusters associated

with CNA at the 8q24.3 locus, the 8p11.21-p11.23 locus, and 17q22-q23.3 locus were not enriched

in tumors of higher grades or in patients with positive lymph node status in any of the 3 datasets.
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Using the METABRIC data set, we confirmed that none of these biclusters (associated with 8q24.3,

or 8p11.21-p11.23, or 17q23.1-q23.3) were among the 36 biclusters found to be enriched in samples

with the poorest expected 5-year survival outcome (Nottingham Prognostic Index (NPI > 5.4)

[89, 90]. This underscores the importance of including these transcriptionally active CNA sites into

gene prognostic signature assays so as to reclassify patients with these alterations into categories

with higher risk of recurrence.

3.16 Putting bicluster signatures together - clustering of biclusters re-

veals shared mechanisms within subsets of tumors

Figure 3.8: Hierarchical clustering of biclusters and samples reveals shared mechanisms
within subsets of tumors. The bicluster (rows)-samples (columns) binary matrix was clustered
using Hamming distance. Panel A on the left shows the clustered matrix for TCGA; panel B shows
the clustered matrix for METABRIC. Figure reproduced from [1].

Sample membership based hierarchical clustering of biclusters revealed distinct groups of bi-

clusters that presumably share common functional mechanisms (Fig. 3.8). These included clusters

associated with cell cycle and proliferation, immune response, cell adhesion (extracellular matrix),

translation, mitochondrial translation, and ribosomal RNA processing pathways. Since a significant

fraction of our biclusters were associated with copy number alterations, we also found distinct groups

of biclusters associated with significant copy number changes such as the ones associated with the
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HER2 amplicon, the 8p11.21-p11.23 loci, or the 8q24.3 locus. Similarly, we used hierarchical cluster-

ing to group samples that were enriched in similar sets of biclusters, highlighting differential clinical

outcomes. In particular, we observed 2 sets of samples enriched in biclusters associated with CNA at

the 8q24.3 locus. In one group, the samples were enriched in biclusters related to immune response;

this group showed significantly lower incidence of recurrence compared to those without enrichment

in immune response-related biclusters. Both of these sets of samples were enriched in biclusters as-

sociated with cell division and proliferation. In contrast, we observed a cluster of samples enriched

in biclusters associated with 8q24.3 copy number gain and a number of other loci, however these

were not enriched in biclusters associated with cell division and proliferation. This group exhibited

low incidence of recurrence. We also observed a cluster of samples with significantly poor RFS that

were enriched in biclusters associated with CNA at 17q25.1-q25.3, and in biclusters associated with

cell division and proliferation.

Clustering analysis of biclusters and samples based on the membership of samples within biclusters

allowed us to identify the sites that were altered concomitantly within the same subsets of samples.

It also improved our perspective on the tumor microenvironment in the subsets of samples that

exhibit non-tumor associated signatures (such as immune, extracellular matrix, etc.). For instance,

we noticed a difference in RFS outcomes between two groups of patients that exhibit copy number

gains at 8q24.3; the group that was additionally associated with an immune response signature

was observed to have better RFS outcomes compared to the group that did not exhibit a strong

association with the immune response. Such differences in disease progression due to distinct mi-

croenvironments in tumors with similar transcriptional alterations can help us better understand

the potential role of the microenvironment within the context of tumors harboring these specific

alterations.

3.17 Summary

3.17.1 TuBA’s relevance to cancer data sets

TuBA is based on a proximity measure specifically designed to extract gene co-expression signatures

that correspond to the extremes of expression (both high and low for RNA-seq data. This enables it

to preferentially identify aberrant gene co-expression signatures associated with the heterogeneous

disease states of tumors. Identification of such altered transcriptional profiles can be particularly

relevant for those tumors that have so far eluded targeted drug development for therapy. The best

example to illustrate TuBA’s ability to identify such alterations is that involving tumors belonging

to the Basal-like, and/or triple negative subtypes for BRCA. Although these tumors account for
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only 15% of all BRCAs in the population, TuBA identified a large number of biclusters that are

associated with alterations within tumors of these subtypes.

A locus of particular interest is the one that exhibits copy number gain at 8q24.3. We observed that

3040% of all biclusters were enriched in samples with copy number gains at the 8q24.3 locus (FDR <

0.001). Additionally, 51% of all biclusters obtained from the low expression analysis of TCGA were

enriched in the samples corresponding to the 8q24.3 bicluster. In sharp contrast, the samples in the

biclusters corresponding to CNA at 8p11.21-p11.23 or 17q12 (HER2 amplicon) were independently

enriched (FDR < 0.001) in only about 5% of all biclusters, for both TCGA and METABRIC

respectively. An earlier study has also identified 8q24.3 by Representational Difference Analysis

as a location of oncogenic alterations in breast cancer that can occur independent of neighboring

MYC amplifications [91]. Although the 8q24.3 bicluster itself is enriched within the ER−/HER2−

samples, these observations highlight this locus as a promising prognostic molecular marker for

BRCAs, irrespective of subtype.

