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ABSTRACT OF THE DISSERTATION

Contributions to crossover designs and quantile analysis

for computer experiments

By LIWEI WANG

Dissertation Director:

Ying Hung

This dissertation develops methodologies for optimal crossover designs and quantile

modeling in computer experiments. It consists of two parts. The fist part of the

dissertation is regarding finding optimal crossover designs for qualitative treatment

effect. The second part of the dissertation is to investigate quantile analysis in computer

experiments.

Crossover designs for quantitative variables are common in practice but the theo-

retical developments are overlooked in the design literature. Motivated by an exper-

imental design problem in cell biology. new classes of optimal crossover designs are

introduced under different model assumptions on carryover effects with quantitative

variables. Theoretical properties of optimal designs are derived which are different

from their counterparts with qualitative variables. To efficiently construct optimal de-

signs, systematic procedures are proposed based on a collection of swap operations. The
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proposed optimal designs are demonstrated by simulation studies and an application

in cell adhesion experiments.

The characteristic of computer experiments are that they are deterministic, time-

consuming and involve large number of variables. Due to these features of computer

experiments, Gaussian process model is a widely used interpolator as an emulator in

computer experiments to model mean structure of response. It is also of interest to

model different quantiles. Motivated by finding an analogy to Gaussian process models

for quantile analysis in computer experiments, a new Bayesian quantile analysis model

for computer experiments is introduced. New model developed could capture the non-

linearity and smoothness of underlying quantile functions. Quantile predictions in the

new model for observed inputs agree on true quantiles asymptotically. With some

constraints, asymptotic consistency of coefficients estimation is derived. There is no

issue of quantile curves crossing each other in proposed model for quantile prediction

of observed inputs.
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Chapter 1

Optimal Crossover Designs for Quantitative Variables

1.1 Introduction

Crossover designs, also called repeated measurement designs, refer to designs where

each subject in the experiment receives each treatment in succession (Stufken, 1996;

Bose and Dey, 2009; Padgett, 2014; Jones and Kenward, 2015; Lui, 2016). Crossover

designs have been widely applied to different scientific studies and, based on different

models, optimal crossover designs are intensively studied in the literature (Hedayat and

Afsarinejad, 1975, 1978; Cheng and Wu, 1980; Sen and Mukerjee, 1987; Stufken, 1991;

Afsarinejad and Hedayat, 2002; Kunert and Stufken, 2002).

However, to the best of our knowledge, the existing works are limited to the modeling

assumption where the treatment effects are qualitative. Quantitative treatment effects

are of interest in many applications and direct applications of the existing designs by

treating different levels of a quantitative factor as distinct categories can significantly

reduce the design efficiency. Therefore, the focus of this paper is to construct new

classes of optimal designs for quantitative variables.

This research is motivated by the experimental design problem in a study of cell

adhesion, which plays a key role in tumor metastasis in cancer study (Huang et al.,

2010; Zarnitsyna et al., 2007). In the experiment, two cells are put together for a

predetermined duration, then retracted away. After a predetermined waiting time,
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the two cells are put together again for the next contact. Such procedure is performed

repeatedly and adhesion properties, such as bond lifetime, are measured as the outcome

of the repeated tests. Such repeated experiments are conducted for multiple pairs of

cells. There are two quantitative control variables in the experiment, the contact time

and waiting time, which control the duration that molecules are put into contact and

the time between retraction and the next contact. Due to a significant amount of cell-

cell variability, the idea of crossover designs is desirable in practice because the effects

from different contact and waiting time are no longer confounded with cell effects.

As a result, the systematic bias in estimating the treatment effects could be reduced

substantially.

Constructing an optimal crossover design is challenging due to the carryover ef-

fects. Based on different model assumptions on the carryover effects with quantitative

variables, new classes of optimal crossover designs are introduced. Optimal design prop-

erties are derived which are different from their counterparts for qualitative variables.

Instead of requiring balanced properties which is common for optimal designs with

qualitatively variables, it is shown that the design optimality for quantitative variables

is achieved by the orthogonality between the current design and the design in the previ-

ous period for each subject. Systematic swapping procedures are proposed to construct

optimal designs.

1.2 Crossover designs with one quantitative variable

1.2.1 Two models for crossover designs

The crossover designs are constructed based on two models. The first model studies a

direct treatment effect and a constant carryover effect from the previous treatment, and
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the second model further distinguish the carryover effect into self and mixed carryover

effects. For both models, assume that there is one quantitative variable and it has t

levels. Without loss of generality, we can assume our experiment region is [0, 1]. The

response for the ith subject at the jth period, is denoted by yi,j , where 1 ≤ i ≤ n,

1 ≤ j ≤ p.

Model 1: Assume that αi is the effect from subject i, βj is the effect in period j, τ is

the direct treatment effect, and γ is the carryover effect. We have

yi,j = αi + βj + τdi,j + γdi,j−1 + ei,j , (1.2.1)

where di,j is the design of the quantitative variable for subject i at period j, di,0 is

the design for the initial period, and ei,j are i.i.d random variables with mean 0 and

variance σ2. Without loss of generality, the design is assumed to be centered around

zero, i.e.,
∑p

j=1 di,j = 0 for all i. This model can be rewritten in a matrix form as

follows

y = Uα+ Pβ + tdτ + pdγ + e, (1.2.2)

where U = In ⊗ 1p and P = 1n ⊗ Ip are the design matrix for the subject and

period effect, tTd = (d1,1, · · · , d1,p, · · · , dn,1, · · · , dn,p) is the design vector for the direct

treatment effect and pTd = (d1,0, · · · , d1,p−1, · · · , dn,0, · · · , dn,p−1) is the design vector

for the carryover effect.

Model 1 is different from the model considered by Hedayat and Afsarinejad (1978)

where the treatment is qualitative. For a qualitative variable with t categories, t direct

treatment effects τdi,j and t carryover effects γdi,j−1
are assumed, and the model can be

written as

yi,j = αi + βj + τdi,j + γdi,j−1
+ ei,j .
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In contrast, Model 1 has only one treatment effect and one carryover effect for the

quantitative variable regardless of the level of the variable.

In many applications, the carryover effect is different according to the treatment

in the previous period. If the treatment in the jth period is the same as the previous

one, i.e., di,j−1 = di,j , then the carryover effect is called self-carryover (Kunert and

Stufken, 2002). On the other hand, if di,j−1 6= di,j , then the carryover effect is called

mixed-carryover. To distinguish these two types of carryover effects, we consider Model

2 as follows.

Model 2: Assume that φ is the self-carryover effect and γ is the mixed-carryover effect.

We have

yi,j =


αi + βj + τdi,j + φdi,j−1 + ei,j di,j−1 = di,j ,

αi + βj + τdi,j + γdi,j−1 + ei,j di,j−1 6= di,j ,

(1.2.3)

where di,j , di,0, αi, τ , and ei,j are the same as in Model 1.

The matrix form of above model can be written as

y = Uα+ Pβ + tdτ +mdγ + sdφ+ e (1.2.4)

where mT
d = (d1,01d1,0 6=d1,1 , · · · , dn,p−11dn,p−1 6=dn,p) is design vector for mixed carry-

over effect and sTd = (d1,01d1,0=d1,1 , · · · , dn,p−11dn,p−1=dn,p) is the design vector for self-

carryover effects, where 1 is the indicator function. Similar to Model 1, this model

is also different from its counterpart for qualitative variables discussed in Kunert and

Stufken (2002).

1.2.2 Optimal crossover designs

Based on the two models, optimal crossover design criteria are introduced and properties

of the optimal designs are discussed. We focus on the estimation of the treatment
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effect. Since there is only one control variable, the information matrix for estimating

the treatment effect is a scalar. As a result, a design d∗ ∈ Ω(t, n, p) for which maximizes

the information matrix is A-optimal, D-optimal, E-optimal and T-optimal (Chernoff,

1953; Kiefer, 1959; Ehrenfeld, 1955), where Ω(t, n, p) is the design space for experiments

with t treatment levels, n subjects, and p periods. Designs that are A, D, E, and T-

optimal are known as universally optimal designs.

The information matrix for the direct treatment effect τ under Model 1 can be

written as (Kunert and Stufken, 2002)

Cd = tTdω
⊥([P ,U ,pd])td,

where ω⊥(A) = I − A(ATA)−AT is the projection on the space of all vectors that are

orthogonal to AT and (ATA)− is the generalized inverse of ATA. An upper bound of

Cd is derived based on Proposition 2.3 in Kunert (1983) and the sufficient condition to

attain this bound is given in the following theorem .

Theorem 1.2.1. (i) We have Cd ≤ tTdω⊥([U ,pd])td and the equality holds if and only

if

tTdω
⊥([U ,pd])P = 0. (1.2.5)

(ii) The sufficient condition that satisfies equation (1.2.5) is:

n∑
i=1

di,0 =
n∑
i=1

di,1 =
n∑
i=1

di,2 = · · · =
n∑
i=1

di,p. (1.2.6)

Based on Theorem 1.2.1, the upper bound of information matrix can be reached

by conditions given in (1.2.6). Therefore, given designs satisfying (1.2.6), universally

optimal designs can be obtained by maximizing the upper bound of the information

matrix. Based on this idea, properties of the universally optimal designs are discussed
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in the next Theorem. We focus on the universally optimal designs within the class of

uniform designs which can be defined as follows.

Definition 1.2.1. A design d ∈ Ω(t, n, p) is defined as uniform if every treatment

appears in every period exactly n/t times; and, for each subjects, every treatment appears

exactly p/t times.

Definition 1.2.1 is a direct extension of Hedayat and Afsarinejad (1978) to the cases

where p = λt. Based on the definition, for a design d to be uniform, d ∈ Ω(t, µt, λt). λ, µ

are positive integers. In Theorem 1.2.2, properties of the universally optimal designs

under Model 1 are specified within the class of uniform designs.

Theorem 1.2.2. An uniform design d∗ ∈ Ω(t, µt, λt) that satisfies di,0 = di,p, ∀ i, is

universally optimal under Model 1 if

d∗ = arg min
d

|
n∑
i=1

p∑
j=1

di,jdi,j−1 | . (1.2.7)

The objective function, |
∑n

i=1

∑p
j=1 di,jdi,j−1 |, in (1.2.7) reaches the minimum

value zero if, for each subject, the design is orthogonal to the design in the previous pe-

riod. This result is different from its counterpart for qualitative variable in Cheng and

Wu (1980) where the optimal designs in Ω(t, µt, λt) need to be uniform and strongly

balanced. In particular, the strong balance property implies that every treatment is

immediately preceded by every treatment (including itself) equally often. This bal-

ance property places a key role in optimal designs for qualitative variables, but not

for quantitative variables in general. Based on the construction method proposed in

the next section, the optimal designs for quantitative variables are not necessarily bal-

anced. Instead of the balanced property, the design optimality for qualitative variables
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is achieved by controlling the orthogonality between the current and the previous treat-

ment for each subject.

