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ABSTRACT OF THE DISSERTATION

Searching Heterogeneous Personal Data

by Daniela Quitete de Campos Vianna

Dissertation Director: Amélie Marian

Personal data is now pervasive, as digital devices are capturing every part of

our lives. Users are constantly collecting and saving more data, either actively

in files, emails, social media interactions, etc., or passively by GPS tracking of

mobile devices, or records of financial transactions. Unlike traditional information

seeking, which focuses on discovering new information, search on personal data

is usually focused on retrieving information that users know exists in their own

dataset, even though most of the time they do not have a perfect recollection of

where it is stored. Attempting to retrieve and cross-reference personal information

leads to a tedious process of individually accessing all the relevant sources of data

and manually linking their information. In this scenario, traditional searches are

often inefficient, making it critical for search tools to be capable of accessing

heterogeneous and decentralized data in a flexible and accurate way by taking

into consideration the additional knowledge the user is likely to have about the

target information.
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In this dissertation, we introduce a set of techniques that allow users to easily

access their own data. We start by presenting a unified and intuitive multi-

dimensional data model following a combination of dimensions that naturally

summarize various aspects of the data collection: who, when, where, what, why,

how. We then proceed by designing frequency-based scoring models that leverage

the correlation between users (who), time (when), location (where), data topics

(what), and provenance (how) to improve search over personal data. Since the

scoring model proposed needs to generalize well over user-specific datasets, we

extend the static scoring function by adopting a learning-to-rank approach using

the state of the art LambdaMART algorithm. Due to the lack of pre-existing

personal training data, a combination of known-item query generation techniques

and an unsupervised ranking model (field-based BM25) is used to build our own

training sets.

To validate the data and scoring models, we implemented tools for data extrac-

tion, classification, entity recognition, and topic modeling. A thorough qualitative

evaluation performed over a publicly available email collection and a personal dig-

ital data trace collection from a real user show that our approach significantly

improves search accuracy when compared with traditional personal search tools

such as Apple’s Spotlight and Apache Solr, and techniques like TF-IDF, BM25,

and field-based BM25.
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“We cannot expect in the immediate future that all women who seek it will

achieve full equality of opportunity. But if women are to start moving towards

that goal, we must believe in ourselves or no one else will believe in us; we must

match our aspirations with the competence, courage and determination to

succeed.”

Rosalyn Yalow, medical physicist & 1977 Nobel Prize winner.
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Chapter 1

Introduction

Personal data of our lives are constantly being produced and saved by users,

either actively in files, emails, social media interactions, multimedia objects, cal-

endar items, contacts, etc., or passively via various applications such as GPS

tracking of mobile devices, records of usage, records of financial transactions, web

search records or quantified self-sensor usage. These “personal digital traces” are

typically (but not always) smaller, heterogeneous, and accessible through a wide

variety of different portals and interfaces, such as web forms, APIs or email notifi-

cations; or directly stored in files used by apps on our devices. These traces reflect

a chronicle of the user’s life, keeping record of where the user went, who the user

interacted with (online or in real-life), what the user did, and when. However, the

large quantity of personal data available, and the fact that data may be stored

in multiple decentralized systems, in heterogeneous formats, makes it challenging

for users to interact with their data and perform even simple searches.

Personal Information Management is complicated by the sheer amount of

data available, and by the fact that data is decentralized and heterogeneous.

Attempting to retrieve and cross-reference personal information leads to a tedious

process of individually accessing all the relevant sources of data, and manually

linking their information. Under these circumstances, users have no hope of being

able to easily locate past information unless they have a perfect recollection of

where it is stored – an unlikely proposition when the amount of data stored is so
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large, and may even be recorded without the user’s input (e.g., GPS location).

Work in Cognitive Psychology [84, 17, 72, 49] has shown that contextual cues

are strong triggers for autobiographical memories. Abowd et al. [3] and Dey [24]

define context as any information that can be used to characterize the situa-

tion of an entity (person, place, object,...). This suggests that a natural way to

remember and learn from past events is to include any pertinent contextual infor-

mation when organizing and searching personal data. Personal information can

be modeled, and indexed following six dimensions that mirror the basic interrog-

ative words: what, who, when, where, why, and how. Each personal digital trace

is a source of knowledge and can be related to different data traces by shared

common information. For instance, a simple Facebook post may contain enough

information to identify where a user went, what they did, who they interacted

with, and when. Multiple traces, from the same or different data sources, are

often related to each other. The correlation between data traces can be identified

through common information such as time and location. Even though multiple

data traces may share common information, they may have significantly different

structures. This heterogeneity presents a major challenge.

Search of personal data is usually focused on retrieving information that users

know exists in their own dataset, even though most of the time they do not know

in which source or device they have seen the desired information. Personal search

have been throughout studied in specific real-life scenarios as desktop search [29]

and email search [42]. Current search tools such as Spotlight and Gmail search are

not adequate to deal with this scenario where the user has to perform the same

search multiple times on different services or/and devices rather than search over

just a single service. Besides, traditional searches are often inefficient as they

typically identify too many matching documents.
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Our goal, with this dissertation, is to give back to individual users easy and

flexible access to their own data by proposing a data model, search methodologies,

and a series of tools that let user retrieve, store and organize their digital traces

on their own devices, guaranteeing some clear privacy and security benefits.

1.1 Contributions

The process of unifying a user’s personal information is an important step to

address the decentralized and heterogeneous nature of personal data. In this

dissertation, we present a unified and intuitive multidimensional data model fol-

lowing a combination of dimensions that naturally summarize various aspects of

the data collection: who, when, where, what, why, how. The data model, called

w5h, is used both to unify heterogeneous digital trace data from different sources,

and to create links within the data, connecting relevant pieces of information

together and also identifying possibly new connections within user data.

Based on the w5h data model we designed frequency-based scoring models

that leverage the correlation between users (who), time (when), location (where),

data topics (what), and provenance (how) to improve search over personal data.

The first scoring model, called w5h-f, is a static function that focused around

personal digital traces and as such includes specific group of correlations in the

scoring. The second scoring model, called w5h-l2r, takes into consideration the

fact that the scoring model proposed needs to generalize well over user-specific

data sets, and so, we extend the static scoring function by adopting a learning-to-

rank approach using the state of the art LambdaMART algorithm. The w5h-l2r

approach uses a compact and efficient frequency-based feature space to rank query

results over personal digital traces.

Learning-to-rank approaches have been very successful in solving real-world
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ranking problems. However, the existing models for ranking are trained on either

explicit relevance judgments (crowdsourced or expert-labeled) or clickthrough

logs. In our scenario (personal digital traces), none of these is available nor

pursuable. Human-labeled training sets are not available, in addition, there is a

dearth of synthetic personal datasets and benchmarks. To overcome those chal-

lenges, the learning-to-rank approach, w5h-l2r, relies on a combination of known-

item query generation techniques and an unsupervised ranking model (field-based

BM25) to heuristically build our own training sets.

Query

Search

ClassificationER TM

Personal Information DB

Extraction Tool

Correlation

Data
Sources

Figure 1.1: Architecture.

To validate the data and scoring models, we implemented tools for data ex-

traction (Extraction Tool), classification (Classification), entity recognition (ER),

and topic modeling (TM) as illustrated in Figure 1.1. The data extraction tool

retrieves and stores the digital life of an user creating a personal information



5

database (PIM) that is robust, reliable and secure. For data classification we

designed a machine learning multi-class classifier that automatically maps the

raw data retrieved from each source into the w5h dimensions. The classification

process is done without requiring user intervention. Entity resolution, topic mod-

eling, and data traces correlation (Correlation) are pre-computed to support the

proposed search approaches.

A thorough qualitative evaluation is performed using two different datasets:

a real user dataset composed by data from a variety of data sources such as Face-

book, Dropbox, and Gmail; and, the Enron Corporation dataset, composed by

emails from around 158 employees. The efficacy of the w5h-f scoring models is

evaluated by comparing its performance with two popular existing search tools,

Solr [6] (using different scoring methodologies: TFIDF, BM25, and field-based

BM25), and Spotlight [1]. We observe that by including pertinent contextual

information when searching personal data, the w5h approaches can significantly

improve accuracy. Also, the w5h approaches benefit for their ability to disam-

biguate/link people from different sources of data and, for including frequency

information as part of their scoring results. The results for the w5h learning-to-

rank approach, w5h-l2r, show that moderately large datasets can benefit from

learning-to-rank techniques when paired with a representative feature set built

from a novel frequency based feature space introduced in this dissertation.

1.2 Organization

This dissertation is organized as follows:

• In Chapter 2 we survey related work.

• A unified and intuitive multidimensional data model to link and represent
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heterogeneous personal digital traces is introduced in Chapter 3. The model,

called w5h, uses the six dimensions (who, when, where, what, why, how) to

unify features of each personal data object, regardless of its source.

• In Chapter 4 we introduce a frequency-based scoring methodology for search-

ing personal digital traces. The static scoring function, named w5h-f, is

based on our multidimensional data model and leverages entities interac-

tions within and across dimensions in the data sets.

• In Chapter 5, we propose a learning-to-rank frequency-based scoring method-

ology, called w5h-l2r. Our scoring model relies on a representative feature

set to represent query-matching object pairs built upon a novel frequency-

based feature space that leverages entities interactions within and across

dimensions in the dataset. A novel combination of known-item query gen-

eration techniques and an unsupervised ranking model to heuristically gen-

erate labeled training sets is also proposed.

• Chapter 6 introduces an implementation of our techniques, from data ex-

traction, to entity recognition, classification and retrieval, that will be used

as the basis of our experimental evaluation.

• An experimental evaluation of our proposed w5h-f and w5h-l2r scoring tech-

niques is presented in Chapter 7. The scoring approaches are compared

against two popular existing search tools, Solr [6] and Spotlight [1], and

techniques, TFIDF [71], BM25 [70] and field-based BM25, on real data

using both manually designed and synthetically generated search queries.

The evaluation was conducted using personal digital data traces datasets

and the Enron dataset.

• Concluding remarks and future research topics are presented in Chapter 8
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Chapter 2

Literature Review

2.1 Personal Information Management

Jones and Teevan offer a very thorough investigation of Personal Information

Management. In particular, they discuss how search in Personal Information

Management differs from search in traditional Information Retrieval systems or

web search engines: For these re-finding tasks, studies have shown that users

would rather not search their data via keyword searches, but prefer to find their

information by retracing their steps [80], navigating [12, 56], or orienteering in

their data, which provides a context to their searches. Furthermore, the search

behavior in Personal Management Systems is highly individualized [38]. In [50],

Jones discuss the future of personal information management considering how

personal information is migrating onto the Web and being accessed through mo-

bile devices. In [48], the authors proceeds to discusses the extensive variety of

technologies for managing information, including search for personal data. Our

work is related to the wider field of Personal Information Management [49], in

particular, search behavior over personal digital traces is likely to mimic that

of searching data over personal devices. Unlike traditional information seeking,

which focuses on discovering new information, the goal of search in Personal In-

formation systems is to find information that has been created, received, or seen

by the user.
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Bell has pioneered the field of life-logging with the project MyLifeBits [36, 9]

for which he has digitally captured all aspects of his life. While MyLifeBits started

as an experiment, there is no denying that we are moving towards a world where all

of our steps, actions, words and interactions will be recorded by personal devices

(e.g., Google Glasses, cell phones GPS systems, FitBit and other Quantified Self

sensors,...), or by public systems (e.g., traffic cameras, surveillance systems,...),

and will generate a myriad of digital traces. digi.me [25] is a commercial tool

that aims at extending Bell’s vision to everyday users. The motivations behind

digi.me are very close to ours; however digi.me currently only offers a keyword-

or navigation-based access to the data; search results can be filtered by service,

data type or/and date.

This vision of “Total Capture,” where all data is kept for every user has its

detractors. Sellen and Whittaker [73] argue that rather than storing a complete

lifelog, Personal Information Management systems should focus on selectively

identifying effective retrieval cues to jog users memories, and that life-logging

systems should not replace human memory but rather support it. They suggest

that Personal Information Systems should be designed with an understanding

of which memory tasks are targeted: recollection, reminiscence, retrieval, reflec-

tion or remembering intentions. We design our system with a focus on retrieval

through recollection (retracing digital steps) and reflection (learning from past

experiences).

2.2 Context-aware Personal Data Model

The case for a unified data model for personal information was made in [54, 55, 87].

deskWeb [89] looks at the social network graph to expand the searched data set

to include information available in the social network. Lifestreams [33] organizes
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desktop content in time-oriented streams. Haystack [55] argues for a uniform

semi-structured data model for user information. Stuff I’ve Seen [29] indexes all

of the information the user has seen, regardless of its location or provenance, and

uses the corresponding metadata to improve search results. MyLifeBits [36] aims

at capturing all data generated by the user. Seetrieve [39] extends on this idea

by only considering the parts of documents that were visible to the user to infer

task-based (“why”) context to the file for later retrieval. Most notably, Personal

Dataspaces [43, 28, 27, 26, 14] propose semantic integration of data sources to

provide meaningful semantic associations that can be used to navigate and query

user data (implicit context). Connections [77] uses system activity to make similar

connections between files; [74] extends this approach to consider causality, using

data flow, as contextual information. Most of these systems were developed before

the advent of cloud-based storage, and assume that most data is available locally,

or easily retrieved. In addition, while several do offer an integrated data model,

their query models are typically keyword based, with sometimes one source of

context (e.g. tasks for Seetrieve, time for Lifestreams) used to aid the search. In

contrast we envision a retrieval process that follows the memory process and uses

all types of contextual cues.

Contextual information has been considered in various computer science ap-

plications. Abowd et al. [3] and Dey [24] define context as any information that

can be used to characterize the situation of an entity (person, place, object,...).

Context-aware applications dynamically adapt to changes in the environment in

which they are running: location, time, user profile, history. In depth surveys of

context-aware models and systems are given in [15, 8]. Truong and Dustdar survey

context-aware Web-Service systems in [61]. The value of contextual information

in searching and browsing user behavior on web is also explored in [59, 58, 66].
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Context-awareness has become increasingly popular with the wide adoption of

mobile devices. While the types of context these systems consider overlap with

ours, the overall approach is different from ours, for instance a contextually-aware

Information Retrieval system will use the current context (e.g., user location and

time of day) to adjust search results [75]. In contrast, we consider context as

information that can be queried and used to guide the search.