3.17.2 A surprising absence - ER

Somewhat to our surprise, we observed that none of the biclusters for all 3 data sets contained the

ESR1 gene, which codes for the oestrogen receptor (ER). The vast majority (70%−75%) of BRCAs

overexpress ER, therefore it was surprising that we did not observe the ESR1 gene as a member of

any of our biclusters. Upon closer investigation, we found that ESR1 had statistically significant

associations with several genes, however its level of significance of overlap with these genes was

much lower (FDR > 10−7) than the chosen cutoffs for all three datasets. Thus, it appears that

over-expression of ER may not be a sufficient condition to strongly drive the co-expression of genes

involved in other pathways discovered by TuBA.

3.17.3 Identification of potential biomarkers

Change in copy number is often not a sufficient condition for elevated (or suppressed) expression

levels of transcripts, as there are multiple layers of regulation of transcription in cells [92, 93]. TuBA

specifically identifies sets of genes with copy number changes that are transcriptionally active (or

inactive), filtering out the ones that are unlikely to influence disease progression. Moreover, the

graph-based approach allows us to infer the relative importance of each gene within a bicluster,

based on its degree. In the case of high expression analysis, the degree of each gene is an indicator

of how frequently it is expressed aberrantly at high levels by the subset of samples that comprise

any given bicluster. As an example, consider the CNA-associated bicluster from TCGA associated

with gains at the 8q22.1-q22.3 loci. The bicluster exhibited enrichment in lymph node positive
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patients (the corresponding bicluster in METABRIC has a significance level of FDR = 0.052 for

patients with positive lymph node status). The gene with the highest degree in the bicluster was

MTDH (metadherin), which has been shown to be associated with increased chemo resistance and

metastasis in BRCA [94, 95, 96].

3.17.4 Limitations

Unlike most biclustering methods, TuBA does not allow arbitrary overlaps between its biclusters.

This is because it is designed to discover biclusters enriched in samples that correspond to the

extremals for the corresponding gene set. It does not consider biclusters with other conditions for

the same gene set. That being said, TuBA’s biclusters are not exclusive, some overlap between

their genes and samples is permitted. For example, in case of an ER−/HER2− BRCA sample that

exhibits CNA at 8q24.3, because of high immune-cell infiltration in the tumor, the same sample may

also be present in the biclusters enriched in genes associated with the immune cells.

Another limitation of TuBA is that it can only be applied reliably for large datasets (containing

more than several tens of samples). This is because depending on cohort heterogeneity, some of the

overlaps between percentile sets may not be significant in smaller datasets. Thus, this limitation is

imposed by the particular nature of our proximity measure that leverages the size of the datasets.

However, in data sets with sufficient number of samples this proximity measure offers a significant

benefit - it not only enables the identification of the plethora of gene aberrant co-expression signatures

associated with the tumors, but also enables the estimation of the extent or prevalence of the

identified alterations in the population. This is where the tunable aspect of TuBA becomes relevant

- the two knobs should be viewed as valuable aids that help estimate the extents of the prevalence

of various alterations in the tumor population and their clinical relevance.
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Chapter 4

Comparison with other biclustering methods

“Comparison is the thief of joy.”

– Theodore Roosevelt

“Oh, the cleverness of me!”

– J. M. Barrie, Peter Pan

4.1 Necessary context

TuBA is designed to identify biclusters with samples that correspond to the extremals for the corre-

sponding sets of genes, and does not consider other subset of conditions for the same sets of genes for

biclustering. In contrast, most biclustering methods seek sub-matrices with constant, or coherent

gene expression patterns. Given this key difference, only those biclusters that exhibit such expression

patterns in the extremal (top or bottom) subsets of samples for some subsets of genes, are expected

to have agreement with the biclusters identified by TuBA.

In earlier studies that compared biclustering algorithms [46, 97], synthetic datasets that contained

constant, shifting, and/or scaling patterns of expression values for subsets of conditions and genes

were relied on to evaluate how well the algorithms were able to identify biclusters with these known

patterns. TuBA is not based on a mathematical model of expression values, hence a comparison

based on synthetic datasets based on explicitly defined patterns is not feasible. For real data sets,

the most common approach to seek validation for the identified biclusters is to perform GO term

enrichment. Biclustering algorithms have been assessed based on how many of their identified bi-

clusters were enriched in GO terms. However, this approach is not entirely satisfactory. Ideally, just

as in the case for synthetic data sets, if some gene co-expression signatures are already known to

exist within some subsets of conditions in real data sets, biclustering algorithms could be assessed

based on whether they are able to identify such signatures.

In case of tumor related gene expression data sets, we have the benefit of complementary genomic

data that do provide us with truth-known scenarios for validation. For example, we know that a
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significant proportion of tumors across multiple tumor types frequently exhibit genomic alterations

such as gains or losses in the copy numbers of genes. Quite often, these alterations are not limited

to a single gene but include multiple genes located at neighboring chromosomal locations. If such

alterations are located at transcriptionally active sites in the chromosomes, then we should expect

to observe co-expression of the genes located in these CNA regions. In BRCA for instance, approx-

imately 20% of tumors possess extensive gains in copy numbers of genes at the 17q12 cytoband

locus (includes ERBB2 (Her2), STARD3, GRB7, PNMT, PGAP3, MED1 etc.). Identification of

co-expression of genes at this locus in the subset of samples that are histologically HER2-positive

(HER2+) represents a simple truth-known scenario that can be used to verify whether a given bi-

clustering algorithm identifies the co-expression of these genes in the subset of samples that exhibit

this alteration.

