
THREATS AND OPPORTUNITIES OF MOBILE
SENSING TECHNOLOGY IN PERSONAL PRIVACY

AND PUBLIC SECURITY

by

CHEN WANG

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Yingying Chen

And approved by

New Brunswick, New Jersey

OCTOBER, 2019



ABSTRACT OF THE DISSERTATION

Threats and Opportunities of Mobile Sensing Technology

in Personal Privacy and Public Security

By CHEN WANG

Dissertation Director: Yingying Chen

The proliferation of the mobile devices (e.g., smartphones, smartwatches and fitness trackers)

has brought great convenience to our daily lives. Mobile users can enjoy the online access

anytime and anywhere through WiFi or cellular services, monitor daily activities (e.g., walking

steps) via wearable devices, or flexibly access the devices via touch screens and microphones.

The pervasive mobile sensors can further benefit the public sector, such as providing real-

time data for public transportation, emergency and public safety protection. While the mobile

technologies facilitate a wide range of useful applications to the users, an adversary may leverage

them to derive the user’s sensitive private information. This dissertation focuses on exploring

the security threats of the mobile devices given the various embedded sensors. Moreover, we

explore to utilize the mobile sensing technologies as opportunities for protecting not only the

personal privacy but also the public security.

As the smartphone is the most popular mobile device worldwide, we first investigate to what

extent the users’ personal information such as social relationships and demographics could be

revealed from their smartphones, in particular through the simple signal information of the

pervasive Wi-Fi Access Points (AP) without examining any Wi-Fi traffic. We successfully

derive the users’ activities at daily visited places from the surrounding APs and utilize that

as the basis to infer the users’ social interactions and individual behaviors. Our approaches

capture how closely people interact with each other based on their physical closeness to infer

their social relationships and recognize the individual behaviors via their activity characteristics

(e.g., activeness and time slots) at their daily visited places to estimate the users’ demographics.
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Moreover, the increasing popularity of wearable devices motivates us to examine the possible

sensitive information leakage from the user’s personal wearable devices. We demonstrate a

serious security breach of wearable devices in the context of divulging secret information (i.e.,

key entries) while people are accessing key-based security systems (e.g., ATM machines). We

develop a system to show that the motion sensors on a wearable device can be exploited to

discriminate mm-level distances and directions of the user’s fine-grained hand movements, which

enables an adversary to reproduce the hand movement trajectories of the user to recover the

secret key entries.

Besides security threats, we also find that mobile technologies bring unique opportunities

to protect the personal privacy. We propose to use an off-the-shelf wearable device (e.g., a

smartwatch or bracelet) as a secure token to secure the Voice Assistant (VA) systems (e.g.,

Google Home and Amazon Alexa), which have been shown to be under a high risk of sensitive

information leakage in the various acoustic attacks (e.g., impersonation, replay and hidden

command attacks). In particular, the proposed system exploits the motion sensors, readily

available on most wearables, to describe the voice command in the vibration domain, which is

then compared with the audio domain information (recorded by the VA device’s microphone)

to verify whether the voice command comes from the legitimate user.

Finally, we provide a low-cost and easy-to-scale solution to address the ever-increasing public

safety concerns caused by the portable dangerous objects (e.g., lethal weapons, chemical ex-

plosives and home-made bombs) in the public places such as museums, stadiums, theme parks

and schools. Our proposed detection system utilizes the fine-grained channel state information

(CSI) from existing WiFi networks to detect the existence of suspicious objects hidden inside

baggage and further identify the dangerous material type of the object without penetrating the

user’s privacy through physically opening the baggage. Compared to the existing X-ray based

object scanning infrastructure, this detection system based on the commodity WiFi could be-

come a game-changer, which significantly reduces the deployment cost and is easy to set up in

numerous public venues.
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Chapter 1

Introduction

1.1 Background and Motivation

Mobile Technology, one of the fastest-growing areas of innovation in the world, is a category

of technology related to mobility. The earliest form of mobile technology is just a simple

cordless mobile device used for making phone calls and sending messages. Now the mobile

technology has evolved into multi-tasking mobile devices, such as smartphone, wearable devices

and IoT devices that can provide us with anytime and anywhere various services, such as online

shopping, internet banking, navigation, fitness tracking and personal assistance. The various

embedded sensors such as microphones, motion sensors, touch screen, WiFi, Bluetooth and

etc., help to facilitate the various applications by sensing the human activities, improves the

device’s interaction with users and get connected to the wireless network. The great convenience

of mobile devices has significantly contributed to their wide deployment these years. Recent

reports show that the number of smartphone users is expected to pass 5 billion in 2019 [27] and

that of the connected wearable devices will be over 1.1 billion by 2020 [28].

While we enjoy the great convenience and efficiency by using mobile devices, they also expose

many new interfaces to an adversary to attack us and raise many security issues and privacy

concerns. Your private information such as credit information, PIN/password, location privacy,

social relationships and demographics could attract an adversary’s interest and are under a

high risk to be disclosed from your mobile devices. For example, an adversary may spoof your

identity to fool the authentication systems to directly access this privacy information stored in

your mobile devices. Moreover, an adversary could derive your private information from the

obtained mobile device sensor data, which are usually considered to have low threats. Therefore,

while we leverage mobile technology to improve our daily lives, we also need to prevent an

adversary from adversely using such technology. This dissertation aims to explore both the

security threats and the opportunities of mobile technologies from two different perspectives, in

personal privacy and in public security. We first investigate on the potential privacy leakages

from the mobile devices and then explore using the mobile devices to secure the users privacy
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and protect the public security. In particular, the dissertation covers the following four topics,

the personal privacy leakage from smartphones, the personal privacy leakage from wearable

devices, the protection of personal privacy on voice assistant using wearable devices and the

public security protection using commodity WiFi devices.

Disclosing Personal Privacy from Smartphones. While the mobile users enjoy the any-

time anywhere Internet access by connecting their mobile devices through Wi-Fi services, the

increasing deployment of access points (APs) have raised a number of privacy concerns. This

work explores the potential of smartphone privacy leakage caused by surrounding APs. In par-

ticular, we study to what extent the users’ personal information such as social relationships and

demographics could be revealed leveraging simple signal information from APs without examin-

ing the Wi-Fi traffic. Our approach utilizes users’ activities at daily visited places derived from

the surrounding APs to infer users’ social interactions and individual behaviors. Furthermore,

we develop two new mechanisms: the Closeness-based Social Relationships Inference algorithm

captures how closely people interact with each other by evaluating their physical closeness and

derives fine-grained social relationships, whereas the Behavior-based Demographics Inference

method differentiates various individual behaviors via the extracted activity features (e.g., ac-

tiveness and time slots) at each daily place to reveal users’ demographics. Extensive experiments

conducted with 21 participants’ real daily life including 257 different places in three cities over

a 6-month period demonstrate that the simple signal information from surrounding APs have a

high potential to reveal people’s social relationships and infer demographics with an over 90%

accuracy when using our approach.

Revealing Personal Privacy from Wearable Devices. The proliferation of wearable

devices, e.g., smartwatches and activity trackers, with embedded sensors has already shown

its great potential in monitoring and inferring human daily activities. This work reveals a se-

rious security breach of wearable devices in the context of divulging secret information (i.e.,

key entries) while people accessing key-based security systems. Existing methods of obtaining

such secret information rely on installations of dedicated hardware (e.g., video camera or fake

keypad), or training with labeled data from body sensors, which restrict use cases in practical

adversary scenarios. In this work, we show that a wearable device can be exploited to discrimi-

nate mm-level distances and directions of the user’s fine-grained hand movements, which enable

attackers to reproduce the trajectories of the user’s hand and further to recover the secret key

entries. In particular, our system confirms the possibility of using embedded sensors in wearable

devices, i.e., accelerometers, gyroscopes, and magnetometers, to derive the moving distance of
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the user’s hand between consecutive key entries regardless of the pose of the hand. Our Back-

ward PIN-Sequence Inference algorithm exploits the inherent physical constraints between key

entries to infer the complete user key entry sequence. Extensive experiments are conducted

with over 7000 key entry traces collected from 20 adults for key-based security systems (i.e.,

ATM keypads and regular keyboards) through testing on different kinds of wearables. Results

demonstrate that such a technique can achieve 80% accuracy with only one try and more than

90% accuracy with three tries. Moreover, the performance of our system is consistently good

even under a low sampling rate and when inferring long PIN sequences. To the best of our

knowledge, this is the first technique that reveals personal PINs leveraging wearable devices

without the need for labeled training data and contextual information.

Securing Voice Assistants using Wearable Devices.

Due to the open nature of voice input, voice assistant (VA) systems (e.g., Google Home and

Amazon Alexa) are under a high risk of sensitive information leakage (e.g., personal schedules

and shopping accounts). Though the existing VA systems may employ voice features to identify

users, they are still vulnerable to various acoustic attacks (e.g., impersonation, replay and hidden

command attacks). In this work, we focus on the security issues of the emerging VA systems

and aim to protect the users’ highly sensitive information from these attacks. Towards this end,

we propose a system, WearID, which uses an off-the-shelf wearable device (e.g., a smartwatch or

bracelet) as a secure token to verify the user’s voice commands to the VA system. In particular,

WearID exploits the motion sensors, readily available on most wearables, to describe the voice

command in the vibration domain and verify it across two domains (i.e., wearable’s motion

sensor vs. VA device’s microphone).

Our cross-domain design (audio vs. vibration) exploits the distinct vibration sensing inter-

face and its short sensing range to sound (e.g., 25 cm) to verify voice commands and shield

against the acoustic attacks that cannot be thwarted by using the microphone. However, exam-

ining the similarity of two sensing modalities is not trivial. The huge sampling rate gap (e.g.,

8000Hz vs. 200Hz) causes the two data types hard to compare and even tiny data noises are

magnified during such comparison. Moreover, as not designed for capturing sounds, the motion

sensors show distinct response characteristics to sounds in terms of amplitude and frequency.

In this work, we investigate the complex relationship between the two sensing modalities and

develop a spectrogram-based algorithm to convert the microphone data into low-frequency “mo-

tion sensor data” to facilitate cross-domain comparison.Our system then examines the similarity

of the voice commands in two domains to verify whether the voice command originates from

the legitimate user. We report on extensive experiments to evaluate the WearID system under
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various audible and inaudible attacks. The results show WearID can verify voice commands

with 99.8% accuracy in the normal situation and detect 97% fake voice commands from the

various impersonation and replay attacks and hidden voice and ultrasound attacks.

Protecting Public Security Using Commodity Wi-Fi Devices. The growing needs of

public safety urgently require scalable and low-cost techniques on detecting dangerous objects

(e.g., lethal weapons, homemade-bombs, explosive chemicals) hidden in baggage. Traditional

baggage check involves either high manpower for manual examinations or expensive and spe-

cialized instruments, such as X-ray and CT. As such, many public places (i.e., museums and

schools) that lack of strict security check are exposed to high risk. In this work, we propose

to utilize the fine-grained channel state information (CSI) from off-the-shelf WiFi to detect

suspicious objects that are suspected to be dangerous (i.e., defined as any metal and liquid ob-

ject) without penetrating into the user’s privacy through physically opening the baggage. Our

suspicious object detection system significantly reduces the deployment cost and is easy to set

up in public venues. Towards this end, our system is realized by two major components: it first

detects the existence of suspicious objects and identifies the dangerous material type based on

the reconstructed CSI complex value (including both amplitude and phase information); it then

determines the risk level of the object by examining the object’s dimension (i.e., liquid volume

and metal object’s shape) based on the reconstructed CSI complex of the signals reflected by

the object. Extensive experiments are conducted with 15 metal and liquid objects and 6 types

of bags in a 6-month period. The results show that our system can detect over 95% suspicious

objects in different types of bags and successfully identify 90% dangerous material types. In

addition, our system can achieve the average errors of 16ml and 0.5cm when estimating the

volume of liquid and shape (i.e., width and height) of metal objects, respectively.

1.2 Dissertation Organization

The organization of the dissertation is as follows. In Chapter 2, we investigate to what extent the

user’s private information such as social relationships and demographics could be revealed from

the smartphone. We demonstrate that this sensitive personal privacy could be revealed from the

simple signal information of the pervasive WiFi access points, which are periodically scanned

by the user’s smartphone but is considered to have low threats. Next, Chapter 3 examines the

privacy leakage from the user’s wearable devices, and we develop a training-free system to reveal

the user’s personal PIN number from the key-based security systems (e.g., ATM machine) by

leveraging the wearable device’s motion sensors. After examining the potential security threats
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in the mobile devices, Chapter 4 and 5 of this dissertation focus on using the mobile technology

for enhanced security. In Chapter 4, we propose a framework, which utilizes the user’s wearable

device as a security token to secure the personal privacy in the popular voice assistant systems

(e.g., Google Home and Amazon Alexa). The proposed framework leverages the wearable

device’s motion sensors and the voice assistant device’s microphone to verify the voice commands

in both vibration domain and audio domain. Rather than personal privacy, Chapter 5 studies

the opportunity of using mobile technologies to protect public security. We develop a low-cost

dangerous object detection system, which utilizes the commodity WiFi devices (e.g., laptops)

to protect the public security by detecting the suspicious in-baggage objects in public places.

Finally, Chapter 6 concludes the dissertation.
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Chapter 2

Disclosing Personal Privacy from Smartphones

2.1 Background

Wi-Fi networks are becoming increasingly pervasive, to the point where public Wi-Fi access is

readily in place in numerous cities [22]. And the number of public Wi-Fi Access Points (APs) is

expected to hit 340 million globally by 2018, resulting in one public Wi-Fi AP for every twenty

people worldwide [15]. More commonly, retail stores, offices, universities and homes are usually

Wi-Fi enabled for providing high bandwidth and cost-effective connectivity to the Internet

for the mobile users. While the mobile users enjoy the anytime anywhere Internet access by

connecting their mobile devices (e.g., smartphones) to the Wi-Fi networks, the surrounding

APs have raised a number of privacy concerns. For example, mobile users could be located and

tracked based on the ubiquitous APs, such as using Google location service [18].

In this work, we study the potential of privacy leakage caused by surrounding APs and

explore to what extent the personal information, in particular users’ social relationships and

demographics, could be derived. Prior work in demographics inference based on Wi-Fi network

mainly rely on the context information obtained from passively sniffed users’ Wi-Fi traffic[48,

73]. For example, Cheng et al. examine users’ Internet browsing activities by collecting their in-

the-air traffic in public hotspots [48], whereas Huaxin et al. infer user demographic information

by passively sniffing the Wi-Fi traffic meta-data [73]. These methods need to examine the Wi-Fi

traffic and are thus not scalable to large number of users due to the high deployment overhead

involved. Existing work in social relationships inference primarily depend on the encounter

events detected by either bluetooth [100], Wi-Fi SSID list [47], or GPS locations [39]. These

approaches can only perform coarse-grained social relationships inference by examining whether

users have interactions or not instead of studying users’ behaviors and how closely they interact

with each other. They can neither provide fine-grained social relationships (such as advisor-

student, colleagues, friends, husband-wife, neighbors) nor identify specific role of the user in the

relationship.

It is known that GPS, motion sensors and contact lists on mobile devices can exhibit privacy,
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but how much a user’s privacy could be leaked from the ubiquitous access points is unclear.

In this work, we demonstrate that by examining the simple signal features of the surrounding

APs it is possible to infer users’ fine-grained social relationships and demographics without

sniffing any Wi-Fi traffic. Specifically, the availability of surrounding Wi-Fi APs is periodically

scanned by mobile devices because of their default systems purpose to optimize network service

via continuously seeking better Wi-Fi signals and remembered APs [25, 11] and accessing such

information only requires a common permission, which is considered with low risk [97]. Signal

features such as the time-series of BSSIDs (i.e. MAC addresses) and Received Signal Strength

(RSS) are then extracted from these scanned APs and analyzed to derive users’ activities at daily

visited places. Our system exploits the rich information of users’ daily interactions and behaviors

embedded in these derived activities and discloses fine-grained social relationships (including

advisor-student, supervisor-employee, colleagues, friends, husband-wife and neighbors) as well

as demographic information (such as occupation, gender, religion, marital status).

Our approach of using simple signal features of APs can be easily applied to a large number

of users. For example, advertisers or third party companies could mine users’ personal infor-

mation for targeted advertising or recommending services. However, such an approach could

cause significant privacy leakage if it is utilized by advertisers with aggressive business attempts,

who could simply publish free apps to users while these free apps actively collect users’ sur-

rounding AP information and send back to the server to derive users’ social relationships and

demographics.

In particular, we describe people’s daily places in three dimensions (i.e. temporal, spatial

and contextual) to infer people’s activities at each place. For users performing activities at

the same place, we calculate physical closeness of the users (e.g., whether staying at the same

room, adjacent rooms or inside the same building) and extract users’ activeness (e.g., walking

around or sitting) together with other features (e.g., time slots and duration) to characterize

their activities at daily places. We then develop Closeness-based Social Relationships Inference

algorithm to capture where, when and how closely people interact to derive fine-grained social

relationships. We design Behavior-based Demographics Inference method to capture individual

behavior based on users’ various daily activities to reveal demographic information including

occupation, gender, religion and marriage. We conduct extensive experiments with 21 partici-

pants carrying their smartphones to collect surrounding Wi-Fi AP information in their real daily

life across three cities over 6 months and study to what extent we can derive these participants’

social relationships and demographic information.

The primary contributions of this work are as follows:
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• We demonstrate that simple signal information (e.g., time-series of MAC addresses and

RSS) from users’ surrounding Wi-Fi APs can reveal private information including both

social relationships and demographics.

• We develop statistical methods to detect and characterize users’ daily visited places based

on the AP signal information and further infer the context of daily places by deriving

users’ activity features (e.g., activeness, time slots and duration)

• We design closeness-based social relationships inference algorithm to analyze when, where

and how closely users interact with each other and reveal users’ detailed social relationships

(e.g., advisor-student, supervisor-employee, colleagues, friends, husband-wife, customer

relationship and neighbors).

• We further abstract people’s various behaviors (e.g., home, working and leisure behaviors)

to infer their demographic information such as occupation, gender, religion, and marital

status.

• We show with experimental study of 21 participants that by using our system one can

achieve over 91% accuracy of inferring social relationships and over 90% accuracy of deriv-

ing demographic information via examining the simple signal features from surrounding

APs.

2.2 Related Work

In this work, we aim to understand the privacy leakage of smartphone users, in particular

discovering users’ social relationships and demographics, by analyzing only the availability of

surrounding APs without sniffing any Wi-Fi traffic. Obtaining such information requires limited

permission other than turning on GPS or accessing to contact lists. Our work is related to the

research efforts in using various information collected from Wi-Fi network and/or smartphone

for meaningful places extraction [67, 68, 46, 52], social relationships inference [127, 51, 47, 100,

60], and demographics derivation [48, 73, 102].

As the contextual location can be used for learning the person’s interest and providing

content-aware applications, there have been active studies on extracting contextual meaning

of the locations people visited. For example, Kang et al. design a cluster-based method to

extract meaningful places from traces of location coordinates collected from GPS and Wi-Fi

based indoor location system [67]. Kim et al. propose SensLoc that utilizes a combination

of acceleration, Wi-Fi, and GPS sensors to find semantic places, detect user movements, and
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track travel paths [68]. These existing methods however only focus on individual users’ visited

locations without analyzing the interactions between them. Besides, the obtained meaningful

places may be not sufficient to infer the higher level personal information, such as fine-grained

social relationship and demographics, due to the lack of information about the users’ daily

behaviors and social interactions.

Information in Wi-Fi networks and smartphones have been used in literature to infer users’

social relationships. For example, Wiese et. al [127] use the smartphone contact list to mine

personal relationships. Moreover, the similarity of smartphones’ SSID lists is used to reveal

users’ social relationships [47]. These methods can only derive coarse-grained social relation-

ships without analyzing the behaviors and interactions among people. Vicinity detection via

Bluetooth or Wi-Fi signals opens opportunities for social interaction analysis and the strength

of friendship ties can be inferred from such wireless signals [100, 60]. However, these vicinity

detection methods only consider the relative interaction between people without interaction

context (e.g., place context and behaviors). They are unable to differentiate the specific type

of various social relationships, such as family members and friends. Our previous work focuses

on extracting the social relationship from smartphone App leaked information such as GPS

location, IMEI and network location[124]. It could only derive the social relationships in a

coarse-grained manner. In this work, we take a closer look and study the privacy leakage just

from the surrounding APs and derive people’s activities and various closeness levels of social

interactions for inferring detailed relationships demographic information.

More recently, Wi-Fi traffic monitoring and smartphone Apps have been used to infer users’

demographic information. For example, Cheng et al. examine the user’s Internet browsing

activities (e.g., domain name querying, web browsing) by collecting their Wi-Fi traffic in public

hotspots [48]. They are able to reveal the travelers’ identities, locations or social privacy. Huaxin

et al. design an approach to infer user demographic information by sniffing the Wi-Fi traffic

meta-data [73]. Seneviratne et al. design a system to predict various user traits by analyzing

the snapshot of installed Apps [102]. Different from the above work, we study the capability of

examining the simple signal information of surrounding APs to derive demographic information

without sniffing any Wi-Fi traffic or examining the installed Apps.



10

2.3 System Design

2.3.1 Preliminaries

Environment-Behavior research reveals that an individual’s activities such as work-related,

household and leisure activities are related to the places they visit [99]. And such activities

at daily visited places can be analyzed and mined to infer users’ personal information such as

social relationships and demographics [80]. Thus by leveraging the users’ activities at daily

places as a bridge, we could start from the non-contextual surrounding AP information to infer

users’ social relationships and demographics. This connection is depicted in Figure 5.1(a). The

surrounding Wi-Fi APs reflect users’ surrounding wireless environments, which can be utilized

to determine users’ daily visited places and activities. The daily places in our work refer to

the abstract locations that users visit in their daily lives, such as home, workplace, restaurants,

stores and churches. By analyzing users’ activities at daily places, we could derive the social

interactions between users and abstract individual’s behavior. Such information is then further

utilized to mine users’ social relationships and demographics. Note that contrary to the exist-

ing work in social relationships and demographics inference, we only utilize the availability of

surrounding APs’ simple signal information without requiring to sniff any Wi-Fi traffic contents.

To study how the surrounding APs can be utilized to detect a user’s daily places and

activities, we conduct preliminary experiments by recording the APs on the user’s smartphone

at the regular rate of one scan per 15 seconds, because a Wi-Fi device usually scans every 5

- 15 seconds for providing the user non-interrupted Wi-Fi connection to cope with the user’s

place change [105, 10]. Figure 5.1(b) shows the recorded time-series of a user’s surrounding

APs (differentiated by BSSIDs) for one day, as well as the groundtruth of visited places. As

the AP index is assigned to each unique AP in sequence, the later observed AP has larger

index. The observation is that the detected AP lists have large overlaps when the user stays at

the same place, while the AP lists are distinct when the user moves to a different daily place.

This suggests that we may utilize the changes of the observed AP list to detect the user’s daily

visited places as well as the entrance/departure time and the staying duration. Moreover, the

user’s activities at daily places (e.g., the user’s mobility at work and during leisure time) can be

derived to reflect individual demographics. Furthermore, we observe that the same place or the

places in the neighborhoods may share some APs (e.g., office and restaurant 1). Their physical

closeness may be obtained by checking how many surrounding APs they share, which is useful

for analyzing social interactions.
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(a) Connection from surrounding APs to (b) Illustration of observed APs by
social relationships & demographics. a user’s smartphone in one day.

Figure 2.1: Preliminary studies.

2.3.2 Challenges

Robust Daily Places and Activity Detection Using APs. Lacking the pre-knowledge of

AP deployment, the accurate and robust detection of daily places and activities from ubiquitous

APs is challenging. And the ubiquitous unstable and mobile APs even add to the difficulties.

Additionally, the daily places need to be abstracted with sufficient spatial resolution (e.g.,

differentiating rooms and floors) for further deriving users’ mobility and their physical closeness

during interaction.

Determining the Context of Daily Places. Deriving the context of a user’s daily visited

places from the non-contextual AP signal information is challenging. Moreover, a place may

exhibit different contexts to different users. For example, stores are leisure places to most people

but the workplace to the store staff. This requires us to search for the deep implication behind

the individual’s activities at the place instead of relying on traditional place context based on

the place function.

Fine-grained Social Relationships Inference. Fine-grained relationships inference needs

the information on not only who have interactions but also on how closely they interact. Our

systems needs to have the capability to define multiple closenesses between users. Furthermore,

specifying the role of each user in a relationship (e.g., husband or wife) may needs the assistance

from demographic information (e.g., gender).

Demography Inference without Context. Inferring a user’s demographics with non-

contextual simple signal information of surrounding APs is challenging. Different from the

previous work relying on the content obtained from monitoring the Wi-Fi traffic, our system

explores the possibility to abstract users’ behaviors based on their various activities at daily
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Figure 2.2: Wi-Fi AP distribution-based social relationships and demographics inference frame-
work.

places for demographic inference.

2.3.3 System Overview

The basic idea of our system is to analyze users’ activities at daily routine-based places that

are derived from users’ surrounding APs for fine-grained social relationships and demographics

inference. The proposed system takes as inputs the information of users’ surrounding APs

perceived by their smartphones at each scan, including the list of AP MAC addresses and RSS,

to infer fine-grained social relationships and demographics. Figure 3.4 presents our system flow.

First, the Staying Segment Detection and Grouping component detects and characterizes
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users’ daily visited places in three steps. AP List-based Staying/Traveling Segmentation ana-

lyzes the overlap of the AP lists over consecutive scans and divides the time-series into staying

and traveling periods. Staying Segment Characterization estimates the significance of each sur-

rounding AP by calculating its appearance rate within the staying segment. It then categorizes

the APs by their significance to describe the spatial information of each staying segment. The

spatially close-by staying segments are then grouped together as one unique place by using

Closeness-based Staying Segment Grouping.

The next component is to derive the activities at daily places which is an important build-

ing block of social relationships and demographics inference. It is carried out by using Daily

Place and Activity Inference, which involves Daily Routine-based Staying Segment Group Cat-

egorization and Daily Activity Feature Extraction and Fine-grained Place Context Inference.

Daily Routine-based Staying Segment Categorization classifies the grouped staying segments

(i.e. unique places) into three contextual categories (i.e. home, leisure and workplace) based

on people’s daily routines. At last, Daily Activity Feature Extraction and Fine-grained Place

Context Inference derives people’s activity features including the staying time slots, duration

and activeness and assigns detailed contextual information to these places by leveraging the

derived activity features and geo-information, such as restaurants or stores in leisure places,

campus or office buildings in workplaces.