For Model 2, the information matrix for the direct treatment effect can be written

as (Kunert and Stufken, 2002)

C ′d = tTdω
⊥([P ,U ,md, sd])td.

An upper bound for C ′d and the sufficient condition is given below.

Corollary 1.2.1. (i) C ′d ≤ tTdω⊥([U ,md, sd])td and the equality holds if and only if

tTdω
⊥([U ,md, sd])P = 0 (1.2.8)

(ii) The sufficient conditions for (1.2.8) are the condition in (1.2.6) and

sd = 0. (1.2.9)

Note that, this additional condition, (1.2.9), implies no identical treatments in any

consecutive settings of the design.

Corollary 1.2.2. For any universally optimal design under Model 1, if the additional

constraint (1.2.9) is satisfied, then it is universally optimal under Model 2.

Similar to Model 1, the universally optimal designs under Model 2 is also different

from its corresponding counterpart developed for qualitative variables in Kunert and

Stufken (2002), where the designs need to be totally balanced to be optimal. The totally

balanced property implies that every treatment is immediately preceded by every other

treatment equal often. This implies the requirement of sd = 0.
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1.2.3 Construction of optimal designs

In this section, we introduce construction rules for optimal designs discussed in Section

1.2.2. In particular, we focus on the class of uniform designs in Ω(t, cλt, λt), c is also

positive integer. Let Sm denotes all the possible permutation of treatments with p

period that contains each level of the quantitative variable exactly m times, where

m = p/t. Let di = [di,1, · · · , di,p] be the design for the ith subject and di,0 = di,p. For

uniform designs, we need di ∈ Sm for all i.

Based on the results in Theorem 1.2.2, universally optimal designs d∗ under Model

1 can be constructed by the following two steps when c = 1.

Step 1 Without loss of generality, find the optimal treatment assignment for the first

subject, d∗1 = [d∗1,1, · · · , d∗1,p] ∈ Sm, such that

p∑
j=1

d∗1,jd
∗
1,j−1 = 0 (1.2.10)

Step 2 The design for the rest of the subjects can be obtained by sequentially shifting

the design d∗1 as follows.

Subjects Period 1 Period 2 · · · Period p

1 d∗1,1 d∗1,2 · · · d∗1,p

2 d∗1,2 d∗1,3 · · · d∗1,1

...
...

...
...

...

p d∗1,p d∗1,1 · · · d∗1,p−1

Then set the design at period 0 by d∗i,0 = d∗i,p for i = 1, ..., n. The resulting design d∗ is

universally optimal under Model 1.

For c > 1, the universally optimal designs can be obtained by stacking c times of

the optimal designs obtained from the above two steps.
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Obtaining d∗1 in (1.2.10) is crucial to the construction of universally optimal designs.

Apart from finding the optimal by searching over the feasible region Sm, we propose a

constructive procedure in Theorem 1.2.3. Using the d∗1 constructed by Theorem 1.2.3,

the resulting optimal designs also satisfy sd = 0. Therefore, the resulting design is

universally optimal for both models 1 and 2.

For notation simplicity, it is assumed that the t levels of the quantitative variable

are equally spaced and denote them by {1−t2 , 3−t2 , · · · , t−12 }. We first introduce some

notation. Define d01 = [1−t2 , d01,2, · · · , d01,t], where, d01,j = (j mod 2)(j− t+3
2 )−(j mod 2−

1)(t− j + 3−t
2 ), when t is odd; and

d01,j =


(j mod 2)(j − t+3

2 )− (j mod 2− 1)(t− j + 3−t
2 ) j = 2, · · · , (t/2) + 1,

(j mod 2)(t− j + 3−t
2 )− (j mod 2− 1)(j − t+3

2 ) j = (t/2) + 2, · · · , t,

when t is even. Define swap(i, j) as an operation that swap the elements i and j,

and define Wr(di) as a collection of swap operations for the design of subject i, where

r = 0, 1, 345, 7. Denote Wr(di) = Ur(di) for r = 1 and Wr(di) = (Ur(di), Vr(di)) for

r 6= 1. The operations Ur(di) and Vr(di) are given below.

(i) Ur(di) =swap(ir, jr) with ir + jr = 0 and ir = 4(k − 1) + 3−t
2 , 4(k − 1) + 5−t

2 for

k = 1, · · · , t−r8 .

(ii) V3 = swap(0,1), V4 = swap(k−12 ,k+1
2 ) for k = 2 and 6, V5 = swap(0,2), V6 =

swap(−5
2 ,32), V7 = swap(−2,3), and V0 = swap(k−12 ,k+1

2 ) for k = 0, 2, and 6.

Given d01 as the initial design, the optimal design d∗1 can be constructed as follows.

Theorem 1.2.3. (i) When p = t > 8 and t mod 8 = r, where r 6= 2, r 6= 6, the optimal
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treatment setting d∗1 can be constructed by d∗1 = Wr(d
0
1) and

t∑
j=1

d∗1,jd
∗
1,j−1 = 0

(ii) When p = λt, where λ > 1, r 6= 2, r 6= 6, d∗1 can be constructed by repeating d∗1 from

(i) λ times across the p periods and
∑p

j=1 d
∗
1,jd
∗
1,j−1 = 0.

An example of d∗1 is given below for p = t = 21.

Example 1.2.1. Start with

d01 = [−10 9 −8 7 −6 5 −4 3 −2 1 0 −1 2 −3 4 −5 6 −7 8 −9 10]. According to

Theorem 1.2.3, W5(d
0
1) = (U5(d

0
1), V5(d

0
1)), where U5 = swap(i5, j5), i5 = −9,−8,−5,−4

and the corresponding j5 = 9, 8, 5, 4, V5 = swap(0, 2). Pairs needed to be swapped are

illustrated as follows.

[−10 9 −8 7 − 6 5 −4 3 − 2 1 0 − 1 2 − 3 4 −5 6 − 7 8 −9 10]

After swapping,

d∗1 = [−10 −9 8 7 −6 −5 4 3 −2 1 2 −1 0 −3 −4 5 6 −7 −8 9 10].

For t < 9, the design space is relatively smaller and therefore the optimal designs

can be found by exhaustive search.

1.3 Crossover designs with multiple quantitative variables

Assume there are k independent quantitative variables and each of them has t levels.

To construct the corresponding crossover designs, we consider the following model.
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Model 3: Assume that τl is the direct treatment effect from variable l, γl is the

carryover effect due to the previous design on variable l, where l = 1, . . . , k. We have

yi,j = αi + βj +

k∑
l=1

τld
(l)
i,j +

k∑
l=1

γld
(l)
i,j−1 + ei,j , (1.3.1)

where αi, βj , ei,j are same as in Model 1, d
(l)
i,j is the design for variable l of subject i at

period j, and d
(l)
i,0 is the corresponding design for the initial period.

This model can be rewritten in a matrix form as follows

y = Uα+ Pβ + Tdτ +Qdγ + e, (1.3.2)

where Td = [td1, · · · , tdk] and Qd = [pd1, · · · ,pdk] are the design matrix of direct

treatment effects and carryover effects for the k variables. tTdl = (d
(l)
1,1, · · · , d

(l)
n,p) and

pTdl = (d
(l)
1,0, · · · , d

(l)
n,p−1). The information matrix for the direct treatment effect in

Model 3 can be written as

C ′′d = T Td ω
⊥([P ,U ,Qd])Td.

Similar to Model 1, an upper bound of C ′′d can be derived and the sufficient conditions

to achieve this upper bound is given below.

Corollary 1.3.1. (i) C ′′d ≤ T Td ω⊥([U ,Qd])Td and the equality holds if and only if

T Td ω
⊥([U ,Qd])P = 0. (1.3.3)

(ii) The sufficient condition that satisfies equation (1.3.3) is:

n∑
i=1

d
(l)
i,0 =

n∑
i=1

d
(l)
i,1 =

n∑
i=1

d
(l)
i,2 = · · · =

n∑
i=1

d
(l)
i,p (1.3.4)

for all 1 ≤ l ≤ k.

Denote Ω(k, t, n, p) as the design space for n subjects, p periods, and k quantitative

variables with t levels. A design d∗ ∈ Ω(k, t, n, p) which maximizes the trace of the
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information matrix is T-optimal. Based on Corollary 1.3.1, the upper bound of C ′′d

can be reached by the conditions given in (1.3.4). Therefore, T-optimal designs can be

obtained by maximizing the trace of the upper bound of C ′′d , given the conditions in

(1.3.4) is satisfied. However, there is no explicit form for this maximization problem

when k > 2 due to the matrix inversion in the calculation of ω⊥([U ,Qd]) = ω⊥(U) −

ω⊥(U)Qd{QT
dω
⊥(U)Qd}−QT

dω
⊥(U).

For k = 2, a closed form expression for the properties of T-optimal designs can be

obtained. Define

a1 =
n∑
i=1

p∑
j=1

d
(1)
i,j d

(1)
i,j−1, a2 =

n∑
i=1

p∑
j=1

d
(2)
i,j d

(1)
i,j−1,

b1 =

n∑
i=1

p∑
j=1

d
(1)
i,j d

(2)
i,j−1, b2 =

n∑
i=1

p∑
j=1

d
(2)
i,j d

(2)
i,j−1,

x =
n∑
i=1

p∑
j=1

(d
(1)
i,j )2, y =

n∑
i=1

p∑
j=1

(d
(2)
i,j )2 and z =

n∑
i=1

p∑
j=1

d
(1)
i,j d

(2)
i,j .

In the next Theorem, properties of the T-optimal designs under Model 3 with two

variables are specified. Similar to Model 1, we focus on the T-optimal designs within

the class of k-variable uniform designs which is defined to be uniform for all the k

variables.

Theorem 1.3.1. A 2-variable uniform design d∗ ∈ Ω(2, t, µt, λt) is the T-optimal

crossover design under Model 3 if it satisfies xy − z2 6= 0, a1 = a2 = b1 = b2 = 0,

and d
(l)
i,0 = d

(l)
i,p for i = 1, . . . , n and l = 1, 2.

For individual variables, the conditions are the same as those in Theorem 1.2.2 for

one variable case, including a1 = b2 = 0 and d
(l)
i,0 = d

(l)
i,p. The condition, xy − z2 6= 0,

implies that designs for the two variables cannot be identical. The condition a2 = b1 = 0

implies that the design of any variable is orthogonal to the design of the other variable
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in the previous period.

