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ABSTRACT OF THE DISSERTATION

Advanced computing methods for statistical inference

by Suzanne Thornton

Dissertation Director: Min-ge Xie

In this thesis, we provide some new and interesting solutions to problems of computational

inference. In particular, the two problems we address are (1.) How to obtain valid

confidence sets for parameters from models with no tractable likelihood function and

(2.) How to obtain valid exact confidence sets for the odds ratio when the signal is very

difficult to detect. Our approach to solving these problems is to develop algorithmic

procedures that result in confidence distributions for the parameters of interest. A

confidence distribution can be thought of as a frequentist analog to a Bayesian posterior.

It is a distribution estimate for a parameter of interest that provides inferential results

with respect to the Repeated Sampling Principle.

1. Most likelihood-free computational methods for statistical inference are performed

under a Bayesian paradigm, even though they are driven by the need for inferential

results in instances where the likelihood principle may fail. We develop a frequentist

computational method to apply in situations where one has an intractable likelihood

and instead rely on the Repeated Sampling Principle to justify our inferential

results. Our method expands the applications of approximate Bayesian computing

methods from and permits faster computational speed by eliminating the need

for any prior information. Rather than attempting to work within a Bayesian
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framework without a tractable likelihood function, our method creates a special

type of estimate, a confidence distribution, for the parameter of interest.

2. Establishing drug safety entails detecting relationships between treatments and

rare, but adverse, events. For a 2× 2 contingency tables of drug treatment and

adverse events, this means that we are interested in inference for an odds ratio

with a weak signal. In these situations, we will encounter very few adverse events,

even if the number of patients under study is large. We develop a frequentist

computational method for inference on sparse contingency tables that does not

rely on large sample assumptions. Our method works under the assumption that

one margin is fixed, enabling us to compare the observed data to simulated data

through a data generating equation and a modified statistic. We make use of a

stabilization parameter which allows us to consider smaller potential parameter

values even if we have a zero observation in the data. This stabilization parameter

makes our method distinct from the standard tail method approach. We show

that our method can out-perform the overly-conservative existing exact methods

and a Bayesian method.

In both of these problems, the algorithmic approaches we propose attempt to capture

the sample variability using a known random variable connected to the data through a

data-generating equation. In order to validate the inferential results within a frequentist

framework, the algorithmic approaches to both of the above problems work by producing

a specific type of estimator, a confidence distribution, for the unknown parameter. We

think these two problems illustrate the rich possibilities for incorporating confidence

distribution theory into the world of statistical computing.
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Chapter 1

Introduction

The field of Statistics has most assuredly benefited from the advancement of computa-

tional computing. The goal of the work presented in this thesis is to quantify uncertainty

about model parameters but the methods developed herein are meant to be congruent

with the rapid intertwining of the computational and statistical sciences. Broadly

speaking, the problems explored in this thesis are those of computational inference, by

which we mean,

“any statistical methods [that] involve direct simulation of the hypothesized
data-generating process rather than formal computations of probabilities that
would result under a given model of the data-generating process.” [Gentle (2009)]

In the methods of computational inference proposed here, the probabilities associated

with confidence intervals are estimated by the simulation of a hypothesized data-

generating process rather than by resampling an observed sample. A guiding paradigm

we reference in this work is the heuristic that one should reject models under which the

probability of generated data matching the observed sample is small. ([Gentle (2009)])

This work evaluates the performance of statistical measures of uncertainty with respect

to the Repeated Sampling Principle. As such, all novel methods proposed in this work

are frequentist and assume that the model parameters of interest are fixed unknowns.

The problems addressed in this dissertation are ones for which computational inference

either replaces or supplements asymptotic inference; we will refer to instances of the

former case as “exact” computational inferential procedures.

A key concept underlying the computational methods developed in this thesis is the

frequentist notion of a confidence distribution. When estimating an unknown parameter

within the frequentist paradigm, we often desire that our estimators, whether point
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estimators or interval estimators, have certain properties such as unbiasedness or a

certain coverage of the true parameter value in the long run. A confidence distribution

is an extension of this tradition in that it is a distribution estimate (i.e., it uses a

sample-dependent distribution function to estimate the target parameter) that satisfies

certain desirable properties. We define a confidence distribution as follows.

A sample-dependent function on the parameter space is a confidence distribution

for a parameter θ if 1) For each given sample the function is a distribution function

on the parameter space; 2) The function can provide confidence sets of all levels for

θ. [Xie & Singh(2013), Schweder & Hjort(2016)]

A confidence distribution estimator has a similar appeal to a Bayesian posterior

in that it is a distribution function carrying much information about the parameter.

A confidence distribution however, is a frequentist notion which treats the parameter

as a fixed, unknown quantity. It is not a distribution of the parameter; rather, it

is a sample-dependent function used to estimate the parameter of interest, including

to quantify the uncertainty of the estimation. In fact, one of the appeals of drawing

inference from a confidence distribution is the similarity of these estimators to Bayesian

posterior distributions and the flexibility they provide for inference because of this.

For a comprehensive review on confidence distributions, see [Xie & Singh(2013)] and

references therein.

In this work, we propose frequentist solutions to two different computation inference

problems and in so doing, we are able to offer empirical procedures that do not require

prior information. The two problems we address are (1.) How to obtain valid confidence

sets for parameters from models with no tractable likelihood function and (2.) How to

obtain valid exact confidence sets for the odds ratio when the signal is very difficult to

detect.

1. Approximate Bayesian computing is a powerful likelihood-free method that has

grown increasingly popular since early applications in population genetics. How-

ever, complications arise in the theoretical justification for Bayesian inference

conducted from this method with a non-sufficient summary statistic. In this work,
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we seek to re-frame approximate Bayesian computing within a frequentist context

and justify its performance by standards set on the frequency coverage rate. In

doing so, we develop a new computational technique called approximate confidence

distribution computing, yielding theoretical support for the use of non-sufficient

summary statistics in likelihood-free methods. Furthermore, we demonstrate

that approximate confidence distribution computing extends the scope of approx-

imate Bayesian computing to include data-dependent priors without damaging

the inferential integrity. This data-dependent prior can be viewed as an initial

‘distribution estimate’ of the target parameter which is updated with the results of

the approximate confidence distribution computing method. A general strategy for

constructing an appropriate data-dependent prior is also discussed and is shown

to often increase the computing speed while maintaining frequentist inferential

guarantees. We supplement the theory with simulation studies illustrating the

benefits of the proposed method, namely the potential for broader applications

and the increased computing speed compared to approximate Bayesian computing

methods.

2. Inference for sparse contingency tables with binomial sampling is a challenging but

important area of statistical research still subject to much debate. Most commonly

used methods rely on large sample, asymptotic results, but finite sample inference,

especially in the case where we observe zero or a small number of positive outcomes,

remains a problematic question in many applications. In the work presented here,

we provide a computational inferential method for the log odds ratio of a 2× 2

contingency table which we call a repro sampling method. Our method does not

rely on large sample size assumptions but instead attempts to “reproduce” the

sample variability though simulations of known random variables and a data-

generating equation. Our method differs from the standard tail method in that

we utilize a modified statistic that depends on a positive stabilization parameter.

We demonstrate that our methods can produce better confidence intervals than

the exact tail method and compare our method to several other common exact
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approaches. We also examine the results of applying the repro sampling method

to many real clinical trials and compare our confidence intervals to the standard

approach.

The remainder of this dissertation is organized as follows. In Chapter 2 we propose

a new likelihood-free computational method for inference called approximate confidence

distribution computing. We show that this method can greatly improve upon the

computational cost of existing likelihood-free methods without damaging the inferential

integrity of the results, within an entirely frequentist framework. Though the main

results of this section are developed around a Bernstein von Mises-type of large sample

theorem, we show that there are possible extensions of this method that are independent

of sample size. An appendix is included at the end of this chapter for additional proofs.

In Chapter 3 we propose an exact computational inferential method for inference on

the odds ratio of sparse 2× 2 contingency tables, called repro sampling. We compare

the algorithmic procedure developed here to other existing methods exact methods of

interest and demonstrate the potential improvement afforded by incorporating a positive

stabilization parameter. Chapter 4 concludes this dissertation with some additional

remarks on the role of confidence distributions in the development of statistical computing

methods and with some possible directions for future research.
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Chapter 2

Approximate confidence distribution computing (ACC)

2.1 Introduction

2.1.1 Background to approximate Bayesian computing

Approximate Bayesian computing is a likelihood-free method that approximates a

posterior distribution while avoiding direct calculation of the likelihood. This pro-

cedure originated in population genetics where complex demographic histories yield

intractable likelihoods. Since then, approximate Bayesian computing has been applied

to many other areas besides the biological sciences including astronomy and finance;

cf., e.g., [Cameron & Pettitt(2012), Csilléry et al.(2010), Peters et al.(2012)]. Despite

its practical popularity in providing a Bayesian solution for complex data problems in

which there is no tractable likelihood function, the theoretical justification for inference

from this method is under-developed and has only recently been explored in the statisti-

cal literature; cf., e.g., [Robinson et al.(2014), Barber et al.(2015), Frazier et al.(2018),

Li & Fearnhead(2018b)]. Here, we seek to re-frame the problem within a frequentist

setting and help address two weaknesses of approximate Bayesian computing: (1) lack

of theoretical justification for Bayesian inference when using a non-sufficient summary

statistic and (2) slow computing speed. We propose a novel likelihood-free method as a

bridge connecting Bayesian and frequentist inferences and examine it within the context

of the existing literature on approximate computing.

Let xobs = {x1, . . . , xn} be an observed sample from some intractable distribution.

Assume however, that there exists some data generating model, Mθ, depending on the

parameter of interest, θ ∈ P ⊂ Rp. That is, given any θ, we can simulate artificial

data from Mθ, even though we cannot work with the likelihood directly. The standard
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accept-reject version of approximate Bayesian computing proceeds as follows:

Algorithm 1 (Accept-reject approximate Bayesian computing)

1. Simulate θ1, . . . , θN ∼ π(θ);

2. For each i = 1, . . . , N , simulate x(i) = {x(i)
1 , . . . , x

(i)
n } from Mθi;

3. For each i = 1, . . . , N , accept θi with probability Kε(s
(i) − sobs), where sobs =

Sn(xobs) and s(i) = Sn(x(i)).

In the above algorithm, π(·) is a prior distribution function and the data is summarized

by some low-dimension summary statistic, Sn(·) (e.g., Sn(·) is a mapping from the

sample space in Rn to S ⊂ Rd with d ≤ n). The kernel probability Kε(·) follows the

notation Kε(u) = ε−1K(u/ε), where K(·) is a kernel function which, without loss of

generality, we assume satisfies maxxK(x) = 1. We refer to ε as the tolerance level and

typically assume it goes to zero. In many cases, ε is required to go to zero at a certain

rate of n (cf., e.g., [Li & Fearnhead(2018b)]), but there are cases under development in

which ε is independent of sample size n, see e.g. [Barber et al.(2015)].

The underlying distribution from which the accepted copies or draws of θ are

generated in Algorithm 1 is called the approximate Bayesian computing posterior and

has the density

πε(θ | sobs) =

∫
S π(θ)fn(s | θ)Kε(s− sobs) ds∫

P×S π(θ)fn(s | θ)Kε(s− sobs) dsdθ
, (2.1)

and corresponding cumulative distribution function, Πε(θ | sobs). Here fn(s | θ) denotes

the probability density of the summary statistic, implied by the intractable likelihood

and, as such, is typically unknown. We will refer to fn(s | θ) as an s-likelihood. Since

this is a Bayesian procedure, Algorithm 1 assumes a prior distribution, π(·), on θ. In

the absence of prior information, the user may select a noninformative prior.

A common assertion is that πε(θ | sobs) is close enough to the target posterior

distribution, e.g. [Marin et al.(2012)]; however, the quality of this approximation depends

on the closeness of the tolerance level to zero and, more crucially for our purposes,

on the choice of summary statistic Sn(·). Provided the prior is proper, we have the
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following lemma:

Lemma 1 Let K(·) be a kernel density function symmetric about zero with
∫
‖u‖2K(u)du <

∞ where ‖·‖ is the Euclidean norm. Suppose the matrix of second derivatives of fn(s | θ)

is bounded with respect to s. Then

πε(θ | sobs) ∝ π(θ)fn(sobs | θ) +O(ε2). (2.2)

Various versions of this result are known (cf., e.g., [Barber et al.(2015), Li & Fearnhead(2018a)]);

for completeness, we provide a brief proof of Lemma 1 in the appendix. Note that, if

the summary statistic Sn(·) is not sufficient, fn(sobs | θ) can be very different from the

actual likelihood function and, in this way, πε(θ | sobs) can be a very poor approximation

to the target posterior, even as ε→ 0.

Figure 2.1 provides such an example where we consider random data from a Cauchy

distribution with a known scale parameter. Only the data itself is sufficient for the loca-

tion parameter, θ; therefore, any summary statistic, including the commonly used sample

mean and median, will not be sufficient. Figure 2.1 illustrates that, without sufficiency,

the posterior approximation resulting from Algorithm 1, using either sample mean and

sample median as Sn(·), will never converge to the targeted posterior distribution, thus

indicating that the approximations to the target posterior can be quite poor. What’s

more, the two different summary statistics lead to quite different approximate Bayesian

computing posteriors πε(θ | sobs). The approximate Bayesian computing posteriors

obtained using the sample mean are much flatter than those obtained using the sample

median. Further details about Figure 2.1 can be found in Sections 2.4.1 and 2.4.2.

For this reason, inference from Πε(· | sobs) can produce misleading results within

a Bayesian context when the summary statistic used is not sufficient. Questions arise

such as, if Πε(· | sobs) is different from the target posterior distribution, can it still be

used in Bayesian inference? Or, since different summary statistics can produce different

approximate posterior distributions, can one or more of these distributions be used to

make statistical inferences?

We attempt to address these questions by instead re-framing Algorithm 1 within
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Figure 2.1: The three curves in each of the two plots are the target posterior (gray) and
approximate Bayesian computing posteriors for data from a Cauchy distribution with
known scale parameter for summary statistic Sn = x̄ (solid black) and Sn = Median(x)
(dashed black). The prior density is a constant in R.

(a) Cauchy data of sample size n = 50.
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(b) Cauchy data of sample size n = 5000.
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a frequentist context, thus creating a more general likelihood-free method based on

confidence distribution theory. To this end, we introduce a new computational method

called approximate confidence-distribution computing.

2.1.2 Approximate confidence distribution computing

The theoretical foundation for approximate confidence distribution computing relies

upon the Repeated Sampling Principle. Confidence distributions are, by definition,

estimators that follow the frequentist coverage property since they are able to produce

confidence sets for θ that contain this true parameter value, θ0, at any specified frequency

with repeated experimental runs.

We hope to demonstrate that the construction of approximate confidence distribution

computing as a likelihood-free method provides one of many examples in which confidence

distribution theory provides a useful inferential tool for a problem where a statistical

method with desirable properties was previously unavailable. Furthermore, approximate

confidence distribution computing provides a computational method with potential
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applications extending beyond the scope of Algorithm 1 and, as will be discussed later,

it introduces some flexibility that can greatly decrease computing costs.