4.2 Other biclustering methods

In a paper by Serin and Vingron [98], a novel biclustering method (DeBi) that identifies differentially

expressed biclusters was described and applied to both synthetic and real gene expression data sets.

One of the real gene expression data sets they applied DeBi to, was that for diffuse large B-cell

lymphoma (DLBCL), which consisted of 661 genes and 180 samples [99]. Apart from DeBi, they

applied ISA [100], OPSM [101], QUBIC [47], and SAMBA [102] biclustering algorithms to this data

set. We applied TuBA to the DLBCL data set and used the biclustering results obtained by the

authors to compare TuBA against these methods. To ensure a uniform and unbiased comparison

between the enrichment results for biclusters from different algorithms, we used GeneSCF [84] to

perform GO-BP enrichment on the biclusters found by all the methods.

We provide brief descriptions for each of the biclustering methods TuBA was compared to, in the

following subsections below (the descriptions have been adapted from Eren et al. [97] and Pontes et

al. [43]).

4.2.1 BIMAX

Binary Inclusion-Maximal (BIMAX) biclustering algorithm was proposed by Prelic et al. as a

simple biclustering method to serve as a reference for comparative purposes [46]. The first step in

the algorithm involves binarizing the gene expression data, which is done by thresholding such that

expression values higher than the chosen threshold are set to 1, the other values are set to 0. The

algorithm then proceeds to identify all the submatrices made up completely of 1s. Coupled with the

thresholding criteria described above, BIMAX can find only up-regulated biclusters.
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4.2.2 DeBi

The Differentially Expressed Biclusters (DeBi) algorithm developed by Serin and Vingron [98], is

based on a well known data mining approach called frequent itemset. The gene expression data is

first binarized for both up-regulation and down-regulation based on a predefined threshold. DeBi’s

biclusters have the following two properties: (i) a bicluster is a maximum homogenous gene set

where each gene in the bicluster should be highly or lowly expressed over all the bicluster samples,

and (ii) each gene in the bicluster shows statistical difference in expression between the samples in

the bicluster and the samples not in the bicluster.

4.2.3 ISA

Iterative Signature Algorithm (ISA) was developed by Bergmann et al. [100]. It defines its biclusters

as transcription modules that consist of sets of genes that are co-regulated most stringently within

specific sets of experimental conditions. It relies on two symmetric requirements: each column in

the bicluster must have an average value above some threshold TC , and each row must have an

average value above some threshold TR. The algorithm starts with a set of randomly selected

genes or conditions (called seeds), iteratively refining the genes and conditions until they match the

definition of a transcription module depending on the chosen thresholds. Initial seeds are randomly

chosen without any overlap restriction, therefore, different biclusters may contain overlapped genes

and/or conditions. ISA can find up-regulated or down-regulated biclusters.

4.2.4 OPSM

The Order Preserving Submatrix Method (OPSM) was developed by Ben-Dor et al. [101]. According

to this method, biclusters are defined as order-preserving submatrices in which the columns are

linearly ordered such that the expression values in the rows of the submatrices increase linearly.

Thus, constant columns, shifting, scaling and shift-scale expression patterns can be identified by

this method. OPSM biclusters are constructed by iteratively growing partial biclusters, each time

assigning scores based on the probability that it will grow to some fixed target size. The best

partial biclusters (the ones with the highest probability) are kept for the next iteration till the

scores converge.

4.2.5 QUBIC

The Qualititative Biclustering (QUBIC) is a graph-based biclustering method developed by Li et al.

[47]. The main idea of their method revolves around finding heavy subgraphs in the bipartite graph
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representation of the data. In these graphs, genes are represented as vertices, and edges connect

every pair of genes that are similar each other for given subset of conditions (the edges are weighted

based on the level of similarity). Biclusters are identified in these graphs starting with the heaviest

unused edge as a seed. In the first iteration, it basically seeks biclusters with nonzero constant

columns in the discretized data. Subsequent expansion steps relax this constraint and allow the

addition of rows that are not totally consistent. The qualitative (or semi-qualitative) representation

allows the algorithm to detect different kind of patterns including shifting and scaling. It can also

find both positively and negatively correlated expression patterns.

4.2.6 SAMBA

The Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) developed by Tanay et al.

[102] relies on probabilistic modeling of data and graph-based methods to identify subsets of genes

that respond jointly within a subset of conditions, where a gene is said to respond to a condition if

there is a significant change in its expression level (with respect to normal) in that condition. They

first model the gene expression data as a bipartite graph whose two parts correspond to conditions

and genes, respectively, and the edges refer to significant expression changes. Vertex pairs in the

graph are assigned weights according to a probabilistic model, so that heavy subgraphs correspond

to biclusters with high likelihood (the weight of a subgraph is the sum of the weights of the gene-

condition pairs in it). SAMBA can find up-regulated or down-regulated biclusters.