1.4 Examples and comparisons

1.4.1 One quantitative variable

Based on the construction procedure in Theorem 1.2.3, universally optimal designs

can be efficiently obtained for Models 1 and 2. The procedure is particularly useful

for designs with large n, p, or t, where extensive search is often infeasible. Here we

demonstrate two designs constructed by the proposed procedure with n = p = t = 100

and n = p = t = 200. For each sample size, the universally optimal design is compared

with designs by a naive approach where, for each subject, design settings of the repeated

experiments are randomly sampled from the experimental region.

The comparisons are summarized by Figure 1.1. The x-axis in Figure 1.1 stands for

the values of the Fisher’s information. The histogram demonstrates the distribution of

the Fisher’s information obtained based on 1000 replicates of the naive approach. The

vertical dashed line corresponds to the Fisher information obtained by the proposed

optimal design. It is clear that the optimal crossover design contains the largest in-

formation in estimating the treatment effect, compared with the randomly generated

designs.
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t=100 t=200

Figure 1.1: Comparison of the universally optimal crossover designs with randomly

generated designs.

1.4.2 Crossover design for cell adhesion experiments with two quan-

titative variables

In this section, the cell adhesion experiment is revised and the optimal design is con-

structed for the two quantitative variables, contact time and waiting time. Assume that

there are eight levels for both variables and there are eight periods, i.e., p = t = 8. The

sample size is assumed to be n = 50t. Under Model 3, a 2-variable T-optimal crossover

design can be constructed by Theorem 1.3.1 and the resulting d∗1 for each variable is

given in Table 1.1.
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Table 1.1: Optimal crossover design for cell adhesion experiments

Contact -3.5 -1.5 -0.5 -2.5 3.5 0.5 2.5 1.5

Wait -3.5 0.5 2.5 -2.5 -1.5 1.5 3.5 -0.5

The T-optimal design is compared with the naive approach as in Section 4.1. The

result is shown in Figure 1.2. The histogram illustrates the distribution of the trace

of the information matrix obtained based on 1000 replicates of the randomly gener-

ated designs. The red vertical dashed line corresponds to the trace of the information

obtained by the optimal crossover design. According to Figure 1.2, it appears that

the optimal crossover design significantly outperforms the design obtained by the naive

approach in estimating the treatment effect. Compared with one variable cases, the es-

timation efficiency herein is improved by the proposed method with a much significant

margin. This is because the condition of a2 = b1 = 0 can be easily violated in randomly

generated designs and therefore the estimation efficiency deteriorates.
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Figure 1.2: Comparison of the 2-variable optimal crossover design with randomly gen-

erated designs

1.5 Concluding remarks

Despite intensive studies of crossover designs, most of the results are developed for

qualitative variables. Motivated by an experimental design problem in cell biology, new

classes of optimal crossover designs are introduced for quantitative variables. Theo-

retical design properties are derived and compared with their counterparts with qual-

itative variables. To obtain these optimal designs efficiently, systematic construction

procedures are proposed based on a collection of swap operations. Numerical studies

demonstrate the estimation efficiency of the proposed optimal crossover designs.
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1.6 Technical Proofs

Proof of Theorem 1.2.1. The proof of upper bound and equation (2.2.6) is same as ?,

Proposition 2.3.

The derivation of equation (1.2.6) is as below.

Since ω⊥([U ,pd]) = ω⊥(U)−ω⊥(U)pd{pTdω⊥(U)pd}−pTdω⊥(U) (Kunert and Martin,

2000), tTdω
⊥([U ,pd])P

= tTdω
⊥(U)P − tTdω⊥(U)pd{pTdω⊥(U)pd}−pTdω⊥(U)P = 0 Sufficient condition satis-

fying (1.2.5) is: tTdω
⊥(U)P = 0 and pTdω

⊥(U)P = 0. Since ω⊥(U) = I − 1/pUUT ,

tTdω
⊥(U)P = (

∑n
i=1 di,1,

∑n
i=1 di,2, · · · ,

∑n
i=1 di,p) = 0

pTdω
⊥(U)P = (

∑n
i=1 di,0,

∑n
i=1 di,1, · · · ,

∑n
i=1 di,p−1) = 0

Therefore,
∑n

i=1 di,0 =
∑n

i=1 di,1 =
∑n

i=1 di,2 = · · · =
∑n

i=1 di,p = 0. This complete our

proof.

Proof of Theorem 1.2.2. Any designs in Ω(t, µt, λt) that are uniform on periods with

di,0 = di,p for all i will satisfy condition (1.2.6) in Theorem 1.2.1, therefore attaining

upper bound of information. Next, we simplify the objective of obtaining optimal

designs. By plugging in,

max
d
tTdω

⊥([U ,pd])td

= max
d
tTdω

⊥(U)td − tTdω⊥(U)pd{pTdω⊥(U)pd}−pTdω⊥(U)td (1.6.1)

= max
d

∑
i,j

d2i,j −
( n∑
i=1

p∑
j=1

di,jdi,j−1
)2( n∑

i=1

p∑
j=1

d2i,j−1
)−1

Since designs are uniform in Ω(t, µt, λt), all t settings will appear exactly np/t times

for all n subjects across p periods. So
∑

i,j d
2
i,j are constant. Also, di,0 = di,p for all
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i indicates
∑

i,j d
2
i,j−1 =

∑
i,j d

2
i,j . Therefore the objective function can be reduced to

(1.2.7) in Theorem 1.2.2. This complete our proof.

Proof of Corollary 1.2.1. Following Kunert and Martin (2000) and ?,

tTdω
⊥([U ,md, sd])td

= Ad11 −Ad12A−d22A
T
d12 − (Ad13 −Ad12A−d22Ad23)

× (Ad33 −ATd23A−d22Ad23)
−(Ad13 −Ad12A−d22Ad23)

T ,

where Ad11 = tTdω
⊥(U)td, Ad12 = tTdω

⊥(U)md, Ad13 = tTdω
⊥(U)sd,

Ad22 = mT
dω
⊥(U)md, Ad23 = mT

dω
⊥(U)sd, Ad33 = sTdω

⊥(U)sd.

With above notation, rewrite condition (1.2.8) as:

tTdω
⊥([U ,md, sd])P

= tTdω
⊥(U)P −Ad12A−d22m

T
dω
⊥(U)P − (Ad13 −Ad12A−d22Ad23)

× (Ad33 −ATd23A−d22Ad23)
−(sTdω

⊥(U)P −ATd23A−d22m
T
dω
⊥(U)P )

= tTdω
⊥(U)P − x1mT

dω
⊥(U)P − x2(sTdω⊥(U)P − x3mT

dω
⊥(U)P )

= 0,

where x1, x2, x3 are some constant since all Adij , 1 ≤ i ≤ j ≤ 3 are scalars. Therefore,

sufficient condition satisfying (1.2.8) is: sd = 0, tTdω
⊥(U)P = 0 and mT

dω
⊥(U)P = 0.

That is,

sd = 0 and

n∑
i=1

di,0 =

n∑
i=1

di,1 =

n∑
i=1

di,2 = · · · =
n∑
i=1

di,p

This complete our proof.
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Proof of Corollary 1.2.2. Since sd = 0, by Corollary 1.2.1, upper bound of infor-

mation can be attained. Next, note that Ad13 = Ad23 = Ad33 = 0 by sd = 0,

max
d
tTdω

⊥([U ,md, sd])td = max
d

(
Ad11−Ad12A−d22A

T
d12

)
. This is same with (2.6.3).

Proof of construction steps in section 1.2.3. mind |
∑n

i=1

∑p
j=1 di,jdi,j−1 |≥ 0. So when∑p

j=1 d
∗
i,jd
∗
i,j−1 = 0 as in Step 1 and by construction in Step 2, the design d∗ generated

will satisfy
∑n

i=1

∑p
j=1 d

∗
i,jd
∗
i,j−1 = 0. Therefore it’s optimal for c = 1.

When c > 1, i.e. n = cp, multiple of optimal designs for c = 1 are still optimal in

Ω(t, cλt, λt) since it still satisfies minimal value is 0.

Lemma 1.

t∑
j=1

d01,jd
0
1,j−1 =


− 1

12 t
3 + 7

12 t−
1
2 t mod 2 = 1

− 1
12 t

3 + 7
12 t− 1 t mod 2 = 0

(1.6.2)

Proof of Lemma 1. For simplicity, we first add t+1
2 to each element of d01.

When t mod 2 = 1, according to arrangement of d01, after adding t+1
2 , two adjacent

numbers of j is t − j and t − j + 2 for 1 < j < t. Two adjacent numbers of 1 is t and
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t− 1 and two adjacent numbers of t is 1 and 2. So

t∑
j=1

(d01,j +
t+ 1

2
)(d01,j−1 +

t+ 1

2
)

=
1

2

(
(2t− 1) +

t−1∑
j=2

j[(t− j) + (t− j + 2)] + t(1 + 2)

)

=
1

2

(
2t

t−1∑
j=2

j − 2
t−1∑
j=2

j2 + 2
t−1∑
j=2

j + 5t− 1

)

=
1

2

(
t(t+ 1)(t− 2)− 2(

2t3 + 3t2 + t

6
− 1− t2) + (t+ 1)(t− 2) + 5t− 1

)
=

1

6
t3 +

1

2
t2 +

5

6
t− 1

2

So

t∑
j=1

d01,jd
0
1,j−1

=
(1

6
t3 +

1

2
t2 +

5

6
t− 1

2

)
− t((t+ 1)

2
)2

=− 1

12
t3 +

7

12
t− 1

2

When t is even, after adding t+1
2 to d01, two adjacent numbers of j is t − j and

t − j + 2 for 1 < j < t and j 6= t
2 ,

t
2 + 1. The two adjacent number of t

2 is t
2 + 1

and t
2 + 2. And the two adjacent number of t

2 + 1 is t
2 and t

2 − 1. So similarly,∑t
j=1 d

0
1,jd

0
1,j−1 =

(
1
6 t

3 + 1
2 t

2 + 5
6 t− 1

)
− t( (t+1)

2 )2 = − 1
12 t

3 + 7
12 t− 1

Proof of Theorem 1.2.3. (i) p = t.

Since the objective is to find d∗1 = arg min
d1∈Sm

|
(
f(d1) − f(d01)

)
+ f(d01) | and second

term is fixed given by (1.6.2), d∗1 can be constructed by a collection of swap operations

from d01 such that f(d1)− f(d01) = −f(d01) if exist.