Approximate confidence distribution computing proceeds in the same manner as

Algorithm 1, but no longer requires a prior assumption on θ; instead, the user is free to

select a data-dependent function, rn(θ), from which potential parameter values will be

generated. Specifically, the new algorithm proceeds as follows:

Algorithm 2 (Accept-reject approximate confidence distribution computing)

1. Simulate θ1, . . . , θN ∼ rn(θ);

2. and 3. are identical with steps 2 and 3 of Algorithm 1.

The underlying distribution from which the accepted draws of θ are simulated is denoted

by Qε(θ | sobs). We refer to Qε(θ | sobs) as an approximate confidence distribution and

denote the corresponding density by qε(θ | sobs) as defined by replacing π(θ) in (2.1)

with rn(θ):

qε(θ | sobs) =

∫
S rn(θ)fn(s | θ)Kε(s− sobs) ds∫

P×S rn(θ)fn(s | θ)Kε(s− sobs) dsdθ
, (2.3)

In this way, approximate Bayesian computing can be viewed as a special case of

approximate confidence distribution computing with rn(θ) = π(θ).

From a Bayesian perspective, one may view Algorithm 2 as as an extension permitting

the use of Algorithm 1 in the presence of a data-dependent prior. However, there is

another natural, frequentist interpretation that views the function rn(θ) as an initial

distribution estimate for θ and views Algorithm 2 as a method to update this estimate

in pursuit of a better-performing distribution estimate. The logic of this frequentist

interpretation is analogous to any updating algorithm in point estimation (e.g., say, a

Newton-Raphson algorithm or an expectation-maximization algorithm), which requires

an initial estimate and then updates in search for a better-performing estimate. One

may ask if the data are, thus being ‘doubly used’. The answer depends on how the

initial distribution estimate is chosen. Under some constraints on rn(θ), Algorithm 2 can

guarantee a distribution estimator for θ that satisfies the frequentist coverage property
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thus qε(θ | sobs) can be used to make inferences (e.g., deriving confidence sets, p-values,

etc.), although Algorithm 2 may not guarantee ‘estimation efficiency’ (i.e., producing

the tightest confidence sets for all levels) unless the summary statistic is sufficient.

2.1.3 Related work

Likelihood-free methods such as approximate Bayesian computing have existed for

more than 20 years, but research regarding the theoretical properties of these methods

is a newly active area, e.g. [Li & Fearnhead(2018b), Frazier et al.(2018)]. Here we do

not attempt to give a full review of all likelihood-free methods, but we acknowledge

the existence of alternatives such as indirect inference, e.g. [Creel & Kristensen(2013),

Gourieroux et al.(1993)].

One of our theoretical results specifies conditions under which Algorithm 2 produces

an asymptotically normal confidence distribution. This result, presented in Section

2.3, generalizes the work of [Li & Fearnhead(2018a)] on the asymptotic normality of

the approximate Bayesian computing posterior. However, in contrast to these papers,

we are not concerned with viewing the result of Algorithm 2 as an approximation to

some posterior distribution, rather we focus on the properties and performance of this

distribution inherited through its connection to confidence distributions. More impor-

tantly, the properties we develop here allow us to conduct inference while guaranteeing

the frequentist coverage property. Additionally, presented separately in Section 2.2, we

specify general conditions under which Algorithm 2 can be used to conduct frequentist

inference that is beyond the Bernstein-von Mises type convergence, including exact

inference that does not rely on any sort of asymptotic (large n) assumptions or normally

distributed populations. Aside from the errors of Monte-Carlo approximation and the

choice of tolerance level, the exact inference from Algorithm 2 ensures the targeted

repetitive coverage rates and type-I errors.

The main goal of the paper is to present the idea that the continued study of

likelihood-free methods would benefit from the incorporation of confidence distribution

theory. To this end, and for the ease of presentation, we mainly focus on the basic
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accept-reject version of Algorithm 2, although we will compare the performance of

Algorithm 2 with a typical importance sampling approximate Bayesian computing

method and also conclude that much of the existing work in the approximate Bayesian

computation literature can also be applied to Algorithm 2 to further improve upon its

computational performance as discussed in Sections 2.2 and 2.5.

2.1.4 Notation

In addition to the notation from the introduction, throughout the remainder of paper

we will use the following notation. The observed data is xobs ∈ X ⊂ Rn, the summary

statistic is a mapping Sn : X → S ⊂ Rd and the observed summary statistic is

sobs = Sn(xobs). The parameter of interest is θ ∈ P ⊂ Rp with p ≤ d ≤ n; i.e. the

number of unknown parameters is no greater than the number of summary statistics

and dimension of the summary statistic is no greater than the dimension of the data.

If some function of Sn is an estimator for θ, we denote this function by θ̂S . Denote a

random draw from Qε(θ | sobs) by θACC. Additionally, for a real function g(x), denote

its gradient function at some x = x0 by Dx{g(x0)}; for simplicity and when it is clear

from context, x is omitted from Dx.

2.2 Establishing frequentist guarantees for Algorithm 2

In this section, we formally establish conditions under which Algorithm 2 can be used

to produce confidence regions with guaranteed frequentist coverages at any level.

To motivate our main theoretical result, we first consider the simple case where we

have a scalar parameter, θ, and θ̂ is a function that maps the summary statistic into the

parameter space P . Suppose for now that the Monte-Carlo copy of (θACC− θ̂) | Sn = sobs

and the sampling population copy of (θ̂ − θ) | θ = θ0 have the same distribution:

(θACC − θ̂) | Sn = sobs ∼ (θ̂ − θ) | θ = θ0. (2.4)
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Then, we can conduct inference for θ with a guaranteed frequentist standard of per-

formance. On the left hand side of (2.4), θ̂ is fixed given sobs and the (conditional)

probability measure is with respect to θACC, meaning the randomness is due to the

simulation conducted in Algorithm 2. Conversely, on the right hand side, θ̂ is a random

variable since the data is random for a given parameter θ0. That is, equation (2.4)

states that the ‘randomness’ in θACC from the Monte-Carlo simulation match that in θ̂

of the sampling population. This is very similar to the bootstrap central limit theorem

that n1/2(θB − θ̂S) | Sn = sobs ∼ n1/2(θ̂S − θ) | θ = θ0, as n → ∞, where appropriate;

cf, [Singh(1981)] and [Freedman Bickel(1981)]. There, the randomness on the left hand

side is from the bootstrap estimator, θB given Sn = sobs, and the randomness on the

right hand side is from the random sample of the sampling population.

Given (2.4), let G(t) = pr(θ̂ − θ ≤ t | θ = θ0). Then pr∗(θACC − θ̂ ≤ t | Sn = sobs) =

G(t) where pr∗(· | Sn = sobs) refers to the probability measure on simulation given

Sn = sobs corresponding to the left hand side of (2.4). Define H(t, sobs) = pr∗(2θ̂ −

θACC ≤ t | Sn = sobs), a mapping from P ×S → (0, 1). Conditional on sobs, H(t, sobs) is

a sample-dependent cumulative distribution function on P ; We use the shorthand Hn(t)

to denote H(t, sobs). The following statement Remark1 holds as proved in the appendix.

In the remark, H−1
n (α) is the quantile of Hn(·), i.e., the solution of Hn(t) = α, and

θACC,α is a quantile of θACC, defined by pr∗(θACC ≤ θACC,α | Sn = sobs) = α.

Remark 1 Under the setup above, Hn(t) is a confidence distribution for θ and, for

any α ∈ (0, 1), (−∞, H−1
n (1 − α)] = (−∞, 2θ̂ − θACC,α] is an (1 − α)-level confidence

interval of θ.

Now we introduce a key lemma that generalizes the argument above to a multidi-

mensional parameter and a wider range of relationships between Sn and θACC. This

lemma assumes a relationship between two mappings V and W : P × S → Rk, where

V (·, Sn) is a function that acts on the parameter space P, given Sn = sobs, and W (θ, ·)

is a function that acts on the space of the summary statistic S ⊂ Rd, given θ = θ0. For

example, in the one dimensional argument above, V (t1, t2) = −W (t1, t2) = t1 − θ̂(t2),

where θ̂ is a function of the summary statistic. Corresponding to (2.4), we require a
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matching equation: V (θACC, Sn) | Sn = sobs ∼W (θ, Sn) | θ = θ0. Formally, for general

mappings V and W , we consider Condition 1 below. In the condition, δε → 0, as ε→ 0.

Here, ε is the tolerance level for the matching of simulated s(i) and sobs in step 3 of

Algorithm 2, and it may or may not depend on the sample size n.

Condition 1 For B a Borel set on Rk,

sup
A∈B
‖pr∗{V (θACC, Sn) ∈ A | Sn = sobs} − pr{W (θ, Sn) ∈ A | θ = θ0}‖ = op(δε),

where pr∗(· | sobs) refers to the probability measure on the simulation given Sn = sobs

and pr(· | θ0) is the probability measure on the data before it is observed.

For a given sobs and α ∈ (0, 1), define a set A1−α ⊂ Rk such that,

pr∗{V (θACC, Sn) ∈ A1−α | Sn = sobs} = (1− α) + o(δ′), (2.5)

where δ′ > 0 is a pre-selected small positive precision number, often designed to control

Monte-Carlo approximation error. Condition 1 implies that

Γ1−α(sobs)
def
= {θ : W (θ, sobs) ∈ A1−α} ⊂ P (2.6)

is a level (1 − α)100% confidence region for θ0. We summarize this in the following

lemma which is proved in the appendix. In the next lemma let δ = max{δε, δ′} thus,

whether or not Lemma 2 is a large sample result depends only on whether or not we

require ε→ 0 at a certain rate of the sample size n.

Lemma 2 Suppose that there exist mappings V and W : P × S → Rk such that

Condition 1 holds. Then, pr{θ ∈ Γ1−α(Sn) | θ = θ0} = (1 − α) + op(δ). If further

Condition 1 holds almost surely, then pr{θ ∈ Γ1−α(Sn) | θ = θ0} = (1−α) +o(δ), almost

surely.

Note that there are no requirements on the sufficiency of the summary statistic

Sn in Lemma 2. However, if the selected summary statistic happens to be sufficient,
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then inference based on the results of Algorithm 2 is equivalent to maximum likelihood

inference.

Later in this section we will consider a special case of Lemma 2 that is sample-size

independent. In this case, (aside from the errors of Monte-Carlo approximation and

the choice of tolerance level) Algorithm 2 can result in exact inference procedures that

do not rely on large sample asymptotics. Later, in Section 2.3, we use large sample

asymptotics to extend Bernstein-von Mises theory to Algorithm 2.

Before we move on to verify Condition 1 for different cases, we first relate equa-

tion (2.5) to θACC samples from Qε(· | sobs). Suppose θACC,i, i = 1, . . . ,m, are m

Monte-Carlo copies of θACC. Let vi = V (θACC,i, sobs). The set A1−α can typically

be a (1 − α)100% contour set of {v1, . . . , vm} satisfying o(δ′) = o(m−1/2). For ex-

ample, we can directly use v1, . . . , vm to construct a 100(1 − α)% depth contour as

A1−α = {θ : (1/m)
∑m

i=1 I{D̂(vi) < D̂(θ)} ≥ α}, where D̂(·) is an empirical depth

function on P computed based on the empirical distribution of {v1, . . . , vm}. See,

e.g., [Serfling(2002)] and [Liu et al.(1999)] for the development of data depth and depth

contours in nonparametric multivariate analysis. In the special case where k = 1, by

defining q̂α = v[mα], the [mα]th largest v1, . . . , vm, a (1 − α)100% confidence region

for θ0 can then be constructed as Γ1−α(sobs) = {θ : q̂α/2 ≤ W (θ, sobs) ≤ q̂1−α/2} or

Γ1−α(sobs) = {θ : W (θ, sobs) ≤ q̂1−α}.

We also remark that the existing literature on likelihood-free methods typically relies

upon obtaining a “nearly sufficient” summary statistic to justify inferential results; see

e.g., [Joyce & Marjoram(2008)]. In this work however, we explore guaranteed frequentist

properties of Algorithm 2 that hold without regard to a “sufficient enough” summary

statistic. However, if the summary statistic happens to be sufficient, then an appropriate

choice of the rough initial estimate, rn(θ), means that inference based on the resulting

distribution, Qε(· | sobs), is also efficient.

To end this section, we explore a special case of Algorithm 2 where the mappings V

andW correspond an approximate pivotal statistic. Here, we call a mapping T = T (θ, Sn)
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from P × S → Rd an approximate pivot statistic, if

pr{T (θ, Sn) ∈ A | θ = θ0} =

∫
t∈A

g(t)dt {1 + o(δ
′′
)}, (2.7)

where g(t) is a density function that is free of the parameter θ and A ⊂ Rd is any Borel

set. Also, δ
′′

is either zero or a small number (tending to zero) that may or may not

depend on the sample size n. The usual pivotal cases are special examples of such.

Other examples, including that to be discussed in Section 2.3, involve large sample

asymptotics where δ
′′

is a function of n, in particular, δ
′′ → 0 as n → 0. However,

there are also cases where δ
′′

does not involve the sample size n. For example, suppose

Sn|θ = λ ∼ Poisson(λ). Then, T (λ, Sn) = (Sn − λ)/
√
λ is an approximate pivot when λ

is large. In this case, the density function is φ(t){1 + o(λ−1)}, where φ(t) the density

function of the standard normal distribution [Cheng(1949)].

We have the following theorem for approximate pivot statistics. A proof is given in

the appendix.

Theorem 1 Suppose T = T (θ, Sn) is an approximate pivot statistic that is differentiable

with respect to the summary statistic. Assume that, for given t and θ, st,θ is solution to

the equation t = T (θ, s) and

∫
rn(θ)Kε (st,θ − sobs) dθ = C{1 + o(δ

′
ε)}, where C is a constant free of t, (2.8)

Here, rn(θ), K(·), and ε are as specified in Algorithm 2, and δ
′
ε → 0 as ε → 0.

Then, Condition 1 holds almost surely, for V (θ, Sn) = W (θ, Sn) = T (θ, Sn) and δ =

max{δ′′ , δ′ε}. Furthermore, by Lemma 2 and for observed Sn = sobs, Γ1−α(sobs) defined

in (2.6) is a level (1 − α)100% confidence region with pr{θ ∈ Γ1−α(Sn) | θ = θ0} =

(1− α) + o(δ), almost surely.

Location and scale families contain natural pivot statistics. We verify requirement

(2.8) for the location and scale families, which leads to the following corollary. A proof

of the corollary is also given in the appendix.
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Corollary 1 Assume µ̂S and σ̂S are point estimators for location and scale parameters

µ and σ, respectively.

Part 1 Suppose µ̂S ∼ g1(µ̂S − µ). If rn(µ) ∝ 1, then, for any u,

|pr∗(µACC − µ̂S ≤ u | µ̂obs)− pr(µ̂S − µ ≤ u | µ = µ0)| = o(1), almost surely.