4.3 Results of the comparison based on GO term enrichment

4.3.1 DLBCL

We applied TuBA to the DLBCL dataset, and performed a GO-BP enrichment analysis on the seeds

of the resulting biclusters using GeneSCF. TuBA discovered 94 biclusters in total (45 biclusters for

high, and 49 biclusters for low expression), DeBi discovered 127 biclusters in total (68 biclusters

with up-regulated genes, and 59 biclusters with down-regulated genes), ISA discovered 49 biclusters,

OPSM discovered just 12 biclusters, QUBIC discovered 100 biclusters (the default number), and

SAMBA discovered 128 biclusters. Panel A in Fig. 4.1 shows the proportions of GO-BP enriched

biclusters for 5 different significance levels (FDRs) - 0.001%, 0.1%, 0.5%, 1%, and 5%. For the FDR

cutoff of 5%, almost all the biclusters for every biclustering algorithm were enriched in at least one

GO-BP term.

At higher levels of significance, TuBA had fewer enriched biclusters compared to other algorithms.

This can be partly attributed to the fact that several of TuBA’s biclusters include proximally located
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genes with aberrant expression due to copy-number changes, which may not show enrichment in GO-

BP terms. Another reason is that the other algorithms discover biclusters that can have arbitrary

overlaps between their genes. TuBA, on the other hand, does not permit any overlap between the

genes of the seeds of its biclusters. We identified the biclusters discovered by other algorithms did

not share genes between them. For this, we filtered the biclusters to exclude the ones that have

significant overlaps between their genes (i.e. biclusters with hypergeometric test FDR < 0.001).

DeBi had only 9 biclusters out of a total 127 biclusters that did not have significant overlaps of

their genes with any other bicluster (7 biclusters with up-regulated genes, and 2 biclusters with

down-regulated genes), ISA had 15 biclusters out of a total 49 biclusters that did not share genes,

OPSM had 3 biclusters out of 12, QUBIC had 29 out of 100, and SAMBA had just 10 biclusters

out of a total of 128 that did not share genes.

Since most of the biclusters discovered by these algorithms share genes with other biclusters, we

expected redundancy in the enriched GO-BP terms as well. To take this redundancy into account,

we identified the top 5 GO-BP terms for every bicluster obtained by each algorithm, and prepared

a list comprising all the unique GO-BP terms for the entire set of biclusters. For the 5 levels of

significance of enrichment: (i) TuBA identified sets comprising 337, 218, 98, 51, and 25 distinct

GO-BP terms, (ii) DeBi identified sets comprising 259, 146, 120, 68, and 34 distinct GO-BP terms,

(iii) ISA identified sets with 172, 100, 69, 39, and 25 distinct GO-BP terms, (iv) OPSM identified

sets with 41, 26, 24, 13, and 8 distinct GO-BP terms, (v) QUBIC identified sets with 237, 172, 106,

54, and 22 distinct GO-BP terms, and (vi) SAMBA identified sets with 250, 138, 120, 72, and 37

distinct GO-BP terms, respectively. Panel C in Fig. 4.1 shows the ratios of the number of elements

in these sets to the total number of biclusters for each algorithm, for the 5 different significance

levels.

4.3.2 TCGA - BRCA

We also investigated the TCGA BRCA dataset with the following biclustering algorithms: (i) BI-

MAX, (ii) ISA, (iii) QUBIC, and (iv) SAMBA. We used the biclust package in R for BIMAX

[103], the isa2 package in R for ISA [104], the QUBIC package in R for QUBIC [105], and the Ex-

pander software for running SAMBA [106]. We used the respective default parameters for all four

biclustering algorithms. TuBA discovered 556 biclusters in total (353 biclusters for high, and 203

biclusters for low expression), BIMAX discovered 100 biclusters (default), ISA discovered 244 biclus-

ters, QUBIC discovered 100 biclusters (default), and SAMBA discovered 405 biclusters. Panel B in

Fig. 4.1 shows the proportion of GO-BP terms enriched biclusters of each algorithm for 5 different

significance levels. This time, when we filtered the biclusters obtained from the other algorithms to
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Figure 4.1: TuBA compared to other biclustering methods based on GO term enrichment
of biclusters. Panels A and B show the proportions of GO-BP terms enriched biclusters for each
biclustering method at 5 different significance levels for the DLBCL dataset and the TCGA BRCA
dataset, respectively. Panels C and D show the ratios of no. of unique GO-BP terms and total no.
of biclusters at 5 different significance levels for the DLBCL dataset and the TCGA BRCA dataset,
respectively. Figure reproduced from [1].
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Figure 4.2: TuBA compared to other biclustering methods based on GO term enrich-
ment of biclusters for METABRIC. Panels A shows the proportions of GO-BP terms enriched
biclusters for each biclustering method at 5 different significance levels for the METABRIC data set.
Panel B shows the ratios of no. of unique GO-BP terms and total no. of biclusters at 5 different
significance levels for the METABRIC data set. Figure reproduced from [1].

exclude the ones that have significant overlaps between genes (i.e. biclusters with hypergeometric

test FDR < 0.001), we discovered that none of the four algorithms identified a single bicluster that

did not have significant overlap of its genes with at least one other bicluster.

Once again, we identified unique sets of GO-BP terms for the results of each biclustering algorithm.