It remains to show d∗1 = Wr(d
0
1). For any element q 6= −1

2 ,
1
2 in d01, the two adjacent

numbers are 1− q and −1− q. So for u < v, u 6= −1− v, 1− v and u, v 6= −1
2 ,

1
2 , first

swap(u, v) and then swap(−1−u, 1−v) on d01 will change f(d01) by 2(v−u)2−4(v−u−2).

So after swap(4(k−1)+ 3−t
2 ,−4(k−1)− 3−t

2 ) and swap(4(k−1)+ 5−t
2 ,−4(k−1)− 5−t

2 ),
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f(d01) is changed by 2
(
8(k − 1) + 3 − t

)2 − 4(8(k − 1) + 5 − t), where k = 1, · · · , t−r8 .

Denote d11 = Ur(d
0
1). So the total change from f(d01) to f(d11) is:

f(d11)− f(d01)

=

t−r
8∑

k=1

{2
(
8(k − 1) + 3− t

)2 − 4(8(k − 1) + 5− t)}

=

t−r
8∑

k=1

2
(
8k − 3 + r

)2 − t−r
8∑

k=1

4(8k − 5 + r)

=

t−r
8∑

k=1

(
128k2 + 32(r − 4)k + 2r2 − 16r + 38

)

=128

t−r
8∑

k=1

k2 + 32(r − 4)

t−r
8∑

k=1

k +
t− r

8
(2r2 − 16r + 38)

=
1

12
t3 + (

−r
12

+
r

4
− r

6
)t2 + (

r2

3
− 2r2

4
+
t

6
− 7

12
)t+ (

−r3

3
+
r3

4
+

7r

12
)

=
1

12
t3 − 7

12
t+

7r − r3

12

When r = 1, f(d11)− f(d01) = 1
12 t

3 − 7
12 t+ 1

2 . f(d11) = 0. So d∗1 = d11.

When r = 2, f(d11)− f(d01) = 1
12 t

3− 7
12 t+ 1

2 . f(d11) = −1
2 . No swaps on d11 can increase

f(d11) by 1
2 . So d∗1 = d11.

When r = 3, f(d11)− f(d01) = 1
12 t

3− 7
12 t−

1
2 . f(d11) = −1. swap(0,1) will increase f(d11)

by 1. So d∗1 = V3(U3(d
0
1)) = W3(d

0
1).

When r = 4, f(d11) − f(d01) = 1
12 t

3 − 7
12 t − 3. f(d11) = −4. V4 = swap(k−12 ,k+1

2 ) for

k = 2 and 6 will increase Sp(d11) by 4. So d∗1 = V4(U4(d
0
1)) = W4(d

0
1).

When r = 5, f(d11)−f(d01) = 1
12 t

3− 7
12 t−

90
12 . f(d11) = −8. swap(0,2) will increase f(d11)

by 8. So d∗1 = V5(U5(d
0
1)) = W5(d

0
1).

When r = 6, f(d11)−f(d01) = 1
12 t

3− 7
12 t−14.5. f(d11) = −15.5. swap(−5

2 ,32) will increase

f(d11) by 16. So d∗1 = V6(U6(d
0
1)) = W6(d

0
1).

When r = 7, f(d11) − f(d01) = 1
12 t

3 − 7
12 t −

1
2 . f(d11) = −25. swap(−2,3) will increase
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f(d11) by 25. So d∗1 = V7(U7(d
0
1)) = W7(d

0
1).

When r = 0, f(d11)−f(d01) = 1
12 t

3− 7
12 t−

1
2 . So f(d11) = −1. swap(k−12 ,k+1

2 ) for k = 0, 2,

and 6 in a sequence will increase f(d11) by 1. So d∗1 = V0(U0(d
0
1)) = W0(d

0
1).

(ii) p = λt, where λ > 1 integers. Denote d∗1 constructed from (i) as d∗∗1 . When

t mod 2 = 1 or t mod 4 = 0, |
∑t

j=1 d
∗∗
1,jd
∗∗
1,j−1 |= 0. If d∗1 is constructed by repeat-

ing d∗∗1 p/t times aross p periods, then |
∑p

j=1 d
∗
1,jd
∗
1,j−1 |=|

p
t

∑t
j=1 d

∗∗
1,jd
∗∗
1,j−1 |= λ |∑t

j=1 d
∗∗
1,jd
∗∗
1,j−1 |= 0 for t mod 2 = 1 or t mod 4 = 0.

This completes the proof.

Proof of Theorem 1.3.1. Before we prove Theorem 1.3.1, we introduce Corollary 1.6.1.

Corollary 1.6.1. A 2-variable uniform designs d∗ ∈ Ω(2, t, µt, λt) that satisfy d
(l)
i,0 =

d
(l)
i,p, for all i and l, is T-optimal if

d∗ = arg max
d
{x+ y − 1

xy − z2

(
(a21 + a22)y + (b21 + b22)x− 2(a1b1 + a2b2)z

)
}, (1.6.3)

where x, y, z, a1, a2, b1, b2 are defined in Theorem 1.3.1.

We first prove Corollary 1.6.1.

d∗ = arg max
d

[
tTd1ω

⊥([U ,Pd])td1 + tTd2ω
⊥([U ,Pd])td2

]
= arg max

d

[(
tTd1ω

⊥(U)td1 + tTd2ω
⊥(U)td2

)
−
(
tTd1ω

⊥(U)Pd{P T
d ω
⊥(U)Pd}−P T

d ω
⊥(U)td1

+tTd2ω
⊥(U)Pd{P T

d ω
⊥(U)Pd}−P T

d ω
⊥(U)td2

)]

The rest can be proved by plugging in tdl, l = 1, 2, ω⊥(U) and Pd.

Now we prove Theorem 1.3.1. Second term in the parenthesis can be rewritten into:

tTd1ω(ω⊥(U)Pd)td1 + tTd2ω(ω⊥(U)Pd)td2. Since ω(ω⊥(U)Pd) is a projection matrix
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and it is positive semi-definite so tTd1ω(ω⊥(U)Pd)td1 ≥ 0 and tTd2ω(ω⊥(U)Pd)td2 ≥ 0.

Therefore, if exists, d∗ can be obtained when second term 1
xy−z2

(
(a21 + a22)y + (b21 +

b22)x− 2(a1b1 + a2b2)z
)

= 0. That is,

(a21 + a22)y + (b21 + b22)x− 2(a1b1 + a2b2)z = 0, xy − z2 6= 0 (1.6.4)

A sufficient condition satisfying (1.6.4) is a1 = a2 = b1 = b2 = 0 and xy − z2 6= 0.

Proof of d01 = arg min
d1∈Sm

∑p
j=1 d1,jd1,j−1. We first prove d01 + t+1

2 = arg min
d1∈Sm

∑p
j=1(d1,j +

t+1
2 )(d1,j−1 + t+1

2 ).

Denote first row as a1, · · · , at, where a1, · · · , at is a permutation of 1, 2, · · · , t. Now

the proof remains to show that arrangement of a1, · · · , at as in the d01 will minimize

t∑
i=2

aiai−1 + a1at (1.6.5)

We will finish our proof in the following steps.

Denote two adjacent numbers for i as xi and yi. xi < yi 6= i, 1 ≤ xi < yi ≤ t,

i = 1, · · · , t

Note that we don’t distinguish the position (left or right) of xi and yi. Two adjacent

of last element at in the row is at−1 and a1 and two adjacent of first element a1 in the

row is at and a2.

The original minimization problem is equivalent to below:

min
[
(at + a2)× a1 + (a1 + a3)× a2 + · · ·+ (at−1 + a1)× at

]
(1.6.6)

or

min
[
(x1 + y1)× 1 + (x2 + y2)× 2 + · · ·+ (xt + yt)× t

]
(1.6.7)

That satisfies the following conditions.
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(1) xi < yi, 1 ≤ xi < yi ≤ t,

(2) Each value of 1 to t is repeated exactly two times

(3) xi < yi 6= i for i = 1, · · · , t

(4) xi, yi for i = 1, · · · , t satisfying first two conditions can be rearranged into same

layout as in (1.6.6)

Value in objective function (1.6.6) doubles value in original objective function. Con-

ditions in (1.6.7) are to make sure that (1.6.6) and (1.6.7) are equivalent.

(x1 + y1)× 1 + (x2 + y2)× 2 + · · ·+ (xt + yt)× t

=x1 × 1 + x2 × 2 + · · ·+ xt × t+ y1 × 1 + y2 × 2 + · · ·+ yt × t

=
t∑
1

xi × i+
t∑
1

yj × j

Now we first look at a broader minimization problem that only satisfies condition 1

and condition 2. Assume x = {x1, · · · , xt} ⊂ F = {1, 1, 2, 2, · · · , t, t} and Z =

{y1, · · · , yt} = F \ S such that xi < yi for all i. x(1) ≤ x(2) ≤ · · ·x(t) and y(1) ≤

y(2) ≤ · · · y(t) are the corresponding ordered numbers.

Note that after ordering, x(i) < y(i) still satisfies condition (1). We can prove this

in the following. For any x(i), the corresponding pair in yj is denoted as yx(i) . Since

x(i) < yx(i) for k < i ≤ t and x(k) ≤ x(i) < yx(i) for all k ≤ i ≤ t. x(k) is smaller than at

least t− k + 1 yj . Therefore, x(k) < y(k).

By rearrangement inequality G. H & Littlewood (1952), for this given arrangement
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of x1, · · · , xt and y1, · · · , yt under condition 1 and condition 2,

t∑
1

xi × i+
t∑
1

yj × j

≥
t∑
1

x(t+1−i) × i+
t∑
1

y(t+1−j) × j (1.6.8)

Denote the lower bound above as LB(xi, yj). If minLB(xi, yj) attained also satisfies

condition (3) and (4), then it must be the optimal solution satisfying all conditions. If

not, denote the lower bound of arrangement in d01 + t+1
2 as LB∗. If for all LB(xi, yj) <

LB∗, they don’t satisfy other two conditions no matter how we permute xi and yj under

the first two conditions, then LB∗ is the our optimal solution satisfying all conditions.

Next we will show that LB∗ is the optimal solution that satisfies all conditions.

If we write d01 + t+1
2 according to (1.6.8), clearly, x(1) = x(2) = 1, y(t) = y(t−1) = t,

x(k) = k − 1 for k > 2 and y(k) = k + 1 for k < t− 1. This arrangement gives LB∗.

