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ABSTRACT OF THE DISSERTATION

Computational Connection Matrix Theory

By KELLY SPENDLOVE

Dissertation Director: Konstantin Mischaikow

We develop a computational and categorical framework for connection matrix the-

ory. In terms of computations, we give an algorithm for computing the connection

matrix based on algebraic-discrete Morse theory. The makes the connection matrix

available, for the first time, as a computational tool within applied topology and dy-

namics. In addition, the algorithm provides a straightforward constructive proof of the

existence of connection matrices. In terms of categories, our formulation resolves the

non-uniqueness of the connection matrix, as well as relates the connection matrix to

persistent homology.

We extend existing computational Conley theory to incorporate connection matrix

theory. This is done by developing a setting, which we call transversality models, in

which discrete approximations to continuous flows can be used to compute connection

matrices for the underlying continuous system. We make applications to a Morse theory

on spaces of braid diagrams.

Finally, we provide an implicit discrete Morse pairing for cubical complexes. This

enables the computation of connection matrices in high-dimensional cubical complexes.

We benchmark our algorithm on a set of such examples.
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Chapter 1

Introduction

High-throughput technologies and high performance computing infrastructures are en-

abling the efficient and inexpensive collection of massive amounts of experimental and

simulated data. In the 21st century, science is becoming inherently more data-driven,

with data being harnessed to inform experiment and advance theory. Such data are

often high-dimensional and generated by a complex, nonlinear system. A pressing chal-

lenge is to reconcile this fact with classical dynamical systems theory, which demon-

strated that nonlinear systems can exhibit intricate behavior at all scales with respect

to both system variables and parameters. Experimental data are often imprecise or

noisy; simulated data arise from models where parameters are rarely known exactly

and nonlinearities may not be derived from first principles. This suggests that any

analysis designed to synthesize theory, experimentation, computation and data must

be based on robust, multi-scale and multi-parameter features. That is, one is interested

in the multi-scale topology and geometry of the data, as well as a robust description of

the behavior of the unknown nonlinear system; both the topology and dynamics of the

data.

Topological data analysis is a flourishing field dedicated to using algebraic topolog-

ical tools to understand complex and nonlinear data. The most prominent tool in the

field is persistent homology. Roughly speaking, persistent homology is a method for

computing topological features at different resolutions of a space or dataset X . Per-

sistent homology rests on the idea of topologizing X (often with some cell complex

structure), and then establishing a filtration ∅ = X 0 ⊂ X 1 ⊂ . . . ⊂ X n = X . For in-

stance, the sublevel sets {f−1(−∞, a]} of a scalar function f : X → R form a filtration

of X . The inclusions X i ↪→ X j induce homomorphisms in homology and persistence
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tabulates the change in homology between X i and X j [11, 39].

A useful method for extracting coarse yet robust descriptions of dynamics is compu-

tational Conley theory. Classical Conley theory is a topological generalization of Morse

theory to continuous semiflows and self-maps on a compact metric space X. The global

dynamics are organized via a Morse decomposition M: a finite collection of mutually

disjoint, compact, isolated invariant sets M(p) ⊂ X, called Morse sets, which are in-

dexed by a partial order (P,≤), such that if x ∈ X \
⋃
p∈PM(p), then in forward time

(with respect to the semiflow or self-map) x limits to a Morse set M(p) and in backward

time an orbit through x limits to a Morse set M(q).

In computational Conley theory, one first discretizes the phase space at a resolution

fixed a priori. A multi-valued map is constructed which appropriately models the

underlying continuous dynamics. One can partition the multi-valued map into recurrent

and non-recurrent components efficiently using graph-theoretic algorithms [2]. This

furnishes a combinatorial representation of the Morse decomposition. Moreover, one

can infer the behavior of the recurrent dynamics produced from the decomposition using

algebraic topological methods, viz., Conley index theory. There are strong links between

the combinatorial dynamics and continuous dynamics that have been formalized in [25,

26, 27, 28].

The techniques of this dissertation lie at the intersection of applied topology, compu-

tational dynamics, and topological data analysis. For instance, a simple generalization

of a filtration is to assume that a decomposition of the dataset X is given in the form of

a distributive lattice. To be more precise, assume that L is a finite distributive lattice

and {X a ⊂ X | a ∈ L} is an isomorphic lattice (the indexing providing the isomorphism)

with operations ∨ := ∪ and ∧ := ∩. One aim of this thesis is to provide an efficient

algorithm for computing a boundary operator, called the connection matrix,

∆:
⊕
a∈J(L)

H•(X a,X
←−a )→

⊕
a∈J(L)

H•(X a,X
←−a ) (1.1)

that is strictly upper triangular with respect to ≤ where J(L) denotes the set of join-

irreducible elements of L and←−a denotes the unique predecessor of a, again with respect

to ≤. In the setting of topological data analysis, the connection matrix can be used
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to recover the persistent homology of the lattice of cell complexes {X a} (see Theo-

rem 3.9.6).

In the context of analyzing dynamical systems, the aim is to guarantee that the

collection {X a} is a collection of attracting blocks for an underlying continuous flow

(see Section 4.3). In this case, the collection {M(a)}a∈J(L) where M(a) = Inv(X a \X←−a ),

i.e., the maximal invariant set contained in X a \ X←−a , is a Morse decomposition. The

(homological) Conley index for a Morse set is

CH•M(p) = H•(X a,X
←−a )

Thus, the connection matrix of (1.1) can be rewritten as

∆:
⊕
a∈J(L)

CH•M(a)→
⊕
a∈J(L)

CH•M(a). (1.2)

The existence of a ∆ expressed in the form of (1.2) is originally due to R. Fran-

zosa [17]. Although Franzosa’s proof of the existence of connection matrices is con-

structive it is not straightforwardly amenable to computation. The name connection

matrix arose since ∆ can be used to identify and give lower bounds on the structure of

connecting orbits between Morse sets [34, 35, 37]. Ultimately, the connection matrix is

the mathematical object that promotes the Conley theory to a homological theory for

dynamical systems. Foremost, we consider the contributions within this dissertation as

promoting the computational Conley theory to a computational homological theory for

flows.

1.1 Outline and Contributions

In Chapter 3 we give a new formulation for connection matrix theory. In particular, we

emphasize categorical language and homotopy categories. One contribution in this sec-

tion is our use of chain equivalence and homotopy categories to formulate the definition

of the connection matrix. The payoffs of this formulation are quite satisfying:

1. We can give an algorithm based on the technique of reductions, which employs

algebraic-discrete Morse theory. The proof of correctness of our algorithm yields

a algorithmic proof of the existence of connection matrices.
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2. We address the non-uniqueness question of the connection matrix. Classically,

this is an open problem. We show that in our formulation, a connection matrix

is unique up to a similarity transformation.

3. We distill the construction of the connection matrix to a particular functor, which

we call a Conley functor.

4. We readily relate persistent homology and connection matrix theory. This implies

applications for connection matrix theory in topological data analysis.

In Chapter 4 we develop a setting for applying connection matrix theory to con-

tinuous dynamics. We show how one moves from Conley-theoretic approximations of

continuous dynamics to the appropriate graded or filtered cell complexes on which to

apply the computational connection matrix theory. As an application we use classical

examples from connection matrix theory, as well as examples from a Morse theory on

braids.

In Chapter 5 we present an an implicit scheme for discrete Morse theory on cubical

complexes. This allows us to modify the connection matrix algorithm when computing

connection matrices in the setting of cubical complexes. This enables connection matrix

computations in high-dimensions (i.e., d = 9, 10).

Much of the work in this thesis is a result of collaborations with S. Harker, K.

Mischaikow and R. Van der Vorst. In particular, Chapters 3 and 5 are joint work with

S. Harker and K. Mischaikow. Chapter 4 is joint work with S. Harker, K. Mischaikow

and R. Van der Vorst.

1.2 Examples

We front-load this thesis with a set of simple examples to get the point across. This

allows us to refer back to this original selection of examples further along in the thesis

when trying to illuminate various concepts. Unfortunately, many settings in which one

is traditionally interested in applying connection matrix theory (viz., dynamics and the

search for connecting orbits) require setting up quite a bit of mathematical machinery.
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Such examples are given later in Section 4.7. For now, we content ourselves with the

following selection of examples. The first three examples are selected from applied

topology; the last example comes from dynamics.

• Example 1.2.1 gives an example of the connection matrix.

• Example 1.2.2 provides a computational perspective on connection matrix the-

ory. Succinctly, the connection matrix is a form of ‘homologically-lossless data

compression’.

• Example 1.2.3 examines the relationship between the connection matrix and per-

sistent homology.

• Example 1.2.4 bridges combinatorial and continuous dynamics, depicting that the

output of our algorithm is a connection matrix for an underlying continuous flow.

Example 1.2.1 (Connection Matrix). Let P = {p, q, r} with order ≤ generated by

p ≤ q and r ≤ q. Consider the cell complexes X ,X ′ and the maps ν, ν ′ below. These

cell complexes will provide a working example throughout the thesis.

X
v0 v1 v2e0 e1

ν(x) =


p x = v0

r x = v2

q x ∈ {e0, v1, e1}

X ′
v′0 v′1e′0

ν ′(x) =


p x = v′0

r x = v′1

q x = e′0

The maps ν and ν ′ are poset morphisms from the face poset of X and X ′ to P.

The pairs (X , ν) and (X ′, ν ′) are called P-graded cell complexes, see Section 3.3.4. The

associated chain complexes C•(X ) and C•(X ′) are (graded) chain equivalent (see Ex-

ample 3.3.24). A P-graded cell complex may be visualized as in Figure 1.1: the Hasse

diagram of P is given and each s ∈ P is annotated with itself and its fiber X s := ν−1(s).

In our visualization if t covers s in P then there is a directed edge t→ s. This orientation

coincides with the action of the boundary operator and agrees with the Conley-theoretic
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literature. However, outside of Conley theory the Hasse diagram is often give the op-

posite orientation. These visualizations will be useful for the computations done in

Chapter 5.

q : e0, v1, e1

p : v0 r : v2

Figure 1.1: Visualization of (X , ν).

q : e′0

p : v′0 r : v′1

Figure 1.2: Visualization of (X ′, ν ′).

Let L be the lattice of down-sets of P, i.e., the lattice with operations ∩ and ∪,

consisting of unions of the sets

α :=↓p = {s ∈ P | s ≤ p} β :=↓q = {s ∈ P | s ≤ q} γ :=↓r = {s ∈ P | s ≤ r}

For a ∈ L define X a := ν−1(a). In this way, ν engenders the lattice of subcomplexes

{X a ⊂ X | a ∈ L} and ν ′ engenders the lattice of subcomplexes {X ′a ⊂ X ′ | a ∈ L}.

These are given below, where the down-sets are annotated.

∅

α : v0 γ : v2

v0, v2

β : v0, e0, v1, e1, v2

Figure 1.3: {X a | a ∈ L}.

∅

α : v′0 γ : v′1

v′0, v
′
1

β : v′0, e
′
0, v
′
1

Figure 1.4: {X ′a | a ∈ L}.

The boundary operator ∆′ for C•(X ′) is a connection matrix for (X , ν). To unpack

this a bit more, for ∆′1 : C1(X ′)→ C0(X ′) we have

∆′1 =


e′0

v′0 1

v′1 1


A quick computation shows that

H1(X β,X
←−
β ) ∼= H1(X γ) ∼= Z2 = C1(X ′)
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and, using X←−α = X←−γ = ∅,

H0(Xα,X
←−α )⊕H0(X γ ,X

←−γ ) ∼= H0(X p)⊕H0(X r) ∼= Z2 ⊕ Z2 = C0(X ′)

Thus we may write ∆′1 as a map

∆′1 : H1(X β,X
←−
β )→ H0(Xα,X

←−α )⊕H0(X γ ,X
←−γ )

In context of computational dynamics – in particular Conley theory – the rela-

tive homology groups {H•(X a,X
←−a )}a∈J(L) are the Conley indices indexed by the join-

irreducibles of L. The Conley index is an algebraic invariant of an isolated invariant set,

which generalizes the notion of the Morse index. The classical form of the connection

matrix is a boundary operator on Conley indices

∆′ :
⊕
a∈J(L)

H•(X a,X
←−a )→

⊕
a∈J(L)

H•(X a,X
←−a )

This form makes it more apparent that non-zero entries in the connection matrix may

force the existence of connecting orbits. See [17].

Example 1.2.2 (Data Compression). In applications, the data are orders of magnitude

larger than Example 1.2.1. Let N = 9×109 and K be the cubical complex on [0, 1] ⊂ R

where the vertices K0 and edges K1 are given by

K0 =

{[ k
N
,
k

N

]}
0≤k≤N

K1 =

{[ k
N
,
k + 1

N

]}
0≤k<N

Let P be as in Example 1.2.1. Let µ : K → P be the poset morphism

µ(x) = µ([l, r]) =


p if r ≤ 3× 109

r if l ≥ 6× 109

q otherwise

K contains a large number of cells; see Section 5.4 for examples arising from compu-

tational dynamics in which similar orders of magnitude are encountered. Due to the

cardinality of K, in Figure 1.5 we give a different visualization for the P-graded cell

complex (K, µ). Here M := N/3 and each p ∈ P is annotated with itself p and the
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q : (M − 1)t0 +Mt1

p : (M + 1)t0 +Mt1 r : (M + 1)t0 +Mt1

Figure 1.5: Visualization of (K, µ).

polynomial FKp(t) :=
∑

i αit
i where αi is the number of cells in the fiber Kp = µ−1(p)

of dimension i, viz. the f -polynomial of Kp.

The graded cell complex (X ′, ν ′) of Example 1.2.1 may also be visualized in this

fashion. A similar argument as the one in Example 1.2.1 shows that ∆′ is a connection

q : t1

p : t0 r : t0

Figure 1.6: Visualization of (X ′, ν ′).

matrix for (K, µ). Another way to see this is as follows. Recall that the Poincare polyno-

mial of X is defined as the polynomial PX (t) :=
∑

i dimHi(X )ti. A quick computation

shows that

PKq(t) = t1 = FX ′q(t)

PKp(t) = PKr(t) = t0 = FX ′p(t) = FX ′r(t)

Therefore for each p ∈ P the f -polynomial FX ′p(t) is precisely the Poincare polynomial

PKp(t). This implies that the boundary operator ∆′ is can be interpreted as a map

on the relative homology groups of {X a}. We call the visualization in Figure 1.6 the

Conley-Morse graph. This is a visualization of a graded complex, however the data of

the connection matrix itself is not shown.

This example highlights two aspect of the connection matrix.

1. First, from a computational perspective the cell complex (X ′, ν ′) and connection

matrix ∆′ can be thought of as a compression of (K, µ). Moreover, as part of

our definition of connection matrix (see Definition 3.3.25) there is a (graded)
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chain equivalence φ between the chain complexes C(K) and C(X ′). φ induces an

isomorphism on any homological invariant (e.g. homology, persistent homology,

graded module braids). Thus from the computational perspective, the connection

matrix is a form of compression which does not lose information with respect to

homological invariants. See Example 1.2.3, Section 3.9 and Theorems 3.9.3.

2. Second – and again from the computational perspective – notice that (X ′, ν ′) can-

not be compressed further as PX ′p(t) = FX ′p(t) for each p, i.e., the f -polynomial

of X ′p is precisely the Poincare polynomial of X ′p. In this sense, the connection

matrix is maximally compressed and it is the smallest object (of the graded chain

equivalence class) capable of recovering the homological invariants.

Example 1.2.3 (Persistent Homology). In this example we address Theorem 3.9.6

and the interplay of persistent homology and connection matrix theory.1 Let (X , ν)

and (X ′, ν ′) be as in Example 1.2.1. Let Q be the poset Q = {0, 1, 2} with order

0 ≤ 1 ≤ 2. Consider the poset morphism ρ : P→ Q given by

µ(x) =


0 x = p

1 x = r

2 x = q

Let µ := ρ ◦ ν : X → Q and µ′ := ρ ◦ ν ′ : X ′ → Q. Then (X , µ) and (X ′, µ′) are

Q-graded cell complexes, which may be visualized as in Figure 1.7.

Let K be the lattice of down-sets of Q; then K is the totally ordered lattice of

Figure 1.8. Setting X ↓n := µ−1(↓n) for 0 ≤ n ≤ 2 gives the filtration

∅ ⊂ X ↓0 ⊂ X ↓1 ⊂ X ↓2 = X ′ ∅ ⊂ v0 ⊂ v0, v2 ⊂ v0, v2, e0, v1, e1

and setting X ′↓n := µ′−1(↓n) the filtration

∅ ⊂ X ′↓0 ⊂ X ′↓1 ⊂ X ′↓2 = X ′ ∅ ⊂ v′0 ⊂ v′0, v′1 ⊂ v′0, v′1, e′0

1In this example we restrict to filtrations. However, we wish to emphasize that our results hold for
multi-parameter persistence; see Section 3.9, in particular Theorem 3.9.3.
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0 : v0

1 : v2

2 : e0, v1, e1

0 : v′0

1 : v′1

2 : e′0

Figure 1.7: Visualization of (X , µ), (X ′, µ′).

∅

↓0

↓1

↓2

∅

{0}

{0, 1}

Q = {0, 1, 2}

Figure 1.8: Lattice K of downsets of Q.

For each downset ↓ i, the (graded) chain equivalence φ : C(X ) → C(X ′) induces a

chain equivalence φ↓i : C(X ↓i)→ C(X ′↓i) (see Section 3.4), which fit into the following

commutative diagram:

0 C(X ↓0) C(X ↓1) C(X )

0 C(X ′↓0) C(X ′↓1) C(X ′)

φ↓0 φ↓1 φ

As each φ↓i is a chain equivalence, and the diagram commutes, φ induces an isomor-

phism on the persistent homology. As a corollary, all computational tools that tabulate

the persistent homology groups, e.g. the persistence diagrams and barcodes [11], can

be computed via ∆′.

Example 1.2.4 (Computational Dynamics). Consider the gradient flow ϕ : R×R2 →

R2 generated by the system in Figure 1.9. Restricting to the compact isolated invariant

ẋ = x− x2

ẏ = y − y2

Figure 1.9: System of differential equations and associated phase portrait.

set X = [0, 1] × [0, 1], the phase space is combinatorialized with a cubical complex X

(see Figure 1.10). Continuous dynamics are combinatorialized with a binary relation

F ⊂ X+ × X+ where X+ = {ξi} is the set of top-dimensional cubes. The relation F

approximates the underlying flow ϕ. This is depicted in Figure 1.10.



11

ξ3 ξ1

ξ0ξ2

∅

ξ0

ξ2, ξ0 ξ1, ξ0

ξ0, ξ1, ξ2, ξ3

Figure 1.10: X ,F and the lattice Invset+(F).

The lattice of forward invariant sets of F , denoted Invset+(F), captures the long-

term behavior of the relation F . Let SubCl(X ) be the lattice of closed subcomplexes

of X . F is a good combinatorial approximation for ϕ since the map c : Invset+(F) →

SubCl(X ) given by

Invset+ 3 a 7→ cl(a) ∈ SubCl(X )

is a lattice morphism. This implies that the collection {X a}, where X a = c(a), is a

lattice of attracting blocks for ϕ. Set P = J(Invset+(F)). The cell complex X together

with the Birkhoff dual (see Section 2.4.3) ν = J(c) : X → P is a P-graded cell complex

(X , ν) where ν−1(a) = X a \X←−a . See Figure 1.2.4. As a reminder, in our visualizations

if q covers p in P then there is a directed edge q → p. This orientation of directed edges

respects the behavior of the dynamics and agrees with the orientation of the Conley

theory literature [2, 6]. However, Hasse diagram is often given the opposite orientation

outside of Conley theory. The P-graded complex (X , ν) is the input into our algorithm

0 : t2 + 4t1 + 4t0

1 : t2 + 3t1 + 2t0 2 : t2 + 3t1 + 2t0

3 : t2 + 2t2 + t0

Figure 1.11: Visualization of (X , ν).

ConnectionMatrix (Algorithm 3.7.8). The associated Conley complex (the output

of algorithm) is in Figure 1.12.

Let M = {M(a)}a∈J(L) where M(a) = Inv(X a\X←−a ) and let T = {cl(X a\X←−a )}a∈J(L).

M and T are posets by restricting the ordering of L. The individual sets M(a) are called
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0 : t0

Figure 1.12: Conley-Morse Graph. Blank nodes have trivial Conley index.

Morse sets. Classically, M is called a Morse decomposition for ϕ. The pair (X a,X←−a ) is

an index pair for M(a) and there is an order-embedding M ↪→ T. The diagram M ↪→ T

is a tessellated Morse decomposition for ϕ. The connection matrix ∆ for the Morse

decomposition M is a boundary operator on the Conley indices of the Morse sets,

∆:
⊕
a∈J(L)

CH•M(a)→
⊕
a∈J(L)

CH•M(a). (1.3)

As each pair (X a,X←−a ) is an index pair for M(a), (1.3) can be written as

∆:
⊕
a∈J(L)

H•(X a,X
←−a )→

⊕
a∈J(L)

H•(X a,X
←−a ).

This is precisely the output of the algorithm ConnectionMatrix; visualized in Fig-

ure 1.12.
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Chapter 2

Preliminary material

In this chapter we recall the necessary mathematical prerequisites. For a more complete

discussion the reader is referred to [9, 43] for order theory; [19, 51] for category theory

and homological algebra; [30] for algebraic topology and cell complexes; [23, 38, 45] for

discrete Morse theory; [26, 27, 28] for (computational) dynamics.

2.1 Notation

Boldface font is used to denote categories and Fraktur font to denote particular functors.

Sans-serif font is used for order-theoretic structures, such as posets and lattices. Lower

case Greek letters are used for morphisms of (graded, filtered) chain complexes. Script-

like letters are used for chain complex braids and graded module braids and upper case

Greek letters are used for morphisms of these objects. Calligraphic font is typically

used for notation referring to combinatorial objects and cell complexes.

2.2 Category Theory

The exposition of category theory primarily follows [51], see also [19, 31].

Definition 2.2.1. A preadditive category or Ab-category is a category that is enriched

over the category of abelian groups. That is, every hom-set HomA(A,B) in A has

the structure of an abelian group such that composition distributes over addition (the

group operation). A additive category is a preadditive category with a zero object and

a product A×B for every pair A,B of objects in A.

Definition 2.2.2. In an additive category A a kernel of a morphism f : B → C is a

map i : A → B such that fi = 0 and that is universal with respect to this property.
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Dually, a cokernel of f is a map e : C → D which is universal with respect to having

ef = 0. in A, a map i : A → B is monic if ig = 0 implies g = 0 for every map

g : A′ → A. A monic map is called a monomorphism. A map e : C → D is an epi, or

epimorphism, if he = 0 implies h = 0 for every map h : D → D′.

Definition 2.2.3. An abelian category is an additive category A such that

1. Every map in A has a kernel and a cokernel

2. Every monic in A is the kernel of its cokernel

3. Every epi in A is the cokernel of its kernel.

Let F : A → B be a functor. For a pair of objects A,B in A, F induces a map on

hom-sets

FA,B : HomA(A,B)→ HomB(F (A), F (B))

Definition 2.2.4. An additive functor F : A → B between Ab-categories is a functor

such that each HomA(A,A′)→ HomB(F (A), F (A′)) is a group homomorphism.

Definition 2.2.5. A functor F : A → B is full if FA,B is surjective for all pairs A,B.

F is faithful if FA,B is injective for all pairs A,B. A subcategory A of B is full if the

inclusion functor A ↪→ B is full. A functor is fully faithful if it is both full and faithful.

A functor F : A → B is essentially surjective if for any object B of B there is an object

A in A such that B is isomorphic to F (A). A functor F : A → B is an equivalence of

categories if there is a functor G : B → A and natural isomorphisms ε : FG→ idB and

η : idA → GF . Categories A and B are equivalent if there a equivalence F : A → B.

Proposition 2.2.6. F : A → B is an equivalence of categories if and only if F is full,

faithful and essentially surjective.

Definition 2.2.7. A functor F : A → B is conservative if given a morphism f : A→ B

in A, F (f) : F (A)→ F (B) is an isomorphism only if f is an isomorphism.

Definition 2.2.8. Following [31, Section II.8], we say that a congruence relation ∼ on

a category A is a collection of equivalence relations ∼A,B on Hom(A,B) for each pair
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of objects A,B such that the equivalence relations respect composition of morphisms.

That is, if f, f ′ : A → B and f ∼ f ′ then for any g : A′ → A and h : B → B′ we have

hfg ∼ hf ′g. If A is an additive category, we say a congruence relation ∼ is additive if

f0, f1, g0, g1 : A→ B with fi ∼ gi then f0 + f1 ∼ g0 + g1.

Definition 2.2.9. Given a congruence relation ∼ on a category A the quotient category

A/∼ is defined as the category whose objects are those of A and whose morphisms are

equivalence classes of morphisms in A. That is,

HomA/∼(A,B) = HomA(A,B)/∼A,B

There is a quotient functor from A → A/∼ which is the identity on objects and sends

each morphism to its equivalence class. If ∼ is additive then the quotient category A/∼

is additive, and the quotient functor A → A/∼ is an additive functor.

Proposition 2.2.10 ([31], Proposition II.8.1). Let ∼ be a congruence relation on the

category A. Let F : A → B be a functor such that f ∼ f ′ implies F (f) = F (f ′) for all

f and f ′, then there is a unique functor F ′ from A/∼ to B such that F ′ ◦ q = F .

Proposition 2.2.11. Let A be a category, ∼ a congruence relation on A and B = A/∼

be the quotient category. Let A′ be a full subcategory of A. Let B′ be the full subcategory

whose objects are the objects in A′. Then B′ is a quotient of A′.

2.3 Homological Algebra

2.3.1 In Additive Categories

Let A be an additive category. Unless explicitly stated, we assume that functors of

additive categories are additive. While most of homological algebra takes place in the

setting that A is an abelian category, the construction of the homotopy category may

be done for an additive category A. In this section we outline the construction.

Definition 2.3.1. A chain complex (C•, ∂•) in A is a family C• = {Cn}n∈Z of objects

of A together together with morphsims ∂• = {∂n : Cn → Cn−1}n∈Z, called boundary

operators, or differentials, such that ∂n−1 ◦ ∂n = 0 for all n.
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When the context is clear we abbreviate (C•, ∂•) as (C, ∂) or more simply as just

C. A morphism φ : C → C ′ of chain complexes C and C ′ is a chain map, that is, a

family φ = {φn : Cn → C ′n}n∈Z of morphisms in A such that φn−1 ◦ ∂n = ∂′n ◦ φn for all

n. Chain complexes and chain maps constitute the category denoted Ch = Ch(A).

Definition 2.3.2. A chain map φ : C → C ′ is null homotopic if there exists a family

γ = {γn : Cn → C ′n+1}n∈Z of morphisms in A such that

φ = γ ◦ ∂ + ∂′ ◦ γ.

The morphisms {γn} are called a chain contraction of φ.

Definition 2.3.3. Two chain maps φ, ψ : C → C ′ are chain homotopic if their difference

φ− ψ is null homotopic, that is, if there exists a family of morphisms {γn} such that

φ− ψ = γ ◦ ∂ + ∂′ ◦ γ.

The morphisms {γn} are called a chain homotopy from φ to ψ. We write φ ∼ ψ to

indicate that φ, ψ are chain homotopic.

Definition 2.3.4. Given chain complexes C and C ′ in A, a family γ = {γn : Cn →

C ′n+1} of morphisms in A is called a degree 1 map from C to C ′.

Definition 2.3.5. We say that φ : C → D is a chain equivalence if there is a chain

map ψ : D → C such that f ◦ g and g ◦ f are chain homotopic to the respective identity

maps of C and D. We say that C and D are chain equivalent if there exists a chain

equivalence φ : C → D.

Proposition 2.3.6. Chain equivalence is an equivalence relation on the objects of

Ch(A).

Proposition 2.3.7. The relation ∼ is an additive congruence relation on Ch(A).

Definition 2.3.8. We define the homotopy category of Ch(A), which we denote by

K = K(A), to be the category whose objects are chain complexes and whose morphisms

are chain homotopy equivalence classes of chain maps between chain complexes. In other

words, K(A) is the quotient category Ch(A)/∼ formed by defining hom-sets

HomK(A)(A,B) = HomCh(A)(A,B)/∼



17

We define the quotient functor q : Ch(A)→ K(A) to be the functor which sends each

chain complex to itself and each chain map to its chain homotopy equivalence class.

It follows from the construction of K(A) that two chain complexes are isomorphic

in K(A) if and only if they are chain equivalent.

Proposition 2.3.9. If F : A → B is a functor of additive categories then there is an

associated functor FCh : Ch(A)→ Ch(B) given by

FCh(C, ∂) =
(
{F (Cn)}n∈Z, {F (∂n : Cn → Cn−1)}n∈Z

)
Moreover, since F is additive it induces a functor FK : K(A) → K(B) between the

homotopy categories K(A) and K(B).

Proposition 2.3.10. If F : A → B is a equivalence of categories then the induced

functor FCh is an equivalence of categories.

2.3.2 In Abelian Categories

Let A be an abelian category. Let C be a chain complex in A. The elements of Cn are

called the n-chains. The elements of ker ∂n ⊂ Cn are called the n-cycles; the elements

of im ∂n+1 ⊂ Cn are called the n-boundaries. Since A is an abelian category we may

define the notion of homology of a chain complex.

Definition 2.3.11. We say that a chain complex (C, ∂) is minimal if ∂n = 0 for all n.