Finally, our system infers users’ social relationships and demographics based on the derived

activities at daily places. In particular, it first calculates the physical closenesses of the inter-

actions between users. It then uses Interaction Segment Characterization and Closeness-based

Social Relationships Classification to infer when, where and how closely people interact with

each other for inferring their possible relationships such as family, neighbors, colleagues, and

friends. To derive a user’s demographics, Behavior-based Demographics Inference applies Daily

Activity-based Behavior Derivation to abstract people’s various behaviors including working

behaviors, home behaviors and leisure behaviors, based on the activities at daily places. It then

utilizes Behavior-based Decision Rule to infer users’ demographic information (e.g., occupation,

gender, marriage and religion) based on the behavior abstraction. At last, the Associate Reason-

ing can be applied to social relationships and demographics to improve the accuracy of inference

results, such as identifying the specific role of the user in a relationship (e.g., husband-wife and

advisor-student).



14

Segment n: Staying segment

Scanning time-stamp
…

…
…

Segment n start Segment n end 

N
u

m
b

e
r 

o
f 

A
P

s Overlapped AP for all scans 

within window 

Non-overlapped AP for all 

scans within window 

Staying segment

Traveling segment

scans

( )

scans

( )

Dynamic Searching window

Segment n-1: Traveling segment

Segment duration
AP lists to be segmented

Wi-Fi AP list time-series

…… …

To be segmented AP list

Figure 2.3: Staying/traveling segmentation leveraging dynamic searching windows to analyze
the overlapped AP lists over consecutive scans.

2.4 Staying Segment Group Detection and Characterization

2.4.1 AP List-based Staying/Traveling Segmentation

As observed in the preliminary study of Figure 5.1(b), the discovered AP BSSID lists of con-

secutive scans have large overlaps when the user stays at the same place, while the similarity of

the AP lists is rapidly diminished when the user moves to a different place. We thus take the

advantage of the AP list similarity (i.e. BSSID list similarity) in consecutive scans to detect

the staying and traveling segments. We define staying segment as the Wi-Fi AP-list time-series

segment that captures the temporal and spatial information when the user stays at a location.

And we analyze the overlap of the AP lists within a dynamic searching window of consecutive

scans to perform staying segmentation.

In particular, Figure 2.3 illustrates the proposed AP List-based Staying/Traveling Segmen-

tation in identifying the staying segment n. The dynamic searching window starts at t1 and

iteratively expands to the next scan. In each iteration, we analyze the overlapped APs of

all the scans within the searching window. The number of solid dots at each scanning time

ti(i = 1, 2, . . . ) indicates the number of overlapped APs that are found within the window from

t1 to ti. When the searching window iteratively expands to the next scan, the number of over-

lapped APs may decrease. When no overlapped AP is found in the expanded searching window

(e.g., the window from t1 to tm), such searching window is identified as one possible staying

segment. We note that because it may take several scans to travel out of an AP’s range, this
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approach can detect short staying segments even when the user is traveling. We next check

whether the segment duration Ts = tm − t1 is greater than a threshold τ (e.g., τ = 6 minutes)

to further confirm valid staying segments and filter out the false staying segments. Meanwhile,

the user’s entrance/departure time and corresponding staying duration could also be obtained.

2.4.2 AP Appearance Rate Distribution-based Staying Segment Char-

acterization

We next characterize the visited places by deriving Wi-Fi AP appearance distribution in the

detected staying segments. The discovered AP BSSID list can be used to describe the wireless

environment of the user in the staying segment. However, not all the APs have the same

significance for characterizing the spatial information. Some APs may appear only in a few

scans due to weak Wi-Fi signals, while others are more stable and appear almost in every

scan. We calculate the appearance rate of each discovered AP to represent its significance, and

then classify the APs into different categories based on their significance. In particular, the

appearance rate of an AP is defined as R = Na

N
, where Na is the appearance number of this

AP and N is the total number of scans in the detected staying segment. The appearance rates

together with BSSIDs of the discovered APs are used to characterize the spatial information of

the staying segment, which has the potential to both differentiate places with good resolution

but also measure people’s physical closeness.

We empirically divide the APs of a staying segment into three layers li, i = 1, 2, 3 (i.e. lists

of significant APs, secondary APs and peripheral APs) according to their appearance rate. As

shown in Figure 2.4(a), the significant APs are those with appearance rate larger than 80%,

the peripheral APs are the ones with the appearance rate less than 20%, and the rest of APs

are secondary APs. Then the spatial information of the staying segment can be characterized

by AP set vector L = (l1, l2, l3), which can tolerate the noise generated by the unstable APs,

mobile APs or even missing AP scans.

2.4.3 Estimating Physical Closeness between Staying Segments

Measuring the physical closeness between different users’ staying segments can capture how

closely people interact with each other. It can also be used to group the same user’s staying

segments that are close to each other as one place. In particular, we leverage the AP set vector

to measure the physical closeness between staying segments. Given two staying segments A and
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Figure 2.4: AP appearance rate distribution-based staying segment characterization.

B and their AP set vectors LA and LB, we calculate the closeness matrix M as follows:

M = L−1
A LB =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 , (2.1)

where rij is the overlapping rate between subsets lAi and lBi of AP set vectors LA and LB,

respectively. The overlapping rate rij can be obtained by

rij =
OverlapApNum(lAi, lBj)

min(Num(lAi), Num(lBj))
, i, j = 1, 2, 3. (2.2)

Based on the statistical analysis with 431 staying segments collected from 167 places in 3

cities, we empirically quantify the physical closeness expressed by the closeness matrix M into

five levels:






C0 =
{
M :

∑3
i,j=1 rij = 0

}
; (Completely separated)

C1 =
{
M : r33 > 0 and

∑3
i,j=1 rij − r33 = 0

}
; (Same street block)

C2 =
{
M :

∑3
i,j=1 rij − r33 − r11 > 0 and r11 = 0

}
; (Same building)

C3 = {M : 0 < r11 < 0.6} ; (Adjacent rooms)

C4 = {M : r11 ≥ 0.6} , (Same room)

(2.3)

where C1, C2, C3, C4 are four mutually exclusive closeness sets with increasing closeness level

as shown in Figure 2.4(b), representing the same street block, the same building, the adjacent
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rooms and the same room respectively. C0 = C1 ∪ C2 ∪C3 ∪ C4 means two staying segments

are completely separated. We use level-i closeness to express closeness in set Ci.

2.4.4 Physical Closeness-based Staying Segments Grouping

We note that the same user’s multiple staying segments may correspond to the same place as the

user may pay multiple revisits. We thus combine these staying segments together by checking

whether there is level-4 closeness between them and keep all the time slots. The grouped staying

segments represent non-redundant places visited by the user and contains the user’s activities.

We can then characterize the user’s activities at each unique place.

2.5 Daily Place and Activity Inference

In this section, we explore to what extent we can understand the contextual information of the

places visited by people and their activities at the places, which facilitate the social relationships

and demographics inference.

2.5.1 Daily Routine-based Place Inference

Compared to the physical information (e.g., longitude and latitude), the contextual information

(e.g., name and type) of a place contains more meaningful information related to people’s

social relationships and demographics. To obtain such information, we exploit the simple signal

information of surrounding APs (i.e., BSSIDs and RSSs) that is readily available in most mobile

devices, to determine the daily place meanings of staying segments based on people’s daily

routines.

Daily Routine-based Places

Recent reports [13, 12] indicate that people’s daily routines mainly consist of three categories

of activities: 1) working and work-related activities (working activities); 2) sleeping and house-

hold activities (home activities); and 3) leisure activities. Based on the understanding of peo-

ple’s daily routines, we define three categories of daily routine-based places, namely Workplace

(e.g., office buildings and universities), Home, and Leisure Place (e.g., stores, restaurants, and

churches), to describe contextual information of the places. Different from categorizing daily

places based on their generic nature [70], our daily routine-based categorization of daily places

reflects the meaning of a place to a person instead of its function, which may vary from person

to person to better describe the context of a place for every individual. For example, the same
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restaurant could be a workplace for waiters and waitresses, but it is a leisure place for customers.

This advantage enables inferring the fine-grained social relationships and demographics.

Staying Segment Categorization based on Daily Routines

Next, we determine the contextual information of a place (i.e. staying segment) by categorizing

it into one of the three defined daily routine-based places. The basic idea is to examine common

time spans of the staying segments in a day with the daily routines of working and home

activities, respectively. Whichever staying segment results in the longest overlapped time with

the daily routine of working or home activities will be labeled as containing the Workplace or

Home. The rest of staying segments are determined as containing the Leisure Places. Since

people may move between different rooms for work-related activities, after determining the

Workplace, we further combine the staying segments that have at least level-1 closeness with the

staying segments of Workplace together to represent the whole working area. The common time

spans are chosen corresponding to the majority people’s daily routines from the reports [13, 12]:

working activities - 8 : 00AM∼ 4 : 00PM; home activities - 7 : 00PM∼ 6 : 00AM; leisure

activities - rest free hours of a day.

Fine-grained Place Context Inference

Our system is designed to derive more fine-grained place contexts (e.g. restaurants or stores

in the Leisure Places and universities or office buildings in the Workplace) by leveraging Geo-

information, activity features of the places and the SSID context of user associated AP. We

find that the APs’ BSSIDs (MAC addresses) in a staying segment generate fine-grained place

contexts through certain web-based services (e.g., Google Map Geolocation API [20], Google
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Place API [19] and unwired labs Location API [24]). However, the place contexts obtained from

the Geo-information is sometimes not unique especially in a crowded business area. Therefore,

to refine the place contexts from the Geo-information, we further examine the activity features

in the staying segment based on the decision rules, made from people’s general time use pat-

tern [23] and the basic knowledge of activeness at various place contexts. Moreover, if the user

is associated with an AP, the semantic meaning of the AP SSID can be utilized as assistance,

if available, to identify detailed contexts (e.g. company names) of the place.

2.5.2 Activity Feature Extraction

We determine three activity features (i.e., including activeness, visiting time slots and staying

duration) that can capture the users’ mobilities and the differences between activities at the

daily routine-based places. Activeness (i.e. active or static) describes the person’s status at a

place, e.g., shopping in a store is active while dinning in a restaurant is static. Visiting time

slots, including the person’s one or multiple entrance/departure time at a daily routine-based

place, captures the person’s specific pattern of visiting the place, e.g., faculties may leave office

several times in one day for teaching, conference, lunch et al. Staying duration captures the

time nature of the activities such as buying coffee for 10 minutes or doing hair cut for one

hour. We note that all the other activity features, except the activeness, can be easily obtained

by examining the temporal information of the staying segments. Therefore, we discuss how to

derive the activeness for each staying segment in detail.

Activeness Estimation. We devise a unique activeness estimation approach to determine

the activeness of the user at a place by only utilizing the RSS of APs observed in the staying
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segment (This is the only place we apply RSS in this work). The intuition behind this approach is

that the user’s position changes within a place result in changing distances to every surrounding

AP and thus unstable RSS from each AP. From the time series of RSS in a staying segment, we

derive a time series of RSS stability of the ith AP, denoted as Λi = {λ1, . . . , λj , . . . , λt}, where

λj is the standard deviation of RSS calculated based on a sliding time window W . Then we

further derive the activeness score of a staying segment by using the equation:

ψi =

∑t−w+1
j=1 vj

t− w + 1
, vj =





1, λj > λth

0, otherwise,
(2.4)

where the λth is a threshold of standard deviation of RSS. To ensure the robustness, we only

consider significant APs (80% ≤ appearance rate) in each staying segment for deriving the

activeness score, because the significant APs can capture the person’s activeness in the entire

staying segment. Thus, the activeness score is the ratio of active period over entire duration

at the place. As an illustration, Figure 2.5 shows the distribution of the activeness score of

all significant APs in the staying segments, when a user is dinning at a restaurant (i.e. sitting

statically) or shopping in a store (i.e., walking actively), respectively. We observe more APs of

dinning have lower activeness scores (less than 0.2) compared with shopping, indicating that

the activeness score can well differentiate people’s static and active status. We empirically set

a threshold to the activeness score of each significant AP and further determine the activeness

(i.e., active or static) of a staying segment based on the majority vote over all significant APs.

2.6 Social Relationships and Demographics Inference

In this section, we present how our system utilizes the activity features provided by staying

segments to derive the user’s fine-grained social relationships and demographics.
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2.6.1 Closeness-based Social Relationships Derivation

The social relationship is about how two people interact with each other in their daily lives,

including both face-to-face interaction and event the hidden interaction without encountering.

Therefore, to infer social relationships, we need to understand not only a person’s activities at a

place, but also how the person interacts with other people at different places. Towards this end,

we define the interaction segment based on the staying segments between two people to capture

the temporal and spatial characteristics of their interactions. The basic idea is that, we first

extract and characterize the interaction segments between a target user and other people based

on their staying segments and corresponding activity features. Then we utilize the temporal

and spatial patterns of the closenesses of the interaction segments as well as the individual daily

place contexts to derive fine-grained relationships.

Interaction Segment Characterization

We generate interaction segments based on the staying segments of two people in the same day.

Specifically, we first find the temporally overlapped segments between the daily staying segments

from the two people. Then we estimate the physical closeness between every two overlapped

segments by using the Equation 2.1. Only long overlapped segments (i.e., time duration is

longer than 10min) with at least level-1 closeness are considered as valid interaction segments.

Each overlapped segment is described by three characteristics: 1) interaction time slot, 2) daily

routine-based place pair based on the two users’ same or different personal daily place contexts

at the interaction place (e.g., Home-Home or Work-Leisure), and 3) physical closeness, which

correspond to when, where and how closely the two people interact, respectively. Finally, the

characterized interaction segments represent users’ interaction at the place.

Closeness-based Social Relationships Classification

After determining the interaction segments, we classify the user’s social relationships leveraging

the temporal and spatial patterns of the physical closeness in the interaction segments. Our

approach is based on the intuition that different types of social relationships show different tem-

poral patterns for various levels of physical closeness in the overlapped daily routine-based place,

which reveal different degrees of interactions between two people. Figure 2.6 illustrates this in-

tuition by comparing the interaction segment characteristics for two pairs of social relationships

(i.e., neighbor and family, and team member and collaborator), which can be differentiated from

spacial closeness degree or temporal pattern difference.
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We design a triple-layer decision tree for relationships classification based on examining the

characteristics of the interaction segments between two people (i.e., the temporal and spatial

patterns of their physical closeness). Figure 2.7 illustrates the flow of the decision tree. In the

first layer, the decision tree takes the detected interaction segment of two people in one day as

input, and classifies it into two classes (i.e., Short-period and long-period interaction segment)

by examining the duration of the interaction time slot in the interaction segment. The intuition

behind this layer is that people usually spend most time at several places (e.g., homes, offices,

or schools) and shorter time at other places (e.g., diners, grocery stores, and post office) and so

as their interactions at these places. In the second layer, we make finer decisions from the result

of the first layer. In particular, we examine the daily routine-based place pair of the interaction

segment to further classify the interaction based on the people’s individual daily place contexts.

Because the short-period interaction should happen at least at one person’s leisure place in

logic, the short-period interaction segment leads to three possible branches: workplace-leisure,

home-leisure and leisure-leisure. And the long-period interaction segment leads to the pairs of

workplace-workplace and home-home. In the last layer, we further detail the classification of the

interaction by analyzing the physical closeness of the interaction segment to infer fine-grained

relationships. Specifically, we examine whether the level-4 closeness of the interaction segment is

non-zero or not, which suggest the two people have or not have the face-to-face interaction in the

place. The duration of the face-to-face interaction allows the decision tree to further distinguish

social interaction into 8 categories of fine-grained relationships: Customers, Relatives, Friends,

Team members, Collaborators, Same-building Colleagues, Family and Neighbors, as well as

excluding strangers.

The decision tree infers the possible relationships between two people based on their one-

day social interactions. But making relationships inference based on one-day observation may

sometimes be opportunistic. For instance, students in the same school may be regarded as

strangers or classmates depending on whether a face-to-face interaction is detected in one day.

In order to reduce the opportunistic inferences, we propose to infer the relationships in a relative

long time period (e.g., multiple days, one week or several weeks) and utilize a majority-vote

approach to make the final decision.

2.6.2 Behavior-based Demographics Inference

Next, we discuss how to utilize the activity features to further capture people’s behavior char-

acteristics at various daily places and infer people’s demographics (e.g., occupation, gender,

religion and marriage).
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Behavior Derivation at Daily routine-based Places

In this work, we define the behavior as the mannerisms made by an individual in the daily

routine-based place during a period of time (e.g, several days). A behavior usually consists of

a series of activities, and thus can be described by the temporal and spatial statistics of the

activity features extracted from the staying segments across different days. In particular, we

define three kinds of behaviors: 1) home behavior, 2) working behavior, and 3) leisure behavior

based on three daily routine-based place categories. We utilize the activity features of the same

daily routine-based place across multiple days to derive the features that can characterize the

three behaviors. We note that the leisure behavior can be further specified according to the

fine-grained daily routine-based places in Section 2.5.1.

Occupation Inference

Occupation is the job or profession of the user, which is related to the working behavior. The

inference approach is based on the fact that people of different occupations have different work-

ing time slots and duration at Workplace (may include single or multiple nearby places), which

reveals different working behaviors in temporal and spacial. Figure 2.8 illustrates the intuition

by showing the working duration histogram of 4 users with different occupations in a week. We

find that office staff has the most concentrate working duration, followed by Researchers, Fac-

ulties and Students, because company office uses more regular timetable compared with school.

Meanwhile, Faculties need to leave office for teaching and faculty meeting, which leads to wider

working duration distribution compared with Researchers. On the other hand, Students have

the most scattered working durations because they have different number of classes for each
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Figure 2.9: Illustration of behavior-based occupation and gender inference results.

day and flexible hours at library for study.

We derive three specific working behavior features to differentiate working behaviors for

multiple days at working place. Working hour(WH) Distribution range describes the range of

the working duration histogram, which shows the flexibility of working hours. Working time

STD is the average standard deviation of the start and ending time of working across multiple

days and WH Distribution Kurtosis is a descriptor of the distribution shape, which represents

how concentrate the working duration is distributed. Figure 2.9(a) illustrates that the three

working behaviors can well separate different types of occupations, which suggests that we can

utilize a threshold-based approach to determine people’s occupations by using these features. We

note that different occupations may have similar working behaviors, such as financial analyst and

software engineer, we can further narrow the choices for the occupation inference by leveraging

the supplementary place contexts from Geo-information and user associated AP SSIDs as in

Section 2.5.1.

Gender Inference

The information of user gender is more implicit compared with occupation, because there is

no information from surrounding APs, which directly links to this biological characteristic.

However, we find that males and females usually behave differently in some specific scenarios.

For example, females tend to spend more time on housework and in-store shopping, while males

tend to work for longer hours [17]. Such behavior difference shows the trend of the majority

people and exists in many countries according to the survey. Thus our basic idea is to examine
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a person’s behavior characteristics at home or in shops. From activity features, we derive

three behavior features for gender inference: shopping duration, shopping frequency and home

duration, which mainly capture the behavior patterns at home and leisure behavior at shops.

Figure 2.9(b) illustrates that the three devised behavior features can well capture the differences

between males and females in their behaviors at home and in shops. Additionally, we also check

the user’s associated AP SSIDs at leisure places, if any, to look for the particular leisure places

that can differentiate gender, such as nail spa and beauty salon.

Religion Inference

We further demonstrate that it is possible to infer people’s religion status (i.e. Christian or

Non-Christian) from surrounding APs. The intuition is that Christian usually goes to church

every Sunday and shows a regular pattern of leisure behavior around the church. Therefore,

we extract three religion behavior features: church attendance days, church attendance duration

and church attendance frequency, and apply a threshold-based method to decide Christian. We

note that, by including more religion activities, we can also cover other religions or religious

sects.

Relationships and Demographics Refinement

We find that the inferred relationships and demographics results can be mutually complemen-

tary. We then adopt several rules for the relationship and demographics refinement. For exam-

ple, the family relationship between a male and a female is refined as the couple relationship

or married; the collaborator between a faculty and a student (or a company supervisor and a

software engineer) is refined as the advisor-student (or supervisor-employee) relationship.

2.7 Performance Evaluation

2.7.1 Experiment Methodology

Data Collection

Due to the limitation of the man power, we choose the representative occupations, working

hours and age groups for experiments to evaluate the feasibility of our approach. We recruit

21 volunteers (i.e., 6 females and 15 males) across three cities to collect surrounding APs

information in their daily lives for over 6 months. The volunteers age from 20 to 40 and

are mainly from six occupations, including financial analyst, Ph.D. candidate, Master student,
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(a) Social relationships inference. (b) Social relationships groundtruth.

Figure 2.10: Social relationships comparison between inference results and the groundtruth.

undergraduate, assistant professor, and software engineer. We ask the volunteers to install a

tool developed for data collection on their own phones and run it in the background throughout

every day during the experiments. The users are asked to fill a questionnaire to input the

groundtruth. The IRB is approved.

Hardware and Software

We include a variety of Android mobile devices in the real experiments including Samsung,

Huawei, LG and Xiaomi. We develop a tool on Android platform to collect information of

surrounding APs at a given frequency, i.e., 4 scans/min, which is the AP scanning frequency

of many android systems [105]. For each scan, our tool collects the simple information of

surrounding APs, including BSSIDs, SSID, scanning time stamp and RSS.

Evaluation Metrics

We use the following two metrics to evaluate the performance of our inference: Detection

Rate. The ratio of correctly identified results over the total numbers in groundtruth. Inference

Accuracy. The ratio of correct inference results over the total number of inference results.

2.7.2 Evaluation of Social Relationships Inference

We first examine the performance of social relationships inference from surrounding Wi-Fi APs.

Figure 2.10 shows the comparison between the inferred social relationships (i.e., Figure 2.10(a))

among the 21 volunteers and the groundtruth from the questionnaire (i.e., Figure 2.10(b)) in

graphs of relationships. Each point in the graph represents a volunteer and different types of
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Figure 2.11: Social relationships inference results based on different length of observation time.

lines between points represent the different relationships between two volunteers. Compared to

the groundtruth, the overall detection rate of social relationships inference is 91%, suggesting

that our system can efficiently detect various relationships from surrounding AP information. In

addition, our system also detects hidden relationships, which represent the potential relationship

that is recognizable by our system but unknown to the two volunteers due to the lack of face-

to-face interactions. We find that certain relationships (e.g., colleagues and neighbors) may

contain such hidden relationship.

Table 2.1 shows the detailed statistics of our social relationships inference results. We ob-

serve that we achieve 100% detection rate for Relatives, Family and Neighbor, whereas achieve

83.3%, 94.1%, 89.5% and 87.5% detection rate for Friends, Team members, Collaborators and

Colleagues, respectively, indicating that our method can accurately detect different relation-

ships based on interaction features characterized from surrounding APs. For the misclassified

relationships, one team-member relation is classified as collaborators due to irregular working

time; two collaborators are classified as colleagues in the same building due to low interaction

frequency. The overall inference accuracy is 95.8% when we compare the detected relationships

with the groundtruth. We further detect 10 hidden relationships (i.e., 9 colleagues and 1 neigh-

bor), while these relationships are not realized by the volunteers but can be derived from their

Table 2.1: Social relationships inference.
Relationships Groundtruth Inference Correct Hidden

Relatives 2 2 2 0
Friends 6 5 5 0

Team members 17 16 16 0
Collaborators 19 18 17 0
Colleagues 24 23 21 9
Family 6 6 6 0
Neighbor 1 1 1 1
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Figure 2.12: Accuracy of behavior-based demographics inference.

questionnaires, indicating our system can accurately detect most relationships in daily life.

Figure 2.11 shows the relationships inference results under different length of observation

time. We observe that most regular relationships (i.e., family, neighbor, team member) can be

detected in the first day. As for other relationships, since their interactions do not occur every

day, we need to observe for more days to make a decision. The relationship inference results

become stable after 5 ∼ 7 days, indicating that our system can detect most relationships in

people’s daily life based on their social interactions in one week.

2.7.3 Evaluation of Demographics Inference

Accuracy of Demographics Inference

Figure 2.12(a) shows the overall accuracy of inferring demographics. For all the demographics

in our study, our system achieves over 90.5% accuracy for Occupation, Religion and Marriage,

whereas the accuracy of gender inference is 95.2% for the 21 volunteers, suggesting that it is

possible to accurately infer people’s demographics from surrounding AP information. We further

study the performance of gender and occupation inference with different length of observation

time as shown in Figure 2.12(b). The inference results converge after 5 days, suggesting that

people’s behavior features derived in a short period (i.e., one week) can accurately infer the

demographics.
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Figure 2.13: Classification accuracy of physical closeness and daily routine-based places.

Fine-grained Social Relationships Derived from Demographics

By leveraging the derived demographics information, we further obtained refined relationships.

Based on the gender information, we successfully detect all the two couples from the 21 volun-

teers. Besides, from the occupation inference, we specify the relationship of collaborators, e.g.

who is superior and who is subordinate. In specifically, we correctly differentiate 4 superior-

subordinate from 5 collaborator pairs. These results show it is possible to accurately infer

fine-grained social relationships and demographics from surrounding AP information.

2.7.4 Performance of Daily Place Extraction

We randomly select 100 staying segments to examine whether our different levels of physical

closeness can reflect the true relations between their physical locations. Figure 2.13(a) presents

the confusion matrix of the inferred four kinds of closenesses and the results show that our

system can achieve over 88% accuracy for measuring most levels of closeness except for C1,

whose inference relies on the remote APs or unstable signals. We note that the lowest level C1

does not affect the social relationships and demographics inference as both of them mainly rely

on C4 and C3.

Finally, we evaluate the accuracy of the contextual meaning inference with 594 detected

places. Figure 2.13(b) shows we can achieve over 90% accuracy for Workplace and Home and

over 80% accuracy for detailed Leisure places (e.g., Shop, Diner, Church and Other). The

results demonstrate the possibility to measure the physical closeness between places and infer

complex contextual meaning of daily places only from user’s surrounding APs.
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2.8 Discussion

Due to the limited manpower and shortage of public available data sources (i.e., containing the

scanned AP signal information in large-scale areas), we evaluate our system by recruiting 21

volunteers with representative occupations and social relationship types. Furthermore, the study

is based on the users’ daily life activities across three cities without being restricted in a confined

area. Since the participants’ activities at daily places are employed as the inference basis in

this work, we believe our system has the capability to successfully infer fine-grained social

relationships and demographics in larger areas when given the opportunity. We demonstrate

that the privacy leakage from the simple signal information of surrounding APs is significant

and should arouse public attention. For the future work, we will continue our efforts to enlarge

the Wi-Fi AP dataset and investigate more potential privacy leakages from such simple radio

signals surrounding our daily lives.