Since x(1), x(2), y(t−1), y(t) are fixed, we will first find all 2 ≤ x(i) ≤ (t− 1) for i > 2

and 2 ≤ y(j) ≤ (t− 1) for j < t− 1 that corresponding LB(xi, yj) < LB∗.

t∑
1

xi × i+
t∑
1

yj × j

≥
t∑
1

x(t+1−i) × i+

t∑
1

y(t+1−j) × j

=t+ (t− 1) +

t−2∑
1

x(t+1−i) × i+

t∑
3

y(t+1−j) × j + t+ 2t

=t+ (t− 1) +

t∑
3

x(i) × (t+ 1− i) +

t−2∑
1

y(j) × (t+ 1− j) + t+ 2t

Denote the ordered repeated numbers in x(i) (exclude 1) as s1, · · · , sr and ordered

repeated numbers in y(j) (exclude t) as t1, · · · , tr. (The total number of repeated values

in x(i) and y(j) must be same since we have t numbers with each repeating two times.

The number of non-repeating values must be same for x(i) and y(j). Therefore making
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number of repeated values in x(i) and y(j) same since x(i) and x(i) have same length.)

Compared with x(i) = i−1 for i > 2 and y(j) = j+1 for j < t−1, a necessary condition

for achieving smaller lower bound is there exist k such that sk > tk.

Assume si < ti for all i = 1, · · · , r. We first look at the case when r = 1. x(i)× (t+

1− i) = (i− 1)× (t+ 1− i) will be decreased by ((t− 1)− s1) + ((t− 1)− (s1 + 1)) +

· · ·+ ((t− 1)− (t1 − 1)).

y(j) × (t+ 1− j) = (j + 1)× (t+ 1− j) will be increased by ((t+ 3)− (s1 + 1)) +

((t+ 3)− s1) + ((t+ 3)− (s1 + 1)) + · · ·+ ((t+ 3)− t1).

Therefore, compared with x(i) = i − 1 for i > 2 and y(j) = j + 1 for j < t − 1, the

lower bound is increased by 3× (t1 − s1).

When r > 1, similarly, the increase in y(j) × (t + 1 − j) is always greater than the

decrease in x(i)× (t+ 1− i) making the lower bound increased. Only when sk > tk, the

lower bound is possibly decreased.

Now we prove that for any arrangement generating smaller lower bound, no matter

how we permute xi and yj satisfying condition 1, they don’t satisfy condition 4.

Recall the necessary condition of possible smaller lower bound is there exist some

k such that sk > tk, where sk is kth repeated number in x(i) excluding 1 and tk is kth

repeated number in y(j) excluding t. Assume that smallest k satisfying sk > tk is k∗,

sk∗ > tk∗ and si < ti for all i < k∗.

For y(j) ≤ tk∗−1, there are k∗−1 repeated numbers and jumps (One jump is counted

as jump from m− 1 to m+ 1. If skipping two numbers, it is counted as two jumps. If

y(1) = l, l > 2, its counted as l − 2 jumps.) Therefore, y(tk∗−1−2) = y(tk∗−1−1) = tk∗−1.

And y(j) = j + 1 for all tk∗−1 − 1 ≤ j < t∗k. y(tk∗−1) = y(tk∗ ) = tk∗ .

Similarly, when tk∗ − tk∗−1 > 1 i.e. k∗th repeated number in y(j) is not tk∗−1 + 1,
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then for x(i) ≤ tk∗−1 + 1, there are k∗ − 1 repeated numbers and jumps. Therefore,

x(tk∗−1+2) = tk∗−1 + 1. And x(i) = i− 1 for all tk∗−1 + 2 ≤ i < t∗k + 1. x(tk∗ ) = tk∗ − 1

and x(tk∗+1) = tk∗ + 1. Therefore, for i ≤ t∗k, all x(i) < y(i) ≤ t∗k and for i > t∗k, x(i) > t∗k

and y(i) > t∗k.

When tk∗ − tk∗−1 = 1, y(tk∗−1) = y(tk∗−1+1) = tk∗ , x(tk∗−1+2) = x(tk∗−1+3) =

tk∗−1 + 2 = tk∗ + 1 = s∗k since y(tk∗−1+2) 6= tk∗ + 1. (If y(tk∗−1+2) = tk∗ + 1, x(tk∗−1+2) <

tk∗ + 1. And x(tk∗−1+2) > tk∗−1 − 1 from above. So x(tk∗−1+2) = tk∗−1 or tk∗ , which is

not possible.) Therefore, for i ≤ tk∗−1 + 1 = tk∗ , all x(i) ≤ t∗k and y(i) ≤ t∗k and for

i > tk∗−1 + 1 = t∗k, all x(i) > t∗k and y(i) > t∗k.

In both cases, partition {x(i), y(i)} pairs into two blocks i ≤ t∗k and i ≥ t∗k + 1, where

first block takes values {11, 22, · · · , t∗k, t∗k} and second block takes values {t∗k + 1, t∗k +

1, · · · , t, t}.

Any permutation on xi and yj must still satisfy xk < yk. Despite the position of

y(1), · · · , y(t∗k) in the new permutation, corresponding xi values could only be a per-

mutation within the first block satisfying xi < yi. Therefore, if switching position of

the triplets of {i, xi, yi} so that all y(1), · · · , y(t∗k) are together, {1, 1, 2, 2, · · · , t∗k, t∗k} will

appear in the same {xi, yi} block and separated from remaining numbers.

However, when t is odd, according to condition (3), there exist no partition in

all {xai , yai} such that {1, 1, · · · , f, f} and f + 1, f + 1, · · · , t, t are separated for any

1 ≤ f ≤ t− 1.

Therefore, even though there exist k such that sk > tk will possibly gives a smaller

lower bound, all eligible permutations under first two conditions will not satisfy condi-

tion 4. The proof is therefore complete when t is odd.
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When t is even, according to condition (3), there exist one and only one par-

tition on the indices set for all triplets {ai, xai , yai}, I1 = {1, 3, 5, · · · , t − 1} and

I2 = {2, 4, 6, · · · , t} such that {xai , yai} are partitioned into {a2, a2, a4, a4 · · · , at, at}

and {a1, a1, a3, a3, · · · , at−1, at−1}. Since we are dividing all pairs of {xai , yai} into half,

there is only one repeated number t∗1 = t/2 such that t∗1 < s∗1 . There shall be only

one repeated number such that tk < sk (excluding 1 and t) since there will be more

partitions if not. There is no other repeated numbers satisfying si < ti since this will

make the lower bound larger than our optimal solution. This can be seen by recalling

above that even with only one s1 < t1, the lower bound is increased by 3 × (t1 − s1)

compared with x(i) = i− 1 for i > 2 and y(j) = j+ 1 for j < t− 1. In the extreme case,

t1 − s1 = 1. The lower bound is still increased by 3. However, with only one repeated

number sk > tk. The lower bound is only decreased by 1. This can be seen as below.

For sk > tk, we have as above: y(tk−1) = y(tk) = tk and x(tk) = tk−1, x(tk+1) = tk+1.

x(i) × (t + 1 − i) = (i − 1) × (t + 1 − i) will be increased by t + 1 − (tk + 1) while

y(j) × (t + 1 − j) = (j + 1) × (t + 1 − j) will be decreased by t + 1 − tk. So the total

lower bound is decreased only by 1.

Therefore, the optimal solution for t is even case is as below: y(t/2) = t/2 and

y(j) = j+ 1 for j < t 6= t/2. x(t/2+1) = t/2 + 1 and x(i) = i− 1 for 1 < i 6= t/2 + 1. This

complete our proof.
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Chapter 2

Bayesian Quantile Analysis for Computer Experiments

2.1 Introduction

Computer experiments refer to those experiments that are performed in computers using

complex mathematical models. Computer experiments are becoming popular because

many physical experiments are difficult or impossible to perform. However, computer

simulations are typically time-consuming–it is normal for code to run for 12 hours or

longer to produce a single response and the number of variables involved is usually

large–15 to 20 or more variables, so it is infeasible to perform all the combinations

of experiments. Given these two features of computer experiments, it is common to

construct statistical models as a surrogate and perform inference and optimization

based on it. In addition, computer experiments are deterministic in the sense that a

particular input produces the same output if given to the computer experiments on

another occasion. Therefore, it is desirable to build an interpolating surrogate model

for computer experiments outputs. A Gaussian process (GP) model, also known as

Kriging, is a widely used surrogate model for the analysis of computer experiments

because of its interpolation property (Santner et al., 2003; Fang et al., 2005).

Despite the popularity of GP modeling in various applications, GP is mainly de-

signed to model the mean structure of computer outputs. In many scientific studies,
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it is often of interest to understand the impacts of input variables on different quan-

tiles of the response in computer experiments. However, to the best of our knowledge,

research on quantile regression for computer experiments is limited. Therefore a new

model which analogue to GP for quantile analysis in computer experiments is called

for. In the example of Community Ice Sheet Model (CISM) (Rutt et al., 2009; Price

et al., 2011), thickness of ice sheet can be used to understand ice sheet behavior and its

impact on climate. By predicting the quantiles of ice sheet thickness, a distribution of

ice sheet thickness can be obtained. Predictions on extreme values of icesheet thickness

are critical in the study of climate change.

Conventional parametric linear quantile regression (Koenker and Bassett Jr, 1978;

Koenker and Hallock, 2001) can not capture the non-linearity of quantile function.

Non-parametric methods including spline based or nearest neighbor or Kernal based

quantile regression models (Stone, 1977; Koenker et al., 1994; Yu and Jones, 1998;

Koenker, 2005; Roger Koenker, 2017) can capture the non-linearity of quantile function

but the inference is resampling based and choosing proper band width is also a chal-

lenging problem. To capture the non-linearity and smoothness in quantile prediction

for computer experiments and to build a parametric model, we propose a Bayesian

quantile analysis model with asymmetric Laplace distribution (ALP) as likelihood and

a GP prior on coefficients. Asymmetric Laplace distribution on error is used to build a

parametric model and GP prior on coefficients is used for building a nonlinear quantile

model with interpolation property. In our proposed model, quantile predictions achieve

a quantile interpolation property asymptotically and coefficient estimates are shown to

be asymptotically consistent with some constraint.

The reminder of this chapter is organized as follows. In Section 2.2, the new Bayesian
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quantile model for computer experiments is introduced. The asymptotic properties are

given in section 2.3. Simulations and real data example are given in Section 2.4. Final

discussions are given in Section 2.5. All technical proofs are given in section 2.6.