The minimal chain complexes form the full subcategory Ch0 ⊂ Ch. A chain complex

is called acyclic if it is exact, i.e., ker ∂ = im ∂. A chain complex B is a subcomplex of C

if each Bn is a subspace of Cn and ∂B = ∂C |B. That is, the inclusions {in : Bn → Cn}

form a chain map i : B → C. If φ : A → B is a chain map then ker(φ) and im(φ) are

subcomplexes of A and B respectively. Suppose B is a subcomplex of C. The quotient

complex C/B is the chain complex consisting of the family {Cn/Bn}n∈Z together with

differentials {x + Bn 7→ ∂n(x) + Bn−1}n∈Z. The n-th homology of C is the quotient

Hn(C) := ker ∂n/ im ∂n+1. We define the homology of C as H•(C) := {Hn(C)}n∈Z

equipped with boundary operators {0: Hn(C) → Hn−1(C)}n∈Z and regard it as a

minimal chain complex.
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A chain complex C is acyclic if and only if H•(C) = 0. Chain maps induce mor-

phisms on homology: let C,C ′ be chain complexes and φ : C → C ′ a chain map. There

there exists a well-defined map H•(φ) called the induced map on homology given via

Hn(φ) : z + im ∂n+1 7→ φ(z) + im ∂′n+1

Proposition 2.3.12. Homology is a functor H• : Ch→ Ch0. For each n ∈ Z the n-th

homology is a functor Hn : Ch→ A.

We often write H• more simply as H.

Proposition 2.3.13. Chain homotopic maps induce the same map on homology.

Proposition 2.3.14. A chain equivalence φ : C → D induces an isomorphism on the

homology H(φ) : H(C)→ H(D).

The category K enjoys a universal property with respect to chain equivalences.

Proposition 2.3.15 ([51], Proposition 10.1.2). Let F : Ch → D be any functor that

sends chain equivalences to isomorphisms. Then F factors uniquely through K. In

particular, there exists a unqiue functor HK : K→ Ch0 such that HK ◦ q = H.

Let Vect be the category of finite-dimensional vector spaces over a field K. We have

the following result for Ch(Vect).

Proposition 2.3.16 ([19], Proposition III.2.4). The pair of functors q◦i : Ch0(Vect)→

K(Vect) and HK : K(Vect)→ Ch0(Vect) form an equivalence of categories.

We can give an alternative to Proposition 2.3.16 using the results and perspectives

of this paper. This will use Algorithm 3.7.2 and give the flavor of Theorem 3.8.1. Let

K0(Vect) denote the full subcategory of K(Vect) whose objects are the objects of are

the objects of Ch0(Vect) and whose morphisms are given by

HomK0(C,D) = HomCh0(C,D)/∼

There is a quotient functor q : Ch0(Vect) → K0(Vect). The next result shows that

Ch0(Vect) may be identified with K0(Vect).
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Proposition 2.3.17. The quotient functor q : Ch0(Vect) → K0(Vect) is an isomor-

phism on hom-sets.

Proof. Given ψ, φ : C → D we have that ψ ∼ φ if there exists γ such that

ψ − φ = γ ◦ ∂ + ∂ ◦ γ = 0

Where the last equality follows since ∂ = 0 within the subcategory of minimal objects.

Thus ψ ∼ φ if and only if ψ = φ.

Proposition 2.3.18. The inclusion functor i : K0(Vect)→ K(Vect) is an equivalence

of categories.

Proof. The functor i is full and faithful. Moreover, i is essentially surjective from the

Theorem 3.7.3, which is the proof of correctness of Algorithm 3.7.2 (Homology). It

follows from Proposition 2.2.6 that i is an equivalence of categories.

This result implies there is an inverse functor to i, call it F , such that i and F are

an equivalence of categories. In particular, i ◦F (C) is minimal and i ◦F (C) and C are

chain equivalent.

2.4 Order Theory

2.4.1 Posets

Definition 2.4.1. A partial order ≤ is a reflexive, antisymmetric, transitive binary

relation. A set P = (P,≤) together with a partial order is called a partially ordered

set, or poset. We let < be the relation on P such that x < y if and only if x ≤ y and

x 6= y. A function ν : P → Q is order-preserving if p ≤ q implies that ν(p) ≤ ν(q).

The category of finite posets, denoted FPoset, is the category whose objects are finite

posets and whose morphisms are order-preserving maps.

Definition 2.4.2. Let P be a finite poset and p, q ∈ P. We say that q and p are

comparable if p ≤ q or q ≤ p. We say that q covers p if p < q and there does not exist

an r with p < r < q. If q covers p then p is a predecessor of q. Let Q ⊂ P. We say
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that Q is a chain in P if any two elements in Q are comparable. We say that p and q

are incomparable if they are not comparable. We say that Q is an antichain in P if any

two elements in Q are incomparable.

Definition 2.4.3. Let P be a finite poset. An upper set of P is a subset U ⊂ P such that

if p ∈ U and p ≤ q then q ∈ U . For p ∈ P the upper set at p is ↑p := {q ∈ P : p ≤ q}.

Following [27], we denote the collection of upper sets by U(P). A down set of P is

a set D ⊂ P such that if q ∈ D and p ≤ q then p ∈ D. The down set at q is

↓q := {p ∈ P : p ≤ q}. Following [27], we denote the collection of down sets by O(P).

Remark 2.4.4. Any down set can be obtained by a union of down sets of the form ↓q.

In fact, O(P) are the closed sets of the Alexandroff topology of the poset P. Under a

poset morphism, the preimage of a down set is a down set. Similarly, the preimage of

an upper set is an upper set.

Definition 2.4.5. Let P be a finite poset. For p, q ∈ P the interval from p to q, denoted

[p, q], is the set {x ∈ P : p ≤ x ≤ q}. A subset I ⊂ P is convex if whenever p, q ∈ I then

[p, q] ⊂ I. Following [17], we denote the collection of convex sets by I(P).

Remark 2.4.6. Let P be a finite poset. Any convex set of P can be obtained by an

intersection of a down and upper set. Under a poset morphism the preimage of a

convex set is a convex set. See [43].

Remark 2.4.7. In [17, 15, 16] convex sets are instead called intervals. We adopt the

terminology convex as this is standard in order theory literature.

2.4.2 Lattices

Some texts introduce lattices as a particular type of poset. Instead, we begin with

definition of lattice as an algebraic structure. For a discussion of the relationship of

these two definitions the reader may consult the section ‘Lattices as algebraic structures’

within Chapter 2 of [9]. In particular, see [9, Theorem 2.9].

Definition 2.4.8. A lattice is a set L with the binary operations ∨,∧ : L × L → L

satisfying the following four axioms:
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1. (idempotent) a ∧ a = a ∨ a = a for all a ∈ L

2. (commutative) a ∧ b = b ∧ a and a ∨ b = b ∨ a for all a, b ∈ L

3. (associative) a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c for all a, b, c ∈ L

4. (absorption) a ∧ (a ∨ b) = a ∨ (a ∧ b) = a for all a, b ∈ L

A lattice L is distributive if it satisfies the additional axiom:

5. (distributive) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for

all a, b, c ∈ L

A lattice L is bounded if there exist neutral elements 0 and 1 that satisfy the

following property:

6. 0 ∧ a = 0, 0 ∨ a = a, 1 ∧ a = a, 1 ∨ a = 1 for all a ∈ L

A lattice homomorphism f : L → M is a map such that if a, b ∈ L then f(a ∧ b) =

f(a) ∧ f(b) and f(a ∨ b) = f(a) ∨ f(b). If L and M are bounded lattices then we also

require that f(0) = 0 and f(1) = 1. In particular, we are interested in finite lattices.

Every finite lattice is bounded. A subset K ⊂ L is a sublattice of L if a, b ∈ K implies

that a ∨ b ∈ K and a ∧ b ∈ K. For sublattices of bounded lattices we impose the extra

condition that 0, 1 ∈ K.

Definition 2.4.9. The category of finite distributive lattices, denoted FDLat, is the

category whose objects are finite distributive lattices and whose morphisms are lattice

homomorphisms.

A lattice L has an associated poset structure given by a ≤ b if a = a ∧ b or,

equivalently, if b = a ∨ b.

Definition 2.4.10. An element a ∈ L is join-irreducible if it has a unique predecessor;

given a join-irreducible a we denote its unique predecessor by ←−a . The set of join-

irreducible elements of L is denoted by J(L). (J(L),≤) is a poset, where the order ≤ is

the restriction of the partial order of L.
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Definition 2.4.11. For a ∈ L the expression

a = b1 ∨ · · · ∨ bn

where the bi’s are distinct join-rreducibles is called irredundant if it is not the join of

any proper subset of U = {b1, . . . , bn}. Clearly, if the join is irredundant, then U is an

antichain.

Proposition 2.4.12 ([43],Theorem 4.29). If L is a finite distributive lattice then every

a ∈ L has an irredundant join-irreducible representation

a = b1 ∨ · · · ∨ bn

and all such representations have the same number of terms.

Definition 2.4.13. Let L be a lattice with a minimum element 0. An element a ∈ L is

an atom if a covers 0.

Definition 2.4.14. A complemented lattice, also called a Boolean algebra, is a bounded

lattice (with least element 0 and greatest element 1), in which every element a has a

complement, i.e., an element b such that a ∨ b = 1 and a ∧ b = 0.

Definition 2.4.15. Let X be a finite set. The power set of X is the collection of all

subsets of X. Following [25], we denote the power set of X as Set(X). The power set

Set(X) is a Boolean algebra and the atoms of Set(X) are the elements of X.

Definition 2.4.16. A relatively complemented lattice is a lattice such that every inter-

val [a, b], viewed as a bounded lattice, is complemented.

Example 2.4.17. Let V be a vector space. The associated lattice of subspaces, denoted

by Sub(V ), consists of all subspaces of V with the operations ∧ := ∩ and ∨ := + (span).

Sub(V ) is a relatively complemented lattice. It is not distributive in general.

Definition 2.4.18. Let C be a chain complex. The associated lattice of subcomplexes,

denoted by Sub(C), consists of all subcomplexes of C with the operations ∧ := ∩ and

∨ := + (span), i.e.,

(A•, ∂
A) ∧ (B•, ∂

B) := (A• ∩B•, ∂C |A∩B),

(A•, ∂
A) ∨ (B•, ∂

B) := (A• +B•, ∂
C |A+B).
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Sub(C) is a bounded lattice, but is not distributive in general.

2.4.3 Birkhoff’s Theorem and Transforms

As indicated above, given a finite distributive lattice L, J(L) has a poset structure. In

the opposite direction, given a finite poset (P,≤) the collection of downsets O(P) is a

bounded distributive lattice under ∧ = ∩ and ∨ = ∪. The following theorem often goes

under the moniker ‘Birkhoff’s Representation Theorem’.

Theorem 2.4.19 ([43], Theorem 10.4). J and O are contravariant functors from

FDLat to FPoset and FPoset to FDLat, respectively. Following [25], we represent

this via the following diagram.

K J(K)

L J(L)

h
J

J(h)

P O(P)

Q O(Q)

ν
O

O(ν)

The formulas for the morphisms J(h) and O(ν) are given by

J(h)(a) = minh−1(↑ a), where a ∈ J(L), (2.1)

O(ν)(a) = ν−1(a), where a ∈ O(Q). (2.2)

Furthermore,

L ∼= O(J(L)) and P ∼= J(O(P)).

The pair of contravariant functors O and J called the Birkhoff transforms. Given

ν : P → Q we say that O(ν) is the Birkhoff dual to ν. Similarly, for h : K → L we say

that J(h) is the Birkhoff dual to h.

Example 2.4.20. Consider the poset P of Example 1.2.1, recalled in Figure 2.1(a). The

lattice of down-sets O(P) is given in Figure 2.1(b) and the join-irreducibles J(O(P)) in

Figure 2.1(c).
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p r

q

(a)

∅

p r

p, r

p, r, q

(b)

p r

p, r, q

(c)

Figure 2.1: (a) Poset P (b) Lattice of down-sets O(P) (c) Join-irreducibles J(O(P)).

2.4.4 Relations

Binary relations on finite sets arise in computational dynamics as discrete approxima-

tions to continuous dynamics [25, 26]. Relations are often viewed from three different

(yet equivalent) perspectives, depending upon the intended application. First, as a true

binary relation. Second, as a multivalued map F : X ⇒ X, where (x, y) ∈ F if and

only if y ∈ F(x) := {z : (x, z) ∈ F}. Third, as a directed graph with verties X and

edges given by (x, y) ∈ F if and only if there is a directed edge x → y. In this section

we briefly cover some tools used to manipulate relations. The exposition of relations

follows [25].

Definition 2.4.21. A relation F on a finite set X that is both symmetric and transitive

is called a partial equivalence relation. Given x ∈ X the partial equivalence class of x

is the (possibly empty) set [x]F = {y ∈ X : (x, y) ∈ X}. If, in addition, F is reflexive

then F is an equivalence relation. In this case [x]F is called an equivalence class of x.

Definition 2.4.22. Let F be a relation on a finite set X. We say that x is reachable

from y, denoted by x ^ y, if there exists a sequence {x0, x1, . . . , xk} with x0 = y and

xk = x such that xi+1 ∈ F(xi). The reachability relation is the transitive closure F+ of

the relation F . If x ^ y and y ^ x then x and y are connected, denoted by x ] y. The

relation ] is a partial equivalence relation, which we call connectivity. The reflexive

closure of the ], denoted by (])=, is an equivalence relation which we call strong

connectivity. The equivalence classes are called strongly connected components and are

denoted by SC(F).

The set SC(F) of strongly connected components of F is partially ordered via the
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reachability relation as follows. For [x], [y] ∈ SC(F) we say [x] ≤ [y] if and only if

there exists x′ ∈ [x] and y′ ∈ [y] such that x′ ^ y′. It is shown in [25] that SC(−) is

a covariant functor from the category finite binary relations to the category of finite

posets.

2.5 Cell Complexes

Since our ultimate focus is on data analysis, we are interested in combinatorial topology.

We make use of the following complex, whose definition is inspired by [30, Chapter III

(Definition 1.1)]. Recall that K is a field.

Definition 2.5.1. A cell complex (X ,≤, κ,dim) is an object (X ,≤) of FPoset together

with two associated functions dim: X → N and κ : X ×X → K subject to the following

conditions:

1. dim: (X ,≤)→ (N,≤) is a poset morphism;

2. For each ξ and ξ′ in X :

κ(ξ, ξ′) 6= 0 implies ξ′ ≤ ξ and dim(ξ) = dim(ξ′) + 1;

3. For each ξ and ξ′′ in X ,

∑
ξ′∈X

κ(ξ, ξ′) · κ(ξ′, ξ′′) = 0.

For simplicity we typically write X for (X ,≤, κ,dim). The partial order ≤ is the

face partial order. X is a graded set with respect to dim, i.e., X =
⊔
n∈NXn with

Xn = dim−1(n). An element ξ ∈ X is called a cell and dim ξ is the dimension of ξ. The

function κ is the incidence function of the complex. The values of κ are referred to as

the incidence numbers.

Definition 2.5.2. Given a cell complex X the associated chain complex C(X ) is the

chain complex C(X ) = {Cn(X )}n∈Z where Cn(X ) is the vector space over K with basis

elements given by the cells ξ ∈ Xn and the boundary operator ∂n : Cn(X ) → Cn−1(X )
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is defined by

∂n(ξ) :=
∑
ξ′∈X

κ(ξ, ξ′)ξ′.

Condition (3) of Definition 2.5.1 ensures ∂n−1∂n = 0.

Definition 2.5.3. Given a cell complex X the homology of X , denoted H•(X ), is

defined as the homology of the associated chain complex H•(C•(X )).

Definition 2.5.4. A cell complex X is minimal if the associated chain complex (C(X ), ∂)

is minimal.

Definition 2.5.5. Consider K ⊂ X and let (≤′, κ′,dim′) be the restriction of (≤, κ,dim)

to K. (K,≤′, κ′, dim′) is a subcomplex of X if (K,≤′, κ′, dim′) is a cell complex.

Remark 2.5.6. Given any subcomplex K ⊂ X there is an associated chain complex

C(K). However the inclusion K ⊂ X need not induce a chain map C(K) → C(X ). In

other words, the associated chain complex C(K) need not be a subcomplex of C(X ).

For example, let X be as in Example 1.2.1 and set K = {e0, e1}. (K,≤′, κ′,dim′) is

itself a cell complex.

Proposition 2.5.7. Let X be a cell complex. If I ⊂ X is convex then (I,≤, κ,dim) is

a subcomplex.

Definition 2.5.8. A subcomplexK ⊂ X is closed ifK is a down-set of X . A subcomplex

K ⊆ X is open if it is an upper set of X .

Proposition 2.5.9. Let K ⊂ X be a closed subcomplex. Then C(K) is a subcomplex

of C(X ).

Remark 2.5.10. If U is an open subcomplex of X then X \ U is a closed subcomplex.

Therefore C(U) ∼= C(X )/C(X \ U). Thus open subcomplexes correspond to quotient

complexes of X . If I ⊂ X is convex then K := ↓ I \ I is a downset; C(I) is isomorphic

to the subquotient C(I) ∼= C(↓I)/C(K).

Definition 2.5.11. Given a cell complex (X ,≤, κ,dim), the lattice of closed subcom-

plexes of X is SubCl(X ) := O(X ,≤). There is a lattice monomorphism span: SubCl(X )→
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Sub(C(X )) given by

a 7→ span(a) =

{
n∑
i=0

λiξi : n ∈ N, λi ∈ K, ξi ∈ a

}
.

The lattice of closed subcomplexes of C(X ) is defined as SubCl(C(X )) := im span. A

subcomplex of C(X ) which belongs to SubCl(C(X )) is a closed subcomplex of C(X ).

Remark 2.5.12. The lattices SubCl(C(X )) and SubCl(X ) are isomorphic. This implies

that SubCl(C(X )) is a distributive lattice, whereas in general Sub(C(X )) is not dis-

tributive. The lattice morphism span factors as

SubCl(X )
span−−−→ SubCl(C(X )) ↪→ Sub(C(X )).

We define the star and closures:

star(ξ) := ↑ξ = {ξ′ : ξ ≤ ξ′} and cl(ξ) := ↓ξ = {ξ′ : ξ′ ≤ ξ}.

The star defines an open subcomplex while the closure defines a closed subcomplex.

In order-theoretic terms these are the up and down sets of (X ,≤) at ξ. We use the

duplicate notation star, cl to agree with the literature of cell complexes.

Definition 2.5.13. Let K be a subcomplex of X . A cell ξ ∈ K is interior to K if

star(ξ) ⊆ K. We denote by int(K) the set of interior cells. The frontier of K is defined

as frK = K \ intK. If ξ ∈ K then ξ ∈ frK if and only if star ξ 6⊂ K.

The interior of K satisfies the following identity:

int(K) =
⋃

ξ∈intK
star(ξ).

It follows from this identity that int(K) is an upper set of X .

Definition 2.5.14. Given a complex X , a cell ξ ∈ X is a top-cell if it is maximal with

respect to ≤, i.e., star(ξ) = {ξ}. Following [23], we denote the set of top-cells is denoted

X+ ⊂ X . A cell complex X is called pure if there is an n ∈ N such that X+ = Xn. In

this case, n is called the dimension of X .

Definition 2.5.15. Given a subcomplex X ′ ⊆ X , a pair of cells (ξ, ξ′) ∈ X ′ × X ′ is a

coreduction pair in X ′ if ∂(ξ) = κ(ξ, ξ′)ξ′ with κ(ξ, ξ′) 6= 0. A cell ξ ∈ X is free in X ′ if

κ(ξ, ξ′) = 0 for ξ′ ∈ X ′.
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Definition 2.5.16. Let X be a cell complex. The f -vector of X is the integral sequence

(f0, f1, f2, . . .)

where fi is the number of i-dimensional cells. The f -polynomial of X is the polynomial

FX (t) =
∑
i

fit
i.

The Poincare polynomial of X is the polynomial

PX (t) =
∑
i

dimHi(X )ti.

2.6 Cubical Complexes

Cubical complexes often arise computational dynamics as grids on a phase space, e.g. [2,

6, 24], and therefore have a particular importance for Conley theory computations. In

this section we give a brief review of cubical complexes which follows [24]. An elementary

interval is a subset I ⊂ R of the form I = [l, l + 1] or I = [l, l] for some l ∈ Z. An

elementary cube ξ in Rn is a finite product of elementary intervals, i.e.,

ξ = I1 × I2 × · · · × In ⊆ Rn.

A cubical set is a union of elementary cubes. Intervals of length zero are called degener-

ate while those of length 1 are nondegenerate. The dimension of a cube ξ, denoted dim ξ,

is the number of nondegenerate intervals in ξ. Therefore dim is a function dim: X → N.

If ξ ⊆ ξ′ are elementary cubes then ξ is a face of ξ′. If, in addition, dim ξ = dim ξ′ − 1

then ξ is a primary face of ξ. The face relation defines a poset ≤ on the cubical set.

Given a particular field K, an incidence function κ : X × X → K can be described in

detail [24]. When K = Z2 the incidence number κ(ξ, ξ′) is nonzero if and only if ξ′ is a

primary face of ξ.

Definition 2.6.1. A cubical complex is a cubical set such that (X ,≤, κ,dim) form a

complex.

Definition 2.6.2. We call the indices {1, . . . , n} the set of coordinates. An elementary

cube ξ = I1 × I2 × · · · × In ⊆ Rn is said to have extent in coordinate m if Im is

nondegenerate.
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2.7 Polyhedral complexes

When the cells come equipped with realization maps that form convex regions of Eu-

clidean space we call this a polyhedral complex. The next definition follows [30, Chapter

III (Definition 6.1)]. The primary difference is that we make an explicit distinction be-

tween the abstract cell complex X and the geometric realization of cells in Euclidean

space.

Definition 2.7.1. A polyhedral complex in Rn is a cell complex X together with an

realization map | · | : X → Rn which obeys the following properties:

1. An m-cell ξ ∈ Xm has an realization |ξ| which is a bounded convex region of some

m-dimensional affine subspace of Em ⊂ Rn;

2. The collection of realizations {|ξ|}ξ∈X is disjoint in Rn;

3. For any ξ ∈ X we have | cl(ξ)| = cl |ξ|.

The set |X | :=
⋃
ξ∈X |ξ| ⊂ Rn is called a polyhedron.

Condition (3) implies that the cellular closure relates to the topological closure, in

particular ξ′ ≤ ξ if and only if ξ′ = ξ or |ξ′| ⊆ cl |ξ| − |ξ|. The polyhedral complex X

is a discretization of the topological space |X | ⊂ Rn into a cellular complex. In the

sequel, we assume that any polyhedral complex (X ,≤, κ,dim) has its incidence function

κ : X × X → K determined as in [30, Chapter III (6.4)]. When the underlying field K

is Z2 the incidence numbers may be described quite simply: κ(ξ, ξ′) is nonzero if and

only if ξ covers ξ′ in (X ,≤) (see Definition 2.4.2).

For the remainder of the section let X be a polyhedral complex in Rn. The next

few results relate the topology of X with that of |X |.

Lemma 2.7.2. Let ξ ∈ X and K ⊂ X . If |ξ| ∩ |K| 6= ∅ then ξ ∈ K.

Proof. |K| =
⋃
ξ′∈K |ξ′|. It follows from (2) that if |ξ| ∩ ∪ξ′∈K|ξ| 6= ∅, then ξ ∈ K.

Proposition 2.7.3. If U ⊂ X is an upper set then |U| is open in |X |.
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Proof. If U ⊂ X is an upper set then Uc is a down-set. Thus cl(Uc) = Uc. (2) implies

|Uc| = |U|c. Thus

|U|c = |Uc| = | cl(Uc)| = cl |Uc| = cl(|U|c).

Therefore |U|c is a closed set, implying |U| is an open set.

Proposition 2.7.4. If K ⊂ X then |intK| = int|K|.

Proof. By definition of frontier, K = frK t intK and (2) implies |K| = | frK| t |intK|.

As intK is an upper set, it follows from Proposition 2.7.3 that |intK| is open in |X |.

Therefore |intK| ⊂ int|K|. Since frK ⊆ X \ X+ (the frontier is composed of cells that

are not maximal) we have int| frK| = ∅. Therefore there are no open sets U such that

|intK| ⊂ U ⊂ int|K|. As int|K| is the largest open set contained in |K|, it follows that

|intK| = int|K|.

Corollary 2.7.5. If K ⊂ X then bd |K| = | frK|.

Proof. By definition K = frK t intK. From (2) and Proposition 2.7.4 we have that

|K| = | frK| t |intK| = | frK| t int|K|.

Thus | frK| = |K| \ int|K| = bd |K|.

2.8 Discrete Morse Theory

We review the use of discrete Morse theory to compute homology of complexes. Our

exposition is brief and follows [23]. See also [22, 38, 45].

Definition 2.8.1. A partial matching of cell complex X consists of a partition of the

cells in X into three sets A, K, and Q along with a bijection w : Q → K such that

for any ξ ∈ Q we have that κ(w(ξ), ξ) 6= 0. A partial matching is called acyclic if the

transitive closure of the binary relation � on Q defined by

ξ′ � ξ if and only if κ(w(ξ), ξ′) 6= 0

generates a partial order ≤ on Q.
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Partial matchings are sometimes called discrete vector fields; acyclic partial match-

ings are sometimes called gradient discrete vector fields. We may lift the partial match-

ing to a degree 1 map (see Definition 2.3.4) V : C•(X )→ C•+1(X ) by defining it using

the distinguished basis:

V (x) =


κ(ξ, ξ′)w(x) x ∈ Q

0 otherwise

(2.3)

We denote acyclic partial matchings by the tuple (A,w : Q → K). An acyclic

partial matching (A,w : Q → K) of X can be used construct a new chain complex.

This is done through the observation that acyclic partial matchings produce degree 1

maps C•(X )→ C•+1(X ) called splitting homotopies. Splitting homotopies are reviewed

in depth in Section 3.6. Further references to the use of splitting homotopies within

discrete Morse theory can be found in [45]. The following proposition is from [23],

however we make a sign change to agree with the exposition in Section 3.6.

Proposition 2.8.2 ([23], Proposition 3.9). An acyclic partial matching (A,w) induces

a unique linear map γ : C•(X ) → C•+1(X ) so that im(idX − ∂γ) ⊆ C•(A) ⊕ C•(K),

im γ = C•(K) and ker γ = C•(A)⊕ C•(K). It is given by the formula

γ =
∑
i≥0

V (idC(X ) − ∂V )i. (2.4)

Let ιA : C•(A) → C•(X ) and πA : C•(X ) → C•(A) be the canonical inclusion and

projection. Define ψ : C•(X )→ C•(A), φ : C•(A)→ C•(X ) and ∂A : C•(A)→ C•−1(A)

by

ψ := πA ◦ (idX − ∂γ) φ := (idX − γ∂) ◦ ιA ∂A := ψ ◦ ∂ ◦ φ (2.5)

Theorem 2.8.3 ([23], Theorem 3.10). (C•(A), ∂A) is a chain complex and ψ, φ are

chain equivalences. In particular,

ψ ◦ φ = idC(A) φ ◦ ψ − idC(X ) = ∂γ + γ∂

As a corollary H•(C•(A)) ∼= H•(C•(X )). Regarding computations, acyclic par-

tial matchings are relatively easy to produce, see [Algorithm 3.6 (Coreduction-based
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Matching)][23], which is recalled in Section 3.7. Moreover, given an acyclic partial

matching there is an efficient algorithm to produce the associated splitting homo-

topy [23, Algorithm 3.12 (Gamma Algorithm)], also recalled in Section 3.7.

2.9 Lattice Structures in Dynamics

Traditionally, Conley theory uses the notions of attractors and repellers, but little in

the way of order theory [8]. The use of order theory became more explicit in Franzosa’s

papers on connection matrix theory [17, 15, 16] and especially in the work of Robbin-

Salamon [42]. The more modern treatment of dynamics in [26, 27, 28], relies very

heavily on order theory, and our exposition of dynamics will follow this set of papers.

In the sequel, X is a compact metric space.

Definition 2.9.1. A flow on X is a continuous map ϕ : R×X → X that satisfies:

1. ϕ(0, x) = x for all x ∈ X, and

2. ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all s, t ∈ R and x ∈ X.

Definition 2.9.2. A subset N ⊂ X is a regular closed set if N = cl(intN). The

collection of regular closed sets on X forms a Boolean algebra, denoted R(X), with

operations ∨ = ∪ and ∧ = cl(int(· ∩ ·)).

Definition 2.9.3. Let U ⊂ X. The omega-limit set of U is defined as

ω(U) :=
⋂
t≥0

cl
(
ϕ([t,∞), U

)
.

The alpha-limit set of U is defined as

α(U) :=
⋂
t≤0

cl
(
ϕ(−∞, t], U

)
.

Definition 2.9.4. A regular closed set N is an attracting block if ϕ(t,N) ⊂ intN for

all t > 0. The lattice of regular closed attracting blocks, denoted by ABlockR(ϕ), is the

collection of regular closed attracting blocks with ∨ = ∪ and ∧ = cl(int(· ∩ ·)).

Definition 2.9.5. A set A ⊂ X is an attractor if there exists an attracting block

U such that a = ω(U). The lattice of attractors, denoted Att(ϕ), is the collection of

attractors with operations ∨ := ∪ and ∧ := ω(· ∩ ·).
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The map ω(·) induces a lattice morphism ω : ABlockR(ϕ)→ Att(ϕ).

2.9.1 Computational Dynamics

We review some central concepts to the computational Conley theory. See [2, 25, 26]

for more material and further references. We begin with discretization of topological

space using grids and the algebra of regular, closed sets [25, 26].

Grids are a widely used for discretizing the phase space of a dynamical systems,

see [2, 25, 26]. We use the elegant order-theoretic definition of grid given in [26].

Definition 2.9.6. A grid on X is the set of atoms of a finite subalgebra R(X).

Example 2.9.7. If X is a polyhedral complex in Rn then |X | is a compact, convex

subset. The topological closures of the top-cells {cl |ξ| | ξ ∈ X+} is a grid on |X |.

In computational Conley theory, continuous dynamics are approximated via finite

binary relations. In our case, the dynamics are approximated with a binary relation

F ⊂ X+ × X+ defined on the set of top-cells of the cell complex X . In the context

of approximating flows the pair (X+,F) is called the discrete flow, cf. [25]. See also

Section 4.3.

There are three (equivalent) perspectives for the finite binary relation F .

• As a binary relation in itself. This is useful for developing the appropriate category

theory and extensions of Birkhoff’s Theorem. See [25, Appendix A].

• As a directed graph with vertices X+ and edge set {ξ → ξ′ | (ξ, ξ′) ∈ F}. This

perspective is useful for developing algorithms [6].