For the 5 levels of significance of enrichment, TuBA identified unique sets with 1874, 1099, 556, 220,

and 99 distinct GO-BP terms, respectively. In sharp contrast, BIMAX identified sets with just 23,

17, 12, 7, and 5 GO-BP terms, ISA identified sets with 148, 148, 51, 36, and 24 distinct GO-BP

terms, QUBIC identified sets with 174, 56, 32, 24, and 4 distinct GO-BP terms, while SAMBA

identified sets with 490, 155, 72, 34, and 11 distinct GO-BP terms, respectively. Panel D in Fig. 4.1

shows the ratios of the number of elements in these sets to the total number of biclusters for each

algorithm, for the 5 different significance levels.

4.3.3 METABRIC

Finally, we investigated the METABRIC dataset with the following biclustering algorithms (apart

from TuBA): (i) BIMAX (ii) ISA, and (iii) QUBIC. We used the respective default parameters for

all three biclustering algorithms. TuBA discovered 340 biclusters (high expression), BIMAX dis-

covered 100 biclusters (default), ISA discovered 90 biclusters, and QUBIC discovered 100 biclusters

(default). Panel A in Fig. 4.2 shows the proportion of GO-BP terms enriched biclusters of each

algorithm for 5 different significance levels. When we filtered the biclusters obtained from the other
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Figure 4.3: Proportions of GO-BP term enriched biclusters found by TuBA remain
consistent across different choices of the overlap significance cutoff for the TCGA data
set. Panel A shows the proportions of GO-BP termenriched biclusters obtained by TuBA at various
significance levels for 5 different choices of the overlap significance cutoff for the TCGA dataset.
Panel B shows the ratios of number of unique GO-BP terms to the total number of biclusters at
different significance levels for the 5 choices of the overlap significance cutoff for the TCGA data set.
Figure reproduced from [1].

algorithms to exclude the ones that have significant overlaps between genes (i.e. biclusters with

hypergeometric test FDR < 0.001), we discovered that none of the three algorithms identified a

single bicluster that did not have significant overlap of its genes with at least one other bicluster.

We identified unique sets of GO-BP terms for the results of each biclustering algorithm. For the 5

levels of significance of enrichment, TuBA identified unique sets with 1348, 755, 373, 132, and 67

distinct GO-BP terms, respectively. BIMAX identified sets with just 23, 20, 14, 8, and 5 GO-BP

terms, ISA identified sets with 81, 35, 26, 21, and 8 distinct GO-BP terms, while QUBIC identified

sets with 120, 57, 51, 35, and 19 distinct GO-BP terms, respectively. Panel B in Fig. 4.2 shows the

ratios of the number of elements in these sets to the total number of biclusters for each algorithm,

for the 5 different significance levels.

For both TCGA and METABRIC, TuBA compares quite favorably with respect to the other algo-

rithms, especially when we account for the redundancy of the GO term enrichment of the biclusters

obtained from the other methods.
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4.4 GO term enrichment of TuBA’s biclusters is not impacted by the

choice of its parameters

For most biclustering algorithms, the choice of their parameters play a crucial role in determin-

ing their performance. It is possible that different (possibly better) results could be obtained by

optimizing the choices of parameters for the other algorithms in the comparisons above. In case

of TuBA, there is no concept of optimal (or default) choice of its two parameters; the biclusters

obtained for any given choice of the parameters simply satisfy the basic requirements laid down

by those choices. Depending on those choices some biclusters may vary, however the most robust

co-expression signatures would be observed for large ranges of choice of its tunable parameters.

We looked at GO-BP-term enrichments for TuBAs biclusters for TCGA for 5 different choices of the

overlap significance cutoffs - 10−16, 10−18, 10−20, 10−22, 10−24. For these 5 choices of the overlap

cutoff the number of biclusters discovered by TuBA were - 353, 300, 221, 176, and 143, respectively.

Although, the total number of biclusters obtained differed for each choice, the proportion of enriched

biclusters at different significance levels remained similar, irrespective of the parameter choice (panel

A in Fig.4.3). Similarly, the ratios of the number of unique GO-BP terms to the total number of

biclusters were consistent across all 5 choices of the overlap cutoffs (panel B in Fig. 4.3).

4.5 Results for a truth-known scenario

We discussed earlier that in tumors of some cancer types (such as BRCA) genomic alterations such

as gains or losses in the copy numbers of genes is quite common. Our expectation is that it should be

possible to find co-expression of the genes located in CNA regions that are transcriptionally active

sites. We chose the HER2 amplicon as our reference truth-known CNA region.

We identified HER2+ samples in the TCGA dataset, and for each biclustering algorithm selected

those biclusters that were enriched in these samples (hypergeometric test FDR < 0.001). BIMAX

and SAMBA did not discover any, but ISA identified two biclusters enriched in HER2+ samples.

Although the genes from the 17q12 amplicon - ERBB2, STARD3, GRB7, PNMT, PGAP3, MED1

etc. were present in them, they made up a tiny subset within the total set of genes in these biclusters.

QUBIC also found 4 biclusters that were enriched in HER2+ samples, however they did not contain

any genes from the HER2 amplicon itself (not even ERBB2 ). In contrast, not only did TuBA

identify a bicluster exclusively associated with genes located at the HER2 amplicon, it identified

many other biclusters associated exclusively with CNA of genes located near each other.

Thus, apart from TuBA, only ISA identified co-expression of the genes located at the HER2 amplicon.