2.2 Bayesian quantile model for computer experiments

Suppose we have a set of data (x1, y1), · · · , (xn, yn) with input xi ∈ Rp and output

yi ∈ R. Quantile regression is about modeling conditional quantile functions (Koenker

and Bassett Jr, 1978)

g = arg min
g∈G

n∑
i=1

ρτ (yi − g(xi)),

where g(x) is the quantile function and ρτ (u) = u(τ − 1{u < 0}) is the check function

with 1 denoting the indicator function. In regular linear quantile regression, g(xi) =

xTi β. In non-parametric quantile regression, g(xi) is represented using splines. Kernal

based non-parametric quantile regresssino is to add Kernal weight to the loss function.

In conventional Bayesian linear quantile regression, the distribution of y is as-

sumed to be asymmetric Laplace (ALP) distribution with probability density function

f(y|σ2ε , τ) = τ(1−τ)
σ2
ε

exp(−ρτ (y−x
Tβ

σ2
ε

)). ALP is used since minimizing check function

corresponds to maximizing likelihood of ALP distribution (Yu and Moyeed, 2001). To

build a Bayesian parametric model for computer experiments, y is also assumed to be

ALP in our model.

O’Hagan (1978) used GP prior on coefficients in mean regression to achieve non-

linear curve fitting. GP prior can characterize the dependence of coefficient β on x that

can reflect beliefs about the smoothness of the true response function. So to capture

the non-linearity and smoothness of quantile function, similarly, the prior of coefficient

is assumed to be GP in the Bayesian quantile model for computer experiments.
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It is shown in the next section that with GP prior assumption on coefficients and

ALP likelihood distribution, asymptotic interpolation property is achieved for quan-

tile prediction. Before that, the new Bayesian quantile analysis models for computer

experiments is explained for one covariate i.e. p = 1 case below.

2.2.1 One covariate model

In Bayesian quantile analysis for computer experiments, to model conditional quantile

of output y with ALP likelihood and GP prior on coefficient, y can be written as

y = xβ(τ, x) + ετ , (2.2.1)

where ετ ∼ ALP(0, σ2ε , τ) and β(τ, x) follows a stationary Gaussian process with mean

b(τ) and covariance σ2(τ)φ and covariance function is defined by cov(β(xk), β(xk′)) =

σ2(τ)φ
(
(xk − xk′); θ(τ)

)
. β(τ, x), b(τ), σ2(τ) and θ(τ) includes τ since for different

quantile τ , all parameters are different. σ2ε is scale parameter and τ is the skewness

parameter in the ALP distribution. According to Kozubowski et al. (2013) and Lum

and Gelfand (2012), ετ can be represented by ετ = σε

√
2ξ

τ(1−τ)Z+σε
1−2τ
τ(1−τ)ξ, where Z ∼

N(0, 1) and ξ ∼ Gamma(1, 1). So ετ |ξ ∼ N
(
σε

1−2τ
τ(1−τ)ξ,

2σ2
ε ξ

τ(1−τ)
)
. Let qτ (x) = xβ(τ, x),

(y − σε
1− 2τ

τ(1− τ)
ξ)|qτ (x), ξ ∼ N

(
qτ (x),

2σ2ε ξ

τ(1− τ)

)
(2.2.2)

Assume parameters σ2(τ), θ(τ), b(τ), σ2ε are known. Given observed inputs realiza-

tions x1, · · · , xM . When multiple outputs are observed for same set of x1, · · · , xM and

denote the observed outputs as y1, · · · ,yn, where yi = (yi1, · · · , yiM )T is output vector

corresponding to x1, · · · , xM . Posterior mean and variance of qτ (x) given y1, · · · ,yn
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and ξ is

E(qτ (x)|y1, · · · ,yn, ξ)

=hτ (x) + rτ (x)T (
1

n

2σ2ε ξ

τ(1− τ)
I + Στ )−1(

1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
ξ1− hτ ) (2.2.3)

→hτ (x) + rτ (x)TΣτ
−1( 1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
ξ1− hτ

)
Var(qτ (x)|y1, · · · ,yn, ξ)

=v(x, x)− r(x)T (
2σ2ε ξ

nτ(1− τ)
I + Στ )−1r(x), (2.2.4)

where 1 is length M all-ones vector. Given prior information, hτ (x) = xb(τ) is the

mean of qτ (x), hτ = (hτ (x1), · · · , hτ (xM ))T is the mean of (qτ (x1), · · · , qτ (xM ))T ,

vτ (xk, xk′) = xkxk′σ
2(τ)φ(|xk − xk′ |, θ(τ)) is covariance between qτ (xk) and qτ (xk′),

rτ (x) is the M × 1 vector whose kth element is vτ (x, xk), I is an identity matrix and Στ

is M ×M covariance matrix whose (k, k′)th elements is vτ (xk, xk′).

The covariance structure of response y in Bayesian quantile model is dependent on

x so y is not a stationary process. This is different from GP model for mean regression

in the sense that covariance of responses y are only dependent on distance of different x

and variance of response y is constant for all x. The correlation structure of y in above

Bayesian quantile model with one covariate, however, is dependent only on distance of

x which is same with correlation of response y in GP model for mean regression.

The general case derivation of (2.2.3) and (2.2.4) is given in the next section.

Based on (2.2.3) and (2.2.4), we have the following results.

Theorem 2.2.1. Posterior mean and variance of qτ (x) given y1, · · · ,yn as n→∞ is

E(qτ (x))|y1, · · · ,yn)→hτ (x) + rτ (x)TΣτ
−1( 1

n

n∑
i=1

yi −
(1− 2τ)σε
τ(1− τ)

1− hτ
)

(2.2.5)

Var(qτ (x)|y1, · · · ,yn)→ (
(1− 2τ)σε
τ(1− τ)

r(x)TΣ−1τ 1)2 + v(x, x)− r(x)TΣ−1τ r(x)
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Posterior mean in (2.2.5) can be used for quantile prediction for new xM+1 and

when new xM+1 coincides with some xk for k = 1, · · · ,M , the quantile prediction is:

̂qτ (xk) = hτ (xk) + rτ (xk)
TV −1(

1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
1− hτ )

=hτ (xk) +
1

n

n∑
i=1

yik − σε
1− 2τ

τ(1− τ)
− hτ (xk)

=
1

n

n∑
i=1

yik − σε
1− 2τ

τ(1− τ)

p→E(yk)− σε
1− 2τ

τ(1− τ)
,

as n → ∞. Also by (2.2.2), E(yk|qτ (xk)) = E[E(yk|qτ (xk), ξ)|ξ] = E[σε
1−2τ
τ(1−τ)ξ +

qτ (xk)|ξ] = σε
1−2τ
τ(1−τ)+qτ (xk), so E(yk)−σε 1−2τ

τ(1−τ) = qτ (xk). Therefore, ̂qτ (xk)
p→ qτ (xk).

Definition 2.2.1. Given observed input-output pairs (x, y). Define qτ (x), τ th quantile

of y given x. So for any observed x, we have underlying input-quantile pairs (x, qτ (x)).

When quantile predictions agree on qτ (x) for all observed inputs x and quantile pre-

diction of unobserved inputs are dependent on these known input-quantile pairs, corre-

sponding quantile prediction model is called a quantile interpolator.

Therefore quantile prediction using proposed model for one covariate case is a quan-

tile interpolator as n→∞.

In the next subsection, a general model with p covariates is given.

2.2.2 Multiple covariates model

For p > 1 covariates, assume the effects of different covariates are additive and assume

the effect of covariate xj depends only on the value of xj . Using assumptions above, y’s

τth conditional quantile given inputs x = (x1, x2, · · · , xp) is modeled in the following.

y = x1β1(τ, x1) + · · ·+ xpβp(τ, xp) + ετ , (2.2.6)
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where ετ is same as one covariate case. To simplify notation, only linear covariate terms

are assumed in model (2.2.6). All results hold when covariates are in polynomial terms.

Assume the prior on the coefficients for jth covariate xj is as below.

βj(τ, xj) ∼ GP
(
bj(τ), σ2j (τ)φ

)
, (2.2.7)

where bj(τ) is mean and covariance function is defined by cov(βj(τ, xjs), βj(τ, xjt)) =

σ2j (τ)φ
(
(xjs − xjt); θj(τ)

)
, where xjs and xjt denotes two levels of jth covariate xj .

σ2j (τ) and θj(τ) are parameters in the covariance matrix. βj(τ, xj) are independent of

each other for different j and τ . Without loss of generality, assume correlation function

is in L1 norm: φ
(
(xjs − xjt; θj(τ)

)
= exp (−θj(τ) |xjs − xjt|).

Let β(τ,x) denote the p dimensional vector of (β1(τ, x1), · · · , βp(τ, xp)), the matrix

form of model (2.2.6) is:

y = xTβ(τ,x) + ετ

By prior distribution (2.2.7), the prior distribution of β(τ,x) is p dimensional Gaussian

distribution with mean b(τ) = (b1(τ), · · · , bp(τ))T and covariance

C(xk,xk′) = cov(β(τ,xk),β(τ,xk′)) =


σ21φ(xk1 − xk′1; θ1) · · · 0

...
. . .

...

0 · · · σ2pφ(xkp − xk′p; θp)


In the following section, main theory of interpolation property of quantile prediction

is given. Bayesian estimation of coefficients and its theoretical property is also provided.

2.3 General Theory

In this section, since all below properties are true for any given τ , for simplicity, we

ignore index τ for all notations. bj , σ
2
j , θj are used to denote bj(τ), σ2j (τ), θj(τ).
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Denote qτ (x) = xTβ(τ,x), similar to (2.2.2), for p > 1,

y − σε
1− 2τ

τ(1− τ)
ξ|qτ (x), ξ ∼ N

(
qτ (x),

2σ2ε ξ

τ(1− τ)

)
(2.3.1)

Assume σ2j , θj , bj , σ
2
ε are known. Given observed inputs realizations x1, · · · ,xM ,

where xk = (xk1, · · · , xkp)T is length p covariates vector corresponding to kth setting

and y1, · · · ,yn are same as above. Similar to (2.2.5), the objective is to find posterior

mean and variance of qτ (x) given y1, · · · ,yn, where x = (x1, · · · , xp)T . The main

results are given in Theorem 2.3.1.

Before introducing Theorem 2.3.1, we first introduce some notations.

Based on prior assumption, the mean of qτ (x) is denoted as h(x) =
∑p

j=1 xjbj .

The mean of yi for ∀i = 1, · · · , n is denoted as h = (h(x1), · · · , h(xM ))T . Covari-

ance between qτ (xk) and qτ (xk′) is denoted as v(xk,xk′) = xTkC(xk,xk′)xk′ , t(x) =

(v(x,x1), · · · , v(x,xM ))T denotes the covariance vector between x and xk for k =

1, · · · ,M and V is M ×M covariance matrix of (qτ (x1), · · · , qτ (xM ))T whose (k, k′)th

element is v(xk,xk′).