• As a multi-valued map. This is traditionally written as F : X+ ⇒ X+. In this

case the notation F(ξ) = {ξ′ | (ξ, ξ′) ∈ F}. This is the perspective that F is a

combinatorial approximation to continuous dynamics.

Definition 2.9.8. A set U ⊂ X is forward invariant if F(U) ⊂ U . The collection of

forward invariant sets, denoted by Invset+(F), is a finite distributive lattice with ∧ := ∩

and ∨ := ∪.
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Definition 2.9.9. The ω-limit set of a set U ⊂ X is defined as

ω(U ,F) :=
⋂
k≥0

Γ+
k (U)

where Γ+
k (U) = ∪n≥kFn(U) for k > 0 is the k-forward image of U . When F is clear

from context, we write ω(·) = ω(·,F).

Definition 2.9.10. A set A ⊂ X is an attractor for F if F(A) = A. The collection of

attractors, denoted Att(F), is a finite distributive lattice with ∧ and ∨ given via

A ∨A′ = A ∪A′ and A ∧A′ = ω(A ∩A′)

The map ω : Invset+(F) � Att(F) is a lattice epimorphism. As a relation, F

has a poset of strongly connected components, denoted SC(F). Moreover we have

Invset+(F) = O(SC(F)).
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Chapter 3

Computational Connection Matrix Theory

We begin with expounding upon the relationship between our formulation and classical

connection matrix theory. Following this comes an overview of the content of this

chapter.

3.1 Historical Remarks and Context

Historically, connection matrix theory was first developed by R. Franzosa [15, 16, 17].

Franzosa’s treatment uses a chain complex braid indexed over a poset P. The chain com-

plex braid can be understood as a data structure that stores the singular chain data

associated to a lattice A of attracting blocks. In this case, the poset P arises as the poset

of join-irreducibles J(A). These objects constitute the category ChB(P,Vect) and are

reviewed in Section 3.5. Graded module braids are data structures for storing the homo-

logical information contained in a chain complex braid. Graded module braids form a

category GMB(P,VectZ) and there is a functor H : ChB(P,Vect)→ GMB(P,VectZ)

which is analogous to a homology functor. Connection matrix theory for continuous

self-maps, as developed by D. Richeson, also employs the structures of chain complex

braids and graded module braids [41].

The contribution of J. Robbin and D. Salamon to connection matrix theory both

addresses maps and merges the theory with order theoretic principles [42]. They intro-

duced the idea of a chain complex being either graded by a poset P or filtered by a lattice

L. These respectively constitute the categories Ch(GrVect(P)) and Ch(FVect(L))

and are described in Sections 3.3 and 3.4.

One goal of this thesis is to address how our approach, Franzosa’s approach and
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Robbin and Salamon’s approach fit together. First, we wish to emphasize that in ap-

plications data come in the form of a P-graded cell complex, the collection of which we

call Cell(P). Let L be the lattice O(P) of downsets of P. A P-graded cell complex de-

termines three distinct objects: a P-graded chain complex, an L-filtered chain complex,

and a chain complex braid over P. This may be put into the following diagram.

Cell(P)

Ch(GrVect(P))

Ch(FVect(L)) K(GrVect(P)) ChB(P,Vect)

K(FVect(L)) KB(P,Vect)

C

L B

L B

LK BK

(3.1)

The dashed arrows are assignments while the solid arrows are functors. These

are described in Sections 3.3–3.5. Franzosa’s theory comprises the right-hand side of

(3.1), while Robbin and Salamon’s theory comprises the left hand side. One of our

contributions to connection matrix theory is to phrase it in a homotopy-theoretic lan-

guage. In particular, we introduce the appropriate homotopy categories K(FVect(L)),

K(GrVect(P)) and KB(P,Vect) on the bottom of (3.1). Moreover, in the context

of applications we show that both of the notions of connection matrices for both

Ch(FVect(L)) and ChB(P,Vect) (that is, the formulations of both Robbin-Salamon

and Franzosa) may be computed by utilizing graded algebraic-discrete Morse theory

within the category Ch(GrVect(P)).

3.2 Overview

In this chapter we develop a new formulation of connection matrix theory. This may

be described roughly as follows. In Conley theory one has either some homological

or chain data of interest. In Franzosa’s setting the datum is a graded module braid.

For Robbin and Salamon, the datum is an L-filtered chain complex. In our setting of

computational dynamics and applied topology, the datum is either an L-filtered cell

complex or a P-graded cell complex. The guiding principle of a connection matrix is
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then:

A connection matrix is the boundary operator of a poset-graded chain com-

plex which recovers (up to chain equivalence) the data of interest.

Some remarks are in order.

• First, the connection matrix is a boundary operator. Boundary operators do not

exist independently of the underlying chain complex. We call this chain complex

a Conley complex.

• Second, we are taking a cue from Franzosa here by regarding the connection

matrix as residing in the graded category. Consulting (3.1), the graded category

is upstream of both the filtered and braided categories. Proving the existence of

a connection matrix amounts to proving that an appropriate functor is essentially

surjective. For instance, Franzosa’s existence proof is akin to (but not precisely)

the fact that the functor

BK : K(GrVect(P))→ KB(P,Vect)

is essentially surjective.

• Third, recovering up to chain equivalence is equivalent to recovering the isomor-

phism class in the homotopy category. Moreover, it implies that all homological

invariants (graded module braids, persistent homology, etc) are recovered up to

isomorphism.

Many of the ideas developed in this section may be found either in Franzosa [17]

or Robbin-Salamon [42]. Our primary contribution in this section is our use of chain

equivalence and homotopy categories to set up connection matrix theory. This has the

following payoffs:

• We settle the non-uniqueness problems of the connection matrix. Classically, this

is still an open problem. We show that in our formulation, a Conley complex is

unique up to isomorphism. Thus connection matrices are unique up to a similarity

transformation. See Proposition 3.3.29 and Remark 3.3.31.
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• We distill the construction of the connection matrix to a particular functor, which

we call a Conley functor. See Section 3.8.

• We readily relate persistent homology and connection matrix theory. This implies

applications for connection matrix theory in topological data analysis.

3.3 Graded Complexes

In Sections 3.3 and 3.4 we introduce objects which result from a marriage of homological

algebra and order theory. We introduce our notion of connection matrix, which is part

of what we call a Conley complex. In particular, we employ categorical language and

explicitly develop an appropriate homotopy category for connection matrix theory over

fields. Along the way we provide motivation through a selection of examples, many of

which build upon Example 1.2.1 in the introduction.

Important results from this section for connection matrix theory are Proposition 3.3.29,

which shows that the Conley complex is an invariant of the chain equivalence class, im-

plying the non-uniqueness of the connection matrix is captured in terms of a change of

basis, cf. [18]; Theorem 3.4.21 establishes that computing a connection matrix in the

sense of [42] can be done at the level of the P-graded chain complex. The relationship

between posets and lattices encapsulated by Birkhoff’s theorem (Section 2.4.3) is also

reflected in the homological algebra. Namely, we establish a categorical equivalence

– Theorem 3.4.10 – between the category of L-filtered chain complexes and P-graded

chain complexes where L = O(P).

For the remainder of this section, let K be a field and let P be a finite poset. Recall

that Vect is the category of vector spaces over K.

3.3.1 Graded Vector Spaces

Definition 3.3.1. A P-graded vector space V = (V, π) is a vector space V equipped

with a P-indexed family of idempotents (projections) π = {πp : V → V }p∈P such that∑
p∈P π

p = idV and if p 6= q then πp ◦ πq = 0. We call π a P-grading of V . Suppose

(V, πV ) and (W,πW ) are P-graded vector spaces. A map φ : V → W is P-filtered if for
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all p, q ∈ P

φpq := πpW ◦ φ ◦ π
q
V 6= 0 =⇒ p ≤ q. (3.2)

Remark 3.3.2. Given a map φ : V →W , the terminology P-filtered is apt as it is readily

verified that φ obeys Eqn. (3.2) if and only if for all q ∈ P

φ(V q) ⊆
⊕
p≤q

V p.

This is in turn equivalent to

φ(
⊕
p≤q

V q) ⊆
⊕
p≤q

V q.

See Proposition 3.4.2, cf. Definition 3.4.1.

The next few results establish that working with P-graded vector spaces and P-

filtered linear maps follows the rules of working with upper triangular matrices. The

proofs are elementary linear algebra and matrix theory.

Proposition 3.3.3. A P-graded vector space (V, π) admits a decomposition V =
⊕

p∈P V
p

where V p = imπp. Conversely, if V is a vector space and V =
⊕

p∈P V
p then the col-

lection π = {πp} with πp(
∑

q∈P v
q) := vp where vq ∈ V q is a P-grading of V .

Proposition 3.3.4. If φ : (U, πU ) → (V, πV ) and ψ : (V, πV ) → (W,πW ) are P-filtered

linear maps, then the composition ψ ◦ φ is P-filtered and

(ψ ◦ φ)pq =
∑
p≤r≤q

ψprφrq ψ ◦ φ =
∑
p≤q

(ψφ)pq

Proof. From linearity and the P-grading properties:

(ψ ◦ φ)pq = πpψφπq = πpψ
(∑
r∈P

πr
)
φπq =

∑
r∈P

πpψπrφπq

=
∑
r∈P

πpψπrπrφπq =
∑
r∈P

ψprφrq =
∑
p≤r≤q

ψprφrq

The second equality follows from the first:

ψ ◦ φ =
∑
p≤q′

ψpq
′∑
p′≤q

φp
′q =

∑
p≤q′
p′≤q

ψpq
′
φp
′q =

∑
p≤q′=p′≤q

ψpq
′
φp
′q

=
∑
p≤q
p≤r≤q

ψprφrq =
∑
p≤q

∑
p≤r≤q

ψprφrq =
∑
p≤q

(ψ ◦ φ)pq
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Definition 3.3.5. The category of P-graded vector spaces, denoted GrVect(P), is the

category whose objects are P-graded vector spaces and whose morphisms are P-filtered

linear maps. We denote by u : GrVect(P) → Vect the forgetful functor taking (V, π)

to V which forgets the grading.

For a P-graded vector space (V, π) any projection πp : V → V factors as

V
ep−→ V p ιp−→ V,

where ep : V → V p is the epimorphism to imπp = V p and ιp : V p ↪→ V is the natural

inclusion. We have the identities

πp = ιp ◦ ep, πp ◦ ιp = ιp, ep ◦ πp = ep.

Given a linear map φ : (V, πV )→ (W,πW ) we define

Φpq := epW ◦ φ ◦ ι
q
V : V q →W p

Using the upper-case Φpq as above is our convention to refer to the restriction of φ to

the (p, q)-matrix entry. The P-gradings imply that

V =
⊕
p∈P

V p W =
⊕
p∈P

W p

The linear map φ is equivalent to the matrix of linear maps {Φpq}p,q∈P, via

∑
p,q

Φpqeqx =
∑
p,q

φpqx

It is straightforward that φ is P-filtered if and only if

Φpq 6= 0 =⇒ p ≤ q (3.3)

Remark 3.3.6. In [17], linear maps which obey (3.3) are referred to as upper triangular

with respect to P.

Given a P-graded vector space (V, π) and a subset I ⊂ P we define

πI :=
∑
p∈I

πp V I := imπI =
⊕
p∈I

V p



41

The space V I is a subspace of the underlying vector space V = u(V, π). For a

P-filtered linear map φ : (V, πV ) → (W,πW ), we define φI : V → V and ΦI : V I → V I

via

φI := πI ◦ φ ◦ πI and ΦI := eIW ◦ φ ◦ ιIV : V I →W I . (3.4)

Proposition 3.3.7. If φ : (U, πU ) → (V, πV ) and ψ : (V, πV ) → (W,πW ) are P-filtered

maps and I ⊂ P then

φI =
∑
p≤q
p,q∈I

φpq.

Moreover, if I ⊂ P is convex then ψI ◦ φI = (ψ ◦ φ)I .

Proof. The first identity is immediate. The second follows from convexity of I:

(ψ ◦ φ)I = πI(ψ ◦ φ)πI =
∑
p≤q
p,q∈I

(ψ ◦ φ)pq =
∑
p≤q
p,q∈I

∑
p≤r≤q

ψprφrq

=
∑
p≤q
p,q∈I

ψpq ◦
∑
p≤q
p,q∈I

φpq = ψI ◦ φI .

The above result enables the definition of the following family of forgetful functors,

parameterized by the convex sets of P.

Definition 3.3.8. Let I ⊂ P be a convex set. The forgetful functor uI : GrVect(P)→

GrVect(I) is defined via

uI
(
(V, π)

)
:= (V I , {πp}p∈I).

For φ : (V, πV )→ (W,πW ), we define

uI(φ) := ΦI = eIW ◦ φ ◦ ιIV : V I →W I .

We write a Z-indexed family of P-graded vector spaces as (V•, π•) = {(Vn, πn})n∈Z.

For a fixed p ∈ P there is a family of vector spaces V p
• = {V p

n }n∈Z.

3.3.2 Graded Chain Complexes

The category GrVect(P) is additive but not abelian. Following Section 2.3 we may

form the category Ch(GrVect(P)) of chain complexes in GrVect(P). An object C
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of Ch(GrVect(P)) is a chain complex of P-graded vector spaces. For short, we say

that this is a P-graded chain complex. The data of C can be unpacked as the triple

C = (C•, ∂•, π•) where:

1. (C•, ∂•) is a chain complex,

2. (Cn, πn) is a P-graded vector space for all n, and

3. ∂n : (Cn, πn)→ (Cn−1, πn−1) is a P-filtered linear map for each n.

Typically we denote C by (C, π) to distinguish it as carrying a grading. A morphism

φ : (C, π) → (C ′, π) is a chain map φ : (C, ∂) → (C ′, ∂′), such that φn : (Cn, πn) →

(C ′n, πn) is a P-filtered linear map for each n. We call the morphisms of Ch(GrVect(P))

the P-filtered chain maps.

Proceeding with our convention, we define ∆pq
j := epj ◦ ∂j−1 ◦ ιqj : Cqj → Cpj . Since

(C, π) is P-graded we have

Cj =
⊕
q∈P

Cqj Cj−1 =
⊕
p∈P

Cpj−1

The boundary operator ∂j : Cj → Cj−1 is equivalent to the matrix of maps {∆pq
j }p,q∈P.

The P-filtered condition of Eqn. (3.2) is equivalent to the condition that

∆pq
j 6= 0 =⇒ p ≤ q. (3.5)

Remark 3.3.9. Viewing the boundary operator ∂ as a matrix of maps {∆pq}p,q∈P is the

origin of the term ‘connection matrix’.

It follows from Proposition 2.3.9 that the forgetful functor u : GrVect(P) → Vect

induces a forgetful functor uCh : Ch(GrVect(P))→ Ch(GrVect(I)), where

uCh(C, π) =
(
{u(Cn)}n∈Z, {u(∂n : Cn → Cn−1)}n∈Z

)
=
(
{CIn}n∈Z, {∆I

n}n∈Z
)
.

Similarly, for a convex set I ⊂ P the forgetful functor uI : GrVect(P) → GrVect(I)

induces a functor uICh : Ch(GrVect(P))→ Ch(GrVect(I)). When the context is clear

we will write u for uCh and uI for uICh.
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Given a convex set I ⊂ P and the forgetful functor u : Ch(GrVect(I))→ Ch(Vect)

it is often useful to consider the the composition u◦uI : Ch(GrVect(P))→ Ch(Vect).

Unpacking Definition 3.3.8 shows that u ◦ uI may be written simply as

u ◦ uI(C, π) = (CI ,∆I), u ◦ uI(φ) = ΦI : CI → CI .

Remark 3.3.10. A P-graded complex (C, π) engenders a collection of chain complexes

in Vect, {u ◦ uI(C, π)}I∈I(P), indexed by the convex sets of P. This collection is used

for the functor B which builds a chain complex braid out of a graded chain complex.

See Section 3.5.

Proposition 3.3.11. Let (C, π) be a P-graded chain complex. If a ∈ O(P), i.e., a is a

down-set of P, then (Ca,∆a) is a subcomplex of C.

Proof. If a ∈ O(P) the fact that ∂ is P-graded implies that ∂(
⊕

p∈aC
p) ⊆

⊕
p∈aC

p.

Moreover ∆a = ep ◦ ∂ ◦ ιp = ∂|Ca . Therefore (Ca,∆a) is a subcomplex of C.

3.3.3 The Subcategory of Strict Objects

Definition 3.3.12. A P-graded chain complex (C, π) is said to be strict if for each

j ∈ Z and p ∈ P

∂ppj = 0. (3.6)

The strict objects form a subcategory Chs(GrVect(P)) ⊂ Ch(GrVect(P)), called the

subcategory of strict objects.

Remark 3.3.13. In [17], a boundary operator ∂j which obeys condition (3.6) is called

strictly upper triangular with respect to P.

Proposition 3.3.14. If (C, π) be a P-graded chain complex then (C, π) is strict if and

only if for each j ∈ Z

∂j =
∑
p<q

∂pqj . (3.7)

Corollary 3.3.15. If (C, π) is strict, then up(C, π) = (Cp• ,∆
pp
• ) is a minimal chain

complex for any p ∈ P. Moreover, for any j ∈ Z

Cj =
⊕
p∈P

Hj(C
p
• ,∆

pp
• ).
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Proof. If (C, π) is strict then the boundary operators ∆pp
j = 0 for all j ∈ Z by definition.

Therefore Hj(C
p
• ,∆

pp) = Cj . Finally, since (C, π) is P-graded we have that

Cj =
⊕
p∈P

Cpj =
⊕
p∈P

Hj(C
p
• ,∆

pp
• ).

Corollary 3.3.15 implies that ∂j : Cj → Cj−1 may be regarded as a P-filtered map

on homology:

∂j :
⊕
p∈P

Hj(C
p
• ,∆

pp
• )→

⊕
p∈P

Hj−1(Cp• ,∆
pp
• ). (3.8)

In the context of Conley theory, Eqn. (3.8) implies that ∂j is a boundary operator

on Conley indices.

Remark 3.3.16. The significance of Eqn. (3.8) is that in this form the nonzero entries

in the boundary operator relate to connecting orbits.

Example 3.3.17. Let X be a closed manifold and ϕ : R × X → X a Morse-Smale

gradient flow. The set P of fixed points are partially ordered by the flow and there is a

poset morphism µ : P→ N which assigns each p its Morse index, i.e., the dimensionality

of its unstable manifold. The associated Morse-Witten complex may be written

C•(X,ϕ) =
⊕
p∈P

Cp•

where Cp• is the minimal chain complex in which the only nonzero chain group is in

dimension µ(p), and Cpµ(p) = K. The boundary map ∆ is defined using trajectories [13,

42]. It is thus P-filtered. In particular, when K = Z2 the entry ∆qp counts the number of

flow lines from q to p modulo two. It is a classical result that the homology H•(C(X,ϕ))

is isomorphic to the singular homology of X.

3.3.4 Graded Cell Complexes

In applications, data often come in the form of a cell complex X = (X ,≤, κ,dim)

graded by a partial order P. This is codified in terms of an order preserving map

ν : (X ,≤) → P. See Chapter 4 for an example of how these structures arise in the

context of computational dynamics.



45

Definition 3.3.18. A P-graded cell complex is a cell complex X = (X ,≤, κ,dim) to-

gether with P and a poset morphism ν : (X ,≤)→ P. The map ν is called the grading.

We denote by Cell(P) the collection of P-graded cell complexes. For a P-graded cell

complex (X , ν), the underlying set X can be decomposed as

X =
⊔
p∈P
X p, where X p := ν−1(p) .

For each p, the fiber X p together with the restriction of (≤, κ,dim) to X p is a subcomplex

of X . A P-graded cell complex (X , ν) determines an associated P-graded chain complex

(C•(X ), πν) (see Section 3.3.2) where for any j ∈ Z

Cj(X ) =
⊕
p∈P

Cj(X p) .

The projection maps πν = {πpj } project to the fibers of ν, i.e.,

πpj : Cj(X )→ Cj(X p).

The boundary operator

∂j : Cj(X )→ Cj−1(X )

is P-filtered since ν is order-preserving; κ(ξ, ξ′) 6= 0 implies that ξ′ ≤ ξ which in

turn implies ν(ξ′) ≤ ν(ξ). The boundary operator ∂j can be written as an upper

triangular a matrix of maps {∆pq
j } where ∆pq

j : Cj(X q) → Cj−1(X p). We denote by

C : Cell(P)→ Ch(GrVect(P)) the assignment (X , ν) 7→ (C(X ), πν).

Akin to graded chain complexes, there is a notion of being strict.

Definition 3.3.19. A P-graded cell complex (X , ν) is strict if, for each p ∈ P, the fiber

ν−1(p) is a minimal cell complex (see Definition 2.5.4).

Strict P-graded cell complexes engender strict P-graded chain complexes.

Proposition 3.3.20. If (X , ν) is a strict P-graded cell complex, then the associated

P-graded chain complex (C(X ), πν) is strict.

Example 3.3.21. Consider (X , ν) and (X ′, ν ′) and P = {p, q, r} of Example 1.2.1.

It is a routine verification that (X , ν) and (X ′, ν ′) are both P-graded complexes. In
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particular, (X ′, ν ′) is a strict P-graded complex. The underlying set X decomposes as

X = X p t X r t X q. More explicitly,

X = {v0, e0, v1, e1, v2}, X p = {v0}, X r = {v2}, X q = {e0, v1, e1}.

This decomposition is reflected in the algebra as every chain group splits Cj as

Cj(X ) = Cj(X p)⊕ Cj(X r)⊕ Cj(X q).

As in Definition 3.3.18 the boundary operator ∂j can be written as the P-filtered linear

map (see Section 3.3.1)

∂j =



Cj(X p) Cj(X r) Cj(X q)

Cj−1(X p) ∆pp
j 0 ∆pq

j

Cj−1(X r) 0 ∆rr
j ∆rq

j

Cj−1(X q) 0 0 ∆qq
j


In particular, ∆1 (the only nonzero differential) can be written as

∂1 =



e0 e1

v0 1 0

v1 1 1

v2 0 1

 = ∂pq1 + ∂rq1 + ∂qq1 =


∆pq

1

∆rq
1

∆qq
1


Example 3.3.22. In applications the input is often a cell complex X and a function

ν̄ : X+ → R on top cells. For instance, imaging data is often a two dimensional cubical

complex with greyscale values on pixels (2-cells). Let (Q,≤) be the totally ordered set

where Q := ν̄(X+) and ≤ is the total order inherited from R. We may extend ν̄ to a

grading ν : (X ,≤)→ Q via

X 3 ξ 7→ min{ν̄(η) : η ∈ star(ξ) ∩ X+} ∈ Q

The map ν is a poset morphism since if ξ ≤ η then star(η) ⊆ star(ξ). As (X , ν) is

a Q-graded cell complex we may consider the Birkhoff dual O(ν) : O(Q) → SubCl(X ).

Since Q is totally ordered, the collection {O(ν)(a)}a∈O(Q) is a filtration of X . This is

the standard input for the topological data analysis pipeline.
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Example 3.3.23. Consider (Rn,≤) where ≤ is given by

(a1, . . . , an) ≤ (b1, . . . , bn) ⇐⇒ ai ≤ bi for all i

Let (P,≤) be a poset where P ⊆ Rn and the partial order ≤ is inherited from Rn. Let

(X , ν) be a P-graded cell complex and consider O(ν) : O(P)→ SubCl(X ,≤). In the the-

ory of multi-parameter persistence [7], the collection {O(ν)(a)}a∈O(P) of subcomplexes is

called a one-critical multi-filtration of X , since any cell enters the lattice/multi-filtration

at a unique minimal element with respect to the partial order on O(P). Namely, a cell

ξ enters the multi-filtration at ↓ν(ξ). Multi-filtrations can be converted to one-critical

multi-filtrations via the mapping telescope [7].

3.3.5 Homotopy Category of Graded Complexes

It follows from the general construction of the homotopy category K(A) for an additive

category A in Section 2.3 that there is a homotopy category K(GrVect(P)) of the

category of P-graded chain complexes Ch(GrVect(P)). To unpack this a bit, first

recall the definition P-filtered chain maps in Section 3.3.2. We say that two P-filtered

chain maps φ, ψ : (C, π)→ (C ′, π) are P-filtered chain homotopic if there is a P-filtered

chain contraction γ : C → C ′ such that φn−ψn = γn−1 ◦∂n +∂′n+1 ◦γn. We denote this

by ψ ∼P φ. The map γ is called a P-filtered chain homotopy from φ to ψ. A P-filtered

chain map φ : (C, π) → (C ′, π) is a P-filtered chain equivalence if there is a P-filtered

chain map ψ : (C ′, π) → (C, π) such that ψφ ∼P idC and φψ ∼P idC′ . In this case we

say that (C, π) and (C ′, π) are P-filtered chain equivalent.

Following Definition 2.3.8, the homotopy category of P-graded chain complexes, de-

noted by K(GrVect(P)), is the category whose objects are P-graded chain complexes

and whose morphisms are P-filtered chain homotopy equivalence classes of P-filtered

chain maps. There is a quotient functor q : Ch(GrVect(P)) → K(GrVect(P)) which

sends each P-graded chain complex to itself and each P-filtered chain map to its P-

filtered chain homotopy equivalence class.
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Example 3.3.24. The P-graded chain complexes (C(X ), π) and (C(X ′), π) of Exam-

ple 1.2.1 are P-filtered chain equivalent via P-filtered chain maps

φ : C(X )→ C(X ′) ψ : C(X ′)→ C(X ),

and P-filtered chain homotopies

γ : C(X )→ C(X ) γ′ : C(X ′)→ C(X ′),

which are described below. The nonzero differentials are

∂1 =



e0 e1

v0 1 0

v1 1 1

v2 0 1


∂′1 =


e′0

v′0 1

v′1 1

.

The nonzero parts of the chain maps are φ and ψ are as follows.

ψ0 =


v0 v1 v2

v′0 1 0 0

v′1 0 1 1



ψ1 =

( e0 e1

e′0 1 0

)
φ0 =



v′0 v′1

v0 1 0

v1 0 0

v2 0 1



φ1 =


e′0

e0 1

e1 1



In this case γ′ = 0. And the nonzero part of γ is
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γ0 =


v0 v1 v2

e0 0 0 0

e1 0 1 0

.

A lengthy but routine calculation shows that ψ and φ are P-filtered chain maps and

that φ ◦ ψ = γ ◦ ∂ + ∂ ◦ γ and ψ ◦ φ = id.

We can now introduce our definition of the connection matrix. In particular, our

definition of connection matrix rests on the homotopy-theoretic language.

Definition 3.3.25. Let (C, π) be a P-graded chain complex. A P-graded chain complex

(C ′, π) is a Conley complex for (C, π) if

1. (C ′, π) is strict, i.e., ∂ppj = 0 for all p and j, and

2. (C ′, π) is isomorphic to (C, π) in K(GrVect(P)).

If (C ′, π) is a Conley complex for (C, π) then we say the associated boundary operator

∂′ = {∆′pq}p,q∈P is a connection matrix for (C, π).

Remark 3.3.26. With the definition in place, we make some remarks about uniqueness

and existence.

• Given a P-graded chain complex (C, π), a Conley complex (C ′, π) for (C, π) exists.

This follows from the proof of correctness of Algorithm 3.7.8.

• A classical issue in Conley theory is the non-uniqueness of the connection matrix.

In our treatment of connection matrix theory using chain equivalence and homo-

topy categories it turns out that Conley complexes are unique up to isomorphism.

Thus a connection matrix is unique up to a similarity transformation in the sense

that if one fixes a basis, then given two connection matrices ∆ and ∆′ there is a

P-filtered chain map Φ such that ∆′ = Φ−1∆Φ, cf. [18]. See Remark 3.3.31.

Example 3.3.27. Consider (C(X ), π) and (C(X ′), π) of Example 1.2.1. A straight-

forward verification shows that (C(X ′), π) is strict and an object of Chs(GrVect(P))
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(recall Definition 3.3.3). Moreover, from Example 3.3.24 we see that (C(X ′), π) and

(C(X ), π) are isomorphic in K(GrVect(P)). Therefore (C(X ′), π) is a Conley complex

for (C(X ), π) and ∂′ = {∆pq} is a connection matrix for (C(X ), π).

Proposition 2.2.11 allows for the following definition.

Definition 3.3.28. Let Ks(GrVect(P)) denote the full subcategory of K(GrVect(P))

whose objects are the objects of Chs(GrVect(P)). Then

Ks(GrVect(P)) = Chs(GrVect(P))/∼P

and there is a quotient functor q : Chs(GrVect(P))→ Ks(GrVect(P)).

Proposition 3.3.29. Strict P-graded chain complexes are isomorphic in Ch(GrVect(P))

if and only if they are P-filtered chain equivalent.

Proof. The ‘only if’ direction is immediate; set the homotopies γ = γ′ = 0. If (C, π)

and (C ′, π) are P-filtered chain equivalent then there are P-filtered chain equivalences

φ : (C, π)→ (C ′, π) ψ : (C, π)→ (C ′, π)

and P-filtered chain homotopies

γ : (C, π)→ (C, π) γ′ : (C ′, π)→ (C ′, π).

It follows from Proposition 3.3.4 that

ψppj φ
pp
j − idppC = (ψjφj − idC)pp = (γj∂j + ∂jγj)

pp = γppj ∂
pp
j + ∂ppj γ

pp
j = 0

Therefore each entry φppj is an isomorphism with inverse ψppj . It follows from ele-

mentary matrix algebra that φ is an isomorphism.

Corollary 3.3.30. The quotient functor q : Chs(GrVect(P))→ Ks(GrVect(P)) is a

conservative functor.

Remark 3.3.31. Proposition 3.3.29 addresses non-uniqueness of the connection matrix

in our formulation. In particular, the connection matrix is unique up to a choice of basis.