Part 2 Suppose σ̂S ∼ g2(σ̂S/σ)/σ. If rn(σ) ∝ 1/σ, then, for any v > 0,

∣∣∣∣pr∗
(
σACC

σ̂S
≤ v | σ̂obs

)
− pr

(
σ̂S
σ
≤ v | σ = σ0

)∣∣∣∣ = o(1), almost surely.

Part 3 Suppose µ̂S ∼ g1{(µ̂S − µ)/σ}/σ and σ̂S ∼ g2 (σ̂S/σ) /σ are independent. If

rn(µ, σ) ∝ 1/σ, then, for any u and any v > 0,

∣∣∣∣pr∗
(
µACC − µ̂S ≤ u,

σACC

σ̂S
≤ v | µ̂obs, σ̂obs

)
−

pr

(
µACC − µ̂S ≤ u,

σ̂S
σ
≤ v | µ = µ0, σ = σ0

)∣∣∣∣ = o(1), almost surely.

Furthermore, we may derive H1(µ̂S , x) = 1−
∫ µ̂S−x
−∞ g1(w) dw, a confidence distribution

for µ induced by (µ̂S −µ) given µ = µ0, or H2(σ̂2
S , x) = 1−

∫ σ̂2
S/x

0 g2(w)dw, a confidence

distribution for σ2 induced by σ̂2
S/σ

2 given σ = σ0.

Note that Theorem 1 and Corollary 1 cover some finite sample examples that do not

require n→∞, one of which is illustrated in Figure 2.1. Specifically, Corollary 1 Part 1

suggests that the ABC posteriors obtained in the Cauchy example in Figure 2.1, using

either the sample mean or sample median as the summary statistic, are both confidence

distributions. Thus, they both are ‘distribution estimators’ that can be utilized to make

inference. Both are not efficient, and the one by the sample median is more efficient

than the one by the sample mean (in terms of having shorted confidence intervals or a

higher power level-α test). This development represents a departure from the typical

asymptotic arguments and permits the use of Algorithm 2 in forming confidence sets

with guaranteed frequentist coverages even when n is finite.

The next section considers the case in which the tolerance level ε does depend on
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the sample size n. We will now denote ε by εn and study the large sample performance

of the proposed approximate confidence distribution computing method.

2.3 Frequentist Coverage of Algorithm 2 for Large Samples

2.3.1 Bernstein-von Mises theorem for Algorithm 2

For Algorithm 1, Condition ?? holds as n → ∞ by the Bernstein-von Mises type

convergence of πε(θ | sobs) ([Li & Fearnhead(2018b)]) and selecting εn decreasing to

zero. Roughly speaking, the distribution of a properly scaled draw from Πε(θ | sobs)

and the distribution of the corresponding expectation (before the data is observed) are

asymptotically the same. Therefore, the development in Section 2.2, a confidence region

with asymptotically correct coverage can be constructed using a sample from Algorithm

1.

Here we show that Condition 1 also holds for the more general Algorithm 2 where

rn(θ) may depend upon the data. The results are based on the same set of conditions

as those in [Li & Fearnhead(2018b)]. The key condition is a central limit theorem of

the summary statistic: for all θ in a neighborhood of θ0,

an{Sn − η(θ)} → N{0, A(θ)},

in distribution as n→∞, together with requirement on the identifiability of θ0 through

η(θ) and regulatory requirements of A(θ). This condition is denoted by Condition 6

in the supplementary materials. The set of conditions in [Li & Fearnhead(2018b)] is

given in the appendix. Here we define some regulatory conditions for rn(θ), which is not

included in [Li & Fearnhead(2018b)] or, to our knowledge, any of the existing literature

on approximate Bayesian computing.

Condition 2 There exists some δ0 > 0 such that P0 = {θ : ‖θ − θ0‖ < δ0} ⊂ P,

rn(θ) ∈ C2(P0), and rn(θ0) > 0.

Condition 3 There exists a sequence {τn} and δ > 0, such that τn = o(an) and

supθ∈P0
τ−pn rn(θ) = Op(1).
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Condition 4 There exists constants m, M such that 0 < m <| τ−pn rn(θ0) |< M <∞.

Condition 5 It holds that supθ∈Rp τ
−1
n D{τ−pn rn(θ)} = Op(1).

Condition 3 and 4 above essentially requires rn(θ) to be more dispersed than the

s-likelihood within a compact set containing the true θ0. It requires that rn(θ) converges

to a point mass more slowly than fn(θ | sobs). Condition 5 requires the gradient of

the standardized rn(θ) to converge with rate τn. These are relatively weak conditions

and can be satisfied by, e.g., rn(θ) satisfying local asymptotic normality. We have the

following theorem with the proof provided in the appendix. Note that, in the theorem,

θε(sobs) is an estimate for θ, whereas θε(Sn) is an estimator; when clear, we shorten the

notation of both to θε.

Theorem 2 Assume rn(θ) satisfies Condition 2–5 and 6–10 in the supplementary

material. If εn = o(a−1
n ) as n→∞, then Condition 1 is satisfied with V (θACC, sobs) =

an{θACC − θε(sobs)} and W (θ0, Sn) = an{θε(Sn)− θ0}, where θε(s) =
∫
θ dQε(θ | s).

Theorem 2 says when εn = o(a−1
n ), the coverage of Γ1−α(sobs) is asymptotically correct as

mACC →∞ and n→∞, where mACC is the number of accepted particles in Algorithm

2. In practice, θε(sobs), needed for constructing Γ1−α, does not have a closed form in

most cases, and is estimated by the sample of θACC.

In Theorem 2, Condition 1 is implied by the following convergence results,

sup
A∈Bp

∣∣∣∣∣
∫
{θ: an(θ−θε)∈A}

dQε(θ | Sn = sobs)−
∫
A
N{t; 0, I(θ0)−1} dt

∣∣∣∣∣→ 0, (2.9)

in probability, and

an(θε − θ0)→ N{0, I(θ0)−1}, (2.10)

in distribution, as n→∞, where I(θ) = Dη(θ)TA−1(θ)Dη(θ). These results generalize

the limit distributions of Πε in [Li & Fearnhead(2018a)] for the case of εn = o(a−1
n ),

since the prior distribution π(θ) satisfies Condition 2–5. We show that, in the sense of

large-sample behavior, inference based on Qε is validated whether or not information

from the data is used in constructing rn(θ).
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2.3.2 Comparison between Algorithm 1 and Algorithm 2

Since Πε andQε share the same limit distributions according to (2.9) and (2.10), when the

same tolerance level is used, confidence regions Γ1−α(sobs) constructed using the sample

from Πε and Qε have the same asymptotic efficiency. Therefore it is computationally

more efficient to use Algorithm 2 with rn(θ) depending on data, since any rn(θ) with

τn →∞ is closer to the output distribution than π(θ) thus providing a higher acceptance

probability for the same ε.

When rn(θ) is available, an alternative to Algorithm 1 is its importance sampling

variant which proposes from rn(θ) ([Fearnhead & Prangle(2012)]), as specified in the

following.

Algorithm 3 (Importance sampling approximate Bayesian computing)

1. Simulate θ1, . . . , θN ∼ rn(θ).

3. For each i = 1, . . . , N , accept θi with probability Kε(s
(i) − sobs), where sobs =

Sn(xobs) and s(i) = Sn(x(i)), and assign importance weights w(θi) = π(θi)/rn(θi).

Though Algorithm 3 is an improvement over Algorithm 1, Algorithm 2 still has a

computational advantage over Algorithm 3, because w(θ) is unbounded as n→∞ while

the sample weights in Algorithm 2 are unity. [Li & Fearnhead(2018b)] mention that

certain techniques can be applied to control the skewed importance weight in Algorithm

3, but Algorithm 2 does not have the same issue and therefore does not require such

controls.

[Li & Fearnhead(2018b)] point out in Algorithms 1 and 3, that although using

εn = o(a−1
n ) gives valid inference, this leads to the degeneracy of Monte Carlo efficiency

as n → ∞, since the acceptance probability of any proposal distribution degenerates

to zero for such a small tolerance level. This means that if the dataset is informative,

most of the simulated datasets in Algorithms 1 and 3, will be wasted. If εn is outside

this regime, [Li & Fearnhead(2018b)] show that Πε over-inflates the target posterior

uncertainty and is not calibrated, i.e its uncertainty can not correctly quantify the

uncertainty of the target posterior mean. A similar phenomena occurs in Algorithm 2
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when too large εn is used. Instead of giving a formal statement, we illustrate this in the

following basic Gaussian example.

Example 1 Consider a univariate normal model with mean θ and unit variance, and

observations that are independent identically distributed from the model with θ = θ0.

Keeping the location and scale parameters of the prior as fixed constants, assume

a standard normal density for the prior density of θ. Let rn(θ) also be a normal

density with mean µn and variance b−2
n , where µn and bn are some sequences satisfying

bn(µn − θ0) = O(1) and bn = o(
√
n) as n→∞. The choice of µn and bn makes rn(θ) a

reasonable proposal density, since it covers the true parameter θ0 and is more dispersed

than the s-likelihood where the sample mean is the summary statistic in both Algorithm

1 and 2. The Gaussian kernel with variance ε2
n is used for the acceptance/rejection.

For this model, limit distributions of V (θACC, sobs) and W (θ0, Sn) in Theorem 2 for

different regimes of ε can be obtained analytically, since qε(θ | sobs) has the closed form

N(θ; θε, σ
2
ε) where

θε =
sobs + b2n(1/n+ ε2)µn

1 + b2n(1/n+ ε2)
, σ2

ε =
1/n+ ε2

1 + b2n(1/n+ ε2)
.

In order for Condition 1 to hold, V (θACC, sobs), which has the density N(· ; 0, nσ2
ε), and

W (θ0, Sn), which is equal to
√
n(θε− θ0), should have the same asymptotic distributions.

By decomposing W (θ0, Sn) into ∆1
√
n(Sn − θ0) + ∆2bn(µn − θ0) where

∆1 =
1

1 + b2n(1/n+ ε2)
, ∆2 =

√
nbn(1/n+ ε2)

1 + b2n(1/n+ ε2)
,

it can be seen that the expectation of W (θ0, Sn) is o(1) only when εn = o(b
−1/2
n n−1/4).

On the other hand, the variance of W (θ0, Sn) and nσ2
ε having the same limit requires

nσ2
ε −∆2

1 = o(1) which holds only when εn = o(n−1/2) or ε−1
n = o(b2nn

−1/2). Because

bn = o(
√
n), both εn = o(b

−1/2
n n−1/4) and ε−1

n = o(b2nn
−1/2) can not hold simultaneously.

Therefore Condition 1 is satisfied only when εn = o(n−1/2).

One remedy to reduce the overinflated uncertainty in Πε(θ | sobs) from Algorithms 1

and 3 is to post-process its sample by the regression adjustment. ([Beaumont et al.(2002)])
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Likewise, this adjustment can be applied to Algorithm 2. In the next subsection, we

compare these regression adjusted approximate computing methods.

2.3.3 Comparison between Algorithm 1 and Algorithm 2 with regres-

sion adjustment

For Algorithms 1 and 3, it is known that the distribution of the regression adjusted

sample is able to correctly quantify the posterior uncertainty and yield an accurate

point estimate with εn decaying in the rate of o(a
−3/5
n ), which is slower than o(a

−1/2
n )

([Li & Fearnhead(2018a)]). Here, we suggest applying the same regression adjustment

to Algorithm 2 to produce valid inference on the sample of Algorithm 2 with a larger εn.

Let qε(θ, s) be the joint density of accepted θ and its associated summary statistic

in Algorithm 2, i.e.

qε(θ, s) =
rn(θ)fn(s | θ)Kε(s− sobs)∫

Rp×Rd rn(θ)fn(s | θ)Kε(s− sobs) dθds
, (2.11)

where θ ∈ Rp and s ∈ Rd. Denote a sample from qε(θ, s) by {(θi, s(i))}i=1,...,N . A new

sample can be obtained as {θi − β̂ε(s(i) − sobs)}i=1,...,N where β̂ε is the least square

estimate of the coefficient matrix in the linear model

θi = α+ β(s(i) − sobs) + ei, i = 1, . . . , N,

where ei are independent identically distributed errors, α ∈ Rp and β ∈ Rp×d. Let

θ∗ACC = θ − βε(s− sobs), where βε is from the minimizer

(αε, βε) = argminα∈Rp,β∈Rd×pEε
{
‖θ − α− β(s− sobs)‖2 | sobs

}
for expectation under the joint distribution qε(θ, s). The new sample can be seen as a

draw from the distribution of θ∗ACC where (θ, s) ∼ qε(θ, s), but with βε replaced by its

estimator. Let θ∗ε be the expectation of θ∗ACC.

The following theorem states that the regression adjusted Qε has the same favored
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property as the adjusted Πε. Here, the regression adjusted Qε, say Q∗ε(·|Sn = sobs), is

the distribution of θ∗ACC given Sn = sobs.

Theorem 3 Assume the conditions of Theorem 2 and Condition 10 of the supplementary

materials. If εn = o(a
−3/5
n ) as n → ∞, Condition 1 is satisfied with V (θ∗ACC, sobs) =

an(θ∗ACC − θ∗ε) and W (θ0, Sn) = an(θ∗ε − θ0).

In the above, Condition 1 is implied by the following convergence results which

generalize the results in [Li & Fearnhead(2018a)],

sup
A∈Bp

∣∣∣∣∣
∫
{θ: an(θ−θ∗ε )∈A}

dQ∗ε(θ | Sn = sobs)−
∫
A
N{t; 0, I(θ0)−1} dt

∣∣∣∣∣→ 0,

in probability, and

an(θ∗ε − θ0)→ N{0, I(θ0)−1},

in distribution, as n→∞. The limit distributions above are the same as those in (2.9)

and (2.10), therefore Γ1−α(sobs) constructed using θ∗ACC can achieve the same efficiency

as those using θACC while permitting much larger tolerance levels. Asymptotically,

inference based on the regression adjusted Q∗ε is not affected by an rn(θ) that depends

on the data, again illustrating the computational advantage of Algorithm 2.

2.3.4 Guidelines for Selecting rn in Algorithm 2

The generality of approximate confidence distribution computing is that it can produce

justifiable inferential results with weak conditions on a possibly data-dependent function

rn(θ). In general, one should be careful in choosing rn(θ) to ensure its growth with

respect to the sample size is slower than the growth of the s-likelihood, according to

Condition 3. A generic algorithm to construct rn(θ) based on sub-setting the data is

proposed below. Assume that a point estimator θ̂(z) of θ can be computed for a dataset

z of any size.

Algorithm 4 (Minibatch scheme)

1. Choose k subsets of the observations, each with size nν for some 0 < ν < 1.
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2. For each subset zi of xobs, compute the point estimate θ̂i = θ̂(zi), for i = 1, . . . , k.

3. Let rn(θ) = (1/kh)
∑k

i=1K
{
h−1‖θ − θ̂i‖

}
, where h > 0 is the bandwidth of the

kernel density estimate using {θ̂1, . . . , θ̂k} and kernel function K.