Other file system related projects have tried to enhance the quality of search

within the file system by leveraging the context in which information is accessed

to find related information [20, 40] or by altering the model of the file system

to a more object-oriented database system [16]. YouPivot [41] indexes all user

activities based on time and uses the time-based context to guide searches. Social

context (users’ friends and communities) is leveraged in [76] for information dis-

covery; similarly [23] uses temporal and location context to aid discovery in social

media data. Our work integrates all these sources of contextual information and

provides a unified complete model of context-aware personal data.

2.3 Personal Information Search

In this dissertation, we aim to provide comprehensive and intuitive scoring and

search strategies for search of users’ digital memories. Our search techniques

are related to various work in top-k query processing techniques [32, 63, 60],

which consider various dimensions as part of an object’s score. Also related is

the problem of identifying keyword query results in RDBMSs and ranking them

based on some quality metric [5, 13, 47, 46], but these only focus on matching

content keywords and have simple ranking techniques based on distance.

Several index structures have been proposed for text approximation [65],
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querying text within a structure context [62, 53, 68, 44], and querying struc-

ture [37, 86]. Learning and query selectiveness based ranking techniques for desk-

top search are proposed in [21]; however, their ranking formula uses a simple

linear function to aggregate weights for various file features (filename, size, date

of creation, etc.).

Learning-to-rank approaches, as RankNet, LambdaRank, and LambdaMART [19],

have proved to be very efficient to solve ranking problems. LambdaMART is the

boosted tree version of LambdaRank, which is based on RankNet [18]. In [18],

a probabilistic cost for training systems to learn ranking functions using pairs

of training examples was used in a neural network model, RankNet, with the

intention of minimizing the number of inversions (incorrect order among pairs of

results) in ranking. LambdaRank improves RankNet by realizing that in order to

train a model there is no need to use the costs themselves, only the gradients of the

costs with respect to the model scores. LambdaMART combines MART(Multiple

Additive Regression Trees) [35] and LambdaRank. While MART uses gradient

boosted decision trees for prediction tasks, LambdaMART uses gradient boosted

decision trees using a cost function derived from LambdaRank for solving a rank-

ing task.

Email search is a type of personal search that has been well studied. [42]

presents a learning-to-rank approach that improves the default ranked-by-time

search by taking into consideration time recency and textual similarity to the

query. [85] addresses the problem of learning-to-rank from click data in personal

search. [88] explores how to effectively leverage situational contextual features

(e.g. time of a search request and the location of the user while submitting the

request) to improve personal search quality. In [10] the authors leverage user in-

teraction data in a privacy preserving manner for personal search by aggregating



12

non-private query and document attributes across a large number of user inter-

actions. In our scenario, each dataset is comprised by data from only one user,

and so it is private by design, not being possible for us to leverage interactions

from other users.

In [22] the authors use classic unsupervised IR models, such as BM25, as a

weak supervision signal for training deep neural ranking models. In this context,

weak supervision refers to a learning approach that creates its own training data

by heuristically retrieving documents for a large query set. Three different neural

network-based ranking models are presented, a point-wise ranking model and

two pair-wise models. Combinations of neural models with different training

objectives and input representations are compared against each other and against

the baseline, BM25. The experiments showed that their best performing model

significantly outperforms the BM25 model. In our work, we use a similar approach

to retrieve matching objects to a given query in order to build our own training

and evaluation sets.

There is a dearth of synthetic data sets and benchmarks to evaluate search

over personal data. In [57], the authors describe methods for generating test col-

lections for search experiments. In [7], known-item query generating techniques,

as discussed in [30], are used to heuristically generate query sets. In this work,

we use a similar approach to automatically generated larger sets of known-item

queries to validate the search methods proposed.
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Chapter 3

Data Model

Personal data is heterogeneous and distributed, the difficulty lies in integrating

the data across sources and also, from the same source, unifying their schemas

and linking entities into a unified data set. With that in mind, we propose a

data model that relies on the context in which personal data traces are created,

produced and gathered to integrate heterogeneous traces into a unified data model

that will support accurate searches. The proposed model, called w5h, was derived

from the following observations:

1. Personal digital traces are rich in contextual information, in the form of

metadata, application data, or environment knowledge.

2. Personal digital traces can be represented following a combination of di-

mensions that naturally summarize various aspects of the data collection:

who, when, where, what, why and how.

Work in Cognitive Psychology [84, 17, 72, 49] has shown that contextual cues

are strong triggers for autobiographical memories. For instance, when an object

is lost, e.g. keys, is common for a person to ask herself questions as: “When was

the last time I remember using my keys?”, “Who was there with me?”, “What

was I doing the last time I remember seeing my keys?”. By retracing their steps

and using the correct context, an individual is capable of finding the lost ob-

ject. This suggests that a natural way to remember and learn from past events
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is to include any pertinent contextual information when organizing and searching

personal data. Abowd et al. [3] and Dey [24] define context as any information

that can be used to characterize the situation of an entity (person, place, ob-

ject,...). Context can be explicit, as the metadata information stored by the file

system or application (e.g., timestamp, GPS location, tags, directory structure).

It can also, be identified through application-based semantic information (e.g.,

email recipients, calendar meeting participants, check-in location) or it can be

inferred, i.e., any information not directly connected to the data itself but that

represents knowledge about the environment of the data collection. This could

be related to the system environment, (e.g., which applications/documents were

opened concurrently with a given document), social environment (e.g., which

Facebook members had access to an event), or to the real world environment,

(e.g., who was physically in the room or what the weather was when a given piece

of data was collected).

Personal-information contextual data can be modeled following six dimensions

that mirror the basic interrogative words: what, who, when, where, why and how.

Answers to questions such as “when was an email sent”, “who was involved in

a conversation”, “where a meeting took place”, “what a file contains”, “how the

information was recorded”, could help users to find data they remember having

stored or accessed in the past, and also, it could support the process of inferring

knowledge from their personal databases and their interactions with their data.

Our w5h model uses these six dimensions as the unifying features of each personal

digital trace object, regardless of its source. Using these natural questions as the

main facets of data representation will also allow the combination of our data

representation with a natural and intuitive query model for searching information

in digital traces. Listed below are some examples of dimensional data that can
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be extracted from a user’s personal digital traces:

• what: content

Messages, messages subjects, publications, description of events, description

of users, list of interests of a user.

• who: with whom, from whom, to whom

User names, senders, recipients, event owners, lists of friends, authors.

• where: physical or logical, in the real-world and in the system

Hometown, location, event venue, file/folder path, URL.

• when: time and date, but also what was happening concurrently

Birthday, file/message/event created-/modified-time, event start/end time.

• why: sequences of data/events that are causally connected.

• how: application, device, environment.

To illustrate how information on digital data traces can be associated with

one of the six dimensions (what, who, when, where, why and how), we present 3

different examples: a Facebook post (Figure 3.1), a Gmail message (Figure 3.2)

and a Google Calendar event (Figure 3.3). For all those data traces, each piece

of information was identified as belonging to one of the six dimensions proposed.

Even though multiple digital traces come from different sources and have their

own data schema, they can be unified using the six dimensions proposed in our

w5h model. For instance, the Facebook post in Figure 3.1 can be linked by our

unified model to the Gmail message in Figure 3.2 and Google Calendar event in

Figure 3.3, since they all have John Smith under the same dimension who.

Text messages are usually classified as what ; however, implicit context de-

rived from content could be classified differently. For instance, in Figure 3.1, the
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{
message: March for Science in Seattle (WHAT)
from: John Smith (WHO)
place: Seattle, Washington (WHERE) 
with_tags: Anna Smith (WHO)
story: John Smith and Anna Smith in Seattle, Washington (WHAT)
created_time: 2017-04-22T22:43:56+0000 (WHEN)
data_type: Facebook post (HOW)
}

Figure 3.1: Simplified example of a user Facebook post classified according to the
w5h model.

{
from: John Smith (WHO)
to: Anna Smith (WHO)
date: 2017-04-20T10:30:00+0000 (WHEN)
subject: March for Science (WHAT)
body: Are you planning to join the March for Science this 
weekend? If yes, we could go together. (WHAT)
data_type: Email (HOW)
}

Figure 3.2: Simplified example of a user email (Gmail) classified according to the
w5h model.

{
created: 2017-04-01T13:45:00+0000 (WHEN)
summary: March for Science (WHAT)
organizer: John Smith (WHO)
start: 2017-04-22T22:43:56+0000 (WHEN)
data_type: Google calendar event (HOW)
}

Figure 3.3: Simplified example of a user event (Google Calendar) classified ac-
cording to the w5h model.

message “March for Science in Seattle” gives both what (“March for Science”)

and where (“Seattle”). Implicit context could be derived using techniques such

as Named Entity Recognition (NER), which tries to identify identify and classify

entities into categories such as persons (who), locations (where), times (when),

etc.

The w5h data model is used both to unify heterogeneous digital trace data
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from different sources, and to create links within the data, connecting rele-

vant pieces of information together and also identifying possibly new connec-

tions within user data. Having defined the model, we still have to find a good

mechanism to translate heterogeneous digital data traces into the proposed w5h

contextual model. We will discuss 2 different solutions in Chapter 6. The first

solution is a static version of our w5h classifier and requires human intervention.

The second solution is a machine learning multi-class classifier that automatically

maps the data from any data source into the w5h dimensions. This last version

does not require human intervention.

In Chapter 4 and Chapter 5, we will introduce two frequency-based scoring

models for personal data search.
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Chapter 4

A Frequency-based Scoring Methodology for

Personal Data Search

We leverage the w5h model presented in Chapter 3 to provide rich and accurate

search capabilities over personal digital traces. Unlike Web search, where the

focus is often on discovering new relevant information, search in personal data

sets is typically focused on retrieving relevant information that the user knows

exists in their data set. Besides, users have unique habits and interpretations

of their own data. In this scenario, standard search techniques are not ideal as

they do not leverage the additional knowledge the user is likely to have about the

target object, or the connections between objects pertaining to a given user.

As pointed in [84], users tend to remember their actions using the six natural

questions; thus, using them to guide search is a logical approach. We now evalu-

ate the potential benefits of the w5h model for integrating and searching personal

data. Specifically, we propose a search mechanism that supports queries contain-

ing conditions along each of the six interrogative dimensions. In this chapter,

we will detail our first scoring model based on a novel frequency-based scoring

methodology over the w5h data model, called w5h-f. This work was presented

in [82].
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4.1 Scoring Methodology

To illustrate our query and scoring methodology let us consider the following

search scenario: the user is interested in message(s) from John Smith or/and

Anna Smith about a 2016 bike ride. We consider each digital trace to be a

distinct object that can be returned as the result to a query.

Definition 1 (Object in w5h Integrated Dataset). An object O in the dataset is

a structure that has fields corresponding to the 6 dimensions mentioned earlier.

Each of these dimensions contains 0 or more items (corresponding to text, entities

identified by entity resolution, times, locations, etc). The fields of an object O are

accessed using functions O.get(“who”), O.get(“what”), etc.

Formal queries have the same structure as objects in the unified dataset. In

the example above, the query has three filled dimensions: bike ride (what); John

Smith, Anna Smith (who); 2016 (when).

Definition 2 (Query). A query Q over the dataset is represented as an object as

defined in Definition 1.

Given objects Q and O, O is considered as an answer to object Q treated as

a query if it contains at least one of the dimensions specified in Q. In looking for

(partially) matching objects to a given query, each dimension will be searched

separately, and the results will be combined according to a scoring function,

generating a rank-ordered list of candidates. The choice of scoring function can

be application dependent. We propose our frequency-based scoring function, w5h-

f, below.
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4.2 Frequency-based Multi-dimensional Scoring: w5h-f

Because personal digital traces are byproducts of users’ actions and events, they

are not independent objects. Our intuition is that the correlation between traces

(objects) can be leveraged to improve the accuracy of search results. For example,

if the “bike ride” query from Section 4.1 returns several potential matches, one

from Alice Jones, and one from Bob White, we may want to score the one from

Alice higher if she communicates more frequently as a group with the user, Anna

Smith, and John Smith, than Bob White.

Our w5h-f scoring scheme uses the correlation between users (or entities) and

how they interact over time to rank an object. Because we are focusing on

personal digital traces, all the data articulates around a user. By analyzing

personal datasets, we observed a strong correlation between the user (owner of

the data) and multiple users (who groups), through times (who, when), location

(who, where) and data sources (who, how). Our scoring exploits those interactions

and correlations by way of a frequency score. Frequencies can be computed for

individual users or group of users. They can be associated with multiple times,

multiple data sources, and also with a set of locations. For example, from a

set of emails exchanged between a group of users, we can extract the frequency

(number of interactions) with which those users communicated, and in which time

period those interactions occurred. In short, frequency expresses the strength of

relationships, based on users, time, location and data sources (who, when, where,

how).

Algorithm 1 shows how frequencies are computed across multiple dimensions.

Initially, a list of objects is retrieved for each data source. For each object, the

algorithm extracts groups of users, times and locations. Then, the following

frequencies are computed:
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• Frequency of each individual user: number of objects that mention a user

in the who dimension.

• Frequency of a group of users: number of objects mentioning a group of

users. If {a,b,c} is the group mentioned, frequencies of subgroups of {a,b,c},

e.g. {a,b} and {b,c}, are not counted.

• Frequency of each individual user at specific times: number of objects that

mention a user at matching times. Time is normalized, so variations are

also considered. For instance, a query searching for June, will match objects

with time June 2016 and June 2017.

• Frequency of a group of users at specific times: number of objects mention-

ing the group at a specific time.

• Frequency of a location: number of objects that mention a location.

Besides computing the frequencies per source, we also compute the total fre-

quency of a user, group of users, times and locations by combining the individual

results obtained for each data source. For simplicity, in Algorithm 1, every time

a user or group of users has an interaction, the frequency is increased by one;

however, in practice, the algorithm allows us to weigh differently distinct types

of interactions. For example, likes or comments on a Facebook post could be

weighed differently, giving more relevance to interactions coming from comments

than likes. Different roles, e.g. From and To in an email, can also be weighed

differently.
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Definition 3 (Similarity Score). Given a query Q, an object O, and the frequen-

cies above, we define:

f -score(Q,O) = f [g]

+
∑
uεwho

f [u]

+
∑
uεwho

fs[u]

+
∑
uεwho
dtεwhen

f [u][dt]

+
∑
uεwho
dtεwhen

fs[u][dt]

+
∑
gεwho
dtεwhen

f [g][dt]

+
∑

addrεwhere

f [addr]

+ scorewhen(dt, O)

+ scorehow(s,O)

+ scorewhat(O)

where g is the group of users in the who dimension of O, u is each user in g, dt is

each time in the when dimension, s is a data source, addr is each location in the

where dimension, f [g] is the frequency of a group of users in the same object, f [u]

is the total frequency of each user across all data services, fs[u] is the frequency

of each user in the data source s of the object, scorewhen(dt, O) = 1 when the date

dt from query Q matches object O; otherwise, scorewhen(dt, O) = 0, f [u][dt] is the

total frequency of the user u in the time dt across all data sources, fs[u][dt] is the

frequency of the user u in the time dt and data source s of the object, f [g][dt] is

the total frequency of the group of user g in the time dt, f [addr] is the frequency

of each location addr, and scorehow(s,O) is the score of an object O for a given

source s: scorehow(s,O) = 1 when the service s from query Q matches object O;
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otherwise, scorehow(s,O) = 0. Lastly, scorewhat(O) is a text-based score for object

O, using any chosen scoring function (e.g., TFIDF, BM25,...).