Non-uniqueness manifests as a change of basis. See Section 4.4 for some applications

where non-uniqueness arises. See [17, 18, 40] for more discusion of non-uniqueness in

connection matrix theory.
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3.3.6 Examples

Example 3.3.32 (Computing Homology). Consider the situation where X is a cell

complex and one is interested in computing the homology H(K) of a closed subcomplex

K ⊂ X . Connection matrix theory applies to this situation in the following fashion. Let

Q = {0, 1} be the poset with 0 ≤ 1. Define the order-preserving map ν : (X ,≤) → Q

via

ν(x) =


0 x ∈ K

1 x ∈ X \ K

The pair (X , ν) is a P-graded cell complex and (C(X ), πν) is the associated P-graded

chain complex (see Definition 3.3.18). We have K = ν−1(0) and for any j ∈ Z

Cj(X ) = Cj(X 0)⊕ Cj(X 1) = Cj(K)⊕ Cj(X \ K).

Let (D,π) be a Conley complex for (C(X ), πν). Then for each j ∈ Z

Dj = D0
j ⊕D1

j .

Moreover, (D,π) is P-graded, the boundary operator ∂j : Dj → Dj−1 can be written as

the matrix

∂j =


D0
j D1

j

D0
j−1 ∆00

j ∆01
j

D1
j−1 0 ∆11

j

.
The first condition in the definition of Conley complex (Definition 3.3.25) gives that

(D,π) is strict. Therefore ∆00
j = 0 and ∆11

j = 0. The second condition in the definition

implies that there is a P-filtered chain equivalence φ : (D,π) → (C(X ), πν). We can

write φj : Dj → Cj(X ) as

∂j =


D0
j D1

j

Cj−1(X 0) Φ00
j Φ01

j

Cj−1(X 1) 0 Φ11
j

.
It follows that the map

Φ00
• : D0

• → C•(X 0)
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is a chain equivalence. Thus for all j ∈ Z

Hj(C•(X 0)) ∼= Hj(D
0
•,∆

00
• ) = D0

j

where the last equality follows from Corollary 3.3.15 and the fact that (D,π) is strict.

Example 3.3.33 (Long Exact Sequence). Consider Q = {0, 1} from Example 3.3.32

and (X , ν), (X ′, ν ′) and P from Example 1.2.1. There is an epimorphism ρ : P → Q

given by

ρ(x) =


0 x = p

0 x = r

1 x = q

Let µ : X → Q be the composition µ = ρ ◦ ν so that (X , µ) is a Q-graded cell complex

and X partitions as X = X 0 t X 1, where X i = µ−1(i). X 0 is a closed subcomplex and

X 1 is an open subcomplex. There is a short exact sequence

0→ C(X 0)→ C(X )→ C(X 1)→ 0

In the associated long exact sequence on homology all homology groups are zero aside

from the following:

. . .→ H1(X 1)
δ−→ H0(X 0)→ H0(X )→ . . .

A straightforward computation shows that this sequence is

. . .→ Z2

1

1


−−−→ Z2 ⊕ Z2

(
1 1

)
−−−−−→ Z2 → . . .

Consider the Q-graded complex (X ′, µ′) where µ′ = ρ ◦ ν ′. A quick verification shows

that the chain map φ : C(X ′) → C(X ) of Example 3.3.24 is a Q-filtered chain equiva-

lence. Therefore (C(X ′), πµ′) is a Conley complex for (C(X ), πµ). The map φ induces

a morphism of short exact sequences:

0 C(X 0) C(X ) C(X 1) 0

0 C(X ′0) C(X ′) C(X ′1) 0

Φ00 φ Φ11 .
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The morphism of short exact sequences induces a morphism of the long exact se-

quences. The fact that φ is a Q-filtered chain equivalence implies that the induced maps

on homology are isomorphisms.

. . . H1(X 1) H0(X 0) H0(X ) . . .

. . . H1(X ′1) H0(X ′0) H0(X ′) . . .

C1(X ′) C0(X ′0) C0(X ′)

∼=

δ

∼= ∼=

δ′

id

∆′011

id id

This discussion shows that in the setting of a Q-graded complex – where Q = {0, 1}

– the connection matrix ∆′ is the connecting homomorphism of the long exact sequence.

3.4 Filtered Complexes

For the remainder of this section we fix L in FDLat.

3.4.1 Filtered Vector Spaces

Definition 3.4.1. An L-filtered vector space V = (V, f) is a vector space V equipped

with a lattice morphism f : L→ Sub(V ). We call f an L-filtering of V . Suppose (V, f)

and (W, g) are L-filtered vector spaces. A map φ : V →W is L-filtered if

φ(f(a)) ⊆ g(a), for all a ∈ L.

The category of L-filtered vector spaces, denoted FVect(L), is the category whose objects

are L-filtered vector spaces and whose morphisms are L-filtered linear maps.

Since f is a finite lattice homomorphism, we have that under f

0L 7→ 0 and 1L 7→ V.

We write a family of L-filtered vector spaces as (V•, f•) = {(Vn, fn)}n∈Z. For a fixed

a ∈ L there is a family of vector spaces f(a) = f•(a) = {fn(a)}n∈Z.

Proposition 3.4.2. Let (V, π) and (W,π) be P-graded vector spaces. A linear map

φ : (V, π)→ (W,π) is P-filtered if and only if φ(V a) ⊂W a for all a ∈ J(O(P)).
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Proof. We start with showing that φ(V a) ⊂ W a if φ is P-filtered. Let a ∈ J(O(P)).

From Birkhoff’s Theorem there exists s ∈ P such that a =↓ s. If x ∈ V a then x =

πa(x) =
∑

r≤s π
r(x). Since a is a down-set, if p ≤ s then p ∈ a and W p ⊂ W a.

Therefore

φ(x) =
∑
p≤q

∑
r≤s

φpqπr(x) =
∑
p≤q≤s

φpq(x) ∈W a.

Conversely, assume that φ(V a) ⊂ W a for all a ∈ J(O(P)). Suppose φpq(x) 6= 0 for

p, q ∈ P and x ∈ V . Let b denote ↓ q. Then πq(x) ∈ V b and φ(πq(x)) ⊂ W b. We have

φpq(x) = πp(φ(πq(x)) 6= 0, which implies p ∈ b. Therefore p ≤ q.

The previous result enables the definition of a functor which constructs a lattice-

filtered chain complex from a poset-graded chain complex. Recall that u is the forgetful

functor u : GrVect(P)→ Vect which forgets the grading.

Definition 3.4.3. Let L = O(P). Define the functor L : GrVect(P)→ FVect(L) via

L((V, π)) := (u(V, π), f) = (V, f)

where the L-filtering f : L→ Sub(V ) sends a ∈ O(P) to

V a = ua((V, π)) ∈ Sub(V ) .

Proposition 3.4.2 states that a P-filtered map φ : (V, π)→ (W,π) is L-filtered. Therefore

we define L to be the identity on morphisms:

L(φ) := φ ∈ HomFVect((V, f), (W, g))

Theorem 3.4.4. Let L := O(P). The functor L : GrVect(P)→ FVect(L) is additive,

full, faithful and essentially surjective.

Proof. The functor L is additive since L is an identity on hom-sets. That L is a

bijection on hom-sets (fully faithful) follows from Proposition 3.4.2. We now show that

L is essentially surjective. Let (V, f) be an L-filtered vector space; first we will construct

a P-graded vector space (W,π) and then we will show that it satsifies L(W,π) = (V, f).

Sub(V ) is a relatively complemented lattice (see Definition 2.4.16 and Example 2.4.17).

Therefore we may choose for each join irreducible p ∈ J(L) a subspace W p ∈ Sub(V )
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such that W p + f(←−p ) = f(p) and W p ∩ f(←−p ) = 0. Thus f(p) = W p ⊕ f(←−p ). As L is

in FDLat, Proposition 2.4.12 gives that any a ∈ L can be written as the irredundant

join of join-irreducibles, i.e., we have a = ∨iqi with qi ∈ J(L). Thus

f(a) = f(∨iqi) = ∨if(qi) .

It follows from well-founded induction over the underlying poset of L, that for all a ∈ L

that

f(a) =
⊕
q≤a,
q∈J(L)

W q.

Now set W =
⊕

q∈J(L)W
q and π = {πq}q∈J(L) where πq is defined to be the projection

πq : V → W q. (W,π) is a J(L)-graded vector space. From Birkhoff’s theorem, J(L)

and P are isomorphic, which implies that (W,π) may be regarded as a P-graded vector

space. Now we show that L(W,π) = (V, f). From the definition of L it suffices to choose

a ∈ O(P) and show that W a = f(a). This follows since f(a) =
⊕

q≤aW
q = W a.

3.4.2 Filtered Chain Complexes

Similar to GrVect(P), the category FVect(L) is additive but not abelian. Following

Section 2.3 once again, we may form the category Ch(FVect(L)) of chain complexes

in FVect(L). An object C of Ch(FVect(L)) is a chain complex in L-filtered vector

spaces. For short, we say that this is an L-filtered chain complex. The data of C can

be unpacked as the triple C = (C•, ∂•, f•) where:

1. (C•, ∂•) is a chain complex,

2. (Cn, fn) is an L-filtered vector space for each n, and

3. ∂n : (Cn, fn)→ (Cn−1, fn−1) is an L-filtered linear map.

We will denote C as (C, f) to distinguish the L-filtering. A morphism φ : (C, f) →

(C ′, f ′) is a chain map φ : (C, ∂)→ (C ′, ∂′) such that for each n, φn : (Cn, fn)→ (C ′n, f
′
n)

is an L-filtered linear map. We entitle the morphisms of Ch(FVect(L)) the L-filtered

chain maps.
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If (C, f) is an L-filtered chain complex then ∂n(fn(a)) ⊆ fn−1(a). Thus {fn(a)}n∈Z

together with {∂n|fn(a)}n∈Z is a subcomplex of C. We define the map f : L → Sub(C)

via

f(a) :=
(
{fn(a)}, {∂n|fn(a)}

)
∈ Sub(C) (3.9)

A chain complex equipped with a lattice homomorphism L→ Sub(C) is the object that

Robbin and Salamon work with. The next two results show that these two perspectives

are equivalent. The proofs are immediate, and are included for completeness.

Proposition 3.4.5. If (C, f) is an L-filtered chain complex then f : L→ Sub(C), given

as in (3.9) is a lattice morphism.

Proof. Let a, b ∈ L. Let A = {fn(a)}n∈Z and B = {fn(b)}n∈Z. Then

f(a) ∨ f(b) = (A, ∂|A) ∨ (B, ∂|B) = (A+B, ∂|A+B) = f(a ∨ b)

f(a) ∧ f(b) = (A, ∂|A) ∧ (B, ∂|B) = (A ∩B, ∂|A+B) = f(a ∨ b)

Proposition 3.4.6. Let C = (C•, ∂•) be a chain complex together with a lattice mor-

phism f : L→ Sub(C). If {fn : L→ Sub(Cn)}n∈Z is the family of maps defined as

fn(a) := An ⊆ Cn where f(a) = (A•, ∂
A
• ),

then (C•, ∂•, f•) is an L-filtered chain complex.

Proof. We show first show that (C•, f•) is a family of L-filtered vector spaces spaces.

Let a, b ∈ L. Let A• = f(a), B• = f(b) and D• = f(a ∨ b). As f is a lattice morphism,

we have that

A• ∨B• = f(a) ∨ f(b) = f(a ∨ b) = D•.

This implies An + Bn = Dn for all n. It follows that fn(a) ∨ fn(b) = An + Bn =

Dn = fn(a ∨ b). Similarly, it follows that fn(a) ∧ fn(b) = fn(a ∧ b). Observe that ∂n

is an L-filtered linear map for each n because f(a) ∈ Sub(C) implies that ∂nfn(a) ⊆

fn−1(a).
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3.4.3 The Subcategory of Strict Objects

There is a notion of strict object in the category Ch(FVect(L)). Recall from Defini-

tion 2.4.10 the notion of a join-irreducible element a ∈ J(L) and its unique predecessor

←−a ∈ L.

Definition 3.4.7. We say that an L-filtered chain complex (C, f) is strict if

∂n(fn(a)) ⊆ fn−1(←−a ), for all a ∈ J(L) and n ∈ Z.

In this case we say that f is a strict filtering. The strict objects form a subcategory

Chs(FVect(L)) ⊂ Ch(FVect(L)), called the subcategory of strict objects.

Remark 3.4.8. Recall from Definition 2.4.3 that O(P) is the lattice of down-sets of a

poset P. Recall the definition of ‘connection matrix’ from [42, Section 8]: a connection

matrix (in the sense of Robbin-Salamon) is an O(P)-filtered chain complex (C, f) such

that for any b ∈ O(P) and n ∈ Z

∂n(fn(b)) ⊂ fn−1(b \ {p})

whenever p is maximal in b.

For any b ∈ O(P), p is maximal in b if and only if b covers b \ {p}. Therefore, the

following result shows that our notion of a strict L-filtered complex is equivalent to their

definition of connection matrix.

Proposition 3.4.9. Let (C, f) be an L-filtered chain complex. Then (C, f) is strict if

and only if it obeys the following property: given n ∈ Z and a, b ∈ L such that b covers

a then ∂n(fn(b)) ⊆ fn−1(a).

Proof. The ‘if’ direction is immediate: a covers ←−a for a ∈ J(L). Thus ∂n(fn(a)) ⊆

fn−1(←−a ). Now suppose that (C, f) is strict and that b covers a. As L is in FDLat,

Proposition 2.4.12 states that any b ∈ L can be written as the irredundant join of

join-irreducibles, i.e., we have b = ∨iqi with qi ∈ J(L). Since f is a lattice morphism,

fn(b) = fn(∨iqi) = ∨ifn(qi).
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Moreover, since b covers a there is precisely one qj such that a∨ qj = b with qj 6≤ a and

qi ≤ a for i 6= j. That b covers a implies that ←−qj ≤ a, otherwise a < a ∨←−qj < b. For

any x ∈ fn(b) we have x =
∑

i xi with xi ∈ fn(qi) and ∂n(x) =
∑

i ∂n(xi). Since f is a

strict filtering, ∂n(xi) ∈ fn−1(←−qi ) and ∂n(x) ∈ ∨ifn−1(←−qi ) = fn−1(∨i←−qi ) ⊆ fn−1(a).

3.4.4 Equivalence of Categories

We now examine the relationship between graded and filtered chain complexes. Our

primary aim is to establish an equivalence between these two categories, as well as their

strict subcategories. With L = O(P), it follows from Proposition 2.3.9 that the functor

L : GrVect(P)→ FVect(L) (see Definition 3.4.3) induces a functor

LCh : Ch(GrVect(P))→ Ch(FVect(L)). (3.10)

Recalling the definition of LCh from Section 2.3, we have

LCh(C, π) := (C, f)

where the L-filtering f : L→ Sub(C) is given by

L 3 a 7→ (Ca• ,∆
a
•) = ua((C, π)) ∈ Sub(C) .

Here, ua is the forgetful functor ua : Ch(GrVect(P)) → Ch described in Defini-

tion 3.3.8. When the context is clear we abbreviate LCh by L.

Theorem 3.4.10. Let L = O(P). The functor L : Ch(GrVect(P)) → Ch(FVect(L))

is additive, fully faithful and essentially surjective (hence a categorical equivalence).

Moreover, L restricts to an equivalence of the subcategories

L : Chs(GrVect(P))→ Chs(FVect(L)).

Proof. The first part follows from from Theorem 3.4.4 and Proposition 2.3.10. For the

second part, suppose (C, π) is a P-graded chain complex and (C, f) is an L-filtered chain

complex such that L = O(P) and L((C, π)) = (C, f). We show that (C, π) is strict if

and only if (C, f) is strict. We first show that if (C, π) is strict then (C, f) is strict. Let
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a ∈ J(O(P)). We show that ∂(f(a)) ⊆ f(←−a ). By Birkhoff’s theorem, there exists s ∈ P

such that a =↓s and ←−a =
⋃
p<s ↓p. If x ∈ Ca• then x = πa(x). Hence

∂x = ∂(πa(x)) =
∑
p<q

∂pq
∑
r≤s

πr(x) =
∑
p<q≤s

∂pq(x).

Since ∂pq(x) ∈ Cp and ←−a =
⋃
p<s ↓ p it follows that ∂x ∈ f(←−a ) as desired.

We now show that if (C, f) is strict then (C, π) is strict. Let p ∈ P and a denote

↓p. Let x ∈ C. Then πp(x) ∈ Cp ⊂ Ca. Since (C, f) is strict ∂(πp(x)) ∈ ∂(Ca) ⊂ C←−a .

That p 6∈ ←−a implies ∂pp = πp∂(πp(x))) = 0. Therefore L restricts to an equivalence of

the strict subcategories.

3.4.5 Filtered Cell Complexes

We consider again the data analysis perspective, and define the appropriate concept for

cell complexes. Recall from Section 2.5 that the notion of subcomplex for a cell complex

is more general than for a chain complex. Given a cell complex X = (X ,≤, κ,dim) we

work with SubCl(X ), the lattice of closed subcomplexes.

Definition 3.4.11. An L-filtered cell complex is a cell complex X = (X ,≤, κ,dim)

together with a lattice morphism f : L → SubCl(X ). The morphism f is called an

L-filtering of X . We write (X , f) to denote an L-filtered cell complex.

Definition 3.4.12. Let (X , ν) be a P-graded cell complex and L = O(P). The associ-

ated L-filtered chain complex is the pair (C(X ), fν) where fν is the composition

L
O(ν)−−−→ SubCl(X )

span−−−→ Sub(C(X ))

given explicitly by sending a ∈ L to

span(O(ν)(a)) =

{
n∑
i=0

λiξi : n ∈ N, λi ∈ K, ξi ∈ O(ν)(a)

}
∈ Sub(C(X )).

We write L : Cell(P)→ Ch(FVect(L)) for the assignment (X , ν) 7→ (C(X ), fν).

Example 3.4.13. Let X be a closed manifold and ϕ : R × X → X a Morse-Smale

gradient flow. Let P be the set of fixed points and µ : P→ N the assignment of Morse
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indices. Each unstable manifold W u(p) is a µ(p)-cell and the manifold X admits a cellu-

lar decomposition (X ,≤, κ, µ). Furthermore, the closure cl(W u(p)) is a cell subcomplex

of X . The map

O(P) 3 a 7→
⋃
p∈a

cl(W u(p))

is an O(P)-filtering of the cellular (Morse) complex (X ,≤, κ, µ).

The next result follows from an examination of the definitions of C,L and L.

Proposition 3.4.14. Let L = O(P). The functor L : Ch(GrVect(P))→ Ch(FVect(L))

fits into the following commutative diagram with the assignments C and L (denoted by

dashes arrows).

Cell(P) Ch(GrVect(P))

Ch(FVect(L))

L

C

L

3.4.6 Homotopy Category of Filtered Complexes

Once again we may follow Section 2.3 to introduce the homotopy category K(FVect(L))

of the category of L-filtered chain complexes Ch(FVect(L)). To spell this out a bit

further, we say that two L-filtered chain maps φ, ψ : (C, f)→ (D, g) are L-filtered chain

homotopic if there is an L-filtered chain contraction γ : C → D such that φ − ψ =

γ ◦ ∂ + ∂ ◦ γ. We denote this by ψ ∼L φ.

Proceeding as in Section 2.3, the homotopy category of L-filtered chain complexes,

which we denote by K(FVect(L)), is the category whose objects are L-filtered chain

complexes and whose morphisms are L-filtered chain homotopy equivalence classes of

L-filtered chain maps. It follows from Proposition 2.3.9 that the functor L induces a

functor on the homotopy categories LK : K(GrVect(P))→ K(FVect(L)). This functor

is defined on objects as LK((C, π)) = LCh(C, π) and on morphisms as LK([φ]P) = [φ]L.

Moreover, this functor satisfies the identity

LK ◦ q = q ◦ LCh.

Definition 3.4.15. Let Ks(FVect(L)) denote the full subcategory of K(FVect(L))
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whose objects are the objects of Chs(FVect(L)). Then

Ks(FVect(L)) = Chs(FVect(L))/∼L

and there is a quotient functor q : Chs(FVect(L))→ Ks(FVect(L)).

Proposition 3.4.16. Let L = O(P). The functors LK : K(GrVect(P))→ K(FVect(L))

and LK : Ks(GrVect(P))→ Ks(FVect(L)) are equivalences of categories.

In analogy to Proposition 3.3.29, strict L-filtered chain complexes which are L-

filtered chain equivalent are isomorphic in Ch(FVect(L)). The may be phrased in

terms of the following result.

Proposition 3.4.17. The functor q : Chs(FVect(L)) → Ks(FVect(L)) is conserva-

tive.

Proof. By Birkhoff’s Theorem there is some P such that L ∼= O(P). Without loss of

generality, we let L be the composition (of equivalences of categories)

Ch(GrVect(P))
L−→ Ch(FVect(O(P)))→ Ch(FVect(L)).

We have the following diagram.

Chs(GrVect(P)) Chs(FVect(L))

Ks(GrVect(P)) Ks(FVect(L))

L

q q

LK

Theorem 3.4.10 and Proposition 3.4.16 state, respectively, that L and LK are equiva-

lences of categories. Moreover, Proposition 3.3.30 states that q : Chs(GrVect(P)) →

Ks(GrVect(P)) is conservative. It follows that q is conservative.

Corollary 3.4.18. Let (C, f) and (D, g) be strict L-filtered chain complexes. (C, f) and

(D, g) are L-filtered chain isomorphic if and only if they are isomorphic in Ch(FVect(L)).

Remark 3.4.19. Proposition 3.4.17 implies that, up to isomorphism, the strict L-filtered

chain complexes are an invariant of the L-filtered chain equivalence class.

Fix P and L = O(P). Consider the following commutative diagram.
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Chs(FVect(L)) Ch(FVect(L))

Chs(GrVect(P)) Ch(GrVect(P))

Ks(FVect(L)) K(FVect(L))

Ks(GrVect(P)) K(GrVect(P))

L
q

L

q

L L

(3.11)

Our results thus far have the following implications.

• It follows from Theorem 3.4.10 and Proposition 3.4.16 that the solid arrows are

equivalences of categories.

• Propositions 3.3.29 and 3.4.17 show that the quotient functors

q : Chs(GrVect(P))→ Ks(GrVect(P)), q : Chs(FVect(L))→ Ks(FVect(L))

are conservative.

• Finally, a bit further along in the thesis, the proof of correctness of the Algo-

rithm establishes that the dashed arrows – inclusion functors Ks(GrVect(P))→

K(GrVect(P)) and Ks(FVect(L)) → K(FVect(L)) – are essentially surjective.

In particular Theorem 3.8.1 and Corollary 3.8.2 of Section 3.7 will show that these

are equivalences of categories.

Finally, we reach our definition of Conley complex and connection matrix for an

L-filtered chain complex.

Definition 3.4.20. Let (C, f) be an L-filtered chain complex and L = O(P). A P-

graded chain complex (C ′, π) is called a Conley complex for (C, f) if

1. (C ′, π) is an object of Chs(GrVect(P));

2. L(C ′, π) is isomorphic to (C, f) in K(FVect(L)).

With the theory that has been built up, the following result is straightforward.
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Theorem 3.4.21. Let (X , ν) be a P-graded cell complex. Let L = O(P). If (C ′, π) is a

Conley complex for (C(X ), πν) then (C ′, π) is a Conley complex for (C(X ), fν).

Proof. Since (C ′, π) is a Conley complex for (C(X ), πν), by definition it is an ob-

ject of Chs(GrVect(P)). Moreover, by definition q(C ′, π) ∼= q(C(X ), πν). It follows

from (3.11) that

q ◦ L(C ′, π) = LK ◦ q(C ′, π) ∼= LK ◦ q(C(X ), πν) = q ◦ L(C(X ), πν)

It follows from Proposition 3.4.14 that q ◦ L(C(X ), πν) = q(C(X ), fν). Therefore q ◦

L(C ′, π) ∼= q(C(X ), fν).

Conceptually, Theorem 3.4.21 implies that one may do homotopy-theoretic compu-

tations within the category Ch(GrVect(P)) in order to compute the relevant objects

of interest for K(FVect(L)). At this point in the paper, we refer the reader back to

the left hand side of Diagram (3.1).

3.5 Franzosa’s Connection Matrix Theory

In this section we will review connection matrix theory as developed by R. Franzosa

in the sequence of papers [15, 16, 17] from the late 1980’s. Briefly, the connection

matrix is the appropriate generalization of the Morse boundary operator for Conley

theory; it is a boundary operator defined on Conley indices. The connection matrix

allows one to recover the graded module braid that is obtained from the index lattice.

However, unlike the Morse boundary operator, the connection matrix is not defined

from trajectories, it is only related to them. The basic function of the connection

matrix is to prove the existence of connecting orbits [32]. At a higher level, it serves

as an algebraic representation of global dynamics and in certain cases can be used to

construct (semi)-conjugacies of the global attractor [10, 34, 35]. Its preeminent function

is to promote Conley index theory to a homology theory [33].
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3.5.1 The Categories of Braids

It was Conley’s observation [8] that focusing on the attractors of a dynamical system

provides a generalization of Smale’s Spectral Decomposition [47, Theorem 6.2]. There

is a lattice structure to the attractors of a dynamical system [27, 28, 42] and one is often

naturally led to studying a finite sublattice of attractors A and an associated sublattice

of attracting blocks N with ω : N→ A (see Definition 2.9.3). This setup is expressed in

the diagram below.

N ABlockR(ϕ)

A Att(ϕ)

ω

⊂

ω

⊂

A sublattice of attracting blocks is what Franzosa terms an index filtration [17, 15, 16].

However, as these sublattices are not necessarily totally ordered, we follow [27] and call

this an index lattice.

In his work, Franzosa introduces the notion of a chain complex braid as a data

structure to hold the singular chain complexes that arise out of the topological data

within the index lattice. The chain complex braid is organized by the poset of join-

irreducibles of the index lattice. Implicit in Franzosa’s work is a description of a category

for chain complex braids over a fixed poset P. We now describe this category, which

we label ChB(P,Vect). First we recall the notion of adjacent convex sets.

Definition 3.5.1. An ordered collection (I1, . . . , IN ) of convex sets of P is adjacent if

1. I1, . . . , In are mutually disjoint;

2.
⋃n
i=1 Ii is a convex set in P;

3. For all p, q ∈ P, p ∈ Ii, q ∈ Ij , i < j implies q ≮ p.

We are primarily interested in adjacent pairs of convex sets (I, J) and for simplicity

write the union I ∪ J as IJ . We denote the set of convex sets as I(P) and the set of

adjacent tuples and triples of convex sets as I2(P) and I3(P).

Definition 3.5.2. We say that a pair (I, J) of convex sets is incomparable if p and q

are incomparable for any p ∈ I and q ∈ J . This immediately implies that (I, J) and

(J, I) are adjacent.
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Definition 3.5.3. Following [17], we say that a sequence of chain complexes and chain

maps

C1
i−→ C2

p−→ C3

is weakly exact if i is injective, p ◦ i = 0 and p : C2/ im(i)→ C3 induces an isomorphism

on homology.

Proposition 3.5.4 ([17], Proposition 2.2). Let

C1
i−→ C2

p−→ C3

be a weakly exact sequence of chain complexes and ∂i the boundary operator of Ci. There

exists a natural degree -1 homomorphism ∂ : H(C3)→ H(C1) such that

1. if [x] ∈ H(C3) then ∂([x]) = [i−1∂2p
−1(x)],

2. . . .→ H(C1)
i−→ H(C2)

p−→ H(C3)
∂−→ H(C1)→ . . . is exact.

Proof. We sketch the proof, following [17]. Let ∂′ : H(C2/ im(i)) → H(C1) be the

connecting homomorphism for the short exact sequence of chain complexes

0→ C1
i−→ C2

ρ−→ C2/ im(i)→ 0

where ρ is projection onto the quotient. Since the sequence is weakly exact, ρ induces

an isomorphism on homology ρ∗ : H(C2)/ im(i))→ H(C3). Define ∂ : H(C3)→ H(C1)

by ∂ = ∂′ρ−1
∗ .

Definition 3.5.5. A chain complex braid C over P is a collection of chain complexes

and chain maps in Ch(Vect) such that

1. for each I ∈ I(P) there is a chain complex (C(I),∆(I)),

2. for each (I, J) ∈ I2(P) there are chain maps

i(I, IJ) : C(I)→ C(IJ) and p(IJ, J) : C(IJ)→ C(J),

which satisfy

(a) C(I)
i(I,IJ)−−−−→ C(IJ)

p(IJ,J)−−−−→ C(J) is weakly exact,
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(b) if I and J are incomparable then p(JI, I)i(I, IJ) = id|C(I),

(c) if (I, J,K) ∈ I3(P ) then the following braid diagram commutes.

C(J)

C(IJ) C(JK)

C(I) C(IJK) C(K)

Definition 3.5.6. The category of chain complex braids over P, denoted ChB(P,Vect),

is the category whose objects are chain complex braids over P. Given two chain

complex braids C and C ′ a morphism Ψ: C → C ′ is a collection of chain maps

{Ψ(I) : C(I) → C ′(I)}I∈I(P) such that for (I, J) ∈ I2(P) the following diagram com-

mutes.
C(I) C(IJ) C(J)

C ′(I) C ′(IJ) C ′(J)

Ψ(I) Ψ(IJ) Ψ(J)

For a given sublattice of attractors A, two index lattices N,N′ associated with the

same sublattice of attractors A, i.e., ω(N) = A and ω(N′) = A, may yield different chain

complex braids. However, the homology groups of the chain complexes contained in the

chain complex braid are an invariant. This is the motivation for the idea of a graded

module braid, which formalizes the notion of ‘homology’ for a chain complex braid. In

order for our terminology to agree with Franzosa’s in [17], we introduce ‘graded module

braids’ in the generality of graded R-modules. However, for the results of this paper

we specifically work in the case when R is a field, and a graded R-module is a graded

vector space.

Definition 3.5.7. Let R be a ring. A graded R-module is a family M• = {Mn}n∈Z of

R-modules. A graded R-module homomorphism is a family f : M• → M ′• are families

of R-module homomorphisms f = {fn : Mn → M ′n}n∈Z. The category of graded R-

modules, denoted R-ModZ, is the category whose objects are graded R-modules and

whose morphisms are graded R-module homomorphisms.