2.9 Summary

In this work, we show that by analyzing the information from surrounding Wi-Fi Access Points

(APs), the users’ fine-grained social relationships and demographics could be disclosed. We

present a scalable inference system that has the potential to derive people’s activities at daily

visited places leveraging surrounding APs and utilize such information to infer fine-grained social

relationships and demographics. This implemented system only uses the simple signal features

of surrounding APs such as MAC addresses and Received Signal Strength without requiring to

obtain the context information by sniffing the Wi-Fi traffic. In particular, we describe people’s

daily places in three dimensions (i.e. time, space and context) to infer people’s activities and

extract their activity features as well as their physical closeness at same places. Our Closeness-

based Social Relationships Inference algorithm further analyzes people’s physical closeness to

capture when, where and how closely people interact to reveal fine-grained social relationships,

while the Behavior-based Demographics Inference method extracts people’s various individual

behavior from their activity features to infer demographics. By using the data collected by

21 participants in their daily lives over 6 months, our system confirms the possibility of using

surrounding APs to infer people’s social relationships and demographics with over 90% accuracy.
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Chapter 3

Revealing Personal Privacy from Wearable Devices

3.1 Background

The convenience of wearable devices, such as smartwatches and fitness bands (e.g., Fitbit and

Jawbone), has greatly stimulated the growth of the market of mobile devices in recent years;

market researchers estimated that 72.1 million wearable devices will be shipped in 2015, which

will be about 173% from the 26.4 million wearable devices shipped in 2014 [8]. Such increasing

popularity of wearable devices has enabled a broad range of useful applications, including fitness

tracking, falling detection, gesture control and user authentication. Since such wearable devices

have the ability to capture users’ hand movements and derive human dynamics directly, a

major concern arises on whether a user’s sensitive information could be leaked and obtained by

adversaries including the user’s PIN sequence when accessing an ATM machine or using debit

cards for payment.

In this work, we demonstrate that a user’s personal PIN sequence could be leaked through

his wearable devices (e.g, smartwatch or fitness tracker), when accessing a key-based security

system. Such systems are very common in daily lives. Examples include accessing ATM cash

machines, electronic door locks, and keypad-controlled enterprise servers. A key-based security

system requires people to enter personal key combinations on the keypad for identity verification.

With people tending to wear wearable devices around-the-clock, the movements of their wrists

during the key entry process to a security system (i.e., clicking keys and moving between clicks)

are captured by the sensors on wearable devices. As such, wearables could cause a new way of

sensitive information leakage when a user accesses the key-based security systems. In particular,

adversaries can obtain sensor readings of wearables via sniffing Bluetooth communications [108,

96] or installing malwares [6] on the devices, and further infer the user’s PIN sequence (e.g.,

ATM PIN sequences or key sequences on access control panels) for his own use.

There has been active study on sensitive information leakage when using key-based security

systems. Traditional attacks rely on either shoulder surfing or hidden cameras [81, 35]. Such

attacks require direct visual contact to key entry actions and additional installation efforts.



32

Furthermore, Shukla et al. propose a side-channel attack utilizing a camera-based method to

recover smartphone lock PINs from the user’s spatial-temporal hand dynamics without directly

seeing the keypad on screen [107]. The proposed method has a low inference accuracy and

requires cameras to capture the user’s hand and the back side of the touch screen. Two recent

work [118, 78] propose to utilize sensors in smartwatches to infer user’s typed words or pass-

words. The MoLe [118] system relies on a linguistic model to infer user’s typed words, which is

difficult to work with non-contextual inputs. Liu et al.[78] devise a system that requires training

of the sensor data to classify user inputs.

In contrast to these prior studies, we develop a training-free, context-free technique to reveal

a user’s private PIN sequence (to a key-based security system) when a wrist-worn wearable

device is employed. The wrist-worn wearable devices could be either smartwatches or fitness

trackers. While the digital smartwatch is designed to be worn on either hand, the user can wear

it on the right hand without the concern on traditional watch designed to adjust time easily

when wearing it on the left hand. Additionally, many people tend to wear fitness tracker on the

right hand while keeping wearing traditional watch on the left hand. The basic idea is to exploit

embedded sensors in wearable devices to capture dynamics of key entry activities and derive

fine-grained hand movement trajectories traversing secret key entries. While wearable devices

have equipped with various sensors, it is challenging to accurately recover such fine-grained

hand-movement trajectories that exhibit only mm-level difference in distance between keys via

low-fidelity sensors. In addition, due to hand vibrations and rotations, the coordinate system of

a wearable device is not always aligned with a fixed reference, which makes it hard to track the

hand movements by using sensor readings directly. Additionally, in order to obtain a person’s

key entries without user cooperation or drawing any attention, the adversary has to achieve the

PIN sequence with no training or contextual information.

To address these challenges, our approach examines the inherent physics phenomenon ex-

tracted from the user’s key entry activities via wearable sensors and develops distance calculation

and direction derivation schemes to produce mm-level accuracy when estimating the moving

distance and angle between two consecutive key entries. To obtain the complete PIN sequence,

our backward PIN-sequence inference algorithm exploits the physical constraints of distance

between keys and temporal sequence of key entry activities to construct a tree of candidate

key entries for determining the PIN sequence in a reversed manner, because in many practical

cases, the “Enter” key is the last key after the user enters his/her PIN sequence. The mm-level

precision of estimating the fine-grained moving distance and direction between two keys and

the backward PIN-sequence inference algorithm enable our system to obtain the user’s PIN



33

sequence without training and contextual information. Through extensive real experiments, we

find that our PIN sequence inference algorithm can achieve high accuracy regardless of different

types of wearables and layouts of keypads. Furthermore, the performance of our system is con-

sistently good even under low sampling rate (e.g., 25Hz) or when inferring long PIN sequences.

Such a technique can easily be extended to support password recovery when people type on

keyboards while wearing wearables.

We summarize our main contributions as follows:

• We demonstrate that a single wrist-worn wearable device can reveal a user’s PIN sequence

to key-based security systems. We develop a training-free approach by exploiting the

inherent physics meaning extracted from sensor readings on wearables. Such an approach

does not require contextual information, allowing it to recover random key entries.

• We develop the distance estimation and direction derivation schemes that capture the

fine-grained hand movements at mm-level precision.

• We show that it is possible to infer a complete user’s PIN number via a backward PIN-

sequence inference algorithm. By exploiting spatial and temporal constraints of PIN

entries and the fine-grained hand movement analysis, our approach can accurately pin-

point the location of each PIN entry with the right sequence.

• We conduct extensive experiments with 20 participants wearing two types of smartwatch

and a prototype of wearable on key-based security systems such as ATM keypads and

keyboards over a thirteen-month period. We show that our system can achieve 80%

accuracy of inferring PIN sequences with only one try and over 90% accuracy with three

tries without training and contextual information.

• We evaluate the performance of our system when inferring the PIN sequences with in-

creased PIN length and under different sampling rates. We demonstrate that our system

can achieve a good performance when inferring long PIN sequences (e.g., 6-PIN sequences)

and under low sampling rate (e.g., 25Hz).

The rest of the chapter is organized as follows. We first put our work in the context of related

studies in Section 3.2. In section 3.3, we investigate the feasibility of using wearables to obtain

a user’s PIN sequence of key-based services. We then describe the design of our PIN-sequence

inference framework in Section 3.4. Next, we present two schemes of distance estimation and

direction derivation to capture fine-grained hand movements via sensors on wearables in Sec-

tion 3.5. The backward PIN-sequence inference algorithm to recover the complete user PIN
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sequence is described in Section 3.6. We present the detailed implementation of our frame-

work in terms of pre-processing of the sensor data and coordinate alignment in Section 3.7. In

Section 3.8, we perform extensive evaluation of our approach involving real key-based security

systems. Finally, we discuss the relative issues and conclude our work in Sections 3.9 and 3.10

respectively.

3.2 Related Work

Recent studies show that embedded sensors on mobile devices, such as accelerometers and touch

screens, can capture users’ motion and leak their sensitive information [86, 104, 94, 41, 103,

129]. Recently, wearable devices, such as smartwatches and fitness bands, extend the sensing

capability to limbs and enable many useful applications [77, 132, 90, 66]. These existing studies

have shown the sensing capabilities of up-to-date mobile devices, which inspire us to explore

the potential of using wrist-mounted wearables to recover fine-grained hand movements, and

study to what extent the user’s sensitive information could be leaked from their fingers.

Toward this end, we explore the possibility of recovering people’s private PIN sequences

through their wrist-worn mobile devices when they enter PINs on key-based security systems.

Traditionally, key-based security systems could be breached by several methods, such as hidden

cameras and skimmers [35, 7, 130]. For example, some ATM machines are attached by a hidden

camera, which was used to record PIN sequences or body movements of entering PINs [81].

An adversary may also put a skimmer into the ATM machine card slot. When the customer

slides their card, it will go through the skimmer first and then into the machine. A chip

inside the skimmer device records information about the account without the knowledge of

the customer [1]. These existing methods largely depend on installing dedicated devices in the

restricted area.

In addition, researchers show that it is possible to recognize users’ keystrokes by using

acoustic approaches. Berger et al. [36] demonstrate that by using linguistic models and recorded

typing sound on a keyboard, an attacker can successfully reconstruct the typed words. Zhu et

al. [138] present a context-free and geometry-based approach to recover keystrokes by using

multiple smartphones to record acoustic emanations from the keystrokes. Wang et al. [121]

develop a system that extracts and optimizes the location-dependent multipath fading features

from the audio signals and leverages the signal diversity resulted from the dual-microphone

interface in a mobile device to identify key entries typed on a keyboard. Along this line, Jian et

al. [76] demonstrate that mobile audio hardware in off-the-shelf mobile devices can be exploited
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to discriminate mm-level position differences, based on which they develop a system that can

locate the origin of keystrokes by using only a single phone behind a keyboard [76]. Martinovic

et al. demonstrate that the captured electroencephalography (EEG) signals from head-wearable

EEG devices can reveal whether the presented stimuli (e.g., images) are related to the user’s

private information such as bank cards, area of residence and PIN numbers. [83]. Marquardt et

al. develop an application that can utilize accelerometers in a smartphone to sense the vibrations

caused by keystrokes from a nearby keyboard and further identify the keystrokes [82]. Their

proposed technique relies on a linguistic model and labeled training data and the system is

highly sensitive to environment noise (e.g., people moving around).

The most related work to ours are two concurrent studies, which analyze the leak of users’

passwords or typed words from smartwatches [118, 78]. Wang et al. [118] devise a system

that can infer typed words on a keyboard by utilizing motion sensors in smartwatches. The

system assumes to know the fixed initial position of the smartwatch and relies on a linguistic

model to infer typed words, which makes it hard to deal with non-contextual inputs, such as

passwords and PIN sequences. Liu et al. [78] apply sensors in a smartwatch to infer users’

inputs on a keyboard or POS terminal by utilizing machine-learning based techniques. Their

approach requires training of hand movements between keystrokes, and it is unclear how the

system handles changing positions of the wrist during typing. Moreover, both of the above work

can only achieve moderate accuracy in deriving the user inputs given limited number of tries.

Different from previous work, our key entry inference system is training-free, contextual-free

and does not involve additional devices. Furthermore, our backward PIN-sequence inference

framework is not subject to environmental noises, such as ambient noise, light interference and

people walking around.

3.3 Attack Model and Feasibility Study

The positions of wearable devices on human bodies naturally enhance the devices’ capability

of the activity recognition and facilitate many applications based on the context of activities.

However, such strong sensing ability brings up new security and privacy issues. In this work, we

study the possible personal secret leakage in a very common scenario that people wear wrist-

worn wearable devices while using key-based security systems, such as ATM machines, password

secured door entries, and keypad-controlled enterprise servers. In this section, we describe the

attack model and explore the feasibility of utilizing wearable devices to recover personal key

entries in key-based security systems.
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Figure 3.1: Acceleration patterns inherited from key entry activities, shown in the readings of
a 3-axis accelerometer on IMU.

3.3.1 Attack Model

We consider an adversary aiming at recovering a person’s secret PIN entries leveraging embedded

sensors (e.g., accelerometer, gyroscope and magnetometer) in wearable devices worn on his/her

wrist. The adversary has the knowledge of where the victim visits the key-based security system

and can obtain the layout of the keypad. We assume that the adversary is able to access the

sensor data and communicate over networks on the smartphone, but cannot observe the PIN

entry activities visually by any means. The wearable device is usually paired with the user’s

smartphone via Bluetooth and constantly sends sensor data to the person’s smartphone for

logging purpose. Most wearables are using Bluetooth Low Energy (BLE) to transmit sensor

data. With low energy, BLE comes with low security capability compared with Bluetooth. As

a result, for example, the sensor data could be sniffed by the adversary by using Bluetooth

sniffing techniques [31, 89].

But the adversary does not have access to training data, which is specific to a particular

key-based security system. Particularly, we identify two representative attacking scenarios as

follows:

Sniffing Attacks. An adversary can place a wireless sniffer close to a key-based security
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Figure 3.2: Distance estimation of the number pad on the Dell keyboard based on IMU.

system (e.g., ATM machine or key-based security door) to eavesdrop sensor data from the

wearable device, which is worn on the victim’s wrist when he/she enters security PINs into the

security system. The adversary utilizes the wireless sniffer to capture Bluetooth packets sent

by the wearable device to its associated smartphone [108, 96, 44], and determines the victim’s

PIN sequence based on the sensor data extracted from Bluetooth packets.

Internal Attacks. An adversary can access the embedded sensors in the victim’s wrist-

worn wearable device by installing a malware app without the victim’s notice[6]. The malware

app waits until the victim accesses the key-based security system and keeps sending sensor data

back to the adversary’s server through the Internet. The adversary can aggregate the sensor

data on the server to determine the victim’s PIN sequence remotely.

3.3.2 Intuitions of Hand Movements behind Key Entry Activities

When accessing a key-based security system, a person’s PIN sequence is entered through multi-

ple key clicks. During each key click, there exhibits acceleration and deceleration of keys when

pressed and released by the user. This simple information can serve as a guideline to discrimi-

nate different key clicks. The critical question we need to answer is that whether the sensors on

wearable devices can discriminate between key clicks and capture the fine-grained movements

between two consecutive clicks. In particular, we look for unique sensing patterns inherited

from such acceleration and deceleration that could be used to facilitate the discrimination of

key clicks and distance estimation of hand movement between two key clicks.

A key click can be separated into two consecutive time periods: key pressing and key releasing
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periods. The key pressing period starts when a person’s finger touches the key and ends when

the finger presses the key to the bottom of the keypad (denoted as pressing point). The key

releasing period starts when the person’s finger releases the key from the bottom of the keypad

and ends when the finger stops moving after it is detached from the key (denoted as releasing

point). Intuitively, the hand accelerates towards the keypad while pressing the key before

the pressing point, and decelerates and stops quickly due to the reaction force from the key

that touches the bottom of the keypad. When releasing the key, the hand accelerates towards

the opposite direction to the keypad and stops after the finger is detached from the keypad.

We illustrate the hand’s acceleration/deceleration in the Z-axis caused by key pressing and

releasing in Figure 3.1. We use the keypad’s coordinate system with the Z-axis perpendicular

to the keypad plane and pointing out from the keypad, and the X-axis aligned to the direction

connecting the first and the second key.

Furthermore, in between two consecutive key clicks, the key entry activity involves the hand

movement from one key to another. As shown in Figure 3.1, the accelerations on the X axis

present an obvious up-and-down trend, while the accelerations on the Z and Y axes remain

stable. The intuition behind this phenomenon is that the hand usually accelerates and moves

relatively in parallel with the keypad on the shortest trajectory between the first and second

keys. After passing the middle point of the trajectory, the hand decelerates to stop when it

reaches the Key 2’s position. Such unique up-and-down acceleration trend is very useful to help

capturing the small distance of hand movement between two keys.

Feasibility Study. To study whether the sensors on wearables can capture such detailed

acceleration patterns during key entry activities, we conduct two sets of experiments on the
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number pad of a Dell USB wired keyboard L100 with an Invensense MPU-9150 9-axis motion

sensor (i.e., IMU), which is a prototyping alternative to a wearable device. The sensor uses a

moderate sampling rate of 100Hz and contains an accelerometer, gyroscope and magnetometer

that are comparable to embedded sensors in wearable devices. During the experiments, the

participant wears the sensor on his wrist and keeps his hand in parallel to the keypad below

so that the sensor’s Z axis points out and is perpendicular to the keypad. The first set of

experiments moves from keys 4 to 5, which is along the sensor’s X axis, and the second set of

experiments moves from keys 5 to 8 along the sensor’s Y axis. The distance between keys 4 to

5 is only 1.9cm, the same as that between keys 5 to 8. We use a camera on top of the keyboard

to record the moving distance ground truth of the sensor. We note that these two experiment

setups are special as the sensor’s coordinate system is fully aligned with the keypad’s coordinate

system.

We estimate the sensor’s moving distance by applying the double integration to the acceler-

ation readings of the X axis and the Y axis from the accelerometer on the sensor. The details

of the distance estimation scheme are presented in Section 3.5. Figure 3.2 compares the ground

truth and the estimated distance in 10 runs of aforementioned settings, respectively. We find

that overall the estimation errors are less than 1cm, the mean error of the 10 runs of each

experimental setting is as low as 0.27cm and 0.24cm on the X and Y axes, respectively.

Additionally, we find that there is an unique up-and-down acceleration pattern captured

by the sensor, which can be utilized to determine the sensor’s moving direction. Figure 3.3

shows that the up-and-down acceleration pattern (like a sine wave) appears on X and Y axes

respectively when the sensor is moving along X or Y axes. The capability of accurate distance

estimation of the small moving distance between keys and the moving direction determination

are the foundation for recovering the user’s secret PIN sequence. Thus, these observations

are encouraging as they indicate the sensors on wearables have the capability to capture the

fine-grained hand movements to facilitate PIN sequence recovery.

3.4 System Design

In this section, we discuss the challenges in our system design and provide an overview of our

system.
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Figure 3.4: PIN-sequence inference framework.

3.4.1 Challenges

The goal of accurately recovering personal PIN sequences by using the embedded sensor of

wearable devices worn on the victim’s wrist is not trivial. Our system design and implementation

need to overcome the following challenges:

Robust Fine-grained Hand Movement Tracking. Using embedded sensors in wrist-

worn wearable devices to reconstruct the trajectories of hand movements in key-entry activities

is challenging since the sensors not only capture the acceleration patterns of key clicks and

movements from key to key, but also are affected by the users’s unconscious hand vibration

and rotation. Furthermore, due to the limited size of the keypad, the distance between keys

is small, making it hard to estimate using the low-grade sensors on wearables. Thus, we need

to design distance estimation and direction derivation schemes to accurately estimate the hand
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moving distance between keys and track the direction of fine-grained hand movements despite

various interfering sensing factors.

Training-free Key Entry Recognition. Considering the attacking nature of our goal,

it would be unlikely for the adversary to collect any training data (e.g., sensor data of hand

movements) before recovering a user’s PIN sequence. And it is also unlikely to have the user’s

cooperation during this process. Thus, we aim to infer the user’s secret PIN sequence leveraging

wearables without training efforts involving target users’ participation.

Recovering PIN Sequence without Contextual Information. The target user’s PIN

sequences used in key-based security systems are usually consisted of numbers without con-

textual information or linguistic meaning. Our developed method should have the ability to

recover sensitive information consisting of random combination of numbers. This requires our

system to be able to recover PIN sequences without relying on linguistic model or dictionaries.

Sensing with Single Free-axis Wearable Device. Using a single wearable device to

recover PIN sequence is necessary because usually there is only one wearable device available on

the wrist of the hand that performs key entry activities. There is no reference point available

besides the single wearable device. Furthermore, sensor readings are with respect to the wearable

device’s coordinate system, which is not stable and changes often according to the device’s

posture. In order to recognize key entry activities and derive fine-grained hand movement

trajectories, it is important for our system to translate the sensor readings from the wearable

device’s coordinate system to a fixed coordinate system, such as the keypad’s coordinate system.

3.4.2 System Overview

The main goal of our work is to demonstrate that using wearable devices could reveal people’s

secret PIN sequence to key-based security systems such as ATM machines, electronic-key based

door entries, and enterprise servers. We design and implement a system that has the capability

to reveal target user’s secret PIN sequences through tracking the fine-grained hand movement

trajectories related to key entry activities. The basic idea is to examine the acceleration of the

user’s hand movements when accessing key entry based security systems. Based on the feasibility

study of two special cases in Section 3.3, wrist-worn wearables can capture the unique patterns

of acceleration embedded in the hand movements caused by entering the secret PINs. Such

unique patterns can be exploited to estimate hand moving distances and directions during the

key-entry activities, which can be leveraged to reconstruct fine-grained moving trajectories of

the user’s hand and infer the PIN sequence traversed by the trajectories.
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The flow of our system is illustrated in Figure 3.4. Our system takes as input the raw sensor

readings, such as acceleration, rotation rate, and quaternion, from the wearable device worn on

a target user’s wrist. Then the system performs Key Click Detection and Trace Segmentation to

detect each key click by examining accelerations and separate the sensor readings into segments

containing consecutive key entries. The Data Calibration utilizes Quaternion-based Coordinate

Alignment and Noise Reduction techniques to translate each segment of accelerations into the

measurements with respect to the coordinate system of the keypad, and remove noise from

readings by using the Savitzky-Golay filter.

The core of our system consists of two components, Fine-grained Subpath Recovery and Back-

ward PIN-Sequence Inference, which first estimate the distance and direction of hand movements

in each segment of acceleration collected between two consecutive key entries, and then inte-

grate the estimated distance and direction of each segment to determine the entire PIN sequence

based on the physical constraints of the keypad and temporal relationship of the key entering

sequence. We define a subpath as the trajectory of the user’s hand movement between two

consecutive key clicks inside one segment. As shown in Figure 3.4, the Fine-grained Subpath

Recovery consists of two subtasks: Distance Estimation and Direction Derivation. The Dis-

tance Estimation identifies the unique acceleration patterns embedded in the key pressing and

releasing activities and perform distance estimation based on such patterns. Additionally, the

Direction Derivation leverages the estimated distance together with the acceleration patterns

caused by the hand movement in each subpath to derive the hand moving direction.

After obtaining the estimated moving distance and direction in each subpath, the system

develops the Backward PIN-Sequence Inference to recover the user’s PIN sequence. Specifically,

our system first applies the Backward Subpath Integration to combine subpaths in a backward

manner in time series. Then the system performs Point-wise Euclidean Distance Accumulation

to calculate the accumulated Euclidean distance for each candidate of key sequence at each

estimated key position (i.e., point-wise). Last, the Tree based Key Sequence Derivation generates

a tree with the candidates of key sequence and their accumulated Euclidean distance. The key

sequence candidate with the minimum accumulated Euclidean distance is chosen to be the

output of the system, which is the inferred PIN sequence that the victim uses in the key-based

security system. Note that, this work can be extended to identify keyboard typing or keyboard

passwords by using the Bayesian model and dictionaries [118].
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Figure 3.5: Illustration of the coordinate system on a typical key pad and examples of moving
directions of key clicks, 13, 39, 16, and 68.

3.5 Distance Estimation and Direction Derivation Schemes

Our system requires tracking hand movement trajectories on small keypads accurately without

training. Inspired by the basic dead reckoning technique, we seek to derive such fine-grained

trajectories based on hand movement distances and directions. Particularly, we developDistance

Estimation and Direction Derivation schemes to estimate the distances and derive direction for

each subpath (i.e., between two consecutive key clicks).

3.5.1 Distance Estimation

In order to accurately estimate the hand movement distance between two consecutive key clicks,

we need to identify the patterns in the sensor data corresponding to the hand movement pre-

cisely. Therefore, our system needs to first search the starting and ending points of the sensor

data caused by the hand movements based on pressing and releasing points of key clicks; then

calculate the hand moving distance by utilizing the extracted patterns from the sensor data.

In the rest of the section, we assume the system has performed the Key-click Detection and

segmented the sensor data to traces that capture hand movements between two consecutive

key clicks. The sensor data in each trace are translated into keypad coordinate system through

Coordinate Alignment. The details of Key-click Detection and Coordinate Alignment will be

discussed in Section 3.7. Figure 3.5 illustrates the coordinate system of a typical ATM keypad,

where the center of key 5 is the origin; the directions of positive X and Y axes are in parallel
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with the direction from keys 5 to 6 and keys 5 to 2, respectively; and the Z axis is perpendicular

to the X-Y plane, pointing out from the surface of the keypad. The four quadrants of the X-Y

plane are defined as the standard quadrants in a two-dimensional Cartesian system. Figure 3.5

also shows some examples of moving directions of key clicks, e.g, 13 indicates clicking from keys

1 to 3.

Starting and Ending Points Searching based on Pressing and Releasing Points.

The hand movements from one key to another happen after releasing the first key and end

when touching the second key. Ideally, the hand movement distance can be calculated based on

the acceleration (e.g., acceleration from the Z-axis) extracted between the releasing point of the

first key click and the pressing point of the second key click. However, such coarse segmentation

includes the sensor data resulted from hand vibrations usually result in large estimation errors.

In Section 3.3, we find that the acceleration captured during the hand movements between

consecutive key clicks has significant and unique patterns on X and Y axes (i.e., either up-and-

down or down-and-up shapes due to different moving directions).

Apparently, such unique acceleration patterns include merely the dynamics of the key-to-

key hand movements, and can be further utilized to facilitate accurate hand moving distance

estimation. In order to determine the right segment of acceleration data corresponding to

the unique acceleration pattern, we propose to further search the starting and ending points

of the pattern based on the segment of sensor data. Specifically, we define the first zero-

crossing point occurring before and after the unique acceleration pattern as the starting point

and ending point, respectively. The intuition behind this is that when a hand moves from one

key to another, its moving trajectory is mainly in parallel with the X-Y plane of the keypad.

Therefore, the acceleration and deceleration of the hand during such movement dominates the

acceleration on X and Y axes, and results in the acceleration that always experiences a pattern of

[0, ak,max(ak,min), 0, ak,min(ak,max), 0] as shown in Figure 3.6, where ak,max and ak,min denote

local maximum and minimum of acceleration on X and Y axes with k = x or y.

Thus, we design a strategy to locate the starting and ending points of the unique acceleration

pattern so that we could estimate the distance between two key clicks accurately. Our strategy

involves the following steps: 1) extract the acceleration on X and Y axes between the releasing

and pressing points of two consecutive key clicks respectively; 2) examine the extracted accel-

eration to find the ax,max, ax,min, ay,max, ay,min; 3) determine the dominated axis by choosing

the axis has the more significant unique acceleration pattern (i.e., a larger peak-to-peak value

defined by |ak,max− ak,min|, k = x or y ); 4) find the starting point of the unique pattern on the

dominated axis by searching the first time that acceleration crosses the axis (i.e., zero-crossing
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Figure 3.6: Searching for starting and ending points based on releasing and pressing points
within an acceleration segment.

point) before ak,max or ak,min, whichever occurs earlier; 5) similarly, find the ending point of the

unique pattern on the dominated axis by searching the first zero-crossing point after ak,min or

ak,max, whichever occurs later. The accelerations within the starting and ending points derived

above merely correspond to the hand movements between two consecutive key clicks and are

utilized to calculate the hand movement distance and direction in our schemes.