By choosing ν < 3/5, we ensure that Conditions 3–5 are met. Furthermore, if θ̂(z)

converges with a rate not faster than that of the summary statistic, then the tolerance

level, εn, selected by accepting a reasonable proportion of simulations is sufficiently

small, provided the rate of Sn is a power function of n. Based on our experience, if n is

large one may simply choose ν = 1/2 to partition the data. For small n, say n < 100,

it is better to select ν > 1/2 and overlap the subsets so that each subset contains a

reasonable number of observations.

The choice of θ̂ does not have to be very accurate, since it is only used to construct

the initial estimate, rn(θ). For problems of intractable likelihoods, possible choices of θ̂

include the point maximizing an easy-to-obtain approximate likelihood or the point mini-

mizing the average distance between the simulated s and sobs ([Meeds & Welling(2015)]).

However, a poor choice, for instance, a θ̂ with a large bias, might cause bias in the

inference if the mass of Qε(θ | sobs) is not well covered by the simulated parameter values.

For a subset, zi, of the data, xobs, we suggest choosing the point estimate to be the

s-likelihood-based expectation over the subset, i.e. E{θ | Sn(zi)} ∝
∫
θfn{Sn(zi) | θ}dθ.

This choice of θ̂ has two benefits. First, when the summary statistic satisfies Condition

6, E{θ | Sn(zi)} is asymptotically unbiased. Second, E{θ | Sn(zi)} converges with the

same rate as Sn, which is desirable as discussed above.

For each subset zi of xobs, E{θ | Sn(zi)} can be approximated using the population

Monte Carlo variant of Algorithm 1. ([Beaumont et al.(2009), Del Moral et al.(2012)])

This variant extends the importance sampling step of Algorithm 3 to a sequence of sam-

pling importance resampling operations, in order to iteratively update the approximate

posterior distribution starting from the prior distribution. For an initial choice of θ̂, say ̂̄θ,
let r̄n(θ) be the proposal distribution constructed by Algorithm 4 together with ̂̄θ. Here

the user can now propose from r̄n(θ) in the first iteration of the algorithm rather than

proposing from the prior distribution, helping to reduce the associated computational
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cost. This approximation is straightforward to execute in parallel for multiple subsets

and can be applied to Algorithm 2 as well. We call this scheme the refined-minibatch

scheme, since it updates the rn(θ) obtained from the minibatch scheme (i.e. Algorithm

4) by improving the quality of θ̂. From our experience, the additional computational

cost of the refined version is relatively small compared to the other parts of Algorithm 1

and 2 because a small particle size and several iterations are usually enough to achieve

convergence of the population Monte Carlo algorithm with the proposed techniques. A

full study on the choice of θ̂ is beyond the scope of this study.

Remark 2 There is a trade-off in Algorithm 2 between faster computations and guaran-

teed frequentist inference. When the growth of rn(θ) is at a similar rate as the s-likelihood

while the sample size n→∞, the computing time may be reduced but Algorithm 2 may

also risk violating Conditions 3–5. If these assumptions are violated, the resulting simula-

tions do not necessarily form a confidence distribution and consequently, inference based

on Algorithm 2 may not be valid in terms of producing confidence sets with guaranteed

coverage. However, if Conditions 3–6 do hold and the observed data is large enough,

Theorem 2 shows that regardless of the choice of rn(θ), Algorithm 2 always produces the

same confidence distribution.

2.4 Numerical Examples

2.4.1 Cauchy example

In Figure 2.1 we saw how the lack of a sufficient summary statistic could drastically

change the inferential results of approximate Bayesian computing. In this section the

following, we revisit the problem of finding confidence intervals for the parameters of IID

data, (x1, . . . , xn), from a Cauchy(θ, τ) distribution. In this section we take τ = 0.55 as

known but we consider τ unknown in the following section.

In Table 2.1, we fix the tolerance at three different levels and compare the proportion

of accepted θ values out of a Monte Carlo sample size of 106 among Algorithms 1, 2, and

3. In Algorithms 1 and 3 we use a “non-informative” π(θ) ∝ 1/(1 + θ−θ0
3 )2. (Note that

this prior has been centered around θ0. This was done for practicality but for a truly
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Table 2.1: Comparison of r-ABC, IS-ABC, and r-ACC without the regression adjustment
for inference on θ using the median as the summary statistic and assuming a flat prior
on θ. We fix εn and compare the median acceptance proportions of each algorithm using
a Monte Carlo sample size of 106. Coverage is computed over 300 runs. IS-ABC and
r-ACC perform similarly.

εn Acceptance Proportion

r-ABC IS-ABC r-ACC

0.1 0.0001 0.001 0.001
0.01 0.001 0.008 0.008
0.001 0.008 0.079 0.079

non-informative prior, the acceptance proportion of Algorithm 1 and 3 can be much

lower.) The wights for Algorithm 3 are w(θ) = π(θ)/rn(θ)) and for Algorithms 2 and 3,

rn(θ) is constructed using Algorithm 4 with ν = 1/2. We see a drastic difference in the

acceptance proportion between Algorithm 1 and the other two methods, demonstrating

the computational advantage inherent to Algorithm 2.

The conclusion of Table 2.1 is that it is more reasonable to compare the performance

of Algorithm 3 to Algorithm 2 than it is to compare Algorithm 1 and Algorithm 2.

However, as the solid lines in Figure 2.2 indicate, both Algorithm 2 and 3 suffer from sever

over-coverage. To address this issue, we also consider the performance of post-processed

outputs of IS-ABC and rejection ACC using the regression adjustment from Section

2.3.3. Note that in Figure 2.2 we consider two different choices of summary statistic. For

S = Med(x1, . . . , xn), we also consider rn(θ) ∝ 1/( θ−x̄τ0 )2 which still satisfies Conditions

1–5 from Section 2.3.

Figure 2.2 shows that in all cases, intervals constructed by the unadjusted samples

are much wider and over-cover the true parameter values for almost all acceptance

proportions, in accordance with the discussion in Section 2.3.3. The performance of

Algorithms 2 and 3 are similar for a more informative choice of summary statistic,

however for a less informative summary statistic, there is a considerable difference in

the performance of these two methods as the coverage of Algorithm 3 is much lower

than the nominal level. Following the conclusions of this discussion, in the next section

we will only compare the regression adjusted versions of Algorithms 2 and 3, for a fairer
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Figure 2.2: Confidence interval coverage results of rejection ACC (gray) and importance
sampling ABC (black) for Cauchy location parameter estimation both with (dashed) and
without (solid) regression adjustment. In plots (i) and (ii), Sn = Median(x1, . . . , xn)
and in plot (iii) Sn = x̄. Coverage is calculated over 500 runs and the Monte Carlo
size of each run is 5 × 105. Dashed black line is the nominal coverage level. KDE
means that rn(θ) is constructed using Algorithm 4 with ν = 1/2 and Cauchy means
that rn(θ) ∝ 1/( θ−x̄τ0 )2.

comparison and a more realistic understanding of the advantages of Algorithm 2.

2.4.2 Cauchy example expanded

To expand upon the example in the previous section, we will now compare the perfor-

mance of regression-adjusted Algorithm 2 and 3 in seven different experiment settings.

For reference, all experiment settings explored in this section are summarized in Table

2.2. In each of these seven settings, we construct rn(θ) using Algorithm 4 with ν = 1/2.

The different prior distribution choices for each of the Bayesian methods are the

Jeffrey’s priors for a location-scale family. In settings (i)-(iii) of Table 2.2, we consider

inference for one or both of the unknown parameters. We choose the summary statistics

as the sample median and sample median absolute deviation for the location and scale

parameters, respectively. These summary statistics are asymptotically normal and

unbiased and satisfy Condition 6; thus Theorem 3 guarantees at least nominal coverage

for the intervals/regions of Algorithm 2. In settings (iv)-(vii), we consider inference for

the location parameter only using the sample mean as the summary statistic. Here, the
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Table 2.2: Experiment settings of Example 1. Improper priors are considered for (i)–(iv).
In the table, t4(µ, σ) denotes the Student’s t density with degree of freedom four, location
µ and scale σ and MAD(x) represents the sample median absolute deviation.

Unknown parameter Prior density Summary statistic
(i) θ 1 median(x)
(ii) τ τ−1Iτ>0 MAD(x)
(iii) (θ, τ) τ−1Iτ>0 {median(x),MAD(x)}
(iv) θ 1 x
(v) θ t4(θ0, 1) x
(vi) θ t4(θ0, 3) x
(vii) θ t4(θ0 + 3, 3) x

summary statistic does not satisfy condition 6, but it does satisfy the conditions for

Corollary 1.

The results of these seven experiments are summarized in Table 2.3. For settings

(i)-(iii), Table 2.3.A shows that both algorithms perform very similarly. This is not

surprising, since the data size is large enough that the asymptotic behaviors of all

estimates are similar. As discussed in Section 2.3.3, we see here that Qε(· | sobs)

and Πε(· | sobs) share the same limiting normal distribution and thus the credible

intervals/region from Algorithm 3 are similar to the confidence intervals/region from

Algorithm 2.

For settings (iv)-(vii), Table 2.3.B shows that although the summary statistic is less

informative, because it is a pivotal quantity, Corollary 1 guarantees that Algorithm 2 will

produce confidence intervals with at least the nominal coverage level. Here we consider

four different choices of π(·) for Algorithm 3: a non-informative prior in (iv), informative

priors in (v) and (vi) and a misspecified prior in (vii). Regardless of the choice of prior,

Algorithm 3 uses a summary statistic that does not meet the conditions for a Bernstein

von-Mises type of theorem and the coverage of intervals from Algorithm 3 are far lower

than the 95% nominal level. Not only do the intervals based on Algorithm 2 attain the

nominal coverage level, as indicated in Table 2.3, the intervals from Algorithm 2 are

more efficient than the credible intervals from Algorithm 3, the former having widths
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about half the widths of the latter (except in the somewhat less realistic setting (v)

where the prior is highly informative).

2.4.3 Ricker model

A Ricker map is a non-linear dynamical system, often used in Ecology, that describes

how a population changes over time. The population Nt is noisily observed and is

described by the following model,

yt ∼ Pois(φNt),

Nt = rNt−1e
−Nt−1+et , et ∼ N(0, σ2),

where t = 1, . . . , T . Parameters r, φ and σ are positive constants, interpreted as the

intrinsic growth rate of the population, a scale parameter and the environmental noise.

This model is statistically challenging since its likelihood function is intractable when σ

is non-zero and highly irregular in certain regions of the parameter space. [Wood(2010)]

suggests a summary statistic-based inference, instead of likelihood-based inference, to

overcome the noise-driven nature of the model. [Fearnhead & Prangle(2012)] applies

Algorithm 3 with the regression adjustment on the above model. In this section, we

apply Algorithm 2 with the regression adjustment and compare its performance with

that of regression-adjusted Algorithm 3.

We consider inference on the unknown parameter θ = (r, φ, σ). A total of four

different methods are compared. (i) Algorithm 2 with the regression adjustment; (ii)

Algorithm 3 with the regression adjustment; both using Algorithm 4 to choose rn(θ).

(iii) Algorithm 2 with the regression adjustment; (iv) Algorithm 3 with the regression

adjustment; both using Algorithm 4 with the refinement to choose rn(θ). The main

computational cost of all four algorithms is associated with the calculation of the point

estimate in Algorithm 4, for which we select the maximum synthetic likelihood estimator

as defined in [Wood(2010)]. Because each point estimate requires the simulation of

a Markov chain Monte Carlo sample for the synthetic likelihood, each of the four

algorithms spend over 50% of CPU time on obtaining rn(θ). Relative to this cost,
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Table 2.3: Coverage proportions and the median width/volume of confidence or credible
intervals/regions, calculated using 300 datasets under settings of Table 2.2. For credible
intervals, both the frequentist coverage proportions and the Bayesian coverage proba-
bilities are reported, the latter are given in the parenthesis. Each dataset contains 400
observations, and in each algorithm run, a Monte Carlo sample of size 105 is simulated.
The nominal level is 95% and we report the median widths and volumes of the resulting
intervals/regions.

(A) Using an informative summary statistics for θ and τ .
r-ACC IS-ABC

Setting Acceptance Coverage Width/ Coverage Width/
proportion Volume Volume

(i) θ/ Median
0.005 0.947 0.162 0.950 (0.955) 0.169
0.1 0.947 0.165 0.950 (0.957) 0.17
0.4 0.947 0.166 0.950 (0.958) 0.17

(ii) τ/ MAD
0.005 0.950 0.163 0.947 (0.955) 0.169
0.1 0.937 0.165 0.950 (0.958) 0.170
0.4 0.943 0.164 0.950 (0.957) 0.171

(iii) (θ, τ) / (Median,MAD)
0.005 0.913 0.059 0.917 0.059
0.1 0.933 0.100 0.92 0.100
0.4 0.94 0.141 0.927 0.141

(B) Using an un-informative summary statistic for θ, i.e. Sn = x̄.
r-ACC IS-ABC

Setting Acceptance proportion Coverage Width Coverage Width

(iv) 1θ∈R

0.005 0.970 2.56 0.983 (1) 4.65
0.1 0.973 2.56 0.973 (1) 5.39
0.4 0.963 2.65 0.967 (1) 5.58

(v) t4(θ0, 1)
0.005 0.970 2.56 1 (1) 2.69
0.1 0.973 2.56 1 (1) 2.65
0.4 0.963 2.65 1 (1) 2.76

(vi) t4(θ0, 3)
0.005 0.970 2.56 1 (1) 3.93
0.1 0.973 2.56 1 (1) 4.32
0.4 0.963 2.65 1 (1) 4.42

(vii) t4(θ0 + 3, 3)
0.005 0.970 2.56 0.93 (1) 4.40
0.1 0.973 2.56 0.89 (1) 5.33
0.4 0.963 2.65 0.89 (1) 5.61
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the additional cost of the population Monte Carlo algorithm in the refined-minibatch

scheme is negligible when using 104 particles and 10 iterations run in parallel. In this

example, the parametric bootstrap method is not feasible due to the large number of

point estimates it would need to calculate.

Following the settings used in [Wood(2010)], our dataset contains observations from

t = 51 to 100, generated using parameter value θ = (e3.8, 0.3, 10), and using the same

summary statistic therein. We assume θ follows an improper uniform prior distribution

over all positive values. In Algorithm 4, each minibatch has size 10 and a total number

of 40 batches are used. They are chosen with overlaps in order to ensure a reasonable

number of point estimates are available in the current small data size setting. Results

are given in Table 2.4. Because the regression adjustment methods are better in all

cases, to save time and space we only report here results for regression adjustment

methods. The simulation results without the minibatch refinement, show that IS-ABC

has somewhat better coverage than r-ACC since the point estimates (and thus rn(·))

are biased in the small data size setting. However, with the refined-minibatch scheme,

the width of the confidence intervals for r-ACC are smaller than those in IS-ABC in all

cases, although both methods are over-coverage (here the target is 0.95). This result

illustrates the benefit of improving rn(θ) through the population Monte Carlo procedure

on problems with poor initial choice of rn(θ). In the Cauchy example above, using the

refined-minibatch scheme would improve upon the results however the improvement

would be minimal and not as strong as in the Ricker example.