Definition 3.5.8. Let M• and M ′• be graded R-modules. A degree d map γ from M•

to M ′• is a family of R-module homomorphisms {γn : Mn →M ′n+d}n∈Z.
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Definition 3.5.9. A graded R-module braid over P G is a collection of graded R-

modules maps satisfying:

1. for each I ∈ I(P) there is a graded R-module G(I);

2. for each (I, J) ∈ I2(P) there are maps:

i(I, IJ) : G(I)→ G(IJ) of degree 0,

p(IJ, J) : G(IJ)→ G(J) of degree 0,

∂(J, I) : G(J)→ G(I) of degree -1

which satisfy

(a) . . .→ G(I)
i−→ G(IJ)

p−→ G(J)
∂−→ G(I)→ . . . is exact,

(b) if I and J are incomparable then p(JI, I)i(I, IJ) = id|G(I)

(c) if (I, J,K) ∈ I3(P ) then the braid diagram (3.12) commutes.

... · · ·
...

G(I) G(K)

G(IJ)

G(IJK) G(J)

G(JK)

G(K) G(I)

G(IJ)

G(J) G(IJK)

... · · ·
...

i

i

∂

∂
pi

p

p

∂

i

p ∂

∂

∂ i

i

p i

(3.12)

Definition 3.5.10. A morphism Θ: G → G ′ of graded R-module braids is a collection

of graded R-module homomorphisms {Θ(I) : G(I) → G′(I)}I∈I(P) such that for each
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(I, J) ∈ I2(P) the following diagram commutes:

. . . G(I) G(IJ) G(J) G(I) . . .

. . . G′(I) G′(IJ) G′(J) G′(I) . . .

i

Θ(I)

p

Θ(IJ)

∂

Θ(J) Θ(I)

i′ p′ ∂′

Remark 3.5.11. Since a morphism of braids Θ: G → G ′ involves a fixed map Θ(I) for

each convex set I, there is a commutative diagram involving the two braid diagrams

of (3.12) and Θ for any (I, J,K) ∈ I3(P). In fact, as remarked in [3, 36] one does not

need to use graded R-module braids, but only a collection of long exact sequences given

this definition of morphism.

Definition 3.5.12. Given a fixed ring R, the category of graded R-module braids over

P, denoted by GMB(P,R-ModZ), is the category of graded R-module braids and their

morphisms.

When R may be understood from the context we refer to a graded R-module braid

as a graded module braid. This terminology matches Franzosa [17]. For the purposes of

this paper, R is a field and we work with GMB(P,VectZ). Implicit in [17, Proposition

2.7] is the description of a functor from H : ChB(P,Vect) → GMB(P,VectZ) which

is the analogy of the homology functor.

Definition 3.5.13. A pair of chain complex braid morphisms Ψ,Φ: C → C ′ are P-

braided homotopic if there is a collection {Γ(I) : C(I)→ C ′(I)}I∈I(P) of chain contrac-

tions such that for each I

Φ(I)−Ψ(I) = ∆(I)Γ(I) + Γ(I)∆′(I).

The collection Γ = {Γ(I)}I∈I(P) is called a P-braided chain homotopy. We write Ψ ∼P Φ

if Ψ and Φ are P-braided homotopic.

Proposition 3.5.14. The binary relation ∼P is a congruence relation on ChB(P,Vect).

Definition 3.5.15. Let C ,C ′ are chain complex braids. A morphism of chain complex

braids Φ: C → C ′ is a P-braided chain equivalence if there is a P-braided chain map

Ψ: C ′ → C such that ΨΦ ∼P idC and ΦΨ ∼P id′C . The homotopy category of chain
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complex braids over P, which we denote KB(P,Vect), is the category whose objects

are chain complex braids over P and whose morphisms are P-braided chain homotopy

equivalence classes of chain complex braid morphisms. In other words, KB(P,Vect) is

the quotient category ChB(P,Vect)/∼P formed by defining the hom-sets via

HomKB(P,Vect)(C ,C
′) = HomChB(P,Vect)(C ,C

′)/∼P

where ∼P is the braided homotopy equivalence relation. Denote by q : ChB(P,Vect)→

KB(P,Vect) the quotient functor which sends each chain complex braid over P to itself

and each chain complex braid morphism to its P-braided chain homotopy equivalence

class. It follows from the construction that two chain complex braids C ,C ′ are isomor-

phic in KB(P,Vect) if and only if C ,C ′ are P-braided chain equivalent.

Proposition 3.5.16. Let C and C ′ be chain complex braids over P. If C ,C ′ are braided

chain equivalent then H(C ) ∼= H(C ′). In particular, there is a functor

HK : KB(P,Vect)→ GMB(P,VectZ)

that sends braided chain equivalences to graded module braid isomorphisms.

3.5.2 Franzosa’s Connection Matrix

We previously introduced our notion of connection matrix in Definition 3.3.25. In

this section we review Franzosa’s definition. Let C be a chain complex braid in

ChB(P,Vect). Historically, the connection matrix was introduced as a P-filtered (up-

per triangular) boundary operator ∆ on the direct sum of homological Conley indices

associated to the elements of P

∆:
⊕
p∈P

H•(C(p))→
⊕
p∈P

H•(C(p))

which recovers the associated graded module braid H(C ). See Definition 3.5.20 for

the precise notion. ∆ may be thought of as a matrix of linear maps {∆pq} and the

identification with the matrix structure is the genesis of the phrase connection matrix.

Recall that the functor L of (3.10) is used to build an O(P)-filtered chain complex

from P-graded complex. The next results show that graded chain complexes can be
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used to build chain complex braids. First, recall the forgetful functor u as well as the

family of forgetful functors {uI} parameterized by the convex sets I ∈ I(P) defined

in Definition 3.3.8 (see also Section 3.3). For a P-graded chain complex (C, π) and a

convex set I ⊂ P, u ◦ uI(C, π) = (CI ,∆I) is a chain complex. Given a P-filtered chain

map φ : (C, π)→ (C ′, π), uI(φ) is the chain map ΦI = eI ◦ φ ◦ iI : CI → C ′I .

Proposition 3.5.17 ([17], Proposition 3.4). Let (C, π) be an P-graded chain complex.

The collection C = B(C, π) consisting of the chain complexes {uI(C, π)}I∈(P) and the

natural chain maps i(I, IJ) and p(IJ, J) for each (I, J) ∈ I2(P) form a chain complex

braid over P.

Proposition 3.5.18 ([18], Proposition 3.2). Let (C, π) and (C ′, π) be P-graded chain

complexes. If φ : (C, π)→ (C ′, π) is a P-filtered chain map then the collection {ΦI : CI →

C ′I}I∈I(P) is a chain complex braid morphism from B(C, π) to B(C ′, π).

Propositions 3.5.17 and 3.5.18 describe a functor

B : Ch(GrVect(P))→ ChB(P,Vect) (3.13)

That is, the functor B is defined on objects as B(C, π) = {CI ,∆I}I∈I(P) together with

the natural inclusion and projection maps. Moreover, B is defined on morphisms as

B(φ) = {ΦI : CI → C ′I}I∈I(P)

Proposition 3.5.19. The functor B : Ch(GrVect(P)) → ChB(P,Vect) is additive.

Moreover B induces a functor on homotopy categories

BK : K(GrVect(P))→ KB(P,Vect)

We can now state Franzosa’s definition of connection matrix. In brief, this is a P-

graded chain complex capable of reconstructing the appropriate graded module braid.

Definition 3.5.20 ([17], Definition 3.6). Let G be a graded module braid over P and

(C, π) be a P-graded chain complex. The boundary operator ∂ of (C, π) is called a

C-connection matrix for G if
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1. There is an isomorphism of graded module braids

H ◦B(C, π) ∼= G . (3.14)

2. If, in addition, (C, π) is strict, i.e., ∂pp = 0 for all p ∈ P, then ∂ is a connection

matrix (in the sense of Franzosa) for G .

In light of Definition 3.5.20, the connection matrix is an efficient codification of data

which is capable of recovering the braid G . In Conley theory, a graded module braid

G over J(L) is derived from a index lattice. In this way the connection matrix is a

graded object (over J(L)) capable of recovering (up to homology) the data of the index

lattice. Moreover, both the chain complex braid C = B(C, π) and the graded module

braid G = H ◦B(C, π) associated to the connection matrix are simple objects in their

appropriate categories. Observe that

1. For C we have C(I) =
⊕

p∈I C
p for all I ∈ I(P).

2. For the graded module braid G if [α] ∈ G(I) then ∂(J, I)([α]) = [∆J,I(α)] from [17,

Proposition 3.5].

The next result is one of Franzosa’s theorems on existence of connection matrices,

written in our terminology. As Franzosa works with R-modules, instead of vector spaces

as we do, he assumes the chain complexes consist of free R-modules.

Theorem 3.5.21 ([17], Theorem 4.8). Let C be a chain complex braid over P. Let

{Bp}p∈P be a collection of free chain complexes such that H(Bp) ∼= H(C(p)) and set

B =
⊕

p∈PB
p. There exists a P-filtered boundary operator ∆ so that (B, π), where

π = {πp : B → Bp}p∈P, is a P-graded chain complex. Moreover, there exists a morphism

of chain complex braids Ψ: B → C where B = B(B, π) such that H(Ψ) is a graded

module braid isomorphism.

Here is a simple application of Franzosa’s theorem. Let C be a chain complex

braid. Choose B = {C(p)}p∈P . The theorem says that there exists a P-graded chain

complex (C, π) and a morphism of chain complex braids Ψ: B(C, π)→ C that induces

an isomorphism on graded module braids. Therefore for any chain complex braid over
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P there is a simple representative (one coming from a P-graded chain complex (B, π))

that is quasi-isomorphic to C (in the sense that there is a morphism Ψ of chain complex

braids that induces an isomorphism on graded module braids). In the case when one

works with fields the homology H(C(p)) of each chain complex C(p) is a Z-graded

vector space (see Definition 2.3.11). Therefore we may choose B = {H•(C(p))}p∈P.

Invoking the theorem gives a P-graded chain complex (B, π) such that

∆:
⊕
p∈P

H•(C(p))→
⊕
p∈P

H•(C(p))

In our terminology this implies that (B, π) is a Conley complex and ∆ is a connection

matrix, both in the sense of our definition of connection matrix (Definition 3.3.25) and

of Definition 3.5.20 of Franzosa.

Remark 3.5.22. The classical definition of the connection matrix (Definition 3.5.20)

does not involve a chain equivalence. In particular, the connection matrix is not asso-

ciated to a representative of a chain equivalence class. In fact, in Franzosa’s definition

the isomorphism of (3.14) is not required to be induced from a chain complex braid

morphism.

Remark 3.5.23. We do not develop the theory of reductions (see Section 3.6) for braids,

although it is straightforward to do so.

Definition 3.5.24. Let (X , ν) be a P-graded cell complex. The preimage of each

convex set X I := ν−1(I) is a convex set in (X ,≤, κ,dim). Therefore each X I = (X I ,≤I

, κI ,dimI) is a cell complex where (≤I , κI ,dimI) are the restrictions to X I . This implies

that each (C•(X I), ∂|X I ) is a chain complex. A routine computation shows that the

collection

{(C•(X I), ∂|X I )}I∈I(P)

satisfies the axioms of a chain complex braid over P, and that this is precisely the image

of (X , ν) under the composition

Cell(P)
C−→ Ch(GrVect(P))

B−→ ChB(P,Vect).

The composition defines an assignment B : Cell(P)→ ChB(P,Vect).
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Theorem 3.5.25. Let (X , ν) be a P-graded cell complex, (C(X ), πν) be the associated

P-graded chain complex and G = H(B(X , ν)) be the associated graded module braid. If

(C ′, π) is a Conley complex for (C(X ), πν) then ∂′ is a connection matrix (in the sense

of Franzosa, Definition 3.5.20) for G .

Proof. By definition (C, π) and (C ′, π) are P-filtered chain equivalent. It follows from

Proposition 3.5.19 that the associated chain complex braids B(C ′, π) and B(C, π) are

P-braided chain equivalent. Then

H ◦B(C ′, π) ∼= H ◦B(C, π) = G ,

where the first isomorphism follows from Proposition 3.5.16 and the equality follows

from the definition of B.

Theorem 3.5.25 implies that one may do homotopy-theoretic computations within

the category Ch(GrVect(P)) in order to compute connection matrices in the classical

sense of Definition 3.5.20. At this point in the paper we refer the reader back to the

full Diagram (3.1), which encapsulates much of the machinery introduced thus far.

Most importantly, taken together Theorems 3.4.21 and 3.5.25 imply that if one finds

a strict P-graded chain complex (C ′, π) that is P-filtered chain equivalent to the given

(C(X ), πν), then

1. One can construct a strict L-filtered chain complex, L(C ′, π), which is chain equiv-

alent to the associated lattice-filtered complex (C(X ), fν).

2. ∂′ is a connection matrix in the classical sense of Definition 3.5.20 for the associ-

ated graded-module braid H(B(X , ν).

This implies that to compute connection matrices in both the sense of Franzosa [17]

and Robbin-Salamon [42], it suffices to work within the category Ch(GrVect(P)).

3.6 Reductions

In this section we formalize the method of computing Conley complexes. Later, in

Section 3.7.3, we detail a computational version, using discrete Morse theory, of the
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theory presented here. In Section 3.7 we present two algorithms based on the Morse

theory: the first for computing homology using these methods, and the second for

computing Conley complexes and connection matrices.

First, we review the tools for the chain complexes and the category Ch(Vect). Then

we proceed to the graded and filtered versions within the categories Ch(GrVect(P))

and Ch(FVect(L)), respectively. Much of the material may feel redundant, as we will

port results from chain complexes to graded and filtered versions.

In computational homological algebra, one often finds a simpler representative with

which to compute homology. A model for this is the notion of reduction, which is a

particular type of chain homotopy equivalence. The notion also goes under the moniker

strong deformation retract or sometimes chain contraction [46].1 It appears in [12], in

homological perturbation theory [4] and forms the basis for effective homology the-

ory [44] and algebraic Morse theory [45, 46]. Our exposition of reductions primarily

follows the preprint [44]. Roughly speaking, a reduction is a method of data reduction

for a chain complex without losing any information with respect to homology.

Definition 3.6.1. A reduction is a pair of chain complexes and triple of maps

C M

γ

ψ

φ

where φ, ψ are chain maps and a chain contraction γ satisfying the identities:

1. ψφ = idM

2. φψ = idC − (γ∂ + ∂γ)

3. γ2 = γφ = ψγ = 0.

From the definition it is clear that φ is a monomorphism and ψ is an epimorphism.

In applications, one calls M the reduced complex. When reductions arise from algebraic-

discrete Morse theory M is sometimes called the Morse complex. The point is that one

1We previously introduced the term chain contraction in Section 2.3 which agrees with [51]. This
idea should not be confused with reduction.
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wants |M | � |C|, then one may compute H(M) (and thus H(C)) more efficiently.

Notice that by using (3), an application γ on the left of (2) gives:

0 = (γφ)ψ = γ(idC − γ∂ − ∂γ) = γ − γ∂γ (3.15)

This equation is axiomized as the condition for a degree 1 map (see Definition 2.3.4)

called a splitting homotopy.

Definition 3.6.2. Let C be a chain complex. A splitting homotopy is a degree 1 map

γ : C → C such that γ2 = 0 and γ∂γ = γ.

The upshot is that reductions can be obtained from splitting homotopies. The

conditions ∂2 = γ2 = 0 and γ∂γ = γ ensure that γ∂ + ∂γ is idempotent. Therefore

ρ = idC − (γ∂ + ∂γ) is a projection onto the complementary subspace to im(γ∂ + ∂γ).

Since ρ is a projection, there is a splitting of C into subcomplexes:

C = ker ρ⊕ im ρ.

The image (M,∂M ) = (im ρ, ∂|im ρ) is a subcomplex of C. We have the following

reduction:

C M.

γ

ρ

i
(3.16)

We can calculate the differential ∂M via

∂ρ = ∂(idC − (γ∂ + ∂γ)) = ∂ − ∂γ∂ + ∂∂γ = ∂ − ∂γ∂.

Finally, it is straightforward that the remaining identities γi = ργ = 0 are easily

verified. Furthermore, ker ρ is a subcomplex of C and γ|ker ρ is a chain contraction,

since idker ρ = ∂γ + γ∂. This implies that ker ρ is acyclic, i.e., H•(ker ρ) = 0. As is

well-known, reductions and splitting homotopies are (up to isomorphism) in bijective

correspondence. We include a proof here for completeness.

Proposition 3.6.3. Reductions and splitting homotopies are in bijective correspon-

dence, up to isomorphism.
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Proof. From (3.15) we have that any chain homotopy in a reduction is a splitting

homotopy. Moreover, any splitting homotopy can be put into the reduction in (3.16).

Let γ be a splitting homotopy and consider two reductions:

M C M.
i

ρ

γ

ρ′

i′

A routine computation using the conditions (1)–(3) shows that the compositions

ρ ◦ i′ and ρ′ ◦ i are inverses. Therefore M and M ′ are chain isomorphic.

Example 3.6.4. Let X be a cell complex and let (A,w : Q→ K) be an acyclic partial

matching, see Section 2.8. By Proposition 2.8.2 there exists a unique splitting homotopy

γ. From Theorem 2.8.3 defining the maps

ψ := πA ◦ (idX − ∂γ) φ := (idX − γ∂) ◦ ιA ∂A := ψ ◦ ∂ ◦ φ

leads to a reduction:

C•(X ) (C•(A), ∂A)

γ

ψ

φ
(3.17)

Notice that this is a different reduction than the one defined in Diagram (3.16). How-

ever, we have (C•(A), ∂A) ∼= (M,∂M ) from Proposition 3.6.3. In contrast to Dia-

gram (3.16), using the reduction of Diagram (3.17) has the property that the Morse

complex is comprised of critical cells of the matching.

Definition 3.6.5. We say a reduction is minimal if the reduced complex M is minimal.

We say a splitting homotopy γ is perfect if ∂ = ∂γ∂.

Proposition 3.6.6. Minimal reductions and perfect splitting homotopies are in bijective

correspondence.

Proof. If the reduction is minimal, then ∂M = 0. Thus ∂iρ = (i∂M )ρ = 0. By

hypothesis iρ = idC − ∂γ − γ∂. Application of ∂ to both sides yields

0 = ∂(iρ) = ∂(idC − ∂γ − γ∂) = ∂ − ∂γ∂.

Conversely, if γ is perfect then with M = im(ρ) the differential ∂M is calculated as

∂M = ∂ − ∂γ∂ = 0.
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Therefore M is minimal and the reduction is minimal.

A perfect splitting homotopy implies im(ρ) ∼= H•(C). This allows the homology to

be read from the reduction without computation. In addition, we have ∂i = i∂M = 0.

Therefore im(i) ⊂ ker ∂ and and the map i : M → ker ∂ gives representatives for the

homology in C. In the case of fields, perfect splittings always exist.2 This implies that

a chain complex C and its homology H•(C) always fit into a reduction. Moreover any

reduction where C is a minimal complex is trivial in the sense that the two complexes

are isomorphic.

Proposition 3.6.7. Let C be a minimal chain complex. Any reduction

C M

γ

ψ

φ

is minimal. Moreover, we have M ∼= C.

Proof. We have ∂′ = ∂′(ψφ) = ψ∂φ = 0. We have ψ ◦ φ = idM . If C is minimal then

φ ◦ ψ = idC − (γ∂ + ∂γ) = idC .

In this sense, the homology H•(C) is the algebraic core of a chain complex and the

minimal representative for C with respect to reductions. This result will have analogues

in the graded and filtered cases. Finally, we show that reductions compose.

Proposition 3.6.8. Given the sequence of reductions:

C M M ′

γ

ψ

φ

γ′

ψ′

φ′

there is a reduction

C M ′

γ′′

ψ′′

φ′′

with the maps given by the formulas

φ′′ = φ ◦ φ′ ψ′′ = ψ′ ◦ ψ γ′′ = γ + φ ◦ γ′ ◦ ψ.

2In fact, this is a Corollary of Algorithm 3.7.2.
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Proof. Elementary computations show that

ρ′′ ◦ i′′ = idM ′′ and i′′ ◦ ρ′′ = idC − (∂γ′′ + γ′′∂).

Conditions (1)–(3) follow from the same conditions for γ and γ′.

(γ′′)2 = (γ + iγ′ρ)(γ + iγ′ρ) = γ2 + (γi)γ′ρ+ iγ′(ργ) + iγ′(ρi)γ′ρ = i(γ′γ′)ρ = 0

γ′′ ◦ i′′ = (γ + iγ′ρ)(i ◦ i′) = (γi)i′ + ρ′(ρi)γ′ρ = (ρ′γ)′ρ = 0

ρ′′ ◦ γ′′ = (ρ′ρ)(γ + iγ′ρ) = ρ′(ργ) + ρ′(ρi)γ′ρ = (ρ′γ′)ρ = 0.

An inductive argument gives the following result the next result.

Proposition 3.6.9. Given a tower of reductions

C M0 . . . Mn−1 Mn;

γ0

ψ0

φ0

γ1

ψ1

φ1

ψn−1

φn−1

γn

ψn

φn

1. there is a reduction

C Mn

Γ

Ψn

Φn

(3.18)

with maps given by the formulas

Ψm =

m∏
i=0

ψi Φm =

m∏
i=0

φi Γ = γ0 +

n−1∑
i=0

Φi ◦ γi+1 ◦Ψi.

2. Γ is a splitting homotopy and Γ is perfect if any γi is perfect.

Proof. Part (1) follows from Proposition 3.6.8 and an inductive argument. Given (3.18)

the fact that γ is a splitting homotopy follows from the proof of Proposition 3.6.3. If

γi is perfect, then Mi is minimal by Proposition 3.6.6. Thus Mj is minimal for j ≥ i

by Proposition 3.6.7. In particular Mn is minimal and (3.18) is minimal. Therefore γ

is a perfect splitting homotopy by Proposition 3.6.6.

3.6.1 Graded Reductions

Filtered and graded versions of the reductions are obtained by porting the definition to

the appropriate category.
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Definition 3.6.10. A P-graded reduction is a pair of P-graded chain complexes and

triple of P-filtered maps

(C, π) (M,π)

γ

ψ

φ

where φ, ψ are chain maps and a chain contraction γ satisfying the identities:

1. ψφ = idM

2. φψ = idC − (γ∂ + ∂γ)

3. γ2 = γφ = ψγ = 0.

An P-graded reduction is minimal if (M,π) is strict.

Definition 3.6.11. A P-filtered splitting homotopy is a degree 1 map γ : (C, π) →

(C, π) such that γ2 = 0 and γ∂γ = γ. A P-filtered splitting homotopy is perfect if

∂pp = ∂ppγpp∂pp for each p ∈ P.

Again, one may define ρ = idC − (γ∂ + ∂γ) and M = im(ρ). Then M is a P-graded

subcomplex of (C, π), p ◦ i = idM and i ◦ p = idC − (γ∂ + ∂γ).

Proposition 3.6.12. P-filtered splitting homotopies and P-graded reductions are in bi-

jective correspondence. Furthermore, perfect P-filtered splitting homotopy and minimal

P-graded reductions are in bijective correspondence.

Proof. The proof of the first result follows the proof of Proposition 3.6.3, except the

maps are now filtered. For any reduction we have

i∂′ρ = ∂(iρ) = ∂(idC − γ∂ − ∂γ) = ∂ − ∂γ∂.

For a minimal reduction, we have

0 = ipp∂′ppρpp = ∂pp − ∂ppγpp∂pp.

Thus γ is perfect. Conversely, let γ be a perfect P-filtered splitting homotopy. The

formula for the differential on M = im(ρ) is ∂′ = ∂ − ∂γ∂. Since the maps ∂ and γ are

P-filtered, we have

∂′pp = (∂ − ∂γ∂)pp = ∂pp − ∂ppγpp∂pp = 0.
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Observe that in a minimal reduction im(φpp) ⊂ ker ∂pp since ∂ppφpp = φpp∂′pp =

0. Therefore the images φpp(Mp) are representatives of the homology H•(C
p,∆pp).

We may also show that strict P-graded chain complexes are minimal with respect to

reductions. This mirrors Proposition 3.6.7. The point is that strict P-graded complexes

are the graded analogue of minimal complexes.

Proposition 3.6.13. Let (C, π) be strict. Any reduction

(C, π) (M,π)

γ

ψ

φ

is minimal. Moreover (M,π) and (C, π) are P-filtered chain isomorphic, i.e., isomor-

phic in Ch(GrVect(P)).

Proof. We have ∂′ = ∂′ψφ = ψ∂φ. Thus ∂′pp = ψpp∂ppφpp = 0. Therefore (M,π) is

strict. Since i and p are chain equivalences, invoking Proposition 3.3.29 shows that

(M,π) and (C, π) are P-filtered chain isomorphic.

For a tower of graded reductions, we have the following result, which is analogous

to Proposition 3.6.9.

Proposition 3.6.14. Given a tower of P-graded reductions

(C, π) (M0, π) . . . (Mn−1, π) (Mn, π);

γ0

ψ0

φ0

γ1

ψ1

φ1

ψn−1

φn−1

γn

ψn

φn

1. there is a reduction

(C, π) (M,π)

Γ

Ψn

Φn

with maps given by the formulas

Ψm =

m∏
i=0

ψi Φm =

m∏
i=0

φi Γ = γ0 +

n−1∑
i=0

Φi ◦ γi+1 ◦Ψi.

2. Γ is a P-filtered splitting homotopy and Γ is perfect if any γi is perfect.
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3.6.2 Filtered Reductions

Definition 3.6.15. An L-filtered reduction is a pair of L-filtered chain complexes and

triple of L-filtered chain maps

(C, f) (M, g)

γ

ψ

φ

where φ, ψ are chain maps and γ is a degree+1 map satisfying the identities:

1. ψφ = idM

2. φψ = idC − (γ∂ + ∂γ)

3. γ2 = γφ = ψγ = 0.

An L-filtered reduction is minimal if (M, g) is a strict L-filtered chain complex.

Definition 3.6.16. An L-filtered splitting homotopy is a degree 1 map γ : C → C such

that γ2 = 0 and γ∂γ = γ. An L-filtered splitting homotopy γ : C → C for (C, f) is

perfect if the induced map γa : f(a)/f(←−a )→ f(a)/f(←−a ) is perfect for each a ∈ J(L).

Again, one may define ρ = idC− (γ∂+∂γ) and M = im(ρ). Then M is an L-filtered

subcomplex of C and ρi = idM and iρ = idC − (γ∂ + ∂γ).

Corollary 3.6.17. L-filtered splitting homotopies and L-filtered reductions are in bijec-

tive correspondence. Perfect filtered splitting homotopies are in bijective correspondence

with minimal L-filtered reductions.

Proof. The proof of the first statement follows the proof of Proposition 3.6.3, with the

maps now filtered. Consider g : L→ Sub(M,∂M ) of the L-filtered reduction guaranteed

by Corollary 3.6.17. If γ is perfect the differential ∂M must obey ∂M (g(q)) = (∂ −

∂γ∂)g(q) ⊆ g(←−q ). Therefore (M, g) is strict.

We now show that strict L-filtered chain complexes are minimal with respect to

reductions.



82

Proposition 3.6.18. Let (C, f) be a strict L-filtered complex. Any filtered reduction

(C, f) (M, g)

γ

ψ

φ

is minimal. Moreover (C, f) and (M, g) are filtered chain isomorphic.

Proof. We have ∂′ = ∂′ψφ = ψ∂′. For a ∈ J(L)

∂′(g(a)) = ψ∂φ(g(a)) ⊆ g(←−a ).

This implies that (M, g) is strict. Since (C, f) and (M, g) are both strict L-filtered chain

complexes, they are L-filtered chain isomorphic by Proposition 3.4.17.

For a tower of L-filtered reductions there is an result analogous to Propositions 3.6.9

and 3.6.14.

Proposition 3.6.19. For a tower of L-filtered reductions

(C, f) (M0, g) . . . (Mn−1, g) (Mn, g);

γ0

ψ0

φ0

γ1

ψ1

φ1

ψn−1

φn−1

γn

ψn

φn

1. there is a reduction

(C, f) (Mn, gn)

Γ

Ψn

Φn

with maps given by the formulas

Ψm =
m∏
i=0

ψi Φm =
m∏
i=0

φi Γ = γ0 +
n−1∑
i=0

Φi ◦ γi+1 ◦Ψi.

2. Γ is a splitting homotopy and Γ is perfect if any γi is perfect.

3.7 Connection Matrix Algorithm

In this section we introduce the algorithm for computing Conley complexes and connec-

tion matrices. The algorithm is based on (graded) Morse theory, which is described in

Section 3.7.3. It is formalized via the framework of reductions developed in Section 3.6.

In Section 3.7.1 we recall the Morse theoretic algorithms of [23]. The exposition relies

on the discrete Morse theory reviewed in Section 2.8. In Section 3.7.2 we demonstrate
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how to compute the homology of a chain complex using Morse theory and reductions.

This is given via Algorithm 3.7.2. Section 3.7.4 covers how to compute a connection

matrix, via Algorithm 3.7.8. The computation of a connection matrix ends up being

very similar to computing homology, only adapted to the graded setting.

3.7.1 Morse Theoretic Algorithms

Our algorithm relies on [23, Algorithm 3.6] and [23, Algorithm 3.12], which are repro-

duced below, respectively, as the algorithms as Matching and Gamma. In particular,

Lemma 3.7.1, which relies on Matching, is used to to verify the correctness of Algo-

rithms 3.7.2 and 3.7.8. First, recall the notion of a coreduction pair and free cell, from

Definition 2.5.15, and that of acyclic partial matching, from Definition 2.8.1.

function Matching(X )

X ′ ← X

while X ′ is not empty do

while X ′ admits a coreduction pair (ξ, ξ′) do

Excise (ξ, ξ′) from X ′

K ← ξ, Q← ξ′

w(ξ′) := ξ

end while

while X ′ does not admit a coreduction pair do

Excise a free cell ξ from X ′

A← ξ

end while

end while

return (A,w : Q→ K)

end function

function Gamma(ξin, w : Q→ K)

ξ ← ξin

c← 0

while ξ 6∈ C(A)⊕ C(K) do
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Choose a ≤-maximal ξ′ ∈ Q with κ(ξ, ξ′) 6= 0

ξ′′ ← w(ξ′)

c← c+ ξ′′

ξ ← ξ + ∂ξ′′

end while

return c

end function

The proof of correctness of our algorithms depend upon the following lemma.