Distance Calculation. The distance estimation between two consecutive key clicks is

obtained by considering the movements in both X and Y axes. To perform accurate estimation,

we compute the small movement between two samples in sensor data and then sum up to produce

the distance estimation in one acceleration segment bounded by the identified starting and

ending points. As the distance is two times integration of accelerations, we utilize trapezoidal

rule to approximate each integration.

3.5.2 Direction Derivation

In order to recover the complete PIN sequence, our system needs to determine the moving

direction of each subpath during the key-entry process in addition to the distance. We define

the moving direction of a subpath as the angle between the positive X axis and the subpath with

counter-clockwise rotation as shown in Figure 3.5. The moving direction is denoted as ϑ ∈ [0360.

The basic idea is to find the direction based on the ratio of distances on X and Y axis derived

from hand movement acceleration. In particular, we design a two-step approach, including the

Quadrant Determination and Slope-based Direction Calculation. The Quadrant Determination
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first leverages the unique acceleration patterns to determine which quadrant of X-Y plane that

the hand moving direction belongs to. Then the Slope-based Direction Calculation examines

the slope angle of the moving direction in a quadrant ranging from 0to90 based on the hand

movement distances on X and Y axes, and converts the slope angle to the moving direction ϑ.

Quadrant Determination. Intuitively, the hand movement acceleration projected on X

and Y axes results in different combinations of the unique acceleration patterns in terms of

the order of ak,max and ak,min on X and Y axes with k = x or y. For example, when the

hand moves towards 45◦, the acceleration on X and Y axes both experiences the ak,max before

the ak,min, while the acceleration on the X axis experiences the ax,max after the ax,min and

the acceleration on the Y axis experiences the opposite when the hand moves towards 135◦.

Therefore, we leverage the combinations of unique acceleration patterns on X and Y axes to

determine the quadrant that a certain moving direction should belong to. Specifically, the

quadrant of the moving direction can be determined by the following equation:

Q =






1; if Iax,max
< Iax,min

& Iay,max
< Iay,min

,

2; if Iax,max
> Iax,min

& Iay,max
< Iay,min

,

3; if Iax,max
> Iax,min

& Iay,max
> Iay,min

,

4; if Iax,max
< Iax,min

& Iay,max
> Iay,min

.

(3.1)

where Q is the quadrant index, Iaaxe,max
and Iaaxe,min

denotes the index of the local maximum

and minimum on X and Y axes, respectively.

Slope-based Direction Calculation. After quadrant determination, we compute the

slope angle of the moving direction within each quadrant based on the ratio of the distance on

X and Y axes by utilizing the following equation:

φ =

∣∣∣∣arctan
(
sy
sx

)∣∣∣∣ . (3.2)

Equation (3.2) returns the relative moving direction defined in a quadrant ranging from 0◦ to

90◦, we further convert the φ to an absolute moving direction (i.e., the direction defined within

keypad coordinate ranging from 0◦ to 360◦). Given the quadrant index Q, the absolute moving

direction ϑ can be derived as follow:
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Figure 3.7: Illustration of the clustering results of distance estimation and direction derivation
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ϑ =





φ; if Q = 1,

180◦ − φ; if Q = 2,

180◦ + φ; if Q = 3,

360◦ − φ; if Q = 4.

(3.3)

Once we estimate the distance and derive the direction of a subpath, the relationship between

two consecutive key clicks in the contained subpath is determined. Therefore, if the position

of either key click is known, we can derive the position of the other key click according to

the derived moving distance and direction. We show an example of distance estimation and

direction determination for 6 subpaths {46, 28, 37, 64, 82, 73}. Figure 3.7 shows the clustering

results in both distance and direction when treating the first click as the origin. We observe

that each key-click combination is clustered together around the ground truth (shown as the

red star) based on our distance estimation and direction determination schemes, indicating that

our schemes have the capability to capture the fine-grained hand movement trajectories in key

entry activities.
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cannot correctly map to the key positions of the PIN sequence ”419” (though the estimation
error of distance and direction of individual subpath is small).

3.6 Backward Pin Sequence Inference Algorithm

After performing Fine-Grained Subpath Recovery grounded on distance estimation and direction

determination, we next describe how to reconstruct the hand-movement trajectory using the

estimated subpaths to infer the target user’s PIN sequence.

3.6.1 Backward Subpath Integration

We notice that all key-based security systems require the user to execute the verification by

pressing key Enter or Confirm, which is at a known position on the keypad. We can then utilize

this information to reconstruct the hand-movement trajectory on the keypad by examining the

subpaths in a backward time sequence. That is, the position of key Enter can be considered as

a end of the last subpath, and the starting of the last subpath indicates the position of the last

key clicked before key Enter.

More generally, we concatenate the estimated end of the (j− 1)th subpath to the starting of

the jth subpath and continue to repeat this step until reaching the starting of the first subpath.

By integrating all the derived subpaths in such a backward head-tail connecting way, we can

obtain a trajectory roughly matching the hand movements during the key-entry process, called

the Naively Integrated Trajectory. Ideally, the vertices on the Naively Integrated Trajectory
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should be mapped to real-key positions with the last vertex mapping to the center of Key

Enter.

3.6.2 Point-wise Euclidean Distance Accumulation

Although we can recover each individual subpath based on the estimated distance and derived

direction, each subpath contains small errors and the Naively Integrated Trajectory inherits and

further accumulates such small errors in each subpath, resulting in mapping to the wrong-key

positions on the keypad. Figure 3.8 shows an example that the naively integrated subpaths

(i.e. in black dashed lines) cannot recover the correct target user’s PIN sequence, e.g., “419”,

instead, they return “529” as a result. To reduce cumulative errors, we propose a Point-wise

Euclidean Distance Accumulation approach. In this approach, instead of matching the Naively

Integrated Trajectory directly to the keys on the keypad, we consider each subpath separately

by comparing the closeness in terms of the Euclidean distance between the starting point of

the subpath (i.e., point-wisely) and real key positions, while the ending point of the subpath is

fixed on real keys.

In particular, each subpath j contains the estimated distance (Sj) and direction (ϑj). Given

a real key’s position as an ending point (assuming this key is clicked at this ending point), we

can estimate the starting point (x̃j , ỹj) of each subpath. We conduct this effort in a backward

manner starting from Enter key because we know the ending point in the last subpath is the
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Enter key. The estimation of the starting point in the jth subpath is obtained as following:





x̃j = cos(ϑj + 180)× Sj + X ,

ỹj = sin(ϑj + 180)× Sj + Y,
(3.4)

where (X ,Y) are the coordinates of ten real number keys {1, 2, 3, ..., 9, 0} on the keypad. Given

that there are ten real number keys in the key pad, there will be ten estimation results of the

starting points in subpath j. We note that, for the last subpath, (X ,Y) is the coordinates

of the key Enter. Once the starting point of the jth subpath is estimated, our algorithm will

recursively move to the previous subpath. By doing so, we introduce the concept of accumulated

Euclidean distance, which is the sum of the Euclidean distances between the starting point of a

subpath and the coordinate of a real key in the keypad, over all consecutive subpaths. We can

recursively run the following equation to calculate the accumulated Euclidean distance:

Dj = Dj+1 + dj , (3.5)

where Dj and Dj+1 denote the accumulated Euclidean distance of two consecutive subpaths,

respectively, and dj is the Euclidean distance between the estimated starting point (x̃j , ỹj) of

the jth subpath and a real key in the keypad. The resulted final accumulated Euclidean distance

measures the closeness of the real key combination, defined as PIN sequence candidate, to the

estimated consecutive subpaths while leveraging the dimension of the keypad. The insight is that

we would like to explore the possible candidate keys leveraging the estimation from each subpath

without fixing to a particular key matching. In this way, we will not end up with only one Naively

Integrated Trajectory, instead, we will obtain multiple key sequences as the candidates for PIN

sequence recovery. Furthermore, by conducting the point-wise Euclidean distance accumulation

for each candidate of PIN sequence, our algorithm balances the contribution of each estimated

subpath and reduce the accumulated errors that impact the accuracy of PIN sequence inference.

Example. Figure 3.9 shows an example of how the Euclidean distance is accumulated

point-wisely in backward for a specific candidate PIN sequence “846” (The real PIN entry in

this example is ”419”). In the sequence of Figure 3.9, (a) we first generate the Naively Integrated

Trajectory consisted of three consecutive subpaths, subpath 1, subpath 2, and subpath 3, which

need to be point-wisely compared with the candidate subpaths: “84”,“46”, and “6enter” in the

candidate PIN sequence “846”. The generation of naively integrated trajectory is based on the

estimated distances and derived directions of each subpath. (b) then we start by mapping the

ending point of subpath 3 to the key Enter and set D4 = 0, and utilize the estimated moving
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Figure 3.10: Illustration of the construction of the backward trajectory inference tree for recov-
ering PIN ”419”.

distance and derived direction in the subpath to estimate its starting point on the keypad in a

backward way. The Euclidean distance between the estimated starting point of subpath 3 and

key 6 (i.e., the 3rd key entry in the candidate PIN sequence “846”) is found to be d3 = 1.2cm,

and the accumulated Euclidean distance for this subpath is D3 = D4 + d3 = 1.2cm; (c) next,

assuming the ending point of subpath 2 is mapped to key 4, we similarly estimate the starting

point of the subpath and calculate the Euclidean distance between the estimated starting point

and the position of key 4 (i.e., d2 = 2.1cm). The accumulated Euclidean distance for the

previous two supaths is D2 = D3 + d2 = 3.3cm; (d) lastly, we assume the ending point of the

subpath 1 to be key 8 and estimate the starting point of the subpath. We find the Euclidean

distance between the estimated starting point and the position of key 8 to be d1 = 0.8cm and

calculate the accumulated Euclidean distance for the entire candidate of PIN sequence “846”

as: D1 = D2 + d1 = 4.1cm. We note that our algorithm recursively calculates the accumulated

Euclidean distance for every possible candidate of PIN sequence based on Equations (3.4) and

(3.5) and select the candidate with the minimum accumulated Euclidean distance as the final

result.

3.6.3 Tree-based Key Sequence Inference

To implement the Backward PIN-Sequence Inference algorithm, we develop a tree-based ap-

proach for PIN-sequence inference. Next, we discuss how to build and optimize the tree in our

algorithm.

Building a Tree with PIN Sequence Candidates. In order to record and compare

different candidates of PIN sequence, we seek to build a decimal tree according to the backward
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order of all PIN sequence candidates. Each node is defined as a 2-tuple structure containing

its corresponding key entry and the Euclidean distance accumulated on the path from the root

node to the node, denoted as < NodeKey,AccuDist >. Because the tree is built based on a

backward order, nodes in the jth level of the tree correspond to the (N − j)
th

key entries of all

candidates of PIN sequences. The root node is always the last key entry (i.e., key Enter), while

the leaf nodes are always the first key entry of the candidate of PIN sequence (i.e., number keys

on the keypad). Each node (except the leaf nodes) has 10 child nodes corresponding to keys

0 to 9. The branches from one parent node to its child nodes represent the subpaths between

the keys corresponding to the parent and child nodes. The leaves of the tree stores the final

accumulated Euclidean distance of each candidate of PIN sequence. Our algorithm searches for

the leaf node having the minimum accumulated Euclidean distance, and traces back to recover

the path from the leaf node to the root node. The inferred PIN sequence is generated by

recording the key entries corresponding to the nodes on the recovered path.

Figure 3.10 shows an example of a tree for inferring a PIN sequence of “419”, where the

accumulated Euclidean distance for one candidate of PIN sequence “846” is 4.1cm, while another

candidate of PIN sequence “419” has the accumulated Euclidean distance of 1.6cm, which is

the minimum over all candidates. Therefore, the candidate of PIN sequence “419” will be

determined to be the inferred PIN sequence.

Subpath Calibration and Tree Pruning. In order to improve the accuracy of our

system, we take the advantage of the keypad dimension to calibrate subpaths. Intuitively, the

distance of a subpath should not exceed the dimension of a keypad. Therefore, if the estimated

distance of a subpath exceeds the dimension of a keypad, our system replaces the estimated

distance of the particular subpath with the possible longest distance on the keypad. In addition,

since every non-leaf node in a PIN-sequence tree has 10 child nodes, the jth level has 10j nodes.

Apparently, it is not necessary to store and calculate the Euclidean distance in every node or

sort the accumulated distances of the PIN candidates for the entire PIN space. Our algorithm

prunes the tree by keeping the nodes with the leastm accumulated Euclidean distances for each

tree level. In this way, leaf nodes are largely reduced from 10N to m, where N is the length of

the PIN sequence. In this work, we set m = min
(
10j, 100

)
in our algorithm for the tree level j,

which balances the tree size and algorithm performance. Compared to our algorithm without

tree pruning, the running time of our algorithm with tree pruning is reduced from O
(
2N

)
to

O (N) when N is greater than 2.

Viterbi and Hidden Markov Model based Implementations. We also study to apply

the Viterbi algorithm and the Hidden MarkovModel (HMM) to solve the PIN inference problem.
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We implement two methods, Viterbi and HMM-Viterbi to infer the PIN sequences, both of which

also have the running time O (N), and we compare their performance with our algorithm. 1)

In particular, by considering each key button as a state in the trellis diagram and expressing

the cost of the path between any two states as
∣∣∣ ~RealKeyDistance− ~EstimatedSubpath

∣∣∣, we

can then utilize Viterbi algorithm to search the shortest path (i.e., the smallest summation of

the path cost for sequential states) in the trellis to infer the PIN sequence. 2) Hidden Markov

Model can be applied to model the PIN sequence inference problem, and the dynamic searching

in HMM needs to be implemented by Viterbi algorithm [106]. The state transition probability

between any two keys can be expressed as exp
(
−
∣∣∣ ~RealKeyDistance− ~EstimatedSubpath

∣∣∣
)
,

and the PIN sequence decoding problem becomes searching for the sequential states with the

highest probability (i.e., the greatest multiplication of the transition probabilities of sequential

states). Overall, we find that through performance evaluation in Section 3.8.8, the performances

are comparable among the three methods when attacking with one PIN sequence. And the

original back PIN sequence Inference algorithm outperforms the Viterbi and HMM-Viterbi when

generating optimal PIN candidate list. This is because the Backward PIN Sequence Inference

algorithm tests all the most possible PIN sequences and can reflect the best capability of the

attack, especially when attacking with more than two PIN sequences on the key-based security

system, which usually tolerates multiple tries.

3.7 Implementation

3.7.1 Key-click Detection

Given embedded sensor data from wearable devices, our system first performs key-click detection

based on acceleration readings to find the key-click events and the number of keys in a PIN

sequence and assist the trace segmentation. Key clicks usually cause significant changes of

acceleration towards the keypad that has the potential to be distinguished from other hand

movements. In particular, we calculate the magnitude of the composition of accelerations on

three axes first, and apply a threshold to examine the normalized magnitude of the composed

acceleration to detect key clicks. We empirically determine the threshold to be 0.6 based on

our experiments with 20 participants in this work.
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3.7.2 Key-click Trace Segmentation

After key-click detection, we roughly segment input sensor data into small chunks containing

the data between two consecutive detected key clicks. After segmentation, the resulted small

chunks contain the sensor data representing subpaths, which include the acceleration caused by

hand movements from one key to another. In addition, to mitigate high frequency noise caused

by hand vibration, we apply the Savitzky − Golay filter [98] to each chunk of sensor data

respectively.

3.7.3 Quaternion-based Coordinate Alignment

When recovering the user’s PIN sequence from the wearables’ embedded sensors, our system

involves three different coordinate systems, namely, wearable coordinate, world coordinate [2]

and keypad coordinate. The sensor readings from a wearable are defined within the wearable

coordinate and thus cannot be used directly to represent hand movements because of the rotating

wearable coordinate caused by frequently changed hand position. In this work, we employ

quaternion to help convert sensor readings from the wearable coordinate to keypad coordinate

for hand trajectory derivation.

Specifically, we first convert the sensor readings from the wearable coordinate to world

coordinate by applying ~aw = qdw~adq
−1
dw , where ~aw and ~ad are the sensor readings in the world

coordinate and werable coordinate, respectively, and qdw is the quaternion that represents the

conversion from the werable coordinate to world coordinate. Then aw will be further converted

to the keypad coordinate via ~ak = qwk~awq
−1
wk, where ~ak denotes the sensor readings in the

keyboad coordiante and qwk denotes the quaternion that represents the conversion from the

world coordinate to keypad coordinate. The quaternion qdw can be extracted from wearables

during hand movements, and qwk can be derived from qwk = q−1
kw , where the quaternion qkw

can be collected by placing a sensor (i.e., smartphone, smartwatch, or IMU) aligned with the

coordinate of the target keypad. We note that adversaries can utilize this method to obtain

qkw without attention at a time other than the user entering the PIN sequence.

3.8 Performance Evaluation

In this section, we present the experimental methodology and describe the evaluation metrics.

We then present the most important results of our system with respect to PIN sequence recovery

using the Backward PIN-sequence Recovery Algorithm. Finally, we show the performance of
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Figure 3.11: Experiments: three different kinds of keypads, detachable ATM pad, keypad on
ATM machine, keyboard; and wearable devices.

two supporting schemes for PIN sequence recovery, distance estimation and direction derivation

schemes.

3.8.1 Experimental Methodology

Keypads. We evaluate our system with three different kinds of keypads as shown in Figure 3.11:

1) A keypad on ATMmachine (from PNC bank) with the dimension of 108mm×76mm; 2) A real

detached ATM keypad with the dimension of 127mm× 95mm, both 1) and 2) representing the

use cases with different ATM pad sizes; and 3) A number pad of Dell USB wired keyboard L100

with the dimension of 77mm× 97mm, representing the use case of key-based security access to

enterprise servers. The three keypads have different structures and key depths. It is important

to evaluate their effects on our approach when capturing fine-grained hand movements. We

focus on experiments on numbers to recover PIN-sequences.

Wearable Devices. In our experiments, we use three different types of wearable devices,

including two smartwatches (i.e., LG W150 and Moto360) and an IMU (Invensence MPU-

9150)[4]. These wearables represent different achievable maximum sampling rates (i.e., 200Hz,

25Hz and 100Hz, respectively). The LG W150 and Moto 360 are two commodity smartwatches

running on Android Wear OS with Bluetooth LE. The IMU contains a 9-axis motion tracking

sensor designed for consumer electronics. We use it as a prototyping alternative to a wearable

device with its sampling rate set to 100Hz. During key-entry activities, the wearable devices

collect acceleration and quaternion data and send them to a pre-associated storage device (i.e.,

smartphone via Bluetooth and laptop via an USB cable for smartwatches and IMU respectively).
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Figure 3.12: Performance of Backward PIN-sequence Inference to infer 4-PIN sequences with
three kinds of wearables on detachable ATM Keypad.

The ground truth of the hand moving distance and direction is computed through the video

recorded by a camera set on top of the keypad. In particular, we use AutoCAD to connect

two positions of the sensor in two captured video frames corresponding to the time points

when the finger just leaves the first key and about to touch the second key, respectively. The

measured distance and angle of the line (with the positive X axis of the keypad) connecting

these two sensor positions are used as the ground truth of the distance and direction of the

hand movement.

Data Collection. We conduct experiments of various key-entry activities with three dif-

ferent types of wearables on three kinds of keypads. 20 volunteers are recruited to performance

key-entry activities over an 13-month period. The volunteers are asked to enter keys in three

ways: 1) 4-digit PIN sequences consisting of five consecutive key clicks; 2) 6-digit PIN sequences

consisting of seven consecutive key clicks (with ”Enter” as the last click) and 3) a single sub-

path consisting of two consecutive key clicks. For each subpath, based on the keypad layout,

we classify different subpath lengths into three representative scales: short, medium and long.

Specifically, short covers subpaths between two adjacent keys with no keys in between (e.g., 45,

41 and 75); medium is for horizontal and vertical subpaths between two keys with one key in

between (e.g., 46 and 82); and long contains subpaths of two keys neither horizontal nor vertical

and with one or more keys in between (e.g., 10, 37 and 29). We collect 7000 PIN sequences

from three keypads when having 20 volunteers wear three different kinds of wearables. For

single subpath, we collect 3000 subpaths from three keypads including long, medium and short

distances with volunteers wearing an IMU.
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3.8.2 Evaluation Metrics

We develop the following metrics to evaluate our system with regard to the accuracy of distance

estimation and direction determination schemes and the performance of our Backward PIN-

sequence Inference Algorithm:

Distance Estimation Error. To evaluate the performance of our distance estimation

scheme, we define the Distance Estimation Error as the difference between the estimated dis-

tance and the ground truth of the hand moving distance. The ground truth of the hand moving

distance is computed through the recorded video during experiments. We study the Distance

Estimation Error in two ways: mean error and cumulative distribution function (CDF).

Direction Classification Accuracy. To evaluate the performance of our direction deriva-

tion scheme, we divide the 360◦ on the X-Y plane into 16 groups (i.e., 5 groups in each quadrant

excluding 4 overlapped groups) and examine whether the derived direction is classified into the

same group as that of the corresponding ground truth. The ground truth of angles is also com-

puted through the recorded videos. The Direction Classification Accuracy is Ñc

Nc
, where Ñc is

the number of directions have been classified into the same group containing the corresponding

ground-truth direction, and Nc is the total experimental runs of direction classification.

Top-k Success Rate. Given an experimental run of a key-entry activity, our algorithm

could return multiple top candidates of key-entry sequence in an ascending order of the accumu-

lated Euclidean distance. We define that the inference algorithm is a Top-k Success Hit if the

first k candidates of key-entry sequence returned from our algorithm contain the target user’s

key-entry sequence. We further define the Top-k Success Rate as the ratio (
Ñk

s

Ns
) of the number

of Top-k Success Hits (Ñk
s ) over the total number of experimental runs (Ns) when applying

key-entry sequence inference to recover the target user’s PIN sequence. Specially, when k = 1,

the ratio indicates the rate of our algorithm that can successfully determine the target user’s

key-entry sequence without ambiguity.

Tries Until Success. Since our system can provide multiple candidates as the result for

key-entry sequence inference, the adversary has the chance to try out each key sequence returned

in the candidate list to recover the target user’s PIN sequence. We define the Number of Tries

Until Success as the number of candidate key-entry sequence the adversary has tried (starting

from the candidate with the smallest accumulated Euclidean distance) until he/she breaks the

key-based security system, suggesting a success recovery of the target user’s PIN sequence.

Thus, the Number of Trails Until Success indicates the possible efforts that an attack needs to

take to break the key-based security system.
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Figure 3.13: Performance of 4-PIN sequence inference on three different keypads by using
medium sampling rate 100Hz (IMU).

3.8.3 Performance of Backward PIN-Sequence Inference

Wearable Devices. We first examine the performance of our Backward PIN-sequence inference

algorithm to infer 4-PIN sequences on the detachable ATM keypad with three different wearable

devices. Figure 3.12(a) shows the top-k success rate of our system from three different types of

wearable devices. We find that our system can effectively recover 4-PIN sequences from all the

three wearables, and higher success rate is achieved under higher sampling rates. In particular,

by choosing the top-1 choice, our system can achieve over 82% success rate for the LG W150

and IMU, while the success rate is 67% for the Moto 360. Furthermore, the PIN sequences can

be inferred with increasing success rates if the adversary utilizes more choices from the top-k

candidate list. Specifically, when using the top-2 choices, the adversary can achieve about 94%

success rate with the LG W150 and IMU, and the success rate for the Moto 360 is over 80%.

Although the Moto 360 achieves lower success rates than the LG W150 and IMU due to its

much lower sampling rate (i.e., 25Hz), an adversary can still achieve a high probability to reveal

the PIN sequences based on top-2 or 3 choices. This indicates that our system can tolerate the

insufficient information introduced by wearable devices with low sampling rates.

Figure 3.12(b) depicts the cumulative distribution of the number of tries until successfully

recovering the user’s 4-PIN sequence from three wearables. We find that the adversary can

break over 97% PIN entries from the LG W150 and IMU within 5 tries, which is usually the

maximum PIN tries on ATM machine. The number of PIN entries revealed increases to 99%,

if the attacker conducts 10 tries. For Moto 360, the attacker can break 90% PIN entries within

5 tries and 96% within 10 tries. Therefore, regardless of the types of wearable, the attacker
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Figure 3.14: Distance estimation mean error and direction classification results between two
consecutive key clicks under 100Hz sampling rate (IMU).

can break the user’s PIN sequence with few tries. Although the LG W150 is set to use 200Hz

sampling rate and generates the best performance, we find that using 100Hz sampling rate is

enough to achieve comparable good results. Therefore, we present the results using the IMU

for the rest sections.

ATM Keypads and Keyboard. Figure 3.13(a) shows the top-k success rate to recover

4-PIN sequences on three keypads. We observe that our system can achieve around 80% success

rate for all three keypads with the top-1 choice. When using the top-5 choices, our system can

achieve over 97% success rate with both of the detachable ATM pad and the number pad on

keyboard, while on real ATM machine, the success rate is over 92.5%. Figure 3.13(b) confirms

our observation in Figure 3.13(a). The results demonstrate that our Backward PIN-sequence

Inference is effective when applied with keypads of different layouts and coordinates. The

success rate is higher with both of the detachable ATM pad and the number pad on keyboard

than that with the ATM machine. Our results suggests that the electronic magnetic field and

the tilt angle of the ATM machine affect the PIN entry recovery result on ATM machine.

3.8.4 Distance Estimation of Different Kinds of Keypads

We next study the performance of two supporting schemes. The study of the distance estimation

scheme is described in this subsection, and the results of the direction determination scheme is

presented in the next subsection. We apply our distance estimation scheme to various subpaths

across three different kinds of keypads. We compare the distance difference between ground

truth (i.e., obtained from camera) and the estimated distance from sensor data. Take ATM
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Figure 3.15: Performance of distance estimation and direction derivation on three kinds of
keypads under 100Hz sampling rate (IMU).

machine as an example, the distances for short, medium and long are 2.5cm, 5cm and 6.4cm,

respectively.