2.5 Discussion

In this work, we re-frame the well-studied popular approximate Bayesian computing

method within a frequentist context and justify its performance by standards set on

the frequency coverage rate. In doing so, we develop a new computational technique

called approximate confidence distribution computing, a likelihood-free method that

does not depend on any Bayesian assumptions such as prior information. Rather

than compare the output to a target posterior distribution, the new method quantifies
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Table 2.4: Coverage proportions and the median width of confidence/coverage intervals
calculated using 150 datasets for the four different methods of the Ricker model in
Example 2 with δ = 3/5 for r-ACC and a flat prior for IS-ABC. Each dataset contains
50 observations, and in each algorithm run, a Monte Carlo sample of size 106 is simulated.
The nominal level is 95%.

(A) Using Algorithm 4 to construct rn(θ).

r-ACC IS-ABC
Acceptance proportion Coverage Width Coverage Width

logR
0.005 0.91 0.59 0.91 0.72
0.1 0.91 0.59 0.99 0.89
0.4 0.9 0.61 0.99 0.99

log σ
0.005 0.96 2.46 0.95 2.59
0.1 0.95 2.78 0.96 2.90
0.4 0.94 2.9 0.97 2.89

log φ
0.005 0.89 0.21 0.92 0.24
0.1 0.91 0.21 0.94 0.30
0.4 0.91 0.23 0.97 0.33

(B) Using the refined version of Algorithm 4 to construct rn(θ).

r-ACC IS-ABC
Acceptance proportion Coverage Width Coverage Width

logR
0.005 0.96 0.85 0.97 0.95
0.1 0.99 0.97 0.99 1.24
0.4 1.00 1.17 0.99 1.96

log σ
0.005 0.96 1.3 0.97 1.63
0.1 0.97 1.37 0.99 1.92
0.4 1.00 1.51 0.99 2.29

log φ
0.005 0.96 0.28 0.97 0.31
0.1 0.99 0.35 0.99 0.43
0.4 0.98 0.55 1.00 0.86
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the uncertainty in estimation by drawing upon a direct connection to a confidence

distribution. This connection guarantees that confidence sets based on approximate

confidence distribution computing methods attain the frequentist coverage property

even in cases where one has a finite sample size and the cases when the summary

statistic used in the computing is not sufficient. Thus we provide theoretical support

for inference from approximate confidence distribution methods which include, but are

not limited to, the special case where we do have prior information (i.e. approximate

Bayesian computing). Furthermore, in the case where the selected summary statistic

is sufficient, inference based on the results of Algorithm 2 is equivalent to maximum

likelihood inference. In addition to providing sound theoretical results for inference,

the framework of approximate confidence distribution computing sets the user up for

better computational performance by allowing the data to drive the algorithm through

the choice of rn(θ). The potential computational advantage of our method has been

illustrated through numerical examples.

Different choices of summary statistics often lead to different approximate Bayesian

computing posteriors πε(θ | sobs) in Algorithms 1 and 3 and different approximate confi-

dence distribution qε(θ | sobs) in Algorithm 2. We find the philosophical interpretation

of the results admitted through approximate confidence distribution computing to be

more natural than the Bayesian interpretation of approximate Bayesian computing

posteriors. Within a frequentist setting, it makes sense to view the many different

potential confidence distributions produced by our method resulting from different

choices of summary statistics as various choices of (distribution) estimators. However,

within the Bayesian framework, there is no clear way to choose from among the different

approximate posteriors due to various choices of summary statistics. In particular, there

is an ambiguity in defining the probability measure on the joint space (P,X ) when

choosing among different approximate Bayesian computing posteriors. Rather than

engaging in a pursuit to define a moving target such as this, our method maintains a

clear frequentist interpretation thereby offering a consonantly cohesive interpretation of

likelihood-free methods.
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In Section 2.3.4, one may wonder if an estimate, θ̂, can be computed, then why

not apply the parametric bootstrap method to construct confidence regions for θ as

opposed to using Algorithm 2? Although no likelihood evaluation is needed, this

bootstrap method has two drawbacks. First, the parametric bootstrap method is heavily

affected by the quality of θ̂. For example, a bootstrapped confidence interval is based

on quantiles of θ̂ from simulated datasets. A poor estimator θ̂ typically leads to poor

performing confidence sets. In contrast, in Section 2.3.4, θ̂ is only used to construct the

initial function estimate which is then updated by the data. Second, when it is more

expensive to obtain θ̂ than the summary statistic, the parametric bootstrap method is

computationally more costly than Algorithm 2, since θ̂ needs to be calculated for each

pseudo dataset. Example 4.2 in Section 2.4 provided an example of this type of scenario.

The function rn(θ) serves as the role of an initial ‘distributional estimate’. Even in

the instance where rn(θ) does not yield reasonable acceptance probabilities for Algorithm

2, many of the established techniques used in approximate Bayesian computing can be

adapted naturally to Algorithm 2 to improve computational performance. For exam-

ple, the likelihood-free Markov chain Monte Carlo ([Marjoram et al.(2003)]) and the

dimension-reduction methods on the summary statistics ([Fearnhead & Prangle(2012)]),

among others, can improve Algorithm 2 without sacrificing frequentist inferential guar-

antees. Furthermore, these variants of Algorithm 2 will be more efficient than the

corresponding variants of Algorithm 1, since rn(θ) is less dispersed than the prior.

Appendix 1

Example of a confidence distribution

Consider the following example taken from [Singh et al.(2007)]. Suppose X1, . . . , Xn is

a sample from N(µ, σ2) where both µ and σ2 are unknown. A confidence distribution

for parameter µ is the function Hn(y) = Ft(n−1)

{
(y − X̄)/(sn/

√
n)
}

where Ft(n−1)
(·) is

the cumulative distribution function of a Student’s t-random variable with n− 1 degrees

of freedom and X̄ and s2
n are the sample mean and variance, respectively. Here Hn(y)

is a cumulative distribution function in the parameter space of µ from which we can
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construct confidence intervals of µ at all levels. For example, for any α ∈ (0, 1), one sided

confidence intervals for µ are (∞, H−1
n (α)] and [H−1

n (α),∞). Similarly, a confidence

distribution for parameter σ2 is the function Hn(σ2) = 1− Fχ2
n−1

[
{(n− 1)s2

n}/(σ2)
]
,

where Fχ2
n−1

(·) is the distribution function of a Chi-squared random variable with n− 1

degrees of freedom. Again, Hn(σ2) is a cumulative distribution function in the parameter

space of σ2 from which we can construct confidence intervals of σ at all levels.

Lemma 1

Proof: The density of πε can be expressed by

πε(θ|sobs) ∝
∫
Rd
π(θ)fn(s | θ)Kε(s− sobs)ds

= π(θ)

∫ {
fn(sobs | θ) +Dfn(s̄ | θ)T (s̄− s)

+ (1/2)(s̄− s)THfn(s̄ | θ)(s̄− s)
}
Kε(s− sobs)ds

∝ π(θ)fn(sobs|θ) +O(ε2),

where Dfn(· | θ) and Hfn(· | θ) are the vector of first derivatives and matrix of

second derivatives of fn(· | θ), respectively, and s̄ is a value/vector between sobs and

sobs + uε. The equality above holds due to a Taylor expansion of fn(· | θ) with respect

to sobs and the final proportion holds using the substitution u = (s − sobs) and that∫
Rd Kε(u) du = 1 and

∫
Rd uKε(u) du = 0. �

Remark 1 in Section 2

Proof: By its definition, Hn(·) = H(·, sobs) is a sample-dependent cumulative dis-

tribution function on the parameter space. We also have Hn(θ0) = H(θ0, sobs) =

pr∗(2θ̂ − θ ≤ θ0 | Sn = sobs) = pr∗(θ − θ̂ ≥ θ̂ − θ0 | Sn = sobs) = 1 −G(θ̂ − θ0). Since

G(t) = pr(θ̂ − θ ≤ t | θ = θ0), we have G(θ̂ − θ0) ∼ Unif(0, 1) under the probability

measure of the random sample population. Thus, as a function of the random Sn,

Hn(θ0) = Hn(θ0, Sn) ∼ Unif(0, 1). By the univariate confidence distribution definition,

Hn(·) is a confidence distribution function.
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Furthermore, Hn(·) can provide us confidence intervals of any level. In particular,

for any α ∈ (0, 1), pr{θ ≤ H−1
n (1− α) | θ = θ0} = pr{Hn(θ) ≤ 1− α | θ = θ0} = 1− α.

Thus, (−∞, H−1
n (1−α)] is a (1−α)-level confidence interval. Note that, Hn(2θ̂− θα) =

pr∗(2θACC − θ ≤ 2θ − θα | Sn = sobs) = 1 − pr∗(θ < θα | Sn = sobs) = 1 − α. So,

H−1
n (1−α) = 2θ̂−θα. Therefore, (−∞, 2θ̂−θα] is also a (1−α)-level confidence interval

for θ. �

Lemma 2

Proof: First note that

| pr{θ ∈ Γ1−α(Sn) | θ = θ0} − (1− α) |=| pr{W (θ, Sn) ∈ A1−α | θ = θ0} − (1− α) |

≤ | pr∗{V (θ, Sn) ∈ A1−α | Sn = sobs} − (1− α) |

+ | pr{W (θ, Sn) ∈ A1−α | θ = θ0} − pr∗{V (θ, Sn) ∈ A1−α | Sn = sobs} |

and by the definition of A1−α in (4), | pr∗{V (θ, Sn) ∈ A1−α | Sn = sobs}−(1−α) |= o(δ′),

almost surely for a pre-selected precision number, δ′ > 0. Therefore, by Condition 1, we

have | pr{θ ∈ Γ1−α(Sn) | θ = θ0} − (1 − α) |= δ where δ = max{δε, δ′}. Furthermore,

if Condition 1 holds almost surely, then | pr{θ ∈ Γ1−α(Sn) | θ = θ0} − (1− α) |= o(δ),

almost surely. �

Theorem 1

Proof: Setting W (θ, Sn) = T (θ, Sn) and by (2.7), we immediately have

pr{W (θ, Sn) ∈ A | θ = θ0} =

∫
t∈A

g(t)dt {1 + o(δ
′′
)}, (2.12)

for any Borel set A ⊂ Rd.

Let f(s|θ) be the conditional density of Sn, given θ. Note that t and Sn have the same

dimension. For a given θ and with the variable transformation T = T (θ, Sn), the density

functions g(t) and f(st,θ|θ) are connected by a Jacobi matrix: f(st,θ|θ)|T (1)(θ, st,θ)|−1 =

g(t){1 + o(δ
′′
)}, where T (1)(θ, s) = ∂

∂sT (θ, s) and st,θ is the solution of t = T (θ, s).
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In Algorithm 2, we simulate θ′ ∼ rn(θ) and s′ = Sn(x′) with x′|θ = θ′ ∼ Mθ′ .

Furthermore, we only keep those pairs (θ′, s′) with the kernel probability Kε(s
′ − sobs).

Thus, the joint density function of a copy of (θ′, s′) that are simulated and kept by

Algorithm 2, conditional on observing Sn = sobs, is

(θ′, s′)|Sn = sobs ∝ rn(θ′)fn(s′ | θ′)Kε(s
′ − sobs).

Now, let T ′ = T (θ′, s′). Perform a variable transformation from (θ′, s′) to (θ′, T ′) with

the Jacobi term |T (1)(θ′, sT ′,θ′)|−1, where sT ′,θ′ is a solution to T ′ = T (θ′, s). Then, the

joint conditional density of (θ′, T ′), conditional on Sn = sobs, is

(θ′, T ′)|Sn = sobs ∝ rn(θ′)fn(sT ′,θ′ | θ′)|T (1)(θ′, sT ′,θ′)|−1Kε(sT ′,θ′ − sobs).

= rn(θ′)g(T ′)Kε(sT ′,θ′ − sobs){1 + o(δ
′′
)}.

Therefore, T ′ = T (θ′, s′), the approximate pivot statistic generated from Algorithm 2,

with distribution conditional on Sn = sobs:

T ′|Sn = sobs ∝ g(t′){1 + o(δ
′′
)}
∫
rn(θ′)Kε(st′,θ′ − sobs)dθ

′

If requirement (2.8) is satisfied, then we have

T ′|Sn = sobs ∼ g(T ′){1 + o(δ
′′
)}{1 + o(δ

′
ε)}.

Set V (θ′, s′) = T ′ = T (θ′, s′) and denote by θACC the θ′ accepted by the ACC algorithm.

We have

pr∗{V (θACC, Sn) ∈ A | Sn = sobs} =

∫
t∈A

g(t)dt{1 + o(δ
′′
)}{1 + o(δ

′
ε)}

Thus, together with (2.12), Condition 1 is satisfied for δε = max{δ′′ , δ′ε}. Furthermore,

by Lemma 2, the rest of the statements in the theorem also hold. �
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Corollary 1

Proof: Here we prove requirement (2.8) for Part 2, data from a scale family. The proofs

for Part 1 (location family) and Part 3 (location and scale family) are similar and thus

omitted.

In particular, in a scale family suppose Sn has the density (1/σ)g2(Sn/σ). Then

T = T (σ, Sn) = Sn/σ ∼ g2(t) is a pivot. So, for any given (t, σ) pair we have st,σ = tσ.

Thus, with variable transformation u = tσ − sobs we have

∫
rn(σ)Kε (sT,σ − sobs) dσ =

∫
1

σ
Kε (sT,σ − sobs) dσ

=

∫
1

u+ sobs
Kε (u+ sobs − sobs) du

which is free of t. Therefore, the requirement (2.8) is satisfied in this case. Furthermore,

the function H2(σ̂2
S , x) = 1 −

∫ σ̂2
S/x

0 g2(w)dw is a confidence distribution for σ2 since

(1) given S, H2(σ̂2
S , x) is a distribution function on the parameter space (0,∞) and (2)

given x = σ2
0, H2(σ̂2

S , x) ∼ U(0, 1). �

Notation and additional conditions

Let N(x;µ,Σ) be the normal density at x with mean µ and variance Σ, and f̃n(s | θ) =

N{s; s(θ), A(θ)/a2
n}, the asymptotic distribution of the summary statistic. We define

an,ε = an if limn→∞ anεn <∞ and an,ε = ε−1
n otherwise, and cε = limn→∞ anεn, both of

which summarize how εn decreases relative to the converging rate, an, of Sn in Condition

6 below. Define the standardized random variables Wn(Sn) = anA(θ)−1/2{Sn − η(θ)}

and Wobs = anA(θ)−1/2{sobs − η(θ)} according to Condition 6 below. Let fWn(w | θ)

and f̃Wn(w | θ) be the density for Wn(Sn) when Sn ∼ fn(· | θ) and f̃n(· | θ) respectively.

Let Bδ = {θ | ‖θ − θ0‖ ≤ δ} for δ > 0. Define the initial density truncated in Bδ,

i.e. rn(θ)Iθ∈Bδ/
∫
Bδ
rn(θ) dθ, by rδ(θ). Let t(θ) = an,ε(θ − θ0) and v(s) = ε−1

n (s− sobs).