The equation in Definition 3 assumes that a query Q has all 5 dimensions

what, who, when, where and how ; if a dimension does not exist in a query, the

equation term corresponding to that dimension will be 0.

Algorithm 1 Frequency algorithm

procedure Compute–Frequency(source)
. object(source) retrieves all objects from a given source

for each O ∈ object(source) do
group ← O.get(‘who’)
times ← O.get(‘when’)
locations ← O.get(‘where’)
for each time ∈ times do

. Frequency of a group of users given a time
f [group][time]← f [group][time] + 1
for each user ∈ group do

. Frequency of user given a time
f [user][time]← f [user][time] + 1

end for
end for
for each user ∈ group do

. Frequency of a user
f [user]← f [user] + 1

end for
. Frequency of group of users

f [group]← f [group] + 1
for each location in locations do

. Frequency of location
f [location]← f [location] + 1

end for
end for

end procedure

Let us consider the query Q0 (what: bike ride; who: John Smith, Anna Smith;

when: 2016), and the object O1 illustrated in Figure 4.1. According to the w5h-f

methodology, the object O1 will have the following score:
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f -score(Q,O1) = f [g = John S., Anna S.]

+ f [u = John S.] + f [u = Anna S.]

+ fs[u = John S.] + fs[u = Anna S.]

+ f [u = John S.][dt = 2016]

+ f [u = Anna S.][dt = 2016]

+ fs[u = John S.][dt = 2016]

+ fs[u = Anna S.][dt = 2016]

+ scorewhen(2016, O)

+ f [g = John S., Anna S.][dt = 2016]

+ scorewhat“bike ride”

where s = Facebook

Message: Bike ride around lake Washington (WHAT)  
From: John Smith (WHO)
Place: Seattle, Washington (WHERE)
With_tags: Anna Smith (WHO)
Created_time: 2016-06-20T00:21:27Z (WHEN) 
Data_type: Facebook Status (HOW)  

Figure 4.1: Simplified example of a user Facebook status update about a bike
ride around Lake Washington.

The w5h-f scoring model is focused around personal digital traces and as

such we included specific group of correlations in our scoring. Other application

scenarios could also benefit from our w5h, with other group and pairwise corre-

lations highlighted in a dedicated frequency-based scoring. For instance, traces

from weather sensors could have strong pairwise (where,when), or (where, how)

correlations. In Chapter 5, we extend our static scoring function by adopting
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a more general group of correlations and a learning-to-rank approach using the

state of the art LambdaMART algorithm.

In Chapter 7, we will use real user datasets to validate our w5h-f scoring model

by comparing it against state of the art search approaches as Apple’s Spotlight

and Apache Solr, and techniques like TF-IDF and BM25.
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Chapter 5

A Frequency-based Learning-To-Rank Approach

for Personal Data Search

In Chapter 4 we have discussed how search in personal data differs from Web

search by focusing on retrieving data that the user knows exists in their dataset.

We also showed that by leveraging the additional knowledge the user is likely

to have about the target object, and the existent connections between objects

pertaining to a given user, we can considerably improve personal data search ac-

curacy. As personal digital traces are very specific to each user and are constantly

evolving over time, it is necessary to find a scoring model that can generalize well

over user-specific datasets. Learning-to-rank approaches have proved to be very

efficient to solve ranking problems. However, the existing models for ranking are

trained on either explicit relevance judgments (crowdsourced or expert-labeled) or

clickthrough logs. In our scenario (personal digital traces), none of these is avail-

able nor pursuable. Human-labeled training sets are not available, in addition,

there is a dearth of synthetic personal datasets and benchmarks. To overcome

those challenges, we propose a learning-to-rank approach that relies on a combi-

nation of known-item query generation techniques and an unsupervised ranking

model (field-based BM25) to heuristically build training sets. Furthermore, in

this chapter, we extend our set of frequency-based features taking into consider-

ation the correlation between content (what), users (who), time (when), location



27

(where) and data source (how). We use a state-of-the-art learning-to-rank algo-

rithm based on gradient boosted decision trees, LambdaMART [19], to learn a

ranking model to map feature vectors to scores.

In this chapter, we make the following contributions:

• A representative feature set to represent query-matching object pairs built

upon a novel frequency-based feature space that leverages entities interac-

tions within and across dimensions in the dataset.

• A novel combination of known-item query generation techniques and an

unsupervised ranking model to heuristically generate labeled training sets.

• A quantitative evaluation of the proposed search technique, as well as

comparison with two popular search methodologies: BM25 and field-based

BM25. Our results show that moderately large personal datasets can bene-

fit from state-of-the-art learning techniques when combined with a compact

frequency-based feature set.

5.1 Scoring Methodology

The scoring methodology for the learning-to-rank approach is the same as the

methodology presented for the w5h-f scoring model introduced in Chapter 4. In

short, given objects Q (Definition 2) and O (Definition 1), O is considered as an

answer to object Q treated as a query if it contains at least one of the dimensions

specified in Q.



28

5.2 Frequency-based Features

The w5h-f scoring function introduced in Chapter 4 relies on the correlation be-

tween traces (objects) to improve the accuracy of search results. However, for

the w5h-f scoring model only a specific group of correlations is considered. In

this section, we expand our set of correlations by exploring all possible relation-

ship between users (who), time (when), location (where), topics (what) and data

sources (how). As we did before, we exploits those interactions and correlations

by way of a frequency score. To keep it simple, every time an interaction occurs,

the frequency score is increased by one. For each dimension and combination of

dimensions we compute a score that will be used later as features to represent

the input data in our learning-to-rank approach.

For the scoring model proposed in this chapter, called w5h-l2r, we use a set of

34 features to represent the input data. The feature set is comprised by 30 features

resulting from all possible combinations between the dimensions who, what, when,

where and how plus 4 extra features that model the correlation between group of

users (who groups); group of users and time (who groups, when); group of users

and data source (who groups, how); and finally, group of users, time and location

(who groups, when, where). The feature vector is defined in Definition 4.

Definition 4 (Feature Vector). x = [x1 . . . x34] is a feature vector comprised by

34 frequency-based features. Each feature xi is computed by a frequency function

f(Si, Q,O), where Si ∈ S. S represents all possible combinations between the 5

dimensions who, what, when, where and how, plus the 4 extra features that model

the correlation between group of users. Q is a query (Definition 2) and O is an

object in the user dataset (Definition 1).

To illustrate our query and scoring methodology consider the following search
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From: John Smith (WHO)
To: Anna Smith (WHO)
Date: 2018-09-04T10:30:00+0000 (WHEN) 
Subject: Lunch (WHAT)
Body: Do you want to get something to eat?  (WHAT) 

Figure 5.1: Simplified example of a user email message classified according to the
6 contextual dimensions model.

scenario: the user is interested in a message from 2018 (when), sent by John (who),

about the topic “Lunch” (what). We can define query Q1 as (when: 2018, who:

John, what : Lunch). By definition, the object in Figure 5.1 (O1) is a matching

to the given query (Q1) containing all dimension/item specified in the query –

when:2018, who:John, and what :“Lunch”. The query-object pair (Q1, O1) can be

represented by a 34 frequency-based feature vector x = [x1 . . . x34] as introduced in

Definition 4. Each feature xi represents the frequency score for a set of dimensions

Si, query Qi and object Oi:

x1 = f((what:Lunch), Q1, O1)

x2 = f((who:John), Q1, O1)

x3 = f((when:2018), Q1, O1)

x6 = f((what:Lunch, who:John), Q1, O1)

x7 = f((what:Lunch, when:2018), Q1, O1)

x9 = f((what:Lunch, how:Gmail), Q1, O1)

x10 = f((who:John, when:2018), Q1, O1)

x12 = f((who:John, how:Gmail), Q1, O1)

x16 = f((what:Lunch,who:John, when:2018), Q1, O1)
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x18 = f((what:Lunch,who:John, how:Gmail), Q1, O1)

x20 = f((what:Lunch,when:2018, how:Gmail), Q1, O1)

x23 = f((who:John, when:2018, how:Gmail), Q1, O1)

x27 = f((what:Lunch,who:John,when:2018,how:Gmail), Q1, O1)

If a set of dimensions Si is not present in query Qi and object Oi, the frequency

score f(Si, Qi, Oi) = 0.

To understand how frequencies (f(Si, Qi, Oi)) are computed, consider the fol-

lowing example: lets assume a dataset D containing 10 objects that mention

John under the who dimension, being 4 of those 10 objects from Facebook and

the remaining 6 from Gmail. Given object O1 and query Q1 from the previ-

ous example, we can say that the frequency of John ((who:John)) in dataset

D for query Q1 and matching object O1 is x2 = f((who:John), Q1, O1), where

f((who:John), Q1, O1) = 10. We can also say that the frequency of John in Gmail

((who:John,how:Gmail)) in dataset D for query Q1 and matching object O1 is

x12 = f((who:John, how:Gmail), Q1, O1), where f((who:John, how:Gmail), Q1, O1) =

6

5.3 Scoring the What Dimension

The what dimension in the six-dimension model is composed of content informa-

tion comprising mostly of text. Based on that fact, we use two standard text

approaches to link and score objects for the what dimension: field-based BM25

and topic modeling [79].

Field-based BM25. A field-based BM25 is a state-of-the-art TF-IDF type

of ranking function that takes into consideration the document structure. In
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our scenario, the fields in the field-based BM25 correspond to the 5 dimensions

proposed, what, who, when, where and how. To compute the field-based BM25

score for the what dimension, we use a popular full-text search platform from the

Apache Lucene project, Solr [6]. All data retrieved for a user is unified and parsed

according with the six dimensions and then, exported to Solr. For each user query,

we search Solr using the values from the what dimension, getting as a result a

partial list of matching documents with its respective field-based BM25 score.

Even though Solr contains the data for all 5 dimensions, we are only interested

in using field-based BM25 to score the what dimension, since this dimension

contains most of the content of an object. For the remaining dimensions, we use

our frequency-based function as introduced in Section 5.2.

Topic Modeling. A “Topic” consists of a cluster of words that frequently

occur together. Topic models use contextual cues to find connections between

words with similar meanings and to distinguish between use of words with multi-

ple meanings. Given a document, we would like to identify what possible topics

have generated that data. In our case, topic modeling would be an important

feature to connect different objects, including objects from different data sources.

The association between topics (what), user (who), times (when), location (where)

and source (where) could shed some light on finding objects that could be a better

matching to the user query. To define topics for each object in the user dataset,

we use a topic model package called MALLET and a text collection built from the

content classified under the what dimension for each object in the user data set.

The MALLET [64] topic model package includes a fast and scalable implementa-

tion of Gibbs sampling. The Gibbs Sampling algorithm considers each word token

in the text collection in turn, and estimates the probability of assign the current

word token to each object, conditioned on the topic assignments to all other word
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tokens. For each object in the user dataset, MALLET computes the topic compo-

sition of documents. We use the most relevant topic for each document to cluster

documents per topic. For each document in a topic, we extract the person/entity

mentioned in who dimension, the times from when, location from where and source

from how. With that information, we are able to build the correlation between

person/entity, times, location and source for each topic (what). Also, we are able

to estimate the frequency of those correlation/interactions using the frequency

function presented in Section 5.2. Besides the topic composition of documents,

MALLET also outputs the words in the corpus with their topic assignments and

frequencies. We use this list of words per topic and the words specified in the

user query (for the what dimension), to find the topic that are a more close rep-

resentative of the user query. Then, we can use the topic that matches the query

to find out a partial list of documents that are matching candidates to the query,

based solely on the contents of the what dimension.

Message: Conference Center. View of the park.  (WHAT)  
From: John Smith (WHO)
Place: Paris, France                           (WHERE)  
With_tags: Anna Smith (WHO)
Created_time: 2018-09-05T11:00:00+0000 (WHEN) 
Data_type: Facebook Status                     (HOW)  

Figure 5.2: Simplified example of a user Facebook post classified according to the
6 contextual dimensions model.

To illustrate how topic modeling can support our search, consider T a topic

composed by the following key words: hotel, lunch, street, trip, miles, view, lake,

ride, restaurant and conference. Assuming that topic T is the most relevant topic

for object O1 in Figure 5.1, and object O2 in Figure 5.2, we can say that objects

O1 and O2 are correlated by their what dimension. By considering all objects
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(documents) clustered under the same topic T , we can learn how strong per-

son/entity (who), times (when), location (where) and source (how) are connected

with relation to a topic (what). Again, this strength is measured by a way of a

frequency score as presented in Section 5.2.

5.4 Learning-to-Rank Model

In the previous sections, we explained how query-document pairs are represented

by a feature vector built upon our frequency-based feature space. To map the

feature vector to a real-valued score we need to train a ranking model. Our

choice of learning-to-ranking algorithm is the state-of-the-art LambdaMART [19].

LambdaMART uses gradient boosted decision trees, which incrementally builds

regression trees trying to correct the leftover error from the previous trees. At

the end, the prediction model is an ensemble of weaker prediction models that

complement each other for robustness. During a training phase, we must define

the best set of parameters that results in a robust and accurate model. For this

cross-validation stage, we will consider the following parameters:

• tree: number of trees in the ensemble

• leaf: maximum number of leaves per tree

• mls: minimum number of samples each leaf has to contain

• shrinkage: learning rate

• metric: training metric to be optimized for

In the next section, we will discuss how training and evaluation sets can be

built for personal data search, a scenario where publicly available personal training

data does not exist.
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5.5 Query Sets

The existent learning-to-rank models are trained on either explicit relevant judg-

ments (crowdsourced or expert-labeled) or clickthrough logs. Due to privacy

issues and the specialized and individualized nature of personal datasets, human-

labeled training sets are non existent. To overcome this problem, we propose a

novel heuristic to generate training data based on known-item query generation

techniques and an unsupervised ranking model (field-based BM25). The proposed

method is presented in Section 5.5.1.