Similar to the one covariate case, given prior information, the mean and covariance

structure of response y are dependent on x so y is not a stationary process.

Theorem 2.3.1. Assume (2.2.6) and (2.2.7) is satisfied and for given τ ,

(i) As n → ∞, quantile prediction and its variance can be estimated using posterior

mean and variance of qτ (x)|y1, · · · ,yn below

E(qτ (x)|y1, · · · ,yn)→ h(x) + t(x)TV −1(
1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
1− h) (2.3.2)

Var(qτ (x)|y1, · · · ,yn)→ (σε
1− 2τ

τ(1− τ)
t(x)TV −11)2 + v(x,x)− t(x)TV −1t(x) (2.3.3)

(ii) Quantile prediction model via (2.3.2) is a quantile interpolator as n→∞.

(iii) Quantile prediction variance for observed inputs is (σε(1−2τ)τ(1−τ) )2 as n→∞.
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The posterior inference in Theorem 2.3.1 depends on both prior information and in-

formation on the data like any Bayesian analysis. Posterior mean in (2.3.2) for quantile

prediction of qτ (x) has similar form with mean GP model for computer experiment and

posterior variance in (2.3.3) has additional first term compared with variance estimation

in mean GP model.

When τ = 0.5, (2.3.2) indicates that median prediction coincides with mean E(y)

when x condicide with xk as n → ∞. This is true for any symmetric likelihood

distribution. (2.3.3) indicates that Var(qτ (x)|y1, · · · ,yn) → v(x,x) − t(x)TV −1t(x).

When x coincide with xk, Var(qτ (xk)|y1, · · · ,yn)→ 0 for k = 1, · · · ,M , which is same

with GP mean regression model.

In the next part, properties of coefficient estimations based on quantile prediction

qτ (x1), · · · , qτ (xM ) are given. A direct result from Theorem 2.3.1 for one covariate

case is introduced below.

Corollary 2.3.1. Assume (2.2.6) and (2.2.7) is satisfied and p = 1,

denote β(τ) = (β(τ, x1), · · · , β(τ, xM ))T

β̂(τ) = E(β(τ)|y1, · · · ,yn)
p→ β(τ) when n→∞.

The proof is complete by noticing qτ (xk) = xkβ(τ, xk) and ̂qτ (xk)
p→ qτ (xk) as

n→∞ for all k = 1, · · · ,M .

When there are p > 1 covariates, by model assumption (2.2.6) and (2.2.7), τ th

quantile of yk can be represented using: qτ (xk) =
∑p

j=1 βj(τ, xkj)xkj and yk|qτ (xk) ∼
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ALP(qτ (xk), σ2ε , τ) are independent for k = 1, · · · ,M . So

qτ :=


qτ (x1)

...

qτ (xM )

 =


∑p

j=1 βj(τ, x1j)x1j

...∑p
j=1 βj(τ, xMj)xMj

 (2.3.4)

Without loss of generality, assume covariate xj has l levels for j = 1, · · · , p in the design,

so the number of distinct {xkj}k=1,··· ,M and {βj(τ, xkj)}k=1,··· ,M is l for jth covariate.

We only consider the case when M ≥ lp− p for coefficients estimation.

Let βj(τ) = (βj(τ, xj(1)), βj(τ, xj(2)), · · · , βj(τ, xj(l)))T denote the unknown coef-

ficient vector for jth covariate, where xj(1), · · · , xj(l) denotes the l distinct levels of

covariate xj . Let β(τ) = (β1(τ), · · · ,βp(τ))T denote length lp coefficients vector for

all covariates.

By (2.3.4), qτ = A1Dβ(τ), where D = diag(x1(1), · · · , x1(l), · · · , xp(1), · · · , xp(l)) and A1

is M× lp transformation matrix with 0 and 1 elements and its row sums are all p. Since

rank(A1) < lp, so β(τ) cannot be obtained uniquely from qτ .

Additional prior assumption is needed to solve identifiability issue for coefficients

estimation. Assume

1/l
l∑

r=1

βj(τ, xj(r)) = bj(τ), (2.3.5)

where bj(τ) is mean of βj(τ, xj) known

Theorem 2.3.2. Assume conditions (2.2.6), (2.2.7) and (2.3.5) are true and for given

τ , as n→∞, when M ≥ lp− p,

β̂(τ) = E(β(τ)|y1, · · · ,yn)
p→ β(τ),
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2.4 Simulation and Real data Examples

2.4.1 Simulation with one covariate

In this section, we simulate yik ∼ N(5 sin(xk−1), 1), where xk k = 1, · · · , 10 are equally

spaced between 1 and 6, and i = 1, · · · , 30. 25th, 50th and 75th quantile predictions and

confidence bands results are given in Figure 2.1. Grey circles are simulated response

y. Black curve is underlying quantile function. Red dots give quantile prediction for

observed inputs. Blue triangles give quantile prediction for unobserved inputs. Quantile

prediction for both observed and unobserved inputs x are close to true quantile in Figure

2.1. The confidence band is smallest for median prediction.

Figure 2.1: Quantile prediction with confidence band for M = 10 in one covariate model

When there are only 6 observed inputs in the data i.e. k = 1, · · · , 6. Quantile

prediction for observed inputs x are still close to true quantile. The confidence band of

quantile prediction for unobserved input is larger than M = 10 case.
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Figure 2.2: Quantile prediction with confidence band for M = 6 in one covariate model

The quantile prediction and standard deviation for M = 10 and M = 6 are sum-

marized in Table 2.1, 2.2 and 2.3. Standard deviation increases with value of x and

decreases when number of observed inputs M increases. Standard deviation is smallest

when τ = 0.5. This confirm observations in section 2.3.
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Table 2.1: Simulation study: 25th Quantile prediction for unobserved inputs in one

covariate model

x True 25th quantile M = 10, τ = 0.25 M = 6, τ = 0.25

1.13 0.109 -0.229(0.545) -0.327(0.551)

1.471 1.728 1.571(0.543) 0.787(0.575)

1.811 3.087 2.874(0.548) 2.466(0.562)

2.152 4.029 3.914(0.538) 3.748(0.55)

2.493 4.445 4.421(0.55) 3.911(0.572)

2.834 4.289 4.363(0.552) 3.964(0.56)

3.174 3.577 3.524(0.542) 3.495(0.563)

3.515 2.392 2.453(0.566) 2.392(0.593)

3.856 0.87 1.092(0.552) 1.01(0.569)

4.196 -0.814 -0.641(0.567) -0.399(0.585)

4.537 -2.466 -2.34(0.582) -1.845(0.624)

4.878 -3.897 -4.049(0.538) -3.502(0.58)

5.219 -4.942 -4.831(0.598) -4.433(0.615)

5.559 -5.481 -5.342(0.584) -4.896(0.662)

5.9 -5.452 -5.261(0.585) -5.382(0.59)
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Table 2.2: Simulation study: 50th Quantile prediction for unobserved inputs in one

covariate model

x True 50th quantile M = 10, τ = 0.5 M = 6, τ = 0.5

1.13 0.648 0.434(0.05) 0.355(0.054)

1.471 2.268 1.998(0.056) 1.552(0.104)

1.811 3.626 3.396(0.095) 3.256(0.1)

2.152 4.568 4.665(0.059) 4.522(0.109)

2.493 4.985 4.801(0.122) 4.636(0.176)

2.834 4.828 4.672(0.137) 4.594(0.149)

3.174 4.117 4.233(0.094) 4.017(0.17)

3.515 2.932 3.067(0.185) 2.804(0.248)

3.856 1.41 1.571(0.141) 1.278(0.192)

4.196 -0.274 0.022(0.191) -0.173(0.236)

4.537 -1.927 -1.558(0.23) -1.565(0.32)

4.878 -3.358 -3.201(0.072) -3.164(0.226)

5.219 -4.403 -4.221(0.27) -3.966(0.305)

5.559 -4.942 -4.919(0.237) -4.247(0.39)

5.9 -4.912 -4.837(0.239) -4.532(0.25)
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Table 2.3: Simulation study: 75th Quantile prediction for unobserved inputs in one

covariate model

x True 75th quantile M = 10, τ = 0.75 M = 6, τ = 0.75

1.13 1.188 1.043(0.545) 0.884(0.551)

1.471 2.807 2.662(0.543) 2.035(0.575)

1.811 4.166 3.955(0.548) 3.598(0.562)

2.152 5.108 5.033(0.538) 4.818(0.55)

2.493 5.524 5.336(0.55) 5.132(0.572)

2.834 5.368 5.198(0.552) 5.327(0.56)

3.174 4.656 4.495(0.542) 4.91(0.563)

3.515 3.472 3.331(0.566) 3.747(0.593)

3.856 1.95 1.874(0.552) 2.257(0.569)

4.196 0.266 0.312(0.567) 0.772(0.585)

4.537 -1.387 -1.265(0.582) -0.726(0.624)

4.878 -2.818 -2.896(0.538) -2.462(0.58)

5.219 -3.863 -3.658(0.598) -3.37(0.615)

5.559 -4.402 -4.21(0.584) -3.746(0.662)

5.9 -4.373 -4.279(0.585) -4.15(0.59)
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2.4.2 Simulation with multiple covariates

In this section, we consider a model with 3 covarites in the model. Assume there

are inputs x1, x2, x3 and each covariate has l = 8 levels and factorial design is used

in the simulation. There are in total M = 63 = 216 different settings. Coeffi-

cients are generated according to assumption (2.2.7) and (2.3.5). Then simulate yik ∼

ALP(
∑3

j=1 xkjβi(τ, xkj), σε = 1, τ), where k = 1, · · · , 216, i = 1, · · · , 50 and τ =

0.25, 0.5, 0.75. Figure 2.3 below gives 25th, 50th and 75th quantile predictions results

compared with true quantiles. From Figure 2.3, quantile predictions are very close to

true quantiles.

Figure 2.3: Quantile predictions versus true quantiles for multiple covariates model

Figure 2.4 below shows coefficients estimation results compared with true coefficients

for τ = 0.25, τ = 0.5 and τ = 0.75. From Figure 2.4, estimated coefficients are close to

true coefficients.



45

Figure 2.4: Coefficients estimation versus true coefficients for multiple covariates model

2.4.3 Real data example

Icesheet data is simulated based on the community ice sheet model (CISM)(Rutt et al.,

2009; Price et al., 2011; Higdon et al., 2013). There are two inputs in the CISM model.

x1 is a constant in the GlenNye flow law, controlling the deformation of the ice sheet and

x2 controls the heat conductivity in the ice sheet. The thickness of the present ice sheet

could be measured to inform about the model inputs x1 and x2. Icesheet thickness was

collected in a 3D field in space and time. We use all thickness measure in the 27× 32

grid space at time index 10 as response and used an ensemble of M = 10 model runs

at different (x1, x2) input settings to generate non-linear quantile prediction as well as

coefficients estimation. There are in total 20 model runs in Higdon et al. (2013) paper.