However, ISA’s co-expression modules corresponding to the HER2 amplicon were embedded within
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large sets of genes. In the absence of information about copy number gain of the ERBB2 gene,

it would be extremely difficult to identify the co-expression module exclusively associated with

the amplicon. In conclusion, TuBA successfully uncovered co-expression signatures of genes that

are associated with CNA of neighboring sites on the chromosome, and is particularly efficient at

identifying transcriptionally active copy number gains.

4.6 TuBA identifies differential co-expression signatures in an unsuper-

vised manner

The nature of our proximity measure allows us to determine differential co-expression signatures

without the need to specify conditions in advance. Gao et al. [107] proposed a biclustering method

- Bicmix - based on a Bayesian statistical model to infer subsets of co-regulated genes that covary in

all samples, or in only a subset of samples. They also developed a method to recover context-specific

gene co-expression networks from the sparse biclustering matrices obtained by Bicmix. They applied

Bicmix to a breast cancer data set obtained from the studies by van’t Veer et al. [108] and van de

Vijver et al. [109]. We downloaded the data set in the form of an eSet using the breastCancerNKI

package in R [110]. We cleaned the data by removing probes with > 10% missing values, and im-

puting the missing values for the included probes.

Using Bicmix, Gao et al. identified 432 genes that were differentially co-expressed in ER+, and ER−

samples. Out of these 432 genes, 430 were up-regulated in ER− samples and down-regulated in ER+

samples, while 2 genes are down-regulated in ER− samples and up-regulated in ER+ samples. We

applied TuBA (for high expression) to the same dataset with the following choice of parameters: (i)

percentile set size: 10%, and (ii) overlap significance cutoff: FDR ≤ 10−08. We obtained 549 biclus-

ters, several of which comprised solely of probes associated with a single gene. This is reasonable,

since probes that correspond to the same gene are expected to demonstrate higher expression levels

in the same set of samples.

We corroborated the differential co-expression signature between ER+ and ER− samples identified

by Bicmix using one-sided Fisher’s exact tests. We found that the set of 430 genes up-regulated in

ER− samples and down-regulated in ER+ samples were enriched in 30 different biclusters discov-

ered by TuBA. Interestingly, the genes that had the highest degrees in the co-expression network

discovered by Bicmix - CD247, CD53, IL10RA, and CXCR3 - were among the ones with the highest

degrees in the bicluster with the maximum enrichment found by TuBA. The two genes (SFRP2 and

COL12A1 ) that were up-regulated in ER+ samples and down regulated in ER− samples were also

found to be co-expressed in a bicluster found by TuBA.
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TuBA also identified biclusters corresponding to amplicons at 17q12 (HER2), enriched in ER− sam-

ples (FDR = 0.02); 8q24.3, enriched in ER− (FDR = 0.003) samples; 17q25-q25.3, enriched in

ER− samples (FDR = 7.09× 10−05). Thus, in addition to the 2 differential co-expression networks

identified by Bicmix, TuBA recovered biclusters associated with genomic alterations such as CNA,

several of which were differentially expressed between ER+ and ER− samples.

4.7 Summary

TuBA is explicitly designed to identify biclusters with samples that correspond to the extremals

for the corresponding sets of genes. Thus, in principle it can only find a subset of the entire set of

biclusters that the other algorithms may find in a data set. However, we were able to demonstrate

that TuBA not only finds biclusters associated with relevant biological processes (based on GO term

enrichment), but it clearly outperforms the other algorithms when it comes to finding co-expression

signatures of genes located in transcriptionally active copy number altered regions.

Additionally, TuBA offers an advantage over other differential co-expression analyses methods, since

no prior specification of subsets of samples (context) is necessary. Once again this is ensured by our

proximity measure which preferentially identifies such differential co-expression signatures. Given

these considerations, TuBA offers great promise as a biclustering method that can identify biolog-

ically relevant gene co-expression signatures that are not successfully captured by other unsuper-

vised approaches. These co-expression signatures revealed by TuBA can complement the biclusters

obtained using other biclustering methods, which can further improve our understanding of the

underlying alterations and shared mechanisms in subsets of tumors.
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Chapter 5

Ongoing projects and future work

“You must go on. I can’t go on. I’ll go on.”

– Samuel Beckett, The Unnamable

5.1 TCGA - Other cancer types

TuBA has been applied to the TCGA data sets of 23 cancer types apart from BRCA. The basic

information about these data sets is summarized in Table 3.2. Only those cancer types were chosen

which had at least 100 primary tumor samples in the RNA-seq gene expression data sets.

For each cancer type, we identified biclusters made up exclusively of proximally located CNA genes.

The method used to identify such biclusters was identical to the one we used in subsection 3.11.1

in Chapter 3. We determined what proportion of the total number of biclusters did these biclusters

constitute. The results are summarized in Fig. 5.1. Ovarian and breast cancers are the top 2 cancer

types when it comes to transcriptionally active CNA sites identified by TuBA. They were followed

by the two kinds of lung cancers which had slightly lesser proportions of biclusters associated with

transcriptionally active CNA sites. Note, that in all these cancer types they may have many more

copy number alterations. However, most of them would be transcriptionally inactive (since they

were not picked up by TuBA), and therefore unlikely to have any impact on disease progression.