For any A ∈ Bp where Bp is the Borel sigma-field on Rp, let t(A) be the set {φ : φ =

t(θ) for some θ ∈ A}. For a non-negative function h(x), integrable in Rl, denote the

normalized function h(x)/
∫
Rl h(x) dx by h(x)(norm). For a function h(x), denote its
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gradient by Dxh(x), and for simplicity, omit θ from Dθ. For a sequence xn, we use

the notation xn = Θ(an) to mean that there exist some constants m and M such that

0 < m <| xn/an |< M <∞.

Condition 6 There exists a sequence an, satisfying an →∞ as n→∞, a d-dimensional

vector η(θ) and a d× d matrix A(θ), such that for Sn ∼ fn(· | θ) and all θ ∈ P0,

an{Sn − η(θ)} → N{0, A(θ)}, as n→∞,

in distribution. We also assume that sobs → η(θ0) in probability. Furthermore, it holds

that (i) η(θ) and A(θ) ∈ C1(P0), and A(θ) is positive definite for any θ; (ii) for any

δ > 0 there exists a δ′ > 0 such that ‖η(θ)− η(θ0)‖ > δ′ for all θ satisfying ‖θ− θ0‖ > δ;

and (iii) I(θ) ,
{
∂
∂θη(θ)

}T
A−1(θ)

{
∂
∂θη(θ)

}
has full rank at θ = θ0.

Condition 7 The kernel satisfies (i)
∫
vKε(v)dv = 0; (ii)

∏l
k=1 vikKε(v)dv < ∞ for

any coordinates (vi1 , . . . , vil) of v and l ≤ p+ 6; (iii)Kε(v) ∝ Kε(‖v‖2Λ) where ‖v‖2Λ =

vTΛv and Λ is a positive-definite matrix, and K(v) is a decreasing function of ‖v‖Λ;

(iv) Kε(v) = O(exp{−c1‖v‖α1}) for some α1 > 0 and c1 > 0 as ‖v‖ → ∞.

Condition 8 There exists αn satisfying αn/a
2/5
n →∞ and a density rmax(w) satisfying

Condition 7(ii)–(iii) where Kε(v) is replaced with rmax(w), such that supθ∈Bδ αn |

fWn(w | θ)− f̃Wn(w | θ) |≤ c3rmax(w) for some positive constant c3.

Condition 9 The following statements hold: (i) rmax(w) satisfies Condition 7(iv); and

(ii) supθ∈BCδ
f̃Wn(w | θ) = O(e−c2‖w‖

α2 ) as ‖w‖ → ∞ for some positive constants c2 and

α2, and A(θ) is bounded in P.

Condition 10 The first two moments,
∫
Rd sf̃n(s | θ)ds and

∫
Rd s

T sf̃n(s | θ)ds, exist.

Proof of Theorem 2

Let Q̃(θ ∈ A | s) =
∫
A rδ(θ)f̃n(s | θ) dθ/

∫
Rp rδ(θ)f̃n(s | θ) dθ.
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Lemma 3 Assume Condition 2–8. If εn = O(a−1
n ), for any fixed ν ∈ Rd and small

enough δ,

sup
A∈Bp

∣∣∣∣Q̃{an(θ − θ0) ∈ A | sobs + εnν} −
∫
A
N [t;β0{A(θ0)1/2Wobs + cεν}, I(θ0)−1]dt

∣∣∣∣→ 0,

in probability as n→∞, where β0 = I(θ0)−1Dη(θ0)TA(θ−1
0 ).

Proof of Lemma 3: With Lemma 1 from [Li & Fearnhead(2018a)], it is sufficient to

show that

sup
A∈Bp

| Q̃{t(θ) ∈ A | sobs + εnν} − Π̃{t(θ) ∈ A | sobs + εnν} |= oP (1),

where Π̃ denotes Q̃ using rn(θ) rather than a prior π(θ) with a density satisfying

Condition 2. With the transformation t = t(θ) and v = v(s), the left hand side of the

above equation can be written as

sup
A∈Bp

|
∫
A rδ(θ + a−1

n t)f̃n(sobs + εnν | θ + a−1
n t)dt∫

Rp rδ(θ + a−1
n t)f̃n(sobs + εnν | θ + a−1

n t)dt
− (2.13)∫

A π(θ + a−1
n t)f̃n(sobs + εnν | θ + a−1

n t)dt∫
Rp π(θ + a−1

n t)f̃n(sobs + εnν | θ + a−1
n t)dt

| .

For a function τ : Rp → R, define the following auxiliary functions,

φ1{τ(θ);n} =

∫
t(Bδ)

|τ(θ + a−1
n t)− τ(θ)|f̃n(sobs + εnν | θ + a−1

n t) dt∫
t(Bδ)

τ(θ + a−1
n t)f̃n(sobs + εnν | θ + a−1

n t) dt
,

φ2{τ(θ);n} =
τ(θ)

∫
t(Bδ)

f̃n(sobs + εnν | θ + a−1
n t)dt∫

t(Bδ)
τ(θ + a−1

n t)f̃n(sobs + εnν | θ0 + a−1
n t)dt

.

Then by adding and subtracting φ2{τ−pn rδ(θ);n}φ2{π(θ);n} in the absolute sign of

(2.14), (2.14) can be bounded by

φ1{τ−pn rδ(θ);n}+ φ1{π(θ);n}φ2{τ−pn rδ(θ);n}+ φ1{τ−pn rδ(θ);n}φ2{π(θ);n}+ φ1{π(θ);n}.

Consider a class of function τ(θ) satisfying the following conditions:
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There exists a series {kn}, such that supθ∈P0
‖k−1

n Dτ(θ)‖ <∞ and kn = o(an);

τ(θ0) > 0 and τ(θ) ∈ C1(Bδ).

By Conditions 2–5, τ−pn rδ(θ) and π(θ) belong to the above class. Then if φ1{τ(θ);n}

is op(1) and φ2{τ(θ);n} is Op(1), (2.14) is op(1) and the lemma holds.

First, from (ii), there exists an open set ω ⊂ Bδ such that infθ∈ω τ(θ) > c1, for a

constant c1 > 0. Then for φ2{τ(θ);n}, it is bounded by

τ(θ)

c1

∫
t(ω) f̃n(sobs + εnν | θ0 + a−1

n t)(norm)dt
,

where h(x)(norm) represents the normalized version of h(x). From equation (7) in the

supplementary material of [Li & Fearnhead(2018b)], f̃n(sobs + εnν | θ + a−1
n t) can be

written in the following form,

adnf̃n(sobs + εnν | θ + a−1
n t) =

1

‖Bn(t)‖1/2
N [Cn(t){An(t)t− bnν − c2}; θ, Id], (2.14)

where An(t) is a series of d× p matrix functions, {Bn(t)} and {Cn(t)} are a series of

d× d matrix functions, bn converges to a non-negative constant and c2 is a constant,

and the minimum of absolute eigenvalues of An(t) and eigenvalues of Bn(t) and Cn(t)

are all bounded and away from 0. Then for fixed ν, by continuous mapping, (2.14) is

away from zero with probability one. Therefore φ2{τ(θ);n} = OP (1).

Second, by Taylor expansion, τ(θ+a−1
n t) = τ(θ)+a−1

n Dτ(θ+ett)t, where ‖et‖ ≤ a−1
n .

Then

φ1{τ(θ);n} =
knφ2{τ(θ);n}

anτ(θ)

∫
t(Bδ)

|k−1
n Dτ(θ + ett)t|f̃n(sobs + εnν | θ + a−1

n t) dt∫
t(Bδ)

f̃n(sobs + εnν | θ + a−1
n t) dt

≤ knφ2{τ(θ);n}
anτ(θ)

sup
θ∈Bδ

‖k−1
n Dτ(θ)‖

∫
t(Bδ)

‖t‖adnf̃n(sobs + εnν | θ + a−1
n t)dt∫

t(Bδ)
adnf̃n(sobs + εnν | θ + a−1

n t) dt
,(2.15)

where the inequality holds by the triangle inequality. By the expression (2.14) and

Lemma 7 in the supplementary material of [Li & Fearnhead(2018b)], the right hand

side of (2.15) is OP (1). Then together with φ2{τ(θ);n} = ΘP (1), φ1{τ(θ);n} = oP (1).
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Therefore the Lemma holds. �

Define the joint density of (θ, s) in Algorithm 2 and its approximation, where the

s-likelihood is replaced by its Gaussian limit and rn(θ) by its truncation, by qε(θ, s) and

q̃ε(θ, s). It is easy to see that,

qε(θ, s) =
rn(θ)fn(s|θ)Kεn(s− sobs)∫

Rp×Rd rn(θ)fn(s|θ)Kεn(s− sobs) dθds
,

q̃ε(θ, s) =
rδ(θ)f̃n(s|θ)Kεn(s− sobs)∫

Rp×Rd rδ(θ)f̃n(s|θ)Kεn(s− sobs) dθds
.

Let Q̃ε(θ ∈ A | sobs) be the approximate confidence distribution function,
∫
A

∫
Rd q̃ε(θ, s) dsdθ.

With the transformation t = t(θ) and v = v(s), let q̃ε,tν(t, v) = τ−pn rδ(θ+ a−1
n,εt)f̃n(sobs +

εnν | θ + a−1
n,εt)Kε(ν) be the transformed and unnormalized q̃ε(θ, s), and q̃A,tv(h) =∫

A

∫
Rd h(t, v)q̃ε,tν(t, v) dvdt for any function h(·, ·) in Rp × Rd. Denote the factor of

q̃ε,tν(t, v), τ−pn rδ(θ+a
−1
n,εt), by γn(t). Let γ = limn→∞ τ

−p
n rδ(θ) and γ(t) = limn→∞ τ

−p
n rδ(θ+

τ−1
n t), the limits of γn(t) when an,ε = an and an,ε = τn respectively. By Con-

dition 3 and 4, γ(t) exists and γ is non-zero with positive probability. Here sev-

eral functions of t and v defined in [Li & Fearnhead(2018a), proofs for Section 3.1]

and relate to the limit of q̃ε,tν(t, v) are used, including g(v;A,B, c), gn(t, v), Gn(v)

and g′n(t, v). Furthermore several functions defined by integration as following are

used: for any A ∈ Bp, let gA,r(h) =
∫
Rd
∫
t(A) h(t, v)γn(t)gn(t, v) dtdv, Gn,r(v) =∫

t(Bδ)
γn(t)gn(t, v) dt, qA(h) =

∫
A

∫
Rd h(θ, s)rn(θ)fn(s | θ)Kε(s − sobs)ε

−d
n dsdθ and

q̃A(h) =
∫
A

∫
Rd h(θ, s)rδ(θ)f̃n(s | θ)Kε(s − sobs)ε

−d
n dsdθ, which generalize those de-

fined in [Li & Fearnhead(2018a), proofs for Section 3.1] for the case rn(θ) = π(θ).

Lemma 4 Assume Condition 2–7. If εn = o(a
−1/2
n ), then

(i)
∫
Rd
∫
t(Bδ)

|q̃ε,tν(t, ν)− γn(t)gn(t, ν)| dtdν = op(1);

(ii) gBδ,r(1) = ΘP (1);

(iii) q̃Bδ,tv(t
k1vk2)/q̃Bδ,tv(1) = gBδ,r(t

k1vk2)/gBδ,r(1) +OP (a−1
n,ε) +OP (a2

nε
4
n) for k1 and

k2

(iv) q̃Bδ(1) = τpna
d−p
n,ε

{∫
t(Bδ)

∫
Rd γn(t)gn(t, ν)dτdν +OP (a−1

n,ε) +OP (a2
nε

4
n)
}

.
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Proof of Lemma 4: These results generalize Lemma 2 in [Li & Fearnhead(2018a)]

and Lemma 5 in [Li & Fearnhead(2018b)]. In Lemma 2 of [Li & Fearnhead(2018a)]

where γn(t) = π(θ + a−1
n,εt), (i) holds by expanding q̃ε,tν(t, v) according to the proof

of Lemma 5 of [Li & Fearnhead(2018b)]. Here the lines can be followed similarly by

changing the terms involving π(θ) in equations (10) and (11) in the supplements of

[Li & Fearnhead(2018b)]. Equation (10) is replaced by

γn(t)

| A(θ + a−1
n,εt) |1/2

=
γn(t)

| A(θ) |1/2
+ a−1

n,εγn(t)D
1

| A(θ + et) |1/2
t,

where ‖eτ‖ ≤ δ, and this leads to replacing π(θ)
∫
τ(Bδ)×Rd gn(t, ν)dtdν in equation (11)

by
∫
τ(Bδ)×Rd γn(t)gn(t, ν)dtdν. These changes have no effect on the arguments therein

since supt∈t(Bδ) γn(t) = OP (1) by Condition 3. Therefore (i) holds.

For (ii), By Condition 4 and Lemma 2 of [Li & Fearnhead(2018a)], there exists a

δ′ < δ such that inft∈t(Bδ′ ) γn(t) = Θp(1) and
∫
Rd
∫
t(Bδ′ )

gn(t, ν) dtdv = Θp(1). Then

since gBδ,r(1) ≥ inft∈t(Bδ′ ) γn(t)
∫
Rd
∫
t(Bδ′ )

gn(t, ν) dtdν, (ii) holds.

For (iii), q̃Bδ,tv(t)/q̃Bδ,tv(1) can be expanded by following the arguments in the

proof of Lemma 5 of [Li & Fearnhead(2018b)]. For q̃Bδ,tv(t
k1vk2)/q̃Bδ,tv(1), it can be

expanded similarly as in the proof of Lemma 4 of [Li & Fearnhead(2018a)].

For (iv), γn(t) plays the same role as π(θ) in the proof of Lemma 5 in [Li & Fearnhead(2018b)],

and the arguments therein can be followed exactly. The term τpn is from the definition

of γn(t) that rn(θ + a−1
n,εt) = τpnγn(t). �

Define the expectation of θ with distribution Q̃ε(θ ∈ A | sobs) as θ̃ε , and that

of θ∗ACC with density q̃ε(θ, s) as θ̃∗ε . Let EG,r(·) be the expectation with the den-

sity Gn(v)(norm), and EG,r{h(v)} can be written as gBδ,r{h(v)}/gBδ,r(1). Let ψ(ν) =

k−1
n β0{A(θ0)1/2Wobs + anεnν}, where kn = 1, if cε <∞, and anεn, if cε =∞.

Lemma 5 Assume Condition 2–5 and 7. Then if εn = o(a
−1/2
n ),

(i) θ̃ε = θ0 + a−1
n β0A(θ0)1/2Wobs + εnβ0EGn,r(ν) + r1, where r1 = oP (a−1

n );

(ii) θ̃∗ε = θ0 + a−1
n β0A(θ0)1/2wobs + εn(β0 − βε)EGn,r(ν) + r2, where r2 = oP (a−1

n ).
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Proof of Lemma 5: These results generalize Lemma 3(c) and Lemma 5(c) in

[Li & Fearnhead(2018a)]. With the transformation t = t(θ), by Lemma 2, if εn =

o(a
−1/2
n ),


θ̃ε = θ0 + a−1

n,εq̃Bδ,tν(t)/q̃Bδ,tν(1) = θ0 + a−1
n,εgBδ,r(t)/gBδ,r(1) + op(a

−1
n ),

θ̃xε = θ0 + a−1
n,εq̃Bδ,tν(t)/q̃Bδ,tν(1)− εnβεq̃Bδ,tν(ν)/q̃Bδ,tν(1)

= θ0 + a−1
n,εgBδ,r(t)/gBδ,r(1)− εnβεEan,r(ν) + op(a

−1
n ),

(2.16)

where the remainder term comes from the fact that (a−1
n,ε+ εn)

{
Op(a

−1
n,ε) +Op(a

2
nε

4
n)
}

=

op(a
−1
n ).