10 out of 20 model runs are selected to satisfy the condition that M > l1 + l2−2, where

li is # of distinct levels of xi. Among the 10 model runs, l1 = 6 and l2 = 5.

Assume θ1(x1) and θ2(x2) are corresponding coefficients of x1 and x2. So the quantile

prediction can be written as qτ (x) = θ1(x1)x1 + θ2(x2)x2. After standardization on the

input design matrix, estimate for for θ1(x1) and θ2(x2) over different quantile levels is

given in Figure 2.5 and Figure 2.6.
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Figure 2.5: θ1 estimates for different

quantiles in ice sheet data

Figure 2.6: θ2 estimate for different

quantiles in ice sheet data

From Figure 2.5 and Figure 2.6, both x1 and x2 are more sensitive to higher quantile

levels than lower quantile levels. So x1 and x2 may be main contributing factor for

higher quantile levels. In addition, the sign of coefficient estimates indicates the slope

of coefficient of corresponding input. When the sign is negative, coefficient effect is

decreasing with the corresponding covariate.

2.5 Discussion

A new Bayesian quantile analysis model for computer experiments is introduced. We

show that with Gaussian process prior assumption on the coefficients and asymmet-

ric Laplace distributed error distribution, the quantile predictions for observed inputs

agree on true quantiles asymptotically. In addition, with some constraints, asymptotic

consistency of coefficients estimation is derived. What’s more, there is no issue of quan-

tile curves crossing each other in proposed model for quantile prediction of observed

inputs.
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2.6 Technical Proofs

Note that Theorem 2.2.1 is a special case of Theorem 2.3.1 so only proof of Theorem

2.3.1 is given. A Lemma that is useful to prove Theorem 2.3.1 is introduced first.

Lemma 2. Given nm × nm block matrix C with n × n blocks. Assume all diagonal

blocks are aIm +B and all other blocks are B, where a is a scalar, B is m×m matrix

and Im is m×m identity matrix, then 1TC−1 = (aIm + nB)−11T , where 1 is all-ones

vector with length n.

Proof of Lemma 2. Denote I = diag(Im, · · · , Im) is block diagonal matrix with n × n

blocks and 1 is all-ones vector of size n, so C = aI + 1B1T . By Woodbury matrix

identity,

C−1 = (aI + 1B1T )−1 = a−1I − a−11
(
B−1 + a−11T I1

)−1
1Ta−1.

So

C−1 =



1
aIm −

1
a2
E − 1

a2
E · · · − 1

a2
E

− 1
a2
E 1

aIm −
1
a2
E · · · − 1

aE

...
...

. . .
...

− 1
a2
E − 1

a2
E · · · 1

aIm −
1
a2
E


,

where E = (B−1 + a−1nIm)−1.

Since all column sums are the same, 1TC−1ei = 1
aIm −

n
a2
E for i = 1, · · · , n,

where ei is n × 1 vector with ith entry 1 and 0 elsewhere. It remains to show that
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1
aIm −

n
a2
E = (aIm + nB)−1.

1

a
Im −

n

a2
E

=
1

a
Im −

n

a2
(B−1 +

n

a
Im)−1

=
1

a
Im −

n

a2
a

n
(Im +

a

n
B−1)−1

=
1

a
Im −

1

a

(
Im − (Im +

n

a
B)−1

)
=(aIm + nB)−1

The proof is complete.

Proof of Theorem 2.3.1. By GP prior (2.2.7), distribution of qτ (x) is normal with mean

and variance below.

E(qτ (x)) = h(x)

var(qτ (x)) = v(x,x)

Let y′i = yi − σε 1−2τ
τ(1−τ)ξ1. By (2.3.1), y′i|ξ ∼ N(h, 2σ2

ε ξ
τ(1−τ)I), where 1 is all-ones vector

with length M and I is M ×M identity matrix.

Let µ = (h, · · · ,h)T and

Σ =


2σ2
ε ξ

τ(1−τ)I . . . 0

...
. . .

...

0 . . . 2σ2
ε ξ

τ(1−τ)I

+


V · · · V

...
...

...

V · · · V

 ,

So (y′1, · · · ,y′n)T |ξ ∼ N(µ,Σ).Denote y∗ = (y′1, · · · ,y′n)T , g(x) = (t(x)T , · · · , t(x)T )T

with t(x)T repeating n times, the joint distribution of y∗ and qτ (x) conditioned on ξ

is:

 y∗

qτ (x)

 |ξ ∼ N(
 µ

h(x)

 ,
 Σ g(x)

g(x)T v(x,x)

)
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Therefore, by formula of conditional distribution of multivariate Gaussian distribution,

qτ (x)|y∗, ξ ∼ N
(
h(x) + g(x)TΣ−1(y∗ − µ), v(x,x)− g(x)TΣ−1g(x)

)
(2.6.1)

Since Σ is block matrix with n× n blocks and its all diagonal blocks are 2σ2
ε ξ

τ(1−τ)I +

V and V elsewhere, by Lemma 2, 1TΣ−1 = ( 2σ2
ε ξ

τ(1−τ)I + nV )−11T . So g(x)TΣ−1 =

t(x)T 1TΣ−1 = t(x)T ( 2σ2
ε ξ

τ(1−τ)I+nV )−11T . Mean and variance in (2.6.1) can be rewritten

as

E(qτ (x)|y∗, ξ) = h(x) + t(x)T (
2σ2ε ξ

τ(1− τ)
I + nV )−1

n∑
i=1

(y∗i − h)

Var(qτ (x)|y∗, ξ) = v(x,x)− t(x)T (
2σ2ε ξ

τ(1− τ)
I + nV )−1nt(x)

So

E(qτ (x)|y1, · · · ,yn, ξ) = h(x) + t(x)T (
2σ2ε ξ

nτ(1− τ)
I + V )−1

1

n

n∑
i=1

(yi − σε
1− 2τ

τ(1− τ)
ξ1− h)

Var(qτ (x)|y1, · · · ,yn, ξ) = v(x,x)− t(x)T (
2σ2ε ξ

nτ(1− τ)
I + V )−1t(x)

Therefore, posterior mean and posterior variance of qτ (x)|y1, · · · ,yn is

E(qτ (x)|y1, · · · ,yn)

=E[E(qτ (x)|y1, · · · ,yn, ξ)|ξ]

=E[h(x) + t(x)T (
2σ2ε ξ

nτ(1− τ)
I + V )−1

1

n

n∑
i=1

(yi − σε
1− 2τ

τ(1− τ)
ξ1− h)|ξ]

→E[h(x) + t(x)TV −1(
1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
ξ1− h)|ξ]

=h(x) + t(x)TV −1(
1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
1− h) (2.6.2)
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Var(qτ (x)|y1, · · · ,yn)

=Var[E(qτ (x)|y1, · · · ,yn, ξ)|ξ] + E[Var(qτ (x)|y1, · · · ,yn, ξ)|ξ]

=Var[h(x) + t(x)T (
2σ2ε ξ

nτ(1− τ)
I + V )−1

1

n

n∑
i=1

(yi − σε
1− 2τ

τ(1− τ)
ξ1− h)|ξ]

+E[v(x,x)− t(x)T (
2σ2ε ξ

nτ(1− τ)
I + V )−1t(x)|ξ]

→Var[t(x)TV −1(
1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
ξ1− h)|ξ] + v(x,x)− t(x)TV −1t(x)

=(σε
1− 2τ

τ(1− τ)
t(x)TV −11)2 + v(x,x)− t(x)TV −1t(x)

(ii) According to (2.6.2), when x coincide with some xk for k = 1, · · · ,M , the

quantile prediction qτ (xk) with respect to y1, · · · ,yn is given in the following.

h(xk) + t(xk)
TV −1(

1

n

n∑
i=1

yi − σε
1− 2τ

τ(1− τ)
1− h)

=h(xk) +
1

n

n∑
i=1

yik − σε
1− 2τ

τ(1− τ)
− h(xk)

=
1

n

n∑
i=1

yik − σε
1− 2τ

τ(1− τ)

p→E(yk)− σε
1− 2τ

τ(1− τ)
,

as n → ∞. Also qτ (xk) = E(yk) − σε 1−2τ
τ(1−τ) . Therefore quantile prediction with GP

prior on coefficients interpolate true quantile asymptotically.

Proof of Theorem 2.3.2. Define β′ = (β′
1, · · · ,β′

p) ,where β′
j = (βj(τ, xj(1)), · · · , βj(τ, xj(l−1)))

is corresponding to coefficients for jth covariate at all l − 1 levels. By assumption, β′
j
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is distributed as below.

β′
j =


βj(τ, xj(1))

...

βj(τ, xj(l−1))


∣∣∣∣(θj , σ2j ) ∼ N(bj1l−1,Σ′j), (2.6.3)

where j = 1, · · · , p, 1l−1 is length l−1 all-ones vector and Σ′j is (l−1)×(l−1) covariance

matrix with same structure as R(xjs, xjs′) defined in (2.2.7).

Note that

β =



β1(τ, x1(1))

...

β1(τ, x1(l))

...

βp(τ, xp(1))

...

βp(τ, xp(l))



=



0

...

lb1

...

0

...

lbp



+ β′ = b′ +Qβ′,

whereQ = diag(I ′1, · · · , I ′p) is a (lp)×(l−1)pmatrix, I ′1 = · · · = I ′p =

 Il−1

(−1, · · · ,−1)


l×(l−1)

and Il−1 is (l − 1)× (l − 1) identity matrix.

Therefore,

q(τ) = A1Dβ

= A1Db
′ +A1DQβ

′ = A1Db
′ +A2β

′

A2 = A1DQ is M × p(l − 1) matrix with rank p(l − 1).

Given the above affine relation and using Theorem 2.3.1, we can derive consistency
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for β̂′ as below.

β̂′ = E(β′|y1, · · · ,yn) = E(H(q(τ)−A1Db
′)|y1, · · · ,yn)

= H(E(q(τ)|y1, · · · ,yn)−ADb′)

p→ H(q(τ)−A1Db
′)

= β′

where H = (AT2A2)
−1AT2 is a full rank (l − 1)p× (l − 1)p matrix. Since β = b′ +Qβ′,

clearly β̂
p→ β as n→∞
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