We also looked at which transcriptionally active CNA sites are frequently altered in more than 1

cancer type. A few of the most common ones are listed in Table 5.2. CNA at 1q21.3-q23 seems to

be the most common alteration, with genes located within this region found in TuBA’s biclusters

across 10 cancer types.

Currently, work is underway to find clinically relevant associations of the patients in the biclusters

for each of the 24 cancer types. In the following subsection, we briefly discuss some interesting

observations made for the TCGA bladder cancer data set.
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Cancer Type No. of genes No. of samples No. of biclusters
Acute Myeloid Leukemia (LAML) 19939 173 588
Bladder (BLCA) 20240 407 345
Breast (BRCA) 20247 1097 421
Cervical (CESC) 20126 303 286
Colon (COAD) 20035 286 209
Esophagal (ESCA) 20277 184 492
Brain - Glioblastoma (GBM) 19989 154 352
Brain - Lower Grade Glioma (LGG) 20223 516 158
Head and Neck (HNSC) 20261 520 260
Kidney - Clear Cell (KIRC) 20244 533 317
Kidney - Papillary (KIRP) 20205 290 431
Liver (LIHC) 20153 371 429
Lung Adenocarcinoma (LUAD) 20192 515 388
Lung Squamous Cell (LUSC) 20242 502 554
Ovarian (OV) 20184 304 685
Pancreatic (PAAD) 20049 178 421
Pheochromocytoma & Paraganglioma (PCPG) 20034 179 437
Prostate Adenocarcinoma (PRAD) 20223 497 192
Sarcoma (SARC) 20220 259 417
Stomach Adenocarcinoma (STAD) 20290 415 163
Testicular Germ Cell (TCGT) 20168 150 406
Thymoma (THYM) 19998 120 306
Uterine Corpus Endometrial (UCEC) 20145 176 310

Table 5.1: Summary of TCGA data sets TuBA was applied to. We also show the number of
biclusters TuBA found for each data set for high expression.

Cytoband Locus Cancer Types
1q21.3 - q23 BLCA, BRCA, CESC, COAD, HNSC, LUAD, LUSC, OV, SARC, STAD
8p11.22 - p11.23 BLCA, BRCA, ESCA, HNSC, LUAD, LUSC, OV, SARC,
12q15 - q21.1 BLCA, BRCA, ESCA, HNSC, LUAD, LUSC, OV, SARC, STAD
13q32 - q34 BLCA, BRCA, COAD, ESCA, LIHC, LUAD, LUSC, OV, SARC, STAD

Table 5.2: A few transcriptionally active CNA sites common across multiple cancer
types.
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Figure 5.1: Proportions of total number of biclusters associated exclusively with proxi-
mally located CNA genes for 24 cancer types.
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5.1.1 Bladder Urothelial Carcinoma (BLCA)

We applied TuBA to the RNA-seq gene expression data set of TCGA BLCA that consisted of 407

samples and 20240 genes with the following choices of parameters: (i) percentile set size: 5%, and

(ii) overlap significance cutoff: 10−06. We obtained 345 biclusters. We performed a simple KM

survival analysis similar to the one described in Chapter 3, i.e., for each bicluster, we stratified the

set of patients in the data set into two groups - (i) set of patients that belonged to the bicluster, and

(ii) set of patients that did not belong to the bicluster. We compared the survival curves of the two

groups using the logrank test and corrected the resultant p−values for multiple hypothesis testing.

We found 3 biclusters that were associated with higher risk of recurrence for the group of patients

that belonged to these biclusters. We looked at the GO term enrichments of the gene sets in these

biclusters and found that 2 out of these 3 biclusters were associated with terms related to adhesion,

extracellular matrix organization etc. In addition, we observed that the gene sets in these biclusters

were enriched in the hallmark gene set associated with epithelial-mesenchymal transition (EMT)

obtained from the Molecular Signature Database (MSigDB). EMT describes the process wherein

epithelial cells take on the mesenchymal phenotype. In case of cancers, it is considered to be one

of the ways in which tumor cells gain the capability to invade surrounding tissues and metastasize

[111].

This observation is consistent with the one made by Wang et al. [112] for the TCGA data set (albeit

using a supervised approach). They noted that although there is a positive correlation between

infiltrating T-cell abundance (ITA) and EMT-related gene expression, their impact on prognosis is

disparate. Higher expression levels of EMT-related genes in tumors with ITA was associated with

poor overall survival. In their own study cohort, they observed that in patients with metastatic

BLCA treated with nivolumab (an immune checkpoint therapy drug), the ones with higher expression

of EMT-related genes showed lower response rates and greater risk of recurrence despite the presence

of T-cells in their tumors. Quite interestingly, they showed for tumor samples from their own study

that non-hematopoietic stromal cells are the major source of the EMT-related gene expression in the

bulk transcriptomes of these samples. This raises questions about the EMT-related gene expression

being the agent for aggressiveness in these tumors.