First the leading term of gBδ,r(tν
k) is derived for k = 0 or 1. The case of k = 1 will

be used later. Let t′ = t− ψ(ν), then

gBδ,r(tν
k2) =

∫
Rd

∫
t(Bδ)
{t′ + ψ(ν)}νk2γn(t)gn(t, ν) dtdν

=

∫
Rd
ψ(ν)νk2Gn,r(ν) dν +

∫
Rd

∫
t(Bδ)

t′νk2γn(t)gn(t, ν) dtdν.

By matrix algebra, it is straightforward to show that gn(t, v) = N{t;ψ(v), k−2
n I(θ0)−1}Gn(v).

Then with the transformation t′, we have

gBδ,r(tν
k2)−

∫
Rd
ψ(ν)νk2Gn,r(ν) dν

=

∫
Rd

∫
t(Bδ)−ψ(ν)

t′νk2γn{ψ(ν) + t′}N
{
t′; 0, k−2

n I(θ0)−1
}
Gn(ν) dt′dν.

By applying the Taylor expansion on γn{ψ(ν) + t′}, the right hand side of the above
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equation is equal to

∫
Rd

∫
t(Bδ)−ψ(ν)

t′N{t′; 0, k−2
n I(θ0)−1} dt′ · γn{ψ(ν)}νk2Gn(ν) dν

+

∫
Rd

∫
t(Bδ)−ψ(ν)

t′2Dtγn{ψ(ν) + et}N{t′; 0, k−2
n I(θ0)−1} dt′ · νk2Gn(ν)dν

= k−1
n

∫
Rd

∫
Qv

t′′N{t′′; 0, I(θ0)−1} dt′′ · γn{ψ(ν)}νk2Gn(ν) dν

+k−2
n

∫
Rd

∫
Qv

t′′2Dtγn{ψ(ν) + et}N{t′′; 0, I(θ0)−1} dt′′ · νk2Gn(ν) dν, (2.17)

where Qv = {an(θ − θ0)− knψ(ν) | θ ∈ Bδ} and t′′ = knt
′. Since Qv can be written

as
{
an(θ − θ0 − εnν)− β0A(θ0)1/2Wobs | θ ∈ Bδ

}
, it converges to Rp for any fixed v

with probability one. Then
∫
Qv
t′′N{t′′; 0, τ(θ0)−1} dt′′ = oP (1) for fixed v, and by the

continuous mapping theorem and Condition 3, the first term in the right hand side of

(2.17) is of the order op(k
−1
n ). The second term is bounded by

k−2
n sup

t∈R
‖Dtγn(t)‖

∫
Rp
‖t′′‖2N{t′′; 0, I(θ−1

0 )} dt′′
∫
Rd
νk2Gn(ν) dν,

which is of the order Op(k
−2τn/an,ε) by Condition 5. Therefore

gBδ,r(tν
k2) =

∫
Rd
ψ(ν)νk2Gn(ν)dν + oP (k−1

n ). (2.18)

By algebra, kn = a−1
n,εan, and

∫
Rd
ψ(ν)νk2Gn(ν)dν

= an,εβ0{a−1
n A(θ0)1/2Wobs

∫
Rd
νk2Gn,r(ν) dν + εn

∫
Rd
νk2+1Gn,r(ν) dν}.(2.19)

Then (i) and (ii) in the Lemma holds by plugging the expansion of gBδ,r(t) into (2.16).

�

Lemma 6 Assume Condition 2, 3, 6–9. Then as n→∞,

(i) For any δ < δ0, rBcδ (1) and q̃Bcδ (1) are op(τ
p
n). More specifically, they are of the

order Op

(
τpne−a

αδ
n,εcδ

)
for some positive constants cδ and αδ depending on δ.
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(ii) qBδ(1) = q̃Bδ(1){1 +Op(α
−1
n )} and supA⊂Bδ |qA(1)− q̃A(1)|/q̃Bδ(1) = Op(α

−1
n );

(iii) if εn = o(a
−1/2
n ), then q̃Bδ(1) and rBδ(1) are ΘP (τpna

d−p
n,ε ), and thus q̃P0(1) and

qP0(1) are ΘP (τpna
d−p
n,ε );

(iv) if εn = o(a
−1/2
n ), θε = θ̃ε + op(a

−1
n,ε). If εn = o(a

−3/5
n ), θε = θ̃ε + oP (a−1

n ).

Proof of Lemma 6: This generalizes Lemma 7 in [Li & Fearnhead(2018a)]. The

arguments therein can be followed exactly, by Condition 3 and the fact that regarding

π(θ), only the condition supθ∈Rp π(θ) <∞ is used. �

Lemma 7 Assume Condition 2, 3, 6–9.

(i) For any δ < δ0, Qε(θ ∈ Bc
δ | sobs) and Q̃ε(θ ∈ Bc

δ | sobs) are op(1);

(ii) There exists some δ < δ0 such that

sup
A∈Bp

|Qε(θ ∈ A ∩Bδ | sobs)− Q̃ε(θ ∈ A ∩Bδ | sobs)| = op(1);

(iii) an,ε(θε − θ̃ε) = op(1) .

Proof of Lemma 7: This lemma generalizes Lemma 3 of [Li & Fearnhead(2018a)]. The

proof of Lemma 3 in [Li & Fearnhead(2018a)] only needs Lemma 3 and 5 from [Li & Fearnhead(2018b)]

to hold. The result that qBcδ{h(θ)} = Op(τ
p
ne−a

αδ
n,εcδ) for some positive constants αδ and

cδ, which generalizes the case of rn(θ) = π(θ) in Lemma 3 of [Li & Fearnhead(2018b)],

holds by Condition 3, since the latter only uses the fact that supθ∈Bcδ
π(θ) <∞. Then

the arguments in the proof of Lemma 3 in [Li & Fearnhead(2018b)] can be followed

exactly, despite the term τpn that is not included in the order of πBcδ{h(θ)}, since

Qε(θ ∈ A | sobs) is the ratio qA(1)/qRp(1). Since Lemma 5 in [Li & Fearnhead(2018b)]

has been generalized by Lemma (4) above, the arguments of the proof of Lemma 3

in [Li & Fearnhead(2018a)] can be followed exactly. �

This result generalizes the case (i) of Proposition 1 in [Li & Fearnhead(2018a)]. With

the above lemmas, lines for proving case (i) of Proposition 1 in [Li & Fearnhead(2018a)]

can be followed exactly to finish the proof of Theorem 2. �
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Proof of Theorem 3

Lemma 8 Assume Condition 2–10. If εn = op(a
−3/5
n ), then anεn(βε − β0) = o(1).

Proof of Lemma 8: This generalizes Lemma 4 in [Li & Fearnhead(2018a)] by replac-

ing π(θ0 + a−1
n,εt) therein with γn(t). By Condition 3 and the arguments in the proof of

Lemma 4 in [Li & Fearnhead(2018a)], it can be shown that

qRp{(θ − θ0)k1(s− sobs)
k2}

qRp(1)
= a−k1n,ε ε

−k2
n

{
q̃Bδ,tv(t

k1νk2)

q̃Bδ,tv(1)
+Op(α

−1
n )

}
.

Then by Lemma 2 (iii), the right hand side of the above is equal to

a−k1n,ε ε
−k2
n

{
gBδ,r(t

k1νk2)

gBδ,r(1)
+Op(a

−1
n,ε) +Op(a

2
nε

4
n) +Op(α

−1
n )

}
.

Since βε = Covε(θ, Sn)Varε(Sn)−1,

anεn(βε − β0) =kn

[
gBδ,r(tν)

gBδ,r(1)
−
gBδ,r(t)gBδ,r(ν)

gBδ,r(1)2
+ op(k

−1
n )

]
·[

gBδ,r(νν
T )

gBδ,r(1)
−
gBδ,r(ν)gBδ,r(ν)T

gBδ,r(1)2
+ op(k

−1
n )

]
− anεnβ0,

where the equations that a−1
n,εkn = o(1), a2

nε
4
nkn = o(p), and α−1

n kn = o(a
−2/5
n kn) = o(1)

are used. By algebra, the right hand side of the equation above can be rewritten as

{
gBδ,r{(knt− anεnβ0ν)ν}

gBδ,r(1)
−
gBδ,r(knt− anεnβ0ν)gBδ,r(ν)

gBδ,r(1)2
+ op(1)

}
·{

EG,r(νν
T )− EG,r(ν)EG,r(ν)T + op(k

−1
n )
}−1

.

By plugging (2.18) and (2.19) in the above, anεn(βε − β0) is equal to

{
EG,r(ν)β0A(θ0)1/2Wobs − EG,r(ν)β0A(θ0)1/2Wobs + op(1)

}
· {VarG,r(ν) + op(k

−1
n )}−1

= oP (1){VarG,r(ν) + op(k
−1
n )}−1.
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Since

VarG,r(ν) ≥
inft∈t(Bδ′ ) γn(t)

gBδ,r(1)

∫
Rd

∫
t(Bδ′ )

{ν − EG,r(ν)}2gn(t, ν) dtdν,

where δ′ is defined in the proof of Lemma 4(ii), we have VarG,r(ν)−1 = Θp(1). Therefore

anεn(βε − β0) = op(1). �

Lemma 9 Results generalizing Lemma 5 in [Li & Fearnhead(2018a)], i.e. replacing

Πε and

Pitilε therein with Qε and Q̃ε, hold.

Proof of Lemma 9: In [Li & Fearnhead(2018a)], the proof of Lemma 5 requires

Lemma 4 and 7 in [Li & Fearnhead(2018a)] to hold. Since their generalized results

have been proved, the proof of this lemma follows the same arguments. �

Lemma 10 Results generalizing Lemma 10 in [Li & Fearnhead(2018a)] hold.

Proof of Lemma 10: The same arguments can be followed. �

With all above lemmas, the proof of Theorem 3 holds by following the same arguments

in the proof of Theorem 1 in [Li & Fearnhead(2018a)]. �
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Chapter 3

Exact inference for 2× 2 contingency tables of rare events

3.1 Introduction

Contingency tables are a useful way to depict categorical data as a matrix of discrete

values. In particular, 2× 2 tables represent binary categorical data with a broad range

of applications to clinical research and more. For various sampling schemes, i.e. model

assumptions, establishing exact inference for model parameters is an interesting and

challenging area of active research, especially when the outcome of interest is rare (e.f.

e.g. [Radavicius & Zidanaviciute (2018), Kroonenberg (2018), Li & Fu (2018)]). One

major application of these methods is to help establish drug safety (as opposed to drug

efficacy) in clinical trials.

The most common sampling scheme assumes only one of the marginal totals is fixed

as in Table 3.1. This type of design is applicable to randomized clinical trials and

cohort studies. In the work presented here, we address the problem of conducting exact

inference on the odds ratio from a 2× 2 table of rare events with one fixed margin. That

is, we are interested in quantifying uncertainty about the odds ratio without relying on

any assumptions about the sample sizes, and, we allow small or zero entries in one or

more cells of Table 3.1.

Table 3.1: 2× 2 contingency table with binomial sampling

Non-Events Events
Non-exposure X nx −X nx
Exposure Y ny − Y ny

In other words, we are concerned with inference on the model parameters of the system
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of independent random variables


X ∼ Binomial(nx, px)

Y ∼ Binomial(ny, py)

where nx and ny are known and both px and py are small, but non-zero.

Here, we propose an inferential method to quantify our uncertainty of the log odds

ratio, θ = log[px/(1 − px)] − log[py/(1 − py)] without relying on any large sample

approximations, in contrast to most other existing methods. We demonstrate that

using our method, we can achieve tighter confidence intervals for θ in comparison to the

standard exact, conditional approach and to a Bayesian approach with noninformative

priors. Our method is entirely frequentist and its performance is evaluated with respect

to the Repeated Sampling Principle.

We call the computational method developed here a repro sampling method because

it works by “reproducing” the data. Our algorithmic approach mimics the sample

variability with a grid search across different possible parameter values. The key

assumption for our method is that there exists a known data-generating equation. That

is, we assume the observed data can be generated by some function of the parameters

and of a random variable U , where the distribution of U is known. Mathematically, this

means we assume xobs = T (θ0, u), where u is a particular, unobserved instance of U , θ0

represents the true unknown value of the parameter, and xobs is our observed data. The

function T is a modified statistic between known random variables and the unknown

sampling distribution. The repro sampling method we introduce incorporates a positive,

data-driven tuning parameter, λ, that helps to stabilize our inferential results especially

in the case where the signal of θ is difficult to detect because the true (px, py) values are

quite small.



53

3.2 Repro sampling for sparse 2× 2 tables

3.2.1 Sampling method setting

The repro sampling method we develop here, provides information about parameter

uncertainty by mimicking the sampling mechanism that generated the observed data.

Under the model specifications described above, we can rely on a parameter dependent

modified statistic, T [(X,Y ) | (px, py)], and the following data-generating equations


xobs =

∑nx
i=1 I{uj ≤ px}

yobs =
∑ny

j=1 I{vj ≤ py}.

Here each of the ui and vj are some (unobserved but fixed) values of independent

Unif(0, 1) random variables. We are particularly interested in inference for θ when

either one or both of the true (px, py) values are close to zero. In this setting, it is

likely that we may have zero counts in one or more cell of Table 3.1 and so the log

likelihood may not be well defined. One standard method to deal with this is to consider

(max{1/2, xobs},max{1/2, yobs}) rather than the pair (xobs, yobs). This adjustment is

called a continuity correction.([Plackett (1964), Cox (1970)]) In the following, we adopt

this continuity correction for all methods being considered, though a goal of our future

work is to eliminate the need for this adjustment.

The standard continuity corrected frequentist estimator for θ is the statistics

Tsd(X,Y ) = log

[(
max{1/2, X}

nx −max{1/2, X}

)]
− log

[(
max{1/2, Y }

ny −max{1/2, Y }

)]
.

In the repro sampling method, we propose using a modified version of Tsd that incorpo-

rates a positive tuning parameter, λ,

T [(X,Y ) | (px, py)] = log

[(
max{1/2, X}

nx −max{1/2, X}
+ λ

px
1− px

)]
− log

[(
max{1/2, Y }

ny −max{1/2, Y }
+ λ

py
1− py

)]
.
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Of course, this estimator is not a true statistic as it can only be calculated given

particular values of (px, py). The repro sampling method however, exploits this fact by

inputting points (px, py) along a predefined grid across (0, 1)× (0, 1).