Lemma 3.7.1. Let X be a cell complex. If (A,w) is an acyclic partial matching on X

obtained from Matching(X ) such that A = X then (C•(A), ∂A) = (C•(X ), ∂X ) is a

minimal complex.

Proof. Let ξ ∈ X = A. We wish to show that ∂(ξ) = 0. Since A = X there are no

coreduction pairs in the execution of the algorithm. This implies of the two secondary

while loops in Algorithm 3.6, only the second while has executed. This while loop

has iterated n = |X | times and each iteration adds a cell ξ to the collection of critical

cells A. We may therefore regard A as a stack and label each ξ ∈ A with the integer

giving the particular iteration of the while loop that added ξ to A. Denote this labeling

µ : A→ N. Now set n = µ(ξ) and let U = µ−1[0, n). From Algorithm 3.6 we must have

that ξ is a free cell in X \ U . Therefore if κ(ξ, ξ′) 6= 0 for some ξ′ ∈ X then ξ′ ∈ U .

Suppose that κ(ξ, ξ′) 6= 0 for some ξ′ ∈ U . Let m = µ(ξ′) and U ′ = µ−1[0,m). We

must have that (ξ, ξ′) is a coreduction pair in X \ U ′. This is a contradiction of the

execution of the algorithm.

3.7.2 Homology Algorithm

We first give an algorithm for computing the homology of a complex X based on discrete

Morse theory. This will provide an intuition and the basis for the Algorithm 3.7.8,

ConnectionMatrix.

Algorithm 3.7.2.

function Homology(Xin, ∂in)
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A← Xin,∆← ∂in

do

X ← A, ∂ ← ∆

(A,w : Q→ K)←Matching(X )

for ξ ∈ A do

compute and store ∆(ξ) using Gamma(ξ, w)

end for

while |A| < |X |

return A

end function

Theorem 3.7.3. Given a cell complex X , Algorithm 3.7.2 (with input X and ∂) halts

and outputs the homology of X .

Proof. The fact that Xin is finite, together with the fact that Matching halts [23], im-

plies that Homology halts. Finally, if the algorithm terminates withA∞ = Homology(Xin)

then C(A∞) is a minimal chain complex by Lemma 3.7.1.

It remains to prove that C(A∞) ∼= H(X ). In any iteration of the do loop, there

are chain equivalences ψ : C(X ) → C(A) and φ : C(A) → C(X ), which are as defined

in Eq. (2.5) of Section 2.8, using γ(·) = Gamma(·, w). The pair of complexes C(X ),

C(A) and the triple maps φ, ψ, γ fit into a reduction via Example 3.6.4. Therefore an

execution of the entire the do-while loop is associated to a tower of reductions:

C(Xin) . . . C•(X ) (C•(A), ∂A) . . . C(A∞).

γ0 γ

ψ

φ

Thus the output C(A∞) is isomorphic to the homology H(Xin).

Example 3.7.4. In this example we give some flavor of the concepts behind Algo-

rithm 3.7.2 (Homology). Consider the cubical complex K given in Figure 3.1(a)

below, which consists of four 2-cells, 14 edges and 9 vertices. We work over the field

Z2. Therefore we have

C2(K) = Z4
2 C1(K) = Z14

2 C0(K) = Z9
2.
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The complex K is open on the right in order to simplify the Morse theory. For the

sake of an example, we want to illustrate how multiple rounds of Morse theory work

in practice. Unfortunately, the algorithm Homology as stated is too effective in this

example as the Matching subroutine simplifies to a minimal complex in only one

round of Morse theory. Instead, we may substitute Matching with the set of implicit

cubical matchings proposed in Section 5.3; every coordinate direction provides a round

of Morse theory.

(a)

e0

e1

v0

(b)

e0

e1

v0

(c)

e0

(d)

Figure 3.1: (a) Cubical complex K. (b) First Pairing. (c) Second Pairing. (d) Minimal
complex, i.e., the homology of K. A single 1-cell e0 remains with ∂(e0) = 0.

The algorithm begins with the executing the first iteration of the while loop which

computes an acyclic partial matching on K by attempting to pair all cells right. This

furnishes an acyclic partial matching (A0, w0) (see Section 5.3). This is visualized in

Figure 3.1(b). As in much of the literature on discrete Morse theory, e.g., [14, 22],

a pair ξ ∈ Q and ξ′ ∈ K with w(ξ) = ξ′ is visualized with directed edge ξ′ → ξ;

see Figure 3.1(b). The directed edges in Figure 3.1(b) may also be thought of as a

graphical representation of the degree 1 map V (see Section 2.8). The cells e0, e1 and

v0 do not have right coboundaries (see Section 5.2.1) and are therefore critical, i.e.,

A0 = {e0, e1, v0}. The set of cells A0 is the basis for a chain complex (C(A0),∆) where

C1(A0) = Z2〈e0〉 ⊕ Z2〈e1〉, C0(A0) = Z2〈v0〉, ∆1 =

( e0 e1

v0 1 1

)
.

The second iteration of the while loop attempts to pair remaining cells, i.e., the cells

in A1, upwards. This furnishes an acyclic partial matching (A1, w1) on A0, visualized

in Figure 3.1(c). The cells v0 and e1 are paired and A2 = {e0}. Moreover, the set of

cells A1 is a basis for the chain complex (C(A1),∆) where

C1(A1) = Z2〈e0〉 and ∆ = 0.
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In the final iteration of the while there are no coreduction pairs and A2 = A1 is re-

turned. These two rounds of Morse theory give a tower of reductions and the algorithm

terminates with A∞ = Homology(K, ∂) = A1. The chain complexes C(X ), C(A0)

and C(A1), together with the maps {φi, ψi, γi} fit into the tower of reductions below.

C(K) C(A0) C(A1)

γ0

ψ0

γ1

φ0

ψ1

φ1

3.7.3 Graded Morse Theory

In this section, we review a graded version of discrete Morse theory. Consider a P-graded

cell complex (X , ν). Recall that the underlying set X decomposes as X =
⊔
p∈PX p

where X p = ν−1(p).

Definition 3.7.5. Let (X , ν) be a P-graded cell complex and let (A,w : Q → K) be

an acyclic partial matching on X . We say that (A,w) is P-graded, or simply graded,

if it satisfies the property that w(ξ) = ξ′ only if ξ, ξ′ ∈ X p for some p ∈ P. That is,

matchings may only occur in the same fiber of the grading.

The idea of graded matchings can be found many places in the literature, for in-

stance, see [38] and [29, Patchwork Theorem]. Recall from Definition 3.3.18 that a

P-graded cell complex (X , ν) has an associated P-graded chain complex (C(X ), πν).

Proposition 3.7.6. Let (X , ν) be a P-graded cell complex and (A,w : Q→ K) a graded

acyclic partial matching. Let Ap = A ∩ X p. Then

1. (C(A), ∂A, π) is a P-graded chain complex where the projections π = {πpn}n∈Z,p∈P

are given by

πpj : Cj(A)→ Cj(A
p). (3.19)

2. The maps φ, ψ of Eqn. (2.5) and γ of Eqn. (2.4) fit into a P-graded reduction

(C(X ), πν) (C(A), π).

γ

ψ

φ
(3.20)

Proof. It follows from Proposition 2.8.3 that (C(A), ∂A) is a chain complex. We must

show that if ∂pqA 6= 0 then p ≤ q. By Proposition 2.8.2 there is a unique splitting
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homotopy γ : C(X ) → C(X ) associated to the matching (A,w). The fact that (A,w)

is graded implies that V , as defined in Eqn. (2.3) of Section 2.8, is P-filtered. From the

definition of γ given in (2.4) a routine verification shows that γ is P-filtered. Therefore

by Proposition 3.6.12 there is an associated reduction

(C(X ), πν) (C(A), π).

γ

ψ

φ

Let p ∈ P. Consider (Ap, wp) the matching restricted to the fiber X p = ν−1(p). We

have

Ap = A ∩ X p wp : Q ∩ X p → K ∩ X p.

It follows that (Ap, wp) is an acyclic partial matching on the fiber X p. Proposi-

tion 2.8.2 implies that there is a unique splitting homotopy γp : C(X p) → C(X p). In

particular, γpp = γp.

Example 3.7.7. Consider the graded complex (X , ν) of Example 1.2.1. Let

A := {v0, v2, e0} Q := {v1} K := {e1} w(v1) = e1

This is depicted in Figure 3.2.

v0 v1 v2e0 e1

Figure 3.2: Graded matching (A,w) on X . The pairing w(v1) = e1 is visualized with
an arrow v1 → e1. The set A = {v0, e0, v2} are the critical cells.

This is a acyclic partial matching (A,w) on X . It is straightforward that (A,w) is

graded as v1, e1 ∈ ν−1(q). The maps of the associated P-graded reduction are precisely

the ones described in Example 3.3.24.

3.7.4 Connection Matrix Algorithm

We can now state the algorithm for computing a connection matrix, which relies on

Matching and Gamma of Section 3.7.1.

Algorithm 3.7.8.
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function ConnectionMatrix(Xin, νin, ∂in)

A← Xin,∆← ∂in, µ← νin

do

X ← A, ∂ ← ∆, ν ← µ

for p ∈ P do

(Ap, ωp : Qp → Kp)←Matching(X p)

end for

(A,w)← (
⊔
p∈PA

p,
⊔
p∈Pw

p)

for ξ ∈ A do

compute and store ∆(ξ) using Gamma(ξ, w)

end for

µ← ν|A

while |A| < |X |

return (A,∆, µ)

end function

Theorem 3.7.9. Let (X , ν) be a P-graded cell complex. Algorithm 3.7.8 (with input

(X , ν) and ∂) halts. Moreover, the returned data (A∞,∆, π) has the property that

(C(A∞),∆, π) is a Conley complex for (C(X ), πν).

Proof. Since Xin is finite and Matching halts, it follows that ConnectionMatrix

halts. Let (A∞,∆∞, µ∞) = ConnectionMatrix(Xin, ν, ∂). It follows from Proposi-

tion 3.7.6 that (C(A∞),∆, π), where π is given by Eqn. (3.19), is P-graded. It follows

from Lemma 3.7.1 that for each p ∈ P the fiber Ap∞ is minimal. This implies that the

P-graded chain complex C(A∞) is strict.

It remains to show that (C(A∞),∆, π) is a Conley complex. In any iteration of the

do loop, it follows from Proposition 3.7.6 that there are P-filtered chain equivalences

ψ : C(X ) → C(A) and φ : C(A) → C(X ), which are as defined in (2.5), using γ(·) =

Gamma(·, w). The pair of complexes (C(X ), πν), (C(A), πµ) and the triple maps φ, ψ, γ
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fit into the P-graded reduction of (3.20). Therefore an execution of the entire the do-

while loop is associated to a tower of reductions:

(C(Xin), πin) . . . (C(X ), πν) (C(A), πµ) . . . (C(A∞), π).

γ0 γ

ψ

φ

(3.21)

Thus the output (C(A∞),∆) is a Conley complex.

Example 3.7.10. We given an example of the algorithm ConnectionMatrix. Let

X be the cubical complex in Figure 3.3(a) and let K be a the cubical complex from

Example 3.7.4. We again work over the field Z2. The cubical complex X consists of

K together with the 2-cells {ξ0, ξ1} and the 1-cell e2. The 2-cells in X \ K are shaded,

while the 2-cells in K are drawn with hatching. Let Q = {0, 1} be the poset with order

0 ≤ 1. There is a Q-graded cell complex where (X , ν) and ν : X → Q is given via

ν(x) =


0 x ∈ K

1 x ∈ X \ K.

Once again, using Matching would be too effective on this example to illustrate multi-

ple rounds. We proceed as before and use the implicit cubical matchings of Section 5.3.

Again, every coordinate direction gives a new round of Morse theory.

ξ0

ξ1

e2

(a) (b)

ξ0

ξ1

e2

e0

e1

v0

(c)

ξ0e0

(d)

Figure 3.3: (a) Graded Cubical Complex. (b) First Graded Pairing. (c) Second Graded
Pairing. (d) Conley complex. A 2-cell ξ0 and a 1-cell e0 remain with ∂(ξ0) = e0.

The algorithm starts by computing a graded acyclic partial matching on K, at-

tempting to pair all cells to the right (within their fiber). The cells e0, e1, v0 have

right coboundaries ξ0, ξ1, e2 respectively. However, these do lie in the same fiber

as e0, e1, v0 ∈ X 0 and ξ0, ξ1, e2 ∈ X 1. Therefore these cells cannot be paired and

A0 = {e0, e1, v0, ξ0, ξ1, e2}. The second round of Morse theory attempts to pair the



91

remaining cells up (within their fiber). In this case, w(v0) = e1 and w(e2) = ξ1 and

A1 = {e0, ξ0}. These two rounds of graded Morse theory give a tower of graded reduc-

tions. The returned data (A∞,∆, µ) form the strict P-graded chain complex

C2(A∞) = Z2 C1(A∞) = Z2 ∆01
2 =

(
1

)
.

Remark 3.7.11. Algorithm 3.7.8 may be refined by returning either the entire tower of

reductions or the reduction defined by the compositions as in Theorem 3.6.14. Return-

ing these data allow one to lift generators back in the original chain complex.

Remark 3.7.12. Our implementation of this algorithm is available at [1]. Also available

is a Jupyter notebook for the application of the algorithm to a Morse theory on braids;

see Section 4.7. The application to braids falls within the scope of a larger project,

namely developing the ability to compute connection matrices for transversality models;

see Section 4.3. More results of the algorithm, along with some timing data, are covered

Section 5.4.

3.8 Categorical Connection Matrix Theory

We are now in a position to return to Diagram (3.11) of Section 3.4.6 and discuss the

categorical setup for connection matrix theory.

Theorem 3.8.1. The inclusion functor i : Ks(GrVect(P)) → K(GrVect(P)) is an

equivalence of categories.

Proof. Since the subcategory Ks(GrVect(P)) is full, the inclusion functor i is full and

faithful. We show that i is essentially surjective. Let (C, π) be a P-graded chain complex

and let X be a basis for C•. Define dim(ξ) = n where ξ ∈ Cn. Define κ(ξ, ξ′) as the

appropriate coefficient of ∂, i.e.,

∂(ξ) =
∑
ξ′∈X

κ(ξ, ξ′)ξ′,

and define the partial order ≤ via

ξ′ ≤ ξ ⇐⇒ κ(ξ, ξ′) 6= 0.
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Then X = (X , κ,dim,≤) is a P-graded cell complex. Consider the strict P-graded

chain complex (C(A),∆) where (A,∆, µ) = ConnectionMatrix(X , ν, ∂). It follows

from Theorem 3.7.9 that this is an object of Ks(GrVect(P)) ⊂ K(GrVect(P)) and

that it is a Conley complex for (C, π). Therefore (C(A),∆) is isomorphic to (C, π) in

K(GrVect(P)).

Corollary 3.8.2. The inclusion functor Ks(FVect(L)) ⊂ K(FVect(L)) is an equiva-

lence of categories.

Proof. This follows from an examination of the bottom square of (3.11): three of the

functors are categorical equivalences.

Corollary 3.8.3. Let L = O(P). There exists inverse functors, which we call Conley

functors,

1. F : K(GrVect(P))→ Ks(GrVect(P)), and

2. G : K(FVect(L))→ Ks(GrVect(P)),

which take a P-graded chain complex or L-filtered chain complex to its Conley complex.

Remark 3.8.4. Corollary 3.8.3 provides a functorial framework for connection matrix

theory. Algorithm 3.7.8 (ConnectionMatrix) computes the functor F on objects.

3.9 Relationship to Persistent Homology

Persistent homology is a quantitative method within applied algebraic topology and

the most popular tool of topological data analysis. We give a brief outline, and refer

the reader to [11, 39] and their references within for further details. In this section we

show that given an L-filtered chain complex, one can recover its persistent homology

using a Conley complex and connection matrix. Persistent homology may be viewed as

a family of functors, parameterized by pairs of elements a, b ∈ L with a ≤ b:

{PHa,b
• : Ch(FVect(L))→ Ch0(Vect)}a≤b.
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Remark 3.9.1. To be consistent with the literature of persistent homology, our notation

is PHa,b
• where a ≤ b. This is in contrast to our ‘matrix’ notation that runs through

the rest of the paper.

Let a, b ∈ L with a ≤ b. PHa,b
• (−) is defined on objects as follows. Let (C, f) be an

L-filtered chain complex (see Section 3.4.2). There is an inclusion of subcomplexes

ιa,b : f(a) ↪→ f(b). (3.22)

Recall from Section 2.3 that we view homology as a functor H• : Ch→ Ch0. Applying

H• to Eqn. (3.22) yields a map H•(ι
a,b) : H•(f(a))→ H•(f(b)). Then

PHa,b
•
(
(C, f)

)
:= imH•(ι

a,b) ∈ Ch0.

From this setup we can recover the standard persistence: for j ∈ Z the j-th persistent

homology group of a ≤ b is the vector space

PHa,b
j

(
(C, f)

)
:= imHj(ι

a,b).

The j-th persistent Betti numbers are the integers

βa,bj = dim im(H(ιa,bj )).

PHa,b
• (−) is defined on morphisms as follows. Let φ : (C, f) → (C ′, f ′) be an L-

filtered chain map. Since φ is L-filtered, φ restricts to chain maps φa : f(a)→ f ′(a) and

φb : f(b)→ f ′(b), which fit into the following commutative diagram.

H•f(a) H•f(b)

H•f
′(a) H•f

′(b)

H•(φa)

H•(ιa,b)

H•(φb)

H•(ι′a,b)

As the diagram commutes, H•(φ
b) restricts to a mapH•(φ

b) : imH•(ι
a,b)→ imH•(ι

′a,b),

and

PHa,b
• (φ) := H•(φ

b) : imH•(ι
a,b)→ imH•(ι

′a,b).

Proposition 3.9.2. PHa,b
• sends L-filtered chain equivalences to isomorphisms in Ch0.
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Proof. Let a, b ∈ L with a ≤ b. Let φ : (C, f) → (C ′, f ′) be an L-filtered chain equiva-

lence. Since φ is L-filtered, φa and φb are chain equivalences. Proposition 2.3.14 implies

H(φa) and H(φb) are isomorphisms. Thus PHa,b
• (φ) is an isomorphism.

Theorem 3.9.3. Let (C, f) be a L-filtered chain complex. Let (C ′, π) be a Conley

complex for (C, f). Then for all j ∈ Z and a ≤ b in L

PHa,b
• (L

(
C ′, π)

) ∼= PHa,b
•
(
(C, f)

)
.

Proof. It follows from Proposition 3.9.2 and Proposition 2.2.10 that PHa,b
• factors as

PHa,b
K ◦ q, giving the following commutative diagram.

Ch(FVect(L)) Ch0(Vect)

K(FVect(L))

q

PHa,b
•

PHa,b
K

Since (C ′, π) is a Conley complex for (C, f), by definition we have that

q
(
(C, f)

) ∼= q(L(C ′, π).

It follows that

PHa,b
• (C, f) = PHa,b

K ◦ q(C, f) ∼= PHa,b
K ◦ q ◦ L(C ′, π) = PHa,b

• ◦ L(C ′, π).

Remark 3.9.4. As a corollary, all computational tools that tabulate the persistent ho-

mology groups, such as the persistence diagrams and barcodes (see [11, 39]), can be

computed from the Conley complex.

Let X be a finite cell complex and L a finite distributive lattice. Suppose that

{X a ⊂ X | a ∈ L} be an isomorphic lattice of subcomplexes. Defining f by taking

a ∈ L to X a ⊂ X yields a lattice morphism f : L→ SubCl(X ). Therefore (X , f) is an L

filtered cell complex.

Definition 3.9.5. Let L be a finite distributive lattice and (X , f) be an L-filtered cell

complex. The persistent homology of (X , f) is defined to be

PHa,b
• (X , f) := PHa,b

• ◦ L(X , f).
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Theorem 3.9.6. Let X be a finite cell complex with associated chain complex (C(X ), ∂).

Let L be a finite distributive lattice. Let {X a ⊂ X | a ∈ L} be an isomorphic lattice of

subcomplexes with operations ∩ and ∪ and minimal and maximal elements ∅ and X ,

respectively. Let

∆:
⊕
a∈J(L)

H•(X a,X
←−a )→

⊕
a∈J(L)

H•(X a,X
←−a )

be an associated connection matrix. Define

Ma :=
⊕
b≤a,
b∈J(L)

H•(X b,X
←−
b ).

The persistent homology groups of {Ma}a∈L and {X a}a∈L are isomorphic.

Proof. Define f : L → SubCl(X ) as the lattice morphism f(a) = X a for a ∈ L. Then

(X , f) is an L-filtered subcomplex. Set

M• =
⊕
a∈J(L)

H•(X a,X
←−a ).

By hypothesis (M,π) = (M,∆, π) is a Conley complex for L(X , f), so L(M,π) ∼=

L(X , f) in K(FVect(L)) by definition. Let a, b ∈ L with a ≤ b. We have that

PHa,b
• (M, g) = PHa,b

• (L(M,∆, π)) ∼= PHa,b
• (L(X , f)),

where the isomorphism follows from Proposition 3.4.14.
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Chapter 4

Computational Conley-Morse Homology for Flows

4.1 Overview

In this chapter we develop a setting in which the computational connection matrix

theory may be applied to computational dynamics. We intertwine computational Con-

ley theory [2, 6, 25, 26, 27, 28] and the computational connection matrix theory as

developed in Chapter 3. The contributions can be summarized as follows.

• We show how one moves from Conley-theoretic approximations of continuous

dynamics to the appropriate graded or filtered cell complexes on which to apply

the computational connection matrix theory. This is the content of Theorem 4.2.4.

• We develop a specific setting for applying the theory. We call these transversality

models.

• Using the theory of transversality models, we make applications to some classical

examples as well as to a Morse theory on braids.

4.2 Computational Conley-Morse Homology for Flows

Moving from continuous dynamics to a combinatorial dynamics is often called combi-

natorialization. There are two aspects to this:

• Combinatorialization of the phase space (i.e., the underlying topological space).

• Combinatorialization of continuous dynamics.
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4.2.1 Combinatorialization of Topological Space

Recall that the starting point for the combinatorialization of a space is a choice of

pure polyhedral complex X in Rn (see Section 2.7). Given a top-cell ξ ∈ X+ (see

Definition 2.5.14), the realization |ξ| is an open convex set of |X | and cl |ξ| = | cl(ξ)| is

a closed convex set. Recall from Definition 2.4.14 that a Boolean algebra is a lattice

where every element has a complement. The collection of regular closed sets of |X | is

a Boolean algebra denoted R(|X |), see Definition 2.9.2.

Definition 4.2.1. Let X be a polyhedral complex in Rn. The associated Boolean

algebra of regular closed sets, denoted by X, is the finite sublattice of R(|X |) which has

atoms {cl |ξ| | ξ ∈ X+}.

We are now in a situation where we have combinatorial objects, viz., Set(X+) (see

Definition 2.4.15); topological objects, viz., X; and algebraic objects, viz., SubCl(X )

(see Definition 2.5.11). We need to introduce the proper morphisms which relate these

objects, fitting into the following schematic.

Combinatorics Topology

Algebra

There is a map k : Set(X+)→ X which sends {ξ} ∈ Set(X+) to

k({ξ}) = cl |{ξ}| ∈ X.

It follows from the fact that cl | · | = | cl(·)| (see Definition 2.7.1) that k is a lattice

isomomorphism. There is a map c : Set(X+)→ SubCl(X ) sending {ξ} ∈ Set(X+) to

c({ξ}) = cl({ξ}) ∈ SubCl(X ). (4.1)

The map c may not preserve intersection because of the existence of the lower-

dimensional cells of X ; c is not a lattice morphism in general. The condition that

cl |ξ| = | cl ξ| implies that the isomorphism k factors as

Set(X+)
c−→ SubCl(X )

|·|−→ X.
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Let i : X+ ↪→ X be the inclusion of the anti-chain of top-cells into X . This is a

poset morphism. We set j = O(i) : SubCl(X ) → Set(X+), the Birkhoff dual of i (see

Section 2.4.3). It is readily seen that j is the map

SubCl(X ) 3 K 7→ K ∩ X+ ∈ Set(X+).

It can also be checked that j◦c = id. Thus we have the following diagram; following [25]

we use the notation ↔ to denote an isomorphism.

Set(X+) X

SubCl(X )

k

c

j

|·|
(4.2)

4.2.2 Combinatorialization of Dynamics

The starting point for the combinatorialization of dynamics is a binary relation F

defined on the top-cells X+ of the complex X . A good combinatorial approximation is

one that relates the structures of the combinatorial dynamics (e.g., Att(F), Invset+(F))

to the structures of the underlying continuous dynamics (e.g., Att(ϕ),ABlockR(ϕ)); see

Section 2.9 for definitions. Roughly, speaking, we add in dynamics to the following

conceptual schematic.

Dynamics

Combinatorics Topology

Algebra

As Invset+(F) ⊆ Set(X+), we may restrict the maps k, c in (4.2) to Invset+(F) to

get the following diagram.

Invset+(F) X

SubCl(X )

k

c |·|
(4.3)

Definition 4.2.2. Let X be a polyhedral complex in Rn. A binary relation F on the

collection of top-cells X+ is a discrete approximation for the flow ϕ : R × |X | → |X | if

k(Invset+(F)) is a sublattice of ABlockR(ϕ).
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This definition draws heavily on the definition of combinatorial models, given in [25].

For instance, given a discrete approximation F , let N = k(Invset+(F)) and A = ω(N)

(recall ω from Definition 2.9.3). Then the following diagram commutes.

Invset+(F) N ABlockR(ϕ)

Att(F) A Att(ϕ)

k

ω ω

⊂

ω

⊂

The primary result of this section is Theorem 4.2.4: if F is a discrete approximation

then c is a lattice homomorphism, i.e., the following is a diagram in FDLat.

N

Invset+(F) X

SubCl(X )

ik

k

c |·|

Letting L = Invset+(F), Theorem 4.2.4 implies that (X , c) is an L-filtered cell com-

plex. The Conley index of an attracting block A ∈ N can be computed by computing

the homology of the associated subcomplex in X , i.e., the image of A under the compo-

sition N → Invset+(F)
c−→ SubCl(X ). For the next lemma, recall the notion of frontier,

denoted fr, given in Definition 2.5.13. Note also that bd refers to the (topological)

boundary of a set.

Lemma 4.2.3. Let X be a polyhedral complex. Let F be a discrete approximation for

ϕ : R× |X | → |X |. Let a ∈ Invset+(F) and σ ∈ fr(c(a)). For T > 0:

1. if ϕ(T, |σ|) ∩ |τ | 6= ∅ then τ ∈ int c(a);

2. ϕ([0, T ], |σ|) ∩ | star(σ) \ σ| 6= ∅.

Proof. For part (1), let ϕ(T, |σ|)∩ |τ | 6= ∅. If F is a discrete approximation then |c(a)|

is an attracting block. Therefore as |σ| ⊂ |c(a)| we have that ϕ(|σ|, T ) ⊂ int|c(a)|. It

follows from Proposition 2.7.4 that int|c(a)| = |int c(a)|. It follows that if |τ |∩ϕ(T, |σ|) 6=

∅ then |τ | ∩ |int c(a)| 6= ∅. Lemma 2.7.2 implies that as |τ | ∩ |int c(a)| 6= ∅ then

τ ∈ int c(a).
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For part (2), it follows from Corollary 2.7.5 that if σ ∈ fr c(a) then |σ| ⊂ | fr c(a)| =

bd |c(a)|. Since |c(a)| is an attracting block, |σ| is not fixed by ϕ. This implies that

ϕ([0, T ], |σ|) ∩ |(starσ ∪ clσ) \ σ| 6= ∅.

Suppose that ϕ([0, T ], |σ|)∩| star(σ)\σ| = ∅. This implies ϕ([0, T ], |σ|)∩| cl(σ)\σ| 6= ∅.

Since σ ∈ fr c(a) we have that cl(σ) ⊂ fr c(a). It follows from Corollary 2.7.5 that

| cl(σ)| ⊂ bd |c(a)|. However, this is a contradiction as |c(a)| is an attracting block and

|σ| must be mapped into int|c(a)|. Therefore ϕ([0, T ], |σ|) ∩ | star(σ) \ σ| 6= ∅.

Theorem 4.2.4. Let X be a polyhedral complex and let F be a discrete approximation

for ϕ : R × |X | → |X |. The map c : Invset+(F) → SubCl(X ) given by c(a) = cl(a) is a

lattice homomorphism.

Proof. We begin with

c(0) = c(∅) = ∅ = 0 and c(1) = c(X+) = X = 1.

Let a, b ∈ Invset+(F). A routine calculation shows that

c(a ∨ b) = cl(a ∪ b) =
⋃

ξ∈a∪b
cl(ξ) =

( ⋃
ξ∈a

cl(ξ)
)
∪
( ⋃
ξ′∈b

cl(ξ′)
)

= cl(a) ∪ cl(b)

= c(a) ∨ c(b).

Furthermore, we have that

c(a ∧ b) = cl(a ∩ b) =
⋃

ξ∈a∩b
cl(ξ) ⊆

( ⋃
ξ∈a

cl(ξ)
)
∩
( ⋃
ξ′∈b

cl(ξ′)
)

= cl(a) ∩ cl(b)

= c(a) ∧ c(b).

Notice that if a ≤ b then a ⊆ b. Thus

c(a ∧ b) = cl(a ∩ b) = cl(a) = cl(a) ∩ cl(b) = c(a) ∧ c(b).

Assume a and b are incomparable. It remains to show that c(a) ∧ c(b) ⊆ c(a ∧ b).