5.5.1 Training Query Set

In a learning-to-rank algorithm, each pair of query-document(object) is repre-

sented by a vector of numerical features. In addition to the feature vector, pairs

of query-documents could be augmented with some relevance information. Then,

a model has to be trained to map the feature vector to a score. One of the chal-

lenges of using learning-to-rank for personal data search is to be able to build a

training set without human intervention or any external information (e.g., expert

labeling or click data). To this end, in this section we present a combination of

heuristics that given a user dataset is able to simulate a human-labeled training

set to tailor the learning model to each specific user dataset.

Considering the fact that personal data trace search is a known-item type

of search, simulated queries can be automatically generated, using known-item

query [30] generation techniques such as the ones presented in [7] and [57]. In this

work, queries are created by randomly choosing a set of dimensions (who, what,

when, where, how) and values/items (e.g. email’s Subject, Facebook post’s con-

tent) from a target object, as described in Algorithm 2. Each call to Algorithm 2
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will result in a query-target object pair.

Algorithm 2 Known-item query generation algorithm.

1: procedure Build–Query(dataset D)
2: . Initialize query Q
3: Q = ()
4: . Randomly choose a target object Oi from the dataset D
5: Oi = random(D)
6: . Select d dimensions
7: d = select dimensions({what, who, when, where, how})
8: for each di ∈ d do
9: . Randomly choose v values from target object Oi and dimension di
10: v = select values(di)
11: . Add dimension and values to the query Q
12: Q(di) = v
13: end for
14: return Q
15: end procedure

By using the proposed known-item query generation technique, we are able

to build a list of query-target object pairs. However, a learning-to-rank training

set is composed not only by pairs of query-known document, but also by a list

of matching documents per query. In [22], the authors use classic unsupervised

information retrieval models, such as BM25, as a weak supervision signal for

training deep neural ranking models. In a similar fashion, we adopt an unsuper-

vised ranking model, field-based BM25, to retrieve matching objects to a given

query. In Section 5.3, we explained how the data retrieved for a user is unified and

parsed according with the six dimensions and then, the parsed data is exported to

Solr where it can be searched using a field-based BM25 approach. Given a query

generated by Algorithm 2, a call to Solr will retrieve a list of matching documents

to this query — the list is ranked using field-based BM25. Now, for each query,

we have a list of matching documents that includes the (generated) target object

and its corresponding feature vector as described in Section 5.2. Since the target
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object is known for this query, a relevance label of 1 is assigned to it; otherwise,

the relevance label will be 0.

In both our scoring methodologies, presented in Chapter 4 and Chapter 5,

queries are considered independently, without taking into consideration the pos-

sibility of search sessions composed by multiple queries that are somehow related.

Search sessions would be an interesting extension to our work; however, it would

require new scoring techniques that can take into consideration previous results

while scoring new matching objects [4, 34]. Another point to be considered in the

future are relaxation rules. Relaxation rules are important since the human mem-

ory is prone to mistakes, leading to a considerable number of inaccurate queries

during the search process.

In Chapter 7 we evaluate the efficacy of the proposed learned ranking model

by comparing its performance with two popular scoring methodologies: BM25

and field-based BM25.
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Chapter 6

Search Implementation

In this chapter, we discuss our search implementation from data extraction to

entity recognition, and classification, that will be used as the basis of our experi-

mental evaluation.

6.1 Data Extraction

There is a dearth of synthetic data sets and benchmarks to evaluate search over

personal data. This challenge has only been exacerbated by the recent explosion

in the amount of personal digital traces, as well as the varied services that cre-

ate, collect, and store them. A data extraction tool that accesses a variety of

available services retrieving and storing users’ data is a significant step towards

the development of an individualized context-aware personal information search

tool. This section describes the status of our personal information extraction tool

and three different datasets retrieved using the tool. Besides the personal digital

traces datasets, we present a public email dataset, called Enron.

6.1.1 Challenges

Creating a unified personal information search tool is not a trivial task. The first

important step is the identification, retrieval, storage and modeling of all the data

pertaining to a user. In this section, we will discuss the more relevant challenges
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encountered in the process of retrieving and storing a user’s digital life to create

a personal database that is robust, reliable and secure.

Most of a user’s personal data is fragmented across multiple sources. Even

in the best scenario where a user has complete control of his own data stored

only on personal devices, it is challenging to keep track of every single bit of data

stored over time, and it is even harder to remember exactly in which device the

data is stored. The fact that personal data may not even be controlled by the

user, since it can be spread across multiple third-party services, adds an extra

challenge to the process of identifying and retrieving data. Although some web

services provide access to data through programmatic APIs, retrieving the data

from the sources can be tricky. The access to the APIs varies for each service

and they are constantly being updated. Many common services do not export

such APIs and require access via web query forms or outdated screen scrapping

methods to retrieve the data. The extraction tool that we are proposing identified

and implemented access to a variety of data sources, retrieving the decentralized

data and storing it in a single database.

The heterogeneity of data storage formats across different devices and services

presents a second major challenge. One possibility for addressing this challenge is

to pre-process the data before storing it. However, this task, besides being time

consuming, is prone to mistakes that could lead to missing important data. Pre-

processing the data also requires the extraction tool to include deep knowledge

of each data format available; this is a difficult process, especially given the rapid

rate of changes in the services sourcing the data. To avoid these problems, we

store the data keeping their original format in a NoSQL database that is already

optimized for semi-structured data. Our prototype uses MongoDB, a document-

store system with a BSON encoding.
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As the data is being retrieved, two new challenges arise: storage and privacy.

In the last couple of years, the impressive growth in storage space while keeping

costs low guarantees that tools as the one we are proposing can be implemented

while imposing very little additional cost to the user. In our implementation, the

personal data retrieved is stored in the user’s own hard drive. Even though this

approach has some limitation in the sense that the data is only available locally,

by storing it in the user’s hard drive we can guarantee some clear privacy and

security benefits. A more flexible approach would be to make the data available to

the user from different devices and locations, as is the case with personal clouds;

however, this approach would require careful handling of private data and support

for user permissions. It is important to clarify that when we retrieve data from a

user, most of the time this data contains information about interactions between

the user and several other people. However, the data is still private since it only

contains information that was already shared with the user.

Nowadays, there is a growing concern with how personal information is re-

trieved, stored and used. Different countries have been creating and updating

existing privacy laws and regulations to reflect the currently reality in which per-

sonal data are being created every day in a very large scale. For instance, the

European Union (EU) have introduced the General Data Protection Regulation

(GDPR) ?? that presents new requirements for companies that collect and pro-

cess any type of personal information. Similarly, in the United Stated of America,

the California state has introduced the California Consumer Privacy Act (CCPA

or CACPA) ??. Washington state is trying to pass the Washington Privacy Act

(WPA) ??, in which the key elements are very similar to that of the CCPA. With

time, personal information management tools will have to change to accommodate

the new privacy laws and regulations.
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6.1.2 Extraction Tool

In the process of creating a Personal Information Database (PID), our extraction

tool [83] identified and implemented access to a variety of data sources. The

underlying personal data retrieved is stored in a flexible format that will allow

us to perform data integration, search, and knowledge discovery. In this section,

we focus in describing all steps involved in the personal information extraction

aspect of our project.

The Personal Information Database (PID) is responsible for storing not only

the data retrieved by the extraction tool but also all the extra information needed

by our search tool as topic modeling data and frequency scores. Besides that, the

PID will hold all the information about a user necessary to access the APIs

implemented – information such as access tokens are essential to authorize the

tool to access data stored by third party applications.

The Extraction Tool retrieves data from a wide range of sources: social data

(Facebook, Twitter, LinkedIn, Google+), geolocation data (Foursquare), personal

files (DropBox), Email (Gmail), Calendar (Google Calendar), Contacts (Google

Contacts), web search/browser history (Firefox), and financial data (Mint). The

data is accessed through individual system APIs. The data collected includes

content, structure and explicit and implicit context.

Using a clean user-friendly interface, a user can authenticate and authorize

the extraction tool to access their personal data for the range of services being

offered. When a user registers a service using the extraction tool, a request is sent

to the service API that, after the user has authorized it, will reply with an access

token that is unique to the user and allows our tool to freely access the data.

The access token is stored in the PID with all relevant information pertaining to

that user. From now on, every time a user call the extraction tool to retrieve
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his personal data, the tool will query the PID for the access token and then will

access the service API retrieving all the user new data since the last time a call

was placed. It is important to highlight that a user’s first attempt to retrieve

data results in the tool trying to retrieve as much past data as possible as allowed

by each API.

All implementation was done using Python with the Django framework. Ser-

vices are authenticated and authorized using Oauth2 and the data is accessed

through APIs provided by each service.

6.1.3 Personal Digital Data Traces

In this section, we briefly discuss the services integrated by our extraction tool

together with a description of the available data.

The variety of personal data available to be retrieved is enormous and new

sources of data are constantly appearing; based on that, the extraction tool was

built to easily integrate new services with their own data schema. As a starting

point, our effort was channeled to selectively retrieve data from popular services.

Table 6.1 briefly describes the services and data retrieved by the tool.

The extraction tool retrieves and stores the data in BSON format using Mon-

goDB. The data is not pre-processed in any way, i.e., the tool dumps the data

preserving the original schema defined by the service from which it was retrieved.

The absence of a unique pre-defined schema makes the tool robust to the very

frequent changes in source APIs and export formats. Figure 6.1 illustrates a piece

of data retrieved from Facebook. From this small piece of data we can extract

information such as: time, user name, data type (Facebook album), album name

and time the album was created and modified.

Information such as time, location, text and people are frequently found in
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Table 6.1: Services and data retrieved

Data Source

Dropbox files, folders
Facebook feed, photo, album, checkin, event,

friend, family, group, inbox, link,
note, post, status, home, profile

Foursquare badge, checkin, friend, photo, recent
Google Calendar metadata, events
Google Contacts contact, groups
Google+ people, activities, comments
Gmail inbox, sent
Linkedin profile
Twitter favorite, mention, friend, follower,

timeline, retweet, msg received,
msg sent, tweet

Firefox, Chrome browser history, search history
Mint financial data

Figure 6.1: Data retrieved from the Facebook album of a user

data from different sources. Besides those well know entities, the richness of

the data and the possibilities that it offers in terms of how they are related and
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how they can be used to support a more robust search approach present a great

stimulus to the study and development of a more personal context-aware search

tool.

The extraction tool retrieves text-based data and the metadata of multimedia

objects. Table 6.2 shows three datasets along with the number and size of objects

retrieved from different sources over different periods of time.

Dataset 1 Dataset 2 Dataset 3
Data Source #Objs Size #Objs Size #Objs Size

Facebook 1493 9Mb 2384 19Mb 3875 28Mb
Gmail 1136 107Mb 10926 1Gb 28318 3Gb
Dropbox - - 573 32Mb 573 32Mb
Foursquare - - 55 59Kb 55 59Kb
Twitter - - 2062 10Mb 3929 22Mb
Google Calendar 2 9Kb 209 389Kb 330 620Kb
Google+ 1 1Kb 102 343Kb 110 367Kb
Google Contacts 157 158Kb 427 430Kb 525 629Kb
Firefox - - - - 412 415Kb
Mint - - - - 181921 63Mb

Total 2789 116Mb 16738 1.4Gb 219,993 3.6Gb

Table 6.2: Personal data sets

6.1.4 Enron

In Section 6.1.2 we have presented our Extraction Tool as a mean to retrieve per-

sonal data from a variety of data sources. Three different datasest were retrieved

using the tool and detailed in Section 6.1.3. We have called this type of dataset

as pertaining to the Personal Digital Data Traces application, since they are com-

posed by a variety of digital data traces from different data sources. Another type

of dataset studied in this dissertation, is an email dataset which contains a total of

about 0.5M emails from 158 employees of the Enron Corporation. This data was

originally made public, and posted to the web, by the Federal Energy Regulatory

Commission during its investigation. The Enron dataset can be downloaded from
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https://www.cs.cmu.edu/~./enron/. A python parser was created to trans-

late each email into a JSON object that is then stored in MongoDB creating a

Personal Information Database (PID) for the Enron dataset.

6.2 Classification

As discussed in Chapter 3, contextual information should be represented in a

unified model that will allow to both represent the data in its context, and to

search and navigate seamlessly through this contextual data. To this end, we

proposed a six dimension model called, w5h. Having defined the w5h model, it is

still necessary to find an effective solution to map the context information from

each digital data trace into the six dimensions. In this section, we will introduce

two different solutions: a static version of our w5h classifier, that requires human

intervention, and a machine learning multi-class classifier that automatically maps

the data from any data source into the w5h dimensions. This last version does

not require human intervention.

6.2.1 Static w5h Classifier

Digital traces have their own structures but most are retrieved in a semi-structured

data format (typically JSON through APIs), or are extracted along with some

metadata. As a first step towards data classification, we implemented parsers to

represent the raw data from each source in the w5h model, thus unifying the data

downloaded into a single data collection. The identification of data according to

the six dimensions is done by analyzing the data available to be retrieved for each

data source implemented and then building a dictionary of words/labels for each

w5h dimension. Much of the classification is intuitive, for instance, the words

https://www.cs.cmu.edu/~./enron/
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From and To should be classified under the who dimension, while words Sub-

ject and Body should be classified as what. Text messages are classified as what,

even though some specific information derived from content could be classified

differently (e.g., “I went to the market today” gives both when (“today”), where

(“market”) and who (“I”)). Note that the how and why dimensions are more

ambiguous. For now, we consider how as the type of information recorded, e.g.,

a Facebook comment. The why dimension is not explored in this dissertation; it

is derived from inference and can be used to connect events [51, 52].

Figure 6.2 shows an example of a Facebook comment classified according to the

w5h model using the static set of parsers. By using the dictionary of words/labels

built based on the data available to be retrieved for each service (e.g. Facebook,

Enron, Gmail, etc.), the parser is able to map a Facebook “message” to the

what dimension, the “from.id” and “from.name” to the who dimension, and the

“created time” to the when dimension.

The disadvantage of static parsers to map the raw data into the w5h model is

that every time a new source of data is included in the data retrieval phase or an

existing service changes the format of their data, the dictionary of words/labels

and the set of parsers have to be updated. To avoid this problem, we proposed

in Section 6.2.2 a machine learning multi-class classifier to translate raw data

retrieved from third-party sources into the 6 dimension model without the need

of human intervention.