We observe that the mean error is proportional to the distance scale, i.e., short distance has

relative smaller error compared with long distance, as shown in Figure 3.14(a). In particular,

the mean error of ATM machine for short, medium and long distance are 5mm, 7mm and

8.5mm, respectively. For detachable ATM pad, the error of long, medium and short distance

are 8mm, 6mm and 3.5mm, respectively. The mean error of long distance in keyboard number

pad experiment is 8mm, 5mm for medium distance and for short distance the error is as low

as 3mm. The experiment results from keyboard shows relative smaller distance error since the

physical layout of keyboard number pad is smaller than ATM machine keypad and detachable

ATM pad. We observe that such error difference is marginal and reveal the effectiveness of our

scheme.

Figure 3.15(a) shows the cumulative distributive function of distance estimation errors. We

observe that the 80th percentile errors are 8mm, 10mm and 12mm for short, medium and long

distance of ATM machine, respectively. For detachable ATM pad the 80th percentile error are

5mm, 10mm and 13mm, receptively and the 80th percentile error of number pad experiment

are 4mm, 8mm and 13.2mm respectively. The results also show the effectiveness and robustness

of our scheme under various keypads.
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3.8.5 Direction Derivation of Different Kinds of Keypads

Next, we evaluate our slope-based direction derivation scheme by showing the performance under

three different kinds of keypads. According to the keypad layout, we select five representative

directions in one quadrant. Take ATM machine as an example, the five directions within the

fourth quadrant are: keys 2 to 8, keys 2 to 9, keys 1 to 9, keys 4 to 9 and keys 4 to 6. The

corresponding direction angle for these subpaths on the keypad are: 270◦ , 302◦ , 321◦, 338◦

and 360◦. To evaluate our direction derivation scheme, we study the direction classification

accuracy of classifying the directions of testing subpaths into the aforementioned 5 groups of

directions angles. Figure 3.14(b) shows the direction classification accuracy with five directions

on ATM machine. The X axis represents the ground truth direction between two keys on the

ATM machine. We find that there are few subpaths mistakenly classified as incorrect direction.

In particular, our scheme can achieve 80% classification accuracy for 270◦ and we observe

that directions with larger angles have better accuracy, which is up to 97% accuracy for 360◦.

This may due to that when user performs vertical key clicks (e.g., key 2 to 8 with 270◦ on

ATM pad), there might be a small inclined angle between hand moving direction and wrist

moving direction. For keyboard and ATM pad, we have similar high classification accuracy. In

addition, Figure 3.15(b) shows the cumulative distribution function of estimated five directions

in the fourth quadrant. We find that all five directions obtained from our scheme only have

small overlap for any two adjacent directions. Moreover, 90% of the derived direction are close

to the ground truth direction within ±10◦. The above results show that our system provides

effective distance estimation and direction derivation schemes under various keypads and is

robust in real environments.

3.8.6 Impact of PIN-sequence Length

Because longer-PIN-sequence inference is more likely to be affected by the errors of deriving hand

movement trajectory, we examine the impact of the PIN-sequence length to the performance of

the Backward PIN-sequence Inference Algorithm. Figure 3.16(a) shows the top-k success rate

of recovering 6-PIN sequences on three different kinds of keypads by using the IMU collecting

data at 100Hz. We find that our system achieves around 80% success rate of revealing 6-PIN

sequences on all three keypads using the top-1 choice. When trying with the top-5 choices,

our system achieves around 93% success rate on the three keypads. As we can see that the

results are very similar to those of inferring 4-PIN sequences in Figure 3.13, indicating that the

Backward PIN-sequence Inference algorithm is robust to different lengths of PIN sequences.
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PIN sequence within top-k candidates. of the number of tries until success.

Figure 3.16: Performance of 6-PIN Sequence Inference on three different keypads by using
medium sampling rate 100Hz (IMU).

Figure 3.16(b) depicts the cumulative distribution of the number of tries until successfully

recovering the 6-PIN and 4-PIN sequences on the three keypads, respectively. We observe that

our system can successfully break around 80% 6-PIN and 4-PIN sequences with one try and

over 96% 6-PIN and 4-PIN sequences with 10 tries. The results show that the PIN inference

performance of our system is consistently good for different PIN sequence lengths, because our

Backward PIN-sequence Inference algorithm does not accumulate errors in recovering subpaths.

3.8.7 Impact of Sampling Rate

We then study the impact of the sampling rate of wearables to our system. Figure 3.17(a) shows

the mean errors of the estimated distances between two consecutive key clicks on the detachable

ATM pad with the IMU sampling at 25Hz, 50Hz and 100Hz, respectively. We find that higher

sampling rates generate slightly smaller errors for the short, medium and long distances. In

particular, the mean errors for short, medium and long distances are 4.3 mm, 8.5 mm and 13.1

mm when the sampling rate is 25Hz, And when the sampling rate is 50Hz, the mean errors

are 4.2 mm, 8.3 mm and 10 mm, respectively. In addition, Figure 3.17(b) shows the direction

classification results of our slope-based direction derivation scheme under various sampling rates.

Although lower sampling rates cause lower accuracy of direction derivation results, our system

still recovers over half of the moving directions correctly, which indicates that our system can

recover hand trajectories with good performance at lower sampling rates.

We further evaluate the impact of different sampling rates to our Backward PIN-sequence

Inference algorithm . Figure 3.18(a) depicts the performance of 4-PIN and 6-PIN sequence
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Figure 3.17: Distance estimation mean error and direction classification results between two
consecutive key clicks with IMU under 100Hz, 50Hz and 25Hz sampling rate.

inferences with top-1 choice on the detachable ATM pad with the IMU sampling at 25Hz, 50Hz

and 100Hz. We find that our system can achieve over 70% and 60% accuracy in inferring both 4-

PIN and 6-PIN sequences at 50Hz and 25Hz sampling rate, respectively. Figure 3.18(b) further

confirms our observation in Figure 3.18(a). Moreover, we find that adversaries can achieve very

high accuracy of revealing PIN sequences when trying more choices under low sampling rates.

Specifically, our system can successfully break over 90% 6-PIN and 4-PIN sequences with 5 tries

under 50Hz sampling rate and around 80% with 5 tries under 25Hz. The results demonstrate

that our system can effectively reveal PIN sequences when using various sampling rates. Even

the sensor data sampled at 25Hz has very high probability to leak the user’s PIN sequences.

3.8.8 Performance Comparison among Three Algorithms

Finally, we compare the performance of the three methods Backward PIN Sequence Inference,

Viterbi algorithm and HMM-Viterbi. Figure 3.19(a) shows the top-k success rate of the three

algorithms in revealing 6-PIN sequences. As expected, Viterbi algorithm and HMM-Viterbi are

efficient to find the optimal PIN sequence (i.e., top-1 candidate) from the estimated PIN entry

trajectory. In particular, Viterbi algorithm and HMM-Viterbi achieve the same accuracy of

82% as the Backward PIN Sequence Inference algorithm in finding the top-1 result. Moreover,

the Viterbi algorithm and HMM-Viterbi have much lower accuracy than the Backward PIN

Sequence Inference algorithm when trying more than one PIN candidates. The results show

that HMM-Viterbi and Viterbi are not as good as Backward PIN Sequence Inference algorithm

for investigating the multi-try problem in practical attack, and thus cannot fully reflect the



64

Sampling Rate

100Hz  50Hz  25Hz

S
u

c
c

e
s

s
fu

l 
R

a
te

 (
%

)

0

0.2

0.4

0.6

0.8

1

4pins

6pins

Number of Trails Until Success

0 5 10 15 20

P
e

rc
e

n
ta

g
e

0

0.2

0.4

0.6

0.8

1

4pins 100Hz

6pin 100Hz

4pins 50Hz

6pin 50Hz

4pins 25Hz

6pin 25Hz

(a) Success rate of recovering (b) Cumulative distribution function
PIN sequence within top-1 candidate. of the number of tries until success.

Figure 3.18: Performance of 4-PIN and 6-PIN Sequence Inference on detachable ATM pad by
using IMU under 100Hz, 50Hz, 25Hz sampling rate.

attackers’ capability. Note that the HMM-Viterbi and Viterbi algorithm have the similar per-

formance, which is because that Viterbi algorithm is applied in HMM to solve the decoding

problem of HMM [106]. We further compare the Tries Until Success among the three algo-

rithms. Figure 3.19(b) shows that Backward PIN Sequence algorithm outperforms the other

two algorithms for both revealing 4-PIN and 6-PIN sequences and shows much more success

rate enhancement to reveal PINs of longer lengths (e.g., 6-PIN). The above comparisons show

that the Backward PIN Sequence algorithm not only finds the optimal PIN sequence efficiently

but also provides the optimal candidate list, which provides more comprehensive understanding

of the PIN leakage issues on the key-based security system from wearable devices.

3.9 Discussion

Wearing the Wearable Device on the Left Hand or Right Hand. Our training-free

approach does not require mirroring the derivation from sensor data when applied to either

the left-handed or right-handed user since the inherent physics of key entry activities will be

preserved regardless of either case. We assume the victim use either hand wearing a wearable

(i.e., a smartwatch or fitness tracker) to access key-based security systems. While it is very

difficult to know the exact number of how many people sharing this style, we instead discuss the

population of the potential wearable user victims. We take the right-handed user for discussion

as the left-handed user share the same conclusion. Wearable devices are usually designed in a

way that allows users to comfortably wear them on either wrist (e.g., smartwatches no longer
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Figure 3.19: Performance Comparison between different algorithms to infer PIN sequence with
IMU under 100Hz on detachable ATM Keypad.

necessarily have crowns as traditional watches do). There are many smartwatch users [9, 5]

claiming that they wear smartwatches on their right wrists. Furthermore, for those wearing

traditional watch on the left wrist, they tend to wear fitness tracker on the right wrist for

health-related applications. Naturally, the right-handed people use their right hand to perform

key entry and the sensors in their smartwatches or fitness trackers can be utilized by our

approach to reveal PINs. Given the growing cheaper price of these wearable devices, many

people wear both a smartwatch and a fitness tracker on separate hand to better serve their

work and health applications, which further increases the number of potential victims. Lastly,

the increasing popular usage of wearables leaves adversary great chances to recover the user’s

sensitive information, making it vulnerable irrespective of the hand on which it is worn.

Using Sensor Moving Direction as Hand Moving Direction. We discuss the ra-

tionality of using sensor moving direction as hand moving direction. The current system is

designed for recovering a PIN sequence by reconstructing hand movement trajectories. We

leverage embedded sensor readings from wearable devices on a user’s wrist to determine the

direction. We use the sensor movement to represent the hand movement since the hand and

the wrist are moving together. During our extensive experimental study, we observe that sensor

movement and hand movement share similar moving trend. Therefore such a representation is

reasonable.

The Trend of Sniffing Attacks. Based on the survey of over 15 wearable devices, we

understand that the smartwatches can transmit raw sensor data to the mobile device. The fitness

trackers transmit aggregated or simplified data to synchronize with mobile devices, because
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current fitness trackers only aims at providing coarse-grained information for the applications,

such as step counting and activity tracking. The findings make the sniffing attack possible to

obtain the sensor data directly. Furthermore, with the growing demands for more powerful

body sensors to enable pervasive applications, such as health care, activity recognition, and

human computer interaction, we envision that the fine-grained sensor data from fitness trackers

is both necessary and useful to support these applications, and the sniffing attacks will remain

as unneglectable threats.

Defending Strategies. Existing studies suggest to decrease embedded sensors’ sampling

rates (e.g., under 50Hz) to mitigate the attack through smartwatches [118]. Our system shows

that users PINs can still be revealed from wearables with such low sampling rate (e.g., 50Hz

and lower). The reason is that the strong distinct motion during the PIN entry can be captured

by the wearable sensor even under low sampling rates. Moreover, our system can recover the

fine-grained PIN input trajectory to reveal the PIN sequences. Furthermore, we show that using

longer PINs (e.g., 6-PIN sequences compared to 4-PIN sequences) cannot diminish the possibil-

ity of leaking the PIN information from wearables regardless its greater password strength [3].

Future countermeasures may aim at camouflaging the sensitive sensor data transmitted from

wearables to host devices. For instance, a wearable can inject a certain type of noise to its sensor

data (e.g., quaternions and accelerations) so that the data cannot be used to derive fine-grained

hand movements while still effective for many common applications (e.g., activity recognition

and step counting). Moreover, more secure schemes can be designed to protect the access and

transmission of sensor data. That is, advanced encryption schemes are necessary to protect

the raw sensor readings in wireless communication, and the access to sensor data should be

regulated according to difference scenarios and applications by the wearable or its host device’s

operating system to avoid leakage.

3.10 Summary

In this work, we showed that the embedded sensors on wrist-worn wearable devices (i.e., smart-

watches and fitness trackers) can be exploited to discriminate mm-level distances of the user’s

fine-grained hand movements during key-entry activities, exposing the user to a serious secu-

rity breach. We presented a PIN-sequence inference framework to recover the user’s secret key

entries when the user accesses key-based security systems such as ATM keypads and regular

keyboards. The implemented system does not require any training or contextual information,

which makes it applicable in real world adversarial contexts. In particular, our system exploited
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the physics phenomenon and unique patterns of key entry activities from the sensor data and de-

veloped distance estimation and slope-based moving direction derivation schemes to capture the

small hand movement between two consecutive keys. Our system further applied the Backward

PIN-sequence Inference algorithm to reveal the user’s complete PIN sequence, leveraging both

the spatial and temporal constraints of the key entry to achieve a high success rate. Extensive

experiments involving 20 volunteers on three different types of keypads over 13 months showed

that our system can achieve 80% accuracy in revealing the user’s PIN sequences with one try,

and over a 90% success rate within three tries, while recovering the hand movement trajectory

has a mean error as low as 6mm. Such a technique kept a consistent performance in revealing

long PIN sequences (e.g., 6-PIN sequences) and could still achieve a very high accuracy under

very low sampling rate of embedded sensors(e.g., 25Hz).



68

Chapter 4

Securing Voice Assistants using Wearable Devices

4.1 Background

In recent years, smart devices (e.g., Google Home and Amazon Alexa) have incorporated ad-

vanced speech recognition technologies that enable the devices to understand natural language

and take voice commands. By using voices as inputs, users can smoothly and conveniently

interact with their voice assistant (VA) systems to accomplish numerous daily tasks. In partic-

ular, such a convenient function has been quickly adopted by users and widely used in various

applications (e.g., playing music, managing calendar events, shopping online and controlling

smart home appliances). As a result, VA systems have already been widely used in various

scenarios, such as home, workplace and even public places.

While the VA systems bring immense flexibility and convenience to users, the highly sensitive

information collected by these systems could attract an adversary’s interests and put the user’s

privacy under high risks. For instance, the adversary can easily learn the user’s schedule such as

when to pick up his/her kid from daycare by asking the VA system “What is my schedule to pick

up my son”. Similarly, the user’s private travel schedule such as when to attend a conference can

also be easily revealed by requesting “Remind me which day to attend the Machine Learning

conference”. Therefore, both of the user’s family and personal sensitive information can be

obtained by simply asking one question. Furthermore, the adversary can even request the voice

assistant to execute commands that are against the user’s will. For example, the adversary

can place online orders through the user’s associated account without knowing the credit card

information by telling the VA system “Order a MacBook from Prime Now”, and then he can wait

at the user’s address to pick up the delivery. When the adversary can access the VA system at

home remotely (e.g., through a hacked Smart TV), he can even use the voice command “Unlock

the exterior door” to unlock the door’s smart locking system and gaining entry into the house.

Existing VA systems have deployed the voice biometric technology (at least to authenticate

“wake words”), however, this approach identifies users based on their unique acoustic features

solely in the audio domain (i.e., extracting information from the data captured by microphones).
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Figure 4.1: Proposed architecture of WearID.

The acoustic features are known to be vulnerable to impersonation attacks and replay attacks,

where the adversary can fool the systems by imitating the legitimate user’s voice [112] or via

a simple record-and-replay of the user’s voice commands [75]. Moreover, recent studies show

that hidden voice attacks and ultrasound attacks could access VA systems surreptitiously even

when the legitimate user is present near the VA device [43, 134].

To address the above vulnerabilities underlying the VA systems, we propose a wearable-

assisted VA user authentication system, WearID, which performs cross-domain authentication

on the user’s voice commands by leveraging the wearable device as an additional factor. This

is motivated by the wearable’s nature of being used as a security token [88] and the already

huge wearable user number (i.e., reaching 593 million in 2018 [109]). WearID utilizes the

low-cost motion sensors embedded in the user’s wearable device to capture the unique voice

characteristics in the vibration domain, which is compared to the traditional audio domain

voice captured by the VA device’s microphones to verify the voice commands from various audio

attacks. The flow of WearID is illustrated in Figure 4.1. Our system simply uses the regular wake

word (e.g., “OK Google”) to trigger the authentication process. The voice command is then

captured by the microphone of the VA system in the audio domain and the accelerometer of the

wearable device in the vibration domain, respectively. We develop a training-free algorithm to

perform the cross-domain comparison and the software processing component is deployed in the

VA system’s cloud service to process the sensor data for user authentication. If the similarity is

high, the system accepts the voice command as from the legitimate user. Otherwise, the system

rejects the voice command and sends a warning message to alert the user. Our solution can

be easily integrated into existing VA systems and wearable devices and does not need special
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hardware or modifications to VA systems. Moreover, our system verifies the user automatically

and does not require cumbersome user operations such as virtual buttons on wearables [53].

Recent studies show the initial success of using motion sensors on the smartphone to capture

the speaker’s voice. For instance, Gyrophone [85] presents that gyroscope can capture the

acoustic signals from an external loudspeaker and reveal the speaker information (e.g., gender

and identity). Accelword [135] uses the smartphone’s accelerometer to detect human voice

for wake word recognition. Speechless [33] identifies the condition of using the smartphone

motion sensor to capture sound: the shared hard surface between the external speaker and

the smartphone. However, implementing WearID in practical scenarios using motion sensors in

wearable devices to enhance the security of VA system is a challenging task. First, the vibration

domain information provided by the motion sensor and its unique acoustic characteristics remain

unclear. Second, the high-sampling-rate microphone data (e.g., 8kHz and 44.1kHz) and the low-

sampling-rate motion sensor data (e.g., 200Hz) are not directly comparable, the relationship

between two distinct sensing modalities must be determined for a reasonable comparison. Third,

the synchronization of the two data sets from totally different hardware is difficult. Fourth, the

proposed system should defend against various audible impersonation and replay attacks [112,

75] and inaudible attacks [43, 134].

Toward this end, we explore the feasibility of leveraging the wearable’s motion sensor to

harness the aerial voice vibrations corresponding to live human speech. To ensure reliable

cross-domain comparison, WearID develops a spectrogram-based method to convert the micro-

phone data into low frequency aliased signals, making it comparable to the real motion sensor

readings. We extensively study the unique response distance and characteristics of the mo-

tion sensors in wearable devices and identify the complex relationship between the two sensing

modalities to facilitate the data comparison. Our system is designed to maximize the usage of

motion sensors’ response in the frequency domain and focus on the acoustic signals with the

frequencies and amplitudes that are perceivable to motion sensors during the microphone spec-

trogram conversion. WearID leverages the VA system’s wake word to trigger the verification

process and start data collection on the VA and wearable devices simultaneously. To trigger

the data collection on the wearable device, WearID utilizes two alternative approaches based

on WiFi communication or accelerometer-based wake-word detection and coarsely synchronize

the two different sensing modalities. We develop a shift 2D-correlation method, which shifts

the spectrogram of the two sensing modalities’ readings within a short time window to reduce

the residual synchronization errors and obtains the maximum 2D correlation to describe the

cross-domain similarity. In addition, WearID calibrates the data to remove the vibration noises



71

(e.g., hand motions) and identify precise command sound segment during data preprocessing.

This proposed system eventually reveals the unique relationship between the two types of sig-

nals, which presents a voice command crossing two domains making it hard to be forged by

adversaries in various attacks including audible impersonation and replay attacks and inaudible

attacks.

Our Contributions:

• We find that human voices can be captured over the air by the motion sensors embedded in

wearable devices. This could serve as an additional domain (i.e., vibration domain) to the

original audio domain to verify the user and secure the VA system.

• We propose a unique cross-domain user verification system, WearId, which can be easily

integrated with the existing VA systems and wearable devices without making any hardware

modifications and requires minimum user effort.

• We leverage the motion sensor’s short response distance to voice to effectively prevent the

impersonation and replay sounds from accessing the wearable. We derive the unique spectro-

gram relationship between two sensing modalities (i.e., microphones and motion sensors) to

provide enhanced user verification using wearable devices.

• We conduct extensive experiments and user studies with different models of smartwatches

and participants, which result in 600 human voice segments. The results show that WearID

can authenticate user’s voice commands with 99.8% accuracy in the normal situation and

detect 97% of various impersonation and replay attacks with a low false negative rate of 2%.

When under the hidden voice and ultrasound attacks [134], WearID achieves close to 100%

accuracy of verifying the users.

4.2 Related Work

Audio-domain Voice Authentication and Security Issues. The traditional user authenti-

cation methods designed for voice access systems mainly extract each individual’s voice features

in the audio domain to identify users [126, 65, 63, 115, 42, 95]. Mel-Frequency Cepstral Co-

efficients (MFCCs) [87] and Spectral Subband Centroids (SSCs) [69] describe a voice’s timbre

and vocal-tract resonances and are widely used as unique voice features to distinguish users.

The modulation frequency [34] capturing formant and energy transition details of a voice sound

contains speaker-specific information for user identification. However, only relying on the audio-

domain features has been shown to be vulnerable to acoustic-based attacks. For example, an
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adversary can spoof the legitimate user to pass a voice authentication system by recording and

replaying a user’s voice sound [75]. Moreover, the adversary can study the user’s daily speech

to impersonate or synthesze the user’s voice to pass the voice authentication [112, 75, 54, 54].

WearID Versus Other Authentication Methods. To defend against the replay and im-

personation attacks, researchers show that advanced speaker models, Gaussian Mixture Model

and i-vector models [32, 62], and the speech features, relative phase shift and modulation fea-

tures [55, 131] could be used to secure the voice authentication systems. However, these solutions

solely use the features from the audio domain, which are still vulnerable to audio-based attacks

because the attackers could easily gain the knowledge of these features for forgery. Rather

than voice features, more researchers propose to determine the liveness of the sound source by

exploiting the physical features of human speeches [45, 137, 136]. Specifically, Chen et al. [45]

examine the unique magnetic field patterns generated by electro-acoustic transducers to detect

loudspeaker generated voice. VoiceLive [137] and VoiceGesture[136] detect the dynamic acous-

tic characteristics (via time-difference-of-arrival and Doppler shifts) that only occur in human

voices to identify liveness. However, these approaches are focusing on smartphone and require

much user effort to place the smartphone microphone close to mouth. Thus they are not appli-

cable to the VA systems (e.g., Google Home and Amazon Alexa) that allow users to give voice

commands freely from distance. Feng et al. [57] develop a user verification system for the VA

systems by capturing the user’s facial vibrations via an accelerometer embedded in a pair of

glasses. The vibrations are then compared with the voice recorded by the VA system to verify

whether the voice command is given by the legitimate user wearing the glasses. However, this

approach requires the user to wear a dedicated device with a high sampling-rate accelerometer

and needs to modify the VA device hardware.

Vibration-domain Voice Recognition. Recent studies show that the MEMS motion

sensors (e.g., accelerometer and gyroscope) are able to capture acoustic sounds [85, 135, 50].

Gyrophone [85] utilizes the gyroscope in a smartphone to recognize the speaker’s information

(e.g., gender and speaker identity) from the speech played by a loudspeaker. Accelword [135]

leverages the accelerometer in a smartphone rather than a microphone to recognize the user’s

wake word sound(e.g., Siri), which reduces the energy consumption. Speechless [33] further

analyzes the speech privacy leakage including the speech content from the smartphone motion

sensors under various attacking scenarios. These works require much effort to train the system

with motion sensor data and do not reveal the relationship between the sensor readings and

real voice recorded by microphones. Moreover, the acoustic impact to the motion sensors in

wearable devices attached to human bodies is still unexplored.
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4.3 Vulnerability of Voice Assistants

4.3.1 Potential Security Breaches in VA Systems

While VA systems bring great convenience and flexibility to users, the open nature of voice access

allows anyone to use VA systems via sounds, causing serious security breaches. We separate

commodity VA systems into two categories, the personal VA systems (integrated into mobile

devices) and the family/community shared VA systems (standalone VA devices). The details of

these two categories are provided in Section 4.3.2. In this work, we focus on the standalone VA

systems such as Google Home and Amazon Alexa, which can be deployed in home or office and

accessed by multiple people. We find that an adversary can obtain the user’s private information

(e.g., personal schedules and email contents) or conduct unauthorized operations (e.g., control

smart appliances like lights and doors) as introduced in Section 4.3.3.

4.3.2 Two Types of VA Systems

Based on whether the VA system is shared among a group of users or not, we divide the current

commodity VA systems into two types: Personal VA Systems are designed only for personal

use. They are usually integrated into users’ mobile devices, such as smartphones (e.g., Google

Now and Siri). Differently, Family/community Shared VA Systems are designed to be used in

the home or office environments. They are usually built into a stand-alone device and shared

by multiple users. The typical commodity products of this type are Amazon Alexa and Google

Home. The differences between these two types of VA systems are that the personal VA system

usually takes voice commands using the microphone of the user’s mobile device, which is in

the proximity to the user, while the family/community shared VA system is usually designed

to pick up users’ voice commands from a distance in a house or office. The family/community

shared VA systems are considered to be of higher risk because adversaries could easily access

the VA systems without being noticed. Thus, this type of VA system is the primary focus of

this work.

4.3.3 At-risk Information/Operations in VA Systems

VA systems are usually linked to the users’ personal information and even their family/community

information. When an adversary has access to the VA system, he can easily get the user’s pri-

vate information. For example, the adversary can get the user’s shopping information by asking

“What is in my shopping list?”. The adversary can also get the personal email content by
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saying “Read me my email”. Furthermore, the adversary can get the user’s family schedule via

the voice command ”List all events for January 1st”. Moreover, recent VA systems are usually

deployed as a hub connecting various smart appliances at home or in the office. In that case,

the adversary can use voice commands to control the smart appliances without permission. For

instance, an adversary can put the user in danger by saying “Unlock the exterior door”. Along

with this direction, we investigate the privacy-sensitive voice commands, related to issues of

private information leakage and unauthorized operations.