Because we are primarily focused on inference for θ, it is helpful to re-parameterize

T in terms of θ. To do this, we introduce a nuisance parameter that is orthogonal to

the parameter of interest,

ψ = log [px/(1− px)] + log [py/(1− py)] .

Now, for each (px, py) pair, there is a corresponding (θ, ψ) pair yielding

2 log

(
px

1− px

)
= ψ + θ and 2 log

(
py

1− py

)
= ψ − θ.

Thus we can write

T [(X,Y ) | (θ, ψ)] = log

[
max{1/2, X}

nx −max{1/2, X}
+ λe

1
2

(ψ+θ)

]
− log

[
max{1/2, Y }

ny −max{1/2, Y }
+ λe

1
2

(ψ−θ)
]
. (3.1)

Note that the value of T corresponding to the data, (xobs, yobs), is never actually observed

because it is a function of unknown parameter values (θ0, ψ0). Given any value of (θ, ψ)

(and choice of λ) however, we can generate T from independent Unif(0, 1) samples

through the data generating equations which we rewrite now as


xobs =

∑nx
j=1 I

{
uj ≤ e

1
2 (ψ+θ)

1+e
1
2 (ψ+θ)

}
yobs =

∑ny
j=1 I

{
vj ≤ e

1
2 (ψ−θ)

1+e
1
2 (ψ−θ)

}
.

(3.2)

3.2.2 Repro sampling algorithm

For a set of variables W1, . . . ,Wm, let W(α) represent the αth lower empirical quantile

of the set. With this notation in mind, we now present the repro sampling algorithm for

inference on θ.
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Algorithm 5 (Repro sampling method)

Given some (θ, ψ)

1. Compute Tobs = T [(max{1/2, xobs},max{1/2, yobs}) | (θ, ψ)];

2. Simulate N copies of independent uniform random vectors u = (u1, . . . , unx) and

v = (v1, . . . , vny);

3. For each i = 1, . . . , N

3.1 Compute x(i) = max

{
1/2,

∑nx
j=1 I{uij ≤

e
1
2 (ψ+θ)

1+e
1
2 (ψ+θ)

}
}
,

y(i) = max

{
1/2,

∑ny
j=1 I{vij ≤

e
1
2 (ψ−θ)

1+e
1
2 (ψ−θ)

}
}
,

T (i) = T
[
(x(i), y(i)) | (θ, ψ)

]
;

3.2 Using the empirical distribution of the N values of T , create the set

Sα = [T(α/2), T(1−α/2)]; and retain θi if Tobs ∈ Sα(Ti);

Repeat Steps 1–3 for different values of (θ, ψ) along a predetermined grid.

To understand Algorithm 5, let us first consider using the conventional statistic Tsd.

A typical Monte Carlo approach for forming exact confidence sets for θ would be to use

the tail method and the statistic

Tsd [(xobs, yobs)] = log

[
max{1/2, xobs}

nx −max{1/2, xobs}

]
− log

[
max{1/2, yobs}

ny −max{1/2, yobs}

]
,

to computationally solve for upper and lower confidence bounds.([Cornfield(1956)])

where (θ, ψtyp) are subject to equations (3.2) and the nuisance parameter is ψtyp =

log [py/(1− py)]. This Monte Carlo approach is exactly what Algorithm 5 does if we set

λ = 0 and use ψtyp as the nuisance parameter (rather than ψ). So using the tail method

to find an exact confidence interval for θ is the same as using Algorithm 5 to produce

confidence sets for θ.

For a positive λ however, we lend more weight to “pretend” values of the parameters

along the grid. We can view λ as a stabilization parameter that allows us to consider

the effect of small (px, py) values on the odds ratio, even though these parameter values

likely result in zero observations. Also, note that taking λ = 1 will have no effect on our

inference for the odds ratio. Later, we discuss how to choose λ based on the data.
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Letting α be arbitrary, the output of Algorithm 5 are observations from a distribution

estimator for θ; this special type of estimator is called a confidence distribution. We

now prove this fact by showing that the output of Algorithm 5 can be used to form

α-level confidence sets for θ. To see this, first define the set Sα(θ, ψ) such that

pr [T [(X,Y ) | (θ, ψ)] ∈ Sα(θ, ψ)] ≥ 1− α. (3.3)

Here, the probability measure is with respect to the empirical distribution of the N

simulated T (i) values calculated in Step 3 of Algorithm 5 and X = max{x, 1/2}, Y =

max{y, 1/2}. In Algorithm 5, we define Sα(θ) = Sα(θ, ψ) = [T(α/2), T(1−α/2)] for each

of the N Monte Carlo samples of T . The output of Algorithm 5 will be (say) m ≤ N

retained values of θ and we can define

Γα(X,Y ) =
[
θ(α/2), θ(1−α/2)

]
(3.4)

as a 100(1− α)% confidence interval for θ since

pr [θ0 ∈ Γα(X,Y )] ≥ pr [T [(X,Y ) | (θ0, ψ0)] ∈ Sα(θ0, ψ0)] ≥ 1− α,

with X = max{x, 1/2} and Y = max{y, 1/2}.

3.2.3 Choosing λ

To determine how Algorithm 5 performs with respect to the Repeated Sampling Principle,

we explored the behavior of our modified statistic, T , for different λ choices λ = 0,

0 < λ < 1, and λ ≥ 1. In Figure 3.1 for example, we see that the confidence intervals

for θ are potentially much smaller with λ > 0 while still achieving the nominal coverage

level.

Although the coverage of confidence intervals for θ based on Algorithm 5 is at least at

the nominal (1− α)100% level, better coverage (closer to the nominal level) is obtained

with smaller λ > 0 values. In practice, there is no way to test the actual coverage of

the resulting confidence intervals and so an empirical rule for choosing a suitable λn,
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Figure 3.1: Widths of 95% confidence interval for various λ choices in Algorithm 5 with
nx = ny = 100 and the unknown truth (px, py) = (0.01, 0.01). This picture illustrates
the potential improvement by choosing some λ > 0.
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dependent on the observed data, is desirable. Our simulations suggest Algorithm 6 as a

data-driven method for choosing a small λ value.

Algorithm 6 (Empirical choice of λn)

For some m ∈ Z+, consider a sequence of λ values,

0 ≤ λ1 < λ2 < · · · < λm ≤ 1.

1. Set i = 1;

2. Run Algorithm 5 with λ = λi;

2.1 Compute the length of the interval Q(i) = θ
(i)
(1−α/2) − θ

(i)
(α/2);

2.2 Set i = i+ 1;

3. Repeat Step 2 until Q(i) > Q(i−1).

Simulations suggest that for a finer sequence of initial λ1, λ2, . . . , λm values, the re-

sulting confidence intervals are less likely to be overly-conservative. Also, through our

simulations, we discovered that the confidence intervals for any λ < 1 will be smaller

than the confidence intervals for λ = 0 when the true values of px and py are small.

3.3 Comparison to other methods

We compare the confidence intervals from the standard exact method (i.e. Algorithm 5

with λ = 0) to those with an empirically chosen λn > 0 (as specified in Algorithm 6).

In these simulation studies, we see that by incorporating a λn > 0 term, the coverage

of the resulting confidence intervals for θ can be closer to the nominal level and are

generally more narrow.

We also compare the repro sampling method confidence intervals to Bayesian credible

intervals using Jeffrey’s prior and to the exact frequentist confidence intervals formed by

inverting the score statistic as suggested in [Agresti(2003)] and finally to the intervals

resulting from inverting Fisher’s exact test. These first two methods were implemented

using the built-in functions of the PropCIs R package while adjusting for the continuity

correction mentioned earlier.([Scherer (2018)]) For Fisher’s exact test, we did not apply

a continuity correction. As indicated in Table 3.2, we consider the performance of each
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Table 3.2: Coverage and confidence interval width for four methods of estimating the
log likelihood in different settings. The method with λn corresponds to setting λ based
on Algorithm 6 and λ = 0 corresponds to the standard tail method for constructing
confidence intervals based on Tsd. The continuity correction was used in all of the
methods except for Fisher’s exact test. The nominal confidence level is 0.95.

Scenario Method Coverage
Width

Median Std. dev.

1 λn 0.96 7.86 1.48
nx = ny = 100 λ = 0 0.92 7.13 1.96
(px, py) = (0.01, 0.01) Score 1.00 9.65 17.28

Bayes 1.00 15.58 38.03
Fisher 1.00 38.85 22.75∗

2 λn 0.96 6.28 1.34
nx = 250, ny = 100 λ = 0 0.95 7.85 1.35
(px, py) = (0.01, 0.01) Score 0.96 8.33 12.94

Bayes 0.96 13.65 28.07
Fisher 0.97 31.23 16.31∗

3 λn 0.99 7.93 1.58
nx = ny = 100 λ = 0 0.98 10.32 2.09
(px, py) = (0.02, 0.01) Score 1.00 16.46 18.89

Bayes 1.00 30.05 41.59
Fisher 1.00 69.26 32.40∗

4 λn 0.96 7.18 1.74
nx = 250, ny = 100 λ = 0 0.98 6.79 1.73
(px, py) = (0.02, 0.01) Score 0.99 14.05 21.38

Bayes 0.99 23.09 46.23
Fisher 0.99 51.32 21.99∗

∗ The standard deviation was only calculated for finite confidence intervals.

method for four different situations that consider whether or not the true parameter

values are equal and whether or not the sample sizes are equal.

Although for Bayesian inference, we do not actually need to adjust our observations

for discontinuities at zero counts, the performance of these credible intervals can vary

wildly depending on the choice of prior. In Table 3.2, we also consider Fisher’s exact

test which does not use a continuity correction. If one or more observations are zero,

the Fisher’s exact method will produce an interval with an infinite bound. In order to

more clearly compare all methods, we disregard any infinite confidence bounds when



60

computing the standard deviation of the widths of the Fisher confidence intervals.

We see that the width of the confidence intervals for using λn > 0 can be the same

as (Scenarios 2 and 4) or much smaller than (Scenarios 1 and 3) the confidence intervals

using λ = 0. The performance of Algorithm 5, for either choice of λ, is superior to the

other methods considered. Also we note that the Bayesian intervals could perhaps be

improved upon with a more informative prior.

3.4 Real data application

[Nissen & Wolski(2008)] collect data for a meta-analysis to examine whether the diabetes

drug Avandia is associated with myocardial infarction or cardiovascular death. The

datasets in [Nissen & Wolski(2008)] represent 96 individual clinical trials of moderate

to large sizes with low adverse event rates. Thus many of the individual trials consist of

zero counts.

To further investigate the performance of Algorithm 5 with an empirical choice of λn

as in Algorithm 6 versus setting λ = 0 (i.e. the tail method), Figure 3.2 compares the

resulting confidence intervals for θ for each study in [Nissen & Wolski(2008)]. Negative

values indicate that the repro sampling method with λn > 0 produced a smaller

confidence interval and positive values indicate that the tail method (repro with λ = 0)

produced a smaller confidence interval. In Figure 3.2, we mostly see that the intervals for

θ from Algorithm 6 match the confidence intervals resulting from the standard method

where λ = 0 since most of the difference in widths lie within 0.1 units of the origin.

However, there are several instances where we see that Algorithm 6 yields much smaller

intervals and in some cases this leads to a different conclusion regarding θ.

3.5 Discussion

The repro sampling method we have introduced in Algorithm 5 can produce better

performing confidence intervals than other exact methods, both in terms of matching

the nominal coverage level and in terms of interval width, especially in the case where

the true (px, py) values are suspected to be small. Furthermore, we present an empirical
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Figure 3.2: Plot of the difference in 95% CI widths from the repro sampling method
using λn > 0 and λ = 0 for 96 different clinical trials studying the relationship between
rare and adverse events and the drug Avandia. Larger negative values indicate smaller
CIs for λn > 0. Vertical lines are plotted at −0.1, 0, and 0.1 for scale.
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method for choosing λn > 0 that can yield smaller intervals than we would achieve

without considering this additional stabilization parameter. However, the case where

both observed counts are zero is still problematic for Algorithm 5, as it is for all current

methods. Additionally, our simulation studies indicate that if the true parameter values

are such that px << py, then using Algorithm 6 to choose λn performs worse than

setting λ = 0.

The method we present is a computational inference method specifically for inference

on a log odds ratio that is difficult to detect. In further applications, our method could

be applied to sequential online testing problems, especially when one is unable to rely

on large-sample asymptotics.
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Chapter 4

Concluding remarks and directions for future research

This dissertation explores frequentist solutions to two different computational inference

problems. Namely, we establish ways to conduct valid statistical inference, with respect

to the Repeated Sampling Procedure, in the case where (1.) we are interested in model

parameters but have no tractable likelihood function, given the observed data and (2.)

we are interested in a hard to detect signal from the odds ratio of a 2× 2 contingency

table. Though these problems may seem disparate on the surface, the work in this

dissertation develops a similar computational inference solution for each situation. In

both circumstances, the key to validating the resulting inference is to develop a confidence

distribution as an estimator for the parameters of interest.

There are many possible directions for future research with both of the problems

addressed in this thesis.

1. For the problem of inference when there is no tractable likelihood function, we es-

tablish conditions under which the approximate confidence distribution computing

method will produce a confidence distribution. These conditions do not depend on

the sufficiency of the summary statistic, unlike other existing work in approximate

Bayesian computing. We do however require other, lighter conditions on the sum-

mary statistic such as asymptotic normality (Theorem 2 and 3) or an approximate

pivotal structure (Theorem 1). For future research, it would be useful to look for

other, weaker conditions on the summary statistic that will establish the results

of Algorithm 2 is a confidence distribution estimator. Since an approximately

pivotal summary statistic is potentially much easier to determine than approximate

sufficiency in the likelihood-free setting, it would be worthwhile to consider other

pivotal structures beyond the location and scale cases in Theorem 1. There is also
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plenty of work left to be done regarding the computational efficiency of Algorithm

2. This is an active area of research in approximate Bayesian computing methods

however this work does not generally consider the frequentist performance of the

resulting approximate posterior distribution. Since the perspective of approximate

confidence distribution computing is fundamentally frequentist, work that explores

the frequentist coverage property of the resulting distribution estimators from these

modified approximate Bayesian computing methods (e.g. IS-ABC, MCMC-ABC,

ABC-PMC, ABC-SMC, etc.) is largely unexplored. ([Marin et al.(2012)])

2. For the problem of detecting a signal from a sparse 2×2 contingency table, our work

explores inference for the odds ratio under the assumption that one marginal total

is fixed. Naturally, future work could explore the computational inferential results

under other model assumptions. Additionally, it may be useful to explore other

modified statistics and/or other ways to empirically choose λ besides Algorithm 6.

Since our work on this problem utilizes a continuity correction, it is not directly

comparable to other methods which do not (e.g. Fisher’s exact test). It would

be useful to explore whether or not we can establish valid frequentist inference,

without a continuity correction. Also, the scope of this work is limited to apply

in instances which we believe the true (px, py) values are small but non-zero. In

future work, this framework could be relaxed.

Although the work of this dissertation is limited to these two particular problems,

the scope of future research questions is much larger. We suggest that confidence

distributions, and the flexible frequentist perspective under which they are developed,

may prove useful in solving other problems of computational inference.
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