6.2.2 Machine Learning w5h Multi-class Classifier

The problem of automatically mapping the personal data retrieved into the 6

dimensions model is the well know problem of multi-class classification, which

means that there are multiple classes to be predicted, but each instance can be
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{
_id: ObjectId()
source: “facebook”
feed_id: “xxxxxxxxx”
data:  {

what: [
{

key: “message”
value: “Personal Information Search and Discovery” 

}
]
who: [

{
key: from.id
value: ”xxxxxxxx”

},
{

key: “from.name”
value: “John Smith”

}
]
when: [

{
key: “created_time”
value: “2013-08-28 12:34:59+00:00”

}
]
how: [

{
key: “data_source”
value: “facebook.status.comments”

}
]
where: [ ]
why: [ ]

}
data_type: “status.comments”
}

Figure 6.2: Example of a user Facebook comment parsed according to the w5h
model.

assigned to only one class. In this section, we introduce our w5h multi-calss

classifier, a simple deep learning classifier that translates personal data traces

into the dimensional model proposed in this chapter.

A simple view of deep learning is that of chain of multiple layers of processing

units in which the output of one layer work as an input for the next layer. The

basic idea is that giving a learning model, the model’s weight are constantly being

adjusted in response to the error it produces. This cycle continues until the error
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Arch. Description

C1 LSTM, Dense(softmax)
C2 LSTM, Dropout(0.3), Dense(softmax)
C3 LSTM, Dropout(0.5), Dense(softmax)
C4 LSTM, Dense(relu), Dense(softmax)
C5 LSTM, Dropout(0.3), Dense(relu), Droupout(0.3), Dense(softmax)
C6 LSTM, Dropout(0.5), Dense(relu), Dropout(0.5), Dense(softmax)

Table 6.3: Machine learning multi-class classifier architectures.

cannot be reduced any longer. In our scenario, the input data to the w5h classi-

fier is a set of sentences and labels. Labels are the w5h dimensions and sentences

are each individual information in the user dataset. For instance, in Figure 3.1,

Figure 3.2 and Figure 3.3, each line corresponds to a sentence/label pair. To

be fed into a deep learning architecture, sentences are transformed in embedding

vectors by a Word2vec algorithm1 . Labels are reshaped into one-hot encoded

binary matrices. Architectures were built combining LSTM (Long Short-Term

Memory) [45] and Dense layers. Dropout [78], a regularization technique, was

used in some architectures to reduce the complexity of the model with the goal to

prevent overfitting. The simplification is done by randomly setting some of the

dimensions of the input vector to zero. Table 6.3 describes each architecture eval-

uated. The x in Dropout(x) refers to the percentage of units (neurons) randomly

deactivated in a layer.

Dense layers are classic fully connected neural network layers, i.e., each input

node is connected to each output node. LSTM (Long Short-Term Memory) is a

special kind of RNN (Recurrent Neural Network) capable of learning long-term

dependencies. In our case, even though the network isn’t recursive, the LSTM

unit helps by adding another layer without causing explosion in the parameter

space (weighted to be fitted). It is important to keep in mind, that in this work

1 https://radimrehurek.com/gensim/models/word2vec.html
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Architecture Avg. Accuracy Std.

C1 99.96% +- 0.01%
C2 99.95% +- 0.02%
C3 99.89% +- 0.10%
C4 99.46% +- 0.99%
C5 99.72% +- 0.31%
C6 89.00% +- 12.68%

Table 6.4: Average classification accuracy and standard deviation for each clas-
sification model.

we are exploring moderately large datasets, so adding extra layers would require

more data to fit the parameters of the model.

The designing and configuring of deep learning models require a great amount

of decisions that can be empirically evaluated. We adopted a 5-fold cross vali-

dation process to estimate the performance of models. We use categorical cross-

entropy as the training criterion (loss function); Adam optimization algorithm as

the optimization algorithm for our models; and, Accuracy as our evaluation met-

ric. Table 6.4 shows the average classification accuracy and standard deviation

for each architecture. The evaluation was conducted using the dataset Dataset 2

described in Table 6.2. Architecture C1, with accuracy over 99.9%, is the most

accurate with the lowest variation.
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Figure 6.3: Confusion matrix with predictions for dataset Dataset 1. The model
was trained using dataset Dataset 2.



49

The confusion matrix in Figure 6.3 shows the accuracy of the model for dataset

Dataset 1 (Table 6.2), using the training data from Dataset 2 (Table 6.2), with the

true labels represented in the y-axis and predicted labels in the x-axis. All correct

predictions are located in the diagonal of the table. The results indicate that a

machine learning classifier can accurately translate dynamic and heterogeneous

set of personal data into the w5h model.

Our implementation uses the classifier to translate raw data into the w5h

model and does not require user intervention.

6.3 Retrieval

The design of multidimensional indexing structures is the next step towards build-

ing a search tool. To support queries and scoring techniques for w5h search, we

index our personal data using MongoDB single field indexes. Single field indexes

are user-defined indexes on any single field or sub-field of a document. When

the data is mapped by our classifier (Section 6.2), it is stored as a JSON docu-

ment with fields for every w5h dimension. Then, a MongoDB single field index

is created for each of the 5 dimensions: who, when, where, why and how. The

exception is the what dimension. The what dimension in the w5h model is com-

posed basically by content information comprising most of text (e.g., the body

of an email, the body of a Facebook comment, or the text content of a Twitter

tweet), so w5h-f uses a text-based score function to score this dimension and a

MongoDB single field index is not needed.

When a query is submitted, each dimension is individually matched against

the user’s dataset using the above pre-computed indexes. Each separate search

returns a list of objects that partially match the query for a given dimension,

which are then scored using one of the w5h scoring methodologies.
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6.4 Entity Resolution

In a personal dataset, the same person may appear in different services using

variations of their names and email addresses. A very similar situation happens

with location addresses. The format of addresses varies considerably between

different services, and even within the same service. Most of the time users enter

the address by hand, resulting in addresses with different spellings and incomplete

information. In this section we describe the process we adopted to create entities

for the who and where dimensions. The identification of common entities in

different data sources allows for more accurate searching.

Our scoring technique relies on frequency scoring of the same entity across

objects. To make this possible, we need to identify separate instances of the

same entity in data traces coming from the same sources, and across sources.

For instance, the same person may appear in different services using variations of

their names and email addresses. A very similar situation happens with location

addresses. The format of addresses varies considerably between different services,

and even within the same service. Most of the time users enter the address by

hand, resulting in addresses with different spellings and incomplete information.

In this section we describe the process we adopted to create entities for the who

and where dimensions. The identification of common entities in different data

sources allows for more accurate searching.

Entity Resolution for the who dimension. Almost 100% of the personal

data retrieved has information associated with the who dimension. Our goal is to

identify unique entities (person) that may be referred to differently (e.g. different

email addresses). The first step to solve the ER problem for the who dimension is

to process the entire user dataset, and extract all information classified under who;

for example, names and email addresses. We use the Stanford Entity Resolution
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Framework (SERF), a generic open-source infrastructure for Entity Resolution

(ER) [2], to identify entities. SERF uses the swoosh algorithm [11], proved to

be optimal in the number of record comparisons in worst-case scenarios. Our

decision to use SERF to build who and where entities was based on the fact that

SERF is open source and addresses the entity resolution problem in an efficient

and simple way. Using SERF person entities are identified and grouped in final

entities that are stored in MongoDB in a separate collection.

Entity Resolution for the where dimension. Entity Resolution for the

where dimension is the problem of identifying records in a database that refer to

the same underlying location, and grouping them into a unique entity. As usual,

ER is challenging since the same where location can be represented in multiple,

ambiguous and error-prone ways. To disambiguate and match location data, we

used Google Geocoding, Google Places API and SERF. We start by using Google

Maps to disambiguate places that appear under different names and to augment

the existing data. However, there are a number of challenges to be faced. In

most scenarios, given an ambiguous location (e.g. Student Center), the Google

Maps API outputs a set of results instead of a unique address, making it difficult

to identify which one of the listed addresses is the target place. To overcome

this issue, we rank all addresses returned by a Google Maps search using a tf

(term frequency) function computed based on the user’s dataset. For example,

consider a set of results returned by the API search; the set of addresses includes

an address in France; if the user’s dataset does not have any data related to

France, the address in France will be associated with a low tf. Similarly, when

Google Maps API does not return any result for a given search, we augment the

location search by using information from other related digital traces. We then

use SERF for deduplication and record linkage for all the locations that have
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the same geocoded address information or geographical coordinates (longitude,

latitude).
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Chapter 7

Evaluation

In this chapter we evaluate the efficacy of the w5h-f (Chapter 4) and w5h-l2r

(Chapter 5) scoring approaches by comparing its performance with two popular

existing search tools, Solr [6] (using different scoring methodologies: TFIDF,

BM25, and field-based BM25), and Spotlight [1].

We start by discussing the accuracy of the search approach w5h-f for a set of

search scenarios manually designed to be representative of possible user queries.

Then, we explore the accuracy of the w5h-f approach using a much larger set of

synthetically generated queries. Personal digital data traces datasets were used

to validate the w5h-f approach. Finally, we use two different types of datasets,

a personal digital data traces dataset and the Enron dataset, to validate the

learning method (w5h-l2r) by comparing its performance with BM25 and field-

based BM25 scoring methodologies.

7.1 Evaluation of the Frequency-based Scoring Approach:

w5h-f

7.1.1 Dataset

The evaluation is performed using a real dataset collected by our extraction tool

(Section 6.1.2) for one user (Dataset 2). Data is retrieved from current popular
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services and sources of digital traces and stored in its original format in MongoDB,

with the data from each service stored in its own collection. The dataset is

presented in Table 7.1 along with the number and size of objects retrieved from

different sources over different periods of time. This dataset will be used to

evaluate the w5h-f scoring approach proposed in Chapter 4.

Dataset 2
Data Source #Objs Size

Facebook 2384 19Mb
Gmail 10926 1Gb
Dropbox 573 32Mb
Foursquare 55 59Kb
Twitter 2062 10Mb
Google Calendar 209 389Kb
Google+ 102 343Kb
Google Contacts 427 430Kb

Total 16738 1.4Gb

Table 7.1: Personal dataset

Digital traces are mapped into the 6 dimensions using one of the classifiers

introduced in Section 6.2. After classification, the data that was initially stored

in individual collections will now be unified in one single MongoDB collection,

named parsed collection. Table 7.2 shows the number of objects in the parsed

collection for Dataset 2. During the classification an object can be separated in

multiple objects. For instance, a Facebook post may contain multiple comments.

In this case, the Facebook post and each individual comment will result in one

individual object in the parsed collection. This explains the number of objects

in the parsed collection (36381 objects) being greater than the total number of

objects in the dataset before classification (16738).

Dataset 2
#Objs

Parsed Collection 36381

Table 7.2: Number of objects in the parsed collection for Dataset 2



55

Our scoring technique relies on frequency scoring of the same entity across

objects. Table 7.3 presents the number of who and where entities for Dataset 2

Dataset 2
#Entities

Who 31849
Where 647

Table 7.3: Number of who and where entities for Dataset 2

7.1.2 Evaluation Techniques

Solr. Solr [6] is a popular open source full-text search platform from the Apache

Lucene project. To integrate Solr and MongoDB we used a generic connection

system called MongoConnector [67]. Essentially, this connection allows Solr to

extract the content of each object in the MongoDB collection as text for indexing

and subsequent searches. For the experiments in this chapter, for each unique

dataset in MongoDB we create two different data collections in Solr. The first

collection integrates all data (raw data) retrieved by the extraction tool, from

each different data source, in an unified collection. This approach allows user to

search for information across the entire set of retrieved digital traces, which is

already a significant step forward from the current state-of-affair. However, this

approach does not solve the problems caused by the heterogeneity of the original

data — e.g., different data formats affecting search accuracy — and also does

not take advantage of contextual information attached to the data. TFIDF and

BM25 are the scoring methods used to evaluate Solr search over the integrated

raw collection. The second data collection created on Solr contains the data

classified according to the w5h model, addressing the heterogeneity of the data

and taking into consideration the contextual information attached to the data.

Then, we run BM25 Solr field-based search over the integrated parsed data.
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Spotlight. We also compare our search approach to Spotlight, the desktop

search platform in Apple’s OS X. Spotlight allows users to search for files based

on metadata [1]. As with Solr, this approach also works using the integrated raw

(original) data. However, since Spotlight is a desktop search, we wrote an extrac-

tion program that stored each object in the evaluation dataset as an individual file

in a machine running OS X Yosemite version 10.10.5. Besides storing the objects

as files, the extraction program also parses the data to extract metadata that can

be added to the files. The type of metadata extracted are authors (MDAuthors:

from, creator, actor...), creation date (MDCreationDate: created-time, created-

at...), content change date (MDChangeDate: modified, updated-time...), content

creator (MDCreator: data source) and path of a file (MDFroms: dropbox file

path). It is important to mention that Spotlight only ranks one item that it

views as most relevant to a query. All other matching items are returned without

ranking, typically organized by type of documents (e.g., email, pdf, etc.).

w5h-f Our proposed approach relies on the six memory cues (what, who,

when, where, why and how) to guide search. The w5h-f approach uses the data

parsed according to the w5h model. The correlation between users/entities and

how they interact over time through different services, including the frequency

users communicate, is used to rank objects, as described in Chapter 4. w5h-f uses

entity resolution, as described in Section 6.4, to disambiguate/link entities from

different sources (e.g. Facebook, Gmail, Twitter...) in the data set.

7.1.3 Case Studies

We begin our evaluation by studying four manually created search scenarios de-

signed to be representative of realistic user searches targeting different personal
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Table 7.4: Representative search scenarios targeting information stored in a user’s
personal dataset.
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digital traces from the dataset Dataset 2 described in Table 7.1. For each sce-

nario, we compose one query for each of Spotlight, Solr (TFIDF), Solr (BM25),

Solr (Field-based BM25) and w5h-f using the same information. Query condi-

tions are derived from information in the target objects, and all conditions are

classified accurately along the dimensions within Spotlight, field-based Solr and

w5h-f.

Table 7.4 describes the search scenarios, the corresponding queries, and the

rank of the target object as returned by each search method. Note that the target

objects are always found, since the queries are accurate, and all three search tools

currently return all matching objects. When Spotlight does not return the target

item as the 1st ranked result, we report the ranking as the range from 2 to the

total number of returned items.

The results show that w5h-f achieves the best accuracy by always ranking

the target object higher than or equal to Spotlight and Solr. The differences

can be significant (e.g., scenarios 1, 2, and 3), demonstrating that using memory

cues to guide search can lead to improved search accuracy. We next discuss each

of the search scenarios in more detail to show how differentiating between the

dimensions, and using frequency information, helps to improve search accuracy.

In scenario 1, the user is searching for a data item containing information

about the 2013 SIGIR Conference. The information was sent or posted by Ashley.