Limited Defense Methods in VA Systems. Most of the off-the-shelf VA systems require

a pre-defined voice command (known as wake word) to wake up the system, such as “Alexa”

and “OK Google”. These wake words could be used to verify the identity of the speaker by

comparing with the pre-recorded sounds in the user profile, which is built when the user enrolls

the system. However, such audio-based speaker verification in the current VA systems is not

trustworthy, because the acoustic features they depend on can be easily spoofed. To warn the

VA system users about this issue, Google Home particularly notes that “A similar voice might

be able to access this info, too” [26]. Furthermore, current VA systems can only verify users

based on the wake words, leaving the voice commands unprotected from the attacks. Thus

an adversary only needs to focus on attacking the wake words, which makes the attack much

easier. In addition, we find that the VA system stays in the listening mode for a long time (e.g.,

30 seconds for Google Home) to capture voice commands after being woken up. During this

time period, the VA system is defenseless to any adversary. Moreover, research shows that the

audio-based VA systems are vulnerable to various audio attacks, including imitation and replay

attacks.

4.3.4 Attack Model

We consider an adversary who is interested in obtaining the user’s private information or ex-

erting an unpermitted operation from the standalone VA device at office or home, which may

involve multiple users. We assume the adversary can not physically break the VA device, take

control of the VA cloud service or get the possession of the user’s wearable device. We also

assume that the VA user wears a wearable when using the VA system, which is normal given

the huge number of wearable device users [109]. We summarize the potential attacks in two

major categories:

Attack on User’s Absence. This type of attacks can only be launched without causing

notice when the user is away from the VA device, and an adversary needs to get close to the
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VA device:

• Random Attack. An adversary who does not know the user’s voice characteristics can try to

fool the VA system by using his own voice. Because the adversary only needs to attack the

single wake word, such attack still has high success rates.

• Impersonation Attack. An experienced adversary who knows the user’s voice characteristics

can attack the VA system by imitating the user’s voice. The adversary can also synthesize

the user’s voice by using an audio editing software and playback the synthesized sound via a

loudspeaker to launch the attack.

• Replay Attack. An adversary who has the opportunity to observe the user’s voice command

can use a microphone to record the it and play it back via a loudspeaker to fool the VA

system.

Co-location Attack. The type of attacks can still be launched surreptitiously even when

the user is present near the VA device:

• Hidden voice attack. An adversary may embed the recorded user’s voice commands into the

background of music or video streams or directly generate hidden voice commands according

to the knowledge of the underlying VA system [43]. The generated voice commands can be

recognized by VA systems but not perceptible to human. Moreover, an adversary can control

the volume or mute the VA device via hidden commands to avoid being noticed from the

audible reply.

• Ultrasound Attack. An adversary may modulate the recorded user’s voice commands onto

the ultrasound frequency band (i.e., ≥ 20KHz), and use such modulated sound to fool the

VA system. Although human ears can not hear the modulated voice commands, they can

still be recognized by existing VA systems due to the non-linearity of the microphone [134].

4.4 User Verification Design

4.4.1 Why Wearable? Why Motion Sensor?

Why Wearable? While the number of wearable users has reached half billion worldwide [109],

it is natural for us to leverage such pervasive wearable devices in our design, which could benefit

a huge number of users without causing an additional cost. Moreover, the wearable’s nature of

being usually worn on the user body and rarely left unattended make it eligible for a trusted
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device. For example, people have been using the ID wristband for years [16], and the wearable

devices have been considered a valid security token in various payment systems [88]. Many

recent studies further develop continuous authentications on the wearable to guarantee the

security of using the wearable as a trusted ID [116].

Why Motion Sensors? Why not a Second Microphone? There are three reasons why

we choose motion sensors. First, a motion sensor provides a new way to examine acoustic

signals in the vibration domain, which captures the unique frequency and amplitude responses

caused by its hardware components. Compared to the approach using a second microphone to

verify the voice command in the same acoustic domain, our design crossing two domains reveals

more inherent signatures from the voice command. Thus, it can shield against more advanced

acoustic attacks, such as the ultrasound and hidden command attacks [38], which cannot be

prevented with a second microphone. Second, the low-frequency motion sensors require low

energy and less computation, which is favorable to the resource constraint wearable device,

while a microphone drains battery fast [135]. Third, most wearable devices are equipped with

motion sensors [72, 40] because of their design purpose to track fitness/activities, but many

wearables do not contain a microphone.

WearID versus Traditional Methods on Wearables. We compare WearID with three

traditional wearable-based solutions, a virtual button [53] on the wearable device to access VA

systems, proximity detection using Bluetooth/WiFi and liveness detection [45]. All the three

approaches have no or limited capability to verify the voice source and thus suffer from various

acoustic attacks such as hidden command attack and ultrasound attack. Furthermore, the

liveness detection requires the user’s mouth near the VA device and a virtual button to access

the VA system. It requires the user to unlock the wearable, find the App (or button), press

the button and wait. Differently, WearID verifies the voice commands across two domains and

requires low user effort.

4.4.2 Acoustic Response in Vibration Domain

Distinct Acoustic Characteristics. The foundation of our cross-domain user authentication

is using the low-cost accelerometers in wearable devices to capture human voices with distinct

acoustic characteristics. Although the accelerometers in wearable devices are not designed

for capturing sounds, the mechanism of capturing accelerations is based on the Micro Electro

Mechanical System (MEMS) technology [113], which is the same technology that enables tradi-

tional microphones to capture sounds. More specific, the microphone uses the vibrations of its

membrane to capture sounds [123, 59], while the accelerometer uses the subtle movements of
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Figure 4.2: Experiment setup for feasibility study and the accelerometer response distance test.

its inertial mass to capture accelerations. Therefore, when there is a sound source close to an

accelerometer, the accelerometer can also capture the sounds by measuring the movements of its

inertial mass resulted from the sound pressures. However, due to different MEMS implemented

in the accelerometer and microphone, the accelerometer captures the unique amplitudes and

frequencies of the sounds, which are distinct from those captured by the microphone.

To study the feasibility of using the accelerometers on wearable devices to capture distinct

characteristics of sounds, we conduct an experiment using the setup illustrated in Figure 4.2

(a). Specifically, we play an audio signal that sweeps from 0Hz∼ 22kHz by using a Logitech

loudspeaker and use the accelerometer on a wearable device (i.e., Huawei Watch 2) and a

microphone to record the sound. As shown in Figure 4.4, we find that the accelerometer

can capture the sound frequency between 400Hz and 3200Hz, whereas the microphone can

capture the sound frequency between 80Hz and 15kHz. Although the accelerometer captures a

shorter range of sound compared to the microphone, it is sufficient to cover the major human

voice frequencies (i.e., 1000Hz∼ 4000Hz) [14]. Furthermore, we find that the responses of the

accelerometer and microphone to the same frequencies are different in the amplitudes, indicating

the accelerometer captures distinct characteristics of the sound compared to the microphone.

Aliased Signal. Moreover, we find that the audio signals captured by the accelerometer are

aliased. The signal aliasing is a phenomenon when the frequency components shift to a new

frequency point and overlap at that frequency [85]. Figure 4.5 compares the spectrograms

(introduced in Section 4.5.1) of the microphone and the accelerometer under a single chirp

sound, where the accelerometer’s spectrogram shows a “Zigzag” curve. This indicates that

the acoustic response of accelerometers at a single frequency could correspond to multiple
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Figure 4.4: Responses of the microphone and the accelerometer to a chirp from 0Hz to 22kHz
(in time-domain amplitude).

frequencies of the sound. If these frequencies appear at the same time, their resulted responses

would be overlapped (i.e., aliased). This is because accelerometers usually do not contain a

low-pass filter between the amplifier and the analog-digital converter (shown in Figure 5.1) to

set the frequency limit to its digitization, as the microphone does. Thus, the sounds when

sampled by the low sampling rate accelerometer would generate aliased signals due to violating

Nyquist Sampling Theorem [91]. Particularly, we model the relationship between the aliased

accelerometer signal and the original audio signal as:

falias = |f −Nfs|, N ∈ Z, (4.1)

where falias, f and fs denotes the aliasing signal frequency, original audio signal frequency

and sampling rate of the accelerometer. We discuss more about this relationship based on a

single tone signal in Appendix Section ?? and show an example in Figure ??. Figure 4.5 (b) also

suggests that when using the accelerometer to record the human voice, the accelerometer data is

the combination of multiple aliasing signals of higher-frequency voice signals, which is very hard

to interpret. Thus, one major task of this work is to explore the complex relationship between

the microphone data and the accelerometer data to facilitate the cross-domain comparison.
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Short Response Distance. We also test the capability of the wearable’s accelerometer on

picking up voice under various distances. We play a recorded voice command (i.e., ”one”) with

the fixed volume using a loudspeaker as shown in Figure 4.2 (a) and utilize the smartwatch LG

Urbane W150 to record the sound under distances from 5cm to 35cm. In Figure 4.2 (b), we

can observe that the amplitude response of accelerometer decreases with the distance, and over

the distance of 25cm, the responses can be barely observed. Such short response distance of

the accelerometer can further assist to shield against many long-distance acoustic attacks.

4.4.3 System Purpose and Challenges

Our system checks whether the legitimate user is the voice source when his/her voice commands

are received by the VA system. The basic idea is to compare the command sound across the

audio domain (i.e., via the VA device’s microphone) and the vibration domain (i.e., via the

motion sensor of the user’s wearable). If the command sound matches across the two domains,

the voice command is verified to come from the legitimate user (i.e., owner of the wearable

device). Existing VA systems only focus on verifying wake words and neglect the protection of

more sensitive voice commands, which opens more opportunities to adversaries. In comparison,

our system requires confirming whether the voice commands come from the right user. There

are many challenges to design such a system: 1) It is challenging to match the command sound

from the sensors working in two different domains, which exhibit distinct response characteristics

and have a considerable gap in sampling rates (e.g., 8000Hz versus 200Hz). When re-sampling

to fill such gap, a slight noise in the data can be amplified to greatly impact the comparison

results. More discussion about the difficulties of such cross-domain comparison are presented

in Appendix ??; 2) It is unknown whether the motion sensors on wearables provide sufficient

information to characterize human voice sounds, given their low fidelity and design purpose of

capturing motion instead of sound; 3) How to trigger and synchronize the authentication process

on the VA device and the wearable device need to be explored; 4) The proposed authentication

system should defend against various attacks regardless the user’s presence or absence to the

VA device.

4.4.4 System Flow

Toward this end, we develop a novel VA system, WearID, which verifies the authenticity of voice

commands through capturing the user’s voice from the vibration and audio domains. Figure 5.2

illustrates the flow of WearID. Our system exploits the Audio Domain Data Collection and
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Figure 4.5: Spectrogram of the frequency responses at the microphone and the accelerometer
under a chirp signal (500Hz ∼ 1000Hz).

the Vibration Domain Data Collection to collect the microphone data from VA device and

accelerometer data from the wearable, which describe the user’s voice interaction with the

VA system in two different domains. Coarse-grained Synchronization aims at triggering the

motion sensors to record the voice commands at the right time (i.e., after the wake word)

and provides coarse synchronization between the two domain data. The insight is that the

wake word for initiating the VA device could be utilized to trigger the data collection on both

devices. We propose two alternative approaches to achieve the coarse-grained synchronization.

The WiFi Communication-based approach only requires the VA device to detect the wake word

and trigger the wearable to start data collection through the WiFi communication when both

devices are in the same WiFi network [93]. We note that emerging wearables are in a trend of

having standalone WiFi modules that can connect to WiFi networks directly. In the case of

wearables not having WiFi modules, they still can connect to WiFi networks through the paired

smartphones. The alternative approach Parallel Wake-word Detection-based approach uses the

motion sensor in the wearable device to detect the wake word independently based on voice

recognition in vibration domain. To achieve this, WearID reuses the motion sensor data from

the ongoing fitness tracking App, which continuously counts the user’s walking steps. After the

synchronization, the wearable and VA device start to collect the accelerometer and microphone

readings respectively for the voice command. The data will be uploaded to a cloud server that

is running our processing algorithm to compare the cross-domain data for user authentication.

WearID exploits Vibration Domain Feature Derivation and Audio Domain Feature Deriva-

tion to derive reliable time-frequency features from the data collected by the wearable’s motion

sensor and the VA device’s microphone, respectively. The derived features are converted to
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Figure 4.6: User verification overview.

comparable spectrograms based on a complicated unique relationship between the audio and

vibration domains. The Correlation-based Legitimate User Verification calculates the similarity

between the derived spectrograms for user verification.

In particular, the Vibration Domain Feature Derivation removes the mechanical noise (e.g.,

due to hand movements) from the motion sensor data by using a high-pass filter and extracts

the voice command segmented from the motion sensor readings by examining the moving vari-

ances. The two-dimension time-frequency description of signal, spectrogram, is then derived

from the identified motion sensor segment. Similarly, the Audio Domain Feature Derivation

pre-process the microphone data to remove the acoustic noise and identify the command sound

segment, which is utilized to derive the spectrogram. The next is to convert the microphone

spectrogram to the low-frequency form comparable to the motion sensor and maximize the
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Figure 4.7: The time-domain correlation between the microphone data and motion sensor, which
are resampled to the same sampling rate level (Illustrated with 10 words on Amazon Echo and
Huawei watch 2).

intersection of the two distinct sensing modalities’ acoustic responses. This is done by the

Spectrogram-based Frequency Conversion and the Frequency Selection and Amplitude Selection

, while the later guides the conversion according to the identified unique acoustic character-

istics of motion sensor. The Correlation-based Legitimate User Verification first performs the

Spectrogram Normalization to normalize the time lengths and magnitudes of the spectrogram

in two domains. Shift 2D Correlation-based Similarity Calculate computes the 2D-correlation

between the spectrograms to check the similarity and shift one spectrogram over time during

calculation to address the synchronization errors. The resulted maximum 2D-correlation coef-

ficient is compared with a threshold to determine whether the voice command received by the

VA device is from the legitimate user (i.e., wearable owner).

4.5 Prevent Privacy Leakage from Voice Assistant Attacks

Different from the microphone, the accelerometer shows its unique characteristics when respond-

ing to sounds. In order to match the voice commands captured by the two different sensing

modalities to verify the user, our basic idea is to convert the high-frequency microphone data

into the low-frequency data that describes the ”equivalent” acoustic responses to the accelerom-

eter. In this section, we introduce our approaches to exploit the complex relationship between

the two domains to verify the voice command.
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4.5.1 Cross-domain Voice Command Comparison

Difficulty of Comparing Microphone Data with Motion Sensor Data. Figure 4.7

illustrates the difficulty of comparing the microphone data with the motion sensor data, where

a participant speaks ten words to both a microphone and a accelerometer, and both data are

re-sampled to the same sampling rate for similarity comparison. Particularly, Figure 4.7 (a)

shows the time-domain correlation coefficient between the microphone recorded sound (i.e., X

axis) and motion sensor data (i.e., Y axis) by cross-comparing ten words. We observe that

the correlations at the diagonal (i.e., same word sound) and non-diagonal (i.e., different word

sounds) are indistinguishable. The results indicate that the re-sampling technique and the time-

domain analysis are insufficient to address the similarity comparison of the two different sensing

modalities. Figure 4.7(b), CDF of the correlation coefficients, further depicts the challenge of

matching the sound across the two domains, where the sound of the same word and those of

different words all show low correlation values (i.e., less than 0.1). Thus, we need to investigate

the inherent unique relationship between the two sensing modalities to facilitate their similarity

comparison.

Spectrogram Derivation. As the time-domain analysis is shown to be limited to describe

the complex relationship between the high frequency microphone and the low-frequency motion

sensor data (Appendix ??), we resort to the time-frequency analysis and derive the spectrogram

(i.e., two-dimensional representation of the signal) to analyze their unique responses to sound.

Particularly, we compute the Discrete Time Short Time Fourier Transform (DT-STFT) of

the microphone/accelerometer readings x(n) using a sliding window function as expressed in

equation 4.2.

DTSTFT (m,ω) =

m+N−1∑

n=m

x(n)w(n −m)e−jωn, (4.2)

where m and ω are the time index and frequency index of the two dimension signal description,

w(n) is a window function, and N is the DT-STFT size of the data in the sliding window (e.g.,

2048 for microphone data and 64 for accelerometer readings). We then compute the magnitude

squared of the DT-STFT P (m,ω) = |DTSTFT (m,ω)|2, which is the power spectrum at time

m. Next, we slide the window by step of size p and obtain the spectrogram, the time series of

the squared DT-STFT S = [P (0, ω), ..., P (M−N
p

, ω)].

Spectrogram-based Frequency Conversion. To convert the spectrogram of high-frequency
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Figure 4.8: Converting the microphone data of a frequency chirp (0 ∼ 4KHz) into the low
frequency data based on spectrogram.

microphone data to the low-frequency one that is comparable to the accelerometer spectro-

gram, we develop a spectrogram-based frequency conversion method. The high-to-low fre-

quency conversion takes as input the microphone spectrogram point Pmic(tn, ωm) and cal-

culates its new position (tn, ωw) in the converted low-frequency spectrogram. The original

microphone frequency point ωm is then mapped to the low-frequency point ωw based on Equa-

tion 4.5, while the time point is unchanged. The resulted new spectrogram is computed as

P̂mic(tn, ωw) =
∑inf

n=− inf Pmic(tn, win(|ωm+n×ωws|)), where win() is a window function with

non-zero value for [0, ωws] and ωws is the sampling frequency of accelerometer. This new spec-

trogram reflects the acoustic responses of accelerometer under the same voice command in the

microphone data. As shown in Figure 4.5(b), we can generate the similar “accelerometer” spec-

troram given a single frequency chirp in Figure 4.5(a). Due to the complexity of human voice, we

study the unique characteristics of accelerometer for generating more “precise” low-frequency

spectrogram.

Frequency and Amplitude Selection. Except the low sampling rate, the accelerometer’s

sensor structure, the vibrations of other electric components in the wearable device and the low

sensor fidelity all cause the accelerometer to respond to sounds differently from a microphone.

In particular, these factors cause the accelerometer to subdue some frequencies while in favor

of responding to other frequencies with higher amplitudes. Moreover, being not dedicated for

recording sounds, the accelerometer shows lower sensitivity to sounds and some small volume
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Figure 4.9: Comparison of the accelerometer spectrogram with the converted microphone spec-
trogram under ”Alexa”).

sounds may not result in readings in the accelerometer but can be easily recorded by micro-

phones. To reveal the complex relationship between the two sensing modalities when recording

sounds, we compare the accelerometer’s spectrogram with the converted low-frequency micro-

phone spectrogram for every frequency point of a chirp signal. In particular, we extract the

maximum amplitude on each spectrum (i.e., column of the spectrum) at every time index and

obtain a clear frequency sweeping curve for the two sensing modalities as shown in Figure 4.8.

We observe that the accelerometer only responds to a small frequency range (700Hz - 3300Hz)

clearly (i.e., blue zigzag curve). Moreover, only for this frequency range, the two sensing modal-

ities’ acoustic responses match well. Besides frequency characteristics, we also analyze the

amplitude of the sound that could generate a response on the wearable’s accelerometer. In

particular, we find that when the sound is greater than 70dB, the sound can leave obvious

readings on the wearable, which is consistent with the observations in Accelword [135]. There-

fore, in order to facilitate the similarity comparison between the two sensing modalities, wearID

converts the microphone data to the low frequency data as well as following the frequency and

amplitude characteristics of the accelerometer, which maximize their acoustic response inter-

sections. Figure 4.9(b) illustrates an example of the converted microphone spectrogram for the

word ”Alexa”, which shows an ”equivalent” low frequency form as that of the accelerometer in

Figure 4.9 (a).

Spectrogram-based Conversion Algorithm. We develop the spectrogram-based con-

version algorithm, which integrates the spectrogram-based frequency conversion with the fre-

quency and amplitude selection. The algorithm details are introduced in Appendix Algorithm 1,

the transformation algorithm takes microphone spectrogram Smic and the sampling rate of the
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Algorithm 1 Spectrogram-based Conversion Algorithm

function Conversion(Smic)
2: Input: Smic-original microphone spectrogram

fws-sampling rate of accelerometer
4: Output: ˆSmic-converted microphone spectrogram

| ˆSmic = zeros(T, F )|, ωws = 2π × fws

6: for t = 1 : T do

for fmic = 700 : 3300 do

8: // Frequency selection
for Nshift = −10 : 10 do

10: fw = |fmic −Nshift × fws|
if |Smic(tn, fm)| > 70dB & fw ≤ fs & fw > 0 then

12: // Amplitude selection
ˆSmic(tn, fw) = ˆSmic(tn, fw) + |Smic(tn, fm)|

14: // Spectrogram-based frequency conversion
end if

16: end for

end for

18: end for

end function

accelerometer fws as input and calculates the new spectrogram ˆSmic that locates within the

low-frequency range (e.g., 0 − 200Hz) as the output. Specifically, the algorithm only selects

the power spectrum point within frequency 700Hz to 3300Hz and with the magnitudes greater

than 70dB for conversion. Spectrogram-based frequency conversion is then performed to the

selected spectrogram points based on equation 4.1. If multiple spectrogram points are mapped

to the same point in the new spectrogram, their magnitudes are added together.

4.5.2 Legitimate User Verification

Spectrogram Normalization. The scales of amplitude are greatly different in accelerom-

eter and microphone readings. Therefore, we develop the 2D-interpolation scheme and the

2D-normalization scheme to normalize the length and magnitude of the two spectrograms. In

particular, the 2D-interpolation scheme performs row-based interpolation to align the two spec-

trograms. The 2D-normalization resolves the scale differences of the two spectrograms and

conduct column-based normalization using Equation 4.3:

Snorm(tn, wm) =
S(tn, wm)− Smin(tn)

Smax(tn)− Smin(tn)
, (4.3)

where S(tn, wm) is a power spectrum point at time tn.

Cross-domain Comparison based on Shift 2D-Correlation. Next, we match the

voice commands across the audio domain and the vibration domain and calculate the 2D-

correlation coefficient between the microphone and accelerometer spectrograms using equation:

Corr(Smic, Sacc) = A×B√
A2×B2

, where A, B represent two spectrogram matrices. Note that the

microphone data and the accelerometer data are coarsely synchronized in Section 4.5.3. To

further reduce the synchronization error and improve the similarity comparison accuracy, we
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Figure 4.10: The spectrogram correlation based on our method.

perform the Shift 2D-Correlation during the correlation calculation between the two domain

spectrograms. In particular, we fix the microphone spectrogram and shift the spectrogram of

accelerometer one index by one index along time axis to calculate the similarity. More specifi-

cally, we use a sliding window with a fixed size and shift it to left or right on the accelerometer’s

spectrogram within time T (e.g., 500ms). The 2D-correlation is calculated for each shift and

the maximum 2D-correlation coefficient is found as the similarity score of the two domain in-

formation. A threshold-based method is then applied to examine the similarity score and verify

the user. Figure 4.10(a) illustrates the similarity comparison result of the above method to dif-

ferentiate 20 different words. Clearly, the diagonal comparisons (i.e., same words) show much

higher correlation coefficients. Figure 4.10(b) further confirms the efficiency of our method

to differentiate a user’s 20 voice commands (i.e., sentences), which are distinguished better,

because sentences contains much more voice information than single words.

4.5.3 Data Preprocessing

Coarse-grained Synchronization

Coarse-grained synchronization triggers the VA device and wearable to collect the voice com-

mand and coarsely synchronize the two devices. The existing VA system requires the user to

speak a wake word such as ”OK Google” and ”Alexa” to wake up the VA device before taking

any voice commands. WearID integrates such method to trigger the verification process and

start the data collection on both devices. In particular, we develop two alternative approaches,

the WiFi communication-based method and the parallel wake-word detection method. 1) WiFi

communication-based method leverages the existing setting where the wearable device and the
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VA device are connected to the same WiFi network [93]. The waked VA device sends a mes-

sage through the connected WiFi network to the wearable device to trigger its data collection.

While standalone wearables directly receive WiFi packets, the wearables that work with a paired

smartphone can receive the message relayed by the smartphone’s Bluetooth. In addition, the

time lag between the microphone and accelerometer data is usually less than 40ms, which is

mainly caused by the network delay and the system time differences. Both devices’ readings

under the WiFi communication-based method are shown in Appendix Figure 4.11(a) and (b),

which are coarsely synchronized. 2) As an alternative method, the parallel wake-word detection

method requires the wearable to detect the wake word in parallel with the VA device. The

wearable reuses the accelerometer data from an ongoing fitness APP to recognize the wake

word. Our study shows that a wake word can be recognized based on accelerometer from 10

words with 83% accuracy by Random Forest. The wake-word detection on the wearable can be

further improved if assisted with a hand motion detection scheme.

Noise Removal

We note that the accelerometer data on the wearable contains the hand movement noises as

shown in Figure 4.11(b). While these mechanical noises are in low-frequency compared to

acoustic signals, we apply a high-pass filter (e.g., cutoff frequency 30Hz) to remove the noise

and obtain the accelerometer data that describes the voice command more precisely as shown in

Figure 4.11(c). Besides, to obtain the microphone data that precisely captures voice command

and remove the acoustic noises, we apply a bandpass filter (e.g., 300− 4000Hz) to filter out the

acoustic sounds beyond the human voice frequency range.

Figure 4.11(a) and (b) show the accelerometer readings of the WiFi communication-based

method, where the accelerometer starts recording after receiving the waked VA device’s message.

We can find that the data on the microphone and the accelerometer are roughly synchronized. In

addition, WearID exploits a high-pass filter to reduce the noise introduced by hand movements or

other mechanical vibrations. The resulted accelerometer data (Figure 4.11(c)) shows a slightly

similar shape to the microphone data (Figure 4.11(a)).

Voice Command Segmentation

We next search for the starting point and ending point of the voice command on both the

microphone and the accelerometer data to identify the voice command segments respectively.

In particular, we analyze the moving variance of the data amplitudes and extract the envelope

that covers the voice command. We then apply a threshold-based method to search for the
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Figure 4.11: Synchronization of the microphone data (8000Hz) and accelerometer data (200Hz)
and the hand vibration noise removal from accelerometer data.

starting/ending points. The voice command segmentation on the microphone data is easy

and accurate. But on the accelerometer, the segmentation errors may be large due to its low

sensitivity to sound and low sampling rate. To address this issue, we apply the microphone

segmentation results to assist the voice command segmentation on the accelerometer. Because

both data are coarsely synchronized, we search for the starting point on accelerometer within a

window WT after the starting point of the microphone segment. We then calculate the ending

point on accelerometer data based on the microphone segment length.

4.6 Performance Evaluation

4.6.1 Experimental Methodology

Device. To evaluate WearID, two smartwatch models, Huawei 2 sport (100Hz) and LG W150

(200Hz) are involved to collect accelerometer readings. The accelerometer specifications of the

two wearable devices are listed in Table 4.1. The two smartwatches run Android Wear OS 2.0

with Bluetooth LE. Although the sampling rate of the accelerometers could reach 4000Hz, the

vendors constrain the sampling frequencies to be under 200Hz to ensure low power consumption.

We record the voice commands leveraging a typical VA device, Google Home, which supports
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Table 4.1: The specifications of the accelerometers in the tested wearable devices.