To this end, let σ ∈ c(a) ∧ c(b) = cl(a) ∩ cl(b) and suppose that σ 6∈ cl(a ∩ b). Since
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σ ∈ c(a) ∩ c(b), there must exist ξ ∈ a and ξ′ ∈ b with σ ∈ cl ξ and σ ∈ cl ξ′. Moreover,

since σ 6∈ cl(a ∩ b) it follows that ξ ∈ a \ b and ξ′ ∈ b \ a. Thus star(σ) 6⊂ c(a) and

star(σ) 6⊂ c(b). Therefore σ ∈ fr c(a) ∩ fr c(b)). As F is a discrete approximation we

have that |c(a)| and |c(b)| are attracting blocks for ϕ. For any T > 0 we must have

ϕ([0, T ], |σ|) ∩ |τ | 6= ∅ for some τ ∈ star(σ) \ σ by Lemma 4.2.3 (2). It follows from

Lemma 4.2.3 (1) that τ ∈ int c(a)∩ int c(b). Hence if ξ′′ ∈ X+ ∩ star(τ) then ξ′′ ∈ a∩ b.

But σ ≤ τ ≤ ξ′′ implies that σ ∈ cl(ξ′′). Therefore σ ∈ cl(a∩b). This is a contradiction,

hence c(a) ∧ c(b) = c(a ∧ b).

Theorem 4.2.4 states that for a discrete approximation F , the map c : Invset+(F)→

SubCl(X ) is a lattice morphism. Therefore c has a Birkhoff dual, J(c) : J(SubCl(X ))→

J(Invset+(F)). Since O, J are contravariant functors which form an equivalence of cat-

egories (see Theorem 2.4.19), there is a natural isomorphism η : id→ JO. This implies

that there are poset isomorphisms ηX , ηSC(F), and a poset morphism ν = η−1
SC(F)◦J(c)◦ηX

fitting into the following diagram.

X SC(F)

J(SubCl(X )) J(Invset+(F))

ν

ηX ηSC(F)

J(c)

The pair (X , ν) is a P-graded cell complex with associated graded chain complex

(C(X ), πν); see Section 3.3.4. We can cook up an explicit formula for ν as follows.

First, note that every top-cell ξ is a vertex in the graph F and belongs to the strongly

connected component [ξ]. There is a map ν0 : X+ → SC(F) given by ν0(ξ) = [ξ], taking

a top-cell to the strongly connected component in which it belongs. Tthe collection of

top-cells X+ form an antichain (see Definition 2.4.2) in the face poset (X ,≤). Therefore

X+ may be regarded as a poset (where the order ≤ is trivial) and ν0 may be regarded

as a poset morphism.

Proposition 4.2.5. The map ν = η−1
SC(F) ◦ J(c) ◦ ηX : X → SC(F) is given by the

formula

X 3 ξ 7→ min
SC(F)

{ν0(ξ′) : ξ′ ∈ star(ξ) ∩ X+} ∈ SC(F). (4.4)
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Proof. The isomorphisms ηX : X → J(SubCl(X )) and ηSC(F) : SC(F) → J(Invset+(F))

are given by the formulas ηX (ξ) = ↓ ξ and ηSC(F)([ξ]) = ↓ [ξ]. Let ξ ∈ X . We first

compute J(c) ◦ ηX (ξ). Recall the definition of J(c) from Eqn. (2.1). We have that

↑ (ηX (ξ)) = ↑ (↓ ξ) = {K ∈ SubCl(X ) | ↓ ξ ⊂ K}.

By the definition of c we have c−1(↑ (η(ξ))) = {a ∈ Invset+(F) | ξ ∈ cl(a)}. Since J(c)

is well-defined, this set has a minimal element which is join-irreducible, i.e., a minimal

a0 ∈ J(Invset+(F)) such that ξ ∈ cl(a0). This implies that

min{a ∈ Invset+(F) | ξ ∈ cl(a)} = min{a ∈ J(Invset+(F)) | ξ ∈ cl(a)}.

First, as ηSC(F) is a poset isomorphism we have that: a ∈ J(Invset+(F)) if and only if

a = ηSC([ξ′′]) = ↓ [ξ′′] for [ξ′′] ∈ SC(F). Second, we have that: ξ ∈ cl( ↓ [ξ′′]) if and only

if there is ξ′ ∈↓ [ξ′′] such that ξ ∈ cl(ξ′); ξ ∈ cl(ξ′) if and only if ξ′ ∈ star(ξ). Together,

these facts imply that ηSC(F) furnishes an (order-preserving) bijection

{[ξ′] ∈ SC(F) | ξ′ ∈ star(ξ) ∩ X+} η−→ {a ∈ J(Invset+(F)) | ξ ∈ cl(a)}.

This implies that {[ξ′] ∈ SC(F) | ξ′ ∈ star(ξ) ∩ X+} has a minimal value. Setting

a0 = min{a ∈ J(Invset+(F)) | ξ ∈ cl(a)} and p0 = {[ξ′] ∈ SC(F) | ξ′ ∈ star(ξ) ∩ X+}

we have that a0 = ηSC(F)(p0) and p0 = η−1
SC(F)(a0). Therefore ν is given by (4.4). This

completes the proof.

4.3 Transversality Models

In this section we define a certain class of binary relations that yield discrete approx-

imation for flows which are generated by a vector field ẋ = f(x) in subsets in Rn.

For the remainder of this section, let X be a pure polyhedral cell complex in Rn; see

Definition 2.5.14 and Section 2.7. Notice that since X is pure, we have that X+ = Xn.

Definition 4.3.1. The adjacency relation E on X+ is the (symmetric) relation given

by

(ξ, ξ′) ∈ E ⇐⇒ Xn−1 ∩ cl(ξ) ∩ cl(ξ′) 6= ∅ and ξ 6= ξ′
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That is, E is the collection of pairs of top-cells that share an (n − 1)-dimensional

face. Since all cells in X are convex, two distinct top cells cannot share more than one

(n − 1)-dimensional face. Let ρ : E → Xn−1 be the map that takes a pair of distinct

n-cells (ξ, ξ′) to the shared (n−1)-dimensional face; ρ(ξ, ξ′) = ρ(ξ′, ξ). If σ ∈ Xn−1 then

cl |σ| is a closed convex set in Rn. This can be regarded as an affine (n−1)-dimensional

space. Therefore for any x ∈ cl ρ(ξ, ξ′) there are two unit vectors (which are negatives

of each other) normal to cl |σ| at x. For (ξ, ξ′) ∈ E and x ∈ cl ρ(ξ, ξ′), let ~nξ→ξ′ be the

normal in the direction from ξ to ξ′. Let λx be the assignment

E 3 (ξ, ξ′) 7→ ~nξ→ξ′ .

Definition 4.3.2. Let X be a pure polyhedral complex and ϕ : R × |X | → |X | be a

flow generated by ẋ = f(x). We say that a pair (ξ, ξ′) ∈ E is (positively) transverse

with respect to ϕ if f(x) · λx(ξ, ξ′) > 0 for all x ∈ cl |ρ(ξ, ξ′)|. A picture of positively

transversality is Figure 4.1.

Figure 4.1: An example of a pair (ξ, ξ′) that is positively transverse to ϕ. A qualitative
picture of the orbits of the flow ϕ of ẋ = f(x) is depicted.

The notion of transversality gives rise to the following restriction of E .

Definition 4.3.3. Let X be a pure polyhedral complex , F be a binary relation on

X+ and ϕ : R × |X | → |X | be a flow generated by ẋ = f(x). The pair (X ,F) is a

transversality model for ϕ if

(ξ′, ξ) ∈ E \ F =⇒ (ξ, ξ′) is positively transverse with respect to ϕ.

F is called the discrete flow.
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The intuition is as follows. The top-cells ξ, ξ′ intersect in an (n−1)-dimensional cell

ρ(ξ′, ξ). If the pair is positively transverse in the direction λ(ξ, ξ′), then one is allowed

remove the pair (ξ′, ξ) from the relation E .

Remark 4.3.4. Given a pure polyhedral complex X and flow ϕ generated by ẋ = f(x),

there are two extremal transversality models.

• E itself is the maximal transversality model.

• Define the relation T ⊂ E via

T = {(ξ′, ξ) ∈ E | (ξ, ξ′) is positively transverse with respect to ϕ}

The minimal transversality model F ⊂ E is defined by

F = E \ T .

We can now state our main result for transversality models.

Theorem 4.3.5. If (X ,F) is a transversality model for the flow ϕ : R × |X | → |X |

generated by ẋ = f(x) then F is a discrete approximation for ϕ.

Proof. To show that F is a discrete approximation, we must show that there is a lattice

homomorphism N = k(Invset+(F)) is a sublattice of ABlockR(ϕ); recall ABlockR(ϕ)

from Definition 2.9.4. Since N is the image of a lattice homomorphism, it suffices

to show that | cl(a)| is an attracting block for any a ∈ Invset+(F). To this end, let

a ∈ Invset+(F) and set A = cl(a). We must show that |A| is an attracting block. It

suffices to show that if x ∈ bd(|A|) then ϕt(x) ∈ int(|A|) for all t > 0. Let x ∈ bd(|A|).

Then x ∈ |σ| for some σ ∈ fr(A) by Corollary 2.7.5. Consider Z := Xn−1∩star(σ)∩fr(A).

Let τ ∈ Z. Since a ∈ Invset+(F) there is a pair (ξ, ξ′) ∈ E such that τ = ρ(ξ, ξ′) and

(ξ, ξ′) is positively transverse with respect to ϕ. Since x ∈ |σ| ⊂ cl |τ | this implies that

f(x) · λx(ξ, ξ′) > 0. (4.5)

Since (4.5) holds for all τ ∈ Z, this implies that ϕt(x) ∈ int|A| for all t sufficiently small.

Since this holds at every x ∈ bd(|A|) it follows that ϕt(x) ∈ int|A| for all t. Therefore

|A| is an attracting block.
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4.4 Computational Examples

In this section we translate some well known connection matrix examples (see [17, 40])

into our framework. Importantly, these examples illustrate that transversality models

are general enough to capture the interesting phenomena of the connection matrix

theory. In particular, the following examples highlight that non-uniqueness of the

connection matrix may occur in computations.

Example 4.4.1 (Saddle-Saddle Connection). This flow appears as a qualitative exam-

ple in [17, Example 6.1] and [40, Example 2.2]. If the stable and unstable manifolds of

fixed points do not intersect transversely, then this may lead to non-uniqueness in the

connection matrix. Figure 4.2(a) contains a transversality model (X ,F) (gray) for the

flow ϕ (orange). The cubical complex X has nine top-dimensional cubes (2-cells). The

arrows along the boundary of X only serve to indicate that the entire polyhedron is an

attracting block in a larger flow on R2; that is, they are boundary conditions. In Fig-

ures 4.2(b) and (c) are, respectively, the Conley-Morse graph (see Example 1.2.2) and

the connection matrix for the Conley complex (M, µ). M consists of five cells: three 0-

cells η0, η1, η2 with µ(ηi) = i and two 1-cells with µ(σi) = i. The non-uniqueness of the

connection matrix is expressed as the equation a+ b ≡ 0 mod 2. It is straightforward

to show that different discrete Morse theoretic calculations it is possible to find both of

the connection matrices. In Franzosa’s model, the parameter controls the connecting

(a)

1 : t0 2 : t0

0 : t0 3 : t1

4 : t1

(b)

∆1 =

σ3 σ4( )η0 1
η1 1 a
η2 1 b

(c)

Figure 4.2: (a) Transversality model for a saddle-saddle connection. (b) Conley Morse
graph. (c) Connection matrix (zero entries not shown).

orbit and for a critical parameter there is a saddle-saddle connection. On either side of
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the critical parameter, there is no saddle-saddle connection. At this level of resolution,

i.e., choice of X , it is not possible to separate the distinct cases. If the location of the

fixed point is perturbed then it becomes possible to find a transversality model which

has a unique connection matrix, see Figure 4.3. The blank node has trivial index.

(a)

0 : t0 1 : t0 2 : t0

4 : t1 3 : t1

(b)

σ3 σ4( )η0 1
η1 1 1
η2 1

(c)

Figure 4.3: (a) Transversality model for perturbation and transverse intersection. (b)
Conley Morse graph (c) Connection matrix.

Example 4.4.2 (Periodic Orbit). In [40, Example 3.1] Reineck showed that periodic

orbits may cause non-uniqueness of the connection matrix, even in the case when

stable and unstable manifolds intersect transversally. A transversality model can be

constructed for the example, warranting application of the computational connection

matrix theory. Our system differs slightly from [40, Example 3.1] by an addition of two

isolated invariant sets: a stable periodic orbit encircling the example as well as a central

unstable fixed point. There are seven cells in the Conley complex: two 0-cells, η0, η1,

four 1-cells σ0, σ1, σ2, σ3 and three 2-cells, ξ4, ξ5, ξ6; we have µ(ηi) = i, µ(σi) = i and

µ(ηi) = i. The conventional connection matrix analysis proceeds as follows: the fact

that the total index H(S) = 0 implies that ker ∂2 = 0. This implies dim(im ∂2) = 3.

Thus the columns of ∆ associated to η4, η5, η6 must be linearly independent. This

gives four possible connection matrices; all four may be obtained using different Morse-

theoretic reductions.
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Figure 4.4: A transversality model for Reineck’s example.

0 : t0 + t1 1 : t0 + t1

2 : t1

4 : t2

3 : t1

6 : t2

5 : t2

(a)

σ2 σ3 η4 η5 η6


η0 1 1
η1 1 1
σ0 a c
σ1 b 1 d
σ2 1 1
σ3 1 1

(b)

Figure 4.5: (a) Conley-Morse graph. (b) Connection matrix.

4.5 Parabolic Recurrence Relations

In this section we provide a review of parabolic recurrence relations. This is the primary

ingredient for the Morse theory on braids developed in [21]. Other references include [20,

49, 48, 50]. We also recall the space of discretized braids, which is the phase space for

parabolic recurrence relations. Finally, in Section 4.6 we will build transversality models

for a parabolic recurrence relation that fixes a particular braid.

Definition 4.5.1. A parabolic recurrence relation (of period d > 0) is a system of

differential equations

ẋi = Ri(xi−1, xi, xi+1) for i ∈ Z

where each Ri : R3 → R is a smooth bounded function with Ri+d = Ri. Moreover each

Ri is parabolic, i.e., ∂1Ri > 0 and ∂3Ri ≥ 0. We denote the entire vector field by R.
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Examples of parabolic recurrence relations include discretizations of uniform parabolic

PDE’s, monotone twist maps, etc [49, 48, 20, 21, 50]. Given a sequence {yi}i∈Z with

yi ∈ R one can evolve the points according to the equation

ẏi = Ri(yi−1, yi, yi+1) (4.6)

The sequence {yi} can be regarded as a discretized function, see Figure 4.6. Multiple

discretized functions can be written as v = {yαi }
α=1,...,m
i∈Z where α indexes the function.

The collection v may be evolved according to (4.6). A stationary solution of R is a

sequence {yi} such that Ri(yi) = 0 for all i. A collection v is stationary under R if

each yα is stationary. In this case we say that R fixes v. The theory is designed to use

a stationary solutions to force the existence of other solutions.

4.5.1 Discretized Braids

According to the theory of [21], the collection v = {yαi } should be regarded as a

discretized braid and a single sequence yα as a strand. This motivations the following

definition of closed positive discretized braids, which we recall from [21].

Definition 4.5.2. The space of closed discretized period d braids on n strands, denoted

Dd
m, is the space of all ordered sets of strands v = {vα}α=1,...,m, defined as follows:

(a) each strand vα = (vα1 , v
α
1 , . . . , v

α
d+1) ∈ Rd+1 consists of d+ 1 anchor points vαj ;

(b) vαd+1 = v
τ(α)
1 for all α = 1, . . . ,m for some permutation τ ∈ Sm;

(c) for any pair of distinct strands vα and vα
′

such that vαj = vα
′

j for some j, the

transversality condition
(
vαj−1 − vα

′
j−1

)(
vαj+1 − vα

′
j+1

)
< 0 holds.

The elements v ∈ Dd
m will be referred to as discretized braids. The dimension of v is

d. The number of strands is m.

The path components of Dd
m comprise the discrete braid classes. The discrete braid

class of a discrete braid diagram u is denoted [u]. The closure of Dd
m, denoted cl Dd

m,

is obtained by ignoring condition (c) of Definition 4.5.2. The singular discrete braids

are elements of Σd
n = cl Dd

m \Dd
m.
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Discretized braids can be regarded as topological braids by extending each strand

to a piecewise linear function, see Figure 4.6. In this figure is the braid diagram: the

collection (i, vαi ), with each strand extended to a piecewise linear function. Our braids

will be positive, i.e., all crossings are positive. From (b), these braids are also closed,

i.e., we may identify the last coordinate of the braid with the first.

u v w

Figure 4.6: Braids u, v and w. u and v are 2-D braids. w is a 3-D braid.

The point is that a parabolic recurrence relation of period d relation defines a vector

field on cl Dd
m via Eqn. (4.6) and there is an associated flow. In order to prove forcing

theorems, one needs to work with relative braids: a single strand u – called the free

strand – relative to a fixed braid v – the skeleton. In this thesis we restrict to single

strands relative to a fixed braid v; relative braids can be defined in more generality,

see [21]. Let R be a parabolic recurrence relation which fixes v ∈ Dd
m. Define

Dd
1 rel v := {u ∈ Dd

1 : u t v ∈ Dd
m+1}

The elements Dd
1 are denoted u rel v and are called discrete braids relative to v,

or more simply relative discrete braids. The path components of Dd
1 rel v comprise

the discrete braid classes relative to v, or more simply relative discrete braid classes,

denoted [u rel v]. A discrete braid class [u rel v] is bounded if cl[u rel v] is a bounded set.

The parabolic recurrence relation R defines a vector field on cl Dd
1 rel v via Eqn. (4.6)

and there is an associated flow ϕ on cl Dd
1 rel v.

Let [u rel v] be a bounded proper braid class. Set

N = cl
(
[u rel v]

)
,

which we may identify with a regular closed subset of Rd. It follows from [21, Theorem

15] that N is an isolating neighborhood for ϕ and there is a well-defined (homological)

Conley index which may be defined as follows. A boundary face of N is an occurrence
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where ui = vαi for some i and some α. A boundary face of N can be given a co-

orientation: such a face is regarded as positive co-oriented if ui−1 − vαi−1 > 0 and thus

also ui+1 − vαi+1 > 0. Define N− to be the closure of the union of boundary faces

of N where the co-orientation is positive. Following [21], we define the braid Conley

homology as

HCk([u rel v]) := Hk(N,N
−), k ∈ N. (4.7)

It was proved in [21] that this is an invariant for [u rel v] and a Conley index for the

flow ϕ.

Given v ∈ Dd
m, from the definition v has m strands and dimensionality d. These

two parameters suffice to determine the cubical complex X = X (d,m) on the d-cube

[0,m+1]d. Without loss of generality (up to scaling) we assume the following condition

on our skeleton v: for any fixed i the cross-section (v1
i , v

2
i , . . . , v

m
i ) is a permutation of

is a permutation of (1, 2, . . . ,m). That is, the (vαi ) are integers and take unique values

between 1 and m. This implies that the pairs (i, vαi ) lie on the integer lattice within

the box [1, d+ 1]× [1,m]. The cubical complex X is comprised of all the cells ξ where

ξ = I1 × I2 × . . .× Id and Ii = [li, li + 1] with 1 ≤ li ≤ m.

Along any coordinate i there are m+ 1 top-dimensional d-cubes in X . Given a top-cell

ξ ∈ X+ we have that

ξ = [l1, l1 + 1]× [l2, l2 + 1]× . . .× [ld, ld + 1].

From the perspective of the cubical complex X , a sequence u = (u1, · · · , ud+1), with

ud+1 = u1 and u t v ∈ Dd
m+1, is a free strand. The relative discrete braid is denoted

u rel v ∈ Dd
1 rel v. The relative discrete braid class [u rel v] is a path component of

Dd
1. Moreover, if [u rel v] is bounded then it is a top-cell of the cubical complex X . See

Figure 4.7. The closure of the bounded discrete braid classes of Dd
1 rel v is the cube

[0,m+ 1]d ⊂ Rd. See Figure 4.8(b).

The free strand and braid have an associated crossing number, cross(u) which is the

number of intersections of the strand u with the strands in v. For u′ rel v ∈ [u rel v]

we have cross(u′ rel v) = cross(u rel v), see [21]. Therefore the crossing number is
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u1

u2

u3

(a)

u1

u2 u rel v

[u rel v]

(b)

Figure 4.7: (a) Braid v with free strand u. (b) A relative braid class [u rel v] which is
a top-cell in X .

constant on top-cells. This furnishes a function

cross : X+ → N.

The function cross(·) is a discrete Lyapunov function for the flow ϕ, see [21]. In Fig-

ure 4.8(a) the braid v is appended with two constants strands (these act as boundary

conditions); (b) shows the cubical complex X with each top-cell (a two dimensional

cube) is labeled with its crossing number. There are two kinds of relative braid classes

in Dd
1 rel v.

Definition 4.5.3. A relative braid class [u rel v] is improper if vα ∈ cl[u rel v] for

some α. Otherwise a braid class is proper.

Here is another perspective on the sources of improperness. If a strand vα =

(vα1 , . . . , v
α
d+1) in v obeys the condition vα1 = vαd+1, then it corresponds to a vertex

in X via

vα = [vα1 , v
α
1 ]× . . .× [vαd , v

α
d ]

We call these vertices in X improper and write Gv for the set of improper vertices.

A relative braid class [u rel v] corresponds to a top-cell ξ in X and it is improper of

vα ∈ cl ξ.

4.6 Transversality Models for Parabolic Recurrence Relations

Define the relation F0 on set of top-cells X+ as follows. Recall the adjacency relation

E on top-cells, given in Definition 4.3.1. A pair (ξ, ξ′) ∈ F0 if
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(a) (b)

Figure 4.8: (a) Braid v with two constant strands (top and bottom). (b). Cubical
complex X and cross : X+ → N. Each dot is an improper vertex.

1. (ξ, ξ′) ∈ E . That is, ξ, ξ′ ∈ X+ are adjacent top-cells;

2. cross(ξ) ≥ cross(ξ′).

In order to construct a transversality model we must coarsen F0 by adding relations

around improper vertices. Define the relation F ⊃ F0 as follows. A pair (ξ, ξ′) ∈ F if

1. (ξ, ξ′) ∈ F0, or

2. (ξ, ξ′) ∈ E and ξ, ξ′ ∈ X+ ∩ star(v) for some v ∈ Gv.

Figure 4.9(b) shows the phase space (the two-dimensional cubical complex X ) as

well as the relation F . One-dimensional faces of two top-cells ξ and ξ′ are labeled with

an arrow ξ → ξ′ to indicate that (ξ, ξ′) ∈ F . A face labeled with a bidrectional arrow

ξ ↔ ξ′ indicates that both (ξ, ξ′) and (ξ′, ξ′) are in F .

(a) (b)

Figure 4.9: (a) Braid v with constants strands. (b) Tranversality model (X+,F).

Proposition 4.6.1. Let R be a parabolic recurrence relation that fixes v ∈ Dd
m. The

tuple (X ,F), given as above, is a transversality model for the flow ϕ generated by R on
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cl Dd
1 rel v.

Proof. X is a pure polyhedral complex in Rn by construction. Let (ξ′, ξ) ∈ E \ F . We

must show that (ξ, ξ′) is positively transverse. Since (ξ′, ξ) 6∈ F we have that cross(ξ′) <

cross(ξ). Let u and u′ be free strands such that ξ = [u rel v] and ξ′ = [u′ rel v]. Since

(ξ′, ξ) ∈ E \ F we must have that [u rel v] and [u′ rel v] are proper classes. It follows

from [21, Proposition 11] that (ξ, ξ′) is positively transverse.

Since F is a transversality model for the flow generated by R, it follows from The-

orem 4.3.5 that F is a discrete approximation and it follows from Theorem 4.2.4 that

cInvset+(F) → Sub(X ) defined as in Eqn. (4.1) is a lattice homomorphism. Therefore

there is an associated SC(F)-graded cell complex (X , ν) with ν by Eqn. (4.4). The

graded cell complex (X , ν) is input into Algorithm 3.7.8 (ConnectionMatrix).

4.7 Computational Examples for Parabolic Relations

In this section we examine the Conley-Morse graphs for the three braids of Figure 4.6

and their n-fold covers. The n-fold cover is the repetition of a braid n times. More

discussion of similar braids and n-fold covers can be found in [21, Section 4.5: Example

1–3]. For all our examples, we append constant top and bottom strands to the skeleton,

which act as (attracting) boundary conditions. This set of parabolic examples also

serves as a collection of examples to benchmark the connection matrix algorithm. See

Section 5.4 for the experimental results.

Example 4.7.1 (Two Dimensions). Our first example in Figure 4.10(a) is a two-

dimensional braid u. More discussion of this particular braid can be found in [21,

Section 4.5: Example 1]. In 2D one may work out the cross and F by hand, as in Fig-

ure 4.10(b). Since F is a tranversality model, there is an associated SC(F)-graded cell

complex (X , ν); this is visualized (in the fashion of Example 1.2.2) in Figure 4.11. The

output of the algorithm ConnectionMatrix is the Conley complex – an SC(F)-graded

complex (M, µ). Moreover, the associated boundary operator ∂M is a connection ma-

trix for the tessellated Morse decomposition π : M(A) ↪→ T(N). We depict this data in

Figure 4.12(a).
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(a) (b)

Figure 4.10: (a) The braid u. (b) 2D cubical complex and cross : X+ → N. Directed
graph F is depicted with vertex set the collection of 2-cells.

0: 4t0 + 4t1 + t2 3: 4t0 + 4t1 + t2

1: 2t0 + 3t1 + t2 8: 2t0 + 3t1 + t2 4: 2t0 + 3t1 + t2 6: 2t0 + 3t1 + t2

2: 2t0 + 3t1 + t2 9: 2t0 + 3t1 + t2 5: 2t0 + 3t1 + t2 7: 2t0 + 3t1 + t2

10: 4t0 + 12t1 + 7t2

11: 4t0 + 8t1 + 4t2 12: 4t0 + 8t1 + 4t2

Figure 4.11: SC(F)-graded complex associated to the braid u.

The size of the poset SC(F) often increases rapidly with both dimension and number

of strands. In this case it is convenient to restrict the poset SC(F) to the nodes with

nontrivial Conley indices. We label this poset RC(F). RC(F) is the image of M under

µ, and there is a factorization of µ as M→ RC(F) � SC(F). We call the restriction

(M, µ) the reduced Conley complex. The associated Conley-Morse graph is the reduced

Conley-Morse graph, which is depicted in Figure 4.12 (b). Higher dimensonal examples

are given in Figures 4.13 and 4.14. Figure 4.13(a) is the 2-fold cover of u with reduced

Conley-Morse graph in (b). Figure 4.14(a) and (b) have the Conley-Morse graphs for

the 4-fold cover and 5-fold cover, respectively.

Example 4.7.2 (Growth Rate). A second example is similar to the braid in [21, Section

4.5: Example 3]. We examine the growth rate of SC(F) and RC(F) with respect to n-

fold covers of v. In [21] it is shown that for an n-fold cover of v there are at least 3n−2
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0 : t0 3 : t0

10 : t1

(a)

0 : t0 3 : t0

10 : t1

(b)

Figure 4.12: (a) Conley-Morse graph for the Conley complex (M, µ). Nodes in SC(F)
with trivial Conley index are blank. The tuple gives the Betti numbers (and thus the
Conley index) of the associated fibers. (b) RC(F) and the reduced Conley-Morse graph.
There is an order embedding RC(F) ↪→ SC(F).

braid classes that have nontrivial Conley index. We can compare this lower bound with

the true number of non-trivial classes for 2 6= n ≤ 5. For this particular braid, the

number of nontrivial indices grows so rapidly that we only depict the Conley-Morse

graph for the v itself; see Figure 4.15. Table 4.16 gives dim (the dimensionality of the

cubical complex), and #SC and #RC, the sizes of the posets SC and RC, respectively.

From Table 4.16 it is clear that the estimate misses many nontrivial classes.

Growth Rate

n-fold cover dim # SC # RC 3n − 2 Estimate

v 2 13 3 1
2-fold cover 4 114 32 7
3-fold cover 6 879 196 25
4-fold cover 8 7212 1153 79
5-fold cover 10 62 157 6724 241

Table 4.16: Growth rates for n-fold covers of v.

Example 4.7.3 (Pseudo-Anosov Braid). Let w be the three-dimensional braid in Fig-

ure 4.17(a). Figures 4.18(a) gives the 2-fold cover of w and (b) gives the associated

Conley-Morse graph. Finally, in Figure 4.19 we give the Conley-Morse graph for the

three-fold cover of w.
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(a)

0 : t0 17 : t0

105 : t1 105 : t1 + t2

106 : t2 + t3

(b)

Figure 4.13: (a) 2-fold cover of u. (b) Reduced Conley Morse graph for 2-fold cover
of u.

0 : t0 68 : t0

135 : t1 + t2

1999 : t3 + t4

5203 : t5 + t6

6236 : t1

6237 : t2 + t3

6265 : t4 + t5

6265 : t6 + t7

(a)

0 : t0

50661 : t1

50662 : t2 + t3

50665 : t4 + t5

50674 : t6 + t7

31 : t0

115 : t1 + t2

7217 : t3 + t4

21789 : t5 + t6

43234 : t7 + t8

50712 : t8 + t9

(b)

Figure 4.14: Reduced Conley Morse graph for (a) 4-fold cover and (b) 5-fold cover of
u.

(a) (b)

0 : t0 3 : t0

6 : t1

(c)

Figure 4.15: (a) Braid v. (b) Lap numbers. (c) Reduced Conley-Morse graph.
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(a)

0 : t0 3 : t0

9 : t1

17 : t2

21 : t3

(b)

Figure 4.17: (a) w. (b) Reduced Conley-Morse graph for w.