In this scenario, identifying Ashley as who and 2013 as when allows w5h-f to rank

the target object higher than all instances of Solr. When compared with Solr field-

based BM25, using the same parsed data as w5h-f, the fact that w5h-f scoring

function takes into consideration the frequency that Ashley communicated with

the user during the year of 2013 using Google+, allows w5h-f to rank the target

object higher than Solr. Spotlight was unable to leverage the same distinctions as
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w5h-f since the target object was not ranked number 1. Thus, Spotlight returned

the target object as an unranked item among 13 other items.

Scenario 2 searches for a message about ER solutions. The message was sent

by (or mentions) the friend Anna. Again, Spotlight was not able to rank the target

object and returned the item among 5711 other items. Solr BM25 and Solr field-

based BM25, that represent state-of-the-art TFIDF-like scoring functions, scored

the target object higher than Solr TFIDF. The fact that Solr BM25 runs over

the raw data and Solr field-based BM25 runs over parsed data shows that the

classification of the data into the 6 dimensions alone is not the reason why the

w5h-f approach scores the target object higher than all other approaches. The

w5h-f approach goes beyond the simple use of a person’s name, as it can also rely

on the entity resolution algorithm to identify common users across different data

sources and group them in unique entities. Using an entity instead of a name

allows us to eliminate unwanted results. For example, if we search for the name

Anna, documents from Anna Smith and Anna Doe will be returned. However,

searching for the entity Anna, where Anna is the entity id for Anna Smith, only

the objects from the desired Anna (Smith) will be returned. The impact of entity

resolution in this scenario is relevant considering that Anna is a very common

name in the user data set. Using memory cues (dimensions), entity resolution,

and a frequency-based scoring function, w5h-f was able to rank the target object

1st.

Scenario 3 targets a photo of a cat sent or taken by Katie in March 2012.

In this case, the classification of photo and cat as what and Katie as who allows

w5h-f and Solr field-based BM25 to rank the target object much higher than Solr

BM25, Solr TFIDF and Spotlight. Entity resolution in the who dimension and

the scoring function based on frequency help w5h-f to rank the target object in
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the top 20.

Scenario 4 looks for a picture of Anna taken at a place called Campos. The

good performance achieved by the w5h and Solr field-based BM25 approach is

explained by the fact that those approaches were able to classify Anna under

the dimension who and Campos under dimension where. Since Campos is a very

common family name in the user database, the keyword search approaches ended

up returning lots of documents matching Campos as location and also as a name.

7.1.4 Simulated Known-Item Queries

We now study a larger set of automatically generated known-item queries: search

of personal data is usually focused on retrieving information that users know

exists in their own data set. Because personal data trace search is a known-item

type of search, simulated queries can be automatically generated using heuristics

as the one described in Algorithm 2. Each call to Algorithm 2 will result in a

query-target object pair.

For this set of experiments, we built a query set using Dataset 2 (Table 7.1).

The set comprises 5 different groups of queries, each containing 1500 queries

for 250 different scenarios. Each scenario is automatically created by randomly

choosing a target object from the user dataset. We then choose d dimensions,

from which we randomly select v random values. We adapted the queries to each

of our evaluation methods: Solr TFIDF, Solr BM25, Solr field-based BM25, and

w5h-f. Table 7.5 shows the parameters (d, v) for the 5 query groups.

Including pertinent contextual information when searching personal

data can significantly improve accuracy. Tables 7.7 and 7.6 show the MRR

(Mean Reciprocal Rank), NDCG@10 (Normalized Discounted Cumulative Gain

through position 10) and NDCG@20 (through position 20) of each approach, Solr
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Parameter Group 1 Group 2 Group 3 Group 4 Group 5

#scenarios 250 250 250 250 250
dimensions (d) what what, who what, who what, who, what, who,

when when, how when, how
#values (v) 1 1 1 1 2(who,what),

1(when,how)

Table 7.5: Parameters used to generate five groups of queries.

TFIDF, Solr BM25, Solr field-based BM25, and w5h-f, for Group 1−5 of queries.

If the target object has the same ranking as other matching objects, we report

the median value of the range. Observe that all search implementations that use

the data parsed according to the w5h model, Solr field-based BM25 and w5h-f,

outperform the keyword-based approaches, Solr TFIDF and Solr BM25. These

results show how valuable it is to use context (w5h-f and Solr field-based BM25)

to find matching documents.

Methods MRR NDCG@10 NDCG@20

Solr TF.IDF 0.2920 0.3384 0.3673
Solr BM25 0.4742 0.5192 0.5352
Solr Field-based BM25 0.4979 0.5428 0.5619
w5h-f (no entity) 0.5632 0.5993 0.6136
w5h-f 0.6119 0.6414 0.6546

Table 7.6: MRR, NDCG@10, NDCG@20 for Group 2 of queries.

The use of a more elaborated approach to search text data can posi-

tively impact the final results obtained by the w5h approaches. As pre-

viously mentioned, the what dimension in the w5h model is composed basically

by content information comprising most of the text. w5h-f uses Solr field-based

BM25 to score the what dimension. The impact of the text search using Solr

field-based BM25 versus Solr TFIDF and Solr BM25, can be seen in Table 7.7

(a), which presents MRR, NDCG@10 and NDCG@20 for Group 1 of queries

(queries have only the what dimension). We can observe that Solr field-based
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Methods MRR NDCG@10 NDCG@20

Solr TF.IDF 0.1959 0.2304 0.2513
Solr BM25 0.2127 0.2481 0.2702
Solr Field-based BM25 0.2383 0.2712 0.2996
w5h-f 0.2383 0.2712 0.2996

(a) Group 1

Methods MRR NDCG@10 NDCG@20

Solr TF.IDF 0.3580 0.4036 0.4234
Solr BM25 0.5267 0.5619 0.5777
Solr Field-based BM25 0.6117 0.6582 0.6772
w5h-f 0.7072 0.7488 0.7628

(b) Group 3

Methods MRR NDCG@10 NDCG@20

Solr TF.IDF 0.3328 0.3925 0.4179
Solr BM25 0.5357 0.5888 0.6036
Solr Field-based BM25 0.6327 0.6765 0.6951
w5h-f 0.7539 0.7931 0.8013

(c) Group 4

Methods MRR NDCG@10 NDCG@20

Solr TF.IDF 0.3772 0.4270 0.4569
Solr BM25 0.5345 0.5924 0.6152
Solr Field-based BM25 0.5769 0.6363 0.6510
w5h-f 0.6514 0.7014 0.7124

(d) Group 5

Table 7.7: MRR, NDCG@10, NDCG@20 for groups 1,3,4,and 5 (Group 2 is in
Table 7.6). Compared against w5h-f all the results are statistically significant
(Wilcoxon signed-rank test).

BM25 and w5h-f use a more efficient approach to search and score text data than

Solr TFIDF and Solr BM25. Note that since Group 1 has only one textual di-

mension in the query, the w5h-f is equivalent to the underlying text-based scoring

approach for the what dimension; field-based BM25 in our implementation. The

results show that the adoption of a field-based text search for the what dimension

leads to better results.

Being able to disambiguate/link people from different sources of data
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can significantly improve the accuracy of search. To analyze the impor-

tance of the entity resolution phase presented in Section 6.4, we created a group

of queries (Group 2) composed by values from the who and what dimensions. The

results, for the dataset Dataset 2, are illustrated in Table 7.6, with w5h-f approach

being superior when using entity resolution, compared with an implementation

of w5h-f that does not use entity resolution.

Including frequency information as part of the scoring results in sig-

nificant improvements. Tables 7.6 and 7.7 show that w5h-f, which uses our

proposed frequency scoring (Chapter 4), consistently outperforms Solr field-based

BM25, which also relies on the w5h model but does not consider frequency. This

shows that taking into consideration the correlation between dimensions while

scoring an object improves the search accuracy.

Our evaluation shows that using tailored frequency-based multidimensional

scoring approaches yields significant improvements in search accuracy over per-

sonal digital traces where the desired search outcome is a specific known object.

7.2 Evaluation of the Frequency-based Learning-to-Rank

Approach: w5h-l2r

7.2.1 Case Studies 1: Personal Digital Data Traces

Data Set.

We perform our evaluation using a real dataset collected by our extraction tool

(Section 6.1.2) containing approximately two hundred thousand objects. Table 7.8

shows the composition of our real user dataset (Dataset 3), including the num-

ber and size of objects retrieved from different sources over different periods of
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Dataset 3
Data Source #Objs Size

Facebook 3875 28Mb
Gmail 28318 3Gb
Dropbox 573 32Mb
Foursquare 55 59Kb
Twitter 3929 22Mb
Google Calendar 330 620Kb
Google+ 110 367Kb
Google Contacts 525 629Kb
Bank 412 415Kb
Firefox 181921 63Mb

Total 219,993 3.6Gb

Table 7.8: Personal dataset.

time. The dataset was automatically classified according with the 6 contextual

dimensions: what, who, when, where, why and how. We used this unified dataset

to evaluate the frequency-based learning-to-rank approach proposed.

Training and Evaluation Query Sets.

We train and evaluate our model using heuristically generated samples. As de-

tailed in Section 5.5.1, each query is automatically created by randomly choosing

a target object from the evaluation dataset. We then choose d dimensions, from

which we randomly select v random values. For this set of experiments, we built a

training set comprised by 19000 queries over our personal dataset (Table 7.8). To

built the query sets, we use v = 1 and 4 different values for parameter d: {what,

who}, {what, who, when}, {what, who, when, how}, and {what, who, how}. The

evaluation set was built in a similar fashion. Approximately 6000 queries were

heuristically generated using the same combination of parameters as the training

set. Since less than 2% of objects in the user dataset have location, the dimension

where was not included in the query sets.
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Evaluation Techniques and Metrics.

We evaluate the efficacy of the proposed approach by comparing it with two

popular scoring methodologies: BM25 and field-based BM25.

BM25 is a state-of-the-art type of TF-IDF function that ranks a list of match-

ing documents based on the query content that appears in each document. To be

able to use BM25 with the retrieved dataset (Section 7.2.1), the heterogeneous

and decentralized digital traces have to be integrated in one unified collection. It

is done by exporting the data retrieved to a unified data collection in Solr [6], a

popular open source full-text search platform from the Apache Lucene project.

This approach allows user to search for information across the entire set of re-

trieved digital traces, which is already a significant step forward from the current

state, where users have to search each data source individually.

Field-based BM25 is a version of BM25 that takes into consideration the

structure of a document. In our scenario, the fields in the field-based BM25

correspond to the five dimensions proposed: what, who, when, where, how. Before

being exported to Solr, the retrieved dataset (Section 7.2.1) is unified and parsed

according with the w5h model. It allows for the dataset to be searched using field-

based BM25 with each field corresponding to a respective dimension. Note that

by using the five dimensions, we are giving the field-based BM25 approach

the advantage of using our multidimensional data model to unify and

organize the user data.

The scoring model proposed is evaluated using 4 standard evaluation met-

rics: Mean Reciprocal Rank (MRR) of the top-ranked 50 documents, success

(precision) of the top 1 retrieved document (success@1), success of the top 3

retrieved document (success@3), and success of the top 10 retrieved document
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(success@10). Wilcoxon signed-rank test with p value < 0.05 is used to deter-

mine statistically significant differences.

Ranking Model.

To train and evaluate our model, we use the LambdaMART implementation pro-

vided by the RankLib library [69]. RankLib is a library of learning to rank

algorithms that is part of The Lemur Project [81].

The first step in our evaluation was to define the best set of parameters that

would give us a more robust and accurate model. With that in mind, we used a 5-

fold cross validation process to estimate the performance of different models using

LambdaMART. The parameters evaluated are: number of trees (tree); number

of leaves for each tree (leaf); minimum leaf support (mls), minimum number of

samples each leaf has to contain; and, training/evaluation metric (metric). In our

evaluation we considered the following parameters:

• tree: 50, 100, 250 and 500

• leaf: 10, 15, 35 and 45

• mls: 10, 20 and 50

• shrinkage: 0.01, 0.03, 0.1, 0.3, 0.5, 1.0

• metric: MRR (Mean Reciprocal Rank)

After the validation process, we selected the model that shows the best perfor-

mance on the training set, also taking into account the spread between training

and testing metrics. The model selected, that we will call w5h-l2r, has the fol-

lowing parameters: number of trees = 50; number of leaves = 15; minimum leaf

support = 10; shrinkage = 0.1.
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Results.

In Table 7.9 we compare the ranking performance of the baseline (BM25 ), field-

based BM25 and learned ranking model (w5h-l2r) with respect to the entire eval-

uation set composed by approximately 6000 queries heuristically generated. The

results show that both search models using the data parsed according to the multi-

dimensional data model, field-based BM25 and w5h-l2r, outperform the keyword-

based approach, BM25, for MRR, success@1, success@3 and success@10. It shows

that traditional keyword-based search methods are not appropriate in a setting

where users may remember valuable contextual cues to guide the search. Observe

that the learned ranking model, w5h-l2r, outperforms the field-based BM25 ap-

proach for all 4 evaluation metrics, showing that moderately large datasets

can also benefit from learning-to-rank techniques when paired with a

representative feature set built from our novel frequency-based feature

space.

Method MRR success@1 success@3 success@10

BM25 0.3629 0.2701 0.4104 0.5350
Field-based BM25 0.5082 0.4252 0.5502 0.6690
w5h-l2r 0.5184 0.4406 0.5601 0.6900

Table 7.9: MRR, success@1, success@3, success@10 for all 6000 queries (groups
1 to 4). Compared against the baseline (BM25 ), the results are statistically
significant (Wilcoxon signed-rank test).

We now conduct a more thorough evaluation by dividing the evaluation set in

four different groups by the dimensions in each query as described in Table 7.10.

Table 7.11a-d, show the MRR, success@1, success@3 and success@10 of each

search approach, BM25 (baseline), field-based BM25, and w5h-l2r, for Group

1 to 4 of queries. For all 4 groups, the search approaches that use the data

classified according with our multidimensional data model are considerably more
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Groups Dimensions

Group 1 what, who
Group 2 what, who, when
Group 3 what, who, when, how
Group 4 what, who, how

Table 7.10: Dimensions used to generate four groups of queries.