Model Accelerometer User Programmable Range Sensor sampling rate System sampling rate

LG Urbane watch 150 Invensense M6515 ±2g,±4g,±8g,±16g 4-4000Hz 200Hz

Huawei watch 2 sport STMicroelectronics LSM6DS3 ±2g,±4g,±8g,±16g 4-1600Hz 100Hz

8 ∼ 96kHz audio recording. We use a Logitech S120 speaker [79] to conduct replay attacks

and hidden voice commands. To perform ultrasound attacks, we use a function generator (i.e.,

Keysight Technologies 33509B [111]) and a tweeter speaker [56] which could generate sounds

with frequency from 2kHz to 25kHz.

Experimental Setup. We evaluate the performance of WearID in a typical office envi-

ronment, where regular ambient noises (e.g., air condition, people walking) are presented. The

participant speaks voice commands to a VA system placed 1 meter way while wearing the wear-

able device. Because the direction of the sound wave hitting the wearable affects the vibration

energy received by the accelerometer, we test two typical directions with the wearable device

being held horizontally or vertically to the user’s mouth, which covers the best and worst cases.

Note that the users can hold the wearable in any way to use WearID. To imitate the hidden

voice commands and the ultrasound attack, we use the experimental setup as shown in Fig-

ure 4.2. We examine an extreme case where the loud speaker and the tweeter speaker are placed

at 25cm distance to the wearable, which is hard to achieve in practical attacking scenario.

Data Collection. We involve 10 participants to test WearID under the normal situation

and various attacks over a six-month period. The participants are asked to speak 20 repre-

sentative voice command sentences as listed in Table 4.2 while wearing different wearables.

From each participant, 80 voice command sound samples are collected. Besides, 100 hidden

voice commands of 10 types and are utilized to evaluate WearID against hidden voice com-

mand attack [21], and a frequency sweeping signal from 15kHz ∼ 25kHz is used to evaluate

WearID against ultrasound attack. In total, 1000 data samples are collected from microphone

and motion sensor respectively.

Evaluation Metrics. We define the following five evaluation metrics: true positive rate

(TPR) is the percentage of legitimate voice commands being correctly verified; false positive rate

(FPR) is the percentage of the adversaries’ voice commands that pass the verification system;

receiver operating characteristics (ROC) curve is generated by plotting the TPR against the

FPR under thresholds from 0 to 1 with a step of 0.01; False Negative Rate (FNR) equaling to

1− TPR is the percentage of legitimate users’ commands being incorrectly rejected.
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Table 4.2: Example of privacy leakages from voice assistant systems.

Security issues Category Voice Command Examples Words

Privacy leakage

Event schedule

”What’s on my calendar for tomorrow” 6

”Where is my next appointment” 5

”List all events for January 1st” 6

”How much is a round-trip flight to New York” 9

Reminder

”Remember that my password is ’money’” 6

”What is my password” 4

”Add ’go to the grocery store’ to my to-do list” 10

Shopping account information
”What’s on my shopping list” 5

”Track my order” 3

Contact
”Read me my email” 4

”Call my mother” 3

Unauthorized operation

Neighborhood location
”Find me a Italian near my home” 7

”What is the traffic to my home” 7

Unauthorized purchase
”Add paper towels to my cart” 6

”Order all items in my cart” 6

Voice assistant

”Answer the call” 3

”Delete all my reminders” 4

”Play my favorite music on Spotify” 6

Access smart home devices
”Show the living room camera” 5

”Clear all Bluetooth devices” 4

4.6.2 Normal Situation

We first evaluate WearID in the normal situation when the user accesses the VA device while

wearing a wearable and the attacker does not present. The VA device records the user’s voice

command sound and the wearable device records the same sound simultaneously if it is worn by

the user. But if the wearable is not worn by the user, it only records the environmental noises

(e.g., acoustic noises and mechanical noises), because the wearable is not presented. The red

curves in Figure 4.12(a) and (b) present the ROC curve of WearID to verify the legitimate users

using Huawei watch 2 under the normal situation when the user uses the wearable in two typical

ways. In particular, WearID achieves 99.8% TPR and 0% FPR to recognize the legitimate users

with Huawei watch 2 for both holding ways. The red curves in Figure 4.13(a) and (b) shows

the ROC obtained by LG W150 smartwatch. We find that WearID recognizes 99.6% legitimate

users’ commands for both holding ways while FPR is 0%. The false negative rate in the normal

situation for both smartwatches is 0.02% ∼ 0.04%, which indicates that WearID is robust and

accurate to support the users’ daily usage of the VA device.

4.6.3 Attack on User’s Absence

When the user is not present to the VA system, an adversary can reach to the VA device and per-

form a random attack or more sophisticated impersonate/replay attacks. During such attacks,
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Figure 4.12: Average ROC curve of verifying the user using Huawei watch 2 under normal
situation, random attack and impersonate/replay attacks.
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Figure 4.13: Average ROC curve of verifying the user using LG Urban W150 under normal
situation, random attack and impersonate/replay attacks.

the VA device’s microphone picks up the attacking sound and the legitimate user’s wearable,

while in a different place with the user, may record the owner’s sound and the environmental

noises.

Differentiating People’s Voices.

We first evaluate WearID’s capability to differentiate people’s command sounds across two do-

mains, because when the user is absent with his/her wearable, the voice sounds received by the

VA device may be different from that on the wearable. We consider an extreme case where

we ask participants to speak the same voice commands to either the VA device or the wear-

able and evaluate WearID’s capability to differentiate people’s voices when fixing the speech
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(a) Huawei watch 2 (b) LG Urban W150

Figure 4.14: Confusion matrix for distinguishing people’s voices based on the same commands
with horizontal holding way.
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(a) Huawei watch 2 (b) LG Urban W150

Figure 4.15: Confusion matrix for distinguishing people’s voices based on the same commands
with vertical holding way.

content. In particular, each participant’s accelerometer data is compared with other partici-

pants’ microphone data to calculate speech similarity. Figure 4.14 shows the confusion matrix

to differentiate people’s voices between the VA device’s microphone and the two smartwatches

when they are held horizontally. We observe that WearID can accurately detect voice sounds

received by the microphone and accelerometer to be from the same or different people. In

particular, Huawei Watch 2 shows an average of 96% and the LG Urban W150 achieves 86%

accuracy. Figure 4.15 further confirms our observation by showing the results of differentiating

people’s voice across two domains when the two smartwatches are held vertically. Specifically,

Huawei Watch 2 obtain 91% average accuracy while LG Urban W150 achieves 94% accuracy.

The results indicate that even under such extreme cases when people speak the same command,

WearID can distinguish them correctly.
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Figure 4.16: The frequency responses of the VA system and the wearables (i.e., microphone,
Huawei watch 2, LG Urban W150 from left to right) under ultrasound attacks.

Against Random Attack

Under the random attack, an adversary does not have prior information about the user’s voice

sound and try to use his/her own voice to bypass the VA system. Since the user is absent from

the VA system, the voice sound received by the user’s wearable (e.g., the user’s voice sound)

would be different from that recorded by the VA system. To evaluate the performance of WearID

under random voice attacks, we let each participant alternatively performs as the legitimate user

and be attacked by other participants. The wearable records the user’s voice sound and the

VA system’s microphone records the adversaries’ sound. Figure 4.12 and Figure 4.13 show the

average ROC curves of WearID (e.g., blue) to verify the users with two different wearables under

the two typical holding ways. We observe that WearID can verify the user and reject random

attacks with high accuracy. In particular, the AUCs for Huawei watch 2 and LG Urbane W150

are 94.46% and 88.85% under the horizontal holding way. In addition, the vertical holding way

shows slightly higher AUC, which are 96.81% and 91.34% for Huawei watch 2 and LG Urbane

W150 respectively. Moreover, given a FPR of 5%, WearID can achieve high TPRs of 95.21%

and 98.47% for Huawei watch 2 held in horizontal and vertical directions respectively. The

results indicate that WearID is effective to protect the VA system and verify the users with

high accuracy under random attack. Moreover, in the practical scenarios, a legitimate user

does not always speak and the wearable device usually records environmental noises. Thus the

performance under random attack would approach to the normal situation (i.e., red curves).

Against Impersonation and Replay/Synthesis Attack

We now consider the more sophisticated attacks on user’s absence, which imitate/synthesize or

just replay the legitimate user’s voice commands to break the VA system. Ideally, an adversary

could generate the voice sound which is exactly the same as the legitimate user. But the

wearable is associated with the absent user and out of the adversary’s control and it seldom
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happens when the two non-collocated devices (i.e., VA device and the wearable) receive the

exactly same voice sounds from two independent sources. Because the wearable may still be

possible to record the user’s voice but with other speech content, we evaluate WearID in a more

challenging scenario where the legitimate user’s voice sounds are directly used for the attacking

sounds of impersonation and replay attacks.

Figure 4.12 and Figure 4.13 show the average ROC curve (i.e., black curves) when verifying

the user under impersonation/replay attacks. We find that WearID successfully verify the user

by using both Huawei watch 2 and LG Urbane W150 under both horizontal and vertical holding

ways. In particular, WearID achieves 89.12% and 86.78% for Huawei Watch 2 and LG Urbane

W150 under horizontal holding way. The AUCs are 91.23% and 88.34% under vertical holding

way. For a FPR of 10%, WearID can obtain the TPRs of 91.25% and 93.29% when Huawei

watch 2 is held in horizontal and vertical directions. We find the performance of WearID under

impersonation and replay attacks are slightly lower than those obtained under random attacks.

This is because the adversary has obtained the additional knowledge about the user’s voice to

improve the attack. But WearID still effective on protecting the user’s privacy. Moreover, in

the practical scenarios, a legitimate user’s wearable device does not always records the user’s

voice sounds, which make the performance approaching to that under normal situation.

4.6.4 User Verification under Co-location Attack

Against Hidden Voice Command. Under hidden voice attack, an adversary hides the

recorded user voice sound into the noise sound, which is unintelligible to human but can be

interpreted as commands by the VA system devices [43]. The adversary then plays back such

noisy sound using a loudspeaker to control the VA system without causing the user’s notice.

In such scenario, both the VA system’s microphone and the user’s wearable receive the hidden

commands. Figure 4.17 depicts the CDFs of the 2D-correlations between the microphone data

and motion sensor data under hidden voice commands, where the loudspeaker is placed 25cm

away to the two wearables and the volume is set to the maximum. We observe that the 2D-

correlations between microphone and motion sensor are low for the hidden voice commands,

which can be differentiated well from the legitimate user’s voice commands. In particular, the

median of the 2D-correlation coefficients for the hidden voice commands is around 0 for Huawei

watch 2 and 0.05 for LG Urban W150. In comparison, the median 2D-correlation coefficients

for the legitimate user’s voice commands are around 0.5 for Huawei watch 2 and 0.4 for LG

Urban W150. The reason is that motion sensors on the wearable has short response distance

and unique response characteristics to sound. An adversary is hard to fool the system which is
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Figure 4.17: CDF of the cross-domain 2D correlations to distinguish the hidden voice commands
and the legitimate user’s voice commands.

developed based on verifying the sound from two domain information. The hidden voice attacks

can thus be defended.

Against Ultrasound Attack. Under the ultrasound attack, an adversary modulates the

recorded user voice command to an inaudible frequency and plays back it using an ultrasound

speaker. Such inaudible sounds can be recognized by the VA system but they are hardly heard

by the user [134]. In this scenario, both the VA’s microphone and the user’s wearable device is

exposed to this inaudible sound. We thus evaluate WearID to see whether the ultrasound could

leave similar responses on both devices. In particular, we use a function generator (i.e., Keysight

Technologies 33509B [111]) to generate a nearly inaudible chirp of 15kHz ∼ 25kHz and play the

chirp using a tweeter speaker [56], which is placed 25cm away from the wearable. Figure 4.16

shows the frequency responses of VA microphone and the two smartwatches’ accelerometers.

We can find that the microphone show responses from 15kHz 24kHz. But we do not observe

any responses on the two smartwatches. The experimental results show that the wearable’s

motion sensors could shield the VA system from ultrasound attacks.

4.7 Summary

In this paper, we present WearID, a wearable-assisted verification system for Voice Assistant

(VA) systems (e.g., Amazon Echo and Google Home). WearID verifies whether the voice com-

mand received by the VA system comes from the legitimate user based on examining the com-

mand sound recorded in two domains (i.e., audio and vibration). In particular, WearID com-

pares the voice command recorded by the VA device’s microphone with that of the legitimate
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user’s wearable motion sensor to calculate the cross-domain speech similarity. We show that the

motion sensors of the wearable have a short response distance to sounds and exhibit different re-

sponse characteristics from microphones. We further identify their complex relationship, which

is hard to forge in various audible and inaudible acoustic attacks such as replay attacks and

ultrasound attacks. Moreover, we develop spectrogram-based conversion method and shift 2D

correlation to facilitate the comparison of the voice commands across two domains under a huge

sampling rate gap (e.g., 8000Hz vs. 200Hz). WearID is easy to be deployed on the off-the-shelf

wearable devices and does not require any hardware changes to the VA systems. Extensive

experiments with two commodity smartwatches and 1000 commands show that WearID can

verify the command sound with 99.8% accuracy in the normal situation and detect 97% fake

voice commands under various audible and inaudible attacks.
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Chapter 5

Protecting Public Security Using Commodity Wi-Fi

Devices

5.1 Background

The portable dangerous objects such as lethal weapons, homemade bombs, and explosive chemi-

cals have posed an increasing threat to public security. In 2013, two homemade bombs detonated

near the finish line of the annual Boston Marathon, causing 3 people dead and estimated 264

injured. In 2017, a gunman opened fire on a crowd of concertgoers at Harvest music festival

on the Las Vegas Strip in Nevada, resulting in 58 people dead and 546 injured. In the above

terrorist attacks, it is easy for the attackers to hide dangerous objects in small baggage with-

out drawing any attention in public places. Due to the safety concerns following the recent

shooting at a Florida high school, which left 17 people dead in April 2018, this high school now

only allows the students to carry clear and transparent backpacks on campus [84]. But such

measures also infringe the privacy of students, and may not be effective on preventing future

attacks. To reduce such threats while preserving personal privacy, it is highly demanded of a

wide deployment for non-intrusive security checks at the public places (e.g., museums, theme

parks and schools).

Traditional in-baggage suspicious object detection involves either manual examination (e.g.,

setting up checkpoint at every entrance) or dedicated equipment (e.g., surveillance camera,

X-ray machine, ultra-wide-band scanner) [49, 114, 92] and incurs high cost and deployment

overhead, making them hard to scale. Recently, RF signals (e.g., WiFi and 60GHz radar)

have shown their great potential in many non-intrusive sensing applications. For example,

WiFi signals can be utilized to recognize human activities behind the wall [125] or perform

coarse-grained imaging [64]. The 60GHz radar can be utilized to differentiate the objects (but

cannot categorize the objects by material types) or perform imaging with two drones [133,

139]. However, these existing RF-based approaches involve high overhead by requiring a large

antenna array or specialized signals. When a target object is placed in RF environments, both

the object’s inner (i.e., material content) and external (i.e., dimension and shape) properties
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contribute to the change of the wireless signals. Although the existing work can detect, track

and image objects using RF signals, none of them separates the two influencing factors or applies

them to fine-grained sensing applications, such as material detection and shape imaging of the

small objects in baggage.

Intuitively, most dangerous objects such as weapons, homemade bombs and explosives, are

usually metal or liquid, which have significant interference (e.g., absorption, refraction and

reflection) to wireless signals, while baggage is usually made of fiber, plastics or paper that

allow wireless signals to pass through. Such different impacts to wireless signals suggest that

it is possible to use wireless signals for detecting and identifying suspicious objects hidden

in baggage. In this work, we leverage the fine-grained channel state information (CSI) that

is readily available in low-cost WiFi devices to detect and identify suspicious objects hidden

in baggage without intrusion (e.g., opening the bag). The basic idea is to examine the rich

information of CSI complex, which includes both amplitude and phase information of wireless

signals, to capture the various wireless interference caused by the materials and shapes of

objects. Our system can be easily deployed to many places that still have no pre-installed

security check infrastructures (e.g., airport) and require high-manpower to conduct security

check such as theme parks, museums, stadiums, metro/train stations and scenic locations (e.g.,

Time Square). It uses the commodity WiFi to enable a low-cost and easy-to-scale solution,

which provides the first-line of defense for detecting hidden suspicious objects. Our solution

is timely as it demonstrates the possibility to reuse the prevalent WiFi technology to perform

suspicious objects detection at every public area vulnerable to adversarial activities without

introducing the high-cost security-checking infrastructure. In order to ensure that no dangerous

item is carried through the entrances, our system requires to achieve low false negative rate of

suspicious object detection. We focus on detecting the in-baggage suspicious objects defined

as metal and liquid objects, which cover common dangerous items, and certain materials that

could be confused with the dangerous items.

In particular, to identify different materials, we exploit the WiFi signals transmitting through

or bypassing the object, which result in different characteristics (i.e., absorption, refraction and

reflection) in the CSI complex values from antennas and their differences. Additionally, we

extract the signal reflected by the object from CSI to estimate its shape (e.g., width and height)

or volume based on the finding that the strength of the reflected signal is proportional to the

reflection area of the object. Compared to existing work, our approach uniquely separates the

wireless interference caused by two influencing factors of objects (i.e., material and shape) by

exploiting different signal beams contained in the CSI complex. Our system only requires a
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WiFi device with 2 to 3 antennas and can be integrated into existing WiFi networks with low

costs and deployment efforts, making it more scalable and practical than the approaches using

dedicated instruments (e.g., X-ray and 60GHz radar).

A number of challenges need to be addressed to achieve the proposed system using off-

the-shelf WiFi. First, the measured CSI from WiFi signals can be affected by a set of object’s

physical properties (e.g., material, shape, size and position), thus it is difficult to distinguish the

different influences and identify the object’s material and shape separately. Second, WiFi signals

are not very suitable for object imaging due to its relative long wavelength comparing to the size

of the target objects, which causes strong diffraction resulting in low imaging resolution. Third,

detecting hidden objects in baggage needs to mitigate the effects of various types of bags. To

address these challenges, we develop two system approaches specially designed for separating

the refraction signals and the reflection signals from the CSI complex, and recognizing the

object’s material and shape, respectively. Our system eliminates the raw phase noise in CSI

and reconstruct the CSI complex, which can robustly capture the dominant interference caused

by material of suspicious objects even when the objects are hidden in the baggage. We also

derive the reflection channel from CSI complex, which enables us to estimate the object’s shape

and volume at a finer level using the long-wavelength WiFi signals.

We summarize the main contributions of this work as follows:

• We demonstrate that the readily available WiFi signals from low-cost devices can pene-

trate vision-blocked baggage and facilitate suspicious object detection and identification

without dedicated devices or signals.

• We exploit the rich information in CSI complex to detect suspicious in-baggage objects

and identify their categories (i.e., metal and liquid).

• We develop reflection-based risk level estimation method to determine the risk level of

suspicious objects based on the estimated volume for liquid and the shape imaging for

metal. We show that the pure reflection from the object can be extracted from the

imperfect CSI (affected by unpredicted shift) in the WiFi device without requiring large

antenna array or modifying the transmissions.

• Extensive experiments with 15 representative objects, 6 types of bags/boxes are conducted

over a 6-month period. We show that our system can achieve over 95% and 90% accuracy

for identifying the suspicious object and determining its material type and achieve an

average error of 16ml and 0.5cm for estimating liquid volume and metal object’s shape.
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5.2 Related Work

Recently, there have been increasing security concerns at many public scenarios (e.g., security

checkpoint of entrances) where object detection is urgently required. As traditional approaches,

the vision-based techniques [49, 122] use infrared or regular cameras to identify objects according

to their color, shape, texture, and temperature. These approaches, however, are sensitive to the

environmental light intensity and either require a clear line-of-sight (LOS) between the object

and cameras or require the target objects to have a relatively high temperature to be detected.

Moreover, a couple of studies adopt dedicated devices (e.g., [114, 58, 133]) to recognize

target objects when the LOS is blocked. For instance, X-ray imagery [114] and CT volumet-

ric imagery [58] have been used to obtain a 2D and 3D image of the baggage/parcel item

for dangerous objects (e.g., firearms) detection, respectively. RadarCat [133] uses Frequency

Modulated Continuous Wave (FMCW) radar operating in 60 GHz band to recognize differ-

ent objects. Ultra-wide band phased array radar can also be used to image objects by seeing

through the wall [92]. However, these approaches rely on expensive and specialized equipment,

which do not facilitate the wide deployment in practice. Recently, RF-based sensing has drawn

considerable attention. TagScan [120] deploys cheap RFID tags to identify the material type

and image the horizontal profile of a target, but it requires a specialized tag reader, and it is

not known whether it can be applied to in-baggage object detection. RF-Capture [30, 29] could

capture the human figure (i.e., a coarse skeleton) leveraging the reflected RF signals through a

wall with specialized devices, but it is dedicated for large human body and is questionable on

identifying the materials of small objects. Dinesh et.al. [37] aims to utilize everyday commodity

radios (i.e., smartphone) to detect and locate hidden objects leveraging the backscatter signal

measurements, but it is hard to separate the influence of the object’s material and size only

from backscatter signal.

Due to the prevalence of WiFi devices, a recent study [64] explores the feasibility of achieving

computational imaging by leveraging WiFi signals. The researchers operate Universal Software

Radio Peripheral (USRP) at 2.4 GHz band to image objects such as leather couches and metal

shapes. But this method requires a large antenna array and is not sufficient to identify objects in

a fine granularity manner, such as distinguishing the material of the objects. Furthermore, a set

of studies use WiFi signals to sense minute human body movements to recognize/track human

activities [125] and walking directions [128]. While these approaches mainly focus on exploiting

the changes of fine-grained WiFi measurements (i.e., Channel State Information (CSI)) to sense

human body movements, using WiFi signals to recognize small objects (e.g., water bottles,
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beverage cans, and knives) and different materials remains open.

In this work, we conduct the first study to explore the feasibility of using low-cost off-

the-shelf WiF devices to differentiate materials and types of the objects hidden in personal

luggage or package boxes, which involves more challenges such as the different small objects in

unknown positions of various bags or boxes. By exploring the rich context of CSI affected by

the target object, we demonstrate that our approach can accurately estimate the inner nature

(i.e., material) and outline properties (i.e., dimension/shape) of the hidden objects.

5.3 Preliminaries & System Design

5.3.1 Preliminaries

Existing work has shown that the wireless channel of a stable WiFi environment could be easily

changed by adding an object, for instance, a person, a bag or a cup. The intuition behind

this is that interferences caused by the additional object, including absorption, reflection, and

refraction of WiFi signals, largely change the multi-path effect of the existing WiFi environment

and result in a different wireless channel. In this work, we find that such wireless channel changes

caused by the additional object could be different due to different materials and shapes of the

objects. To illustrate this intuition, we conduct some preliminary studies by respectively placing

5 common objects (i.e., a kitchen knife, a bottled water, a stuffed animal, a plastic cube, and

a metal can) at the same position between a WiFi transmitter and a receiver that are one

meter apart. Figure 5.1(a) presents the CSI amplitudes across 30 subcarriers corresponding to

these objects. We can see that the CSI amplitude at each subcarrier is affected by the objects

differently due to the object’s different physical properties (e.g., material, size and shape).

However, we find it is difficult to further distinguish the materials, shapes or sizes of different

objects by examining the CSI amplitudes. Thus it is necessary to separate the wireless channel

changes caused by objects’ materials, shapes and sizes and explore more useful information from

CSI in addition to its amplitude.

In addition, we notice that moving the object to multiple positions with a single-antenna

setup can imitate the large antenna arrays [30], which could be exploited to perform object

imaging. We illustrate this potential by conducting an experiment in which we move a metal box

along a rail that is perpendicular to the line of sight (LOS) between a pair of single-antennaWiFi

transmitter and receiver. Figure 5.1(b) shows the CSI amplitudes of 30 subcarriers collected

while we move the metal box. We find that the metal box causes the strongest decrease in

the amplitude when it blocks LOS, mainly because metal hardly let WiFi signals go through it.
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Figure 5.1: Different objects’ interference to the Wi-Fi signal (in CSI amplitude).

Such signal attenuation could be exploited to determine one dimension of the object (e.g., width

or height). In addition, the repetitive peaks and valleys at all subcarriers on both sides of the

LOS show the Fresnel Zones [119], which correspond to an object’s reflection capability and can

be utilized to estimate its’ reflection surface area (related to both height and width). Ideally,

we can estimate the dimension of an object by moving it crossing the LOS of a wireless channel

like this. However, the strongest attenuation area due to the blocked LOS could be interfered

by the diffraction of the WiFi signal at the small object (the strengthened signal in blocked

LOS in Figure 5.1(b)). And estimating the dimension of an object directly using the peaks and

valleys in Fresnel zone is not reliable because they are largely affected by the object’s position

and multi-path signals. Thus we need to seek solutions to extract the real reflection signal and

reduce the influence of diffraction caused by the object to facilitate imaging the object.

5.3.2 Threat Model

Our work targets an adversary who intentionally or unintentionally carries dangerous items (e.g.,

lethal weapons, home- made bombs, combustibles) to public venues. Unlike tight security-

checking areas (e.g., airports), there are two major types of areas vulnerable to adversarial

activities: Places not having pre-installed security check infrastructures and employing high-

manpower to perform security checks, such as theme parks, museums and stadiums, and the

other kind even not having regulated checking process in place such as metro/train stations and

scenic locations (e.g., Time Square). To launch an adversarial activity, the attacker usually hides

the dangerous item in his bag or metal/plastic container to avoid being easily detected. In this
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Figure 5.2: System overview.

work, we focus on detecting the suspicious objects including metal and liquid objects, which

cover most of the dangerous objects that people could carry in baggage. More specifically,

the metal objects such as aluminum cans, laptops, batteries and metal boxes can be used

for homemade bombs, while the kitchen knives, guns and steel pipes can be directly used as

weapons. Moreover, the liquids such as water, acid, alcohol and other chemicals in retainers

might cause explosions.

5.3.3 System Design

System Requirements. Our system aims to automatically detect the suspicious objects in the

aforementioned places. To achieve this goal, the design requirements of our system include: 1)

A low false negative classification rate of suspicious objects in order to ensure adversaries cannot

carry dangerous objects passing the security check; 2) A low system cost that is necessary to

enable wide deployment at the places, which is lack of pre-installed security check infrastructures

(e.g., museums, schools, stadiums, and train stations);3) Capability of identifying small objects

that could be hidden in baggage; 4) Identifying both material and shape simultaneously.

System Overview. To facilitate the suspicious object detection and identification, we

design a novel system leveraging CSI measurements readily available in existing WiFi devices.