0 : t0 7 : t0

41 : t1 + t2

149 : t2

174 : t3 241 : t3

255 : t4

417 : t5 347 : t5

454 : t6

Figure 4.18: (a) 2-fold cover of w; Conley-Morse graph for 2-fold cover.
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0 : t0 7 : t0

50 : t1 + t2

387 : t3 557 : t3 + t4

728 : t4 622 : t4 574 : t4

797 : t5 749 : t5 653 : t5

804 : t6

967 : t7 905 : t7 983 : t7

1000 : t8 998 : t8 994 : t8

1005 : t9

Figure 4.19: Reduced Conley-Morse Graph for 3-fold cover of w.
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Chapter 5

Elements of Connection Matrix Computation

5.1 Overview

In main goal of this chapter is to describe a modification to the algorithm for computing

the connection matrix, which is applicable when computing connection matrices in

the setting of cubical complexes. The modification is to use an implicit scheme for

the discrete Morse theory, adapted to the cubical setting, enabling connection matrix

computations in high-dimensions (e.g., d = 9, 10).

This is quite effective, as our computational results – in Section 5.4 – demonstrate.

In fact, the cubical Morse theory we describe decouples from the connection matrix algo-

rithm, and provides a very effective way to compute the homology of high-dimensional

cubical complexes. See [5] for some examples of homology computations of cubical

configuration spaces.

A few remarks are in order. First, our emphasis on cubical complexes is due to

the fact that these arise naturally within computational dynamics, most often as grids

on the phase space. Second, we introduce our principles in a more general setting

than that of cubical complexes. We do this as we anticipate extending the results of

implicit matchings to other settings, e.g., simplicial complexes and the order complexes

of cubical complexes.

5.2 Principles of Partial Matchings

Our algorithm for computing a connection matrix (Algorithm 3.7.8 of Section 3.7.4)

relies on discrete Morse theory (see Section 2.8). A naive implementation would require

storage of both the complex X and the tower of partial matchings (see Section 3.7). In
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many situations, this would require a significant or infeasible amount of memory.

The contributions of this chapter are twofold. First, we maneuver around the mem-

ory issue with implicit partial matchings, that is, partial matchings that may be ex-

pressed as a formula. In this case the entire partial matching does not need to be stored.

This is developed in Sections 5.2.1 and 5.3. Second, we give a general scheme which

takes as input a sequence of matchings α = (α1, . . . , αn) and derives a new sequence of

partial matchings ω = (w1, . . . , wn), which incorporates the collective matching infor-

mation in α.

In practice, we use implicit matchings adapted to (graded) cubical complexes. The

benefit is twofold: first, as the matching is implicit, the algorithm for computing the

first Morse complex requires low memory usage; second, in experiments we find that

the implicit matching scheme executes quickly, see Section 5.4. Within the connection

matrix framework, the Morse theory described in this section is typically the very first

part of the computation. In general, after one round of Morse theory, the complex is

no longer cubical and the algorithm described in this section is no longer applicable.

See Section 5.4 for some results on the efficacy of this approach.

5.2.1 Example of Implicit Matching

We begin with an example of an implicit matching on a cubical complex. Let X

be a cubical complex in Rn with an ordering on the coordinates of the complex (see

Section 2.6). Without loss of generality, we take the ordering (1, 2, . . . , n). Fix a

coordinate i. We create a partial matching αi. Any cell ξ ∈ X may be written as

ξ = I1 × . . .× Ii × . . .× In.

Either ξ has extent in i or it does not (see Definition 2.6.2). If it does have extent i,

then Ii = [l, l+ 1]. In this case ξ has a left boundary, ξ′ (which may or may not belong

to X ), given by

ξ′ = I1 × . . .× [l, l]× . . .× In.
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If ξ does not have extent, then Ii = [l, l]. In this case, ξ has a right coboundary, ξ′

(which may or may not be in X ), given by

ξ′ = I1 × . . .× [l, l + 1]× . . .× In.

We define the following function Mi from cubes to cubes:

Mi(ξ) =


I1 × . . .× [l, l + 1]× . . .× In if Ii = [l, l]

I1 × . . .× [l, l]× . . .× In if Ii = [l, l + 1].

(5.1)

For a cube ξ we refer to Mi(ξ) as the mate of ξ in coordinate i. Let αi be the

following acyclic partial matching (see Definition 2.8.1) associated to the function Mi:

αi(ξ) =


Mi(ξ) if Mi(ξ) ∈ X

ξ otherwise.

(5.2)

This procedure describes a set {αi} of acyclic partial matchings indexed by the

coordinates. The ordering on coordinates imposes an ordering (preference) on the

acyclic partial matchings. Thus we have a sequence (αi) of acyclic partial matchings,

and for a cell ξ ∈ X the set {αi(ξ)} holds the possible mates, and the ordering of the αi

gives a preference on the possible mates. Using the sequence (αi) we construct a final

acyclic partial matching, denoted w, which uses the preference to match a cell ξ with

its most preferred mate w(ξ) ∈ {αi(ξ)}, subject to the condition that w(ξ) does not

have a more preferred mate (within {αi(w(ξ)}) to ξ itself. If ξ is unmatched, then ξ is

a critical cell. This is formalized in Section 5.3. For the sequence (α1, α2), w is shown

in Figure 5.1. Recall that given a partial matching (A,w), a pair (ξ, ξ′) with ξ ∈ Q,

ξ′ ∈ K and w(ξ) = ξ′ is visualized with a directed edge ξ → ξ′. See [14, 22] and also

Section 3.7.

Figure 5.1: Example of the implicit matching w on 2D cubical complex.
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5.2.2 Principles of Matchings

Let X be a cell complex. The incidence function κ engenders a binary relation which

we call the incidence relation.

Definition 5.2.1. Let X be a cell complex. The incidence relation is the relation

denoted by ≺ given as

ξ′ ≺ ξ if and only if κ(ξ, ξ′) 6= 0.

An equivalent formulation of the notion of partial matching (Definition 2.8.1) is an

involution w : X → X which is subject to the following trichotomy. Given any ξ ∈ X ,

either:

1. w(ξ) = ξ, or

2. ξ ≺ w(ξ), or

3. w(ξ) ≺ ξ.

That is, a partial matching is an involution in which the image of a cell is either itself

or a primary face/coface. In this case the decomposition X = A tQ tK is given as

A := {ξ : ξ = w(ξ)} Q := {ξ : ξ ≺ w(ξ)} K := {ξ : w(ξ) ≺ ξ}.

That is, A is recovered as the set of cells fixed under w, denoted Fix(w), and w

restricts to a bijection w|Q : Q→ K.

Definition 5.2.2. Let w be a partial matching. A discrete flowline, or simply flowline,

is a sequence of cells

ξ0 ≺ w(ξ0) � ξ1 ≺ w(ξ1) ≺ . . . � ξn ≺ w(ξn).

Flowlines are sometimes called zigzags paths, where ≺ are the ‘zigs’ and � are the

‘zags’. Flowlines are used to derive the relation ξ′ � ξ on Q (see Definition 2.8.1).

Recall from Definition 2.8.1 that a partial matching is acyclic if the transitive closure

of � is a partial order on Q.

For the remainder of this section let α = (α1, . . . , αn) be a sequence of partial

matchings.
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Definition 5.2.3. A partial matching w : X → X is α-compatible if for all ξ ∈ X there

is an i such that w(ξ) = αi(ξ).

As each αi is an α-compatible matching, the set of α-compatible matchings is

nonempty. If w is an α-compatible partial matching then there is a relation � on Q

and any sequence ξ0 � ξ1 lifts to a flowline

ξ0
i
≺ w(ξ0) � ξ1

j
≺ w(ξ1)

where

w(ξ0) = αi(ξ0) and w(ξ1) = αj(ξ1).

That is, we can label the ‘zigs’ (denoted with ≺) with the appropriate index. A notion

stronger than compatibility is that of stability – a matching which obeys the preference.

Stability forces the flowlines to obey a particular forcing condition, which becomes

useful when proving acyclicity, see Proposition 5.2.11.

Definition 5.2.4. Let w be an α-compatible matching. Consider ξ0 � ξ1 with associ-

ated flowline

ξ0

j
≺ w(ξ0) � ξ1

j′

≺ w(ξ1).

The pair ξ0 � ξ1 is α-unstable if there exists i such that

1. w(ξ0) = αi(ξ1), and

2. i < j and i < j′.

A matching is called α-stable if there are no α-unstable pairs.

Proposition 5.2.5. For any sequence α = (α1, . . . , αn) of partial matchings there is

an α-stable matching w.

Proof. We inductively derive a sequence (w0, . . . , wn) as follows. First, let w0 := id.

For i ∈ {1, . . . , n}, let Ai−1 = Fix(wi−1) and

wi(ξ) =


αi(ξ) ξ, αi(ξ) ∈ Ai−1

wi−1(ξ) otherwise.

(5.3)
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The matching of interest is

w := wn. (5.4)

We now show that w is a stable partial matching. We begin by proving that that w is

a partial matching. We proceed by induction on the sequence {w0, . . . , wn}. The base

case is w0 = id, which is a partial matching. Now we assume that wi−1 is a partial

matching and show that wi is also a partial matching.

This amounts to showing two things: first, that wi is an involution, and second, that

it obeys the incidence trichotomy. By the inductive hypothesis we have that w2
i−1 = id.

If ξ 6∈ Ai−1 or αi(ξ) 6∈ Ai−1 then w2
i (ξ) = w2

i−1(ξ) = id. Otherwise

wi(wi(ξ)) = wi(αi(ξ)) = α2
i (ξ) = id.

If ξ 6∈ Ai−1 or αi(ξ) 6∈ Ai−1 then wi(ξ) = wi−1(ξ) and, as wi−1 is a partial matching

by the inductive hypothesis, either κ(ξ, wi(ξ)) 6= 0 or κ(wi(ξ), ξ)) 6= 0. Otherwise,

ξ, αi(ξ) ∈ Ai−1, and wi(ξ) = αi(ξ). As αi is a partial matching by hypothesis, we have

that κ(αi(ξ), ξ)) 6= 0 or κ(ξ, α(ξ)) 6= 0. Therefore the incidence trichotomy holds and

wi is a partial matching.

It remains to show that w is stable. Suppose that w had an unstable pair ξ0 � ξ1

with associated flowline

ξ0

j
≺ w(ξ0)

i
� ξ1

j′

≺ w(ξ1).

and αi(ξ1) = w(ξ0) and i < j, j′. Let ξ′ = w(ξ0) and ξ′′ = w(ξ1). As αi(ξ1) = ξ′ but

w(ξ1) 6= ξ′ it follows from Eqn. (5.3) that either ξ1 6∈ Ai−1 or ξ′ 6∈ Ai−1. That ξ′ =

w(ξ0) = αj(ξ0) implies ξ0, ξ
′ ∈ Aj−1. That ξ′′ = w(ξ1) = αj′(ξ1) implies ξ1, ξ

′′ ∈ Aj′−1.

By Eqn. (5.3) there is a descending sequence

X = A0 ⊃ A1 ⊃ . . . ⊃ An.

Note that i < j, j′ implies Aj , Aj−1 ⊂ Ai−1. Therefore ξ1, ξ
′ ∈ Ai, a contradiction.

Therefore w is stable.

Remark 5.2.6. Stable partial matchings need not be unique. Here is an example.

The construction of the stable matching w as defined in Eqn. (5.4) can be expressed

as the recursive algorithm, Mate.
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α3

α2

α1
w1

w2

Figure 5.2: Sequence of matchings α = (α1, α2, α3). Both w1 and w2 are stable match-
ings with respect to α.

function Mate(ξ)

return MateHelper(ξ, n)

end function

function MateHelper(ξ, i)

if i = 0 then

return ξ

end if

ξ′ ←MateHelper(ξ, i− 1)

if ξ′ = ξ then

if MateHelper(αi(ξ), i− 1) = αi(ξ) then

return αi(ξ)

end if

end if

return ξ′

end function

Proposition 5.2.7. Let X be a cell complex and let α = (αi) be a sequence of partial

matchings. Then w(·) := Mate(·) is an α-stable partial matching.

Proof. Set wi(·) := MateHelper(·, i). Notice that w0 = id. It follows from the proof

of Proposition 5.2.5 that w is an α-stable partial matching.

Proposition 5.2.8. Let X be a cell complex and ξ ∈ X . The algorithm Mate(ξ)

executes in O(2n) time.

Proof. We prove this by induction on n. In the worst case, the two if statements are true

at each level of recursion. We define a function T for the complexity of the algorithm in

the worst case. For n = 0, ξ is returned. Set T (0) = c1. and T (n) = c2 +2T (n−1). The
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closed form of this recurrence relation is T (n) = 2nc1 + c2
∑n−1

i=0 2i = 2n(c1 + c2)− c2 =

O(2n).

5.2.3 Establishing Acyclicity

Even if each partial matching αi in the sequence α is acyclic, an α-stable matching

need not be acyclic. In this section we review the notion of a Lyapunov function. This

will be a main tool for partially establishing acyclicity of w as given in Eqn. 5.4. To

establish acyclicity, it will remain to show a local acyclicity condition – namely, that

the matching is acyclic on the fibers (level-sets) of the Lyapunov function.

Definition 5.2.9. A Lyapunov function for a partial matching w : X → X is a poset

morphism f : (X ,≤) → Z such that f(w(ξ)) = f(ξ) for each ξ ∈ X . We say that w is

globally acyclic if it has a Lyapunov function f .

Given any sequence ξ0 � ξ1 � . . .� ξn there is a corresponding a flowline

ξ0 ≺ ξ′0 � ξ1 ≺ ξ′1 � . . . � ξn

where w(ξi) = ξ′i. Application of the Lyapunov function f yields:

f(ξ0) = f(ξ′0) ≥ f(ξ1) = f(ξ′1) ≥ . . . ≥ f(ξn).

The image under f of any flowline is a (weakly) decreasing sequence, hence the

terminology Lyapunov function.

Proposition 5.2.10. Let α = (αi) be a sequence of partial matchings. If f is a

Lyapunov function for each αi then f is a Lyapunov function for w, where w is given

by Eqn. (5.3).

Proof. We prove this by induction on the sequence (w0, w1, . . . , wn = w). The base

case is that w0 = id. By hypothesis f is a poset morphism, therefore it is a Lyapunov

function for w0. Now assume that f is a Lyapunov function for wi−1. We show that

f is a Lyapunov function for wi. Let ξ ∈ X . As f is a Lyapunov function for αi we

have that f(ξ) = f(αi(ξ)). If ξ ∈ Ai−1 and ∈ Ai−1 then f(wi(ξ)) = f(αi(ξ)) = f(ξ).
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Otherwise, f(wi(ξ)) = f(wi−1(ξ)) = f(ξ) by the inductive hypothesis. Therefore f is a

Lyapunov function for w.

This technique establishes a Lyapunov function for the matching w. To establish

that w is an acyclic partial matching, one needs an extra assumption that guarantees

that w is acyclic on the fibers of f . If such a condition is met, then w is acyclic by the

next result.

Proposition 5.2.11. Let f be a Lyapunov function for a partial matching w. If w is

acyclic on the fibers of f then w is an acyclic partial matching.

Proof. We have X =
⊔
k∈Z f

−1(k). Let wk be the restriction of w to f−1(k). By

hypothesis wk is acyclic for each k ∈ Z. From the Patchwork Theorem [29, Patchwork

Theorem], the disjoint union of acyclic partial matchings {wk} on the fibers of f is an

acyclic partial matching on X .

5.3 Implicit Matching for Cubical Complexes

Let X be a cubical complex in Rn. Recall the definition of Mi and αi from Eqn. (5.1)

and Eqn. (5.2), respectively. Let α = (αi). It follows from Proposition 5.2.7 that

w(·) := Mate(·) is an α-stable partial matching.

Proposition 5.3.1. The partial matching w(·) = Mate(·) is globally acyclic.

Proof. Global acyclicity is established by furnishing a Lyapunov function f : (X ,≤)→

Z for w. For any cube ξ we have

ξ = I1 × . . .× In

where Ii = [li, li] or Ii = [li, li + 1]. Define

f(ξ) = −
n∑
i=1

li.

We first show that f is a poset morphism. It suffices to show that f(ξ) ≤ f(ξ′) for any

pair ξ ≺ ξ′, i.e., where ξ is a primary face of ξ′. Let ξ = I1×. . .×In and ξ′ = I ′1×. . .×I ′n.

Since ξ is a primary face, ξ and ξ′ agree on all intervals except one, call it Ij . In this
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case I ′j = [lj , lj + 1] is nondegenerate while Ij is degenerate. Either Ij = [lj , lj ] or

Ij = [lj + 1, lj + 1]. In either case we have that f(ξ) ≤ f(ξ′).

Now for any i we have f(ξ) = f(Mi(ξ)). This implies that f(ξ) = f(αi(ξ)) and

that f is a Lyapunov function for each αi. Therefore f is a Lyapunov function for w

from Proposition 5.2.10.

It remains to establish acyclicity on the fibers of f . For the moment, consider the

case that X is the cubical complex in Rd consisting of every elementary cube, and recall

the notion of interval from Definition 2.4.5. In this case, a fiber of f : (X ,≤)→ Z is a

disjoint union
⊔
Hj of intervals Hj ⊂ X . By an appropriate translation to the origin,

each interval Hj is of the form

Hj = [0, a1]× [0, a2]× . . .× [0, an] where ai ∈ {0, 1}.

Setting a := (a1, . . . , an) ∈ {0, 1}n, it may be seen that each Hj is in fact a hypercube

in the face poset X .

(a)

000

100001010

110011 101

111

(b)

Figure 5.3: (a) Example of H and w in cubical complex. (b) Associated hypercube H
in the face poset formed by the sequences (a1, a2, a3) with ai ∈ {0, 1}.

In the case of an arbitrary cubical complex X in Rn, a fiber of the Lyapunov function

f : (X ,≤)→ Z will consist of a subset of this disjoint union of hypercubes.

Proposition 5.3.2. w is acyclic.

Proof. Propostion 5.3.1 implies that w is globally acyclic. By Proposition 5.2.11, it

remains to show that w is acyclic on the fibers of f . Without loss of generality, we may

restrict to the subset of the hypercube H

{ξ = [0, a1]× . . . [0, an] ∈ X : ai ∈ {0, 1}} ⊂ X .
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Now given a sequence ξ0 � ξ1 � . . . � ξn � ξ0 there is a corresponding a zig-zag in

the hypercube H

ξ0
i0≺ w(ξ0)

j0
� ξ1

i1≺ w(ξ1)
j1
� . . .

jn−1

� ξn
in≺ w(ξn)

jn
� ξ0.

Here every zig and zag is labeled with the appropriate coordinate, i.e.,

Mik(ξk) = w(ξk) =Mjk(ξk+1).

Let i∗ = min{i0, . . . , in}, i.e., the most preferred coodinate for the zig. Since the

sequence is a loop in a hypercube, there must be a corresponding zag in the sequence

through the coordinate i∗, i.e., there is some k where

ξk
ik≺ w(ξk)

i∗

� ξk+1.

However, this would imply that ik < i∗, which is a contradiction. Therefore there can

be no such sequence, implying that w is acyclic in the fibers of f . Therefore w is an

acyclic partial matching by Proposition 5.2.11.

5.3.1 Graded Implicit Matching

In the graded case, the input is a P-graded complex (X , ν). We may adapt the algo-

rithm Mate of Section 5.2.2 to the graded case by using a sequence of graded partial

matchings; we distinguish this by calling the new algorithm Graded-Mate. Recall

from Section 3.7.3 that a partial matching is graded if two cells are matched only if they

belong to the same fiber. We adapt our sequence αi from Section 5.3 to the graded

case as follows:

βi(ξ) =


Mi(ξ) if ν(ξ) = ν(Mi(ξ))

ξ otherwise.

The algorithm Graded-Mate is precisely the algorithm Mate with the sequence

of graded partial matchings β = (βi).

Proposition 5.3.3. Let (X , ν) be a P-graded cubical complex in Rn. The function

w(·) = Graded-Mate(·) is a P-graded acyclic partial matching.
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Proof. The fibers X p = ν−1(p) partition the underlying set X as X =
⊔
X p. Each fiber

X p may be regarded as a subcomplex by restricting (≤, κ,dim) to X p. The algorithm

of Graded-Mate is equivalent to applying Mate on each fiber X p. It follows from

Propositions 5.2.7 and 5.3.2 that this furnishes an acyclic partial matching for each

fiber X p. It follows from the Patchwork Theorem [29, Patchwork Theorem], that taken

together these give an acyclic partial matching for the entire cell complex X .

5.4 Computational Experiments

Our computational experiments are drawn from applications of the computational con-

nection matrix theory to the Morse theory on braids (see Chapter 4). This theory

provides a nice set of scalable and relevant (cubical) examples. For the purposes of

this section we are interested in the performance of our algorithms. Therefore, we will

briefly recall the setup.

We will also use this section to show the visuals one gets from the computation,

which we call the Conley-Morse graph, see Example 1.2.2. In this case the f -polynomial

is replaced with the f -vector, see Definition 2.5.16.

5.4.1 A Morse Theory on Braids Redux

Recall from Section 4.5, that a braid v has two parameters: the dimension – d – and the

number of strands – m. These two parameters suffice to determine the cubical complex

X = X (n,m) on the n-cube [0,m + 1]n. Recall that cross : X+ → Z is a map on the

top-cells of X ; cross is also a Lyapunov function for a parabolic relation which fixes v.

Recall that a directed graph F0 is constructed with edge set X+, where ξ → ξ′ if

cross(ξ) ≥ cross(ξ′). A transversality model is made by coarsening this to a relation

F by handling the improperness (see Definition 4.5.3). We are interested in SC(F)

the strongly connected components of F . Since every top-cell ξ is a vertex in the

graph F , it must belong to some strongly connected component. This furnishes a map

ν0 : X+ → SC(F) that takes any top-cell to the strongly connected component in which

it belongs. It follows from the results in Section 4.5 that the map ν : X → SC(F) given
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(a)

0 : (4, 4, 1)

1 : (2, 3, 1)

2 : (2, 3, 1)

3 : (4, 4, 1)

4 : (2, 3, 1)

5 : (2, 3, 1)

6 : (2, 3, 1) 7 : (2, 3, 1)

8 : (2, 3, 1)9 : (2, 3, 1)

10 : (4, 12, 7)

11 : (4, 8, 4) 12 : (4, 8, 4)

(b)

Figure 5.4: (a) 2D cubical complex and cross : X+ → N. Each point is an improper
strand v ∈ Gv. Directed graph F is depicted with vertex set the collection of 2-cells.
(b) The Hasse diagram of the poset SC(F). Each node p is labeled with the f -vector
of the fiber over p.

0 : (1, 0, 0)

 

 

3 : (1, 0, 0)

 

 

  

  

10 : (0, 1, 0)

  

(a)

0 : (1, 0, 0)

10 : (0, 1, 0)

3 : (1, 0, 0)

(b)

Figure 5.5: (a) Conley complex for Figure 5.4. Blank nodes have no cells in the fiber.
(b) RC(F)-graded complex.

by

ν(ξ) = min
SC(F)

{ν0(η) : η ∈ star(ξ) ∩ X+} ∈ SC(F)

is a well-defined poset morphism ν : X → SC(F). Therefore (X , ν) is a SC(F)-graded

cubical complex. This is shown in Figure 5.4. The graded complex (X , ν) is the input

into Algorithm 3.7.8 (ConnectionMatrix) of Section 3.7. The output (A,∆, µ) is a

Conley complex and ∆ associated connection matrix. This is visualized in Figure 5.5(a).

Define

RC(F) := {[ξ] ∈ SC(F) : |µ−1([ξ])| 6= 0}.

In words, RC(F) ⊂ SC(F) is the subset of strongly connected components that have

non-empty fiber. An RC(F)-graded cell complex is formed by restriction of µ to its

image, see Figure 5.5(b).
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5.4.2 Experimental Results

The specific examples we give to benchmark the performance of the algorithm are

described in more detail, along with their Conley-Morse graphs, in Section 4.7.

Given a SC(F)-graded cell complex, we record the following parameters, which we

term ‘initial data’: the top-dimension of the cubical complex, #X+ (the number of

top-dimensional cubes), and #X (the total number of cells). Finally, we give #SC(F),

the size of the poset of strongly connected components.

We record the results of two algorithms: first, the cubical-Morse theoretic algorithm

– Graded-Mate – which gives an initial graded Morse complex. We record its size of

the Morse complex and the f -vector (that is, number of cells in each dimension). We

also record the execution time of this algorithm.

Applying Algorithm 3.7.8 (ConnectionMatrix) to the graded complex (X , ν)

produces a Conley complex, which can be viewed as a new SC(F)-graded cell complex

(A,µ). The cubical Morse theory is only the initial graded reduction (see Section 3.7.3)

within the tower of reductions associated to the execution of the algorithm (see Dia-

gram 3.21). For the results of the computational experiments, we record the following

parameters of the Conley complex: the number of cells in the Conley complex, the size

of the tower of reductions (including the initial complex and Conley complex), and the

time elapsed. We record #RC(F), the cardinality of RC(F).

The time elapsed data come from iPython’s %timeit ‘magic’, which displays the

average of the best 3 runs out of 10 runs. All testing was done on a Intel(R) Xeon

E5-2680 v3 2.50GHz CPU with 128 GB RAM. This is part of Rutgers University’s

Perceval cluster.

5.4.3 Braids Studied

n-fold covers

We examine the n-fold covers of u,v,w as done in Section 4.7.
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u v w

Figure 5.6: Braids u, v and w.

Torus Knot

Finally, we wish to examine how the algorithm scales with the number of subdivisons,

of the n-cube, i.e., the number of strands in the braid. To do this, study a braid t which

corresponds to a torus knot. In this case we fix t to be four-dimensional and vary the

number of strands m.

Figure 5.7: Schematic for 4-D braid t on m strands.

Regardless of the number of strands, the pattern of the torus remains the same: for

any strand tα, we have that the tαi+1 is obtained from tαi via

tαi+1 =


tαi − 1 tαi > 1

m tαi = 1 .

We append two constant strands to t to act as boundary conditions.

5.4.4 Results
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Initial Data for n-fold covers of u

Dim # Top Cells # Cells #SC(F)

u 2 25 122 13
2-fold cover 4 625 15368 121
3-fold cover 6 15625 1992992 903
4-fold cover 8 390625 264990848 6747
5-fold cover 10 9765625 35958682112 51755

Table 5.8: Data for n-fold covers of u.

Data for implicit Morse scheme on n-fold cover

n # M Time Elapsed

1 13 432 µs
2 361 60.7 ms
3 7969 8.74 s
4 166593 23min 18s
5 3417222 83 hr

Table 5.9: Experimental results for cubical Morse theory for u.

Data for implicit Morse scheme on n-fold cover

n f -vector

1 (6, 6, 1)
2 (46, 124, 126, 56, 9)
3 (321, 1332, 2361, 2280, 1257, 372, 46)
4 (2206, 12248, 30428, 44168, 40934, 24760, 9520, 2120, 209)
5 (15126,105030,334260,642290,825440,741426,471290,209210,62000,11060,901)

Table 5.10: Experimental results for cubical Morse theory for u.

Connection Matrix Data for n-fold covers of u

# Cells #RC(F) # Tower Time Elapsed

u 3 3 3 475µs
2-fold 7 5 3 60.6ms
3-fold 11 7 3 8.72s
4-fold 15 9 3 23min 23s
5-fold 19 11 4 86 hr

Table 5.11: Computational results for n-fold covers of u.



135

Initial Data for n-fold covers of v

Dim # Top Cells # Cells #SC(F)

u 2 25 122 13
2-fold 4 625 15368 114
3-fold 6 15625 1992992 879
4-fold 8 390625 264990848 7212
5-fold 10 9765625 35958682112 62157

Table 5.12: Data for n-fold covers of v.

Data for implicit Morse scheme on n-fold cover

n # M Time Elapsed

v 7 311 µs
2 133 42.2 ms
3 1825 6.38 s
4 23281 21min 9s
5 291017 72.9 hr

Table 5.13: Experimental results for cubical Morse theory for v.

Data for implicit Morse scheme on n-fold cover

n f -vector

v (4, 3)
2 (20, 46, 43, 20, 4)
3 (88, 321, 525, 495, 285, 96, 15)
4 (380, 1884, 4322, 5988, 5483, 3408, 1412, 360, 44)
5 (1649,10305,30255,54910,68235,60743,39320,18340,5930,1210,120)

Table 5.14: Experimental results for cubical Morse theory for v.

Connection Matrix Data for n-fold covers of v

# Cells # RC(F) # Tower Time Elapsed

u 3 3 3 358 µs
2-fold 33 32 3 50.6 ms
3-fold 197 196 3 7.55 s
4-fold 1155 1153 3 22min 37s
5-fold 6727 6725 3 77.2hr

Table 5.15: Computational results for n-fold covers of v.
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Initial Data for w.

Dim # Top Cells # Cells #SC(F)

u 3 64 756 15
2-fold cover 6 4096 631072 136
3-fold cover 9 262144 567108864 1005

Table 5.16: Data for n-fold covers of w.

Data for implicit Morse scheme

n # M f -vector Time Elapsed

1 27 (7, 11, 7, 2) 3.17 ms
2 713 (45, 146, 215, 182, 93, 28, 4) 2 s
3 18075 (289, 1428, 3270, 4535, 4197, 2694, 1207, 372, 75, 8) 46min 17s

Table 5.17: Experimental results for cubical Morse theory for w.

Connection Matrix Data for n-fold covers of w.

# Cells # RC(F) # Tower Time Elapsed

u 5 5 3 3.4ms
2-fold 11 10 3 2.24s
3-fold 21 19 3 54min 22s

Table 5.18: Computational results for n-fold covers of w.

Initial Data for t.

#Strands # Top Cells # Cells #SC(F)

20 194481 3429896 38284
40 2825761 47499656 727824
60 13845841 228977416 3892564

Table 5.19: Data for n-fold covers of t.

Data for implicit Morse scheme

# Strands # M f -vector Time Elapsed

20 81 (16, 32, 24, 8, 1) 8.3 s
40 81 (16, 32, 24, 8, 1) 1min 54s
60 81 (16, 32, 24, 8, 1) 9min 7s

Table 5.20: Experimental results for cubical Morse theory for t.
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Connection Matrix Data for n-fold covers of t.

# Strands # Cells # RC(F) # Tower Time Elapsed

20 3 3 3 8.27 s
40 3 3 3 1min 37s
60 3 3 3 9min 3s

Table 5.21: Computational results for n-fold covers of t.
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