Method MRR success@1 success@3 success@10

BM25 0.3435 0.2450 0.3939 0.5290
Field-based BM25 0.4407 0.3605 0.4809 0.6000
w5h-l2r 0.4432 0.3730 0.4851 0.6430

(a) Group 1

Method MRR success@1 success@3 success@10

BM25 0.3759 0.2875 0.4224 0.5370
Field-based BM25 0.5760 0.4850 0.6261 0.7420
w5h-l2r 0.5970 0.5084 0.6465 0.7660

(b) Group 2

Method MRR success@1 success@3 success@10

BM25 0.4213 0.3223 0.4614 0.5870
Field-based BM25 0.6168 0.5215 0.6417 0.7810
w5h-l2r 0.6331 0.5272 0.6618 0.7940

(c) Group 3

Method MRR success@1 success@3 success@10

BM25 0.3484 0.2591 0.3888 0.5200
Field-based BM25 0.4621 0.3863 0.4974 0.6150
w5h-l2r 0.4632 0.3964 0.4902 0.6000

(d) Group 4

Table 7.11: MRR, success@1, success@3, success@10 for groups 1,2,3, and 4

accurate than the keyword-based approach, BM25, confirming the importance

of including contextual information to improve search accuracy when searching

personal data. When compared against each other, field-based BM25 and w5h-l2r,

the learned ranking model outperforms the field-based BM25 model for all four

groups; however, the improvements were more relevant for Group 2 (what, who,
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when) and Group 3 (what, who, when, how), showing that for this dataset, using

the proposed learning model and training data, the when dimension and all related

features played an important role in scoring query-document pairs. The results

for w5h-l2r when compared with field-based BM25 are statistically significant

(Wilcoxon signed-rank test, p value < 0.05) for Groups 2 and 3, evaluation metric

MRR and success@k. For Group 1 the results are not statistically significant for

MRR and success@3. For Group 4, the results are not statistically significant for

MRR, success@1 and success@3.

Figure 7.12 presents the performance (MRR) of the learning model, w5h-

l2r, for Group 1 to 4 of queries as the number of training samples increases.

We observe that the performance of the learned ranking model (w5h-l2r) clearly

improves as the size of the training set increases just modestly, showing the

validity of our training set generation techniques.

The importance of a feature in a gradient boosted decision tree model such

as LambdaMART can be conveyed by the number of times such feature appears

in the internal (non-leaf) nodes of the decision trees that form the tree ensemble.

Since our model has 50 trees, each having 15 leaves (and 14 internal nodes),

there are 700 branches overall. In Table 7.13 we present the feature frequency

distributions for the trained w5h-l2r model. The most frequent feature in our

model is the what dimension, that represents the content of an object and is

scored using field-based BM25. Then, features (who,when), (who,how), and (who)

appear next, all of them related to the who dimension, which is expected

since personal digital traces are byproduct of actions and events of

users (who), and are typically focused on user interactions.

The results presented in this section indicates that personal data search can

improve greatly by taking into consideration the knowledge the user has about
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Table 7.12: Performance (MRR) of the learning model, w5h-l2r, for groups 1, 2,
3 and 4 of queries as the number of training samples increases.
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Feature Frequency

what 217
who, when 91
who, how 80
who 75
what, how 72
what, who, how 51
what, when 40
what, who 28
who, when, how 23
when 16
what, who, when, how 4
what, when, how 2
how 1

Table 7.13: Feature frequencies for the w5h-l2r model.

the object being searched. The multidimensional data model, based on the 6

contextual dimensions, proved to be an intuitive and efficient model to unify and

link heterogeneous personal digital traces. The advantage of using a learning

approach to re-rank search results can be seeing by the improvement presented

by the w5h-l2r approach when compared against both methods, BM25 and field-

based BM25. Including a compact feature space based on frequency information

resulted in significant improvements.

7.2.2 Case of Studies 2: Enron

Data Set.

To verify the validity of our frequency-based learning-to-rank approach over other

domains, we have implemented it over an email dataset: the Enron [31] dataset

(Section 6.1.4). The Enron email dataset contains a total of about 0.5M emails

from 158 employees of the Enron Corporation, obtained by the Federal Energy

Regulatory Commission after the company collapsed into bankruptcy resulting in
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a federal investigation.

Training and Evaluation Query Sets.

To train and validate our model we use heuristically generated samples as we did in

Section 7.2.1. Each query is automatically created by randomly choosing a target

object from the evaluation data set. We then choose d dimensions, from which

we randomly select v random values (Section 5.5.1). For this set of experiments,

the training set is comprised by 48000 queries over the Enron dataset and the

evaluation set is comprised by 2000 queries. Training and evaluation query sets

were built using v = 1 and 4 different values for parameter d: {what, who}, {what,

who, when}, {what, who, when, how}, and {what, who, how}.

Evaluation Techniques and Metrics.

To evaluate the efficacy of the proposed approach for the Enron dataset, we use

the same metrics adopted to validate the Personal Digital Data Traces dataset

(Section 7.2.1). The proposed approach is compared against BM25 and field-

based BM25 and 4 standard evaluation metrics are used: Mean Reciprocal Rank

(MRR) of the top-ranked 50 documents, success (precision) of the top 1 retrieved

document (success@1), success of the top 3 retrieved document (success@3), and

success of the top 10 retrieved document (success@10). Wilcoxon signed-rank

test with p value < 0.05 is used to determine statistically significant differences.

Ranking Model.

To train and evaluate our model, we use the LambdaMART implementation pro-

vided by the RankLib library [69]. The model’s parameters were defined using

a 5-fold cross-validation process. For number of trees (tree), number of leaves
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for each tree (leaf), minimum leaf support (mls), and training/evaluation metric

(metric) we considered the same values as the ones used with the Personal Digital

Data Traces dataset (Section 7.2.1):

• tree: 50, 100, 250 and 500

• leaf: 10, 15, 35 and 45

• mls: 10, 20 and 50

• shrinkage: 0.01, 0.03, 0.1, 0.3, 0.5, 1.0

• metric: MRR (Mean Reciprocal Rank)

We selected the model that shows the best performance on the training set,

also taking into account the spread between training and testing metrics. The

model selected, that we will call w5h-l2r, has the following parameters: number

of trees = 50; number of leaves = 15; minimum leaf support = 20; shrinkage =

= 0.3.

Results.

As with the Personal Digital Data Traces dataset, for the Enron dataset the

evaluation set was divided in four different groups by the dimensions in each

query as described in Table 7.10.

Table 7.14a-d, show the MRR, success@1, success@3 and success@10 of each

search approach, BM25 (baseline), field-based BM25, and w5h-l2r, for Group 1

to 4 of queries. For Group 1 (Table 7.14a), the search approach w5h-l2r is slight

better than BM25 (baseline) and field-based BM25 for MRR and success@1. For

Group 2 (Table 7.14b) and Group 3 (Table 7.14c), the search approaches that use
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Method MRR success@1 success@3 success@10

BM25 0.2591 0.1320 0.1120 0.0502
Field-based BM25 0.2549 0.1260 0.1053 0.0510
w5h-l2r 0.2688 0.1560 0.1020 0.0504

(a) Group 1: what, who

Method MRR success@1 success@3 success@10

BM25 0.2346 0.1220 0.0980 0.0450
Field-based BM25 0.4139 0.2360 0.1767 0.0732
w5h-l2r 0.4218 0.2495 0.1790 0.0727

(b) Group 2: what, who, when

Method MRR success@1 success@3 success@10

BM25 0.2422 0.1328 0.0979 0.0449
Field-based BM25 0.4090 0.2314 0.1791 0.0736
w5h-l2r 0.4213 0.2575 0.1764 0.0744

(c) Group 3: what, who, when, how

Method MRR success@1 success@3 success@10

BM25 0.2442 0.1060 0.1087 0.0478
Field-based BM25 0.2585 0.1140 0.1133 0.0492
w5h-l2r 0.2477 0.1220 0.1020 0.0492

(d) Group 4: what, who, how

Table 7.14: MRR, success@1, success@3, success@10 for groups 1,2,3, and 4

the data classified according with our multidimensional data model are consider-

ably more accurate than the keyword-based approach, BM25, and the results are

statistically significant (Wilcoxon signed-rank test, p value < 0.05). For those

groups, the learned ranking model, w5h-l2r, outperforms the field-based BM25

model for all metrics, the exceptions being success@10 for Group 2 and success@3

for Group 3. For Group 4, all approaches had a similar performance. For most

scenarios in this group of queries, the features based on the how dimension are

not contributing to differentiate Enron results.

Table 7.15 shows the feature frequency distributions for the learned ranking

model w5h-l2r. The two most frequent features in our model are based on the what
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Feature Frequency

what 273
what, how 118
who, when 97
who 77
what, who 56
what, when 25
what, when, who 19
when 18
what, when, who, how 15
how 2

Table 7.15: Feature frequencies for the w5h-l2r model and Enron dataset.

dimension, that represents the content of an object and is scored using field-based

BM25. Then, features related to the who dimension appear next, representing

the frequency of users (who) and the interactions between user/time (who, when)

and user/topic (who, what).

The results discussed in this section show that even though the data and

scoring model were proposed with the Personal Digital Data Traces dataset in

mind, it can be extended to different domains with promising results.
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Chapter 8

Concluding remarks

In this dissertation, we tackled the problem of searching personal digital data

traces. We discussed the characteristics of personal data – usually small, hetero-

geneous, distributed across different sources –, and introduced a set of tools and

techniques that allow users to easily access and search their own data on their

own devices. As a first step, we presented a multi-dimensional data model, the

w5h model, based on the six natural questions: what, when, where, who, why and

how. The data model represents and integrates data across sources unifying their

schemas and linking entities into a unified data set.

Based on the w5h data model, we designed two frequency-based scoring strate-

gies for search: w5h-f and w5h-l2r. The scoring approaches leverage the corre-

lation between users (who), time (when), location (where), data topics (what),

and provenance (how) to improve search over personal data. The w5h-f scoring

approach is a static function focused around personal digital traces and as such

we included specific groups of correlations in our scoring. Other application sce-

narios could also benefit from our w5h, with other group and pairwise correlations

highlighted in a dedicated frequency-based scoring. The second scoring model,

w5h-l2r, is a learning-to-rank approach that expands the set of correlations from

w5h-f to a set of 34 features to represent the input data (documents) for a query.

The state of the art LambdaMART algorithm is used to map feature vectors to

scores. Learning-to-rank approaches rely on human-labeled or clickthrough-based
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training sets which are not available in our scenario; to overcome the lack of a

publicly available training set, we proposed a combination of known-item query

generation techniques and an unsupervised ranking model (field-based BM25 ) to

generate query sets.

Tools for data extraction, classification, entity resolution, and topic modeling

were implemented to validate the data model and scoring approaches proposed.

Two different types of data were used for the evaluation: a publicly available

email collection and personal digital data traces collections from real users.

Experiments over personal datasets composed by data from a variety of data

sources showed that our w5h-f approach significantly improved search accuracy

when compared with traditional search methods such as Apple’s Spotlight and

Apache’s Solr, and techniques like TF-IDF, BM25, and field-based BM25. The

results showed that search on personal data can be improved when the algorithms

consider the context in which personal data traces are created, produced and

gathered, and that including frequency information as part of the scoring function

results in significant improvements. Also, being able to disambiguate/link people

(entity resolution) from different sources of data can significantly improve the

accuracy of search.

To evaluate our learning-to-rank approach, w5h-l2r, we used the Enron email

collection and a personal digital data trace collection. The w5h-l2r performance

was compared with BM25 and field-based BM25 scoring methodologies. The

results showed that moderately large personal datasets can benefit from state-

of-the-art learning techniques when combined with a compact frequency-based

feature set.

In summary, we have showed that using contextual information to model and
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integrate personal data can lead to more accurate scoring and searching method-

ologies. By introducing a compact feature set, we made it possible for moderately

large datasets to take advantage of modern learning-to-rank techniques that are

usually employed with very large datasets. Also, we have designed a known-item

query generation approach that allowed us to generate query sets on the fly for a

type of application (personal search) in which datasets and training sets are non

existent; such approach is private by design, allowing for the end-to-end machine

learning pipeline to run on the device of the user. In the future, the same tech-

niques could be applied to different sets of applications, as we have done with the

Enron dataset.

All the methodologies and techniques presented in this work to retrieve, inte-

grate and search personal data pave the way to new research directions such as:

preserving privacy while mining and searching personal data; integrating external

information (e.g. weather) to improve personal search accuracy; using Natural

Language Processing to improve query understanding considering the 6 dimen-

sional data model proposed; applying query relaxation to personal data search

with the intention to account for users fuzzy memories.



79

References

[1] Spotlight. https://developer.apple.com/library/content/

documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.

html.

[2] Stanford entity resolution framework. http://infolab.stanford.edu/

serf/.

[3] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, Towards a better understanding of context and context-
awareness, in Proceedings of the 1st International Symposium on Handheld
and Ubiquitous Computing, HUC ’99, London, UK, UK, 1999, Springer-
Verlag, pp. 304–307.

[4] E. Agichtein, E. Brill, S. Dumais, E. Brill, and S. Dumais, Im-
proving web search ranking by incorporating user behavior, in Proceedings of
SIGIR 2006, August 2006.

[5] S. Agrawal, S. Chaudhuri, and G. Das, DBXplorer: A system for
keyword-based search over relational databases., in Proceedings of the 2002
International Conference on Data Engineering (ICDE’02), 2002.

[6] Apache solr. http://lucene.apache.org/solr/.

[7] L. Azzopardi, M. de Rijke, and K. Balog, Building simulated queries
for known-item topics: An analysis using six european languages, in Proceed-
ings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’07, New York, NY, USA,
2007, ACM, pp. 455–462.

[8] M. Baldauf, S. Dustdar, and F. Rosenberg, A survey on context-
aware systems, Int. J. Ad Hoc Ubiquitous Comput., 2 (2007), pp. 263–277.

[9] G. Bell and J. Gemmell, Total Recall: How the E-Memory Revolution
Will Change Everything, Penguin, 2009.

[10] M. Bendersky, X. Wang, D. Metzler, and M. Najork, Learning
from user interactions in personal search via attribute parameterization, in

https://developer.apple.com/library/content/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
https://developer.apple.com/library/content/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
https://developer.apple.com/library/content/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
http://infolab.stanford.edu/serf/
http://infolab.stanford.edu/serf/
http://lucene.apache.org/solr/


80

Proceedings of the 10th ACM International Conference on Web Search and
Data Mining (WSDM), 2017, pp. 791–800.

[11] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E.
Whang, and J. Widom, Swoosh: a generic approach to entity resolution,
The VLDB Journal, 18 (2009), pp. 255–276.

[12] O. Bergman, R. Beyth-Marom, R. Nachmias, N. Gradovitch, and
S. Whittaker, Improved search engines and navigation preference in per-
sonal information management, ACM Trans. Inf. Syst., 26 (2008), pp. 20:1–
20:24.