As illustrated in Figure 5.2, our system takes the CSI from a pair of WiFi transmitter and
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Figure 5.3: Two experimental setups for object material identification and risk level estimation.

receiver as input. The system then performs CSI Phase Adjustment and Complex CSI Re-

construction, which correct the CSI phase drifting and reconstruct the CSI complex including

amplitude and corrected phase to describe the channel in an appropriate manner. Our sys-

tem then performs Noise Removal to mitigate the interference of environmental noises. After

that, the preprocessed CSI measurements would go through two main components: 1) Two-step

Material Classification focuses on analyzing the material type to detect the suspicious objects

in the black box while decreasing the influence factors including the object’s size, shape and

position; 2) Signal Reflection-based Object Risk Estimation can extract the reflected signal off

the object from the CSI to perform shape imaging and volume estimation to estimate the risk

level of the suspicious objects.

More specifically, Two-step Material Classification Method is performed to first identify

existence of the suspicious objects by leveraging the CSI complex values and then derive the CSI

complex difference between antennas to further distinguish the suspicious objects to be metal

or liquid by capturing their minute differences. KNN-based Feature Selection is performed to

select the good subcarriers for the CSI complex and CSI complex difference. Given the material

identified, Signal Reflection-based Object Risk Estimation is performed to further estimate the

suspicious object’s risk level based on extracted reflections from the CSI complex. In particular,

the object’s risk level is determined by performing the shape imaging for the metal and the

volume estimation for liquid in containers. This is because the liquid would have a higher risk

level if its volume exceeds the permissible limit and metal piece is more suspicious if it has a

similar shape to weapons.

Two WiFi-antenna Setups. Two uniquely setups (as shown in Figure 5.3) are designed
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for Material Classification and Object Risk Estimation respectively, by meeting the various

requirements of the two different goals. When identifying the object’s material, our system

requires to focus only on the material influence on the CSI and reduce the influencing factors

caused by the object’s shape, size and position. In setup one (Figure 5.3(a)), the object is

placed close to the transmitting antenna, while the receiving antenna is placed apart. By

blocking much more spherical area of the transmitting signal, the object close to the antenna

heavily affects the transmitting signals. Thus the signal beams passing through the object

or bypassing the object’ surface dominate the signal beams arriving at the receiver (except

the multi-path from permanent furniture), which are more related to the object’s material

influence. Moreover, due to the transmitting antenna’s small elevation angle (e.g., 40 degree for

6dbi omni-antenna), the signals are more focused to a small area on the object, which reduces

the influence caused by object’s size and shape. Additionally, the object blocks more inner

Fresnel zones near the transmitter [119], which further weakens the arriving diffraction and

reflection signals and reduce the influence of sizes, shapes and positions. Thus we can focuses

on the object’s material influence to CSI. Differently, the setup two (Figure 5.3(b)) amplifies

the influence caused by the object’s shape and size by placing the object away from the closely

settled transmitter and receiver. It is good for imaging object’s front face based on reflection

and avoid the reflection from the short object’s upper face. Note that these two setups can

be combined in practical scenarios. For example, we can deploy two WiFi device pairs along

a conveyor belt in most entrance check points to facilitate material identification and shape

imaging in sequence automatically.

5.4 CSI Complex Value Reconstruction

To facilitate the object detection and identification leveraging WiFi signals, we exploit CSI,

the fine-grained description of the wireless channel, to capture the minute differences of the

channel state change introduced by different objects. Specifically, the CSI with respect to each

subcarrier is expressed as a complex value as follows:

H(fk) = |H(fk)| e
j∠H(fk), (5.1)

whereH(fk) describes the channel response for the subcarrier with central frequency fk, |H(fk)|

and ∠H(fk) denote the corresponding amplitude and phase, respectively. It describes how the

signal propagation is affected and reveals the impact of multipath effects between a pair of

transceivers. The wireless channel will experience various impacts such as absorption, reflection
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(a) Raw CSI complex value (b) Reconstructed CSI complex value

Figure 5.4: The CSI before and after phase adjustment in the complex plane.

and refraction by any object in the surrounding wireless environment, resulting in the changes

of the CSI amplitude and phase at each subcarrier. However, the raw CSI extracted from

WiFi signals could be distorted by the unpredicted phase shift and time lag caused by the

non-synchronized transmitter and receiver [101]. Most studies thus only use the CSI amplitude

instead of the complex CSI value to characterize the wireless channel. Figure 5.4(a) shows the

raw CSI complex values for 5 randomly chosen subcarriers across 1000 packets. We find that

the raw CSI complex show the ”doughnut” shape for each subcarrier because their amplitudes

keep constant but the phases are much random. Thus the CSI phase needs to be adjusted for

a more accurate description of the wireless channel.

Existing studies utilize the phase difference between adjacent subcarriers [117] or anten-

nas [71] to remove the unknown phase shift, which may lose some useful information from the

original CSI phase. In this work, we adopt the phase unwrapping [61] and the linear transfor-

mation method (similar to [101]) to adjust the raw CSI phase. In particular, we first unwrap the

raw phase across all the subcarriers of each packet, which is wrapped within the range [−pi, pi].

Then a linear transformation is applied to the unwrapped phase to remove the phase shift offset

at each subcarrier and thereby derive the adjusted phase ∠Ĥ(fk) as:





b = ∠H(f30)−∠H(f1)
f30−f1

,

a = 1
30

∑30
k=1 ∠H(fk),

∠Ĥ(fk) = ∠H(fk)− bfk − a

(5.2)

where k, k = 1, 2, ..., 30 is the index of the 30 subcarriers and fk, fk = −28,−26, ..., 28 is the

frequency point index of the real OFDM subcarrier [110](Table 7-25f).
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Given the adjusted CSI phase, we reconstruct the complex form of CSI as Ĥ(fk) = |H(fk)| e
j∠Ĥ(fk),

where ∠Ĥ(fk) is the adjusted CSI phase. The reconstructed CSI complex Ĥ(fk) accurately de-

picts the frequency response of each subcarrier in term of both amplitude and phase as shown

in Figure 5.4(b), where the CSI complex of different subcarriers form their respective clusters in

the complex plane. In a static wireless environment, both the CSI phase and amplitude main-

tain constant accordingly, which thus facilitates our two major system components to analyze

the channel state changes introduced by the target objects with different materials, shapes and

sizes.

5.5 Two-step Material Classification based on CSI Complex Value

In this section, we focus on the materials identification with our two-step method with the

reconstructed CSI complex in Section 5.4, because the material (i.e., metal, liquid and unsus-

picious) directly reflects whether the target object is suspiciously dangerous or not. The basic

idea is to capture the wireless channel differences caused by different materials of target objects

leveraging the CSI information. Different materials have different attributes on absorbing and

refracting the WiFi signal, and such differences are reflected as the changes on CSI measure-

ments. For example, 1) paper, cloth and plastics allow large portion of signal to penetrate; 2)

the metal objects reflect a large portion of wireless signal and have the rest of signal scattered

along its surface; 3) the liquid such as water has medium reflection but in the meanwhile allow

a portion of signal to pass through.

5.5.1 Examining the Material’s Impact on Channel State

We first examine how different materials influence the CSI complex. Figure 5.6 (a) shows

the CSI complex values with respect to one subcarrier with 9 different objects in Setup One
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Figure 5.6: Two-step material identification method based on CSI complex and CSI complex
difference.

(Figure 5.3(a)), where each object was tested three times with slight position and orientation

changes. We can observe that the suspicious objects such as metal and water have their CSIs

clustered together. In comparison, the CSIs corresponding to other objects such as fiber, books

and plastics form another different cluster overlapped with the cluster when there is no object

present (i.e., yellow dots). This is because these unsuspicious objects have little interference to

the wireless channel due to their electric-insulated attributes and low density. Moreover, the

metal objects and the water containers of different sizes are all significantly different from the

unsuspicious objects in term of CSI complex. Therefore, regardless of the sizes and shapes,

the suspicious objects can be distinguished effectively from the unsuspicious objects based on

the reconstructed CSI complex. Note that the most bags/boxes showing at the theme park,

museum entrance are made of the non-dangerous material such as fiber, paper and plastics, and

thus they have little impact to the wireless channel. Accordingly, the hidden suspicious objects

could dominate the interference to CSI complex and be easily detected.

5.5.2 CSI Complex Difference between Receiving Antennas

With the capability to tell suspicious materials from unsuspicious ones, the CSI complex alone is

still hard to further distinguish the different types of suspicious materials. For example, as shown

in Figure 5.6(a), the CSI clusters corresponding to liquid and metal objects are close to each

other. This is because these suspicious materials all heavily interfere the wireless channel. Thus

we need to further distinguish their minute difference by resorting to more in-depth information

such as the relative spatial information from multiple antennas. For example, different materials
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have different scattering effects on the RF signals when passing through the object. Therefore,

we propose to leverage the CSI complex differences between any two receiving antennas to

capture the minute difference of the signal scattering at multiple antennas. Assuming that the

transmitter emits a symbol x at antenna t1, the symbols received by the two antennas r1 and r2

of the receiver would be h11x and h12x (as shown in Figure 5.5(a)), where h11 and h12 are the

CSI for the t1-r1 and the t1-r2 antenna pair. Then the combined input y1 at the two receiving

antennas could be defined as y1 = (h11 + αh12)x. By choosing α = −1, we define the combined

channel Ht1,r1r2 between t1 and r1,r2 as,

Ht1,r1r2 = h11 − h12, (5.3)

Under the presence of an object, the combined channel Ht1,r1r2 measures the difference between

the two channel states, which removes the common factors (e.g., permanent furniture influence)

at two receiving antennas, and also amplifies the minute differences on scattering effects caused

by different materials. As illustrated in Figure 5.6(b), the metal and water could be differenti-

ated by the CSI complex difference regardless of their sizes. We then utilize the CSI complex

difference to identify the types of suspicious materials.

5.5.3 Two-step Method Implementation

Based on the above observations, we develop a two-step material identification method to classify

the object’s material within Setup One. In particular, 1) we first differentiate the suspicious

objects from unsuspicious ones by leveraging the reconstructed CSI complex values as features

to perform classification; 2) we next identify whether the material of the dangerous objects is

metal or liquid by deriving the CSI complex differences between two receiving antennas as the

features for further categorization. At each step, we apply a learning-based method to build

the material profiles. During the training phase, we first apply the KNN-based feature selection

method to choose CSI-based features from good subcarriers and antenna pairs. In particular, we

cluster the CSI-based features with respect to each subcarrier based on KNN; then k-fold cross

validation is applied to the KNN-based clusters to determine the good subcarriers and antenna

pairs which show lower K-fold loss ratio than a predefined threshold when differentiating the

materials at each step. Next, a learning method, such as SVM or deep learning, is adopted

to train the material profile at each step. Note that, to identify the object within different

baggage, we pick several representative types of bags/boxes with the target objects enclosed to

build the CSI profiles. During the testing process, the CSI and CSI complex difference of target
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Figure 5.7: The reflection channel state information in response to different objects’ reflections.

objects are compared with the pre-defined profiles for classification. As long as their material

belongs to the three types (i.e., metal, liquid and unsuspicious), our system can identify them

accurately. Moreover, most bags/boxes are made of unsuspicious material such as fiber, the

hidden dangerous objects, if any, could dominate the impact on the CSI, which can be easily

captured by our proposed system. Therefore our system can differentiate the materials of hidden

target objects wrapped by various bags/boxes.

5.6 Object Risk Estimation leveraging Signal Reflection-based Object

Imaging

It is not sufficient to determine the risk of the suspicious objects by identifying the material only.

For instance, the volume of the liquid less than a certain limit (e.g., 100ml) is less risky and

is usually allowed to be carried on flights; the metal pieces with similar shapes as the weapons

(e.g., kitchen knife and soda-can bomb) are usually more dangerous. WiFi signals from off-the-

shelf devices are not specifically designed for the small object imaging due to its long wavelength

(e.g., 12cm for 2.4GHz and 6cm for 5Gz), which would induce strong diffraction and thereby

significantly decrease the imaging resolution [139]. To mitigate the effects of signal diffraction

for better imaging resolution, we focus on the signals reflected from the target object to perform

metal object imaging and liquid volume estimation.
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5.6.1 Extracting Reflected Signals from CSI Complex

We first introduce how to extract the signal reflected by the target object from the CSI complex

based on Setup Two (i.e., Figure 5.3(b)). As shown in Figure 5.5(b), two transmitting antennas

(i.e., t1 and t2) and one of the receiving antennas (e.g., ri) are considered for illustration.

The channel response capturing the signals reflected from the target object only, defined as

Reflection Channel Ht1t2,ri, can be represented as:

Ht1t2,ri = h1i + βh2i, β = −
ĥ1i

ĥ2i
, (5.4)

where h1i and h2i are the estimated channel states (i.e., CSI) for two antenna pairs (i.e., from

transmitting antenna t1 and t2 to receiving antenna ri respectively). The weight β = − ĥ1i

ĥ2i

is

calculated by ĥ1i and ĥ2i, which are the channel states with no target object presented in the

area of interest. When no object is placed, the signals from the transmitting antenna t1 and
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t2 are combined linearly to null the reflection paths to the receiving antenna ri. Therefore the

LOS and the reflected paths from the permanent furniture [74] are eliminated in the channel

state information. But when an object is placed in the area, the reflected paths will become

in-negligible, and the amplitude of reflected channel information Ht1t2,ri implies the object’s

reflecting capability. Figure 5.7 shows an example of the amplitudes of the reflected channel state

information (reflection CSI) perceived by receiving antenna r1 with different objects presented.

In particular, empty environment renders close to zero amplitude for all subcarriers of Ht1t2,ri

amplitudes (i.e., black dash line), whereas the unsuspicious objects such as book and stuffed

animal result in none zero amplitudes but much lower than metal objects. Moreover, we also find

the sizes of the metal objects are proportional to the reflected CSI amplitudes of all subcarriers,

and different subcarriers also have different sensitivity when they are reflected from the objects.

The above observations confirm the effectiveness of our proposed method on capturing the

signals reflected from target objects by eliminating the LOS and multipath signals. We next

leverage the captured reflected signals to estimate the liquid volume and perform metal object

imaging.

5.6.2 Volume Estimation for Liquid Objects in Baggage

To estimate the liquid volume, we conduct some experiments under Setup Two (i.e., Fig-

ure 5.3(b)), which involves a small bottle as the target object with 5 different water volumes

ranging from empty to full. The amplitudes of the reflected CSI (i.e., Ht1t2,r1) corresponding to

different water volumes are shown in Figure 5.8(a). It is easy to find that the larger the water

volume, the greater the reflected CSI amplitude across all 30 subcarriers due to the increas-

ing reflecting surface. To further quantify the relationship between the water volume and the

amplitude of reflection CSI, we select 15 different water heights in three cylindrical containers



114

of different diameters (i.e., large, medium and small). As shown in Figure 5.8(b), we observe

that the amplitude of the reflected CSI is linearly proportional to the water heights for all three

containers. Moreover, the larger container has faster growth rate on the CSI amplitude due to

the larger reflecting surface under the same water height. Therefore, as long as the container’s

diameter is determined, the liquid’s volume can be derived by following a linear regression

model. In this work, we assume the liquid is kept in the nonmetal cylindrical containers such

as plastic or glass bottle. If the liquid is in metal containers, it would be identified as metal

objects based on our material identification method in Section 5.5.

Based on our preliminary study, the liquid volume estimation consists of two steps, diameter

determination and liquid height estimation. To determine the diameter of the liquid container,

we adopt the same method of determining the metal object’s width as in Section 5.6.3. Once

the liquid container diameter is obtained, we apply two different methods, the linear regression

method and the neural network-based method, to estimate the liquid height by leveraging

the frequency selection property across multiple subcarriers. Specifically, the linear regression

method aims to build the linear regression relationship between the CSI amplitude and liquid

height for each subcarrier, and integrate the prediction results from all subcarriers to derive

the liquid height. The neural network-based method predict the unknown height of the liquid

in containers by building a neural network model, which takes the amplitudes of all subcarriers

with respect to different liquid heights as the training feature vector. At last, the liquid volume

is easily obtained based on the estimated container diameter and the liquid height.

5.6.3 Shape Imaging for Metal Objects in Baggage

Unlike the existing studies relying on large antenna arrays to determine the shape of metal

objects, we propose to image the in-baggage metal objects using commercial WiFi devices

with a limited number of antennas while the baggage is moved by the conveyor belt, which

is available at many entrance check points. Figure 5.9 shows the reflection channel response

Ht1t2,r1 when the target object is in an opaque baggage, which moves along the track in parallel

with the antenna array. The rectangular box and the water bottle are covered with tinfoil to

imitate the metal objects of different shapes that are similar to homemade bombs. We find

that the reflected channel response is greater when the target object is close to the central line

between the transmitter and receiver, where strong reflection is usually incurred by the object.

Moreover, as shown in Figure 5.9(a) and (b), both the width and position of the target object

hidden in the baggage or box can be clearly identified from the reflected CSI amplitude (e.g.,

red color). Furthermore, when there are multiple objects in the same baggage, such as the metal
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object together with clothes as shown in Figure 5.9(c), the metal object dominates the reflection

signals and can still be distinguished and imaged. Note that our system can detect the existence

of suspicious objects even if liquid and metal objects are in the same baggage and the object

imaging includes both objects. We therefore develop a threshold-based approach to capture the

outline of the metal objects and separate them from other non-suspicious objects, including the

baggage. We first estimate object’s width, which is proportional to the object moving distance

that cause reflections above a threshold by using d = γd̂, where d̂ is the estimated width from

reflection CSI amplitude and γ is the ratio, which is related to the short wavelength of WiFi

signal. Once the width of the object is determined, we proceed to estimate the object’s height

based on the fact that the reflection CSI amplitude is proportional to the reflection area. The

estimation of the metal object’s height is similar to the method in Section 5.6.2. Figure 5.10

shows the final imaging results of the metal objects based on the reflection CSI amplitude of

Figure 5.9. It is encouraging to find that the metal object’s outlines can be well recognized,

which are very close to the actual shape of the target objects even when it is hidden with other

objects in the baggage.

5.7 Performance Evaluation

5.7.1 Experimental Methodology

Experimental Setup. We implement our system on a pair of laptops, which are equipped with

IWL 5300 wireless cards and three 6dBi omnidirectional dual band rubber ducky antennas. The

two laptops are placed upon a wooden table in a typical indoor room, and we employ two setups

as shown in Figure 5.3 to perform material identification and risk level estimation, respectively.

The laptops are running Ubuntu 10.04 LTS with the kernel 2.6.36, and the WiFi card works

at 5GHz frequency band with the transmission rate 100pkt/sec. During data collection, two

people are in the room standing by the table to imitate the practical scenarios.

Target Objects. We evaluate our system with the combination of 15 different target ob-

jects in three categories (i.e. metal, liquid and non-dangerous) and 6 representative bags/boxes

in three categories (i.e., backpack/handbag, cardboard boxes, thick plastic bag) as shown in

Figure 5.11. For the material identification, we put each of the 15 objects in 6 bags/boxes

respectively and experiment under Setup1 in Figure 5.3. Each experiment is repeated 5 times

while slightly changing the object’s position and orientation. For dangerous object risk level es-

timation, we place the metal objects across multiple positions under Setup2 (i.e., Figure 5.3(b))
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Figure 5.11: Various target objects and bags/boxes in the experiment.

to estimate the size (i.e. width and height). Moreover, we have the three different size con-

tainers (i.e., large, medium and small) filled with different volumes of liquid to estimate liquid

volume. Overall, over 800 experimental data traces are collected during a 6-month period to

evaluate our proposed system.

Evaluation Metrics. To evaluate the material identification method, we defineIdentification

Accuracy as the ratio of the correctly identified objects over all the tested objects, and define

Detection Rate as the ratio of correctly identified objects over the total objects of the same

material. A high detection rate of the suspicious object reflects a low false negative rate, which

guarantees that few suspicious objects could pass the security check. To evaluate the risk level

estimation, we utilize Size Estimation Error (cm) to measure the estimation of the metal object’

width and height and Volume Estimation Error (ml) for the estimation of the liquid volume.

5.7.2 Material Classification

We first evaluate our material identification of the object hidden in various bags, especially when

different number of bags are used for training the profile. Figure 5.12 shows that our system

can achieve high accuracy in identifying the object’s material when they are put in different

bags. In particular, given the combination of all the 15 objects and the 6 bags in our profile,

Figure 5.12(a) shows that our system can achieve 99% accuracy in classifying dangerous objects

from non-dangerous (step1) and 97% accuracy to further differentiate the dangerous objects

to be metal and liquid (step2). Figure 5.12(b) further shows that the overall detection rate

for the dangerous material, metal and liquid are 99%, 98% and 95%. Moreover, we find that

the material identification accuracy reduces a little bit as the number of bags used for profile



117

training decreases. For example, when using half of the bags (i.e., one bag/box from each of

three categories) for training, the step1 and step2 accuracy of our material classification method

fall to 95% and 90% while the detection rate of dangerous objects decreases to 94%. The overall

detection rate for metal and liquid objects fall to 90% and 92%. This is because the bags and

boxes, though made of non-dangerous material, still induce slightly different interferences on

the wireless channel, thereby resulting in the errors in material detection. But because the bags

used in testing phase have the similar material with the bags/boxes used in building training

profile, our system still achieves high material identification accuracy. Additionally, regardless of

the number of bags used in training phase, our system can keep over 93% accuracy of detecting

the dangerous material as shown in Figure 5.12(b).

Figure 5.13 presents a more challenging scenario, where only half of the objects in each of

the three object categories are trained to build the profile. Figure 5.13(a) shows that in this

scenario, if all the bags are used for training, we can achieve over 95% accuracy for step1 and

90% for step2. The overall detection rate for the dangerous materials is 96%, and the detection

rate for metal and liquid objects fall to 82% and 91% as shown in Figure 5.13(b). Furthermore,

we find that the material identification accuracy also reduces with decreasing number of bags

used for training, due to the different bags’ slight different interference. In particular, when

half of the objects and half of the bags are used for training the profile, our system can achieve

91% and 85% accuracy for step1 and step2 of our material classification and the detection rates

for the dangerous, metal and liquid are around 90%, 78% and 85%. The results show that our

system can efficiently identify the object made of dangerous material and further classify the

dangerous material types in the more complex scenarios. In an extreme case, when half of the

objects and only one bag are chosen for training, the detection rate for all dangerous materials

is still over 89%. The results confirm that our system can efficiently recognize the object by its

material regardless of their shapes and sizes or what bags they are hidden in.

5.7.3 Risk Level Estimation based on Object Imaging

We next evaluate the performance of our system on estimating the risk level of the objects

through object imaging (i.e., metal object size and liquid volume).

Metal Object Size Estimation. Figure 5.14(a) shows the results of our system on es-

timating the sizes of different metal objects. We find that our system can achieve cm-level

accuracy on the size estimation of metal objects. In particular, over 80% estimation error of the

metal object’s widths and heights are within 0.7cm and 90% within 1cm. The average errors for
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Figure 5.12: Material identification with different number of baggage in profile.
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Figure 5.13: Material identification with half objects and different number of baggage in profile.

estimating the metal object’s width and height are 0.3cm and 0.5cm, respectively. The results

show that our system can estimate the metal objects’ size accurately, which is good to perform

accurate object imaging and infer whether the metal object is suspicious to be deadly weapons

or bombs.

Liquid Volume Estimation. The performance of liquid volume estimation is presented

in Figure 5.14(b), where we apply two different methods, linear regression and neural network

for the volume estimation respectively. We find that both methods can achieve high accuracy

on liquid volume estimation. The neural network-based method achieves even higher accuracy

with the median error as small as 16ml. Moreover, over 80% estimation errors are within 35ml.

The results validate that our system can accurately estimate the liquid volume, and provide
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significant information to derive the risk level of liquid objects.

5.8 Summary

This work explores the feasibility of using off-the-shelf WiFi signals to detect suspicious objects

(i.e., metal and liquid objects) hidden in baggage without penetrating into the user’s privacy.

Our solution is timely as it demonstrates the possibility to reuse the prevalent WiFi technology

to perform suspicious objects detection at every public area vulnerable to adversarial activities

without requiring the installation of high-cost security-checking infrastructures. The designed

system can also estimate the risk level of the target object through object imaging to estimate

the shape/volume of the metal/liquid objects. Specifically, we deploy two different system

setups for separating the refraction signals and the reflection signals from the CSI complex

and recognizing the object’s material and shape, respectively. Our system removes the raw

phase noise in CSI and reconstructs the CSI complex, which can robustly capture the dominant

interference caused by the suspicious material even when the object is hidden in the baggage.

We also derive the reflection channel from CSI complex that can enable us to estimate the

object’s shape and volume at a fine level using the long-wavelength WiFi signals. Extensive

experiments are conducted with 15 objects and 6 bags over a 6-month period. The results show

that our system can detect over 95% dangerous objects in different types of bags and successfully

identify 90% dangerous material types. In addition, our system can achieve the average errors

of 16ml and 0.5cm when estimating the shape/volume of the metal/liquid object, respectively.
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Chapter 6

Conclusion

In this dissertation, we examine the security threats and opportunities of the mobile devices

(e.g., smartphones and wearable devices) regarding to personal privacy and public security. We

demonstrate that the mobile devices could leak the user’s private information such as social

relationships, demographics and ATM PIN numbers, which causes serious security breaches.

We also show that the mobile technologies could be leveraged well to protect not only the per-

sonal privacy but also the public security. In particular, we present a scalable inference system

that has the potential to derive people’s activities at daily visited places leveraging surrounding

access points and utilize such information to infer the fine-grained social relationships and de-

mographics. This implemented system only uses the simple signal features of surrounding access

points such as MAC addresses and Received Signal Strengths without sniffing the Wi-Fi traffic

data. Moreover, we develop a PIN-sequence inference framework to recover the user’s secret

key entries when the user accesses the key-based security systems such as ATM keypads and

regular keyboards. The system does not require any training or contextual information, which

makes it applicable in real world adversarial contexts. Furthermore, we propose a wearable-

assisted verification system for Voice Assistant (VA) systems (e.g., Amazon Echo and Google

Home), which verifies whether the voice command received by the VA system comes from the

legitimate user based on examining the voice commands recorded in two domains (i.e., audio

and vibration). Finally, we explore the feasibility of using off-the-shelf WiFi signals to detect

suspicious objects (i.e., metal and liquid objects) hidden in baggage without penetrating into

the user’s privacy. The designed system can further estimate the risk level of the target object

through object imaging to estimate the shape/volume of the metal/liquid objects. This solution

is timely as it demonstrates the possibility to reuse the prevalent WiFi technology to perform

suspicious objects detection at every public area, which does not require the installation of

high-cost security-checking infrastructures.
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