We decided to investigate whether early stage bladder cancers also exhibited EMT-related gene

signatures. For this, we applied TuBA to a data set that was generated as part of a large-scale study

(called UROMOL) to identify molecular markers that could predict the likelihood of progression

in patients with Ta or T1 bladder tumors [113]. The gene expression data set consisted of 35154

transcripts and 476 tumor samples. The parameters chosen for TuBA were: (i) percentile set
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size: 5%, and (ii) overlap significance cutoff: 10−15. We obtained 259 biclusters, out of which 15

were enriched in the EMT-related gene signature. A closer comparison of these biclusters with

biclusters obtained from the TCGA data set revealed that the ones obtained from TCGA contained

a few additional genes which are known to be associated with increasing tumor invasiveness. For

example, Tks4 is an adaptor protein necessary for formation of podosome/invadopodia by tumor

cells [114]. It may be possible that the aggressiveness of tumors with EMT-related gene signature is

not a consequence of the EMT signature (which may be associated purely with non-hematopoietic

stromal cells), but is in fact due to these genes that enable the tumor cells to invade surrounding

tissues. We plan to investigate additional data sets of advanced and early-stage BLCA in order to

further validate these findings.

5.2 GTEx - Ribosomal gene modules

Ribosomes are widely considered to be highly conserved and monolithic in composition across all

tissues. However, a few recent studies have suggested that based on certain stimuli (both extra- and

intra-cellular) the ribosomal composition can vary in order to fulfill cell or tissue specific objectives

[115, 116, 117]. In this section, we describe some results that are part of a collaborative study

(for which the manuscript is currently under preparation) which investigates the question of tissue

specificity of ribosomal compositions. One of the questions asked was whether there are distinct

co-expression modules of subsets of RP genes in different tissues across the body.

For this analysis, we used RNA-seq gene expression data from the GTEx data set for 78 RP genes

across 53 normal tissue types. In all, the data set had 11,688 samples from 714 non-diseased indi-

viduals. The RP transcript read counts were normalized by gene length, and then rescaled so that

the sum of the transcript levels were the same for each sample. This eliminates the total variation

in RP transcript levels among tissues which is not relevant to our study since we are interested in

analyzing inter-tissue variations based on relative RP transcript levels among tissues (the data was

prepared by Anshuman Panda who is the lead author of the study).

We applied TuBA to this data set with the following choices for its parameters: (i) percentile set

size: 2%, and (ii) overlap significance cutoff: 0.01. We observed two biclusters made up of completely

distinct RP genes, enriched in whole blood and brain tissues (brain - cerebellum/cerebellar hemi-

sphere), respectively (see Fig. 5.2). These biclusters correspond to RP gene co-expression modules

that have the highest relative frequencies in the two tissues respectively. In order to find out if there

are such RP gene co-expression modules associated specifically with other tissues, we iteratively

removed the samples in the biclusters after each iteration to create new data sets (the parameter
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choices were kept the same). We observed several more biclusters with RP gene modules enriched

in specific tissue types, i.e., based on one-sided Fisher’s exact tests we found these biclusters to

be enriched in samples corresponding to certain tissue types. We show the seeds of some of these

biclusters associated with specific tissue types in Fig. 5.2 .

5.3 Future application - DNA methylation data

As discussed in Chapter 1, DNA methylation plays a key role in regulating gene expression. The

methylation profiles are frequently altered in tumors. While hypermethylation of CpG sites in the

promoter regions of tumor suppressor genes leads to lower expression levels of the affected genes,

hypomethylation of CpG sites in promoters of genes that are not usually expressed in the specific

tissue type leads to aberrant expression of genes downstream. A good example of the latter case is

that of genes of the Cancer-Testis family (which we briefly discussed in Chapter 3). These genes

are usually expressed in the testis during early development. However, aberrant expression of these

genes has been observed in multiple cancer types with demethylation (or hypomethylation) of CpGs

in the promoter regions understood to be the underlying mechanism [118, 119].

TCGA has genome-wide methylation data available for a large number of tumor samples. For

instance for breast cancer, there are 890 samples (including matched normals) whose methylation

profiles were measures using the Illumina Human Methylation 450 platform which targets more

than 450,000 methylation sites. The methylation data is made up of beta-values which are defined

in terms of the intensity of signals from flourescent probes associated with methylated sites, with

respect to the signal intensity of unmenthylated sites,

β =
Intensity of methylated probe

Total intensity

where total intensity is the sum of the methylated and unmethylated probe intensities. Thus, ideally

for a given probe the beta-value should be either 0 (unmethylated) or 1 (methylated). However, in

reality it takes values between 0 and 1; closer to 0 when the given site is unmethylated, and closer

to 1 when the site is methylated.

We can apply TuBA to this data in the same way that we apply it to gene expression data sets,

except that the interpretation of the biclusters and their relation to gene expression would be quite

different. The biggest hurdle to application of TuBA to methylation data is the sheer size of the

data sets. The number of rows in these data sets is in excess of 480,000. Graphs based on gene

pair associations for these many probes would invariably lead to unreasonably long computation

times. We propose to first analyze these data sets in a chromosome-by-chromosome manner to

identify altered CpG islands that may be associated with aberrant expression of some sets of genes.
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Subsequent to such an analysis, the samples in the biclusters across chromosomes could be used to

identify which CpG islands across different chromosomes show coordinated alterations. In summary,

integration of methylation profile alterations with gene co-expression signatures found by TuBA can

significantly enhance our understanding of the alterations in tumor cells that may be susceptible to

therapeutic interventions.
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