[13] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Su-
darshan, Keyword searching and browsing in databases using BANKS.,
in Proceedings of the 2002 International Conference on Data Engineering
(ICDE’02), 2002.

[14] L. Blunschi, J. peter Dittrich, O. R. Girard, S. Kirakos,
K. Marcos, and A. V. Salles, A dataspace odyssey: The imemex per-
sonal dataspace management system, in In CIDR, 2007.

[15] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and
L. Tanca, A data-oriented survey of context models, SIGMOD Rec., 36
(2007), pp. 19–26.

[16] C. M. Bowman, C. Dharap, M. Baruah, B. Camargo, and
S. Potti, A File System for Information Management, in Proceedings of the
Intl. Conference on Intelligent Information Management Systems (ISMM),
1994.

[17] W. Brewer, Memory for randomly sampled autobiographical events, Cam-
bridge University Press, 1988, pp. 21 – 90.

[18] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender, Learning to rank using gradient de-
scent, in Proceedings of the 22Nd International Conference on Machine
Learning, ICML ’05, ACM, 2005, pp. 89–96.

[19] C. J. Burges, From ranknet to lambdarank to lambdamart: An overview,
tech. rep., June 2010.

[20] J. Chen, H. Guo, W. Wu, and C. Xie, Search Your Memory! – An As-
sociative Memory Based Desktop Search System, in Proceedings of the 2009
ACM International Conference on Management of Data (SIGMOD’09)”,
2009.



81

[21] S. Cohen, C. Domshlak, and N. Zwerdling, On Ranking Techniques
for Desktop Search, ACM Transactions on Information Systems (TOIS), 26
(2008).

[22] M. Dehghani, H. Zamani, A. Severyn, J. Kamps, and W. B. Croft,
Neural ranking models with weak supervision, in Proceedings of The 40th
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, 2017.

[23] L. R. A. Derczynski, B. Yang, and C. S. Jensen, Towards context-
aware search and analysis on social media data, in Proceedings of the 16th
International Conference on Extending Database Technology, EDBT ’13,
New York, NY, USA, 2013, ACM, pp. 137–142.

[24] A. K. Dey, Understanding and using context, Personal Ubiquitous Comput.,
5, pp. 4–7.

[25] digi.me. https://www.digi.me.

[26] J.-P. Dittrich and M. A. V. Salles, iDM: A unified and versatile data
model for personal dataspace management, in Proceedings of the 32nd Inter-
national Conference on Very Large Data Bases (VLDB’06), 2006.

[27] X. Dong and A. Halevy, A platform for personal information manage-
ment and integration, in Proceedings of the Second Biennial Conference on
Innovative Data Systems Research (CIDR’05), 2005.

[28] X. Dong, A. Halevy, E. Nemes, S. B. Sigurdsson, and P. Domin-
gos, Semex: Toward on-the-fly personal information integration, in In Work-
shop on Information Integration on the Web (IIWEB, 2004.

[29] S. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and
D. C. Robbins, Stuff ive seen: A system for personal information retrieval
and re-use, in Proceedings of the 26th International ACM SIGIR Conference
(SIGIR’03), 2003.

[30] D. Elsweiler and I. Ruthven, Towards task-based personal information
management evaluations, in Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR ’07, New York, NY, USA, 2007, ACM, pp. 23–30.

[31] Enron email dataset. http://www.cs.cmu.edu/~enron/.

[32] R. Fagin, A. Lotem, and M. Naor, Optimal aggregation algorithms for
middleware, Journal of Computer and System Sciences, 66 (2003).

https://www.digi.me
http://www.cs.cmu.edu/~enron/


82

[33] S. Fertig, E. Freeman, and D. Gelernter, Lifestreams: An alterna-
tive to the desktop metaphor, in Conference Companion on Human Factors
in Computing Systems, CHI’96, 1996.

[34] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White,
Evaluating implicit measures to improve web search, ACM Transactions on
Information Systems, 23 (2005).

[35] J. H. Friedman, Greedy function approximation: A gradient boosting ma-
chine, Annals of Statistics, 29 (2000), pp. 1189–1232.

[36] J. Gemmell, G. Bell, and R. Lueder, Mylifebits: a personal database
for everything, Communications of the ACM, 49 (2006), pp. 88–95.

[37] R. Goldman and J. Widom, Dataguides: Enabling query formulation
and optimization in semistructured databases, in Proceedings of the 23rd
International Conference on Very Large Databases (VLDB’97), 1997.

[38] J. Gwizdka and M. Chignell, Personal Information Management, in
Jones and Teevan [49], 2007, ch. Individual Differences.

[39] K. Gyllstrom and C. A. N. Soules, Seeing is retrieving: building in-
formation context from what the user sees, in IUI, 2008, pp. 189–198.

[40] K. A. Gyllstrom, C. Soules, and A. Veitch, Confluence: Enhancing
Contextual Desktop Search, in Proceedings of the 30th International ACM
SIGIR Conference (SIGIR’07), 2007.

[41] J. Hailpern, N. Jitkoff, A. Warr, K. Karahalios, R. Sesek, and
N. Shkrob, Youpivot: improving recall with contextual search, in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’11, New York, NY, USA, 2011, ACM, pp. 1521–1530.

[42] G. Halawi and A. Raviv, Rank by time or by relevance?: Revisiting
email search, in Proceedings of CIKM 2015: 24th ACM CONFERENCE ON
INFORMATION AND KNOWLEDGE MANAGEMENT, 2015.

[43] A. Halevy, M. Franklin, and D. Maier, Principles of dataspace sys-
tems, Communications of the ACM, (2006).

[44] H. He, H. Wang, J. Yang, and P. S. Yu, BLINKS: ranked keyword
searches on graphs, in Proceedings of the 2007 ACM International Conference
on Management of Data (SIGMOD’07), 2007.

[45] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural
Comput., 9, pp. 1735–1780.



83

[46] V. Hristidis, L. Gravano, and Y. Papakonstantinou, Efficient IR-
style keyword search over relational databases., in Proceedings of the 29th
International Conference on Very Large Databases (VLDB’03), 2003.

[47] V. Hristidis and Y. Papakonstantinou, Discover: Keyword search in
relational databases., in Proceedings of the 28th International Conference on
Very Large Databases (VLDB’02), 2002.

[48] W. Jones, Transforming technologies to manage our information : the fu-
ture of personal information management. Part 2, Synthesis lectures on in-
formation concepts, retrieval, and services ; no. 28, Morgan & Claypool
Publishers, 2014.

[49] W. Jones and J. Teevan, eds., Personal Information Management, Uni-
versity of Washington Press, 2007.

[50] W. P. Jones, The future of personal information management, Synthesis
lectures on information concepts, retrieval, and services, no. 21, Morgan &
Claypool Publishers, 2012.

[51] V. Kalokyri, A. Borgida, A. Marian, and D. Vianna, Integration
and exploration of connected personal digital traces, in Proceedings of the
ExploreDB’17, Chicago, IL, USA, May 19, 2017, 2017, pp. 3:1–3:6.

[52] V. Kalokyri, A. Borgida, A. Marian, and D. Vianna, Semantic
modeling and inference with episodic organization for managing personal dig-
ital traces, in Proceedings of the 16th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE’17), Springer, 2017,
pp. 273–280.

[53] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjornsson, Struc-
tured queries in xml retrieval, in Proceedings of the 14th ACM international
Conference on Information and Knowledge Management (CIKM’05), 2005.

[54] D. R. Karger, Personal Information Management, in Jones and Teevan
[49], 2007, ch. Unify Everything: It’s All the same to Me.

[55] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and V. Sinha,
Haystack: A general-purpose information management tool for end users
based on semistructured data, in CIDR, 2005, pp. 13–26.

[56] C. S. Khoo, B. Luyt, C. Ee, J. Osman, H.-H. Lim, and S. Yong,
How Users Organize Electronic Files on Their Workstations in the Office
Environment: A Preliminary Study of Personal Information Organization
Behaviour, Information Research, (2007).



84

[57] J. Kim and W. B. Croft, Retrieval experiments using pseudo-desktop
collections, in Proceedings of the 18th ACM Conference on Information
and Knowledge Management, CIKM ’09, New York, NY, USA, 2009, ACM,
pp. 1297–1306.

[58] J. Kiseleva, Using contextual information to understand searching and
browsing behavior, in Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’15, New York, NY, USA, 2015, ACM, pp. 1059–1059.

[59] J. Kiseleva and M. Pechenizkiy, Context mining and integration into
predictive web analytics, 01 2013, pp. 383–387.

[60] C. Li, M. A. Soliman, K. C.-C. Chang, and I. F. Ilyas, Ranksql: Sup-
porting ranking queries in relational database management systems., in Proc.
of the 31st International Conference on Very Large Databases (VLDB’05),
2005.

[61] H. linh Truong and S. Dustdar, A survey on context-aware web service
systems, 2009.

[62] S. Liu, Q. Zou, and W. W. Chu, Configurable indexing and ranking for
xml information retrieval, in Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR’04), 2004.

[63] A. Marian, N. Bruno, and L. Gravano, Evaluating top-k queries over
web-accessible databases, ACM Transactions on Database Systems, 29 (2004).

[64] A. K. McCallum, Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[65] A. Moffat and J. Zobel, Self-indexing inverted files for fast text retrieval,
ACM Transactions on Information Systems (TOIS), 14 (1996).

[66] N. U. Mohammed, T. H. Duong, and G. S. Jo, Contextual information
search based on ontological user profile, in Computational Collective Intel-
ligence. Technologies and Applications, J.-S. Pan, S.-M. Chen, and N. T.
Nguyen, eds., Berlin, Heidelberg, 2010, Springer Berlin Heidelberg, pp. 490–
500.

[67] Mongo connector. https://github.com/10gen-labs/mongo-connector.

git.

[68] N. Polyzotis and M. Garofalakis, Xcluster synopses for structured
XML content, in Proceedings of the 2006 International Conference on Data
Engineering (ICDE’06), 2006.

https://github.com/10gen-labs/mongo-connector.git
https://github.com/10gen-labs/mongo-connector.git


85

[69] Ranklib. http://www.lemurproject.org/ranklib.php.

[70] S. E. Robertson and S. Walker, Some simple effective approximations
to the 2-poisson model for probabilistic weighted retrieval, in In Proceedings
of the 17th annual international ACM SIGIR conference, 1996, pp. 232–241.

[71] G. Salton and C. Buckley, Term-weighting approaches in automatic
text retrieval, Inf. Process. Manage., 24 (1988), pp. 513–523.

[72] D. Schacter, The seven sins of memory: How the mind forgets and re-
members., Houghton Mifflin, 2001.

[73] A. J. Sellen and S. Whittaker, Beyond total capture: a constructive
critique of lifelogging, Commun. ACM, 53 (2010).

[74] S. Shah, C. A. N. Soules, G. R. Ganger, and B. D. Noble, Using
provenance to aid in personal file search, in 2007 USENIX Annual Technical
Conference on Proceedings of the USENIX Annual Technical Conference,
ATC’07, Berkeley, CA, USA, 2007, USENIX Association, pp. 13:1–13:14.

[75] X. Shen, B. Tan, and C. Zhai, Context-sensitive information retrieval
using implicit feedback, in Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’05, 2005.

[76] M. Smith, V. Barash, L. Getoor, and H. W. Lauw, Leveraging social
context for searching social media, in Proceedings of the 2008 ACM workshop
on Search in social media, SSM ’08, 2008.

[77] C. A. N. Soules and G. R. Ganger, Connections: using context to
enhance file search, in Proceedings of the twentieth ACM symposium on
Operating systems principles, SOSP ’05, New York, NY, USA, 2005, ACM,
pp. 119–132.

[78] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, Dropout: a simple way to prevent neural networks from
overfitting., Journal of Machine Learning Research, 15 (2014), pp. 1929–1958.

[79] M. Steyvers and T. Griffiths, Latent Semantic Analysis: A Road to
Meaning, Laurence Erlbaum, 2007, ch. Probabilistic topic models.

[80] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger,
The perfect search engine is not enough: a study of orienteering behavior in
directed search, in CHI, 2004, pp. 415–422.

[81] The lemur project. http://www.lemurproject.org.

http://www.lemurproject.org/ranklib.php
http://www.lemurproject.org


86

[82] D. Vianna, V. Kalokyri, A. Borgida, A. Marian, and T. Nguyen,
Searching heterogeneous personal digital traces, in ASIST’19: Proceedings of
the 82nd ASIS&T Annual Meeting, Melbourne, AU, 2019.

[83] D. Vianna, A.-M. Yong, C. Xia, A. Marian, and T. Nguyen, A
tool for personal data extraction, in Proceedings of the 10th International
Workshop on Information Integration on the Web (IIWeb), 2014, pp. 80–83.

[84] W. A. Wagenaar, My memory: A study of autobiographical memory over
six years, Cognitive Psychology, 18 (1986), pp. 225 – 252.

[85] X. Wang, M. Bendersky, D. Metzler, and M. Najork, Learning
to rank with selection bias in personal search, in Proc. of the 39th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, 2016, pp. 115–124.

[86] D. Xin, C. Chen, and J. Han, Towards robust indexing for ranked queries,
in Proceedings of the 32nd International Conference on Very Large Databases
(VLDB’06), 2006.

[87] Z. Xu, M. Karlsson, C. Tang, and C. Karamanolis, Towards a
Semantic-Aware File Store, in Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS’03), 2003.

[88] H. Zamani, M. Bendersky, M. Zhang, and X. Wang, Situational
context for ranking in personal search, in WWW, 2017.

[89] S. Zerr, E. Demidova, and S. Chernov, deskweb2.0: Combining desk-
top and social search, in Proc. of Desktop Search Workshop, In conjunction
with the 33rd Annual International ACM SIGIR 2010, 23 July 2010, Geneva,
Switzerland, 2010.


	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Glossary of Terms
	Introduction
	Contributions
	Organization

	Literature Review
	Personal Information Management
	Context-aware Personal Data Model
	Personal Information Search

	Data Model
	A Frequency-based Scoring Methodology for Personal Data Search
	Scoring Methodology
	Frequency-based Multi-dimensional Scoring: w5h-f

	A Frequency-based Learning-To-Rank Approach for Personal Data Search
	Scoring Methodology
	Frequency-based Features
	Scoring the What Dimension
	Learning-to-Rank Model
	Query Sets

	Search Implementation
	Data Extraction
	Classification
	Retrieval
	Entity Resolution

	Evaluation
	Evaluation of the Frequency-based Scoring Approach: w5h-f
	Evaluation of the Frequency-based Learning-to-Rank Approach: w5h-l2r

	Concluding remarks
	References

